Regenerate spu overlay and icache manager files
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The primary symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the primary symtab. */
721 struct symtab *primary_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *, const char *);
1518
1519 static void dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *, CORE_ADDR);
1521
1522 static struct symbol *new_symbol (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1524
1525 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1526 struct dwarf2_cu *, struct symbol *);
1527
1528 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1529 struct dwarf2_cu *);
1530
1531 static void dwarf2_const_value_attr (const struct attribute *attr,
1532 struct type *type,
1533 const char *name,
1534 struct obstack *obstack,
1535 struct dwarf2_cu *cu, LONGEST *value,
1536 const gdb_byte **bytes,
1537 struct dwarf2_locexpr_baton **baton);
1538
1539 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1540
1541 static int need_gnat_info (struct dwarf2_cu *);
1542
1543 static struct type *die_descriptive_type (struct die_info *,
1544 struct dwarf2_cu *);
1545
1546 static void set_descriptive_type (struct type *, struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static struct type *die_containing_type (struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1556
1557 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1558
1559 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1560
1561 static char *typename_concat (struct obstack *obs, const char *prefix,
1562 const char *suffix, int physname,
1563 struct dwarf2_cu *cu);
1564
1565 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1566
1567 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1574
1575 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1576 struct dwarf2_cu *, struct partial_symtab *);
1577
1578 static int dwarf2_get_pc_bounds (struct die_info *,
1579 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1580 struct partial_symtab *);
1581
1582 static void get_scope_pc_bounds (struct die_info *,
1583 CORE_ADDR *, CORE_ADDR *,
1584 struct dwarf2_cu *);
1585
1586 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1587 CORE_ADDR, struct dwarf2_cu *);
1588
1589 static void dwarf2_add_field (struct field_info *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_attach_fields_to_type (struct field_info *,
1593 struct type *, struct dwarf2_cu *);
1594
1595 static void dwarf2_add_member_fn (struct field_info *,
1596 struct die_info *, struct type *,
1597 struct dwarf2_cu *);
1598
1599 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1600 struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1608
1609 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1610
1611 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1612
1613 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1614
1615 static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1617
1618 static const char *namespace_name (struct die_info *die,
1619 int *is_anonymous, struct dwarf2_cu *);
1620
1621 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1624
1625 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1626 struct dwarf2_cu *);
1627
1628 static struct die_info *read_die_and_siblings_1
1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1630 struct die_info *);
1631
1632 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
1635 struct die_info *parent);
1636
1637 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1639 int *, int);
1640
1641 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1643 int *);
1644
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
1649
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1661
1662 static const char *dwarf_tag_name (unsigned int);
1663
1664 static const char *dwarf_attr_name (unsigned int);
1665
1666 static const char *dwarf_form_name (unsigned int);
1667
1668 static char *dwarf_bool_name (unsigned int);
1669
1670 static const char *dwarf_type_encoding_name (unsigned int);
1671
1672 static struct die_info *sibling_die (struct die_info *);
1673
1674 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1675
1676 static void dump_die_for_error (struct die_info *);
1677
1678 static void dump_die_1 (struct ui_file *, int level, int max_level,
1679 struct die_info *);
1680
1681 /*static*/ void dump_die (struct die_info *, int max_level);
1682
1683 static void store_in_ref_table (struct die_info *,
1684 struct dwarf2_cu *);
1685
1686 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1687
1688 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1689
1690 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1691 const struct attribute *,
1692 struct dwarf2_cu **);
1693
1694 static struct die_info *follow_die_ref (struct die_info *,
1695 const struct attribute *,
1696 struct dwarf2_cu **);
1697
1698 static struct die_info *follow_die_sig (struct die_info *,
1699 const struct attribute *,
1700 struct dwarf2_cu **);
1701
1702 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1704
1705 static struct type *get_DW_AT_signature_type (struct die_info *,
1706 const struct attribute *,
1707 struct dwarf2_cu *);
1708
1709 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1710
1711 static void read_signatured_type (struct signatured_type *);
1712
1713 /* memory allocation interface */
1714
1715 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1716
1717 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1718
1719 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1720 const char *, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct symtab *symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663 return per_cu->v.quick->symtab;
2664 }
2665
2666 /* Return the CU/TU given its index.
2667
2668 This is intended for loops like:
2669
2670 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2671 + dwarf2_per_objfile->n_type_units); ++i)
2672 {
2673 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2674
2675 ...;
2676 }
2677 */
2678
2679 static struct dwarf2_per_cu_data *
2680 dw2_get_cutu (int index)
2681 {
2682 if (index >= dwarf2_per_objfile->n_comp_units)
2683 {
2684 index -= dwarf2_per_objfile->n_comp_units;
2685 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2686 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2687 }
2688
2689 return dwarf2_per_objfile->all_comp_units[index];
2690 }
2691
2692 /* Return the CU given its index.
2693 This differs from dw2_get_cutu in that it's for when you know INDEX
2694 refers to a CU. */
2695
2696 static struct dwarf2_per_cu_data *
2697 dw2_get_cu (int index)
2698 {
2699 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2700
2701 return dwarf2_per_objfile->all_comp_units[index];
2702 }
2703
2704 /* A helper for create_cus_from_index that handles a given list of
2705 CUs. */
2706
2707 static void
2708 create_cus_from_index_list (struct objfile *objfile,
2709 const gdb_byte *cu_list, offset_type n_elements,
2710 struct dwarf2_section_info *section,
2711 int is_dwz,
2712 int base_offset)
2713 {
2714 offset_type i;
2715
2716 for (i = 0; i < n_elements; i += 2)
2717 {
2718 struct dwarf2_per_cu_data *the_cu;
2719 ULONGEST offset, length;
2720
2721 gdb_static_assert (sizeof (ULONGEST) >= 8);
2722 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2723 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2724 cu_list += 2 * 8;
2725
2726 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2727 struct dwarf2_per_cu_data);
2728 the_cu->offset.sect_off = offset;
2729 the_cu->length = length;
2730 the_cu->objfile = objfile;
2731 the_cu->section = section;
2732 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2733 struct dwarf2_per_cu_quick_data);
2734 the_cu->is_dwz = is_dwz;
2735 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2736 }
2737 }
2738
2739 /* Read the CU list from the mapped index, and use it to create all
2740 the CU objects for this objfile. */
2741
2742 static void
2743 create_cus_from_index (struct objfile *objfile,
2744 const gdb_byte *cu_list, offset_type cu_list_elements,
2745 const gdb_byte *dwz_list, offset_type dwz_elements)
2746 {
2747 struct dwz_file *dwz;
2748
2749 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2750 dwarf2_per_objfile->all_comp_units
2751 = obstack_alloc (&objfile->objfile_obstack,
2752 dwarf2_per_objfile->n_comp_units
2753 * sizeof (struct dwarf2_per_cu_data *));
2754
2755 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2756 &dwarf2_per_objfile->info, 0, 0);
2757
2758 if (dwz_elements == 0)
2759 return;
2760
2761 dwz = dwarf2_get_dwz_file ();
2762 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2763 cu_list_elements / 2);
2764 }
2765
2766 /* Create the signatured type hash table from the index. */
2767
2768 static void
2769 create_signatured_type_table_from_index (struct objfile *objfile,
2770 struct dwarf2_section_info *section,
2771 const gdb_byte *bytes,
2772 offset_type elements)
2773 {
2774 offset_type i;
2775 htab_t sig_types_hash;
2776
2777 dwarf2_per_objfile->n_type_units
2778 = dwarf2_per_objfile->n_allocated_type_units
2779 = elements / 3;
2780 dwarf2_per_objfile->all_type_units
2781 = xmalloc (dwarf2_per_objfile->n_type_units
2782 * sizeof (struct signatured_type *));
2783
2784 sig_types_hash = allocate_signatured_type_table (objfile);
2785
2786 for (i = 0; i < elements; i += 3)
2787 {
2788 struct signatured_type *sig_type;
2789 ULONGEST offset, type_offset_in_tu, signature;
2790 void **slot;
2791
2792 gdb_static_assert (sizeof (ULONGEST) >= 8);
2793 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2794 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2795 BFD_ENDIAN_LITTLE);
2796 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2797 bytes += 3 * 8;
2798
2799 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct signatured_type);
2801 sig_type->signature = signature;
2802 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2803 sig_type->per_cu.is_debug_types = 1;
2804 sig_type->per_cu.section = section;
2805 sig_type->per_cu.offset.sect_off = offset;
2806 sig_type->per_cu.objfile = objfile;
2807 sig_type->per_cu.v.quick
2808 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2809 struct dwarf2_per_cu_quick_data);
2810
2811 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2812 *slot = sig_type;
2813
2814 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2815 }
2816
2817 dwarf2_per_objfile->signatured_types = sig_types_hash;
2818 }
2819
2820 /* Read the address map data from the mapped index, and use it to
2821 populate the objfile's psymtabs_addrmap. */
2822
2823 static void
2824 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2825 {
2826 const gdb_byte *iter, *end;
2827 struct obstack temp_obstack;
2828 struct addrmap *mutable_map;
2829 struct cleanup *cleanup;
2830 CORE_ADDR baseaddr;
2831
2832 obstack_init (&temp_obstack);
2833 cleanup = make_cleanup_obstack_free (&temp_obstack);
2834 mutable_map = addrmap_create_mutable (&temp_obstack);
2835
2836 iter = index->address_table;
2837 end = iter + index->address_table_size;
2838
2839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2840
2841 while (iter < end)
2842 {
2843 ULONGEST hi, lo, cu_index;
2844 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2845 iter += 8;
2846 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2849 iter += 4;
2850
2851 if (lo > hi)
2852 {
2853 complaint (&symfile_complaints,
2854 _(".gdb_index address table has invalid range (%s - %s)"),
2855 hex_string (lo), hex_string (hi));
2856 continue;
2857 }
2858
2859 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2860 {
2861 complaint (&symfile_complaints,
2862 _(".gdb_index address table has invalid CU number %u"),
2863 (unsigned) cu_index);
2864 continue;
2865 }
2866
2867 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2868 dw2_get_cutu (cu_index));
2869 }
2870
2871 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2872 &objfile->objfile_obstack);
2873 do_cleanups (cleanup);
2874 }
2875
2876 /* The hash function for strings in the mapped index. This is the same as
2877 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2878 implementation. This is necessary because the hash function is tied to the
2879 format of the mapped index file. The hash values do not have to match with
2880 SYMBOL_HASH_NEXT.
2881
2882 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2883
2884 static hashval_t
2885 mapped_index_string_hash (int index_version, const void *p)
2886 {
2887 const unsigned char *str = (const unsigned char *) p;
2888 hashval_t r = 0;
2889 unsigned char c;
2890
2891 while ((c = *str++) != 0)
2892 {
2893 if (index_version >= 5)
2894 c = tolower (c);
2895 r = r * 67 + c - 113;
2896 }
2897
2898 return r;
2899 }
2900
2901 /* Find a slot in the mapped index INDEX for the object named NAME.
2902 If NAME is found, set *VEC_OUT to point to the CU vector in the
2903 constant pool and return 1. If NAME cannot be found, return 0. */
2904
2905 static int
2906 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2907 offset_type **vec_out)
2908 {
2909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2910 offset_type hash;
2911 offset_type slot, step;
2912 int (*cmp) (const char *, const char *);
2913
2914 if (current_language->la_language == language_cplus
2915 || current_language->la_language == language_java
2916 || current_language->la_language == language_fortran)
2917 {
2918 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2919 not contain any. */
2920 const char *paren = strchr (name, '(');
2921
2922 if (paren)
2923 {
2924 char *dup;
2925
2926 dup = xmalloc (paren - name + 1);
2927 memcpy (dup, name, paren - name);
2928 dup[paren - name] = 0;
2929
2930 make_cleanup (xfree, dup);
2931 name = dup;
2932 }
2933 }
2934
2935 /* Index version 4 did not support case insensitive searches. But the
2936 indices for case insensitive languages are built in lowercase, therefore
2937 simulate our NAME being searched is also lowercased. */
2938 hash = mapped_index_string_hash ((index->version == 4
2939 && case_sensitivity == case_sensitive_off
2940 ? 5 : index->version),
2941 name);
2942
2943 slot = hash & (index->symbol_table_slots - 1);
2944 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2945 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2946
2947 for (;;)
2948 {
2949 /* Convert a slot number to an offset into the table. */
2950 offset_type i = 2 * slot;
2951 const char *str;
2952 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2953 {
2954 do_cleanups (back_to);
2955 return 0;
2956 }
2957
2958 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2959 if (!cmp (name, str))
2960 {
2961 *vec_out = (offset_type *) (index->constant_pool
2962 + MAYBE_SWAP (index->symbol_table[i + 1]));
2963 do_cleanups (back_to);
2964 return 1;
2965 }
2966
2967 slot = (slot + step) & (index->symbol_table_slots - 1);
2968 }
2969 }
2970
2971 /* A helper function that reads the .gdb_index from SECTION and fills
2972 in MAP. FILENAME is the name of the file containing the section;
2973 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2974 ok to use deprecated sections.
2975
2976 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2977 out parameters that are filled in with information about the CU and
2978 TU lists in the section.
2979
2980 Returns 1 if all went well, 0 otherwise. */
2981
2982 static int
2983 read_index_from_section (struct objfile *objfile,
2984 const char *filename,
2985 int deprecated_ok,
2986 struct dwarf2_section_info *section,
2987 struct mapped_index *map,
2988 const gdb_byte **cu_list,
2989 offset_type *cu_list_elements,
2990 const gdb_byte **types_list,
2991 offset_type *types_list_elements)
2992 {
2993 const gdb_byte *addr;
2994 offset_type version;
2995 offset_type *metadata;
2996 int i;
2997
2998 if (dwarf2_section_empty_p (section))
2999 return 0;
3000
3001 /* Older elfutils strip versions could keep the section in the main
3002 executable while splitting it for the separate debug info file. */
3003 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3004 return 0;
3005
3006 dwarf2_read_section (objfile, section);
3007
3008 addr = section->buffer;
3009 /* Version check. */
3010 version = MAYBE_SWAP (*(offset_type *) addr);
3011 /* Versions earlier than 3 emitted every copy of a psymbol. This
3012 causes the index to behave very poorly for certain requests. Version 3
3013 contained incomplete addrmap. So, it seems better to just ignore such
3014 indices. */
3015 if (version < 4)
3016 {
3017 static int warning_printed = 0;
3018 if (!warning_printed)
3019 {
3020 warning (_("Skipping obsolete .gdb_index section in %s."),
3021 filename);
3022 warning_printed = 1;
3023 }
3024 return 0;
3025 }
3026 /* Index version 4 uses a different hash function than index version
3027 5 and later.
3028
3029 Versions earlier than 6 did not emit psymbols for inlined
3030 functions. Using these files will cause GDB not to be able to
3031 set breakpoints on inlined functions by name, so we ignore these
3032 indices unless the user has done
3033 "set use-deprecated-index-sections on". */
3034 if (version < 6 && !deprecated_ok)
3035 {
3036 static int warning_printed = 0;
3037 if (!warning_printed)
3038 {
3039 warning (_("\
3040 Skipping deprecated .gdb_index section in %s.\n\
3041 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3042 to use the section anyway."),
3043 filename);
3044 warning_printed = 1;
3045 }
3046 return 0;
3047 }
3048 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3049 of the TU (for symbols coming from TUs),
3050 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3051 Plus gold-generated indices can have duplicate entries for global symbols,
3052 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3053 These are just performance bugs, and we can't distinguish gdb-generated
3054 indices from gold-generated ones, so issue no warning here. */
3055
3056 /* Indexes with higher version than the one supported by GDB may be no
3057 longer backward compatible. */
3058 if (version > 8)
3059 return 0;
3060
3061 map->version = version;
3062 map->total_size = section->size;
3063
3064 metadata = (offset_type *) (addr + sizeof (offset_type));
3065
3066 i = 0;
3067 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3068 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3069 / 8);
3070 ++i;
3071
3072 *types_list = addr + MAYBE_SWAP (metadata[i]);
3073 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3074 - MAYBE_SWAP (metadata[i]))
3075 / 8);
3076 ++i;
3077
3078 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3079 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3080 - MAYBE_SWAP (metadata[i]));
3081 ++i;
3082
3083 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3084 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3085 - MAYBE_SWAP (metadata[i]))
3086 / (2 * sizeof (offset_type)));
3087 ++i;
3088
3089 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3090
3091 return 1;
3092 }
3093
3094
3095 /* Read the index file. If everything went ok, initialize the "quick"
3096 elements of all the CUs and return 1. Otherwise, return 0. */
3097
3098 static int
3099 dwarf2_read_index (struct objfile *objfile)
3100 {
3101 struct mapped_index local_map, *map;
3102 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3103 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3104 struct dwz_file *dwz;
3105
3106 if (!read_index_from_section (objfile, objfile_name (objfile),
3107 use_deprecated_index_sections,
3108 &dwarf2_per_objfile->gdb_index, &local_map,
3109 &cu_list, &cu_list_elements,
3110 &types_list, &types_list_elements))
3111 return 0;
3112
3113 /* Don't use the index if it's empty. */
3114 if (local_map.symbol_table_slots == 0)
3115 return 0;
3116
3117 /* If there is a .dwz file, read it so we can get its CU list as
3118 well. */
3119 dwz = dwarf2_get_dwz_file ();
3120 if (dwz != NULL)
3121 {
3122 struct mapped_index dwz_map;
3123 const gdb_byte *dwz_types_ignore;
3124 offset_type dwz_types_elements_ignore;
3125
3126 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3127 1,
3128 &dwz->gdb_index, &dwz_map,
3129 &dwz_list, &dwz_list_elements,
3130 &dwz_types_ignore,
3131 &dwz_types_elements_ignore))
3132 {
3133 warning (_("could not read '.gdb_index' section from %s; skipping"),
3134 bfd_get_filename (dwz->dwz_bfd));
3135 return 0;
3136 }
3137 }
3138
3139 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3140 dwz_list_elements);
3141
3142 if (types_list_elements)
3143 {
3144 struct dwarf2_section_info *section;
3145
3146 /* We can only handle a single .debug_types when we have an
3147 index. */
3148 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3149 return 0;
3150
3151 section = VEC_index (dwarf2_section_info_def,
3152 dwarf2_per_objfile->types, 0);
3153
3154 create_signatured_type_table_from_index (objfile, section, types_list,
3155 types_list_elements);
3156 }
3157
3158 create_addrmap_from_index (objfile, &local_map);
3159
3160 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3161 *map = local_map;
3162
3163 dwarf2_per_objfile->index_table = map;
3164 dwarf2_per_objfile->using_index = 1;
3165 dwarf2_per_objfile->quick_file_names_table =
3166 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3167
3168 return 1;
3169 }
3170
3171 /* A helper for the "quick" functions which sets the global
3172 dwarf2_per_objfile according to OBJFILE. */
3173
3174 static void
3175 dw2_setup (struct objfile *objfile)
3176 {
3177 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3178 gdb_assert (dwarf2_per_objfile);
3179 }
3180
3181 /* die_reader_func for dw2_get_file_names. */
3182
3183 static void
3184 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3185 const gdb_byte *info_ptr,
3186 struct die_info *comp_unit_die,
3187 int has_children,
3188 void *data)
3189 {
3190 struct dwarf2_cu *cu = reader->cu;
3191 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 struct dwarf2_per_cu_data *lh_cu;
3194 struct line_header *lh;
3195 struct attribute *attr;
3196 int i;
3197 const char *name, *comp_dir;
3198 void **slot;
3199 struct quick_file_names *qfn;
3200 unsigned int line_offset;
3201
3202 gdb_assert (! this_cu->is_debug_types);
3203
3204 /* Our callers never want to match partial units -- instead they
3205 will match the enclosing full CU. */
3206 if (comp_unit_die->tag == DW_TAG_partial_unit)
3207 {
3208 this_cu->v.quick->no_file_data = 1;
3209 return;
3210 }
3211
3212 lh_cu = this_cu;
3213 lh = NULL;
3214 slot = NULL;
3215 line_offset = 0;
3216
3217 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3218 if (attr)
3219 {
3220 struct quick_file_names find_entry;
3221
3222 line_offset = DW_UNSND (attr);
3223
3224 /* We may have already read in this line header (TU line header sharing).
3225 If we have we're done. */
3226 find_entry.hash.dwo_unit = cu->dwo_unit;
3227 find_entry.hash.line_offset.sect_off = line_offset;
3228 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3229 &find_entry, INSERT);
3230 if (*slot != NULL)
3231 {
3232 lh_cu->v.quick->file_names = *slot;
3233 return;
3234 }
3235
3236 lh = dwarf_decode_line_header (line_offset, cu);
3237 }
3238 if (lh == NULL)
3239 {
3240 lh_cu->v.quick->no_file_data = 1;
3241 return;
3242 }
3243
3244 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3245 qfn->hash.dwo_unit = cu->dwo_unit;
3246 qfn->hash.line_offset.sect_off = line_offset;
3247 gdb_assert (slot != NULL);
3248 *slot = qfn;
3249
3250 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3251
3252 qfn->num_file_names = lh->num_file_names;
3253 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3254 lh->num_file_names * sizeof (char *));
3255 for (i = 0; i < lh->num_file_names; ++i)
3256 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3257 qfn->real_names = NULL;
3258
3259 free_line_header (lh);
3260
3261 lh_cu->v.quick->file_names = qfn;
3262 }
3263
3264 /* A helper for the "quick" functions which attempts to read the line
3265 table for THIS_CU. */
3266
3267 static struct quick_file_names *
3268 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3269 {
3270 /* This should never be called for TUs. */
3271 gdb_assert (! this_cu->is_debug_types);
3272 /* Nor type unit groups. */
3273 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3274
3275 if (this_cu->v.quick->file_names != NULL)
3276 return this_cu->v.quick->file_names;
3277 /* If we know there is no line data, no point in looking again. */
3278 if (this_cu->v.quick->no_file_data)
3279 return NULL;
3280
3281 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3282
3283 if (this_cu->v.quick->no_file_data)
3284 return NULL;
3285 return this_cu->v.quick->file_names;
3286 }
3287
3288 /* A helper for the "quick" functions which computes and caches the
3289 real path for a given file name from the line table. */
3290
3291 static const char *
3292 dw2_get_real_path (struct objfile *objfile,
3293 struct quick_file_names *qfn, int index)
3294 {
3295 if (qfn->real_names == NULL)
3296 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3297 qfn->num_file_names, const char *);
3298
3299 if (qfn->real_names[index] == NULL)
3300 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3301
3302 return qfn->real_names[index];
3303 }
3304
3305 static struct symtab *
3306 dw2_find_last_source_symtab (struct objfile *objfile)
3307 {
3308 int index;
3309
3310 dw2_setup (objfile);
3311 index = dwarf2_per_objfile->n_comp_units - 1;
3312 return dw2_instantiate_symtab (dw2_get_cutu (index));
3313 }
3314
3315 /* Traversal function for dw2_forget_cached_source_info. */
3316
3317 static int
3318 dw2_free_cached_file_names (void **slot, void *info)
3319 {
3320 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3321
3322 if (file_data->real_names)
3323 {
3324 int i;
3325
3326 for (i = 0; i < file_data->num_file_names; ++i)
3327 {
3328 xfree ((void*) file_data->real_names[i]);
3329 file_data->real_names[i] = NULL;
3330 }
3331 }
3332
3333 return 1;
3334 }
3335
3336 static void
3337 dw2_forget_cached_source_info (struct objfile *objfile)
3338 {
3339 dw2_setup (objfile);
3340
3341 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3342 dw2_free_cached_file_names, NULL);
3343 }
3344
3345 /* Helper function for dw2_map_symtabs_matching_filename that expands
3346 the symtabs and calls the iterator. */
3347
3348 static int
3349 dw2_map_expand_apply (struct objfile *objfile,
3350 struct dwarf2_per_cu_data *per_cu,
3351 const char *name, const char *real_path,
3352 int (*callback) (struct symtab *, void *),
3353 void *data)
3354 {
3355 struct symtab *last_made = objfile->symtabs;
3356
3357 /* Don't visit already-expanded CUs. */
3358 if (per_cu->v.quick->symtab)
3359 return 0;
3360
3361 /* This may expand more than one symtab, and we want to iterate over
3362 all of them. */
3363 dw2_instantiate_symtab (per_cu);
3364
3365 return iterate_over_some_symtabs (name, real_path, callback, data,
3366 objfile->symtabs, last_made);
3367 }
3368
3369 /* Implementation of the map_symtabs_matching_filename method. */
3370
3371 static int
3372 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3373 const char *real_path,
3374 int (*callback) (struct symtab *, void *),
3375 void *data)
3376 {
3377 int i;
3378 const char *name_basename = lbasename (name);
3379
3380 dw2_setup (objfile);
3381
3382 /* The rule is CUs specify all the files, including those used by
3383 any TU, so there's no need to scan TUs here. */
3384
3385 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3386 {
3387 int j;
3388 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3389 struct quick_file_names *file_data;
3390
3391 /* We only need to look at symtabs not already expanded. */
3392 if (per_cu->v.quick->symtab)
3393 continue;
3394
3395 file_data = dw2_get_file_names (per_cu);
3396 if (file_data == NULL)
3397 continue;
3398
3399 for (j = 0; j < file_data->num_file_names; ++j)
3400 {
3401 const char *this_name = file_data->file_names[j];
3402 const char *this_real_name;
3403
3404 if (compare_filenames_for_search (this_name, name))
3405 {
3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3407 callback, data))
3408 return 1;
3409 continue;
3410 }
3411
3412 /* Before we invoke realpath, which can get expensive when many
3413 files are involved, do a quick comparison of the basenames. */
3414 if (! basenames_may_differ
3415 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3416 continue;
3417
3418 this_real_name = dw2_get_real_path (objfile, file_data, j);
3419 if (compare_filenames_for_search (this_real_name, name))
3420 {
3421 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3422 callback, data))
3423 return 1;
3424 continue;
3425 }
3426
3427 if (real_path != NULL)
3428 {
3429 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3430 gdb_assert (IS_ABSOLUTE_PATH (name));
3431 if (this_real_name != NULL
3432 && FILENAME_CMP (real_path, this_real_name) == 0)
3433 {
3434 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3435 callback, data))
3436 return 1;
3437 continue;
3438 }
3439 }
3440 }
3441 }
3442
3443 return 0;
3444 }
3445
3446 /* Struct used to manage iterating over all CUs looking for a symbol. */
3447
3448 struct dw2_symtab_iterator
3449 {
3450 /* The internalized form of .gdb_index. */
3451 struct mapped_index *index;
3452 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3453 int want_specific_block;
3454 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3455 Unused if !WANT_SPECIFIC_BLOCK. */
3456 int block_index;
3457 /* The kind of symbol we're looking for. */
3458 domain_enum domain;
3459 /* The list of CUs from the index entry of the symbol,
3460 or NULL if not found. */
3461 offset_type *vec;
3462 /* The next element in VEC to look at. */
3463 int next;
3464 /* The number of elements in VEC, or zero if there is no match. */
3465 int length;
3466 /* Have we seen a global version of the symbol?
3467 If so we can ignore all further global instances.
3468 This is to work around gold/15646, inefficient gold-generated
3469 indices. */
3470 int global_seen;
3471 };
3472
3473 /* Initialize the index symtab iterator ITER.
3474 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3475 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3476
3477 static void
3478 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3479 struct mapped_index *index,
3480 int want_specific_block,
3481 int block_index,
3482 domain_enum domain,
3483 const char *name)
3484 {
3485 iter->index = index;
3486 iter->want_specific_block = want_specific_block;
3487 iter->block_index = block_index;
3488 iter->domain = domain;
3489 iter->next = 0;
3490 iter->global_seen = 0;
3491
3492 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3493 iter->length = MAYBE_SWAP (*iter->vec);
3494 else
3495 {
3496 iter->vec = NULL;
3497 iter->length = 0;
3498 }
3499 }
3500
3501 /* Return the next matching CU or NULL if there are no more. */
3502
3503 static struct dwarf2_per_cu_data *
3504 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3505 {
3506 for ( ; iter->next < iter->length; ++iter->next)
3507 {
3508 offset_type cu_index_and_attrs =
3509 MAYBE_SWAP (iter->vec[iter->next + 1]);
3510 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3511 struct dwarf2_per_cu_data *per_cu;
3512 int want_static = iter->block_index != GLOBAL_BLOCK;
3513 /* This value is only valid for index versions >= 7. */
3514 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3515 gdb_index_symbol_kind symbol_kind =
3516 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3517 /* Only check the symbol attributes if they're present.
3518 Indices prior to version 7 don't record them,
3519 and indices >= 7 may elide them for certain symbols
3520 (gold does this). */
3521 int attrs_valid =
3522 (iter->index->version >= 7
3523 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3524
3525 /* Don't crash on bad data. */
3526 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3527 + dwarf2_per_objfile->n_type_units))
3528 {
3529 complaint (&symfile_complaints,
3530 _(".gdb_index entry has bad CU index"
3531 " [in module %s]"),
3532 objfile_name (dwarf2_per_objfile->objfile));
3533 continue;
3534 }
3535
3536 per_cu = dw2_get_cutu (cu_index);
3537
3538 /* Skip if already read in. */
3539 if (per_cu->v.quick->symtab)
3540 continue;
3541
3542 /* Check static vs global. */
3543 if (attrs_valid)
3544 {
3545 if (iter->want_specific_block
3546 && want_static != is_static)
3547 continue;
3548 /* Work around gold/15646. */
3549 if (!is_static && iter->global_seen)
3550 continue;
3551 if (!is_static)
3552 iter->global_seen = 1;
3553 }
3554
3555 /* Only check the symbol's kind if it has one. */
3556 if (attrs_valid)
3557 {
3558 switch (iter->domain)
3559 {
3560 case VAR_DOMAIN:
3561 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3562 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3563 /* Some types are also in VAR_DOMAIN. */
3564 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3565 continue;
3566 break;
3567 case STRUCT_DOMAIN:
3568 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3569 continue;
3570 break;
3571 case LABEL_DOMAIN:
3572 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3573 continue;
3574 break;
3575 default:
3576 break;
3577 }
3578 }
3579
3580 ++iter->next;
3581 return per_cu;
3582 }
3583
3584 return NULL;
3585 }
3586
3587 static struct symtab *
3588 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3589 const char *name, domain_enum domain)
3590 {
3591 struct symtab *stab_best = NULL;
3592 struct mapped_index *index;
3593
3594 dw2_setup (objfile);
3595
3596 index = dwarf2_per_objfile->index_table;
3597
3598 /* index is NULL if OBJF_READNOW. */
3599 if (index)
3600 {
3601 struct dw2_symtab_iterator iter;
3602 struct dwarf2_per_cu_data *per_cu;
3603
3604 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3605
3606 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3607 {
3608 struct symbol *sym = NULL;
3609 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3610
3611 /* Some caution must be observed with overloaded functions
3612 and methods, since the index will not contain any overload
3613 information (but NAME might contain it). */
3614 if (stab->primary)
3615 {
3616 const struct blockvector *bv = BLOCKVECTOR (stab);
3617 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3618
3619 sym = lookup_block_symbol (block, name, domain);
3620 }
3621
3622 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3623 {
3624 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3625 return stab;
3626
3627 stab_best = stab;
3628 }
3629
3630 /* Keep looking through other CUs. */
3631 }
3632 }
3633
3634 return stab_best;
3635 }
3636
3637 static void
3638 dw2_print_stats (struct objfile *objfile)
3639 {
3640 int i, total, count;
3641
3642 dw2_setup (objfile);
3643 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3644 count = 0;
3645 for (i = 0; i < total; ++i)
3646 {
3647 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3648
3649 if (!per_cu->v.quick->symtab)
3650 ++count;
3651 }
3652 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3653 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3654 }
3655
3656 /* This dumps minimal information about the index.
3657 It is called via "mt print objfiles".
3658 One use is to verify .gdb_index has been loaded by the
3659 gdb.dwarf2/gdb-index.exp testcase. */
3660
3661 static void
3662 dw2_dump (struct objfile *objfile)
3663 {
3664 dw2_setup (objfile);
3665 gdb_assert (dwarf2_per_objfile->using_index);
3666 printf_filtered (".gdb_index:");
3667 if (dwarf2_per_objfile->index_table != NULL)
3668 {
3669 printf_filtered (" version %d\n",
3670 dwarf2_per_objfile->index_table->version);
3671 }
3672 else
3673 printf_filtered (" faked for \"readnow\"\n");
3674 printf_filtered ("\n");
3675 }
3676
3677 static void
3678 dw2_relocate (struct objfile *objfile,
3679 const struct section_offsets *new_offsets,
3680 const struct section_offsets *delta)
3681 {
3682 /* There's nothing to relocate here. */
3683 }
3684
3685 static void
3686 dw2_expand_symtabs_for_function (struct objfile *objfile,
3687 const char *func_name)
3688 {
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 /* Note: It doesn't matter what we pass for block_index here. */
3702 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3703 func_name);
3704
3705 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3706 dw2_instantiate_symtab (per_cu);
3707 }
3708 }
3709
3710 static void
3711 dw2_expand_all_symtabs (struct objfile *objfile)
3712 {
3713 int i;
3714
3715 dw2_setup (objfile);
3716
3717 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3718 + dwarf2_per_objfile->n_type_units); ++i)
3719 {
3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3721
3722 dw2_instantiate_symtab (per_cu);
3723 }
3724 }
3725
3726 static void
3727 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3728 const char *fullname)
3729 {
3730 int i;
3731
3732 dw2_setup (objfile);
3733
3734 /* We don't need to consider type units here.
3735 This is only called for examining code, e.g. expand_line_sal.
3736 There can be an order of magnitude (or more) more type units
3737 than comp units, and we avoid them if we can. */
3738
3739 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3740 {
3741 int j;
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743 struct quick_file_names *file_data;
3744
3745 /* We only need to look at symtabs not already expanded. */
3746 if (per_cu->v.quick->symtab)
3747 continue;
3748
3749 file_data = dw2_get_file_names (per_cu);
3750 if (file_data == NULL)
3751 continue;
3752
3753 for (j = 0; j < file_data->num_file_names; ++j)
3754 {
3755 const char *this_fullname = file_data->file_names[j];
3756
3757 if (filename_cmp (this_fullname, fullname) == 0)
3758 {
3759 dw2_instantiate_symtab (per_cu);
3760 break;
3761 }
3762 }
3763 }
3764 }
3765
3766 static void
3767 dw2_map_matching_symbols (struct objfile *objfile,
3768 const char * name, domain_enum namespace,
3769 int global,
3770 int (*callback) (struct block *,
3771 struct symbol *, void *),
3772 void *data, symbol_compare_ftype *match,
3773 symbol_compare_ftype *ordered_compare)
3774 {
3775 /* Currently unimplemented; used for Ada. The function can be called if the
3776 current language is Ada for a non-Ada objfile using GNU index. As Ada
3777 does not look for non-Ada symbols this function should just return. */
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_matching
3782 (struct objfile *objfile,
3783 expand_symtabs_file_matcher_ftype *file_matcher,
3784 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3785 enum search_domain kind,
3786 void *data)
3787 {
3788 int i;
3789 offset_type iter;
3790 struct mapped_index *index;
3791
3792 dw2_setup (objfile);
3793
3794 /* index_table is NULL if OBJF_READNOW. */
3795 if (!dwarf2_per_objfile->index_table)
3796 return;
3797 index = dwarf2_per_objfile->index_table;
3798
3799 if (file_matcher != NULL)
3800 {
3801 struct cleanup *cleanup;
3802 htab_t visited_found, visited_not_found;
3803
3804 visited_found = htab_create_alloc (10,
3805 htab_hash_pointer, htab_eq_pointer,
3806 NULL, xcalloc, xfree);
3807 cleanup = make_cleanup_htab_delete (visited_found);
3808 visited_not_found = htab_create_alloc (10,
3809 htab_hash_pointer, htab_eq_pointer,
3810 NULL, xcalloc, xfree);
3811 make_cleanup_htab_delete (visited_not_found);
3812
3813 /* The rule is CUs specify all the files, including those used by
3814 any TU, so there's no need to scan TUs here. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3820 struct quick_file_names *file_data;
3821 void **slot;
3822
3823 per_cu->v.quick->mark = 0;
3824
3825 /* We only need to look at symtabs not already expanded. */
3826 if (per_cu->v.quick->symtab)
3827 continue;
3828
3829 file_data = dw2_get_file_names (per_cu);
3830 if (file_data == NULL)
3831 continue;
3832
3833 if (htab_find (visited_not_found, file_data) != NULL)
3834 continue;
3835 else if (htab_find (visited_found, file_data) != NULL)
3836 {
3837 per_cu->v.quick->mark = 1;
3838 continue;
3839 }
3840
3841 for (j = 0; j < file_data->num_file_names; ++j)
3842 {
3843 const char *this_real_name;
3844
3845 if (file_matcher (file_data->file_names[j], data, 0))
3846 {
3847 per_cu->v.quick->mark = 1;
3848 break;
3849 }
3850
3851 /* Before we invoke realpath, which can get expensive when many
3852 files are involved, do a quick comparison of the basenames. */
3853 if (!basenames_may_differ
3854 && !file_matcher (lbasename (file_data->file_names[j]),
3855 data, 1))
3856 continue;
3857
3858 this_real_name = dw2_get_real_path (objfile, file_data, j);
3859 if (file_matcher (this_real_name, data, 0))
3860 {
3861 per_cu->v.quick->mark = 1;
3862 break;
3863 }
3864 }
3865
3866 slot = htab_find_slot (per_cu->v.quick->mark
3867 ? visited_found
3868 : visited_not_found,
3869 file_data, INSERT);
3870 *slot = file_data;
3871 }
3872
3873 do_cleanups (cleanup);
3874 }
3875
3876 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3877 {
3878 offset_type idx = 2 * iter;
3879 const char *name;
3880 offset_type *vec, vec_len, vec_idx;
3881 int global_seen = 0;
3882
3883 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3884 continue;
3885
3886 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3887
3888 if (! (*symbol_matcher) (name, data))
3889 continue;
3890
3891 /* The name was matched, now expand corresponding CUs that were
3892 marked. */
3893 vec = (offset_type *) (index->constant_pool
3894 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3895 vec_len = MAYBE_SWAP (vec[0]);
3896 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3897 {
3898 struct dwarf2_per_cu_data *per_cu;
3899 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3900 /* This value is only valid for index versions >= 7. */
3901 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3902 gdb_index_symbol_kind symbol_kind =
3903 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3904 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3905 /* Only check the symbol attributes if they're present.
3906 Indices prior to version 7 don't record them,
3907 and indices >= 7 may elide them for certain symbols
3908 (gold does this). */
3909 int attrs_valid =
3910 (index->version >= 7
3911 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3912
3913 /* Work around gold/15646. */
3914 if (attrs_valid)
3915 {
3916 if (!is_static && global_seen)
3917 continue;
3918 if (!is_static)
3919 global_seen = 1;
3920 }
3921
3922 /* Only check the symbol's kind if it has one. */
3923 if (attrs_valid)
3924 {
3925 switch (kind)
3926 {
3927 case VARIABLES_DOMAIN:
3928 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3929 continue;
3930 break;
3931 case FUNCTIONS_DOMAIN:
3932 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3933 continue;
3934 break;
3935 case TYPES_DOMAIN:
3936 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3937 continue;
3938 break;
3939 default:
3940 break;
3941 }
3942 }
3943
3944 /* Don't crash on bad data. */
3945 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3946 + dwarf2_per_objfile->n_type_units))
3947 {
3948 complaint (&symfile_complaints,
3949 _(".gdb_index entry has bad CU index"
3950 " [in module %s]"), objfile_name (objfile));
3951 continue;
3952 }
3953
3954 per_cu = dw2_get_cutu (cu_index);
3955 if (file_matcher == NULL || per_cu->v.quick->mark)
3956 dw2_instantiate_symtab (per_cu);
3957 }
3958 }
3959 }
3960
3961 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3962 symtab. */
3963
3964 static struct symtab *
3965 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3966 {
3967 int i;
3968
3969 if (BLOCKVECTOR (symtab) != NULL
3970 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3971 return symtab;
3972
3973 if (symtab->includes == NULL)
3974 return NULL;
3975
3976 for (i = 0; symtab->includes[i]; ++i)
3977 {
3978 struct symtab *s = symtab->includes[i];
3979
3980 s = recursively_find_pc_sect_symtab (s, pc);
3981 if (s != NULL)
3982 return s;
3983 }
3984
3985 return NULL;
3986 }
3987
3988 static struct symtab *
3989 dw2_find_pc_sect_symtab (struct objfile *objfile,
3990 struct bound_minimal_symbol msymbol,
3991 CORE_ADDR pc,
3992 struct obj_section *section,
3993 int warn_if_readin)
3994 {
3995 struct dwarf2_per_cu_data *data;
3996 struct symtab *result;
3997
3998 dw2_setup (objfile);
3999
4000 if (!objfile->psymtabs_addrmap)
4001 return NULL;
4002
4003 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4004 if (!data)
4005 return NULL;
4006
4007 if (warn_if_readin && data->v.quick->symtab)
4008 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4009 paddress (get_objfile_arch (objfile), pc));
4010
4011 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4012 gdb_assert (result != NULL);
4013 return result;
4014 }
4015
4016 static void
4017 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4018 void *data, int need_fullname)
4019 {
4020 int i;
4021 struct cleanup *cleanup;
4022 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4023 NULL, xcalloc, xfree);
4024
4025 cleanup = make_cleanup_htab_delete (visited);
4026 dw2_setup (objfile);
4027
4028 /* The rule is CUs specify all the files, including those used by
4029 any TU, so there's no need to scan TUs here.
4030 We can ignore file names coming from already-expanded CUs. */
4031
4032 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4033 {
4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4035
4036 if (per_cu->v.quick->symtab)
4037 {
4038 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4039 INSERT);
4040
4041 *slot = per_cu->v.quick->file_names;
4042 }
4043 }
4044
4045 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4046 {
4047 int j;
4048 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4049 struct quick_file_names *file_data;
4050 void **slot;
4051
4052 /* We only need to look at symtabs not already expanded. */
4053 if (per_cu->v.quick->symtab)
4054 continue;
4055
4056 file_data = dw2_get_file_names (per_cu);
4057 if (file_data == NULL)
4058 continue;
4059
4060 slot = htab_find_slot (visited, file_data, INSERT);
4061 if (*slot)
4062 {
4063 /* Already visited. */
4064 continue;
4065 }
4066 *slot = file_data;
4067
4068 for (j = 0; j < file_data->num_file_names; ++j)
4069 {
4070 const char *this_real_name;
4071
4072 if (need_fullname)
4073 this_real_name = dw2_get_real_path (objfile, file_data, j);
4074 else
4075 this_real_name = NULL;
4076 (*fun) (file_data->file_names[j], this_real_name, data);
4077 }
4078 }
4079
4080 do_cleanups (cleanup);
4081 }
4082
4083 static int
4084 dw2_has_symbols (struct objfile *objfile)
4085 {
4086 return 1;
4087 }
4088
4089 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4090 {
4091 dw2_has_symbols,
4092 dw2_find_last_source_symtab,
4093 dw2_forget_cached_source_info,
4094 dw2_map_symtabs_matching_filename,
4095 dw2_lookup_symbol,
4096 dw2_print_stats,
4097 dw2_dump,
4098 dw2_relocate,
4099 dw2_expand_symtabs_for_function,
4100 dw2_expand_all_symtabs,
4101 dw2_expand_symtabs_with_fullname,
4102 dw2_map_matching_symbols,
4103 dw2_expand_symtabs_matching,
4104 dw2_find_pc_sect_symtab,
4105 dw2_map_symbol_filenames
4106 };
4107
4108 /* Initialize for reading DWARF for this objfile. Return 0 if this
4109 file will use psymtabs, or 1 if using the GNU index. */
4110
4111 int
4112 dwarf2_initialize_objfile (struct objfile *objfile)
4113 {
4114 /* If we're about to read full symbols, don't bother with the
4115 indices. In this case we also don't care if some other debug
4116 format is making psymtabs, because they are all about to be
4117 expanded anyway. */
4118 if ((objfile->flags & OBJF_READNOW))
4119 {
4120 int i;
4121
4122 dwarf2_per_objfile->using_index = 1;
4123 create_all_comp_units (objfile);
4124 create_all_type_units (objfile);
4125 dwarf2_per_objfile->quick_file_names_table =
4126 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4127
4128 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4129 + dwarf2_per_objfile->n_type_units); ++i)
4130 {
4131 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4132
4133 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4134 struct dwarf2_per_cu_quick_data);
4135 }
4136
4137 /* Return 1 so that gdb sees the "quick" functions. However,
4138 these functions will be no-ops because we will have expanded
4139 all symtabs. */
4140 return 1;
4141 }
4142
4143 if (dwarf2_read_index (objfile))
4144 return 1;
4145
4146 return 0;
4147 }
4148
4149 \f
4150
4151 /* Build a partial symbol table. */
4152
4153 void
4154 dwarf2_build_psymtabs (struct objfile *objfile)
4155 {
4156 volatile struct gdb_exception except;
4157
4158 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4159 {
4160 init_psymbol_list (objfile, 1024);
4161 }
4162
4163 TRY_CATCH (except, RETURN_MASK_ERROR)
4164 {
4165 /* This isn't really ideal: all the data we allocate on the
4166 objfile's obstack is still uselessly kept around. However,
4167 freeing it seems unsafe. */
4168 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4169
4170 dwarf2_build_psymtabs_hard (objfile);
4171 discard_cleanups (cleanups);
4172 }
4173 if (except.reason < 0)
4174 exception_print (gdb_stderr, except);
4175 }
4176
4177 /* Return the total length of the CU described by HEADER. */
4178
4179 static unsigned int
4180 get_cu_length (const struct comp_unit_head *header)
4181 {
4182 return header->initial_length_size + header->length;
4183 }
4184
4185 /* Return TRUE if OFFSET is within CU_HEADER. */
4186
4187 static inline int
4188 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4189 {
4190 sect_offset bottom = { cu_header->offset.sect_off };
4191 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4192
4193 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4194 }
4195
4196 /* Find the base address of the compilation unit for range lists and
4197 location lists. It will normally be specified by DW_AT_low_pc.
4198 In DWARF-3 draft 4, the base address could be overridden by
4199 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4200 compilation units with discontinuous ranges. */
4201
4202 static void
4203 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4204 {
4205 struct attribute *attr;
4206
4207 cu->base_known = 0;
4208 cu->base_address = 0;
4209
4210 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4211 if (attr)
4212 {
4213 cu->base_address = attr_value_as_address (attr);
4214 cu->base_known = 1;
4215 }
4216 else
4217 {
4218 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4219 if (attr)
4220 {
4221 cu->base_address = attr_value_as_address (attr);
4222 cu->base_known = 1;
4223 }
4224 }
4225 }
4226
4227 /* Read in the comp unit header information from the debug_info at info_ptr.
4228 NOTE: This leaves members offset, first_die_offset to be filled in
4229 by the caller. */
4230
4231 static const gdb_byte *
4232 read_comp_unit_head (struct comp_unit_head *cu_header,
4233 const gdb_byte *info_ptr, bfd *abfd)
4234 {
4235 int signed_addr;
4236 unsigned int bytes_read;
4237
4238 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4239 cu_header->initial_length_size = bytes_read;
4240 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4241 info_ptr += bytes_read;
4242 cu_header->version = read_2_bytes (abfd, info_ptr);
4243 info_ptr += 2;
4244 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4245 &bytes_read);
4246 info_ptr += bytes_read;
4247 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4248 info_ptr += 1;
4249 signed_addr = bfd_get_sign_extend_vma (abfd);
4250 if (signed_addr < 0)
4251 internal_error (__FILE__, __LINE__,
4252 _("read_comp_unit_head: dwarf from non elf file"));
4253 cu_header->signed_addr_p = signed_addr;
4254
4255 return info_ptr;
4256 }
4257
4258 /* Helper function that returns the proper abbrev section for
4259 THIS_CU. */
4260
4261 static struct dwarf2_section_info *
4262 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4263 {
4264 struct dwarf2_section_info *abbrev;
4265
4266 if (this_cu->is_dwz)
4267 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4268 else
4269 abbrev = &dwarf2_per_objfile->abbrev;
4270
4271 return abbrev;
4272 }
4273
4274 /* Subroutine of read_and_check_comp_unit_head and
4275 read_and_check_type_unit_head to simplify them.
4276 Perform various error checking on the header. */
4277
4278 static void
4279 error_check_comp_unit_head (struct comp_unit_head *header,
4280 struct dwarf2_section_info *section,
4281 struct dwarf2_section_info *abbrev_section)
4282 {
4283 bfd *abfd = get_section_bfd_owner (section);
4284 const char *filename = get_section_file_name (section);
4285
4286 if (header->version != 2 && header->version != 3 && header->version != 4)
4287 error (_("Dwarf Error: wrong version in compilation unit header "
4288 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4289 filename);
4290
4291 if (header->abbrev_offset.sect_off
4292 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4293 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4294 "(offset 0x%lx + 6) [in module %s]"),
4295 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4296 filename);
4297
4298 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4299 avoid potential 32-bit overflow. */
4300 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4301 > section->size)
4302 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4303 "(offset 0x%lx + 0) [in module %s]"),
4304 (long) header->length, (long) header->offset.sect_off,
4305 filename);
4306 }
4307
4308 /* Read in a CU/TU header and perform some basic error checking.
4309 The contents of the header are stored in HEADER.
4310 The result is a pointer to the start of the first DIE. */
4311
4312 static const gdb_byte *
4313 read_and_check_comp_unit_head (struct comp_unit_head *header,
4314 struct dwarf2_section_info *section,
4315 struct dwarf2_section_info *abbrev_section,
4316 const gdb_byte *info_ptr,
4317 int is_debug_types_section)
4318 {
4319 const gdb_byte *beg_of_comp_unit = info_ptr;
4320 bfd *abfd = get_section_bfd_owner (section);
4321
4322 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4323
4324 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4325
4326 /* If we're reading a type unit, skip over the signature and
4327 type_offset fields. */
4328 if (is_debug_types_section)
4329 info_ptr += 8 /*signature*/ + header->offset_size;
4330
4331 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4332
4333 error_check_comp_unit_head (header, section, abbrev_section);
4334
4335 return info_ptr;
4336 }
4337
4338 /* Read in the types comp unit header information from .debug_types entry at
4339 types_ptr. The result is a pointer to one past the end of the header. */
4340
4341 static const gdb_byte *
4342 read_and_check_type_unit_head (struct comp_unit_head *header,
4343 struct dwarf2_section_info *section,
4344 struct dwarf2_section_info *abbrev_section,
4345 const gdb_byte *info_ptr,
4346 ULONGEST *signature,
4347 cu_offset *type_offset_in_tu)
4348 {
4349 const gdb_byte *beg_of_comp_unit = info_ptr;
4350 bfd *abfd = get_section_bfd_owner (section);
4351
4352 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4353
4354 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4355
4356 /* If we're reading a type unit, skip over the signature and
4357 type_offset fields. */
4358 if (signature != NULL)
4359 *signature = read_8_bytes (abfd, info_ptr);
4360 info_ptr += 8;
4361 if (type_offset_in_tu != NULL)
4362 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4363 header->offset_size);
4364 info_ptr += header->offset_size;
4365
4366 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4367
4368 error_check_comp_unit_head (header, section, abbrev_section);
4369
4370 return info_ptr;
4371 }
4372
4373 /* Fetch the abbreviation table offset from a comp or type unit header. */
4374
4375 static sect_offset
4376 read_abbrev_offset (struct dwarf2_section_info *section,
4377 sect_offset offset)
4378 {
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const gdb_byte *info_ptr;
4381 unsigned int length, initial_length_size, offset_size;
4382 sect_offset abbrev_offset;
4383
4384 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4385 info_ptr = section->buffer + offset.sect_off;
4386 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4387 offset_size = initial_length_size == 4 ? 4 : 8;
4388 info_ptr += initial_length_size + 2 /*version*/;
4389 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4390 return abbrev_offset;
4391 }
4392
4393 /* Allocate a new partial symtab for file named NAME and mark this new
4394 partial symtab as being an include of PST. */
4395
4396 static void
4397 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4398 struct objfile *objfile)
4399 {
4400 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4401
4402 if (!IS_ABSOLUTE_PATH (subpst->filename))
4403 {
4404 /* It shares objfile->objfile_obstack. */
4405 subpst->dirname = pst->dirname;
4406 }
4407
4408 subpst->section_offsets = pst->section_offsets;
4409 subpst->textlow = 0;
4410 subpst->texthigh = 0;
4411
4412 subpst->dependencies = (struct partial_symtab **)
4413 obstack_alloc (&objfile->objfile_obstack,
4414 sizeof (struct partial_symtab *));
4415 subpst->dependencies[0] = pst;
4416 subpst->number_of_dependencies = 1;
4417
4418 subpst->globals_offset = 0;
4419 subpst->n_global_syms = 0;
4420 subpst->statics_offset = 0;
4421 subpst->n_static_syms = 0;
4422 subpst->symtab = NULL;
4423 subpst->read_symtab = pst->read_symtab;
4424 subpst->readin = 0;
4425
4426 /* No private part is necessary for include psymtabs. This property
4427 can be used to differentiate between such include psymtabs and
4428 the regular ones. */
4429 subpst->read_symtab_private = NULL;
4430 }
4431
4432 /* Read the Line Number Program data and extract the list of files
4433 included by the source file represented by PST. Build an include
4434 partial symtab for each of these included files. */
4435
4436 static void
4437 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4438 struct die_info *die,
4439 struct partial_symtab *pst)
4440 {
4441 struct line_header *lh = NULL;
4442 struct attribute *attr;
4443
4444 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4445 if (attr)
4446 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4447 if (lh == NULL)
4448 return; /* No linetable, so no includes. */
4449
4450 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4451 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4452
4453 free_line_header (lh);
4454 }
4455
4456 static hashval_t
4457 hash_signatured_type (const void *item)
4458 {
4459 const struct signatured_type *sig_type = item;
4460
4461 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4462 return sig_type->signature;
4463 }
4464
4465 static int
4466 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4467 {
4468 const struct signatured_type *lhs = item_lhs;
4469 const struct signatured_type *rhs = item_rhs;
4470
4471 return lhs->signature == rhs->signature;
4472 }
4473
4474 /* Allocate a hash table for signatured types. */
4475
4476 static htab_t
4477 allocate_signatured_type_table (struct objfile *objfile)
4478 {
4479 return htab_create_alloc_ex (41,
4480 hash_signatured_type,
4481 eq_signatured_type,
4482 NULL,
4483 &objfile->objfile_obstack,
4484 hashtab_obstack_allocate,
4485 dummy_obstack_deallocate);
4486 }
4487
4488 /* A helper function to add a signatured type CU to a table. */
4489
4490 static int
4491 add_signatured_type_cu_to_table (void **slot, void *datum)
4492 {
4493 struct signatured_type *sigt = *slot;
4494 struct signatured_type ***datap = datum;
4495
4496 **datap = sigt;
4497 ++*datap;
4498
4499 return 1;
4500 }
4501
4502 /* Create the hash table of all entries in the .debug_types
4503 (or .debug_types.dwo) section(s).
4504 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4505 otherwise it is NULL.
4506
4507 The result is a pointer to the hash table or NULL if there are no types.
4508
4509 Note: This function processes DWO files only, not DWP files. */
4510
4511 static htab_t
4512 create_debug_types_hash_table (struct dwo_file *dwo_file,
4513 VEC (dwarf2_section_info_def) *types)
4514 {
4515 struct objfile *objfile = dwarf2_per_objfile->objfile;
4516 htab_t types_htab = NULL;
4517 int ix;
4518 struct dwarf2_section_info *section;
4519 struct dwarf2_section_info *abbrev_section;
4520
4521 if (VEC_empty (dwarf2_section_info_def, types))
4522 return NULL;
4523
4524 abbrev_section = (dwo_file != NULL
4525 ? &dwo_file->sections.abbrev
4526 : &dwarf2_per_objfile->abbrev);
4527
4528 if (dwarf2_read_debug)
4529 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4530 dwo_file ? ".dwo" : "",
4531 get_section_file_name (abbrev_section));
4532
4533 for (ix = 0;
4534 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4535 ++ix)
4536 {
4537 bfd *abfd;
4538 const gdb_byte *info_ptr, *end_ptr;
4539
4540 dwarf2_read_section (objfile, section);
4541 info_ptr = section->buffer;
4542
4543 if (info_ptr == NULL)
4544 continue;
4545
4546 /* We can't set abfd until now because the section may be empty or
4547 not present, in which case the bfd is unknown. */
4548 abfd = get_section_bfd_owner (section);
4549
4550 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4551 because we don't need to read any dies: the signature is in the
4552 header. */
4553
4554 end_ptr = info_ptr + section->size;
4555 while (info_ptr < end_ptr)
4556 {
4557 sect_offset offset;
4558 cu_offset type_offset_in_tu;
4559 ULONGEST signature;
4560 struct signatured_type *sig_type;
4561 struct dwo_unit *dwo_tu;
4562 void **slot;
4563 const gdb_byte *ptr = info_ptr;
4564 struct comp_unit_head header;
4565 unsigned int length;
4566
4567 offset.sect_off = ptr - section->buffer;
4568
4569 /* We need to read the type's signature in order to build the hash
4570 table, but we don't need anything else just yet. */
4571
4572 ptr = read_and_check_type_unit_head (&header, section,
4573 abbrev_section, ptr,
4574 &signature, &type_offset_in_tu);
4575
4576 length = get_cu_length (&header);
4577
4578 /* Skip dummy type units. */
4579 if (ptr >= info_ptr + length
4580 || peek_abbrev_code (abfd, ptr) == 0)
4581 {
4582 info_ptr += length;
4583 continue;
4584 }
4585
4586 if (types_htab == NULL)
4587 {
4588 if (dwo_file)
4589 types_htab = allocate_dwo_unit_table (objfile);
4590 else
4591 types_htab = allocate_signatured_type_table (objfile);
4592 }
4593
4594 if (dwo_file)
4595 {
4596 sig_type = NULL;
4597 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4598 struct dwo_unit);
4599 dwo_tu->dwo_file = dwo_file;
4600 dwo_tu->signature = signature;
4601 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4602 dwo_tu->section = section;
4603 dwo_tu->offset = offset;
4604 dwo_tu->length = length;
4605 }
4606 else
4607 {
4608 /* N.B.: type_offset is not usable if this type uses a DWO file.
4609 The real type_offset is in the DWO file. */
4610 dwo_tu = NULL;
4611 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4612 struct signatured_type);
4613 sig_type->signature = signature;
4614 sig_type->type_offset_in_tu = type_offset_in_tu;
4615 sig_type->per_cu.objfile = objfile;
4616 sig_type->per_cu.is_debug_types = 1;
4617 sig_type->per_cu.section = section;
4618 sig_type->per_cu.offset = offset;
4619 sig_type->per_cu.length = length;
4620 }
4621
4622 slot = htab_find_slot (types_htab,
4623 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4624 INSERT);
4625 gdb_assert (slot != NULL);
4626 if (*slot != NULL)
4627 {
4628 sect_offset dup_offset;
4629
4630 if (dwo_file)
4631 {
4632 const struct dwo_unit *dup_tu = *slot;
4633
4634 dup_offset = dup_tu->offset;
4635 }
4636 else
4637 {
4638 const struct signatured_type *dup_tu = *slot;
4639
4640 dup_offset = dup_tu->per_cu.offset;
4641 }
4642
4643 complaint (&symfile_complaints,
4644 _("debug type entry at offset 0x%x is duplicate to"
4645 " the entry at offset 0x%x, signature %s"),
4646 offset.sect_off, dup_offset.sect_off,
4647 hex_string (signature));
4648 }
4649 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4650
4651 if (dwarf2_read_debug > 1)
4652 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4653 offset.sect_off,
4654 hex_string (signature));
4655
4656 info_ptr += length;
4657 }
4658 }
4659
4660 return types_htab;
4661 }
4662
4663 /* Create the hash table of all entries in the .debug_types section,
4664 and initialize all_type_units.
4665 The result is zero if there is an error (e.g. missing .debug_types section),
4666 otherwise non-zero. */
4667
4668 static int
4669 create_all_type_units (struct objfile *objfile)
4670 {
4671 htab_t types_htab;
4672 struct signatured_type **iter;
4673
4674 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4675 if (types_htab == NULL)
4676 {
4677 dwarf2_per_objfile->signatured_types = NULL;
4678 return 0;
4679 }
4680
4681 dwarf2_per_objfile->signatured_types = types_htab;
4682
4683 dwarf2_per_objfile->n_type_units
4684 = dwarf2_per_objfile->n_allocated_type_units
4685 = htab_elements (types_htab);
4686 dwarf2_per_objfile->all_type_units
4687 = xmalloc (dwarf2_per_objfile->n_type_units
4688 * sizeof (struct signatured_type *));
4689 iter = &dwarf2_per_objfile->all_type_units[0];
4690 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4691 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4692 == dwarf2_per_objfile->n_type_units);
4693
4694 return 1;
4695 }
4696
4697 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4698 If SLOT is non-NULL, it is the entry to use in the hash table.
4699 Otherwise we find one. */
4700
4701 static struct signatured_type *
4702 add_type_unit (ULONGEST sig, void **slot)
4703 {
4704 struct objfile *objfile = dwarf2_per_objfile->objfile;
4705 int n_type_units = dwarf2_per_objfile->n_type_units;
4706 struct signatured_type *sig_type;
4707
4708 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4709 ++n_type_units;
4710 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4711 {
4712 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4713 dwarf2_per_objfile->n_allocated_type_units = 1;
4714 dwarf2_per_objfile->n_allocated_type_units *= 2;
4715 dwarf2_per_objfile->all_type_units
4716 = xrealloc (dwarf2_per_objfile->all_type_units,
4717 dwarf2_per_objfile->n_allocated_type_units
4718 * sizeof (struct signatured_type *));
4719 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4720 }
4721 dwarf2_per_objfile->n_type_units = n_type_units;
4722
4723 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4724 struct signatured_type);
4725 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4726 sig_type->signature = sig;
4727 sig_type->per_cu.is_debug_types = 1;
4728 if (dwarf2_per_objfile->using_index)
4729 {
4730 sig_type->per_cu.v.quick =
4731 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct dwarf2_per_cu_quick_data);
4733 }
4734
4735 if (slot == NULL)
4736 {
4737 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4738 sig_type, INSERT);
4739 }
4740 gdb_assert (*slot == NULL);
4741 *slot = sig_type;
4742 /* The rest of sig_type must be filled in by the caller. */
4743 return sig_type;
4744 }
4745
4746 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4747 Fill in SIG_ENTRY with DWO_ENTRY. */
4748
4749 static void
4750 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4751 struct signatured_type *sig_entry,
4752 struct dwo_unit *dwo_entry)
4753 {
4754 /* Make sure we're not clobbering something we don't expect to. */
4755 gdb_assert (! sig_entry->per_cu.queued);
4756 gdb_assert (sig_entry->per_cu.cu == NULL);
4757 if (dwarf2_per_objfile->using_index)
4758 {
4759 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4760 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4761 }
4762 else
4763 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4764 gdb_assert (sig_entry->signature == dwo_entry->signature);
4765 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4766 gdb_assert (sig_entry->type_unit_group == NULL);
4767 gdb_assert (sig_entry->dwo_unit == NULL);
4768
4769 sig_entry->per_cu.section = dwo_entry->section;
4770 sig_entry->per_cu.offset = dwo_entry->offset;
4771 sig_entry->per_cu.length = dwo_entry->length;
4772 sig_entry->per_cu.reading_dwo_directly = 1;
4773 sig_entry->per_cu.objfile = objfile;
4774 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4775 sig_entry->dwo_unit = dwo_entry;
4776 }
4777
4778 /* Subroutine of lookup_signatured_type.
4779 If we haven't read the TU yet, create the signatured_type data structure
4780 for a TU to be read in directly from a DWO file, bypassing the stub.
4781 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4782 using .gdb_index, then when reading a CU we want to stay in the DWO file
4783 containing that CU. Otherwise we could end up reading several other DWO
4784 files (due to comdat folding) to process the transitive closure of all the
4785 mentioned TUs, and that can be slow. The current DWO file will have every
4786 type signature that it needs.
4787 We only do this for .gdb_index because in the psymtab case we already have
4788 to read all the DWOs to build the type unit groups. */
4789
4790 static struct signatured_type *
4791 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4792 {
4793 struct objfile *objfile = dwarf2_per_objfile->objfile;
4794 struct dwo_file *dwo_file;
4795 struct dwo_unit find_dwo_entry, *dwo_entry;
4796 struct signatured_type find_sig_entry, *sig_entry;
4797 void **slot;
4798
4799 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4800
4801 /* If TU skeletons have been removed then we may not have read in any
4802 TUs yet. */
4803 if (dwarf2_per_objfile->signatured_types == NULL)
4804 {
4805 dwarf2_per_objfile->signatured_types
4806 = allocate_signatured_type_table (objfile);
4807 }
4808
4809 /* We only ever need to read in one copy of a signatured type.
4810 Use the global signatured_types array to do our own comdat-folding
4811 of types. If this is the first time we're reading this TU, and
4812 the TU has an entry in .gdb_index, replace the recorded data from
4813 .gdb_index with this TU. */
4814
4815 find_sig_entry.signature = sig;
4816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4817 &find_sig_entry, INSERT);
4818 sig_entry = *slot;
4819
4820 /* We can get here with the TU already read, *or* in the process of being
4821 read. Don't reassign the global entry to point to this DWO if that's
4822 the case. Also note that if the TU is already being read, it may not
4823 have come from a DWO, the program may be a mix of Fission-compiled
4824 code and non-Fission-compiled code. */
4825
4826 /* Have we already tried to read this TU?
4827 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4828 needn't exist in the global table yet). */
4829 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4830 return sig_entry;
4831
4832 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4833 dwo_unit of the TU itself. */
4834 dwo_file = cu->dwo_unit->dwo_file;
4835
4836 /* Ok, this is the first time we're reading this TU. */
4837 if (dwo_file->tus == NULL)
4838 return NULL;
4839 find_dwo_entry.signature = sig;
4840 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4841 if (dwo_entry == NULL)
4842 return NULL;
4843
4844 /* If the global table doesn't have an entry for this TU, add one. */
4845 if (sig_entry == NULL)
4846 sig_entry = add_type_unit (sig, slot);
4847
4848 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4849 sig_entry->per_cu.tu_read = 1;
4850 return sig_entry;
4851 }
4852
4853 /* Subroutine of lookup_signatured_type.
4854 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4855 then try the DWP file. If the TU stub (skeleton) has been removed then
4856 it won't be in .gdb_index. */
4857
4858 static struct signatured_type *
4859 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4860 {
4861 struct objfile *objfile = dwarf2_per_objfile->objfile;
4862 struct dwp_file *dwp_file = get_dwp_file ();
4863 struct dwo_unit *dwo_entry;
4864 struct signatured_type find_sig_entry, *sig_entry;
4865 void **slot;
4866
4867 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4868 gdb_assert (dwp_file != NULL);
4869
4870 /* If TU skeletons have been removed then we may not have read in any
4871 TUs yet. */
4872 if (dwarf2_per_objfile->signatured_types == NULL)
4873 {
4874 dwarf2_per_objfile->signatured_types
4875 = allocate_signatured_type_table (objfile);
4876 }
4877
4878 find_sig_entry.signature = sig;
4879 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4880 &find_sig_entry, INSERT);
4881 sig_entry = *slot;
4882
4883 /* Have we already tried to read this TU?
4884 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4885 needn't exist in the global table yet). */
4886 if (sig_entry != NULL)
4887 return sig_entry;
4888
4889 if (dwp_file->tus == NULL)
4890 return NULL;
4891 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4892 sig, 1 /* is_debug_types */);
4893 if (dwo_entry == NULL)
4894 return NULL;
4895
4896 sig_entry = add_type_unit (sig, slot);
4897 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4898
4899 return sig_entry;
4900 }
4901
4902 /* Lookup a signature based type for DW_FORM_ref_sig8.
4903 Returns NULL if signature SIG is not present in the table.
4904 It is up to the caller to complain about this. */
4905
4906 static struct signatured_type *
4907 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4908 {
4909 if (cu->dwo_unit
4910 && dwarf2_per_objfile->using_index)
4911 {
4912 /* We're in a DWO/DWP file, and we're using .gdb_index.
4913 These cases require special processing. */
4914 if (get_dwp_file () == NULL)
4915 return lookup_dwo_signatured_type (cu, sig);
4916 else
4917 return lookup_dwp_signatured_type (cu, sig);
4918 }
4919 else
4920 {
4921 struct signatured_type find_entry, *entry;
4922
4923 if (dwarf2_per_objfile->signatured_types == NULL)
4924 return NULL;
4925 find_entry.signature = sig;
4926 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4927 return entry;
4928 }
4929 }
4930 \f
4931 /* Low level DIE reading support. */
4932
4933 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4934
4935 static void
4936 init_cu_die_reader (struct die_reader_specs *reader,
4937 struct dwarf2_cu *cu,
4938 struct dwarf2_section_info *section,
4939 struct dwo_file *dwo_file)
4940 {
4941 gdb_assert (section->readin && section->buffer != NULL);
4942 reader->abfd = get_section_bfd_owner (section);
4943 reader->cu = cu;
4944 reader->dwo_file = dwo_file;
4945 reader->die_section = section;
4946 reader->buffer = section->buffer;
4947 reader->buffer_end = section->buffer + section->size;
4948 reader->comp_dir = NULL;
4949 }
4950
4951 /* Subroutine of init_cutu_and_read_dies to simplify it.
4952 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4953 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4954 already.
4955
4956 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4957 from it to the DIE in the DWO. If NULL we are skipping the stub.
4958 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4959 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4960 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4961 STUB_COMP_DIR may be non-NULL.
4962 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4963 are filled in with the info of the DIE from the DWO file.
4964 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4965 provided an abbrev table to use.
4966 The result is non-zero if a valid (non-dummy) DIE was found. */
4967
4968 static int
4969 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4970 struct dwo_unit *dwo_unit,
4971 int abbrev_table_provided,
4972 struct die_info *stub_comp_unit_die,
4973 const char *stub_comp_dir,
4974 struct die_reader_specs *result_reader,
4975 const gdb_byte **result_info_ptr,
4976 struct die_info **result_comp_unit_die,
4977 int *result_has_children)
4978 {
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwarf2_cu *cu = this_cu->cu;
4981 struct dwarf2_section_info *section;
4982 bfd *abfd;
4983 const gdb_byte *begin_info_ptr, *info_ptr;
4984 ULONGEST signature; /* Or dwo_id. */
4985 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4986 int i,num_extra_attrs;
4987 struct dwarf2_section_info *dwo_abbrev_section;
4988 struct attribute *attr;
4989 struct die_info *comp_unit_die;
4990
4991 /* At most one of these may be provided. */
4992 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4993
4994 /* These attributes aren't processed until later:
4995 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4996 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4997 referenced later. However, these attributes are found in the stub
4998 which we won't have later. In order to not impose this complication
4999 on the rest of the code, we read them here and copy them to the
5000 DWO CU/TU die. */
5001
5002 stmt_list = NULL;
5003 low_pc = NULL;
5004 high_pc = NULL;
5005 ranges = NULL;
5006 comp_dir = NULL;
5007
5008 if (stub_comp_unit_die != NULL)
5009 {
5010 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5011 DWO file. */
5012 if (! this_cu->is_debug_types)
5013 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5014 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5015 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5016 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5017 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5018
5019 /* There should be a DW_AT_addr_base attribute here (if needed).
5020 We need the value before we can process DW_FORM_GNU_addr_index. */
5021 cu->addr_base = 0;
5022 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5023 if (attr)
5024 cu->addr_base = DW_UNSND (attr);
5025
5026 /* There should be a DW_AT_ranges_base attribute here (if needed).
5027 We need the value before we can process DW_AT_ranges. */
5028 cu->ranges_base = 0;
5029 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5030 if (attr)
5031 cu->ranges_base = DW_UNSND (attr);
5032 }
5033 else if (stub_comp_dir != NULL)
5034 {
5035 /* Reconstruct the comp_dir attribute to simplify the code below. */
5036 comp_dir = (struct attribute *)
5037 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5038 comp_dir->name = DW_AT_comp_dir;
5039 comp_dir->form = DW_FORM_string;
5040 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5041 DW_STRING (comp_dir) = stub_comp_dir;
5042 }
5043
5044 /* Set up for reading the DWO CU/TU. */
5045 cu->dwo_unit = dwo_unit;
5046 section = dwo_unit->section;
5047 dwarf2_read_section (objfile, section);
5048 abfd = get_section_bfd_owner (section);
5049 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5050 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5051 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5052
5053 if (this_cu->is_debug_types)
5054 {
5055 ULONGEST header_signature;
5056 cu_offset type_offset_in_tu;
5057 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5058
5059 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5060 dwo_abbrev_section,
5061 info_ptr,
5062 &header_signature,
5063 &type_offset_in_tu);
5064 /* This is not an assert because it can be caused by bad debug info. */
5065 if (sig_type->signature != header_signature)
5066 {
5067 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5068 " TU at offset 0x%x [in module %s]"),
5069 hex_string (sig_type->signature),
5070 hex_string (header_signature),
5071 dwo_unit->offset.sect_off,
5072 bfd_get_filename (abfd));
5073 }
5074 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5075 /* For DWOs coming from DWP files, we don't know the CU length
5076 nor the type's offset in the TU until now. */
5077 dwo_unit->length = get_cu_length (&cu->header);
5078 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5079
5080 /* Establish the type offset that can be used to lookup the type.
5081 For DWO files, we don't know it until now. */
5082 sig_type->type_offset_in_section.sect_off =
5083 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5084 }
5085 else
5086 {
5087 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5088 dwo_abbrev_section,
5089 info_ptr, 0);
5090 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5091 /* For DWOs coming from DWP files, we don't know the CU length
5092 until now. */
5093 dwo_unit->length = get_cu_length (&cu->header);
5094 }
5095
5096 /* Replace the CU's original abbrev table with the DWO's.
5097 Reminder: We can't read the abbrev table until we've read the header. */
5098 if (abbrev_table_provided)
5099 {
5100 /* Don't free the provided abbrev table, the caller of
5101 init_cutu_and_read_dies owns it. */
5102 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5103 /* Ensure the DWO abbrev table gets freed. */
5104 make_cleanup (dwarf2_free_abbrev_table, cu);
5105 }
5106 else
5107 {
5108 dwarf2_free_abbrev_table (cu);
5109 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5110 /* Leave any existing abbrev table cleanup as is. */
5111 }
5112
5113 /* Read in the die, but leave space to copy over the attributes
5114 from the stub. This has the benefit of simplifying the rest of
5115 the code - all the work to maintain the illusion of a single
5116 DW_TAG_{compile,type}_unit DIE is done here. */
5117 num_extra_attrs = ((stmt_list != NULL)
5118 + (low_pc != NULL)
5119 + (high_pc != NULL)
5120 + (ranges != NULL)
5121 + (comp_dir != NULL));
5122 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5123 result_has_children, num_extra_attrs);
5124
5125 /* Copy over the attributes from the stub to the DIE we just read in. */
5126 comp_unit_die = *result_comp_unit_die;
5127 i = comp_unit_die->num_attrs;
5128 if (stmt_list != NULL)
5129 comp_unit_die->attrs[i++] = *stmt_list;
5130 if (low_pc != NULL)
5131 comp_unit_die->attrs[i++] = *low_pc;
5132 if (high_pc != NULL)
5133 comp_unit_die->attrs[i++] = *high_pc;
5134 if (ranges != NULL)
5135 comp_unit_die->attrs[i++] = *ranges;
5136 if (comp_dir != NULL)
5137 comp_unit_die->attrs[i++] = *comp_dir;
5138 comp_unit_die->num_attrs += num_extra_attrs;
5139
5140 if (dwarf2_die_debug)
5141 {
5142 fprintf_unfiltered (gdb_stdlog,
5143 "Read die from %s@0x%x of %s:\n",
5144 get_section_name (section),
5145 (unsigned) (begin_info_ptr - section->buffer),
5146 bfd_get_filename (abfd));
5147 dump_die (comp_unit_die, dwarf2_die_debug);
5148 }
5149
5150 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5151 TUs by skipping the stub and going directly to the entry in the DWO file.
5152 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5153 to get it via circuitous means. Blech. */
5154 if (comp_dir != NULL)
5155 result_reader->comp_dir = DW_STRING (comp_dir);
5156
5157 /* Skip dummy compilation units. */
5158 if (info_ptr >= begin_info_ptr + dwo_unit->length
5159 || peek_abbrev_code (abfd, info_ptr) == 0)
5160 return 0;
5161
5162 *result_info_ptr = info_ptr;
5163 return 1;
5164 }
5165
5166 /* Subroutine of init_cutu_and_read_dies to simplify it.
5167 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5168 Returns NULL if the specified DWO unit cannot be found. */
5169
5170 static struct dwo_unit *
5171 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5172 struct die_info *comp_unit_die)
5173 {
5174 struct dwarf2_cu *cu = this_cu->cu;
5175 struct attribute *attr;
5176 ULONGEST signature;
5177 struct dwo_unit *dwo_unit;
5178 const char *comp_dir, *dwo_name;
5179
5180 gdb_assert (cu != NULL);
5181
5182 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5183 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5184 gdb_assert (attr != NULL);
5185 dwo_name = DW_STRING (attr);
5186 comp_dir = NULL;
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5188 if (attr)
5189 comp_dir = DW_STRING (attr);
5190
5191 if (this_cu->is_debug_types)
5192 {
5193 struct signatured_type *sig_type;
5194
5195 /* Since this_cu is the first member of struct signatured_type,
5196 we can go from a pointer to one to a pointer to the other. */
5197 sig_type = (struct signatured_type *) this_cu;
5198 signature = sig_type->signature;
5199 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5200 }
5201 else
5202 {
5203 struct attribute *attr;
5204
5205 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5206 if (! attr)
5207 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5208 " [in module %s]"),
5209 dwo_name, objfile_name (this_cu->objfile));
5210 signature = DW_UNSND (attr);
5211 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5212 signature);
5213 }
5214
5215 return dwo_unit;
5216 }
5217
5218 /* Subroutine of init_cutu_and_read_dies to simplify it.
5219 See it for a description of the parameters.
5220 Read a TU directly from a DWO file, bypassing the stub.
5221
5222 Note: This function could be a little bit simpler if we shared cleanups
5223 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5224 to do, so we keep this function self-contained. Or we could move this
5225 into our caller, but it's complex enough already. */
5226
5227 static void
5228 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5229 int use_existing_cu, int keep,
5230 die_reader_func_ftype *die_reader_func,
5231 void *data)
5232 {
5233 struct dwarf2_cu *cu;
5234 struct signatured_type *sig_type;
5235 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5236 struct die_reader_specs reader;
5237 const gdb_byte *info_ptr;
5238 struct die_info *comp_unit_die;
5239 int has_children;
5240
5241 /* Verify we can do the following downcast, and that we have the
5242 data we need. */
5243 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5244 sig_type = (struct signatured_type *) this_cu;
5245 gdb_assert (sig_type->dwo_unit != NULL);
5246
5247 cleanups = make_cleanup (null_cleanup, NULL);
5248
5249 if (use_existing_cu && this_cu->cu != NULL)
5250 {
5251 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5252 cu = this_cu->cu;
5253 /* There's no need to do the rereading_dwo_cu handling that
5254 init_cutu_and_read_dies does since we don't read the stub. */
5255 }
5256 else
5257 {
5258 /* If !use_existing_cu, this_cu->cu must be NULL. */
5259 gdb_assert (this_cu->cu == NULL);
5260 cu = xmalloc (sizeof (*cu));
5261 init_one_comp_unit (cu, this_cu);
5262 /* If an error occurs while loading, release our storage. */
5263 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5264 }
5265
5266 /* A future optimization, if needed, would be to use an existing
5267 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5268 could share abbrev tables. */
5269
5270 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5271 0 /* abbrev_table_provided */,
5272 NULL /* stub_comp_unit_die */,
5273 sig_type->dwo_unit->dwo_file->comp_dir,
5274 &reader, &info_ptr,
5275 &comp_unit_die, &has_children) == 0)
5276 {
5277 /* Dummy die. */
5278 do_cleanups (cleanups);
5279 return;
5280 }
5281
5282 /* All the "real" work is done here. */
5283 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5284
5285 /* This duplicates the code in init_cutu_and_read_dies,
5286 but the alternative is making the latter more complex.
5287 This function is only for the special case of using DWO files directly:
5288 no point in overly complicating the general case just to handle this. */
5289 if (free_cu_cleanup != NULL)
5290 {
5291 if (keep)
5292 {
5293 /* We've successfully allocated this compilation unit. Let our
5294 caller clean it up when finished with it. */
5295 discard_cleanups (free_cu_cleanup);
5296
5297 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5298 So we have to manually free the abbrev table. */
5299 dwarf2_free_abbrev_table (cu);
5300
5301 /* Link this CU into read_in_chain. */
5302 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5303 dwarf2_per_objfile->read_in_chain = this_cu;
5304 }
5305 else
5306 do_cleanups (free_cu_cleanup);
5307 }
5308
5309 do_cleanups (cleanups);
5310 }
5311
5312 /* Initialize a CU (or TU) and read its DIEs.
5313 If the CU defers to a DWO file, read the DWO file as well.
5314
5315 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5316 Otherwise the table specified in the comp unit header is read in and used.
5317 This is an optimization for when we already have the abbrev table.
5318
5319 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5320 Otherwise, a new CU is allocated with xmalloc.
5321
5322 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5323 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5324
5325 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5326 linker) then DIE_READER_FUNC will not get called. */
5327
5328 static void
5329 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5330 struct abbrev_table *abbrev_table,
5331 int use_existing_cu, int keep,
5332 die_reader_func_ftype *die_reader_func,
5333 void *data)
5334 {
5335 struct objfile *objfile = dwarf2_per_objfile->objfile;
5336 struct dwarf2_section_info *section = this_cu->section;
5337 bfd *abfd = get_section_bfd_owner (section);
5338 struct dwarf2_cu *cu;
5339 const gdb_byte *begin_info_ptr, *info_ptr;
5340 struct die_reader_specs reader;
5341 struct die_info *comp_unit_die;
5342 int has_children;
5343 struct attribute *attr;
5344 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5345 struct signatured_type *sig_type = NULL;
5346 struct dwarf2_section_info *abbrev_section;
5347 /* Non-zero if CU currently points to a DWO file and we need to
5348 reread it. When this happens we need to reread the skeleton die
5349 before we can reread the DWO file (this only applies to CUs, not TUs). */
5350 int rereading_dwo_cu = 0;
5351
5352 if (dwarf2_die_debug)
5353 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5354 this_cu->is_debug_types ? "type" : "comp",
5355 this_cu->offset.sect_off);
5356
5357 if (use_existing_cu)
5358 gdb_assert (keep);
5359
5360 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5361 file (instead of going through the stub), short-circuit all of this. */
5362 if (this_cu->reading_dwo_directly)
5363 {
5364 /* Narrow down the scope of possibilities to have to understand. */
5365 gdb_assert (this_cu->is_debug_types);
5366 gdb_assert (abbrev_table == NULL);
5367 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5368 die_reader_func, data);
5369 return;
5370 }
5371
5372 cleanups = make_cleanup (null_cleanup, NULL);
5373
5374 /* This is cheap if the section is already read in. */
5375 dwarf2_read_section (objfile, section);
5376
5377 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5378
5379 abbrev_section = get_abbrev_section_for_cu (this_cu);
5380
5381 if (use_existing_cu && this_cu->cu != NULL)
5382 {
5383 cu = this_cu->cu;
5384 /* If this CU is from a DWO file we need to start over, we need to
5385 refetch the attributes from the skeleton CU.
5386 This could be optimized by retrieving those attributes from when we
5387 were here the first time: the previous comp_unit_die was stored in
5388 comp_unit_obstack. But there's no data yet that we need this
5389 optimization. */
5390 if (cu->dwo_unit != NULL)
5391 rereading_dwo_cu = 1;
5392 }
5393 else
5394 {
5395 /* If !use_existing_cu, this_cu->cu must be NULL. */
5396 gdb_assert (this_cu->cu == NULL);
5397 cu = xmalloc (sizeof (*cu));
5398 init_one_comp_unit (cu, this_cu);
5399 /* If an error occurs while loading, release our storage. */
5400 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5401 }
5402
5403 /* Get the header. */
5404 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5405 {
5406 /* We already have the header, there's no need to read it in again. */
5407 info_ptr += cu->header.first_die_offset.cu_off;
5408 }
5409 else
5410 {
5411 if (this_cu->is_debug_types)
5412 {
5413 ULONGEST signature;
5414 cu_offset type_offset_in_tu;
5415
5416 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5417 abbrev_section, info_ptr,
5418 &signature,
5419 &type_offset_in_tu);
5420
5421 /* Since per_cu is the first member of struct signatured_type,
5422 we can go from a pointer to one to a pointer to the other. */
5423 sig_type = (struct signatured_type *) this_cu;
5424 gdb_assert (sig_type->signature == signature);
5425 gdb_assert (sig_type->type_offset_in_tu.cu_off
5426 == type_offset_in_tu.cu_off);
5427 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5428
5429 /* LENGTH has not been set yet for type units if we're
5430 using .gdb_index. */
5431 this_cu->length = get_cu_length (&cu->header);
5432
5433 /* Establish the type offset that can be used to lookup the type. */
5434 sig_type->type_offset_in_section.sect_off =
5435 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5436 }
5437 else
5438 {
5439 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5440 abbrev_section,
5441 info_ptr, 0);
5442
5443 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5444 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5445 }
5446 }
5447
5448 /* Skip dummy compilation units. */
5449 if (info_ptr >= begin_info_ptr + this_cu->length
5450 || peek_abbrev_code (abfd, info_ptr) == 0)
5451 {
5452 do_cleanups (cleanups);
5453 return;
5454 }
5455
5456 /* If we don't have them yet, read the abbrevs for this compilation unit.
5457 And if we need to read them now, make sure they're freed when we're
5458 done. Note that it's important that if the CU had an abbrev table
5459 on entry we don't free it when we're done: Somewhere up the call stack
5460 it may be in use. */
5461 if (abbrev_table != NULL)
5462 {
5463 gdb_assert (cu->abbrev_table == NULL);
5464 gdb_assert (cu->header.abbrev_offset.sect_off
5465 == abbrev_table->offset.sect_off);
5466 cu->abbrev_table = abbrev_table;
5467 }
5468 else if (cu->abbrev_table == NULL)
5469 {
5470 dwarf2_read_abbrevs (cu, abbrev_section);
5471 make_cleanup (dwarf2_free_abbrev_table, cu);
5472 }
5473 else if (rereading_dwo_cu)
5474 {
5475 dwarf2_free_abbrev_table (cu);
5476 dwarf2_read_abbrevs (cu, abbrev_section);
5477 }
5478
5479 /* Read the top level CU/TU die. */
5480 init_cu_die_reader (&reader, cu, section, NULL);
5481 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5482
5483 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5484 from the DWO file.
5485 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5486 DWO CU, that this test will fail (the attribute will not be present). */
5487 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5488 if (attr)
5489 {
5490 struct dwo_unit *dwo_unit;
5491 struct die_info *dwo_comp_unit_die;
5492
5493 if (has_children)
5494 {
5495 complaint (&symfile_complaints,
5496 _("compilation unit with DW_AT_GNU_dwo_name"
5497 " has children (offset 0x%x) [in module %s]"),
5498 this_cu->offset.sect_off, bfd_get_filename (abfd));
5499 }
5500 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5501 if (dwo_unit != NULL)
5502 {
5503 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5504 abbrev_table != NULL,
5505 comp_unit_die, NULL,
5506 &reader, &info_ptr,
5507 &dwo_comp_unit_die, &has_children) == 0)
5508 {
5509 /* Dummy die. */
5510 do_cleanups (cleanups);
5511 return;
5512 }
5513 comp_unit_die = dwo_comp_unit_die;
5514 }
5515 else
5516 {
5517 /* Yikes, we couldn't find the rest of the DIE, we only have
5518 the stub. A complaint has already been logged. There's
5519 not much more we can do except pass on the stub DIE to
5520 die_reader_func. We don't want to throw an error on bad
5521 debug info. */
5522 }
5523 }
5524
5525 /* All of the above is setup for this call. Yikes. */
5526 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5527
5528 /* Done, clean up. */
5529 if (free_cu_cleanup != NULL)
5530 {
5531 if (keep)
5532 {
5533 /* We've successfully allocated this compilation unit. Let our
5534 caller clean it up when finished with it. */
5535 discard_cleanups (free_cu_cleanup);
5536
5537 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5538 So we have to manually free the abbrev table. */
5539 dwarf2_free_abbrev_table (cu);
5540
5541 /* Link this CU into read_in_chain. */
5542 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5543 dwarf2_per_objfile->read_in_chain = this_cu;
5544 }
5545 else
5546 do_cleanups (free_cu_cleanup);
5547 }
5548
5549 do_cleanups (cleanups);
5550 }
5551
5552 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5553 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5554 to have already done the lookup to find the DWO file).
5555
5556 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5557 THIS_CU->is_debug_types, but nothing else.
5558
5559 We fill in THIS_CU->length.
5560
5561 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5562 linker) then DIE_READER_FUNC will not get called.
5563
5564 THIS_CU->cu is always freed when done.
5565 This is done in order to not leave THIS_CU->cu in a state where we have
5566 to care whether it refers to the "main" CU or the DWO CU. */
5567
5568 static void
5569 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5570 struct dwo_file *dwo_file,
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573 {
5574 struct objfile *objfile = dwarf2_per_objfile->objfile;
5575 struct dwarf2_section_info *section = this_cu->section;
5576 bfd *abfd = get_section_bfd_owner (section);
5577 struct dwarf2_section_info *abbrev_section;
5578 struct dwarf2_cu cu;
5579 const gdb_byte *begin_info_ptr, *info_ptr;
5580 struct die_reader_specs reader;
5581 struct cleanup *cleanups;
5582 struct die_info *comp_unit_die;
5583 int has_children;
5584
5585 if (dwarf2_die_debug)
5586 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5587 this_cu->is_debug_types ? "type" : "comp",
5588 this_cu->offset.sect_off);
5589
5590 gdb_assert (this_cu->cu == NULL);
5591
5592 abbrev_section = (dwo_file != NULL
5593 ? &dwo_file->sections.abbrev
5594 : get_abbrev_section_for_cu (this_cu));
5595
5596 /* This is cheap if the section is already read in. */
5597 dwarf2_read_section (objfile, section);
5598
5599 init_one_comp_unit (&cu, this_cu);
5600
5601 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5602
5603 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5604 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5605 abbrev_section, info_ptr,
5606 this_cu->is_debug_types);
5607
5608 this_cu->length = get_cu_length (&cu.header);
5609
5610 /* Skip dummy compilation units. */
5611 if (info_ptr >= begin_info_ptr + this_cu->length
5612 || peek_abbrev_code (abfd, info_ptr) == 0)
5613 {
5614 do_cleanups (cleanups);
5615 return;
5616 }
5617
5618 dwarf2_read_abbrevs (&cu, abbrev_section);
5619 make_cleanup (dwarf2_free_abbrev_table, &cu);
5620
5621 init_cu_die_reader (&reader, &cu, section, dwo_file);
5622 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5623
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5625
5626 do_cleanups (cleanups);
5627 }
5628
5629 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5630 does not lookup the specified DWO file.
5631 This cannot be used to read DWO files.
5632
5633 THIS_CU->cu is always freed when done.
5634 This is done in order to not leave THIS_CU->cu in a state where we have
5635 to care whether it refers to the "main" CU or the DWO CU.
5636 We can revisit this if the data shows there's a performance issue. */
5637
5638 static void
5639 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5640 die_reader_func_ftype *die_reader_func,
5641 void *data)
5642 {
5643 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5644 }
5645 \f
5646 /* Type Unit Groups.
5647
5648 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5649 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5650 so that all types coming from the same compilation (.o file) are grouped
5651 together. A future step could be to put the types in the same symtab as
5652 the CU the types ultimately came from. */
5653
5654 static hashval_t
5655 hash_type_unit_group (const void *item)
5656 {
5657 const struct type_unit_group *tu_group = item;
5658
5659 return hash_stmt_list_entry (&tu_group->hash);
5660 }
5661
5662 static int
5663 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5664 {
5665 const struct type_unit_group *lhs = item_lhs;
5666 const struct type_unit_group *rhs = item_rhs;
5667
5668 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5669 }
5670
5671 /* Allocate a hash table for type unit groups. */
5672
5673 static htab_t
5674 allocate_type_unit_groups_table (void)
5675 {
5676 return htab_create_alloc_ex (3,
5677 hash_type_unit_group,
5678 eq_type_unit_group,
5679 NULL,
5680 &dwarf2_per_objfile->objfile->objfile_obstack,
5681 hashtab_obstack_allocate,
5682 dummy_obstack_deallocate);
5683 }
5684
5685 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5686 partial symtabs. We combine several TUs per psymtab to not let the size
5687 of any one psymtab grow too big. */
5688 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5689 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5690
5691 /* Helper routine for get_type_unit_group.
5692 Create the type_unit_group object used to hold one or more TUs. */
5693
5694 static struct type_unit_group *
5695 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5696 {
5697 struct objfile *objfile = dwarf2_per_objfile->objfile;
5698 struct dwarf2_per_cu_data *per_cu;
5699 struct type_unit_group *tu_group;
5700
5701 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5702 struct type_unit_group);
5703 per_cu = &tu_group->per_cu;
5704 per_cu->objfile = objfile;
5705
5706 if (dwarf2_per_objfile->using_index)
5707 {
5708 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5709 struct dwarf2_per_cu_quick_data);
5710 }
5711 else
5712 {
5713 unsigned int line_offset = line_offset_struct.sect_off;
5714 struct partial_symtab *pst;
5715 char *name;
5716
5717 /* Give the symtab a useful name for debug purposes. */
5718 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5719 name = xstrprintf ("<type_units_%d>",
5720 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5721 else
5722 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5723
5724 pst = create_partial_symtab (per_cu, name);
5725 pst->anonymous = 1;
5726
5727 xfree (name);
5728 }
5729
5730 tu_group->hash.dwo_unit = cu->dwo_unit;
5731 tu_group->hash.line_offset = line_offset_struct;
5732
5733 return tu_group;
5734 }
5735
5736 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5737 STMT_LIST is a DW_AT_stmt_list attribute. */
5738
5739 static struct type_unit_group *
5740 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5741 {
5742 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5743 struct type_unit_group *tu_group;
5744 void **slot;
5745 unsigned int line_offset;
5746 struct type_unit_group type_unit_group_for_lookup;
5747
5748 if (dwarf2_per_objfile->type_unit_groups == NULL)
5749 {
5750 dwarf2_per_objfile->type_unit_groups =
5751 allocate_type_unit_groups_table ();
5752 }
5753
5754 /* Do we need to create a new group, or can we use an existing one? */
5755
5756 if (stmt_list)
5757 {
5758 line_offset = DW_UNSND (stmt_list);
5759 ++tu_stats->nr_symtab_sharers;
5760 }
5761 else
5762 {
5763 /* Ugh, no stmt_list. Rare, but we have to handle it.
5764 We can do various things here like create one group per TU or
5765 spread them over multiple groups to split up the expansion work.
5766 To avoid worst case scenarios (too many groups or too large groups)
5767 we, umm, group them in bunches. */
5768 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5769 | (tu_stats->nr_stmt_less_type_units
5770 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5771 ++tu_stats->nr_stmt_less_type_units;
5772 }
5773
5774 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5775 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5776 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5777 &type_unit_group_for_lookup, INSERT);
5778 if (*slot != NULL)
5779 {
5780 tu_group = *slot;
5781 gdb_assert (tu_group != NULL);
5782 }
5783 else
5784 {
5785 sect_offset line_offset_struct;
5786
5787 line_offset_struct.sect_off = line_offset;
5788 tu_group = create_type_unit_group (cu, line_offset_struct);
5789 *slot = tu_group;
5790 ++tu_stats->nr_symtabs;
5791 }
5792
5793 return tu_group;
5794 }
5795 \f
5796 /* Partial symbol tables. */
5797
5798 /* Create a psymtab named NAME and assign it to PER_CU.
5799
5800 The caller must fill in the following details:
5801 dirname, textlow, texthigh. */
5802
5803 static struct partial_symtab *
5804 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5805 {
5806 struct objfile *objfile = per_cu->objfile;
5807 struct partial_symtab *pst;
5808
5809 pst = start_psymtab_common (objfile, objfile->section_offsets,
5810 name, 0,
5811 objfile->global_psymbols.next,
5812 objfile->static_psymbols.next);
5813
5814 pst->psymtabs_addrmap_supported = 1;
5815
5816 /* This is the glue that links PST into GDB's symbol API. */
5817 pst->read_symtab_private = per_cu;
5818 pst->read_symtab = dwarf2_read_symtab;
5819 per_cu->v.psymtab = pst;
5820
5821 return pst;
5822 }
5823
5824 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5825 type. */
5826
5827 struct process_psymtab_comp_unit_data
5828 {
5829 /* True if we are reading a DW_TAG_partial_unit. */
5830
5831 int want_partial_unit;
5832
5833 /* The "pretend" language that is used if the CU doesn't declare a
5834 language. */
5835
5836 enum language pretend_language;
5837 };
5838
5839 /* die_reader_func for process_psymtab_comp_unit. */
5840
5841 static void
5842 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5843 const gdb_byte *info_ptr,
5844 struct die_info *comp_unit_die,
5845 int has_children,
5846 void *data)
5847 {
5848 struct dwarf2_cu *cu = reader->cu;
5849 struct objfile *objfile = cu->objfile;
5850 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5851 struct attribute *attr;
5852 CORE_ADDR baseaddr;
5853 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5854 struct partial_symtab *pst;
5855 int has_pc_info;
5856 const char *filename;
5857 struct process_psymtab_comp_unit_data *info = data;
5858
5859 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5860 return;
5861
5862 gdb_assert (! per_cu->is_debug_types);
5863
5864 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5865
5866 cu->list_in_scope = &file_symbols;
5867
5868 /* Allocate a new partial symbol table structure. */
5869 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5870 if (attr == NULL || !DW_STRING (attr))
5871 filename = "";
5872 else
5873 filename = DW_STRING (attr);
5874
5875 pst = create_partial_symtab (per_cu, filename);
5876
5877 /* This must be done before calling dwarf2_build_include_psymtabs. */
5878 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5879 if (attr != NULL)
5880 pst->dirname = DW_STRING (attr);
5881
5882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5883
5884 dwarf2_find_base_address (comp_unit_die, cu);
5885
5886 /* Possibly set the default values of LOWPC and HIGHPC from
5887 `DW_AT_ranges'. */
5888 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5889 &best_highpc, cu, pst);
5890 if (has_pc_info == 1 && best_lowpc < best_highpc)
5891 /* Store the contiguous range if it is not empty; it can be empty for
5892 CUs with no code. */
5893 addrmap_set_empty (objfile->psymtabs_addrmap,
5894 best_lowpc + baseaddr,
5895 best_highpc + baseaddr - 1, pst);
5896
5897 /* Check if comp unit has_children.
5898 If so, read the rest of the partial symbols from this comp unit.
5899 If not, there's no more debug_info for this comp unit. */
5900 if (has_children)
5901 {
5902 struct partial_die_info *first_die;
5903 CORE_ADDR lowpc, highpc;
5904
5905 lowpc = ((CORE_ADDR) -1);
5906 highpc = ((CORE_ADDR) 0);
5907
5908 first_die = load_partial_dies (reader, info_ptr, 1);
5909
5910 scan_partial_symbols (first_die, &lowpc, &highpc,
5911 ! has_pc_info, cu);
5912
5913 /* If we didn't find a lowpc, set it to highpc to avoid
5914 complaints from `maint check'. */
5915 if (lowpc == ((CORE_ADDR) -1))
5916 lowpc = highpc;
5917
5918 /* If the compilation unit didn't have an explicit address range,
5919 then use the information extracted from its child dies. */
5920 if (! has_pc_info)
5921 {
5922 best_lowpc = lowpc;
5923 best_highpc = highpc;
5924 }
5925 }
5926 pst->textlow = best_lowpc + baseaddr;
5927 pst->texthigh = best_highpc + baseaddr;
5928
5929 pst->n_global_syms = objfile->global_psymbols.next -
5930 (objfile->global_psymbols.list + pst->globals_offset);
5931 pst->n_static_syms = objfile->static_psymbols.next -
5932 (objfile->static_psymbols.list + pst->statics_offset);
5933 sort_pst_symbols (objfile, pst);
5934
5935 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5936 {
5937 int i;
5938 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5939 struct dwarf2_per_cu_data *iter;
5940
5941 /* Fill in 'dependencies' here; we fill in 'users' in a
5942 post-pass. */
5943 pst->number_of_dependencies = len;
5944 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5945 len * sizeof (struct symtab *));
5946 for (i = 0;
5947 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5948 i, iter);
5949 ++i)
5950 pst->dependencies[i] = iter->v.psymtab;
5951
5952 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5953 }
5954
5955 /* Get the list of files included in the current compilation unit,
5956 and build a psymtab for each of them. */
5957 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5958
5959 if (dwarf2_read_debug)
5960 {
5961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5962
5963 fprintf_unfiltered (gdb_stdlog,
5964 "Psymtab for %s unit @0x%x: %s - %s"
5965 ", %d global, %d static syms\n",
5966 per_cu->is_debug_types ? "type" : "comp",
5967 per_cu->offset.sect_off,
5968 paddress (gdbarch, pst->textlow),
5969 paddress (gdbarch, pst->texthigh),
5970 pst->n_global_syms, pst->n_static_syms);
5971 }
5972 }
5973
5974 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5975 Process compilation unit THIS_CU for a psymtab. */
5976
5977 static void
5978 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5979 int want_partial_unit,
5980 enum language pretend_language)
5981 {
5982 struct process_psymtab_comp_unit_data info;
5983
5984 /* If this compilation unit was already read in, free the
5985 cached copy in order to read it in again. This is
5986 necessary because we skipped some symbols when we first
5987 read in the compilation unit (see load_partial_dies).
5988 This problem could be avoided, but the benefit is unclear. */
5989 if (this_cu->cu != NULL)
5990 free_one_cached_comp_unit (this_cu);
5991
5992 gdb_assert (! this_cu->is_debug_types);
5993 info.want_partial_unit = want_partial_unit;
5994 info.pretend_language = pretend_language;
5995 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5996 process_psymtab_comp_unit_reader,
5997 &info);
5998
5999 /* Age out any secondary CUs. */
6000 age_cached_comp_units ();
6001 }
6002
6003 /* Reader function for build_type_psymtabs. */
6004
6005 static void
6006 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6007 const gdb_byte *info_ptr,
6008 struct die_info *type_unit_die,
6009 int has_children,
6010 void *data)
6011 {
6012 struct objfile *objfile = dwarf2_per_objfile->objfile;
6013 struct dwarf2_cu *cu = reader->cu;
6014 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6015 struct signatured_type *sig_type;
6016 struct type_unit_group *tu_group;
6017 struct attribute *attr;
6018 struct partial_die_info *first_die;
6019 CORE_ADDR lowpc, highpc;
6020 struct partial_symtab *pst;
6021
6022 gdb_assert (data == NULL);
6023 gdb_assert (per_cu->is_debug_types);
6024 sig_type = (struct signatured_type *) per_cu;
6025
6026 if (! has_children)
6027 return;
6028
6029 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6030 tu_group = get_type_unit_group (cu, attr);
6031
6032 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6033
6034 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6035 cu->list_in_scope = &file_symbols;
6036 pst = create_partial_symtab (per_cu, "");
6037 pst->anonymous = 1;
6038
6039 first_die = load_partial_dies (reader, info_ptr, 1);
6040
6041 lowpc = (CORE_ADDR) -1;
6042 highpc = (CORE_ADDR) 0;
6043 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6044
6045 pst->n_global_syms = objfile->global_psymbols.next -
6046 (objfile->global_psymbols.list + pst->globals_offset);
6047 pst->n_static_syms = objfile->static_psymbols.next -
6048 (objfile->static_psymbols.list + pst->statics_offset);
6049 sort_pst_symbols (objfile, pst);
6050 }
6051
6052 /* Struct used to sort TUs by their abbreviation table offset. */
6053
6054 struct tu_abbrev_offset
6055 {
6056 struct signatured_type *sig_type;
6057 sect_offset abbrev_offset;
6058 };
6059
6060 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6061
6062 static int
6063 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6064 {
6065 const struct tu_abbrev_offset * const *a = ap;
6066 const struct tu_abbrev_offset * const *b = bp;
6067 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6068 unsigned int boff = (*b)->abbrev_offset.sect_off;
6069
6070 return (aoff > boff) - (aoff < boff);
6071 }
6072
6073 /* Efficiently read all the type units.
6074 This does the bulk of the work for build_type_psymtabs.
6075
6076 The efficiency is because we sort TUs by the abbrev table they use and
6077 only read each abbrev table once. In one program there are 200K TUs
6078 sharing 8K abbrev tables.
6079
6080 The main purpose of this function is to support building the
6081 dwarf2_per_objfile->type_unit_groups table.
6082 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6083 can collapse the search space by grouping them by stmt_list.
6084 The savings can be significant, in the same program from above the 200K TUs
6085 share 8K stmt_list tables.
6086
6087 FUNC is expected to call get_type_unit_group, which will create the
6088 struct type_unit_group if necessary and add it to
6089 dwarf2_per_objfile->type_unit_groups. */
6090
6091 static void
6092 build_type_psymtabs_1 (void)
6093 {
6094 struct objfile *objfile = dwarf2_per_objfile->objfile;
6095 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6096 struct cleanup *cleanups;
6097 struct abbrev_table *abbrev_table;
6098 sect_offset abbrev_offset;
6099 struct tu_abbrev_offset *sorted_by_abbrev;
6100 struct type_unit_group **iter;
6101 int i;
6102
6103 /* It's up to the caller to not call us multiple times. */
6104 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6105
6106 if (dwarf2_per_objfile->n_type_units == 0)
6107 return;
6108
6109 /* TUs typically share abbrev tables, and there can be way more TUs than
6110 abbrev tables. Sort by abbrev table to reduce the number of times we
6111 read each abbrev table in.
6112 Alternatives are to punt or to maintain a cache of abbrev tables.
6113 This is simpler and efficient enough for now.
6114
6115 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6116 symtab to use). Typically TUs with the same abbrev offset have the same
6117 stmt_list value too so in practice this should work well.
6118
6119 The basic algorithm here is:
6120
6121 sort TUs by abbrev table
6122 for each TU with same abbrev table:
6123 read abbrev table if first user
6124 read TU top level DIE
6125 [IWBN if DWO skeletons had DW_AT_stmt_list]
6126 call FUNC */
6127
6128 if (dwarf2_read_debug)
6129 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6130
6131 /* Sort in a separate table to maintain the order of all_type_units
6132 for .gdb_index: TU indices directly index all_type_units. */
6133 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6134 dwarf2_per_objfile->n_type_units);
6135 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6136 {
6137 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6138
6139 sorted_by_abbrev[i].sig_type = sig_type;
6140 sorted_by_abbrev[i].abbrev_offset =
6141 read_abbrev_offset (sig_type->per_cu.section,
6142 sig_type->per_cu.offset);
6143 }
6144 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6145 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6146 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6147
6148 abbrev_offset.sect_off = ~(unsigned) 0;
6149 abbrev_table = NULL;
6150 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6151
6152 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6153 {
6154 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6155
6156 /* Switch to the next abbrev table if necessary. */
6157 if (abbrev_table == NULL
6158 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6159 {
6160 if (abbrev_table != NULL)
6161 {
6162 abbrev_table_free (abbrev_table);
6163 /* Reset to NULL in case abbrev_table_read_table throws
6164 an error: abbrev_table_free_cleanup will get called. */
6165 abbrev_table = NULL;
6166 }
6167 abbrev_offset = tu->abbrev_offset;
6168 abbrev_table =
6169 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6170 abbrev_offset);
6171 ++tu_stats->nr_uniq_abbrev_tables;
6172 }
6173
6174 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6175 build_type_psymtabs_reader, NULL);
6176 }
6177
6178 do_cleanups (cleanups);
6179 }
6180
6181 /* Print collected type unit statistics. */
6182
6183 static void
6184 print_tu_stats (void)
6185 {
6186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6187
6188 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6189 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6190 dwarf2_per_objfile->n_type_units);
6191 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6192 tu_stats->nr_uniq_abbrev_tables);
6193 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6194 tu_stats->nr_symtabs);
6195 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6196 tu_stats->nr_symtab_sharers);
6197 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6198 tu_stats->nr_stmt_less_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6200 tu_stats->nr_all_type_units_reallocs);
6201 }
6202
6203 /* Traversal function for build_type_psymtabs. */
6204
6205 static int
6206 build_type_psymtab_dependencies (void **slot, void *info)
6207 {
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6210 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6211 struct partial_symtab *pst = per_cu->v.psymtab;
6212 int len = VEC_length (sig_type_ptr, tu_group->tus);
6213 struct signatured_type *iter;
6214 int i;
6215
6216 gdb_assert (len > 0);
6217 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6218
6219 pst->number_of_dependencies = len;
6220 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6221 len * sizeof (struct psymtab *));
6222 for (i = 0;
6223 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6224 ++i)
6225 {
6226 gdb_assert (iter->per_cu.is_debug_types);
6227 pst->dependencies[i] = iter->per_cu.v.psymtab;
6228 iter->type_unit_group = tu_group;
6229 }
6230
6231 VEC_free (sig_type_ptr, tu_group->tus);
6232
6233 return 1;
6234 }
6235
6236 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6237 Build partial symbol tables for the .debug_types comp-units. */
6238
6239 static void
6240 build_type_psymtabs (struct objfile *objfile)
6241 {
6242 if (! create_all_type_units (objfile))
6243 return;
6244
6245 build_type_psymtabs_1 ();
6246 }
6247
6248 /* Traversal function for process_skeletonless_type_unit.
6249 Read a TU in a DWO file and build partial symbols for it. */
6250
6251 static int
6252 process_skeletonless_type_unit (void **slot, void *info)
6253 {
6254 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6255 struct objfile *objfile = info;
6256 struct signatured_type find_entry, *entry;
6257
6258 /* If this TU doesn't exist in the global table, add it and read it in. */
6259
6260 if (dwarf2_per_objfile->signatured_types == NULL)
6261 {
6262 dwarf2_per_objfile->signatured_types
6263 = allocate_signatured_type_table (objfile);
6264 }
6265
6266 find_entry.signature = dwo_unit->signature;
6267 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6268 INSERT);
6269 /* If we've already seen this type there's nothing to do. What's happening
6270 is we're doing our own version of comdat-folding here. */
6271 if (*slot != NULL)
6272 return 1;
6273
6274 /* This does the job that create_all_type_units would have done for
6275 this TU. */
6276 entry = add_type_unit (dwo_unit->signature, slot);
6277 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6278 *slot = entry;
6279
6280 /* This does the job that build_type_psymtabs_1 would have done. */
6281 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6282 build_type_psymtabs_reader, NULL);
6283
6284 return 1;
6285 }
6286
6287 /* Traversal function for process_skeletonless_type_units. */
6288
6289 static int
6290 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6291 {
6292 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6293
6294 if (dwo_file->tus != NULL)
6295 {
6296 htab_traverse_noresize (dwo_file->tus,
6297 process_skeletonless_type_unit, info);
6298 }
6299
6300 return 1;
6301 }
6302
6303 /* Scan all TUs of DWO files, verifying we've processed them.
6304 This is needed in case a TU was emitted without its skeleton.
6305 Note: This can't be done until we know what all the DWO files are. */
6306
6307 static void
6308 process_skeletonless_type_units (struct objfile *objfile)
6309 {
6310 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6311 if (get_dwp_file () == NULL
6312 && dwarf2_per_objfile->dwo_files != NULL)
6313 {
6314 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6315 process_dwo_file_for_skeletonless_type_units,
6316 objfile);
6317 }
6318 }
6319
6320 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6321
6322 static void
6323 psymtabs_addrmap_cleanup (void *o)
6324 {
6325 struct objfile *objfile = o;
6326
6327 objfile->psymtabs_addrmap = NULL;
6328 }
6329
6330 /* Compute the 'user' field for each psymtab in OBJFILE. */
6331
6332 static void
6333 set_partial_user (struct objfile *objfile)
6334 {
6335 int i;
6336
6337 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6338 {
6339 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6340 struct partial_symtab *pst = per_cu->v.psymtab;
6341 int j;
6342
6343 if (pst == NULL)
6344 continue;
6345
6346 for (j = 0; j < pst->number_of_dependencies; ++j)
6347 {
6348 /* Set the 'user' field only if it is not already set. */
6349 if (pst->dependencies[j]->user == NULL)
6350 pst->dependencies[j]->user = pst;
6351 }
6352 }
6353 }
6354
6355 /* Build the partial symbol table by doing a quick pass through the
6356 .debug_info and .debug_abbrev sections. */
6357
6358 static void
6359 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6360 {
6361 struct cleanup *back_to, *addrmap_cleanup;
6362 struct obstack temp_obstack;
6363 int i;
6364
6365 if (dwarf2_read_debug)
6366 {
6367 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6368 objfile_name (objfile));
6369 }
6370
6371 dwarf2_per_objfile->reading_partial_symbols = 1;
6372
6373 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6374
6375 /* Any cached compilation units will be linked by the per-objfile
6376 read_in_chain. Make sure to free them when we're done. */
6377 back_to = make_cleanup (free_cached_comp_units, NULL);
6378
6379 build_type_psymtabs (objfile);
6380
6381 create_all_comp_units (objfile);
6382
6383 /* Create a temporary address map on a temporary obstack. We later
6384 copy this to the final obstack. */
6385 obstack_init (&temp_obstack);
6386 make_cleanup_obstack_free (&temp_obstack);
6387 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6388 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6389
6390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6391 {
6392 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6393
6394 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6395 }
6396
6397 /* This has to wait until we read the CUs, we need the list of DWOs. */
6398 process_skeletonless_type_units (objfile);
6399
6400 /* Now that all TUs have been processed we can fill in the dependencies. */
6401 if (dwarf2_per_objfile->type_unit_groups != NULL)
6402 {
6403 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6404 build_type_psymtab_dependencies, NULL);
6405 }
6406
6407 if (dwarf2_read_debug)
6408 print_tu_stats ();
6409
6410 set_partial_user (objfile);
6411
6412 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6413 &objfile->objfile_obstack);
6414 discard_cleanups (addrmap_cleanup);
6415
6416 do_cleanups (back_to);
6417
6418 if (dwarf2_read_debug)
6419 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6420 objfile_name (objfile));
6421 }
6422
6423 /* die_reader_func for load_partial_comp_unit. */
6424
6425 static void
6426 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6427 const gdb_byte *info_ptr,
6428 struct die_info *comp_unit_die,
6429 int has_children,
6430 void *data)
6431 {
6432 struct dwarf2_cu *cu = reader->cu;
6433
6434 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6435
6436 /* Check if comp unit has_children.
6437 If so, read the rest of the partial symbols from this comp unit.
6438 If not, there's no more debug_info for this comp unit. */
6439 if (has_children)
6440 load_partial_dies (reader, info_ptr, 0);
6441 }
6442
6443 /* Load the partial DIEs for a secondary CU into memory.
6444 This is also used when rereading a primary CU with load_all_dies. */
6445
6446 static void
6447 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6448 {
6449 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6450 load_partial_comp_unit_reader, NULL);
6451 }
6452
6453 static void
6454 read_comp_units_from_section (struct objfile *objfile,
6455 struct dwarf2_section_info *section,
6456 unsigned int is_dwz,
6457 int *n_allocated,
6458 int *n_comp_units,
6459 struct dwarf2_per_cu_data ***all_comp_units)
6460 {
6461 const gdb_byte *info_ptr;
6462 bfd *abfd = get_section_bfd_owner (section);
6463
6464 if (dwarf2_read_debug)
6465 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6466 get_section_name (section),
6467 get_section_file_name (section));
6468
6469 dwarf2_read_section (objfile, section);
6470
6471 info_ptr = section->buffer;
6472
6473 while (info_ptr < section->buffer + section->size)
6474 {
6475 unsigned int length, initial_length_size;
6476 struct dwarf2_per_cu_data *this_cu;
6477 sect_offset offset;
6478
6479 offset.sect_off = info_ptr - section->buffer;
6480
6481 /* Read just enough information to find out where the next
6482 compilation unit is. */
6483 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6484
6485 /* Save the compilation unit for later lookup. */
6486 this_cu = obstack_alloc (&objfile->objfile_obstack,
6487 sizeof (struct dwarf2_per_cu_data));
6488 memset (this_cu, 0, sizeof (*this_cu));
6489 this_cu->offset = offset;
6490 this_cu->length = length + initial_length_size;
6491 this_cu->is_dwz = is_dwz;
6492 this_cu->objfile = objfile;
6493 this_cu->section = section;
6494
6495 if (*n_comp_units == *n_allocated)
6496 {
6497 *n_allocated *= 2;
6498 *all_comp_units = xrealloc (*all_comp_units,
6499 *n_allocated
6500 * sizeof (struct dwarf2_per_cu_data *));
6501 }
6502 (*all_comp_units)[*n_comp_units] = this_cu;
6503 ++*n_comp_units;
6504
6505 info_ptr = info_ptr + this_cu->length;
6506 }
6507 }
6508
6509 /* Create a list of all compilation units in OBJFILE.
6510 This is only done for -readnow and building partial symtabs. */
6511
6512 static void
6513 create_all_comp_units (struct objfile *objfile)
6514 {
6515 int n_allocated;
6516 int n_comp_units;
6517 struct dwarf2_per_cu_data **all_comp_units;
6518 struct dwz_file *dwz;
6519
6520 n_comp_units = 0;
6521 n_allocated = 10;
6522 all_comp_units = xmalloc (n_allocated
6523 * sizeof (struct dwarf2_per_cu_data *));
6524
6525 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6526 &n_allocated, &n_comp_units, &all_comp_units);
6527
6528 dwz = dwarf2_get_dwz_file ();
6529 if (dwz != NULL)
6530 read_comp_units_from_section (objfile, &dwz->info, 1,
6531 &n_allocated, &n_comp_units,
6532 &all_comp_units);
6533
6534 dwarf2_per_objfile->all_comp_units
6535 = obstack_alloc (&objfile->objfile_obstack,
6536 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6537 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6538 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6539 xfree (all_comp_units);
6540 dwarf2_per_objfile->n_comp_units = n_comp_units;
6541 }
6542
6543 /* Process all loaded DIEs for compilation unit CU, starting at
6544 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6545 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6546 DW_AT_ranges). See the comments of add_partial_subprogram on how
6547 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6548
6549 static void
6550 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6551 CORE_ADDR *highpc, int set_addrmap,
6552 struct dwarf2_cu *cu)
6553 {
6554 struct partial_die_info *pdi;
6555
6556 /* Now, march along the PDI's, descending into ones which have
6557 interesting children but skipping the children of the other ones,
6558 until we reach the end of the compilation unit. */
6559
6560 pdi = first_die;
6561
6562 while (pdi != NULL)
6563 {
6564 fixup_partial_die (pdi, cu);
6565
6566 /* Anonymous namespaces or modules have no name but have interesting
6567 children, so we need to look at them. Ditto for anonymous
6568 enums. */
6569
6570 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6571 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6572 || pdi->tag == DW_TAG_imported_unit)
6573 {
6574 switch (pdi->tag)
6575 {
6576 case DW_TAG_subprogram:
6577 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6578 break;
6579 case DW_TAG_constant:
6580 case DW_TAG_variable:
6581 case DW_TAG_typedef:
6582 case DW_TAG_union_type:
6583 if (!pdi->is_declaration)
6584 {
6585 add_partial_symbol (pdi, cu);
6586 }
6587 break;
6588 case DW_TAG_class_type:
6589 case DW_TAG_interface_type:
6590 case DW_TAG_structure_type:
6591 if (!pdi->is_declaration)
6592 {
6593 add_partial_symbol (pdi, cu);
6594 }
6595 break;
6596 case DW_TAG_enumeration_type:
6597 if (!pdi->is_declaration)
6598 add_partial_enumeration (pdi, cu);
6599 break;
6600 case DW_TAG_base_type:
6601 case DW_TAG_subrange_type:
6602 /* File scope base type definitions are added to the partial
6603 symbol table. */
6604 add_partial_symbol (pdi, cu);
6605 break;
6606 case DW_TAG_namespace:
6607 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6608 break;
6609 case DW_TAG_module:
6610 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6611 break;
6612 case DW_TAG_imported_unit:
6613 {
6614 struct dwarf2_per_cu_data *per_cu;
6615
6616 /* For now we don't handle imported units in type units. */
6617 if (cu->per_cu->is_debug_types)
6618 {
6619 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6620 " supported in type units [in module %s]"),
6621 objfile_name (cu->objfile));
6622 }
6623
6624 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6625 pdi->is_dwz,
6626 cu->objfile);
6627
6628 /* Go read the partial unit, if needed. */
6629 if (per_cu->v.psymtab == NULL)
6630 process_psymtab_comp_unit (per_cu, 1, cu->language);
6631
6632 VEC_safe_push (dwarf2_per_cu_ptr,
6633 cu->per_cu->imported_symtabs, per_cu);
6634 }
6635 break;
6636 case DW_TAG_imported_declaration:
6637 add_partial_symbol (pdi, cu);
6638 break;
6639 default:
6640 break;
6641 }
6642 }
6643
6644 /* If the die has a sibling, skip to the sibling. */
6645
6646 pdi = pdi->die_sibling;
6647 }
6648 }
6649
6650 /* Functions used to compute the fully scoped name of a partial DIE.
6651
6652 Normally, this is simple. For C++, the parent DIE's fully scoped
6653 name is concatenated with "::" and the partial DIE's name. For
6654 Java, the same thing occurs except that "." is used instead of "::".
6655 Enumerators are an exception; they use the scope of their parent
6656 enumeration type, i.e. the name of the enumeration type is not
6657 prepended to the enumerator.
6658
6659 There are two complexities. One is DW_AT_specification; in this
6660 case "parent" means the parent of the target of the specification,
6661 instead of the direct parent of the DIE. The other is compilers
6662 which do not emit DW_TAG_namespace; in this case we try to guess
6663 the fully qualified name of structure types from their members'
6664 linkage names. This must be done using the DIE's children rather
6665 than the children of any DW_AT_specification target. We only need
6666 to do this for structures at the top level, i.e. if the target of
6667 any DW_AT_specification (if any; otherwise the DIE itself) does not
6668 have a parent. */
6669
6670 /* Compute the scope prefix associated with PDI's parent, in
6671 compilation unit CU. The result will be allocated on CU's
6672 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6673 field. NULL is returned if no prefix is necessary. */
6674 static const char *
6675 partial_die_parent_scope (struct partial_die_info *pdi,
6676 struct dwarf2_cu *cu)
6677 {
6678 const char *grandparent_scope;
6679 struct partial_die_info *parent, *real_pdi;
6680
6681 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6682 then this means the parent of the specification DIE. */
6683
6684 real_pdi = pdi;
6685 while (real_pdi->has_specification)
6686 real_pdi = find_partial_die (real_pdi->spec_offset,
6687 real_pdi->spec_is_dwz, cu);
6688
6689 parent = real_pdi->die_parent;
6690 if (parent == NULL)
6691 return NULL;
6692
6693 if (parent->scope_set)
6694 return parent->scope;
6695
6696 fixup_partial_die (parent, cu);
6697
6698 grandparent_scope = partial_die_parent_scope (parent, cu);
6699
6700 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6701 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6702 Work around this problem here. */
6703 if (cu->language == language_cplus
6704 && parent->tag == DW_TAG_namespace
6705 && strcmp (parent->name, "::") == 0
6706 && grandparent_scope == NULL)
6707 {
6708 parent->scope = NULL;
6709 parent->scope_set = 1;
6710 return NULL;
6711 }
6712
6713 if (pdi->tag == DW_TAG_enumerator)
6714 /* Enumerators should not get the name of the enumeration as a prefix. */
6715 parent->scope = grandparent_scope;
6716 else if (parent->tag == DW_TAG_namespace
6717 || parent->tag == DW_TAG_module
6718 || parent->tag == DW_TAG_structure_type
6719 || parent->tag == DW_TAG_class_type
6720 || parent->tag == DW_TAG_interface_type
6721 || parent->tag == DW_TAG_union_type
6722 || parent->tag == DW_TAG_enumeration_type)
6723 {
6724 if (grandparent_scope == NULL)
6725 parent->scope = parent->name;
6726 else
6727 parent->scope = typename_concat (&cu->comp_unit_obstack,
6728 grandparent_scope,
6729 parent->name, 0, cu);
6730 }
6731 else
6732 {
6733 /* FIXME drow/2004-04-01: What should we be doing with
6734 function-local names? For partial symbols, we should probably be
6735 ignoring them. */
6736 complaint (&symfile_complaints,
6737 _("unhandled containing DIE tag %d for DIE at %d"),
6738 parent->tag, pdi->offset.sect_off);
6739 parent->scope = grandparent_scope;
6740 }
6741
6742 parent->scope_set = 1;
6743 return parent->scope;
6744 }
6745
6746 /* Return the fully scoped name associated with PDI, from compilation unit
6747 CU. The result will be allocated with malloc. */
6748
6749 static char *
6750 partial_die_full_name (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6752 {
6753 const char *parent_scope;
6754
6755 /* If this is a template instantiation, we can not work out the
6756 template arguments from partial DIEs. So, unfortunately, we have
6757 to go through the full DIEs. At least any work we do building
6758 types here will be reused if full symbols are loaded later. */
6759 if (pdi->has_template_arguments)
6760 {
6761 fixup_partial_die (pdi, cu);
6762
6763 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6764 {
6765 struct die_info *die;
6766 struct attribute attr;
6767 struct dwarf2_cu *ref_cu = cu;
6768
6769 /* DW_FORM_ref_addr is using section offset. */
6770 attr.name = 0;
6771 attr.form = DW_FORM_ref_addr;
6772 attr.u.unsnd = pdi->offset.sect_off;
6773 die = follow_die_ref (NULL, &attr, &ref_cu);
6774
6775 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6776 }
6777 }
6778
6779 parent_scope = partial_die_parent_scope (pdi, cu);
6780 if (parent_scope == NULL)
6781 return NULL;
6782 else
6783 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6784 }
6785
6786 static void
6787 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6788 {
6789 struct objfile *objfile = cu->objfile;
6790 CORE_ADDR addr = 0;
6791 const char *actual_name = NULL;
6792 CORE_ADDR baseaddr;
6793 char *built_actual_name;
6794
6795 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6796
6797 built_actual_name = partial_die_full_name (pdi, cu);
6798 if (built_actual_name != NULL)
6799 actual_name = built_actual_name;
6800
6801 if (actual_name == NULL)
6802 actual_name = pdi->name;
6803
6804 switch (pdi->tag)
6805 {
6806 case DW_TAG_subprogram:
6807 if (pdi->is_external || cu->language == language_ada)
6808 {
6809 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6810 of the global scope. But in Ada, we want to be able to access
6811 nested procedures globally. So all Ada subprograms are stored
6812 in the global scope. */
6813 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6814 mst_text, objfile); */
6815 add_psymbol_to_list (actual_name, strlen (actual_name),
6816 built_actual_name != NULL,
6817 VAR_DOMAIN, LOC_BLOCK,
6818 &objfile->global_psymbols,
6819 0, pdi->lowpc + baseaddr,
6820 cu->language, objfile);
6821 }
6822 else
6823 {
6824 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6825 mst_file_text, objfile); */
6826 add_psymbol_to_list (actual_name, strlen (actual_name),
6827 built_actual_name != NULL,
6828 VAR_DOMAIN, LOC_BLOCK,
6829 &objfile->static_psymbols,
6830 0, pdi->lowpc + baseaddr,
6831 cu->language, objfile);
6832 }
6833 break;
6834 case DW_TAG_constant:
6835 {
6836 struct psymbol_allocation_list *list;
6837
6838 if (pdi->is_external)
6839 list = &objfile->global_psymbols;
6840 else
6841 list = &objfile->static_psymbols;
6842 add_psymbol_to_list (actual_name, strlen (actual_name),
6843 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6844 list, 0, 0, cu->language, objfile);
6845 }
6846 break;
6847 case DW_TAG_variable:
6848 if (pdi->d.locdesc)
6849 addr = decode_locdesc (pdi->d.locdesc, cu);
6850
6851 if (pdi->d.locdesc
6852 && addr == 0
6853 && !dwarf2_per_objfile->has_section_at_zero)
6854 {
6855 /* A global or static variable may also have been stripped
6856 out by the linker if unused, in which case its address
6857 will be nullified; do not add such variables into partial
6858 symbol table then. */
6859 }
6860 else if (pdi->is_external)
6861 {
6862 /* Global Variable.
6863 Don't enter into the minimal symbol tables as there is
6864 a minimal symbol table entry from the ELF symbols already.
6865 Enter into partial symbol table if it has a location
6866 descriptor or a type.
6867 If the location descriptor is missing, new_symbol will create
6868 a LOC_UNRESOLVED symbol, the address of the variable will then
6869 be determined from the minimal symbol table whenever the variable
6870 is referenced.
6871 The address for the partial symbol table entry is not
6872 used by GDB, but it comes in handy for debugging partial symbol
6873 table building. */
6874
6875 if (pdi->d.locdesc || pdi->has_type)
6876 add_psymbol_to_list (actual_name, strlen (actual_name),
6877 built_actual_name != NULL,
6878 VAR_DOMAIN, LOC_STATIC,
6879 &objfile->global_psymbols,
6880 0, addr + baseaddr,
6881 cu->language, objfile);
6882 }
6883 else
6884 {
6885 /* Static Variable. Skip symbols without location descriptors. */
6886 if (pdi->d.locdesc == NULL)
6887 {
6888 xfree (built_actual_name);
6889 return;
6890 }
6891 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6892 mst_file_data, objfile); */
6893 add_psymbol_to_list (actual_name, strlen (actual_name),
6894 built_actual_name != NULL,
6895 VAR_DOMAIN, LOC_STATIC,
6896 &objfile->static_psymbols,
6897 0, addr + baseaddr,
6898 cu->language, objfile);
6899 }
6900 break;
6901 case DW_TAG_typedef:
6902 case DW_TAG_base_type:
6903 case DW_TAG_subrange_type:
6904 add_psymbol_to_list (actual_name, strlen (actual_name),
6905 built_actual_name != NULL,
6906 VAR_DOMAIN, LOC_TYPEDEF,
6907 &objfile->static_psymbols,
6908 0, (CORE_ADDR) 0, cu->language, objfile);
6909 break;
6910 case DW_TAG_imported_declaration:
6911 case DW_TAG_namespace:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->global_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6917 break;
6918 case DW_TAG_module:
6919 add_psymbol_to_list (actual_name, strlen (actual_name),
6920 built_actual_name != NULL,
6921 MODULE_DOMAIN, LOC_TYPEDEF,
6922 &objfile->global_psymbols,
6923 0, (CORE_ADDR) 0, cu->language, objfile);
6924 break;
6925 case DW_TAG_class_type:
6926 case DW_TAG_interface_type:
6927 case DW_TAG_structure_type:
6928 case DW_TAG_union_type:
6929 case DW_TAG_enumeration_type:
6930 /* Skip external references. The DWARF standard says in the section
6931 about "Structure, Union, and Class Type Entries": "An incomplete
6932 structure, union or class type is represented by a structure,
6933 union or class entry that does not have a byte size attribute
6934 and that has a DW_AT_declaration attribute." */
6935 if (!pdi->has_byte_size && pdi->is_declaration)
6936 {
6937 xfree (built_actual_name);
6938 return;
6939 }
6940
6941 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6942 static vs. global. */
6943 add_psymbol_to_list (actual_name, strlen (actual_name),
6944 built_actual_name != NULL,
6945 STRUCT_DOMAIN, LOC_TYPEDEF,
6946 (cu->language == language_cplus
6947 || cu->language == language_java)
6948 ? &objfile->global_psymbols
6949 : &objfile->static_psymbols,
6950 0, (CORE_ADDR) 0, cu->language, objfile);
6951
6952 break;
6953 case DW_TAG_enumerator:
6954 add_psymbol_to_list (actual_name, strlen (actual_name),
6955 built_actual_name != NULL,
6956 VAR_DOMAIN, LOC_CONST,
6957 (cu->language == language_cplus
6958 || cu->language == language_java)
6959 ? &objfile->global_psymbols
6960 : &objfile->static_psymbols,
6961 0, (CORE_ADDR) 0, cu->language, objfile);
6962 break;
6963 default:
6964 break;
6965 }
6966
6967 xfree (built_actual_name);
6968 }
6969
6970 /* Read a partial die corresponding to a namespace; also, add a symbol
6971 corresponding to that namespace to the symbol table. NAMESPACE is
6972 the name of the enclosing namespace. */
6973
6974 static void
6975 add_partial_namespace (struct partial_die_info *pdi,
6976 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6977 int set_addrmap, struct dwarf2_cu *cu)
6978 {
6979 /* Add a symbol for the namespace. */
6980
6981 add_partial_symbol (pdi, cu);
6982
6983 /* Now scan partial symbols in that namespace. */
6984
6985 if (pdi->has_children)
6986 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6987 }
6988
6989 /* Read a partial die corresponding to a Fortran module. */
6990
6991 static void
6992 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6993 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
6994 {
6995 /* Add a symbol for the namespace. */
6996
6997 add_partial_symbol (pdi, cu);
6998
6999 /* Now scan partial symbols in that module. */
7000
7001 if (pdi->has_children)
7002 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7003 }
7004
7005 /* Read a partial die corresponding to a subprogram and create a partial
7006 symbol for that subprogram. When the CU language allows it, this
7007 routine also defines a partial symbol for each nested subprogram
7008 that this subprogram contains. If SET_ADDRMAP is true, record the
7009 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7010 and highest PC values found in PDI.
7011
7012 PDI may also be a lexical block, in which case we simply search
7013 recursively for subprograms defined inside that lexical block.
7014 Again, this is only performed when the CU language allows this
7015 type of definitions. */
7016
7017 static void
7018 add_partial_subprogram (struct partial_die_info *pdi,
7019 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7020 int set_addrmap, struct dwarf2_cu *cu)
7021 {
7022 if (pdi->tag == DW_TAG_subprogram)
7023 {
7024 if (pdi->has_pc_info)
7025 {
7026 if (pdi->lowpc < *lowpc)
7027 *lowpc = pdi->lowpc;
7028 if (pdi->highpc > *highpc)
7029 *highpc = pdi->highpc;
7030 if (set_addrmap)
7031 {
7032 CORE_ADDR baseaddr;
7033 struct objfile *objfile = cu->objfile;
7034
7035 baseaddr = ANOFFSET (objfile->section_offsets,
7036 SECT_OFF_TEXT (objfile));
7037 addrmap_set_empty (objfile->psymtabs_addrmap,
7038 pdi->lowpc + baseaddr,
7039 pdi->highpc - 1 + baseaddr,
7040 cu->per_cu->v.psymtab);
7041 }
7042 }
7043
7044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7045 {
7046 if (!pdi->is_declaration)
7047 /* Ignore subprogram DIEs that do not have a name, they are
7048 illegal. Do not emit a complaint at this point, we will
7049 do so when we convert this psymtab into a symtab. */
7050 if (pdi->name)
7051 add_partial_symbol (pdi, cu);
7052 }
7053 }
7054
7055 if (! pdi->has_children)
7056 return;
7057
7058 if (cu->language == language_ada)
7059 {
7060 pdi = pdi->die_child;
7061 while (pdi != NULL)
7062 {
7063 fixup_partial_die (pdi, cu);
7064 if (pdi->tag == DW_TAG_subprogram
7065 || pdi->tag == DW_TAG_lexical_block)
7066 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7067 pdi = pdi->die_sibling;
7068 }
7069 }
7070 }
7071
7072 /* Read a partial die corresponding to an enumeration type. */
7073
7074 static void
7075 add_partial_enumeration (struct partial_die_info *enum_pdi,
7076 struct dwarf2_cu *cu)
7077 {
7078 struct partial_die_info *pdi;
7079
7080 if (enum_pdi->name != NULL)
7081 add_partial_symbol (enum_pdi, cu);
7082
7083 pdi = enum_pdi->die_child;
7084 while (pdi)
7085 {
7086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7087 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7088 else
7089 add_partial_symbol (pdi, cu);
7090 pdi = pdi->die_sibling;
7091 }
7092 }
7093
7094 /* Return the initial uleb128 in the die at INFO_PTR. */
7095
7096 static unsigned int
7097 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7098 {
7099 unsigned int bytes_read;
7100
7101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7102 }
7103
7104 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7105 Return the corresponding abbrev, or NULL if the number is zero (indicating
7106 an empty DIE). In either case *BYTES_READ will be set to the length of
7107 the initial number. */
7108
7109 static struct abbrev_info *
7110 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7111 struct dwarf2_cu *cu)
7112 {
7113 bfd *abfd = cu->objfile->obfd;
7114 unsigned int abbrev_number;
7115 struct abbrev_info *abbrev;
7116
7117 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7118
7119 if (abbrev_number == 0)
7120 return NULL;
7121
7122 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7123 if (!abbrev)
7124 {
7125 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7126 abbrev_number, bfd_get_filename (abfd));
7127 }
7128
7129 return abbrev;
7130 }
7131
7132 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7133 Returns a pointer to the end of a series of DIEs, terminated by an empty
7134 DIE. Any children of the skipped DIEs will also be skipped. */
7135
7136 static const gdb_byte *
7137 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7138 {
7139 struct dwarf2_cu *cu = reader->cu;
7140 struct abbrev_info *abbrev;
7141 unsigned int bytes_read;
7142
7143 while (1)
7144 {
7145 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7146 if (abbrev == NULL)
7147 return info_ptr + bytes_read;
7148 else
7149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7150 }
7151 }
7152
7153 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7154 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7155 abbrev corresponding to that skipped uleb128 should be passed in
7156 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7157 children. */
7158
7159 static const gdb_byte *
7160 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7161 struct abbrev_info *abbrev)
7162 {
7163 unsigned int bytes_read;
7164 struct attribute attr;
7165 bfd *abfd = reader->abfd;
7166 struct dwarf2_cu *cu = reader->cu;
7167 const gdb_byte *buffer = reader->buffer;
7168 const gdb_byte *buffer_end = reader->buffer_end;
7169 const gdb_byte *start_info_ptr = info_ptr;
7170 unsigned int form, i;
7171
7172 for (i = 0; i < abbrev->num_attrs; i++)
7173 {
7174 /* The only abbrev we care about is DW_AT_sibling. */
7175 if (abbrev->attrs[i].name == DW_AT_sibling)
7176 {
7177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7178 if (attr.form == DW_FORM_ref_addr)
7179 complaint (&symfile_complaints,
7180 _("ignoring absolute DW_AT_sibling"));
7181 else
7182 {
7183 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7184 const gdb_byte *sibling_ptr = buffer + off;
7185
7186 if (sibling_ptr < info_ptr)
7187 complaint (&symfile_complaints,
7188 _("DW_AT_sibling points backwards"));
7189 else if (sibling_ptr > reader->buffer_end)
7190 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7191 else
7192 return sibling_ptr;
7193 }
7194 }
7195
7196 /* If it isn't DW_AT_sibling, skip this attribute. */
7197 form = abbrev->attrs[i].form;
7198 skip_attribute:
7199 switch (form)
7200 {
7201 case DW_FORM_ref_addr:
7202 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7203 and later it is offset sized. */
7204 if (cu->header.version == 2)
7205 info_ptr += cu->header.addr_size;
7206 else
7207 info_ptr += cu->header.offset_size;
7208 break;
7209 case DW_FORM_GNU_ref_alt:
7210 info_ptr += cu->header.offset_size;
7211 break;
7212 case DW_FORM_addr:
7213 info_ptr += cu->header.addr_size;
7214 break;
7215 case DW_FORM_data1:
7216 case DW_FORM_ref1:
7217 case DW_FORM_flag:
7218 info_ptr += 1;
7219 break;
7220 case DW_FORM_flag_present:
7221 break;
7222 case DW_FORM_data2:
7223 case DW_FORM_ref2:
7224 info_ptr += 2;
7225 break;
7226 case DW_FORM_data4:
7227 case DW_FORM_ref4:
7228 info_ptr += 4;
7229 break;
7230 case DW_FORM_data8:
7231 case DW_FORM_ref8:
7232 case DW_FORM_ref_sig8:
7233 info_ptr += 8;
7234 break;
7235 case DW_FORM_string:
7236 read_direct_string (abfd, info_ptr, &bytes_read);
7237 info_ptr += bytes_read;
7238 break;
7239 case DW_FORM_sec_offset:
7240 case DW_FORM_strp:
7241 case DW_FORM_GNU_strp_alt:
7242 info_ptr += cu->header.offset_size;
7243 break;
7244 case DW_FORM_exprloc:
7245 case DW_FORM_block:
7246 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7247 info_ptr += bytes_read;
7248 break;
7249 case DW_FORM_block1:
7250 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7251 break;
7252 case DW_FORM_block2:
7253 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7254 break;
7255 case DW_FORM_block4:
7256 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7257 break;
7258 case DW_FORM_sdata:
7259 case DW_FORM_udata:
7260 case DW_FORM_ref_udata:
7261 case DW_FORM_GNU_addr_index:
7262 case DW_FORM_GNU_str_index:
7263 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7264 break;
7265 case DW_FORM_indirect:
7266 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7267 info_ptr += bytes_read;
7268 /* We need to continue parsing from here, so just go back to
7269 the top. */
7270 goto skip_attribute;
7271
7272 default:
7273 error (_("Dwarf Error: Cannot handle %s "
7274 "in DWARF reader [in module %s]"),
7275 dwarf_form_name (form),
7276 bfd_get_filename (abfd));
7277 }
7278 }
7279
7280 if (abbrev->has_children)
7281 return skip_children (reader, info_ptr);
7282 else
7283 return info_ptr;
7284 }
7285
7286 /* Locate ORIG_PDI's sibling.
7287 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7288
7289 static const gdb_byte *
7290 locate_pdi_sibling (const struct die_reader_specs *reader,
7291 struct partial_die_info *orig_pdi,
7292 const gdb_byte *info_ptr)
7293 {
7294 /* Do we know the sibling already? */
7295
7296 if (orig_pdi->sibling)
7297 return orig_pdi->sibling;
7298
7299 /* Are there any children to deal with? */
7300
7301 if (!orig_pdi->has_children)
7302 return info_ptr;
7303
7304 /* Skip the children the long way. */
7305
7306 return skip_children (reader, info_ptr);
7307 }
7308
7309 /* Expand this partial symbol table into a full symbol table. SELF is
7310 not NULL. */
7311
7312 static void
7313 dwarf2_read_symtab (struct partial_symtab *self,
7314 struct objfile *objfile)
7315 {
7316 if (self->readin)
7317 {
7318 warning (_("bug: psymtab for %s is already read in."),
7319 self->filename);
7320 }
7321 else
7322 {
7323 if (info_verbose)
7324 {
7325 printf_filtered (_("Reading in symbols for %s..."),
7326 self->filename);
7327 gdb_flush (gdb_stdout);
7328 }
7329
7330 /* Restore our global data. */
7331 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7332
7333 /* If this psymtab is constructed from a debug-only objfile, the
7334 has_section_at_zero flag will not necessarily be correct. We
7335 can get the correct value for this flag by looking at the data
7336 associated with the (presumably stripped) associated objfile. */
7337 if (objfile->separate_debug_objfile_backlink)
7338 {
7339 struct dwarf2_per_objfile *dpo_backlink
7340 = objfile_data (objfile->separate_debug_objfile_backlink,
7341 dwarf2_objfile_data_key);
7342
7343 dwarf2_per_objfile->has_section_at_zero
7344 = dpo_backlink->has_section_at_zero;
7345 }
7346
7347 dwarf2_per_objfile->reading_partial_symbols = 0;
7348
7349 psymtab_to_symtab_1 (self);
7350
7351 /* Finish up the debug error message. */
7352 if (info_verbose)
7353 printf_filtered (_("done.\n"));
7354 }
7355
7356 process_cu_includes ();
7357 }
7358 \f
7359 /* Reading in full CUs. */
7360
7361 /* Add PER_CU to the queue. */
7362
7363 static void
7364 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7365 enum language pretend_language)
7366 {
7367 struct dwarf2_queue_item *item;
7368
7369 per_cu->queued = 1;
7370 item = xmalloc (sizeof (*item));
7371 item->per_cu = per_cu;
7372 item->pretend_language = pretend_language;
7373 item->next = NULL;
7374
7375 if (dwarf2_queue == NULL)
7376 dwarf2_queue = item;
7377 else
7378 dwarf2_queue_tail->next = item;
7379
7380 dwarf2_queue_tail = item;
7381 }
7382
7383 /* If PER_CU is not yet queued, add it to the queue.
7384 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7385 dependency.
7386 The result is non-zero if PER_CU was queued, otherwise the result is zero
7387 meaning either PER_CU is already queued or it is already loaded.
7388
7389 N.B. There is an invariant here that if a CU is queued then it is loaded.
7390 The caller is required to load PER_CU if we return non-zero. */
7391
7392 static int
7393 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7394 struct dwarf2_per_cu_data *per_cu,
7395 enum language pretend_language)
7396 {
7397 /* We may arrive here during partial symbol reading, if we need full
7398 DIEs to process an unusual case (e.g. template arguments). Do
7399 not queue PER_CU, just tell our caller to load its DIEs. */
7400 if (dwarf2_per_objfile->reading_partial_symbols)
7401 {
7402 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7403 return 1;
7404 return 0;
7405 }
7406
7407 /* Mark the dependence relation so that we don't flush PER_CU
7408 too early. */
7409 if (dependent_cu != NULL)
7410 dwarf2_add_dependence (dependent_cu, per_cu);
7411
7412 /* If it's already on the queue, we have nothing to do. */
7413 if (per_cu->queued)
7414 return 0;
7415
7416 /* If the compilation unit is already loaded, just mark it as
7417 used. */
7418 if (per_cu->cu != NULL)
7419 {
7420 per_cu->cu->last_used = 0;
7421 return 0;
7422 }
7423
7424 /* Add it to the queue. */
7425 queue_comp_unit (per_cu, pretend_language);
7426
7427 return 1;
7428 }
7429
7430 /* Process the queue. */
7431
7432 static void
7433 process_queue (void)
7434 {
7435 struct dwarf2_queue_item *item, *next_item;
7436
7437 if (dwarf2_read_debug)
7438 {
7439 fprintf_unfiltered (gdb_stdlog,
7440 "Expanding one or more symtabs of objfile %s ...\n",
7441 objfile_name (dwarf2_per_objfile->objfile));
7442 }
7443
7444 /* The queue starts out with one item, but following a DIE reference
7445 may load a new CU, adding it to the end of the queue. */
7446 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7447 {
7448 if (dwarf2_per_objfile->using_index
7449 ? !item->per_cu->v.quick->symtab
7450 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7451 {
7452 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7453 unsigned int debug_print_threshold;
7454 char buf[100];
7455
7456 if (per_cu->is_debug_types)
7457 {
7458 struct signatured_type *sig_type =
7459 (struct signatured_type *) per_cu;
7460
7461 sprintf (buf, "TU %s at offset 0x%x",
7462 hex_string (sig_type->signature),
7463 per_cu->offset.sect_off);
7464 /* There can be 100s of TUs.
7465 Only print them in verbose mode. */
7466 debug_print_threshold = 2;
7467 }
7468 else
7469 {
7470 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7471 debug_print_threshold = 1;
7472 }
7473
7474 if (dwarf2_read_debug >= debug_print_threshold)
7475 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7476
7477 if (per_cu->is_debug_types)
7478 process_full_type_unit (per_cu, item->pretend_language);
7479 else
7480 process_full_comp_unit (per_cu, item->pretend_language);
7481
7482 if (dwarf2_read_debug >= debug_print_threshold)
7483 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7484 }
7485
7486 item->per_cu->queued = 0;
7487 next_item = item->next;
7488 xfree (item);
7489 }
7490
7491 dwarf2_queue_tail = NULL;
7492
7493 if (dwarf2_read_debug)
7494 {
7495 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7496 objfile_name (dwarf2_per_objfile->objfile));
7497 }
7498 }
7499
7500 /* Free all allocated queue entries. This function only releases anything if
7501 an error was thrown; if the queue was processed then it would have been
7502 freed as we went along. */
7503
7504 static void
7505 dwarf2_release_queue (void *dummy)
7506 {
7507 struct dwarf2_queue_item *item, *last;
7508
7509 item = dwarf2_queue;
7510 while (item)
7511 {
7512 /* Anything still marked queued is likely to be in an
7513 inconsistent state, so discard it. */
7514 if (item->per_cu->queued)
7515 {
7516 if (item->per_cu->cu != NULL)
7517 free_one_cached_comp_unit (item->per_cu);
7518 item->per_cu->queued = 0;
7519 }
7520
7521 last = item;
7522 item = item->next;
7523 xfree (last);
7524 }
7525
7526 dwarf2_queue = dwarf2_queue_tail = NULL;
7527 }
7528
7529 /* Read in full symbols for PST, and anything it depends on. */
7530
7531 static void
7532 psymtab_to_symtab_1 (struct partial_symtab *pst)
7533 {
7534 struct dwarf2_per_cu_data *per_cu;
7535 int i;
7536
7537 if (pst->readin)
7538 return;
7539
7540 for (i = 0; i < pst->number_of_dependencies; i++)
7541 if (!pst->dependencies[i]->readin
7542 && pst->dependencies[i]->user == NULL)
7543 {
7544 /* Inform about additional files that need to be read in. */
7545 if (info_verbose)
7546 {
7547 /* FIXME: i18n: Need to make this a single string. */
7548 fputs_filtered (" ", gdb_stdout);
7549 wrap_here ("");
7550 fputs_filtered ("and ", gdb_stdout);
7551 wrap_here ("");
7552 printf_filtered ("%s...", pst->dependencies[i]->filename);
7553 wrap_here (""); /* Flush output. */
7554 gdb_flush (gdb_stdout);
7555 }
7556 psymtab_to_symtab_1 (pst->dependencies[i]);
7557 }
7558
7559 per_cu = pst->read_symtab_private;
7560
7561 if (per_cu == NULL)
7562 {
7563 /* It's an include file, no symbols to read for it.
7564 Everything is in the parent symtab. */
7565 pst->readin = 1;
7566 return;
7567 }
7568
7569 dw2_do_instantiate_symtab (per_cu);
7570 }
7571
7572 /* Trivial hash function for die_info: the hash value of a DIE
7573 is its offset in .debug_info for this objfile. */
7574
7575 static hashval_t
7576 die_hash (const void *item)
7577 {
7578 const struct die_info *die = item;
7579
7580 return die->offset.sect_off;
7581 }
7582
7583 /* Trivial comparison function for die_info structures: two DIEs
7584 are equal if they have the same offset. */
7585
7586 static int
7587 die_eq (const void *item_lhs, const void *item_rhs)
7588 {
7589 const struct die_info *die_lhs = item_lhs;
7590 const struct die_info *die_rhs = item_rhs;
7591
7592 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7593 }
7594
7595 /* die_reader_func for load_full_comp_unit.
7596 This is identical to read_signatured_type_reader,
7597 but is kept separate for now. */
7598
7599 static void
7600 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7601 const gdb_byte *info_ptr,
7602 struct die_info *comp_unit_die,
7603 int has_children,
7604 void *data)
7605 {
7606 struct dwarf2_cu *cu = reader->cu;
7607 enum language *language_ptr = data;
7608
7609 gdb_assert (cu->die_hash == NULL);
7610 cu->die_hash =
7611 htab_create_alloc_ex (cu->header.length / 12,
7612 die_hash,
7613 die_eq,
7614 NULL,
7615 &cu->comp_unit_obstack,
7616 hashtab_obstack_allocate,
7617 dummy_obstack_deallocate);
7618
7619 if (has_children)
7620 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7621 &info_ptr, comp_unit_die);
7622 cu->dies = comp_unit_die;
7623 /* comp_unit_die is not stored in die_hash, no need. */
7624
7625 /* We try not to read any attributes in this function, because not
7626 all CUs needed for references have been loaded yet, and symbol
7627 table processing isn't initialized. But we have to set the CU language,
7628 or we won't be able to build types correctly.
7629 Similarly, if we do not read the producer, we can not apply
7630 producer-specific interpretation. */
7631 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7632 }
7633
7634 /* Load the DIEs associated with PER_CU into memory. */
7635
7636 static void
7637 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7638 enum language pretend_language)
7639 {
7640 gdb_assert (! this_cu->is_debug_types);
7641
7642 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7643 load_full_comp_unit_reader, &pretend_language);
7644 }
7645
7646 /* Add a DIE to the delayed physname list. */
7647
7648 static void
7649 add_to_method_list (struct type *type, int fnfield_index, int index,
7650 const char *name, struct die_info *die,
7651 struct dwarf2_cu *cu)
7652 {
7653 struct delayed_method_info mi;
7654 mi.type = type;
7655 mi.fnfield_index = fnfield_index;
7656 mi.index = index;
7657 mi.name = name;
7658 mi.die = die;
7659 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7660 }
7661
7662 /* A cleanup for freeing the delayed method list. */
7663
7664 static void
7665 free_delayed_list (void *ptr)
7666 {
7667 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7668 if (cu->method_list != NULL)
7669 {
7670 VEC_free (delayed_method_info, cu->method_list);
7671 cu->method_list = NULL;
7672 }
7673 }
7674
7675 /* Compute the physnames of any methods on the CU's method list.
7676
7677 The computation of method physnames is delayed in order to avoid the
7678 (bad) condition that one of the method's formal parameters is of an as yet
7679 incomplete type. */
7680
7681 static void
7682 compute_delayed_physnames (struct dwarf2_cu *cu)
7683 {
7684 int i;
7685 struct delayed_method_info *mi;
7686 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7687 {
7688 const char *physname;
7689 struct fn_fieldlist *fn_flp
7690 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7691 physname = dwarf2_physname (mi->name, mi->die, cu);
7692 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7693 }
7694 }
7695
7696 /* Go objects should be embedded in a DW_TAG_module DIE,
7697 and it's not clear if/how imported objects will appear.
7698 To keep Go support simple until that's worked out,
7699 go back through what we've read and create something usable.
7700 We could do this while processing each DIE, and feels kinda cleaner,
7701 but that way is more invasive.
7702 This is to, for example, allow the user to type "p var" or "b main"
7703 without having to specify the package name, and allow lookups
7704 of module.object to work in contexts that use the expression
7705 parser. */
7706
7707 static void
7708 fixup_go_packaging (struct dwarf2_cu *cu)
7709 {
7710 char *package_name = NULL;
7711 struct pending *list;
7712 int i;
7713
7714 for (list = global_symbols; list != NULL; list = list->next)
7715 {
7716 for (i = 0; i < list->nsyms; ++i)
7717 {
7718 struct symbol *sym = list->symbol[i];
7719
7720 if (SYMBOL_LANGUAGE (sym) == language_go
7721 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7722 {
7723 char *this_package_name = go_symbol_package_name (sym);
7724
7725 if (this_package_name == NULL)
7726 continue;
7727 if (package_name == NULL)
7728 package_name = this_package_name;
7729 else
7730 {
7731 if (strcmp (package_name, this_package_name) != 0)
7732 complaint (&symfile_complaints,
7733 _("Symtab %s has objects from two different Go packages: %s and %s"),
7734 (SYMBOL_SYMTAB (sym)
7735 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7736 : objfile_name (cu->objfile)),
7737 this_package_name, package_name);
7738 xfree (this_package_name);
7739 }
7740 }
7741 }
7742 }
7743
7744 if (package_name != NULL)
7745 {
7746 struct objfile *objfile = cu->objfile;
7747 const char *saved_package_name
7748 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7749 package_name,
7750 strlen (package_name));
7751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7752 saved_package_name, objfile);
7753 struct symbol *sym;
7754
7755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7756
7757 sym = allocate_symbol (objfile);
7758 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7759 SYMBOL_SET_NAMES (sym, saved_package_name,
7760 strlen (saved_package_name), 0, objfile);
7761 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7762 e.g., "main" finds the "main" module and not C's main(). */
7763 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7764 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7765 SYMBOL_TYPE (sym) = type;
7766
7767 add_symbol_to_list (sym, &global_symbols);
7768
7769 xfree (package_name);
7770 }
7771 }
7772
7773 /* Return the symtab for PER_CU. This works properly regardless of
7774 whether we're using the index or psymtabs. */
7775
7776 static struct symtab *
7777 get_symtab (struct dwarf2_per_cu_data *per_cu)
7778 {
7779 return (dwarf2_per_objfile->using_index
7780 ? per_cu->v.quick->symtab
7781 : per_cu->v.psymtab->symtab);
7782 }
7783
7784 /* A helper function for computing the list of all symbol tables
7785 included by PER_CU. */
7786
7787 static void
7788 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7789 htab_t all_children, htab_t all_type_symtabs,
7790 struct dwarf2_per_cu_data *per_cu,
7791 struct symtab *immediate_parent)
7792 {
7793 void **slot;
7794 int ix;
7795 struct symtab *symtab;
7796 struct dwarf2_per_cu_data *iter;
7797
7798 slot = htab_find_slot (all_children, per_cu, INSERT);
7799 if (*slot != NULL)
7800 {
7801 /* This inclusion and its children have been processed. */
7802 return;
7803 }
7804
7805 *slot = per_cu;
7806 /* Only add a CU if it has a symbol table. */
7807 symtab = get_symtab (per_cu);
7808 if (symtab != NULL)
7809 {
7810 /* If this is a type unit only add its symbol table if we haven't
7811 seen it yet (type unit per_cu's can share symtabs). */
7812 if (per_cu->is_debug_types)
7813 {
7814 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7815 if (*slot == NULL)
7816 {
7817 *slot = symtab;
7818 VEC_safe_push (symtab_ptr, *result, symtab);
7819 if (symtab->user == NULL)
7820 symtab->user = immediate_parent;
7821 }
7822 }
7823 else
7824 {
7825 VEC_safe_push (symtab_ptr, *result, symtab);
7826 if (symtab->user == NULL)
7827 symtab->user = immediate_parent;
7828 }
7829 }
7830
7831 for (ix = 0;
7832 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7833 ++ix)
7834 {
7835 recursively_compute_inclusions (result, all_children,
7836 all_type_symtabs, iter, symtab);
7837 }
7838 }
7839
7840 /* Compute the symtab 'includes' fields for the symtab related to
7841 PER_CU. */
7842
7843 static void
7844 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7845 {
7846 gdb_assert (! per_cu->is_debug_types);
7847
7848 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7849 {
7850 int ix, len;
7851 struct dwarf2_per_cu_data *per_cu_iter;
7852 struct symtab *symtab_iter;
7853 VEC (symtab_ptr) *result_symtabs = NULL;
7854 htab_t all_children, all_type_symtabs;
7855 struct symtab *symtab = get_symtab (per_cu);
7856
7857 /* If we don't have a symtab, we can just skip this case. */
7858 if (symtab == NULL)
7859 return;
7860
7861 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7862 NULL, xcalloc, xfree);
7863 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7864 NULL, xcalloc, xfree);
7865
7866 for (ix = 0;
7867 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7868 ix, per_cu_iter);
7869 ++ix)
7870 {
7871 recursively_compute_inclusions (&result_symtabs, all_children,
7872 all_type_symtabs, per_cu_iter,
7873 symtab);
7874 }
7875
7876 /* Now we have a transitive closure of all the included symtabs. */
7877 len = VEC_length (symtab_ptr, result_symtabs);
7878 symtab->includes
7879 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7880 (len + 1) * sizeof (struct symtab *));
7881 for (ix = 0;
7882 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7883 ++ix)
7884 symtab->includes[ix] = symtab_iter;
7885 symtab->includes[len] = NULL;
7886
7887 VEC_free (symtab_ptr, result_symtabs);
7888 htab_delete (all_children);
7889 htab_delete (all_type_symtabs);
7890 }
7891 }
7892
7893 /* Compute the 'includes' field for the symtabs of all the CUs we just
7894 read. */
7895
7896 static void
7897 process_cu_includes (void)
7898 {
7899 int ix;
7900 struct dwarf2_per_cu_data *iter;
7901
7902 for (ix = 0;
7903 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7904 ix, iter);
7905 ++ix)
7906 {
7907 if (! iter->is_debug_types)
7908 compute_symtab_includes (iter);
7909 }
7910
7911 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7912 }
7913
7914 /* Generate full symbol information for PER_CU, whose DIEs have
7915 already been loaded into memory. */
7916
7917 static void
7918 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7919 enum language pretend_language)
7920 {
7921 struct dwarf2_cu *cu = per_cu->cu;
7922 struct objfile *objfile = per_cu->objfile;
7923 CORE_ADDR lowpc, highpc;
7924 struct symtab *symtab;
7925 struct cleanup *back_to, *delayed_list_cleanup;
7926 CORE_ADDR baseaddr;
7927 struct block *static_block;
7928
7929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7930
7931 buildsym_init ();
7932 back_to = make_cleanup (really_free_pendings, NULL);
7933 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7934
7935 cu->list_in_scope = &file_symbols;
7936
7937 cu->language = pretend_language;
7938 cu->language_defn = language_def (cu->language);
7939
7940 /* Do line number decoding in read_file_scope () */
7941 process_die (cu->dies, cu);
7942
7943 /* For now fudge the Go package. */
7944 if (cu->language == language_go)
7945 fixup_go_packaging (cu);
7946
7947 /* Now that we have processed all the DIEs in the CU, all the types
7948 should be complete, and it should now be safe to compute all of the
7949 physnames. */
7950 compute_delayed_physnames (cu);
7951 do_cleanups (delayed_list_cleanup);
7952
7953 /* Some compilers don't define a DW_AT_high_pc attribute for the
7954 compilation unit. If the DW_AT_high_pc is missing, synthesize
7955 it, by scanning the DIE's below the compilation unit. */
7956 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7957
7958 static_block
7959 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7960
7961 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7962 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7963 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7964 addrmap to help ensure it has an accurate map of pc values belonging to
7965 this comp unit. */
7966 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7967
7968 symtab = end_symtab_from_static_block (static_block, objfile,
7969 SECT_OFF_TEXT (objfile), 0);
7970
7971 if (symtab != NULL)
7972 {
7973 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7974
7975 /* Set symtab language to language from DW_AT_language. If the
7976 compilation is from a C file generated by language preprocessors, do
7977 not set the language if it was already deduced by start_subfile. */
7978 if (!(cu->language == language_c && symtab->language != language_c))
7979 symtab->language = cu->language;
7980
7981 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7982 produce DW_AT_location with location lists but it can be possibly
7983 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7984 there were bugs in prologue debug info, fixed later in GCC-4.5
7985 by "unwind info for epilogues" patch (which is not directly related).
7986
7987 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7988 needed, it would be wrong due to missing DW_AT_producer there.
7989
7990 Still one can confuse GDB by using non-standard GCC compilation
7991 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7992 */
7993 if (cu->has_loclist && gcc_4_minor >= 5)
7994 symtab->locations_valid = 1;
7995
7996 if (gcc_4_minor >= 5)
7997 symtab->epilogue_unwind_valid = 1;
7998
7999 symtab->call_site_htab = cu->call_site_htab;
8000 }
8001
8002 if (dwarf2_per_objfile->using_index)
8003 per_cu->v.quick->symtab = symtab;
8004 else
8005 {
8006 struct partial_symtab *pst = per_cu->v.psymtab;
8007 pst->symtab = symtab;
8008 pst->readin = 1;
8009 }
8010
8011 /* Push it for inclusion processing later. */
8012 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8013
8014 do_cleanups (back_to);
8015 }
8016
8017 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8018 already been loaded into memory. */
8019
8020 static void
8021 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8022 enum language pretend_language)
8023 {
8024 struct dwarf2_cu *cu = per_cu->cu;
8025 struct objfile *objfile = per_cu->objfile;
8026 struct symtab *symtab;
8027 struct cleanup *back_to, *delayed_list_cleanup;
8028 struct signatured_type *sig_type;
8029
8030 gdb_assert (per_cu->is_debug_types);
8031 sig_type = (struct signatured_type *) per_cu;
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* The symbol tables are set up in read_type_unit_scope. */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* TUs share symbol tables.
8056 If this is the first TU to use this symtab, complete the construction
8057 of it with end_expandable_symtab. Otherwise, complete the addition of
8058 this TU's symbols to the existing symtab. */
8059 if (sig_type->type_unit_group->primary_symtab == NULL)
8060 {
8061 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8062 sig_type->type_unit_group->primary_symtab = symtab;
8063
8064 if (symtab != NULL)
8065 {
8066 /* Set symtab language to language from DW_AT_language. If the
8067 compilation is from a C file generated by language preprocessors,
8068 do not set the language if it was already deduced by
8069 start_subfile. */
8070 if (!(cu->language == language_c && symtab->language != language_c))
8071 symtab->language = cu->language;
8072 }
8073 }
8074 else
8075 {
8076 augment_type_symtab (objfile,
8077 sig_type->type_unit_group->primary_symtab);
8078 symtab = sig_type->type_unit_group->primary_symtab;
8079 }
8080
8081 if (dwarf2_per_objfile->using_index)
8082 per_cu->v.quick->symtab = symtab;
8083 else
8084 {
8085 struct partial_symtab *pst = per_cu->v.psymtab;
8086 pst->symtab = symtab;
8087 pst->readin = 1;
8088 }
8089
8090 do_cleanups (back_to);
8091 }
8092
8093 /* Process an imported unit DIE. */
8094
8095 static void
8096 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8097 {
8098 struct attribute *attr;
8099
8100 /* For now we don't handle imported units in type units. */
8101 if (cu->per_cu->is_debug_types)
8102 {
8103 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8104 " supported in type units [in module %s]"),
8105 objfile_name (cu->objfile));
8106 }
8107
8108 attr = dwarf2_attr (die, DW_AT_import, cu);
8109 if (attr != NULL)
8110 {
8111 struct dwarf2_per_cu_data *per_cu;
8112 struct symtab *imported_symtab;
8113 sect_offset offset;
8114 int is_dwz;
8115
8116 offset = dwarf2_get_ref_die_offset (attr);
8117 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8118 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8119
8120 /* If necessary, add it to the queue and load its DIEs. */
8121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8122 load_full_comp_unit (per_cu, cu->language);
8123
8124 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8125 per_cu);
8126 }
8127 }
8128
8129 /* Reset the in_process bit of a die. */
8130
8131 static void
8132 reset_die_in_process (void *arg)
8133 {
8134 struct die_info *die = arg;
8135
8136 die->in_process = 0;
8137 }
8138
8139 /* Process a die and its children. */
8140
8141 static void
8142 process_die (struct die_info *die, struct dwarf2_cu *cu)
8143 {
8144 struct cleanup *in_process;
8145
8146 /* We should only be processing those not already in process. */
8147 gdb_assert (!die->in_process);
8148
8149 die->in_process = 1;
8150 in_process = make_cleanup (reset_die_in_process,die);
8151
8152 switch (die->tag)
8153 {
8154 case DW_TAG_padding:
8155 break;
8156 case DW_TAG_compile_unit:
8157 case DW_TAG_partial_unit:
8158 read_file_scope (die, cu);
8159 break;
8160 case DW_TAG_type_unit:
8161 read_type_unit_scope (die, cu);
8162 break;
8163 case DW_TAG_subprogram:
8164 case DW_TAG_inlined_subroutine:
8165 read_func_scope (die, cu);
8166 break;
8167 case DW_TAG_lexical_block:
8168 case DW_TAG_try_block:
8169 case DW_TAG_catch_block:
8170 read_lexical_block_scope (die, cu);
8171 break;
8172 case DW_TAG_GNU_call_site:
8173 read_call_site_scope (die, cu);
8174 break;
8175 case DW_TAG_class_type:
8176 case DW_TAG_interface_type:
8177 case DW_TAG_structure_type:
8178 case DW_TAG_union_type:
8179 process_structure_scope (die, cu);
8180 break;
8181 case DW_TAG_enumeration_type:
8182 process_enumeration_scope (die, cu);
8183 break;
8184
8185 /* These dies have a type, but processing them does not create
8186 a symbol or recurse to process the children. Therefore we can
8187 read them on-demand through read_type_die. */
8188 case DW_TAG_subroutine_type:
8189 case DW_TAG_set_type:
8190 case DW_TAG_array_type:
8191 case DW_TAG_pointer_type:
8192 case DW_TAG_ptr_to_member_type:
8193 case DW_TAG_reference_type:
8194 case DW_TAG_string_type:
8195 break;
8196
8197 case DW_TAG_base_type:
8198 case DW_TAG_subrange_type:
8199 case DW_TAG_typedef:
8200 /* Add a typedef symbol for the type definition, if it has a
8201 DW_AT_name. */
8202 new_symbol (die, read_type_die (die, cu), cu);
8203 break;
8204 case DW_TAG_common_block:
8205 read_common_block (die, cu);
8206 break;
8207 case DW_TAG_common_inclusion:
8208 break;
8209 case DW_TAG_namespace:
8210 cu->processing_has_namespace_info = 1;
8211 read_namespace (die, cu);
8212 break;
8213 case DW_TAG_module:
8214 cu->processing_has_namespace_info = 1;
8215 read_module (die, cu);
8216 break;
8217 case DW_TAG_imported_declaration:
8218 cu->processing_has_namespace_info = 1;
8219 if (read_namespace_alias (die, cu))
8220 break;
8221 /* The declaration is not a global namespace alias: fall through. */
8222 case DW_TAG_imported_module:
8223 cu->processing_has_namespace_info = 1;
8224 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8225 || cu->language != language_fortran))
8226 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8227 dwarf_tag_name (die->tag));
8228 read_import_statement (die, cu);
8229 break;
8230
8231 case DW_TAG_imported_unit:
8232 process_imported_unit_die (die, cu);
8233 break;
8234
8235 default:
8236 new_symbol (die, NULL, cu);
8237 break;
8238 }
8239
8240 do_cleanups (in_process);
8241 }
8242 \f
8243 /* DWARF name computation. */
8244
8245 /* A helper function for dwarf2_compute_name which determines whether DIE
8246 needs to have the name of the scope prepended to the name listed in the
8247 die. */
8248
8249 static int
8250 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8251 {
8252 struct attribute *attr;
8253
8254 switch (die->tag)
8255 {
8256 case DW_TAG_namespace:
8257 case DW_TAG_typedef:
8258 case DW_TAG_class_type:
8259 case DW_TAG_interface_type:
8260 case DW_TAG_structure_type:
8261 case DW_TAG_union_type:
8262 case DW_TAG_enumeration_type:
8263 case DW_TAG_enumerator:
8264 case DW_TAG_subprogram:
8265 case DW_TAG_member:
8266 case DW_TAG_imported_declaration:
8267 return 1;
8268
8269 case DW_TAG_variable:
8270 case DW_TAG_constant:
8271 /* We only need to prefix "globally" visible variables. These include
8272 any variable marked with DW_AT_external or any variable that
8273 lives in a namespace. [Variables in anonymous namespaces
8274 require prefixing, but they are not DW_AT_external.] */
8275
8276 if (dwarf2_attr (die, DW_AT_specification, cu))
8277 {
8278 struct dwarf2_cu *spec_cu = cu;
8279
8280 return die_needs_namespace (die_specification (die, &spec_cu),
8281 spec_cu);
8282 }
8283
8284 attr = dwarf2_attr (die, DW_AT_external, cu);
8285 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8286 && die->parent->tag != DW_TAG_module)
8287 return 0;
8288 /* A variable in a lexical block of some kind does not need a
8289 namespace, even though in C++ such variables may be external
8290 and have a mangled name. */
8291 if (die->parent->tag == DW_TAG_lexical_block
8292 || die->parent->tag == DW_TAG_try_block
8293 || die->parent->tag == DW_TAG_catch_block
8294 || die->parent->tag == DW_TAG_subprogram)
8295 return 0;
8296 return 1;
8297
8298 default:
8299 return 0;
8300 }
8301 }
8302
8303 /* Retrieve the last character from a mem_file. */
8304
8305 static void
8306 do_ui_file_peek_last (void *object, const char *buffer, long length)
8307 {
8308 char *last_char_p = (char *) object;
8309
8310 if (length > 0)
8311 *last_char_p = buffer[length - 1];
8312 }
8313
8314 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8315 compute the physname for the object, which include a method's:
8316 - formal parameters (C++/Java),
8317 - receiver type (Go),
8318 - return type (Java).
8319
8320 The term "physname" is a bit confusing.
8321 For C++, for example, it is the demangled name.
8322 For Go, for example, it's the mangled name.
8323
8324 For Ada, return the DIE's linkage name rather than the fully qualified
8325 name. PHYSNAME is ignored..
8326
8327 The result is allocated on the objfile_obstack and canonicalized. */
8328
8329 static const char *
8330 dwarf2_compute_name (const char *name,
8331 struct die_info *die, struct dwarf2_cu *cu,
8332 int physname)
8333 {
8334 struct objfile *objfile = cu->objfile;
8335
8336 if (name == NULL)
8337 name = dwarf2_name (die, cu);
8338
8339 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8340 compute it by typename_concat inside GDB. */
8341 if (cu->language == language_ada
8342 || (cu->language == language_fortran && physname))
8343 {
8344 /* For Ada unit, we prefer the linkage name over the name, as
8345 the former contains the exported name, which the user expects
8346 to be able to reference. Ideally, we want the user to be able
8347 to reference this entity using either natural or linkage name,
8348 but we haven't started looking at this enhancement yet. */
8349 struct attribute *attr;
8350
8351 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8352 if (attr == NULL)
8353 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8354 if (attr && DW_STRING (attr))
8355 return DW_STRING (attr);
8356 }
8357
8358 /* These are the only languages we know how to qualify names in. */
8359 if (name != NULL
8360 && (cu->language == language_cplus || cu->language == language_java
8361 || cu->language == language_fortran))
8362 {
8363 if (die_needs_namespace (die, cu))
8364 {
8365 long length;
8366 const char *prefix;
8367 struct ui_file *buf;
8368 char *intermediate_name;
8369 const char *canonical_name = NULL;
8370
8371 prefix = determine_prefix (die, cu);
8372 buf = mem_fileopen ();
8373 if (*prefix != '\0')
8374 {
8375 char *prefixed_name = typename_concat (NULL, prefix, name,
8376 physname, cu);
8377
8378 fputs_unfiltered (prefixed_name, buf);
8379 xfree (prefixed_name);
8380 }
8381 else
8382 fputs_unfiltered (name, buf);
8383
8384 /* Template parameters may be specified in the DIE's DW_AT_name, or
8385 as children with DW_TAG_template_type_param or
8386 DW_TAG_value_type_param. If the latter, add them to the name
8387 here. If the name already has template parameters, then
8388 skip this step; some versions of GCC emit both, and
8389 it is more efficient to use the pre-computed name.
8390
8391 Something to keep in mind about this process: it is very
8392 unlikely, or in some cases downright impossible, to produce
8393 something that will match the mangled name of a function.
8394 If the definition of the function has the same debug info,
8395 we should be able to match up with it anyway. But fallbacks
8396 using the minimal symbol, for instance to find a method
8397 implemented in a stripped copy of libstdc++, will not work.
8398 If we do not have debug info for the definition, we will have to
8399 match them up some other way.
8400
8401 When we do name matching there is a related problem with function
8402 templates; two instantiated function templates are allowed to
8403 differ only by their return types, which we do not add here. */
8404
8405 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8406 {
8407 struct attribute *attr;
8408 struct die_info *child;
8409 int first = 1;
8410
8411 die->building_fullname = 1;
8412
8413 for (child = die->child; child != NULL; child = child->sibling)
8414 {
8415 struct type *type;
8416 LONGEST value;
8417 const gdb_byte *bytes;
8418 struct dwarf2_locexpr_baton *baton;
8419 struct value *v;
8420
8421 if (child->tag != DW_TAG_template_type_param
8422 && child->tag != DW_TAG_template_value_param)
8423 continue;
8424
8425 if (first)
8426 {
8427 fputs_unfiltered ("<", buf);
8428 first = 0;
8429 }
8430 else
8431 fputs_unfiltered (", ", buf);
8432
8433 attr = dwarf2_attr (child, DW_AT_type, cu);
8434 if (attr == NULL)
8435 {
8436 complaint (&symfile_complaints,
8437 _("template parameter missing DW_AT_type"));
8438 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8439 continue;
8440 }
8441 type = die_type (child, cu);
8442
8443 if (child->tag == DW_TAG_template_type_param)
8444 {
8445 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8446 continue;
8447 }
8448
8449 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8450 if (attr == NULL)
8451 {
8452 complaint (&symfile_complaints,
8453 _("template parameter missing "
8454 "DW_AT_const_value"));
8455 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8456 continue;
8457 }
8458
8459 dwarf2_const_value_attr (attr, type, name,
8460 &cu->comp_unit_obstack, cu,
8461 &value, &bytes, &baton);
8462
8463 if (TYPE_NOSIGN (type))
8464 /* GDB prints characters as NUMBER 'CHAR'. If that's
8465 changed, this can use value_print instead. */
8466 c_printchar (value, type, buf);
8467 else
8468 {
8469 struct value_print_options opts;
8470
8471 if (baton != NULL)
8472 v = dwarf2_evaluate_loc_desc (type, NULL,
8473 baton->data,
8474 baton->size,
8475 baton->per_cu);
8476 else if (bytes != NULL)
8477 {
8478 v = allocate_value (type);
8479 memcpy (value_contents_writeable (v), bytes,
8480 TYPE_LENGTH (type));
8481 }
8482 else
8483 v = value_from_longest (type, value);
8484
8485 /* Specify decimal so that we do not depend on
8486 the radix. */
8487 get_formatted_print_options (&opts, 'd');
8488 opts.raw = 1;
8489 value_print (v, buf, &opts);
8490 release_value (v);
8491 value_free (v);
8492 }
8493 }
8494
8495 die->building_fullname = 0;
8496
8497 if (!first)
8498 {
8499 /* Close the argument list, with a space if necessary
8500 (nested templates). */
8501 char last_char = '\0';
8502 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8503 if (last_char == '>')
8504 fputs_unfiltered (" >", buf);
8505 else
8506 fputs_unfiltered (">", buf);
8507 }
8508 }
8509
8510 /* For Java and C++ methods, append formal parameter type
8511 information, if PHYSNAME. */
8512
8513 if (physname && die->tag == DW_TAG_subprogram
8514 && (cu->language == language_cplus
8515 || cu->language == language_java))
8516 {
8517 struct type *type = read_type_die (die, cu);
8518
8519 c_type_print_args (type, buf, 1, cu->language,
8520 &type_print_raw_options);
8521
8522 if (cu->language == language_java)
8523 {
8524 /* For java, we must append the return type to method
8525 names. */
8526 if (die->tag == DW_TAG_subprogram)
8527 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8528 0, 0, &type_print_raw_options);
8529 }
8530 else if (cu->language == language_cplus)
8531 {
8532 /* Assume that an artificial first parameter is
8533 "this", but do not crash if it is not. RealView
8534 marks unnamed (and thus unused) parameters as
8535 artificial; there is no way to differentiate
8536 the two cases. */
8537 if (TYPE_NFIELDS (type) > 0
8538 && TYPE_FIELD_ARTIFICIAL (type, 0)
8539 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8540 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8541 0))))
8542 fputs_unfiltered (" const", buf);
8543 }
8544 }
8545
8546 intermediate_name = ui_file_xstrdup (buf, &length);
8547 ui_file_delete (buf);
8548
8549 if (cu->language == language_cplus)
8550 canonical_name
8551 = dwarf2_canonicalize_name (intermediate_name, cu,
8552 &objfile->per_bfd->storage_obstack);
8553
8554 /* If we only computed INTERMEDIATE_NAME, or if
8555 INTERMEDIATE_NAME is already canonical, then we need to
8556 copy it to the appropriate obstack. */
8557 if (canonical_name == NULL || canonical_name == intermediate_name)
8558 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8559 intermediate_name,
8560 strlen (intermediate_name));
8561 else
8562 name = canonical_name;
8563
8564 xfree (intermediate_name);
8565 }
8566 }
8567
8568 return name;
8569 }
8570
8571 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8572 If scope qualifiers are appropriate they will be added. The result
8573 will be allocated on the storage_obstack, or NULL if the DIE does
8574 not have a name. NAME may either be from a previous call to
8575 dwarf2_name or NULL.
8576
8577 The output string will be canonicalized (if C++/Java). */
8578
8579 static const char *
8580 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8581 {
8582 return dwarf2_compute_name (name, die, cu, 0);
8583 }
8584
8585 /* Construct a physname for the given DIE in CU. NAME may either be
8586 from a previous call to dwarf2_name or NULL. The result will be
8587 allocated on the objfile_objstack or NULL if the DIE does not have a
8588 name.
8589
8590 The output string will be canonicalized (if C++/Java). */
8591
8592 static const char *
8593 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8594 {
8595 struct objfile *objfile = cu->objfile;
8596 struct attribute *attr;
8597 const char *retval, *mangled = NULL, *canon = NULL;
8598 struct cleanup *back_to;
8599 int need_copy = 1;
8600
8601 /* In this case dwarf2_compute_name is just a shortcut not building anything
8602 on its own. */
8603 if (!die_needs_namespace (die, cu))
8604 return dwarf2_compute_name (name, die, cu, 1);
8605
8606 back_to = make_cleanup (null_cleanup, NULL);
8607
8608 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8609 if (!attr)
8610 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8611
8612 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8613 has computed. */
8614 if (attr && DW_STRING (attr))
8615 {
8616 char *demangled;
8617
8618 mangled = DW_STRING (attr);
8619
8620 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8621 type. It is easier for GDB users to search for such functions as
8622 `name(params)' than `long name(params)'. In such case the minimal
8623 symbol names do not match the full symbol names but for template
8624 functions there is never a need to look up their definition from their
8625 declaration so the only disadvantage remains the minimal symbol
8626 variant `long name(params)' does not have the proper inferior type.
8627 */
8628
8629 if (cu->language == language_go)
8630 {
8631 /* This is a lie, but we already lie to the caller new_symbol_full.
8632 new_symbol_full assumes we return the mangled name.
8633 This just undoes that lie until things are cleaned up. */
8634 demangled = NULL;
8635 }
8636 else
8637 {
8638 demangled = gdb_demangle (mangled,
8639 (DMGL_PARAMS | DMGL_ANSI
8640 | (cu->language == language_java
8641 ? DMGL_JAVA | DMGL_RET_POSTFIX
8642 : DMGL_RET_DROP)));
8643 }
8644 if (demangled)
8645 {
8646 make_cleanup (xfree, demangled);
8647 canon = demangled;
8648 }
8649 else
8650 {
8651 canon = mangled;
8652 need_copy = 0;
8653 }
8654 }
8655
8656 if (canon == NULL || check_physname)
8657 {
8658 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8659
8660 if (canon != NULL && strcmp (physname, canon) != 0)
8661 {
8662 /* It may not mean a bug in GDB. The compiler could also
8663 compute DW_AT_linkage_name incorrectly. But in such case
8664 GDB would need to be bug-to-bug compatible. */
8665
8666 complaint (&symfile_complaints,
8667 _("Computed physname <%s> does not match demangled <%s> "
8668 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8669 physname, canon, mangled, die->offset.sect_off,
8670 objfile_name (objfile));
8671
8672 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8673 is available here - over computed PHYSNAME. It is safer
8674 against both buggy GDB and buggy compilers. */
8675
8676 retval = canon;
8677 }
8678 else
8679 {
8680 retval = physname;
8681 need_copy = 0;
8682 }
8683 }
8684 else
8685 retval = canon;
8686
8687 if (need_copy)
8688 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8689 retval, strlen (retval));
8690
8691 do_cleanups (back_to);
8692 return retval;
8693 }
8694
8695 /* Inspect DIE in CU for a namespace alias. If one exists, record
8696 a new symbol for it.
8697
8698 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8699
8700 static int
8701 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8702 {
8703 struct attribute *attr;
8704
8705 /* If the die does not have a name, this is not a namespace
8706 alias. */
8707 attr = dwarf2_attr (die, DW_AT_name, cu);
8708 if (attr != NULL)
8709 {
8710 int num;
8711 struct die_info *d = die;
8712 struct dwarf2_cu *imported_cu = cu;
8713
8714 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8715 keep inspecting DIEs until we hit the underlying import. */
8716 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8717 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8718 {
8719 attr = dwarf2_attr (d, DW_AT_import, cu);
8720 if (attr == NULL)
8721 break;
8722
8723 d = follow_die_ref (d, attr, &imported_cu);
8724 if (d->tag != DW_TAG_imported_declaration)
8725 break;
8726 }
8727
8728 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8729 {
8730 complaint (&symfile_complaints,
8731 _("DIE at 0x%x has too many recursively imported "
8732 "declarations"), d->offset.sect_off);
8733 return 0;
8734 }
8735
8736 if (attr != NULL)
8737 {
8738 struct type *type;
8739 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8740
8741 type = get_die_type_at_offset (offset, cu->per_cu);
8742 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8743 {
8744 /* This declaration is a global namespace alias. Add
8745 a symbol for it whose type is the aliased namespace. */
8746 new_symbol (die, type, cu);
8747 return 1;
8748 }
8749 }
8750 }
8751
8752 return 0;
8753 }
8754
8755 /* Read the import statement specified by the given die and record it. */
8756
8757 static void
8758 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8759 {
8760 struct objfile *objfile = cu->objfile;
8761 struct attribute *import_attr;
8762 struct die_info *imported_die, *child_die;
8763 struct dwarf2_cu *imported_cu;
8764 const char *imported_name;
8765 const char *imported_name_prefix;
8766 const char *canonical_name;
8767 const char *import_alias;
8768 const char *imported_declaration = NULL;
8769 const char *import_prefix;
8770 VEC (const_char_ptr) *excludes = NULL;
8771 struct cleanup *cleanups;
8772
8773 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8774 if (import_attr == NULL)
8775 {
8776 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8777 dwarf_tag_name (die->tag));
8778 return;
8779 }
8780
8781 imported_cu = cu;
8782 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8783 imported_name = dwarf2_name (imported_die, imported_cu);
8784 if (imported_name == NULL)
8785 {
8786 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8787
8788 The import in the following code:
8789 namespace A
8790 {
8791 typedef int B;
8792 }
8793
8794 int main ()
8795 {
8796 using A::B;
8797 B b;
8798 return b;
8799 }
8800
8801 ...
8802 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8803 <52> DW_AT_decl_file : 1
8804 <53> DW_AT_decl_line : 6
8805 <54> DW_AT_import : <0x75>
8806 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8807 <59> DW_AT_name : B
8808 <5b> DW_AT_decl_file : 1
8809 <5c> DW_AT_decl_line : 2
8810 <5d> DW_AT_type : <0x6e>
8811 ...
8812 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8813 <76> DW_AT_byte_size : 4
8814 <77> DW_AT_encoding : 5 (signed)
8815
8816 imports the wrong die ( 0x75 instead of 0x58 ).
8817 This case will be ignored until the gcc bug is fixed. */
8818 return;
8819 }
8820
8821 /* Figure out the local name after import. */
8822 import_alias = dwarf2_name (die, cu);
8823
8824 /* Figure out where the statement is being imported to. */
8825 import_prefix = determine_prefix (die, cu);
8826
8827 /* Figure out what the scope of the imported die is and prepend it
8828 to the name of the imported die. */
8829 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8830
8831 if (imported_die->tag != DW_TAG_namespace
8832 && imported_die->tag != DW_TAG_module)
8833 {
8834 imported_declaration = imported_name;
8835 canonical_name = imported_name_prefix;
8836 }
8837 else if (strlen (imported_name_prefix) > 0)
8838 canonical_name = obconcat (&objfile->objfile_obstack,
8839 imported_name_prefix, "::", imported_name,
8840 (char *) NULL);
8841 else
8842 canonical_name = imported_name;
8843
8844 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8845
8846 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8847 for (child_die = die->child; child_die && child_die->tag;
8848 child_die = sibling_die (child_die))
8849 {
8850 /* DWARF-4: A Fortran use statement with a “rename list” may be
8851 represented by an imported module entry with an import attribute
8852 referring to the module and owned entries corresponding to those
8853 entities that are renamed as part of being imported. */
8854
8855 if (child_die->tag != DW_TAG_imported_declaration)
8856 {
8857 complaint (&symfile_complaints,
8858 _("child DW_TAG_imported_declaration expected "
8859 "- DIE at 0x%x [in module %s]"),
8860 child_die->offset.sect_off, objfile_name (objfile));
8861 continue;
8862 }
8863
8864 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8865 if (import_attr == NULL)
8866 {
8867 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8868 dwarf_tag_name (child_die->tag));
8869 continue;
8870 }
8871
8872 imported_cu = cu;
8873 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8874 &imported_cu);
8875 imported_name = dwarf2_name (imported_die, imported_cu);
8876 if (imported_name == NULL)
8877 {
8878 complaint (&symfile_complaints,
8879 _("child DW_TAG_imported_declaration has unknown "
8880 "imported name - DIE at 0x%x [in module %s]"),
8881 child_die->offset.sect_off, objfile_name (objfile));
8882 continue;
8883 }
8884
8885 VEC_safe_push (const_char_ptr, excludes, imported_name);
8886
8887 process_die (child_die, cu);
8888 }
8889
8890 cp_add_using_directive (import_prefix,
8891 canonical_name,
8892 import_alias,
8893 imported_declaration,
8894 excludes,
8895 0,
8896 &objfile->objfile_obstack);
8897
8898 do_cleanups (cleanups);
8899 }
8900
8901 /* Cleanup function for handle_DW_AT_stmt_list. */
8902
8903 static void
8904 free_cu_line_header (void *arg)
8905 {
8906 struct dwarf2_cu *cu = arg;
8907
8908 free_line_header (cu->line_header);
8909 cu->line_header = NULL;
8910 }
8911
8912 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8913 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8914 this, it was first present in GCC release 4.3.0. */
8915
8916 static int
8917 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8918 {
8919 if (!cu->checked_producer)
8920 check_producer (cu);
8921
8922 return cu->producer_is_gcc_lt_4_3;
8923 }
8924
8925 static void
8926 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8927 const char **name, const char **comp_dir)
8928 {
8929 struct attribute *attr;
8930
8931 *name = NULL;
8932 *comp_dir = NULL;
8933
8934 /* Find the filename. Do not use dwarf2_name here, since the filename
8935 is not a source language identifier. */
8936 attr = dwarf2_attr (die, DW_AT_name, cu);
8937 if (attr)
8938 {
8939 *name = DW_STRING (attr);
8940 }
8941
8942 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8943 if (attr)
8944 *comp_dir = DW_STRING (attr);
8945 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8946 && IS_ABSOLUTE_PATH (*name))
8947 {
8948 char *d = ldirname (*name);
8949
8950 *comp_dir = d;
8951 if (d != NULL)
8952 make_cleanup (xfree, d);
8953 }
8954 if (*comp_dir != NULL)
8955 {
8956 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8957 directory, get rid of it. */
8958 char *cp = strchr (*comp_dir, ':');
8959
8960 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8961 *comp_dir = cp + 1;
8962 }
8963
8964 if (*name == NULL)
8965 *name = "<unknown>";
8966 }
8967
8968 /* Handle DW_AT_stmt_list for a compilation unit.
8969 DIE is the DW_TAG_compile_unit die for CU.
8970 COMP_DIR is the compilation directory. LOWPC is passed to
8971 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8972
8973 static void
8974 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8975 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8976 {
8977 struct attribute *attr;
8978
8979 gdb_assert (! cu->per_cu->is_debug_types);
8980
8981 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8982 if (attr)
8983 {
8984 unsigned int line_offset = DW_UNSND (attr);
8985 struct line_header *line_header
8986 = dwarf_decode_line_header (line_offset, cu);
8987
8988 if (line_header)
8989 {
8990 cu->line_header = line_header;
8991 make_cleanup (free_cu_line_header, cu);
8992 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
8993 }
8994 }
8995 }
8996
8997 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8998
8999 static void
9000 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9001 {
9002 struct objfile *objfile = dwarf2_per_objfile->objfile;
9003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9004 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9005 CORE_ADDR highpc = ((CORE_ADDR) 0);
9006 struct attribute *attr;
9007 const char *name = NULL;
9008 const char *comp_dir = NULL;
9009 struct die_info *child_die;
9010 bfd *abfd = objfile->obfd;
9011 CORE_ADDR baseaddr;
9012
9013 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9014
9015 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9016
9017 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9018 from finish_block. */
9019 if (lowpc == ((CORE_ADDR) -1))
9020 lowpc = highpc;
9021 lowpc += baseaddr;
9022 highpc += baseaddr;
9023
9024 find_file_and_directory (die, cu, &name, &comp_dir);
9025
9026 prepare_one_comp_unit (cu, die, cu->language);
9027
9028 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9029 standardised yet. As a workaround for the language detection we fall
9030 back to the DW_AT_producer string. */
9031 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9032 cu->language = language_opencl;
9033
9034 /* Similar hack for Go. */
9035 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9036 set_cu_language (DW_LANG_Go, cu);
9037
9038 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9039
9040 /* Decode line number information if present. We do this before
9041 processing child DIEs, so that the line header table is available
9042 for DW_AT_decl_file. */
9043 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9044
9045 /* Process all dies in compilation unit. */
9046 if (die->child != NULL)
9047 {
9048 child_die = die->child;
9049 while (child_die && child_die->tag)
9050 {
9051 process_die (child_die, cu);
9052 child_die = sibling_die (child_die);
9053 }
9054 }
9055
9056 /* Decode macro information, if present. Dwarf 2 macro information
9057 refers to information in the line number info statement program
9058 header, so we can only read it if we've read the header
9059 successfully. */
9060 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9061 if (attr && cu->line_header)
9062 {
9063 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9064 complaint (&symfile_complaints,
9065 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9066
9067 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9068 }
9069 else
9070 {
9071 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9072 if (attr && cu->line_header)
9073 {
9074 unsigned int macro_offset = DW_UNSND (attr);
9075
9076 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9077 }
9078 }
9079
9080 do_cleanups (back_to);
9081 }
9082
9083 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9084 Create the set of symtabs used by this TU, or if this TU is sharing
9085 symtabs with another TU and the symtabs have already been created
9086 then restore those symtabs in the line header.
9087 We don't need the pc/line-number mapping for type units. */
9088
9089 static void
9090 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9091 {
9092 struct objfile *objfile = dwarf2_per_objfile->objfile;
9093 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9094 struct type_unit_group *tu_group;
9095 int first_time;
9096 struct line_header *lh;
9097 struct attribute *attr;
9098 unsigned int i, line_offset;
9099 struct signatured_type *sig_type;
9100
9101 gdb_assert (per_cu->is_debug_types);
9102 sig_type = (struct signatured_type *) per_cu;
9103
9104 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9105
9106 /* If we're using .gdb_index (includes -readnow) then
9107 per_cu->type_unit_group may not have been set up yet. */
9108 if (sig_type->type_unit_group == NULL)
9109 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9110 tu_group = sig_type->type_unit_group;
9111
9112 /* If we've already processed this stmt_list there's no real need to
9113 do it again, we could fake it and just recreate the part we need
9114 (file name,index -> symtab mapping). If data shows this optimization
9115 is useful we can do it then. */
9116 first_time = tu_group->primary_symtab == NULL;
9117
9118 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9119 debug info. */
9120 lh = NULL;
9121 if (attr != NULL)
9122 {
9123 line_offset = DW_UNSND (attr);
9124 lh = dwarf_decode_line_header (line_offset, cu);
9125 }
9126 if (lh == NULL)
9127 {
9128 if (first_time)
9129 dwarf2_start_symtab (cu, "", NULL, 0);
9130 else
9131 {
9132 gdb_assert (tu_group->symtabs == NULL);
9133 restart_symtab (0);
9134 }
9135 /* Note: The primary symtab will get allocated at the end. */
9136 return;
9137 }
9138
9139 cu->line_header = lh;
9140 make_cleanup (free_cu_line_header, cu);
9141
9142 if (first_time)
9143 {
9144 dwarf2_start_symtab (cu, "", NULL, 0);
9145
9146 tu_group->num_symtabs = lh->num_file_names;
9147 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9148
9149 for (i = 0; i < lh->num_file_names; ++i)
9150 {
9151 const char *dir = NULL;
9152 struct file_entry *fe = &lh->file_names[i];
9153
9154 if (fe->dir_index)
9155 dir = lh->include_dirs[fe->dir_index - 1];
9156 dwarf2_start_subfile (fe->name, dir, NULL);
9157
9158 /* Note: We don't have to watch for the main subfile here, type units
9159 don't have DW_AT_name. */
9160
9161 if (current_subfile->symtab == NULL)
9162 {
9163 /* NOTE: start_subfile will recognize when it's been passed
9164 a file it has already seen. So we can't assume there's a
9165 simple mapping from lh->file_names to subfiles,
9166 lh->file_names may contain dups. */
9167 current_subfile->symtab = allocate_symtab (current_subfile->name,
9168 objfile);
9169 }
9170
9171 fe->symtab = current_subfile->symtab;
9172 tu_group->symtabs[i] = fe->symtab;
9173 }
9174 }
9175 else
9176 {
9177 restart_symtab (0);
9178
9179 for (i = 0; i < lh->num_file_names; ++i)
9180 {
9181 struct file_entry *fe = &lh->file_names[i];
9182
9183 fe->symtab = tu_group->symtabs[i];
9184 }
9185 }
9186
9187 /* The main symtab is allocated last. Type units don't have DW_AT_name
9188 so they don't have a "real" (so to speak) symtab anyway.
9189 There is later code that will assign the main symtab to all symbols
9190 that don't have one. We need to handle the case of a symbol with a
9191 missing symtab (DW_AT_decl_file) anyway. */
9192 }
9193
9194 /* Process DW_TAG_type_unit.
9195 For TUs we want to skip the first top level sibling if it's not the
9196 actual type being defined by this TU. In this case the first top
9197 level sibling is there to provide context only. */
9198
9199 static void
9200 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9201 {
9202 struct die_info *child_die;
9203
9204 prepare_one_comp_unit (cu, die, language_minimal);
9205
9206 /* Initialize (or reinitialize) the machinery for building symtabs.
9207 We do this before processing child DIEs, so that the line header table
9208 is available for DW_AT_decl_file. */
9209 setup_type_unit_groups (die, cu);
9210
9211 if (die->child != NULL)
9212 {
9213 child_die = die->child;
9214 while (child_die && child_die->tag)
9215 {
9216 process_die (child_die, cu);
9217 child_die = sibling_die (child_die);
9218 }
9219 }
9220 }
9221 \f
9222 /* DWO/DWP files.
9223
9224 http://gcc.gnu.org/wiki/DebugFission
9225 http://gcc.gnu.org/wiki/DebugFissionDWP
9226
9227 To simplify handling of both DWO files ("object" files with the DWARF info)
9228 and DWP files (a file with the DWOs packaged up into one file), we treat
9229 DWP files as having a collection of virtual DWO files. */
9230
9231 static hashval_t
9232 hash_dwo_file (const void *item)
9233 {
9234 const struct dwo_file *dwo_file = item;
9235 hashval_t hash;
9236
9237 hash = htab_hash_string (dwo_file->dwo_name);
9238 if (dwo_file->comp_dir != NULL)
9239 hash += htab_hash_string (dwo_file->comp_dir);
9240 return hash;
9241 }
9242
9243 static int
9244 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9245 {
9246 const struct dwo_file *lhs = item_lhs;
9247 const struct dwo_file *rhs = item_rhs;
9248
9249 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9250 return 0;
9251 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9252 return lhs->comp_dir == rhs->comp_dir;
9253 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9254 }
9255
9256 /* Allocate a hash table for DWO files. */
9257
9258 static htab_t
9259 allocate_dwo_file_hash_table (void)
9260 {
9261 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262
9263 return htab_create_alloc_ex (41,
9264 hash_dwo_file,
9265 eq_dwo_file,
9266 NULL,
9267 &objfile->objfile_obstack,
9268 hashtab_obstack_allocate,
9269 dummy_obstack_deallocate);
9270 }
9271
9272 /* Lookup DWO file DWO_NAME. */
9273
9274 static void **
9275 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9276 {
9277 struct dwo_file find_entry;
9278 void **slot;
9279
9280 if (dwarf2_per_objfile->dwo_files == NULL)
9281 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9282
9283 memset (&find_entry, 0, sizeof (find_entry));
9284 find_entry.dwo_name = dwo_name;
9285 find_entry.comp_dir = comp_dir;
9286 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9287
9288 return slot;
9289 }
9290
9291 static hashval_t
9292 hash_dwo_unit (const void *item)
9293 {
9294 const struct dwo_unit *dwo_unit = item;
9295
9296 /* This drops the top 32 bits of the id, but is ok for a hash. */
9297 return dwo_unit->signature;
9298 }
9299
9300 static int
9301 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9302 {
9303 const struct dwo_unit *lhs = item_lhs;
9304 const struct dwo_unit *rhs = item_rhs;
9305
9306 /* The signature is assumed to be unique within the DWO file.
9307 So while object file CU dwo_id's always have the value zero,
9308 that's OK, assuming each object file DWO file has only one CU,
9309 and that's the rule for now. */
9310 return lhs->signature == rhs->signature;
9311 }
9312
9313 /* Allocate a hash table for DWO CUs,TUs.
9314 There is one of these tables for each of CUs,TUs for each DWO file. */
9315
9316 static htab_t
9317 allocate_dwo_unit_table (struct objfile *objfile)
9318 {
9319 /* Start out with a pretty small number.
9320 Generally DWO files contain only one CU and maybe some TUs. */
9321 return htab_create_alloc_ex (3,
9322 hash_dwo_unit,
9323 eq_dwo_unit,
9324 NULL,
9325 &objfile->objfile_obstack,
9326 hashtab_obstack_allocate,
9327 dummy_obstack_deallocate);
9328 }
9329
9330 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9331
9332 struct create_dwo_cu_data
9333 {
9334 struct dwo_file *dwo_file;
9335 struct dwo_unit dwo_unit;
9336 };
9337
9338 /* die_reader_func for create_dwo_cu. */
9339
9340 static void
9341 create_dwo_cu_reader (const struct die_reader_specs *reader,
9342 const gdb_byte *info_ptr,
9343 struct die_info *comp_unit_die,
9344 int has_children,
9345 void *datap)
9346 {
9347 struct dwarf2_cu *cu = reader->cu;
9348 struct objfile *objfile = dwarf2_per_objfile->objfile;
9349 sect_offset offset = cu->per_cu->offset;
9350 struct dwarf2_section_info *section = cu->per_cu->section;
9351 struct create_dwo_cu_data *data = datap;
9352 struct dwo_file *dwo_file = data->dwo_file;
9353 struct dwo_unit *dwo_unit = &data->dwo_unit;
9354 struct attribute *attr;
9355
9356 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9357 if (attr == NULL)
9358 {
9359 complaint (&symfile_complaints,
9360 _("Dwarf Error: debug entry at offset 0x%x is missing"
9361 " its dwo_id [in module %s]"),
9362 offset.sect_off, dwo_file->dwo_name);
9363 return;
9364 }
9365
9366 dwo_unit->dwo_file = dwo_file;
9367 dwo_unit->signature = DW_UNSND (attr);
9368 dwo_unit->section = section;
9369 dwo_unit->offset = offset;
9370 dwo_unit->length = cu->per_cu->length;
9371
9372 if (dwarf2_read_debug)
9373 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9374 offset.sect_off, hex_string (dwo_unit->signature));
9375 }
9376
9377 /* Create the dwo_unit for the lone CU in DWO_FILE.
9378 Note: This function processes DWO files only, not DWP files. */
9379
9380 static struct dwo_unit *
9381 create_dwo_cu (struct dwo_file *dwo_file)
9382 {
9383 struct objfile *objfile = dwarf2_per_objfile->objfile;
9384 struct dwarf2_section_info *section = &dwo_file->sections.info;
9385 bfd *abfd;
9386 htab_t cu_htab;
9387 const gdb_byte *info_ptr, *end_ptr;
9388 struct create_dwo_cu_data create_dwo_cu_data;
9389 struct dwo_unit *dwo_unit;
9390
9391 dwarf2_read_section (objfile, section);
9392 info_ptr = section->buffer;
9393
9394 if (info_ptr == NULL)
9395 return NULL;
9396
9397 /* We can't set abfd until now because the section may be empty or
9398 not present, in which case section->asection will be NULL. */
9399 abfd = get_section_bfd_owner (section);
9400
9401 if (dwarf2_read_debug)
9402 {
9403 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9404 get_section_name (section),
9405 get_section_file_name (section));
9406 }
9407
9408 create_dwo_cu_data.dwo_file = dwo_file;
9409 dwo_unit = NULL;
9410
9411 end_ptr = info_ptr + section->size;
9412 while (info_ptr < end_ptr)
9413 {
9414 struct dwarf2_per_cu_data per_cu;
9415
9416 memset (&create_dwo_cu_data.dwo_unit, 0,
9417 sizeof (create_dwo_cu_data.dwo_unit));
9418 memset (&per_cu, 0, sizeof (per_cu));
9419 per_cu.objfile = objfile;
9420 per_cu.is_debug_types = 0;
9421 per_cu.offset.sect_off = info_ptr - section->buffer;
9422 per_cu.section = section;
9423
9424 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9425 create_dwo_cu_reader,
9426 &create_dwo_cu_data);
9427
9428 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9429 {
9430 /* If we've already found one, complain. We only support one
9431 because having more than one requires hacking the dwo_name of
9432 each to match, which is highly unlikely to happen. */
9433 if (dwo_unit != NULL)
9434 {
9435 complaint (&symfile_complaints,
9436 _("Multiple CUs in DWO file %s [in module %s]"),
9437 dwo_file->dwo_name, objfile_name (objfile));
9438 break;
9439 }
9440
9441 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9442 *dwo_unit = create_dwo_cu_data.dwo_unit;
9443 }
9444
9445 info_ptr += per_cu.length;
9446 }
9447
9448 return dwo_unit;
9449 }
9450
9451 /* DWP file .debug_{cu,tu}_index section format:
9452 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9453
9454 DWP Version 1:
9455
9456 Both index sections have the same format, and serve to map a 64-bit
9457 signature to a set of section numbers. Each section begins with a header,
9458 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9459 indexes, and a pool of 32-bit section numbers. The index sections will be
9460 aligned at 8-byte boundaries in the file.
9461
9462 The index section header consists of:
9463
9464 V, 32 bit version number
9465 -, 32 bits unused
9466 N, 32 bit number of compilation units or type units in the index
9467 M, 32 bit number of slots in the hash table
9468
9469 Numbers are recorded using the byte order of the application binary.
9470
9471 The hash table begins at offset 16 in the section, and consists of an array
9472 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9473 order of the application binary). Unused slots in the hash table are 0.
9474 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9475
9476 The parallel table begins immediately after the hash table
9477 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9478 array of 32-bit indexes (using the byte order of the application binary),
9479 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9480 table contains a 32-bit index into the pool of section numbers. For unused
9481 hash table slots, the corresponding entry in the parallel table will be 0.
9482
9483 The pool of section numbers begins immediately following the hash table
9484 (at offset 16 + 12 * M from the beginning of the section). The pool of
9485 section numbers consists of an array of 32-bit words (using the byte order
9486 of the application binary). Each item in the array is indexed starting
9487 from 0. The hash table entry provides the index of the first section
9488 number in the set. Additional section numbers in the set follow, and the
9489 set is terminated by a 0 entry (section number 0 is not used in ELF).
9490
9491 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9492 section must be the first entry in the set, and the .debug_abbrev.dwo must
9493 be the second entry. Other members of the set may follow in any order.
9494
9495 ---
9496
9497 DWP Version 2:
9498
9499 DWP Version 2 combines all the .debug_info, etc. sections into one,
9500 and the entries in the index tables are now offsets into these sections.
9501 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9502 section.
9503
9504 Index Section Contents:
9505 Header
9506 Hash Table of Signatures dwp_hash_table.hash_table
9507 Parallel Table of Indices dwp_hash_table.unit_table
9508 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9509 Table of Section Sizes dwp_hash_table.v2.sizes
9510
9511 The index section header consists of:
9512
9513 V, 32 bit version number
9514 L, 32 bit number of columns in the table of section offsets
9515 N, 32 bit number of compilation units or type units in the index
9516 M, 32 bit number of slots in the hash table
9517
9518 Numbers are recorded using the byte order of the application binary.
9519
9520 The hash table has the same format as version 1.
9521 The parallel table of indices has the same format as version 1,
9522 except that the entries are origin-1 indices into the table of sections
9523 offsets and the table of section sizes.
9524
9525 The table of offsets begins immediately following the parallel table
9526 (at offset 16 + 12 * M from the beginning of the section). The table is
9527 a two-dimensional array of 32-bit words (using the byte order of the
9528 application binary), with L columns and N+1 rows, in row-major order.
9529 Each row in the array is indexed starting from 0. The first row provides
9530 a key to the remaining rows: each column in this row provides an identifier
9531 for a debug section, and the offsets in the same column of subsequent rows
9532 refer to that section. The section identifiers are:
9533
9534 DW_SECT_INFO 1 .debug_info.dwo
9535 DW_SECT_TYPES 2 .debug_types.dwo
9536 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9537 DW_SECT_LINE 4 .debug_line.dwo
9538 DW_SECT_LOC 5 .debug_loc.dwo
9539 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9540 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9541 DW_SECT_MACRO 8 .debug_macro.dwo
9542
9543 The offsets provided by the CU and TU index sections are the base offsets
9544 for the contributions made by each CU or TU to the corresponding section
9545 in the package file. Each CU and TU header contains an abbrev_offset
9546 field, used to find the abbreviations table for that CU or TU within the
9547 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9548 be interpreted as relative to the base offset given in the index section.
9549 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9550 should be interpreted as relative to the base offset for .debug_line.dwo,
9551 and offsets into other debug sections obtained from DWARF attributes should
9552 also be interpreted as relative to the corresponding base offset.
9553
9554 The table of sizes begins immediately following the table of offsets.
9555 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9556 with L columns and N rows, in row-major order. Each row in the array is
9557 indexed starting from 1 (row 0 is shared by the two tables).
9558
9559 ---
9560
9561 Hash table lookup is handled the same in version 1 and 2:
9562
9563 We assume that N and M will not exceed 2^32 - 1.
9564 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9565
9566 Given a 64-bit compilation unit signature or a type signature S, an entry
9567 in the hash table is located as follows:
9568
9569 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9570 the low-order k bits all set to 1.
9571
9572 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9573
9574 3) If the hash table entry at index H matches the signature, use that
9575 entry. If the hash table entry at index H is unused (all zeroes),
9576 terminate the search: the signature is not present in the table.
9577
9578 4) Let H = (H + H') modulo M. Repeat at Step 3.
9579
9580 Because M > N and H' and M are relatively prime, the search is guaranteed
9581 to stop at an unused slot or find the match. */
9582
9583 /* Create a hash table to map DWO IDs to their CU/TU entry in
9584 .debug_{info,types}.dwo in DWP_FILE.
9585 Returns NULL if there isn't one.
9586 Note: This function processes DWP files only, not DWO files. */
9587
9588 static struct dwp_hash_table *
9589 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9590 {
9591 struct objfile *objfile = dwarf2_per_objfile->objfile;
9592 bfd *dbfd = dwp_file->dbfd;
9593 const gdb_byte *index_ptr, *index_end;
9594 struct dwarf2_section_info *index;
9595 uint32_t version, nr_columns, nr_units, nr_slots;
9596 struct dwp_hash_table *htab;
9597
9598 if (is_debug_types)
9599 index = &dwp_file->sections.tu_index;
9600 else
9601 index = &dwp_file->sections.cu_index;
9602
9603 if (dwarf2_section_empty_p (index))
9604 return NULL;
9605 dwarf2_read_section (objfile, index);
9606
9607 index_ptr = index->buffer;
9608 index_end = index_ptr + index->size;
9609
9610 version = read_4_bytes (dbfd, index_ptr);
9611 index_ptr += 4;
9612 if (version == 2)
9613 nr_columns = read_4_bytes (dbfd, index_ptr);
9614 else
9615 nr_columns = 0;
9616 index_ptr += 4;
9617 nr_units = read_4_bytes (dbfd, index_ptr);
9618 index_ptr += 4;
9619 nr_slots = read_4_bytes (dbfd, index_ptr);
9620 index_ptr += 4;
9621
9622 if (version != 1 && version != 2)
9623 {
9624 error (_("Dwarf Error: unsupported DWP file version (%s)"
9625 " [in module %s]"),
9626 pulongest (version), dwp_file->name);
9627 }
9628 if (nr_slots != (nr_slots & -nr_slots))
9629 {
9630 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9631 " is not power of 2 [in module %s]"),
9632 pulongest (nr_slots), dwp_file->name);
9633 }
9634
9635 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9636 htab->version = version;
9637 htab->nr_columns = nr_columns;
9638 htab->nr_units = nr_units;
9639 htab->nr_slots = nr_slots;
9640 htab->hash_table = index_ptr;
9641 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9642
9643 /* Exit early if the table is empty. */
9644 if (nr_slots == 0 || nr_units == 0
9645 || (version == 2 && nr_columns == 0))
9646 {
9647 /* All must be zero. */
9648 if (nr_slots != 0 || nr_units != 0
9649 || (version == 2 && nr_columns != 0))
9650 {
9651 complaint (&symfile_complaints,
9652 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9653 " all zero [in modules %s]"),
9654 dwp_file->name);
9655 }
9656 return htab;
9657 }
9658
9659 if (version == 1)
9660 {
9661 htab->section_pool.v1.indices =
9662 htab->unit_table + sizeof (uint32_t) * nr_slots;
9663 /* It's harder to decide whether the section is too small in v1.
9664 V1 is deprecated anyway so we punt. */
9665 }
9666 else
9667 {
9668 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9669 int *ids = htab->section_pool.v2.section_ids;
9670 /* Reverse map for error checking. */
9671 int ids_seen[DW_SECT_MAX + 1];
9672 int i;
9673
9674 if (nr_columns < 2)
9675 {
9676 error (_("Dwarf Error: bad DWP hash table, too few columns"
9677 " in section table [in module %s]"),
9678 dwp_file->name);
9679 }
9680 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9681 {
9682 error (_("Dwarf Error: bad DWP hash table, too many columns"
9683 " in section table [in module %s]"),
9684 dwp_file->name);
9685 }
9686 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9687 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9688 for (i = 0; i < nr_columns; ++i)
9689 {
9690 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9691
9692 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9693 {
9694 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9695 " in section table [in module %s]"),
9696 id, dwp_file->name);
9697 }
9698 if (ids_seen[id] != -1)
9699 {
9700 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9701 " id %d in section table [in module %s]"),
9702 id, dwp_file->name);
9703 }
9704 ids_seen[id] = i;
9705 ids[i] = id;
9706 }
9707 /* Must have exactly one info or types section. */
9708 if (((ids_seen[DW_SECT_INFO] != -1)
9709 + (ids_seen[DW_SECT_TYPES] != -1))
9710 != 1)
9711 {
9712 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9713 " DWO info/types section [in module %s]"),
9714 dwp_file->name);
9715 }
9716 /* Must have an abbrev section. */
9717 if (ids_seen[DW_SECT_ABBREV] == -1)
9718 {
9719 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9720 " section [in module %s]"),
9721 dwp_file->name);
9722 }
9723 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9724 htab->section_pool.v2.sizes =
9725 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9726 * nr_units * nr_columns);
9727 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9728 * nr_units * nr_columns))
9729 > index_end)
9730 {
9731 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9732 " [in module %s]"),
9733 dwp_file->name);
9734 }
9735 }
9736
9737 return htab;
9738 }
9739
9740 /* Update SECTIONS with the data from SECTP.
9741
9742 This function is like the other "locate" section routines that are
9743 passed to bfd_map_over_sections, but in this context the sections to
9744 read comes from the DWP V1 hash table, not the full ELF section table.
9745
9746 The result is non-zero for success, or zero if an error was found. */
9747
9748 static int
9749 locate_v1_virtual_dwo_sections (asection *sectp,
9750 struct virtual_v1_dwo_sections *sections)
9751 {
9752 const struct dwop_section_names *names = &dwop_section_names;
9753
9754 if (section_is_p (sectp->name, &names->abbrev_dwo))
9755 {
9756 /* There can be only one. */
9757 if (sections->abbrev.s.asection != NULL)
9758 return 0;
9759 sections->abbrev.s.asection = sectp;
9760 sections->abbrev.size = bfd_get_section_size (sectp);
9761 }
9762 else if (section_is_p (sectp->name, &names->info_dwo)
9763 || section_is_p (sectp->name, &names->types_dwo))
9764 {
9765 /* There can be only one. */
9766 if (sections->info_or_types.s.asection != NULL)
9767 return 0;
9768 sections->info_or_types.s.asection = sectp;
9769 sections->info_or_types.size = bfd_get_section_size (sectp);
9770 }
9771 else if (section_is_p (sectp->name, &names->line_dwo))
9772 {
9773 /* There can be only one. */
9774 if (sections->line.s.asection != NULL)
9775 return 0;
9776 sections->line.s.asection = sectp;
9777 sections->line.size = bfd_get_section_size (sectp);
9778 }
9779 else if (section_is_p (sectp->name, &names->loc_dwo))
9780 {
9781 /* There can be only one. */
9782 if (sections->loc.s.asection != NULL)
9783 return 0;
9784 sections->loc.s.asection = sectp;
9785 sections->loc.size = bfd_get_section_size (sectp);
9786 }
9787 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9788 {
9789 /* There can be only one. */
9790 if (sections->macinfo.s.asection != NULL)
9791 return 0;
9792 sections->macinfo.s.asection = sectp;
9793 sections->macinfo.size = bfd_get_section_size (sectp);
9794 }
9795 else if (section_is_p (sectp->name, &names->macro_dwo))
9796 {
9797 /* There can be only one. */
9798 if (sections->macro.s.asection != NULL)
9799 return 0;
9800 sections->macro.s.asection = sectp;
9801 sections->macro.size = bfd_get_section_size (sectp);
9802 }
9803 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9804 {
9805 /* There can be only one. */
9806 if (sections->str_offsets.s.asection != NULL)
9807 return 0;
9808 sections->str_offsets.s.asection = sectp;
9809 sections->str_offsets.size = bfd_get_section_size (sectp);
9810 }
9811 else
9812 {
9813 /* No other kind of section is valid. */
9814 return 0;
9815 }
9816
9817 return 1;
9818 }
9819
9820 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9821 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9822 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9823 This is for DWP version 1 files. */
9824
9825 static struct dwo_unit *
9826 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9827 uint32_t unit_index,
9828 const char *comp_dir,
9829 ULONGEST signature, int is_debug_types)
9830 {
9831 struct objfile *objfile = dwarf2_per_objfile->objfile;
9832 const struct dwp_hash_table *dwp_htab =
9833 is_debug_types ? dwp_file->tus : dwp_file->cus;
9834 bfd *dbfd = dwp_file->dbfd;
9835 const char *kind = is_debug_types ? "TU" : "CU";
9836 struct dwo_file *dwo_file;
9837 struct dwo_unit *dwo_unit;
9838 struct virtual_v1_dwo_sections sections;
9839 void **dwo_file_slot;
9840 char *virtual_dwo_name;
9841 struct dwarf2_section_info *cutu;
9842 struct cleanup *cleanups;
9843 int i;
9844
9845 gdb_assert (dwp_file->version == 1);
9846
9847 if (dwarf2_read_debug)
9848 {
9849 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9850 kind,
9851 pulongest (unit_index), hex_string (signature),
9852 dwp_file->name);
9853 }
9854
9855 /* Fetch the sections of this DWO unit.
9856 Put a limit on the number of sections we look for so that bad data
9857 doesn't cause us to loop forever. */
9858
9859 #define MAX_NR_V1_DWO_SECTIONS \
9860 (1 /* .debug_info or .debug_types */ \
9861 + 1 /* .debug_abbrev */ \
9862 + 1 /* .debug_line */ \
9863 + 1 /* .debug_loc */ \
9864 + 1 /* .debug_str_offsets */ \
9865 + 1 /* .debug_macro or .debug_macinfo */ \
9866 + 1 /* trailing zero */)
9867
9868 memset (&sections, 0, sizeof (sections));
9869 cleanups = make_cleanup (null_cleanup, 0);
9870
9871 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9872 {
9873 asection *sectp;
9874 uint32_t section_nr =
9875 read_4_bytes (dbfd,
9876 dwp_htab->section_pool.v1.indices
9877 + (unit_index + i) * sizeof (uint32_t));
9878
9879 if (section_nr == 0)
9880 break;
9881 if (section_nr >= dwp_file->num_sections)
9882 {
9883 error (_("Dwarf Error: bad DWP hash table, section number too large"
9884 " [in module %s]"),
9885 dwp_file->name);
9886 }
9887
9888 sectp = dwp_file->elf_sections[section_nr];
9889 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9892 " [in module %s]"),
9893 dwp_file->name);
9894 }
9895 }
9896
9897 if (i < 2
9898 || dwarf2_section_empty_p (&sections.info_or_types)
9899 || dwarf2_section_empty_p (&sections.abbrev))
9900 {
9901 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9902 " [in module %s]"),
9903 dwp_file->name);
9904 }
9905 if (i == MAX_NR_V1_DWO_SECTIONS)
9906 {
9907 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9908 " [in module %s]"),
9909 dwp_file->name);
9910 }
9911
9912 /* It's easier for the rest of the code if we fake a struct dwo_file and
9913 have dwo_unit "live" in that. At least for now.
9914
9915 The DWP file can be made up of a random collection of CUs and TUs.
9916 However, for each CU + set of TUs that came from the same original DWO
9917 file, we can combine them back into a virtual DWO file to save space
9918 (fewer struct dwo_file objects to allocate). Remember that for really
9919 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9920
9921 virtual_dwo_name =
9922 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9923 get_section_id (&sections.abbrev),
9924 get_section_id (&sections.line),
9925 get_section_id (&sections.loc),
9926 get_section_id (&sections.str_offsets));
9927 make_cleanup (xfree, virtual_dwo_name);
9928 /* Can we use an existing virtual DWO file? */
9929 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9930 /* Create one if necessary. */
9931 if (*dwo_file_slot == NULL)
9932 {
9933 if (dwarf2_read_debug)
9934 {
9935 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9936 virtual_dwo_name);
9937 }
9938 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9939 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9940 virtual_dwo_name,
9941 strlen (virtual_dwo_name));
9942 dwo_file->comp_dir = comp_dir;
9943 dwo_file->sections.abbrev = sections.abbrev;
9944 dwo_file->sections.line = sections.line;
9945 dwo_file->sections.loc = sections.loc;
9946 dwo_file->sections.macinfo = sections.macinfo;
9947 dwo_file->sections.macro = sections.macro;
9948 dwo_file->sections.str_offsets = sections.str_offsets;
9949 /* The "str" section is global to the entire DWP file. */
9950 dwo_file->sections.str = dwp_file->sections.str;
9951 /* The info or types section is assigned below to dwo_unit,
9952 there's no need to record it in dwo_file.
9953 Also, we can't simply record type sections in dwo_file because
9954 we record a pointer into the vector in dwo_unit. As we collect more
9955 types we'll grow the vector and eventually have to reallocate space
9956 for it, invalidating all copies of pointers into the previous
9957 contents. */
9958 *dwo_file_slot = dwo_file;
9959 }
9960 else
9961 {
9962 if (dwarf2_read_debug)
9963 {
9964 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9965 virtual_dwo_name);
9966 }
9967 dwo_file = *dwo_file_slot;
9968 }
9969 do_cleanups (cleanups);
9970
9971 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9972 dwo_unit->dwo_file = dwo_file;
9973 dwo_unit->signature = signature;
9974 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9975 sizeof (struct dwarf2_section_info));
9976 *dwo_unit->section = sections.info_or_types;
9977 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9978
9979 return dwo_unit;
9980 }
9981
9982 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9983 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9984 piece within that section used by a TU/CU, return a virtual section
9985 of just that piece. */
9986
9987 static struct dwarf2_section_info
9988 create_dwp_v2_section (struct dwarf2_section_info *section,
9989 bfd_size_type offset, bfd_size_type size)
9990 {
9991 struct dwarf2_section_info result;
9992 asection *sectp;
9993
9994 gdb_assert (section != NULL);
9995 gdb_assert (!section->is_virtual);
9996
9997 memset (&result, 0, sizeof (result));
9998 result.s.containing_section = section;
9999 result.is_virtual = 1;
10000
10001 if (size == 0)
10002 return result;
10003
10004 sectp = get_section_bfd_section (section);
10005
10006 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10007 bounds of the real section. This is a pretty-rare event, so just
10008 flag an error (easier) instead of a warning and trying to cope. */
10009 if (sectp == NULL
10010 || offset + size > bfd_get_section_size (sectp))
10011 {
10012 bfd *abfd = sectp->owner;
10013
10014 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10015 " in section %s [in module %s]"),
10016 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10017 objfile_name (dwarf2_per_objfile->objfile));
10018 }
10019
10020 result.virtual_offset = offset;
10021 result.size = size;
10022 return result;
10023 }
10024
10025 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10026 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10027 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10028 This is for DWP version 2 files. */
10029
10030 static struct dwo_unit *
10031 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10032 uint32_t unit_index,
10033 const char *comp_dir,
10034 ULONGEST signature, int is_debug_types)
10035 {
10036 struct objfile *objfile = dwarf2_per_objfile->objfile;
10037 const struct dwp_hash_table *dwp_htab =
10038 is_debug_types ? dwp_file->tus : dwp_file->cus;
10039 bfd *dbfd = dwp_file->dbfd;
10040 const char *kind = is_debug_types ? "TU" : "CU";
10041 struct dwo_file *dwo_file;
10042 struct dwo_unit *dwo_unit;
10043 struct virtual_v2_dwo_sections sections;
10044 void **dwo_file_slot;
10045 char *virtual_dwo_name;
10046 struct dwarf2_section_info *cutu;
10047 struct cleanup *cleanups;
10048 int i;
10049
10050 gdb_assert (dwp_file->version == 2);
10051
10052 if (dwarf2_read_debug)
10053 {
10054 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10055 kind,
10056 pulongest (unit_index), hex_string (signature),
10057 dwp_file->name);
10058 }
10059
10060 /* Fetch the section offsets of this DWO unit. */
10061
10062 memset (&sections, 0, sizeof (sections));
10063 cleanups = make_cleanup (null_cleanup, 0);
10064
10065 for (i = 0; i < dwp_htab->nr_columns; ++i)
10066 {
10067 uint32_t offset = read_4_bytes (dbfd,
10068 dwp_htab->section_pool.v2.offsets
10069 + (((unit_index - 1) * dwp_htab->nr_columns
10070 + i)
10071 * sizeof (uint32_t)));
10072 uint32_t size = read_4_bytes (dbfd,
10073 dwp_htab->section_pool.v2.sizes
10074 + (((unit_index - 1) * dwp_htab->nr_columns
10075 + i)
10076 * sizeof (uint32_t)));
10077
10078 switch (dwp_htab->section_pool.v2.section_ids[i])
10079 {
10080 case DW_SECT_INFO:
10081 case DW_SECT_TYPES:
10082 sections.info_or_types_offset = offset;
10083 sections.info_or_types_size = size;
10084 break;
10085 case DW_SECT_ABBREV:
10086 sections.abbrev_offset = offset;
10087 sections.abbrev_size = size;
10088 break;
10089 case DW_SECT_LINE:
10090 sections.line_offset = offset;
10091 sections.line_size = size;
10092 break;
10093 case DW_SECT_LOC:
10094 sections.loc_offset = offset;
10095 sections.loc_size = size;
10096 break;
10097 case DW_SECT_STR_OFFSETS:
10098 sections.str_offsets_offset = offset;
10099 sections.str_offsets_size = size;
10100 break;
10101 case DW_SECT_MACINFO:
10102 sections.macinfo_offset = offset;
10103 sections.macinfo_size = size;
10104 break;
10105 case DW_SECT_MACRO:
10106 sections.macro_offset = offset;
10107 sections.macro_size = size;
10108 break;
10109 }
10110 }
10111
10112 /* It's easier for the rest of the code if we fake a struct dwo_file and
10113 have dwo_unit "live" in that. At least for now.
10114
10115 The DWP file can be made up of a random collection of CUs and TUs.
10116 However, for each CU + set of TUs that came from the same original DWO
10117 file, we can combine them back into a virtual DWO file to save space
10118 (fewer struct dwo_file objects to allocate). Remember that for really
10119 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10120
10121 virtual_dwo_name =
10122 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10123 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10124 (long) (sections.line_size ? sections.line_offset : 0),
10125 (long) (sections.loc_size ? sections.loc_offset : 0),
10126 (long) (sections.str_offsets_size
10127 ? sections.str_offsets_offset : 0));
10128 make_cleanup (xfree, virtual_dwo_name);
10129 /* Can we use an existing virtual DWO file? */
10130 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10131 /* Create one if necessary. */
10132 if (*dwo_file_slot == NULL)
10133 {
10134 if (dwarf2_read_debug)
10135 {
10136 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10137 virtual_dwo_name);
10138 }
10139 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10140 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10141 virtual_dwo_name,
10142 strlen (virtual_dwo_name));
10143 dwo_file->comp_dir = comp_dir;
10144 dwo_file->sections.abbrev =
10145 create_dwp_v2_section (&dwp_file->sections.abbrev,
10146 sections.abbrev_offset, sections.abbrev_size);
10147 dwo_file->sections.line =
10148 create_dwp_v2_section (&dwp_file->sections.line,
10149 sections.line_offset, sections.line_size);
10150 dwo_file->sections.loc =
10151 create_dwp_v2_section (&dwp_file->sections.loc,
10152 sections.loc_offset, sections.loc_size);
10153 dwo_file->sections.macinfo =
10154 create_dwp_v2_section (&dwp_file->sections.macinfo,
10155 sections.macinfo_offset, sections.macinfo_size);
10156 dwo_file->sections.macro =
10157 create_dwp_v2_section (&dwp_file->sections.macro,
10158 sections.macro_offset, sections.macro_size);
10159 dwo_file->sections.str_offsets =
10160 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10161 sections.str_offsets_offset,
10162 sections.str_offsets_size);
10163 /* The "str" section is global to the entire DWP file. */
10164 dwo_file->sections.str = dwp_file->sections.str;
10165 /* The info or types section is assigned below to dwo_unit,
10166 there's no need to record it in dwo_file.
10167 Also, we can't simply record type sections in dwo_file because
10168 we record a pointer into the vector in dwo_unit. As we collect more
10169 types we'll grow the vector and eventually have to reallocate space
10170 for it, invalidating all copies of pointers into the previous
10171 contents. */
10172 *dwo_file_slot = dwo_file;
10173 }
10174 else
10175 {
10176 if (dwarf2_read_debug)
10177 {
10178 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10179 virtual_dwo_name);
10180 }
10181 dwo_file = *dwo_file_slot;
10182 }
10183 do_cleanups (cleanups);
10184
10185 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10186 dwo_unit->dwo_file = dwo_file;
10187 dwo_unit->signature = signature;
10188 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10189 sizeof (struct dwarf2_section_info));
10190 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10191 ? &dwp_file->sections.types
10192 : &dwp_file->sections.info,
10193 sections.info_or_types_offset,
10194 sections.info_or_types_size);
10195 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10196
10197 return dwo_unit;
10198 }
10199
10200 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10201 Returns NULL if the signature isn't found. */
10202
10203 static struct dwo_unit *
10204 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10205 ULONGEST signature, int is_debug_types)
10206 {
10207 const struct dwp_hash_table *dwp_htab =
10208 is_debug_types ? dwp_file->tus : dwp_file->cus;
10209 bfd *dbfd = dwp_file->dbfd;
10210 uint32_t mask = dwp_htab->nr_slots - 1;
10211 uint32_t hash = signature & mask;
10212 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10213 unsigned int i;
10214 void **slot;
10215 struct dwo_unit find_dwo_cu, *dwo_cu;
10216
10217 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10218 find_dwo_cu.signature = signature;
10219 slot = htab_find_slot (is_debug_types
10220 ? dwp_file->loaded_tus
10221 : dwp_file->loaded_cus,
10222 &find_dwo_cu, INSERT);
10223
10224 if (*slot != NULL)
10225 return *slot;
10226
10227 /* Use a for loop so that we don't loop forever on bad debug info. */
10228 for (i = 0; i < dwp_htab->nr_slots; ++i)
10229 {
10230 ULONGEST signature_in_table;
10231
10232 signature_in_table =
10233 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10234 if (signature_in_table == signature)
10235 {
10236 uint32_t unit_index =
10237 read_4_bytes (dbfd,
10238 dwp_htab->unit_table + hash * sizeof (uint32_t));
10239
10240 if (dwp_file->version == 1)
10241 {
10242 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10243 comp_dir, signature,
10244 is_debug_types);
10245 }
10246 else
10247 {
10248 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10249 comp_dir, signature,
10250 is_debug_types);
10251 }
10252 return *slot;
10253 }
10254 if (signature_in_table == 0)
10255 return NULL;
10256 hash = (hash + hash2) & mask;
10257 }
10258
10259 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10260 " [in module %s]"),
10261 dwp_file->name);
10262 }
10263
10264 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10265 Open the file specified by FILE_NAME and hand it off to BFD for
10266 preliminary analysis. Return a newly initialized bfd *, which
10267 includes a canonicalized copy of FILE_NAME.
10268 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10269 SEARCH_CWD is true if the current directory is to be searched.
10270 It will be searched before debug-file-directory.
10271 If successful, the file is added to the bfd include table of the
10272 objfile's bfd (see gdb_bfd_record_inclusion).
10273 If unable to find/open the file, return NULL.
10274 NOTE: This function is derived from symfile_bfd_open. */
10275
10276 static bfd *
10277 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10278 {
10279 bfd *sym_bfd;
10280 int desc, flags;
10281 char *absolute_name;
10282 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10283 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10284 to debug_file_directory. */
10285 char *search_path;
10286 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10287
10288 if (search_cwd)
10289 {
10290 if (*debug_file_directory != '\0')
10291 search_path = concat (".", dirname_separator_string,
10292 debug_file_directory, NULL);
10293 else
10294 search_path = xstrdup (".");
10295 }
10296 else
10297 search_path = xstrdup (debug_file_directory);
10298
10299 flags = OPF_RETURN_REALPATH;
10300 if (is_dwp)
10301 flags |= OPF_SEARCH_IN_PATH;
10302 desc = openp (search_path, flags, file_name,
10303 O_RDONLY | O_BINARY, &absolute_name);
10304 xfree (search_path);
10305 if (desc < 0)
10306 return NULL;
10307
10308 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10309 xfree (absolute_name);
10310 if (sym_bfd == NULL)
10311 return NULL;
10312 bfd_set_cacheable (sym_bfd, 1);
10313
10314 if (!bfd_check_format (sym_bfd, bfd_object))
10315 {
10316 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10317 return NULL;
10318 }
10319
10320 /* Success. Record the bfd as having been included by the objfile's bfd.
10321 This is important because things like demangled_names_hash lives in the
10322 objfile's per_bfd space and may have references to things like symbol
10323 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10324 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10325
10326 return sym_bfd;
10327 }
10328
10329 /* Try to open DWO file FILE_NAME.
10330 COMP_DIR is the DW_AT_comp_dir attribute.
10331 The result is the bfd handle of the file.
10332 If there is a problem finding or opening the file, return NULL.
10333 Upon success, the canonicalized path of the file is stored in the bfd,
10334 same as symfile_bfd_open. */
10335
10336 static bfd *
10337 open_dwo_file (const char *file_name, const char *comp_dir)
10338 {
10339 bfd *abfd;
10340
10341 if (IS_ABSOLUTE_PATH (file_name))
10342 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10343
10344 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10345
10346 if (comp_dir != NULL)
10347 {
10348 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10349
10350 /* NOTE: If comp_dir is a relative path, this will also try the
10351 search path, which seems useful. */
10352 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10353 xfree (path_to_try);
10354 if (abfd != NULL)
10355 return abfd;
10356 }
10357
10358 /* That didn't work, try debug-file-directory, which, despite its name,
10359 is a list of paths. */
10360
10361 if (*debug_file_directory == '\0')
10362 return NULL;
10363
10364 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10365 }
10366
10367 /* This function is mapped across the sections and remembers the offset and
10368 size of each of the DWO debugging sections we are interested in. */
10369
10370 static void
10371 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10372 {
10373 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10374 const struct dwop_section_names *names = &dwop_section_names;
10375
10376 if (section_is_p (sectp->name, &names->abbrev_dwo))
10377 {
10378 dwo_sections->abbrev.s.asection = sectp;
10379 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10380 }
10381 else if (section_is_p (sectp->name, &names->info_dwo))
10382 {
10383 dwo_sections->info.s.asection = sectp;
10384 dwo_sections->info.size = bfd_get_section_size (sectp);
10385 }
10386 else if (section_is_p (sectp->name, &names->line_dwo))
10387 {
10388 dwo_sections->line.s.asection = sectp;
10389 dwo_sections->line.size = bfd_get_section_size (sectp);
10390 }
10391 else if (section_is_p (sectp->name, &names->loc_dwo))
10392 {
10393 dwo_sections->loc.s.asection = sectp;
10394 dwo_sections->loc.size = bfd_get_section_size (sectp);
10395 }
10396 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10397 {
10398 dwo_sections->macinfo.s.asection = sectp;
10399 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10400 }
10401 else if (section_is_p (sectp->name, &names->macro_dwo))
10402 {
10403 dwo_sections->macro.s.asection = sectp;
10404 dwo_sections->macro.size = bfd_get_section_size (sectp);
10405 }
10406 else if (section_is_p (sectp->name, &names->str_dwo))
10407 {
10408 dwo_sections->str.s.asection = sectp;
10409 dwo_sections->str.size = bfd_get_section_size (sectp);
10410 }
10411 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10412 {
10413 dwo_sections->str_offsets.s.asection = sectp;
10414 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10415 }
10416 else if (section_is_p (sectp->name, &names->types_dwo))
10417 {
10418 struct dwarf2_section_info type_section;
10419
10420 memset (&type_section, 0, sizeof (type_section));
10421 type_section.s.asection = sectp;
10422 type_section.size = bfd_get_section_size (sectp);
10423 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10424 &type_section);
10425 }
10426 }
10427
10428 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10429 by PER_CU. This is for the non-DWP case.
10430 The result is NULL if DWO_NAME can't be found. */
10431
10432 static struct dwo_file *
10433 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10434 const char *dwo_name, const char *comp_dir)
10435 {
10436 struct objfile *objfile = dwarf2_per_objfile->objfile;
10437 struct dwo_file *dwo_file;
10438 bfd *dbfd;
10439 struct cleanup *cleanups;
10440
10441 dbfd = open_dwo_file (dwo_name, comp_dir);
10442 if (dbfd == NULL)
10443 {
10444 if (dwarf2_read_debug)
10445 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10446 return NULL;
10447 }
10448 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10449 dwo_file->dwo_name = dwo_name;
10450 dwo_file->comp_dir = comp_dir;
10451 dwo_file->dbfd = dbfd;
10452
10453 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10454
10455 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10456
10457 dwo_file->cu = create_dwo_cu (dwo_file);
10458
10459 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10460 dwo_file->sections.types);
10461
10462 discard_cleanups (cleanups);
10463
10464 if (dwarf2_read_debug)
10465 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10466
10467 return dwo_file;
10468 }
10469
10470 /* This function is mapped across the sections and remembers the offset and
10471 size of each of the DWP debugging sections common to version 1 and 2 that
10472 we are interested in. */
10473
10474 static void
10475 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10476 void *dwp_file_ptr)
10477 {
10478 struct dwp_file *dwp_file = dwp_file_ptr;
10479 const struct dwop_section_names *names = &dwop_section_names;
10480 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10481
10482 /* Record the ELF section number for later lookup: this is what the
10483 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10484 gdb_assert (elf_section_nr < dwp_file->num_sections);
10485 dwp_file->elf_sections[elf_section_nr] = sectp;
10486
10487 /* Look for specific sections that we need. */
10488 if (section_is_p (sectp->name, &names->str_dwo))
10489 {
10490 dwp_file->sections.str.s.asection = sectp;
10491 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10492 }
10493 else if (section_is_p (sectp->name, &names->cu_index))
10494 {
10495 dwp_file->sections.cu_index.s.asection = sectp;
10496 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10497 }
10498 else if (section_is_p (sectp->name, &names->tu_index))
10499 {
10500 dwp_file->sections.tu_index.s.asection = sectp;
10501 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10502 }
10503 }
10504
10505 /* This function is mapped across the sections and remembers the offset and
10506 size of each of the DWP version 2 debugging sections that we are interested
10507 in. This is split into a separate function because we don't know if we
10508 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10509
10510 static void
10511 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10512 {
10513 struct dwp_file *dwp_file = dwp_file_ptr;
10514 const struct dwop_section_names *names = &dwop_section_names;
10515 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10516
10517 /* Record the ELF section number for later lookup: this is what the
10518 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10519 gdb_assert (elf_section_nr < dwp_file->num_sections);
10520 dwp_file->elf_sections[elf_section_nr] = sectp;
10521
10522 /* Look for specific sections that we need. */
10523 if (section_is_p (sectp->name, &names->abbrev_dwo))
10524 {
10525 dwp_file->sections.abbrev.s.asection = sectp;
10526 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10527 }
10528 else if (section_is_p (sectp->name, &names->info_dwo))
10529 {
10530 dwp_file->sections.info.s.asection = sectp;
10531 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10532 }
10533 else if (section_is_p (sectp->name, &names->line_dwo))
10534 {
10535 dwp_file->sections.line.s.asection = sectp;
10536 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10537 }
10538 else if (section_is_p (sectp->name, &names->loc_dwo))
10539 {
10540 dwp_file->sections.loc.s.asection = sectp;
10541 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10542 }
10543 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10544 {
10545 dwp_file->sections.macinfo.s.asection = sectp;
10546 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10547 }
10548 else if (section_is_p (sectp->name, &names->macro_dwo))
10549 {
10550 dwp_file->sections.macro.s.asection = sectp;
10551 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10552 }
10553 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10554 {
10555 dwp_file->sections.str_offsets.s.asection = sectp;
10556 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10557 }
10558 else if (section_is_p (sectp->name, &names->types_dwo))
10559 {
10560 dwp_file->sections.types.s.asection = sectp;
10561 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10562 }
10563 }
10564
10565 /* Hash function for dwp_file loaded CUs/TUs. */
10566
10567 static hashval_t
10568 hash_dwp_loaded_cutus (const void *item)
10569 {
10570 const struct dwo_unit *dwo_unit = item;
10571
10572 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10573 return dwo_unit->signature;
10574 }
10575
10576 /* Equality function for dwp_file loaded CUs/TUs. */
10577
10578 static int
10579 eq_dwp_loaded_cutus (const void *a, const void *b)
10580 {
10581 const struct dwo_unit *dua = a;
10582 const struct dwo_unit *dub = b;
10583
10584 return dua->signature == dub->signature;
10585 }
10586
10587 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10588
10589 static htab_t
10590 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10591 {
10592 return htab_create_alloc_ex (3,
10593 hash_dwp_loaded_cutus,
10594 eq_dwp_loaded_cutus,
10595 NULL,
10596 &objfile->objfile_obstack,
10597 hashtab_obstack_allocate,
10598 dummy_obstack_deallocate);
10599 }
10600
10601 /* Try to open DWP file FILE_NAME.
10602 The result is the bfd handle of the file.
10603 If there is a problem finding or opening the file, return NULL.
10604 Upon success, the canonicalized path of the file is stored in the bfd,
10605 same as symfile_bfd_open. */
10606
10607 static bfd *
10608 open_dwp_file (const char *file_name)
10609 {
10610 bfd *abfd;
10611
10612 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10613 if (abfd != NULL)
10614 return abfd;
10615
10616 /* Work around upstream bug 15652.
10617 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10618 [Whether that's a "bug" is debatable, but it is getting in our way.]
10619 We have no real idea where the dwp file is, because gdb's realpath-ing
10620 of the executable's path may have discarded the needed info.
10621 [IWBN if the dwp file name was recorded in the executable, akin to
10622 .gnu_debuglink, but that doesn't exist yet.]
10623 Strip the directory from FILE_NAME and search again. */
10624 if (*debug_file_directory != '\0')
10625 {
10626 /* Don't implicitly search the current directory here.
10627 If the user wants to search "." to handle this case,
10628 it must be added to debug-file-directory. */
10629 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10630 0 /*search_cwd*/);
10631 }
10632
10633 return NULL;
10634 }
10635
10636 /* Initialize the use of the DWP file for the current objfile.
10637 By convention the name of the DWP file is ${objfile}.dwp.
10638 The result is NULL if it can't be found. */
10639
10640 static struct dwp_file *
10641 open_and_init_dwp_file (void)
10642 {
10643 struct objfile *objfile = dwarf2_per_objfile->objfile;
10644 struct dwp_file *dwp_file;
10645 char *dwp_name;
10646 bfd *dbfd;
10647 struct cleanup *cleanups;
10648
10649 /* Try to find first .dwp for the binary file before any symbolic links
10650 resolving. */
10651 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10652 cleanups = make_cleanup (xfree, dwp_name);
10653
10654 dbfd = open_dwp_file (dwp_name);
10655 if (dbfd == NULL
10656 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10657 {
10658 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10659 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10660 make_cleanup (xfree, dwp_name);
10661 dbfd = open_dwp_file (dwp_name);
10662 }
10663
10664 if (dbfd == NULL)
10665 {
10666 if (dwarf2_read_debug)
10667 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10668 do_cleanups (cleanups);
10669 return NULL;
10670 }
10671 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10672 dwp_file->name = bfd_get_filename (dbfd);
10673 dwp_file->dbfd = dbfd;
10674 do_cleanups (cleanups);
10675
10676 /* +1: section 0 is unused */
10677 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10678 dwp_file->elf_sections =
10679 OBSTACK_CALLOC (&objfile->objfile_obstack,
10680 dwp_file->num_sections, asection *);
10681
10682 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10683
10684 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10685
10686 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10687
10688 /* The DWP file version is stored in the hash table. Oh well. */
10689 if (dwp_file->cus->version != dwp_file->tus->version)
10690 {
10691 /* Technically speaking, we should try to limp along, but this is
10692 pretty bizarre. We use pulongest here because that's the established
10693 portability solution (e.g, we cannot use %u for uint32_t). */
10694 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10695 " TU version %s [in DWP file %s]"),
10696 pulongest (dwp_file->cus->version),
10697 pulongest (dwp_file->tus->version), dwp_name);
10698 }
10699 dwp_file->version = dwp_file->cus->version;
10700
10701 if (dwp_file->version == 2)
10702 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10703
10704 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10705 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10706
10707 if (dwarf2_read_debug)
10708 {
10709 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10710 fprintf_unfiltered (gdb_stdlog,
10711 " %s CUs, %s TUs\n",
10712 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10713 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10714 }
10715
10716 return dwp_file;
10717 }
10718
10719 /* Wrapper around open_and_init_dwp_file, only open it once. */
10720
10721 static struct dwp_file *
10722 get_dwp_file (void)
10723 {
10724 if (! dwarf2_per_objfile->dwp_checked)
10725 {
10726 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10727 dwarf2_per_objfile->dwp_checked = 1;
10728 }
10729 return dwarf2_per_objfile->dwp_file;
10730 }
10731
10732 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10733 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10734 or in the DWP file for the objfile, referenced by THIS_UNIT.
10735 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10736 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10737
10738 This is called, for example, when wanting to read a variable with a
10739 complex location. Therefore we don't want to do file i/o for every call.
10740 Therefore we don't want to look for a DWO file on every call.
10741 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10742 then we check if we've already seen DWO_NAME, and only THEN do we check
10743 for a DWO file.
10744
10745 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10746 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10747
10748 static struct dwo_unit *
10749 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10750 const char *dwo_name, const char *comp_dir,
10751 ULONGEST signature, int is_debug_types)
10752 {
10753 struct objfile *objfile = dwarf2_per_objfile->objfile;
10754 const char *kind = is_debug_types ? "TU" : "CU";
10755 void **dwo_file_slot;
10756 struct dwo_file *dwo_file;
10757 struct dwp_file *dwp_file;
10758
10759 /* First see if there's a DWP file.
10760 If we have a DWP file but didn't find the DWO inside it, don't
10761 look for the original DWO file. It makes gdb behave differently
10762 depending on whether one is debugging in the build tree. */
10763
10764 dwp_file = get_dwp_file ();
10765 if (dwp_file != NULL)
10766 {
10767 const struct dwp_hash_table *dwp_htab =
10768 is_debug_types ? dwp_file->tus : dwp_file->cus;
10769
10770 if (dwp_htab != NULL)
10771 {
10772 struct dwo_unit *dwo_cutu =
10773 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10774 signature, is_debug_types);
10775
10776 if (dwo_cutu != NULL)
10777 {
10778 if (dwarf2_read_debug)
10779 {
10780 fprintf_unfiltered (gdb_stdlog,
10781 "Virtual DWO %s %s found: @%s\n",
10782 kind, hex_string (signature),
10783 host_address_to_string (dwo_cutu));
10784 }
10785 return dwo_cutu;
10786 }
10787 }
10788 }
10789 else
10790 {
10791 /* No DWP file, look for the DWO file. */
10792
10793 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10794 if (*dwo_file_slot == NULL)
10795 {
10796 /* Read in the file and build a table of the CUs/TUs it contains. */
10797 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10798 }
10799 /* NOTE: This will be NULL if unable to open the file. */
10800 dwo_file = *dwo_file_slot;
10801
10802 if (dwo_file != NULL)
10803 {
10804 struct dwo_unit *dwo_cutu = NULL;
10805
10806 if (is_debug_types && dwo_file->tus)
10807 {
10808 struct dwo_unit find_dwo_cutu;
10809
10810 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10811 find_dwo_cutu.signature = signature;
10812 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10813 }
10814 else if (!is_debug_types && dwo_file->cu)
10815 {
10816 if (signature == dwo_file->cu->signature)
10817 dwo_cutu = dwo_file->cu;
10818 }
10819
10820 if (dwo_cutu != NULL)
10821 {
10822 if (dwarf2_read_debug)
10823 {
10824 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10825 kind, dwo_name, hex_string (signature),
10826 host_address_to_string (dwo_cutu));
10827 }
10828 return dwo_cutu;
10829 }
10830 }
10831 }
10832
10833 /* We didn't find it. This could mean a dwo_id mismatch, or
10834 someone deleted the DWO/DWP file, or the search path isn't set up
10835 correctly to find the file. */
10836
10837 if (dwarf2_read_debug)
10838 {
10839 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10840 kind, dwo_name, hex_string (signature));
10841 }
10842
10843 /* This is a warning and not a complaint because it can be caused by
10844 pilot error (e.g., user accidentally deleting the DWO). */
10845 {
10846 /* Print the name of the DWP file if we looked there, helps the user
10847 better diagnose the problem. */
10848 char *dwp_text = NULL;
10849 struct cleanup *cleanups;
10850
10851 if (dwp_file != NULL)
10852 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10853 cleanups = make_cleanup (xfree, dwp_text);
10854
10855 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10856 " [in module %s]"),
10857 kind, dwo_name, hex_string (signature),
10858 dwp_text != NULL ? dwp_text : "",
10859 this_unit->is_debug_types ? "TU" : "CU",
10860 this_unit->offset.sect_off, objfile_name (objfile));
10861
10862 do_cleanups (cleanups);
10863 }
10864 return NULL;
10865 }
10866
10867 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10868 See lookup_dwo_cutu_unit for details. */
10869
10870 static struct dwo_unit *
10871 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10872 const char *dwo_name, const char *comp_dir,
10873 ULONGEST signature)
10874 {
10875 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10876 }
10877
10878 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10879 See lookup_dwo_cutu_unit for details. */
10880
10881 static struct dwo_unit *
10882 lookup_dwo_type_unit (struct signatured_type *this_tu,
10883 const char *dwo_name, const char *comp_dir)
10884 {
10885 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10886 }
10887
10888 /* Traversal function for queue_and_load_all_dwo_tus. */
10889
10890 static int
10891 queue_and_load_dwo_tu (void **slot, void *info)
10892 {
10893 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10894 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10895 ULONGEST signature = dwo_unit->signature;
10896 struct signatured_type *sig_type =
10897 lookup_dwo_signatured_type (per_cu->cu, signature);
10898
10899 if (sig_type != NULL)
10900 {
10901 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10902
10903 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10904 a real dependency of PER_CU on SIG_TYPE. That is detected later
10905 while processing PER_CU. */
10906 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10907 load_full_type_unit (sig_cu);
10908 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10909 }
10910
10911 return 1;
10912 }
10913
10914 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10915 The DWO may have the only definition of the type, though it may not be
10916 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10918
10919 static void
10920 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10921 {
10922 struct dwo_unit *dwo_unit;
10923 struct dwo_file *dwo_file;
10924
10925 gdb_assert (!per_cu->is_debug_types);
10926 gdb_assert (get_dwp_file () == NULL);
10927 gdb_assert (per_cu->cu != NULL);
10928
10929 dwo_unit = per_cu->cu->dwo_unit;
10930 gdb_assert (dwo_unit != NULL);
10931
10932 dwo_file = dwo_unit->dwo_file;
10933 if (dwo_file->tus != NULL)
10934 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10935 }
10936
10937 /* Free all resources associated with DWO_FILE.
10938 Close the DWO file and munmap the sections.
10939 All memory should be on the objfile obstack. */
10940
10941 static void
10942 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10943 {
10944 int ix;
10945 struct dwarf2_section_info *section;
10946
10947 /* Note: dbfd is NULL for virtual DWO files. */
10948 gdb_bfd_unref (dwo_file->dbfd);
10949
10950 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10951 }
10952
10953 /* Wrapper for free_dwo_file for use in cleanups. */
10954
10955 static void
10956 free_dwo_file_cleanup (void *arg)
10957 {
10958 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10959 struct objfile *objfile = dwarf2_per_objfile->objfile;
10960
10961 free_dwo_file (dwo_file, objfile);
10962 }
10963
10964 /* Traversal function for free_dwo_files. */
10965
10966 static int
10967 free_dwo_file_from_slot (void **slot, void *info)
10968 {
10969 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10970 struct objfile *objfile = (struct objfile *) info;
10971
10972 free_dwo_file (dwo_file, objfile);
10973
10974 return 1;
10975 }
10976
10977 /* Free all resources associated with DWO_FILES. */
10978
10979 static void
10980 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10981 {
10982 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10983 }
10984 \f
10985 /* Read in various DIEs. */
10986
10987 /* qsort helper for inherit_abstract_dies. */
10988
10989 static int
10990 unsigned_int_compar (const void *ap, const void *bp)
10991 {
10992 unsigned int a = *(unsigned int *) ap;
10993 unsigned int b = *(unsigned int *) bp;
10994
10995 return (a > b) - (b > a);
10996 }
10997
10998 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10999 Inherit only the children of the DW_AT_abstract_origin DIE not being
11000 already referenced by DW_AT_abstract_origin from the children of the
11001 current DIE. */
11002
11003 static void
11004 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11005 {
11006 struct die_info *child_die;
11007 unsigned die_children_count;
11008 /* CU offsets which were referenced by children of the current DIE. */
11009 sect_offset *offsets;
11010 sect_offset *offsets_end, *offsetp;
11011 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11012 struct die_info *origin_die;
11013 /* Iterator of the ORIGIN_DIE children. */
11014 struct die_info *origin_child_die;
11015 struct cleanup *cleanups;
11016 struct attribute *attr;
11017 struct dwarf2_cu *origin_cu;
11018 struct pending **origin_previous_list_in_scope;
11019
11020 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11021 if (!attr)
11022 return;
11023
11024 /* Note that following die references may follow to a die in a
11025 different cu. */
11026
11027 origin_cu = cu;
11028 origin_die = follow_die_ref (die, attr, &origin_cu);
11029
11030 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11031 symbols in. */
11032 origin_previous_list_in_scope = origin_cu->list_in_scope;
11033 origin_cu->list_in_scope = cu->list_in_scope;
11034
11035 if (die->tag != origin_die->tag
11036 && !(die->tag == DW_TAG_inlined_subroutine
11037 && origin_die->tag == DW_TAG_subprogram))
11038 complaint (&symfile_complaints,
11039 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11040 die->offset.sect_off, origin_die->offset.sect_off);
11041
11042 child_die = die->child;
11043 die_children_count = 0;
11044 while (child_die && child_die->tag)
11045 {
11046 child_die = sibling_die (child_die);
11047 die_children_count++;
11048 }
11049 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11050 cleanups = make_cleanup (xfree, offsets);
11051
11052 offsets_end = offsets;
11053 child_die = die->child;
11054 while (child_die && child_die->tag)
11055 {
11056 /* For each CHILD_DIE, find the corresponding child of
11057 ORIGIN_DIE. If there is more than one layer of
11058 DW_AT_abstract_origin, follow them all; there shouldn't be,
11059 but GCC versions at least through 4.4 generate this (GCC PR
11060 40573). */
11061 struct die_info *child_origin_die = child_die;
11062 struct dwarf2_cu *child_origin_cu = cu;
11063
11064 while (1)
11065 {
11066 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11067 child_origin_cu);
11068 if (attr == NULL)
11069 break;
11070 child_origin_die = follow_die_ref (child_origin_die, attr,
11071 &child_origin_cu);
11072 }
11073
11074 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11075 counterpart may exist. */
11076 if (child_origin_die != child_die)
11077 {
11078 if (child_die->tag != child_origin_die->tag
11079 && !(child_die->tag == DW_TAG_inlined_subroutine
11080 && child_origin_die->tag == DW_TAG_subprogram))
11081 complaint (&symfile_complaints,
11082 _("Child DIE 0x%x and its abstract origin 0x%x have "
11083 "different tags"), child_die->offset.sect_off,
11084 child_origin_die->offset.sect_off);
11085 if (child_origin_die->parent != origin_die)
11086 complaint (&symfile_complaints,
11087 _("Child DIE 0x%x and its abstract origin 0x%x have "
11088 "different parents"), child_die->offset.sect_off,
11089 child_origin_die->offset.sect_off);
11090 else
11091 *offsets_end++ = child_origin_die->offset;
11092 }
11093 child_die = sibling_die (child_die);
11094 }
11095 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11096 unsigned_int_compar);
11097 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11098 if (offsetp[-1].sect_off == offsetp->sect_off)
11099 complaint (&symfile_complaints,
11100 _("Multiple children of DIE 0x%x refer "
11101 "to DIE 0x%x as their abstract origin"),
11102 die->offset.sect_off, offsetp->sect_off);
11103
11104 offsetp = offsets;
11105 origin_child_die = origin_die->child;
11106 while (origin_child_die && origin_child_die->tag)
11107 {
11108 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11109 while (offsetp < offsets_end
11110 && offsetp->sect_off < origin_child_die->offset.sect_off)
11111 offsetp++;
11112 if (offsetp >= offsets_end
11113 || offsetp->sect_off > origin_child_die->offset.sect_off)
11114 {
11115 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11116 Check whether we're already processing ORIGIN_CHILD_DIE.
11117 This can happen with mutually referenced abstract_origins.
11118 PR 16581. */
11119 if (!origin_child_die->in_process)
11120 process_die (origin_child_die, origin_cu);
11121 }
11122 origin_child_die = sibling_die (origin_child_die);
11123 }
11124 origin_cu->list_in_scope = origin_previous_list_in_scope;
11125
11126 do_cleanups (cleanups);
11127 }
11128
11129 static void
11130 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11131 {
11132 struct objfile *objfile = cu->objfile;
11133 struct context_stack *new;
11134 CORE_ADDR lowpc;
11135 CORE_ADDR highpc;
11136 struct die_info *child_die;
11137 struct attribute *attr, *call_line, *call_file;
11138 const char *name;
11139 CORE_ADDR baseaddr;
11140 struct block *block;
11141 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11142 VEC (symbolp) *template_args = NULL;
11143 struct template_symbol *templ_func = NULL;
11144
11145 if (inlined_func)
11146 {
11147 /* If we do not have call site information, we can't show the
11148 caller of this inlined function. That's too confusing, so
11149 only use the scope for local variables. */
11150 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11151 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11152 if (call_line == NULL || call_file == NULL)
11153 {
11154 read_lexical_block_scope (die, cu);
11155 return;
11156 }
11157 }
11158
11159 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11160
11161 name = dwarf2_name (die, cu);
11162
11163 /* Ignore functions with missing or empty names. These are actually
11164 illegal according to the DWARF standard. */
11165 if (name == NULL)
11166 {
11167 complaint (&symfile_complaints,
11168 _("missing name for subprogram DIE at %d"),
11169 die->offset.sect_off);
11170 return;
11171 }
11172
11173 /* Ignore functions with missing or invalid low and high pc attributes. */
11174 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11175 {
11176 attr = dwarf2_attr (die, DW_AT_external, cu);
11177 if (!attr || !DW_UNSND (attr))
11178 complaint (&symfile_complaints,
11179 _("cannot get low and high bounds "
11180 "for subprogram DIE at %d"),
11181 die->offset.sect_off);
11182 return;
11183 }
11184
11185 lowpc += baseaddr;
11186 highpc += baseaddr;
11187
11188 /* If we have any template arguments, then we must allocate a
11189 different sort of symbol. */
11190 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11191 {
11192 if (child_die->tag == DW_TAG_template_type_param
11193 || child_die->tag == DW_TAG_template_value_param)
11194 {
11195 templ_func = allocate_template_symbol (objfile);
11196 templ_func->base.is_cplus_template_function = 1;
11197 break;
11198 }
11199 }
11200
11201 new = push_context (0, lowpc);
11202 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11203 (struct symbol *) templ_func);
11204
11205 /* If there is a location expression for DW_AT_frame_base, record
11206 it. */
11207 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11208 if (attr)
11209 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11210
11211 cu->list_in_scope = &local_symbols;
11212
11213 if (die->child != NULL)
11214 {
11215 child_die = die->child;
11216 while (child_die && child_die->tag)
11217 {
11218 if (child_die->tag == DW_TAG_template_type_param
11219 || child_die->tag == DW_TAG_template_value_param)
11220 {
11221 struct symbol *arg = new_symbol (child_die, NULL, cu);
11222
11223 if (arg != NULL)
11224 VEC_safe_push (symbolp, template_args, arg);
11225 }
11226 else
11227 process_die (child_die, cu);
11228 child_die = sibling_die (child_die);
11229 }
11230 }
11231
11232 inherit_abstract_dies (die, cu);
11233
11234 /* If we have a DW_AT_specification, we might need to import using
11235 directives from the context of the specification DIE. See the
11236 comment in determine_prefix. */
11237 if (cu->language == language_cplus
11238 && dwarf2_attr (die, DW_AT_specification, cu))
11239 {
11240 struct dwarf2_cu *spec_cu = cu;
11241 struct die_info *spec_die = die_specification (die, &spec_cu);
11242
11243 while (spec_die)
11244 {
11245 child_die = spec_die->child;
11246 while (child_die && child_die->tag)
11247 {
11248 if (child_die->tag == DW_TAG_imported_module)
11249 process_die (child_die, spec_cu);
11250 child_die = sibling_die (child_die);
11251 }
11252
11253 /* In some cases, GCC generates specification DIEs that
11254 themselves contain DW_AT_specification attributes. */
11255 spec_die = die_specification (spec_die, &spec_cu);
11256 }
11257 }
11258
11259 new = pop_context ();
11260 /* Make a block for the local symbols within. */
11261 block = finish_block (new->name, &local_symbols, new->old_blocks,
11262 lowpc, highpc, objfile);
11263
11264 /* For C++, set the block's scope. */
11265 if ((cu->language == language_cplus || cu->language == language_fortran)
11266 && cu->processing_has_namespace_info)
11267 block_set_scope (block, determine_prefix (die, cu),
11268 &objfile->objfile_obstack);
11269
11270 /* If we have address ranges, record them. */
11271 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11272
11273 /* Attach template arguments to function. */
11274 if (! VEC_empty (symbolp, template_args))
11275 {
11276 gdb_assert (templ_func != NULL);
11277
11278 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11279 templ_func->template_arguments
11280 = obstack_alloc (&objfile->objfile_obstack,
11281 (templ_func->n_template_arguments
11282 * sizeof (struct symbol *)));
11283 memcpy (templ_func->template_arguments,
11284 VEC_address (symbolp, template_args),
11285 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11286 VEC_free (symbolp, template_args);
11287 }
11288
11289 /* In C++, we can have functions nested inside functions (e.g., when
11290 a function declares a class that has methods). This means that
11291 when we finish processing a function scope, we may need to go
11292 back to building a containing block's symbol lists. */
11293 local_symbols = new->locals;
11294 using_directives = new->using_directives;
11295
11296 /* If we've finished processing a top-level function, subsequent
11297 symbols go in the file symbol list. */
11298 if (outermost_context_p ())
11299 cu->list_in_scope = &file_symbols;
11300 }
11301
11302 /* Process all the DIES contained within a lexical block scope. Start
11303 a new scope, process the dies, and then close the scope. */
11304
11305 static void
11306 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11307 {
11308 struct objfile *objfile = cu->objfile;
11309 struct context_stack *new;
11310 CORE_ADDR lowpc, highpc;
11311 struct die_info *child_die;
11312 CORE_ADDR baseaddr;
11313
11314 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11315
11316 /* Ignore blocks with missing or invalid low and high pc attributes. */
11317 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11318 as multiple lexical blocks? Handling children in a sane way would
11319 be nasty. Might be easier to properly extend generic blocks to
11320 describe ranges. */
11321 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11322 return;
11323 lowpc += baseaddr;
11324 highpc += baseaddr;
11325
11326 push_context (0, lowpc);
11327 if (die->child != NULL)
11328 {
11329 child_die = die->child;
11330 while (child_die && child_die->tag)
11331 {
11332 process_die (child_die, cu);
11333 child_die = sibling_die (child_die);
11334 }
11335 }
11336 new = pop_context ();
11337
11338 if (local_symbols != NULL || using_directives != NULL)
11339 {
11340 struct block *block
11341 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11342 highpc, objfile);
11343
11344 /* Note that recording ranges after traversing children, as we
11345 do here, means that recording a parent's ranges entails
11346 walking across all its children's ranges as they appear in
11347 the address map, which is quadratic behavior.
11348
11349 It would be nicer to record the parent's ranges before
11350 traversing its children, simply overriding whatever you find
11351 there. But since we don't even decide whether to create a
11352 block until after we've traversed its children, that's hard
11353 to do. */
11354 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11355 }
11356 local_symbols = new->locals;
11357 using_directives = new->using_directives;
11358 }
11359
11360 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11361
11362 static void
11363 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11364 {
11365 struct objfile *objfile = cu->objfile;
11366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11367 CORE_ADDR pc, baseaddr;
11368 struct attribute *attr;
11369 struct call_site *call_site, call_site_local;
11370 void **slot;
11371 int nparams;
11372 struct die_info *child_die;
11373
11374 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11375
11376 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11377 if (!attr)
11378 {
11379 complaint (&symfile_complaints,
11380 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11381 "DIE 0x%x [in module %s]"),
11382 die->offset.sect_off, objfile_name (objfile));
11383 return;
11384 }
11385 pc = attr_value_as_address (attr) + baseaddr;
11386
11387 if (cu->call_site_htab == NULL)
11388 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11389 NULL, &objfile->objfile_obstack,
11390 hashtab_obstack_allocate, NULL);
11391 call_site_local.pc = pc;
11392 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11393 if (*slot != NULL)
11394 {
11395 complaint (&symfile_complaints,
11396 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11397 "DIE 0x%x [in module %s]"),
11398 paddress (gdbarch, pc), die->offset.sect_off,
11399 objfile_name (objfile));
11400 return;
11401 }
11402
11403 /* Count parameters at the caller. */
11404
11405 nparams = 0;
11406 for (child_die = die->child; child_die && child_die->tag;
11407 child_die = sibling_die (child_die))
11408 {
11409 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11410 {
11411 complaint (&symfile_complaints,
11412 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11413 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11414 child_die->tag, child_die->offset.sect_off,
11415 objfile_name (objfile));
11416 continue;
11417 }
11418
11419 nparams++;
11420 }
11421
11422 call_site = obstack_alloc (&objfile->objfile_obstack,
11423 (sizeof (*call_site)
11424 + (sizeof (*call_site->parameter)
11425 * (nparams - 1))));
11426 *slot = call_site;
11427 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11428 call_site->pc = pc;
11429
11430 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11431 {
11432 struct die_info *func_die;
11433
11434 /* Skip also over DW_TAG_inlined_subroutine. */
11435 for (func_die = die->parent;
11436 func_die && func_die->tag != DW_TAG_subprogram
11437 && func_die->tag != DW_TAG_subroutine_type;
11438 func_die = func_die->parent);
11439
11440 /* DW_AT_GNU_all_call_sites is a superset
11441 of DW_AT_GNU_all_tail_call_sites. */
11442 if (func_die
11443 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11444 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11445 {
11446 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11447 not complete. But keep CALL_SITE for look ups via call_site_htab,
11448 both the initial caller containing the real return address PC and
11449 the final callee containing the current PC of a chain of tail
11450 calls do not need to have the tail call list complete. But any
11451 function candidate for a virtual tail call frame searched via
11452 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11453 determined unambiguously. */
11454 }
11455 else
11456 {
11457 struct type *func_type = NULL;
11458
11459 if (func_die)
11460 func_type = get_die_type (func_die, cu);
11461 if (func_type != NULL)
11462 {
11463 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11464
11465 /* Enlist this call site to the function. */
11466 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11467 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11468 }
11469 else
11470 complaint (&symfile_complaints,
11471 _("Cannot find function owning DW_TAG_GNU_call_site "
11472 "DIE 0x%x [in module %s]"),
11473 die->offset.sect_off, objfile_name (objfile));
11474 }
11475 }
11476
11477 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11478 if (attr == NULL)
11479 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11480 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11481 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11482 /* Keep NULL DWARF_BLOCK. */;
11483 else if (attr_form_is_block (attr))
11484 {
11485 struct dwarf2_locexpr_baton *dlbaton;
11486
11487 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11488 dlbaton->data = DW_BLOCK (attr)->data;
11489 dlbaton->size = DW_BLOCK (attr)->size;
11490 dlbaton->per_cu = cu->per_cu;
11491
11492 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11493 }
11494 else if (attr_form_is_ref (attr))
11495 {
11496 struct dwarf2_cu *target_cu = cu;
11497 struct die_info *target_die;
11498
11499 target_die = follow_die_ref (die, attr, &target_cu);
11500 gdb_assert (target_cu->objfile == objfile);
11501 if (die_is_declaration (target_die, target_cu))
11502 {
11503 const char *target_physname = NULL;
11504 struct attribute *target_attr;
11505
11506 /* Prefer the mangled name; otherwise compute the demangled one. */
11507 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11508 if (target_attr == NULL)
11509 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11510 target_cu);
11511 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11512 target_physname = DW_STRING (target_attr);
11513 else
11514 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11515 if (target_physname == NULL)
11516 complaint (&symfile_complaints,
11517 _("DW_AT_GNU_call_site_target target DIE has invalid "
11518 "physname, for referencing DIE 0x%x [in module %s]"),
11519 die->offset.sect_off, objfile_name (objfile));
11520 else
11521 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11522 }
11523 else
11524 {
11525 CORE_ADDR lowpc;
11526
11527 /* DW_AT_entry_pc should be preferred. */
11528 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11529 complaint (&symfile_complaints,
11530 _("DW_AT_GNU_call_site_target target DIE has invalid "
11531 "low pc, for referencing DIE 0x%x [in module %s]"),
11532 die->offset.sect_off, objfile_name (objfile));
11533 else
11534 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11535 }
11536 }
11537 else
11538 complaint (&symfile_complaints,
11539 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11540 "block nor reference, for DIE 0x%x [in module %s]"),
11541 die->offset.sect_off, objfile_name (objfile));
11542
11543 call_site->per_cu = cu->per_cu;
11544
11545 for (child_die = die->child;
11546 child_die && child_die->tag;
11547 child_die = sibling_die (child_die))
11548 {
11549 struct call_site_parameter *parameter;
11550 struct attribute *loc, *origin;
11551
11552 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11553 {
11554 /* Already printed the complaint above. */
11555 continue;
11556 }
11557
11558 gdb_assert (call_site->parameter_count < nparams);
11559 parameter = &call_site->parameter[call_site->parameter_count];
11560
11561 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11562 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11563 register is contained in DW_AT_GNU_call_site_value. */
11564
11565 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11566 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11567 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11568 {
11569 sect_offset offset;
11570
11571 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11572 offset = dwarf2_get_ref_die_offset (origin);
11573 if (!offset_in_cu_p (&cu->header, offset))
11574 {
11575 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11576 binding can be done only inside one CU. Such referenced DIE
11577 therefore cannot be even moved to DW_TAG_partial_unit. */
11578 complaint (&symfile_complaints,
11579 _("DW_AT_abstract_origin offset is not in CU for "
11580 "DW_TAG_GNU_call_site child DIE 0x%x "
11581 "[in module %s]"),
11582 child_die->offset.sect_off, objfile_name (objfile));
11583 continue;
11584 }
11585 parameter->u.param_offset.cu_off = (offset.sect_off
11586 - cu->header.offset.sect_off);
11587 }
11588 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11589 {
11590 complaint (&symfile_complaints,
11591 _("No DW_FORM_block* DW_AT_location for "
11592 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11593 child_die->offset.sect_off, objfile_name (objfile));
11594 continue;
11595 }
11596 else
11597 {
11598 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11599 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11600 if (parameter->u.dwarf_reg != -1)
11601 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11602 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11603 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11604 &parameter->u.fb_offset))
11605 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11606 else
11607 {
11608 complaint (&symfile_complaints,
11609 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11610 "for DW_FORM_block* DW_AT_location is supported for "
11611 "DW_TAG_GNU_call_site child DIE 0x%x "
11612 "[in module %s]"),
11613 child_die->offset.sect_off, objfile_name (objfile));
11614 continue;
11615 }
11616 }
11617
11618 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11619 if (!attr_form_is_block (attr))
11620 {
11621 complaint (&symfile_complaints,
11622 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11623 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11624 child_die->offset.sect_off, objfile_name (objfile));
11625 continue;
11626 }
11627 parameter->value = DW_BLOCK (attr)->data;
11628 parameter->value_size = DW_BLOCK (attr)->size;
11629
11630 /* Parameters are not pre-cleared by memset above. */
11631 parameter->data_value = NULL;
11632 parameter->data_value_size = 0;
11633 call_site->parameter_count++;
11634
11635 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11636 if (attr)
11637 {
11638 if (!attr_form_is_block (attr))
11639 complaint (&symfile_complaints,
11640 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11641 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11642 child_die->offset.sect_off, objfile_name (objfile));
11643 else
11644 {
11645 parameter->data_value = DW_BLOCK (attr)->data;
11646 parameter->data_value_size = DW_BLOCK (attr)->size;
11647 }
11648 }
11649 }
11650 }
11651
11652 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11653 Return 1 if the attributes are present and valid, otherwise, return 0.
11654 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11655
11656 static int
11657 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11658 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11659 struct partial_symtab *ranges_pst)
11660 {
11661 struct objfile *objfile = cu->objfile;
11662 struct comp_unit_head *cu_header = &cu->header;
11663 bfd *obfd = objfile->obfd;
11664 unsigned int addr_size = cu_header->addr_size;
11665 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11666 /* Base address selection entry. */
11667 CORE_ADDR base;
11668 int found_base;
11669 unsigned int dummy;
11670 const gdb_byte *buffer;
11671 CORE_ADDR marker;
11672 int low_set;
11673 CORE_ADDR low = 0;
11674 CORE_ADDR high = 0;
11675 CORE_ADDR baseaddr;
11676
11677 found_base = cu->base_known;
11678 base = cu->base_address;
11679
11680 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11681 if (offset >= dwarf2_per_objfile->ranges.size)
11682 {
11683 complaint (&symfile_complaints,
11684 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11685 offset);
11686 return 0;
11687 }
11688 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11689
11690 /* Read in the largest possible address. */
11691 marker = read_address (obfd, buffer, cu, &dummy);
11692 if ((marker & mask) == mask)
11693 {
11694 /* If we found the largest possible address, then
11695 read the base address. */
11696 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11697 buffer += 2 * addr_size;
11698 offset += 2 * addr_size;
11699 found_base = 1;
11700 }
11701
11702 low_set = 0;
11703
11704 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11705
11706 while (1)
11707 {
11708 CORE_ADDR range_beginning, range_end;
11709
11710 range_beginning = read_address (obfd, buffer, cu, &dummy);
11711 buffer += addr_size;
11712 range_end = read_address (obfd, buffer, cu, &dummy);
11713 buffer += addr_size;
11714 offset += 2 * addr_size;
11715
11716 /* An end of list marker is a pair of zero addresses. */
11717 if (range_beginning == 0 && range_end == 0)
11718 /* Found the end of list entry. */
11719 break;
11720
11721 /* Each base address selection entry is a pair of 2 values.
11722 The first is the largest possible address, the second is
11723 the base address. Check for a base address here. */
11724 if ((range_beginning & mask) == mask)
11725 {
11726 /* If we found the largest possible address, then
11727 read the base address. */
11728 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11729 found_base = 1;
11730 continue;
11731 }
11732
11733 if (!found_base)
11734 {
11735 /* We have no valid base address for the ranges
11736 data. */
11737 complaint (&symfile_complaints,
11738 _("Invalid .debug_ranges data (no base address)"));
11739 return 0;
11740 }
11741
11742 if (range_beginning > range_end)
11743 {
11744 /* Inverted range entries are invalid. */
11745 complaint (&symfile_complaints,
11746 _("Invalid .debug_ranges data (inverted range)"));
11747 return 0;
11748 }
11749
11750 /* Empty range entries have no effect. */
11751 if (range_beginning == range_end)
11752 continue;
11753
11754 range_beginning += base;
11755 range_end += base;
11756
11757 /* A not-uncommon case of bad debug info.
11758 Don't pollute the addrmap with bad data. */
11759 if (range_beginning + baseaddr == 0
11760 && !dwarf2_per_objfile->has_section_at_zero)
11761 {
11762 complaint (&symfile_complaints,
11763 _(".debug_ranges entry has start address of zero"
11764 " [in module %s]"), objfile_name (objfile));
11765 continue;
11766 }
11767
11768 if (ranges_pst != NULL)
11769 addrmap_set_empty (objfile->psymtabs_addrmap,
11770 range_beginning + baseaddr,
11771 range_end - 1 + baseaddr,
11772 ranges_pst);
11773
11774 /* FIXME: This is recording everything as a low-high
11775 segment of consecutive addresses. We should have a
11776 data structure for discontiguous block ranges
11777 instead. */
11778 if (! low_set)
11779 {
11780 low = range_beginning;
11781 high = range_end;
11782 low_set = 1;
11783 }
11784 else
11785 {
11786 if (range_beginning < low)
11787 low = range_beginning;
11788 if (range_end > high)
11789 high = range_end;
11790 }
11791 }
11792
11793 if (! low_set)
11794 /* If the first entry is an end-of-list marker, the range
11795 describes an empty scope, i.e. no instructions. */
11796 return 0;
11797
11798 if (low_return)
11799 *low_return = low;
11800 if (high_return)
11801 *high_return = high;
11802 return 1;
11803 }
11804
11805 /* Get low and high pc attributes from a die. Return 1 if the attributes
11806 are present and valid, otherwise, return 0. Return -1 if the range is
11807 discontinuous, i.e. derived from DW_AT_ranges information. */
11808
11809 static int
11810 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11811 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11812 struct partial_symtab *pst)
11813 {
11814 struct attribute *attr;
11815 struct attribute *attr_high;
11816 CORE_ADDR low = 0;
11817 CORE_ADDR high = 0;
11818 int ret = 0;
11819
11820 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11821 if (attr_high)
11822 {
11823 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11824 if (attr)
11825 {
11826 low = attr_value_as_address (attr);
11827 high = attr_value_as_address (attr_high);
11828 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11829 high += low;
11830 }
11831 else
11832 /* Found high w/o low attribute. */
11833 return 0;
11834
11835 /* Found consecutive range of addresses. */
11836 ret = 1;
11837 }
11838 else
11839 {
11840 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11841 if (attr != NULL)
11842 {
11843 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11844 We take advantage of the fact that DW_AT_ranges does not appear
11845 in DW_TAG_compile_unit of DWO files. */
11846 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11847 unsigned int ranges_offset = (DW_UNSND (attr)
11848 + (need_ranges_base
11849 ? cu->ranges_base
11850 : 0));
11851
11852 /* Value of the DW_AT_ranges attribute is the offset in the
11853 .debug_ranges section. */
11854 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11855 return 0;
11856 /* Found discontinuous range of addresses. */
11857 ret = -1;
11858 }
11859 }
11860
11861 /* read_partial_die has also the strict LOW < HIGH requirement. */
11862 if (high <= low)
11863 return 0;
11864
11865 /* When using the GNU linker, .gnu.linkonce. sections are used to
11866 eliminate duplicate copies of functions and vtables and such.
11867 The linker will arbitrarily choose one and discard the others.
11868 The AT_*_pc values for such functions refer to local labels in
11869 these sections. If the section from that file was discarded, the
11870 labels are not in the output, so the relocs get a value of 0.
11871 If this is a discarded function, mark the pc bounds as invalid,
11872 so that GDB will ignore it. */
11873 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11874 return 0;
11875
11876 *lowpc = low;
11877 if (highpc)
11878 *highpc = high;
11879 return ret;
11880 }
11881
11882 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11883 its low and high PC addresses. Do nothing if these addresses could not
11884 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11885 and HIGHPC to the high address if greater than HIGHPC. */
11886
11887 static void
11888 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11889 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11890 struct dwarf2_cu *cu)
11891 {
11892 CORE_ADDR low, high;
11893 struct die_info *child = die->child;
11894
11895 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11896 {
11897 *lowpc = min (*lowpc, low);
11898 *highpc = max (*highpc, high);
11899 }
11900
11901 /* If the language does not allow nested subprograms (either inside
11902 subprograms or lexical blocks), we're done. */
11903 if (cu->language != language_ada)
11904 return;
11905
11906 /* Check all the children of the given DIE. If it contains nested
11907 subprograms, then check their pc bounds. Likewise, we need to
11908 check lexical blocks as well, as they may also contain subprogram
11909 definitions. */
11910 while (child && child->tag)
11911 {
11912 if (child->tag == DW_TAG_subprogram
11913 || child->tag == DW_TAG_lexical_block)
11914 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11915 child = sibling_die (child);
11916 }
11917 }
11918
11919 /* Get the low and high pc's represented by the scope DIE, and store
11920 them in *LOWPC and *HIGHPC. If the correct values can't be
11921 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11922
11923 static void
11924 get_scope_pc_bounds (struct die_info *die,
11925 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11926 struct dwarf2_cu *cu)
11927 {
11928 CORE_ADDR best_low = (CORE_ADDR) -1;
11929 CORE_ADDR best_high = (CORE_ADDR) 0;
11930 CORE_ADDR current_low, current_high;
11931
11932 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11933 {
11934 best_low = current_low;
11935 best_high = current_high;
11936 }
11937 else
11938 {
11939 struct die_info *child = die->child;
11940
11941 while (child && child->tag)
11942 {
11943 switch (child->tag) {
11944 case DW_TAG_subprogram:
11945 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11946 break;
11947 case DW_TAG_namespace:
11948 case DW_TAG_module:
11949 /* FIXME: carlton/2004-01-16: Should we do this for
11950 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11951 that current GCC's always emit the DIEs corresponding
11952 to definitions of methods of classes as children of a
11953 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11954 the DIEs giving the declarations, which could be
11955 anywhere). But I don't see any reason why the
11956 standards says that they have to be there. */
11957 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11958
11959 if (current_low != ((CORE_ADDR) -1))
11960 {
11961 best_low = min (best_low, current_low);
11962 best_high = max (best_high, current_high);
11963 }
11964 break;
11965 default:
11966 /* Ignore. */
11967 break;
11968 }
11969
11970 child = sibling_die (child);
11971 }
11972 }
11973
11974 *lowpc = best_low;
11975 *highpc = best_high;
11976 }
11977
11978 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11979 in DIE. */
11980
11981 static void
11982 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11983 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11984 {
11985 struct objfile *objfile = cu->objfile;
11986 struct attribute *attr;
11987 struct attribute *attr_high;
11988
11989 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11990 if (attr_high)
11991 {
11992 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11993 if (attr)
11994 {
11995 CORE_ADDR low = attr_value_as_address (attr);
11996 CORE_ADDR high = attr_value_as_address (attr_high);
11997
11998 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11999 high += low;
12000
12001 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12002 }
12003 }
12004
12005 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12006 if (attr)
12007 {
12008 bfd *obfd = objfile->obfd;
12009 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12010 We take advantage of the fact that DW_AT_ranges does not appear
12011 in DW_TAG_compile_unit of DWO files. */
12012 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12013
12014 /* The value of the DW_AT_ranges attribute is the offset of the
12015 address range list in the .debug_ranges section. */
12016 unsigned long offset = (DW_UNSND (attr)
12017 + (need_ranges_base ? cu->ranges_base : 0));
12018 const gdb_byte *buffer;
12019
12020 /* For some target architectures, but not others, the
12021 read_address function sign-extends the addresses it returns.
12022 To recognize base address selection entries, we need a
12023 mask. */
12024 unsigned int addr_size = cu->header.addr_size;
12025 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12026
12027 /* The base address, to which the next pair is relative. Note
12028 that this 'base' is a DWARF concept: most entries in a range
12029 list are relative, to reduce the number of relocs against the
12030 debugging information. This is separate from this function's
12031 'baseaddr' argument, which GDB uses to relocate debugging
12032 information from a shared library based on the address at
12033 which the library was loaded. */
12034 CORE_ADDR base = cu->base_address;
12035 int base_known = cu->base_known;
12036
12037 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12038 if (offset >= dwarf2_per_objfile->ranges.size)
12039 {
12040 complaint (&symfile_complaints,
12041 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12042 offset);
12043 return;
12044 }
12045 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12046
12047 for (;;)
12048 {
12049 unsigned int bytes_read;
12050 CORE_ADDR start, end;
12051
12052 start = read_address (obfd, buffer, cu, &bytes_read);
12053 buffer += bytes_read;
12054 end = read_address (obfd, buffer, cu, &bytes_read);
12055 buffer += bytes_read;
12056
12057 /* Did we find the end of the range list? */
12058 if (start == 0 && end == 0)
12059 break;
12060
12061 /* Did we find a base address selection entry? */
12062 else if ((start & base_select_mask) == base_select_mask)
12063 {
12064 base = end;
12065 base_known = 1;
12066 }
12067
12068 /* We found an ordinary address range. */
12069 else
12070 {
12071 if (!base_known)
12072 {
12073 complaint (&symfile_complaints,
12074 _("Invalid .debug_ranges data "
12075 "(no base address)"));
12076 return;
12077 }
12078
12079 if (start > end)
12080 {
12081 /* Inverted range entries are invalid. */
12082 complaint (&symfile_complaints,
12083 _("Invalid .debug_ranges data "
12084 "(inverted range)"));
12085 return;
12086 }
12087
12088 /* Empty range entries have no effect. */
12089 if (start == end)
12090 continue;
12091
12092 start += base + baseaddr;
12093 end += base + baseaddr;
12094
12095 /* A not-uncommon case of bad debug info.
12096 Don't pollute the addrmap with bad data. */
12097 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12098 {
12099 complaint (&symfile_complaints,
12100 _(".debug_ranges entry has start address of zero"
12101 " [in module %s]"), objfile_name (objfile));
12102 continue;
12103 }
12104
12105 record_block_range (block, start, end - 1);
12106 }
12107 }
12108 }
12109 }
12110
12111 /* Check whether the producer field indicates either of GCC < 4.6, or the
12112 Intel C/C++ compiler, and cache the result in CU. */
12113
12114 static void
12115 check_producer (struct dwarf2_cu *cu)
12116 {
12117 const char *cs;
12118 int major, minor, release;
12119
12120 if (cu->producer == NULL)
12121 {
12122 /* For unknown compilers expect their behavior is DWARF version
12123 compliant.
12124
12125 GCC started to support .debug_types sections by -gdwarf-4 since
12126 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12127 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12128 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12129 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12130 }
12131 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12132 {
12133 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12134
12135 cs = &cu->producer[strlen ("GNU ")];
12136 while (*cs && !isdigit (*cs))
12137 cs++;
12138 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12139 {
12140 /* Not recognized as GCC. */
12141 }
12142 else
12143 {
12144 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12145 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12146 }
12147 }
12148 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12149 cu->producer_is_icc = 1;
12150 else
12151 {
12152 /* For other non-GCC compilers, expect their behavior is DWARF version
12153 compliant. */
12154 }
12155
12156 cu->checked_producer = 1;
12157 }
12158
12159 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12160 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12161 during 4.6.0 experimental. */
12162
12163 static int
12164 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12165 {
12166 if (!cu->checked_producer)
12167 check_producer (cu);
12168
12169 return cu->producer_is_gxx_lt_4_6;
12170 }
12171
12172 /* Return the default accessibility type if it is not overriden by
12173 DW_AT_accessibility. */
12174
12175 static enum dwarf_access_attribute
12176 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12177 {
12178 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12179 {
12180 /* The default DWARF 2 accessibility for members is public, the default
12181 accessibility for inheritance is private. */
12182
12183 if (die->tag != DW_TAG_inheritance)
12184 return DW_ACCESS_public;
12185 else
12186 return DW_ACCESS_private;
12187 }
12188 else
12189 {
12190 /* DWARF 3+ defines the default accessibility a different way. The same
12191 rules apply now for DW_TAG_inheritance as for the members and it only
12192 depends on the container kind. */
12193
12194 if (die->parent->tag == DW_TAG_class_type)
12195 return DW_ACCESS_private;
12196 else
12197 return DW_ACCESS_public;
12198 }
12199 }
12200
12201 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12202 offset. If the attribute was not found return 0, otherwise return
12203 1. If it was found but could not properly be handled, set *OFFSET
12204 to 0. */
12205
12206 static int
12207 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12208 LONGEST *offset)
12209 {
12210 struct attribute *attr;
12211
12212 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12213 if (attr != NULL)
12214 {
12215 *offset = 0;
12216
12217 /* Note that we do not check for a section offset first here.
12218 This is because DW_AT_data_member_location is new in DWARF 4,
12219 so if we see it, we can assume that a constant form is really
12220 a constant and not a section offset. */
12221 if (attr_form_is_constant (attr))
12222 *offset = dwarf2_get_attr_constant_value (attr, 0);
12223 else if (attr_form_is_section_offset (attr))
12224 dwarf2_complex_location_expr_complaint ();
12225 else if (attr_form_is_block (attr))
12226 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12227 else
12228 dwarf2_complex_location_expr_complaint ();
12229
12230 return 1;
12231 }
12232
12233 return 0;
12234 }
12235
12236 /* Add an aggregate field to the field list. */
12237
12238 static void
12239 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12240 struct dwarf2_cu *cu)
12241 {
12242 struct objfile *objfile = cu->objfile;
12243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12244 struct nextfield *new_field;
12245 struct attribute *attr;
12246 struct field *fp;
12247 const char *fieldname = "";
12248
12249 /* Allocate a new field list entry and link it in. */
12250 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12251 make_cleanup (xfree, new_field);
12252 memset (new_field, 0, sizeof (struct nextfield));
12253
12254 if (die->tag == DW_TAG_inheritance)
12255 {
12256 new_field->next = fip->baseclasses;
12257 fip->baseclasses = new_field;
12258 }
12259 else
12260 {
12261 new_field->next = fip->fields;
12262 fip->fields = new_field;
12263 }
12264 fip->nfields++;
12265
12266 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12267 if (attr)
12268 new_field->accessibility = DW_UNSND (attr);
12269 else
12270 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12271 if (new_field->accessibility != DW_ACCESS_public)
12272 fip->non_public_fields = 1;
12273
12274 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12275 if (attr)
12276 new_field->virtuality = DW_UNSND (attr);
12277 else
12278 new_field->virtuality = DW_VIRTUALITY_none;
12279
12280 fp = &new_field->field;
12281
12282 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12283 {
12284 LONGEST offset;
12285
12286 /* Data member other than a C++ static data member. */
12287
12288 /* Get type of field. */
12289 fp->type = die_type (die, cu);
12290
12291 SET_FIELD_BITPOS (*fp, 0);
12292
12293 /* Get bit size of field (zero if none). */
12294 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12295 if (attr)
12296 {
12297 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12298 }
12299 else
12300 {
12301 FIELD_BITSIZE (*fp) = 0;
12302 }
12303
12304 /* Get bit offset of field. */
12305 if (handle_data_member_location (die, cu, &offset))
12306 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12307 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12308 if (attr)
12309 {
12310 if (gdbarch_bits_big_endian (gdbarch))
12311 {
12312 /* For big endian bits, the DW_AT_bit_offset gives the
12313 additional bit offset from the MSB of the containing
12314 anonymous object to the MSB of the field. We don't
12315 have to do anything special since we don't need to
12316 know the size of the anonymous object. */
12317 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12318 }
12319 else
12320 {
12321 /* For little endian bits, compute the bit offset to the
12322 MSB of the anonymous object, subtract off the number of
12323 bits from the MSB of the field to the MSB of the
12324 object, and then subtract off the number of bits of
12325 the field itself. The result is the bit offset of
12326 the LSB of the field. */
12327 int anonymous_size;
12328 int bit_offset = DW_UNSND (attr);
12329
12330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12331 if (attr)
12332 {
12333 /* The size of the anonymous object containing
12334 the bit field is explicit, so use the
12335 indicated size (in bytes). */
12336 anonymous_size = DW_UNSND (attr);
12337 }
12338 else
12339 {
12340 /* The size of the anonymous object containing
12341 the bit field must be inferred from the type
12342 attribute of the data member containing the
12343 bit field. */
12344 anonymous_size = TYPE_LENGTH (fp->type);
12345 }
12346 SET_FIELD_BITPOS (*fp,
12347 (FIELD_BITPOS (*fp)
12348 + anonymous_size * bits_per_byte
12349 - bit_offset - FIELD_BITSIZE (*fp)));
12350 }
12351 }
12352
12353 /* Get name of field. */
12354 fieldname = dwarf2_name (die, cu);
12355 if (fieldname == NULL)
12356 fieldname = "";
12357
12358 /* The name is already allocated along with this objfile, so we don't
12359 need to duplicate it for the type. */
12360 fp->name = fieldname;
12361
12362 /* Change accessibility for artificial fields (e.g. virtual table
12363 pointer or virtual base class pointer) to private. */
12364 if (dwarf2_attr (die, DW_AT_artificial, cu))
12365 {
12366 FIELD_ARTIFICIAL (*fp) = 1;
12367 new_field->accessibility = DW_ACCESS_private;
12368 fip->non_public_fields = 1;
12369 }
12370 }
12371 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12372 {
12373 /* C++ static member. */
12374
12375 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12376 is a declaration, but all versions of G++ as of this writing
12377 (so through at least 3.2.1) incorrectly generate
12378 DW_TAG_variable tags. */
12379
12380 const char *physname;
12381
12382 /* Get name of field. */
12383 fieldname = dwarf2_name (die, cu);
12384 if (fieldname == NULL)
12385 return;
12386
12387 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12388 if (attr
12389 /* Only create a symbol if this is an external value.
12390 new_symbol checks this and puts the value in the global symbol
12391 table, which we want. If it is not external, new_symbol
12392 will try to put the value in cu->list_in_scope which is wrong. */
12393 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12394 {
12395 /* A static const member, not much different than an enum as far as
12396 we're concerned, except that we can support more types. */
12397 new_symbol (die, NULL, cu);
12398 }
12399
12400 /* Get physical name. */
12401 physname = dwarf2_physname (fieldname, die, cu);
12402
12403 /* The name is already allocated along with this objfile, so we don't
12404 need to duplicate it for the type. */
12405 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12406 FIELD_TYPE (*fp) = die_type (die, cu);
12407 FIELD_NAME (*fp) = fieldname;
12408 }
12409 else if (die->tag == DW_TAG_inheritance)
12410 {
12411 LONGEST offset;
12412
12413 /* C++ base class field. */
12414 if (handle_data_member_location (die, cu, &offset))
12415 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12416 FIELD_BITSIZE (*fp) = 0;
12417 FIELD_TYPE (*fp) = die_type (die, cu);
12418 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12419 fip->nbaseclasses++;
12420 }
12421 }
12422
12423 /* Add a typedef defined in the scope of the FIP's class. */
12424
12425 static void
12426 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12427 struct dwarf2_cu *cu)
12428 {
12429 struct objfile *objfile = cu->objfile;
12430 struct typedef_field_list *new_field;
12431 struct attribute *attr;
12432 struct typedef_field *fp;
12433 char *fieldname = "";
12434
12435 /* Allocate a new field list entry and link it in. */
12436 new_field = xzalloc (sizeof (*new_field));
12437 make_cleanup (xfree, new_field);
12438
12439 gdb_assert (die->tag == DW_TAG_typedef);
12440
12441 fp = &new_field->field;
12442
12443 /* Get name of field. */
12444 fp->name = dwarf2_name (die, cu);
12445 if (fp->name == NULL)
12446 return;
12447
12448 fp->type = read_type_die (die, cu);
12449
12450 new_field->next = fip->typedef_field_list;
12451 fip->typedef_field_list = new_field;
12452 fip->typedef_field_list_count++;
12453 }
12454
12455 /* Create the vector of fields, and attach it to the type. */
12456
12457 static void
12458 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12459 struct dwarf2_cu *cu)
12460 {
12461 int nfields = fip->nfields;
12462
12463 /* Record the field count, allocate space for the array of fields,
12464 and create blank accessibility bitfields if necessary. */
12465 TYPE_NFIELDS (type) = nfields;
12466 TYPE_FIELDS (type) = (struct field *)
12467 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12468 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12469
12470 if (fip->non_public_fields && cu->language != language_ada)
12471 {
12472 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12473
12474 TYPE_FIELD_PRIVATE_BITS (type) =
12475 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12476 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12477
12478 TYPE_FIELD_PROTECTED_BITS (type) =
12479 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12480 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12481
12482 TYPE_FIELD_IGNORE_BITS (type) =
12483 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12484 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12485 }
12486
12487 /* If the type has baseclasses, allocate and clear a bit vector for
12488 TYPE_FIELD_VIRTUAL_BITS. */
12489 if (fip->nbaseclasses && cu->language != language_ada)
12490 {
12491 int num_bytes = B_BYTES (fip->nbaseclasses);
12492 unsigned char *pointer;
12493
12494 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12495 pointer = TYPE_ALLOC (type, num_bytes);
12496 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12497 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12498 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12499 }
12500
12501 /* Copy the saved-up fields into the field vector. Start from the head of
12502 the list, adding to the tail of the field array, so that they end up in
12503 the same order in the array in which they were added to the list. */
12504 while (nfields-- > 0)
12505 {
12506 struct nextfield *fieldp;
12507
12508 if (fip->fields)
12509 {
12510 fieldp = fip->fields;
12511 fip->fields = fieldp->next;
12512 }
12513 else
12514 {
12515 fieldp = fip->baseclasses;
12516 fip->baseclasses = fieldp->next;
12517 }
12518
12519 TYPE_FIELD (type, nfields) = fieldp->field;
12520 switch (fieldp->accessibility)
12521 {
12522 case DW_ACCESS_private:
12523 if (cu->language != language_ada)
12524 SET_TYPE_FIELD_PRIVATE (type, nfields);
12525 break;
12526
12527 case DW_ACCESS_protected:
12528 if (cu->language != language_ada)
12529 SET_TYPE_FIELD_PROTECTED (type, nfields);
12530 break;
12531
12532 case DW_ACCESS_public:
12533 break;
12534
12535 default:
12536 /* Unknown accessibility. Complain and treat it as public. */
12537 {
12538 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12539 fieldp->accessibility);
12540 }
12541 break;
12542 }
12543 if (nfields < fip->nbaseclasses)
12544 {
12545 switch (fieldp->virtuality)
12546 {
12547 case DW_VIRTUALITY_virtual:
12548 case DW_VIRTUALITY_pure_virtual:
12549 if (cu->language == language_ada)
12550 error (_("unexpected virtuality in component of Ada type"));
12551 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12552 break;
12553 }
12554 }
12555 }
12556 }
12557
12558 /* Return true if this member function is a constructor, false
12559 otherwise. */
12560
12561 static int
12562 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12563 {
12564 const char *fieldname;
12565 const char *typename;
12566 int len;
12567
12568 if (die->parent == NULL)
12569 return 0;
12570
12571 if (die->parent->tag != DW_TAG_structure_type
12572 && die->parent->tag != DW_TAG_union_type
12573 && die->parent->tag != DW_TAG_class_type)
12574 return 0;
12575
12576 fieldname = dwarf2_name (die, cu);
12577 typename = dwarf2_name (die->parent, cu);
12578 if (fieldname == NULL || typename == NULL)
12579 return 0;
12580
12581 len = strlen (fieldname);
12582 return (strncmp (fieldname, typename, len) == 0
12583 && (typename[len] == '\0' || typename[len] == '<'));
12584 }
12585
12586 /* Add a member function to the proper fieldlist. */
12587
12588 static void
12589 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12590 struct type *type, struct dwarf2_cu *cu)
12591 {
12592 struct objfile *objfile = cu->objfile;
12593 struct attribute *attr;
12594 struct fnfieldlist *flp;
12595 int i;
12596 struct fn_field *fnp;
12597 const char *fieldname;
12598 struct nextfnfield *new_fnfield;
12599 struct type *this_type;
12600 enum dwarf_access_attribute accessibility;
12601
12602 if (cu->language == language_ada)
12603 error (_("unexpected member function in Ada type"));
12604
12605 /* Get name of member function. */
12606 fieldname = dwarf2_name (die, cu);
12607 if (fieldname == NULL)
12608 return;
12609
12610 /* Look up member function name in fieldlist. */
12611 for (i = 0; i < fip->nfnfields; i++)
12612 {
12613 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12614 break;
12615 }
12616
12617 /* Create new list element if necessary. */
12618 if (i < fip->nfnfields)
12619 flp = &fip->fnfieldlists[i];
12620 else
12621 {
12622 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12623 {
12624 fip->fnfieldlists = (struct fnfieldlist *)
12625 xrealloc (fip->fnfieldlists,
12626 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12627 * sizeof (struct fnfieldlist));
12628 if (fip->nfnfields == 0)
12629 make_cleanup (free_current_contents, &fip->fnfieldlists);
12630 }
12631 flp = &fip->fnfieldlists[fip->nfnfields];
12632 flp->name = fieldname;
12633 flp->length = 0;
12634 flp->head = NULL;
12635 i = fip->nfnfields++;
12636 }
12637
12638 /* Create a new member function field and chain it to the field list
12639 entry. */
12640 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12641 make_cleanup (xfree, new_fnfield);
12642 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12643 new_fnfield->next = flp->head;
12644 flp->head = new_fnfield;
12645 flp->length++;
12646
12647 /* Fill in the member function field info. */
12648 fnp = &new_fnfield->fnfield;
12649
12650 /* Delay processing of the physname until later. */
12651 if (cu->language == language_cplus || cu->language == language_java)
12652 {
12653 add_to_method_list (type, i, flp->length - 1, fieldname,
12654 die, cu);
12655 }
12656 else
12657 {
12658 const char *physname = dwarf2_physname (fieldname, die, cu);
12659 fnp->physname = physname ? physname : "";
12660 }
12661
12662 fnp->type = alloc_type (objfile);
12663 this_type = read_type_die (die, cu);
12664 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12665 {
12666 int nparams = TYPE_NFIELDS (this_type);
12667
12668 /* TYPE is the domain of this method, and THIS_TYPE is the type
12669 of the method itself (TYPE_CODE_METHOD). */
12670 smash_to_method_type (fnp->type, type,
12671 TYPE_TARGET_TYPE (this_type),
12672 TYPE_FIELDS (this_type),
12673 TYPE_NFIELDS (this_type),
12674 TYPE_VARARGS (this_type));
12675
12676 /* Handle static member functions.
12677 Dwarf2 has no clean way to discern C++ static and non-static
12678 member functions. G++ helps GDB by marking the first
12679 parameter for non-static member functions (which is the this
12680 pointer) as artificial. We obtain this information from
12681 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12682 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12683 fnp->voffset = VOFFSET_STATIC;
12684 }
12685 else
12686 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12687 dwarf2_full_name (fieldname, die, cu));
12688
12689 /* Get fcontext from DW_AT_containing_type if present. */
12690 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12691 fnp->fcontext = die_containing_type (die, cu);
12692
12693 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12694 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12695
12696 /* Get accessibility. */
12697 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12698 if (attr)
12699 accessibility = DW_UNSND (attr);
12700 else
12701 accessibility = dwarf2_default_access_attribute (die, cu);
12702 switch (accessibility)
12703 {
12704 case DW_ACCESS_private:
12705 fnp->is_private = 1;
12706 break;
12707 case DW_ACCESS_protected:
12708 fnp->is_protected = 1;
12709 break;
12710 }
12711
12712 /* Check for artificial methods. */
12713 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12714 if (attr && DW_UNSND (attr) != 0)
12715 fnp->is_artificial = 1;
12716
12717 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12718
12719 /* Get index in virtual function table if it is a virtual member
12720 function. For older versions of GCC, this is an offset in the
12721 appropriate virtual table, as specified by DW_AT_containing_type.
12722 For everyone else, it is an expression to be evaluated relative
12723 to the object address. */
12724
12725 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12726 if (attr)
12727 {
12728 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12729 {
12730 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12731 {
12732 /* Old-style GCC. */
12733 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12734 }
12735 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12736 || (DW_BLOCK (attr)->size > 1
12737 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12738 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12739 {
12740 struct dwarf_block blk;
12741 int offset;
12742
12743 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12744 ? 1 : 2);
12745 blk.size = DW_BLOCK (attr)->size - offset;
12746 blk.data = DW_BLOCK (attr)->data + offset;
12747 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12748 if ((fnp->voffset % cu->header.addr_size) != 0)
12749 dwarf2_complex_location_expr_complaint ();
12750 else
12751 fnp->voffset /= cu->header.addr_size;
12752 fnp->voffset += 2;
12753 }
12754 else
12755 dwarf2_complex_location_expr_complaint ();
12756
12757 if (!fnp->fcontext)
12758 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12759 }
12760 else if (attr_form_is_section_offset (attr))
12761 {
12762 dwarf2_complex_location_expr_complaint ();
12763 }
12764 else
12765 {
12766 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12767 fieldname);
12768 }
12769 }
12770 else
12771 {
12772 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12773 if (attr && DW_UNSND (attr))
12774 {
12775 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12776 complaint (&symfile_complaints,
12777 _("Member function \"%s\" (offset %d) is virtual "
12778 "but the vtable offset is not specified"),
12779 fieldname, die->offset.sect_off);
12780 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12781 TYPE_CPLUS_DYNAMIC (type) = 1;
12782 }
12783 }
12784 }
12785
12786 /* Create the vector of member function fields, and attach it to the type. */
12787
12788 static void
12789 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12790 struct dwarf2_cu *cu)
12791 {
12792 struct fnfieldlist *flp;
12793 int i;
12794
12795 if (cu->language == language_ada)
12796 error (_("unexpected member functions in Ada type"));
12797
12798 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12799 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12800 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12801
12802 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12803 {
12804 struct nextfnfield *nfp = flp->head;
12805 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12806 int k;
12807
12808 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12809 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12810 fn_flp->fn_fields = (struct fn_field *)
12811 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12812 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12813 fn_flp->fn_fields[k] = nfp->fnfield;
12814 }
12815
12816 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12817 }
12818
12819 /* Returns non-zero if NAME is the name of a vtable member in CU's
12820 language, zero otherwise. */
12821 static int
12822 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12823 {
12824 static const char vptr[] = "_vptr";
12825 static const char vtable[] = "vtable";
12826
12827 /* Look for the C++ and Java forms of the vtable. */
12828 if ((cu->language == language_java
12829 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12830 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12831 && is_cplus_marker (name[sizeof (vptr) - 1])))
12832 return 1;
12833
12834 return 0;
12835 }
12836
12837 /* GCC outputs unnamed structures that are really pointers to member
12838 functions, with the ABI-specified layout. If TYPE describes
12839 such a structure, smash it into a member function type.
12840
12841 GCC shouldn't do this; it should just output pointer to member DIEs.
12842 This is GCC PR debug/28767. */
12843
12844 static void
12845 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12846 {
12847 struct type *pfn_type, *domain_type, *new_type;
12848
12849 /* Check for a structure with no name and two children. */
12850 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12851 return;
12852
12853 /* Check for __pfn and __delta members. */
12854 if (TYPE_FIELD_NAME (type, 0) == NULL
12855 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12856 || TYPE_FIELD_NAME (type, 1) == NULL
12857 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12858 return;
12859
12860 /* Find the type of the method. */
12861 pfn_type = TYPE_FIELD_TYPE (type, 0);
12862 if (pfn_type == NULL
12863 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12864 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12865 return;
12866
12867 /* Look for the "this" argument. */
12868 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12869 if (TYPE_NFIELDS (pfn_type) == 0
12870 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12871 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12872 return;
12873
12874 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12875 new_type = alloc_type (objfile);
12876 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12877 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12878 TYPE_VARARGS (pfn_type));
12879 smash_to_methodptr_type (type, new_type);
12880 }
12881
12882 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12883 (icc). */
12884
12885 static int
12886 producer_is_icc (struct dwarf2_cu *cu)
12887 {
12888 if (!cu->checked_producer)
12889 check_producer (cu);
12890
12891 return cu->producer_is_icc;
12892 }
12893
12894 /* Called when we find the DIE that starts a structure or union scope
12895 (definition) to create a type for the structure or union. Fill in
12896 the type's name and general properties; the members will not be
12897 processed until process_structure_scope. A symbol table entry for
12898 the type will also not be done until process_structure_scope (assuming
12899 the type has a name).
12900
12901 NOTE: we need to call these functions regardless of whether or not the
12902 DIE has a DW_AT_name attribute, since it might be an anonymous
12903 structure or union. This gets the type entered into our set of
12904 user defined types. */
12905
12906 static struct type *
12907 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12908 {
12909 struct objfile *objfile = cu->objfile;
12910 struct type *type;
12911 struct attribute *attr;
12912 const char *name;
12913
12914 /* If the definition of this type lives in .debug_types, read that type.
12915 Don't follow DW_AT_specification though, that will take us back up
12916 the chain and we want to go down. */
12917 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12918 if (attr)
12919 {
12920 type = get_DW_AT_signature_type (die, attr, cu);
12921
12922 /* The type's CU may not be the same as CU.
12923 Ensure TYPE is recorded with CU in die_type_hash. */
12924 return set_die_type (die, type, cu);
12925 }
12926
12927 type = alloc_type (objfile);
12928 INIT_CPLUS_SPECIFIC (type);
12929
12930 name = dwarf2_name (die, cu);
12931 if (name != NULL)
12932 {
12933 if (cu->language == language_cplus
12934 || cu->language == language_java)
12935 {
12936 const char *full_name = dwarf2_full_name (name, die, cu);
12937
12938 /* dwarf2_full_name might have already finished building the DIE's
12939 type. If so, there is no need to continue. */
12940 if (get_die_type (die, cu) != NULL)
12941 return get_die_type (die, cu);
12942
12943 TYPE_TAG_NAME (type) = full_name;
12944 if (die->tag == DW_TAG_structure_type
12945 || die->tag == DW_TAG_class_type)
12946 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12947 }
12948 else
12949 {
12950 /* The name is already allocated along with this objfile, so
12951 we don't need to duplicate it for the type. */
12952 TYPE_TAG_NAME (type) = name;
12953 if (die->tag == DW_TAG_class_type)
12954 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12955 }
12956 }
12957
12958 if (die->tag == DW_TAG_structure_type)
12959 {
12960 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12961 }
12962 else if (die->tag == DW_TAG_union_type)
12963 {
12964 TYPE_CODE (type) = TYPE_CODE_UNION;
12965 }
12966 else
12967 {
12968 TYPE_CODE (type) = TYPE_CODE_CLASS;
12969 }
12970
12971 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12972 TYPE_DECLARED_CLASS (type) = 1;
12973
12974 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12975 if (attr)
12976 {
12977 TYPE_LENGTH (type) = DW_UNSND (attr);
12978 }
12979 else
12980 {
12981 TYPE_LENGTH (type) = 0;
12982 }
12983
12984 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12985 {
12986 /* ICC does not output the required DW_AT_declaration
12987 on incomplete types, but gives them a size of zero. */
12988 TYPE_STUB (type) = 1;
12989 }
12990 else
12991 TYPE_STUB_SUPPORTED (type) = 1;
12992
12993 if (die_is_declaration (die, cu))
12994 TYPE_STUB (type) = 1;
12995 else if (attr == NULL && die->child == NULL
12996 && producer_is_realview (cu->producer))
12997 /* RealView does not output the required DW_AT_declaration
12998 on incomplete types. */
12999 TYPE_STUB (type) = 1;
13000
13001 /* We need to add the type field to the die immediately so we don't
13002 infinitely recurse when dealing with pointers to the structure
13003 type within the structure itself. */
13004 set_die_type (die, type, cu);
13005
13006 /* set_die_type should be already done. */
13007 set_descriptive_type (type, die, cu);
13008
13009 return type;
13010 }
13011
13012 /* Finish creating a structure or union type, including filling in
13013 its members and creating a symbol for it. */
13014
13015 static void
13016 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13017 {
13018 struct objfile *objfile = cu->objfile;
13019 struct die_info *child_die;
13020 struct type *type;
13021
13022 type = get_die_type (die, cu);
13023 if (type == NULL)
13024 type = read_structure_type (die, cu);
13025
13026 if (die->child != NULL && ! die_is_declaration (die, cu))
13027 {
13028 struct field_info fi;
13029 VEC (symbolp) *template_args = NULL;
13030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13031
13032 memset (&fi, 0, sizeof (struct field_info));
13033
13034 child_die = die->child;
13035
13036 while (child_die && child_die->tag)
13037 {
13038 if (child_die->tag == DW_TAG_member
13039 || child_die->tag == DW_TAG_variable)
13040 {
13041 /* NOTE: carlton/2002-11-05: A C++ static data member
13042 should be a DW_TAG_member that is a declaration, but
13043 all versions of G++ as of this writing (so through at
13044 least 3.2.1) incorrectly generate DW_TAG_variable
13045 tags for them instead. */
13046 dwarf2_add_field (&fi, child_die, cu);
13047 }
13048 else if (child_die->tag == DW_TAG_subprogram)
13049 {
13050 /* C++ member function. */
13051 dwarf2_add_member_fn (&fi, child_die, type, cu);
13052 }
13053 else if (child_die->tag == DW_TAG_inheritance)
13054 {
13055 /* C++ base class field. */
13056 dwarf2_add_field (&fi, child_die, cu);
13057 }
13058 else if (child_die->tag == DW_TAG_typedef)
13059 dwarf2_add_typedef (&fi, child_die, cu);
13060 else if (child_die->tag == DW_TAG_template_type_param
13061 || child_die->tag == DW_TAG_template_value_param)
13062 {
13063 struct symbol *arg = new_symbol (child_die, NULL, cu);
13064
13065 if (arg != NULL)
13066 VEC_safe_push (symbolp, template_args, arg);
13067 }
13068
13069 child_die = sibling_die (child_die);
13070 }
13071
13072 /* Attach template arguments to type. */
13073 if (! VEC_empty (symbolp, template_args))
13074 {
13075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13076 TYPE_N_TEMPLATE_ARGUMENTS (type)
13077 = VEC_length (symbolp, template_args);
13078 TYPE_TEMPLATE_ARGUMENTS (type)
13079 = obstack_alloc (&objfile->objfile_obstack,
13080 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13081 * sizeof (struct symbol *)));
13082 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13083 VEC_address (symbolp, template_args),
13084 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13085 * sizeof (struct symbol *)));
13086 VEC_free (symbolp, template_args);
13087 }
13088
13089 /* Attach fields and member functions to the type. */
13090 if (fi.nfields)
13091 dwarf2_attach_fields_to_type (&fi, type, cu);
13092 if (fi.nfnfields)
13093 {
13094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13095
13096 /* Get the type which refers to the base class (possibly this
13097 class itself) which contains the vtable pointer for the current
13098 class from the DW_AT_containing_type attribute. This use of
13099 DW_AT_containing_type is a GNU extension. */
13100
13101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13102 {
13103 struct type *t = die_containing_type (die, cu);
13104
13105 TYPE_VPTR_BASETYPE (type) = t;
13106 if (type == t)
13107 {
13108 int i;
13109
13110 /* Our own class provides vtbl ptr. */
13111 for (i = TYPE_NFIELDS (t) - 1;
13112 i >= TYPE_N_BASECLASSES (t);
13113 --i)
13114 {
13115 const char *fieldname = TYPE_FIELD_NAME (t, i);
13116
13117 if (is_vtable_name (fieldname, cu))
13118 {
13119 TYPE_VPTR_FIELDNO (type) = i;
13120 break;
13121 }
13122 }
13123
13124 /* Complain if virtual function table field not found. */
13125 if (i < TYPE_N_BASECLASSES (t))
13126 complaint (&symfile_complaints,
13127 _("virtual function table pointer "
13128 "not found when defining class '%s'"),
13129 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13130 "");
13131 }
13132 else
13133 {
13134 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13135 }
13136 }
13137 else if (cu->producer
13138 && strncmp (cu->producer,
13139 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13140 {
13141 /* The IBM XLC compiler does not provide direct indication
13142 of the containing type, but the vtable pointer is
13143 always named __vfp. */
13144
13145 int i;
13146
13147 for (i = TYPE_NFIELDS (type) - 1;
13148 i >= TYPE_N_BASECLASSES (type);
13149 --i)
13150 {
13151 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13152 {
13153 TYPE_VPTR_FIELDNO (type) = i;
13154 TYPE_VPTR_BASETYPE (type) = type;
13155 break;
13156 }
13157 }
13158 }
13159 }
13160
13161 /* Copy fi.typedef_field_list linked list elements content into the
13162 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13163 if (fi.typedef_field_list)
13164 {
13165 int i = fi.typedef_field_list_count;
13166
13167 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13168 TYPE_TYPEDEF_FIELD_ARRAY (type)
13169 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13170 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13171
13172 /* Reverse the list order to keep the debug info elements order. */
13173 while (--i >= 0)
13174 {
13175 struct typedef_field *dest, *src;
13176
13177 dest = &TYPE_TYPEDEF_FIELD (type, i);
13178 src = &fi.typedef_field_list->field;
13179 fi.typedef_field_list = fi.typedef_field_list->next;
13180 *dest = *src;
13181 }
13182 }
13183
13184 do_cleanups (back_to);
13185
13186 if (HAVE_CPLUS_STRUCT (type))
13187 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13188 }
13189
13190 quirk_gcc_member_function_pointer (type, objfile);
13191
13192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13193 snapshots) has been known to create a die giving a declaration
13194 for a class that has, as a child, a die giving a definition for a
13195 nested class. So we have to process our children even if the
13196 current die is a declaration. Normally, of course, a declaration
13197 won't have any children at all. */
13198
13199 child_die = die->child;
13200
13201 while (child_die != NULL && child_die->tag)
13202 {
13203 if (child_die->tag == DW_TAG_member
13204 || child_die->tag == DW_TAG_variable
13205 || child_die->tag == DW_TAG_inheritance
13206 || child_die->tag == DW_TAG_template_value_param
13207 || child_die->tag == DW_TAG_template_type_param)
13208 {
13209 /* Do nothing. */
13210 }
13211 else
13212 process_die (child_die, cu);
13213
13214 child_die = sibling_die (child_die);
13215 }
13216
13217 /* Do not consider external references. According to the DWARF standard,
13218 these DIEs are identified by the fact that they have no byte_size
13219 attribute, and a declaration attribute. */
13220 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13221 || !die_is_declaration (die, cu))
13222 new_symbol (die, type, cu);
13223 }
13224
13225 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13226 update TYPE using some information only available in DIE's children. */
13227
13228 static void
13229 update_enumeration_type_from_children (struct die_info *die,
13230 struct type *type,
13231 struct dwarf2_cu *cu)
13232 {
13233 struct obstack obstack;
13234 struct die_info *child_die = die->child;
13235 int unsigned_enum = 1;
13236 int flag_enum = 1;
13237 ULONGEST mask = 0;
13238 struct cleanup *old_chain;
13239
13240 obstack_init (&obstack);
13241 old_chain = make_cleanup_obstack_free (&obstack);
13242
13243 while (child_die != NULL && child_die->tag)
13244 {
13245 struct attribute *attr;
13246 LONGEST value;
13247 const gdb_byte *bytes;
13248 struct dwarf2_locexpr_baton *baton;
13249 const char *name;
13250 if (child_die->tag != DW_TAG_enumerator)
13251 continue;
13252
13253 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13254 if (attr == NULL)
13255 continue;
13256
13257 name = dwarf2_name (child_die, cu);
13258 if (name == NULL)
13259 name = "<anonymous enumerator>";
13260
13261 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13262 &value, &bytes, &baton);
13263 if (value < 0)
13264 {
13265 unsigned_enum = 0;
13266 flag_enum = 0;
13267 }
13268 else if ((mask & value) != 0)
13269 flag_enum = 0;
13270 else
13271 mask |= value;
13272
13273 /* If we already know that the enum type is neither unsigned, nor
13274 a flag type, no need to look at the rest of the enumerates. */
13275 if (!unsigned_enum && !flag_enum)
13276 break;
13277 child_die = sibling_die (child_die);
13278 }
13279
13280 if (unsigned_enum)
13281 TYPE_UNSIGNED (type) = 1;
13282 if (flag_enum)
13283 TYPE_FLAG_ENUM (type) = 1;
13284
13285 do_cleanups (old_chain);
13286 }
13287
13288 /* Given a DW_AT_enumeration_type die, set its type. We do not
13289 complete the type's fields yet, or create any symbols. */
13290
13291 static struct type *
13292 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13293 {
13294 struct objfile *objfile = cu->objfile;
13295 struct type *type;
13296 struct attribute *attr;
13297 const char *name;
13298
13299 /* If the definition of this type lives in .debug_types, read that type.
13300 Don't follow DW_AT_specification though, that will take us back up
13301 the chain and we want to go down. */
13302 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13303 if (attr)
13304 {
13305 type = get_DW_AT_signature_type (die, attr, cu);
13306
13307 /* The type's CU may not be the same as CU.
13308 Ensure TYPE is recorded with CU in die_type_hash. */
13309 return set_die_type (die, type, cu);
13310 }
13311
13312 type = alloc_type (objfile);
13313
13314 TYPE_CODE (type) = TYPE_CODE_ENUM;
13315 name = dwarf2_full_name (NULL, die, cu);
13316 if (name != NULL)
13317 TYPE_TAG_NAME (type) = name;
13318
13319 attr = dwarf2_attr (die, DW_AT_type, cu);
13320 if (attr != NULL)
13321 {
13322 struct type *underlying_type = die_type (die, cu);
13323
13324 TYPE_TARGET_TYPE (type) = underlying_type;
13325 }
13326
13327 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13328 if (attr)
13329 {
13330 TYPE_LENGTH (type) = DW_UNSND (attr);
13331 }
13332 else
13333 {
13334 TYPE_LENGTH (type) = 0;
13335 }
13336
13337 /* The enumeration DIE can be incomplete. In Ada, any type can be
13338 declared as private in the package spec, and then defined only
13339 inside the package body. Such types are known as Taft Amendment
13340 Types. When another package uses such a type, an incomplete DIE
13341 may be generated by the compiler. */
13342 if (die_is_declaration (die, cu))
13343 TYPE_STUB (type) = 1;
13344
13345 /* Finish the creation of this type by using the enum's children.
13346 We must call this even when the underlying type has been provided
13347 so that we can determine if we're looking at a "flag" enum. */
13348 update_enumeration_type_from_children (die, type, cu);
13349
13350 /* If this type has an underlying type that is not a stub, then we
13351 may use its attributes. We always use the "unsigned" attribute
13352 in this situation, because ordinarily we guess whether the type
13353 is unsigned -- but the guess can be wrong and the underlying type
13354 can tell us the reality. However, we defer to a local size
13355 attribute if one exists, because this lets the compiler override
13356 the underlying type if needed. */
13357 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13358 {
13359 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13360 if (TYPE_LENGTH (type) == 0)
13361 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13362 }
13363
13364 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13365
13366 return set_die_type (die, type, cu);
13367 }
13368
13369 /* Given a pointer to a die which begins an enumeration, process all
13370 the dies that define the members of the enumeration, and create the
13371 symbol for the enumeration type.
13372
13373 NOTE: We reverse the order of the element list. */
13374
13375 static void
13376 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13377 {
13378 struct type *this_type;
13379
13380 this_type = get_die_type (die, cu);
13381 if (this_type == NULL)
13382 this_type = read_enumeration_type (die, cu);
13383
13384 if (die->child != NULL)
13385 {
13386 struct die_info *child_die;
13387 struct symbol *sym;
13388 struct field *fields = NULL;
13389 int num_fields = 0;
13390 const char *name;
13391
13392 child_die = die->child;
13393 while (child_die && child_die->tag)
13394 {
13395 if (child_die->tag != DW_TAG_enumerator)
13396 {
13397 process_die (child_die, cu);
13398 }
13399 else
13400 {
13401 name = dwarf2_name (child_die, cu);
13402 if (name)
13403 {
13404 sym = new_symbol (child_die, this_type, cu);
13405
13406 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13407 {
13408 fields = (struct field *)
13409 xrealloc (fields,
13410 (num_fields + DW_FIELD_ALLOC_CHUNK)
13411 * sizeof (struct field));
13412 }
13413
13414 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13415 FIELD_TYPE (fields[num_fields]) = NULL;
13416 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13417 FIELD_BITSIZE (fields[num_fields]) = 0;
13418
13419 num_fields++;
13420 }
13421 }
13422
13423 child_die = sibling_die (child_die);
13424 }
13425
13426 if (num_fields)
13427 {
13428 TYPE_NFIELDS (this_type) = num_fields;
13429 TYPE_FIELDS (this_type) = (struct field *)
13430 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13431 memcpy (TYPE_FIELDS (this_type), fields,
13432 sizeof (struct field) * num_fields);
13433 xfree (fields);
13434 }
13435 }
13436
13437 /* If we are reading an enum from a .debug_types unit, and the enum
13438 is a declaration, and the enum is not the signatured type in the
13439 unit, then we do not want to add a symbol for it. Adding a
13440 symbol would in some cases obscure the true definition of the
13441 enum, giving users an incomplete type when the definition is
13442 actually available. Note that we do not want to do this for all
13443 enums which are just declarations, because C++0x allows forward
13444 enum declarations. */
13445 if (cu->per_cu->is_debug_types
13446 && die_is_declaration (die, cu))
13447 {
13448 struct signatured_type *sig_type;
13449
13450 sig_type = (struct signatured_type *) cu->per_cu;
13451 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13452 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13453 return;
13454 }
13455
13456 new_symbol (die, this_type, cu);
13457 }
13458
13459 /* Extract all information from a DW_TAG_array_type DIE and put it in
13460 the DIE's type field. For now, this only handles one dimensional
13461 arrays. */
13462
13463 static struct type *
13464 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13465 {
13466 struct objfile *objfile = cu->objfile;
13467 struct die_info *child_die;
13468 struct type *type;
13469 struct type *element_type, *range_type, *index_type;
13470 struct type **range_types = NULL;
13471 struct attribute *attr;
13472 int ndim = 0;
13473 struct cleanup *back_to;
13474 const char *name;
13475 unsigned int bit_stride = 0;
13476
13477 element_type = die_type (die, cu);
13478
13479 /* The die_type call above may have already set the type for this DIE. */
13480 type = get_die_type (die, cu);
13481 if (type)
13482 return type;
13483
13484 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13485 if (attr != NULL)
13486 bit_stride = DW_UNSND (attr) * 8;
13487
13488 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13489 if (attr != NULL)
13490 bit_stride = DW_UNSND (attr);
13491
13492 /* Irix 6.2 native cc creates array types without children for
13493 arrays with unspecified length. */
13494 if (die->child == NULL)
13495 {
13496 index_type = objfile_type (objfile)->builtin_int;
13497 range_type = create_static_range_type (NULL, index_type, 0, -1);
13498 type = create_array_type_with_stride (NULL, element_type, range_type,
13499 bit_stride);
13500 return set_die_type (die, type, cu);
13501 }
13502
13503 back_to = make_cleanup (null_cleanup, NULL);
13504 child_die = die->child;
13505 while (child_die && child_die->tag)
13506 {
13507 if (child_die->tag == DW_TAG_subrange_type)
13508 {
13509 struct type *child_type = read_type_die (child_die, cu);
13510
13511 if (child_type != NULL)
13512 {
13513 /* The range type was succesfully read. Save it for the
13514 array type creation. */
13515 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13516 {
13517 range_types = (struct type **)
13518 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13519 * sizeof (struct type *));
13520 if (ndim == 0)
13521 make_cleanup (free_current_contents, &range_types);
13522 }
13523 range_types[ndim++] = child_type;
13524 }
13525 }
13526 child_die = sibling_die (child_die);
13527 }
13528
13529 /* Dwarf2 dimensions are output from left to right, create the
13530 necessary array types in backwards order. */
13531
13532 type = element_type;
13533
13534 if (read_array_order (die, cu) == DW_ORD_col_major)
13535 {
13536 int i = 0;
13537
13538 while (i < ndim)
13539 type = create_array_type_with_stride (NULL, type, range_types[i++],
13540 bit_stride);
13541 }
13542 else
13543 {
13544 while (ndim-- > 0)
13545 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13546 bit_stride);
13547 }
13548
13549 /* Understand Dwarf2 support for vector types (like they occur on
13550 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13551 array type. This is not part of the Dwarf2/3 standard yet, but a
13552 custom vendor extension. The main difference between a regular
13553 array and the vector variant is that vectors are passed by value
13554 to functions. */
13555 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13556 if (attr)
13557 make_vector_type (type);
13558
13559 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13560 implementation may choose to implement triple vectors using this
13561 attribute. */
13562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13563 if (attr)
13564 {
13565 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13566 TYPE_LENGTH (type) = DW_UNSND (attr);
13567 else
13568 complaint (&symfile_complaints,
13569 _("DW_AT_byte_size for array type smaller "
13570 "than the total size of elements"));
13571 }
13572
13573 name = dwarf2_name (die, cu);
13574 if (name)
13575 TYPE_NAME (type) = name;
13576
13577 /* Install the type in the die. */
13578 set_die_type (die, type, cu);
13579
13580 /* set_die_type should be already done. */
13581 set_descriptive_type (type, die, cu);
13582
13583 do_cleanups (back_to);
13584
13585 return type;
13586 }
13587
13588 static enum dwarf_array_dim_ordering
13589 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13590 {
13591 struct attribute *attr;
13592
13593 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13594
13595 if (attr) return DW_SND (attr);
13596
13597 /* GNU F77 is a special case, as at 08/2004 array type info is the
13598 opposite order to the dwarf2 specification, but data is still
13599 laid out as per normal fortran.
13600
13601 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13602 version checking. */
13603
13604 if (cu->language == language_fortran
13605 && cu->producer && strstr (cu->producer, "GNU F77"))
13606 {
13607 return DW_ORD_row_major;
13608 }
13609
13610 switch (cu->language_defn->la_array_ordering)
13611 {
13612 case array_column_major:
13613 return DW_ORD_col_major;
13614 case array_row_major:
13615 default:
13616 return DW_ORD_row_major;
13617 };
13618 }
13619
13620 /* Extract all information from a DW_TAG_set_type DIE and put it in
13621 the DIE's type field. */
13622
13623 static struct type *
13624 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13625 {
13626 struct type *domain_type, *set_type;
13627 struct attribute *attr;
13628
13629 domain_type = die_type (die, cu);
13630
13631 /* The die_type call above may have already set the type for this DIE. */
13632 set_type = get_die_type (die, cu);
13633 if (set_type)
13634 return set_type;
13635
13636 set_type = create_set_type (NULL, domain_type);
13637
13638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13639 if (attr)
13640 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13641
13642 return set_die_type (die, set_type, cu);
13643 }
13644
13645 /* A helper for read_common_block that creates a locexpr baton.
13646 SYM is the symbol which we are marking as computed.
13647 COMMON_DIE is the DIE for the common block.
13648 COMMON_LOC is the location expression attribute for the common
13649 block itself.
13650 MEMBER_LOC is the location expression attribute for the particular
13651 member of the common block that we are processing.
13652 CU is the CU from which the above come. */
13653
13654 static void
13655 mark_common_block_symbol_computed (struct symbol *sym,
13656 struct die_info *common_die,
13657 struct attribute *common_loc,
13658 struct attribute *member_loc,
13659 struct dwarf2_cu *cu)
13660 {
13661 struct objfile *objfile = dwarf2_per_objfile->objfile;
13662 struct dwarf2_locexpr_baton *baton;
13663 gdb_byte *ptr;
13664 unsigned int cu_off;
13665 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13666 LONGEST offset = 0;
13667
13668 gdb_assert (common_loc && member_loc);
13669 gdb_assert (attr_form_is_block (common_loc));
13670 gdb_assert (attr_form_is_block (member_loc)
13671 || attr_form_is_constant (member_loc));
13672
13673 baton = obstack_alloc (&objfile->objfile_obstack,
13674 sizeof (struct dwarf2_locexpr_baton));
13675 baton->per_cu = cu->per_cu;
13676 gdb_assert (baton->per_cu);
13677
13678 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13679
13680 if (attr_form_is_constant (member_loc))
13681 {
13682 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13683 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13684 }
13685 else
13686 baton->size += DW_BLOCK (member_loc)->size;
13687
13688 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13689 baton->data = ptr;
13690
13691 *ptr++ = DW_OP_call4;
13692 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13693 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13694 ptr += 4;
13695
13696 if (attr_form_is_constant (member_loc))
13697 {
13698 *ptr++ = DW_OP_addr;
13699 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13700 ptr += cu->header.addr_size;
13701 }
13702 else
13703 {
13704 /* We have to copy the data here, because DW_OP_call4 will only
13705 use a DW_AT_location attribute. */
13706 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13707 ptr += DW_BLOCK (member_loc)->size;
13708 }
13709
13710 *ptr++ = DW_OP_plus;
13711 gdb_assert (ptr - baton->data == baton->size);
13712
13713 SYMBOL_LOCATION_BATON (sym) = baton;
13714 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13715 }
13716
13717 /* Create appropriate locally-scoped variables for all the
13718 DW_TAG_common_block entries. Also create a struct common_block
13719 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13720 is used to sepate the common blocks name namespace from regular
13721 variable names. */
13722
13723 static void
13724 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13725 {
13726 struct attribute *attr;
13727
13728 attr = dwarf2_attr (die, DW_AT_location, cu);
13729 if (attr)
13730 {
13731 /* Support the .debug_loc offsets. */
13732 if (attr_form_is_block (attr))
13733 {
13734 /* Ok. */
13735 }
13736 else if (attr_form_is_section_offset (attr))
13737 {
13738 dwarf2_complex_location_expr_complaint ();
13739 attr = NULL;
13740 }
13741 else
13742 {
13743 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13744 "common block member");
13745 attr = NULL;
13746 }
13747 }
13748
13749 if (die->child != NULL)
13750 {
13751 struct objfile *objfile = cu->objfile;
13752 struct die_info *child_die;
13753 size_t n_entries = 0, size;
13754 struct common_block *common_block;
13755 struct symbol *sym;
13756
13757 for (child_die = die->child;
13758 child_die && child_die->tag;
13759 child_die = sibling_die (child_die))
13760 ++n_entries;
13761
13762 size = (sizeof (struct common_block)
13763 + (n_entries - 1) * sizeof (struct symbol *));
13764 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13765 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13766 common_block->n_entries = 0;
13767
13768 for (child_die = die->child;
13769 child_die && child_die->tag;
13770 child_die = sibling_die (child_die))
13771 {
13772 /* Create the symbol in the DW_TAG_common_block block in the current
13773 symbol scope. */
13774 sym = new_symbol (child_die, NULL, cu);
13775 if (sym != NULL)
13776 {
13777 struct attribute *member_loc;
13778
13779 common_block->contents[common_block->n_entries++] = sym;
13780
13781 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13782 cu);
13783 if (member_loc)
13784 {
13785 /* GDB has handled this for a long time, but it is
13786 not specified by DWARF. It seems to have been
13787 emitted by gfortran at least as recently as:
13788 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13789 complaint (&symfile_complaints,
13790 _("Variable in common block has "
13791 "DW_AT_data_member_location "
13792 "- DIE at 0x%x [in module %s]"),
13793 child_die->offset.sect_off,
13794 objfile_name (cu->objfile));
13795
13796 if (attr_form_is_section_offset (member_loc))
13797 dwarf2_complex_location_expr_complaint ();
13798 else if (attr_form_is_constant (member_loc)
13799 || attr_form_is_block (member_loc))
13800 {
13801 if (attr)
13802 mark_common_block_symbol_computed (sym, die, attr,
13803 member_loc, cu);
13804 }
13805 else
13806 dwarf2_complex_location_expr_complaint ();
13807 }
13808 }
13809 }
13810
13811 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13812 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13813 }
13814 }
13815
13816 /* Create a type for a C++ namespace. */
13817
13818 static struct type *
13819 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13820 {
13821 struct objfile *objfile = cu->objfile;
13822 const char *previous_prefix, *name;
13823 int is_anonymous;
13824 struct type *type;
13825
13826 /* For extensions, reuse the type of the original namespace. */
13827 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13828 {
13829 struct die_info *ext_die;
13830 struct dwarf2_cu *ext_cu = cu;
13831
13832 ext_die = dwarf2_extension (die, &ext_cu);
13833 type = read_type_die (ext_die, ext_cu);
13834
13835 /* EXT_CU may not be the same as CU.
13836 Ensure TYPE is recorded with CU in die_type_hash. */
13837 return set_die_type (die, type, cu);
13838 }
13839
13840 name = namespace_name (die, &is_anonymous, cu);
13841
13842 /* Now build the name of the current namespace. */
13843
13844 previous_prefix = determine_prefix (die, cu);
13845 if (previous_prefix[0] != '\0')
13846 name = typename_concat (&objfile->objfile_obstack,
13847 previous_prefix, name, 0, cu);
13848
13849 /* Create the type. */
13850 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13851 objfile);
13852 TYPE_NAME (type) = name;
13853 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13854
13855 return set_die_type (die, type, cu);
13856 }
13857
13858 /* Read a C++ namespace. */
13859
13860 static void
13861 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13862 {
13863 struct objfile *objfile = cu->objfile;
13864 int is_anonymous;
13865
13866 /* Add a symbol associated to this if we haven't seen the namespace
13867 before. Also, add a using directive if it's an anonymous
13868 namespace. */
13869
13870 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13871 {
13872 struct type *type;
13873
13874 type = read_type_die (die, cu);
13875 new_symbol (die, type, cu);
13876
13877 namespace_name (die, &is_anonymous, cu);
13878 if (is_anonymous)
13879 {
13880 const char *previous_prefix = determine_prefix (die, cu);
13881
13882 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13883 NULL, NULL, 0, &objfile->objfile_obstack);
13884 }
13885 }
13886
13887 if (die->child != NULL)
13888 {
13889 struct die_info *child_die = die->child;
13890
13891 while (child_die && child_die->tag)
13892 {
13893 process_die (child_die, cu);
13894 child_die = sibling_die (child_die);
13895 }
13896 }
13897 }
13898
13899 /* Read a Fortran module as type. This DIE can be only a declaration used for
13900 imported module. Still we need that type as local Fortran "use ... only"
13901 declaration imports depend on the created type in determine_prefix. */
13902
13903 static struct type *
13904 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13905 {
13906 struct objfile *objfile = cu->objfile;
13907 const char *module_name;
13908 struct type *type;
13909
13910 module_name = dwarf2_name (die, cu);
13911 if (!module_name)
13912 complaint (&symfile_complaints,
13913 _("DW_TAG_module has no name, offset 0x%x"),
13914 die->offset.sect_off);
13915 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13916
13917 /* determine_prefix uses TYPE_TAG_NAME. */
13918 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13919
13920 return set_die_type (die, type, cu);
13921 }
13922
13923 /* Read a Fortran module. */
13924
13925 static void
13926 read_module (struct die_info *die, struct dwarf2_cu *cu)
13927 {
13928 struct die_info *child_die = die->child;
13929 struct type *type;
13930
13931 type = read_type_die (die, cu);
13932 new_symbol (die, type, cu);
13933
13934 while (child_die && child_die->tag)
13935 {
13936 process_die (child_die, cu);
13937 child_die = sibling_die (child_die);
13938 }
13939 }
13940
13941 /* Return the name of the namespace represented by DIE. Set
13942 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13943 namespace. */
13944
13945 static const char *
13946 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13947 {
13948 struct die_info *current_die;
13949 const char *name = NULL;
13950
13951 /* Loop through the extensions until we find a name. */
13952
13953 for (current_die = die;
13954 current_die != NULL;
13955 current_die = dwarf2_extension (die, &cu))
13956 {
13957 name = dwarf2_name (current_die, cu);
13958 if (name != NULL)
13959 break;
13960 }
13961
13962 /* Is it an anonymous namespace? */
13963
13964 *is_anonymous = (name == NULL);
13965 if (*is_anonymous)
13966 name = CP_ANONYMOUS_NAMESPACE_STR;
13967
13968 return name;
13969 }
13970
13971 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13972 the user defined type vector. */
13973
13974 static struct type *
13975 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13976 {
13977 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13978 struct comp_unit_head *cu_header = &cu->header;
13979 struct type *type;
13980 struct attribute *attr_byte_size;
13981 struct attribute *attr_address_class;
13982 int byte_size, addr_class;
13983 struct type *target_type;
13984
13985 target_type = die_type (die, cu);
13986
13987 /* The die_type call above may have already set the type for this DIE. */
13988 type = get_die_type (die, cu);
13989 if (type)
13990 return type;
13991
13992 type = lookup_pointer_type (target_type);
13993
13994 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13995 if (attr_byte_size)
13996 byte_size = DW_UNSND (attr_byte_size);
13997 else
13998 byte_size = cu_header->addr_size;
13999
14000 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14001 if (attr_address_class)
14002 addr_class = DW_UNSND (attr_address_class);
14003 else
14004 addr_class = DW_ADDR_none;
14005
14006 /* If the pointer size or address class is different than the
14007 default, create a type variant marked as such and set the
14008 length accordingly. */
14009 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14010 {
14011 if (gdbarch_address_class_type_flags_p (gdbarch))
14012 {
14013 int type_flags;
14014
14015 type_flags = gdbarch_address_class_type_flags
14016 (gdbarch, byte_size, addr_class);
14017 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14018 == 0);
14019 type = make_type_with_address_space (type, type_flags);
14020 }
14021 else if (TYPE_LENGTH (type) != byte_size)
14022 {
14023 complaint (&symfile_complaints,
14024 _("invalid pointer size %d"), byte_size);
14025 }
14026 else
14027 {
14028 /* Should we also complain about unhandled address classes? */
14029 }
14030 }
14031
14032 TYPE_LENGTH (type) = byte_size;
14033 return set_die_type (die, type, cu);
14034 }
14035
14036 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14037 the user defined type vector. */
14038
14039 static struct type *
14040 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14041 {
14042 struct type *type;
14043 struct type *to_type;
14044 struct type *domain;
14045
14046 to_type = die_type (die, cu);
14047 domain = die_containing_type (die, cu);
14048
14049 /* The calls above may have already set the type for this DIE. */
14050 type = get_die_type (die, cu);
14051 if (type)
14052 return type;
14053
14054 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14055 type = lookup_methodptr_type (to_type);
14056 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14057 {
14058 struct type *new_type = alloc_type (cu->objfile);
14059
14060 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14061 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14062 TYPE_VARARGS (to_type));
14063 type = lookup_methodptr_type (new_type);
14064 }
14065 else
14066 type = lookup_memberptr_type (to_type, domain);
14067
14068 return set_die_type (die, type, cu);
14069 }
14070
14071 /* Extract all information from a DW_TAG_reference_type DIE and add to
14072 the user defined type vector. */
14073
14074 static struct type *
14075 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14076 {
14077 struct comp_unit_head *cu_header = &cu->header;
14078 struct type *type, *target_type;
14079 struct attribute *attr;
14080
14081 target_type = die_type (die, cu);
14082
14083 /* The die_type call above may have already set the type for this DIE. */
14084 type = get_die_type (die, cu);
14085 if (type)
14086 return type;
14087
14088 type = lookup_reference_type (target_type);
14089 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14090 if (attr)
14091 {
14092 TYPE_LENGTH (type) = DW_UNSND (attr);
14093 }
14094 else
14095 {
14096 TYPE_LENGTH (type) = cu_header->addr_size;
14097 }
14098 return set_die_type (die, type, cu);
14099 }
14100
14101 /* Add the given cv-qualifiers to the element type of the array. GCC
14102 outputs DWARF type qualifiers that apply to an array, not the
14103 element type. But GDB relies on the array element type to carry
14104 the cv-qualifiers. This mimics section 6.7.3 of the C99
14105 specification. */
14106
14107 static struct type *
14108 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14109 struct type *base_type, int cnst, int voltl)
14110 {
14111 struct type *el_type, *inner_array;
14112
14113 base_type = copy_type (base_type);
14114 inner_array = base_type;
14115
14116 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14117 {
14118 TYPE_TARGET_TYPE (inner_array) =
14119 copy_type (TYPE_TARGET_TYPE (inner_array));
14120 inner_array = TYPE_TARGET_TYPE (inner_array);
14121 }
14122
14123 el_type = TYPE_TARGET_TYPE (inner_array);
14124 cnst |= TYPE_CONST (el_type);
14125 voltl |= TYPE_VOLATILE (el_type);
14126 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14127
14128 return set_die_type (die, base_type, cu);
14129 }
14130
14131 static struct type *
14132 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14133 {
14134 struct type *base_type, *cv_type;
14135
14136 base_type = die_type (die, cu);
14137
14138 /* The die_type call above may have already set the type for this DIE. */
14139 cv_type = get_die_type (die, cu);
14140 if (cv_type)
14141 return cv_type;
14142
14143 /* In case the const qualifier is applied to an array type, the element type
14144 is so qualified, not the array type (section 6.7.3 of C99). */
14145 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14146 return add_array_cv_type (die, cu, base_type, 1, 0);
14147
14148 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14149 return set_die_type (die, cv_type, cu);
14150 }
14151
14152 static struct type *
14153 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14154 {
14155 struct type *base_type, *cv_type;
14156
14157 base_type = die_type (die, cu);
14158
14159 /* The die_type call above may have already set the type for this DIE. */
14160 cv_type = get_die_type (die, cu);
14161 if (cv_type)
14162 return cv_type;
14163
14164 /* In case the volatile qualifier is applied to an array type, the
14165 element type is so qualified, not the array type (section 6.7.3
14166 of C99). */
14167 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14168 return add_array_cv_type (die, cu, base_type, 0, 1);
14169
14170 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14171 return set_die_type (die, cv_type, cu);
14172 }
14173
14174 /* Handle DW_TAG_restrict_type. */
14175
14176 static struct type *
14177 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14178 {
14179 struct type *base_type, *cv_type;
14180
14181 base_type = die_type (die, cu);
14182
14183 /* The die_type call above may have already set the type for this DIE. */
14184 cv_type = get_die_type (die, cu);
14185 if (cv_type)
14186 return cv_type;
14187
14188 cv_type = make_restrict_type (base_type);
14189 return set_die_type (die, cv_type, cu);
14190 }
14191
14192 /* Extract all information from a DW_TAG_string_type DIE and add to
14193 the user defined type vector. It isn't really a user defined type,
14194 but it behaves like one, with other DIE's using an AT_user_def_type
14195 attribute to reference it. */
14196
14197 static struct type *
14198 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14199 {
14200 struct objfile *objfile = cu->objfile;
14201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14202 struct type *type, *range_type, *index_type, *char_type;
14203 struct attribute *attr;
14204 unsigned int length;
14205
14206 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14207 if (attr)
14208 {
14209 length = DW_UNSND (attr);
14210 }
14211 else
14212 {
14213 /* Check for the DW_AT_byte_size attribute. */
14214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14215 if (attr)
14216 {
14217 length = DW_UNSND (attr);
14218 }
14219 else
14220 {
14221 length = 1;
14222 }
14223 }
14224
14225 index_type = objfile_type (objfile)->builtin_int;
14226 range_type = create_static_range_type (NULL, index_type, 1, length);
14227 char_type = language_string_char_type (cu->language_defn, gdbarch);
14228 type = create_string_type (NULL, char_type, range_type);
14229
14230 return set_die_type (die, type, cu);
14231 }
14232
14233 /* Assuming that DIE corresponds to a function, returns nonzero
14234 if the function is prototyped. */
14235
14236 static int
14237 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14238 {
14239 struct attribute *attr;
14240
14241 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14242 if (attr && (DW_UNSND (attr) != 0))
14243 return 1;
14244
14245 /* The DWARF standard implies that the DW_AT_prototyped attribute
14246 is only meaninful for C, but the concept also extends to other
14247 languages that allow unprototyped functions (Eg: Objective C).
14248 For all other languages, assume that functions are always
14249 prototyped. */
14250 if (cu->language != language_c
14251 && cu->language != language_objc
14252 && cu->language != language_opencl)
14253 return 1;
14254
14255 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14256 prototyped and unprototyped functions; default to prototyped,
14257 since that is more common in modern code (and RealView warns
14258 about unprototyped functions). */
14259 if (producer_is_realview (cu->producer))
14260 return 1;
14261
14262 return 0;
14263 }
14264
14265 /* Handle DIES due to C code like:
14266
14267 struct foo
14268 {
14269 int (*funcp)(int a, long l);
14270 int b;
14271 };
14272
14273 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14274
14275 static struct type *
14276 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14277 {
14278 struct objfile *objfile = cu->objfile;
14279 struct type *type; /* Type that this function returns. */
14280 struct type *ftype; /* Function that returns above type. */
14281 struct attribute *attr;
14282
14283 type = die_type (die, cu);
14284
14285 /* The die_type call above may have already set the type for this DIE. */
14286 ftype = get_die_type (die, cu);
14287 if (ftype)
14288 return ftype;
14289
14290 ftype = lookup_function_type (type);
14291
14292 if (prototyped_function_p (die, cu))
14293 TYPE_PROTOTYPED (ftype) = 1;
14294
14295 /* Store the calling convention in the type if it's available in
14296 the subroutine die. Otherwise set the calling convention to
14297 the default value DW_CC_normal. */
14298 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14299 if (attr)
14300 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14301 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14303 else
14304 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14305
14306 /* We need to add the subroutine type to the die immediately so
14307 we don't infinitely recurse when dealing with parameters
14308 declared as the same subroutine type. */
14309 set_die_type (die, ftype, cu);
14310
14311 if (die->child != NULL)
14312 {
14313 struct type *void_type = objfile_type (objfile)->builtin_void;
14314 struct die_info *child_die;
14315 int nparams, iparams;
14316
14317 /* Count the number of parameters.
14318 FIXME: GDB currently ignores vararg functions, but knows about
14319 vararg member functions. */
14320 nparams = 0;
14321 child_die = die->child;
14322 while (child_die && child_die->tag)
14323 {
14324 if (child_die->tag == DW_TAG_formal_parameter)
14325 nparams++;
14326 else if (child_die->tag == DW_TAG_unspecified_parameters)
14327 TYPE_VARARGS (ftype) = 1;
14328 child_die = sibling_die (child_die);
14329 }
14330
14331 /* Allocate storage for parameters and fill them in. */
14332 TYPE_NFIELDS (ftype) = nparams;
14333 TYPE_FIELDS (ftype) = (struct field *)
14334 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14335
14336 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14337 even if we error out during the parameters reading below. */
14338 for (iparams = 0; iparams < nparams; iparams++)
14339 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14340
14341 iparams = 0;
14342 child_die = die->child;
14343 while (child_die && child_die->tag)
14344 {
14345 if (child_die->tag == DW_TAG_formal_parameter)
14346 {
14347 struct type *arg_type;
14348
14349 /* DWARF version 2 has no clean way to discern C++
14350 static and non-static member functions. G++ helps
14351 GDB by marking the first parameter for non-static
14352 member functions (which is the this pointer) as
14353 artificial. We pass this information to
14354 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14355
14356 DWARF version 3 added DW_AT_object_pointer, which GCC
14357 4.5 does not yet generate. */
14358 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14359 if (attr)
14360 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14361 else
14362 {
14363 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14364
14365 /* GCC/43521: In java, the formal parameter
14366 "this" is sometimes not marked with DW_AT_artificial. */
14367 if (cu->language == language_java)
14368 {
14369 const char *name = dwarf2_name (child_die, cu);
14370
14371 if (name && !strcmp (name, "this"))
14372 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14373 }
14374 }
14375 arg_type = die_type (child_die, cu);
14376
14377 /* RealView does not mark THIS as const, which the testsuite
14378 expects. GCC marks THIS as const in method definitions,
14379 but not in the class specifications (GCC PR 43053). */
14380 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14381 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14382 {
14383 int is_this = 0;
14384 struct dwarf2_cu *arg_cu = cu;
14385 const char *name = dwarf2_name (child_die, cu);
14386
14387 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14388 if (attr)
14389 {
14390 /* If the compiler emits this, use it. */
14391 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14392 is_this = 1;
14393 }
14394 else if (name && strcmp (name, "this") == 0)
14395 /* Function definitions will have the argument names. */
14396 is_this = 1;
14397 else if (name == NULL && iparams == 0)
14398 /* Declarations may not have the names, so like
14399 elsewhere in GDB, assume an artificial first
14400 argument is "this". */
14401 is_this = 1;
14402
14403 if (is_this)
14404 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14405 arg_type, 0);
14406 }
14407
14408 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14409 iparams++;
14410 }
14411 child_die = sibling_die (child_die);
14412 }
14413 }
14414
14415 return ftype;
14416 }
14417
14418 static struct type *
14419 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14420 {
14421 struct objfile *objfile = cu->objfile;
14422 const char *name = NULL;
14423 struct type *this_type, *target_type;
14424
14425 name = dwarf2_full_name (NULL, die, cu);
14426 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14427 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14428 TYPE_NAME (this_type) = name;
14429 set_die_type (die, this_type, cu);
14430 target_type = die_type (die, cu);
14431 if (target_type != this_type)
14432 TYPE_TARGET_TYPE (this_type) = target_type;
14433 else
14434 {
14435 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14436 spec and cause infinite loops in GDB. */
14437 complaint (&symfile_complaints,
14438 _("Self-referential DW_TAG_typedef "
14439 "- DIE at 0x%x [in module %s]"),
14440 die->offset.sect_off, objfile_name (objfile));
14441 TYPE_TARGET_TYPE (this_type) = NULL;
14442 }
14443 return this_type;
14444 }
14445
14446 /* Find a representation of a given base type and install
14447 it in the TYPE field of the die. */
14448
14449 static struct type *
14450 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14451 {
14452 struct objfile *objfile = cu->objfile;
14453 struct type *type;
14454 struct attribute *attr;
14455 int encoding = 0, size = 0;
14456 const char *name;
14457 enum type_code code = TYPE_CODE_INT;
14458 int type_flags = 0;
14459 struct type *target_type = NULL;
14460
14461 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14462 if (attr)
14463 {
14464 encoding = DW_UNSND (attr);
14465 }
14466 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14467 if (attr)
14468 {
14469 size = DW_UNSND (attr);
14470 }
14471 name = dwarf2_name (die, cu);
14472 if (!name)
14473 {
14474 complaint (&symfile_complaints,
14475 _("DW_AT_name missing from DW_TAG_base_type"));
14476 }
14477
14478 switch (encoding)
14479 {
14480 case DW_ATE_address:
14481 /* Turn DW_ATE_address into a void * pointer. */
14482 code = TYPE_CODE_PTR;
14483 type_flags |= TYPE_FLAG_UNSIGNED;
14484 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14485 break;
14486 case DW_ATE_boolean:
14487 code = TYPE_CODE_BOOL;
14488 type_flags |= TYPE_FLAG_UNSIGNED;
14489 break;
14490 case DW_ATE_complex_float:
14491 code = TYPE_CODE_COMPLEX;
14492 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14493 break;
14494 case DW_ATE_decimal_float:
14495 code = TYPE_CODE_DECFLOAT;
14496 break;
14497 case DW_ATE_float:
14498 code = TYPE_CODE_FLT;
14499 break;
14500 case DW_ATE_signed:
14501 break;
14502 case DW_ATE_unsigned:
14503 type_flags |= TYPE_FLAG_UNSIGNED;
14504 if (cu->language == language_fortran
14505 && name
14506 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14507 code = TYPE_CODE_CHAR;
14508 break;
14509 case DW_ATE_signed_char:
14510 if (cu->language == language_ada || cu->language == language_m2
14511 || cu->language == language_pascal
14512 || cu->language == language_fortran)
14513 code = TYPE_CODE_CHAR;
14514 break;
14515 case DW_ATE_unsigned_char:
14516 if (cu->language == language_ada || cu->language == language_m2
14517 || cu->language == language_pascal
14518 || cu->language == language_fortran)
14519 code = TYPE_CODE_CHAR;
14520 type_flags |= TYPE_FLAG_UNSIGNED;
14521 break;
14522 case DW_ATE_UTF:
14523 /* We just treat this as an integer and then recognize the
14524 type by name elsewhere. */
14525 break;
14526
14527 default:
14528 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14529 dwarf_type_encoding_name (encoding));
14530 break;
14531 }
14532
14533 type = init_type (code, size, type_flags, NULL, objfile);
14534 TYPE_NAME (type) = name;
14535 TYPE_TARGET_TYPE (type) = target_type;
14536
14537 if (name && strcmp (name, "char") == 0)
14538 TYPE_NOSIGN (type) = 1;
14539
14540 return set_die_type (die, type, cu);
14541 }
14542
14543 /* Parse dwarf attribute if it's a block, reference or constant and put the
14544 resulting value of the attribute into struct bound_prop.
14545 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14546
14547 static int
14548 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14549 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14550 {
14551 struct dwarf2_property_baton *baton;
14552 struct obstack *obstack = &cu->objfile->objfile_obstack;
14553
14554 if (attr == NULL || prop == NULL)
14555 return 0;
14556
14557 if (attr_form_is_block (attr))
14558 {
14559 baton = obstack_alloc (obstack, sizeof (*baton));
14560 baton->referenced_type = NULL;
14561 baton->locexpr.per_cu = cu->per_cu;
14562 baton->locexpr.size = DW_BLOCK (attr)->size;
14563 baton->locexpr.data = DW_BLOCK (attr)->data;
14564 prop->data.baton = baton;
14565 prop->kind = PROP_LOCEXPR;
14566 gdb_assert (prop->data.baton != NULL);
14567 }
14568 else if (attr_form_is_ref (attr))
14569 {
14570 struct dwarf2_cu *target_cu = cu;
14571 struct die_info *target_die;
14572 struct attribute *target_attr;
14573
14574 target_die = follow_die_ref (die, attr, &target_cu);
14575 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14576 if (target_attr == NULL)
14577 return 0;
14578
14579 if (attr_form_is_section_offset (target_attr))
14580 {
14581 baton = obstack_alloc (obstack, sizeof (*baton));
14582 baton->referenced_type = die_type (target_die, target_cu);
14583 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14584 prop->data.baton = baton;
14585 prop->kind = PROP_LOCLIST;
14586 gdb_assert (prop->data.baton != NULL);
14587 }
14588 else if (attr_form_is_block (target_attr))
14589 {
14590 baton = obstack_alloc (obstack, sizeof (*baton));
14591 baton->referenced_type = die_type (target_die, target_cu);
14592 baton->locexpr.per_cu = cu->per_cu;
14593 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14594 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14595 prop->data.baton = baton;
14596 prop->kind = PROP_LOCEXPR;
14597 gdb_assert (prop->data.baton != NULL);
14598 }
14599 else
14600 {
14601 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14602 "dynamic property");
14603 return 0;
14604 }
14605 }
14606 else if (attr_form_is_constant (attr))
14607 {
14608 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14609 prop->kind = PROP_CONST;
14610 }
14611 else
14612 {
14613 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14614 dwarf2_name (die, cu));
14615 return 0;
14616 }
14617
14618 return 1;
14619 }
14620
14621 /* Read the given DW_AT_subrange DIE. */
14622
14623 static struct type *
14624 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14625 {
14626 struct type *base_type, *orig_base_type;
14627 struct type *range_type;
14628 struct attribute *attr;
14629 struct dynamic_prop low, high;
14630 int low_default_is_valid;
14631 int high_bound_is_count = 0;
14632 const char *name;
14633 LONGEST negative_mask;
14634
14635 orig_base_type = die_type (die, cu);
14636 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14637 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14638 creating the range type, but we use the result of check_typedef
14639 when examining properties of the type. */
14640 base_type = check_typedef (orig_base_type);
14641
14642 /* The die_type call above may have already set the type for this DIE. */
14643 range_type = get_die_type (die, cu);
14644 if (range_type)
14645 return range_type;
14646
14647 low.kind = PROP_CONST;
14648 high.kind = PROP_CONST;
14649 high.data.const_val = 0;
14650
14651 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14652 omitting DW_AT_lower_bound. */
14653 switch (cu->language)
14654 {
14655 case language_c:
14656 case language_cplus:
14657 low.data.const_val = 0;
14658 low_default_is_valid = 1;
14659 break;
14660 case language_fortran:
14661 low.data.const_val = 1;
14662 low_default_is_valid = 1;
14663 break;
14664 case language_d:
14665 case language_java:
14666 case language_objc:
14667 low.data.const_val = 0;
14668 low_default_is_valid = (cu->header.version >= 4);
14669 break;
14670 case language_ada:
14671 case language_m2:
14672 case language_pascal:
14673 low.data.const_val = 1;
14674 low_default_is_valid = (cu->header.version >= 4);
14675 break;
14676 default:
14677 low.data.const_val = 0;
14678 low_default_is_valid = 0;
14679 break;
14680 }
14681
14682 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14683 if (attr)
14684 attr_to_dynamic_prop (attr, die, cu, &low);
14685 else if (!low_default_is_valid)
14686 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14687 "- DIE at 0x%x [in module %s]"),
14688 die->offset.sect_off, objfile_name (cu->objfile));
14689
14690 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14691 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14692 {
14693 attr = dwarf2_attr (die, DW_AT_count, cu);
14694 if (attr_to_dynamic_prop (attr, die, cu, &high))
14695 {
14696 /* If bounds are constant do the final calculation here. */
14697 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14698 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14699 else
14700 high_bound_is_count = 1;
14701 }
14702 }
14703
14704 /* Dwarf-2 specifications explicitly allows to create subrange types
14705 without specifying a base type.
14706 In that case, the base type must be set to the type of
14707 the lower bound, upper bound or count, in that order, if any of these
14708 three attributes references an object that has a type.
14709 If no base type is found, the Dwarf-2 specifications say that
14710 a signed integer type of size equal to the size of an address should
14711 be used.
14712 For the following C code: `extern char gdb_int [];'
14713 GCC produces an empty range DIE.
14714 FIXME: muller/2010-05-28: Possible references to object for low bound,
14715 high bound or count are not yet handled by this code. */
14716 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14717 {
14718 struct objfile *objfile = cu->objfile;
14719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14720 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14721 struct type *int_type = objfile_type (objfile)->builtin_int;
14722
14723 /* Test "int", "long int", and "long long int" objfile types,
14724 and select the first one having a size above or equal to the
14725 architecture address size. */
14726 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14727 base_type = int_type;
14728 else
14729 {
14730 int_type = objfile_type (objfile)->builtin_long;
14731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14732 base_type = int_type;
14733 else
14734 {
14735 int_type = objfile_type (objfile)->builtin_long_long;
14736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14737 base_type = int_type;
14738 }
14739 }
14740 }
14741
14742 /* Normally, the DWARF producers are expected to use a signed
14743 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14744 But this is unfortunately not always the case, as witnessed
14745 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14746 is used instead. To work around that ambiguity, we treat
14747 the bounds as signed, and thus sign-extend their values, when
14748 the base type is signed. */
14749 negative_mask =
14750 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14751 if (low.kind == PROP_CONST
14752 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14753 low.data.const_val |= negative_mask;
14754 if (high.kind == PROP_CONST
14755 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14756 high.data.const_val |= negative_mask;
14757
14758 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14759
14760 if (high_bound_is_count)
14761 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14762
14763 /* Ada expects an empty array on no boundary attributes. */
14764 if (attr == NULL && cu->language != language_ada)
14765 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14766
14767 name = dwarf2_name (die, cu);
14768 if (name)
14769 TYPE_NAME (range_type) = name;
14770
14771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14772 if (attr)
14773 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14774
14775 set_die_type (die, range_type, cu);
14776
14777 /* set_die_type should be already done. */
14778 set_descriptive_type (range_type, die, cu);
14779
14780 return range_type;
14781 }
14782
14783 static struct type *
14784 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14785 {
14786 struct type *type;
14787
14788 /* For now, we only support the C meaning of an unspecified type: void. */
14789
14790 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14791 TYPE_NAME (type) = dwarf2_name (die, cu);
14792
14793 return set_die_type (die, type, cu);
14794 }
14795
14796 /* Read a single die and all its descendents. Set the die's sibling
14797 field to NULL; set other fields in the die correctly, and set all
14798 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14799 location of the info_ptr after reading all of those dies. PARENT
14800 is the parent of the die in question. */
14801
14802 static struct die_info *
14803 read_die_and_children (const struct die_reader_specs *reader,
14804 const gdb_byte *info_ptr,
14805 const gdb_byte **new_info_ptr,
14806 struct die_info *parent)
14807 {
14808 struct die_info *die;
14809 const gdb_byte *cur_ptr;
14810 int has_children;
14811
14812 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14813 if (die == NULL)
14814 {
14815 *new_info_ptr = cur_ptr;
14816 return NULL;
14817 }
14818 store_in_ref_table (die, reader->cu);
14819
14820 if (has_children)
14821 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14822 else
14823 {
14824 die->child = NULL;
14825 *new_info_ptr = cur_ptr;
14826 }
14827
14828 die->sibling = NULL;
14829 die->parent = parent;
14830 return die;
14831 }
14832
14833 /* Read a die, all of its descendents, and all of its siblings; set
14834 all of the fields of all of the dies correctly. Arguments are as
14835 in read_die_and_children. */
14836
14837 static struct die_info *
14838 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14839 const gdb_byte *info_ptr,
14840 const gdb_byte **new_info_ptr,
14841 struct die_info *parent)
14842 {
14843 struct die_info *first_die, *last_sibling;
14844 const gdb_byte *cur_ptr;
14845
14846 cur_ptr = info_ptr;
14847 first_die = last_sibling = NULL;
14848
14849 while (1)
14850 {
14851 struct die_info *die
14852 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14853
14854 if (die == NULL)
14855 {
14856 *new_info_ptr = cur_ptr;
14857 return first_die;
14858 }
14859
14860 if (!first_die)
14861 first_die = die;
14862 else
14863 last_sibling->sibling = die;
14864
14865 last_sibling = die;
14866 }
14867 }
14868
14869 /* Read a die, all of its descendents, and all of its siblings; set
14870 all of the fields of all of the dies correctly. Arguments are as
14871 in read_die_and_children.
14872 This the main entry point for reading a DIE and all its children. */
14873
14874 static struct die_info *
14875 read_die_and_siblings (const struct die_reader_specs *reader,
14876 const gdb_byte *info_ptr,
14877 const gdb_byte **new_info_ptr,
14878 struct die_info *parent)
14879 {
14880 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14881 new_info_ptr, parent);
14882
14883 if (dwarf2_die_debug)
14884 {
14885 fprintf_unfiltered (gdb_stdlog,
14886 "Read die from %s@0x%x of %s:\n",
14887 get_section_name (reader->die_section),
14888 (unsigned) (info_ptr - reader->die_section->buffer),
14889 bfd_get_filename (reader->abfd));
14890 dump_die (die, dwarf2_die_debug);
14891 }
14892
14893 return die;
14894 }
14895
14896 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14897 attributes.
14898 The caller is responsible for filling in the extra attributes
14899 and updating (*DIEP)->num_attrs.
14900 Set DIEP to point to a newly allocated die with its information,
14901 except for its child, sibling, and parent fields.
14902 Set HAS_CHILDREN to tell whether the die has children or not. */
14903
14904 static const gdb_byte *
14905 read_full_die_1 (const struct die_reader_specs *reader,
14906 struct die_info **diep, const gdb_byte *info_ptr,
14907 int *has_children, int num_extra_attrs)
14908 {
14909 unsigned int abbrev_number, bytes_read, i;
14910 sect_offset offset;
14911 struct abbrev_info *abbrev;
14912 struct die_info *die;
14913 struct dwarf2_cu *cu = reader->cu;
14914 bfd *abfd = reader->abfd;
14915
14916 offset.sect_off = info_ptr - reader->buffer;
14917 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14918 info_ptr += bytes_read;
14919 if (!abbrev_number)
14920 {
14921 *diep = NULL;
14922 *has_children = 0;
14923 return info_ptr;
14924 }
14925
14926 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14927 if (!abbrev)
14928 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14929 abbrev_number,
14930 bfd_get_filename (abfd));
14931
14932 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14933 die->offset = offset;
14934 die->tag = abbrev->tag;
14935 die->abbrev = abbrev_number;
14936
14937 /* Make the result usable.
14938 The caller needs to update num_attrs after adding the extra
14939 attributes. */
14940 die->num_attrs = abbrev->num_attrs;
14941
14942 for (i = 0; i < abbrev->num_attrs; ++i)
14943 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14944 info_ptr);
14945
14946 *diep = die;
14947 *has_children = abbrev->has_children;
14948 return info_ptr;
14949 }
14950
14951 /* Read a die and all its attributes.
14952 Set DIEP to point to a newly allocated die with its information,
14953 except for its child, sibling, and parent fields.
14954 Set HAS_CHILDREN to tell whether the die has children or not. */
14955
14956 static const gdb_byte *
14957 read_full_die (const struct die_reader_specs *reader,
14958 struct die_info **diep, const gdb_byte *info_ptr,
14959 int *has_children)
14960 {
14961 const gdb_byte *result;
14962
14963 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14964
14965 if (dwarf2_die_debug)
14966 {
14967 fprintf_unfiltered (gdb_stdlog,
14968 "Read die from %s@0x%x of %s:\n",
14969 get_section_name (reader->die_section),
14970 (unsigned) (info_ptr - reader->die_section->buffer),
14971 bfd_get_filename (reader->abfd));
14972 dump_die (*diep, dwarf2_die_debug);
14973 }
14974
14975 return result;
14976 }
14977 \f
14978 /* Abbreviation tables.
14979
14980 In DWARF version 2, the description of the debugging information is
14981 stored in a separate .debug_abbrev section. Before we read any
14982 dies from a section we read in all abbreviations and install them
14983 in a hash table. */
14984
14985 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14986
14987 static struct abbrev_info *
14988 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14989 {
14990 struct abbrev_info *abbrev;
14991
14992 abbrev = (struct abbrev_info *)
14993 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14994 memset (abbrev, 0, sizeof (struct abbrev_info));
14995 return abbrev;
14996 }
14997
14998 /* Add an abbreviation to the table. */
14999
15000 static void
15001 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15002 unsigned int abbrev_number,
15003 struct abbrev_info *abbrev)
15004 {
15005 unsigned int hash_number;
15006
15007 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15008 abbrev->next = abbrev_table->abbrevs[hash_number];
15009 abbrev_table->abbrevs[hash_number] = abbrev;
15010 }
15011
15012 /* Look up an abbrev in the table.
15013 Returns NULL if the abbrev is not found. */
15014
15015 static struct abbrev_info *
15016 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15017 unsigned int abbrev_number)
15018 {
15019 unsigned int hash_number;
15020 struct abbrev_info *abbrev;
15021
15022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15023 abbrev = abbrev_table->abbrevs[hash_number];
15024
15025 while (abbrev)
15026 {
15027 if (abbrev->number == abbrev_number)
15028 return abbrev;
15029 abbrev = abbrev->next;
15030 }
15031 return NULL;
15032 }
15033
15034 /* Read in an abbrev table. */
15035
15036 static struct abbrev_table *
15037 abbrev_table_read_table (struct dwarf2_section_info *section,
15038 sect_offset offset)
15039 {
15040 struct objfile *objfile = dwarf2_per_objfile->objfile;
15041 bfd *abfd = get_section_bfd_owner (section);
15042 struct abbrev_table *abbrev_table;
15043 const gdb_byte *abbrev_ptr;
15044 struct abbrev_info *cur_abbrev;
15045 unsigned int abbrev_number, bytes_read, abbrev_name;
15046 unsigned int abbrev_form;
15047 struct attr_abbrev *cur_attrs;
15048 unsigned int allocated_attrs;
15049
15050 abbrev_table = XNEW (struct abbrev_table);
15051 abbrev_table->offset = offset;
15052 obstack_init (&abbrev_table->abbrev_obstack);
15053 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15054 (ABBREV_HASH_SIZE
15055 * sizeof (struct abbrev_info *)));
15056 memset (abbrev_table->abbrevs, 0,
15057 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15058
15059 dwarf2_read_section (objfile, section);
15060 abbrev_ptr = section->buffer + offset.sect_off;
15061 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15062 abbrev_ptr += bytes_read;
15063
15064 allocated_attrs = ATTR_ALLOC_CHUNK;
15065 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15066
15067 /* Loop until we reach an abbrev number of 0. */
15068 while (abbrev_number)
15069 {
15070 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15071
15072 /* read in abbrev header */
15073 cur_abbrev->number = abbrev_number;
15074 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15075 abbrev_ptr += bytes_read;
15076 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15077 abbrev_ptr += 1;
15078
15079 /* now read in declarations */
15080 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15083 abbrev_ptr += bytes_read;
15084 while (abbrev_name)
15085 {
15086 if (cur_abbrev->num_attrs == allocated_attrs)
15087 {
15088 allocated_attrs += ATTR_ALLOC_CHUNK;
15089 cur_attrs
15090 = xrealloc (cur_attrs, (allocated_attrs
15091 * sizeof (struct attr_abbrev)));
15092 }
15093
15094 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15095 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15096 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15099 abbrev_ptr += bytes_read;
15100 }
15101
15102 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15103 (cur_abbrev->num_attrs
15104 * sizeof (struct attr_abbrev)));
15105 memcpy (cur_abbrev->attrs, cur_attrs,
15106 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15107
15108 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15109
15110 /* Get next abbreviation.
15111 Under Irix6 the abbreviations for a compilation unit are not
15112 always properly terminated with an abbrev number of 0.
15113 Exit loop if we encounter an abbreviation which we have
15114 already read (which means we are about to read the abbreviations
15115 for the next compile unit) or if the end of the abbreviation
15116 table is reached. */
15117 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15118 break;
15119 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15120 abbrev_ptr += bytes_read;
15121 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15122 break;
15123 }
15124
15125 xfree (cur_attrs);
15126 return abbrev_table;
15127 }
15128
15129 /* Free the resources held by ABBREV_TABLE. */
15130
15131 static void
15132 abbrev_table_free (struct abbrev_table *abbrev_table)
15133 {
15134 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15135 xfree (abbrev_table);
15136 }
15137
15138 /* Same as abbrev_table_free but as a cleanup.
15139 We pass in a pointer to the pointer to the table so that we can
15140 set the pointer to NULL when we're done. It also simplifies
15141 build_type_psymtabs_1. */
15142
15143 static void
15144 abbrev_table_free_cleanup (void *table_ptr)
15145 {
15146 struct abbrev_table **abbrev_table_ptr = table_ptr;
15147
15148 if (*abbrev_table_ptr != NULL)
15149 abbrev_table_free (*abbrev_table_ptr);
15150 *abbrev_table_ptr = NULL;
15151 }
15152
15153 /* Read the abbrev table for CU from ABBREV_SECTION. */
15154
15155 static void
15156 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15157 struct dwarf2_section_info *abbrev_section)
15158 {
15159 cu->abbrev_table =
15160 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15161 }
15162
15163 /* Release the memory used by the abbrev table for a compilation unit. */
15164
15165 static void
15166 dwarf2_free_abbrev_table (void *ptr_to_cu)
15167 {
15168 struct dwarf2_cu *cu = ptr_to_cu;
15169
15170 if (cu->abbrev_table != NULL)
15171 abbrev_table_free (cu->abbrev_table);
15172 /* Set this to NULL so that we SEGV if we try to read it later,
15173 and also because free_comp_unit verifies this is NULL. */
15174 cu->abbrev_table = NULL;
15175 }
15176 \f
15177 /* Returns nonzero if TAG represents a type that we might generate a partial
15178 symbol for. */
15179
15180 static int
15181 is_type_tag_for_partial (int tag)
15182 {
15183 switch (tag)
15184 {
15185 #if 0
15186 /* Some types that would be reasonable to generate partial symbols for,
15187 that we don't at present. */
15188 case DW_TAG_array_type:
15189 case DW_TAG_file_type:
15190 case DW_TAG_ptr_to_member_type:
15191 case DW_TAG_set_type:
15192 case DW_TAG_string_type:
15193 case DW_TAG_subroutine_type:
15194 #endif
15195 case DW_TAG_base_type:
15196 case DW_TAG_class_type:
15197 case DW_TAG_interface_type:
15198 case DW_TAG_enumeration_type:
15199 case DW_TAG_structure_type:
15200 case DW_TAG_subrange_type:
15201 case DW_TAG_typedef:
15202 case DW_TAG_union_type:
15203 return 1;
15204 default:
15205 return 0;
15206 }
15207 }
15208
15209 /* Load all DIEs that are interesting for partial symbols into memory. */
15210
15211 static struct partial_die_info *
15212 load_partial_dies (const struct die_reader_specs *reader,
15213 const gdb_byte *info_ptr, int building_psymtab)
15214 {
15215 struct dwarf2_cu *cu = reader->cu;
15216 struct objfile *objfile = cu->objfile;
15217 struct partial_die_info *part_die;
15218 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15219 struct abbrev_info *abbrev;
15220 unsigned int bytes_read;
15221 unsigned int load_all = 0;
15222 int nesting_level = 1;
15223
15224 parent_die = NULL;
15225 last_die = NULL;
15226
15227 gdb_assert (cu->per_cu != NULL);
15228 if (cu->per_cu->load_all_dies)
15229 load_all = 1;
15230
15231 cu->partial_dies
15232 = htab_create_alloc_ex (cu->header.length / 12,
15233 partial_die_hash,
15234 partial_die_eq,
15235 NULL,
15236 &cu->comp_unit_obstack,
15237 hashtab_obstack_allocate,
15238 dummy_obstack_deallocate);
15239
15240 part_die = obstack_alloc (&cu->comp_unit_obstack,
15241 sizeof (struct partial_die_info));
15242
15243 while (1)
15244 {
15245 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15246
15247 /* A NULL abbrev means the end of a series of children. */
15248 if (abbrev == NULL)
15249 {
15250 if (--nesting_level == 0)
15251 {
15252 /* PART_DIE was probably the last thing allocated on the
15253 comp_unit_obstack, so we could call obstack_free
15254 here. We don't do that because the waste is small,
15255 and will be cleaned up when we're done with this
15256 compilation unit. This way, we're also more robust
15257 against other users of the comp_unit_obstack. */
15258 return first_die;
15259 }
15260 info_ptr += bytes_read;
15261 last_die = parent_die;
15262 parent_die = parent_die->die_parent;
15263 continue;
15264 }
15265
15266 /* Check for template arguments. We never save these; if
15267 they're seen, we just mark the parent, and go on our way. */
15268 if (parent_die != NULL
15269 && cu->language == language_cplus
15270 && (abbrev->tag == DW_TAG_template_type_param
15271 || abbrev->tag == DW_TAG_template_value_param))
15272 {
15273 parent_die->has_template_arguments = 1;
15274
15275 if (!load_all)
15276 {
15277 /* We don't need a partial DIE for the template argument. */
15278 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15279 continue;
15280 }
15281 }
15282
15283 /* We only recurse into c++ subprograms looking for template arguments.
15284 Skip their other children. */
15285 if (!load_all
15286 && cu->language == language_cplus
15287 && parent_die != NULL
15288 && parent_die->tag == DW_TAG_subprogram)
15289 {
15290 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15291 continue;
15292 }
15293
15294 /* Check whether this DIE is interesting enough to save. Normally
15295 we would not be interested in members here, but there may be
15296 later variables referencing them via DW_AT_specification (for
15297 static members). */
15298 if (!load_all
15299 && !is_type_tag_for_partial (abbrev->tag)
15300 && abbrev->tag != DW_TAG_constant
15301 && abbrev->tag != DW_TAG_enumerator
15302 && abbrev->tag != DW_TAG_subprogram
15303 && abbrev->tag != DW_TAG_lexical_block
15304 && abbrev->tag != DW_TAG_variable
15305 && abbrev->tag != DW_TAG_namespace
15306 && abbrev->tag != DW_TAG_module
15307 && abbrev->tag != DW_TAG_member
15308 && abbrev->tag != DW_TAG_imported_unit
15309 && abbrev->tag != DW_TAG_imported_declaration)
15310 {
15311 /* Otherwise we skip to the next sibling, if any. */
15312 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15313 continue;
15314 }
15315
15316 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15317 info_ptr);
15318
15319 /* This two-pass algorithm for processing partial symbols has a
15320 high cost in cache pressure. Thus, handle some simple cases
15321 here which cover the majority of C partial symbols. DIEs
15322 which neither have specification tags in them, nor could have
15323 specification tags elsewhere pointing at them, can simply be
15324 processed and discarded.
15325
15326 This segment is also optional; scan_partial_symbols and
15327 add_partial_symbol will handle these DIEs if we chain
15328 them in normally. When compilers which do not emit large
15329 quantities of duplicate debug information are more common,
15330 this code can probably be removed. */
15331
15332 /* Any complete simple types at the top level (pretty much all
15333 of them, for a language without namespaces), can be processed
15334 directly. */
15335 if (parent_die == NULL
15336 && part_die->has_specification == 0
15337 && part_die->is_declaration == 0
15338 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15339 || part_die->tag == DW_TAG_base_type
15340 || part_die->tag == DW_TAG_subrange_type))
15341 {
15342 if (building_psymtab && part_die->name != NULL)
15343 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15344 VAR_DOMAIN, LOC_TYPEDEF,
15345 &objfile->static_psymbols,
15346 0, (CORE_ADDR) 0, cu->language, objfile);
15347 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15348 continue;
15349 }
15350
15351 /* The exception for DW_TAG_typedef with has_children above is
15352 a workaround of GCC PR debug/47510. In the case of this complaint
15353 type_name_no_tag_or_error will error on such types later.
15354
15355 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15356 it could not find the child DIEs referenced later, this is checked
15357 above. In correct DWARF DW_TAG_typedef should have no children. */
15358
15359 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15360 complaint (&symfile_complaints,
15361 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15362 "- DIE at 0x%x [in module %s]"),
15363 part_die->offset.sect_off, objfile_name (objfile));
15364
15365 /* If we're at the second level, and we're an enumerator, and
15366 our parent has no specification (meaning possibly lives in a
15367 namespace elsewhere), then we can add the partial symbol now
15368 instead of queueing it. */
15369 if (part_die->tag == DW_TAG_enumerator
15370 && parent_die != NULL
15371 && parent_die->die_parent == NULL
15372 && parent_die->tag == DW_TAG_enumeration_type
15373 && parent_die->has_specification == 0)
15374 {
15375 if (part_die->name == NULL)
15376 complaint (&symfile_complaints,
15377 _("malformed enumerator DIE ignored"));
15378 else if (building_psymtab)
15379 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15380 VAR_DOMAIN, LOC_CONST,
15381 (cu->language == language_cplus
15382 || cu->language == language_java)
15383 ? &objfile->global_psymbols
15384 : &objfile->static_psymbols,
15385 0, (CORE_ADDR) 0, cu->language, objfile);
15386
15387 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15388 continue;
15389 }
15390
15391 /* We'll save this DIE so link it in. */
15392 part_die->die_parent = parent_die;
15393 part_die->die_sibling = NULL;
15394 part_die->die_child = NULL;
15395
15396 if (last_die && last_die == parent_die)
15397 last_die->die_child = part_die;
15398 else if (last_die)
15399 last_die->die_sibling = part_die;
15400
15401 last_die = part_die;
15402
15403 if (first_die == NULL)
15404 first_die = part_die;
15405
15406 /* Maybe add the DIE to the hash table. Not all DIEs that we
15407 find interesting need to be in the hash table, because we
15408 also have the parent/sibling/child chains; only those that we
15409 might refer to by offset later during partial symbol reading.
15410
15411 For now this means things that might have be the target of a
15412 DW_AT_specification, DW_AT_abstract_origin, or
15413 DW_AT_extension. DW_AT_extension will refer only to
15414 namespaces; DW_AT_abstract_origin refers to functions (and
15415 many things under the function DIE, but we do not recurse
15416 into function DIEs during partial symbol reading) and
15417 possibly variables as well; DW_AT_specification refers to
15418 declarations. Declarations ought to have the DW_AT_declaration
15419 flag. It happens that GCC forgets to put it in sometimes, but
15420 only for functions, not for types.
15421
15422 Adding more things than necessary to the hash table is harmless
15423 except for the performance cost. Adding too few will result in
15424 wasted time in find_partial_die, when we reread the compilation
15425 unit with load_all_dies set. */
15426
15427 if (load_all
15428 || abbrev->tag == DW_TAG_constant
15429 || abbrev->tag == DW_TAG_subprogram
15430 || abbrev->tag == DW_TAG_variable
15431 || abbrev->tag == DW_TAG_namespace
15432 || part_die->is_declaration)
15433 {
15434 void **slot;
15435
15436 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15437 part_die->offset.sect_off, INSERT);
15438 *slot = part_die;
15439 }
15440
15441 part_die = obstack_alloc (&cu->comp_unit_obstack,
15442 sizeof (struct partial_die_info));
15443
15444 /* For some DIEs we want to follow their children (if any). For C
15445 we have no reason to follow the children of structures; for other
15446 languages we have to, so that we can get at method physnames
15447 to infer fully qualified class names, for DW_AT_specification,
15448 and for C++ template arguments. For C++, we also look one level
15449 inside functions to find template arguments (if the name of the
15450 function does not already contain the template arguments).
15451
15452 For Ada, we need to scan the children of subprograms and lexical
15453 blocks as well because Ada allows the definition of nested
15454 entities that could be interesting for the debugger, such as
15455 nested subprograms for instance. */
15456 if (last_die->has_children
15457 && (load_all
15458 || last_die->tag == DW_TAG_namespace
15459 || last_die->tag == DW_TAG_module
15460 || last_die->tag == DW_TAG_enumeration_type
15461 || (cu->language == language_cplus
15462 && last_die->tag == DW_TAG_subprogram
15463 && (last_die->name == NULL
15464 || strchr (last_die->name, '<') == NULL))
15465 || (cu->language != language_c
15466 && (last_die->tag == DW_TAG_class_type
15467 || last_die->tag == DW_TAG_interface_type
15468 || last_die->tag == DW_TAG_structure_type
15469 || last_die->tag == DW_TAG_union_type))
15470 || (cu->language == language_ada
15471 && (last_die->tag == DW_TAG_subprogram
15472 || last_die->tag == DW_TAG_lexical_block))))
15473 {
15474 nesting_level++;
15475 parent_die = last_die;
15476 continue;
15477 }
15478
15479 /* Otherwise we skip to the next sibling, if any. */
15480 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15481
15482 /* Back to the top, do it again. */
15483 }
15484 }
15485
15486 /* Read a minimal amount of information into the minimal die structure. */
15487
15488 static const gdb_byte *
15489 read_partial_die (const struct die_reader_specs *reader,
15490 struct partial_die_info *part_die,
15491 struct abbrev_info *abbrev, unsigned int abbrev_len,
15492 const gdb_byte *info_ptr)
15493 {
15494 struct dwarf2_cu *cu = reader->cu;
15495 struct objfile *objfile = cu->objfile;
15496 const gdb_byte *buffer = reader->buffer;
15497 unsigned int i;
15498 struct attribute attr;
15499 int has_low_pc_attr = 0;
15500 int has_high_pc_attr = 0;
15501 int high_pc_relative = 0;
15502
15503 memset (part_die, 0, sizeof (struct partial_die_info));
15504
15505 part_die->offset.sect_off = info_ptr - buffer;
15506
15507 info_ptr += abbrev_len;
15508
15509 if (abbrev == NULL)
15510 return info_ptr;
15511
15512 part_die->tag = abbrev->tag;
15513 part_die->has_children = abbrev->has_children;
15514
15515 for (i = 0; i < abbrev->num_attrs; ++i)
15516 {
15517 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15518
15519 /* Store the data if it is of an attribute we want to keep in a
15520 partial symbol table. */
15521 switch (attr.name)
15522 {
15523 case DW_AT_name:
15524 switch (part_die->tag)
15525 {
15526 case DW_TAG_compile_unit:
15527 case DW_TAG_partial_unit:
15528 case DW_TAG_type_unit:
15529 /* Compilation units have a DW_AT_name that is a filename, not
15530 a source language identifier. */
15531 case DW_TAG_enumeration_type:
15532 case DW_TAG_enumerator:
15533 /* These tags always have simple identifiers already; no need
15534 to canonicalize them. */
15535 part_die->name = DW_STRING (&attr);
15536 break;
15537 default:
15538 part_die->name
15539 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15540 &objfile->per_bfd->storage_obstack);
15541 break;
15542 }
15543 break;
15544 case DW_AT_linkage_name:
15545 case DW_AT_MIPS_linkage_name:
15546 /* Note that both forms of linkage name might appear. We
15547 assume they will be the same, and we only store the last
15548 one we see. */
15549 if (cu->language == language_ada)
15550 part_die->name = DW_STRING (&attr);
15551 part_die->linkage_name = DW_STRING (&attr);
15552 break;
15553 case DW_AT_low_pc:
15554 has_low_pc_attr = 1;
15555 part_die->lowpc = attr_value_as_address (&attr);
15556 break;
15557 case DW_AT_high_pc:
15558 has_high_pc_attr = 1;
15559 part_die->highpc = attr_value_as_address (&attr);
15560 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15561 high_pc_relative = 1;
15562 break;
15563 case DW_AT_location:
15564 /* Support the .debug_loc offsets. */
15565 if (attr_form_is_block (&attr))
15566 {
15567 part_die->d.locdesc = DW_BLOCK (&attr);
15568 }
15569 else if (attr_form_is_section_offset (&attr))
15570 {
15571 dwarf2_complex_location_expr_complaint ();
15572 }
15573 else
15574 {
15575 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15576 "partial symbol information");
15577 }
15578 break;
15579 case DW_AT_external:
15580 part_die->is_external = DW_UNSND (&attr);
15581 break;
15582 case DW_AT_declaration:
15583 part_die->is_declaration = DW_UNSND (&attr);
15584 break;
15585 case DW_AT_type:
15586 part_die->has_type = 1;
15587 break;
15588 case DW_AT_abstract_origin:
15589 case DW_AT_specification:
15590 case DW_AT_extension:
15591 part_die->has_specification = 1;
15592 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15593 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15594 || cu->per_cu->is_dwz);
15595 break;
15596 case DW_AT_sibling:
15597 /* Ignore absolute siblings, they might point outside of
15598 the current compile unit. */
15599 if (attr.form == DW_FORM_ref_addr)
15600 complaint (&symfile_complaints,
15601 _("ignoring absolute DW_AT_sibling"));
15602 else
15603 {
15604 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15605 const gdb_byte *sibling_ptr = buffer + off;
15606
15607 if (sibling_ptr < info_ptr)
15608 complaint (&symfile_complaints,
15609 _("DW_AT_sibling points backwards"));
15610 else if (sibling_ptr > reader->buffer_end)
15611 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15612 else
15613 part_die->sibling = sibling_ptr;
15614 }
15615 break;
15616 case DW_AT_byte_size:
15617 part_die->has_byte_size = 1;
15618 break;
15619 case DW_AT_calling_convention:
15620 /* DWARF doesn't provide a way to identify a program's source-level
15621 entry point. DW_AT_calling_convention attributes are only meant
15622 to describe functions' calling conventions.
15623
15624 However, because it's a necessary piece of information in
15625 Fortran, and because DW_CC_program is the only piece of debugging
15626 information whose definition refers to a 'main program' at all,
15627 several compilers have begun marking Fortran main programs with
15628 DW_CC_program --- even when those functions use the standard
15629 calling conventions.
15630
15631 So until DWARF specifies a way to provide this information and
15632 compilers pick up the new representation, we'll support this
15633 practice. */
15634 if (DW_UNSND (&attr) == DW_CC_program
15635 && cu->language == language_fortran)
15636 set_objfile_main_name (objfile, part_die->name, language_fortran);
15637 break;
15638 case DW_AT_inline:
15639 if (DW_UNSND (&attr) == DW_INL_inlined
15640 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15641 part_die->may_be_inlined = 1;
15642 break;
15643
15644 case DW_AT_import:
15645 if (part_die->tag == DW_TAG_imported_unit)
15646 {
15647 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15648 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15649 || cu->per_cu->is_dwz);
15650 }
15651 break;
15652
15653 default:
15654 break;
15655 }
15656 }
15657
15658 if (high_pc_relative)
15659 part_die->highpc += part_die->lowpc;
15660
15661 if (has_low_pc_attr && has_high_pc_attr)
15662 {
15663 /* When using the GNU linker, .gnu.linkonce. sections are used to
15664 eliminate duplicate copies of functions and vtables and such.
15665 The linker will arbitrarily choose one and discard the others.
15666 The AT_*_pc values for such functions refer to local labels in
15667 these sections. If the section from that file was discarded, the
15668 labels are not in the output, so the relocs get a value of 0.
15669 If this is a discarded function, mark the pc bounds as invalid,
15670 so that GDB will ignore it. */
15671 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15672 {
15673 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15674
15675 complaint (&symfile_complaints,
15676 _("DW_AT_low_pc %s is zero "
15677 "for DIE at 0x%x [in module %s]"),
15678 paddress (gdbarch, part_die->lowpc),
15679 part_die->offset.sect_off, objfile_name (objfile));
15680 }
15681 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15682 else if (part_die->lowpc >= part_die->highpc)
15683 {
15684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15685
15686 complaint (&symfile_complaints,
15687 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15688 "for DIE at 0x%x [in module %s]"),
15689 paddress (gdbarch, part_die->lowpc),
15690 paddress (gdbarch, part_die->highpc),
15691 part_die->offset.sect_off, objfile_name (objfile));
15692 }
15693 else
15694 part_die->has_pc_info = 1;
15695 }
15696
15697 return info_ptr;
15698 }
15699
15700 /* Find a cached partial DIE at OFFSET in CU. */
15701
15702 static struct partial_die_info *
15703 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15704 {
15705 struct partial_die_info *lookup_die = NULL;
15706 struct partial_die_info part_die;
15707
15708 part_die.offset = offset;
15709 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15710 offset.sect_off);
15711
15712 return lookup_die;
15713 }
15714
15715 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15716 except in the case of .debug_types DIEs which do not reference
15717 outside their CU (they do however referencing other types via
15718 DW_FORM_ref_sig8). */
15719
15720 static struct partial_die_info *
15721 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15722 {
15723 struct objfile *objfile = cu->objfile;
15724 struct dwarf2_per_cu_data *per_cu = NULL;
15725 struct partial_die_info *pd = NULL;
15726
15727 if (offset_in_dwz == cu->per_cu->is_dwz
15728 && offset_in_cu_p (&cu->header, offset))
15729 {
15730 pd = find_partial_die_in_comp_unit (offset, cu);
15731 if (pd != NULL)
15732 return pd;
15733 /* We missed recording what we needed.
15734 Load all dies and try again. */
15735 per_cu = cu->per_cu;
15736 }
15737 else
15738 {
15739 /* TUs don't reference other CUs/TUs (except via type signatures). */
15740 if (cu->per_cu->is_debug_types)
15741 {
15742 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15743 " external reference to offset 0x%lx [in module %s].\n"),
15744 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15745 bfd_get_filename (objfile->obfd));
15746 }
15747 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15748 objfile);
15749
15750 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15751 load_partial_comp_unit (per_cu);
15752
15753 per_cu->cu->last_used = 0;
15754 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15755 }
15756
15757 /* If we didn't find it, and not all dies have been loaded,
15758 load them all and try again. */
15759
15760 if (pd == NULL && per_cu->load_all_dies == 0)
15761 {
15762 per_cu->load_all_dies = 1;
15763
15764 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15765 THIS_CU->cu may already be in use. So we can't just free it and
15766 replace its DIEs with the ones we read in. Instead, we leave those
15767 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15768 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15769 set. */
15770 load_partial_comp_unit (per_cu);
15771
15772 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15773 }
15774
15775 if (pd == NULL)
15776 internal_error (__FILE__, __LINE__,
15777 _("could not find partial DIE 0x%x "
15778 "in cache [from module %s]\n"),
15779 offset.sect_off, bfd_get_filename (objfile->obfd));
15780 return pd;
15781 }
15782
15783 /* See if we can figure out if the class lives in a namespace. We do
15784 this by looking for a member function; its demangled name will
15785 contain namespace info, if there is any. */
15786
15787 static void
15788 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15789 struct dwarf2_cu *cu)
15790 {
15791 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15792 what template types look like, because the demangler
15793 frequently doesn't give the same name as the debug info. We
15794 could fix this by only using the demangled name to get the
15795 prefix (but see comment in read_structure_type). */
15796
15797 struct partial_die_info *real_pdi;
15798 struct partial_die_info *child_pdi;
15799
15800 /* If this DIE (this DIE's specification, if any) has a parent, then
15801 we should not do this. We'll prepend the parent's fully qualified
15802 name when we create the partial symbol. */
15803
15804 real_pdi = struct_pdi;
15805 while (real_pdi->has_specification)
15806 real_pdi = find_partial_die (real_pdi->spec_offset,
15807 real_pdi->spec_is_dwz, cu);
15808
15809 if (real_pdi->die_parent != NULL)
15810 return;
15811
15812 for (child_pdi = struct_pdi->die_child;
15813 child_pdi != NULL;
15814 child_pdi = child_pdi->die_sibling)
15815 {
15816 if (child_pdi->tag == DW_TAG_subprogram
15817 && child_pdi->linkage_name != NULL)
15818 {
15819 char *actual_class_name
15820 = language_class_name_from_physname (cu->language_defn,
15821 child_pdi->linkage_name);
15822 if (actual_class_name != NULL)
15823 {
15824 struct_pdi->name
15825 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15826 actual_class_name,
15827 strlen (actual_class_name));
15828 xfree (actual_class_name);
15829 }
15830 break;
15831 }
15832 }
15833 }
15834
15835 /* Adjust PART_DIE before generating a symbol for it. This function
15836 may set the is_external flag or change the DIE's name. */
15837
15838 static void
15839 fixup_partial_die (struct partial_die_info *part_die,
15840 struct dwarf2_cu *cu)
15841 {
15842 /* Once we've fixed up a die, there's no point in doing so again.
15843 This also avoids a memory leak if we were to call
15844 guess_partial_die_structure_name multiple times. */
15845 if (part_die->fixup_called)
15846 return;
15847
15848 /* If we found a reference attribute and the DIE has no name, try
15849 to find a name in the referred to DIE. */
15850
15851 if (part_die->name == NULL && part_die->has_specification)
15852 {
15853 struct partial_die_info *spec_die;
15854
15855 spec_die = find_partial_die (part_die->spec_offset,
15856 part_die->spec_is_dwz, cu);
15857
15858 fixup_partial_die (spec_die, cu);
15859
15860 if (spec_die->name)
15861 {
15862 part_die->name = spec_die->name;
15863
15864 /* Copy DW_AT_external attribute if it is set. */
15865 if (spec_die->is_external)
15866 part_die->is_external = spec_die->is_external;
15867 }
15868 }
15869
15870 /* Set default names for some unnamed DIEs. */
15871
15872 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15873 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15874
15875 /* If there is no parent die to provide a namespace, and there are
15876 children, see if we can determine the namespace from their linkage
15877 name. */
15878 if (cu->language == language_cplus
15879 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15880 && part_die->die_parent == NULL
15881 && part_die->has_children
15882 && (part_die->tag == DW_TAG_class_type
15883 || part_die->tag == DW_TAG_structure_type
15884 || part_die->tag == DW_TAG_union_type))
15885 guess_partial_die_structure_name (part_die, cu);
15886
15887 /* GCC might emit a nameless struct or union that has a linkage
15888 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15889 if (part_die->name == NULL
15890 && (part_die->tag == DW_TAG_class_type
15891 || part_die->tag == DW_TAG_interface_type
15892 || part_die->tag == DW_TAG_structure_type
15893 || part_die->tag == DW_TAG_union_type)
15894 && part_die->linkage_name != NULL)
15895 {
15896 char *demangled;
15897
15898 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15899 if (demangled)
15900 {
15901 const char *base;
15902
15903 /* Strip any leading namespaces/classes, keep only the base name.
15904 DW_AT_name for named DIEs does not contain the prefixes. */
15905 base = strrchr (demangled, ':');
15906 if (base && base > demangled && base[-1] == ':')
15907 base++;
15908 else
15909 base = demangled;
15910
15911 part_die->name
15912 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15913 base, strlen (base));
15914 xfree (demangled);
15915 }
15916 }
15917
15918 part_die->fixup_called = 1;
15919 }
15920
15921 /* Read an attribute value described by an attribute form. */
15922
15923 static const gdb_byte *
15924 read_attribute_value (const struct die_reader_specs *reader,
15925 struct attribute *attr, unsigned form,
15926 const gdb_byte *info_ptr)
15927 {
15928 struct dwarf2_cu *cu = reader->cu;
15929 bfd *abfd = reader->abfd;
15930 struct comp_unit_head *cu_header = &cu->header;
15931 unsigned int bytes_read;
15932 struct dwarf_block *blk;
15933
15934 attr->form = form;
15935 switch (form)
15936 {
15937 case DW_FORM_ref_addr:
15938 if (cu->header.version == 2)
15939 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15940 else
15941 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15942 &cu->header, &bytes_read);
15943 info_ptr += bytes_read;
15944 break;
15945 case DW_FORM_GNU_ref_alt:
15946 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15947 info_ptr += bytes_read;
15948 break;
15949 case DW_FORM_addr:
15950 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15951 info_ptr += bytes_read;
15952 break;
15953 case DW_FORM_block2:
15954 blk = dwarf_alloc_block (cu);
15955 blk->size = read_2_bytes (abfd, info_ptr);
15956 info_ptr += 2;
15957 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15958 info_ptr += blk->size;
15959 DW_BLOCK (attr) = blk;
15960 break;
15961 case DW_FORM_block4:
15962 blk = dwarf_alloc_block (cu);
15963 blk->size = read_4_bytes (abfd, info_ptr);
15964 info_ptr += 4;
15965 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15966 info_ptr += blk->size;
15967 DW_BLOCK (attr) = blk;
15968 break;
15969 case DW_FORM_data2:
15970 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15971 info_ptr += 2;
15972 break;
15973 case DW_FORM_data4:
15974 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15975 info_ptr += 4;
15976 break;
15977 case DW_FORM_data8:
15978 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15979 info_ptr += 8;
15980 break;
15981 case DW_FORM_sec_offset:
15982 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15983 info_ptr += bytes_read;
15984 break;
15985 case DW_FORM_string:
15986 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15987 DW_STRING_IS_CANONICAL (attr) = 0;
15988 info_ptr += bytes_read;
15989 break;
15990 case DW_FORM_strp:
15991 if (!cu->per_cu->is_dwz)
15992 {
15993 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15994 &bytes_read);
15995 DW_STRING_IS_CANONICAL (attr) = 0;
15996 info_ptr += bytes_read;
15997 break;
15998 }
15999 /* FALLTHROUGH */
16000 case DW_FORM_GNU_strp_alt:
16001 {
16002 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16003 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16004 &bytes_read);
16005
16006 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16007 DW_STRING_IS_CANONICAL (attr) = 0;
16008 info_ptr += bytes_read;
16009 }
16010 break;
16011 case DW_FORM_exprloc:
16012 case DW_FORM_block:
16013 blk = dwarf_alloc_block (cu);
16014 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16015 info_ptr += bytes_read;
16016 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16017 info_ptr += blk->size;
16018 DW_BLOCK (attr) = blk;
16019 break;
16020 case DW_FORM_block1:
16021 blk = dwarf_alloc_block (cu);
16022 blk->size = read_1_byte (abfd, info_ptr);
16023 info_ptr += 1;
16024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16025 info_ptr += blk->size;
16026 DW_BLOCK (attr) = blk;
16027 break;
16028 case DW_FORM_data1:
16029 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16030 info_ptr += 1;
16031 break;
16032 case DW_FORM_flag:
16033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16034 info_ptr += 1;
16035 break;
16036 case DW_FORM_flag_present:
16037 DW_UNSND (attr) = 1;
16038 break;
16039 case DW_FORM_sdata:
16040 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16041 info_ptr += bytes_read;
16042 break;
16043 case DW_FORM_udata:
16044 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16045 info_ptr += bytes_read;
16046 break;
16047 case DW_FORM_ref1:
16048 DW_UNSND (attr) = (cu->header.offset.sect_off
16049 + read_1_byte (abfd, info_ptr));
16050 info_ptr += 1;
16051 break;
16052 case DW_FORM_ref2:
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_2_bytes (abfd, info_ptr));
16055 info_ptr += 2;
16056 break;
16057 case DW_FORM_ref4:
16058 DW_UNSND (attr) = (cu->header.offset.sect_off
16059 + read_4_bytes (abfd, info_ptr));
16060 info_ptr += 4;
16061 break;
16062 case DW_FORM_ref8:
16063 DW_UNSND (attr) = (cu->header.offset.sect_off
16064 + read_8_bytes (abfd, info_ptr));
16065 info_ptr += 8;
16066 break;
16067 case DW_FORM_ref_sig8:
16068 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16069 info_ptr += 8;
16070 break;
16071 case DW_FORM_ref_udata:
16072 DW_UNSND (attr) = (cu->header.offset.sect_off
16073 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16074 info_ptr += bytes_read;
16075 break;
16076 case DW_FORM_indirect:
16077 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16078 info_ptr += bytes_read;
16079 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16080 break;
16081 case DW_FORM_GNU_addr_index:
16082 if (reader->dwo_file == NULL)
16083 {
16084 /* For now flag a hard error.
16085 Later we can turn this into a complaint. */
16086 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16087 dwarf_form_name (form),
16088 bfd_get_filename (abfd));
16089 }
16090 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16091 info_ptr += bytes_read;
16092 break;
16093 case DW_FORM_GNU_str_index:
16094 if (reader->dwo_file == NULL)
16095 {
16096 /* For now flag a hard error.
16097 Later we can turn this into a complaint if warranted. */
16098 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16099 dwarf_form_name (form),
16100 bfd_get_filename (abfd));
16101 }
16102 {
16103 ULONGEST str_index =
16104 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16105
16106 DW_STRING (attr) = read_str_index (reader, str_index);
16107 DW_STRING_IS_CANONICAL (attr) = 0;
16108 info_ptr += bytes_read;
16109 }
16110 break;
16111 default:
16112 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16113 dwarf_form_name (form),
16114 bfd_get_filename (abfd));
16115 }
16116
16117 /* Super hack. */
16118 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16119 attr->form = DW_FORM_GNU_ref_alt;
16120
16121 /* We have seen instances where the compiler tried to emit a byte
16122 size attribute of -1 which ended up being encoded as an unsigned
16123 0xffffffff. Although 0xffffffff is technically a valid size value,
16124 an object of this size seems pretty unlikely so we can relatively
16125 safely treat these cases as if the size attribute was invalid and
16126 treat them as zero by default. */
16127 if (attr->name == DW_AT_byte_size
16128 && form == DW_FORM_data4
16129 && DW_UNSND (attr) >= 0xffffffff)
16130 {
16131 complaint
16132 (&symfile_complaints,
16133 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16134 hex_string (DW_UNSND (attr)));
16135 DW_UNSND (attr) = 0;
16136 }
16137
16138 return info_ptr;
16139 }
16140
16141 /* Read an attribute described by an abbreviated attribute. */
16142
16143 static const gdb_byte *
16144 read_attribute (const struct die_reader_specs *reader,
16145 struct attribute *attr, struct attr_abbrev *abbrev,
16146 const gdb_byte *info_ptr)
16147 {
16148 attr->name = abbrev->name;
16149 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16150 }
16151
16152 /* Read dwarf information from a buffer. */
16153
16154 static unsigned int
16155 read_1_byte (bfd *abfd, const gdb_byte *buf)
16156 {
16157 return bfd_get_8 (abfd, buf);
16158 }
16159
16160 static int
16161 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16162 {
16163 return bfd_get_signed_8 (abfd, buf);
16164 }
16165
16166 static unsigned int
16167 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16168 {
16169 return bfd_get_16 (abfd, buf);
16170 }
16171
16172 static int
16173 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16174 {
16175 return bfd_get_signed_16 (abfd, buf);
16176 }
16177
16178 static unsigned int
16179 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16180 {
16181 return bfd_get_32 (abfd, buf);
16182 }
16183
16184 static int
16185 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16186 {
16187 return bfd_get_signed_32 (abfd, buf);
16188 }
16189
16190 static ULONGEST
16191 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16192 {
16193 return bfd_get_64 (abfd, buf);
16194 }
16195
16196 static CORE_ADDR
16197 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16198 unsigned int *bytes_read)
16199 {
16200 struct comp_unit_head *cu_header = &cu->header;
16201 CORE_ADDR retval = 0;
16202
16203 if (cu_header->signed_addr_p)
16204 {
16205 switch (cu_header->addr_size)
16206 {
16207 case 2:
16208 retval = bfd_get_signed_16 (abfd, buf);
16209 break;
16210 case 4:
16211 retval = bfd_get_signed_32 (abfd, buf);
16212 break;
16213 case 8:
16214 retval = bfd_get_signed_64 (abfd, buf);
16215 break;
16216 default:
16217 internal_error (__FILE__, __LINE__,
16218 _("read_address: bad switch, signed [in module %s]"),
16219 bfd_get_filename (abfd));
16220 }
16221 }
16222 else
16223 {
16224 switch (cu_header->addr_size)
16225 {
16226 case 2:
16227 retval = bfd_get_16 (abfd, buf);
16228 break;
16229 case 4:
16230 retval = bfd_get_32 (abfd, buf);
16231 break;
16232 case 8:
16233 retval = bfd_get_64 (abfd, buf);
16234 break;
16235 default:
16236 internal_error (__FILE__, __LINE__,
16237 _("read_address: bad switch, "
16238 "unsigned [in module %s]"),
16239 bfd_get_filename (abfd));
16240 }
16241 }
16242
16243 *bytes_read = cu_header->addr_size;
16244 return retval;
16245 }
16246
16247 /* Read the initial length from a section. The (draft) DWARF 3
16248 specification allows the initial length to take up either 4 bytes
16249 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16250 bytes describe the length and all offsets will be 8 bytes in length
16251 instead of 4.
16252
16253 An older, non-standard 64-bit format is also handled by this
16254 function. The older format in question stores the initial length
16255 as an 8-byte quantity without an escape value. Lengths greater
16256 than 2^32 aren't very common which means that the initial 4 bytes
16257 is almost always zero. Since a length value of zero doesn't make
16258 sense for the 32-bit format, this initial zero can be considered to
16259 be an escape value which indicates the presence of the older 64-bit
16260 format. As written, the code can't detect (old format) lengths
16261 greater than 4GB. If it becomes necessary to handle lengths
16262 somewhat larger than 4GB, we could allow other small values (such
16263 as the non-sensical values of 1, 2, and 3) to also be used as
16264 escape values indicating the presence of the old format.
16265
16266 The value returned via bytes_read should be used to increment the
16267 relevant pointer after calling read_initial_length().
16268
16269 [ Note: read_initial_length() and read_offset() are based on the
16270 document entitled "DWARF Debugging Information Format", revision
16271 3, draft 8, dated November 19, 2001. This document was obtained
16272 from:
16273
16274 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16275
16276 This document is only a draft and is subject to change. (So beware.)
16277
16278 Details regarding the older, non-standard 64-bit format were
16279 determined empirically by examining 64-bit ELF files produced by
16280 the SGI toolchain on an IRIX 6.5 machine.
16281
16282 - Kevin, July 16, 2002
16283 ] */
16284
16285 static LONGEST
16286 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16287 {
16288 LONGEST length = bfd_get_32 (abfd, buf);
16289
16290 if (length == 0xffffffff)
16291 {
16292 length = bfd_get_64 (abfd, buf + 4);
16293 *bytes_read = 12;
16294 }
16295 else if (length == 0)
16296 {
16297 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16298 length = bfd_get_64 (abfd, buf);
16299 *bytes_read = 8;
16300 }
16301 else
16302 {
16303 *bytes_read = 4;
16304 }
16305
16306 return length;
16307 }
16308
16309 /* Cover function for read_initial_length.
16310 Returns the length of the object at BUF, and stores the size of the
16311 initial length in *BYTES_READ and stores the size that offsets will be in
16312 *OFFSET_SIZE.
16313 If the initial length size is not equivalent to that specified in
16314 CU_HEADER then issue a complaint.
16315 This is useful when reading non-comp-unit headers. */
16316
16317 static LONGEST
16318 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16319 const struct comp_unit_head *cu_header,
16320 unsigned int *bytes_read,
16321 unsigned int *offset_size)
16322 {
16323 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16324
16325 gdb_assert (cu_header->initial_length_size == 4
16326 || cu_header->initial_length_size == 8
16327 || cu_header->initial_length_size == 12);
16328
16329 if (cu_header->initial_length_size != *bytes_read)
16330 complaint (&symfile_complaints,
16331 _("intermixed 32-bit and 64-bit DWARF sections"));
16332
16333 *offset_size = (*bytes_read == 4) ? 4 : 8;
16334 return length;
16335 }
16336
16337 /* Read an offset from the data stream. The size of the offset is
16338 given by cu_header->offset_size. */
16339
16340 static LONGEST
16341 read_offset (bfd *abfd, const gdb_byte *buf,
16342 const struct comp_unit_head *cu_header,
16343 unsigned int *bytes_read)
16344 {
16345 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16346
16347 *bytes_read = cu_header->offset_size;
16348 return offset;
16349 }
16350
16351 /* Read an offset from the data stream. */
16352
16353 static LONGEST
16354 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16355 {
16356 LONGEST retval = 0;
16357
16358 switch (offset_size)
16359 {
16360 case 4:
16361 retval = bfd_get_32 (abfd, buf);
16362 break;
16363 case 8:
16364 retval = bfd_get_64 (abfd, buf);
16365 break;
16366 default:
16367 internal_error (__FILE__, __LINE__,
16368 _("read_offset_1: bad switch [in module %s]"),
16369 bfd_get_filename (abfd));
16370 }
16371
16372 return retval;
16373 }
16374
16375 static const gdb_byte *
16376 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16377 {
16378 /* If the size of a host char is 8 bits, we can return a pointer
16379 to the buffer, otherwise we have to copy the data to a buffer
16380 allocated on the temporary obstack. */
16381 gdb_assert (HOST_CHAR_BIT == 8);
16382 return buf;
16383 }
16384
16385 static const char *
16386 read_direct_string (bfd *abfd, const gdb_byte *buf,
16387 unsigned int *bytes_read_ptr)
16388 {
16389 /* If the size of a host char is 8 bits, we can return a pointer
16390 to the string, otherwise we have to copy the string to a buffer
16391 allocated on the temporary obstack. */
16392 gdb_assert (HOST_CHAR_BIT == 8);
16393 if (*buf == '\0')
16394 {
16395 *bytes_read_ptr = 1;
16396 return NULL;
16397 }
16398 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16399 return (const char *) buf;
16400 }
16401
16402 static const char *
16403 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16404 {
16405 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16406 if (dwarf2_per_objfile->str.buffer == NULL)
16407 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16408 bfd_get_filename (abfd));
16409 if (str_offset >= dwarf2_per_objfile->str.size)
16410 error (_("DW_FORM_strp pointing outside of "
16411 ".debug_str section [in module %s]"),
16412 bfd_get_filename (abfd));
16413 gdb_assert (HOST_CHAR_BIT == 8);
16414 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16415 return NULL;
16416 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16417 }
16418
16419 /* Read a string at offset STR_OFFSET in the .debug_str section from
16420 the .dwz file DWZ. Throw an error if the offset is too large. If
16421 the string consists of a single NUL byte, return NULL; otherwise
16422 return a pointer to the string. */
16423
16424 static const char *
16425 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16426 {
16427 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16428
16429 if (dwz->str.buffer == NULL)
16430 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16431 "section [in module %s]"),
16432 bfd_get_filename (dwz->dwz_bfd));
16433 if (str_offset >= dwz->str.size)
16434 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16435 ".debug_str section [in module %s]"),
16436 bfd_get_filename (dwz->dwz_bfd));
16437 gdb_assert (HOST_CHAR_BIT == 8);
16438 if (dwz->str.buffer[str_offset] == '\0')
16439 return NULL;
16440 return (const char *) (dwz->str.buffer + str_offset);
16441 }
16442
16443 static const char *
16444 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16445 const struct comp_unit_head *cu_header,
16446 unsigned int *bytes_read_ptr)
16447 {
16448 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16449
16450 return read_indirect_string_at_offset (abfd, str_offset);
16451 }
16452
16453 static ULONGEST
16454 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16455 unsigned int *bytes_read_ptr)
16456 {
16457 ULONGEST result;
16458 unsigned int num_read;
16459 int i, shift;
16460 unsigned char byte;
16461
16462 result = 0;
16463 shift = 0;
16464 num_read = 0;
16465 i = 0;
16466 while (1)
16467 {
16468 byte = bfd_get_8 (abfd, buf);
16469 buf++;
16470 num_read++;
16471 result |= ((ULONGEST) (byte & 127) << shift);
16472 if ((byte & 128) == 0)
16473 {
16474 break;
16475 }
16476 shift += 7;
16477 }
16478 *bytes_read_ptr = num_read;
16479 return result;
16480 }
16481
16482 static LONGEST
16483 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16484 unsigned int *bytes_read_ptr)
16485 {
16486 LONGEST result;
16487 int i, shift, num_read;
16488 unsigned char byte;
16489
16490 result = 0;
16491 shift = 0;
16492 num_read = 0;
16493 i = 0;
16494 while (1)
16495 {
16496 byte = bfd_get_8 (abfd, buf);
16497 buf++;
16498 num_read++;
16499 result |= ((LONGEST) (byte & 127) << shift);
16500 shift += 7;
16501 if ((byte & 128) == 0)
16502 {
16503 break;
16504 }
16505 }
16506 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16507 result |= -(((LONGEST) 1) << shift);
16508 *bytes_read_ptr = num_read;
16509 return result;
16510 }
16511
16512 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16513 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16514 ADDR_SIZE is the size of addresses from the CU header. */
16515
16516 static CORE_ADDR
16517 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16518 {
16519 struct objfile *objfile = dwarf2_per_objfile->objfile;
16520 bfd *abfd = objfile->obfd;
16521 const gdb_byte *info_ptr;
16522
16523 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16524 if (dwarf2_per_objfile->addr.buffer == NULL)
16525 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16526 objfile_name (objfile));
16527 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16528 error (_("DW_FORM_addr_index pointing outside of "
16529 ".debug_addr section [in module %s]"),
16530 objfile_name (objfile));
16531 info_ptr = (dwarf2_per_objfile->addr.buffer
16532 + addr_base + addr_index * addr_size);
16533 if (addr_size == 4)
16534 return bfd_get_32 (abfd, info_ptr);
16535 else
16536 return bfd_get_64 (abfd, info_ptr);
16537 }
16538
16539 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16540
16541 static CORE_ADDR
16542 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16543 {
16544 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16545 }
16546
16547 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16548
16549 static CORE_ADDR
16550 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16551 unsigned int *bytes_read)
16552 {
16553 bfd *abfd = cu->objfile->obfd;
16554 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16555
16556 return read_addr_index (cu, addr_index);
16557 }
16558
16559 /* Data structure to pass results from dwarf2_read_addr_index_reader
16560 back to dwarf2_read_addr_index. */
16561
16562 struct dwarf2_read_addr_index_data
16563 {
16564 ULONGEST addr_base;
16565 int addr_size;
16566 };
16567
16568 /* die_reader_func for dwarf2_read_addr_index. */
16569
16570 static void
16571 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16572 const gdb_byte *info_ptr,
16573 struct die_info *comp_unit_die,
16574 int has_children,
16575 void *data)
16576 {
16577 struct dwarf2_cu *cu = reader->cu;
16578 struct dwarf2_read_addr_index_data *aidata =
16579 (struct dwarf2_read_addr_index_data *) data;
16580
16581 aidata->addr_base = cu->addr_base;
16582 aidata->addr_size = cu->header.addr_size;
16583 }
16584
16585 /* Given an index in .debug_addr, fetch the value.
16586 NOTE: This can be called during dwarf expression evaluation,
16587 long after the debug information has been read, and thus per_cu->cu
16588 may no longer exist. */
16589
16590 CORE_ADDR
16591 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16592 unsigned int addr_index)
16593 {
16594 struct objfile *objfile = per_cu->objfile;
16595 struct dwarf2_cu *cu = per_cu->cu;
16596 ULONGEST addr_base;
16597 int addr_size;
16598
16599 /* This is intended to be called from outside this file. */
16600 dw2_setup (objfile);
16601
16602 /* We need addr_base and addr_size.
16603 If we don't have PER_CU->cu, we have to get it.
16604 Nasty, but the alternative is storing the needed info in PER_CU,
16605 which at this point doesn't seem justified: it's not clear how frequently
16606 it would get used and it would increase the size of every PER_CU.
16607 Entry points like dwarf2_per_cu_addr_size do a similar thing
16608 so we're not in uncharted territory here.
16609 Alas we need to be a bit more complicated as addr_base is contained
16610 in the DIE.
16611
16612 We don't need to read the entire CU(/TU).
16613 We just need the header and top level die.
16614
16615 IWBN to use the aging mechanism to let us lazily later discard the CU.
16616 For now we skip this optimization. */
16617
16618 if (cu != NULL)
16619 {
16620 addr_base = cu->addr_base;
16621 addr_size = cu->header.addr_size;
16622 }
16623 else
16624 {
16625 struct dwarf2_read_addr_index_data aidata;
16626
16627 /* Note: We can't use init_cutu_and_read_dies_simple here,
16628 we need addr_base. */
16629 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16630 dwarf2_read_addr_index_reader, &aidata);
16631 addr_base = aidata.addr_base;
16632 addr_size = aidata.addr_size;
16633 }
16634
16635 return read_addr_index_1 (addr_index, addr_base, addr_size);
16636 }
16637
16638 /* Given a DW_FORM_GNU_str_index, fetch the string.
16639 This is only used by the Fission support. */
16640
16641 static const char *
16642 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16643 {
16644 struct objfile *objfile = dwarf2_per_objfile->objfile;
16645 const char *objf_name = objfile_name (objfile);
16646 bfd *abfd = objfile->obfd;
16647 struct dwarf2_cu *cu = reader->cu;
16648 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16649 struct dwarf2_section_info *str_offsets_section =
16650 &reader->dwo_file->sections.str_offsets;
16651 const gdb_byte *info_ptr;
16652 ULONGEST str_offset;
16653 static const char form_name[] = "DW_FORM_GNU_str_index";
16654
16655 dwarf2_read_section (objfile, str_section);
16656 dwarf2_read_section (objfile, str_offsets_section);
16657 if (str_section->buffer == NULL)
16658 error (_("%s used without .debug_str.dwo section"
16659 " in CU at offset 0x%lx [in module %s]"),
16660 form_name, (long) cu->header.offset.sect_off, objf_name);
16661 if (str_offsets_section->buffer == NULL)
16662 error (_("%s used without .debug_str_offsets.dwo section"
16663 " in CU at offset 0x%lx [in module %s]"),
16664 form_name, (long) cu->header.offset.sect_off, objf_name);
16665 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16666 error (_("%s pointing outside of .debug_str_offsets.dwo"
16667 " section in CU at offset 0x%lx [in module %s]"),
16668 form_name, (long) cu->header.offset.sect_off, objf_name);
16669 info_ptr = (str_offsets_section->buffer
16670 + str_index * cu->header.offset_size);
16671 if (cu->header.offset_size == 4)
16672 str_offset = bfd_get_32 (abfd, info_ptr);
16673 else
16674 str_offset = bfd_get_64 (abfd, info_ptr);
16675 if (str_offset >= str_section->size)
16676 error (_("Offset from %s pointing outside of"
16677 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16678 form_name, (long) cu->header.offset.sect_off, objf_name);
16679 return (const char *) (str_section->buffer + str_offset);
16680 }
16681
16682 /* Return the length of an LEB128 number in BUF. */
16683
16684 static int
16685 leb128_size (const gdb_byte *buf)
16686 {
16687 const gdb_byte *begin = buf;
16688 gdb_byte byte;
16689
16690 while (1)
16691 {
16692 byte = *buf++;
16693 if ((byte & 128) == 0)
16694 return buf - begin;
16695 }
16696 }
16697
16698 static void
16699 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16700 {
16701 switch (lang)
16702 {
16703 case DW_LANG_C89:
16704 case DW_LANG_C99:
16705 case DW_LANG_C:
16706 case DW_LANG_UPC:
16707 cu->language = language_c;
16708 break;
16709 case DW_LANG_C_plus_plus:
16710 cu->language = language_cplus;
16711 break;
16712 case DW_LANG_D:
16713 cu->language = language_d;
16714 break;
16715 case DW_LANG_Fortran77:
16716 case DW_LANG_Fortran90:
16717 case DW_LANG_Fortran95:
16718 cu->language = language_fortran;
16719 break;
16720 case DW_LANG_Go:
16721 cu->language = language_go;
16722 break;
16723 case DW_LANG_Mips_Assembler:
16724 cu->language = language_asm;
16725 break;
16726 case DW_LANG_Java:
16727 cu->language = language_java;
16728 break;
16729 case DW_LANG_Ada83:
16730 case DW_LANG_Ada95:
16731 cu->language = language_ada;
16732 break;
16733 case DW_LANG_Modula2:
16734 cu->language = language_m2;
16735 break;
16736 case DW_LANG_Pascal83:
16737 cu->language = language_pascal;
16738 break;
16739 case DW_LANG_ObjC:
16740 cu->language = language_objc;
16741 break;
16742 case DW_LANG_Cobol74:
16743 case DW_LANG_Cobol85:
16744 default:
16745 cu->language = language_minimal;
16746 break;
16747 }
16748 cu->language_defn = language_def (cu->language);
16749 }
16750
16751 /* Return the named attribute or NULL if not there. */
16752
16753 static struct attribute *
16754 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16755 {
16756 for (;;)
16757 {
16758 unsigned int i;
16759 struct attribute *spec = NULL;
16760
16761 for (i = 0; i < die->num_attrs; ++i)
16762 {
16763 if (die->attrs[i].name == name)
16764 return &die->attrs[i];
16765 if (die->attrs[i].name == DW_AT_specification
16766 || die->attrs[i].name == DW_AT_abstract_origin)
16767 spec = &die->attrs[i];
16768 }
16769
16770 if (!spec)
16771 break;
16772
16773 die = follow_die_ref (die, spec, &cu);
16774 }
16775
16776 return NULL;
16777 }
16778
16779 /* Return the named attribute or NULL if not there,
16780 but do not follow DW_AT_specification, etc.
16781 This is for use in contexts where we're reading .debug_types dies.
16782 Following DW_AT_specification, DW_AT_abstract_origin will take us
16783 back up the chain, and we want to go down. */
16784
16785 static struct attribute *
16786 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16787 {
16788 unsigned int i;
16789
16790 for (i = 0; i < die->num_attrs; ++i)
16791 if (die->attrs[i].name == name)
16792 return &die->attrs[i];
16793
16794 return NULL;
16795 }
16796
16797 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16798 and holds a non-zero value. This function should only be used for
16799 DW_FORM_flag or DW_FORM_flag_present attributes. */
16800
16801 static int
16802 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16803 {
16804 struct attribute *attr = dwarf2_attr (die, name, cu);
16805
16806 return (attr && DW_UNSND (attr));
16807 }
16808
16809 static int
16810 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16811 {
16812 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16813 which value is non-zero. However, we have to be careful with
16814 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16815 (via dwarf2_flag_true_p) follows this attribute. So we may
16816 end up accidently finding a declaration attribute that belongs
16817 to a different DIE referenced by the specification attribute,
16818 even though the given DIE does not have a declaration attribute. */
16819 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16820 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16821 }
16822
16823 /* Return the die giving the specification for DIE, if there is
16824 one. *SPEC_CU is the CU containing DIE on input, and the CU
16825 containing the return value on output. If there is no
16826 specification, but there is an abstract origin, that is
16827 returned. */
16828
16829 static struct die_info *
16830 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16831 {
16832 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16833 *spec_cu);
16834
16835 if (spec_attr == NULL)
16836 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16837
16838 if (spec_attr == NULL)
16839 return NULL;
16840 else
16841 return follow_die_ref (die, spec_attr, spec_cu);
16842 }
16843
16844 /* Free the line_header structure *LH, and any arrays and strings it
16845 refers to.
16846 NOTE: This is also used as a "cleanup" function. */
16847
16848 static void
16849 free_line_header (struct line_header *lh)
16850 {
16851 if (lh->standard_opcode_lengths)
16852 xfree (lh->standard_opcode_lengths);
16853
16854 /* Remember that all the lh->file_names[i].name pointers are
16855 pointers into debug_line_buffer, and don't need to be freed. */
16856 if (lh->file_names)
16857 xfree (lh->file_names);
16858
16859 /* Similarly for the include directory names. */
16860 if (lh->include_dirs)
16861 xfree (lh->include_dirs);
16862
16863 xfree (lh);
16864 }
16865
16866 /* Add an entry to LH's include directory table. */
16867
16868 static void
16869 add_include_dir (struct line_header *lh, const char *include_dir)
16870 {
16871 /* Grow the array if necessary. */
16872 if (lh->include_dirs_size == 0)
16873 {
16874 lh->include_dirs_size = 1; /* for testing */
16875 lh->include_dirs = xmalloc (lh->include_dirs_size
16876 * sizeof (*lh->include_dirs));
16877 }
16878 else if (lh->num_include_dirs >= lh->include_dirs_size)
16879 {
16880 lh->include_dirs_size *= 2;
16881 lh->include_dirs = xrealloc (lh->include_dirs,
16882 (lh->include_dirs_size
16883 * sizeof (*lh->include_dirs)));
16884 }
16885
16886 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16887 }
16888
16889 /* Add an entry to LH's file name table. */
16890
16891 static void
16892 add_file_name (struct line_header *lh,
16893 const char *name,
16894 unsigned int dir_index,
16895 unsigned int mod_time,
16896 unsigned int length)
16897 {
16898 struct file_entry *fe;
16899
16900 /* Grow the array if necessary. */
16901 if (lh->file_names_size == 0)
16902 {
16903 lh->file_names_size = 1; /* for testing */
16904 lh->file_names = xmalloc (lh->file_names_size
16905 * sizeof (*lh->file_names));
16906 }
16907 else if (lh->num_file_names >= lh->file_names_size)
16908 {
16909 lh->file_names_size *= 2;
16910 lh->file_names = xrealloc (lh->file_names,
16911 (lh->file_names_size
16912 * sizeof (*lh->file_names)));
16913 }
16914
16915 fe = &lh->file_names[lh->num_file_names++];
16916 fe->name = name;
16917 fe->dir_index = dir_index;
16918 fe->mod_time = mod_time;
16919 fe->length = length;
16920 fe->included_p = 0;
16921 fe->symtab = NULL;
16922 }
16923
16924 /* A convenience function to find the proper .debug_line section for a
16925 CU. */
16926
16927 static struct dwarf2_section_info *
16928 get_debug_line_section (struct dwarf2_cu *cu)
16929 {
16930 struct dwarf2_section_info *section;
16931
16932 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16933 DWO file. */
16934 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16935 section = &cu->dwo_unit->dwo_file->sections.line;
16936 else if (cu->per_cu->is_dwz)
16937 {
16938 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16939
16940 section = &dwz->line;
16941 }
16942 else
16943 section = &dwarf2_per_objfile->line;
16944
16945 return section;
16946 }
16947
16948 /* Read the statement program header starting at OFFSET in
16949 .debug_line, or .debug_line.dwo. Return a pointer
16950 to a struct line_header, allocated using xmalloc.
16951
16952 NOTE: the strings in the include directory and file name tables of
16953 the returned object point into the dwarf line section buffer,
16954 and must not be freed. */
16955
16956 static struct line_header *
16957 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16958 {
16959 struct cleanup *back_to;
16960 struct line_header *lh;
16961 const gdb_byte *line_ptr;
16962 unsigned int bytes_read, offset_size;
16963 int i;
16964 const char *cur_dir, *cur_file;
16965 struct dwarf2_section_info *section;
16966 bfd *abfd;
16967
16968 section = get_debug_line_section (cu);
16969 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16970 if (section->buffer == NULL)
16971 {
16972 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16973 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16974 else
16975 complaint (&symfile_complaints, _("missing .debug_line section"));
16976 return 0;
16977 }
16978
16979 /* We can't do this until we know the section is non-empty.
16980 Only then do we know we have such a section. */
16981 abfd = get_section_bfd_owner (section);
16982
16983 /* Make sure that at least there's room for the total_length field.
16984 That could be 12 bytes long, but we're just going to fudge that. */
16985 if (offset + 4 >= section->size)
16986 {
16987 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16988 return 0;
16989 }
16990
16991 lh = xmalloc (sizeof (*lh));
16992 memset (lh, 0, sizeof (*lh));
16993 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16994 (void *) lh);
16995
16996 line_ptr = section->buffer + offset;
16997
16998 /* Read in the header. */
16999 lh->total_length =
17000 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17001 &bytes_read, &offset_size);
17002 line_ptr += bytes_read;
17003 if (line_ptr + lh->total_length > (section->buffer + section->size))
17004 {
17005 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17006 do_cleanups (back_to);
17007 return 0;
17008 }
17009 lh->statement_program_end = line_ptr + lh->total_length;
17010 lh->version = read_2_bytes (abfd, line_ptr);
17011 line_ptr += 2;
17012 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17013 line_ptr += offset_size;
17014 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17015 line_ptr += 1;
17016 if (lh->version >= 4)
17017 {
17018 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17019 line_ptr += 1;
17020 }
17021 else
17022 lh->maximum_ops_per_instruction = 1;
17023
17024 if (lh->maximum_ops_per_instruction == 0)
17025 {
17026 lh->maximum_ops_per_instruction = 1;
17027 complaint (&symfile_complaints,
17028 _("invalid maximum_ops_per_instruction "
17029 "in `.debug_line' section"));
17030 }
17031
17032 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17035 line_ptr += 1;
17036 lh->line_range = read_1_byte (abfd, line_ptr);
17037 line_ptr += 1;
17038 lh->opcode_base = read_1_byte (abfd, line_ptr);
17039 line_ptr += 1;
17040 lh->standard_opcode_lengths
17041 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17042
17043 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17044 for (i = 1; i < lh->opcode_base; ++i)
17045 {
17046 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17047 line_ptr += 1;
17048 }
17049
17050 /* Read directory table. */
17051 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17052 {
17053 line_ptr += bytes_read;
17054 add_include_dir (lh, cur_dir);
17055 }
17056 line_ptr += bytes_read;
17057
17058 /* Read file name table. */
17059 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17060 {
17061 unsigned int dir_index, mod_time, length;
17062
17063 line_ptr += bytes_read;
17064 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17069 line_ptr += bytes_read;
17070
17071 add_file_name (lh, cur_file, dir_index, mod_time, length);
17072 }
17073 line_ptr += bytes_read;
17074 lh->statement_program_start = line_ptr;
17075
17076 if (line_ptr > (section->buffer + section->size))
17077 complaint (&symfile_complaints,
17078 _("line number info header doesn't "
17079 "fit in `.debug_line' section"));
17080
17081 discard_cleanups (back_to);
17082 return lh;
17083 }
17084
17085 /* Subroutine of dwarf_decode_lines to simplify it.
17086 Return the file name of the psymtab for included file FILE_INDEX
17087 in line header LH of PST.
17088 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17089 If space for the result is malloc'd, it will be freed by a cleanup.
17090 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17091
17092 The function creates dangling cleanup registration. */
17093
17094 static const char *
17095 psymtab_include_file_name (const struct line_header *lh, int file_index,
17096 const struct partial_symtab *pst,
17097 const char *comp_dir)
17098 {
17099 const struct file_entry fe = lh->file_names [file_index];
17100 const char *include_name = fe.name;
17101 const char *include_name_to_compare = include_name;
17102 const char *dir_name = NULL;
17103 const char *pst_filename;
17104 char *copied_name = NULL;
17105 int file_is_pst;
17106
17107 if (fe.dir_index)
17108 dir_name = lh->include_dirs[fe.dir_index - 1];
17109
17110 if (!IS_ABSOLUTE_PATH (include_name)
17111 && (dir_name != NULL || comp_dir != NULL))
17112 {
17113 /* Avoid creating a duplicate psymtab for PST.
17114 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17115 Before we do the comparison, however, we need to account
17116 for DIR_NAME and COMP_DIR.
17117 First prepend dir_name (if non-NULL). If we still don't
17118 have an absolute path prepend comp_dir (if non-NULL).
17119 However, the directory we record in the include-file's
17120 psymtab does not contain COMP_DIR (to match the
17121 corresponding symtab(s)).
17122
17123 Example:
17124
17125 bash$ cd /tmp
17126 bash$ gcc -g ./hello.c
17127 include_name = "hello.c"
17128 dir_name = "."
17129 DW_AT_comp_dir = comp_dir = "/tmp"
17130 DW_AT_name = "./hello.c"
17131
17132 */
17133
17134 if (dir_name != NULL)
17135 {
17136 char *tem = concat (dir_name, SLASH_STRING,
17137 include_name, (char *)NULL);
17138
17139 make_cleanup (xfree, tem);
17140 include_name = tem;
17141 include_name_to_compare = include_name;
17142 }
17143 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17144 {
17145 char *tem = concat (comp_dir, SLASH_STRING,
17146 include_name, (char *)NULL);
17147
17148 make_cleanup (xfree, tem);
17149 include_name_to_compare = tem;
17150 }
17151 }
17152
17153 pst_filename = pst->filename;
17154 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17155 {
17156 copied_name = concat (pst->dirname, SLASH_STRING,
17157 pst_filename, (char *)NULL);
17158 pst_filename = copied_name;
17159 }
17160
17161 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17162
17163 if (copied_name != NULL)
17164 xfree (copied_name);
17165
17166 if (file_is_pst)
17167 return NULL;
17168 return include_name;
17169 }
17170
17171 /* Ignore this record_line request. */
17172
17173 static void
17174 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17175 {
17176 return;
17177 }
17178
17179 /* Return non-zero if we should add LINE to the line number table.
17180 LINE is the line to add, LAST_LINE is the last line that was added,
17181 LAST_SUBFILE is the subfile for LAST_LINE.
17182 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17183 had a non-zero discriminator.
17184
17185 We have to be careful in the presence of discriminators.
17186 E.g., for this line:
17187
17188 for (i = 0; i < 100000; i++);
17189
17190 clang can emit four line number entries for that one line,
17191 each with a different discriminator.
17192 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17193
17194 However, we want gdb to coalesce all four entries into one.
17195 Otherwise the user could stepi into the middle of the line and
17196 gdb would get confused about whether the pc really was in the
17197 middle of the line.
17198
17199 Things are further complicated by the fact that two consecutive
17200 line number entries for the same line is a heuristic used by gcc
17201 to denote the end of the prologue. So we can't just discard duplicate
17202 entries, we have to be selective about it. The heuristic we use is
17203 that we only collapse consecutive entries for the same line if at least
17204 one of those entries has a non-zero discriminator. PR 17276.
17205
17206 Note: Addresses in the line number state machine can never go backwards
17207 within one sequence, thus this coalescing is ok. */
17208
17209 static int
17210 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17211 int line_has_non_zero_discriminator,
17212 struct subfile *last_subfile)
17213 {
17214 if (current_subfile != last_subfile)
17215 return 1;
17216 if (line != last_line)
17217 return 1;
17218 /* Same line for the same file that we've seen already.
17219 As a last check, for pr 17276, only record the line if the line
17220 has never had a non-zero discriminator. */
17221 if (!line_has_non_zero_discriminator)
17222 return 1;
17223 return 0;
17224 }
17225
17226 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17227 in the line table of subfile SUBFILE. */
17228
17229 static void
17230 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17231 unsigned int line, CORE_ADDR address,
17232 record_line_ftype p_record_line)
17233 {
17234 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17235
17236 (*p_record_line) (subfile, line, addr);
17237 }
17238
17239 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17240 Mark the end of a set of line number records.
17241 The arguments are the same as for dwarf_record_line.
17242 If SUBFILE is NULL the request is ignored. */
17243
17244 static void
17245 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17246 CORE_ADDR address, record_line_ftype p_record_line)
17247 {
17248 if (subfile != NULL)
17249 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17250 }
17251
17252 /* Subroutine of dwarf_decode_lines to simplify it.
17253 Process the line number information in LH. */
17254
17255 static void
17256 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17257 struct dwarf2_cu *cu, const int decode_for_pst_p,
17258 CORE_ADDR lowpc)
17259 {
17260 const gdb_byte *line_ptr, *extended_end;
17261 const gdb_byte *line_end;
17262 unsigned int bytes_read, extended_len;
17263 unsigned char op_code, extended_op;
17264 CORE_ADDR baseaddr;
17265 struct objfile *objfile = cu->objfile;
17266 bfd *abfd = objfile->obfd;
17267 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17268 struct subfile *last_subfile = NULL;
17269 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17270 = record_line;
17271
17272 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17273
17274 line_ptr = lh->statement_program_start;
17275 line_end = lh->statement_program_end;
17276
17277 /* Read the statement sequences until there's nothing left. */
17278 while (line_ptr < line_end)
17279 {
17280 /* state machine registers */
17281 CORE_ADDR address = 0;
17282 unsigned int file = 1;
17283 unsigned int line = 1;
17284 int is_stmt = lh->default_is_stmt;
17285 int end_sequence = 0;
17286 unsigned char op_index = 0;
17287 unsigned int discriminator = 0;
17288 /* The last line number that was recorded, used to coalesce
17289 consecutive entries for the same line. This can happen, for
17290 example, when discriminators are present. PR 17276. */
17291 unsigned int last_line = 0;
17292 int line_has_non_zero_discriminator = 0;
17293
17294 if (!decode_for_pst_p && lh->num_file_names >= file)
17295 {
17296 /* Start a subfile for the current file of the state machine. */
17297 /* lh->include_dirs and lh->file_names are 0-based, but the
17298 directory and file name numbers in the statement program
17299 are 1-based. */
17300 struct file_entry *fe = &lh->file_names[file - 1];
17301 const char *dir = NULL;
17302
17303 if (fe->dir_index)
17304 dir = lh->include_dirs[fe->dir_index - 1];
17305
17306 dwarf2_start_subfile (fe->name, dir, comp_dir);
17307 }
17308
17309 /* Decode the table. */
17310 while (!end_sequence)
17311 {
17312 op_code = read_1_byte (abfd, line_ptr);
17313 line_ptr += 1;
17314 if (line_ptr > line_end)
17315 {
17316 dwarf2_debug_line_missing_end_sequence_complaint ();
17317 break;
17318 }
17319
17320 if (op_code >= lh->opcode_base)
17321 {
17322 /* Special opcode. */
17323 unsigned char adj_opcode;
17324 int line_delta;
17325
17326 adj_opcode = op_code - lh->opcode_base;
17327 address += (((op_index + (adj_opcode / lh->line_range))
17328 / lh->maximum_ops_per_instruction)
17329 * lh->minimum_instruction_length);
17330 op_index = ((op_index + (adj_opcode / lh->line_range))
17331 % lh->maximum_ops_per_instruction);
17332 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17333 line += line_delta;
17334 if (line_delta != 0)
17335 line_has_non_zero_discriminator = discriminator != 0;
17336 if (lh->num_file_names < file || file == 0)
17337 dwarf2_debug_line_missing_file_complaint ();
17338 /* For now we ignore lines not starting on an
17339 instruction boundary. */
17340 else if (op_index == 0)
17341 {
17342 lh->file_names[file - 1].included_p = 1;
17343 if (!decode_for_pst_p && is_stmt)
17344 {
17345 if (last_subfile != current_subfile)
17346 {
17347 dwarf_finish_line (gdbarch, last_subfile,
17348 address, p_record_line);
17349 }
17350 if (dwarf_record_line_p (line, last_line,
17351 line_has_non_zero_discriminator,
17352 last_subfile))
17353 {
17354 dwarf_record_line (gdbarch, current_subfile,
17355 line, address, p_record_line);
17356 }
17357 last_subfile = current_subfile;
17358 last_line = line;
17359 }
17360 }
17361 discriminator = 0;
17362 }
17363 else switch (op_code)
17364 {
17365 case DW_LNS_extended_op:
17366 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17367 &bytes_read);
17368 line_ptr += bytes_read;
17369 extended_end = line_ptr + extended_len;
17370 extended_op = read_1_byte (abfd, line_ptr);
17371 line_ptr += 1;
17372 switch (extended_op)
17373 {
17374 case DW_LNE_end_sequence:
17375 p_record_line = record_line;
17376 end_sequence = 1;
17377 break;
17378 case DW_LNE_set_address:
17379 address = read_address (abfd, line_ptr, cu, &bytes_read);
17380
17381 /* If address < lowpc then it's not a usable value, it's
17382 outside the pc range of the CU. However, we restrict
17383 the test to only address values of zero to preserve
17384 GDB's previous behaviour which is to handle the specific
17385 case of a function being GC'd by the linker. */
17386 if (address == 0 && address < lowpc)
17387 {
17388 /* This line table is for a function which has been
17389 GCd by the linker. Ignore it. PR gdb/12528 */
17390
17391 long line_offset
17392 = line_ptr - get_debug_line_section (cu)->buffer;
17393
17394 complaint (&symfile_complaints,
17395 _(".debug_line address at offset 0x%lx is 0 "
17396 "[in module %s]"),
17397 line_offset, objfile_name (objfile));
17398 p_record_line = noop_record_line;
17399 /* Note: p_record_line is left as noop_record_line
17400 until we see DW_LNE_end_sequence. */
17401 }
17402
17403 op_index = 0;
17404 line_ptr += bytes_read;
17405 address += baseaddr;
17406 break;
17407 case DW_LNE_define_file:
17408 {
17409 const char *cur_file;
17410 unsigned int dir_index, mod_time, length;
17411
17412 cur_file = read_direct_string (abfd, line_ptr,
17413 &bytes_read);
17414 line_ptr += bytes_read;
17415 dir_index =
17416 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17417 line_ptr += bytes_read;
17418 mod_time =
17419 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17420 line_ptr += bytes_read;
17421 length =
17422 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17423 line_ptr += bytes_read;
17424 add_file_name (lh, cur_file, dir_index, mod_time, length);
17425 }
17426 break;
17427 case DW_LNE_set_discriminator:
17428 /* The discriminator is not interesting to the debugger;
17429 just ignore it. We still need to check its value though:
17430 if there are consecutive entries for the same
17431 (non-prologue) line we want to coalesce them.
17432 PR 17276. */
17433 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17434 &bytes_read);
17435 line_has_non_zero_discriminator |= discriminator != 0;
17436 line_ptr += bytes_read;
17437 break;
17438 default:
17439 complaint (&symfile_complaints,
17440 _("mangled .debug_line section"));
17441 return;
17442 }
17443 /* Make sure that we parsed the extended op correctly. If e.g.
17444 we expected a different address size than the producer used,
17445 we may have read the wrong number of bytes. */
17446 if (line_ptr != extended_end)
17447 {
17448 complaint (&symfile_complaints,
17449 _("mangled .debug_line section"));
17450 return;
17451 }
17452 break;
17453 case DW_LNS_copy:
17454 if (lh->num_file_names < file || file == 0)
17455 dwarf2_debug_line_missing_file_complaint ();
17456 else
17457 {
17458 lh->file_names[file - 1].included_p = 1;
17459 if (!decode_for_pst_p && is_stmt)
17460 {
17461 if (last_subfile != current_subfile)
17462 {
17463 dwarf_finish_line (gdbarch, last_subfile,
17464 address, p_record_line);
17465 }
17466 if (dwarf_record_line_p (line, last_line,
17467 line_has_non_zero_discriminator,
17468 last_subfile))
17469 {
17470 dwarf_record_line (gdbarch, current_subfile,
17471 line, address, p_record_line);
17472 }
17473 last_subfile = current_subfile;
17474 last_line = line;
17475 }
17476 }
17477 discriminator = 0;
17478 break;
17479 case DW_LNS_advance_pc:
17480 {
17481 CORE_ADDR adjust
17482 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17483
17484 address += (((op_index + adjust)
17485 / lh->maximum_ops_per_instruction)
17486 * lh->minimum_instruction_length);
17487 op_index = ((op_index + adjust)
17488 % lh->maximum_ops_per_instruction);
17489 line_ptr += bytes_read;
17490 }
17491 break;
17492 case DW_LNS_advance_line:
17493 {
17494 int line_delta
17495 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17496
17497 line += line_delta;
17498 if (line_delta != 0)
17499 line_has_non_zero_discriminator = discriminator != 0;
17500 line_ptr += bytes_read;
17501 }
17502 break;
17503 case DW_LNS_set_file:
17504 {
17505 /* The arrays lh->include_dirs and lh->file_names are
17506 0-based, but the directory and file name numbers in
17507 the statement program are 1-based. */
17508 struct file_entry *fe;
17509 const char *dir = NULL;
17510
17511 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17512 line_ptr += bytes_read;
17513 if (lh->num_file_names < file || file == 0)
17514 dwarf2_debug_line_missing_file_complaint ();
17515 else
17516 {
17517 fe = &lh->file_names[file - 1];
17518 if (fe->dir_index)
17519 dir = lh->include_dirs[fe->dir_index - 1];
17520 if (!decode_for_pst_p)
17521 {
17522 last_subfile = current_subfile;
17523 line_has_non_zero_discriminator = discriminator != 0;
17524 dwarf2_start_subfile (fe->name, dir, comp_dir);
17525 }
17526 }
17527 }
17528 break;
17529 case DW_LNS_set_column:
17530 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17531 line_ptr += bytes_read;
17532 break;
17533 case DW_LNS_negate_stmt:
17534 is_stmt = (!is_stmt);
17535 break;
17536 case DW_LNS_set_basic_block:
17537 break;
17538 /* Add to the address register of the state machine the
17539 address increment value corresponding to special opcode
17540 255. I.e., this value is scaled by the minimum
17541 instruction length since special opcode 255 would have
17542 scaled the increment. */
17543 case DW_LNS_const_add_pc:
17544 {
17545 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17546
17547 address += (((op_index + adjust)
17548 / lh->maximum_ops_per_instruction)
17549 * lh->minimum_instruction_length);
17550 op_index = ((op_index + adjust)
17551 % lh->maximum_ops_per_instruction);
17552 }
17553 break;
17554 case DW_LNS_fixed_advance_pc:
17555 address += read_2_bytes (abfd, line_ptr);
17556 op_index = 0;
17557 line_ptr += 2;
17558 break;
17559 default:
17560 {
17561 /* Unknown standard opcode, ignore it. */
17562 int i;
17563
17564 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17565 {
17566 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17567 line_ptr += bytes_read;
17568 }
17569 }
17570 }
17571 }
17572 if (lh->num_file_names < file || file == 0)
17573 dwarf2_debug_line_missing_file_complaint ();
17574 else
17575 {
17576 lh->file_names[file - 1].included_p = 1;
17577 if (!decode_for_pst_p)
17578 {
17579 dwarf_finish_line (gdbarch, current_subfile, address,
17580 p_record_line);
17581 }
17582 }
17583 }
17584 }
17585
17586 /* Decode the Line Number Program (LNP) for the given line_header
17587 structure and CU. The actual information extracted and the type
17588 of structures created from the LNP depends on the value of PST.
17589
17590 1. If PST is NULL, then this procedure uses the data from the program
17591 to create all necessary symbol tables, and their linetables.
17592
17593 2. If PST is not NULL, this procedure reads the program to determine
17594 the list of files included by the unit represented by PST, and
17595 builds all the associated partial symbol tables.
17596
17597 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17598 It is used for relative paths in the line table.
17599 NOTE: When processing partial symtabs (pst != NULL),
17600 comp_dir == pst->dirname.
17601
17602 NOTE: It is important that psymtabs have the same file name (via strcmp)
17603 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17604 symtab we don't use it in the name of the psymtabs we create.
17605 E.g. expand_line_sal requires this when finding psymtabs to expand.
17606 A good testcase for this is mb-inline.exp.
17607
17608 LOWPC is the lowest address in CU (or 0 if not known). */
17609
17610 static void
17611 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17612 struct dwarf2_cu *cu, struct partial_symtab *pst,
17613 CORE_ADDR lowpc)
17614 {
17615 struct objfile *objfile = cu->objfile;
17616 const int decode_for_pst_p = (pst != NULL);
17617 struct subfile *first_subfile = current_subfile;
17618
17619 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p, lowpc);
17620
17621 if (decode_for_pst_p)
17622 {
17623 int file_index;
17624
17625 /* Now that we're done scanning the Line Header Program, we can
17626 create the psymtab of each included file. */
17627 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17628 if (lh->file_names[file_index].included_p == 1)
17629 {
17630 const char *include_name =
17631 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17632 if (include_name != NULL)
17633 dwarf2_create_include_psymtab (include_name, pst, objfile);
17634 }
17635 }
17636 else
17637 {
17638 /* Make sure a symtab is created for every file, even files
17639 which contain only variables (i.e. no code with associated
17640 line numbers). */
17641 int i;
17642
17643 for (i = 0; i < lh->num_file_names; i++)
17644 {
17645 const char *dir = NULL;
17646 struct file_entry *fe;
17647
17648 fe = &lh->file_names[i];
17649 if (fe->dir_index)
17650 dir = lh->include_dirs[fe->dir_index - 1];
17651 dwarf2_start_subfile (fe->name, dir, comp_dir);
17652
17653 /* Skip the main file; we don't need it, and it must be
17654 allocated last, so that it will show up before the
17655 non-primary symtabs in the objfile's symtab list. */
17656 if (current_subfile == first_subfile)
17657 continue;
17658
17659 if (current_subfile->symtab == NULL)
17660 current_subfile->symtab = allocate_symtab (current_subfile->name,
17661 objfile);
17662 fe->symtab = current_subfile->symtab;
17663 }
17664 }
17665 }
17666
17667 /* Start a subfile for DWARF. FILENAME is the name of the file and
17668 DIRNAME the name of the source directory which contains FILENAME
17669 or NULL if not known. COMP_DIR is the compilation directory for the
17670 linetable's compilation unit or NULL if not known.
17671 This routine tries to keep line numbers from identical absolute and
17672 relative file names in a common subfile.
17673
17674 Using the `list' example from the GDB testsuite, which resides in
17675 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17676 of /srcdir/list0.c yields the following debugging information for list0.c:
17677
17678 DW_AT_name: /srcdir/list0.c
17679 DW_AT_comp_dir: /compdir
17680 files.files[0].name: list0.h
17681 files.files[0].dir: /srcdir
17682 files.files[1].name: list0.c
17683 files.files[1].dir: /srcdir
17684
17685 The line number information for list0.c has to end up in a single
17686 subfile, so that `break /srcdir/list0.c:1' works as expected.
17687 start_subfile will ensure that this happens provided that we pass the
17688 concatenation of files.files[1].dir and files.files[1].name as the
17689 subfile's name. */
17690
17691 static void
17692 dwarf2_start_subfile (const char *filename, const char *dirname,
17693 const char *comp_dir)
17694 {
17695 char *copy = NULL;
17696
17697 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17698 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17699 second argument to start_subfile. To be consistent, we do the
17700 same here. In order not to lose the line information directory,
17701 we concatenate it to the filename when it makes sense.
17702 Note that the Dwarf3 standard says (speaking of filenames in line
17703 information): ``The directory index is ignored for file names
17704 that represent full path names''. Thus ignoring dirname in the
17705 `else' branch below isn't an issue. */
17706
17707 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17708 {
17709 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17710 filename = copy;
17711 }
17712
17713 start_subfile (filename, comp_dir);
17714
17715 if (copy != NULL)
17716 xfree (copy);
17717 }
17718
17719 /* Start a symtab for DWARF.
17720 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17721
17722 static void
17723 dwarf2_start_symtab (struct dwarf2_cu *cu,
17724 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17725 {
17726 start_symtab (name, comp_dir, low_pc);
17727 record_debugformat ("DWARF 2");
17728 record_producer (cu->producer);
17729
17730 /* We assume that we're processing GCC output. */
17731 processing_gcc_compilation = 2;
17732
17733 cu->processing_has_namespace_info = 0;
17734 }
17735
17736 static void
17737 var_decode_location (struct attribute *attr, struct symbol *sym,
17738 struct dwarf2_cu *cu)
17739 {
17740 struct objfile *objfile = cu->objfile;
17741 struct comp_unit_head *cu_header = &cu->header;
17742
17743 /* NOTE drow/2003-01-30: There used to be a comment and some special
17744 code here to turn a symbol with DW_AT_external and a
17745 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17746 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17747 with some versions of binutils) where shared libraries could have
17748 relocations against symbols in their debug information - the
17749 minimal symbol would have the right address, but the debug info
17750 would not. It's no longer necessary, because we will explicitly
17751 apply relocations when we read in the debug information now. */
17752
17753 /* A DW_AT_location attribute with no contents indicates that a
17754 variable has been optimized away. */
17755 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17756 {
17757 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17758 return;
17759 }
17760
17761 /* Handle one degenerate form of location expression specially, to
17762 preserve GDB's previous behavior when section offsets are
17763 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17764 then mark this symbol as LOC_STATIC. */
17765
17766 if (attr_form_is_block (attr)
17767 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17768 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17769 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17770 && (DW_BLOCK (attr)->size
17771 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17772 {
17773 unsigned int dummy;
17774
17775 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17776 SYMBOL_VALUE_ADDRESS (sym) =
17777 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17778 else
17779 SYMBOL_VALUE_ADDRESS (sym) =
17780 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17781 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17782 fixup_symbol_section (sym, objfile);
17783 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17784 SYMBOL_SECTION (sym));
17785 return;
17786 }
17787
17788 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17789 expression evaluator, and use LOC_COMPUTED only when necessary
17790 (i.e. when the value of a register or memory location is
17791 referenced, or a thread-local block, etc.). Then again, it might
17792 not be worthwhile. I'm assuming that it isn't unless performance
17793 or memory numbers show me otherwise. */
17794
17795 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17796
17797 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17798 cu->has_loclist = 1;
17799 }
17800
17801 /* Given a pointer to a DWARF information entry, figure out if we need
17802 to make a symbol table entry for it, and if so, create a new entry
17803 and return a pointer to it.
17804 If TYPE is NULL, determine symbol type from the die, otherwise
17805 used the passed type.
17806 If SPACE is not NULL, use it to hold the new symbol. If it is
17807 NULL, allocate a new symbol on the objfile's obstack. */
17808
17809 static struct symbol *
17810 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17811 struct symbol *space)
17812 {
17813 struct objfile *objfile = cu->objfile;
17814 struct symbol *sym = NULL;
17815 const char *name;
17816 struct attribute *attr = NULL;
17817 struct attribute *attr2 = NULL;
17818 CORE_ADDR baseaddr;
17819 struct pending **list_to_add = NULL;
17820
17821 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17822
17823 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17824
17825 name = dwarf2_name (die, cu);
17826 if (name)
17827 {
17828 const char *linkagename;
17829 int suppress_add = 0;
17830
17831 if (space)
17832 sym = space;
17833 else
17834 sym = allocate_symbol (objfile);
17835 OBJSTAT (objfile, n_syms++);
17836
17837 /* Cache this symbol's name and the name's demangled form (if any). */
17838 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17839 linkagename = dwarf2_physname (name, die, cu);
17840 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17841
17842 /* Fortran does not have mangling standard and the mangling does differ
17843 between gfortran, iFort etc. */
17844 if (cu->language == language_fortran
17845 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17846 symbol_set_demangled_name (&(sym->ginfo),
17847 dwarf2_full_name (name, die, cu),
17848 NULL);
17849
17850 /* Default assumptions.
17851 Use the passed type or decode it from the die. */
17852 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17853 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17854 if (type != NULL)
17855 SYMBOL_TYPE (sym) = type;
17856 else
17857 SYMBOL_TYPE (sym) = die_type (die, cu);
17858 attr = dwarf2_attr (die,
17859 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17860 cu);
17861 if (attr)
17862 {
17863 SYMBOL_LINE (sym) = DW_UNSND (attr);
17864 }
17865
17866 attr = dwarf2_attr (die,
17867 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17868 cu);
17869 if (attr)
17870 {
17871 int file_index = DW_UNSND (attr);
17872
17873 if (cu->line_header == NULL
17874 || file_index > cu->line_header->num_file_names)
17875 complaint (&symfile_complaints,
17876 _("file index out of range"));
17877 else if (file_index > 0)
17878 {
17879 struct file_entry *fe;
17880
17881 fe = &cu->line_header->file_names[file_index - 1];
17882 SYMBOL_SYMTAB (sym) = fe->symtab;
17883 }
17884 }
17885
17886 switch (die->tag)
17887 {
17888 case DW_TAG_label:
17889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17890 if (attr)
17891 SYMBOL_VALUE_ADDRESS (sym)
17892 = attr_value_as_address (attr) + baseaddr;
17893 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17894 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17895 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17896 add_symbol_to_list (sym, cu->list_in_scope);
17897 break;
17898 case DW_TAG_subprogram:
17899 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17900 finish_block. */
17901 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17902 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17903 if ((attr2 && (DW_UNSND (attr2) != 0))
17904 || cu->language == language_ada)
17905 {
17906 /* Subprograms marked external are stored as a global symbol.
17907 Ada subprograms, whether marked external or not, are always
17908 stored as a global symbol, because we want to be able to
17909 access them globally. For instance, we want to be able
17910 to break on a nested subprogram without having to
17911 specify the context. */
17912 list_to_add = &global_symbols;
17913 }
17914 else
17915 {
17916 list_to_add = cu->list_in_scope;
17917 }
17918 break;
17919 case DW_TAG_inlined_subroutine:
17920 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17921 finish_block. */
17922 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17923 SYMBOL_INLINED (sym) = 1;
17924 list_to_add = cu->list_in_scope;
17925 break;
17926 case DW_TAG_template_value_param:
17927 suppress_add = 1;
17928 /* Fall through. */
17929 case DW_TAG_constant:
17930 case DW_TAG_variable:
17931 case DW_TAG_member:
17932 /* Compilation with minimal debug info may result in
17933 variables with missing type entries. Change the
17934 misleading `void' type to something sensible. */
17935 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17936 SYMBOL_TYPE (sym)
17937 = objfile_type (objfile)->nodebug_data_symbol;
17938
17939 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17940 /* In the case of DW_TAG_member, we should only be called for
17941 static const members. */
17942 if (die->tag == DW_TAG_member)
17943 {
17944 /* dwarf2_add_field uses die_is_declaration,
17945 so we do the same. */
17946 gdb_assert (die_is_declaration (die, cu));
17947 gdb_assert (attr);
17948 }
17949 if (attr)
17950 {
17951 dwarf2_const_value (attr, sym, cu);
17952 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17953 if (!suppress_add)
17954 {
17955 if (attr2 && (DW_UNSND (attr2) != 0))
17956 list_to_add = &global_symbols;
17957 else
17958 list_to_add = cu->list_in_scope;
17959 }
17960 break;
17961 }
17962 attr = dwarf2_attr (die, DW_AT_location, cu);
17963 if (attr)
17964 {
17965 var_decode_location (attr, sym, cu);
17966 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17967
17968 /* Fortran explicitly imports any global symbols to the local
17969 scope by DW_TAG_common_block. */
17970 if (cu->language == language_fortran && die->parent
17971 && die->parent->tag == DW_TAG_common_block)
17972 attr2 = NULL;
17973
17974 if (SYMBOL_CLASS (sym) == LOC_STATIC
17975 && SYMBOL_VALUE_ADDRESS (sym) == 0
17976 && !dwarf2_per_objfile->has_section_at_zero)
17977 {
17978 /* When a static variable is eliminated by the linker,
17979 the corresponding debug information is not stripped
17980 out, but the variable address is set to null;
17981 do not add such variables into symbol table. */
17982 }
17983 else if (attr2 && (DW_UNSND (attr2) != 0))
17984 {
17985 /* Workaround gfortran PR debug/40040 - it uses
17986 DW_AT_location for variables in -fPIC libraries which may
17987 get overriden by other libraries/executable and get
17988 a different address. Resolve it by the minimal symbol
17989 which may come from inferior's executable using copy
17990 relocation. Make this workaround only for gfortran as for
17991 other compilers GDB cannot guess the minimal symbol
17992 Fortran mangling kind. */
17993 if (cu->language == language_fortran && die->parent
17994 && die->parent->tag == DW_TAG_module
17995 && cu->producer
17996 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17997 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17998
17999 /* A variable with DW_AT_external is never static,
18000 but it may be block-scoped. */
18001 list_to_add = (cu->list_in_scope == &file_symbols
18002 ? &global_symbols : cu->list_in_scope);
18003 }
18004 else
18005 list_to_add = cu->list_in_scope;
18006 }
18007 else
18008 {
18009 /* We do not know the address of this symbol.
18010 If it is an external symbol and we have type information
18011 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18012 The address of the variable will then be determined from
18013 the minimal symbol table whenever the variable is
18014 referenced. */
18015 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18016
18017 /* Fortran explicitly imports any global symbols to the local
18018 scope by DW_TAG_common_block. */
18019 if (cu->language == language_fortran && die->parent
18020 && die->parent->tag == DW_TAG_common_block)
18021 {
18022 /* SYMBOL_CLASS doesn't matter here because
18023 read_common_block is going to reset it. */
18024 if (!suppress_add)
18025 list_to_add = cu->list_in_scope;
18026 }
18027 else if (attr2 && (DW_UNSND (attr2) != 0)
18028 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18029 {
18030 /* A variable with DW_AT_external is never static, but it
18031 may be block-scoped. */
18032 list_to_add = (cu->list_in_scope == &file_symbols
18033 ? &global_symbols : cu->list_in_scope);
18034
18035 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18036 }
18037 else if (!die_is_declaration (die, cu))
18038 {
18039 /* Use the default LOC_OPTIMIZED_OUT class. */
18040 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18041 if (!suppress_add)
18042 list_to_add = cu->list_in_scope;
18043 }
18044 }
18045 break;
18046 case DW_TAG_formal_parameter:
18047 /* If we are inside a function, mark this as an argument. If
18048 not, we might be looking at an argument to an inlined function
18049 when we do not have enough information to show inlined frames;
18050 pretend it's a local variable in that case so that the user can
18051 still see it. */
18052 if (context_stack_depth > 0
18053 && context_stack[context_stack_depth - 1].name != NULL)
18054 SYMBOL_IS_ARGUMENT (sym) = 1;
18055 attr = dwarf2_attr (die, DW_AT_location, cu);
18056 if (attr)
18057 {
18058 var_decode_location (attr, sym, cu);
18059 }
18060 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18061 if (attr)
18062 {
18063 dwarf2_const_value (attr, sym, cu);
18064 }
18065
18066 list_to_add = cu->list_in_scope;
18067 break;
18068 case DW_TAG_unspecified_parameters:
18069 /* From varargs functions; gdb doesn't seem to have any
18070 interest in this information, so just ignore it for now.
18071 (FIXME?) */
18072 break;
18073 case DW_TAG_template_type_param:
18074 suppress_add = 1;
18075 /* Fall through. */
18076 case DW_TAG_class_type:
18077 case DW_TAG_interface_type:
18078 case DW_TAG_structure_type:
18079 case DW_TAG_union_type:
18080 case DW_TAG_set_type:
18081 case DW_TAG_enumeration_type:
18082 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18083 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18084
18085 {
18086 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18087 really ever be static objects: otherwise, if you try
18088 to, say, break of a class's method and you're in a file
18089 which doesn't mention that class, it won't work unless
18090 the check for all static symbols in lookup_symbol_aux
18091 saves you. See the OtherFileClass tests in
18092 gdb.c++/namespace.exp. */
18093
18094 if (!suppress_add)
18095 {
18096 list_to_add = (cu->list_in_scope == &file_symbols
18097 && (cu->language == language_cplus
18098 || cu->language == language_java)
18099 ? &global_symbols : cu->list_in_scope);
18100
18101 /* The semantics of C++ state that "struct foo {
18102 ... }" also defines a typedef for "foo". A Java
18103 class declaration also defines a typedef for the
18104 class. */
18105 if (cu->language == language_cplus
18106 || cu->language == language_java
18107 || cu->language == language_ada)
18108 {
18109 /* The symbol's name is already allocated along
18110 with this objfile, so we don't need to
18111 duplicate it for the type. */
18112 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18113 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18114 }
18115 }
18116 }
18117 break;
18118 case DW_TAG_typedef:
18119 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18121 list_to_add = cu->list_in_scope;
18122 break;
18123 case DW_TAG_base_type:
18124 case DW_TAG_subrange_type:
18125 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18126 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18127 list_to_add = cu->list_in_scope;
18128 break;
18129 case DW_TAG_enumerator:
18130 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18131 if (attr)
18132 {
18133 dwarf2_const_value (attr, sym, cu);
18134 }
18135 {
18136 /* NOTE: carlton/2003-11-10: See comment above in the
18137 DW_TAG_class_type, etc. block. */
18138
18139 list_to_add = (cu->list_in_scope == &file_symbols
18140 && (cu->language == language_cplus
18141 || cu->language == language_java)
18142 ? &global_symbols : cu->list_in_scope);
18143 }
18144 break;
18145 case DW_TAG_imported_declaration:
18146 case DW_TAG_namespace:
18147 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18148 list_to_add = &global_symbols;
18149 break;
18150 case DW_TAG_module:
18151 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18152 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18153 list_to_add = &global_symbols;
18154 break;
18155 case DW_TAG_common_block:
18156 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18157 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18158 add_symbol_to_list (sym, cu->list_in_scope);
18159 break;
18160 default:
18161 /* Not a tag we recognize. Hopefully we aren't processing
18162 trash data, but since we must specifically ignore things
18163 we don't recognize, there is nothing else we should do at
18164 this point. */
18165 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18166 dwarf_tag_name (die->tag));
18167 break;
18168 }
18169
18170 if (suppress_add)
18171 {
18172 sym->hash_next = objfile->template_symbols;
18173 objfile->template_symbols = sym;
18174 list_to_add = NULL;
18175 }
18176
18177 if (list_to_add != NULL)
18178 add_symbol_to_list (sym, list_to_add);
18179
18180 /* For the benefit of old versions of GCC, check for anonymous
18181 namespaces based on the demangled name. */
18182 if (!cu->processing_has_namespace_info
18183 && cu->language == language_cplus)
18184 cp_scan_for_anonymous_namespaces (sym, objfile);
18185 }
18186 return (sym);
18187 }
18188
18189 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18190
18191 static struct symbol *
18192 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18193 {
18194 return new_symbol_full (die, type, cu, NULL);
18195 }
18196
18197 /* Given an attr with a DW_FORM_dataN value in host byte order,
18198 zero-extend it as appropriate for the symbol's type. The DWARF
18199 standard (v4) is not entirely clear about the meaning of using
18200 DW_FORM_dataN for a constant with a signed type, where the type is
18201 wider than the data. The conclusion of a discussion on the DWARF
18202 list was that this is unspecified. We choose to always zero-extend
18203 because that is the interpretation long in use by GCC. */
18204
18205 static gdb_byte *
18206 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18207 struct dwarf2_cu *cu, LONGEST *value, int bits)
18208 {
18209 struct objfile *objfile = cu->objfile;
18210 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18211 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18212 LONGEST l = DW_UNSND (attr);
18213
18214 if (bits < sizeof (*value) * 8)
18215 {
18216 l &= ((LONGEST) 1 << bits) - 1;
18217 *value = l;
18218 }
18219 else if (bits == sizeof (*value) * 8)
18220 *value = l;
18221 else
18222 {
18223 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18224 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18225 return bytes;
18226 }
18227
18228 return NULL;
18229 }
18230
18231 /* Read a constant value from an attribute. Either set *VALUE, or if
18232 the value does not fit in *VALUE, set *BYTES - either already
18233 allocated on the objfile obstack, or newly allocated on OBSTACK,
18234 or, set *BATON, if we translated the constant to a location
18235 expression. */
18236
18237 static void
18238 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18239 const char *name, struct obstack *obstack,
18240 struct dwarf2_cu *cu,
18241 LONGEST *value, const gdb_byte **bytes,
18242 struct dwarf2_locexpr_baton **baton)
18243 {
18244 struct objfile *objfile = cu->objfile;
18245 struct comp_unit_head *cu_header = &cu->header;
18246 struct dwarf_block *blk;
18247 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18248 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18249
18250 *value = 0;
18251 *bytes = NULL;
18252 *baton = NULL;
18253
18254 switch (attr->form)
18255 {
18256 case DW_FORM_addr:
18257 case DW_FORM_GNU_addr_index:
18258 {
18259 gdb_byte *data;
18260
18261 if (TYPE_LENGTH (type) != cu_header->addr_size)
18262 dwarf2_const_value_length_mismatch_complaint (name,
18263 cu_header->addr_size,
18264 TYPE_LENGTH (type));
18265 /* Symbols of this form are reasonably rare, so we just
18266 piggyback on the existing location code rather than writing
18267 a new implementation of symbol_computed_ops. */
18268 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18269 (*baton)->per_cu = cu->per_cu;
18270 gdb_assert ((*baton)->per_cu);
18271
18272 (*baton)->size = 2 + cu_header->addr_size;
18273 data = obstack_alloc (obstack, (*baton)->size);
18274 (*baton)->data = data;
18275
18276 data[0] = DW_OP_addr;
18277 store_unsigned_integer (&data[1], cu_header->addr_size,
18278 byte_order, DW_ADDR (attr));
18279 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18280 }
18281 break;
18282 case DW_FORM_string:
18283 case DW_FORM_strp:
18284 case DW_FORM_GNU_str_index:
18285 case DW_FORM_GNU_strp_alt:
18286 /* DW_STRING is already allocated on the objfile obstack, point
18287 directly to it. */
18288 *bytes = (const gdb_byte *) DW_STRING (attr);
18289 break;
18290 case DW_FORM_block1:
18291 case DW_FORM_block2:
18292 case DW_FORM_block4:
18293 case DW_FORM_block:
18294 case DW_FORM_exprloc:
18295 blk = DW_BLOCK (attr);
18296 if (TYPE_LENGTH (type) != blk->size)
18297 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18298 TYPE_LENGTH (type));
18299 *bytes = blk->data;
18300 break;
18301
18302 /* The DW_AT_const_value attributes are supposed to carry the
18303 symbol's value "represented as it would be on the target
18304 architecture." By the time we get here, it's already been
18305 converted to host endianness, so we just need to sign- or
18306 zero-extend it as appropriate. */
18307 case DW_FORM_data1:
18308 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18309 break;
18310 case DW_FORM_data2:
18311 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18312 break;
18313 case DW_FORM_data4:
18314 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18315 break;
18316 case DW_FORM_data8:
18317 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18318 break;
18319
18320 case DW_FORM_sdata:
18321 *value = DW_SND (attr);
18322 break;
18323
18324 case DW_FORM_udata:
18325 *value = DW_UNSND (attr);
18326 break;
18327
18328 default:
18329 complaint (&symfile_complaints,
18330 _("unsupported const value attribute form: '%s'"),
18331 dwarf_form_name (attr->form));
18332 *value = 0;
18333 break;
18334 }
18335 }
18336
18337
18338 /* Copy constant value from an attribute to a symbol. */
18339
18340 static void
18341 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18342 struct dwarf2_cu *cu)
18343 {
18344 struct objfile *objfile = cu->objfile;
18345 struct comp_unit_head *cu_header = &cu->header;
18346 LONGEST value;
18347 const gdb_byte *bytes;
18348 struct dwarf2_locexpr_baton *baton;
18349
18350 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18351 SYMBOL_PRINT_NAME (sym),
18352 &objfile->objfile_obstack, cu,
18353 &value, &bytes, &baton);
18354
18355 if (baton != NULL)
18356 {
18357 SYMBOL_LOCATION_BATON (sym) = baton;
18358 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18359 }
18360 else if (bytes != NULL)
18361 {
18362 SYMBOL_VALUE_BYTES (sym) = bytes;
18363 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18364 }
18365 else
18366 {
18367 SYMBOL_VALUE (sym) = value;
18368 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18369 }
18370 }
18371
18372 /* Return the type of the die in question using its DW_AT_type attribute. */
18373
18374 static struct type *
18375 die_type (struct die_info *die, struct dwarf2_cu *cu)
18376 {
18377 struct attribute *type_attr;
18378
18379 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18380 if (!type_attr)
18381 {
18382 /* A missing DW_AT_type represents a void type. */
18383 return objfile_type (cu->objfile)->builtin_void;
18384 }
18385
18386 return lookup_die_type (die, type_attr, cu);
18387 }
18388
18389 /* True iff CU's producer generates GNAT Ada auxiliary information
18390 that allows to find parallel types through that information instead
18391 of having to do expensive parallel lookups by type name. */
18392
18393 static int
18394 need_gnat_info (struct dwarf2_cu *cu)
18395 {
18396 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18397 of GNAT produces this auxiliary information, without any indication
18398 that it is produced. Part of enhancing the FSF version of GNAT
18399 to produce that information will be to put in place an indicator
18400 that we can use in order to determine whether the descriptive type
18401 info is available or not. One suggestion that has been made is
18402 to use a new attribute, attached to the CU die. For now, assume
18403 that the descriptive type info is not available. */
18404 return 0;
18405 }
18406
18407 /* Return the auxiliary type of the die in question using its
18408 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18409 attribute is not present. */
18410
18411 static struct type *
18412 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18413 {
18414 struct attribute *type_attr;
18415
18416 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18417 if (!type_attr)
18418 return NULL;
18419
18420 return lookup_die_type (die, type_attr, cu);
18421 }
18422
18423 /* If DIE has a descriptive_type attribute, then set the TYPE's
18424 descriptive type accordingly. */
18425
18426 static void
18427 set_descriptive_type (struct type *type, struct die_info *die,
18428 struct dwarf2_cu *cu)
18429 {
18430 struct type *descriptive_type = die_descriptive_type (die, cu);
18431
18432 if (descriptive_type)
18433 {
18434 ALLOCATE_GNAT_AUX_TYPE (type);
18435 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18436 }
18437 }
18438
18439 /* Return the containing type of the die in question using its
18440 DW_AT_containing_type attribute. */
18441
18442 static struct type *
18443 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18444 {
18445 struct attribute *type_attr;
18446
18447 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18448 if (!type_attr)
18449 error (_("Dwarf Error: Problem turning containing type into gdb type "
18450 "[in module %s]"), objfile_name (cu->objfile));
18451
18452 return lookup_die_type (die, type_attr, cu);
18453 }
18454
18455 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18456
18457 static struct type *
18458 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18459 {
18460 struct objfile *objfile = dwarf2_per_objfile->objfile;
18461 char *message, *saved;
18462
18463 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18464 objfile_name (objfile),
18465 cu->header.offset.sect_off,
18466 die->offset.sect_off);
18467 saved = obstack_copy0 (&objfile->objfile_obstack,
18468 message, strlen (message));
18469 xfree (message);
18470
18471 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18472 }
18473
18474 /* Look up the type of DIE in CU using its type attribute ATTR.
18475 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18476 DW_AT_containing_type.
18477 If there is no type substitute an error marker. */
18478
18479 static struct type *
18480 lookup_die_type (struct die_info *die, const struct attribute *attr,
18481 struct dwarf2_cu *cu)
18482 {
18483 struct objfile *objfile = cu->objfile;
18484 struct type *this_type;
18485
18486 gdb_assert (attr->name == DW_AT_type
18487 || attr->name == DW_AT_GNAT_descriptive_type
18488 || attr->name == DW_AT_containing_type);
18489
18490 /* First see if we have it cached. */
18491
18492 if (attr->form == DW_FORM_GNU_ref_alt)
18493 {
18494 struct dwarf2_per_cu_data *per_cu;
18495 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18496
18497 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18498 this_type = get_die_type_at_offset (offset, per_cu);
18499 }
18500 else if (attr_form_is_ref (attr))
18501 {
18502 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18503
18504 this_type = get_die_type_at_offset (offset, cu->per_cu);
18505 }
18506 else if (attr->form == DW_FORM_ref_sig8)
18507 {
18508 ULONGEST signature = DW_SIGNATURE (attr);
18509
18510 return get_signatured_type (die, signature, cu);
18511 }
18512 else
18513 {
18514 complaint (&symfile_complaints,
18515 _("Dwarf Error: Bad type attribute %s in DIE"
18516 " at 0x%x [in module %s]"),
18517 dwarf_attr_name (attr->name), die->offset.sect_off,
18518 objfile_name (objfile));
18519 return build_error_marker_type (cu, die);
18520 }
18521
18522 /* If not cached we need to read it in. */
18523
18524 if (this_type == NULL)
18525 {
18526 struct die_info *type_die = NULL;
18527 struct dwarf2_cu *type_cu = cu;
18528
18529 if (attr_form_is_ref (attr))
18530 type_die = follow_die_ref (die, attr, &type_cu);
18531 if (type_die == NULL)
18532 return build_error_marker_type (cu, die);
18533 /* If we find the type now, it's probably because the type came
18534 from an inter-CU reference and the type's CU got expanded before
18535 ours. */
18536 this_type = read_type_die (type_die, type_cu);
18537 }
18538
18539 /* If we still don't have a type use an error marker. */
18540
18541 if (this_type == NULL)
18542 return build_error_marker_type (cu, die);
18543
18544 return this_type;
18545 }
18546
18547 /* Return the type in DIE, CU.
18548 Returns NULL for invalid types.
18549
18550 This first does a lookup in die_type_hash,
18551 and only reads the die in if necessary.
18552
18553 NOTE: This can be called when reading in partial or full symbols. */
18554
18555 static struct type *
18556 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18557 {
18558 struct type *this_type;
18559
18560 this_type = get_die_type (die, cu);
18561 if (this_type)
18562 return this_type;
18563
18564 return read_type_die_1 (die, cu);
18565 }
18566
18567 /* Read the type in DIE, CU.
18568 Returns NULL for invalid types. */
18569
18570 static struct type *
18571 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18572 {
18573 struct type *this_type = NULL;
18574
18575 switch (die->tag)
18576 {
18577 case DW_TAG_class_type:
18578 case DW_TAG_interface_type:
18579 case DW_TAG_structure_type:
18580 case DW_TAG_union_type:
18581 this_type = read_structure_type (die, cu);
18582 break;
18583 case DW_TAG_enumeration_type:
18584 this_type = read_enumeration_type (die, cu);
18585 break;
18586 case DW_TAG_subprogram:
18587 case DW_TAG_subroutine_type:
18588 case DW_TAG_inlined_subroutine:
18589 this_type = read_subroutine_type (die, cu);
18590 break;
18591 case DW_TAG_array_type:
18592 this_type = read_array_type (die, cu);
18593 break;
18594 case DW_TAG_set_type:
18595 this_type = read_set_type (die, cu);
18596 break;
18597 case DW_TAG_pointer_type:
18598 this_type = read_tag_pointer_type (die, cu);
18599 break;
18600 case DW_TAG_ptr_to_member_type:
18601 this_type = read_tag_ptr_to_member_type (die, cu);
18602 break;
18603 case DW_TAG_reference_type:
18604 this_type = read_tag_reference_type (die, cu);
18605 break;
18606 case DW_TAG_const_type:
18607 this_type = read_tag_const_type (die, cu);
18608 break;
18609 case DW_TAG_volatile_type:
18610 this_type = read_tag_volatile_type (die, cu);
18611 break;
18612 case DW_TAG_restrict_type:
18613 this_type = read_tag_restrict_type (die, cu);
18614 break;
18615 case DW_TAG_string_type:
18616 this_type = read_tag_string_type (die, cu);
18617 break;
18618 case DW_TAG_typedef:
18619 this_type = read_typedef (die, cu);
18620 break;
18621 case DW_TAG_subrange_type:
18622 this_type = read_subrange_type (die, cu);
18623 break;
18624 case DW_TAG_base_type:
18625 this_type = read_base_type (die, cu);
18626 break;
18627 case DW_TAG_unspecified_type:
18628 this_type = read_unspecified_type (die, cu);
18629 break;
18630 case DW_TAG_namespace:
18631 this_type = read_namespace_type (die, cu);
18632 break;
18633 case DW_TAG_module:
18634 this_type = read_module_type (die, cu);
18635 break;
18636 default:
18637 complaint (&symfile_complaints,
18638 _("unexpected tag in read_type_die: '%s'"),
18639 dwarf_tag_name (die->tag));
18640 break;
18641 }
18642
18643 return this_type;
18644 }
18645
18646 /* See if we can figure out if the class lives in a namespace. We do
18647 this by looking for a member function; its demangled name will
18648 contain namespace info, if there is any.
18649 Return the computed name or NULL.
18650 Space for the result is allocated on the objfile's obstack.
18651 This is the full-die version of guess_partial_die_structure_name.
18652 In this case we know DIE has no useful parent. */
18653
18654 static char *
18655 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18656 {
18657 struct die_info *spec_die;
18658 struct dwarf2_cu *spec_cu;
18659 struct die_info *child;
18660
18661 spec_cu = cu;
18662 spec_die = die_specification (die, &spec_cu);
18663 if (spec_die != NULL)
18664 {
18665 die = spec_die;
18666 cu = spec_cu;
18667 }
18668
18669 for (child = die->child;
18670 child != NULL;
18671 child = child->sibling)
18672 {
18673 if (child->tag == DW_TAG_subprogram)
18674 {
18675 struct attribute *attr;
18676
18677 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18678 if (attr == NULL)
18679 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18680 if (attr != NULL)
18681 {
18682 char *actual_name
18683 = language_class_name_from_physname (cu->language_defn,
18684 DW_STRING (attr));
18685 char *name = NULL;
18686
18687 if (actual_name != NULL)
18688 {
18689 const char *die_name = dwarf2_name (die, cu);
18690
18691 if (die_name != NULL
18692 && strcmp (die_name, actual_name) != 0)
18693 {
18694 /* Strip off the class name from the full name.
18695 We want the prefix. */
18696 int die_name_len = strlen (die_name);
18697 int actual_name_len = strlen (actual_name);
18698
18699 /* Test for '::' as a sanity check. */
18700 if (actual_name_len > die_name_len + 2
18701 && actual_name[actual_name_len
18702 - die_name_len - 1] == ':')
18703 name =
18704 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18705 actual_name,
18706 actual_name_len - die_name_len - 2);
18707 }
18708 }
18709 xfree (actual_name);
18710 return name;
18711 }
18712 }
18713 }
18714
18715 return NULL;
18716 }
18717
18718 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18719 prefix part in such case. See
18720 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18721
18722 static char *
18723 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18724 {
18725 struct attribute *attr;
18726 char *base;
18727
18728 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18729 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18730 return NULL;
18731
18732 attr = dwarf2_attr (die, DW_AT_name, cu);
18733 if (attr != NULL && DW_STRING (attr) != NULL)
18734 return NULL;
18735
18736 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18737 if (attr == NULL)
18738 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18739 if (attr == NULL || DW_STRING (attr) == NULL)
18740 return NULL;
18741
18742 /* dwarf2_name had to be already called. */
18743 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18744
18745 /* Strip the base name, keep any leading namespaces/classes. */
18746 base = strrchr (DW_STRING (attr), ':');
18747 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18748 return "";
18749
18750 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18751 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18752 }
18753
18754 /* Return the name of the namespace/class that DIE is defined within,
18755 or "" if we can't tell. The caller should not xfree the result.
18756
18757 For example, if we're within the method foo() in the following
18758 code:
18759
18760 namespace N {
18761 class C {
18762 void foo () {
18763 }
18764 };
18765 }
18766
18767 then determine_prefix on foo's die will return "N::C". */
18768
18769 static const char *
18770 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18771 {
18772 struct die_info *parent, *spec_die;
18773 struct dwarf2_cu *spec_cu;
18774 struct type *parent_type;
18775 char *retval;
18776
18777 if (cu->language != language_cplus && cu->language != language_java
18778 && cu->language != language_fortran)
18779 return "";
18780
18781 retval = anonymous_struct_prefix (die, cu);
18782 if (retval)
18783 return retval;
18784
18785 /* We have to be careful in the presence of DW_AT_specification.
18786 For example, with GCC 3.4, given the code
18787
18788 namespace N {
18789 void foo() {
18790 // Definition of N::foo.
18791 }
18792 }
18793
18794 then we'll have a tree of DIEs like this:
18795
18796 1: DW_TAG_compile_unit
18797 2: DW_TAG_namespace // N
18798 3: DW_TAG_subprogram // declaration of N::foo
18799 4: DW_TAG_subprogram // definition of N::foo
18800 DW_AT_specification // refers to die #3
18801
18802 Thus, when processing die #4, we have to pretend that we're in
18803 the context of its DW_AT_specification, namely the contex of die
18804 #3. */
18805 spec_cu = cu;
18806 spec_die = die_specification (die, &spec_cu);
18807 if (spec_die == NULL)
18808 parent = die->parent;
18809 else
18810 {
18811 parent = spec_die->parent;
18812 cu = spec_cu;
18813 }
18814
18815 if (parent == NULL)
18816 return "";
18817 else if (parent->building_fullname)
18818 {
18819 const char *name;
18820 const char *parent_name;
18821
18822 /* It has been seen on RealView 2.2 built binaries,
18823 DW_TAG_template_type_param types actually _defined_ as
18824 children of the parent class:
18825
18826 enum E {};
18827 template class <class Enum> Class{};
18828 Class<enum E> class_e;
18829
18830 1: DW_TAG_class_type (Class)
18831 2: DW_TAG_enumeration_type (E)
18832 3: DW_TAG_enumerator (enum1:0)
18833 3: DW_TAG_enumerator (enum2:1)
18834 ...
18835 2: DW_TAG_template_type_param
18836 DW_AT_type DW_FORM_ref_udata (E)
18837
18838 Besides being broken debug info, it can put GDB into an
18839 infinite loop. Consider:
18840
18841 When we're building the full name for Class<E>, we'll start
18842 at Class, and go look over its template type parameters,
18843 finding E. We'll then try to build the full name of E, and
18844 reach here. We're now trying to build the full name of E,
18845 and look over the parent DIE for containing scope. In the
18846 broken case, if we followed the parent DIE of E, we'd again
18847 find Class, and once again go look at its template type
18848 arguments, etc., etc. Simply don't consider such parent die
18849 as source-level parent of this die (it can't be, the language
18850 doesn't allow it), and break the loop here. */
18851 name = dwarf2_name (die, cu);
18852 parent_name = dwarf2_name (parent, cu);
18853 complaint (&symfile_complaints,
18854 _("template param type '%s' defined within parent '%s'"),
18855 name ? name : "<unknown>",
18856 parent_name ? parent_name : "<unknown>");
18857 return "";
18858 }
18859 else
18860 switch (parent->tag)
18861 {
18862 case DW_TAG_namespace:
18863 parent_type = read_type_die (parent, cu);
18864 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18865 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18866 Work around this problem here. */
18867 if (cu->language == language_cplus
18868 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18869 return "";
18870 /* We give a name to even anonymous namespaces. */
18871 return TYPE_TAG_NAME (parent_type);
18872 case DW_TAG_class_type:
18873 case DW_TAG_interface_type:
18874 case DW_TAG_structure_type:
18875 case DW_TAG_union_type:
18876 case DW_TAG_module:
18877 parent_type = read_type_die (parent, cu);
18878 if (TYPE_TAG_NAME (parent_type) != NULL)
18879 return TYPE_TAG_NAME (parent_type);
18880 else
18881 /* An anonymous structure is only allowed non-static data
18882 members; no typedefs, no member functions, et cetera.
18883 So it does not need a prefix. */
18884 return "";
18885 case DW_TAG_compile_unit:
18886 case DW_TAG_partial_unit:
18887 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18888 if (cu->language == language_cplus
18889 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18890 && die->child != NULL
18891 && (die->tag == DW_TAG_class_type
18892 || die->tag == DW_TAG_structure_type
18893 || die->tag == DW_TAG_union_type))
18894 {
18895 char *name = guess_full_die_structure_name (die, cu);
18896 if (name != NULL)
18897 return name;
18898 }
18899 return "";
18900 case DW_TAG_enumeration_type:
18901 parent_type = read_type_die (parent, cu);
18902 if (TYPE_DECLARED_CLASS (parent_type))
18903 {
18904 if (TYPE_TAG_NAME (parent_type) != NULL)
18905 return TYPE_TAG_NAME (parent_type);
18906 return "";
18907 }
18908 /* Fall through. */
18909 default:
18910 return determine_prefix (parent, cu);
18911 }
18912 }
18913
18914 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18915 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18916 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18917 an obconcat, otherwise allocate storage for the result. The CU argument is
18918 used to determine the language and hence, the appropriate separator. */
18919
18920 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18921
18922 static char *
18923 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18924 int physname, struct dwarf2_cu *cu)
18925 {
18926 const char *lead = "";
18927 const char *sep;
18928
18929 if (suffix == NULL || suffix[0] == '\0'
18930 || prefix == NULL || prefix[0] == '\0')
18931 sep = "";
18932 else if (cu->language == language_java)
18933 sep = ".";
18934 else if (cu->language == language_fortran && physname)
18935 {
18936 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18937 DW_AT_MIPS_linkage_name is preferred and used instead. */
18938
18939 lead = "__";
18940 sep = "_MOD_";
18941 }
18942 else
18943 sep = "::";
18944
18945 if (prefix == NULL)
18946 prefix = "";
18947 if (suffix == NULL)
18948 suffix = "";
18949
18950 if (obs == NULL)
18951 {
18952 char *retval
18953 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18954
18955 strcpy (retval, lead);
18956 strcat (retval, prefix);
18957 strcat (retval, sep);
18958 strcat (retval, suffix);
18959 return retval;
18960 }
18961 else
18962 {
18963 /* We have an obstack. */
18964 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18965 }
18966 }
18967
18968 /* Return sibling of die, NULL if no sibling. */
18969
18970 static struct die_info *
18971 sibling_die (struct die_info *die)
18972 {
18973 return die->sibling;
18974 }
18975
18976 /* Get name of a die, return NULL if not found. */
18977
18978 static const char *
18979 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18980 struct obstack *obstack)
18981 {
18982 if (name && cu->language == language_cplus)
18983 {
18984 char *canon_name = cp_canonicalize_string (name);
18985
18986 if (canon_name != NULL)
18987 {
18988 if (strcmp (canon_name, name) != 0)
18989 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18990 xfree (canon_name);
18991 }
18992 }
18993
18994 return name;
18995 }
18996
18997 /* Get name of a die, return NULL if not found. */
18998
18999 static const char *
19000 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19001 {
19002 struct attribute *attr;
19003
19004 attr = dwarf2_attr (die, DW_AT_name, cu);
19005 if ((!attr || !DW_STRING (attr))
19006 && die->tag != DW_TAG_class_type
19007 && die->tag != DW_TAG_interface_type
19008 && die->tag != DW_TAG_structure_type
19009 && die->tag != DW_TAG_union_type)
19010 return NULL;
19011
19012 switch (die->tag)
19013 {
19014 case DW_TAG_compile_unit:
19015 case DW_TAG_partial_unit:
19016 /* Compilation units have a DW_AT_name that is a filename, not
19017 a source language identifier. */
19018 case DW_TAG_enumeration_type:
19019 case DW_TAG_enumerator:
19020 /* These tags always have simple identifiers already; no need
19021 to canonicalize them. */
19022 return DW_STRING (attr);
19023
19024 case DW_TAG_subprogram:
19025 /* Java constructors will all be named "<init>", so return
19026 the class name when we see this special case. */
19027 if (cu->language == language_java
19028 && DW_STRING (attr) != NULL
19029 && strcmp (DW_STRING (attr), "<init>") == 0)
19030 {
19031 struct dwarf2_cu *spec_cu = cu;
19032 struct die_info *spec_die;
19033
19034 /* GCJ will output '<init>' for Java constructor names.
19035 For this special case, return the name of the parent class. */
19036
19037 /* GCJ may output subprogram DIEs with AT_specification set.
19038 If so, use the name of the specified DIE. */
19039 spec_die = die_specification (die, &spec_cu);
19040 if (spec_die != NULL)
19041 return dwarf2_name (spec_die, spec_cu);
19042
19043 do
19044 {
19045 die = die->parent;
19046 if (die->tag == DW_TAG_class_type)
19047 return dwarf2_name (die, cu);
19048 }
19049 while (die->tag != DW_TAG_compile_unit
19050 && die->tag != DW_TAG_partial_unit);
19051 }
19052 break;
19053
19054 case DW_TAG_class_type:
19055 case DW_TAG_interface_type:
19056 case DW_TAG_structure_type:
19057 case DW_TAG_union_type:
19058 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19059 structures or unions. These were of the form "._%d" in GCC 4.1,
19060 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19061 and GCC 4.4. We work around this problem by ignoring these. */
19062 if (attr && DW_STRING (attr)
19063 && (strncmp (DW_STRING (attr), "._", 2) == 0
19064 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19065 return NULL;
19066
19067 /* GCC might emit a nameless typedef that has a linkage name. See
19068 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19069 if (!attr || DW_STRING (attr) == NULL)
19070 {
19071 char *demangled = NULL;
19072
19073 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19074 if (attr == NULL)
19075 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19076
19077 if (attr == NULL || DW_STRING (attr) == NULL)
19078 return NULL;
19079
19080 /* Avoid demangling DW_STRING (attr) the second time on a second
19081 call for the same DIE. */
19082 if (!DW_STRING_IS_CANONICAL (attr))
19083 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19084
19085 if (demangled)
19086 {
19087 char *base;
19088
19089 /* FIXME: we already did this for the partial symbol... */
19090 DW_STRING (attr)
19091 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19092 demangled, strlen (demangled));
19093 DW_STRING_IS_CANONICAL (attr) = 1;
19094 xfree (demangled);
19095
19096 /* Strip any leading namespaces/classes, keep only the base name.
19097 DW_AT_name for named DIEs does not contain the prefixes. */
19098 base = strrchr (DW_STRING (attr), ':');
19099 if (base && base > DW_STRING (attr) && base[-1] == ':')
19100 return &base[1];
19101 else
19102 return DW_STRING (attr);
19103 }
19104 }
19105 break;
19106
19107 default:
19108 break;
19109 }
19110
19111 if (!DW_STRING_IS_CANONICAL (attr))
19112 {
19113 DW_STRING (attr)
19114 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19115 &cu->objfile->per_bfd->storage_obstack);
19116 DW_STRING_IS_CANONICAL (attr) = 1;
19117 }
19118 return DW_STRING (attr);
19119 }
19120
19121 /* Return the die that this die in an extension of, or NULL if there
19122 is none. *EXT_CU is the CU containing DIE on input, and the CU
19123 containing the return value on output. */
19124
19125 static struct die_info *
19126 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19127 {
19128 struct attribute *attr;
19129
19130 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19131 if (attr == NULL)
19132 return NULL;
19133
19134 return follow_die_ref (die, attr, ext_cu);
19135 }
19136
19137 /* Convert a DIE tag into its string name. */
19138
19139 static const char *
19140 dwarf_tag_name (unsigned tag)
19141 {
19142 const char *name = get_DW_TAG_name (tag);
19143
19144 if (name == NULL)
19145 return "DW_TAG_<unknown>";
19146
19147 return name;
19148 }
19149
19150 /* Convert a DWARF attribute code into its string name. */
19151
19152 static const char *
19153 dwarf_attr_name (unsigned attr)
19154 {
19155 const char *name;
19156
19157 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19158 if (attr == DW_AT_MIPS_fde)
19159 return "DW_AT_MIPS_fde";
19160 #else
19161 if (attr == DW_AT_HP_block_index)
19162 return "DW_AT_HP_block_index";
19163 #endif
19164
19165 name = get_DW_AT_name (attr);
19166
19167 if (name == NULL)
19168 return "DW_AT_<unknown>";
19169
19170 return name;
19171 }
19172
19173 /* Convert a DWARF value form code into its string name. */
19174
19175 static const char *
19176 dwarf_form_name (unsigned form)
19177 {
19178 const char *name = get_DW_FORM_name (form);
19179
19180 if (name == NULL)
19181 return "DW_FORM_<unknown>";
19182
19183 return name;
19184 }
19185
19186 static char *
19187 dwarf_bool_name (unsigned mybool)
19188 {
19189 if (mybool)
19190 return "TRUE";
19191 else
19192 return "FALSE";
19193 }
19194
19195 /* Convert a DWARF type code into its string name. */
19196
19197 static const char *
19198 dwarf_type_encoding_name (unsigned enc)
19199 {
19200 const char *name = get_DW_ATE_name (enc);
19201
19202 if (name == NULL)
19203 return "DW_ATE_<unknown>";
19204
19205 return name;
19206 }
19207
19208 static void
19209 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19210 {
19211 unsigned int i;
19212
19213 print_spaces (indent, f);
19214 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19215 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19216
19217 if (die->parent != NULL)
19218 {
19219 print_spaces (indent, f);
19220 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19221 die->parent->offset.sect_off);
19222 }
19223
19224 print_spaces (indent, f);
19225 fprintf_unfiltered (f, " has children: %s\n",
19226 dwarf_bool_name (die->child != NULL));
19227
19228 print_spaces (indent, f);
19229 fprintf_unfiltered (f, " attributes:\n");
19230
19231 for (i = 0; i < die->num_attrs; ++i)
19232 {
19233 print_spaces (indent, f);
19234 fprintf_unfiltered (f, " %s (%s) ",
19235 dwarf_attr_name (die->attrs[i].name),
19236 dwarf_form_name (die->attrs[i].form));
19237
19238 switch (die->attrs[i].form)
19239 {
19240 case DW_FORM_addr:
19241 case DW_FORM_GNU_addr_index:
19242 fprintf_unfiltered (f, "address: ");
19243 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19244 break;
19245 case DW_FORM_block2:
19246 case DW_FORM_block4:
19247 case DW_FORM_block:
19248 case DW_FORM_block1:
19249 fprintf_unfiltered (f, "block: size %s",
19250 pulongest (DW_BLOCK (&die->attrs[i])->size));
19251 break;
19252 case DW_FORM_exprloc:
19253 fprintf_unfiltered (f, "expression: size %s",
19254 pulongest (DW_BLOCK (&die->attrs[i])->size));
19255 break;
19256 case DW_FORM_ref_addr:
19257 fprintf_unfiltered (f, "ref address: ");
19258 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19259 break;
19260 case DW_FORM_GNU_ref_alt:
19261 fprintf_unfiltered (f, "alt ref address: ");
19262 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19263 break;
19264 case DW_FORM_ref1:
19265 case DW_FORM_ref2:
19266 case DW_FORM_ref4:
19267 case DW_FORM_ref8:
19268 case DW_FORM_ref_udata:
19269 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19270 (long) (DW_UNSND (&die->attrs[i])));
19271 break;
19272 case DW_FORM_data1:
19273 case DW_FORM_data2:
19274 case DW_FORM_data4:
19275 case DW_FORM_data8:
19276 case DW_FORM_udata:
19277 case DW_FORM_sdata:
19278 fprintf_unfiltered (f, "constant: %s",
19279 pulongest (DW_UNSND (&die->attrs[i])));
19280 break;
19281 case DW_FORM_sec_offset:
19282 fprintf_unfiltered (f, "section offset: %s",
19283 pulongest (DW_UNSND (&die->attrs[i])));
19284 break;
19285 case DW_FORM_ref_sig8:
19286 fprintf_unfiltered (f, "signature: %s",
19287 hex_string (DW_SIGNATURE (&die->attrs[i])));
19288 break;
19289 case DW_FORM_string:
19290 case DW_FORM_strp:
19291 case DW_FORM_GNU_str_index:
19292 case DW_FORM_GNU_strp_alt:
19293 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19294 DW_STRING (&die->attrs[i])
19295 ? DW_STRING (&die->attrs[i]) : "",
19296 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19297 break;
19298 case DW_FORM_flag:
19299 if (DW_UNSND (&die->attrs[i]))
19300 fprintf_unfiltered (f, "flag: TRUE");
19301 else
19302 fprintf_unfiltered (f, "flag: FALSE");
19303 break;
19304 case DW_FORM_flag_present:
19305 fprintf_unfiltered (f, "flag: TRUE");
19306 break;
19307 case DW_FORM_indirect:
19308 /* The reader will have reduced the indirect form to
19309 the "base form" so this form should not occur. */
19310 fprintf_unfiltered (f,
19311 "unexpected attribute form: DW_FORM_indirect");
19312 break;
19313 default:
19314 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19315 die->attrs[i].form);
19316 break;
19317 }
19318 fprintf_unfiltered (f, "\n");
19319 }
19320 }
19321
19322 static void
19323 dump_die_for_error (struct die_info *die)
19324 {
19325 dump_die_shallow (gdb_stderr, 0, die);
19326 }
19327
19328 static void
19329 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19330 {
19331 int indent = level * 4;
19332
19333 gdb_assert (die != NULL);
19334
19335 if (level >= max_level)
19336 return;
19337
19338 dump_die_shallow (f, indent, die);
19339
19340 if (die->child != NULL)
19341 {
19342 print_spaces (indent, f);
19343 fprintf_unfiltered (f, " Children:");
19344 if (level + 1 < max_level)
19345 {
19346 fprintf_unfiltered (f, "\n");
19347 dump_die_1 (f, level + 1, max_level, die->child);
19348 }
19349 else
19350 {
19351 fprintf_unfiltered (f,
19352 " [not printed, max nesting level reached]\n");
19353 }
19354 }
19355
19356 if (die->sibling != NULL && level > 0)
19357 {
19358 dump_die_1 (f, level, max_level, die->sibling);
19359 }
19360 }
19361
19362 /* This is called from the pdie macro in gdbinit.in.
19363 It's not static so gcc will keep a copy callable from gdb. */
19364
19365 void
19366 dump_die (struct die_info *die, int max_level)
19367 {
19368 dump_die_1 (gdb_stdlog, 0, max_level, die);
19369 }
19370
19371 static void
19372 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19373 {
19374 void **slot;
19375
19376 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19377 INSERT);
19378
19379 *slot = die;
19380 }
19381
19382 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19383 required kind. */
19384
19385 static sect_offset
19386 dwarf2_get_ref_die_offset (const struct attribute *attr)
19387 {
19388 sect_offset retval = { DW_UNSND (attr) };
19389
19390 if (attr_form_is_ref (attr))
19391 return retval;
19392
19393 retval.sect_off = 0;
19394 complaint (&symfile_complaints,
19395 _("unsupported die ref attribute form: '%s'"),
19396 dwarf_form_name (attr->form));
19397 return retval;
19398 }
19399
19400 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19401 * the value held by the attribute is not constant. */
19402
19403 static LONGEST
19404 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19405 {
19406 if (attr->form == DW_FORM_sdata)
19407 return DW_SND (attr);
19408 else if (attr->form == DW_FORM_udata
19409 || attr->form == DW_FORM_data1
19410 || attr->form == DW_FORM_data2
19411 || attr->form == DW_FORM_data4
19412 || attr->form == DW_FORM_data8)
19413 return DW_UNSND (attr);
19414 else
19415 {
19416 complaint (&symfile_complaints,
19417 _("Attribute value is not a constant (%s)"),
19418 dwarf_form_name (attr->form));
19419 return default_value;
19420 }
19421 }
19422
19423 /* Follow reference or signature attribute ATTR of SRC_DIE.
19424 On entry *REF_CU is the CU of SRC_DIE.
19425 On exit *REF_CU is the CU of the result. */
19426
19427 static struct die_info *
19428 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19429 struct dwarf2_cu **ref_cu)
19430 {
19431 struct die_info *die;
19432
19433 if (attr_form_is_ref (attr))
19434 die = follow_die_ref (src_die, attr, ref_cu);
19435 else if (attr->form == DW_FORM_ref_sig8)
19436 die = follow_die_sig (src_die, attr, ref_cu);
19437 else
19438 {
19439 dump_die_for_error (src_die);
19440 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19441 objfile_name ((*ref_cu)->objfile));
19442 }
19443
19444 return die;
19445 }
19446
19447 /* Follow reference OFFSET.
19448 On entry *REF_CU is the CU of the source die referencing OFFSET.
19449 On exit *REF_CU is the CU of the result.
19450 Returns NULL if OFFSET is invalid. */
19451
19452 static struct die_info *
19453 follow_die_offset (sect_offset offset, int offset_in_dwz,
19454 struct dwarf2_cu **ref_cu)
19455 {
19456 struct die_info temp_die;
19457 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19458
19459 gdb_assert (cu->per_cu != NULL);
19460
19461 target_cu = cu;
19462
19463 if (cu->per_cu->is_debug_types)
19464 {
19465 /* .debug_types CUs cannot reference anything outside their CU.
19466 If they need to, they have to reference a signatured type via
19467 DW_FORM_ref_sig8. */
19468 if (! offset_in_cu_p (&cu->header, offset))
19469 return NULL;
19470 }
19471 else if (offset_in_dwz != cu->per_cu->is_dwz
19472 || ! offset_in_cu_p (&cu->header, offset))
19473 {
19474 struct dwarf2_per_cu_data *per_cu;
19475
19476 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19477 cu->objfile);
19478
19479 /* If necessary, add it to the queue and load its DIEs. */
19480 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19481 load_full_comp_unit (per_cu, cu->language);
19482
19483 target_cu = per_cu->cu;
19484 }
19485 else if (cu->dies == NULL)
19486 {
19487 /* We're loading full DIEs during partial symbol reading. */
19488 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19489 load_full_comp_unit (cu->per_cu, language_minimal);
19490 }
19491
19492 *ref_cu = target_cu;
19493 temp_die.offset = offset;
19494 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19495 }
19496
19497 /* Follow reference attribute ATTR of SRC_DIE.
19498 On entry *REF_CU is the CU of SRC_DIE.
19499 On exit *REF_CU is the CU of the result. */
19500
19501 static struct die_info *
19502 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19503 struct dwarf2_cu **ref_cu)
19504 {
19505 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19506 struct dwarf2_cu *cu = *ref_cu;
19507 struct die_info *die;
19508
19509 die = follow_die_offset (offset,
19510 (attr->form == DW_FORM_GNU_ref_alt
19511 || cu->per_cu->is_dwz),
19512 ref_cu);
19513 if (!die)
19514 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19515 "at 0x%x [in module %s]"),
19516 offset.sect_off, src_die->offset.sect_off,
19517 objfile_name (cu->objfile));
19518
19519 return die;
19520 }
19521
19522 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19523 Returned value is intended for DW_OP_call*. Returned
19524 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19525
19526 struct dwarf2_locexpr_baton
19527 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19528 struct dwarf2_per_cu_data *per_cu,
19529 CORE_ADDR (*get_frame_pc) (void *baton),
19530 void *baton)
19531 {
19532 struct dwarf2_cu *cu;
19533 struct die_info *die;
19534 struct attribute *attr;
19535 struct dwarf2_locexpr_baton retval;
19536
19537 dw2_setup (per_cu->objfile);
19538
19539 if (per_cu->cu == NULL)
19540 load_cu (per_cu);
19541 cu = per_cu->cu;
19542
19543 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19544 if (!die)
19545 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19546 offset.sect_off, objfile_name (per_cu->objfile));
19547
19548 attr = dwarf2_attr (die, DW_AT_location, cu);
19549 if (!attr)
19550 {
19551 /* DWARF: "If there is no such attribute, then there is no effect.".
19552 DATA is ignored if SIZE is 0. */
19553
19554 retval.data = NULL;
19555 retval.size = 0;
19556 }
19557 else if (attr_form_is_section_offset (attr))
19558 {
19559 struct dwarf2_loclist_baton loclist_baton;
19560 CORE_ADDR pc = (*get_frame_pc) (baton);
19561 size_t size;
19562
19563 fill_in_loclist_baton (cu, &loclist_baton, attr);
19564
19565 retval.data = dwarf2_find_location_expression (&loclist_baton,
19566 &size, pc);
19567 retval.size = size;
19568 }
19569 else
19570 {
19571 if (!attr_form_is_block (attr))
19572 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19573 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19574 offset.sect_off, objfile_name (per_cu->objfile));
19575
19576 retval.data = DW_BLOCK (attr)->data;
19577 retval.size = DW_BLOCK (attr)->size;
19578 }
19579 retval.per_cu = cu->per_cu;
19580
19581 age_cached_comp_units ();
19582
19583 return retval;
19584 }
19585
19586 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19587 offset. */
19588
19589 struct dwarf2_locexpr_baton
19590 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19591 struct dwarf2_per_cu_data *per_cu,
19592 CORE_ADDR (*get_frame_pc) (void *baton),
19593 void *baton)
19594 {
19595 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19596
19597 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19598 }
19599
19600 /* Write a constant of a given type as target-ordered bytes into
19601 OBSTACK. */
19602
19603 static const gdb_byte *
19604 write_constant_as_bytes (struct obstack *obstack,
19605 enum bfd_endian byte_order,
19606 struct type *type,
19607 ULONGEST value,
19608 LONGEST *len)
19609 {
19610 gdb_byte *result;
19611
19612 *len = TYPE_LENGTH (type);
19613 result = obstack_alloc (obstack, *len);
19614 store_unsigned_integer (result, *len, byte_order, value);
19615
19616 return result;
19617 }
19618
19619 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19620 pointer to the constant bytes and set LEN to the length of the
19621 data. If memory is needed, allocate it on OBSTACK. If the DIE
19622 does not have a DW_AT_const_value, return NULL. */
19623
19624 const gdb_byte *
19625 dwarf2_fetch_constant_bytes (sect_offset offset,
19626 struct dwarf2_per_cu_data *per_cu,
19627 struct obstack *obstack,
19628 LONGEST *len)
19629 {
19630 struct dwarf2_cu *cu;
19631 struct die_info *die;
19632 struct attribute *attr;
19633 const gdb_byte *result = NULL;
19634 struct type *type;
19635 LONGEST value;
19636 enum bfd_endian byte_order;
19637
19638 dw2_setup (per_cu->objfile);
19639
19640 if (per_cu->cu == NULL)
19641 load_cu (per_cu);
19642 cu = per_cu->cu;
19643
19644 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19645 if (!die)
19646 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19647 offset.sect_off, objfile_name (per_cu->objfile));
19648
19649
19650 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19651 if (attr == NULL)
19652 return NULL;
19653
19654 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19655 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19656
19657 switch (attr->form)
19658 {
19659 case DW_FORM_addr:
19660 case DW_FORM_GNU_addr_index:
19661 {
19662 gdb_byte *tem;
19663
19664 *len = cu->header.addr_size;
19665 tem = obstack_alloc (obstack, *len);
19666 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19667 result = tem;
19668 }
19669 break;
19670 case DW_FORM_string:
19671 case DW_FORM_strp:
19672 case DW_FORM_GNU_str_index:
19673 case DW_FORM_GNU_strp_alt:
19674 /* DW_STRING is already allocated on the objfile obstack, point
19675 directly to it. */
19676 result = (const gdb_byte *) DW_STRING (attr);
19677 *len = strlen (DW_STRING (attr));
19678 break;
19679 case DW_FORM_block1:
19680 case DW_FORM_block2:
19681 case DW_FORM_block4:
19682 case DW_FORM_block:
19683 case DW_FORM_exprloc:
19684 result = DW_BLOCK (attr)->data;
19685 *len = DW_BLOCK (attr)->size;
19686 break;
19687
19688 /* The DW_AT_const_value attributes are supposed to carry the
19689 symbol's value "represented as it would be on the target
19690 architecture." By the time we get here, it's already been
19691 converted to host endianness, so we just need to sign- or
19692 zero-extend it as appropriate. */
19693 case DW_FORM_data1:
19694 type = die_type (die, cu);
19695 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19696 if (result == NULL)
19697 result = write_constant_as_bytes (obstack, byte_order,
19698 type, value, len);
19699 break;
19700 case DW_FORM_data2:
19701 type = die_type (die, cu);
19702 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19703 if (result == NULL)
19704 result = write_constant_as_bytes (obstack, byte_order,
19705 type, value, len);
19706 break;
19707 case DW_FORM_data4:
19708 type = die_type (die, cu);
19709 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19710 if (result == NULL)
19711 result = write_constant_as_bytes (obstack, byte_order,
19712 type, value, len);
19713 break;
19714 case DW_FORM_data8:
19715 type = die_type (die, cu);
19716 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19717 if (result == NULL)
19718 result = write_constant_as_bytes (obstack, byte_order,
19719 type, value, len);
19720 break;
19721
19722 case DW_FORM_sdata:
19723 type = die_type (die, cu);
19724 result = write_constant_as_bytes (obstack, byte_order,
19725 type, DW_SND (attr), len);
19726 break;
19727
19728 case DW_FORM_udata:
19729 type = die_type (die, cu);
19730 result = write_constant_as_bytes (obstack, byte_order,
19731 type, DW_UNSND (attr), len);
19732 break;
19733
19734 default:
19735 complaint (&symfile_complaints,
19736 _("unsupported const value attribute form: '%s'"),
19737 dwarf_form_name (attr->form));
19738 break;
19739 }
19740
19741 return result;
19742 }
19743
19744 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19745 PER_CU. */
19746
19747 struct type *
19748 dwarf2_get_die_type (cu_offset die_offset,
19749 struct dwarf2_per_cu_data *per_cu)
19750 {
19751 sect_offset die_offset_sect;
19752
19753 dw2_setup (per_cu->objfile);
19754
19755 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19756 return get_die_type_at_offset (die_offset_sect, per_cu);
19757 }
19758
19759 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19760 On entry *REF_CU is the CU of SRC_DIE.
19761 On exit *REF_CU is the CU of the result.
19762 Returns NULL if the referenced DIE isn't found. */
19763
19764 static struct die_info *
19765 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19766 struct dwarf2_cu **ref_cu)
19767 {
19768 struct objfile *objfile = (*ref_cu)->objfile;
19769 struct die_info temp_die;
19770 struct dwarf2_cu *sig_cu;
19771 struct die_info *die;
19772
19773 /* While it might be nice to assert sig_type->type == NULL here,
19774 we can get here for DW_AT_imported_declaration where we need
19775 the DIE not the type. */
19776
19777 /* If necessary, add it to the queue and load its DIEs. */
19778
19779 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19780 read_signatured_type (sig_type);
19781
19782 sig_cu = sig_type->per_cu.cu;
19783 gdb_assert (sig_cu != NULL);
19784 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19785 temp_die.offset = sig_type->type_offset_in_section;
19786 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19787 temp_die.offset.sect_off);
19788 if (die)
19789 {
19790 /* For .gdb_index version 7 keep track of included TUs.
19791 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19792 if (dwarf2_per_objfile->index_table != NULL
19793 && dwarf2_per_objfile->index_table->version <= 7)
19794 {
19795 VEC_safe_push (dwarf2_per_cu_ptr,
19796 (*ref_cu)->per_cu->imported_symtabs,
19797 sig_cu->per_cu);
19798 }
19799
19800 *ref_cu = sig_cu;
19801 return die;
19802 }
19803
19804 return NULL;
19805 }
19806
19807 /* Follow signatured type referenced by ATTR in SRC_DIE.
19808 On entry *REF_CU is the CU of SRC_DIE.
19809 On exit *REF_CU is the CU of the result.
19810 The result is the DIE of the type.
19811 If the referenced type cannot be found an error is thrown. */
19812
19813 static struct die_info *
19814 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19815 struct dwarf2_cu **ref_cu)
19816 {
19817 ULONGEST signature = DW_SIGNATURE (attr);
19818 struct signatured_type *sig_type;
19819 struct die_info *die;
19820
19821 gdb_assert (attr->form == DW_FORM_ref_sig8);
19822
19823 sig_type = lookup_signatured_type (*ref_cu, signature);
19824 /* sig_type will be NULL if the signatured type is missing from
19825 the debug info. */
19826 if (sig_type == NULL)
19827 {
19828 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19829 " from DIE at 0x%x [in module %s]"),
19830 hex_string (signature), src_die->offset.sect_off,
19831 objfile_name ((*ref_cu)->objfile));
19832 }
19833
19834 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19835 if (die == NULL)
19836 {
19837 dump_die_for_error (src_die);
19838 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19839 " from DIE at 0x%x [in module %s]"),
19840 hex_string (signature), src_die->offset.sect_off,
19841 objfile_name ((*ref_cu)->objfile));
19842 }
19843
19844 return die;
19845 }
19846
19847 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19848 reading in and processing the type unit if necessary. */
19849
19850 static struct type *
19851 get_signatured_type (struct die_info *die, ULONGEST signature,
19852 struct dwarf2_cu *cu)
19853 {
19854 struct signatured_type *sig_type;
19855 struct dwarf2_cu *type_cu;
19856 struct die_info *type_die;
19857 struct type *type;
19858
19859 sig_type = lookup_signatured_type (cu, signature);
19860 /* sig_type will be NULL if the signatured type is missing from
19861 the debug info. */
19862 if (sig_type == NULL)
19863 {
19864 complaint (&symfile_complaints,
19865 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19866 " from DIE at 0x%x [in module %s]"),
19867 hex_string (signature), die->offset.sect_off,
19868 objfile_name (dwarf2_per_objfile->objfile));
19869 return build_error_marker_type (cu, die);
19870 }
19871
19872 /* If we already know the type we're done. */
19873 if (sig_type->type != NULL)
19874 return sig_type->type;
19875
19876 type_cu = cu;
19877 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19878 if (type_die != NULL)
19879 {
19880 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19881 is created. This is important, for example, because for c++ classes
19882 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19883 type = read_type_die (type_die, type_cu);
19884 if (type == NULL)
19885 {
19886 complaint (&symfile_complaints,
19887 _("Dwarf Error: Cannot build signatured type %s"
19888 " referenced from DIE at 0x%x [in module %s]"),
19889 hex_string (signature), die->offset.sect_off,
19890 objfile_name (dwarf2_per_objfile->objfile));
19891 type = build_error_marker_type (cu, die);
19892 }
19893 }
19894 else
19895 {
19896 complaint (&symfile_complaints,
19897 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19898 " from DIE at 0x%x [in module %s]"),
19899 hex_string (signature), die->offset.sect_off,
19900 objfile_name (dwarf2_per_objfile->objfile));
19901 type = build_error_marker_type (cu, die);
19902 }
19903 sig_type->type = type;
19904
19905 return type;
19906 }
19907
19908 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19909 reading in and processing the type unit if necessary. */
19910
19911 static struct type *
19912 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19913 struct dwarf2_cu *cu) /* ARI: editCase function */
19914 {
19915 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19916 if (attr_form_is_ref (attr))
19917 {
19918 struct dwarf2_cu *type_cu = cu;
19919 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19920
19921 return read_type_die (type_die, type_cu);
19922 }
19923 else if (attr->form == DW_FORM_ref_sig8)
19924 {
19925 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19926 }
19927 else
19928 {
19929 complaint (&symfile_complaints,
19930 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19931 " at 0x%x [in module %s]"),
19932 dwarf_form_name (attr->form), die->offset.sect_off,
19933 objfile_name (dwarf2_per_objfile->objfile));
19934 return build_error_marker_type (cu, die);
19935 }
19936 }
19937
19938 /* Load the DIEs associated with type unit PER_CU into memory. */
19939
19940 static void
19941 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19942 {
19943 struct signatured_type *sig_type;
19944
19945 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19946 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19947
19948 /* We have the per_cu, but we need the signatured_type.
19949 Fortunately this is an easy translation. */
19950 gdb_assert (per_cu->is_debug_types);
19951 sig_type = (struct signatured_type *) per_cu;
19952
19953 gdb_assert (per_cu->cu == NULL);
19954
19955 read_signatured_type (sig_type);
19956
19957 gdb_assert (per_cu->cu != NULL);
19958 }
19959
19960 /* die_reader_func for read_signatured_type.
19961 This is identical to load_full_comp_unit_reader,
19962 but is kept separate for now. */
19963
19964 static void
19965 read_signatured_type_reader (const struct die_reader_specs *reader,
19966 const gdb_byte *info_ptr,
19967 struct die_info *comp_unit_die,
19968 int has_children,
19969 void *data)
19970 {
19971 struct dwarf2_cu *cu = reader->cu;
19972
19973 gdb_assert (cu->die_hash == NULL);
19974 cu->die_hash =
19975 htab_create_alloc_ex (cu->header.length / 12,
19976 die_hash,
19977 die_eq,
19978 NULL,
19979 &cu->comp_unit_obstack,
19980 hashtab_obstack_allocate,
19981 dummy_obstack_deallocate);
19982
19983 if (has_children)
19984 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19985 &info_ptr, comp_unit_die);
19986 cu->dies = comp_unit_die;
19987 /* comp_unit_die is not stored in die_hash, no need. */
19988
19989 /* We try not to read any attributes in this function, because not
19990 all CUs needed for references have been loaded yet, and symbol
19991 table processing isn't initialized. But we have to set the CU language,
19992 or we won't be able to build types correctly.
19993 Similarly, if we do not read the producer, we can not apply
19994 producer-specific interpretation. */
19995 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19996 }
19997
19998 /* Read in a signatured type and build its CU and DIEs.
19999 If the type is a stub for the real type in a DWO file,
20000 read in the real type from the DWO file as well. */
20001
20002 static void
20003 read_signatured_type (struct signatured_type *sig_type)
20004 {
20005 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20006
20007 gdb_assert (per_cu->is_debug_types);
20008 gdb_assert (per_cu->cu == NULL);
20009
20010 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20011 read_signatured_type_reader, NULL);
20012 sig_type->per_cu.tu_read = 1;
20013 }
20014
20015 /* Decode simple location descriptions.
20016 Given a pointer to a dwarf block that defines a location, compute
20017 the location and return the value.
20018
20019 NOTE drow/2003-11-18: This function is called in two situations
20020 now: for the address of static or global variables (partial symbols
20021 only) and for offsets into structures which are expected to be
20022 (more or less) constant. The partial symbol case should go away,
20023 and only the constant case should remain. That will let this
20024 function complain more accurately. A few special modes are allowed
20025 without complaint for global variables (for instance, global
20026 register values and thread-local values).
20027
20028 A location description containing no operations indicates that the
20029 object is optimized out. The return value is 0 for that case.
20030 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20031 callers will only want a very basic result and this can become a
20032 complaint.
20033
20034 Note that stack[0] is unused except as a default error return. */
20035
20036 static CORE_ADDR
20037 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20038 {
20039 struct objfile *objfile = cu->objfile;
20040 size_t i;
20041 size_t size = blk->size;
20042 const gdb_byte *data = blk->data;
20043 CORE_ADDR stack[64];
20044 int stacki;
20045 unsigned int bytes_read, unsnd;
20046 gdb_byte op;
20047
20048 i = 0;
20049 stacki = 0;
20050 stack[stacki] = 0;
20051 stack[++stacki] = 0;
20052
20053 while (i < size)
20054 {
20055 op = data[i++];
20056 switch (op)
20057 {
20058 case DW_OP_lit0:
20059 case DW_OP_lit1:
20060 case DW_OP_lit2:
20061 case DW_OP_lit3:
20062 case DW_OP_lit4:
20063 case DW_OP_lit5:
20064 case DW_OP_lit6:
20065 case DW_OP_lit7:
20066 case DW_OP_lit8:
20067 case DW_OP_lit9:
20068 case DW_OP_lit10:
20069 case DW_OP_lit11:
20070 case DW_OP_lit12:
20071 case DW_OP_lit13:
20072 case DW_OP_lit14:
20073 case DW_OP_lit15:
20074 case DW_OP_lit16:
20075 case DW_OP_lit17:
20076 case DW_OP_lit18:
20077 case DW_OP_lit19:
20078 case DW_OP_lit20:
20079 case DW_OP_lit21:
20080 case DW_OP_lit22:
20081 case DW_OP_lit23:
20082 case DW_OP_lit24:
20083 case DW_OP_lit25:
20084 case DW_OP_lit26:
20085 case DW_OP_lit27:
20086 case DW_OP_lit28:
20087 case DW_OP_lit29:
20088 case DW_OP_lit30:
20089 case DW_OP_lit31:
20090 stack[++stacki] = op - DW_OP_lit0;
20091 break;
20092
20093 case DW_OP_reg0:
20094 case DW_OP_reg1:
20095 case DW_OP_reg2:
20096 case DW_OP_reg3:
20097 case DW_OP_reg4:
20098 case DW_OP_reg5:
20099 case DW_OP_reg6:
20100 case DW_OP_reg7:
20101 case DW_OP_reg8:
20102 case DW_OP_reg9:
20103 case DW_OP_reg10:
20104 case DW_OP_reg11:
20105 case DW_OP_reg12:
20106 case DW_OP_reg13:
20107 case DW_OP_reg14:
20108 case DW_OP_reg15:
20109 case DW_OP_reg16:
20110 case DW_OP_reg17:
20111 case DW_OP_reg18:
20112 case DW_OP_reg19:
20113 case DW_OP_reg20:
20114 case DW_OP_reg21:
20115 case DW_OP_reg22:
20116 case DW_OP_reg23:
20117 case DW_OP_reg24:
20118 case DW_OP_reg25:
20119 case DW_OP_reg26:
20120 case DW_OP_reg27:
20121 case DW_OP_reg28:
20122 case DW_OP_reg29:
20123 case DW_OP_reg30:
20124 case DW_OP_reg31:
20125 stack[++stacki] = op - DW_OP_reg0;
20126 if (i < size)
20127 dwarf2_complex_location_expr_complaint ();
20128 break;
20129
20130 case DW_OP_regx:
20131 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20132 i += bytes_read;
20133 stack[++stacki] = unsnd;
20134 if (i < size)
20135 dwarf2_complex_location_expr_complaint ();
20136 break;
20137
20138 case DW_OP_addr:
20139 stack[++stacki] = read_address (objfile->obfd, &data[i],
20140 cu, &bytes_read);
20141 i += bytes_read;
20142 break;
20143
20144 case DW_OP_const1u:
20145 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20146 i += 1;
20147 break;
20148
20149 case DW_OP_const1s:
20150 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20151 i += 1;
20152 break;
20153
20154 case DW_OP_const2u:
20155 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20156 i += 2;
20157 break;
20158
20159 case DW_OP_const2s:
20160 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20161 i += 2;
20162 break;
20163
20164 case DW_OP_const4u:
20165 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20166 i += 4;
20167 break;
20168
20169 case DW_OP_const4s:
20170 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20171 i += 4;
20172 break;
20173
20174 case DW_OP_const8u:
20175 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20176 i += 8;
20177 break;
20178
20179 case DW_OP_constu:
20180 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20181 &bytes_read);
20182 i += bytes_read;
20183 break;
20184
20185 case DW_OP_consts:
20186 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20187 i += bytes_read;
20188 break;
20189
20190 case DW_OP_dup:
20191 stack[stacki + 1] = stack[stacki];
20192 stacki++;
20193 break;
20194
20195 case DW_OP_plus:
20196 stack[stacki - 1] += stack[stacki];
20197 stacki--;
20198 break;
20199
20200 case DW_OP_plus_uconst:
20201 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20202 &bytes_read);
20203 i += bytes_read;
20204 break;
20205
20206 case DW_OP_minus:
20207 stack[stacki - 1] -= stack[stacki];
20208 stacki--;
20209 break;
20210
20211 case DW_OP_deref:
20212 /* If we're not the last op, then we definitely can't encode
20213 this using GDB's address_class enum. This is valid for partial
20214 global symbols, although the variable's address will be bogus
20215 in the psymtab. */
20216 if (i < size)
20217 dwarf2_complex_location_expr_complaint ();
20218 break;
20219
20220 case DW_OP_GNU_push_tls_address:
20221 /* The top of the stack has the offset from the beginning
20222 of the thread control block at which the variable is located. */
20223 /* Nothing should follow this operator, so the top of stack would
20224 be returned. */
20225 /* This is valid for partial global symbols, but the variable's
20226 address will be bogus in the psymtab. Make it always at least
20227 non-zero to not look as a variable garbage collected by linker
20228 which have DW_OP_addr 0. */
20229 if (i < size)
20230 dwarf2_complex_location_expr_complaint ();
20231 stack[stacki]++;
20232 break;
20233
20234 case DW_OP_GNU_uninit:
20235 break;
20236
20237 case DW_OP_GNU_addr_index:
20238 case DW_OP_GNU_const_index:
20239 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20240 &bytes_read);
20241 i += bytes_read;
20242 break;
20243
20244 default:
20245 {
20246 const char *name = get_DW_OP_name (op);
20247
20248 if (name)
20249 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20250 name);
20251 else
20252 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20253 op);
20254 }
20255
20256 return (stack[stacki]);
20257 }
20258
20259 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20260 outside of the allocated space. Also enforce minimum>0. */
20261 if (stacki >= ARRAY_SIZE (stack) - 1)
20262 {
20263 complaint (&symfile_complaints,
20264 _("location description stack overflow"));
20265 return 0;
20266 }
20267
20268 if (stacki <= 0)
20269 {
20270 complaint (&symfile_complaints,
20271 _("location description stack underflow"));
20272 return 0;
20273 }
20274 }
20275 return (stack[stacki]);
20276 }
20277
20278 /* memory allocation interface */
20279
20280 static struct dwarf_block *
20281 dwarf_alloc_block (struct dwarf2_cu *cu)
20282 {
20283 struct dwarf_block *blk;
20284
20285 blk = (struct dwarf_block *)
20286 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20287 return (blk);
20288 }
20289
20290 static struct die_info *
20291 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20292 {
20293 struct die_info *die;
20294 size_t size = sizeof (struct die_info);
20295
20296 if (num_attrs > 1)
20297 size += (num_attrs - 1) * sizeof (struct attribute);
20298
20299 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20300 memset (die, 0, sizeof (struct die_info));
20301 return (die);
20302 }
20303
20304 \f
20305 /* Macro support. */
20306
20307 /* Return file name relative to the compilation directory of file number I in
20308 *LH's file name table. The result is allocated using xmalloc; the caller is
20309 responsible for freeing it. */
20310
20311 static char *
20312 file_file_name (int file, struct line_header *lh)
20313 {
20314 /* Is the file number a valid index into the line header's file name
20315 table? Remember that file numbers start with one, not zero. */
20316 if (1 <= file && file <= lh->num_file_names)
20317 {
20318 struct file_entry *fe = &lh->file_names[file - 1];
20319
20320 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20321 return xstrdup (fe->name);
20322 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20323 fe->name, NULL);
20324 }
20325 else
20326 {
20327 /* The compiler produced a bogus file number. We can at least
20328 record the macro definitions made in the file, even if we
20329 won't be able to find the file by name. */
20330 char fake_name[80];
20331
20332 xsnprintf (fake_name, sizeof (fake_name),
20333 "<bad macro file number %d>", file);
20334
20335 complaint (&symfile_complaints,
20336 _("bad file number in macro information (%d)"),
20337 file);
20338
20339 return xstrdup (fake_name);
20340 }
20341 }
20342
20343 /* Return the full name of file number I in *LH's file name table.
20344 Use COMP_DIR as the name of the current directory of the
20345 compilation. The result is allocated using xmalloc; the caller is
20346 responsible for freeing it. */
20347 static char *
20348 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20349 {
20350 /* Is the file number a valid index into the line header's file name
20351 table? Remember that file numbers start with one, not zero. */
20352 if (1 <= file && file <= lh->num_file_names)
20353 {
20354 char *relative = file_file_name (file, lh);
20355
20356 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20357 return relative;
20358 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20359 }
20360 else
20361 return file_file_name (file, lh);
20362 }
20363
20364
20365 static struct macro_source_file *
20366 macro_start_file (int file, int line,
20367 struct macro_source_file *current_file,
20368 const char *comp_dir,
20369 struct line_header *lh, struct objfile *objfile)
20370 {
20371 /* File name relative to the compilation directory of this source file. */
20372 char *file_name = file_file_name (file, lh);
20373
20374 if (! current_file)
20375 {
20376 /* Note: We don't create a macro table for this compilation unit
20377 at all until we actually get a filename. */
20378 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20379
20380 /* If we have no current file, then this must be the start_file
20381 directive for the compilation unit's main source file. */
20382 current_file = macro_set_main (macro_table, file_name);
20383 macro_define_special (macro_table);
20384 }
20385 else
20386 current_file = macro_include (current_file, line, file_name);
20387
20388 xfree (file_name);
20389
20390 return current_file;
20391 }
20392
20393
20394 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20395 followed by a null byte. */
20396 static char *
20397 copy_string (const char *buf, int len)
20398 {
20399 char *s = xmalloc (len + 1);
20400
20401 memcpy (s, buf, len);
20402 s[len] = '\0';
20403 return s;
20404 }
20405
20406
20407 static const char *
20408 consume_improper_spaces (const char *p, const char *body)
20409 {
20410 if (*p == ' ')
20411 {
20412 complaint (&symfile_complaints,
20413 _("macro definition contains spaces "
20414 "in formal argument list:\n`%s'"),
20415 body);
20416
20417 while (*p == ' ')
20418 p++;
20419 }
20420
20421 return p;
20422 }
20423
20424
20425 static void
20426 parse_macro_definition (struct macro_source_file *file, int line,
20427 const char *body)
20428 {
20429 const char *p;
20430
20431 /* The body string takes one of two forms. For object-like macro
20432 definitions, it should be:
20433
20434 <macro name> " " <definition>
20435
20436 For function-like macro definitions, it should be:
20437
20438 <macro name> "() " <definition>
20439 or
20440 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20441
20442 Spaces may appear only where explicitly indicated, and in the
20443 <definition>.
20444
20445 The Dwarf 2 spec says that an object-like macro's name is always
20446 followed by a space, but versions of GCC around March 2002 omit
20447 the space when the macro's definition is the empty string.
20448
20449 The Dwarf 2 spec says that there should be no spaces between the
20450 formal arguments in a function-like macro's formal argument list,
20451 but versions of GCC around March 2002 include spaces after the
20452 commas. */
20453
20454
20455 /* Find the extent of the macro name. The macro name is terminated
20456 by either a space or null character (for an object-like macro) or
20457 an opening paren (for a function-like macro). */
20458 for (p = body; *p; p++)
20459 if (*p == ' ' || *p == '(')
20460 break;
20461
20462 if (*p == ' ' || *p == '\0')
20463 {
20464 /* It's an object-like macro. */
20465 int name_len = p - body;
20466 char *name = copy_string (body, name_len);
20467 const char *replacement;
20468
20469 if (*p == ' ')
20470 replacement = body + name_len + 1;
20471 else
20472 {
20473 dwarf2_macro_malformed_definition_complaint (body);
20474 replacement = body + name_len;
20475 }
20476
20477 macro_define_object (file, line, name, replacement);
20478
20479 xfree (name);
20480 }
20481 else if (*p == '(')
20482 {
20483 /* It's a function-like macro. */
20484 char *name = copy_string (body, p - body);
20485 int argc = 0;
20486 int argv_size = 1;
20487 char **argv = xmalloc (argv_size * sizeof (*argv));
20488
20489 p++;
20490
20491 p = consume_improper_spaces (p, body);
20492
20493 /* Parse the formal argument list. */
20494 while (*p && *p != ')')
20495 {
20496 /* Find the extent of the current argument name. */
20497 const char *arg_start = p;
20498
20499 while (*p && *p != ',' && *p != ')' && *p != ' ')
20500 p++;
20501
20502 if (! *p || p == arg_start)
20503 dwarf2_macro_malformed_definition_complaint (body);
20504 else
20505 {
20506 /* Make sure argv has room for the new argument. */
20507 if (argc >= argv_size)
20508 {
20509 argv_size *= 2;
20510 argv = xrealloc (argv, argv_size * sizeof (*argv));
20511 }
20512
20513 argv[argc++] = copy_string (arg_start, p - arg_start);
20514 }
20515
20516 p = consume_improper_spaces (p, body);
20517
20518 /* Consume the comma, if present. */
20519 if (*p == ',')
20520 {
20521 p++;
20522
20523 p = consume_improper_spaces (p, body);
20524 }
20525 }
20526
20527 if (*p == ')')
20528 {
20529 p++;
20530
20531 if (*p == ' ')
20532 /* Perfectly formed definition, no complaints. */
20533 macro_define_function (file, line, name,
20534 argc, (const char **) argv,
20535 p + 1);
20536 else if (*p == '\0')
20537 {
20538 /* Complain, but do define it. */
20539 dwarf2_macro_malformed_definition_complaint (body);
20540 macro_define_function (file, line, name,
20541 argc, (const char **) argv,
20542 p);
20543 }
20544 else
20545 /* Just complain. */
20546 dwarf2_macro_malformed_definition_complaint (body);
20547 }
20548 else
20549 /* Just complain. */
20550 dwarf2_macro_malformed_definition_complaint (body);
20551
20552 xfree (name);
20553 {
20554 int i;
20555
20556 for (i = 0; i < argc; i++)
20557 xfree (argv[i]);
20558 }
20559 xfree (argv);
20560 }
20561 else
20562 dwarf2_macro_malformed_definition_complaint (body);
20563 }
20564
20565 /* Skip some bytes from BYTES according to the form given in FORM.
20566 Returns the new pointer. */
20567
20568 static const gdb_byte *
20569 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20570 enum dwarf_form form,
20571 unsigned int offset_size,
20572 struct dwarf2_section_info *section)
20573 {
20574 unsigned int bytes_read;
20575
20576 switch (form)
20577 {
20578 case DW_FORM_data1:
20579 case DW_FORM_flag:
20580 ++bytes;
20581 break;
20582
20583 case DW_FORM_data2:
20584 bytes += 2;
20585 break;
20586
20587 case DW_FORM_data4:
20588 bytes += 4;
20589 break;
20590
20591 case DW_FORM_data8:
20592 bytes += 8;
20593 break;
20594
20595 case DW_FORM_string:
20596 read_direct_string (abfd, bytes, &bytes_read);
20597 bytes += bytes_read;
20598 break;
20599
20600 case DW_FORM_sec_offset:
20601 case DW_FORM_strp:
20602 case DW_FORM_GNU_strp_alt:
20603 bytes += offset_size;
20604 break;
20605
20606 case DW_FORM_block:
20607 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20608 bytes += bytes_read;
20609 break;
20610
20611 case DW_FORM_block1:
20612 bytes += 1 + read_1_byte (abfd, bytes);
20613 break;
20614 case DW_FORM_block2:
20615 bytes += 2 + read_2_bytes (abfd, bytes);
20616 break;
20617 case DW_FORM_block4:
20618 bytes += 4 + read_4_bytes (abfd, bytes);
20619 break;
20620
20621 case DW_FORM_sdata:
20622 case DW_FORM_udata:
20623 case DW_FORM_GNU_addr_index:
20624 case DW_FORM_GNU_str_index:
20625 bytes = gdb_skip_leb128 (bytes, buffer_end);
20626 if (bytes == NULL)
20627 {
20628 dwarf2_section_buffer_overflow_complaint (section);
20629 return NULL;
20630 }
20631 break;
20632
20633 default:
20634 {
20635 complain:
20636 complaint (&symfile_complaints,
20637 _("invalid form 0x%x in `%s'"),
20638 form, get_section_name (section));
20639 return NULL;
20640 }
20641 }
20642
20643 return bytes;
20644 }
20645
20646 /* A helper for dwarf_decode_macros that handles skipping an unknown
20647 opcode. Returns an updated pointer to the macro data buffer; or,
20648 on error, issues a complaint and returns NULL. */
20649
20650 static const gdb_byte *
20651 skip_unknown_opcode (unsigned int opcode,
20652 const gdb_byte **opcode_definitions,
20653 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20654 bfd *abfd,
20655 unsigned int offset_size,
20656 struct dwarf2_section_info *section)
20657 {
20658 unsigned int bytes_read, i;
20659 unsigned long arg;
20660 const gdb_byte *defn;
20661
20662 if (opcode_definitions[opcode] == NULL)
20663 {
20664 complaint (&symfile_complaints,
20665 _("unrecognized DW_MACFINO opcode 0x%x"),
20666 opcode);
20667 return NULL;
20668 }
20669
20670 defn = opcode_definitions[opcode];
20671 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20672 defn += bytes_read;
20673
20674 for (i = 0; i < arg; ++i)
20675 {
20676 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20677 section);
20678 if (mac_ptr == NULL)
20679 {
20680 /* skip_form_bytes already issued the complaint. */
20681 return NULL;
20682 }
20683 }
20684
20685 return mac_ptr;
20686 }
20687
20688 /* A helper function which parses the header of a macro section.
20689 If the macro section is the extended (for now called "GNU") type,
20690 then this updates *OFFSET_SIZE. Returns a pointer to just after
20691 the header, or issues a complaint and returns NULL on error. */
20692
20693 static const gdb_byte *
20694 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20695 bfd *abfd,
20696 const gdb_byte *mac_ptr,
20697 unsigned int *offset_size,
20698 int section_is_gnu)
20699 {
20700 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20701
20702 if (section_is_gnu)
20703 {
20704 unsigned int version, flags;
20705
20706 version = read_2_bytes (abfd, mac_ptr);
20707 if (version != 4)
20708 {
20709 complaint (&symfile_complaints,
20710 _("unrecognized version `%d' in .debug_macro section"),
20711 version);
20712 return NULL;
20713 }
20714 mac_ptr += 2;
20715
20716 flags = read_1_byte (abfd, mac_ptr);
20717 ++mac_ptr;
20718 *offset_size = (flags & 1) ? 8 : 4;
20719
20720 if ((flags & 2) != 0)
20721 /* We don't need the line table offset. */
20722 mac_ptr += *offset_size;
20723
20724 /* Vendor opcode descriptions. */
20725 if ((flags & 4) != 0)
20726 {
20727 unsigned int i, count;
20728
20729 count = read_1_byte (abfd, mac_ptr);
20730 ++mac_ptr;
20731 for (i = 0; i < count; ++i)
20732 {
20733 unsigned int opcode, bytes_read;
20734 unsigned long arg;
20735
20736 opcode = read_1_byte (abfd, mac_ptr);
20737 ++mac_ptr;
20738 opcode_definitions[opcode] = mac_ptr;
20739 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20740 mac_ptr += bytes_read;
20741 mac_ptr += arg;
20742 }
20743 }
20744 }
20745
20746 return mac_ptr;
20747 }
20748
20749 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20750 including DW_MACRO_GNU_transparent_include. */
20751
20752 static void
20753 dwarf_decode_macro_bytes (bfd *abfd,
20754 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20755 struct macro_source_file *current_file,
20756 struct line_header *lh, const char *comp_dir,
20757 struct dwarf2_section_info *section,
20758 int section_is_gnu, int section_is_dwz,
20759 unsigned int offset_size,
20760 struct objfile *objfile,
20761 htab_t include_hash)
20762 {
20763 enum dwarf_macro_record_type macinfo_type;
20764 int at_commandline;
20765 const gdb_byte *opcode_definitions[256];
20766
20767 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20768 &offset_size, section_is_gnu);
20769 if (mac_ptr == NULL)
20770 {
20771 /* We already issued a complaint. */
20772 return;
20773 }
20774
20775 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20776 GDB is still reading the definitions from command line. First
20777 DW_MACINFO_start_file will need to be ignored as it was already executed
20778 to create CURRENT_FILE for the main source holding also the command line
20779 definitions. On first met DW_MACINFO_start_file this flag is reset to
20780 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20781
20782 at_commandline = 1;
20783
20784 do
20785 {
20786 /* Do we at least have room for a macinfo type byte? */
20787 if (mac_ptr >= mac_end)
20788 {
20789 dwarf2_section_buffer_overflow_complaint (section);
20790 break;
20791 }
20792
20793 macinfo_type = read_1_byte (abfd, mac_ptr);
20794 mac_ptr++;
20795
20796 /* Note that we rely on the fact that the corresponding GNU and
20797 DWARF constants are the same. */
20798 switch (macinfo_type)
20799 {
20800 /* A zero macinfo type indicates the end of the macro
20801 information. */
20802 case 0:
20803 break;
20804
20805 case DW_MACRO_GNU_define:
20806 case DW_MACRO_GNU_undef:
20807 case DW_MACRO_GNU_define_indirect:
20808 case DW_MACRO_GNU_undef_indirect:
20809 case DW_MACRO_GNU_define_indirect_alt:
20810 case DW_MACRO_GNU_undef_indirect_alt:
20811 {
20812 unsigned int bytes_read;
20813 int line;
20814 const char *body;
20815 int is_define;
20816
20817 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20818 mac_ptr += bytes_read;
20819
20820 if (macinfo_type == DW_MACRO_GNU_define
20821 || macinfo_type == DW_MACRO_GNU_undef)
20822 {
20823 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20824 mac_ptr += bytes_read;
20825 }
20826 else
20827 {
20828 LONGEST str_offset;
20829
20830 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20831 mac_ptr += offset_size;
20832
20833 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20834 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20835 || section_is_dwz)
20836 {
20837 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20838
20839 body = read_indirect_string_from_dwz (dwz, str_offset);
20840 }
20841 else
20842 body = read_indirect_string_at_offset (abfd, str_offset);
20843 }
20844
20845 is_define = (macinfo_type == DW_MACRO_GNU_define
20846 || macinfo_type == DW_MACRO_GNU_define_indirect
20847 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20848 if (! current_file)
20849 {
20850 /* DWARF violation as no main source is present. */
20851 complaint (&symfile_complaints,
20852 _("debug info with no main source gives macro %s "
20853 "on line %d: %s"),
20854 is_define ? _("definition") : _("undefinition"),
20855 line, body);
20856 break;
20857 }
20858 if ((line == 0 && !at_commandline)
20859 || (line != 0 && at_commandline))
20860 complaint (&symfile_complaints,
20861 _("debug info gives %s macro %s with %s line %d: %s"),
20862 at_commandline ? _("command-line") : _("in-file"),
20863 is_define ? _("definition") : _("undefinition"),
20864 line == 0 ? _("zero") : _("non-zero"), line, body);
20865
20866 if (is_define)
20867 parse_macro_definition (current_file, line, body);
20868 else
20869 {
20870 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20871 || macinfo_type == DW_MACRO_GNU_undef_indirect
20872 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20873 macro_undef (current_file, line, body);
20874 }
20875 }
20876 break;
20877
20878 case DW_MACRO_GNU_start_file:
20879 {
20880 unsigned int bytes_read;
20881 int line, file;
20882
20883 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20884 mac_ptr += bytes_read;
20885 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20886 mac_ptr += bytes_read;
20887
20888 if ((line == 0 && !at_commandline)
20889 || (line != 0 && at_commandline))
20890 complaint (&symfile_complaints,
20891 _("debug info gives source %d included "
20892 "from %s at %s line %d"),
20893 file, at_commandline ? _("command-line") : _("file"),
20894 line == 0 ? _("zero") : _("non-zero"), line);
20895
20896 if (at_commandline)
20897 {
20898 /* This DW_MACRO_GNU_start_file was executed in the
20899 pass one. */
20900 at_commandline = 0;
20901 }
20902 else
20903 current_file = macro_start_file (file, line,
20904 current_file, comp_dir,
20905 lh, objfile);
20906 }
20907 break;
20908
20909 case DW_MACRO_GNU_end_file:
20910 if (! current_file)
20911 complaint (&symfile_complaints,
20912 _("macro debug info has an unmatched "
20913 "`close_file' directive"));
20914 else
20915 {
20916 current_file = current_file->included_by;
20917 if (! current_file)
20918 {
20919 enum dwarf_macro_record_type next_type;
20920
20921 /* GCC circa March 2002 doesn't produce the zero
20922 type byte marking the end of the compilation
20923 unit. Complain if it's not there, but exit no
20924 matter what. */
20925
20926 /* Do we at least have room for a macinfo type byte? */
20927 if (mac_ptr >= mac_end)
20928 {
20929 dwarf2_section_buffer_overflow_complaint (section);
20930 return;
20931 }
20932
20933 /* We don't increment mac_ptr here, so this is just
20934 a look-ahead. */
20935 next_type = read_1_byte (abfd, mac_ptr);
20936 if (next_type != 0)
20937 complaint (&symfile_complaints,
20938 _("no terminating 0-type entry for "
20939 "macros in `.debug_macinfo' section"));
20940
20941 return;
20942 }
20943 }
20944 break;
20945
20946 case DW_MACRO_GNU_transparent_include:
20947 case DW_MACRO_GNU_transparent_include_alt:
20948 {
20949 LONGEST offset;
20950 void **slot;
20951 bfd *include_bfd = abfd;
20952 struct dwarf2_section_info *include_section = section;
20953 struct dwarf2_section_info alt_section;
20954 const gdb_byte *include_mac_end = mac_end;
20955 int is_dwz = section_is_dwz;
20956 const gdb_byte *new_mac_ptr;
20957
20958 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20959 mac_ptr += offset_size;
20960
20961 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20962 {
20963 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20964
20965 dwarf2_read_section (dwarf2_per_objfile->objfile,
20966 &dwz->macro);
20967
20968 include_section = &dwz->macro;
20969 include_bfd = get_section_bfd_owner (include_section);
20970 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20971 is_dwz = 1;
20972 }
20973
20974 new_mac_ptr = include_section->buffer + offset;
20975 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20976
20977 if (*slot != NULL)
20978 {
20979 /* This has actually happened; see
20980 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20981 complaint (&symfile_complaints,
20982 _("recursive DW_MACRO_GNU_transparent_include in "
20983 ".debug_macro section"));
20984 }
20985 else
20986 {
20987 *slot = (void *) new_mac_ptr;
20988
20989 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20990 include_mac_end, current_file,
20991 lh, comp_dir,
20992 section, section_is_gnu, is_dwz,
20993 offset_size, objfile, include_hash);
20994
20995 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20996 }
20997 }
20998 break;
20999
21000 case DW_MACINFO_vendor_ext:
21001 if (!section_is_gnu)
21002 {
21003 unsigned int bytes_read;
21004 int constant;
21005
21006 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21007 mac_ptr += bytes_read;
21008 read_direct_string (abfd, mac_ptr, &bytes_read);
21009 mac_ptr += bytes_read;
21010
21011 /* We don't recognize any vendor extensions. */
21012 break;
21013 }
21014 /* FALLTHROUGH */
21015
21016 default:
21017 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21018 mac_ptr, mac_end, abfd, offset_size,
21019 section);
21020 if (mac_ptr == NULL)
21021 return;
21022 break;
21023 }
21024 } while (macinfo_type != 0);
21025 }
21026
21027 static void
21028 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21029 const char *comp_dir, int section_is_gnu)
21030 {
21031 struct objfile *objfile = dwarf2_per_objfile->objfile;
21032 struct line_header *lh = cu->line_header;
21033 bfd *abfd;
21034 const gdb_byte *mac_ptr, *mac_end;
21035 struct macro_source_file *current_file = 0;
21036 enum dwarf_macro_record_type macinfo_type;
21037 unsigned int offset_size = cu->header.offset_size;
21038 const gdb_byte *opcode_definitions[256];
21039 struct cleanup *cleanup;
21040 htab_t include_hash;
21041 void **slot;
21042 struct dwarf2_section_info *section;
21043 const char *section_name;
21044
21045 if (cu->dwo_unit != NULL)
21046 {
21047 if (section_is_gnu)
21048 {
21049 section = &cu->dwo_unit->dwo_file->sections.macro;
21050 section_name = ".debug_macro.dwo";
21051 }
21052 else
21053 {
21054 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21055 section_name = ".debug_macinfo.dwo";
21056 }
21057 }
21058 else
21059 {
21060 if (section_is_gnu)
21061 {
21062 section = &dwarf2_per_objfile->macro;
21063 section_name = ".debug_macro";
21064 }
21065 else
21066 {
21067 section = &dwarf2_per_objfile->macinfo;
21068 section_name = ".debug_macinfo";
21069 }
21070 }
21071
21072 dwarf2_read_section (objfile, section);
21073 if (section->buffer == NULL)
21074 {
21075 complaint (&symfile_complaints, _("missing %s section"), section_name);
21076 return;
21077 }
21078 abfd = get_section_bfd_owner (section);
21079
21080 /* First pass: Find the name of the base filename.
21081 This filename is needed in order to process all macros whose definition
21082 (or undefinition) comes from the command line. These macros are defined
21083 before the first DW_MACINFO_start_file entry, and yet still need to be
21084 associated to the base file.
21085
21086 To determine the base file name, we scan the macro definitions until we
21087 reach the first DW_MACINFO_start_file entry. We then initialize
21088 CURRENT_FILE accordingly so that any macro definition found before the
21089 first DW_MACINFO_start_file can still be associated to the base file. */
21090
21091 mac_ptr = section->buffer + offset;
21092 mac_end = section->buffer + section->size;
21093
21094 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21095 &offset_size, section_is_gnu);
21096 if (mac_ptr == NULL)
21097 {
21098 /* We already issued a complaint. */
21099 return;
21100 }
21101
21102 do
21103 {
21104 /* Do we at least have room for a macinfo type byte? */
21105 if (mac_ptr >= mac_end)
21106 {
21107 /* Complaint is printed during the second pass as GDB will probably
21108 stop the first pass earlier upon finding
21109 DW_MACINFO_start_file. */
21110 break;
21111 }
21112
21113 macinfo_type = read_1_byte (abfd, mac_ptr);
21114 mac_ptr++;
21115
21116 /* Note that we rely on the fact that the corresponding GNU and
21117 DWARF constants are the same. */
21118 switch (macinfo_type)
21119 {
21120 /* A zero macinfo type indicates the end of the macro
21121 information. */
21122 case 0:
21123 break;
21124
21125 case DW_MACRO_GNU_define:
21126 case DW_MACRO_GNU_undef:
21127 /* Only skip the data by MAC_PTR. */
21128 {
21129 unsigned int bytes_read;
21130
21131 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21132 mac_ptr += bytes_read;
21133 read_direct_string (abfd, mac_ptr, &bytes_read);
21134 mac_ptr += bytes_read;
21135 }
21136 break;
21137
21138 case DW_MACRO_GNU_start_file:
21139 {
21140 unsigned int bytes_read;
21141 int line, file;
21142
21143 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21144 mac_ptr += bytes_read;
21145 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21146 mac_ptr += bytes_read;
21147
21148 current_file = macro_start_file (file, line, current_file,
21149 comp_dir, lh, objfile);
21150 }
21151 break;
21152
21153 case DW_MACRO_GNU_end_file:
21154 /* No data to skip by MAC_PTR. */
21155 break;
21156
21157 case DW_MACRO_GNU_define_indirect:
21158 case DW_MACRO_GNU_undef_indirect:
21159 case DW_MACRO_GNU_define_indirect_alt:
21160 case DW_MACRO_GNU_undef_indirect_alt:
21161 {
21162 unsigned int bytes_read;
21163
21164 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21165 mac_ptr += bytes_read;
21166 mac_ptr += offset_size;
21167 }
21168 break;
21169
21170 case DW_MACRO_GNU_transparent_include:
21171 case DW_MACRO_GNU_transparent_include_alt:
21172 /* Note that, according to the spec, a transparent include
21173 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21174 skip this opcode. */
21175 mac_ptr += offset_size;
21176 break;
21177
21178 case DW_MACINFO_vendor_ext:
21179 /* Only skip the data by MAC_PTR. */
21180 if (!section_is_gnu)
21181 {
21182 unsigned int bytes_read;
21183
21184 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21185 mac_ptr += bytes_read;
21186 read_direct_string (abfd, mac_ptr, &bytes_read);
21187 mac_ptr += bytes_read;
21188 }
21189 /* FALLTHROUGH */
21190
21191 default:
21192 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21193 mac_ptr, mac_end, abfd, offset_size,
21194 section);
21195 if (mac_ptr == NULL)
21196 return;
21197 break;
21198 }
21199 } while (macinfo_type != 0 && current_file == NULL);
21200
21201 /* Second pass: Process all entries.
21202
21203 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21204 command-line macro definitions/undefinitions. This flag is unset when we
21205 reach the first DW_MACINFO_start_file entry. */
21206
21207 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21208 NULL, xcalloc, xfree);
21209 cleanup = make_cleanup_htab_delete (include_hash);
21210 mac_ptr = section->buffer + offset;
21211 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21212 *slot = (void *) mac_ptr;
21213 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21214 current_file, lh, comp_dir, section,
21215 section_is_gnu, 0,
21216 offset_size, objfile, include_hash);
21217 do_cleanups (cleanup);
21218 }
21219
21220 /* Check if the attribute's form is a DW_FORM_block*
21221 if so return true else false. */
21222
21223 static int
21224 attr_form_is_block (const struct attribute *attr)
21225 {
21226 return (attr == NULL ? 0 :
21227 attr->form == DW_FORM_block1
21228 || attr->form == DW_FORM_block2
21229 || attr->form == DW_FORM_block4
21230 || attr->form == DW_FORM_block
21231 || attr->form == DW_FORM_exprloc);
21232 }
21233
21234 /* Return non-zero if ATTR's value is a section offset --- classes
21235 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21236 You may use DW_UNSND (attr) to retrieve such offsets.
21237
21238 Section 7.5.4, "Attribute Encodings", explains that no attribute
21239 may have a value that belongs to more than one of these classes; it
21240 would be ambiguous if we did, because we use the same forms for all
21241 of them. */
21242
21243 static int
21244 attr_form_is_section_offset (const struct attribute *attr)
21245 {
21246 return (attr->form == DW_FORM_data4
21247 || attr->form == DW_FORM_data8
21248 || attr->form == DW_FORM_sec_offset);
21249 }
21250
21251 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21252 zero otherwise. When this function returns true, you can apply
21253 dwarf2_get_attr_constant_value to it.
21254
21255 However, note that for some attributes you must check
21256 attr_form_is_section_offset before using this test. DW_FORM_data4
21257 and DW_FORM_data8 are members of both the constant class, and of
21258 the classes that contain offsets into other debug sections
21259 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21260 that, if an attribute's can be either a constant or one of the
21261 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21262 taken as section offsets, not constants. */
21263
21264 static int
21265 attr_form_is_constant (const struct attribute *attr)
21266 {
21267 switch (attr->form)
21268 {
21269 case DW_FORM_sdata:
21270 case DW_FORM_udata:
21271 case DW_FORM_data1:
21272 case DW_FORM_data2:
21273 case DW_FORM_data4:
21274 case DW_FORM_data8:
21275 return 1;
21276 default:
21277 return 0;
21278 }
21279 }
21280
21281
21282 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21283 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21284
21285 static int
21286 attr_form_is_ref (const struct attribute *attr)
21287 {
21288 switch (attr->form)
21289 {
21290 case DW_FORM_ref_addr:
21291 case DW_FORM_ref1:
21292 case DW_FORM_ref2:
21293 case DW_FORM_ref4:
21294 case DW_FORM_ref8:
21295 case DW_FORM_ref_udata:
21296 case DW_FORM_GNU_ref_alt:
21297 return 1;
21298 default:
21299 return 0;
21300 }
21301 }
21302
21303 /* Return the .debug_loc section to use for CU.
21304 For DWO files use .debug_loc.dwo. */
21305
21306 static struct dwarf2_section_info *
21307 cu_debug_loc_section (struct dwarf2_cu *cu)
21308 {
21309 if (cu->dwo_unit)
21310 return &cu->dwo_unit->dwo_file->sections.loc;
21311 return &dwarf2_per_objfile->loc;
21312 }
21313
21314 /* A helper function that fills in a dwarf2_loclist_baton. */
21315
21316 static void
21317 fill_in_loclist_baton (struct dwarf2_cu *cu,
21318 struct dwarf2_loclist_baton *baton,
21319 const struct attribute *attr)
21320 {
21321 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21322
21323 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21324
21325 baton->per_cu = cu->per_cu;
21326 gdb_assert (baton->per_cu);
21327 /* We don't know how long the location list is, but make sure we
21328 don't run off the edge of the section. */
21329 baton->size = section->size - DW_UNSND (attr);
21330 baton->data = section->buffer + DW_UNSND (attr);
21331 baton->base_address = cu->base_address;
21332 baton->from_dwo = cu->dwo_unit != NULL;
21333 }
21334
21335 static void
21336 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21337 struct dwarf2_cu *cu, int is_block)
21338 {
21339 struct objfile *objfile = dwarf2_per_objfile->objfile;
21340 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21341
21342 if (attr_form_is_section_offset (attr)
21343 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21344 the section. If so, fall through to the complaint in the
21345 other branch. */
21346 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21347 {
21348 struct dwarf2_loclist_baton *baton;
21349
21350 baton = obstack_alloc (&objfile->objfile_obstack,
21351 sizeof (struct dwarf2_loclist_baton));
21352
21353 fill_in_loclist_baton (cu, baton, attr);
21354
21355 if (cu->base_known == 0)
21356 complaint (&symfile_complaints,
21357 _("Location list used without "
21358 "specifying the CU base address."));
21359
21360 SYMBOL_ACLASS_INDEX (sym) = (is_block
21361 ? dwarf2_loclist_block_index
21362 : dwarf2_loclist_index);
21363 SYMBOL_LOCATION_BATON (sym) = baton;
21364 }
21365 else
21366 {
21367 struct dwarf2_locexpr_baton *baton;
21368
21369 baton = obstack_alloc (&objfile->objfile_obstack,
21370 sizeof (struct dwarf2_locexpr_baton));
21371 baton->per_cu = cu->per_cu;
21372 gdb_assert (baton->per_cu);
21373
21374 if (attr_form_is_block (attr))
21375 {
21376 /* Note that we're just copying the block's data pointer
21377 here, not the actual data. We're still pointing into the
21378 info_buffer for SYM's objfile; right now we never release
21379 that buffer, but when we do clean up properly this may
21380 need to change. */
21381 baton->size = DW_BLOCK (attr)->size;
21382 baton->data = DW_BLOCK (attr)->data;
21383 }
21384 else
21385 {
21386 dwarf2_invalid_attrib_class_complaint ("location description",
21387 SYMBOL_NATURAL_NAME (sym));
21388 baton->size = 0;
21389 }
21390
21391 SYMBOL_ACLASS_INDEX (sym) = (is_block
21392 ? dwarf2_locexpr_block_index
21393 : dwarf2_locexpr_index);
21394 SYMBOL_LOCATION_BATON (sym) = baton;
21395 }
21396 }
21397
21398 /* Return the OBJFILE associated with the compilation unit CU. If CU
21399 came from a separate debuginfo file, then the master objfile is
21400 returned. */
21401
21402 struct objfile *
21403 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21404 {
21405 struct objfile *objfile = per_cu->objfile;
21406
21407 /* Return the master objfile, so that we can report and look up the
21408 correct file containing this variable. */
21409 if (objfile->separate_debug_objfile_backlink)
21410 objfile = objfile->separate_debug_objfile_backlink;
21411
21412 return objfile;
21413 }
21414
21415 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21416 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21417 CU_HEADERP first. */
21418
21419 static const struct comp_unit_head *
21420 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21421 struct dwarf2_per_cu_data *per_cu)
21422 {
21423 const gdb_byte *info_ptr;
21424
21425 if (per_cu->cu)
21426 return &per_cu->cu->header;
21427
21428 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21429
21430 memset (cu_headerp, 0, sizeof (*cu_headerp));
21431 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21432
21433 return cu_headerp;
21434 }
21435
21436 /* Return the address size given in the compilation unit header for CU. */
21437
21438 int
21439 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21440 {
21441 struct comp_unit_head cu_header_local;
21442 const struct comp_unit_head *cu_headerp;
21443
21444 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21445
21446 return cu_headerp->addr_size;
21447 }
21448
21449 /* Return the offset size given in the compilation unit header for CU. */
21450
21451 int
21452 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21453 {
21454 struct comp_unit_head cu_header_local;
21455 const struct comp_unit_head *cu_headerp;
21456
21457 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21458
21459 return cu_headerp->offset_size;
21460 }
21461
21462 /* See its dwarf2loc.h declaration. */
21463
21464 int
21465 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21466 {
21467 struct comp_unit_head cu_header_local;
21468 const struct comp_unit_head *cu_headerp;
21469
21470 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21471
21472 if (cu_headerp->version == 2)
21473 return cu_headerp->addr_size;
21474 else
21475 return cu_headerp->offset_size;
21476 }
21477
21478 /* Return the text offset of the CU. The returned offset comes from
21479 this CU's objfile. If this objfile came from a separate debuginfo
21480 file, then the offset may be different from the corresponding
21481 offset in the parent objfile. */
21482
21483 CORE_ADDR
21484 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21485 {
21486 struct objfile *objfile = per_cu->objfile;
21487
21488 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21489 }
21490
21491 /* Locate the .debug_info compilation unit from CU's objfile which contains
21492 the DIE at OFFSET. Raises an error on failure. */
21493
21494 static struct dwarf2_per_cu_data *
21495 dwarf2_find_containing_comp_unit (sect_offset offset,
21496 unsigned int offset_in_dwz,
21497 struct objfile *objfile)
21498 {
21499 struct dwarf2_per_cu_data *this_cu;
21500 int low, high;
21501 const sect_offset *cu_off;
21502
21503 low = 0;
21504 high = dwarf2_per_objfile->n_comp_units - 1;
21505 while (high > low)
21506 {
21507 struct dwarf2_per_cu_data *mid_cu;
21508 int mid = low + (high - low) / 2;
21509
21510 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21511 cu_off = &mid_cu->offset;
21512 if (mid_cu->is_dwz > offset_in_dwz
21513 || (mid_cu->is_dwz == offset_in_dwz
21514 && cu_off->sect_off >= offset.sect_off))
21515 high = mid;
21516 else
21517 low = mid + 1;
21518 }
21519 gdb_assert (low == high);
21520 this_cu = dwarf2_per_objfile->all_comp_units[low];
21521 cu_off = &this_cu->offset;
21522 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21523 {
21524 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21525 error (_("Dwarf Error: could not find partial DIE containing "
21526 "offset 0x%lx [in module %s]"),
21527 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21528
21529 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21530 <= offset.sect_off);
21531 return dwarf2_per_objfile->all_comp_units[low-1];
21532 }
21533 else
21534 {
21535 this_cu = dwarf2_per_objfile->all_comp_units[low];
21536 if (low == dwarf2_per_objfile->n_comp_units - 1
21537 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21538 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21539 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21540 return this_cu;
21541 }
21542 }
21543
21544 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21545
21546 static void
21547 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21548 {
21549 memset (cu, 0, sizeof (*cu));
21550 per_cu->cu = cu;
21551 cu->per_cu = per_cu;
21552 cu->objfile = per_cu->objfile;
21553 obstack_init (&cu->comp_unit_obstack);
21554 }
21555
21556 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21557
21558 static void
21559 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21560 enum language pretend_language)
21561 {
21562 struct attribute *attr;
21563
21564 /* Set the language we're debugging. */
21565 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21566 if (attr)
21567 set_cu_language (DW_UNSND (attr), cu);
21568 else
21569 {
21570 cu->language = pretend_language;
21571 cu->language_defn = language_def (cu->language);
21572 }
21573
21574 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21575 if (attr)
21576 cu->producer = DW_STRING (attr);
21577 }
21578
21579 /* Release one cached compilation unit, CU. We unlink it from the tree
21580 of compilation units, but we don't remove it from the read_in_chain;
21581 the caller is responsible for that.
21582 NOTE: DATA is a void * because this function is also used as a
21583 cleanup routine. */
21584
21585 static void
21586 free_heap_comp_unit (void *data)
21587 {
21588 struct dwarf2_cu *cu = data;
21589
21590 gdb_assert (cu->per_cu != NULL);
21591 cu->per_cu->cu = NULL;
21592 cu->per_cu = NULL;
21593
21594 obstack_free (&cu->comp_unit_obstack, NULL);
21595
21596 xfree (cu);
21597 }
21598
21599 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21600 when we're finished with it. We can't free the pointer itself, but be
21601 sure to unlink it from the cache. Also release any associated storage. */
21602
21603 static void
21604 free_stack_comp_unit (void *data)
21605 {
21606 struct dwarf2_cu *cu = data;
21607
21608 gdb_assert (cu->per_cu != NULL);
21609 cu->per_cu->cu = NULL;
21610 cu->per_cu = NULL;
21611
21612 obstack_free (&cu->comp_unit_obstack, NULL);
21613 cu->partial_dies = NULL;
21614 }
21615
21616 /* Free all cached compilation units. */
21617
21618 static void
21619 free_cached_comp_units (void *data)
21620 {
21621 struct dwarf2_per_cu_data *per_cu, **last_chain;
21622
21623 per_cu = dwarf2_per_objfile->read_in_chain;
21624 last_chain = &dwarf2_per_objfile->read_in_chain;
21625 while (per_cu != NULL)
21626 {
21627 struct dwarf2_per_cu_data *next_cu;
21628
21629 next_cu = per_cu->cu->read_in_chain;
21630
21631 free_heap_comp_unit (per_cu->cu);
21632 *last_chain = next_cu;
21633
21634 per_cu = next_cu;
21635 }
21636 }
21637
21638 /* Increase the age counter on each cached compilation unit, and free
21639 any that are too old. */
21640
21641 static void
21642 age_cached_comp_units (void)
21643 {
21644 struct dwarf2_per_cu_data *per_cu, **last_chain;
21645
21646 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21647 per_cu = dwarf2_per_objfile->read_in_chain;
21648 while (per_cu != NULL)
21649 {
21650 per_cu->cu->last_used ++;
21651 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21652 dwarf2_mark (per_cu->cu);
21653 per_cu = per_cu->cu->read_in_chain;
21654 }
21655
21656 per_cu = dwarf2_per_objfile->read_in_chain;
21657 last_chain = &dwarf2_per_objfile->read_in_chain;
21658 while (per_cu != NULL)
21659 {
21660 struct dwarf2_per_cu_data *next_cu;
21661
21662 next_cu = per_cu->cu->read_in_chain;
21663
21664 if (!per_cu->cu->mark)
21665 {
21666 free_heap_comp_unit (per_cu->cu);
21667 *last_chain = next_cu;
21668 }
21669 else
21670 last_chain = &per_cu->cu->read_in_chain;
21671
21672 per_cu = next_cu;
21673 }
21674 }
21675
21676 /* Remove a single compilation unit from the cache. */
21677
21678 static void
21679 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21680 {
21681 struct dwarf2_per_cu_data *per_cu, **last_chain;
21682
21683 per_cu = dwarf2_per_objfile->read_in_chain;
21684 last_chain = &dwarf2_per_objfile->read_in_chain;
21685 while (per_cu != NULL)
21686 {
21687 struct dwarf2_per_cu_data *next_cu;
21688
21689 next_cu = per_cu->cu->read_in_chain;
21690
21691 if (per_cu == target_per_cu)
21692 {
21693 free_heap_comp_unit (per_cu->cu);
21694 per_cu->cu = NULL;
21695 *last_chain = next_cu;
21696 break;
21697 }
21698 else
21699 last_chain = &per_cu->cu->read_in_chain;
21700
21701 per_cu = next_cu;
21702 }
21703 }
21704
21705 /* Release all extra memory associated with OBJFILE. */
21706
21707 void
21708 dwarf2_free_objfile (struct objfile *objfile)
21709 {
21710 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21711
21712 if (dwarf2_per_objfile == NULL)
21713 return;
21714
21715 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21716 free_cached_comp_units (NULL);
21717
21718 if (dwarf2_per_objfile->quick_file_names_table)
21719 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21720
21721 /* Everything else should be on the objfile obstack. */
21722 }
21723
21724 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21725 We store these in a hash table separate from the DIEs, and preserve them
21726 when the DIEs are flushed out of cache.
21727
21728 The CU "per_cu" pointer is needed because offset alone is not enough to
21729 uniquely identify the type. A file may have multiple .debug_types sections,
21730 or the type may come from a DWO file. Furthermore, while it's more logical
21731 to use per_cu->section+offset, with Fission the section with the data is in
21732 the DWO file but we don't know that section at the point we need it.
21733 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21734 because we can enter the lookup routine, get_die_type_at_offset, from
21735 outside this file, and thus won't necessarily have PER_CU->cu.
21736 Fortunately, PER_CU is stable for the life of the objfile. */
21737
21738 struct dwarf2_per_cu_offset_and_type
21739 {
21740 const struct dwarf2_per_cu_data *per_cu;
21741 sect_offset offset;
21742 struct type *type;
21743 };
21744
21745 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21746
21747 static hashval_t
21748 per_cu_offset_and_type_hash (const void *item)
21749 {
21750 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21751
21752 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21753 }
21754
21755 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21756
21757 static int
21758 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21759 {
21760 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21761 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21762
21763 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21764 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21765 }
21766
21767 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21768 table if necessary. For convenience, return TYPE.
21769
21770 The DIEs reading must have careful ordering to:
21771 * Not cause infite loops trying to read in DIEs as a prerequisite for
21772 reading current DIE.
21773 * Not trying to dereference contents of still incompletely read in types
21774 while reading in other DIEs.
21775 * Enable referencing still incompletely read in types just by a pointer to
21776 the type without accessing its fields.
21777
21778 Therefore caller should follow these rules:
21779 * Try to fetch any prerequisite types we may need to build this DIE type
21780 before building the type and calling set_die_type.
21781 * After building type call set_die_type for current DIE as soon as
21782 possible before fetching more types to complete the current type.
21783 * Make the type as complete as possible before fetching more types. */
21784
21785 static struct type *
21786 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21787 {
21788 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21789 struct objfile *objfile = cu->objfile;
21790 struct attribute *attr;
21791 struct dynamic_prop prop;
21792
21793 /* For Ada types, make sure that the gnat-specific data is always
21794 initialized (if not already set). There are a few types where
21795 we should not be doing so, because the type-specific area is
21796 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21797 where the type-specific area is used to store the floatformat).
21798 But this is not a problem, because the gnat-specific information
21799 is actually not needed for these types. */
21800 if (need_gnat_info (cu)
21801 && TYPE_CODE (type) != TYPE_CODE_FUNC
21802 && TYPE_CODE (type) != TYPE_CODE_FLT
21803 && !HAVE_GNAT_AUX_INFO (type))
21804 INIT_GNAT_SPECIFIC (type);
21805
21806 /* Read DW_AT_data_location and set in type. */
21807 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21808 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21809 {
21810 TYPE_DATA_LOCATION (type)
21811 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21812 *TYPE_DATA_LOCATION (type) = prop;
21813 }
21814
21815 if (dwarf2_per_objfile->die_type_hash == NULL)
21816 {
21817 dwarf2_per_objfile->die_type_hash =
21818 htab_create_alloc_ex (127,
21819 per_cu_offset_and_type_hash,
21820 per_cu_offset_and_type_eq,
21821 NULL,
21822 &objfile->objfile_obstack,
21823 hashtab_obstack_allocate,
21824 dummy_obstack_deallocate);
21825 }
21826
21827 ofs.per_cu = cu->per_cu;
21828 ofs.offset = die->offset;
21829 ofs.type = type;
21830 slot = (struct dwarf2_per_cu_offset_and_type **)
21831 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21832 if (*slot)
21833 complaint (&symfile_complaints,
21834 _("A problem internal to GDB: DIE 0x%x has type already set"),
21835 die->offset.sect_off);
21836 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21837 **slot = ofs;
21838 return type;
21839 }
21840
21841 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21842 or return NULL if the die does not have a saved type. */
21843
21844 static struct type *
21845 get_die_type_at_offset (sect_offset offset,
21846 struct dwarf2_per_cu_data *per_cu)
21847 {
21848 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21849
21850 if (dwarf2_per_objfile->die_type_hash == NULL)
21851 return NULL;
21852
21853 ofs.per_cu = per_cu;
21854 ofs.offset = offset;
21855 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21856 if (slot)
21857 return slot->type;
21858 else
21859 return NULL;
21860 }
21861
21862 /* Look up the type for DIE in CU in die_type_hash,
21863 or return NULL if DIE does not have a saved type. */
21864
21865 static struct type *
21866 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21867 {
21868 return get_die_type_at_offset (die->offset, cu->per_cu);
21869 }
21870
21871 /* Add a dependence relationship from CU to REF_PER_CU. */
21872
21873 static void
21874 dwarf2_add_dependence (struct dwarf2_cu *cu,
21875 struct dwarf2_per_cu_data *ref_per_cu)
21876 {
21877 void **slot;
21878
21879 if (cu->dependencies == NULL)
21880 cu->dependencies
21881 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21882 NULL, &cu->comp_unit_obstack,
21883 hashtab_obstack_allocate,
21884 dummy_obstack_deallocate);
21885
21886 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21887 if (*slot == NULL)
21888 *slot = ref_per_cu;
21889 }
21890
21891 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21892 Set the mark field in every compilation unit in the
21893 cache that we must keep because we are keeping CU. */
21894
21895 static int
21896 dwarf2_mark_helper (void **slot, void *data)
21897 {
21898 struct dwarf2_per_cu_data *per_cu;
21899
21900 per_cu = (struct dwarf2_per_cu_data *) *slot;
21901
21902 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21903 reading of the chain. As such dependencies remain valid it is not much
21904 useful to track and undo them during QUIT cleanups. */
21905 if (per_cu->cu == NULL)
21906 return 1;
21907
21908 if (per_cu->cu->mark)
21909 return 1;
21910 per_cu->cu->mark = 1;
21911
21912 if (per_cu->cu->dependencies != NULL)
21913 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21914
21915 return 1;
21916 }
21917
21918 /* Set the mark field in CU and in every other compilation unit in the
21919 cache that we must keep because we are keeping CU. */
21920
21921 static void
21922 dwarf2_mark (struct dwarf2_cu *cu)
21923 {
21924 if (cu->mark)
21925 return;
21926 cu->mark = 1;
21927 if (cu->dependencies != NULL)
21928 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21929 }
21930
21931 static void
21932 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21933 {
21934 while (per_cu)
21935 {
21936 per_cu->cu->mark = 0;
21937 per_cu = per_cu->cu->read_in_chain;
21938 }
21939 }
21940
21941 /* Trivial hash function for partial_die_info: the hash value of a DIE
21942 is its offset in .debug_info for this objfile. */
21943
21944 static hashval_t
21945 partial_die_hash (const void *item)
21946 {
21947 const struct partial_die_info *part_die = item;
21948
21949 return part_die->offset.sect_off;
21950 }
21951
21952 /* Trivial comparison function for partial_die_info structures: two DIEs
21953 are equal if they have the same offset. */
21954
21955 static int
21956 partial_die_eq (const void *item_lhs, const void *item_rhs)
21957 {
21958 const struct partial_die_info *part_die_lhs = item_lhs;
21959 const struct partial_die_info *part_die_rhs = item_rhs;
21960
21961 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21962 }
21963
21964 static struct cmd_list_element *set_dwarf2_cmdlist;
21965 static struct cmd_list_element *show_dwarf2_cmdlist;
21966
21967 static void
21968 set_dwarf2_cmd (char *args, int from_tty)
21969 {
21970 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21971 gdb_stdout);
21972 }
21973
21974 static void
21975 show_dwarf2_cmd (char *args, int from_tty)
21976 {
21977 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21978 }
21979
21980 /* Free data associated with OBJFILE, if necessary. */
21981
21982 static void
21983 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21984 {
21985 struct dwarf2_per_objfile *data = d;
21986 int ix;
21987
21988 /* Make sure we don't accidentally use dwarf2_per_objfile while
21989 cleaning up. */
21990 dwarf2_per_objfile = NULL;
21991
21992 for (ix = 0; ix < data->n_comp_units; ++ix)
21993 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21994
21995 for (ix = 0; ix < data->n_type_units; ++ix)
21996 VEC_free (dwarf2_per_cu_ptr,
21997 data->all_type_units[ix]->per_cu.imported_symtabs);
21998 xfree (data->all_type_units);
21999
22000 VEC_free (dwarf2_section_info_def, data->types);
22001
22002 if (data->dwo_files)
22003 free_dwo_files (data->dwo_files, objfile);
22004 if (data->dwp_file)
22005 gdb_bfd_unref (data->dwp_file->dbfd);
22006
22007 if (data->dwz_file && data->dwz_file->dwz_bfd)
22008 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22009 }
22010
22011 \f
22012 /* The "save gdb-index" command. */
22013
22014 /* The contents of the hash table we create when building the string
22015 table. */
22016 struct strtab_entry
22017 {
22018 offset_type offset;
22019 const char *str;
22020 };
22021
22022 /* Hash function for a strtab_entry.
22023
22024 Function is used only during write_hash_table so no index format backward
22025 compatibility is needed. */
22026
22027 static hashval_t
22028 hash_strtab_entry (const void *e)
22029 {
22030 const struct strtab_entry *entry = e;
22031 return mapped_index_string_hash (INT_MAX, entry->str);
22032 }
22033
22034 /* Equality function for a strtab_entry. */
22035
22036 static int
22037 eq_strtab_entry (const void *a, const void *b)
22038 {
22039 const struct strtab_entry *ea = a;
22040 const struct strtab_entry *eb = b;
22041 return !strcmp (ea->str, eb->str);
22042 }
22043
22044 /* Create a strtab_entry hash table. */
22045
22046 static htab_t
22047 create_strtab (void)
22048 {
22049 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22050 xfree, xcalloc, xfree);
22051 }
22052
22053 /* Add a string to the constant pool. Return the string's offset in
22054 host order. */
22055
22056 static offset_type
22057 add_string (htab_t table, struct obstack *cpool, const char *str)
22058 {
22059 void **slot;
22060 struct strtab_entry entry;
22061 struct strtab_entry *result;
22062
22063 entry.str = str;
22064 slot = htab_find_slot (table, &entry, INSERT);
22065 if (*slot)
22066 result = *slot;
22067 else
22068 {
22069 result = XNEW (struct strtab_entry);
22070 result->offset = obstack_object_size (cpool);
22071 result->str = str;
22072 obstack_grow_str0 (cpool, str);
22073 *slot = result;
22074 }
22075 return result->offset;
22076 }
22077
22078 /* An entry in the symbol table. */
22079 struct symtab_index_entry
22080 {
22081 /* The name of the symbol. */
22082 const char *name;
22083 /* The offset of the name in the constant pool. */
22084 offset_type index_offset;
22085 /* A sorted vector of the indices of all the CUs that hold an object
22086 of this name. */
22087 VEC (offset_type) *cu_indices;
22088 };
22089
22090 /* The symbol table. This is a power-of-2-sized hash table. */
22091 struct mapped_symtab
22092 {
22093 offset_type n_elements;
22094 offset_type size;
22095 struct symtab_index_entry **data;
22096 };
22097
22098 /* Hash function for a symtab_index_entry. */
22099
22100 static hashval_t
22101 hash_symtab_entry (const void *e)
22102 {
22103 const struct symtab_index_entry *entry = e;
22104 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22105 sizeof (offset_type) * VEC_length (offset_type,
22106 entry->cu_indices),
22107 0);
22108 }
22109
22110 /* Equality function for a symtab_index_entry. */
22111
22112 static int
22113 eq_symtab_entry (const void *a, const void *b)
22114 {
22115 const struct symtab_index_entry *ea = a;
22116 const struct symtab_index_entry *eb = b;
22117 int len = VEC_length (offset_type, ea->cu_indices);
22118 if (len != VEC_length (offset_type, eb->cu_indices))
22119 return 0;
22120 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22121 VEC_address (offset_type, eb->cu_indices),
22122 sizeof (offset_type) * len);
22123 }
22124
22125 /* Destroy a symtab_index_entry. */
22126
22127 static void
22128 delete_symtab_entry (void *p)
22129 {
22130 struct symtab_index_entry *entry = p;
22131 VEC_free (offset_type, entry->cu_indices);
22132 xfree (entry);
22133 }
22134
22135 /* Create a hash table holding symtab_index_entry objects. */
22136
22137 static htab_t
22138 create_symbol_hash_table (void)
22139 {
22140 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22141 delete_symtab_entry, xcalloc, xfree);
22142 }
22143
22144 /* Create a new mapped symtab object. */
22145
22146 static struct mapped_symtab *
22147 create_mapped_symtab (void)
22148 {
22149 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22150 symtab->n_elements = 0;
22151 symtab->size = 1024;
22152 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22153 return symtab;
22154 }
22155
22156 /* Destroy a mapped_symtab. */
22157
22158 static void
22159 cleanup_mapped_symtab (void *p)
22160 {
22161 struct mapped_symtab *symtab = p;
22162 /* The contents of the array are freed when the other hash table is
22163 destroyed. */
22164 xfree (symtab->data);
22165 xfree (symtab);
22166 }
22167
22168 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22169 the slot.
22170
22171 Function is used only during write_hash_table so no index format backward
22172 compatibility is needed. */
22173
22174 static struct symtab_index_entry **
22175 find_slot (struct mapped_symtab *symtab, const char *name)
22176 {
22177 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22178
22179 index = hash & (symtab->size - 1);
22180 step = ((hash * 17) & (symtab->size - 1)) | 1;
22181
22182 for (;;)
22183 {
22184 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22185 return &symtab->data[index];
22186 index = (index + step) & (symtab->size - 1);
22187 }
22188 }
22189
22190 /* Expand SYMTAB's hash table. */
22191
22192 static void
22193 hash_expand (struct mapped_symtab *symtab)
22194 {
22195 offset_type old_size = symtab->size;
22196 offset_type i;
22197 struct symtab_index_entry **old_entries = symtab->data;
22198
22199 symtab->size *= 2;
22200 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22201
22202 for (i = 0; i < old_size; ++i)
22203 {
22204 if (old_entries[i])
22205 {
22206 struct symtab_index_entry **slot = find_slot (symtab,
22207 old_entries[i]->name);
22208 *slot = old_entries[i];
22209 }
22210 }
22211
22212 xfree (old_entries);
22213 }
22214
22215 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22216 CU_INDEX is the index of the CU in which the symbol appears.
22217 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22218
22219 static void
22220 add_index_entry (struct mapped_symtab *symtab, const char *name,
22221 int is_static, gdb_index_symbol_kind kind,
22222 offset_type cu_index)
22223 {
22224 struct symtab_index_entry **slot;
22225 offset_type cu_index_and_attrs;
22226
22227 ++symtab->n_elements;
22228 if (4 * symtab->n_elements / 3 >= symtab->size)
22229 hash_expand (symtab);
22230
22231 slot = find_slot (symtab, name);
22232 if (!*slot)
22233 {
22234 *slot = XNEW (struct symtab_index_entry);
22235 (*slot)->name = name;
22236 /* index_offset is set later. */
22237 (*slot)->cu_indices = NULL;
22238 }
22239
22240 cu_index_and_attrs = 0;
22241 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22242 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22243 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22244
22245 /* We don't want to record an index value twice as we want to avoid the
22246 duplication.
22247 We process all global symbols and then all static symbols
22248 (which would allow us to avoid the duplication by only having to check
22249 the last entry pushed), but a symbol could have multiple kinds in one CU.
22250 To keep things simple we don't worry about the duplication here and
22251 sort and uniqufy the list after we've processed all symbols. */
22252 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22253 }
22254
22255 /* qsort helper routine for uniquify_cu_indices. */
22256
22257 static int
22258 offset_type_compare (const void *ap, const void *bp)
22259 {
22260 offset_type a = *(offset_type *) ap;
22261 offset_type b = *(offset_type *) bp;
22262
22263 return (a > b) - (b > a);
22264 }
22265
22266 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22267
22268 static void
22269 uniquify_cu_indices (struct mapped_symtab *symtab)
22270 {
22271 int i;
22272
22273 for (i = 0; i < symtab->size; ++i)
22274 {
22275 struct symtab_index_entry *entry = symtab->data[i];
22276
22277 if (entry
22278 && entry->cu_indices != NULL)
22279 {
22280 unsigned int next_to_insert, next_to_check;
22281 offset_type last_value;
22282
22283 qsort (VEC_address (offset_type, entry->cu_indices),
22284 VEC_length (offset_type, entry->cu_indices),
22285 sizeof (offset_type), offset_type_compare);
22286
22287 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22288 next_to_insert = 1;
22289 for (next_to_check = 1;
22290 next_to_check < VEC_length (offset_type, entry->cu_indices);
22291 ++next_to_check)
22292 {
22293 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22294 != last_value)
22295 {
22296 last_value = VEC_index (offset_type, entry->cu_indices,
22297 next_to_check);
22298 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22299 last_value);
22300 ++next_to_insert;
22301 }
22302 }
22303 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22304 }
22305 }
22306 }
22307
22308 /* Add a vector of indices to the constant pool. */
22309
22310 static offset_type
22311 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22312 struct symtab_index_entry *entry)
22313 {
22314 void **slot;
22315
22316 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22317 if (!*slot)
22318 {
22319 offset_type len = VEC_length (offset_type, entry->cu_indices);
22320 offset_type val = MAYBE_SWAP (len);
22321 offset_type iter;
22322 int i;
22323
22324 *slot = entry;
22325 entry->index_offset = obstack_object_size (cpool);
22326
22327 obstack_grow (cpool, &val, sizeof (val));
22328 for (i = 0;
22329 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22330 ++i)
22331 {
22332 val = MAYBE_SWAP (iter);
22333 obstack_grow (cpool, &val, sizeof (val));
22334 }
22335 }
22336 else
22337 {
22338 struct symtab_index_entry *old_entry = *slot;
22339 entry->index_offset = old_entry->index_offset;
22340 entry = old_entry;
22341 }
22342 return entry->index_offset;
22343 }
22344
22345 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22346 constant pool entries going into the obstack CPOOL. */
22347
22348 static void
22349 write_hash_table (struct mapped_symtab *symtab,
22350 struct obstack *output, struct obstack *cpool)
22351 {
22352 offset_type i;
22353 htab_t symbol_hash_table;
22354 htab_t str_table;
22355
22356 symbol_hash_table = create_symbol_hash_table ();
22357 str_table = create_strtab ();
22358
22359 /* We add all the index vectors to the constant pool first, to
22360 ensure alignment is ok. */
22361 for (i = 0; i < symtab->size; ++i)
22362 {
22363 if (symtab->data[i])
22364 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22365 }
22366
22367 /* Now write out the hash table. */
22368 for (i = 0; i < symtab->size; ++i)
22369 {
22370 offset_type str_off, vec_off;
22371
22372 if (symtab->data[i])
22373 {
22374 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22375 vec_off = symtab->data[i]->index_offset;
22376 }
22377 else
22378 {
22379 /* While 0 is a valid constant pool index, it is not valid
22380 to have 0 for both offsets. */
22381 str_off = 0;
22382 vec_off = 0;
22383 }
22384
22385 str_off = MAYBE_SWAP (str_off);
22386 vec_off = MAYBE_SWAP (vec_off);
22387
22388 obstack_grow (output, &str_off, sizeof (str_off));
22389 obstack_grow (output, &vec_off, sizeof (vec_off));
22390 }
22391
22392 htab_delete (str_table);
22393 htab_delete (symbol_hash_table);
22394 }
22395
22396 /* Struct to map psymtab to CU index in the index file. */
22397 struct psymtab_cu_index_map
22398 {
22399 struct partial_symtab *psymtab;
22400 unsigned int cu_index;
22401 };
22402
22403 static hashval_t
22404 hash_psymtab_cu_index (const void *item)
22405 {
22406 const struct psymtab_cu_index_map *map = item;
22407
22408 return htab_hash_pointer (map->psymtab);
22409 }
22410
22411 static int
22412 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22413 {
22414 const struct psymtab_cu_index_map *lhs = item_lhs;
22415 const struct psymtab_cu_index_map *rhs = item_rhs;
22416
22417 return lhs->psymtab == rhs->psymtab;
22418 }
22419
22420 /* Helper struct for building the address table. */
22421 struct addrmap_index_data
22422 {
22423 struct objfile *objfile;
22424 struct obstack *addr_obstack;
22425 htab_t cu_index_htab;
22426
22427 /* Non-zero if the previous_* fields are valid.
22428 We can't write an entry until we see the next entry (since it is only then
22429 that we know the end of the entry). */
22430 int previous_valid;
22431 /* Index of the CU in the table of all CUs in the index file. */
22432 unsigned int previous_cu_index;
22433 /* Start address of the CU. */
22434 CORE_ADDR previous_cu_start;
22435 };
22436
22437 /* Write an address entry to OBSTACK. */
22438
22439 static void
22440 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22441 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22442 {
22443 offset_type cu_index_to_write;
22444 gdb_byte addr[8];
22445 CORE_ADDR baseaddr;
22446
22447 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22448
22449 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22450 obstack_grow (obstack, addr, 8);
22451 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22452 obstack_grow (obstack, addr, 8);
22453 cu_index_to_write = MAYBE_SWAP (cu_index);
22454 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22455 }
22456
22457 /* Worker function for traversing an addrmap to build the address table. */
22458
22459 static int
22460 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22461 {
22462 struct addrmap_index_data *data = datap;
22463 struct partial_symtab *pst = obj;
22464
22465 if (data->previous_valid)
22466 add_address_entry (data->objfile, data->addr_obstack,
22467 data->previous_cu_start, start_addr,
22468 data->previous_cu_index);
22469
22470 data->previous_cu_start = start_addr;
22471 if (pst != NULL)
22472 {
22473 struct psymtab_cu_index_map find_map, *map;
22474 find_map.psymtab = pst;
22475 map = htab_find (data->cu_index_htab, &find_map);
22476 gdb_assert (map != NULL);
22477 data->previous_cu_index = map->cu_index;
22478 data->previous_valid = 1;
22479 }
22480 else
22481 data->previous_valid = 0;
22482
22483 return 0;
22484 }
22485
22486 /* Write OBJFILE's address map to OBSTACK.
22487 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22488 in the index file. */
22489
22490 static void
22491 write_address_map (struct objfile *objfile, struct obstack *obstack,
22492 htab_t cu_index_htab)
22493 {
22494 struct addrmap_index_data addrmap_index_data;
22495
22496 /* When writing the address table, we have to cope with the fact that
22497 the addrmap iterator only provides the start of a region; we have to
22498 wait until the next invocation to get the start of the next region. */
22499
22500 addrmap_index_data.objfile = objfile;
22501 addrmap_index_data.addr_obstack = obstack;
22502 addrmap_index_data.cu_index_htab = cu_index_htab;
22503 addrmap_index_data.previous_valid = 0;
22504
22505 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22506 &addrmap_index_data);
22507
22508 /* It's highly unlikely the last entry (end address = 0xff...ff)
22509 is valid, but we should still handle it.
22510 The end address is recorded as the start of the next region, but that
22511 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22512 anyway. */
22513 if (addrmap_index_data.previous_valid)
22514 add_address_entry (objfile, obstack,
22515 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22516 addrmap_index_data.previous_cu_index);
22517 }
22518
22519 /* Return the symbol kind of PSYM. */
22520
22521 static gdb_index_symbol_kind
22522 symbol_kind (struct partial_symbol *psym)
22523 {
22524 domain_enum domain = PSYMBOL_DOMAIN (psym);
22525 enum address_class aclass = PSYMBOL_CLASS (psym);
22526
22527 switch (domain)
22528 {
22529 case VAR_DOMAIN:
22530 switch (aclass)
22531 {
22532 case LOC_BLOCK:
22533 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22534 case LOC_TYPEDEF:
22535 return GDB_INDEX_SYMBOL_KIND_TYPE;
22536 case LOC_COMPUTED:
22537 case LOC_CONST_BYTES:
22538 case LOC_OPTIMIZED_OUT:
22539 case LOC_STATIC:
22540 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22541 case LOC_CONST:
22542 /* Note: It's currently impossible to recognize psyms as enum values
22543 short of reading the type info. For now punt. */
22544 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22545 default:
22546 /* There are other LOC_FOO values that one might want to classify
22547 as variables, but dwarf2read.c doesn't currently use them. */
22548 return GDB_INDEX_SYMBOL_KIND_OTHER;
22549 }
22550 case STRUCT_DOMAIN:
22551 return GDB_INDEX_SYMBOL_KIND_TYPE;
22552 default:
22553 return GDB_INDEX_SYMBOL_KIND_OTHER;
22554 }
22555 }
22556
22557 /* Add a list of partial symbols to SYMTAB. */
22558
22559 static void
22560 write_psymbols (struct mapped_symtab *symtab,
22561 htab_t psyms_seen,
22562 struct partial_symbol **psymp,
22563 int count,
22564 offset_type cu_index,
22565 int is_static)
22566 {
22567 for (; count-- > 0; ++psymp)
22568 {
22569 struct partial_symbol *psym = *psymp;
22570 void **slot;
22571
22572 if (SYMBOL_LANGUAGE (psym) == language_ada)
22573 error (_("Ada is not currently supported by the index"));
22574
22575 /* Only add a given psymbol once. */
22576 slot = htab_find_slot (psyms_seen, psym, INSERT);
22577 if (!*slot)
22578 {
22579 gdb_index_symbol_kind kind = symbol_kind (psym);
22580
22581 *slot = psym;
22582 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22583 is_static, kind, cu_index);
22584 }
22585 }
22586 }
22587
22588 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22589 exception if there is an error. */
22590
22591 static void
22592 write_obstack (FILE *file, struct obstack *obstack)
22593 {
22594 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22595 file)
22596 != obstack_object_size (obstack))
22597 error (_("couldn't data write to file"));
22598 }
22599
22600 /* Unlink a file if the argument is not NULL. */
22601
22602 static void
22603 unlink_if_set (void *p)
22604 {
22605 char **filename = p;
22606 if (*filename)
22607 unlink (*filename);
22608 }
22609
22610 /* A helper struct used when iterating over debug_types. */
22611 struct signatured_type_index_data
22612 {
22613 struct objfile *objfile;
22614 struct mapped_symtab *symtab;
22615 struct obstack *types_list;
22616 htab_t psyms_seen;
22617 int cu_index;
22618 };
22619
22620 /* A helper function that writes a single signatured_type to an
22621 obstack. */
22622
22623 static int
22624 write_one_signatured_type (void **slot, void *d)
22625 {
22626 struct signatured_type_index_data *info = d;
22627 struct signatured_type *entry = (struct signatured_type *) *slot;
22628 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22629 gdb_byte val[8];
22630
22631 write_psymbols (info->symtab,
22632 info->psyms_seen,
22633 info->objfile->global_psymbols.list
22634 + psymtab->globals_offset,
22635 psymtab->n_global_syms, info->cu_index,
22636 0);
22637 write_psymbols (info->symtab,
22638 info->psyms_seen,
22639 info->objfile->static_psymbols.list
22640 + psymtab->statics_offset,
22641 psymtab->n_static_syms, info->cu_index,
22642 1);
22643
22644 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22645 entry->per_cu.offset.sect_off);
22646 obstack_grow (info->types_list, val, 8);
22647 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22648 entry->type_offset_in_tu.cu_off);
22649 obstack_grow (info->types_list, val, 8);
22650 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22651 obstack_grow (info->types_list, val, 8);
22652
22653 ++info->cu_index;
22654
22655 return 1;
22656 }
22657
22658 /* Recurse into all "included" dependencies and write their symbols as
22659 if they appeared in this psymtab. */
22660
22661 static void
22662 recursively_write_psymbols (struct objfile *objfile,
22663 struct partial_symtab *psymtab,
22664 struct mapped_symtab *symtab,
22665 htab_t psyms_seen,
22666 offset_type cu_index)
22667 {
22668 int i;
22669
22670 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22671 if (psymtab->dependencies[i]->user != NULL)
22672 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22673 symtab, psyms_seen, cu_index);
22674
22675 write_psymbols (symtab,
22676 psyms_seen,
22677 objfile->global_psymbols.list + psymtab->globals_offset,
22678 psymtab->n_global_syms, cu_index,
22679 0);
22680 write_psymbols (symtab,
22681 psyms_seen,
22682 objfile->static_psymbols.list + psymtab->statics_offset,
22683 psymtab->n_static_syms, cu_index,
22684 1);
22685 }
22686
22687 /* Create an index file for OBJFILE in the directory DIR. */
22688
22689 static void
22690 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22691 {
22692 struct cleanup *cleanup;
22693 char *filename, *cleanup_filename;
22694 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22695 struct obstack cu_list, types_cu_list;
22696 int i;
22697 FILE *out_file;
22698 struct mapped_symtab *symtab;
22699 offset_type val, size_of_contents, total_len;
22700 struct stat st;
22701 htab_t psyms_seen;
22702 htab_t cu_index_htab;
22703 struct psymtab_cu_index_map *psymtab_cu_index_map;
22704
22705 if (dwarf2_per_objfile->using_index)
22706 error (_("Cannot use an index to create the index"));
22707
22708 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22709 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22710
22711 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22712 return;
22713
22714 if (stat (objfile_name (objfile), &st) < 0)
22715 perror_with_name (objfile_name (objfile));
22716
22717 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22718 INDEX_SUFFIX, (char *) NULL);
22719 cleanup = make_cleanup (xfree, filename);
22720
22721 out_file = gdb_fopen_cloexec (filename, "wb");
22722 if (!out_file)
22723 error (_("Can't open `%s' for writing"), filename);
22724
22725 cleanup_filename = filename;
22726 make_cleanup (unlink_if_set, &cleanup_filename);
22727
22728 symtab = create_mapped_symtab ();
22729 make_cleanup (cleanup_mapped_symtab, symtab);
22730
22731 obstack_init (&addr_obstack);
22732 make_cleanup_obstack_free (&addr_obstack);
22733
22734 obstack_init (&cu_list);
22735 make_cleanup_obstack_free (&cu_list);
22736
22737 obstack_init (&types_cu_list);
22738 make_cleanup_obstack_free (&types_cu_list);
22739
22740 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22741 NULL, xcalloc, xfree);
22742 make_cleanup_htab_delete (psyms_seen);
22743
22744 /* While we're scanning CU's create a table that maps a psymtab pointer
22745 (which is what addrmap records) to its index (which is what is recorded
22746 in the index file). This will later be needed to write the address
22747 table. */
22748 cu_index_htab = htab_create_alloc (100,
22749 hash_psymtab_cu_index,
22750 eq_psymtab_cu_index,
22751 NULL, xcalloc, xfree);
22752 make_cleanup_htab_delete (cu_index_htab);
22753 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22754 xmalloc (sizeof (struct psymtab_cu_index_map)
22755 * dwarf2_per_objfile->n_comp_units);
22756 make_cleanup (xfree, psymtab_cu_index_map);
22757
22758 /* The CU list is already sorted, so we don't need to do additional
22759 work here. Also, the debug_types entries do not appear in
22760 all_comp_units, but only in their own hash table. */
22761 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22762 {
22763 struct dwarf2_per_cu_data *per_cu
22764 = dwarf2_per_objfile->all_comp_units[i];
22765 struct partial_symtab *psymtab = per_cu->v.psymtab;
22766 gdb_byte val[8];
22767 struct psymtab_cu_index_map *map;
22768 void **slot;
22769
22770 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22771 It may be referenced from a local scope but in such case it does not
22772 need to be present in .gdb_index. */
22773 if (psymtab == NULL)
22774 continue;
22775
22776 if (psymtab->user == NULL)
22777 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22778
22779 map = &psymtab_cu_index_map[i];
22780 map->psymtab = psymtab;
22781 map->cu_index = i;
22782 slot = htab_find_slot (cu_index_htab, map, INSERT);
22783 gdb_assert (slot != NULL);
22784 gdb_assert (*slot == NULL);
22785 *slot = map;
22786
22787 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22788 per_cu->offset.sect_off);
22789 obstack_grow (&cu_list, val, 8);
22790 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22791 obstack_grow (&cu_list, val, 8);
22792 }
22793
22794 /* Dump the address map. */
22795 write_address_map (objfile, &addr_obstack, cu_index_htab);
22796
22797 /* Write out the .debug_type entries, if any. */
22798 if (dwarf2_per_objfile->signatured_types)
22799 {
22800 struct signatured_type_index_data sig_data;
22801
22802 sig_data.objfile = objfile;
22803 sig_data.symtab = symtab;
22804 sig_data.types_list = &types_cu_list;
22805 sig_data.psyms_seen = psyms_seen;
22806 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22807 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22808 write_one_signatured_type, &sig_data);
22809 }
22810
22811 /* Now that we've processed all symbols we can shrink their cu_indices
22812 lists. */
22813 uniquify_cu_indices (symtab);
22814
22815 obstack_init (&constant_pool);
22816 make_cleanup_obstack_free (&constant_pool);
22817 obstack_init (&symtab_obstack);
22818 make_cleanup_obstack_free (&symtab_obstack);
22819 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22820
22821 obstack_init (&contents);
22822 make_cleanup_obstack_free (&contents);
22823 size_of_contents = 6 * sizeof (offset_type);
22824 total_len = size_of_contents;
22825
22826 /* The version number. */
22827 val = MAYBE_SWAP (8);
22828 obstack_grow (&contents, &val, sizeof (val));
22829
22830 /* The offset of the CU list from the start of the file. */
22831 val = MAYBE_SWAP (total_len);
22832 obstack_grow (&contents, &val, sizeof (val));
22833 total_len += obstack_object_size (&cu_list);
22834
22835 /* The offset of the types CU list from the start of the file. */
22836 val = MAYBE_SWAP (total_len);
22837 obstack_grow (&contents, &val, sizeof (val));
22838 total_len += obstack_object_size (&types_cu_list);
22839
22840 /* The offset of the address table from the start of the file. */
22841 val = MAYBE_SWAP (total_len);
22842 obstack_grow (&contents, &val, sizeof (val));
22843 total_len += obstack_object_size (&addr_obstack);
22844
22845 /* The offset of the symbol table from the start of the file. */
22846 val = MAYBE_SWAP (total_len);
22847 obstack_grow (&contents, &val, sizeof (val));
22848 total_len += obstack_object_size (&symtab_obstack);
22849
22850 /* The offset of the constant pool from the start of the file. */
22851 val = MAYBE_SWAP (total_len);
22852 obstack_grow (&contents, &val, sizeof (val));
22853 total_len += obstack_object_size (&constant_pool);
22854
22855 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22856
22857 write_obstack (out_file, &contents);
22858 write_obstack (out_file, &cu_list);
22859 write_obstack (out_file, &types_cu_list);
22860 write_obstack (out_file, &addr_obstack);
22861 write_obstack (out_file, &symtab_obstack);
22862 write_obstack (out_file, &constant_pool);
22863
22864 fclose (out_file);
22865
22866 /* We want to keep the file, so we set cleanup_filename to NULL
22867 here. See unlink_if_set. */
22868 cleanup_filename = NULL;
22869
22870 do_cleanups (cleanup);
22871 }
22872
22873 /* Implementation of the `save gdb-index' command.
22874
22875 Note that the file format used by this command is documented in the
22876 GDB manual. Any changes here must be documented there. */
22877
22878 static void
22879 save_gdb_index_command (char *arg, int from_tty)
22880 {
22881 struct objfile *objfile;
22882
22883 if (!arg || !*arg)
22884 error (_("usage: save gdb-index DIRECTORY"));
22885
22886 ALL_OBJFILES (objfile)
22887 {
22888 struct stat st;
22889
22890 /* If the objfile does not correspond to an actual file, skip it. */
22891 if (stat (objfile_name (objfile), &st) < 0)
22892 continue;
22893
22894 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22895 if (dwarf2_per_objfile)
22896 {
22897 volatile struct gdb_exception except;
22898
22899 TRY_CATCH (except, RETURN_MASK_ERROR)
22900 {
22901 write_psymtabs_to_index (objfile, arg);
22902 }
22903 if (except.reason < 0)
22904 exception_fprintf (gdb_stderr, except,
22905 _("Error while writing index for `%s': "),
22906 objfile_name (objfile));
22907 }
22908 }
22909 }
22910
22911 \f
22912
22913 int dwarf2_always_disassemble;
22914
22915 static void
22916 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22917 struct cmd_list_element *c, const char *value)
22918 {
22919 fprintf_filtered (file,
22920 _("Whether to always disassemble "
22921 "DWARF expressions is %s.\n"),
22922 value);
22923 }
22924
22925 static void
22926 show_check_physname (struct ui_file *file, int from_tty,
22927 struct cmd_list_element *c, const char *value)
22928 {
22929 fprintf_filtered (file,
22930 _("Whether to check \"physname\" is %s.\n"),
22931 value);
22932 }
22933
22934 void _initialize_dwarf2_read (void);
22935
22936 void
22937 _initialize_dwarf2_read (void)
22938 {
22939 struct cmd_list_element *c;
22940
22941 dwarf2_objfile_data_key
22942 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22943
22944 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22945 Set DWARF 2 specific variables.\n\
22946 Configure DWARF 2 variables such as the cache size"),
22947 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22948 0/*allow-unknown*/, &maintenance_set_cmdlist);
22949
22950 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22951 Show DWARF 2 specific variables\n\
22952 Show DWARF 2 variables such as the cache size"),
22953 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22954 0/*allow-unknown*/, &maintenance_show_cmdlist);
22955
22956 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22957 &dwarf2_max_cache_age, _("\
22958 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22959 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22960 A higher limit means that cached compilation units will be stored\n\
22961 in memory longer, and more total memory will be used. Zero disables\n\
22962 caching, which can slow down startup."),
22963 NULL,
22964 show_dwarf2_max_cache_age,
22965 &set_dwarf2_cmdlist,
22966 &show_dwarf2_cmdlist);
22967
22968 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22969 &dwarf2_always_disassemble, _("\
22970 Set whether `info address' always disassembles DWARF expressions."), _("\
22971 Show whether `info address' always disassembles DWARF expressions."), _("\
22972 When enabled, DWARF expressions are always printed in an assembly-like\n\
22973 syntax. When disabled, expressions will be printed in a more\n\
22974 conversational style, when possible."),
22975 NULL,
22976 show_dwarf2_always_disassemble,
22977 &set_dwarf2_cmdlist,
22978 &show_dwarf2_cmdlist);
22979
22980 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22981 Set debugging of the dwarf2 reader."), _("\
22982 Show debugging of the dwarf2 reader."), _("\
22983 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22984 reading and symtab expansion. A value of 1 (one) provides basic\n\
22985 information. A value greater than 1 provides more verbose information."),
22986 NULL,
22987 NULL,
22988 &setdebuglist, &showdebuglist);
22989
22990 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22991 Set debugging of the dwarf2 DIE reader."), _("\
22992 Show debugging of the dwarf2 DIE reader."), _("\
22993 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22994 The value is the maximum depth to print."),
22995 NULL,
22996 NULL,
22997 &setdebuglist, &showdebuglist);
22998
22999 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23000 Set cross-checking of \"physname\" code against demangler."), _("\
23001 Show cross-checking of \"physname\" code against demangler."), _("\
23002 When enabled, GDB's internal \"physname\" code is checked against\n\
23003 the demangler."),
23004 NULL, show_check_physname,
23005 &setdebuglist, &showdebuglist);
23006
23007 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23008 no_class, &use_deprecated_index_sections, _("\
23009 Set whether to use deprecated gdb_index sections."), _("\
23010 Show whether to use deprecated gdb_index sections."), _("\
23011 When enabled, deprecated .gdb_index sections are used anyway.\n\
23012 Normally they are ignored either because of a missing feature or\n\
23013 performance issue.\n\
23014 Warning: This option must be enabled before gdb reads the file."),
23015 NULL,
23016 NULL,
23017 &setlist, &showlist);
23018
23019 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23020 _("\
23021 Save a gdb-index file.\n\
23022 Usage: save gdb-index DIRECTORY"),
23023 &save_cmdlist);
23024 set_cmd_completer (c, filename_completer);
23025
23026 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23027 &dwarf2_locexpr_funcs);
23028 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23029 &dwarf2_loclist_funcs);
23030
23031 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23032 &dwarf2_block_frame_base_locexpr_funcs);
23033 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23034 &dwarf2_block_frame_base_loclist_funcs);
23035 }
This page took 0.520502 seconds and 4 git commands to generate.