* windows-nat.c (handle_output_debug_string): Replace call
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71
72 #include <fcntl.h>
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 struct dwarf2_section_info
96 {
97 asection *asection;
98 gdb_byte *buffer;
99 bfd_size_type size;
100 /* True if we have tried to read this section. */
101 int readin;
102 };
103
104 typedef struct dwarf2_section_info dwarf2_section_info_def;
105 DEF_VEC_O (dwarf2_section_info_def);
106
107 /* All offsets in the index are of this type. It must be
108 architecture-independent. */
109 typedef uint32_t offset_type;
110
111 DEF_VEC_I (offset_type);
112
113 /* Ensure only legit values are used. */
114 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
115 do { \
116 gdb_assert ((unsigned int) (value) <= 1); \
117 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
118 } while (0)
119
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
122 do { \
123 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
124 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
125 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
129 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
132 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
133 } while (0)
134
135 /* A description of the mapped index. The file format is described in
136 a comment by the code that writes the index. */
137 struct mapped_index
138 {
139 /* Index data format version. */
140 int version;
141
142 /* The total length of the buffer. */
143 off_t total_size;
144
145 /* A pointer to the address table data. */
146 const gdb_byte *address_table;
147
148 /* Size of the address table data in bytes. */
149 offset_type address_table_size;
150
151 /* The symbol table, implemented as a hash table. */
152 const offset_type *symbol_table;
153
154 /* Size in slots, each slot is 2 offset_types. */
155 offset_type symbol_table_slots;
156
157 /* A pointer to the constant pool. */
158 const char *constant_pool;
159 };
160
161 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
162 DEF_VEC_P (dwarf2_per_cu_ptr);
163
164 /* Collection of data recorded per objfile.
165 This hangs off of dwarf2_objfile_data_key. */
166
167 struct dwarf2_per_objfile
168 {
169 struct dwarf2_section_info info;
170 struct dwarf2_section_info abbrev;
171 struct dwarf2_section_info line;
172 struct dwarf2_section_info loc;
173 struct dwarf2_section_info macinfo;
174 struct dwarf2_section_info macro;
175 struct dwarf2_section_info str;
176 struct dwarf2_section_info ranges;
177 struct dwarf2_section_info addr;
178 struct dwarf2_section_info frame;
179 struct dwarf2_section_info eh_frame;
180 struct dwarf2_section_info gdb_index;
181
182 VEC (dwarf2_section_info_def) *types;
183
184 /* Back link. */
185 struct objfile *objfile;
186
187 /* Table of all the compilation units. This is used to locate
188 the target compilation unit of a particular reference. */
189 struct dwarf2_per_cu_data **all_comp_units;
190
191 /* The number of compilation units in ALL_COMP_UNITS. */
192 int n_comp_units;
193
194 /* The number of .debug_types-related CUs. */
195 int n_type_units;
196
197 /* The .debug_types-related CUs (TUs). */
198 struct signatured_type **all_type_units;
199
200 /* The number of entries in all_type_unit_groups. */
201 int n_type_unit_groups;
202
203 /* Table of type unit groups.
204 This exists to make it easy to iterate over all CUs and TU groups. */
205 struct type_unit_group **all_type_unit_groups;
206
207 /* Table of struct type_unit_group objects.
208 The hash key is the DW_AT_stmt_list value. */
209 htab_t type_unit_groups;
210
211 /* A table mapping .debug_types signatures to its signatured_type entry.
212 This is NULL if the .debug_types section hasn't been read in yet. */
213 htab_t signatured_types;
214
215 /* Type unit statistics, to see how well the scaling improvements
216 are doing. */
217 struct tu_stats
218 {
219 int nr_uniq_abbrev_tables;
220 int nr_symtabs;
221 int nr_symtab_sharers;
222 int nr_stmt_less_type_units;
223 } tu_stats;
224
225 /* A chain of compilation units that are currently read in, so that
226 they can be freed later. */
227 struct dwarf2_per_cu_data *read_in_chain;
228
229 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
230 This is NULL if the table hasn't been allocated yet. */
231 htab_t dwo_files;
232
233 /* Non-zero if we've check for whether there is a DWP file. */
234 int dwp_checked;
235
236 /* The DWP file if there is one, or NULL. */
237 struct dwp_file *dwp_file;
238
239 /* The shared '.dwz' file, if one exists. This is used when the
240 original data was compressed using 'dwz -m'. */
241 struct dwz_file *dwz_file;
242
243 /* A flag indicating wether this objfile has a section loaded at a
244 VMA of 0. */
245 int has_section_at_zero;
246
247 /* True if we are using the mapped index,
248 or we are faking it for OBJF_READNOW's sake. */
249 unsigned char using_index;
250
251 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
252 struct mapped_index *index_table;
253
254 /* When using index_table, this keeps track of all quick_file_names entries.
255 TUs typically share line table entries with a CU, so we maintain a
256 separate table of all line table entries to support the sharing.
257 Note that while there can be way more TUs than CUs, we've already
258 sorted all the TUs into "type unit groups", grouped by their
259 DW_AT_stmt_list value. Therefore the only sharing done here is with a
260 CU and its associated TU group if there is one. */
261 htab_t quick_file_names_table;
262
263 /* Set during partial symbol reading, to prevent queueing of full
264 symbols. */
265 int reading_partial_symbols;
266
267 /* Table mapping type DIEs to their struct type *.
268 This is NULL if not allocated yet.
269 The mapping is done via (CU/TU signature + DIE offset) -> type. */
270 htab_t die_type_hash;
271
272 /* The CUs we recently read. */
273 VEC (dwarf2_per_cu_ptr) *just_read_cus;
274 };
275
276 static struct dwarf2_per_objfile *dwarf2_per_objfile;
277
278 /* Default names of the debugging sections. */
279
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
282
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
284 {
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_macinfo", ".zdebug_macinfo" },
290 { ".debug_macro", ".zdebug_macro" },
291 { ".debug_str", ".zdebug_str" },
292 { ".debug_ranges", ".zdebug_ranges" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
298 23
299 };
300
301 /* List of DWO/DWP sections. */
302
303 static const struct dwop_section_names
304 {
305 struct dwarf2_section_names abbrev_dwo;
306 struct dwarf2_section_names info_dwo;
307 struct dwarf2_section_names line_dwo;
308 struct dwarf2_section_names loc_dwo;
309 struct dwarf2_section_names macinfo_dwo;
310 struct dwarf2_section_names macro_dwo;
311 struct dwarf2_section_names str_dwo;
312 struct dwarf2_section_names str_offsets_dwo;
313 struct dwarf2_section_names types_dwo;
314 struct dwarf2_section_names cu_index;
315 struct dwarf2_section_names tu_index;
316 }
317 dwop_section_names =
318 {
319 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
320 { ".debug_info.dwo", ".zdebug_info.dwo" },
321 { ".debug_line.dwo", ".zdebug_line.dwo" },
322 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
323 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
324 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
325 { ".debug_str.dwo", ".zdebug_str.dwo" },
326 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
327 { ".debug_types.dwo", ".zdebug_types.dwo" },
328 { ".debug_cu_index", ".zdebug_cu_index" },
329 { ".debug_tu_index", ".zdebug_tu_index" },
330 };
331
332 /* local data types */
333
334 /* The data in a compilation unit header, after target2host
335 translation, looks like this. */
336 struct comp_unit_head
337 {
338 unsigned int length;
339 short version;
340 unsigned char addr_size;
341 unsigned char signed_addr_p;
342 sect_offset abbrev_offset;
343
344 /* Size of file offsets; either 4 or 8. */
345 unsigned int offset_size;
346
347 /* Size of the length field; either 4 or 12. */
348 unsigned int initial_length_size;
349
350 /* Offset to the first byte of this compilation unit header in the
351 .debug_info section, for resolving relative reference dies. */
352 sect_offset offset;
353
354 /* Offset to first die in this cu from the start of the cu.
355 This will be the first byte following the compilation unit header. */
356 cu_offset first_die_offset;
357 };
358
359 /* Type used for delaying computation of method physnames.
360 See comments for compute_delayed_physnames. */
361 struct delayed_method_info
362 {
363 /* The type to which the method is attached, i.e., its parent class. */
364 struct type *type;
365
366 /* The index of the method in the type's function fieldlists. */
367 int fnfield_index;
368
369 /* The index of the method in the fieldlist. */
370 int index;
371
372 /* The name of the DIE. */
373 const char *name;
374
375 /* The DIE associated with this method. */
376 struct die_info *die;
377 };
378
379 typedef struct delayed_method_info delayed_method_info;
380 DEF_VEC_O (delayed_method_info);
381
382 /* Internal state when decoding a particular compilation unit. */
383 struct dwarf2_cu
384 {
385 /* The objfile containing this compilation unit. */
386 struct objfile *objfile;
387
388 /* The header of the compilation unit. */
389 struct comp_unit_head header;
390
391 /* Base address of this compilation unit. */
392 CORE_ADDR base_address;
393
394 /* Non-zero if base_address has been set. */
395 int base_known;
396
397 /* The language we are debugging. */
398 enum language language;
399 const struct language_defn *language_defn;
400
401 const char *producer;
402
403 /* The generic symbol table building routines have separate lists for
404 file scope symbols and all all other scopes (local scopes). So
405 we need to select the right one to pass to add_symbol_to_list().
406 We do it by keeping a pointer to the correct list in list_in_scope.
407
408 FIXME: The original dwarf code just treated the file scope as the
409 first local scope, and all other local scopes as nested local
410 scopes, and worked fine. Check to see if we really need to
411 distinguish these in buildsym.c. */
412 struct pending **list_in_scope;
413
414 /* The abbrev table for this CU.
415 Normally this points to the abbrev table in the objfile.
416 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
417 struct abbrev_table *abbrev_table;
418
419 /* Hash table holding all the loaded partial DIEs
420 with partial_die->offset.SECT_OFF as hash. */
421 htab_t partial_dies;
422
423 /* Storage for things with the same lifetime as this read-in compilation
424 unit, including partial DIEs. */
425 struct obstack comp_unit_obstack;
426
427 /* When multiple dwarf2_cu structures are living in memory, this field
428 chains them all together, so that they can be released efficiently.
429 We will probably also want a generation counter so that most-recently-used
430 compilation units are cached... */
431 struct dwarf2_per_cu_data *read_in_chain;
432
433 /* Backchain to our per_cu entry if the tree has been built. */
434 struct dwarf2_per_cu_data *per_cu;
435
436 /* How many compilation units ago was this CU last referenced? */
437 int last_used;
438
439 /* A hash table of DIE cu_offset for following references with
440 die_info->offset.sect_off as hash. */
441 htab_t die_hash;
442
443 /* Full DIEs if read in. */
444 struct die_info *dies;
445
446 /* A set of pointers to dwarf2_per_cu_data objects for compilation
447 units referenced by this one. Only set during full symbol processing;
448 partial symbol tables do not have dependencies. */
449 htab_t dependencies;
450
451 /* Header data from the line table, during full symbol processing. */
452 struct line_header *line_header;
453
454 /* A list of methods which need to have physnames computed
455 after all type information has been read. */
456 VEC (delayed_method_info) *method_list;
457
458 /* To be copied to symtab->call_site_htab. */
459 htab_t call_site_htab;
460
461 /* Non-NULL if this CU came from a DWO file.
462 There is an invariant here that is important to remember:
463 Except for attributes copied from the top level DIE in the "main"
464 (or "stub") file in preparation for reading the DWO file
465 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
466 Either there isn't a DWO file (in which case this is NULL and the point
467 is moot), or there is and either we're not going to read it (in which
468 case this is NULL) or there is and we are reading it (in which case this
469 is non-NULL). */
470 struct dwo_unit *dwo_unit;
471
472 /* The DW_AT_addr_base attribute if present, zero otherwise
473 (zero is a valid value though).
474 Note this value comes from the stub CU/TU's DIE. */
475 ULONGEST addr_base;
476
477 /* The DW_AT_ranges_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE.
480 Also note that the value is zero in the non-DWO case so this value can
481 be used without needing to know whether DWO files are in use or not.
482 N.B. This does not apply to DW_AT_ranges appearing in
483 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
484 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
485 DW_AT_ranges_base *would* have to be applied, and we'd have to care
486 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
487 ULONGEST ranges_base;
488
489 /* Mark used when releasing cached dies. */
490 unsigned int mark : 1;
491
492 /* This CU references .debug_loc. See the symtab->locations_valid field.
493 This test is imperfect as there may exist optimized debug code not using
494 any location list and still facing inlining issues if handled as
495 unoptimized code. For a future better test see GCC PR other/32998. */
496 unsigned int has_loclist : 1;
497
498 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
499 if all the producer_is_* fields are valid. This information is cached
500 because profiling CU expansion showed excessive time spent in
501 producer_is_gxx_lt_4_6. */
502 unsigned int checked_producer : 1;
503 unsigned int producer_is_gxx_lt_4_6 : 1;
504 unsigned int producer_is_gcc_lt_4_3 : 1;
505 unsigned int producer_is_icc : 1;
506
507 /* When set, the file that we're processing is known to have
508 debugging info for C++ namespaces. GCC 3.3.x did not produce
509 this information, but later versions do. */
510
511 unsigned int processing_has_namespace_info : 1;
512 };
513
514 /* Persistent data held for a compilation unit, even when not
515 processing it. We put a pointer to this structure in the
516 read_symtab_private field of the psymtab. */
517
518 struct dwarf2_per_cu_data
519 {
520 /* The start offset and length of this compilation unit.
521 NOTE: Unlike comp_unit_head.length, this length includes
522 initial_length_size.
523 If the DIE refers to a DWO file, this is always of the original die,
524 not the DWO file. */
525 sect_offset offset;
526 unsigned int length;
527
528 /* Flag indicating this compilation unit will be read in before
529 any of the current compilation units are processed. */
530 unsigned int queued : 1;
531
532 /* This flag will be set when reading partial DIEs if we need to load
533 absolutely all DIEs for this compilation unit, instead of just the ones
534 we think are interesting. It gets set if we look for a DIE in the
535 hash table and don't find it. */
536 unsigned int load_all_dies : 1;
537
538 /* Non-zero if this CU is from .debug_types. */
539 unsigned int is_debug_types : 1;
540
541 /* Non-zero if this CU is from the .dwz file. */
542 unsigned int is_dwz : 1;
543
544 /* The section this CU/TU lives in.
545 If the DIE refers to a DWO file, this is always the original die,
546 not the DWO file. */
547 struct dwarf2_section_info *info_or_types_section;
548
549 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
550 of the CU cache it gets reset to NULL again. */
551 struct dwarf2_cu *cu;
552
553 /* The corresponding objfile.
554 Normally we can get the objfile from dwarf2_per_objfile.
555 However we can enter this file with just a "per_cu" handle. */
556 struct objfile *objfile;
557
558 /* When using partial symbol tables, the 'psymtab' field is active.
559 Otherwise the 'quick' field is active. */
560 union
561 {
562 /* The partial symbol table associated with this compilation unit,
563 or NULL for unread partial units. */
564 struct partial_symtab *psymtab;
565
566 /* Data needed by the "quick" functions. */
567 struct dwarf2_per_cu_quick_data *quick;
568 } v;
569
570 /* The CUs we import using DW_TAG_imported_unit. This is filled in
571 while reading psymtabs, used to compute the psymtab dependencies,
572 and then cleared. Then it is filled in again while reading full
573 symbols, and only deleted when the objfile is destroyed.
574
575 This is also used to work around a difference between the way gold
576 generates .gdb_index version <=7 and the way gdb does. Arguably this
577 is a gold bug. For symbols coming from TUs, gold records in the index
578 the CU that includes the TU instead of the TU itself. This breaks
579 dw2_lookup_symbol: It assumes that if the index says symbol X lives
580 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
581 will find X. Alas TUs live in their own symtab, so after expanding CU Y
582 we need to look in TU Z to find X. Fortunately, this is akin to
583 DW_TAG_imported_unit, so we just use the same mechanism: For
584 .gdb_index version <=7 this also records the TUs that the CU referred
585 to. Concurrently with this change gdb was modified to emit version 8
586 indices so we only pay a price for gold generated indices. */
587 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
588
589 /* Type units are grouped by their DW_AT_stmt_list entry so that they
590 can share them. If this is a TU, this points to the containing
591 symtab. */
592 struct type_unit_group *type_unit_group;
593 };
594
595 /* Entry in the signatured_types hash table. */
596
597 struct signatured_type
598 {
599 /* The "per_cu" object of this type.
600 N.B.: This is the first member so that it's easy to convert pointers
601 between them. */
602 struct dwarf2_per_cu_data per_cu;
603
604 /* The type's signature. */
605 ULONGEST signature;
606
607 /* Offset in the TU of the type's DIE, as read from the TU header.
608 If the definition lives in a DWO file, this value is unusable. */
609 cu_offset type_offset_in_tu;
610
611 /* Offset in the section of the type's DIE.
612 If the definition lives in a DWO file, this is the offset in the
613 .debug_types.dwo section.
614 The value is zero until the actual value is known.
615 Zero is otherwise not a valid section offset. */
616 sect_offset type_offset_in_section;
617 };
618
619 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
620 This includes type_unit_group and quick_file_names. */
621
622 struct stmt_list_hash
623 {
624 /* The DWO unit this table is from or NULL if there is none. */
625 struct dwo_unit *dwo_unit;
626
627 /* Offset in .debug_line or .debug_line.dwo. */
628 sect_offset line_offset;
629 };
630
631 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
632 an object of this type. */
633
634 struct type_unit_group
635 {
636 /* dwarf2read.c's main "handle" on the symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab.
640 This PER_CU is recognized by having no section. */
641 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
642 struct dwarf2_per_cu_data per_cu;
643
644 union
645 {
646 /* The TUs that share this DW_AT_stmt_list entry.
647 This is added to while parsing type units to build partial symtabs,
648 and is deleted afterwards and not used again. */
649 VEC (dwarf2_per_cu_ptr) *tus;
650
651 /* When reading the line table in "quick" functions, we need a real TU.
652 Any will do, we know they all share the same DW_AT_stmt_list entry.
653 For simplicity's sake, we pick the first one. */
654 struct dwarf2_per_cu_data *first_tu;
655 } t;
656
657 /* The primary symtab.
658 Type units in a group needn't all be defined in the same source file,
659 so we create an essentially anonymous symtab as the primary symtab. */
660 struct symtab *primary_symtab;
661
662 /* The data used to construct the hash key. */
663 struct stmt_list_hash hash;
664
665 /* The number of symtabs from the line header.
666 The value here must match line_header.num_file_names. */
667 unsigned int num_symtabs;
668
669 /* The symbol tables for this TU (obtained from the files listed in
670 DW_AT_stmt_list).
671 WARNING: The order of entries here must match the order of entries
672 in the line header. After the first TU using this type_unit_group, the
673 line header for the subsequent TUs is recreated from this. This is done
674 because we need to use the same symtabs for each TU using the same
675 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
676 there's no guarantee the line header doesn't have duplicate entries. */
677 struct symtab **symtabs;
678 };
679
680 /* These sections are what may appear in a DWO file. */
681
682 struct dwo_sections
683 {
684 struct dwarf2_section_info abbrev;
685 struct dwarf2_section_info line;
686 struct dwarf2_section_info loc;
687 struct dwarf2_section_info macinfo;
688 struct dwarf2_section_info macro;
689 struct dwarf2_section_info str;
690 struct dwarf2_section_info str_offsets;
691 /* In the case of a virtual DWO file, these two are unused. */
692 struct dwarf2_section_info info;
693 VEC (dwarf2_section_info_def) *types;
694 };
695
696 /* Common bits of DWO CUs/TUs. */
697
698 struct dwo_unit
699 {
700 /* Backlink to the containing struct dwo_file. */
701 struct dwo_file *dwo_file;
702
703 /* The "id" that distinguishes this CU/TU.
704 .debug_info calls this "dwo_id", .debug_types calls this "signature".
705 Since signatures came first, we stick with it for consistency. */
706 ULONGEST signature;
707
708 /* The section this CU/TU lives in, in the DWO file. */
709 struct dwarf2_section_info *info_or_types_section;
710
711 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
712 sect_offset offset;
713 unsigned int length;
714
715 /* For types, offset in the type's DIE of the type defined by this TU. */
716 cu_offset type_offset_in_tu;
717 };
718
719 /* Data for one DWO file.
720 This includes virtual DWO files that have been packaged into a
721 DWP file. */
722
723 struct dwo_file
724 {
725 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
726 For virtual DWO files the name is constructed from the section offsets
727 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
728 from related CU+TUs. */
729 const char *name;
730
731 /* The bfd, when the file is open. Otherwise this is NULL.
732 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
733 bfd *dbfd;
734
735 /* Section info for this file. */
736 struct dwo_sections sections;
737
738 /* Table of CUs in the file.
739 Each element is a struct dwo_unit. */
740 htab_t cus;
741
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
744 htab_t tus;
745 };
746
747 /* These sections are what may appear in a DWP file. */
748
749 struct dwp_sections
750 {
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
755 by section number. We don't need to record them here. */
756 };
757
758 /* These sections are what may appear in a virtual DWO file. */
759
760 struct virtual_dwo_sections
761 {
762 struct dwarf2_section_info abbrev;
763 struct dwarf2_section_info line;
764 struct dwarf2_section_info loc;
765 struct dwarf2_section_info macinfo;
766 struct dwarf2_section_info macro;
767 struct dwarf2_section_info str_offsets;
768 /* Each DWP hash table entry records one CU or one TU.
769 That is recorded here, and copied to dwo_unit.info_or_types_section. */
770 struct dwarf2_section_info info_or_types;
771 };
772
773 /* Contents of DWP hash tables. */
774
775 struct dwp_hash_table
776 {
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table, *section_pool;
779 };
780
781 /* Data for one DWP file. */
782
783 struct dwp_file
784 {
785 /* Name of the file. */
786 const char *name;
787
788 /* The bfd, when the file is open. Otherwise this is NULL. */
789 bfd *dbfd;
790
791 /* Section info for this file. */
792 struct dwp_sections sections;
793
794 /* Table of CUs in the file. */
795 const struct dwp_hash_table *cus;
796
797 /* Table of TUs in the file. */
798 const struct dwp_hash_table *tus;
799
800 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
801 htab_t loaded_cutus;
802
803 /* Table to map ELF section numbers to their sections. */
804 unsigned int num_sections;
805 asection **elf_sections;
806 };
807
808 /* This represents a '.dwz' file. */
809
810 struct dwz_file
811 {
812 /* A dwz file can only contain a few sections. */
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info info;
815 struct dwarf2_section_info str;
816 struct dwarf2_section_info line;
817 struct dwarf2_section_info macro;
818 struct dwarf2_section_info gdb_index;
819
820 /* The dwz's BFD. */
821 bfd *dwz_bfd;
822 };
823
824 /* Struct used to pass misc. parameters to read_die_and_children, et
825 al. which are used for both .debug_info and .debug_types dies.
826 All parameters here are unchanging for the life of the call. This
827 struct exists to abstract away the constant parameters of die reading. */
828
829 struct die_reader_specs
830 {
831 /* die_section->asection->owner. */
832 bfd* abfd;
833
834 /* The CU of the DIE we are parsing. */
835 struct dwarf2_cu *cu;
836
837 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
838 struct dwo_file *dwo_file;
839
840 /* The section the die comes from.
841 This is either .debug_info or .debug_types, or the .dwo variants. */
842 struct dwarf2_section_info *die_section;
843
844 /* die_section->buffer. */
845 gdb_byte *buffer;
846
847 /* The end of the buffer. */
848 const gdb_byte *buffer_end;
849 };
850
851 /* Type of function passed to init_cutu_and_read_dies, et.al. */
852 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
853 gdb_byte *info_ptr,
854 struct die_info *comp_unit_die,
855 int has_children,
856 void *data);
857
858 /* The line number information for a compilation unit (found in the
859 .debug_line section) begins with a "statement program header",
860 which contains the following information. */
861 struct line_header
862 {
863 unsigned int total_length;
864 unsigned short version;
865 unsigned int header_length;
866 unsigned char minimum_instruction_length;
867 unsigned char maximum_ops_per_instruction;
868 unsigned char default_is_stmt;
869 int line_base;
870 unsigned char line_range;
871 unsigned char opcode_base;
872
873 /* standard_opcode_lengths[i] is the number of operands for the
874 standard opcode whose value is i. This means that
875 standard_opcode_lengths[0] is unused, and the last meaningful
876 element is standard_opcode_lengths[opcode_base - 1]. */
877 unsigned char *standard_opcode_lengths;
878
879 /* The include_directories table. NOTE! These strings are not
880 allocated with xmalloc; instead, they are pointers into
881 debug_line_buffer. If you try to free them, `free' will get
882 indigestion. */
883 unsigned int num_include_dirs, include_dirs_size;
884 char **include_dirs;
885
886 /* The file_names table. NOTE! These strings are not allocated
887 with xmalloc; instead, they are pointers into debug_line_buffer.
888 Don't try to free them directly. */
889 unsigned int num_file_names, file_names_size;
890 struct file_entry
891 {
892 char *name;
893 unsigned int dir_index;
894 unsigned int mod_time;
895 unsigned int length;
896 int included_p; /* Non-zero if referenced by the Line Number Program. */
897 struct symtab *symtab; /* The associated symbol table, if any. */
898 } *file_names;
899
900 /* The start and end of the statement program following this
901 header. These point into dwarf2_per_objfile->line_buffer. */
902 gdb_byte *statement_program_start, *statement_program_end;
903 };
904
905 /* When we construct a partial symbol table entry we only
906 need this much information. */
907 struct partial_die_info
908 {
909 /* Offset of this DIE. */
910 sect_offset offset;
911
912 /* DWARF-2 tag for this DIE. */
913 ENUM_BITFIELD(dwarf_tag) tag : 16;
914
915 /* Assorted flags describing the data found in this DIE. */
916 unsigned int has_children : 1;
917 unsigned int is_external : 1;
918 unsigned int is_declaration : 1;
919 unsigned int has_type : 1;
920 unsigned int has_specification : 1;
921 unsigned int has_pc_info : 1;
922 unsigned int may_be_inlined : 1;
923
924 /* Flag set if the SCOPE field of this structure has been
925 computed. */
926 unsigned int scope_set : 1;
927
928 /* Flag set if the DIE has a byte_size attribute. */
929 unsigned int has_byte_size : 1;
930
931 /* Flag set if any of the DIE's children are template arguments. */
932 unsigned int has_template_arguments : 1;
933
934 /* Flag set if fixup_partial_die has been called on this die. */
935 unsigned int fixup_called : 1;
936
937 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
938 unsigned int is_dwz : 1;
939
940 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
941 unsigned int spec_is_dwz : 1;
942
943 /* The name of this DIE. Normally the value of DW_AT_name, but
944 sometimes a default name for unnamed DIEs. */
945 const char *name;
946
947 /* The linkage name, if present. */
948 const char *linkage_name;
949
950 /* The scope to prepend to our children. This is generally
951 allocated on the comp_unit_obstack, so will disappear
952 when this compilation unit leaves the cache. */
953 const char *scope;
954
955 /* Some data associated with the partial DIE. The tag determines
956 which field is live. */
957 union
958 {
959 /* The location description associated with this DIE, if any. */
960 struct dwarf_block *locdesc;
961 /* The offset of an import, for DW_TAG_imported_unit. */
962 sect_offset offset;
963 } d;
964
965 /* If HAS_PC_INFO, the PC range associated with this DIE. */
966 CORE_ADDR lowpc;
967 CORE_ADDR highpc;
968
969 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
970 DW_AT_sibling, if any. */
971 /* NOTE: This member isn't strictly necessary, read_partial_die could
972 return DW_AT_sibling values to its caller load_partial_dies. */
973 gdb_byte *sibling;
974
975 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
976 DW_AT_specification (or DW_AT_abstract_origin or
977 DW_AT_extension). */
978 sect_offset spec_offset;
979
980 /* Pointers to this DIE's parent, first child, and next sibling,
981 if any. */
982 struct partial_die_info *die_parent, *die_child, *die_sibling;
983 };
984
985 /* This data structure holds the information of an abbrev. */
986 struct abbrev_info
987 {
988 unsigned int number; /* number identifying abbrev */
989 enum dwarf_tag tag; /* dwarf tag */
990 unsigned short has_children; /* boolean */
991 unsigned short num_attrs; /* number of attributes */
992 struct attr_abbrev *attrs; /* an array of attribute descriptions */
993 struct abbrev_info *next; /* next in chain */
994 };
995
996 struct attr_abbrev
997 {
998 ENUM_BITFIELD(dwarf_attribute) name : 16;
999 ENUM_BITFIELD(dwarf_form) form : 16;
1000 };
1001
1002 /* Size of abbrev_table.abbrev_hash_table. */
1003 #define ABBREV_HASH_SIZE 121
1004
1005 /* Top level data structure to contain an abbreviation table. */
1006
1007 struct abbrev_table
1008 {
1009 /* Where the abbrev table came from.
1010 This is used as a sanity check when the table is used. */
1011 sect_offset offset;
1012
1013 /* Storage for the abbrev table. */
1014 struct obstack abbrev_obstack;
1015
1016 /* Hash table of abbrevs.
1017 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1018 It could be statically allocated, but the previous code didn't so we
1019 don't either. */
1020 struct abbrev_info **abbrevs;
1021 };
1022
1023 /* Attributes have a name and a value. */
1024 struct attribute
1025 {
1026 ENUM_BITFIELD(dwarf_attribute) name : 16;
1027 ENUM_BITFIELD(dwarf_form) form : 15;
1028
1029 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1030 field should be in u.str (existing only for DW_STRING) but it is kept
1031 here for better struct attribute alignment. */
1032 unsigned int string_is_canonical : 1;
1033
1034 union
1035 {
1036 const char *str;
1037 struct dwarf_block *blk;
1038 ULONGEST unsnd;
1039 LONGEST snd;
1040 CORE_ADDR addr;
1041 struct signatured_type *signatured_type;
1042 }
1043 u;
1044 };
1045
1046 /* This data structure holds a complete die structure. */
1047 struct die_info
1048 {
1049 /* DWARF-2 tag for this DIE. */
1050 ENUM_BITFIELD(dwarf_tag) tag : 16;
1051
1052 /* Number of attributes */
1053 unsigned char num_attrs;
1054
1055 /* True if we're presently building the full type name for the
1056 type derived from this DIE. */
1057 unsigned char building_fullname : 1;
1058
1059 /* Abbrev number */
1060 unsigned int abbrev;
1061
1062 /* Offset in .debug_info or .debug_types section. */
1063 sect_offset offset;
1064
1065 /* The dies in a compilation unit form an n-ary tree. PARENT
1066 points to this die's parent; CHILD points to the first child of
1067 this node; and all the children of a given node are chained
1068 together via their SIBLING fields. */
1069 struct die_info *child; /* Its first child, if any. */
1070 struct die_info *sibling; /* Its next sibling, if any. */
1071 struct die_info *parent; /* Its parent, if any. */
1072
1073 /* An array of attributes, with NUM_ATTRS elements. There may be
1074 zero, but it's not common and zero-sized arrays are not
1075 sufficiently portable C. */
1076 struct attribute attrs[1];
1077 };
1078
1079 /* Get at parts of an attribute structure. */
1080
1081 #define DW_STRING(attr) ((attr)->u.str)
1082 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1083 #define DW_UNSND(attr) ((attr)->u.unsnd)
1084 #define DW_BLOCK(attr) ((attr)->u.blk)
1085 #define DW_SND(attr) ((attr)->u.snd)
1086 #define DW_ADDR(attr) ((attr)->u.addr)
1087 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1088
1089 /* Blocks are a bunch of untyped bytes. */
1090 struct dwarf_block
1091 {
1092 size_t size;
1093
1094 /* Valid only if SIZE is not zero. */
1095 gdb_byte *data;
1096 };
1097
1098 #ifndef ATTR_ALLOC_CHUNK
1099 #define ATTR_ALLOC_CHUNK 4
1100 #endif
1101
1102 /* Allocate fields for structs, unions and enums in this size. */
1103 #ifndef DW_FIELD_ALLOC_CHUNK
1104 #define DW_FIELD_ALLOC_CHUNK 4
1105 #endif
1106
1107 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1108 but this would require a corresponding change in unpack_field_as_long
1109 and friends. */
1110 static int bits_per_byte = 8;
1111
1112 /* The routines that read and process dies for a C struct or C++ class
1113 pass lists of data member fields and lists of member function fields
1114 in an instance of a field_info structure, as defined below. */
1115 struct field_info
1116 {
1117 /* List of data member and baseclasses fields. */
1118 struct nextfield
1119 {
1120 struct nextfield *next;
1121 int accessibility;
1122 int virtuality;
1123 struct field field;
1124 }
1125 *fields, *baseclasses;
1126
1127 /* Number of fields (including baseclasses). */
1128 int nfields;
1129
1130 /* Number of baseclasses. */
1131 int nbaseclasses;
1132
1133 /* Set if the accesibility of one of the fields is not public. */
1134 int non_public_fields;
1135
1136 /* Member function fields array, entries are allocated in the order they
1137 are encountered in the object file. */
1138 struct nextfnfield
1139 {
1140 struct nextfnfield *next;
1141 struct fn_field fnfield;
1142 }
1143 *fnfields;
1144
1145 /* Member function fieldlist array, contains name of possibly overloaded
1146 member function, number of overloaded member functions and a pointer
1147 to the head of the member function field chain. */
1148 struct fnfieldlist
1149 {
1150 const char *name;
1151 int length;
1152 struct nextfnfield *head;
1153 }
1154 *fnfieldlists;
1155
1156 /* Number of entries in the fnfieldlists array. */
1157 int nfnfields;
1158
1159 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1160 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1161 struct typedef_field_list
1162 {
1163 struct typedef_field field;
1164 struct typedef_field_list *next;
1165 }
1166 *typedef_field_list;
1167 unsigned typedef_field_list_count;
1168 };
1169
1170 /* One item on the queue of compilation units to read in full symbols
1171 for. */
1172 struct dwarf2_queue_item
1173 {
1174 struct dwarf2_per_cu_data *per_cu;
1175 enum language pretend_language;
1176 struct dwarf2_queue_item *next;
1177 };
1178
1179 /* The current queue. */
1180 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1181
1182 /* Loaded secondary compilation units are kept in memory until they
1183 have not been referenced for the processing of this many
1184 compilation units. Set this to zero to disable caching. Cache
1185 sizes of up to at least twenty will improve startup time for
1186 typical inter-CU-reference binaries, at an obvious memory cost. */
1187 static int dwarf2_max_cache_age = 5;
1188 static void
1189 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1190 struct cmd_list_element *c, const char *value)
1191 {
1192 fprintf_filtered (file, _("The upper bound on the age of cached "
1193 "dwarf2 compilation units is %s.\n"),
1194 value);
1195 }
1196
1197
1198 /* Various complaints about symbol reading that don't abort the process. */
1199
1200 static void
1201 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1202 {
1203 complaint (&symfile_complaints,
1204 _("statement list doesn't fit in .debug_line section"));
1205 }
1206
1207 static void
1208 dwarf2_debug_line_missing_file_complaint (void)
1209 {
1210 complaint (&symfile_complaints,
1211 _(".debug_line section has line data without a file"));
1212 }
1213
1214 static void
1215 dwarf2_debug_line_missing_end_sequence_complaint (void)
1216 {
1217 complaint (&symfile_complaints,
1218 _(".debug_line section has line "
1219 "program sequence without an end"));
1220 }
1221
1222 static void
1223 dwarf2_complex_location_expr_complaint (void)
1224 {
1225 complaint (&symfile_complaints, _("location expression too complex"));
1226 }
1227
1228 static void
1229 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1230 int arg3)
1231 {
1232 complaint (&symfile_complaints,
1233 _("const value length mismatch for '%s', got %d, expected %d"),
1234 arg1, arg2, arg3);
1235 }
1236
1237 static void
1238 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1239 {
1240 complaint (&symfile_complaints,
1241 _("debug info runs off end of %s section"
1242 " [in module %s]"),
1243 section->asection->name,
1244 bfd_get_filename (section->asection->owner));
1245 }
1246
1247 static void
1248 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1249 {
1250 complaint (&symfile_complaints,
1251 _("macro debug info contains a "
1252 "malformed macro definition:\n`%s'"),
1253 arg1);
1254 }
1255
1256 static void
1257 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1258 {
1259 complaint (&symfile_complaints,
1260 _("invalid attribute class or form for '%s' in '%s'"),
1261 arg1, arg2);
1262 }
1263
1264 /* local function prototypes */
1265
1266 static void dwarf2_locate_sections (bfd *, asection *, void *);
1267
1268 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1269 struct objfile *);
1270
1271 static void dwarf2_find_base_address (struct die_info *die,
1272 struct dwarf2_cu *cu);
1273
1274 static void dwarf2_build_psymtabs_hard (struct objfile *);
1275
1276 static void scan_partial_symbols (struct partial_die_info *,
1277 CORE_ADDR *, CORE_ADDR *,
1278 int, struct dwarf2_cu *);
1279
1280 static void add_partial_symbol (struct partial_die_info *,
1281 struct dwarf2_cu *);
1282
1283 static void add_partial_namespace (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1288 CORE_ADDR *highpc, int need_pc,
1289 struct dwarf2_cu *cu);
1290
1291 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1292 struct dwarf2_cu *cu);
1293
1294 static void add_partial_subprogram (struct partial_die_info *pdi,
1295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1296 int need_pc, struct dwarf2_cu *cu);
1297
1298 static void dwarf2_read_symtab (struct partial_symtab *,
1299 struct objfile *);
1300
1301 static void psymtab_to_symtab_1 (struct partial_symtab *);
1302
1303 static struct abbrev_info *abbrev_table_lookup_abbrev
1304 (const struct abbrev_table *, unsigned int);
1305
1306 static struct abbrev_table *abbrev_table_read_table
1307 (struct dwarf2_section_info *, sect_offset);
1308
1309 static void abbrev_table_free (struct abbrev_table *);
1310
1311 static void abbrev_table_free_cleanup (void *);
1312
1313 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1314 struct dwarf2_section_info *);
1315
1316 static void dwarf2_free_abbrev_table (void *);
1317
1318 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1319
1320 static struct partial_die_info *load_partial_dies
1321 (const struct die_reader_specs *, gdb_byte *, int);
1322
1323 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1324 struct partial_die_info *,
1325 struct abbrev_info *,
1326 unsigned int,
1327 gdb_byte *);
1328
1329 static struct partial_die_info *find_partial_die (sect_offset, int,
1330 struct dwarf2_cu *);
1331
1332 static void fixup_partial_die (struct partial_die_info *,
1333 struct dwarf2_cu *);
1334
1335 static gdb_byte *read_attribute (const struct die_reader_specs *,
1336 struct attribute *, struct attr_abbrev *,
1337 gdb_byte *);
1338
1339 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1340
1341 static int read_1_signed_byte (bfd *, const gdb_byte *);
1342
1343 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1344
1345 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1346
1347 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1348
1349 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1350 unsigned int *);
1351
1352 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1353
1354 static LONGEST read_checked_initial_length_and_offset
1355 (bfd *, gdb_byte *, const struct comp_unit_head *,
1356 unsigned int *, unsigned int *);
1357
1358 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1359 unsigned int *);
1360
1361 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1362
1363 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1364 sect_offset);
1365
1366 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1367
1368 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1369
1370 static char *read_indirect_string (bfd *, gdb_byte *,
1371 const struct comp_unit_head *,
1372 unsigned int *);
1373
1374 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1375
1376 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1377
1378 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1379
1380 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1381 unsigned int *);
1382
1383 static char *read_str_index (const struct die_reader_specs *reader,
1384 struct dwarf2_cu *cu, ULONGEST str_index);
1385
1386 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1387
1388 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1389 struct dwarf2_cu *);
1390
1391 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1392 unsigned int);
1393
1394 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1395 struct dwarf2_cu *cu);
1396
1397 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1398
1399 static struct die_info *die_specification (struct die_info *die,
1400 struct dwarf2_cu **);
1401
1402 static void free_line_header (struct line_header *lh);
1403
1404 static void add_file_name (struct line_header *, char *, unsigned int,
1405 unsigned int, unsigned int);
1406
1407 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1408 struct dwarf2_cu *cu);
1409
1410 static void dwarf_decode_lines (struct line_header *, const char *,
1411 struct dwarf2_cu *, struct partial_symtab *,
1412 int);
1413
1414 static void dwarf2_start_subfile (char *, const char *, const char *);
1415
1416 static void dwarf2_start_symtab (struct dwarf2_cu *,
1417 const char *, const char *, CORE_ADDR);
1418
1419 static struct symbol *new_symbol (struct die_info *, struct type *,
1420 struct dwarf2_cu *);
1421
1422 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1423 struct dwarf2_cu *, struct symbol *);
1424
1425 static void dwarf2_const_value (struct attribute *, struct symbol *,
1426 struct dwarf2_cu *);
1427
1428 static void dwarf2_const_value_attr (struct attribute *attr,
1429 struct type *type,
1430 const char *name,
1431 struct obstack *obstack,
1432 struct dwarf2_cu *cu, LONGEST *value,
1433 gdb_byte **bytes,
1434 struct dwarf2_locexpr_baton **baton);
1435
1436 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1437
1438 static int need_gnat_info (struct dwarf2_cu *);
1439
1440 static struct type *die_descriptive_type (struct die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void set_descriptive_type (struct type *, struct die_info *,
1444 struct dwarf2_cu *);
1445
1446 static struct type *die_containing_type (struct die_info *,
1447 struct dwarf2_cu *);
1448
1449 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1450 struct dwarf2_cu *);
1451
1452 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1453
1454 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1455
1456 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1457
1458 static char *typename_concat (struct obstack *obs, const char *prefix,
1459 const char *suffix, int physname,
1460 struct dwarf2_cu *cu);
1461
1462 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1463
1464 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1465
1466 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1467
1468 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1469
1470 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1471
1472 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1473 struct dwarf2_cu *, struct partial_symtab *);
1474
1475 static int dwarf2_get_pc_bounds (struct die_info *,
1476 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1477 struct partial_symtab *);
1478
1479 static void get_scope_pc_bounds (struct die_info *,
1480 CORE_ADDR *, CORE_ADDR *,
1481 struct dwarf2_cu *);
1482
1483 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1484 CORE_ADDR, struct dwarf2_cu *);
1485
1486 static void dwarf2_add_field (struct field_info *, struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static void dwarf2_attach_fields_to_type (struct field_info *,
1490 struct type *, struct dwarf2_cu *);
1491
1492 static void dwarf2_add_member_fn (struct field_info *,
1493 struct die_info *, struct type *,
1494 struct dwarf2_cu *);
1495
1496 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1497 struct type *,
1498 struct dwarf2_cu *);
1499
1500 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1501
1502 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1503
1504 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1505
1506 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1507
1508 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1509
1510 static struct type *read_module_type (struct die_info *die,
1511 struct dwarf2_cu *cu);
1512
1513 static const char *namespace_name (struct die_info *die,
1514 int *is_anonymous, struct dwarf2_cu *);
1515
1516 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1517
1518 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1519
1520 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1521 struct dwarf2_cu *);
1522
1523 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1524 gdb_byte *info_ptr,
1525 gdb_byte **new_info_ptr,
1526 struct die_info *parent);
1527
1528 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1529 gdb_byte *info_ptr,
1530 gdb_byte **new_info_ptr,
1531 struct die_info *parent);
1532
1533 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1534 struct die_info **, gdb_byte *, int *, int);
1535
1536 static gdb_byte *read_full_die (const struct die_reader_specs *,
1537 struct die_info **, gdb_byte *, int *);
1538
1539 static void process_die (struct die_info *, struct dwarf2_cu *);
1540
1541 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1542 struct obstack *);
1543
1544 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1545
1546 static const char *dwarf2_full_name (const char *name,
1547 struct die_info *die,
1548 struct dwarf2_cu *cu);
1549
1550 static struct die_info *dwarf2_extension (struct die_info *die,
1551 struct dwarf2_cu **);
1552
1553 static const char *dwarf_tag_name (unsigned int);
1554
1555 static const char *dwarf_attr_name (unsigned int);
1556
1557 static const char *dwarf_form_name (unsigned int);
1558
1559 static char *dwarf_bool_name (unsigned int);
1560
1561 static const char *dwarf_type_encoding_name (unsigned int);
1562
1563 static struct die_info *sibling_die (struct die_info *);
1564
1565 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1566
1567 static void dump_die_for_error (struct die_info *);
1568
1569 static void dump_die_1 (struct ui_file *, int level, int max_level,
1570 struct die_info *);
1571
1572 /*static*/ void dump_die (struct die_info *, int max_level);
1573
1574 static void store_in_ref_table (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static int is_ref_attr (struct attribute *);
1578
1579 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1580
1581 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1582
1583 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1584 struct attribute *,
1585 struct dwarf2_cu **);
1586
1587 static struct die_info *follow_die_ref (struct die_info *,
1588 struct attribute *,
1589 struct dwarf2_cu **);
1590
1591 static struct die_info *follow_die_sig (struct die_info *,
1592 struct attribute *,
1593 struct dwarf2_cu **);
1594
1595 static struct signatured_type *lookup_signatured_type_at_offset
1596 (struct objfile *objfile,
1597 struct dwarf2_section_info *section, sect_offset offset);
1598
1599 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1600
1601 static void read_signatured_type (struct signatured_type *);
1602
1603 static struct type_unit_group *get_type_unit_group
1604 (struct dwarf2_cu *, struct attribute *);
1605
1606 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1607
1608 /* memory allocation interface */
1609
1610 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1611
1612 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1613
1614 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1615 const char *, int);
1616
1617 static int attr_form_is_block (struct attribute *);
1618
1619 static int attr_form_is_section_offset (struct attribute *);
1620
1621 static int attr_form_is_constant (struct attribute *);
1622
1623 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1624 struct dwarf2_loclist_baton *baton,
1625 struct attribute *attr);
1626
1627 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1628 struct symbol *sym,
1629 struct dwarf2_cu *cu);
1630
1631 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1632 gdb_byte *info_ptr,
1633 struct abbrev_info *abbrev);
1634
1635 static void free_stack_comp_unit (void *);
1636
1637 static hashval_t partial_die_hash (const void *item);
1638
1639 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1640
1641 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1642 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1643
1644 static void init_one_comp_unit (struct dwarf2_cu *cu,
1645 struct dwarf2_per_cu_data *per_cu);
1646
1647 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1648 struct die_info *comp_unit_die,
1649 enum language pretend_language);
1650
1651 static void free_heap_comp_unit (void *);
1652
1653 static void free_cached_comp_units (void *);
1654
1655 static void age_cached_comp_units (void);
1656
1657 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1658
1659 static struct type *set_die_type (struct die_info *, struct type *,
1660 struct dwarf2_cu *);
1661
1662 static void create_all_comp_units (struct objfile *);
1663
1664 static int create_all_type_units (struct objfile *);
1665
1666 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1667 enum language);
1668
1669 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1670 enum language);
1671
1672 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1673 enum language);
1674
1675 static void dwarf2_add_dependence (struct dwarf2_cu *,
1676 struct dwarf2_per_cu_data *);
1677
1678 static void dwarf2_mark (struct dwarf2_cu *);
1679
1680 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1681
1682 static struct type *get_die_type_at_offset (sect_offset,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1686
1687 static void dwarf2_release_queue (void *dummy);
1688
1689 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1690 enum language pretend_language);
1691
1692 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1693 struct dwarf2_per_cu_data *per_cu,
1694 enum language pretend_language);
1695
1696 static void process_queue (void);
1697
1698 static void find_file_and_directory (struct die_info *die,
1699 struct dwarf2_cu *cu,
1700 const char **name, const char **comp_dir);
1701
1702 static char *file_full_name (int file, struct line_header *lh,
1703 const char *comp_dir);
1704
1705 static gdb_byte *read_and_check_comp_unit_head
1706 (struct comp_unit_head *header,
1707 struct dwarf2_section_info *section,
1708 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1709 int is_debug_types_section);
1710
1711 static void init_cutu_and_read_dies
1712 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1713 int use_existing_cu, int keep,
1714 die_reader_func_ftype *die_reader_func, void *data);
1715
1716 static void init_cutu_and_read_dies_simple
1717 (struct dwarf2_per_cu_data *this_cu,
1718 die_reader_func_ftype *die_reader_func, void *data);
1719
1720 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1721
1722 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1723
1724 static struct dwo_unit *lookup_dwo_comp_unit
1725 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1726
1727 static struct dwo_unit *lookup_dwo_type_unit
1728 (struct signatured_type *, const char *, const char *);
1729
1730 static void free_dwo_file_cleanup (void *);
1731
1732 static void process_cu_includes (void);
1733
1734 static void check_producer (struct dwarf2_cu *cu);
1735
1736 #if WORDS_BIGENDIAN
1737
1738 /* Convert VALUE between big- and little-endian. */
1739 static offset_type
1740 byte_swap (offset_type value)
1741 {
1742 offset_type result;
1743
1744 result = (value & 0xff) << 24;
1745 result |= (value & 0xff00) << 8;
1746 result |= (value & 0xff0000) >> 8;
1747 result |= (value & 0xff000000) >> 24;
1748 return result;
1749 }
1750
1751 #define MAYBE_SWAP(V) byte_swap (V)
1752
1753 #else
1754 #define MAYBE_SWAP(V) (V)
1755 #endif /* WORDS_BIGENDIAN */
1756
1757 /* The suffix for an index file. */
1758 #define INDEX_SUFFIX ".gdb-index"
1759
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1762
1763 /* Try to locate the sections we need for DWARF 2 debugging
1764 information and return true if we have enough to do something.
1765 NAMES points to the dwarf2 section names, or is NULL if the standard
1766 ELF names are used. */
1767
1768 int
1769 dwarf2_has_info (struct objfile *objfile,
1770 const struct dwarf2_debug_sections *names)
1771 {
1772 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1773 if (!dwarf2_per_objfile)
1774 {
1775 /* Initialize per-objfile state. */
1776 struct dwarf2_per_objfile *data
1777 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1778
1779 memset (data, 0, sizeof (*data));
1780 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1781 dwarf2_per_objfile = data;
1782
1783 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1784 (void *) names);
1785 dwarf2_per_objfile->objfile = objfile;
1786 }
1787 return (dwarf2_per_objfile->info.asection != NULL
1788 && dwarf2_per_objfile->abbrev.asection != NULL);
1789 }
1790
1791 /* When loading sections, we look either for uncompressed section or for
1792 compressed section names. */
1793
1794 static int
1795 section_is_p (const char *section_name,
1796 const struct dwarf2_section_names *names)
1797 {
1798 if (names->normal != NULL
1799 && strcmp (section_name, names->normal) == 0)
1800 return 1;
1801 if (names->compressed != NULL
1802 && strcmp (section_name, names->compressed) == 0)
1803 return 1;
1804 return 0;
1805 }
1806
1807 /* This function is mapped across the sections and remembers the
1808 offset and size of each of the debugging sections we are interested
1809 in. */
1810
1811 static void
1812 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1813 {
1814 const struct dwarf2_debug_sections *names;
1815 flagword aflag = bfd_get_section_flags (abfd, sectp);
1816
1817 if (vnames == NULL)
1818 names = &dwarf2_elf_names;
1819 else
1820 names = (const struct dwarf2_debug_sections *) vnames;
1821
1822 if ((aflag & SEC_HAS_CONTENTS) == 0)
1823 {
1824 }
1825 else if (section_is_p (sectp->name, &names->info))
1826 {
1827 dwarf2_per_objfile->info.asection = sectp;
1828 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1829 }
1830 else if (section_is_p (sectp->name, &names->abbrev))
1831 {
1832 dwarf2_per_objfile->abbrev.asection = sectp;
1833 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1834 }
1835 else if (section_is_p (sectp->name, &names->line))
1836 {
1837 dwarf2_per_objfile->line.asection = sectp;
1838 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1839 }
1840 else if (section_is_p (sectp->name, &names->loc))
1841 {
1842 dwarf2_per_objfile->loc.asection = sectp;
1843 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1844 }
1845 else if (section_is_p (sectp->name, &names->macinfo))
1846 {
1847 dwarf2_per_objfile->macinfo.asection = sectp;
1848 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1849 }
1850 else if (section_is_p (sectp->name, &names->macro))
1851 {
1852 dwarf2_per_objfile->macro.asection = sectp;
1853 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1854 }
1855 else if (section_is_p (sectp->name, &names->str))
1856 {
1857 dwarf2_per_objfile->str.asection = sectp;
1858 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1859 }
1860 else if (section_is_p (sectp->name, &names->addr))
1861 {
1862 dwarf2_per_objfile->addr.asection = sectp;
1863 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1864 }
1865 else if (section_is_p (sectp->name, &names->frame))
1866 {
1867 dwarf2_per_objfile->frame.asection = sectp;
1868 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1869 }
1870 else if (section_is_p (sectp->name, &names->eh_frame))
1871 {
1872 dwarf2_per_objfile->eh_frame.asection = sectp;
1873 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1874 }
1875 else if (section_is_p (sectp->name, &names->ranges))
1876 {
1877 dwarf2_per_objfile->ranges.asection = sectp;
1878 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1879 }
1880 else if (section_is_p (sectp->name, &names->types))
1881 {
1882 struct dwarf2_section_info type_section;
1883
1884 memset (&type_section, 0, sizeof (type_section));
1885 type_section.asection = sectp;
1886 type_section.size = bfd_get_section_size (sectp);
1887
1888 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1889 &type_section);
1890 }
1891 else if (section_is_p (sectp->name, &names->gdb_index))
1892 {
1893 dwarf2_per_objfile->gdb_index.asection = sectp;
1894 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1895 }
1896
1897 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1898 && bfd_section_vma (abfd, sectp) == 0)
1899 dwarf2_per_objfile->has_section_at_zero = 1;
1900 }
1901
1902 /* A helper function that decides whether a section is empty,
1903 or not present. */
1904
1905 static int
1906 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1907 {
1908 return info->asection == NULL || info->size == 0;
1909 }
1910
1911 /* Read the contents of the section INFO.
1912 OBJFILE is the main object file, but not necessarily the file where
1913 the section comes from. E.g., for DWO files INFO->asection->owner
1914 is the bfd of the DWO file.
1915 If the section is compressed, uncompress it before returning. */
1916
1917 static void
1918 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1919 {
1920 asection *sectp = info->asection;
1921 bfd *abfd;
1922 gdb_byte *buf, *retbuf;
1923 unsigned char header[4];
1924
1925 if (info->readin)
1926 return;
1927 info->buffer = NULL;
1928 info->readin = 1;
1929
1930 if (dwarf2_section_empty_p (info))
1931 return;
1932
1933 abfd = sectp->owner;
1934
1935 /* If the section has relocations, we must read it ourselves.
1936 Otherwise we attach it to the BFD. */
1937 if ((sectp->flags & SEC_RELOC) == 0)
1938 {
1939 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1940
1941 /* We have to cast away const here for historical reasons.
1942 Fixing dwarf2read to be const-correct would be quite nice. */
1943 info->buffer = (gdb_byte *) bytes;
1944 return;
1945 }
1946
1947 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1948 info->buffer = buf;
1949
1950 /* When debugging .o files, we may need to apply relocations; see
1951 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1952 We never compress sections in .o files, so we only need to
1953 try this when the section is not compressed. */
1954 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1955 if (retbuf != NULL)
1956 {
1957 info->buffer = retbuf;
1958 return;
1959 }
1960
1961 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1962 || bfd_bread (buf, info->size, abfd) != info->size)
1963 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1964 bfd_get_filename (abfd));
1965 }
1966
1967 /* A helper function that returns the size of a section in a safe way.
1968 If you are positive that the section has been read before using the
1969 size, then it is safe to refer to the dwarf2_section_info object's
1970 "size" field directly. In other cases, you must call this
1971 function, because for compressed sections the size field is not set
1972 correctly until the section has been read. */
1973
1974 static bfd_size_type
1975 dwarf2_section_size (struct objfile *objfile,
1976 struct dwarf2_section_info *info)
1977 {
1978 if (!info->readin)
1979 dwarf2_read_section (objfile, info);
1980 return info->size;
1981 }
1982
1983 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1984 SECTION_NAME. */
1985
1986 void
1987 dwarf2_get_section_info (struct objfile *objfile,
1988 enum dwarf2_section_enum sect,
1989 asection **sectp, gdb_byte **bufp,
1990 bfd_size_type *sizep)
1991 {
1992 struct dwarf2_per_objfile *data
1993 = objfile_data (objfile, dwarf2_objfile_data_key);
1994 struct dwarf2_section_info *info;
1995
1996 /* We may see an objfile without any DWARF, in which case we just
1997 return nothing. */
1998 if (data == NULL)
1999 {
2000 *sectp = NULL;
2001 *bufp = NULL;
2002 *sizep = 0;
2003 return;
2004 }
2005 switch (sect)
2006 {
2007 case DWARF2_DEBUG_FRAME:
2008 info = &data->frame;
2009 break;
2010 case DWARF2_EH_FRAME:
2011 info = &data->eh_frame;
2012 break;
2013 default:
2014 gdb_assert_not_reached ("unexpected section");
2015 }
2016
2017 dwarf2_read_section (objfile, info);
2018
2019 *sectp = info->asection;
2020 *bufp = info->buffer;
2021 *sizep = info->size;
2022 }
2023
2024 /* A helper function to find the sections for a .dwz file. */
2025
2026 static void
2027 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2028 {
2029 struct dwz_file *dwz_file = arg;
2030
2031 /* Note that we only support the standard ELF names, because .dwz
2032 is ELF-only (at the time of writing). */
2033 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2034 {
2035 dwz_file->abbrev.asection = sectp;
2036 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2037 }
2038 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2039 {
2040 dwz_file->info.asection = sectp;
2041 dwz_file->info.size = bfd_get_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2044 {
2045 dwz_file->str.asection = sectp;
2046 dwz_file->str.size = bfd_get_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2049 {
2050 dwz_file->line.asection = sectp;
2051 dwz_file->line.size = bfd_get_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2054 {
2055 dwz_file->macro.asection = sectp;
2056 dwz_file->macro.size = bfd_get_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2059 {
2060 dwz_file->gdb_index.asection = sectp;
2061 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2062 }
2063 }
2064
2065 /* Open the separate '.dwz' debug file, if needed. Error if the file
2066 cannot be found. */
2067
2068 static struct dwz_file *
2069 dwarf2_get_dwz_file (void)
2070 {
2071 bfd *abfd, *dwz_bfd;
2072 asection *section;
2073 gdb_byte *data;
2074 struct cleanup *cleanup;
2075 const char *filename;
2076 struct dwz_file *result;
2077
2078 if (dwarf2_per_objfile->dwz_file != NULL)
2079 return dwarf2_per_objfile->dwz_file;
2080
2081 abfd = dwarf2_per_objfile->objfile->obfd;
2082 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2083 if (section == NULL)
2084 error (_("could not find '.gnu_debugaltlink' section"));
2085 if (!bfd_malloc_and_get_section (abfd, section, &data))
2086 error (_("could not read '.gnu_debugaltlink' section: %s"),
2087 bfd_errmsg (bfd_get_error ()));
2088 cleanup = make_cleanup (xfree, data);
2089
2090 filename = data;
2091 if (!IS_ABSOLUTE_PATH (filename))
2092 {
2093 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2094 char *rel;
2095
2096 make_cleanup (xfree, abs);
2097 abs = ldirname (abs);
2098 make_cleanup (xfree, abs);
2099
2100 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2101 make_cleanup (xfree, rel);
2102 filename = rel;
2103 }
2104
2105 /* The format is just a NUL-terminated file name, followed by the
2106 build-id. For now, though, we ignore the build-id. */
2107 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2108 if (dwz_bfd == NULL)
2109 error (_("could not read '%s': %s"), filename,
2110 bfd_errmsg (bfd_get_error ()));
2111
2112 if (!bfd_check_format (dwz_bfd, bfd_object))
2113 {
2114 gdb_bfd_unref (dwz_bfd);
2115 error (_("file '%s' was not usable: %s"), filename,
2116 bfd_errmsg (bfd_get_error ()));
2117 }
2118
2119 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2120 struct dwz_file);
2121 result->dwz_bfd = dwz_bfd;
2122
2123 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2124
2125 do_cleanups (cleanup);
2126
2127 dwarf2_per_objfile->dwz_file = result;
2128 return result;
2129 }
2130 \f
2131 /* DWARF quick_symbols_functions support. */
2132
2133 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2134 unique line tables, so we maintain a separate table of all .debug_line
2135 derived entries to support the sharing.
2136 All the quick functions need is the list of file names. We discard the
2137 line_header when we're done and don't need to record it here. */
2138 struct quick_file_names
2139 {
2140 /* The data used to construct the hash key. */
2141 struct stmt_list_hash hash;
2142
2143 /* The number of entries in file_names, real_names. */
2144 unsigned int num_file_names;
2145
2146 /* The file names from the line table, after being run through
2147 file_full_name. */
2148 const char **file_names;
2149
2150 /* The file names from the line table after being run through
2151 gdb_realpath. These are computed lazily. */
2152 const char **real_names;
2153 };
2154
2155 /* When using the index (and thus not using psymtabs), each CU has an
2156 object of this type. This is used to hold information needed by
2157 the various "quick" methods. */
2158 struct dwarf2_per_cu_quick_data
2159 {
2160 /* The file table. This can be NULL if there was no file table
2161 or it's currently not read in.
2162 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2163 struct quick_file_names *file_names;
2164
2165 /* The corresponding symbol table. This is NULL if symbols for this
2166 CU have not yet been read. */
2167 struct symtab *symtab;
2168
2169 /* A temporary mark bit used when iterating over all CUs in
2170 expand_symtabs_matching. */
2171 unsigned int mark : 1;
2172
2173 /* True if we've tried to read the file table and found there isn't one.
2174 There will be no point in trying to read it again next time. */
2175 unsigned int no_file_data : 1;
2176 };
2177
2178 /* Utility hash function for a stmt_list_hash. */
2179
2180 static hashval_t
2181 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2182 {
2183 hashval_t v = 0;
2184
2185 if (stmt_list_hash->dwo_unit != NULL)
2186 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2187 v += stmt_list_hash->line_offset.sect_off;
2188 return v;
2189 }
2190
2191 /* Utility equality function for a stmt_list_hash. */
2192
2193 static int
2194 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2195 const struct stmt_list_hash *rhs)
2196 {
2197 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2198 return 0;
2199 if (lhs->dwo_unit != NULL
2200 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2201 return 0;
2202
2203 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2204 }
2205
2206 /* Hash function for a quick_file_names. */
2207
2208 static hashval_t
2209 hash_file_name_entry (const void *e)
2210 {
2211 const struct quick_file_names *file_data = e;
2212
2213 return hash_stmt_list_entry (&file_data->hash);
2214 }
2215
2216 /* Equality function for a quick_file_names. */
2217
2218 static int
2219 eq_file_name_entry (const void *a, const void *b)
2220 {
2221 const struct quick_file_names *ea = a;
2222 const struct quick_file_names *eb = b;
2223
2224 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2225 }
2226
2227 /* Delete function for a quick_file_names. */
2228
2229 static void
2230 delete_file_name_entry (void *e)
2231 {
2232 struct quick_file_names *file_data = e;
2233 int i;
2234
2235 for (i = 0; i < file_data->num_file_names; ++i)
2236 {
2237 xfree ((void*) file_data->file_names[i]);
2238 if (file_data->real_names)
2239 xfree ((void*) file_data->real_names[i]);
2240 }
2241
2242 /* The space for the struct itself lives on objfile_obstack,
2243 so we don't free it here. */
2244 }
2245
2246 /* Create a quick_file_names hash table. */
2247
2248 static htab_t
2249 create_quick_file_names_table (unsigned int nr_initial_entries)
2250 {
2251 return htab_create_alloc (nr_initial_entries,
2252 hash_file_name_entry, eq_file_name_entry,
2253 delete_file_name_entry, xcalloc, xfree);
2254 }
2255
2256 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2257 have to be created afterwards. You should call age_cached_comp_units after
2258 processing PER_CU->CU. dw2_setup must have been already called. */
2259
2260 static void
2261 load_cu (struct dwarf2_per_cu_data *per_cu)
2262 {
2263 if (per_cu->is_debug_types)
2264 load_full_type_unit (per_cu);
2265 else
2266 load_full_comp_unit (per_cu, language_minimal);
2267
2268 gdb_assert (per_cu->cu != NULL);
2269
2270 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2271 }
2272
2273 /* Read in the symbols for PER_CU. */
2274
2275 static void
2276 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2277 {
2278 struct cleanup *back_to;
2279
2280 /* Skip type_unit_groups, reading the type units they contain
2281 is handled elsewhere. */
2282 if (IS_TYPE_UNIT_GROUP (per_cu))
2283 return;
2284
2285 back_to = make_cleanup (dwarf2_release_queue, NULL);
2286
2287 if (dwarf2_per_objfile->using_index
2288 ? per_cu->v.quick->symtab == NULL
2289 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2290 {
2291 queue_comp_unit (per_cu, language_minimal);
2292 load_cu (per_cu);
2293 }
2294
2295 process_queue ();
2296
2297 /* Age the cache, releasing compilation units that have not
2298 been used recently. */
2299 age_cached_comp_units ();
2300
2301 do_cleanups (back_to);
2302 }
2303
2304 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2305 the objfile from which this CU came. Returns the resulting symbol
2306 table. */
2307
2308 static struct symtab *
2309 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2310 {
2311 gdb_assert (dwarf2_per_objfile->using_index);
2312 if (!per_cu->v.quick->symtab)
2313 {
2314 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2315 increment_reading_symtab ();
2316 dw2_do_instantiate_symtab (per_cu);
2317 process_cu_includes ();
2318 do_cleanups (back_to);
2319 }
2320 return per_cu->v.quick->symtab;
2321 }
2322
2323 /* Return the CU given its index.
2324
2325 This is intended for loops like:
2326
2327 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2328 + dwarf2_per_objfile->n_type_units); ++i)
2329 {
2330 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2331
2332 ...;
2333 }
2334 */
2335
2336 static struct dwarf2_per_cu_data *
2337 dw2_get_cu (int index)
2338 {
2339 if (index >= dwarf2_per_objfile->n_comp_units)
2340 {
2341 index -= dwarf2_per_objfile->n_comp_units;
2342 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2343 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2344 }
2345
2346 return dwarf2_per_objfile->all_comp_units[index];
2347 }
2348
2349 /* Return the primary CU given its index.
2350 The difference between this function and dw2_get_cu is in the handling
2351 of type units (TUs). Here we return the type_unit_group object.
2352
2353 This is intended for loops like:
2354
2355 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2356 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2357 {
2358 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2359
2360 ...;
2361 }
2362 */
2363
2364 static struct dwarf2_per_cu_data *
2365 dw2_get_primary_cu (int index)
2366 {
2367 if (index >= dwarf2_per_objfile->n_comp_units)
2368 {
2369 index -= dwarf2_per_objfile->n_comp_units;
2370 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2371 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2372 }
2373
2374 return dwarf2_per_objfile->all_comp_units[index];
2375 }
2376
2377 /* A helper for create_cus_from_index that handles a given list of
2378 CUs. */
2379
2380 static void
2381 create_cus_from_index_list (struct objfile *objfile,
2382 const gdb_byte *cu_list, offset_type n_elements,
2383 struct dwarf2_section_info *section,
2384 int is_dwz,
2385 int base_offset)
2386 {
2387 offset_type i;
2388
2389 for (i = 0; i < n_elements; i += 2)
2390 {
2391 struct dwarf2_per_cu_data *the_cu;
2392 ULONGEST offset, length;
2393
2394 gdb_static_assert (sizeof (ULONGEST) >= 8);
2395 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2396 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2397 cu_list += 2 * 8;
2398
2399 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2400 struct dwarf2_per_cu_data);
2401 the_cu->offset.sect_off = offset;
2402 the_cu->length = length;
2403 the_cu->objfile = objfile;
2404 the_cu->info_or_types_section = section;
2405 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2406 struct dwarf2_per_cu_quick_data);
2407 the_cu->is_dwz = is_dwz;
2408 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2409 }
2410 }
2411
2412 /* Read the CU list from the mapped index, and use it to create all
2413 the CU objects for this objfile. */
2414
2415 static void
2416 create_cus_from_index (struct objfile *objfile,
2417 const gdb_byte *cu_list, offset_type cu_list_elements,
2418 const gdb_byte *dwz_list, offset_type dwz_elements)
2419 {
2420 struct dwz_file *dwz;
2421
2422 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2423 dwarf2_per_objfile->all_comp_units
2424 = obstack_alloc (&objfile->objfile_obstack,
2425 dwarf2_per_objfile->n_comp_units
2426 * sizeof (struct dwarf2_per_cu_data *));
2427
2428 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2429 &dwarf2_per_objfile->info, 0, 0);
2430
2431 if (dwz_elements == 0)
2432 return;
2433
2434 dwz = dwarf2_get_dwz_file ();
2435 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2436 cu_list_elements / 2);
2437 }
2438
2439 /* Create the signatured type hash table from the index. */
2440
2441 static void
2442 create_signatured_type_table_from_index (struct objfile *objfile,
2443 struct dwarf2_section_info *section,
2444 const gdb_byte *bytes,
2445 offset_type elements)
2446 {
2447 offset_type i;
2448 htab_t sig_types_hash;
2449
2450 dwarf2_per_objfile->n_type_units = elements / 3;
2451 dwarf2_per_objfile->all_type_units
2452 = obstack_alloc (&objfile->objfile_obstack,
2453 dwarf2_per_objfile->n_type_units
2454 * sizeof (struct signatured_type *));
2455
2456 sig_types_hash = allocate_signatured_type_table (objfile);
2457
2458 for (i = 0; i < elements; i += 3)
2459 {
2460 struct signatured_type *sig_type;
2461 ULONGEST offset, type_offset_in_tu, signature;
2462 void **slot;
2463
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2466 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2467 BFD_ENDIAN_LITTLE);
2468 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2469 bytes += 3 * 8;
2470
2471 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2472 struct signatured_type);
2473 sig_type->signature = signature;
2474 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2475 sig_type->per_cu.is_debug_types = 1;
2476 sig_type->per_cu.info_or_types_section = section;
2477 sig_type->per_cu.offset.sect_off = offset;
2478 sig_type->per_cu.objfile = objfile;
2479 sig_type->per_cu.v.quick
2480 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2481 struct dwarf2_per_cu_quick_data);
2482
2483 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2484 *slot = sig_type;
2485
2486 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2487 }
2488
2489 dwarf2_per_objfile->signatured_types = sig_types_hash;
2490 }
2491
2492 /* Read the address map data from the mapped index, and use it to
2493 populate the objfile's psymtabs_addrmap. */
2494
2495 static void
2496 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2497 {
2498 const gdb_byte *iter, *end;
2499 struct obstack temp_obstack;
2500 struct addrmap *mutable_map;
2501 struct cleanup *cleanup;
2502 CORE_ADDR baseaddr;
2503
2504 obstack_init (&temp_obstack);
2505 cleanup = make_cleanup_obstack_free (&temp_obstack);
2506 mutable_map = addrmap_create_mutable (&temp_obstack);
2507
2508 iter = index->address_table;
2509 end = iter + index->address_table_size;
2510
2511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2512
2513 while (iter < end)
2514 {
2515 ULONGEST hi, lo, cu_index;
2516 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2517 iter += 8;
2518 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2519 iter += 8;
2520 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2521 iter += 4;
2522
2523 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2524 dw2_get_cu (cu_index));
2525 }
2526
2527 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2528 &objfile->objfile_obstack);
2529 do_cleanups (cleanup);
2530 }
2531
2532 /* The hash function for strings in the mapped index. This is the same as
2533 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2534 implementation. This is necessary because the hash function is tied to the
2535 format of the mapped index file. The hash values do not have to match with
2536 SYMBOL_HASH_NEXT.
2537
2538 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2539
2540 static hashval_t
2541 mapped_index_string_hash (int index_version, const void *p)
2542 {
2543 const unsigned char *str = (const unsigned char *) p;
2544 hashval_t r = 0;
2545 unsigned char c;
2546
2547 while ((c = *str++) != 0)
2548 {
2549 if (index_version >= 5)
2550 c = tolower (c);
2551 r = r * 67 + c - 113;
2552 }
2553
2554 return r;
2555 }
2556
2557 /* Find a slot in the mapped index INDEX for the object named NAME.
2558 If NAME is found, set *VEC_OUT to point to the CU vector in the
2559 constant pool and return 1. If NAME cannot be found, return 0. */
2560
2561 static int
2562 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2563 offset_type **vec_out)
2564 {
2565 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2566 offset_type hash;
2567 offset_type slot, step;
2568 int (*cmp) (const char *, const char *);
2569
2570 if (current_language->la_language == language_cplus
2571 || current_language->la_language == language_java
2572 || current_language->la_language == language_fortran)
2573 {
2574 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2575 not contain any. */
2576 const char *paren = strchr (name, '(');
2577
2578 if (paren)
2579 {
2580 char *dup;
2581
2582 dup = xmalloc (paren - name + 1);
2583 memcpy (dup, name, paren - name);
2584 dup[paren - name] = 0;
2585
2586 make_cleanup (xfree, dup);
2587 name = dup;
2588 }
2589 }
2590
2591 /* Index version 4 did not support case insensitive searches. But the
2592 indices for case insensitive languages are built in lowercase, therefore
2593 simulate our NAME being searched is also lowercased. */
2594 hash = mapped_index_string_hash ((index->version == 4
2595 && case_sensitivity == case_sensitive_off
2596 ? 5 : index->version),
2597 name);
2598
2599 slot = hash & (index->symbol_table_slots - 1);
2600 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2601 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2602
2603 for (;;)
2604 {
2605 /* Convert a slot number to an offset into the table. */
2606 offset_type i = 2 * slot;
2607 const char *str;
2608 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2609 {
2610 do_cleanups (back_to);
2611 return 0;
2612 }
2613
2614 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2615 if (!cmp (name, str))
2616 {
2617 *vec_out = (offset_type *) (index->constant_pool
2618 + MAYBE_SWAP (index->symbol_table[i + 1]));
2619 do_cleanups (back_to);
2620 return 1;
2621 }
2622
2623 slot = (slot + step) & (index->symbol_table_slots - 1);
2624 }
2625 }
2626
2627 /* A helper function that reads the .gdb_index from SECTION and fills
2628 in MAP. FILENAME is the name of the file containing the section;
2629 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2630 ok to use deprecated sections.
2631
2632 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2633 out parameters that are filled in with information about the CU and
2634 TU lists in the section.
2635
2636 Returns 1 if all went well, 0 otherwise. */
2637
2638 static int
2639 read_index_from_section (struct objfile *objfile,
2640 const char *filename,
2641 int deprecated_ok,
2642 struct dwarf2_section_info *section,
2643 struct mapped_index *map,
2644 const gdb_byte **cu_list,
2645 offset_type *cu_list_elements,
2646 const gdb_byte **types_list,
2647 offset_type *types_list_elements)
2648 {
2649 char *addr;
2650 offset_type version;
2651 offset_type *metadata;
2652 int i;
2653
2654 if (dwarf2_section_empty_p (section))
2655 return 0;
2656
2657 /* Older elfutils strip versions could keep the section in the main
2658 executable while splitting it for the separate debug info file. */
2659 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2660 return 0;
2661
2662 dwarf2_read_section (objfile, section);
2663
2664 addr = section->buffer;
2665 /* Version check. */
2666 version = MAYBE_SWAP (*(offset_type *) addr);
2667 /* Versions earlier than 3 emitted every copy of a psymbol. This
2668 causes the index to behave very poorly for certain requests. Version 3
2669 contained incomplete addrmap. So, it seems better to just ignore such
2670 indices. */
2671 if (version < 4)
2672 {
2673 static int warning_printed = 0;
2674 if (!warning_printed)
2675 {
2676 warning (_("Skipping obsolete .gdb_index section in %s."),
2677 filename);
2678 warning_printed = 1;
2679 }
2680 return 0;
2681 }
2682 /* Index version 4 uses a different hash function than index version
2683 5 and later.
2684
2685 Versions earlier than 6 did not emit psymbols for inlined
2686 functions. Using these files will cause GDB not to be able to
2687 set breakpoints on inlined functions by name, so we ignore these
2688 indices unless the user has done
2689 "set use-deprecated-index-sections on". */
2690 if (version < 6 && !deprecated_ok)
2691 {
2692 static int warning_printed = 0;
2693 if (!warning_printed)
2694 {
2695 warning (_("\
2696 Skipping deprecated .gdb_index section in %s.\n\
2697 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2698 to use the section anyway."),
2699 filename);
2700 warning_printed = 1;
2701 }
2702 return 0;
2703 }
2704 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2705 of the TU (for symbols coming from TUs). It's just a performance bug, and
2706 we can't distinguish gdb-generated indices from gold-generated ones, so
2707 nothing to do here. */
2708
2709 /* Indexes with higher version than the one supported by GDB may be no
2710 longer backward compatible. */
2711 if (version > 8)
2712 return 0;
2713
2714 map->version = version;
2715 map->total_size = section->size;
2716
2717 metadata = (offset_type *) (addr + sizeof (offset_type));
2718
2719 i = 0;
2720 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2721 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2722 / 8);
2723 ++i;
2724
2725 *types_list = addr + MAYBE_SWAP (metadata[i]);
2726 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2727 - MAYBE_SWAP (metadata[i]))
2728 / 8);
2729 ++i;
2730
2731 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2732 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2733 - MAYBE_SWAP (metadata[i]));
2734 ++i;
2735
2736 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2737 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2738 - MAYBE_SWAP (metadata[i]))
2739 / (2 * sizeof (offset_type)));
2740 ++i;
2741
2742 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2743
2744 return 1;
2745 }
2746
2747
2748 /* Read the index file. If everything went ok, initialize the "quick"
2749 elements of all the CUs and return 1. Otherwise, return 0. */
2750
2751 static int
2752 dwarf2_read_index (struct objfile *objfile)
2753 {
2754 struct mapped_index local_map, *map;
2755 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2756 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2757
2758 if (!read_index_from_section (objfile, objfile->name,
2759 use_deprecated_index_sections,
2760 &dwarf2_per_objfile->gdb_index, &local_map,
2761 &cu_list, &cu_list_elements,
2762 &types_list, &types_list_elements))
2763 return 0;
2764
2765 /* Don't use the index if it's empty. */
2766 if (local_map.symbol_table_slots == 0)
2767 return 0;
2768
2769 /* If there is a .dwz file, read it so we can get its CU list as
2770 well. */
2771 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2772 {
2773 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2774 struct mapped_index dwz_map;
2775 const gdb_byte *dwz_types_ignore;
2776 offset_type dwz_types_elements_ignore;
2777
2778 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2779 1,
2780 &dwz->gdb_index, &dwz_map,
2781 &dwz_list, &dwz_list_elements,
2782 &dwz_types_ignore,
2783 &dwz_types_elements_ignore))
2784 {
2785 warning (_("could not read '.gdb_index' section from %s; skipping"),
2786 bfd_get_filename (dwz->dwz_bfd));
2787 return 0;
2788 }
2789 }
2790
2791 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2792 dwz_list_elements);
2793
2794 if (types_list_elements)
2795 {
2796 struct dwarf2_section_info *section;
2797
2798 /* We can only handle a single .debug_types when we have an
2799 index. */
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2801 return 0;
2802
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2805
2806 create_signatured_type_table_from_index (objfile, section, types_list,
2807 types_list_elements);
2808 }
2809
2810 create_addrmap_from_index (objfile, &local_map);
2811
2812 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2813 *map = local_map;
2814
2815 dwarf2_per_objfile->index_table = map;
2816 dwarf2_per_objfile->using_index = 1;
2817 dwarf2_per_objfile->quick_file_names_table =
2818 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2819
2820 return 1;
2821 }
2822
2823 /* A helper for the "quick" functions which sets the global
2824 dwarf2_per_objfile according to OBJFILE. */
2825
2826 static void
2827 dw2_setup (struct objfile *objfile)
2828 {
2829 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2830 gdb_assert (dwarf2_per_objfile);
2831 }
2832
2833 /* die_reader_func for dw2_get_file_names. */
2834
2835 static void
2836 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2837 gdb_byte *info_ptr,
2838 struct die_info *comp_unit_die,
2839 int has_children,
2840 void *data)
2841 {
2842 struct dwarf2_cu *cu = reader->cu;
2843 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2844 struct objfile *objfile = dwarf2_per_objfile->objfile;
2845 struct dwarf2_per_cu_data *lh_cu;
2846 struct line_header *lh;
2847 struct attribute *attr;
2848 int i;
2849 const char *name, *comp_dir;
2850 void **slot;
2851 struct quick_file_names *qfn;
2852 unsigned int line_offset;
2853
2854 /* Our callers never want to match partial units -- instead they
2855 will match the enclosing full CU. */
2856 if (comp_unit_die->tag == DW_TAG_partial_unit)
2857 {
2858 this_cu->v.quick->no_file_data = 1;
2859 return;
2860 }
2861
2862 /* If we're reading the line header for TUs, store it in the "per_cu"
2863 for tu_group. */
2864 if (this_cu->is_debug_types)
2865 {
2866 struct type_unit_group *tu_group = data;
2867
2868 gdb_assert (tu_group != NULL);
2869 lh_cu = &tu_group->per_cu;
2870 }
2871 else
2872 lh_cu = this_cu;
2873
2874 lh = NULL;
2875 slot = NULL;
2876 line_offset = 0;
2877
2878 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2879 if (attr)
2880 {
2881 struct quick_file_names find_entry;
2882
2883 line_offset = DW_UNSND (attr);
2884
2885 /* We may have already read in this line header (TU line header sharing).
2886 If we have we're done. */
2887 find_entry.hash.dwo_unit = cu->dwo_unit;
2888 find_entry.hash.line_offset.sect_off = line_offset;
2889 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2890 &find_entry, INSERT);
2891 if (*slot != NULL)
2892 {
2893 lh_cu->v.quick->file_names = *slot;
2894 return;
2895 }
2896
2897 lh = dwarf_decode_line_header (line_offset, cu);
2898 }
2899 if (lh == NULL)
2900 {
2901 lh_cu->v.quick->no_file_data = 1;
2902 return;
2903 }
2904
2905 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2906 qfn->hash.dwo_unit = cu->dwo_unit;
2907 qfn->hash.line_offset.sect_off = line_offset;
2908 gdb_assert (slot != NULL);
2909 *slot = qfn;
2910
2911 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2912
2913 qfn->num_file_names = lh->num_file_names;
2914 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2915 lh->num_file_names * sizeof (char *));
2916 for (i = 0; i < lh->num_file_names; ++i)
2917 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2918 qfn->real_names = NULL;
2919
2920 free_line_header (lh);
2921
2922 lh_cu->v.quick->file_names = qfn;
2923 }
2924
2925 /* A helper for the "quick" functions which attempts to read the line
2926 table for THIS_CU. */
2927
2928 static struct quick_file_names *
2929 dw2_get_file_names (struct objfile *objfile,
2930 struct dwarf2_per_cu_data *this_cu)
2931 {
2932 /* For TUs this should only be called on the parent group. */
2933 if (this_cu->is_debug_types)
2934 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2935
2936 if (this_cu->v.quick->file_names != NULL)
2937 return this_cu->v.quick->file_names;
2938 /* If we know there is no line data, no point in looking again. */
2939 if (this_cu->v.quick->no_file_data)
2940 return NULL;
2941
2942 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2943 in the stub for CUs, there's is no need to lookup the DWO file.
2944 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2945 DWO file. */
2946 if (this_cu->is_debug_types)
2947 {
2948 struct type_unit_group *tu_group = this_cu->type_unit_group;
2949
2950 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2951 dw2_get_file_names_reader, tu_group);
2952 }
2953 else
2954 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2955
2956 if (this_cu->v.quick->no_file_data)
2957 return NULL;
2958 return this_cu->v.quick->file_names;
2959 }
2960
2961 /* A helper for the "quick" functions which computes and caches the
2962 real path for a given file name from the line table. */
2963
2964 static const char *
2965 dw2_get_real_path (struct objfile *objfile,
2966 struct quick_file_names *qfn, int index)
2967 {
2968 if (qfn->real_names == NULL)
2969 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2970 qfn->num_file_names, sizeof (char *));
2971
2972 if (qfn->real_names[index] == NULL)
2973 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2974
2975 return qfn->real_names[index];
2976 }
2977
2978 static struct symtab *
2979 dw2_find_last_source_symtab (struct objfile *objfile)
2980 {
2981 int index;
2982
2983 dw2_setup (objfile);
2984 index = dwarf2_per_objfile->n_comp_units - 1;
2985 return dw2_instantiate_symtab (dw2_get_cu (index));
2986 }
2987
2988 /* Traversal function for dw2_forget_cached_source_info. */
2989
2990 static int
2991 dw2_free_cached_file_names (void **slot, void *info)
2992 {
2993 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2994
2995 if (file_data->real_names)
2996 {
2997 int i;
2998
2999 for (i = 0; i < file_data->num_file_names; ++i)
3000 {
3001 xfree ((void*) file_data->real_names[i]);
3002 file_data->real_names[i] = NULL;
3003 }
3004 }
3005
3006 return 1;
3007 }
3008
3009 static void
3010 dw2_forget_cached_source_info (struct objfile *objfile)
3011 {
3012 dw2_setup (objfile);
3013
3014 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3015 dw2_free_cached_file_names, NULL);
3016 }
3017
3018 /* Helper function for dw2_map_symtabs_matching_filename that expands
3019 the symtabs and calls the iterator. */
3020
3021 static int
3022 dw2_map_expand_apply (struct objfile *objfile,
3023 struct dwarf2_per_cu_data *per_cu,
3024 const char *name, const char *real_path,
3025 int (*callback) (struct symtab *, void *),
3026 void *data)
3027 {
3028 struct symtab *last_made = objfile->symtabs;
3029
3030 /* Don't visit already-expanded CUs. */
3031 if (per_cu->v.quick->symtab)
3032 return 0;
3033
3034 /* This may expand more than one symtab, and we want to iterate over
3035 all of them. */
3036 dw2_instantiate_symtab (per_cu);
3037
3038 return iterate_over_some_symtabs (name, real_path, callback, data,
3039 objfile->symtabs, last_made);
3040 }
3041
3042 /* Implementation of the map_symtabs_matching_filename method. */
3043
3044 static int
3045 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3046 const char *real_path,
3047 int (*callback) (struct symtab *, void *),
3048 void *data)
3049 {
3050 int i;
3051 const char *name_basename = lbasename (name);
3052
3053 dw2_setup (objfile);
3054
3055 /* The rule is CUs specify all the files, including those used by
3056 any TU, so there's no need to scan TUs here. */
3057
3058 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3059 {
3060 int j;
3061 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3062 struct quick_file_names *file_data;
3063
3064 /* We only need to look at symtabs not already expanded. */
3065 if (per_cu->v.quick->symtab)
3066 continue;
3067
3068 file_data = dw2_get_file_names (objfile, per_cu);
3069 if (file_data == NULL)
3070 continue;
3071
3072 for (j = 0; j < file_data->num_file_names; ++j)
3073 {
3074 const char *this_name = file_data->file_names[j];
3075 const char *this_real_name;
3076
3077 if (compare_filenames_for_search (this_name, name))
3078 {
3079 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3080 callback, data))
3081 return 1;
3082 continue;
3083 }
3084
3085 /* Before we invoke realpath, which can get expensive when many
3086 files are involved, do a quick comparison of the basenames. */
3087 if (! basenames_may_differ
3088 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3089 continue;
3090
3091 this_real_name = dw2_get_real_path (objfile, file_data, j);
3092 if (compare_filenames_for_search (this_real_name, name))
3093 {
3094 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3095 callback, data))
3096 return 1;
3097 continue;
3098 }
3099
3100 if (real_path != NULL)
3101 {
3102 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3103 gdb_assert (IS_ABSOLUTE_PATH (name));
3104 if (this_real_name != NULL
3105 && FILENAME_CMP (real_path, this_real_name) == 0)
3106 {
3107 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3108 callback, data))
3109 return 1;
3110 continue;
3111 }
3112 }
3113 }
3114 }
3115
3116 return 0;
3117 }
3118
3119 /* Struct used to manage iterating over all CUs looking for a symbol. */
3120
3121 struct dw2_symtab_iterator
3122 {
3123 /* The internalized form of .gdb_index. */
3124 struct mapped_index *index;
3125 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3126 int want_specific_block;
3127 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3128 Unused if !WANT_SPECIFIC_BLOCK. */
3129 int block_index;
3130 /* The kind of symbol we're looking for. */
3131 domain_enum domain;
3132 /* The list of CUs from the index entry of the symbol,
3133 or NULL if not found. */
3134 offset_type *vec;
3135 /* The next element in VEC to look at. */
3136 int next;
3137 /* The number of elements in VEC, or zero if there is no match. */
3138 int length;
3139 };
3140
3141 /* Initialize the index symtab iterator ITER.
3142 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3143 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3144
3145 static void
3146 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3147 struct mapped_index *index,
3148 int want_specific_block,
3149 int block_index,
3150 domain_enum domain,
3151 const char *name)
3152 {
3153 iter->index = index;
3154 iter->want_specific_block = want_specific_block;
3155 iter->block_index = block_index;
3156 iter->domain = domain;
3157 iter->next = 0;
3158
3159 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3160 iter->length = MAYBE_SWAP (*iter->vec);
3161 else
3162 {
3163 iter->vec = NULL;
3164 iter->length = 0;
3165 }
3166 }
3167
3168 /* Return the next matching CU or NULL if there are no more. */
3169
3170 static struct dwarf2_per_cu_data *
3171 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3172 {
3173 for ( ; iter->next < iter->length; ++iter->next)
3174 {
3175 offset_type cu_index_and_attrs =
3176 MAYBE_SWAP (iter->vec[iter->next + 1]);
3177 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3178 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3179 int want_static = iter->block_index != GLOBAL_BLOCK;
3180 /* This value is only valid for index versions >= 7. */
3181 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3182 gdb_index_symbol_kind symbol_kind =
3183 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3184 /* Only check the symbol attributes if they're present.
3185 Indices prior to version 7 don't record them,
3186 and indices >= 7 may elide them for certain symbols
3187 (gold does this). */
3188 int attrs_valid =
3189 (iter->index->version >= 7
3190 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3191
3192 /* Skip if already read in. */
3193 if (per_cu->v.quick->symtab)
3194 continue;
3195
3196 if (attrs_valid
3197 && iter->want_specific_block
3198 && want_static != is_static)
3199 continue;
3200
3201 /* Only check the symbol's kind if it has one. */
3202 if (attrs_valid)
3203 {
3204 switch (iter->domain)
3205 {
3206 case VAR_DOMAIN:
3207 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3208 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3209 /* Some types are also in VAR_DOMAIN. */
3210 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3211 continue;
3212 break;
3213 case STRUCT_DOMAIN:
3214 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3215 continue;
3216 break;
3217 case LABEL_DOMAIN:
3218 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3219 continue;
3220 break;
3221 default:
3222 break;
3223 }
3224 }
3225
3226 ++iter->next;
3227 return per_cu;
3228 }
3229
3230 return NULL;
3231 }
3232
3233 static struct symtab *
3234 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3235 const char *name, domain_enum domain)
3236 {
3237 struct symtab *stab_best = NULL;
3238 struct mapped_index *index;
3239
3240 dw2_setup (objfile);
3241
3242 index = dwarf2_per_objfile->index_table;
3243
3244 /* index is NULL if OBJF_READNOW. */
3245 if (index)
3246 {
3247 struct dw2_symtab_iterator iter;
3248 struct dwarf2_per_cu_data *per_cu;
3249
3250 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3251
3252 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3253 {
3254 struct symbol *sym = NULL;
3255 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3256
3257 /* Some caution must be observed with overloaded functions
3258 and methods, since the index will not contain any overload
3259 information (but NAME might contain it). */
3260 if (stab->primary)
3261 {
3262 struct blockvector *bv = BLOCKVECTOR (stab);
3263 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3264
3265 sym = lookup_block_symbol (block, name, domain);
3266 }
3267
3268 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3269 {
3270 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3271 return stab;
3272
3273 stab_best = stab;
3274 }
3275
3276 /* Keep looking through other CUs. */
3277 }
3278 }
3279
3280 return stab_best;
3281 }
3282
3283 static void
3284 dw2_print_stats (struct objfile *objfile)
3285 {
3286 int i, count;
3287
3288 dw2_setup (objfile);
3289 count = 0;
3290 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3291 + dwarf2_per_objfile->n_type_units); ++i)
3292 {
3293 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3294
3295 if (!per_cu->v.quick->symtab)
3296 ++count;
3297 }
3298 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3299 }
3300
3301 static void
3302 dw2_dump (struct objfile *objfile)
3303 {
3304 /* Nothing worth printing. */
3305 }
3306
3307 static void
3308 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3309 struct section_offsets *delta)
3310 {
3311 /* There's nothing to relocate here. */
3312 }
3313
3314 static void
3315 dw2_expand_symtabs_for_function (struct objfile *objfile,
3316 const char *func_name)
3317 {
3318 struct mapped_index *index;
3319
3320 dw2_setup (objfile);
3321
3322 index = dwarf2_per_objfile->index_table;
3323
3324 /* index is NULL if OBJF_READNOW. */
3325 if (index)
3326 {
3327 struct dw2_symtab_iterator iter;
3328 struct dwarf2_per_cu_data *per_cu;
3329
3330 /* Note: It doesn't matter what we pass for block_index here. */
3331 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3332 func_name);
3333
3334 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3335 dw2_instantiate_symtab (per_cu);
3336 }
3337 }
3338
3339 static void
3340 dw2_expand_all_symtabs (struct objfile *objfile)
3341 {
3342 int i;
3343
3344 dw2_setup (objfile);
3345
3346 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3347 + dwarf2_per_objfile->n_type_units); ++i)
3348 {
3349 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3350
3351 dw2_instantiate_symtab (per_cu);
3352 }
3353 }
3354
3355 static void
3356 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3357 const char *fullname)
3358 {
3359 int i;
3360
3361 dw2_setup (objfile);
3362
3363 /* We don't need to consider type units here.
3364 This is only called for examining code, e.g. expand_line_sal.
3365 There can be an order of magnitude (or more) more type units
3366 than comp units, and we avoid them if we can. */
3367
3368 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3369 {
3370 int j;
3371 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3372 struct quick_file_names *file_data;
3373
3374 /* We only need to look at symtabs not already expanded. */
3375 if (per_cu->v.quick->symtab)
3376 continue;
3377
3378 file_data = dw2_get_file_names (objfile, per_cu);
3379 if (file_data == NULL)
3380 continue;
3381
3382 for (j = 0; j < file_data->num_file_names; ++j)
3383 {
3384 const char *this_fullname = file_data->file_names[j];
3385
3386 if (filename_cmp (this_fullname, fullname) == 0)
3387 {
3388 dw2_instantiate_symtab (per_cu);
3389 break;
3390 }
3391 }
3392 }
3393 }
3394
3395 /* A helper function for dw2_find_symbol_file that finds the primary
3396 file name for a given CU. This is a die_reader_func. */
3397
3398 static void
3399 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3400 gdb_byte *info_ptr,
3401 struct die_info *comp_unit_die,
3402 int has_children,
3403 void *data)
3404 {
3405 const char **result_ptr = data;
3406 struct dwarf2_cu *cu = reader->cu;
3407 struct attribute *attr;
3408
3409 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3410 if (attr == NULL)
3411 *result_ptr = NULL;
3412 else
3413 *result_ptr = DW_STRING (attr);
3414 }
3415
3416 static const char *
3417 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3418 {
3419 struct dwarf2_per_cu_data *per_cu;
3420 offset_type *vec;
3421 const char *filename;
3422
3423 dw2_setup (objfile);
3424
3425 /* index_table is NULL if OBJF_READNOW. */
3426 if (!dwarf2_per_objfile->index_table)
3427 {
3428 struct symtab *s;
3429
3430 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3431 {
3432 struct blockvector *bv = BLOCKVECTOR (s);
3433 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3434 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3435
3436 if (sym)
3437 {
3438 /* Only file extension of returned filename is recognized. */
3439 return SYMBOL_SYMTAB (sym)->filename;
3440 }
3441 }
3442 return NULL;
3443 }
3444
3445 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3446 name, &vec))
3447 return NULL;
3448
3449 /* Note that this just looks at the very first one named NAME -- but
3450 actually we are looking for a function. find_main_filename
3451 should be rewritten so that it doesn't require a custom hook. It
3452 could just use the ordinary symbol tables. */
3453 /* vec[0] is the length, which must always be >0. */
3454 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3455
3456 if (per_cu->v.quick->symtab != NULL)
3457 {
3458 /* Only file extension of returned filename is recognized. */
3459 return per_cu->v.quick->symtab->filename;
3460 }
3461
3462 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3463 dw2_get_primary_filename_reader, &filename);
3464
3465 /* Only file extension of returned filename is recognized. */
3466 return filename;
3467 }
3468
3469 static void
3470 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3471 struct objfile *objfile, int global,
3472 int (*callback) (struct block *,
3473 struct symbol *, void *),
3474 void *data, symbol_compare_ftype *match,
3475 symbol_compare_ftype *ordered_compare)
3476 {
3477 /* Currently unimplemented; used for Ada. The function can be called if the
3478 current language is Ada for a non-Ada objfile using GNU index. As Ada
3479 does not look for non-Ada symbols this function should just return. */
3480 }
3481
3482 static void
3483 dw2_expand_symtabs_matching
3484 (struct objfile *objfile,
3485 int (*file_matcher) (const char *, void *, int basenames),
3486 int (*name_matcher) (const char *, void *),
3487 enum search_domain kind,
3488 void *data)
3489 {
3490 int i;
3491 offset_type iter;
3492 struct mapped_index *index;
3493
3494 dw2_setup (objfile);
3495
3496 /* index_table is NULL if OBJF_READNOW. */
3497 if (!dwarf2_per_objfile->index_table)
3498 return;
3499 index = dwarf2_per_objfile->index_table;
3500
3501 if (file_matcher != NULL)
3502 {
3503 struct cleanup *cleanup;
3504 htab_t visited_found, visited_not_found;
3505
3506 visited_found = htab_create_alloc (10,
3507 htab_hash_pointer, htab_eq_pointer,
3508 NULL, xcalloc, xfree);
3509 cleanup = make_cleanup_htab_delete (visited_found);
3510 visited_not_found = htab_create_alloc (10,
3511 htab_hash_pointer, htab_eq_pointer,
3512 NULL, xcalloc, xfree);
3513 make_cleanup_htab_delete (visited_not_found);
3514
3515 /* The rule is CUs specify all the files, including those used by
3516 any TU, so there's no need to scan TUs here. */
3517
3518 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3519 {
3520 int j;
3521 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3522 struct quick_file_names *file_data;
3523 void **slot;
3524
3525 per_cu->v.quick->mark = 0;
3526
3527 /* We only need to look at symtabs not already expanded. */
3528 if (per_cu->v.quick->symtab)
3529 continue;
3530
3531 file_data = dw2_get_file_names (objfile, per_cu);
3532 if (file_data == NULL)
3533 continue;
3534
3535 if (htab_find (visited_not_found, file_data) != NULL)
3536 continue;
3537 else if (htab_find (visited_found, file_data) != NULL)
3538 {
3539 per_cu->v.quick->mark = 1;
3540 continue;
3541 }
3542
3543 for (j = 0; j < file_data->num_file_names; ++j)
3544 {
3545 const char *this_real_name;
3546
3547 if (file_matcher (file_data->file_names[j], data, 0))
3548 {
3549 per_cu->v.quick->mark = 1;
3550 break;
3551 }
3552
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (!basenames_may_differ
3556 && !file_matcher (lbasename (file_data->file_names[j]),
3557 data, 1))
3558 continue;
3559
3560 this_real_name = dw2_get_real_path (objfile, file_data, j);
3561 if (file_matcher (this_real_name, data, 0))
3562 {
3563 per_cu->v.quick->mark = 1;
3564 break;
3565 }
3566 }
3567
3568 slot = htab_find_slot (per_cu->v.quick->mark
3569 ? visited_found
3570 : visited_not_found,
3571 file_data, INSERT);
3572 *slot = file_data;
3573 }
3574
3575 do_cleanups (cleanup);
3576 }
3577
3578 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3579 {
3580 offset_type idx = 2 * iter;
3581 const char *name;
3582 offset_type *vec, vec_len, vec_idx;
3583
3584 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3585 continue;
3586
3587 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3588
3589 if (! (*name_matcher) (name, data))
3590 continue;
3591
3592 /* The name was matched, now expand corresponding CUs that were
3593 marked. */
3594 vec = (offset_type *) (index->constant_pool
3595 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3596 vec_len = MAYBE_SWAP (vec[0]);
3597 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3598 {
3599 struct dwarf2_per_cu_data *per_cu;
3600 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3601 gdb_index_symbol_kind symbol_kind =
3602 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3603 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3604
3605 /* Don't crash on bad data. */
3606 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3607 + dwarf2_per_objfile->n_type_units))
3608 continue;
3609
3610 /* Only check the symbol's kind if it has one.
3611 Indices prior to version 7 don't record it. */
3612 if (index->version >= 7)
3613 {
3614 switch (kind)
3615 {
3616 case VARIABLES_DOMAIN:
3617 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3618 continue;
3619 break;
3620 case FUNCTIONS_DOMAIN:
3621 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3622 continue;
3623 break;
3624 case TYPES_DOMAIN:
3625 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3626 continue;
3627 break;
3628 default:
3629 break;
3630 }
3631 }
3632
3633 per_cu = dw2_get_cu (cu_index);
3634 if (file_matcher == NULL || per_cu->v.quick->mark)
3635 dw2_instantiate_symtab (per_cu);
3636 }
3637 }
3638 }
3639
3640 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3641 symtab. */
3642
3643 static struct symtab *
3644 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3645 {
3646 int i;
3647
3648 if (BLOCKVECTOR (symtab) != NULL
3649 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3650 return symtab;
3651
3652 if (symtab->includes == NULL)
3653 return NULL;
3654
3655 for (i = 0; symtab->includes[i]; ++i)
3656 {
3657 struct symtab *s = symtab->includes[i];
3658
3659 s = recursively_find_pc_sect_symtab (s, pc);
3660 if (s != NULL)
3661 return s;
3662 }
3663
3664 return NULL;
3665 }
3666
3667 static struct symtab *
3668 dw2_find_pc_sect_symtab (struct objfile *objfile,
3669 struct minimal_symbol *msymbol,
3670 CORE_ADDR pc,
3671 struct obj_section *section,
3672 int warn_if_readin)
3673 {
3674 struct dwarf2_per_cu_data *data;
3675 struct symtab *result;
3676
3677 dw2_setup (objfile);
3678
3679 if (!objfile->psymtabs_addrmap)
3680 return NULL;
3681
3682 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3683 if (!data)
3684 return NULL;
3685
3686 if (warn_if_readin && data->v.quick->symtab)
3687 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3688 paddress (get_objfile_arch (objfile), pc));
3689
3690 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3691 gdb_assert (result != NULL);
3692 return result;
3693 }
3694
3695 static void
3696 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3697 void *data, int need_fullname)
3698 {
3699 int i;
3700 struct cleanup *cleanup;
3701 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3702 NULL, xcalloc, xfree);
3703
3704 cleanup = make_cleanup_htab_delete (visited);
3705 dw2_setup (objfile);
3706
3707 /* The rule is CUs specify all the files, including those used by
3708 any TU, so there's no need to scan TUs here.
3709 We can ignore file names coming from already-expanded CUs. */
3710
3711 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3712 {
3713 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3714
3715 if (per_cu->v.quick->symtab)
3716 {
3717 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3718 INSERT);
3719
3720 *slot = per_cu->v.quick->file_names;
3721 }
3722 }
3723
3724 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3725 {
3726 int j;
3727 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3728 struct quick_file_names *file_data;
3729 void **slot;
3730
3731 /* We only need to look at symtabs not already expanded. */
3732 if (per_cu->v.quick->symtab)
3733 continue;
3734
3735 file_data = dw2_get_file_names (objfile, per_cu);
3736 if (file_data == NULL)
3737 continue;
3738
3739 slot = htab_find_slot (visited, file_data, INSERT);
3740 if (*slot)
3741 {
3742 /* Already visited. */
3743 continue;
3744 }
3745 *slot = file_data;
3746
3747 for (j = 0; j < file_data->num_file_names; ++j)
3748 {
3749 const char *this_real_name;
3750
3751 if (need_fullname)
3752 this_real_name = dw2_get_real_path (objfile, file_data, j);
3753 else
3754 this_real_name = NULL;
3755 (*fun) (file_data->file_names[j], this_real_name, data);
3756 }
3757 }
3758
3759 do_cleanups (cleanup);
3760 }
3761
3762 static int
3763 dw2_has_symbols (struct objfile *objfile)
3764 {
3765 return 1;
3766 }
3767
3768 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3769 {
3770 dw2_has_symbols,
3771 dw2_find_last_source_symtab,
3772 dw2_forget_cached_source_info,
3773 dw2_map_symtabs_matching_filename,
3774 dw2_lookup_symbol,
3775 dw2_print_stats,
3776 dw2_dump,
3777 dw2_relocate,
3778 dw2_expand_symtabs_for_function,
3779 dw2_expand_all_symtabs,
3780 dw2_expand_symtabs_with_fullname,
3781 dw2_find_symbol_file,
3782 dw2_map_matching_symbols,
3783 dw2_expand_symtabs_matching,
3784 dw2_find_pc_sect_symtab,
3785 dw2_map_symbol_filenames
3786 };
3787
3788 /* Initialize for reading DWARF for this objfile. Return 0 if this
3789 file will use psymtabs, or 1 if using the GNU index. */
3790
3791 int
3792 dwarf2_initialize_objfile (struct objfile *objfile)
3793 {
3794 /* If we're about to read full symbols, don't bother with the
3795 indices. In this case we also don't care if some other debug
3796 format is making psymtabs, because they are all about to be
3797 expanded anyway. */
3798 if ((objfile->flags & OBJF_READNOW))
3799 {
3800 int i;
3801
3802 dwarf2_per_objfile->using_index = 1;
3803 create_all_comp_units (objfile);
3804 create_all_type_units (objfile);
3805 dwarf2_per_objfile->quick_file_names_table =
3806 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3807
3808 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3809 + dwarf2_per_objfile->n_type_units); ++i)
3810 {
3811 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3812
3813 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3814 struct dwarf2_per_cu_quick_data);
3815 }
3816
3817 /* Return 1 so that gdb sees the "quick" functions. However,
3818 these functions will be no-ops because we will have expanded
3819 all symtabs. */
3820 return 1;
3821 }
3822
3823 if (dwarf2_read_index (objfile))
3824 return 1;
3825
3826 return 0;
3827 }
3828
3829 \f
3830
3831 /* Build a partial symbol table. */
3832
3833 void
3834 dwarf2_build_psymtabs (struct objfile *objfile)
3835 {
3836 volatile struct gdb_exception except;
3837
3838 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3839 {
3840 init_psymbol_list (objfile, 1024);
3841 }
3842
3843 TRY_CATCH (except, RETURN_MASK_ERROR)
3844 {
3845 /* This isn't really ideal: all the data we allocate on the
3846 objfile's obstack is still uselessly kept around. However,
3847 freeing it seems unsafe. */
3848 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3849
3850 dwarf2_build_psymtabs_hard (objfile);
3851 discard_cleanups (cleanups);
3852 }
3853 if (except.reason < 0)
3854 exception_print (gdb_stderr, except);
3855 }
3856
3857 /* Return the total length of the CU described by HEADER. */
3858
3859 static unsigned int
3860 get_cu_length (const struct comp_unit_head *header)
3861 {
3862 return header->initial_length_size + header->length;
3863 }
3864
3865 /* Return TRUE if OFFSET is within CU_HEADER. */
3866
3867 static inline int
3868 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3869 {
3870 sect_offset bottom = { cu_header->offset.sect_off };
3871 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3872
3873 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3874 }
3875
3876 /* Find the base address of the compilation unit for range lists and
3877 location lists. It will normally be specified by DW_AT_low_pc.
3878 In DWARF-3 draft 4, the base address could be overridden by
3879 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3880 compilation units with discontinuous ranges. */
3881
3882 static void
3883 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3884 {
3885 struct attribute *attr;
3886
3887 cu->base_known = 0;
3888 cu->base_address = 0;
3889
3890 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3891 if (attr)
3892 {
3893 cu->base_address = DW_ADDR (attr);
3894 cu->base_known = 1;
3895 }
3896 else
3897 {
3898 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3899 if (attr)
3900 {
3901 cu->base_address = DW_ADDR (attr);
3902 cu->base_known = 1;
3903 }
3904 }
3905 }
3906
3907 /* Read in the comp unit header information from the debug_info at info_ptr.
3908 NOTE: This leaves members offset, first_die_offset to be filled in
3909 by the caller. */
3910
3911 static gdb_byte *
3912 read_comp_unit_head (struct comp_unit_head *cu_header,
3913 gdb_byte *info_ptr, bfd *abfd)
3914 {
3915 int signed_addr;
3916 unsigned int bytes_read;
3917
3918 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3919 cu_header->initial_length_size = bytes_read;
3920 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3921 info_ptr += bytes_read;
3922 cu_header->version = read_2_bytes (abfd, info_ptr);
3923 info_ptr += 2;
3924 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3925 &bytes_read);
3926 info_ptr += bytes_read;
3927 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3928 info_ptr += 1;
3929 signed_addr = bfd_get_sign_extend_vma (abfd);
3930 if (signed_addr < 0)
3931 internal_error (__FILE__, __LINE__,
3932 _("read_comp_unit_head: dwarf from non elf file"));
3933 cu_header->signed_addr_p = signed_addr;
3934
3935 return info_ptr;
3936 }
3937
3938 /* Helper function that returns the proper abbrev section for
3939 THIS_CU. */
3940
3941 static struct dwarf2_section_info *
3942 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3943 {
3944 struct dwarf2_section_info *abbrev;
3945
3946 if (this_cu->is_dwz)
3947 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3948 else
3949 abbrev = &dwarf2_per_objfile->abbrev;
3950
3951 return abbrev;
3952 }
3953
3954 /* Subroutine of read_and_check_comp_unit_head and
3955 read_and_check_type_unit_head to simplify them.
3956 Perform various error checking on the header. */
3957
3958 static void
3959 error_check_comp_unit_head (struct comp_unit_head *header,
3960 struct dwarf2_section_info *section,
3961 struct dwarf2_section_info *abbrev_section)
3962 {
3963 bfd *abfd = section->asection->owner;
3964 const char *filename = bfd_get_filename (abfd);
3965
3966 if (header->version != 2 && header->version != 3 && header->version != 4)
3967 error (_("Dwarf Error: wrong version in compilation unit header "
3968 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3969 filename);
3970
3971 if (header->abbrev_offset.sect_off
3972 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3973 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3974 "(offset 0x%lx + 6) [in module %s]"),
3975 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3976 filename);
3977
3978 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3979 avoid potential 32-bit overflow. */
3980 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3981 > section->size)
3982 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3983 "(offset 0x%lx + 0) [in module %s]"),
3984 (long) header->length, (long) header->offset.sect_off,
3985 filename);
3986 }
3987
3988 /* Read in a CU/TU header and perform some basic error checking.
3989 The contents of the header are stored in HEADER.
3990 The result is a pointer to the start of the first DIE. */
3991
3992 static gdb_byte *
3993 read_and_check_comp_unit_head (struct comp_unit_head *header,
3994 struct dwarf2_section_info *section,
3995 struct dwarf2_section_info *abbrev_section,
3996 gdb_byte *info_ptr,
3997 int is_debug_types_section)
3998 {
3999 gdb_byte *beg_of_comp_unit = info_ptr;
4000 bfd *abfd = section->asection->owner;
4001
4002 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4003
4004 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4005
4006 /* If we're reading a type unit, skip over the signature and
4007 type_offset fields. */
4008 if (is_debug_types_section)
4009 info_ptr += 8 /*signature*/ + header->offset_size;
4010
4011 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4012
4013 error_check_comp_unit_head (header, section, abbrev_section);
4014
4015 return info_ptr;
4016 }
4017
4018 /* Read in the types comp unit header information from .debug_types entry at
4019 types_ptr. The result is a pointer to one past the end of the header. */
4020
4021 static gdb_byte *
4022 read_and_check_type_unit_head (struct comp_unit_head *header,
4023 struct dwarf2_section_info *section,
4024 struct dwarf2_section_info *abbrev_section,
4025 gdb_byte *info_ptr,
4026 ULONGEST *signature,
4027 cu_offset *type_offset_in_tu)
4028 {
4029 gdb_byte *beg_of_comp_unit = info_ptr;
4030 bfd *abfd = section->asection->owner;
4031
4032 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4033
4034 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4035
4036 /* If we're reading a type unit, skip over the signature and
4037 type_offset fields. */
4038 if (signature != NULL)
4039 *signature = read_8_bytes (abfd, info_ptr);
4040 info_ptr += 8;
4041 if (type_offset_in_tu != NULL)
4042 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4043 header->offset_size);
4044 info_ptr += header->offset_size;
4045
4046 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4047
4048 error_check_comp_unit_head (header, section, abbrev_section);
4049
4050 return info_ptr;
4051 }
4052
4053 /* Fetch the abbreviation table offset from a comp or type unit header. */
4054
4055 static sect_offset
4056 read_abbrev_offset (struct dwarf2_section_info *section,
4057 sect_offset offset)
4058 {
4059 bfd *abfd = section->asection->owner;
4060 gdb_byte *info_ptr;
4061 unsigned int length, initial_length_size, offset_size;
4062 sect_offset abbrev_offset;
4063
4064 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4065 info_ptr = section->buffer + offset.sect_off;
4066 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4067 offset_size = initial_length_size == 4 ? 4 : 8;
4068 info_ptr += initial_length_size + 2 /*version*/;
4069 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4070 return abbrev_offset;
4071 }
4072
4073 /* Allocate a new partial symtab for file named NAME and mark this new
4074 partial symtab as being an include of PST. */
4075
4076 static void
4077 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4078 struct objfile *objfile)
4079 {
4080 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4081
4082 if (!IS_ABSOLUTE_PATH (subpst->filename))
4083 {
4084 /* It shares objfile->objfile_obstack. */
4085 subpst->dirname = pst->dirname;
4086 }
4087
4088 subpst->section_offsets = pst->section_offsets;
4089 subpst->textlow = 0;
4090 subpst->texthigh = 0;
4091
4092 subpst->dependencies = (struct partial_symtab **)
4093 obstack_alloc (&objfile->objfile_obstack,
4094 sizeof (struct partial_symtab *));
4095 subpst->dependencies[0] = pst;
4096 subpst->number_of_dependencies = 1;
4097
4098 subpst->globals_offset = 0;
4099 subpst->n_global_syms = 0;
4100 subpst->statics_offset = 0;
4101 subpst->n_static_syms = 0;
4102 subpst->symtab = NULL;
4103 subpst->read_symtab = pst->read_symtab;
4104 subpst->readin = 0;
4105
4106 /* No private part is necessary for include psymtabs. This property
4107 can be used to differentiate between such include psymtabs and
4108 the regular ones. */
4109 subpst->read_symtab_private = NULL;
4110 }
4111
4112 /* Read the Line Number Program data and extract the list of files
4113 included by the source file represented by PST. Build an include
4114 partial symtab for each of these included files. */
4115
4116 static void
4117 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4118 struct die_info *die,
4119 struct partial_symtab *pst)
4120 {
4121 struct line_header *lh = NULL;
4122 struct attribute *attr;
4123
4124 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4125 if (attr)
4126 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4127 if (lh == NULL)
4128 return; /* No linetable, so no includes. */
4129
4130 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4131 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4132
4133 free_line_header (lh);
4134 }
4135
4136 static hashval_t
4137 hash_signatured_type (const void *item)
4138 {
4139 const struct signatured_type *sig_type = item;
4140
4141 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4142 return sig_type->signature;
4143 }
4144
4145 static int
4146 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4147 {
4148 const struct signatured_type *lhs = item_lhs;
4149 const struct signatured_type *rhs = item_rhs;
4150
4151 return lhs->signature == rhs->signature;
4152 }
4153
4154 /* Allocate a hash table for signatured types. */
4155
4156 static htab_t
4157 allocate_signatured_type_table (struct objfile *objfile)
4158 {
4159 return htab_create_alloc_ex (41,
4160 hash_signatured_type,
4161 eq_signatured_type,
4162 NULL,
4163 &objfile->objfile_obstack,
4164 hashtab_obstack_allocate,
4165 dummy_obstack_deallocate);
4166 }
4167
4168 /* A helper function to add a signatured type CU to a table. */
4169
4170 static int
4171 add_signatured_type_cu_to_table (void **slot, void *datum)
4172 {
4173 struct signatured_type *sigt = *slot;
4174 struct signatured_type ***datap = datum;
4175
4176 **datap = sigt;
4177 ++*datap;
4178
4179 return 1;
4180 }
4181
4182 /* Create the hash table of all entries in the .debug_types section.
4183 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4184 NULL otherwise.
4185 Note: This function processes DWO files only, not DWP files.
4186 The result is a pointer to the hash table or NULL if there are
4187 no types. */
4188
4189 static htab_t
4190 create_debug_types_hash_table (struct dwo_file *dwo_file,
4191 VEC (dwarf2_section_info_def) *types)
4192 {
4193 struct objfile *objfile = dwarf2_per_objfile->objfile;
4194 htab_t types_htab = NULL;
4195 int ix;
4196 struct dwarf2_section_info *section;
4197 struct dwarf2_section_info *abbrev_section;
4198
4199 if (VEC_empty (dwarf2_section_info_def, types))
4200 return NULL;
4201
4202 abbrev_section = (dwo_file != NULL
4203 ? &dwo_file->sections.abbrev
4204 : &dwarf2_per_objfile->abbrev);
4205
4206 if (dwarf2_read_debug)
4207 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4208 dwo_file ? ".dwo" : "",
4209 bfd_get_filename (abbrev_section->asection->owner));
4210
4211 for (ix = 0;
4212 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4213 ++ix)
4214 {
4215 bfd *abfd;
4216 gdb_byte *info_ptr, *end_ptr;
4217 struct dwarf2_section_info *abbrev_section;
4218
4219 dwarf2_read_section (objfile, section);
4220 info_ptr = section->buffer;
4221
4222 if (info_ptr == NULL)
4223 continue;
4224
4225 /* We can't set abfd until now because the section may be empty or
4226 not present, in which case section->asection will be NULL. */
4227 abfd = section->asection->owner;
4228
4229 if (dwo_file)
4230 abbrev_section = &dwo_file->sections.abbrev;
4231 else
4232 abbrev_section = &dwarf2_per_objfile->abbrev;
4233
4234 if (types_htab == NULL)
4235 {
4236 if (dwo_file)
4237 types_htab = allocate_dwo_unit_table (objfile);
4238 else
4239 types_htab = allocate_signatured_type_table (objfile);
4240 }
4241
4242 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4243 because we don't need to read any dies: the signature is in the
4244 header. */
4245
4246 end_ptr = info_ptr + section->size;
4247 while (info_ptr < end_ptr)
4248 {
4249 sect_offset offset;
4250 cu_offset type_offset_in_tu;
4251 ULONGEST signature;
4252 struct signatured_type *sig_type;
4253 struct dwo_unit *dwo_tu;
4254 void **slot;
4255 gdb_byte *ptr = info_ptr;
4256 struct comp_unit_head header;
4257 unsigned int length;
4258
4259 offset.sect_off = ptr - section->buffer;
4260
4261 /* We need to read the type's signature in order to build the hash
4262 table, but we don't need anything else just yet. */
4263
4264 ptr = read_and_check_type_unit_head (&header, section,
4265 abbrev_section, ptr,
4266 &signature, &type_offset_in_tu);
4267
4268 length = get_cu_length (&header);
4269
4270 /* Skip dummy type units. */
4271 if (ptr >= info_ptr + length
4272 || peek_abbrev_code (abfd, ptr) == 0)
4273 {
4274 info_ptr += length;
4275 continue;
4276 }
4277
4278 if (dwo_file)
4279 {
4280 sig_type = NULL;
4281 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4282 struct dwo_unit);
4283 dwo_tu->dwo_file = dwo_file;
4284 dwo_tu->signature = signature;
4285 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4286 dwo_tu->info_or_types_section = section;
4287 dwo_tu->offset = offset;
4288 dwo_tu->length = length;
4289 }
4290 else
4291 {
4292 /* N.B.: type_offset is not usable if this type uses a DWO file.
4293 The real type_offset is in the DWO file. */
4294 dwo_tu = NULL;
4295 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4296 struct signatured_type);
4297 sig_type->signature = signature;
4298 sig_type->type_offset_in_tu = type_offset_in_tu;
4299 sig_type->per_cu.objfile = objfile;
4300 sig_type->per_cu.is_debug_types = 1;
4301 sig_type->per_cu.info_or_types_section = section;
4302 sig_type->per_cu.offset = offset;
4303 sig_type->per_cu.length = length;
4304 }
4305
4306 slot = htab_find_slot (types_htab,
4307 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4308 INSERT);
4309 gdb_assert (slot != NULL);
4310 if (*slot != NULL)
4311 {
4312 sect_offset dup_offset;
4313
4314 if (dwo_file)
4315 {
4316 const struct dwo_unit *dup_tu = *slot;
4317
4318 dup_offset = dup_tu->offset;
4319 }
4320 else
4321 {
4322 const struct signatured_type *dup_tu = *slot;
4323
4324 dup_offset = dup_tu->per_cu.offset;
4325 }
4326
4327 complaint (&symfile_complaints,
4328 _("debug type entry at offset 0x%x is duplicate to the "
4329 "entry at offset 0x%x, signature 0x%s"),
4330 offset.sect_off, dup_offset.sect_off,
4331 phex (signature, sizeof (signature)));
4332 }
4333 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4334
4335 if (dwarf2_read_debug)
4336 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4337 offset.sect_off,
4338 phex (signature, sizeof (signature)));
4339
4340 info_ptr += length;
4341 }
4342 }
4343
4344 return types_htab;
4345 }
4346
4347 /* Create the hash table of all entries in the .debug_types section,
4348 and initialize all_type_units.
4349 The result is zero if there is an error (e.g. missing .debug_types section),
4350 otherwise non-zero. */
4351
4352 static int
4353 create_all_type_units (struct objfile *objfile)
4354 {
4355 htab_t types_htab;
4356 struct signatured_type **iter;
4357
4358 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4359 if (types_htab == NULL)
4360 {
4361 dwarf2_per_objfile->signatured_types = NULL;
4362 return 0;
4363 }
4364
4365 dwarf2_per_objfile->signatured_types = types_htab;
4366
4367 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4368 dwarf2_per_objfile->all_type_units
4369 = obstack_alloc (&objfile->objfile_obstack,
4370 dwarf2_per_objfile->n_type_units
4371 * sizeof (struct signatured_type *));
4372 iter = &dwarf2_per_objfile->all_type_units[0];
4373 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4374 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4375 == dwarf2_per_objfile->n_type_units);
4376
4377 return 1;
4378 }
4379
4380 /* Lookup a signature based type for DW_FORM_ref_sig8.
4381 Returns NULL if signature SIG is not present in the table. */
4382
4383 static struct signatured_type *
4384 lookup_signatured_type (ULONGEST sig)
4385 {
4386 struct signatured_type find_entry, *entry;
4387
4388 if (dwarf2_per_objfile->signatured_types == NULL)
4389 {
4390 complaint (&symfile_complaints,
4391 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4392 return NULL;
4393 }
4394
4395 find_entry.signature = sig;
4396 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4397 return entry;
4398 }
4399 \f
4400 /* Low level DIE reading support. */
4401
4402 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4403
4404 static void
4405 init_cu_die_reader (struct die_reader_specs *reader,
4406 struct dwarf2_cu *cu,
4407 struct dwarf2_section_info *section,
4408 struct dwo_file *dwo_file)
4409 {
4410 gdb_assert (section->readin && section->buffer != NULL);
4411 reader->abfd = section->asection->owner;
4412 reader->cu = cu;
4413 reader->dwo_file = dwo_file;
4414 reader->die_section = section;
4415 reader->buffer = section->buffer;
4416 reader->buffer_end = section->buffer + section->size;
4417 }
4418
4419 /* Initialize a CU (or TU) and read its DIEs.
4420 If the CU defers to a DWO file, read the DWO file as well.
4421
4422 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4423 Otherwise the table specified in the comp unit header is read in and used.
4424 This is an optimization for when we already have the abbrev table.
4425
4426 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4427 Otherwise, a new CU is allocated with xmalloc.
4428
4429 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4430 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4431
4432 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4433 linker) then DIE_READER_FUNC will not get called. */
4434
4435 static void
4436 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4437 struct abbrev_table *abbrev_table,
4438 int use_existing_cu, int keep,
4439 die_reader_func_ftype *die_reader_func,
4440 void *data)
4441 {
4442 struct objfile *objfile = dwarf2_per_objfile->objfile;
4443 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4444 bfd *abfd = section->asection->owner;
4445 struct dwarf2_cu *cu;
4446 gdb_byte *begin_info_ptr, *info_ptr;
4447 struct die_reader_specs reader;
4448 struct die_info *comp_unit_die;
4449 int has_children;
4450 struct attribute *attr;
4451 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4452 struct signatured_type *sig_type = NULL;
4453 struct dwarf2_section_info *abbrev_section;
4454 /* Non-zero if CU currently points to a DWO file and we need to
4455 reread it. When this happens we need to reread the skeleton die
4456 before we can reread the DWO file. */
4457 int rereading_dwo_cu = 0;
4458
4459 if (dwarf2_die_debug)
4460 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4461 this_cu->is_debug_types ? "type" : "comp",
4462 this_cu->offset.sect_off);
4463
4464 if (use_existing_cu)
4465 gdb_assert (keep);
4466
4467 cleanups = make_cleanup (null_cleanup, NULL);
4468
4469 /* This is cheap if the section is already read in. */
4470 dwarf2_read_section (objfile, section);
4471
4472 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4473
4474 abbrev_section = get_abbrev_section_for_cu (this_cu);
4475
4476 if (use_existing_cu && this_cu->cu != NULL)
4477 {
4478 cu = this_cu->cu;
4479
4480 /* If this CU is from a DWO file we need to start over, we need to
4481 refetch the attributes from the skeleton CU.
4482 This could be optimized by retrieving those attributes from when we
4483 were here the first time: the previous comp_unit_die was stored in
4484 comp_unit_obstack. But there's no data yet that we need this
4485 optimization. */
4486 if (cu->dwo_unit != NULL)
4487 rereading_dwo_cu = 1;
4488 }
4489 else
4490 {
4491 /* If !use_existing_cu, this_cu->cu must be NULL. */
4492 gdb_assert (this_cu->cu == NULL);
4493
4494 cu = xmalloc (sizeof (*cu));
4495 init_one_comp_unit (cu, this_cu);
4496
4497 /* If an error occurs while loading, release our storage. */
4498 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4499 }
4500
4501 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4502 {
4503 /* We already have the header, there's no need to read it in again. */
4504 info_ptr += cu->header.first_die_offset.cu_off;
4505 }
4506 else
4507 {
4508 if (this_cu->is_debug_types)
4509 {
4510 ULONGEST signature;
4511 cu_offset type_offset_in_tu;
4512
4513 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4514 abbrev_section, info_ptr,
4515 &signature,
4516 &type_offset_in_tu);
4517
4518 /* Since per_cu is the first member of struct signatured_type,
4519 we can go from a pointer to one to a pointer to the other. */
4520 sig_type = (struct signatured_type *) this_cu;
4521 gdb_assert (sig_type->signature == signature);
4522 gdb_assert (sig_type->type_offset_in_tu.cu_off
4523 == type_offset_in_tu.cu_off);
4524 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4525
4526 /* LENGTH has not been set yet for type units if we're
4527 using .gdb_index. */
4528 this_cu->length = get_cu_length (&cu->header);
4529
4530 /* Establish the type offset that can be used to lookup the type. */
4531 sig_type->type_offset_in_section.sect_off =
4532 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4533 }
4534 else
4535 {
4536 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4537 abbrev_section,
4538 info_ptr, 0);
4539
4540 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4541 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4542 }
4543 }
4544
4545 /* Skip dummy compilation units. */
4546 if (info_ptr >= begin_info_ptr + this_cu->length
4547 || peek_abbrev_code (abfd, info_ptr) == 0)
4548 {
4549 do_cleanups (cleanups);
4550 return;
4551 }
4552
4553 /* If we don't have them yet, read the abbrevs for this compilation unit.
4554 And if we need to read them now, make sure they're freed when we're
4555 done. Note that it's important that if the CU had an abbrev table
4556 on entry we don't free it when we're done: Somewhere up the call stack
4557 it may be in use. */
4558 if (abbrev_table != NULL)
4559 {
4560 gdb_assert (cu->abbrev_table == NULL);
4561 gdb_assert (cu->header.abbrev_offset.sect_off
4562 == abbrev_table->offset.sect_off);
4563 cu->abbrev_table = abbrev_table;
4564 }
4565 else if (cu->abbrev_table == NULL)
4566 {
4567 dwarf2_read_abbrevs (cu, abbrev_section);
4568 make_cleanup (dwarf2_free_abbrev_table, cu);
4569 }
4570 else if (rereading_dwo_cu)
4571 {
4572 dwarf2_free_abbrev_table (cu);
4573 dwarf2_read_abbrevs (cu, abbrev_section);
4574 }
4575
4576 /* Read the top level CU/TU die. */
4577 init_cu_die_reader (&reader, cu, section, NULL);
4578 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4579
4580 /* If we have a DWO stub, process it and then read in the DWO file.
4581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4582 a DWO CU, that this test will fail. */
4583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4584 if (attr)
4585 {
4586 const char *dwo_name = DW_STRING (attr);
4587 const char *comp_dir_string;
4588 struct dwo_unit *dwo_unit;
4589 ULONGEST signature; /* Or dwo_id. */
4590 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4591 int i,num_extra_attrs;
4592 struct dwarf2_section_info *dwo_abbrev_section;
4593
4594 if (has_children)
4595 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4596 " has children (offset 0x%x) [in module %s]"),
4597 this_cu->offset.sect_off, bfd_get_filename (abfd));
4598
4599 /* These attributes aren't processed until later:
4600 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4601 However, the attribute is found in the stub which we won't have later.
4602 In order to not impose this complication on the rest of the code,
4603 we read them here and copy them to the DWO CU/TU die. */
4604
4605 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4606 DWO file. */
4607 stmt_list = NULL;
4608 if (! this_cu->is_debug_types)
4609 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4610 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4611 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4612 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4613 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4614
4615 /* There should be a DW_AT_addr_base attribute here (if needed).
4616 We need the value before we can process DW_FORM_GNU_addr_index. */
4617 cu->addr_base = 0;
4618 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4619 if (attr)
4620 cu->addr_base = DW_UNSND (attr);
4621
4622 /* There should be a DW_AT_ranges_base attribute here (if needed).
4623 We need the value before we can process DW_AT_ranges. */
4624 cu->ranges_base = 0;
4625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4626 if (attr)
4627 cu->ranges_base = DW_UNSND (attr);
4628
4629 if (this_cu->is_debug_types)
4630 {
4631 gdb_assert (sig_type != NULL);
4632 signature = sig_type->signature;
4633 }
4634 else
4635 {
4636 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4637 if (! attr)
4638 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4639 dwo_name);
4640 signature = DW_UNSND (attr);
4641 }
4642
4643 /* We may need the comp_dir in order to find the DWO file. */
4644 comp_dir_string = NULL;
4645 if (comp_dir)
4646 comp_dir_string = DW_STRING (comp_dir);
4647
4648 if (this_cu->is_debug_types)
4649 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4650 else
4651 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4652 signature);
4653
4654 if (dwo_unit == NULL)
4655 {
4656 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4657 " with ID %s [in module %s]"),
4658 this_cu->offset.sect_off,
4659 phex (signature, sizeof (signature)),
4660 objfile->name);
4661 }
4662
4663 /* Set up for reading the DWO CU/TU. */
4664 cu->dwo_unit = dwo_unit;
4665 section = dwo_unit->info_or_types_section;
4666 dwarf2_read_section (objfile, section);
4667 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4668 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4669 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4670
4671 if (this_cu->is_debug_types)
4672 {
4673 ULONGEST signature;
4674 cu_offset type_offset_in_tu;
4675
4676 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4677 dwo_abbrev_section,
4678 info_ptr,
4679 &signature,
4680 &type_offset_in_tu);
4681 gdb_assert (sig_type->signature == signature);
4682 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4683 /* For DWOs coming from DWP files, we don't know the CU length
4684 nor the type's offset in the TU until now. */
4685 dwo_unit->length = get_cu_length (&cu->header);
4686 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4687
4688 /* Establish the type offset that can be used to lookup the type.
4689 For DWO files, we don't know it until now. */
4690 sig_type->type_offset_in_section.sect_off =
4691 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4692 }
4693 else
4694 {
4695 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4696 dwo_abbrev_section,
4697 info_ptr, 0);
4698 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4699 /* For DWOs coming from DWP files, we don't know the CU length
4700 until now. */
4701 dwo_unit->length = get_cu_length (&cu->header);
4702 }
4703
4704 /* Discard the original CU's abbrev table, and read the DWO's. */
4705 if (abbrev_table == NULL)
4706 {
4707 dwarf2_free_abbrev_table (cu);
4708 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4709 }
4710 else
4711 {
4712 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4713 make_cleanup (dwarf2_free_abbrev_table, cu);
4714 }
4715
4716 /* Read in the die, but leave space to copy over the attributes
4717 from the stub. This has the benefit of simplifying the rest of
4718 the code - all the real work is done here. */
4719 num_extra_attrs = ((stmt_list != NULL)
4720 + (low_pc != NULL)
4721 + (high_pc != NULL)
4722 + (ranges != NULL)
4723 + (comp_dir != NULL));
4724 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4725 &has_children, num_extra_attrs);
4726
4727 /* Copy over the attributes from the stub to the DWO die. */
4728 i = comp_unit_die->num_attrs;
4729 if (stmt_list != NULL)
4730 comp_unit_die->attrs[i++] = *stmt_list;
4731 if (low_pc != NULL)
4732 comp_unit_die->attrs[i++] = *low_pc;
4733 if (high_pc != NULL)
4734 comp_unit_die->attrs[i++] = *high_pc;
4735 if (ranges != NULL)
4736 comp_unit_die->attrs[i++] = *ranges;
4737 if (comp_dir != NULL)
4738 comp_unit_die->attrs[i++] = *comp_dir;
4739 comp_unit_die->num_attrs += num_extra_attrs;
4740
4741 /* Skip dummy compilation units. */
4742 if (info_ptr >= begin_info_ptr + dwo_unit->length
4743 || peek_abbrev_code (abfd, info_ptr) == 0)
4744 {
4745 do_cleanups (cleanups);
4746 return;
4747 }
4748 }
4749
4750 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4751
4752 if (free_cu_cleanup != NULL)
4753 {
4754 if (keep)
4755 {
4756 /* We've successfully allocated this compilation unit. Let our
4757 caller clean it up when finished with it. */
4758 discard_cleanups (free_cu_cleanup);
4759
4760 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4761 So we have to manually free the abbrev table. */
4762 dwarf2_free_abbrev_table (cu);
4763
4764 /* Link this CU into read_in_chain. */
4765 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4766 dwarf2_per_objfile->read_in_chain = this_cu;
4767 }
4768 else
4769 do_cleanups (free_cu_cleanup);
4770 }
4771
4772 do_cleanups (cleanups);
4773 }
4774
4775 /* Read CU/TU THIS_CU in section SECTION,
4776 but do not follow DW_AT_GNU_dwo_name if present.
4777 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4778 to have already done the lookup to find the DWO/DWP file).
4779
4780 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4781 THIS_CU->is_debug_types, but nothing else.
4782
4783 We fill in THIS_CU->length.
4784
4785 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4786 linker) then DIE_READER_FUNC will not get called.
4787
4788 THIS_CU->cu is always freed when done.
4789 This is done in order to not leave THIS_CU->cu in a state where we have
4790 to care whether it refers to the "main" CU or the DWO CU. */
4791
4792 static void
4793 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4794 struct dwarf2_section_info *abbrev_section,
4795 struct dwo_file *dwo_file,
4796 die_reader_func_ftype *die_reader_func,
4797 void *data)
4798 {
4799 struct objfile *objfile = dwarf2_per_objfile->objfile;
4800 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4801 bfd *abfd = section->asection->owner;
4802 struct dwarf2_cu cu;
4803 gdb_byte *begin_info_ptr, *info_ptr;
4804 struct die_reader_specs reader;
4805 struct cleanup *cleanups;
4806 struct die_info *comp_unit_die;
4807 int has_children;
4808
4809 if (dwarf2_die_debug)
4810 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4811 this_cu->is_debug_types ? "type" : "comp",
4812 this_cu->offset.sect_off);
4813
4814 gdb_assert (this_cu->cu == NULL);
4815
4816 /* This is cheap if the section is already read in. */
4817 dwarf2_read_section (objfile, section);
4818
4819 init_one_comp_unit (&cu, this_cu);
4820
4821 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4822
4823 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4824 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4825 abbrev_section, info_ptr,
4826 this_cu->is_debug_types);
4827
4828 this_cu->length = get_cu_length (&cu.header);
4829
4830 /* Skip dummy compilation units. */
4831 if (info_ptr >= begin_info_ptr + this_cu->length
4832 || peek_abbrev_code (abfd, info_ptr) == 0)
4833 {
4834 do_cleanups (cleanups);
4835 return;
4836 }
4837
4838 dwarf2_read_abbrevs (&cu, abbrev_section);
4839 make_cleanup (dwarf2_free_abbrev_table, &cu);
4840
4841 init_cu_die_reader (&reader, &cu, section, dwo_file);
4842 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4843
4844 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4845
4846 do_cleanups (cleanups);
4847 }
4848
4849 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4850 does not lookup the specified DWO file.
4851 This cannot be used to read DWO files.
4852
4853 THIS_CU->cu is always freed when done.
4854 This is done in order to not leave THIS_CU->cu in a state where we have
4855 to care whether it refers to the "main" CU or the DWO CU.
4856 We can revisit this if the data shows there's a performance issue. */
4857
4858 static void
4859 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4860 die_reader_func_ftype *die_reader_func,
4861 void *data)
4862 {
4863 init_cutu_and_read_dies_no_follow (this_cu,
4864 get_abbrev_section_for_cu (this_cu),
4865 NULL,
4866 die_reader_func, data);
4867 }
4868
4869 /* Create a psymtab named NAME and assign it to PER_CU.
4870
4871 The caller must fill in the following details:
4872 dirname, textlow, texthigh. */
4873
4874 static struct partial_symtab *
4875 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4876 {
4877 struct objfile *objfile = per_cu->objfile;
4878 struct partial_symtab *pst;
4879
4880 pst = start_psymtab_common (objfile, objfile->section_offsets,
4881 name, 0,
4882 objfile->global_psymbols.next,
4883 objfile->static_psymbols.next);
4884
4885 pst->psymtabs_addrmap_supported = 1;
4886
4887 /* This is the glue that links PST into GDB's symbol API. */
4888 pst->read_symtab_private = per_cu;
4889 pst->read_symtab = dwarf2_read_symtab;
4890 per_cu->v.psymtab = pst;
4891
4892 return pst;
4893 }
4894
4895 /* die_reader_func for process_psymtab_comp_unit. */
4896
4897 static void
4898 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4899 gdb_byte *info_ptr,
4900 struct die_info *comp_unit_die,
4901 int has_children,
4902 void *data)
4903 {
4904 struct dwarf2_cu *cu = reader->cu;
4905 struct objfile *objfile = cu->objfile;
4906 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4907 struct attribute *attr;
4908 CORE_ADDR baseaddr;
4909 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4910 struct partial_symtab *pst;
4911 int has_pc_info;
4912 const char *filename;
4913 int *want_partial_unit_ptr = data;
4914
4915 if (comp_unit_die->tag == DW_TAG_partial_unit
4916 && (want_partial_unit_ptr == NULL
4917 || !*want_partial_unit_ptr))
4918 return;
4919
4920 gdb_assert (! per_cu->is_debug_types);
4921
4922 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4923
4924 cu->list_in_scope = &file_symbols;
4925
4926 /* Allocate a new partial symbol table structure. */
4927 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4928 if (attr == NULL || !DW_STRING (attr))
4929 filename = "";
4930 else
4931 filename = DW_STRING (attr);
4932
4933 pst = create_partial_symtab (per_cu, filename);
4934
4935 /* This must be done before calling dwarf2_build_include_psymtabs. */
4936 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4937 if (attr != NULL)
4938 pst->dirname = DW_STRING (attr);
4939
4940 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4941
4942 dwarf2_find_base_address (comp_unit_die, cu);
4943
4944 /* Possibly set the default values of LOWPC and HIGHPC from
4945 `DW_AT_ranges'. */
4946 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4947 &best_highpc, cu, pst);
4948 if (has_pc_info == 1 && best_lowpc < best_highpc)
4949 /* Store the contiguous range if it is not empty; it can be empty for
4950 CUs with no code. */
4951 addrmap_set_empty (objfile->psymtabs_addrmap,
4952 best_lowpc + baseaddr,
4953 best_highpc + baseaddr - 1, pst);
4954
4955 /* Check if comp unit has_children.
4956 If so, read the rest of the partial symbols from this comp unit.
4957 If not, there's no more debug_info for this comp unit. */
4958 if (has_children)
4959 {
4960 struct partial_die_info *first_die;
4961 CORE_ADDR lowpc, highpc;
4962
4963 lowpc = ((CORE_ADDR) -1);
4964 highpc = ((CORE_ADDR) 0);
4965
4966 first_die = load_partial_dies (reader, info_ptr, 1);
4967
4968 scan_partial_symbols (first_die, &lowpc, &highpc,
4969 ! has_pc_info, cu);
4970
4971 /* If we didn't find a lowpc, set it to highpc to avoid
4972 complaints from `maint check'. */
4973 if (lowpc == ((CORE_ADDR) -1))
4974 lowpc = highpc;
4975
4976 /* If the compilation unit didn't have an explicit address range,
4977 then use the information extracted from its child dies. */
4978 if (! has_pc_info)
4979 {
4980 best_lowpc = lowpc;
4981 best_highpc = highpc;
4982 }
4983 }
4984 pst->textlow = best_lowpc + baseaddr;
4985 pst->texthigh = best_highpc + baseaddr;
4986
4987 pst->n_global_syms = objfile->global_psymbols.next -
4988 (objfile->global_psymbols.list + pst->globals_offset);
4989 pst->n_static_syms = objfile->static_psymbols.next -
4990 (objfile->static_psymbols.list + pst->statics_offset);
4991 sort_pst_symbols (objfile, pst);
4992
4993 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4994 {
4995 int i;
4996 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4997 struct dwarf2_per_cu_data *iter;
4998
4999 /* Fill in 'dependencies' here; we fill in 'users' in a
5000 post-pass. */
5001 pst->number_of_dependencies = len;
5002 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5003 len * sizeof (struct symtab *));
5004 for (i = 0;
5005 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5006 i, iter);
5007 ++i)
5008 pst->dependencies[i] = iter->v.psymtab;
5009
5010 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5011 }
5012
5013 /* Get the list of files included in the current compilation unit,
5014 and build a psymtab for each of them. */
5015 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5016
5017 if (dwarf2_read_debug)
5018 {
5019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5020
5021 fprintf_unfiltered (gdb_stdlog,
5022 "Psymtab for %s unit @0x%x: %s - %s"
5023 ", %d global, %d static syms\n",
5024 per_cu->is_debug_types ? "type" : "comp",
5025 per_cu->offset.sect_off,
5026 paddress (gdbarch, pst->textlow),
5027 paddress (gdbarch, pst->texthigh),
5028 pst->n_global_syms, pst->n_static_syms);
5029 }
5030 }
5031
5032 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5033 Process compilation unit THIS_CU for a psymtab. */
5034
5035 static void
5036 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5037 int want_partial_unit)
5038 {
5039 /* If this compilation unit was already read in, free the
5040 cached copy in order to read it in again. This is
5041 necessary because we skipped some symbols when we first
5042 read in the compilation unit (see load_partial_dies).
5043 This problem could be avoided, but the benefit is unclear. */
5044 if (this_cu->cu != NULL)
5045 free_one_cached_comp_unit (this_cu);
5046
5047 gdb_assert (! this_cu->is_debug_types);
5048 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5049 process_psymtab_comp_unit_reader,
5050 &want_partial_unit);
5051
5052 /* Age out any secondary CUs. */
5053 age_cached_comp_units ();
5054 }
5055
5056 static hashval_t
5057 hash_type_unit_group (const void *item)
5058 {
5059 const struct type_unit_group *tu_group = item;
5060
5061 return hash_stmt_list_entry (&tu_group->hash);
5062 }
5063
5064 static int
5065 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5066 {
5067 const struct type_unit_group *lhs = item_lhs;
5068 const struct type_unit_group *rhs = item_rhs;
5069
5070 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5071 }
5072
5073 /* Allocate a hash table for type unit groups. */
5074
5075 static htab_t
5076 allocate_type_unit_groups_table (void)
5077 {
5078 return htab_create_alloc_ex (3,
5079 hash_type_unit_group,
5080 eq_type_unit_group,
5081 NULL,
5082 &dwarf2_per_objfile->objfile->objfile_obstack,
5083 hashtab_obstack_allocate,
5084 dummy_obstack_deallocate);
5085 }
5086
5087 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5088 partial symtabs. We combine several TUs per psymtab to not let the size
5089 of any one psymtab grow too big. */
5090 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5091 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5092
5093 /* Helper routine for get_type_unit_group.
5094 Create the type_unit_group object used to hold one or more TUs. */
5095
5096 static struct type_unit_group *
5097 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5098 {
5099 struct objfile *objfile = dwarf2_per_objfile->objfile;
5100 struct dwarf2_per_cu_data *per_cu;
5101 struct type_unit_group *tu_group;
5102
5103 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5104 struct type_unit_group);
5105 per_cu = &tu_group->per_cu;
5106 per_cu->objfile = objfile;
5107 per_cu->is_debug_types = 1;
5108 per_cu->type_unit_group = tu_group;
5109
5110 if (dwarf2_per_objfile->using_index)
5111 {
5112 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5113 struct dwarf2_per_cu_quick_data);
5114 tu_group->t.first_tu = cu->per_cu;
5115 }
5116 else
5117 {
5118 unsigned int line_offset = line_offset_struct.sect_off;
5119 struct partial_symtab *pst;
5120 char *name;
5121
5122 /* Give the symtab a useful name for debug purposes. */
5123 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5124 name = xstrprintf ("<type_units_%d>",
5125 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5126 else
5127 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5128
5129 pst = create_partial_symtab (per_cu, name);
5130 pst->anonymous = 1;
5131
5132 xfree (name);
5133 }
5134
5135 tu_group->hash.dwo_unit = cu->dwo_unit;
5136 tu_group->hash.line_offset = line_offset_struct;
5137
5138 return tu_group;
5139 }
5140
5141 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5142 STMT_LIST is a DW_AT_stmt_list attribute. */
5143
5144 static struct type_unit_group *
5145 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5146 {
5147 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5148 struct type_unit_group *tu_group;
5149 void **slot;
5150 unsigned int line_offset;
5151 struct type_unit_group type_unit_group_for_lookup;
5152
5153 if (dwarf2_per_objfile->type_unit_groups == NULL)
5154 {
5155 dwarf2_per_objfile->type_unit_groups =
5156 allocate_type_unit_groups_table ();
5157 }
5158
5159 /* Do we need to create a new group, or can we use an existing one? */
5160
5161 if (stmt_list)
5162 {
5163 line_offset = DW_UNSND (stmt_list);
5164 ++tu_stats->nr_symtab_sharers;
5165 }
5166 else
5167 {
5168 /* Ugh, no stmt_list. Rare, but we have to handle it.
5169 We can do various things here like create one group per TU or
5170 spread them over multiple groups to split up the expansion work.
5171 To avoid worst case scenarios (too many groups or too large groups)
5172 we, umm, group them in bunches. */
5173 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5174 | (tu_stats->nr_stmt_less_type_units
5175 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5176 ++tu_stats->nr_stmt_less_type_units;
5177 }
5178
5179 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5180 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5181 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5182 &type_unit_group_for_lookup, INSERT);
5183 if (*slot != NULL)
5184 {
5185 tu_group = *slot;
5186 gdb_assert (tu_group != NULL);
5187 }
5188 else
5189 {
5190 sect_offset line_offset_struct;
5191
5192 line_offset_struct.sect_off = line_offset;
5193 tu_group = create_type_unit_group (cu, line_offset_struct);
5194 *slot = tu_group;
5195 ++tu_stats->nr_symtabs;
5196 }
5197
5198 return tu_group;
5199 }
5200
5201 /* Struct used to sort TUs by their abbreviation table offset. */
5202
5203 struct tu_abbrev_offset
5204 {
5205 struct signatured_type *sig_type;
5206 sect_offset abbrev_offset;
5207 };
5208
5209 /* Helper routine for build_type_unit_groups, passed to qsort. */
5210
5211 static int
5212 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5213 {
5214 const struct tu_abbrev_offset * const *a = ap;
5215 const struct tu_abbrev_offset * const *b = bp;
5216 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5217 unsigned int boff = (*b)->abbrev_offset.sect_off;
5218
5219 return (aoff > boff) - (aoff < boff);
5220 }
5221
5222 /* A helper function to add a type_unit_group to a table. */
5223
5224 static int
5225 add_type_unit_group_to_table (void **slot, void *datum)
5226 {
5227 struct type_unit_group *tu_group = *slot;
5228 struct type_unit_group ***datap = datum;
5229
5230 **datap = tu_group;
5231 ++*datap;
5232
5233 return 1;
5234 }
5235
5236 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5237 each one passing FUNC,DATA.
5238
5239 The efficiency is because we sort TUs by the abbrev table they use and
5240 only read each abbrev table once. In one program there are 200K TUs
5241 sharing 8K abbrev tables.
5242
5243 The main purpose of this function is to support building the
5244 dwarf2_per_objfile->type_unit_groups table.
5245 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5246 can collapse the search space by grouping them by stmt_list.
5247 The savings can be significant, in the same program from above the 200K TUs
5248 share 8K stmt_list tables.
5249
5250 FUNC is expected to call get_type_unit_group, which will create the
5251 struct type_unit_group if necessary and add it to
5252 dwarf2_per_objfile->type_unit_groups. */
5253
5254 static void
5255 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5256 {
5257 struct objfile *objfile = dwarf2_per_objfile->objfile;
5258 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5259 struct cleanup *cleanups;
5260 struct abbrev_table *abbrev_table;
5261 sect_offset abbrev_offset;
5262 struct tu_abbrev_offset *sorted_by_abbrev;
5263 struct type_unit_group **iter;
5264 int i;
5265
5266 /* It's up to the caller to not call us multiple times. */
5267 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5268
5269 if (dwarf2_per_objfile->n_type_units == 0)
5270 return;
5271
5272 /* TUs typically share abbrev tables, and there can be way more TUs than
5273 abbrev tables. Sort by abbrev table to reduce the number of times we
5274 read each abbrev table in.
5275 Alternatives are to punt or to maintain a cache of abbrev tables.
5276 This is simpler and efficient enough for now.
5277
5278 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5279 symtab to use). Typically TUs with the same abbrev offset have the same
5280 stmt_list value too so in practice this should work well.
5281
5282 The basic algorithm here is:
5283
5284 sort TUs by abbrev table
5285 for each TU with same abbrev table:
5286 read abbrev table if first user
5287 read TU top level DIE
5288 [IWBN if DWO skeletons had DW_AT_stmt_list]
5289 call FUNC */
5290
5291 if (dwarf2_read_debug)
5292 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5293
5294 /* Sort in a separate table to maintain the order of all_type_units
5295 for .gdb_index: TU indices directly index all_type_units. */
5296 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5297 dwarf2_per_objfile->n_type_units);
5298 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5299 {
5300 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5301
5302 sorted_by_abbrev[i].sig_type = sig_type;
5303 sorted_by_abbrev[i].abbrev_offset =
5304 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5305 sig_type->per_cu.offset);
5306 }
5307 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5308 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5309 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5310
5311 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5312 called any number of times, so we don't reset tu_stats here. */
5313
5314 abbrev_offset.sect_off = ~(unsigned) 0;
5315 abbrev_table = NULL;
5316 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5317
5318 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5319 {
5320 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5321
5322 /* Switch to the next abbrev table if necessary. */
5323 if (abbrev_table == NULL
5324 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5325 {
5326 if (abbrev_table != NULL)
5327 {
5328 abbrev_table_free (abbrev_table);
5329 /* Reset to NULL in case abbrev_table_read_table throws
5330 an error: abbrev_table_free_cleanup will get called. */
5331 abbrev_table = NULL;
5332 }
5333 abbrev_offset = tu->abbrev_offset;
5334 abbrev_table =
5335 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5336 abbrev_offset);
5337 ++tu_stats->nr_uniq_abbrev_tables;
5338 }
5339
5340 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5341 func, data);
5342 }
5343
5344 /* Create a vector of pointers to primary type units to make it easy to
5345 iterate over them and CUs. See dw2_get_primary_cu. */
5346 dwarf2_per_objfile->n_type_unit_groups =
5347 htab_elements (dwarf2_per_objfile->type_unit_groups);
5348 dwarf2_per_objfile->all_type_unit_groups =
5349 obstack_alloc (&objfile->objfile_obstack,
5350 dwarf2_per_objfile->n_type_unit_groups
5351 * sizeof (struct type_unit_group *));
5352 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5353 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5354 add_type_unit_group_to_table, &iter);
5355 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5356 == dwarf2_per_objfile->n_type_unit_groups);
5357
5358 do_cleanups (cleanups);
5359
5360 if (dwarf2_read_debug)
5361 {
5362 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5363 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5364 dwarf2_per_objfile->n_type_units);
5365 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5366 tu_stats->nr_uniq_abbrev_tables);
5367 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5368 tu_stats->nr_symtabs);
5369 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5370 tu_stats->nr_symtab_sharers);
5371 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5372 tu_stats->nr_stmt_less_type_units);
5373 }
5374 }
5375
5376 /* Reader function for build_type_psymtabs. */
5377
5378 static void
5379 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5380 gdb_byte *info_ptr,
5381 struct die_info *type_unit_die,
5382 int has_children,
5383 void *data)
5384 {
5385 struct objfile *objfile = dwarf2_per_objfile->objfile;
5386 struct dwarf2_cu *cu = reader->cu;
5387 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5388 struct type_unit_group *tu_group;
5389 struct attribute *attr;
5390 struct partial_die_info *first_die;
5391 CORE_ADDR lowpc, highpc;
5392 struct partial_symtab *pst;
5393
5394 gdb_assert (data == NULL);
5395
5396 if (! has_children)
5397 return;
5398
5399 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5400 tu_group = get_type_unit_group (cu, attr);
5401
5402 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5403
5404 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5405 cu->list_in_scope = &file_symbols;
5406 pst = create_partial_symtab (per_cu, "");
5407 pst->anonymous = 1;
5408
5409 first_die = load_partial_dies (reader, info_ptr, 1);
5410
5411 lowpc = (CORE_ADDR) -1;
5412 highpc = (CORE_ADDR) 0;
5413 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5414
5415 pst->n_global_syms = objfile->global_psymbols.next -
5416 (objfile->global_psymbols.list + pst->globals_offset);
5417 pst->n_static_syms = objfile->static_psymbols.next -
5418 (objfile->static_psymbols.list + pst->statics_offset);
5419 sort_pst_symbols (objfile, pst);
5420 }
5421
5422 /* Traversal function for build_type_psymtabs. */
5423
5424 static int
5425 build_type_psymtab_dependencies (void **slot, void *info)
5426 {
5427 struct objfile *objfile = dwarf2_per_objfile->objfile;
5428 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5429 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5430 struct partial_symtab *pst = per_cu->v.psymtab;
5431 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5432 struct dwarf2_per_cu_data *iter;
5433 int i;
5434
5435 gdb_assert (len > 0);
5436
5437 pst->number_of_dependencies = len;
5438 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5439 len * sizeof (struct psymtab *));
5440 for (i = 0;
5441 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5442 ++i)
5443 {
5444 pst->dependencies[i] = iter->v.psymtab;
5445 iter->type_unit_group = tu_group;
5446 }
5447
5448 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5449
5450 return 1;
5451 }
5452
5453 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5454 Build partial symbol tables for the .debug_types comp-units. */
5455
5456 static void
5457 build_type_psymtabs (struct objfile *objfile)
5458 {
5459 if (! create_all_type_units (objfile))
5460 return;
5461
5462 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5463
5464 /* Now that all TUs have been processed we can fill in the dependencies. */
5465 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5466 build_type_psymtab_dependencies, NULL);
5467 }
5468
5469 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5470
5471 static void
5472 psymtabs_addrmap_cleanup (void *o)
5473 {
5474 struct objfile *objfile = o;
5475
5476 objfile->psymtabs_addrmap = NULL;
5477 }
5478
5479 /* Compute the 'user' field for each psymtab in OBJFILE. */
5480
5481 static void
5482 set_partial_user (struct objfile *objfile)
5483 {
5484 int i;
5485
5486 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5487 {
5488 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5489 struct partial_symtab *pst = per_cu->v.psymtab;
5490 int j;
5491
5492 if (pst == NULL)
5493 continue;
5494
5495 for (j = 0; j < pst->number_of_dependencies; ++j)
5496 {
5497 /* Set the 'user' field only if it is not already set. */
5498 if (pst->dependencies[j]->user == NULL)
5499 pst->dependencies[j]->user = pst;
5500 }
5501 }
5502 }
5503
5504 /* Build the partial symbol table by doing a quick pass through the
5505 .debug_info and .debug_abbrev sections. */
5506
5507 static void
5508 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5509 {
5510 struct cleanup *back_to, *addrmap_cleanup;
5511 struct obstack temp_obstack;
5512 int i;
5513
5514 if (dwarf2_read_debug)
5515 {
5516 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5517 objfile->name);
5518 }
5519
5520 dwarf2_per_objfile->reading_partial_symbols = 1;
5521
5522 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5523
5524 /* Any cached compilation units will be linked by the per-objfile
5525 read_in_chain. Make sure to free them when we're done. */
5526 back_to = make_cleanup (free_cached_comp_units, NULL);
5527
5528 build_type_psymtabs (objfile);
5529
5530 create_all_comp_units (objfile);
5531
5532 /* Create a temporary address map on a temporary obstack. We later
5533 copy this to the final obstack. */
5534 obstack_init (&temp_obstack);
5535 make_cleanup_obstack_free (&temp_obstack);
5536 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5537 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5538
5539 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5540 {
5541 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5542
5543 process_psymtab_comp_unit (per_cu, 0);
5544 }
5545
5546 set_partial_user (objfile);
5547
5548 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5549 &objfile->objfile_obstack);
5550 discard_cleanups (addrmap_cleanup);
5551
5552 do_cleanups (back_to);
5553
5554 if (dwarf2_read_debug)
5555 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5556 objfile->name);
5557 }
5558
5559 /* die_reader_func for load_partial_comp_unit. */
5560
5561 static void
5562 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5563 gdb_byte *info_ptr,
5564 struct die_info *comp_unit_die,
5565 int has_children,
5566 void *data)
5567 {
5568 struct dwarf2_cu *cu = reader->cu;
5569
5570 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5571
5572 /* Check if comp unit has_children.
5573 If so, read the rest of the partial symbols from this comp unit.
5574 If not, there's no more debug_info for this comp unit. */
5575 if (has_children)
5576 load_partial_dies (reader, info_ptr, 0);
5577 }
5578
5579 /* Load the partial DIEs for a secondary CU into memory.
5580 This is also used when rereading a primary CU with load_all_dies. */
5581
5582 static void
5583 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5584 {
5585 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5586 load_partial_comp_unit_reader, NULL);
5587 }
5588
5589 static void
5590 read_comp_units_from_section (struct objfile *objfile,
5591 struct dwarf2_section_info *section,
5592 unsigned int is_dwz,
5593 int *n_allocated,
5594 int *n_comp_units,
5595 struct dwarf2_per_cu_data ***all_comp_units)
5596 {
5597 gdb_byte *info_ptr;
5598 bfd *abfd = section->asection->owner;
5599
5600 dwarf2_read_section (objfile, section);
5601
5602 info_ptr = section->buffer;
5603
5604 while (info_ptr < section->buffer + section->size)
5605 {
5606 unsigned int length, initial_length_size;
5607 struct dwarf2_per_cu_data *this_cu;
5608 sect_offset offset;
5609
5610 offset.sect_off = info_ptr - section->buffer;
5611
5612 /* Read just enough information to find out where the next
5613 compilation unit is. */
5614 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5615
5616 /* Save the compilation unit for later lookup. */
5617 this_cu = obstack_alloc (&objfile->objfile_obstack,
5618 sizeof (struct dwarf2_per_cu_data));
5619 memset (this_cu, 0, sizeof (*this_cu));
5620 this_cu->offset = offset;
5621 this_cu->length = length + initial_length_size;
5622 this_cu->is_dwz = is_dwz;
5623 this_cu->objfile = objfile;
5624 this_cu->info_or_types_section = section;
5625
5626 if (*n_comp_units == *n_allocated)
5627 {
5628 *n_allocated *= 2;
5629 *all_comp_units = xrealloc (*all_comp_units,
5630 *n_allocated
5631 * sizeof (struct dwarf2_per_cu_data *));
5632 }
5633 (*all_comp_units)[*n_comp_units] = this_cu;
5634 ++*n_comp_units;
5635
5636 info_ptr = info_ptr + this_cu->length;
5637 }
5638 }
5639
5640 /* Create a list of all compilation units in OBJFILE.
5641 This is only done for -readnow and building partial symtabs. */
5642
5643 static void
5644 create_all_comp_units (struct objfile *objfile)
5645 {
5646 int n_allocated;
5647 int n_comp_units;
5648 struct dwarf2_per_cu_data **all_comp_units;
5649
5650 n_comp_units = 0;
5651 n_allocated = 10;
5652 all_comp_units = xmalloc (n_allocated
5653 * sizeof (struct dwarf2_per_cu_data *));
5654
5655 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5656 &n_allocated, &n_comp_units, &all_comp_units);
5657
5658 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5659 {
5660 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5661
5662 read_comp_units_from_section (objfile, &dwz->info, 1,
5663 &n_allocated, &n_comp_units,
5664 &all_comp_units);
5665 }
5666
5667 dwarf2_per_objfile->all_comp_units
5668 = obstack_alloc (&objfile->objfile_obstack,
5669 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5670 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5671 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5672 xfree (all_comp_units);
5673 dwarf2_per_objfile->n_comp_units = n_comp_units;
5674 }
5675
5676 /* Process all loaded DIEs for compilation unit CU, starting at
5677 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5678 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5679 DW_AT_ranges). If NEED_PC is set, then this function will set
5680 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5681 and record the covered ranges in the addrmap. */
5682
5683 static void
5684 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5685 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5686 {
5687 struct partial_die_info *pdi;
5688
5689 /* Now, march along the PDI's, descending into ones which have
5690 interesting children but skipping the children of the other ones,
5691 until we reach the end of the compilation unit. */
5692
5693 pdi = first_die;
5694
5695 while (pdi != NULL)
5696 {
5697 fixup_partial_die (pdi, cu);
5698
5699 /* Anonymous namespaces or modules have no name but have interesting
5700 children, so we need to look at them. Ditto for anonymous
5701 enums. */
5702
5703 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5704 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5705 || pdi->tag == DW_TAG_imported_unit)
5706 {
5707 switch (pdi->tag)
5708 {
5709 case DW_TAG_subprogram:
5710 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5711 break;
5712 case DW_TAG_constant:
5713 case DW_TAG_variable:
5714 case DW_TAG_typedef:
5715 case DW_TAG_union_type:
5716 if (!pdi->is_declaration)
5717 {
5718 add_partial_symbol (pdi, cu);
5719 }
5720 break;
5721 case DW_TAG_class_type:
5722 case DW_TAG_interface_type:
5723 case DW_TAG_structure_type:
5724 if (!pdi->is_declaration)
5725 {
5726 add_partial_symbol (pdi, cu);
5727 }
5728 break;
5729 case DW_TAG_enumeration_type:
5730 if (!pdi->is_declaration)
5731 add_partial_enumeration (pdi, cu);
5732 break;
5733 case DW_TAG_base_type:
5734 case DW_TAG_subrange_type:
5735 /* File scope base type definitions are added to the partial
5736 symbol table. */
5737 add_partial_symbol (pdi, cu);
5738 break;
5739 case DW_TAG_namespace:
5740 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5741 break;
5742 case DW_TAG_module:
5743 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5744 break;
5745 case DW_TAG_imported_unit:
5746 {
5747 struct dwarf2_per_cu_data *per_cu;
5748
5749 /* For now we don't handle imported units in type units. */
5750 if (cu->per_cu->is_debug_types)
5751 {
5752 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5753 " supported in type units [in module %s]"),
5754 cu->objfile->name);
5755 }
5756
5757 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5758 pdi->is_dwz,
5759 cu->objfile);
5760
5761 /* Go read the partial unit, if needed. */
5762 if (per_cu->v.psymtab == NULL)
5763 process_psymtab_comp_unit (per_cu, 1);
5764
5765 VEC_safe_push (dwarf2_per_cu_ptr,
5766 cu->per_cu->imported_symtabs, per_cu);
5767 }
5768 break;
5769 default:
5770 break;
5771 }
5772 }
5773
5774 /* If the die has a sibling, skip to the sibling. */
5775
5776 pdi = pdi->die_sibling;
5777 }
5778 }
5779
5780 /* Functions used to compute the fully scoped name of a partial DIE.
5781
5782 Normally, this is simple. For C++, the parent DIE's fully scoped
5783 name is concatenated with "::" and the partial DIE's name. For
5784 Java, the same thing occurs except that "." is used instead of "::".
5785 Enumerators are an exception; they use the scope of their parent
5786 enumeration type, i.e. the name of the enumeration type is not
5787 prepended to the enumerator.
5788
5789 There are two complexities. One is DW_AT_specification; in this
5790 case "parent" means the parent of the target of the specification,
5791 instead of the direct parent of the DIE. The other is compilers
5792 which do not emit DW_TAG_namespace; in this case we try to guess
5793 the fully qualified name of structure types from their members'
5794 linkage names. This must be done using the DIE's children rather
5795 than the children of any DW_AT_specification target. We only need
5796 to do this for structures at the top level, i.e. if the target of
5797 any DW_AT_specification (if any; otherwise the DIE itself) does not
5798 have a parent. */
5799
5800 /* Compute the scope prefix associated with PDI's parent, in
5801 compilation unit CU. The result will be allocated on CU's
5802 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5803 field. NULL is returned if no prefix is necessary. */
5804 static const char *
5805 partial_die_parent_scope (struct partial_die_info *pdi,
5806 struct dwarf2_cu *cu)
5807 {
5808 const char *grandparent_scope;
5809 struct partial_die_info *parent, *real_pdi;
5810
5811 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5812 then this means the parent of the specification DIE. */
5813
5814 real_pdi = pdi;
5815 while (real_pdi->has_specification)
5816 real_pdi = find_partial_die (real_pdi->spec_offset,
5817 real_pdi->spec_is_dwz, cu);
5818
5819 parent = real_pdi->die_parent;
5820 if (parent == NULL)
5821 return NULL;
5822
5823 if (parent->scope_set)
5824 return parent->scope;
5825
5826 fixup_partial_die (parent, cu);
5827
5828 grandparent_scope = partial_die_parent_scope (parent, cu);
5829
5830 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5831 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5832 Work around this problem here. */
5833 if (cu->language == language_cplus
5834 && parent->tag == DW_TAG_namespace
5835 && strcmp (parent->name, "::") == 0
5836 && grandparent_scope == NULL)
5837 {
5838 parent->scope = NULL;
5839 parent->scope_set = 1;
5840 return NULL;
5841 }
5842
5843 if (pdi->tag == DW_TAG_enumerator)
5844 /* Enumerators should not get the name of the enumeration as a prefix. */
5845 parent->scope = grandparent_scope;
5846 else if (parent->tag == DW_TAG_namespace
5847 || parent->tag == DW_TAG_module
5848 || parent->tag == DW_TAG_structure_type
5849 || parent->tag == DW_TAG_class_type
5850 || parent->tag == DW_TAG_interface_type
5851 || parent->tag == DW_TAG_union_type
5852 || parent->tag == DW_TAG_enumeration_type)
5853 {
5854 if (grandparent_scope == NULL)
5855 parent->scope = parent->name;
5856 else
5857 parent->scope = typename_concat (&cu->comp_unit_obstack,
5858 grandparent_scope,
5859 parent->name, 0, cu);
5860 }
5861 else
5862 {
5863 /* FIXME drow/2004-04-01: What should we be doing with
5864 function-local names? For partial symbols, we should probably be
5865 ignoring them. */
5866 complaint (&symfile_complaints,
5867 _("unhandled containing DIE tag %d for DIE at %d"),
5868 parent->tag, pdi->offset.sect_off);
5869 parent->scope = grandparent_scope;
5870 }
5871
5872 parent->scope_set = 1;
5873 return parent->scope;
5874 }
5875
5876 /* Return the fully scoped name associated with PDI, from compilation unit
5877 CU. The result will be allocated with malloc. */
5878
5879 static char *
5880 partial_die_full_name (struct partial_die_info *pdi,
5881 struct dwarf2_cu *cu)
5882 {
5883 const char *parent_scope;
5884
5885 /* If this is a template instantiation, we can not work out the
5886 template arguments from partial DIEs. So, unfortunately, we have
5887 to go through the full DIEs. At least any work we do building
5888 types here will be reused if full symbols are loaded later. */
5889 if (pdi->has_template_arguments)
5890 {
5891 fixup_partial_die (pdi, cu);
5892
5893 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5894 {
5895 struct die_info *die;
5896 struct attribute attr;
5897 struct dwarf2_cu *ref_cu = cu;
5898
5899 /* DW_FORM_ref_addr is using section offset. */
5900 attr.name = 0;
5901 attr.form = DW_FORM_ref_addr;
5902 attr.u.unsnd = pdi->offset.sect_off;
5903 die = follow_die_ref (NULL, &attr, &ref_cu);
5904
5905 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5906 }
5907 }
5908
5909 parent_scope = partial_die_parent_scope (pdi, cu);
5910 if (parent_scope == NULL)
5911 return NULL;
5912 else
5913 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5914 }
5915
5916 static void
5917 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5918 {
5919 struct objfile *objfile = cu->objfile;
5920 CORE_ADDR addr = 0;
5921 const char *actual_name = NULL;
5922 CORE_ADDR baseaddr;
5923 char *built_actual_name;
5924
5925 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5926
5927 built_actual_name = partial_die_full_name (pdi, cu);
5928 if (built_actual_name != NULL)
5929 actual_name = built_actual_name;
5930
5931 if (actual_name == NULL)
5932 actual_name = pdi->name;
5933
5934 switch (pdi->tag)
5935 {
5936 case DW_TAG_subprogram:
5937 if (pdi->is_external || cu->language == language_ada)
5938 {
5939 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5940 of the global scope. But in Ada, we want to be able to access
5941 nested procedures globally. So all Ada subprograms are stored
5942 in the global scope. */
5943 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5944 mst_text, objfile); */
5945 add_psymbol_to_list (actual_name, strlen (actual_name),
5946 built_actual_name != NULL,
5947 VAR_DOMAIN, LOC_BLOCK,
5948 &objfile->global_psymbols,
5949 0, pdi->lowpc + baseaddr,
5950 cu->language, objfile);
5951 }
5952 else
5953 {
5954 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5955 mst_file_text, objfile); */
5956 add_psymbol_to_list (actual_name, strlen (actual_name),
5957 built_actual_name != NULL,
5958 VAR_DOMAIN, LOC_BLOCK,
5959 &objfile->static_psymbols,
5960 0, pdi->lowpc + baseaddr,
5961 cu->language, objfile);
5962 }
5963 break;
5964 case DW_TAG_constant:
5965 {
5966 struct psymbol_allocation_list *list;
5967
5968 if (pdi->is_external)
5969 list = &objfile->global_psymbols;
5970 else
5971 list = &objfile->static_psymbols;
5972 add_psymbol_to_list (actual_name, strlen (actual_name),
5973 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5974 list, 0, 0, cu->language, objfile);
5975 }
5976 break;
5977 case DW_TAG_variable:
5978 if (pdi->d.locdesc)
5979 addr = decode_locdesc (pdi->d.locdesc, cu);
5980
5981 if (pdi->d.locdesc
5982 && addr == 0
5983 && !dwarf2_per_objfile->has_section_at_zero)
5984 {
5985 /* A global or static variable may also have been stripped
5986 out by the linker if unused, in which case its address
5987 will be nullified; do not add such variables into partial
5988 symbol table then. */
5989 }
5990 else if (pdi->is_external)
5991 {
5992 /* Global Variable.
5993 Don't enter into the minimal symbol tables as there is
5994 a minimal symbol table entry from the ELF symbols already.
5995 Enter into partial symbol table if it has a location
5996 descriptor or a type.
5997 If the location descriptor is missing, new_symbol will create
5998 a LOC_UNRESOLVED symbol, the address of the variable will then
5999 be determined from the minimal symbol table whenever the variable
6000 is referenced.
6001 The address for the partial symbol table entry is not
6002 used by GDB, but it comes in handy for debugging partial symbol
6003 table building. */
6004
6005 if (pdi->d.locdesc || pdi->has_type)
6006 add_psymbol_to_list (actual_name, strlen (actual_name),
6007 built_actual_name != NULL,
6008 VAR_DOMAIN, LOC_STATIC,
6009 &objfile->global_psymbols,
6010 0, addr + baseaddr,
6011 cu->language, objfile);
6012 }
6013 else
6014 {
6015 /* Static Variable. Skip symbols without location descriptors. */
6016 if (pdi->d.locdesc == NULL)
6017 {
6018 xfree (built_actual_name);
6019 return;
6020 }
6021 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6022 mst_file_data, objfile); */
6023 add_psymbol_to_list (actual_name, strlen (actual_name),
6024 built_actual_name != NULL,
6025 VAR_DOMAIN, LOC_STATIC,
6026 &objfile->static_psymbols,
6027 0, addr + baseaddr,
6028 cu->language, objfile);
6029 }
6030 break;
6031 case DW_TAG_typedef:
6032 case DW_TAG_base_type:
6033 case DW_TAG_subrange_type:
6034 add_psymbol_to_list (actual_name, strlen (actual_name),
6035 built_actual_name != NULL,
6036 VAR_DOMAIN, LOC_TYPEDEF,
6037 &objfile->static_psymbols,
6038 0, (CORE_ADDR) 0, cu->language, objfile);
6039 break;
6040 case DW_TAG_namespace:
6041 add_psymbol_to_list (actual_name, strlen (actual_name),
6042 built_actual_name != NULL,
6043 VAR_DOMAIN, LOC_TYPEDEF,
6044 &objfile->global_psymbols,
6045 0, (CORE_ADDR) 0, cu->language, objfile);
6046 break;
6047 case DW_TAG_class_type:
6048 case DW_TAG_interface_type:
6049 case DW_TAG_structure_type:
6050 case DW_TAG_union_type:
6051 case DW_TAG_enumeration_type:
6052 /* Skip external references. The DWARF standard says in the section
6053 about "Structure, Union, and Class Type Entries": "An incomplete
6054 structure, union or class type is represented by a structure,
6055 union or class entry that does not have a byte size attribute
6056 and that has a DW_AT_declaration attribute." */
6057 if (!pdi->has_byte_size && pdi->is_declaration)
6058 {
6059 xfree (built_actual_name);
6060 return;
6061 }
6062
6063 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6064 static vs. global. */
6065 add_psymbol_to_list (actual_name, strlen (actual_name),
6066 built_actual_name != NULL,
6067 STRUCT_DOMAIN, LOC_TYPEDEF,
6068 (cu->language == language_cplus
6069 || cu->language == language_java)
6070 ? &objfile->global_psymbols
6071 : &objfile->static_psymbols,
6072 0, (CORE_ADDR) 0, cu->language, objfile);
6073
6074 break;
6075 case DW_TAG_enumerator:
6076 add_psymbol_to_list (actual_name, strlen (actual_name),
6077 built_actual_name != NULL,
6078 VAR_DOMAIN, LOC_CONST,
6079 (cu->language == language_cplus
6080 || cu->language == language_java)
6081 ? &objfile->global_psymbols
6082 : &objfile->static_psymbols,
6083 0, (CORE_ADDR) 0, cu->language, objfile);
6084 break;
6085 default:
6086 break;
6087 }
6088
6089 xfree (built_actual_name);
6090 }
6091
6092 /* Read a partial die corresponding to a namespace; also, add a symbol
6093 corresponding to that namespace to the symbol table. NAMESPACE is
6094 the name of the enclosing namespace. */
6095
6096 static void
6097 add_partial_namespace (struct partial_die_info *pdi,
6098 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6099 int need_pc, struct dwarf2_cu *cu)
6100 {
6101 /* Add a symbol for the namespace. */
6102
6103 add_partial_symbol (pdi, cu);
6104
6105 /* Now scan partial symbols in that namespace. */
6106
6107 if (pdi->has_children)
6108 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6109 }
6110
6111 /* Read a partial die corresponding to a Fortran module. */
6112
6113 static void
6114 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6115 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6116 {
6117 /* Now scan partial symbols in that module. */
6118
6119 if (pdi->has_children)
6120 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6121 }
6122
6123 /* Read a partial die corresponding to a subprogram and create a partial
6124 symbol for that subprogram. When the CU language allows it, this
6125 routine also defines a partial symbol for each nested subprogram
6126 that this subprogram contains.
6127
6128 DIE my also be a lexical block, in which case we simply search
6129 recursively for suprograms defined inside that lexical block.
6130 Again, this is only performed when the CU language allows this
6131 type of definitions. */
6132
6133 static void
6134 add_partial_subprogram (struct partial_die_info *pdi,
6135 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6136 int need_pc, struct dwarf2_cu *cu)
6137 {
6138 if (pdi->tag == DW_TAG_subprogram)
6139 {
6140 if (pdi->has_pc_info)
6141 {
6142 if (pdi->lowpc < *lowpc)
6143 *lowpc = pdi->lowpc;
6144 if (pdi->highpc > *highpc)
6145 *highpc = pdi->highpc;
6146 if (need_pc)
6147 {
6148 CORE_ADDR baseaddr;
6149 struct objfile *objfile = cu->objfile;
6150
6151 baseaddr = ANOFFSET (objfile->section_offsets,
6152 SECT_OFF_TEXT (objfile));
6153 addrmap_set_empty (objfile->psymtabs_addrmap,
6154 pdi->lowpc + baseaddr,
6155 pdi->highpc - 1 + baseaddr,
6156 cu->per_cu->v.psymtab);
6157 }
6158 }
6159
6160 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6161 {
6162 if (!pdi->is_declaration)
6163 /* Ignore subprogram DIEs that do not have a name, they are
6164 illegal. Do not emit a complaint at this point, we will
6165 do so when we convert this psymtab into a symtab. */
6166 if (pdi->name)
6167 add_partial_symbol (pdi, cu);
6168 }
6169 }
6170
6171 if (! pdi->has_children)
6172 return;
6173
6174 if (cu->language == language_ada)
6175 {
6176 pdi = pdi->die_child;
6177 while (pdi != NULL)
6178 {
6179 fixup_partial_die (pdi, cu);
6180 if (pdi->tag == DW_TAG_subprogram
6181 || pdi->tag == DW_TAG_lexical_block)
6182 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6183 pdi = pdi->die_sibling;
6184 }
6185 }
6186 }
6187
6188 /* Read a partial die corresponding to an enumeration type. */
6189
6190 static void
6191 add_partial_enumeration (struct partial_die_info *enum_pdi,
6192 struct dwarf2_cu *cu)
6193 {
6194 struct partial_die_info *pdi;
6195
6196 if (enum_pdi->name != NULL)
6197 add_partial_symbol (enum_pdi, cu);
6198
6199 pdi = enum_pdi->die_child;
6200 while (pdi)
6201 {
6202 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6203 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6204 else
6205 add_partial_symbol (pdi, cu);
6206 pdi = pdi->die_sibling;
6207 }
6208 }
6209
6210 /* Return the initial uleb128 in the die at INFO_PTR. */
6211
6212 static unsigned int
6213 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6214 {
6215 unsigned int bytes_read;
6216
6217 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6218 }
6219
6220 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6221 Return the corresponding abbrev, or NULL if the number is zero (indicating
6222 an empty DIE). In either case *BYTES_READ will be set to the length of
6223 the initial number. */
6224
6225 static struct abbrev_info *
6226 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6227 struct dwarf2_cu *cu)
6228 {
6229 bfd *abfd = cu->objfile->obfd;
6230 unsigned int abbrev_number;
6231 struct abbrev_info *abbrev;
6232
6233 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6234
6235 if (abbrev_number == 0)
6236 return NULL;
6237
6238 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6239 if (!abbrev)
6240 {
6241 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6242 abbrev_number, bfd_get_filename (abfd));
6243 }
6244
6245 return abbrev;
6246 }
6247
6248 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6249 Returns a pointer to the end of a series of DIEs, terminated by an empty
6250 DIE. Any children of the skipped DIEs will also be skipped. */
6251
6252 static gdb_byte *
6253 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6254 {
6255 struct dwarf2_cu *cu = reader->cu;
6256 struct abbrev_info *abbrev;
6257 unsigned int bytes_read;
6258
6259 while (1)
6260 {
6261 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6262 if (abbrev == NULL)
6263 return info_ptr + bytes_read;
6264 else
6265 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6266 }
6267 }
6268
6269 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6270 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6271 abbrev corresponding to that skipped uleb128 should be passed in
6272 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6273 children. */
6274
6275 static gdb_byte *
6276 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6277 struct abbrev_info *abbrev)
6278 {
6279 unsigned int bytes_read;
6280 struct attribute attr;
6281 bfd *abfd = reader->abfd;
6282 struct dwarf2_cu *cu = reader->cu;
6283 gdb_byte *buffer = reader->buffer;
6284 const gdb_byte *buffer_end = reader->buffer_end;
6285 gdb_byte *start_info_ptr = info_ptr;
6286 unsigned int form, i;
6287
6288 for (i = 0; i < abbrev->num_attrs; i++)
6289 {
6290 /* The only abbrev we care about is DW_AT_sibling. */
6291 if (abbrev->attrs[i].name == DW_AT_sibling)
6292 {
6293 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6294 if (attr.form == DW_FORM_ref_addr)
6295 complaint (&symfile_complaints,
6296 _("ignoring absolute DW_AT_sibling"));
6297 else
6298 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6299 }
6300
6301 /* If it isn't DW_AT_sibling, skip this attribute. */
6302 form = abbrev->attrs[i].form;
6303 skip_attribute:
6304 switch (form)
6305 {
6306 case DW_FORM_ref_addr:
6307 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6308 and later it is offset sized. */
6309 if (cu->header.version == 2)
6310 info_ptr += cu->header.addr_size;
6311 else
6312 info_ptr += cu->header.offset_size;
6313 break;
6314 case DW_FORM_GNU_ref_alt:
6315 info_ptr += cu->header.offset_size;
6316 break;
6317 case DW_FORM_addr:
6318 info_ptr += cu->header.addr_size;
6319 break;
6320 case DW_FORM_data1:
6321 case DW_FORM_ref1:
6322 case DW_FORM_flag:
6323 info_ptr += 1;
6324 break;
6325 case DW_FORM_flag_present:
6326 break;
6327 case DW_FORM_data2:
6328 case DW_FORM_ref2:
6329 info_ptr += 2;
6330 break;
6331 case DW_FORM_data4:
6332 case DW_FORM_ref4:
6333 info_ptr += 4;
6334 break;
6335 case DW_FORM_data8:
6336 case DW_FORM_ref8:
6337 case DW_FORM_ref_sig8:
6338 info_ptr += 8;
6339 break;
6340 case DW_FORM_string:
6341 read_direct_string (abfd, info_ptr, &bytes_read);
6342 info_ptr += bytes_read;
6343 break;
6344 case DW_FORM_sec_offset:
6345 case DW_FORM_strp:
6346 case DW_FORM_GNU_strp_alt:
6347 info_ptr += cu->header.offset_size;
6348 break;
6349 case DW_FORM_exprloc:
6350 case DW_FORM_block:
6351 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6352 info_ptr += bytes_read;
6353 break;
6354 case DW_FORM_block1:
6355 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6356 break;
6357 case DW_FORM_block2:
6358 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6359 break;
6360 case DW_FORM_block4:
6361 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6362 break;
6363 case DW_FORM_sdata:
6364 case DW_FORM_udata:
6365 case DW_FORM_ref_udata:
6366 case DW_FORM_GNU_addr_index:
6367 case DW_FORM_GNU_str_index:
6368 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6369 break;
6370 case DW_FORM_indirect:
6371 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6372 info_ptr += bytes_read;
6373 /* We need to continue parsing from here, so just go back to
6374 the top. */
6375 goto skip_attribute;
6376
6377 default:
6378 error (_("Dwarf Error: Cannot handle %s "
6379 "in DWARF reader [in module %s]"),
6380 dwarf_form_name (form),
6381 bfd_get_filename (abfd));
6382 }
6383 }
6384
6385 if (abbrev->has_children)
6386 return skip_children (reader, info_ptr);
6387 else
6388 return info_ptr;
6389 }
6390
6391 /* Locate ORIG_PDI's sibling.
6392 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6393
6394 static gdb_byte *
6395 locate_pdi_sibling (const struct die_reader_specs *reader,
6396 struct partial_die_info *orig_pdi,
6397 gdb_byte *info_ptr)
6398 {
6399 /* Do we know the sibling already? */
6400
6401 if (orig_pdi->sibling)
6402 return orig_pdi->sibling;
6403
6404 /* Are there any children to deal with? */
6405
6406 if (!orig_pdi->has_children)
6407 return info_ptr;
6408
6409 /* Skip the children the long way. */
6410
6411 return skip_children (reader, info_ptr);
6412 }
6413
6414 /* Expand this partial symbol table into a full symbol table. SELF is
6415 not NULL. */
6416
6417 static void
6418 dwarf2_read_symtab (struct partial_symtab *self,
6419 struct objfile *objfile)
6420 {
6421 if (self->readin)
6422 {
6423 warning (_("bug: psymtab for %s is already read in."),
6424 self->filename);
6425 }
6426 else
6427 {
6428 if (info_verbose)
6429 {
6430 printf_filtered (_("Reading in symbols for %s..."),
6431 self->filename);
6432 gdb_flush (gdb_stdout);
6433 }
6434
6435 /* Restore our global data. */
6436 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6437
6438 /* If this psymtab is constructed from a debug-only objfile, the
6439 has_section_at_zero flag will not necessarily be correct. We
6440 can get the correct value for this flag by looking at the data
6441 associated with the (presumably stripped) associated objfile. */
6442 if (objfile->separate_debug_objfile_backlink)
6443 {
6444 struct dwarf2_per_objfile *dpo_backlink
6445 = objfile_data (objfile->separate_debug_objfile_backlink,
6446 dwarf2_objfile_data_key);
6447
6448 dwarf2_per_objfile->has_section_at_zero
6449 = dpo_backlink->has_section_at_zero;
6450 }
6451
6452 dwarf2_per_objfile->reading_partial_symbols = 0;
6453
6454 psymtab_to_symtab_1 (self);
6455
6456 /* Finish up the debug error message. */
6457 if (info_verbose)
6458 printf_filtered (_("done.\n"));
6459 }
6460
6461 process_cu_includes ();
6462 }
6463 \f
6464 /* Reading in full CUs. */
6465
6466 /* Add PER_CU to the queue. */
6467
6468 static void
6469 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6470 enum language pretend_language)
6471 {
6472 struct dwarf2_queue_item *item;
6473
6474 per_cu->queued = 1;
6475 item = xmalloc (sizeof (*item));
6476 item->per_cu = per_cu;
6477 item->pretend_language = pretend_language;
6478 item->next = NULL;
6479
6480 if (dwarf2_queue == NULL)
6481 dwarf2_queue = item;
6482 else
6483 dwarf2_queue_tail->next = item;
6484
6485 dwarf2_queue_tail = item;
6486 }
6487
6488 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6489 unit and add it to our queue.
6490 The result is non-zero if PER_CU was queued, otherwise the result is zero
6491 meaning either PER_CU is already queued or it is already loaded. */
6492
6493 static int
6494 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6495 struct dwarf2_per_cu_data *per_cu,
6496 enum language pretend_language)
6497 {
6498 /* We may arrive here during partial symbol reading, if we need full
6499 DIEs to process an unusual case (e.g. template arguments). Do
6500 not queue PER_CU, just tell our caller to load its DIEs. */
6501 if (dwarf2_per_objfile->reading_partial_symbols)
6502 {
6503 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6504 return 1;
6505 return 0;
6506 }
6507
6508 /* Mark the dependence relation so that we don't flush PER_CU
6509 too early. */
6510 dwarf2_add_dependence (this_cu, per_cu);
6511
6512 /* If it's already on the queue, we have nothing to do. */
6513 if (per_cu->queued)
6514 return 0;
6515
6516 /* If the compilation unit is already loaded, just mark it as
6517 used. */
6518 if (per_cu->cu != NULL)
6519 {
6520 per_cu->cu->last_used = 0;
6521 return 0;
6522 }
6523
6524 /* Add it to the queue. */
6525 queue_comp_unit (per_cu, pretend_language);
6526
6527 return 1;
6528 }
6529
6530 /* Process the queue. */
6531
6532 static void
6533 process_queue (void)
6534 {
6535 struct dwarf2_queue_item *item, *next_item;
6536
6537 if (dwarf2_read_debug)
6538 {
6539 fprintf_unfiltered (gdb_stdlog,
6540 "Expanding one or more symtabs of objfile %s ...\n",
6541 dwarf2_per_objfile->objfile->name);
6542 }
6543
6544 /* The queue starts out with one item, but following a DIE reference
6545 may load a new CU, adding it to the end of the queue. */
6546 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6547 {
6548 if (dwarf2_per_objfile->using_index
6549 ? !item->per_cu->v.quick->symtab
6550 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6551 {
6552 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6553
6554 if (dwarf2_read_debug)
6555 {
6556 fprintf_unfiltered (gdb_stdlog,
6557 "Expanding symtab of %s at offset 0x%x\n",
6558 per_cu->is_debug_types ? "TU" : "CU",
6559 per_cu->offset.sect_off);
6560 }
6561
6562 if (per_cu->is_debug_types)
6563 process_full_type_unit (per_cu, item->pretend_language);
6564 else
6565 process_full_comp_unit (per_cu, item->pretend_language);
6566
6567 if (dwarf2_read_debug)
6568 {
6569 fprintf_unfiltered (gdb_stdlog,
6570 "Done expanding %s at offset 0x%x\n",
6571 per_cu->is_debug_types ? "TU" : "CU",
6572 per_cu->offset.sect_off);
6573 }
6574 }
6575
6576 item->per_cu->queued = 0;
6577 next_item = item->next;
6578 xfree (item);
6579 }
6580
6581 dwarf2_queue_tail = NULL;
6582
6583 if (dwarf2_read_debug)
6584 {
6585 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6586 dwarf2_per_objfile->objfile->name);
6587 }
6588 }
6589
6590 /* Free all allocated queue entries. This function only releases anything if
6591 an error was thrown; if the queue was processed then it would have been
6592 freed as we went along. */
6593
6594 static void
6595 dwarf2_release_queue (void *dummy)
6596 {
6597 struct dwarf2_queue_item *item, *last;
6598
6599 item = dwarf2_queue;
6600 while (item)
6601 {
6602 /* Anything still marked queued is likely to be in an
6603 inconsistent state, so discard it. */
6604 if (item->per_cu->queued)
6605 {
6606 if (item->per_cu->cu != NULL)
6607 free_one_cached_comp_unit (item->per_cu);
6608 item->per_cu->queued = 0;
6609 }
6610
6611 last = item;
6612 item = item->next;
6613 xfree (last);
6614 }
6615
6616 dwarf2_queue = dwarf2_queue_tail = NULL;
6617 }
6618
6619 /* Read in full symbols for PST, and anything it depends on. */
6620
6621 static void
6622 psymtab_to_symtab_1 (struct partial_symtab *pst)
6623 {
6624 struct dwarf2_per_cu_data *per_cu;
6625 int i;
6626
6627 if (pst->readin)
6628 return;
6629
6630 for (i = 0; i < pst->number_of_dependencies; i++)
6631 if (!pst->dependencies[i]->readin
6632 && pst->dependencies[i]->user == NULL)
6633 {
6634 /* Inform about additional files that need to be read in. */
6635 if (info_verbose)
6636 {
6637 /* FIXME: i18n: Need to make this a single string. */
6638 fputs_filtered (" ", gdb_stdout);
6639 wrap_here ("");
6640 fputs_filtered ("and ", gdb_stdout);
6641 wrap_here ("");
6642 printf_filtered ("%s...", pst->dependencies[i]->filename);
6643 wrap_here (""); /* Flush output. */
6644 gdb_flush (gdb_stdout);
6645 }
6646 psymtab_to_symtab_1 (pst->dependencies[i]);
6647 }
6648
6649 per_cu = pst->read_symtab_private;
6650
6651 if (per_cu == NULL)
6652 {
6653 /* It's an include file, no symbols to read for it.
6654 Everything is in the parent symtab. */
6655 pst->readin = 1;
6656 return;
6657 }
6658
6659 dw2_do_instantiate_symtab (per_cu);
6660 }
6661
6662 /* Trivial hash function for die_info: the hash value of a DIE
6663 is its offset in .debug_info for this objfile. */
6664
6665 static hashval_t
6666 die_hash (const void *item)
6667 {
6668 const struct die_info *die = item;
6669
6670 return die->offset.sect_off;
6671 }
6672
6673 /* Trivial comparison function for die_info structures: two DIEs
6674 are equal if they have the same offset. */
6675
6676 static int
6677 die_eq (const void *item_lhs, const void *item_rhs)
6678 {
6679 const struct die_info *die_lhs = item_lhs;
6680 const struct die_info *die_rhs = item_rhs;
6681
6682 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6683 }
6684
6685 /* die_reader_func for load_full_comp_unit.
6686 This is identical to read_signatured_type_reader,
6687 but is kept separate for now. */
6688
6689 static void
6690 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6691 gdb_byte *info_ptr,
6692 struct die_info *comp_unit_die,
6693 int has_children,
6694 void *data)
6695 {
6696 struct dwarf2_cu *cu = reader->cu;
6697 enum language *language_ptr = data;
6698
6699 gdb_assert (cu->die_hash == NULL);
6700 cu->die_hash =
6701 htab_create_alloc_ex (cu->header.length / 12,
6702 die_hash,
6703 die_eq,
6704 NULL,
6705 &cu->comp_unit_obstack,
6706 hashtab_obstack_allocate,
6707 dummy_obstack_deallocate);
6708
6709 if (has_children)
6710 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6711 &info_ptr, comp_unit_die);
6712 cu->dies = comp_unit_die;
6713 /* comp_unit_die is not stored in die_hash, no need. */
6714
6715 /* We try not to read any attributes in this function, because not
6716 all CUs needed for references have been loaded yet, and symbol
6717 table processing isn't initialized. But we have to set the CU language,
6718 or we won't be able to build types correctly.
6719 Similarly, if we do not read the producer, we can not apply
6720 producer-specific interpretation. */
6721 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6722 }
6723
6724 /* Load the DIEs associated with PER_CU into memory. */
6725
6726 static void
6727 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6728 enum language pretend_language)
6729 {
6730 gdb_assert (! this_cu->is_debug_types);
6731
6732 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6733 load_full_comp_unit_reader, &pretend_language);
6734 }
6735
6736 /* Add a DIE to the delayed physname list. */
6737
6738 static void
6739 add_to_method_list (struct type *type, int fnfield_index, int index,
6740 const char *name, struct die_info *die,
6741 struct dwarf2_cu *cu)
6742 {
6743 struct delayed_method_info mi;
6744 mi.type = type;
6745 mi.fnfield_index = fnfield_index;
6746 mi.index = index;
6747 mi.name = name;
6748 mi.die = die;
6749 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6750 }
6751
6752 /* A cleanup for freeing the delayed method list. */
6753
6754 static void
6755 free_delayed_list (void *ptr)
6756 {
6757 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6758 if (cu->method_list != NULL)
6759 {
6760 VEC_free (delayed_method_info, cu->method_list);
6761 cu->method_list = NULL;
6762 }
6763 }
6764
6765 /* Compute the physnames of any methods on the CU's method list.
6766
6767 The computation of method physnames is delayed in order to avoid the
6768 (bad) condition that one of the method's formal parameters is of an as yet
6769 incomplete type. */
6770
6771 static void
6772 compute_delayed_physnames (struct dwarf2_cu *cu)
6773 {
6774 int i;
6775 struct delayed_method_info *mi;
6776 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6777 {
6778 const char *physname;
6779 struct fn_fieldlist *fn_flp
6780 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6781 physname = dwarf2_physname (mi->name, mi->die, cu);
6782 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6783 }
6784 }
6785
6786 /* Go objects should be embedded in a DW_TAG_module DIE,
6787 and it's not clear if/how imported objects will appear.
6788 To keep Go support simple until that's worked out,
6789 go back through what we've read and create something usable.
6790 We could do this while processing each DIE, and feels kinda cleaner,
6791 but that way is more invasive.
6792 This is to, for example, allow the user to type "p var" or "b main"
6793 without having to specify the package name, and allow lookups
6794 of module.object to work in contexts that use the expression
6795 parser. */
6796
6797 static void
6798 fixup_go_packaging (struct dwarf2_cu *cu)
6799 {
6800 char *package_name = NULL;
6801 struct pending *list;
6802 int i;
6803
6804 for (list = global_symbols; list != NULL; list = list->next)
6805 {
6806 for (i = 0; i < list->nsyms; ++i)
6807 {
6808 struct symbol *sym = list->symbol[i];
6809
6810 if (SYMBOL_LANGUAGE (sym) == language_go
6811 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6812 {
6813 char *this_package_name = go_symbol_package_name (sym);
6814
6815 if (this_package_name == NULL)
6816 continue;
6817 if (package_name == NULL)
6818 package_name = this_package_name;
6819 else
6820 {
6821 if (strcmp (package_name, this_package_name) != 0)
6822 complaint (&symfile_complaints,
6823 _("Symtab %s has objects from two different Go packages: %s and %s"),
6824 (SYMBOL_SYMTAB (sym)
6825 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6826 : cu->objfile->name),
6827 this_package_name, package_name);
6828 xfree (this_package_name);
6829 }
6830 }
6831 }
6832 }
6833
6834 if (package_name != NULL)
6835 {
6836 struct objfile *objfile = cu->objfile;
6837 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6838 package_name,
6839 strlen (package_name));
6840 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6841 saved_package_name, objfile);
6842 struct symbol *sym;
6843
6844 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6845
6846 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6847 SYMBOL_SET_LANGUAGE (sym, language_go);
6848 SYMBOL_SET_NAMES (sym, saved_package_name,
6849 strlen (saved_package_name), 0, objfile);
6850 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6851 e.g., "main" finds the "main" module and not C's main(). */
6852 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6853 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6854 SYMBOL_TYPE (sym) = type;
6855
6856 add_symbol_to_list (sym, &global_symbols);
6857
6858 xfree (package_name);
6859 }
6860 }
6861
6862 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6863
6864 /* Return the symtab for PER_CU. This works properly regardless of
6865 whether we're using the index or psymtabs. */
6866
6867 static struct symtab *
6868 get_symtab (struct dwarf2_per_cu_data *per_cu)
6869 {
6870 return (dwarf2_per_objfile->using_index
6871 ? per_cu->v.quick->symtab
6872 : per_cu->v.psymtab->symtab);
6873 }
6874
6875 /* A helper function for computing the list of all symbol tables
6876 included by PER_CU. */
6877
6878 static void
6879 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6880 htab_t all_children,
6881 struct dwarf2_per_cu_data *per_cu)
6882 {
6883 void **slot;
6884 int ix;
6885 struct dwarf2_per_cu_data *iter;
6886
6887 slot = htab_find_slot (all_children, per_cu, INSERT);
6888 if (*slot != NULL)
6889 {
6890 /* This inclusion and its children have been processed. */
6891 return;
6892 }
6893
6894 *slot = per_cu;
6895 /* Only add a CU if it has a symbol table. */
6896 if (get_symtab (per_cu) != NULL)
6897 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6898
6899 for (ix = 0;
6900 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6901 ++ix)
6902 recursively_compute_inclusions (result, all_children, iter);
6903 }
6904
6905 /* Compute the symtab 'includes' fields for the symtab related to
6906 PER_CU. */
6907
6908 static void
6909 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6910 {
6911 gdb_assert (! per_cu->is_debug_types);
6912
6913 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6914 {
6915 int ix, len;
6916 struct dwarf2_per_cu_data *iter;
6917 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6918 htab_t all_children;
6919 struct symtab *symtab = get_symtab (per_cu);
6920
6921 /* If we don't have a symtab, we can just skip this case. */
6922 if (symtab == NULL)
6923 return;
6924
6925 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6926 NULL, xcalloc, xfree);
6927
6928 for (ix = 0;
6929 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6930 ix, iter);
6931 ++ix)
6932 recursively_compute_inclusions (&result_children, all_children, iter);
6933
6934 /* Now we have a transitive closure of all the included CUs, and
6935 for .gdb_index version 7 the included TUs, so we can convert it
6936 to a list of symtabs. */
6937 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6938 symtab->includes
6939 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6940 (len + 1) * sizeof (struct symtab *));
6941 for (ix = 0;
6942 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6943 ++ix)
6944 symtab->includes[ix] = get_symtab (iter);
6945 symtab->includes[len] = NULL;
6946
6947 VEC_free (dwarf2_per_cu_ptr, result_children);
6948 htab_delete (all_children);
6949 }
6950 }
6951
6952 /* Compute the 'includes' field for the symtabs of all the CUs we just
6953 read. */
6954
6955 static void
6956 process_cu_includes (void)
6957 {
6958 int ix;
6959 struct dwarf2_per_cu_data *iter;
6960
6961 for (ix = 0;
6962 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6963 ix, iter);
6964 ++ix)
6965 {
6966 if (! iter->is_debug_types)
6967 compute_symtab_includes (iter);
6968 }
6969
6970 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6971 }
6972
6973 /* Generate full symbol information for PER_CU, whose DIEs have
6974 already been loaded into memory. */
6975
6976 static void
6977 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6978 enum language pretend_language)
6979 {
6980 struct dwarf2_cu *cu = per_cu->cu;
6981 struct objfile *objfile = per_cu->objfile;
6982 CORE_ADDR lowpc, highpc;
6983 struct symtab *symtab;
6984 struct cleanup *back_to, *delayed_list_cleanup;
6985 CORE_ADDR baseaddr;
6986 struct block *static_block;
6987
6988 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6989
6990 buildsym_init ();
6991 back_to = make_cleanup (really_free_pendings, NULL);
6992 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6993
6994 cu->list_in_scope = &file_symbols;
6995
6996 cu->language = pretend_language;
6997 cu->language_defn = language_def (cu->language);
6998
6999 /* Do line number decoding in read_file_scope () */
7000 process_die (cu->dies, cu);
7001
7002 /* For now fudge the Go package. */
7003 if (cu->language == language_go)
7004 fixup_go_packaging (cu);
7005
7006 /* Now that we have processed all the DIEs in the CU, all the types
7007 should be complete, and it should now be safe to compute all of the
7008 physnames. */
7009 compute_delayed_physnames (cu);
7010 do_cleanups (delayed_list_cleanup);
7011
7012 /* Some compilers don't define a DW_AT_high_pc attribute for the
7013 compilation unit. If the DW_AT_high_pc is missing, synthesize
7014 it, by scanning the DIE's below the compilation unit. */
7015 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7016
7017 static_block
7018 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7019 per_cu->imported_symtabs != NULL);
7020
7021 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7022 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7023 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7024 addrmap to help ensure it has an accurate map of pc values belonging to
7025 this comp unit. */
7026 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7027
7028 symtab = end_symtab_from_static_block (static_block, objfile,
7029 SECT_OFF_TEXT (objfile), 0);
7030
7031 if (symtab != NULL)
7032 {
7033 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7034
7035 /* Set symtab language to language from DW_AT_language. If the
7036 compilation is from a C file generated by language preprocessors, do
7037 not set the language if it was already deduced by start_subfile. */
7038 if (!(cu->language == language_c && symtab->language != language_c))
7039 symtab->language = cu->language;
7040
7041 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7042 produce DW_AT_location with location lists but it can be possibly
7043 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7044 there were bugs in prologue debug info, fixed later in GCC-4.5
7045 by "unwind info for epilogues" patch (which is not directly related).
7046
7047 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7048 needed, it would be wrong due to missing DW_AT_producer there.
7049
7050 Still one can confuse GDB by using non-standard GCC compilation
7051 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7052 */
7053 if (cu->has_loclist && gcc_4_minor >= 5)
7054 symtab->locations_valid = 1;
7055
7056 if (gcc_4_minor >= 5)
7057 symtab->epilogue_unwind_valid = 1;
7058
7059 symtab->call_site_htab = cu->call_site_htab;
7060 }
7061
7062 if (dwarf2_per_objfile->using_index)
7063 per_cu->v.quick->symtab = symtab;
7064 else
7065 {
7066 struct partial_symtab *pst = per_cu->v.psymtab;
7067 pst->symtab = symtab;
7068 pst->readin = 1;
7069 }
7070
7071 /* Push it for inclusion processing later. */
7072 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7073
7074 do_cleanups (back_to);
7075 }
7076
7077 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7078 already been loaded into memory. */
7079
7080 static void
7081 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7082 enum language pretend_language)
7083 {
7084 struct dwarf2_cu *cu = per_cu->cu;
7085 struct objfile *objfile = per_cu->objfile;
7086 struct symtab *symtab;
7087 struct cleanup *back_to, *delayed_list_cleanup;
7088
7089 buildsym_init ();
7090 back_to = make_cleanup (really_free_pendings, NULL);
7091 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7092
7093 cu->list_in_scope = &file_symbols;
7094
7095 cu->language = pretend_language;
7096 cu->language_defn = language_def (cu->language);
7097
7098 /* The symbol tables are set up in read_type_unit_scope. */
7099 process_die (cu->dies, cu);
7100
7101 /* For now fudge the Go package. */
7102 if (cu->language == language_go)
7103 fixup_go_packaging (cu);
7104
7105 /* Now that we have processed all the DIEs in the CU, all the types
7106 should be complete, and it should now be safe to compute all of the
7107 physnames. */
7108 compute_delayed_physnames (cu);
7109 do_cleanups (delayed_list_cleanup);
7110
7111 /* TUs share symbol tables.
7112 If this is the first TU to use this symtab, complete the construction
7113 of it with end_expandable_symtab. Otherwise, complete the addition of
7114 this TU's symbols to the existing symtab. */
7115 if (per_cu->type_unit_group->primary_symtab == NULL)
7116 {
7117 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7118 per_cu->type_unit_group->primary_symtab = symtab;
7119
7120 if (symtab != NULL)
7121 {
7122 /* Set symtab language to language from DW_AT_language. If the
7123 compilation is from a C file generated by language preprocessors,
7124 do not set the language if it was already deduced by
7125 start_subfile. */
7126 if (!(cu->language == language_c && symtab->language != language_c))
7127 symtab->language = cu->language;
7128 }
7129 }
7130 else
7131 {
7132 augment_type_symtab (objfile,
7133 per_cu->type_unit_group->primary_symtab);
7134 symtab = per_cu->type_unit_group->primary_symtab;
7135 }
7136
7137 if (dwarf2_per_objfile->using_index)
7138 per_cu->v.quick->symtab = symtab;
7139 else
7140 {
7141 struct partial_symtab *pst = per_cu->v.psymtab;
7142 pst->symtab = symtab;
7143 pst->readin = 1;
7144 }
7145
7146 do_cleanups (back_to);
7147 }
7148
7149 /* Process an imported unit DIE. */
7150
7151 static void
7152 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7153 {
7154 struct attribute *attr;
7155
7156 /* For now we don't handle imported units in type units. */
7157 if (cu->per_cu->is_debug_types)
7158 {
7159 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7160 " supported in type units [in module %s]"),
7161 cu->objfile->name);
7162 }
7163
7164 attr = dwarf2_attr (die, DW_AT_import, cu);
7165 if (attr != NULL)
7166 {
7167 struct dwarf2_per_cu_data *per_cu;
7168 struct symtab *imported_symtab;
7169 sect_offset offset;
7170 int is_dwz;
7171
7172 offset = dwarf2_get_ref_die_offset (attr);
7173 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7174 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7175
7176 /* Queue the unit, if needed. */
7177 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7178 load_full_comp_unit (per_cu, cu->language);
7179
7180 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7181 per_cu);
7182 }
7183 }
7184
7185 /* Process a die and its children. */
7186
7187 static void
7188 process_die (struct die_info *die, struct dwarf2_cu *cu)
7189 {
7190 switch (die->tag)
7191 {
7192 case DW_TAG_padding:
7193 break;
7194 case DW_TAG_compile_unit:
7195 case DW_TAG_partial_unit:
7196 read_file_scope (die, cu);
7197 break;
7198 case DW_TAG_type_unit:
7199 read_type_unit_scope (die, cu);
7200 break;
7201 case DW_TAG_subprogram:
7202 case DW_TAG_inlined_subroutine:
7203 read_func_scope (die, cu);
7204 break;
7205 case DW_TAG_lexical_block:
7206 case DW_TAG_try_block:
7207 case DW_TAG_catch_block:
7208 read_lexical_block_scope (die, cu);
7209 break;
7210 case DW_TAG_GNU_call_site:
7211 read_call_site_scope (die, cu);
7212 break;
7213 case DW_TAG_class_type:
7214 case DW_TAG_interface_type:
7215 case DW_TAG_structure_type:
7216 case DW_TAG_union_type:
7217 process_structure_scope (die, cu);
7218 break;
7219 case DW_TAG_enumeration_type:
7220 process_enumeration_scope (die, cu);
7221 break;
7222
7223 /* These dies have a type, but processing them does not create
7224 a symbol or recurse to process the children. Therefore we can
7225 read them on-demand through read_type_die. */
7226 case DW_TAG_subroutine_type:
7227 case DW_TAG_set_type:
7228 case DW_TAG_array_type:
7229 case DW_TAG_pointer_type:
7230 case DW_TAG_ptr_to_member_type:
7231 case DW_TAG_reference_type:
7232 case DW_TAG_string_type:
7233 break;
7234
7235 case DW_TAG_base_type:
7236 case DW_TAG_subrange_type:
7237 case DW_TAG_typedef:
7238 /* Add a typedef symbol for the type definition, if it has a
7239 DW_AT_name. */
7240 new_symbol (die, read_type_die (die, cu), cu);
7241 break;
7242 case DW_TAG_common_block:
7243 read_common_block (die, cu);
7244 break;
7245 case DW_TAG_common_inclusion:
7246 break;
7247 case DW_TAG_namespace:
7248 cu->processing_has_namespace_info = 1;
7249 read_namespace (die, cu);
7250 break;
7251 case DW_TAG_module:
7252 cu->processing_has_namespace_info = 1;
7253 read_module (die, cu);
7254 break;
7255 case DW_TAG_imported_declaration:
7256 case DW_TAG_imported_module:
7257 cu->processing_has_namespace_info = 1;
7258 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7259 || cu->language != language_fortran))
7260 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7261 dwarf_tag_name (die->tag));
7262 read_import_statement (die, cu);
7263 break;
7264
7265 case DW_TAG_imported_unit:
7266 process_imported_unit_die (die, cu);
7267 break;
7268
7269 default:
7270 new_symbol (die, NULL, cu);
7271 break;
7272 }
7273 }
7274
7275 /* A helper function for dwarf2_compute_name which determines whether DIE
7276 needs to have the name of the scope prepended to the name listed in the
7277 die. */
7278
7279 static int
7280 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7281 {
7282 struct attribute *attr;
7283
7284 switch (die->tag)
7285 {
7286 case DW_TAG_namespace:
7287 case DW_TAG_typedef:
7288 case DW_TAG_class_type:
7289 case DW_TAG_interface_type:
7290 case DW_TAG_structure_type:
7291 case DW_TAG_union_type:
7292 case DW_TAG_enumeration_type:
7293 case DW_TAG_enumerator:
7294 case DW_TAG_subprogram:
7295 case DW_TAG_member:
7296 return 1;
7297
7298 case DW_TAG_variable:
7299 case DW_TAG_constant:
7300 /* We only need to prefix "globally" visible variables. These include
7301 any variable marked with DW_AT_external or any variable that
7302 lives in a namespace. [Variables in anonymous namespaces
7303 require prefixing, but they are not DW_AT_external.] */
7304
7305 if (dwarf2_attr (die, DW_AT_specification, cu))
7306 {
7307 struct dwarf2_cu *spec_cu = cu;
7308
7309 return die_needs_namespace (die_specification (die, &spec_cu),
7310 spec_cu);
7311 }
7312
7313 attr = dwarf2_attr (die, DW_AT_external, cu);
7314 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7315 && die->parent->tag != DW_TAG_module)
7316 return 0;
7317 /* A variable in a lexical block of some kind does not need a
7318 namespace, even though in C++ such variables may be external
7319 and have a mangled name. */
7320 if (die->parent->tag == DW_TAG_lexical_block
7321 || die->parent->tag == DW_TAG_try_block
7322 || die->parent->tag == DW_TAG_catch_block
7323 || die->parent->tag == DW_TAG_subprogram)
7324 return 0;
7325 return 1;
7326
7327 default:
7328 return 0;
7329 }
7330 }
7331
7332 /* Retrieve the last character from a mem_file. */
7333
7334 static void
7335 do_ui_file_peek_last (void *object, const char *buffer, long length)
7336 {
7337 char *last_char_p = (char *) object;
7338
7339 if (length > 0)
7340 *last_char_p = buffer[length - 1];
7341 }
7342
7343 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7344 compute the physname for the object, which include a method's:
7345 - formal parameters (C++/Java),
7346 - receiver type (Go),
7347 - return type (Java).
7348
7349 The term "physname" is a bit confusing.
7350 For C++, for example, it is the demangled name.
7351 For Go, for example, it's the mangled name.
7352
7353 For Ada, return the DIE's linkage name rather than the fully qualified
7354 name. PHYSNAME is ignored..
7355
7356 The result is allocated on the objfile_obstack and canonicalized. */
7357
7358 static const char *
7359 dwarf2_compute_name (const char *name,
7360 struct die_info *die, struct dwarf2_cu *cu,
7361 int physname)
7362 {
7363 struct objfile *objfile = cu->objfile;
7364
7365 if (name == NULL)
7366 name = dwarf2_name (die, cu);
7367
7368 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7369 compute it by typename_concat inside GDB. */
7370 if (cu->language == language_ada
7371 || (cu->language == language_fortran && physname))
7372 {
7373 /* For Ada unit, we prefer the linkage name over the name, as
7374 the former contains the exported name, which the user expects
7375 to be able to reference. Ideally, we want the user to be able
7376 to reference this entity using either natural or linkage name,
7377 but we haven't started looking at this enhancement yet. */
7378 struct attribute *attr;
7379
7380 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7381 if (attr == NULL)
7382 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7383 if (attr && DW_STRING (attr))
7384 return DW_STRING (attr);
7385 }
7386
7387 /* These are the only languages we know how to qualify names in. */
7388 if (name != NULL
7389 && (cu->language == language_cplus || cu->language == language_java
7390 || cu->language == language_fortran))
7391 {
7392 if (die_needs_namespace (die, cu))
7393 {
7394 long length;
7395 const char *prefix;
7396 struct ui_file *buf;
7397
7398 prefix = determine_prefix (die, cu);
7399 buf = mem_fileopen ();
7400 if (*prefix != '\0')
7401 {
7402 char *prefixed_name = typename_concat (NULL, prefix, name,
7403 physname, cu);
7404
7405 fputs_unfiltered (prefixed_name, buf);
7406 xfree (prefixed_name);
7407 }
7408 else
7409 fputs_unfiltered (name, buf);
7410
7411 /* Template parameters may be specified in the DIE's DW_AT_name, or
7412 as children with DW_TAG_template_type_param or
7413 DW_TAG_value_type_param. If the latter, add them to the name
7414 here. If the name already has template parameters, then
7415 skip this step; some versions of GCC emit both, and
7416 it is more efficient to use the pre-computed name.
7417
7418 Something to keep in mind about this process: it is very
7419 unlikely, or in some cases downright impossible, to produce
7420 something that will match the mangled name of a function.
7421 If the definition of the function has the same debug info,
7422 we should be able to match up with it anyway. But fallbacks
7423 using the minimal symbol, for instance to find a method
7424 implemented in a stripped copy of libstdc++, will not work.
7425 If we do not have debug info for the definition, we will have to
7426 match them up some other way.
7427
7428 When we do name matching there is a related problem with function
7429 templates; two instantiated function templates are allowed to
7430 differ only by their return types, which we do not add here. */
7431
7432 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7433 {
7434 struct attribute *attr;
7435 struct die_info *child;
7436 int first = 1;
7437
7438 die->building_fullname = 1;
7439
7440 for (child = die->child; child != NULL; child = child->sibling)
7441 {
7442 struct type *type;
7443 LONGEST value;
7444 gdb_byte *bytes;
7445 struct dwarf2_locexpr_baton *baton;
7446 struct value *v;
7447
7448 if (child->tag != DW_TAG_template_type_param
7449 && child->tag != DW_TAG_template_value_param)
7450 continue;
7451
7452 if (first)
7453 {
7454 fputs_unfiltered ("<", buf);
7455 first = 0;
7456 }
7457 else
7458 fputs_unfiltered (", ", buf);
7459
7460 attr = dwarf2_attr (child, DW_AT_type, cu);
7461 if (attr == NULL)
7462 {
7463 complaint (&symfile_complaints,
7464 _("template parameter missing DW_AT_type"));
7465 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7466 continue;
7467 }
7468 type = die_type (child, cu);
7469
7470 if (child->tag == DW_TAG_template_type_param)
7471 {
7472 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7473 continue;
7474 }
7475
7476 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7477 if (attr == NULL)
7478 {
7479 complaint (&symfile_complaints,
7480 _("template parameter missing "
7481 "DW_AT_const_value"));
7482 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7483 continue;
7484 }
7485
7486 dwarf2_const_value_attr (attr, type, name,
7487 &cu->comp_unit_obstack, cu,
7488 &value, &bytes, &baton);
7489
7490 if (TYPE_NOSIGN (type))
7491 /* GDB prints characters as NUMBER 'CHAR'. If that's
7492 changed, this can use value_print instead. */
7493 c_printchar (value, type, buf);
7494 else
7495 {
7496 struct value_print_options opts;
7497
7498 if (baton != NULL)
7499 v = dwarf2_evaluate_loc_desc (type, NULL,
7500 baton->data,
7501 baton->size,
7502 baton->per_cu);
7503 else if (bytes != NULL)
7504 {
7505 v = allocate_value (type);
7506 memcpy (value_contents_writeable (v), bytes,
7507 TYPE_LENGTH (type));
7508 }
7509 else
7510 v = value_from_longest (type, value);
7511
7512 /* Specify decimal so that we do not depend on
7513 the radix. */
7514 get_formatted_print_options (&opts, 'd');
7515 opts.raw = 1;
7516 value_print (v, buf, &opts);
7517 release_value (v);
7518 value_free (v);
7519 }
7520 }
7521
7522 die->building_fullname = 0;
7523
7524 if (!first)
7525 {
7526 /* Close the argument list, with a space if necessary
7527 (nested templates). */
7528 char last_char = '\0';
7529 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7530 if (last_char == '>')
7531 fputs_unfiltered (" >", buf);
7532 else
7533 fputs_unfiltered (">", buf);
7534 }
7535 }
7536
7537 /* For Java and C++ methods, append formal parameter type
7538 information, if PHYSNAME. */
7539
7540 if (physname && die->tag == DW_TAG_subprogram
7541 && (cu->language == language_cplus
7542 || cu->language == language_java))
7543 {
7544 struct type *type = read_type_die (die, cu);
7545
7546 c_type_print_args (type, buf, 1, cu->language,
7547 &type_print_raw_options);
7548
7549 if (cu->language == language_java)
7550 {
7551 /* For java, we must append the return type to method
7552 names. */
7553 if (die->tag == DW_TAG_subprogram)
7554 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7555 0, 0, &type_print_raw_options);
7556 }
7557 else if (cu->language == language_cplus)
7558 {
7559 /* Assume that an artificial first parameter is
7560 "this", but do not crash if it is not. RealView
7561 marks unnamed (and thus unused) parameters as
7562 artificial; there is no way to differentiate
7563 the two cases. */
7564 if (TYPE_NFIELDS (type) > 0
7565 && TYPE_FIELD_ARTIFICIAL (type, 0)
7566 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7567 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7568 0))))
7569 fputs_unfiltered (" const", buf);
7570 }
7571 }
7572
7573 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7574 &length);
7575 ui_file_delete (buf);
7576
7577 if (cu->language == language_cplus)
7578 {
7579 const char *cname
7580 = dwarf2_canonicalize_name (name, cu,
7581 &objfile->objfile_obstack);
7582
7583 if (cname != NULL)
7584 name = cname;
7585 }
7586 }
7587 }
7588
7589 return name;
7590 }
7591
7592 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7593 If scope qualifiers are appropriate they will be added. The result
7594 will be allocated on the objfile_obstack, or NULL if the DIE does
7595 not have a name. NAME may either be from a previous call to
7596 dwarf2_name or NULL.
7597
7598 The output string will be canonicalized (if C++/Java). */
7599
7600 static const char *
7601 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7602 {
7603 return dwarf2_compute_name (name, die, cu, 0);
7604 }
7605
7606 /* Construct a physname for the given DIE in CU. NAME may either be
7607 from a previous call to dwarf2_name or NULL. The result will be
7608 allocated on the objfile_objstack or NULL if the DIE does not have a
7609 name.
7610
7611 The output string will be canonicalized (if C++/Java). */
7612
7613 static const char *
7614 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7615 {
7616 struct objfile *objfile = cu->objfile;
7617 struct attribute *attr;
7618 const char *retval, *mangled = NULL, *canon = NULL;
7619 struct cleanup *back_to;
7620 int need_copy = 1;
7621
7622 /* In this case dwarf2_compute_name is just a shortcut not building anything
7623 on its own. */
7624 if (!die_needs_namespace (die, cu))
7625 return dwarf2_compute_name (name, die, cu, 1);
7626
7627 back_to = make_cleanup (null_cleanup, NULL);
7628
7629 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7630 if (!attr)
7631 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7632
7633 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7634 has computed. */
7635 if (attr && DW_STRING (attr))
7636 {
7637 char *demangled;
7638
7639 mangled = DW_STRING (attr);
7640
7641 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7642 type. It is easier for GDB users to search for such functions as
7643 `name(params)' than `long name(params)'. In such case the minimal
7644 symbol names do not match the full symbol names but for template
7645 functions there is never a need to look up their definition from their
7646 declaration so the only disadvantage remains the minimal symbol
7647 variant `long name(params)' does not have the proper inferior type.
7648 */
7649
7650 if (cu->language == language_go)
7651 {
7652 /* This is a lie, but we already lie to the caller new_symbol_full.
7653 new_symbol_full assumes we return the mangled name.
7654 This just undoes that lie until things are cleaned up. */
7655 demangled = NULL;
7656 }
7657 else
7658 {
7659 demangled = cplus_demangle (mangled,
7660 (DMGL_PARAMS | DMGL_ANSI
7661 | (cu->language == language_java
7662 ? DMGL_JAVA | DMGL_RET_POSTFIX
7663 : DMGL_RET_DROP)));
7664 }
7665 if (demangled)
7666 {
7667 make_cleanup (xfree, demangled);
7668 canon = demangled;
7669 }
7670 else
7671 {
7672 canon = mangled;
7673 need_copy = 0;
7674 }
7675 }
7676
7677 if (canon == NULL || check_physname)
7678 {
7679 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7680
7681 if (canon != NULL && strcmp (physname, canon) != 0)
7682 {
7683 /* It may not mean a bug in GDB. The compiler could also
7684 compute DW_AT_linkage_name incorrectly. But in such case
7685 GDB would need to be bug-to-bug compatible. */
7686
7687 complaint (&symfile_complaints,
7688 _("Computed physname <%s> does not match demangled <%s> "
7689 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7690 physname, canon, mangled, die->offset.sect_off, objfile->name);
7691
7692 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7693 is available here - over computed PHYSNAME. It is safer
7694 against both buggy GDB and buggy compilers. */
7695
7696 retval = canon;
7697 }
7698 else
7699 {
7700 retval = physname;
7701 need_copy = 0;
7702 }
7703 }
7704 else
7705 retval = canon;
7706
7707 if (need_copy)
7708 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7709
7710 do_cleanups (back_to);
7711 return retval;
7712 }
7713
7714 /* Read the import statement specified by the given die and record it. */
7715
7716 static void
7717 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7718 {
7719 struct objfile *objfile = cu->objfile;
7720 struct attribute *import_attr;
7721 struct die_info *imported_die, *child_die;
7722 struct dwarf2_cu *imported_cu;
7723 const char *imported_name;
7724 const char *imported_name_prefix;
7725 const char *canonical_name;
7726 const char *import_alias;
7727 const char *imported_declaration = NULL;
7728 const char *import_prefix;
7729 VEC (const_char_ptr) *excludes = NULL;
7730 struct cleanup *cleanups;
7731
7732 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7733 if (import_attr == NULL)
7734 {
7735 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7736 dwarf_tag_name (die->tag));
7737 return;
7738 }
7739
7740 imported_cu = cu;
7741 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7742 imported_name = dwarf2_name (imported_die, imported_cu);
7743 if (imported_name == NULL)
7744 {
7745 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7746
7747 The import in the following code:
7748 namespace A
7749 {
7750 typedef int B;
7751 }
7752
7753 int main ()
7754 {
7755 using A::B;
7756 B b;
7757 return b;
7758 }
7759
7760 ...
7761 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7762 <52> DW_AT_decl_file : 1
7763 <53> DW_AT_decl_line : 6
7764 <54> DW_AT_import : <0x75>
7765 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7766 <59> DW_AT_name : B
7767 <5b> DW_AT_decl_file : 1
7768 <5c> DW_AT_decl_line : 2
7769 <5d> DW_AT_type : <0x6e>
7770 ...
7771 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7772 <76> DW_AT_byte_size : 4
7773 <77> DW_AT_encoding : 5 (signed)
7774
7775 imports the wrong die ( 0x75 instead of 0x58 ).
7776 This case will be ignored until the gcc bug is fixed. */
7777 return;
7778 }
7779
7780 /* Figure out the local name after import. */
7781 import_alias = dwarf2_name (die, cu);
7782
7783 /* Figure out where the statement is being imported to. */
7784 import_prefix = determine_prefix (die, cu);
7785
7786 /* Figure out what the scope of the imported die is and prepend it
7787 to the name of the imported die. */
7788 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7789
7790 if (imported_die->tag != DW_TAG_namespace
7791 && imported_die->tag != DW_TAG_module)
7792 {
7793 imported_declaration = imported_name;
7794 canonical_name = imported_name_prefix;
7795 }
7796 else if (strlen (imported_name_prefix) > 0)
7797 canonical_name = obconcat (&objfile->objfile_obstack,
7798 imported_name_prefix, "::", imported_name,
7799 (char *) NULL);
7800 else
7801 canonical_name = imported_name;
7802
7803 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7804
7805 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7806 for (child_die = die->child; child_die && child_die->tag;
7807 child_die = sibling_die (child_die))
7808 {
7809 /* DWARF-4: A Fortran use statement with a “rename list” may be
7810 represented by an imported module entry with an import attribute
7811 referring to the module and owned entries corresponding to those
7812 entities that are renamed as part of being imported. */
7813
7814 if (child_die->tag != DW_TAG_imported_declaration)
7815 {
7816 complaint (&symfile_complaints,
7817 _("child DW_TAG_imported_declaration expected "
7818 "- DIE at 0x%x [in module %s]"),
7819 child_die->offset.sect_off, objfile->name);
7820 continue;
7821 }
7822
7823 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7824 if (import_attr == NULL)
7825 {
7826 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7827 dwarf_tag_name (child_die->tag));
7828 continue;
7829 }
7830
7831 imported_cu = cu;
7832 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7833 &imported_cu);
7834 imported_name = dwarf2_name (imported_die, imported_cu);
7835 if (imported_name == NULL)
7836 {
7837 complaint (&symfile_complaints,
7838 _("child DW_TAG_imported_declaration has unknown "
7839 "imported name - DIE at 0x%x [in module %s]"),
7840 child_die->offset.sect_off, objfile->name);
7841 continue;
7842 }
7843
7844 VEC_safe_push (const_char_ptr, excludes, imported_name);
7845
7846 process_die (child_die, cu);
7847 }
7848
7849 cp_add_using_directive (import_prefix,
7850 canonical_name,
7851 import_alias,
7852 imported_declaration,
7853 excludes,
7854 0,
7855 &objfile->objfile_obstack);
7856
7857 do_cleanups (cleanups);
7858 }
7859
7860 /* Cleanup function for handle_DW_AT_stmt_list. */
7861
7862 static void
7863 free_cu_line_header (void *arg)
7864 {
7865 struct dwarf2_cu *cu = arg;
7866
7867 free_line_header (cu->line_header);
7868 cu->line_header = NULL;
7869 }
7870
7871 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7872 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7873 this, it was first present in GCC release 4.3.0. */
7874
7875 static int
7876 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7877 {
7878 if (!cu->checked_producer)
7879 check_producer (cu);
7880
7881 return cu->producer_is_gcc_lt_4_3;
7882 }
7883
7884 static void
7885 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7886 const char **name, const char **comp_dir)
7887 {
7888 struct attribute *attr;
7889
7890 *name = NULL;
7891 *comp_dir = NULL;
7892
7893 /* Find the filename. Do not use dwarf2_name here, since the filename
7894 is not a source language identifier. */
7895 attr = dwarf2_attr (die, DW_AT_name, cu);
7896 if (attr)
7897 {
7898 *name = DW_STRING (attr);
7899 }
7900
7901 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7902 if (attr)
7903 *comp_dir = DW_STRING (attr);
7904 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7905 && IS_ABSOLUTE_PATH (*name))
7906 {
7907 char *d = ldirname (*name);
7908
7909 *comp_dir = d;
7910 if (d != NULL)
7911 make_cleanup (xfree, d);
7912 }
7913 if (*comp_dir != NULL)
7914 {
7915 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7916 directory, get rid of it. */
7917 char *cp = strchr (*comp_dir, ':');
7918
7919 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7920 *comp_dir = cp + 1;
7921 }
7922
7923 if (*name == NULL)
7924 *name = "<unknown>";
7925 }
7926
7927 /* Handle DW_AT_stmt_list for a compilation unit.
7928 DIE is the DW_TAG_compile_unit die for CU.
7929 COMP_DIR is the compilation directory.
7930 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7931
7932 static void
7933 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7934 const char *comp_dir)
7935 {
7936 struct attribute *attr;
7937
7938 gdb_assert (! cu->per_cu->is_debug_types);
7939
7940 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7941 if (attr)
7942 {
7943 unsigned int line_offset = DW_UNSND (attr);
7944 struct line_header *line_header
7945 = dwarf_decode_line_header (line_offset, cu);
7946
7947 if (line_header)
7948 {
7949 cu->line_header = line_header;
7950 make_cleanup (free_cu_line_header, cu);
7951 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7952 }
7953 }
7954 }
7955
7956 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7957
7958 static void
7959 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7960 {
7961 struct objfile *objfile = dwarf2_per_objfile->objfile;
7962 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7963 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7964 CORE_ADDR highpc = ((CORE_ADDR) 0);
7965 struct attribute *attr;
7966 const char *name = NULL;
7967 const char *comp_dir = NULL;
7968 struct die_info *child_die;
7969 bfd *abfd = objfile->obfd;
7970 CORE_ADDR baseaddr;
7971
7972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7973
7974 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7975
7976 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7977 from finish_block. */
7978 if (lowpc == ((CORE_ADDR) -1))
7979 lowpc = highpc;
7980 lowpc += baseaddr;
7981 highpc += baseaddr;
7982
7983 find_file_and_directory (die, cu, &name, &comp_dir);
7984
7985 prepare_one_comp_unit (cu, die, cu->language);
7986
7987 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7988 standardised yet. As a workaround for the language detection we fall
7989 back to the DW_AT_producer string. */
7990 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7991 cu->language = language_opencl;
7992
7993 /* Similar hack for Go. */
7994 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7995 set_cu_language (DW_LANG_Go, cu);
7996
7997 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7998
7999 /* Decode line number information if present. We do this before
8000 processing child DIEs, so that the line header table is available
8001 for DW_AT_decl_file. */
8002 handle_DW_AT_stmt_list (die, cu, comp_dir);
8003
8004 /* Process all dies in compilation unit. */
8005 if (die->child != NULL)
8006 {
8007 child_die = die->child;
8008 while (child_die && child_die->tag)
8009 {
8010 process_die (child_die, cu);
8011 child_die = sibling_die (child_die);
8012 }
8013 }
8014
8015 /* Decode macro information, if present. Dwarf 2 macro information
8016 refers to information in the line number info statement program
8017 header, so we can only read it if we've read the header
8018 successfully. */
8019 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8020 if (attr && cu->line_header)
8021 {
8022 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8023 complaint (&symfile_complaints,
8024 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8025
8026 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8027 }
8028 else
8029 {
8030 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8031 if (attr && cu->line_header)
8032 {
8033 unsigned int macro_offset = DW_UNSND (attr);
8034
8035 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8036 }
8037 }
8038
8039 do_cleanups (back_to);
8040 }
8041
8042 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8043 Create the set of symtabs used by this TU, or if this TU is sharing
8044 symtabs with another TU and the symtabs have already been created
8045 then restore those symtabs in the line header.
8046 We don't need the pc/line-number mapping for type units. */
8047
8048 static void
8049 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8050 {
8051 struct objfile *objfile = dwarf2_per_objfile->objfile;
8052 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8053 struct type_unit_group *tu_group;
8054 int first_time;
8055 struct line_header *lh;
8056 struct attribute *attr;
8057 unsigned int i, line_offset;
8058
8059 gdb_assert (per_cu->is_debug_types);
8060
8061 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8062
8063 /* If we're using .gdb_index (includes -readnow) then
8064 per_cu->s.type_unit_group may not have been set up yet. */
8065 if (per_cu->type_unit_group == NULL)
8066 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8067 tu_group = per_cu->type_unit_group;
8068
8069 /* If we've already processed this stmt_list there's no real need to
8070 do it again, we could fake it and just recreate the part we need
8071 (file name,index -> symtab mapping). If data shows this optimization
8072 is useful we can do it then. */
8073 first_time = tu_group->primary_symtab == NULL;
8074
8075 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8076 debug info. */
8077 lh = NULL;
8078 if (attr != NULL)
8079 {
8080 line_offset = DW_UNSND (attr);
8081 lh = dwarf_decode_line_header (line_offset, cu);
8082 }
8083 if (lh == NULL)
8084 {
8085 if (first_time)
8086 dwarf2_start_symtab (cu, "", NULL, 0);
8087 else
8088 {
8089 gdb_assert (tu_group->symtabs == NULL);
8090 restart_symtab (0);
8091 }
8092 /* Note: The primary symtab will get allocated at the end. */
8093 return;
8094 }
8095
8096 cu->line_header = lh;
8097 make_cleanup (free_cu_line_header, cu);
8098
8099 if (first_time)
8100 {
8101 dwarf2_start_symtab (cu, "", NULL, 0);
8102
8103 tu_group->num_symtabs = lh->num_file_names;
8104 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8105
8106 for (i = 0; i < lh->num_file_names; ++i)
8107 {
8108 char *dir = NULL;
8109 struct file_entry *fe = &lh->file_names[i];
8110
8111 if (fe->dir_index)
8112 dir = lh->include_dirs[fe->dir_index - 1];
8113 dwarf2_start_subfile (fe->name, dir, NULL);
8114
8115 /* Note: We don't have to watch for the main subfile here, type units
8116 don't have DW_AT_name. */
8117
8118 if (current_subfile->symtab == NULL)
8119 {
8120 /* NOTE: start_subfile will recognize when it's been passed
8121 a file it has already seen. So we can't assume there's a
8122 simple mapping from lh->file_names to subfiles,
8123 lh->file_names may contain dups. */
8124 current_subfile->symtab = allocate_symtab (current_subfile->name,
8125 objfile);
8126 }
8127
8128 fe->symtab = current_subfile->symtab;
8129 tu_group->symtabs[i] = fe->symtab;
8130 }
8131 }
8132 else
8133 {
8134 restart_symtab (0);
8135
8136 for (i = 0; i < lh->num_file_names; ++i)
8137 {
8138 struct file_entry *fe = &lh->file_names[i];
8139
8140 fe->symtab = tu_group->symtabs[i];
8141 }
8142 }
8143
8144 /* The main symtab is allocated last. Type units don't have DW_AT_name
8145 so they don't have a "real" (so to speak) symtab anyway.
8146 There is later code that will assign the main symtab to all symbols
8147 that don't have one. We need to handle the case of a symbol with a
8148 missing symtab (DW_AT_decl_file) anyway. */
8149 }
8150
8151 /* Process DW_TAG_type_unit.
8152 For TUs we want to skip the first top level sibling if it's not the
8153 actual type being defined by this TU. In this case the first top
8154 level sibling is there to provide context only. */
8155
8156 static void
8157 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8158 {
8159 struct die_info *child_die;
8160
8161 prepare_one_comp_unit (cu, die, language_minimal);
8162
8163 /* Initialize (or reinitialize) the machinery for building symtabs.
8164 We do this before processing child DIEs, so that the line header table
8165 is available for DW_AT_decl_file. */
8166 setup_type_unit_groups (die, cu);
8167
8168 if (die->child != NULL)
8169 {
8170 child_die = die->child;
8171 while (child_die && child_die->tag)
8172 {
8173 process_die (child_die, cu);
8174 child_die = sibling_die (child_die);
8175 }
8176 }
8177 }
8178 \f
8179 /* DWO/DWP files.
8180
8181 http://gcc.gnu.org/wiki/DebugFission
8182 http://gcc.gnu.org/wiki/DebugFissionDWP
8183
8184 To simplify handling of both DWO files ("object" files with the DWARF info)
8185 and DWP files (a file with the DWOs packaged up into one file), we treat
8186 DWP files as having a collection of virtual DWO files. */
8187
8188 static hashval_t
8189 hash_dwo_file (const void *item)
8190 {
8191 const struct dwo_file *dwo_file = item;
8192
8193 return htab_hash_string (dwo_file->name);
8194 }
8195
8196 static int
8197 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8198 {
8199 const struct dwo_file *lhs = item_lhs;
8200 const struct dwo_file *rhs = item_rhs;
8201
8202 return strcmp (lhs->name, rhs->name) == 0;
8203 }
8204
8205 /* Allocate a hash table for DWO files. */
8206
8207 static htab_t
8208 allocate_dwo_file_hash_table (void)
8209 {
8210 struct objfile *objfile = dwarf2_per_objfile->objfile;
8211
8212 return htab_create_alloc_ex (41,
8213 hash_dwo_file,
8214 eq_dwo_file,
8215 NULL,
8216 &objfile->objfile_obstack,
8217 hashtab_obstack_allocate,
8218 dummy_obstack_deallocate);
8219 }
8220
8221 /* Lookup DWO file DWO_NAME. */
8222
8223 static void **
8224 lookup_dwo_file_slot (const char *dwo_name)
8225 {
8226 struct dwo_file find_entry;
8227 void **slot;
8228
8229 if (dwarf2_per_objfile->dwo_files == NULL)
8230 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8231
8232 memset (&find_entry, 0, sizeof (find_entry));
8233 find_entry.name = dwo_name;
8234 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8235
8236 return slot;
8237 }
8238
8239 static hashval_t
8240 hash_dwo_unit (const void *item)
8241 {
8242 const struct dwo_unit *dwo_unit = item;
8243
8244 /* This drops the top 32 bits of the id, but is ok for a hash. */
8245 return dwo_unit->signature;
8246 }
8247
8248 static int
8249 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8250 {
8251 const struct dwo_unit *lhs = item_lhs;
8252 const struct dwo_unit *rhs = item_rhs;
8253
8254 /* The signature is assumed to be unique within the DWO file.
8255 So while object file CU dwo_id's always have the value zero,
8256 that's OK, assuming each object file DWO file has only one CU,
8257 and that's the rule for now. */
8258 return lhs->signature == rhs->signature;
8259 }
8260
8261 /* Allocate a hash table for DWO CUs,TUs.
8262 There is one of these tables for each of CUs,TUs for each DWO file. */
8263
8264 static htab_t
8265 allocate_dwo_unit_table (struct objfile *objfile)
8266 {
8267 /* Start out with a pretty small number.
8268 Generally DWO files contain only one CU and maybe some TUs. */
8269 return htab_create_alloc_ex (3,
8270 hash_dwo_unit,
8271 eq_dwo_unit,
8272 NULL,
8273 &objfile->objfile_obstack,
8274 hashtab_obstack_allocate,
8275 dummy_obstack_deallocate);
8276 }
8277
8278 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8279
8280 struct create_dwo_info_table_data
8281 {
8282 struct dwo_file *dwo_file;
8283 htab_t cu_htab;
8284 };
8285
8286 /* die_reader_func for create_dwo_debug_info_hash_table. */
8287
8288 static void
8289 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8290 gdb_byte *info_ptr,
8291 struct die_info *comp_unit_die,
8292 int has_children,
8293 void *datap)
8294 {
8295 struct dwarf2_cu *cu = reader->cu;
8296 struct objfile *objfile = dwarf2_per_objfile->objfile;
8297 sect_offset offset = cu->per_cu->offset;
8298 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8299 struct create_dwo_info_table_data *data = datap;
8300 struct dwo_file *dwo_file = data->dwo_file;
8301 htab_t cu_htab = data->cu_htab;
8302 void **slot;
8303 struct attribute *attr;
8304 struct dwo_unit *dwo_unit;
8305
8306 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8307 if (attr == NULL)
8308 {
8309 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8310 " its dwo_id [in module %s]"),
8311 offset.sect_off, dwo_file->name);
8312 return;
8313 }
8314
8315 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8316 dwo_unit->dwo_file = dwo_file;
8317 dwo_unit->signature = DW_UNSND (attr);
8318 dwo_unit->info_or_types_section = section;
8319 dwo_unit->offset = offset;
8320 dwo_unit->length = cu->per_cu->length;
8321
8322 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8323 gdb_assert (slot != NULL);
8324 if (*slot != NULL)
8325 {
8326 const struct dwo_unit *dup_dwo_unit = *slot;
8327
8328 complaint (&symfile_complaints,
8329 _("debug entry at offset 0x%x is duplicate to the entry at"
8330 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8331 offset.sect_off, dup_dwo_unit->offset.sect_off,
8332 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8333 dwo_file->name);
8334 }
8335 else
8336 *slot = dwo_unit;
8337
8338 if (dwarf2_read_debug)
8339 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8340 offset.sect_off,
8341 phex (dwo_unit->signature,
8342 sizeof (dwo_unit->signature)));
8343 }
8344
8345 /* Create a hash table to map DWO IDs to their CU entry in
8346 .debug_info.dwo in DWO_FILE.
8347 Note: This function processes DWO files only, not DWP files. */
8348
8349 static htab_t
8350 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8351 {
8352 struct objfile *objfile = dwarf2_per_objfile->objfile;
8353 struct dwarf2_section_info *section = &dwo_file->sections.info;
8354 bfd *abfd;
8355 htab_t cu_htab;
8356 gdb_byte *info_ptr, *end_ptr;
8357 struct create_dwo_info_table_data create_dwo_info_table_data;
8358
8359 dwarf2_read_section (objfile, section);
8360 info_ptr = section->buffer;
8361
8362 if (info_ptr == NULL)
8363 return NULL;
8364
8365 /* We can't set abfd until now because the section may be empty or
8366 not present, in which case section->asection will be NULL. */
8367 abfd = section->asection->owner;
8368
8369 if (dwarf2_read_debug)
8370 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8371 bfd_get_filename (abfd));
8372
8373 cu_htab = allocate_dwo_unit_table (objfile);
8374
8375 create_dwo_info_table_data.dwo_file = dwo_file;
8376 create_dwo_info_table_data.cu_htab = cu_htab;
8377
8378 end_ptr = info_ptr + section->size;
8379 while (info_ptr < end_ptr)
8380 {
8381 struct dwarf2_per_cu_data per_cu;
8382
8383 memset (&per_cu, 0, sizeof (per_cu));
8384 per_cu.objfile = objfile;
8385 per_cu.is_debug_types = 0;
8386 per_cu.offset.sect_off = info_ptr - section->buffer;
8387 per_cu.info_or_types_section = section;
8388
8389 init_cutu_and_read_dies_no_follow (&per_cu,
8390 &dwo_file->sections.abbrev,
8391 dwo_file,
8392 create_dwo_debug_info_hash_table_reader,
8393 &create_dwo_info_table_data);
8394
8395 info_ptr += per_cu.length;
8396 }
8397
8398 return cu_htab;
8399 }
8400
8401 /* DWP file .debug_{cu,tu}_index section format:
8402 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8403
8404 Both index sections have the same format, and serve to map a 64-bit
8405 signature to a set of section numbers. Each section begins with a header,
8406 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8407 indexes, and a pool of 32-bit section numbers. The index sections will be
8408 aligned at 8-byte boundaries in the file.
8409
8410 The index section header contains two unsigned 32-bit values (using the
8411 byte order of the application binary):
8412
8413 N, the number of compilation units or type units in the index
8414 M, the number of slots in the hash table
8415
8416 (We assume that N and M will not exceed 2^32 - 1.)
8417
8418 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8419
8420 The hash table begins at offset 8 in the section, and consists of an array
8421 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8422 order of the application binary). Unused slots in the hash table are 0.
8423 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8424
8425 The parallel table begins immediately after the hash table
8426 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8427 array of 32-bit indexes (using the byte order of the application binary),
8428 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8429 table contains a 32-bit index into the pool of section numbers. For unused
8430 hash table slots, the corresponding entry in the parallel table will be 0.
8431
8432 Given a 64-bit compilation unit signature or a type signature S, an entry
8433 in the hash table is located as follows:
8434
8435 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8436 the low-order k bits all set to 1.
8437
8438 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8439
8440 3) If the hash table entry at index H matches the signature, use that
8441 entry. If the hash table entry at index H is unused (all zeroes),
8442 terminate the search: the signature is not present in the table.
8443
8444 4) Let H = (H + H') modulo M. Repeat at Step 3.
8445
8446 Because M > N and H' and M are relatively prime, the search is guaranteed
8447 to stop at an unused slot or find the match.
8448
8449 The pool of section numbers begins immediately following the hash table
8450 (at offset 8 + 12 * M from the beginning of the section). The pool of
8451 section numbers consists of an array of 32-bit words (using the byte order
8452 of the application binary). Each item in the array is indexed starting
8453 from 0. The hash table entry provides the index of the first section
8454 number in the set. Additional section numbers in the set follow, and the
8455 set is terminated by a 0 entry (section number 0 is not used in ELF).
8456
8457 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8458 section must be the first entry in the set, and the .debug_abbrev.dwo must
8459 be the second entry. Other members of the set may follow in any order. */
8460
8461 /* Create a hash table to map DWO IDs to their CU/TU entry in
8462 .debug_{info,types}.dwo in DWP_FILE.
8463 Returns NULL if there isn't one.
8464 Note: This function processes DWP files only, not DWO files. */
8465
8466 static struct dwp_hash_table *
8467 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8468 {
8469 struct objfile *objfile = dwarf2_per_objfile->objfile;
8470 bfd *dbfd = dwp_file->dbfd;
8471 char *index_ptr, *index_end;
8472 struct dwarf2_section_info *index;
8473 uint32_t version, nr_units, nr_slots;
8474 struct dwp_hash_table *htab;
8475
8476 if (is_debug_types)
8477 index = &dwp_file->sections.tu_index;
8478 else
8479 index = &dwp_file->sections.cu_index;
8480
8481 if (dwarf2_section_empty_p (index))
8482 return NULL;
8483 dwarf2_read_section (objfile, index);
8484
8485 index_ptr = index->buffer;
8486 index_end = index_ptr + index->size;
8487
8488 version = read_4_bytes (dbfd, index_ptr);
8489 index_ptr += 8; /* Skip the unused word. */
8490 nr_units = read_4_bytes (dbfd, index_ptr);
8491 index_ptr += 4;
8492 nr_slots = read_4_bytes (dbfd, index_ptr);
8493 index_ptr += 4;
8494
8495 if (version != 1)
8496 {
8497 error (_("Dwarf Error: unsupported DWP file version (%u)"
8498 " [in module %s]"),
8499 version, dwp_file->name);
8500 }
8501 if (nr_slots != (nr_slots & -nr_slots))
8502 {
8503 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8504 " is not power of 2 [in module %s]"),
8505 nr_slots, dwp_file->name);
8506 }
8507
8508 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8509 htab->nr_units = nr_units;
8510 htab->nr_slots = nr_slots;
8511 htab->hash_table = index_ptr;
8512 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8513 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8514
8515 return htab;
8516 }
8517
8518 /* Update SECTIONS with the data from SECTP.
8519
8520 This function is like the other "locate" section routines that are
8521 passed to bfd_map_over_sections, but in this context the sections to
8522 read comes from the DWP hash table, not the full ELF section table.
8523
8524 The result is non-zero for success, or zero if an error was found. */
8525
8526 static int
8527 locate_virtual_dwo_sections (asection *sectp,
8528 struct virtual_dwo_sections *sections)
8529 {
8530 const struct dwop_section_names *names = &dwop_section_names;
8531
8532 if (section_is_p (sectp->name, &names->abbrev_dwo))
8533 {
8534 /* There can be only one. */
8535 if (sections->abbrev.asection != NULL)
8536 return 0;
8537 sections->abbrev.asection = sectp;
8538 sections->abbrev.size = bfd_get_section_size (sectp);
8539 }
8540 else if (section_is_p (sectp->name, &names->info_dwo)
8541 || section_is_p (sectp->name, &names->types_dwo))
8542 {
8543 /* There can be only one. */
8544 if (sections->info_or_types.asection != NULL)
8545 return 0;
8546 sections->info_or_types.asection = sectp;
8547 sections->info_or_types.size = bfd_get_section_size (sectp);
8548 }
8549 else if (section_is_p (sectp->name, &names->line_dwo))
8550 {
8551 /* There can be only one. */
8552 if (sections->line.asection != NULL)
8553 return 0;
8554 sections->line.asection = sectp;
8555 sections->line.size = bfd_get_section_size (sectp);
8556 }
8557 else if (section_is_p (sectp->name, &names->loc_dwo))
8558 {
8559 /* There can be only one. */
8560 if (sections->loc.asection != NULL)
8561 return 0;
8562 sections->loc.asection = sectp;
8563 sections->loc.size = bfd_get_section_size (sectp);
8564 }
8565 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8566 {
8567 /* There can be only one. */
8568 if (sections->macinfo.asection != NULL)
8569 return 0;
8570 sections->macinfo.asection = sectp;
8571 sections->macinfo.size = bfd_get_section_size (sectp);
8572 }
8573 else if (section_is_p (sectp->name, &names->macro_dwo))
8574 {
8575 /* There can be only one. */
8576 if (sections->macro.asection != NULL)
8577 return 0;
8578 sections->macro.asection = sectp;
8579 sections->macro.size = bfd_get_section_size (sectp);
8580 }
8581 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8582 {
8583 /* There can be only one. */
8584 if (sections->str_offsets.asection != NULL)
8585 return 0;
8586 sections->str_offsets.asection = sectp;
8587 sections->str_offsets.size = bfd_get_section_size (sectp);
8588 }
8589 else
8590 {
8591 /* No other kind of section is valid. */
8592 return 0;
8593 }
8594
8595 return 1;
8596 }
8597
8598 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8599 HTAB is the hash table from the DWP file.
8600 SECTION_INDEX is the index of the DWO in HTAB. */
8601
8602 static struct dwo_unit *
8603 create_dwo_in_dwp (struct dwp_file *dwp_file,
8604 const struct dwp_hash_table *htab,
8605 uint32_t section_index,
8606 ULONGEST signature, int is_debug_types)
8607 {
8608 struct objfile *objfile = dwarf2_per_objfile->objfile;
8609 bfd *dbfd = dwp_file->dbfd;
8610 const char *kind = is_debug_types ? "TU" : "CU";
8611 struct dwo_file *dwo_file;
8612 struct dwo_unit *dwo_unit;
8613 struct virtual_dwo_sections sections;
8614 void **dwo_file_slot;
8615 char *virtual_dwo_name;
8616 struct dwarf2_section_info *cutu;
8617 struct cleanup *cleanups;
8618 int i;
8619
8620 if (dwarf2_read_debug)
8621 {
8622 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8623 kind,
8624 section_index, phex (signature, sizeof (signature)),
8625 dwp_file->name);
8626 }
8627
8628 /* Fetch the sections of this DWO.
8629 Put a limit on the number of sections we look for so that bad data
8630 doesn't cause us to loop forever. */
8631
8632 #define MAX_NR_DWO_SECTIONS \
8633 (1 /* .debug_info or .debug_types */ \
8634 + 1 /* .debug_abbrev */ \
8635 + 1 /* .debug_line */ \
8636 + 1 /* .debug_loc */ \
8637 + 1 /* .debug_str_offsets */ \
8638 + 1 /* .debug_macro */ \
8639 + 1 /* .debug_macinfo */ \
8640 + 1 /* trailing zero */)
8641
8642 memset (&sections, 0, sizeof (sections));
8643 cleanups = make_cleanup (null_cleanup, 0);
8644
8645 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8646 {
8647 asection *sectp;
8648 uint32_t section_nr =
8649 read_4_bytes (dbfd,
8650 htab->section_pool
8651 + (section_index + i) * sizeof (uint32_t));
8652
8653 if (section_nr == 0)
8654 break;
8655 if (section_nr >= dwp_file->num_sections)
8656 {
8657 error (_("Dwarf Error: bad DWP hash table, section number too large"
8658 " [in module %s]"),
8659 dwp_file->name);
8660 }
8661
8662 sectp = dwp_file->elf_sections[section_nr];
8663 if (! locate_virtual_dwo_sections (sectp, &sections))
8664 {
8665 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8666 " [in module %s]"),
8667 dwp_file->name);
8668 }
8669 }
8670
8671 if (i < 2
8672 || sections.info_or_types.asection == NULL
8673 || sections.abbrev.asection == NULL)
8674 {
8675 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8676 " [in module %s]"),
8677 dwp_file->name);
8678 }
8679 if (i == MAX_NR_DWO_SECTIONS)
8680 {
8681 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8682 " [in module %s]"),
8683 dwp_file->name);
8684 }
8685
8686 /* It's easier for the rest of the code if we fake a struct dwo_file and
8687 have dwo_unit "live" in that. At least for now.
8688
8689 The DWP file can be made up of a random collection of CUs and TUs.
8690 However, for each CU + set of TUs that came from the same original DWO
8691 file, we want to combine them back into a virtual DWO file to save space
8692 (fewer struct dwo_file objects to allocated). Remember that for really
8693 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8694
8695 virtual_dwo_name =
8696 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8697 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8698 sections.line.asection ? sections.line.asection->id : 0,
8699 sections.loc.asection ? sections.loc.asection->id : 0,
8700 (sections.str_offsets.asection
8701 ? sections.str_offsets.asection->id
8702 : 0));
8703 make_cleanup (xfree, virtual_dwo_name);
8704 /* Can we use an existing virtual DWO file? */
8705 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8706 /* Create one if necessary. */
8707 if (*dwo_file_slot == NULL)
8708 {
8709 if (dwarf2_read_debug)
8710 {
8711 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8712 virtual_dwo_name);
8713 }
8714 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8715 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8716 virtual_dwo_name,
8717 strlen (virtual_dwo_name));
8718 dwo_file->sections.abbrev = sections.abbrev;
8719 dwo_file->sections.line = sections.line;
8720 dwo_file->sections.loc = sections.loc;
8721 dwo_file->sections.macinfo = sections.macinfo;
8722 dwo_file->sections.macro = sections.macro;
8723 dwo_file->sections.str_offsets = sections.str_offsets;
8724 /* The "str" section is global to the entire DWP file. */
8725 dwo_file->sections.str = dwp_file->sections.str;
8726 /* The info or types section is assigned later to dwo_unit,
8727 there's no need to record it in dwo_file.
8728 Also, we can't simply record type sections in dwo_file because
8729 we record a pointer into the vector in dwo_unit. As we collect more
8730 types we'll grow the vector and eventually have to reallocate space
8731 for it, invalidating all the pointers into the current copy. */
8732 *dwo_file_slot = dwo_file;
8733 }
8734 else
8735 {
8736 if (dwarf2_read_debug)
8737 {
8738 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8739 virtual_dwo_name);
8740 }
8741 dwo_file = *dwo_file_slot;
8742 }
8743 do_cleanups (cleanups);
8744
8745 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8746 dwo_unit->dwo_file = dwo_file;
8747 dwo_unit->signature = signature;
8748 dwo_unit->info_or_types_section =
8749 obstack_alloc (&objfile->objfile_obstack,
8750 sizeof (struct dwarf2_section_info));
8751 *dwo_unit->info_or_types_section = sections.info_or_types;
8752 /* offset, length, type_offset_in_tu are set later. */
8753
8754 return dwo_unit;
8755 }
8756
8757 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8758
8759 static struct dwo_unit *
8760 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8761 const struct dwp_hash_table *htab,
8762 ULONGEST signature, int is_debug_types)
8763 {
8764 bfd *dbfd = dwp_file->dbfd;
8765 uint32_t mask = htab->nr_slots - 1;
8766 uint32_t hash = signature & mask;
8767 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8768 unsigned int i;
8769 void **slot;
8770 struct dwo_unit find_dwo_cu, *dwo_cu;
8771
8772 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8773 find_dwo_cu.signature = signature;
8774 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8775
8776 if (*slot != NULL)
8777 return *slot;
8778
8779 /* Use a for loop so that we don't loop forever on bad debug info. */
8780 for (i = 0; i < htab->nr_slots; ++i)
8781 {
8782 ULONGEST signature_in_table;
8783
8784 signature_in_table =
8785 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8786 if (signature_in_table == signature)
8787 {
8788 uint32_t section_index =
8789 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8790
8791 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8792 signature, is_debug_types);
8793 return *slot;
8794 }
8795 if (signature_in_table == 0)
8796 return NULL;
8797 hash = (hash + hash2) & mask;
8798 }
8799
8800 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8801 " [in module %s]"),
8802 dwp_file->name);
8803 }
8804
8805 /* Subroutine of open_dwop_file to simplify it.
8806 Open the file specified by FILE_NAME and hand it off to BFD for
8807 preliminary analysis. Return a newly initialized bfd *, which
8808 includes a canonicalized copy of FILE_NAME.
8809 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8810 In case of trouble, return NULL.
8811 NOTE: This function is derived from symfile_bfd_open. */
8812
8813 static bfd *
8814 try_open_dwop_file (const char *file_name, int is_dwp)
8815 {
8816 bfd *sym_bfd;
8817 int desc, flags;
8818 char *absolute_name;
8819
8820 flags = OPF_TRY_CWD_FIRST;
8821 if (is_dwp)
8822 flags |= OPF_SEARCH_IN_PATH;
8823 desc = openp (debug_file_directory, flags, file_name,
8824 O_RDONLY | O_BINARY, &absolute_name);
8825 if (desc < 0)
8826 return NULL;
8827
8828 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8829 if (!sym_bfd)
8830 {
8831 xfree (absolute_name);
8832 return NULL;
8833 }
8834 xfree (absolute_name);
8835 bfd_set_cacheable (sym_bfd, 1);
8836
8837 if (!bfd_check_format (sym_bfd, bfd_object))
8838 {
8839 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8840 return NULL;
8841 }
8842
8843 return sym_bfd;
8844 }
8845
8846 /* Try to open DWO/DWP file FILE_NAME.
8847 COMP_DIR is the DW_AT_comp_dir attribute.
8848 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8849 The result is the bfd handle of the file.
8850 If there is a problem finding or opening the file, return NULL.
8851 Upon success, the canonicalized path of the file is stored in the bfd,
8852 same as symfile_bfd_open. */
8853
8854 static bfd *
8855 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8856 {
8857 bfd *abfd;
8858
8859 if (IS_ABSOLUTE_PATH (file_name))
8860 return try_open_dwop_file (file_name, is_dwp);
8861
8862 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8863
8864 if (comp_dir != NULL)
8865 {
8866 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8867
8868 /* NOTE: If comp_dir is a relative path, this will also try the
8869 search path, which seems useful. */
8870 abfd = try_open_dwop_file (path_to_try, is_dwp);
8871 xfree (path_to_try);
8872 if (abfd != NULL)
8873 return abfd;
8874 }
8875
8876 /* That didn't work, try debug-file-directory, which, despite its name,
8877 is a list of paths. */
8878
8879 if (*debug_file_directory == '\0')
8880 return NULL;
8881
8882 return try_open_dwop_file (file_name, is_dwp);
8883 }
8884
8885 /* This function is mapped across the sections and remembers the offset and
8886 size of each of the DWO debugging sections we are interested in. */
8887
8888 static void
8889 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8890 {
8891 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8892 const struct dwop_section_names *names = &dwop_section_names;
8893
8894 if (section_is_p (sectp->name, &names->abbrev_dwo))
8895 {
8896 dwo_sections->abbrev.asection = sectp;
8897 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8898 }
8899 else if (section_is_p (sectp->name, &names->info_dwo))
8900 {
8901 dwo_sections->info.asection = sectp;
8902 dwo_sections->info.size = bfd_get_section_size (sectp);
8903 }
8904 else if (section_is_p (sectp->name, &names->line_dwo))
8905 {
8906 dwo_sections->line.asection = sectp;
8907 dwo_sections->line.size = bfd_get_section_size (sectp);
8908 }
8909 else if (section_is_p (sectp->name, &names->loc_dwo))
8910 {
8911 dwo_sections->loc.asection = sectp;
8912 dwo_sections->loc.size = bfd_get_section_size (sectp);
8913 }
8914 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8915 {
8916 dwo_sections->macinfo.asection = sectp;
8917 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8918 }
8919 else if (section_is_p (sectp->name, &names->macro_dwo))
8920 {
8921 dwo_sections->macro.asection = sectp;
8922 dwo_sections->macro.size = bfd_get_section_size (sectp);
8923 }
8924 else if (section_is_p (sectp->name, &names->str_dwo))
8925 {
8926 dwo_sections->str.asection = sectp;
8927 dwo_sections->str.size = bfd_get_section_size (sectp);
8928 }
8929 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8930 {
8931 dwo_sections->str_offsets.asection = sectp;
8932 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8933 }
8934 else if (section_is_p (sectp->name, &names->types_dwo))
8935 {
8936 struct dwarf2_section_info type_section;
8937
8938 memset (&type_section, 0, sizeof (type_section));
8939 type_section.asection = sectp;
8940 type_section.size = bfd_get_section_size (sectp);
8941 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8942 &type_section);
8943 }
8944 }
8945
8946 /* Initialize the use of the DWO file specified by DWO_NAME.
8947 The result is NULL if DWO_NAME can't be found. */
8948
8949 static struct dwo_file *
8950 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8951 {
8952 struct objfile *objfile = dwarf2_per_objfile->objfile;
8953 struct dwo_file *dwo_file;
8954 bfd *dbfd;
8955 struct cleanup *cleanups;
8956
8957 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8958 if (dbfd == NULL)
8959 {
8960 if (dwarf2_read_debug)
8961 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8962 return NULL;
8963 }
8964 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8965 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8966 dwo_name, strlen (dwo_name));
8967 dwo_file->dbfd = dbfd;
8968
8969 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8970
8971 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8972
8973 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8974
8975 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8976 dwo_file->sections.types);
8977
8978 discard_cleanups (cleanups);
8979
8980 if (dwarf2_read_debug)
8981 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8982
8983 return dwo_file;
8984 }
8985
8986 /* This function is mapped across the sections and remembers the offset and
8987 size of each of the DWP debugging sections we are interested in. */
8988
8989 static void
8990 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8991 {
8992 struct dwp_file *dwp_file = dwp_file_ptr;
8993 const struct dwop_section_names *names = &dwop_section_names;
8994 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8995
8996 /* Record the ELF section number for later lookup: this is what the
8997 .debug_cu_index,.debug_tu_index tables use. */
8998 gdb_assert (elf_section_nr < dwp_file->num_sections);
8999 dwp_file->elf_sections[elf_section_nr] = sectp;
9000
9001 /* Look for specific sections that we need. */
9002 if (section_is_p (sectp->name, &names->str_dwo))
9003 {
9004 dwp_file->sections.str.asection = sectp;
9005 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9006 }
9007 else if (section_is_p (sectp->name, &names->cu_index))
9008 {
9009 dwp_file->sections.cu_index.asection = sectp;
9010 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9011 }
9012 else if (section_is_p (sectp->name, &names->tu_index))
9013 {
9014 dwp_file->sections.tu_index.asection = sectp;
9015 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9016 }
9017 }
9018
9019 /* Hash function for dwp_file loaded CUs/TUs. */
9020
9021 static hashval_t
9022 hash_dwp_loaded_cutus (const void *item)
9023 {
9024 const struct dwo_unit *dwo_unit = item;
9025
9026 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9027 return dwo_unit->signature;
9028 }
9029
9030 /* Equality function for dwp_file loaded CUs/TUs. */
9031
9032 static int
9033 eq_dwp_loaded_cutus (const void *a, const void *b)
9034 {
9035 const struct dwo_unit *dua = a;
9036 const struct dwo_unit *dub = b;
9037
9038 return dua->signature == dub->signature;
9039 }
9040
9041 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9042
9043 static htab_t
9044 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9045 {
9046 return htab_create_alloc_ex (3,
9047 hash_dwp_loaded_cutus,
9048 eq_dwp_loaded_cutus,
9049 NULL,
9050 &objfile->objfile_obstack,
9051 hashtab_obstack_allocate,
9052 dummy_obstack_deallocate);
9053 }
9054
9055 /* Initialize the use of the DWP file for the current objfile.
9056 By convention the name of the DWP file is ${objfile}.dwp.
9057 The result is NULL if it can't be found. */
9058
9059 static struct dwp_file *
9060 open_and_init_dwp_file (const char *comp_dir)
9061 {
9062 struct objfile *objfile = dwarf2_per_objfile->objfile;
9063 struct dwp_file *dwp_file;
9064 char *dwp_name;
9065 bfd *dbfd;
9066 struct cleanup *cleanups;
9067
9068 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9069 cleanups = make_cleanup (xfree, dwp_name);
9070
9071 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9072 if (dbfd == NULL)
9073 {
9074 if (dwarf2_read_debug)
9075 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9076 do_cleanups (cleanups);
9077 return NULL;
9078 }
9079 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9080 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9081 dwp_name, strlen (dwp_name));
9082 dwp_file->dbfd = dbfd;
9083 do_cleanups (cleanups);
9084
9085 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9086
9087 /* +1: section 0 is unused */
9088 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9089 dwp_file->elf_sections =
9090 OBSTACK_CALLOC (&objfile->objfile_obstack,
9091 dwp_file->num_sections, asection *);
9092
9093 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9094
9095 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9096
9097 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9098
9099 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9100
9101 discard_cleanups (cleanups);
9102
9103 if (dwarf2_read_debug)
9104 {
9105 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9106 fprintf_unfiltered (gdb_stdlog,
9107 " %u CUs, %u TUs\n",
9108 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9109 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9110 }
9111
9112 return dwp_file;
9113 }
9114
9115 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9116 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9117 or in the DWP file for the objfile, referenced by THIS_UNIT.
9118 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9119 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9120
9121 This is called, for example, when wanting to read a variable with a
9122 complex location. Therefore we don't want to do file i/o for every call.
9123 Therefore we don't want to look for a DWO file on every call.
9124 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9125 then we check if we've already seen DWO_NAME, and only THEN do we check
9126 for a DWO file.
9127
9128 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9129 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9130
9131 static struct dwo_unit *
9132 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9133 const char *dwo_name, const char *comp_dir,
9134 ULONGEST signature, int is_debug_types)
9135 {
9136 struct objfile *objfile = dwarf2_per_objfile->objfile;
9137 const char *kind = is_debug_types ? "TU" : "CU";
9138 void **dwo_file_slot;
9139 struct dwo_file *dwo_file;
9140 struct dwp_file *dwp_file;
9141
9142 /* Have we already read SIGNATURE from a DWP file? */
9143
9144 if (! dwarf2_per_objfile->dwp_checked)
9145 {
9146 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9147 dwarf2_per_objfile->dwp_checked = 1;
9148 }
9149 dwp_file = dwarf2_per_objfile->dwp_file;
9150
9151 if (dwp_file != NULL)
9152 {
9153 const struct dwp_hash_table *dwp_htab =
9154 is_debug_types ? dwp_file->tus : dwp_file->cus;
9155
9156 if (dwp_htab != NULL)
9157 {
9158 struct dwo_unit *dwo_cutu =
9159 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9160
9161 if (dwo_cutu != NULL)
9162 {
9163 if (dwarf2_read_debug)
9164 {
9165 fprintf_unfiltered (gdb_stdlog,
9166 "Virtual DWO %s %s found: @%s\n",
9167 kind, hex_string (signature),
9168 host_address_to_string (dwo_cutu));
9169 }
9170 return dwo_cutu;
9171 }
9172 }
9173 }
9174
9175 /* Have we already seen DWO_NAME? */
9176
9177 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9178 if (*dwo_file_slot == NULL)
9179 {
9180 /* Read in the file and build a table of the DWOs it contains. */
9181 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9182 }
9183 /* NOTE: This will be NULL if unable to open the file. */
9184 dwo_file = *dwo_file_slot;
9185
9186 if (dwo_file != NULL)
9187 {
9188 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9189
9190 if (htab != NULL)
9191 {
9192 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9193
9194 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9195 find_dwo_cutu.signature = signature;
9196 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9197
9198 if (dwo_cutu != NULL)
9199 {
9200 if (dwarf2_read_debug)
9201 {
9202 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9203 kind, dwo_name, hex_string (signature),
9204 host_address_to_string (dwo_cutu));
9205 }
9206 return dwo_cutu;
9207 }
9208 }
9209 }
9210
9211 /* We didn't find it. This could mean a dwo_id mismatch, or
9212 someone deleted the DWO/DWP file, or the search path isn't set up
9213 correctly to find the file. */
9214
9215 if (dwarf2_read_debug)
9216 {
9217 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9218 kind, dwo_name, hex_string (signature));
9219 }
9220
9221 complaint (&symfile_complaints,
9222 _("Could not find DWO CU referenced by CU at offset 0x%x"
9223 " [in module %s]"),
9224 this_unit->offset.sect_off, objfile->name);
9225 return NULL;
9226 }
9227
9228 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9229 See lookup_dwo_cutu_unit for details. */
9230
9231 static struct dwo_unit *
9232 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9233 const char *dwo_name, const char *comp_dir,
9234 ULONGEST signature)
9235 {
9236 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9237 }
9238
9239 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9240 See lookup_dwo_cutu_unit for details. */
9241
9242 static struct dwo_unit *
9243 lookup_dwo_type_unit (struct signatured_type *this_tu,
9244 const char *dwo_name, const char *comp_dir)
9245 {
9246 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9247 }
9248
9249 /* Free all resources associated with DWO_FILE.
9250 Close the DWO file and munmap the sections.
9251 All memory should be on the objfile obstack. */
9252
9253 static void
9254 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9255 {
9256 int ix;
9257 struct dwarf2_section_info *section;
9258
9259 gdb_bfd_unref (dwo_file->dbfd);
9260
9261 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9262 }
9263
9264 /* Wrapper for free_dwo_file for use in cleanups. */
9265
9266 static void
9267 free_dwo_file_cleanup (void *arg)
9268 {
9269 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9270 struct objfile *objfile = dwarf2_per_objfile->objfile;
9271
9272 free_dwo_file (dwo_file, objfile);
9273 }
9274
9275 /* Traversal function for free_dwo_files. */
9276
9277 static int
9278 free_dwo_file_from_slot (void **slot, void *info)
9279 {
9280 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9281 struct objfile *objfile = (struct objfile *) info;
9282
9283 free_dwo_file (dwo_file, objfile);
9284
9285 return 1;
9286 }
9287
9288 /* Free all resources associated with DWO_FILES. */
9289
9290 static void
9291 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9292 {
9293 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9294 }
9295 \f
9296 /* Read in various DIEs. */
9297
9298 /* qsort helper for inherit_abstract_dies. */
9299
9300 static int
9301 unsigned_int_compar (const void *ap, const void *bp)
9302 {
9303 unsigned int a = *(unsigned int *) ap;
9304 unsigned int b = *(unsigned int *) bp;
9305
9306 return (a > b) - (b > a);
9307 }
9308
9309 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9310 Inherit only the children of the DW_AT_abstract_origin DIE not being
9311 already referenced by DW_AT_abstract_origin from the children of the
9312 current DIE. */
9313
9314 static void
9315 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9316 {
9317 struct die_info *child_die;
9318 unsigned die_children_count;
9319 /* CU offsets which were referenced by children of the current DIE. */
9320 sect_offset *offsets;
9321 sect_offset *offsets_end, *offsetp;
9322 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9323 struct die_info *origin_die;
9324 /* Iterator of the ORIGIN_DIE children. */
9325 struct die_info *origin_child_die;
9326 struct cleanup *cleanups;
9327 struct attribute *attr;
9328 struct dwarf2_cu *origin_cu;
9329 struct pending **origin_previous_list_in_scope;
9330
9331 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9332 if (!attr)
9333 return;
9334
9335 /* Note that following die references may follow to a die in a
9336 different cu. */
9337
9338 origin_cu = cu;
9339 origin_die = follow_die_ref (die, attr, &origin_cu);
9340
9341 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9342 symbols in. */
9343 origin_previous_list_in_scope = origin_cu->list_in_scope;
9344 origin_cu->list_in_scope = cu->list_in_scope;
9345
9346 if (die->tag != origin_die->tag
9347 && !(die->tag == DW_TAG_inlined_subroutine
9348 && origin_die->tag == DW_TAG_subprogram))
9349 complaint (&symfile_complaints,
9350 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9351 die->offset.sect_off, origin_die->offset.sect_off);
9352
9353 child_die = die->child;
9354 die_children_count = 0;
9355 while (child_die && child_die->tag)
9356 {
9357 child_die = sibling_die (child_die);
9358 die_children_count++;
9359 }
9360 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9361 cleanups = make_cleanup (xfree, offsets);
9362
9363 offsets_end = offsets;
9364 child_die = die->child;
9365 while (child_die && child_die->tag)
9366 {
9367 /* For each CHILD_DIE, find the corresponding child of
9368 ORIGIN_DIE. If there is more than one layer of
9369 DW_AT_abstract_origin, follow them all; there shouldn't be,
9370 but GCC versions at least through 4.4 generate this (GCC PR
9371 40573). */
9372 struct die_info *child_origin_die = child_die;
9373 struct dwarf2_cu *child_origin_cu = cu;
9374
9375 while (1)
9376 {
9377 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9378 child_origin_cu);
9379 if (attr == NULL)
9380 break;
9381 child_origin_die = follow_die_ref (child_origin_die, attr,
9382 &child_origin_cu);
9383 }
9384
9385 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9386 counterpart may exist. */
9387 if (child_origin_die != child_die)
9388 {
9389 if (child_die->tag != child_origin_die->tag
9390 && !(child_die->tag == DW_TAG_inlined_subroutine
9391 && child_origin_die->tag == DW_TAG_subprogram))
9392 complaint (&symfile_complaints,
9393 _("Child DIE 0x%x and its abstract origin 0x%x have "
9394 "different tags"), child_die->offset.sect_off,
9395 child_origin_die->offset.sect_off);
9396 if (child_origin_die->parent != origin_die)
9397 complaint (&symfile_complaints,
9398 _("Child DIE 0x%x and its abstract origin 0x%x have "
9399 "different parents"), child_die->offset.sect_off,
9400 child_origin_die->offset.sect_off);
9401 else
9402 *offsets_end++ = child_origin_die->offset;
9403 }
9404 child_die = sibling_die (child_die);
9405 }
9406 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9407 unsigned_int_compar);
9408 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9409 if (offsetp[-1].sect_off == offsetp->sect_off)
9410 complaint (&symfile_complaints,
9411 _("Multiple children of DIE 0x%x refer "
9412 "to DIE 0x%x as their abstract origin"),
9413 die->offset.sect_off, offsetp->sect_off);
9414
9415 offsetp = offsets;
9416 origin_child_die = origin_die->child;
9417 while (origin_child_die && origin_child_die->tag)
9418 {
9419 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9420 while (offsetp < offsets_end
9421 && offsetp->sect_off < origin_child_die->offset.sect_off)
9422 offsetp++;
9423 if (offsetp >= offsets_end
9424 || offsetp->sect_off > origin_child_die->offset.sect_off)
9425 {
9426 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9427 process_die (origin_child_die, origin_cu);
9428 }
9429 origin_child_die = sibling_die (origin_child_die);
9430 }
9431 origin_cu->list_in_scope = origin_previous_list_in_scope;
9432
9433 do_cleanups (cleanups);
9434 }
9435
9436 static void
9437 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9438 {
9439 struct objfile *objfile = cu->objfile;
9440 struct context_stack *new;
9441 CORE_ADDR lowpc;
9442 CORE_ADDR highpc;
9443 struct die_info *child_die;
9444 struct attribute *attr, *call_line, *call_file;
9445 const char *name;
9446 CORE_ADDR baseaddr;
9447 struct block *block;
9448 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9449 VEC (symbolp) *template_args = NULL;
9450 struct template_symbol *templ_func = NULL;
9451
9452 if (inlined_func)
9453 {
9454 /* If we do not have call site information, we can't show the
9455 caller of this inlined function. That's too confusing, so
9456 only use the scope for local variables. */
9457 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9458 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9459 if (call_line == NULL || call_file == NULL)
9460 {
9461 read_lexical_block_scope (die, cu);
9462 return;
9463 }
9464 }
9465
9466 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9467
9468 name = dwarf2_name (die, cu);
9469
9470 /* Ignore functions with missing or empty names. These are actually
9471 illegal according to the DWARF standard. */
9472 if (name == NULL)
9473 {
9474 complaint (&symfile_complaints,
9475 _("missing name for subprogram DIE at %d"),
9476 die->offset.sect_off);
9477 return;
9478 }
9479
9480 /* Ignore functions with missing or invalid low and high pc attributes. */
9481 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9482 {
9483 attr = dwarf2_attr (die, DW_AT_external, cu);
9484 if (!attr || !DW_UNSND (attr))
9485 complaint (&symfile_complaints,
9486 _("cannot get low and high bounds "
9487 "for subprogram DIE at %d"),
9488 die->offset.sect_off);
9489 return;
9490 }
9491
9492 lowpc += baseaddr;
9493 highpc += baseaddr;
9494
9495 /* If we have any template arguments, then we must allocate a
9496 different sort of symbol. */
9497 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9498 {
9499 if (child_die->tag == DW_TAG_template_type_param
9500 || child_die->tag == DW_TAG_template_value_param)
9501 {
9502 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9503 struct template_symbol);
9504 templ_func->base.is_cplus_template_function = 1;
9505 break;
9506 }
9507 }
9508
9509 new = push_context (0, lowpc);
9510 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9511 (struct symbol *) templ_func);
9512
9513 /* If there is a location expression for DW_AT_frame_base, record
9514 it. */
9515 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9516 if (attr)
9517 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9518 expression is being recorded directly in the function's symbol
9519 and not in a separate frame-base object. I guess this hack is
9520 to avoid adding some sort of frame-base adjunct/annex to the
9521 function's symbol :-(. The problem with doing this is that it
9522 results in a function symbol with a location expression that
9523 has nothing to do with the location of the function, ouch! The
9524 relationship should be: a function's symbol has-a frame base; a
9525 frame-base has-a location expression. */
9526 dwarf2_symbol_mark_computed (attr, new->name, cu);
9527
9528 cu->list_in_scope = &local_symbols;
9529
9530 if (die->child != NULL)
9531 {
9532 child_die = die->child;
9533 while (child_die && child_die->tag)
9534 {
9535 if (child_die->tag == DW_TAG_template_type_param
9536 || child_die->tag == DW_TAG_template_value_param)
9537 {
9538 struct symbol *arg = new_symbol (child_die, NULL, cu);
9539
9540 if (arg != NULL)
9541 VEC_safe_push (symbolp, template_args, arg);
9542 }
9543 else
9544 process_die (child_die, cu);
9545 child_die = sibling_die (child_die);
9546 }
9547 }
9548
9549 inherit_abstract_dies (die, cu);
9550
9551 /* If we have a DW_AT_specification, we might need to import using
9552 directives from the context of the specification DIE. See the
9553 comment in determine_prefix. */
9554 if (cu->language == language_cplus
9555 && dwarf2_attr (die, DW_AT_specification, cu))
9556 {
9557 struct dwarf2_cu *spec_cu = cu;
9558 struct die_info *spec_die = die_specification (die, &spec_cu);
9559
9560 while (spec_die)
9561 {
9562 child_die = spec_die->child;
9563 while (child_die && child_die->tag)
9564 {
9565 if (child_die->tag == DW_TAG_imported_module)
9566 process_die (child_die, spec_cu);
9567 child_die = sibling_die (child_die);
9568 }
9569
9570 /* In some cases, GCC generates specification DIEs that
9571 themselves contain DW_AT_specification attributes. */
9572 spec_die = die_specification (spec_die, &spec_cu);
9573 }
9574 }
9575
9576 new = pop_context ();
9577 /* Make a block for the local symbols within. */
9578 block = finish_block (new->name, &local_symbols, new->old_blocks,
9579 lowpc, highpc, objfile);
9580
9581 /* For C++, set the block's scope. */
9582 if ((cu->language == language_cplus || cu->language == language_fortran)
9583 && cu->processing_has_namespace_info)
9584 block_set_scope (block, determine_prefix (die, cu),
9585 &objfile->objfile_obstack);
9586
9587 /* If we have address ranges, record them. */
9588 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9589
9590 /* Attach template arguments to function. */
9591 if (! VEC_empty (symbolp, template_args))
9592 {
9593 gdb_assert (templ_func != NULL);
9594
9595 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9596 templ_func->template_arguments
9597 = obstack_alloc (&objfile->objfile_obstack,
9598 (templ_func->n_template_arguments
9599 * sizeof (struct symbol *)));
9600 memcpy (templ_func->template_arguments,
9601 VEC_address (symbolp, template_args),
9602 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9603 VEC_free (symbolp, template_args);
9604 }
9605
9606 /* In C++, we can have functions nested inside functions (e.g., when
9607 a function declares a class that has methods). This means that
9608 when we finish processing a function scope, we may need to go
9609 back to building a containing block's symbol lists. */
9610 local_symbols = new->locals;
9611 using_directives = new->using_directives;
9612
9613 /* If we've finished processing a top-level function, subsequent
9614 symbols go in the file symbol list. */
9615 if (outermost_context_p ())
9616 cu->list_in_scope = &file_symbols;
9617 }
9618
9619 /* Process all the DIES contained within a lexical block scope. Start
9620 a new scope, process the dies, and then close the scope. */
9621
9622 static void
9623 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9624 {
9625 struct objfile *objfile = cu->objfile;
9626 struct context_stack *new;
9627 CORE_ADDR lowpc, highpc;
9628 struct die_info *child_die;
9629 CORE_ADDR baseaddr;
9630
9631 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9632
9633 /* Ignore blocks with missing or invalid low and high pc attributes. */
9634 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9635 as multiple lexical blocks? Handling children in a sane way would
9636 be nasty. Might be easier to properly extend generic blocks to
9637 describe ranges. */
9638 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9639 return;
9640 lowpc += baseaddr;
9641 highpc += baseaddr;
9642
9643 push_context (0, lowpc);
9644 if (die->child != NULL)
9645 {
9646 child_die = die->child;
9647 while (child_die && child_die->tag)
9648 {
9649 process_die (child_die, cu);
9650 child_die = sibling_die (child_die);
9651 }
9652 }
9653 new = pop_context ();
9654
9655 if (local_symbols != NULL || using_directives != NULL)
9656 {
9657 struct block *block
9658 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9659 highpc, objfile);
9660
9661 /* Note that recording ranges after traversing children, as we
9662 do here, means that recording a parent's ranges entails
9663 walking across all its children's ranges as they appear in
9664 the address map, which is quadratic behavior.
9665
9666 It would be nicer to record the parent's ranges before
9667 traversing its children, simply overriding whatever you find
9668 there. But since we don't even decide whether to create a
9669 block until after we've traversed its children, that's hard
9670 to do. */
9671 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9672 }
9673 local_symbols = new->locals;
9674 using_directives = new->using_directives;
9675 }
9676
9677 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9678
9679 static void
9680 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9681 {
9682 struct objfile *objfile = cu->objfile;
9683 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9684 CORE_ADDR pc, baseaddr;
9685 struct attribute *attr;
9686 struct call_site *call_site, call_site_local;
9687 void **slot;
9688 int nparams;
9689 struct die_info *child_die;
9690
9691 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9692
9693 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9694 if (!attr)
9695 {
9696 complaint (&symfile_complaints,
9697 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9698 "DIE 0x%x [in module %s]"),
9699 die->offset.sect_off, objfile->name);
9700 return;
9701 }
9702 pc = DW_ADDR (attr) + baseaddr;
9703
9704 if (cu->call_site_htab == NULL)
9705 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9706 NULL, &objfile->objfile_obstack,
9707 hashtab_obstack_allocate, NULL);
9708 call_site_local.pc = pc;
9709 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9710 if (*slot != NULL)
9711 {
9712 complaint (&symfile_complaints,
9713 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9714 "DIE 0x%x [in module %s]"),
9715 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9716 return;
9717 }
9718
9719 /* Count parameters at the caller. */
9720
9721 nparams = 0;
9722 for (child_die = die->child; child_die && child_die->tag;
9723 child_die = sibling_die (child_die))
9724 {
9725 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9726 {
9727 complaint (&symfile_complaints,
9728 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9729 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9730 child_die->tag, child_die->offset.sect_off, objfile->name);
9731 continue;
9732 }
9733
9734 nparams++;
9735 }
9736
9737 call_site = obstack_alloc (&objfile->objfile_obstack,
9738 (sizeof (*call_site)
9739 + (sizeof (*call_site->parameter)
9740 * (nparams - 1))));
9741 *slot = call_site;
9742 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9743 call_site->pc = pc;
9744
9745 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9746 {
9747 struct die_info *func_die;
9748
9749 /* Skip also over DW_TAG_inlined_subroutine. */
9750 for (func_die = die->parent;
9751 func_die && func_die->tag != DW_TAG_subprogram
9752 && func_die->tag != DW_TAG_subroutine_type;
9753 func_die = func_die->parent);
9754
9755 /* DW_AT_GNU_all_call_sites is a superset
9756 of DW_AT_GNU_all_tail_call_sites. */
9757 if (func_die
9758 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9759 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9760 {
9761 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9762 not complete. But keep CALL_SITE for look ups via call_site_htab,
9763 both the initial caller containing the real return address PC and
9764 the final callee containing the current PC of a chain of tail
9765 calls do not need to have the tail call list complete. But any
9766 function candidate for a virtual tail call frame searched via
9767 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9768 determined unambiguously. */
9769 }
9770 else
9771 {
9772 struct type *func_type = NULL;
9773
9774 if (func_die)
9775 func_type = get_die_type (func_die, cu);
9776 if (func_type != NULL)
9777 {
9778 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9779
9780 /* Enlist this call site to the function. */
9781 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9782 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9783 }
9784 else
9785 complaint (&symfile_complaints,
9786 _("Cannot find function owning DW_TAG_GNU_call_site "
9787 "DIE 0x%x [in module %s]"),
9788 die->offset.sect_off, objfile->name);
9789 }
9790 }
9791
9792 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9793 if (attr == NULL)
9794 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9795 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9796 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9797 /* Keep NULL DWARF_BLOCK. */;
9798 else if (attr_form_is_block (attr))
9799 {
9800 struct dwarf2_locexpr_baton *dlbaton;
9801
9802 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9803 dlbaton->data = DW_BLOCK (attr)->data;
9804 dlbaton->size = DW_BLOCK (attr)->size;
9805 dlbaton->per_cu = cu->per_cu;
9806
9807 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9808 }
9809 else if (is_ref_attr (attr))
9810 {
9811 struct dwarf2_cu *target_cu = cu;
9812 struct die_info *target_die;
9813
9814 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9815 gdb_assert (target_cu->objfile == objfile);
9816 if (die_is_declaration (target_die, target_cu))
9817 {
9818 const char *target_physname = NULL;
9819 struct attribute *target_attr;
9820
9821 /* Prefer the mangled name; otherwise compute the demangled one. */
9822 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9823 if (target_attr == NULL)
9824 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9825 target_cu);
9826 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9827 target_physname = DW_STRING (target_attr);
9828 else
9829 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9830 if (target_physname == NULL)
9831 complaint (&symfile_complaints,
9832 _("DW_AT_GNU_call_site_target target DIE has invalid "
9833 "physname, for referencing DIE 0x%x [in module %s]"),
9834 die->offset.sect_off, objfile->name);
9835 else
9836 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9837 }
9838 else
9839 {
9840 CORE_ADDR lowpc;
9841
9842 /* DW_AT_entry_pc should be preferred. */
9843 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9844 complaint (&symfile_complaints,
9845 _("DW_AT_GNU_call_site_target target DIE has invalid "
9846 "low pc, for referencing DIE 0x%x [in module %s]"),
9847 die->offset.sect_off, objfile->name);
9848 else
9849 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9850 }
9851 }
9852 else
9853 complaint (&symfile_complaints,
9854 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9855 "block nor reference, for DIE 0x%x [in module %s]"),
9856 die->offset.sect_off, objfile->name);
9857
9858 call_site->per_cu = cu->per_cu;
9859
9860 for (child_die = die->child;
9861 child_die && child_die->tag;
9862 child_die = sibling_die (child_die))
9863 {
9864 struct call_site_parameter *parameter;
9865 struct attribute *loc, *origin;
9866
9867 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9868 {
9869 /* Already printed the complaint above. */
9870 continue;
9871 }
9872
9873 gdb_assert (call_site->parameter_count < nparams);
9874 parameter = &call_site->parameter[call_site->parameter_count];
9875
9876 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9877 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9878 register is contained in DW_AT_GNU_call_site_value. */
9879
9880 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9881 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9882 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9883 {
9884 sect_offset offset;
9885
9886 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9887 offset = dwarf2_get_ref_die_offset (origin);
9888 if (!offset_in_cu_p (&cu->header, offset))
9889 {
9890 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9891 binding can be done only inside one CU. Such referenced DIE
9892 therefore cannot be even moved to DW_TAG_partial_unit. */
9893 complaint (&symfile_complaints,
9894 _("DW_AT_abstract_origin offset is not in CU for "
9895 "DW_TAG_GNU_call_site child DIE 0x%x "
9896 "[in module %s]"),
9897 child_die->offset.sect_off, objfile->name);
9898 continue;
9899 }
9900 parameter->u.param_offset.cu_off = (offset.sect_off
9901 - cu->header.offset.sect_off);
9902 }
9903 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9904 {
9905 complaint (&symfile_complaints,
9906 _("No DW_FORM_block* DW_AT_location for "
9907 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9908 child_die->offset.sect_off, objfile->name);
9909 continue;
9910 }
9911 else
9912 {
9913 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9914 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9915 if (parameter->u.dwarf_reg != -1)
9916 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9917 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9918 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9919 &parameter->u.fb_offset))
9920 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9921 else
9922 {
9923 complaint (&symfile_complaints,
9924 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9925 "for DW_FORM_block* DW_AT_location is supported for "
9926 "DW_TAG_GNU_call_site child DIE 0x%x "
9927 "[in module %s]"),
9928 child_die->offset.sect_off, objfile->name);
9929 continue;
9930 }
9931 }
9932
9933 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9934 if (!attr_form_is_block (attr))
9935 {
9936 complaint (&symfile_complaints,
9937 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9938 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9939 child_die->offset.sect_off, objfile->name);
9940 continue;
9941 }
9942 parameter->value = DW_BLOCK (attr)->data;
9943 parameter->value_size = DW_BLOCK (attr)->size;
9944
9945 /* Parameters are not pre-cleared by memset above. */
9946 parameter->data_value = NULL;
9947 parameter->data_value_size = 0;
9948 call_site->parameter_count++;
9949
9950 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9951 if (attr)
9952 {
9953 if (!attr_form_is_block (attr))
9954 complaint (&symfile_complaints,
9955 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9956 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9957 child_die->offset.sect_off, objfile->name);
9958 else
9959 {
9960 parameter->data_value = DW_BLOCK (attr)->data;
9961 parameter->data_value_size = DW_BLOCK (attr)->size;
9962 }
9963 }
9964 }
9965 }
9966
9967 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9968 Return 1 if the attributes are present and valid, otherwise, return 0.
9969 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9970
9971 static int
9972 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9973 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9974 struct partial_symtab *ranges_pst)
9975 {
9976 struct objfile *objfile = cu->objfile;
9977 struct comp_unit_head *cu_header = &cu->header;
9978 bfd *obfd = objfile->obfd;
9979 unsigned int addr_size = cu_header->addr_size;
9980 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9981 /* Base address selection entry. */
9982 CORE_ADDR base;
9983 int found_base;
9984 unsigned int dummy;
9985 gdb_byte *buffer;
9986 CORE_ADDR marker;
9987 int low_set;
9988 CORE_ADDR low = 0;
9989 CORE_ADDR high = 0;
9990 CORE_ADDR baseaddr;
9991
9992 found_base = cu->base_known;
9993 base = cu->base_address;
9994
9995 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9996 if (offset >= dwarf2_per_objfile->ranges.size)
9997 {
9998 complaint (&symfile_complaints,
9999 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10000 offset);
10001 return 0;
10002 }
10003 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10004
10005 /* Read in the largest possible address. */
10006 marker = read_address (obfd, buffer, cu, &dummy);
10007 if ((marker & mask) == mask)
10008 {
10009 /* If we found the largest possible address, then
10010 read the base address. */
10011 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10012 buffer += 2 * addr_size;
10013 offset += 2 * addr_size;
10014 found_base = 1;
10015 }
10016
10017 low_set = 0;
10018
10019 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10020
10021 while (1)
10022 {
10023 CORE_ADDR range_beginning, range_end;
10024
10025 range_beginning = read_address (obfd, buffer, cu, &dummy);
10026 buffer += addr_size;
10027 range_end = read_address (obfd, buffer, cu, &dummy);
10028 buffer += addr_size;
10029 offset += 2 * addr_size;
10030
10031 /* An end of list marker is a pair of zero addresses. */
10032 if (range_beginning == 0 && range_end == 0)
10033 /* Found the end of list entry. */
10034 break;
10035
10036 /* Each base address selection entry is a pair of 2 values.
10037 The first is the largest possible address, the second is
10038 the base address. Check for a base address here. */
10039 if ((range_beginning & mask) == mask)
10040 {
10041 /* If we found the largest possible address, then
10042 read the base address. */
10043 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10044 found_base = 1;
10045 continue;
10046 }
10047
10048 if (!found_base)
10049 {
10050 /* We have no valid base address for the ranges
10051 data. */
10052 complaint (&symfile_complaints,
10053 _("Invalid .debug_ranges data (no base address)"));
10054 return 0;
10055 }
10056
10057 if (range_beginning > range_end)
10058 {
10059 /* Inverted range entries are invalid. */
10060 complaint (&symfile_complaints,
10061 _("Invalid .debug_ranges data (inverted range)"));
10062 return 0;
10063 }
10064
10065 /* Empty range entries have no effect. */
10066 if (range_beginning == range_end)
10067 continue;
10068
10069 range_beginning += base;
10070 range_end += base;
10071
10072 /* A not-uncommon case of bad debug info.
10073 Don't pollute the addrmap with bad data. */
10074 if (range_beginning + baseaddr == 0
10075 && !dwarf2_per_objfile->has_section_at_zero)
10076 {
10077 complaint (&symfile_complaints,
10078 _(".debug_ranges entry has start address of zero"
10079 " [in module %s]"), objfile->name);
10080 continue;
10081 }
10082
10083 if (ranges_pst != NULL)
10084 addrmap_set_empty (objfile->psymtabs_addrmap,
10085 range_beginning + baseaddr,
10086 range_end - 1 + baseaddr,
10087 ranges_pst);
10088
10089 /* FIXME: This is recording everything as a low-high
10090 segment of consecutive addresses. We should have a
10091 data structure for discontiguous block ranges
10092 instead. */
10093 if (! low_set)
10094 {
10095 low = range_beginning;
10096 high = range_end;
10097 low_set = 1;
10098 }
10099 else
10100 {
10101 if (range_beginning < low)
10102 low = range_beginning;
10103 if (range_end > high)
10104 high = range_end;
10105 }
10106 }
10107
10108 if (! low_set)
10109 /* If the first entry is an end-of-list marker, the range
10110 describes an empty scope, i.e. no instructions. */
10111 return 0;
10112
10113 if (low_return)
10114 *low_return = low;
10115 if (high_return)
10116 *high_return = high;
10117 return 1;
10118 }
10119
10120 /* Get low and high pc attributes from a die. Return 1 if the attributes
10121 are present and valid, otherwise, return 0. Return -1 if the range is
10122 discontinuous, i.e. derived from DW_AT_ranges information. */
10123
10124 static int
10125 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10126 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10127 struct partial_symtab *pst)
10128 {
10129 struct attribute *attr;
10130 struct attribute *attr_high;
10131 CORE_ADDR low = 0;
10132 CORE_ADDR high = 0;
10133 int ret = 0;
10134
10135 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10136 if (attr_high)
10137 {
10138 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10139 if (attr)
10140 {
10141 low = DW_ADDR (attr);
10142 if (attr_high->form == DW_FORM_addr
10143 || attr_high->form == DW_FORM_GNU_addr_index)
10144 high = DW_ADDR (attr_high);
10145 else
10146 high = low + DW_UNSND (attr_high);
10147 }
10148 else
10149 /* Found high w/o low attribute. */
10150 return 0;
10151
10152 /* Found consecutive range of addresses. */
10153 ret = 1;
10154 }
10155 else
10156 {
10157 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10158 if (attr != NULL)
10159 {
10160 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10161 We take advantage of the fact that DW_AT_ranges does not appear
10162 in DW_TAG_compile_unit of DWO files. */
10163 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10164 unsigned int ranges_offset = (DW_UNSND (attr)
10165 + (need_ranges_base
10166 ? cu->ranges_base
10167 : 0));
10168
10169 /* Value of the DW_AT_ranges attribute is the offset in the
10170 .debug_ranges section. */
10171 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10172 return 0;
10173 /* Found discontinuous range of addresses. */
10174 ret = -1;
10175 }
10176 }
10177
10178 /* read_partial_die has also the strict LOW < HIGH requirement. */
10179 if (high <= low)
10180 return 0;
10181
10182 /* When using the GNU linker, .gnu.linkonce. sections are used to
10183 eliminate duplicate copies of functions and vtables and such.
10184 The linker will arbitrarily choose one and discard the others.
10185 The AT_*_pc values for such functions refer to local labels in
10186 these sections. If the section from that file was discarded, the
10187 labels are not in the output, so the relocs get a value of 0.
10188 If this is a discarded function, mark the pc bounds as invalid,
10189 so that GDB will ignore it. */
10190 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10191 return 0;
10192
10193 *lowpc = low;
10194 if (highpc)
10195 *highpc = high;
10196 return ret;
10197 }
10198
10199 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10200 its low and high PC addresses. Do nothing if these addresses could not
10201 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10202 and HIGHPC to the high address if greater than HIGHPC. */
10203
10204 static void
10205 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10206 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10207 struct dwarf2_cu *cu)
10208 {
10209 CORE_ADDR low, high;
10210 struct die_info *child = die->child;
10211
10212 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10213 {
10214 *lowpc = min (*lowpc, low);
10215 *highpc = max (*highpc, high);
10216 }
10217
10218 /* If the language does not allow nested subprograms (either inside
10219 subprograms or lexical blocks), we're done. */
10220 if (cu->language != language_ada)
10221 return;
10222
10223 /* Check all the children of the given DIE. If it contains nested
10224 subprograms, then check their pc bounds. Likewise, we need to
10225 check lexical blocks as well, as they may also contain subprogram
10226 definitions. */
10227 while (child && child->tag)
10228 {
10229 if (child->tag == DW_TAG_subprogram
10230 || child->tag == DW_TAG_lexical_block)
10231 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10232 child = sibling_die (child);
10233 }
10234 }
10235
10236 /* Get the low and high pc's represented by the scope DIE, and store
10237 them in *LOWPC and *HIGHPC. If the correct values can't be
10238 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10239
10240 static void
10241 get_scope_pc_bounds (struct die_info *die,
10242 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10243 struct dwarf2_cu *cu)
10244 {
10245 CORE_ADDR best_low = (CORE_ADDR) -1;
10246 CORE_ADDR best_high = (CORE_ADDR) 0;
10247 CORE_ADDR current_low, current_high;
10248
10249 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10250 {
10251 best_low = current_low;
10252 best_high = current_high;
10253 }
10254 else
10255 {
10256 struct die_info *child = die->child;
10257
10258 while (child && child->tag)
10259 {
10260 switch (child->tag) {
10261 case DW_TAG_subprogram:
10262 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10263 break;
10264 case DW_TAG_namespace:
10265 case DW_TAG_module:
10266 /* FIXME: carlton/2004-01-16: Should we do this for
10267 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10268 that current GCC's always emit the DIEs corresponding
10269 to definitions of methods of classes as children of a
10270 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10271 the DIEs giving the declarations, which could be
10272 anywhere). But I don't see any reason why the
10273 standards says that they have to be there. */
10274 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10275
10276 if (current_low != ((CORE_ADDR) -1))
10277 {
10278 best_low = min (best_low, current_low);
10279 best_high = max (best_high, current_high);
10280 }
10281 break;
10282 default:
10283 /* Ignore. */
10284 break;
10285 }
10286
10287 child = sibling_die (child);
10288 }
10289 }
10290
10291 *lowpc = best_low;
10292 *highpc = best_high;
10293 }
10294
10295 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10296 in DIE. */
10297
10298 static void
10299 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10300 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10301 {
10302 struct objfile *objfile = cu->objfile;
10303 struct attribute *attr;
10304 struct attribute *attr_high;
10305
10306 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10307 if (attr_high)
10308 {
10309 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10310 if (attr)
10311 {
10312 CORE_ADDR low = DW_ADDR (attr);
10313 CORE_ADDR high;
10314 if (attr_high->form == DW_FORM_addr
10315 || attr_high->form == DW_FORM_GNU_addr_index)
10316 high = DW_ADDR (attr_high);
10317 else
10318 high = low + DW_UNSND (attr_high);
10319
10320 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10321 }
10322 }
10323
10324 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10325 if (attr)
10326 {
10327 bfd *obfd = objfile->obfd;
10328 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10329 We take advantage of the fact that DW_AT_ranges does not appear
10330 in DW_TAG_compile_unit of DWO files. */
10331 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10332
10333 /* The value of the DW_AT_ranges attribute is the offset of the
10334 address range list in the .debug_ranges section. */
10335 unsigned long offset = (DW_UNSND (attr)
10336 + (need_ranges_base ? cu->ranges_base : 0));
10337 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10338
10339 /* For some target architectures, but not others, the
10340 read_address function sign-extends the addresses it returns.
10341 To recognize base address selection entries, we need a
10342 mask. */
10343 unsigned int addr_size = cu->header.addr_size;
10344 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10345
10346 /* The base address, to which the next pair is relative. Note
10347 that this 'base' is a DWARF concept: most entries in a range
10348 list are relative, to reduce the number of relocs against the
10349 debugging information. This is separate from this function's
10350 'baseaddr' argument, which GDB uses to relocate debugging
10351 information from a shared library based on the address at
10352 which the library was loaded. */
10353 CORE_ADDR base = cu->base_address;
10354 int base_known = cu->base_known;
10355
10356 gdb_assert (dwarf2_per_objfile->ranges.readin);
10357 if (offset >= dwarf2_per_objfile->ranges.size)
10358 {
10359 complaint (&symfile_complaints,
10360 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10361 offset);
10362 return;
10363 }
10364
10365 for (;;)
10366 {
10367 unsigned int bytes_read;
10368 CORE_ADDR start, end;
10369
10370 start = read_address (obfd, buffer, cu, &bytes_read);
10371 buffer += bytes_read;
10372 end = read_address (obfd, buffer, cu, &bytes_read);
10373 buffer += bytes_read;
10374
10375 /* Did we find the end of the range list? */
10376 if (start == 0 && end == 0)
10377 break;
10378
10379 /* Did we find a base address selection entry? */
10380 else if ((start & base_select_mask) == base_select_mask)
10381 {
10382 base = end;
10383 base_known = 1;
10384 }
10385
10386 /* We found an ordinary address range. */
10387 else
10388 {
10389 if (!base_known)
10390 {
10391 complaint (&symfile_complaints,
10392 _("Invalid .debug_ranges data "
10393 "(no base address)"));
10394 return;
10395 }
10396
10397 if (start > end)
10398 {
10399 /* Inverted range entries are invalid. */
10400 complaint (&symfile_complaints,
10401 _("Invalid .debug_ranges data "
10402 "(inverted range)"));
10403 return;
10404 }
10405
10406 /* Empty range entries have no effect. */
10407 if (start == end)
10408 continue;
10409
10410 start += base + baseaddr;
10411 end += base + baseaddr;
10412
10413 /* A not-uncommon case of bad debug info.
10414 Don't pollute the addrmap with bad data. */
10415 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10416 {
10417 complaint (&symfile_complaints,
10418 _(".debug_ranges entry has start address of zero"
10419 " [in module %s]"), objfile->name);
10420 continue;
10421 }
10422
10423 record_block_range (block, start, end - 1);
10424 }
10425 }
10426 }
10427 }
10428
10429 /* Check whether the producer field indicates either of GCC < 4.6, or the
10430 Intel C/C++ compiler, and cache the result in CU. */
10431
10432 static void
10433 check_producer (struct dwarf2_cu *cu)
10434 {
10435 const char *cs;
10436 int major, minor, release;
10437
10438 if (cu->producer == NULL)
10439 {
10440 /* For unknown compilers expect their behavior is DWARF version
10441 compliant.
10442
10443 GCC started to support .debug_types sections by -gdwarf-4 since
10444 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10445 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10446 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10447 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10448 }
10449 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10450 {
10451 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10452
10453 cs = &cu->producer[strlen ("GNU ")];
10454 while (*cs && !isdigit (*cs))
10455 cs++;
10456 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10457 {
10458 /* Not recognized as GCC. */
10459 }
10460 else
10461 {
10462 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10463 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10464 }
10465 }
10466 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10467 cu->producer_is_icc = 1;
10468 else
10469 {
10470 /* For other non-GCC compilers, expect their behavior is DWARF version
10471 compliant. */
10472 }
10473
10474 cu->checked_producer = 1;
10475 }
10476
10477 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10478 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10479 during 4.6.0 experimental. */
10480
10481 static int
10482 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10483 {
10484 if (!cu->checked_producer)
10485 check_producer (cu);
10486
10487 return cu->producer_is_gxx_lt_4_6;
10488 }
10489
10490 /* Return the default accessibility type if it is not overriden by
10491 DW_AT_accessibility. */
10492
10493 static enum dwarf_access_attribute
10494 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10495 {
10496 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10497 {
10498 /* The default DWARF 2 accessibility for members is public, the default
10499 accessibility for inheritance is private. */
10500
10501 if (die->tag != DW_TAG_inheritance)
10502 return DW_ACCESS_public;
10503 else
10504 return DW_ACCESS_private;
10505 }
10506 else
10507 {
10508 /* DWARF 3+ defines the default accessibility a different way. The same
10509 rules apply now for DW_TAG_inheritance as for the members and it only
10510 depends on the container kind. */
10511
10512 if (die->parent->tag == DW_TAG_class_type)
10513 return DW_ACCESS_private;
10514 else
10515 return DW_ACCESS_public;
10516 }
10517 }
10518
10519 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10520 offset. If the attribute was not found return 0, otherwise return
10521 1. If it was found but could not properly be handled, set *OFFSET
10522 to 0. */
10523
10524 static int
10525 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10526 LONGEST *offset)
10527 {
10528 struct attribute *attr;
10529
10530 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10531 if (attr != NULL)
10532 {
10533 *offset = 0;
10534
10535 /* Note that we do not check for a section offset first here.
10536 This is because DW_AT_data_member_location is new in DWARF 4,
10537 so if we see it, we can assume that a constant form is really
10538 a constant and not a section offset. */
10539 if (attr_form_is_constant (attr))
10540 *offset = dwarf2_get_attr_constant_value (attr, 0);
10541 else if (attr_form_is_section_offset (attr))
10542 dwarf2_complex_location_expr_complaint ();
10543 else if (attr_form_is_block (attr))
10544 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10545 else
10546 dwarf2_complex_location_expr_complaint ();
10547
10548 return 1;
10549 }
10550
10551 return 0;
10552 }
10553
10554 /* Add an aggregate field to the field list. */
10555
10556 static void
10557 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10558 struct dwarf2_cu *cu)
10559 {
10560 struct objfile *objfile = cu->objfile;
10561 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10562 struct nextfield *new_field;
10563 struct attribute *attr;
10564 struct field *fp;
10565 const char *fieldname = "";
10566
10567 /* Allocate a new field list entry and link it in. */
10568 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10569 make_cleanup (xfree, new_field);
10570 memset (new_field, 0, sizeof (struct nextfield));
10571
10572 if (die->tag == DW_TAG_inheritance)
10573 {
10574 new_field->next = fip->baseclasses;
10575 fip->baseclasses = new_field;
10576 }
10577 else
10578 {
10579 new_field->next = fip->fields;
10580 fip->fields = new_field;
10581 }
10582 fip->nfields++;
10583
10584 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10585 if (attr)
10586 new_field->accessibility = DW_UNSND (attr);
10587 else
10588 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10589 if (new_field->accessibility != DW_ACCESS_public)
10590 fip->non_public_fields = 1;
10591
10592 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10593 if (attr)
10594 new_field->virtuality = DW_UNSND (attr);
10595 else
10596 new_field->virtuality = DW_VIRTUALITY_none;
10597
10598 fp = &new_field->field;
10599
10600 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10601 {
10602 LONGEST offset;
10603
10604 /* Data member other than a C++ static data member. */
10605
10606 /* Get type of field. */
10607 fp->type = die_type (die, cu);
10608
10609 SET_FIELD_BITPOS (*fp, 0);
10610
10611 /* Get bit size of field (zero if none). */
10612 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10613 if (attr)
10614 {
10615 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10616 }
10617 else
10618 {
10619 FIELD_BITSIZE (*fp) = 0;
10620 }
10621
10622 /* Get bit offset of field. */
10623 if (handle_data_member_location (die, cu, &offset))
10624 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10625 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10626 if (attr)
10627 {
10628 if (gdbarch_bits_big_endian (gdbarch))
10629 {
10630 /* For big endian bits, the DW_AT_bit_offset gives the
10631 additional bit offset from the MSB of the containing
10632 anonymous object to the MSB of the field. We don't
10633 have to do anything special since we don't need to
10634 know the size of the anonymous object. */
10635 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10636 }
10637 else
10638 {
10639 /* For little endian bits, compute the bit offset to the
10640 MSB of the anonymous object, subtract off the number of
10641 bits from the MSB of the field to the MSB of the
10642 object, and then subtract off the number of bits of
10643 the field itself. The result is the bit offset of
10644 the LSB of the field. */
10645 int anonymous_size;
10646 int bit_offset = DW_UNSND (attr);
10647
10648 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10649 if (attr)
10650 {
10651 /* The size of the anonymous object containing
10652 the bit field is explicit, so use the
10653 indicated size (in bytes). */
10654 anonymous_size = DW_UNSND (attr);
10655 }
10656 else
10657 {
10658 /* The size of the anonymous object containing
10659 the bit field must be inferred from the type
10660 attribute of the data member containing the
10661 bit field. */
10662 anonymous_size = TYPE_LENGTH (fp->type);
10663 }
10664 SET_FIELD_BITPOS (*fp,
10665 (FIELD_BITPOS (*fp)
10666 + anonymous_size * bits_per_byte
10667 - bit_offset - FIELD_BITSIZE (*fp)));
10668 }
10669 }
10670
10671 /* Get name of field. */
10672 fieldname = dwarf2_name (die, cu);
10673 if (fieldname == NULL)
10674 fieldname = "";
10675
10676 /* The name is already allocated along with this objfile, so we don't
10677 need to duplicate it for the type. */
10678 fp->name = fieldname;
10679
10680 /* Change accessibility for artificial fields (e.g. virtual table
10681 pointer or virtual base class pointer) to private. */
10682 if (dwarf2_attr (die, DW_AT_artificial, cu))
10683 {
10684 FIELD_ARTIFICIAL (*fp) = 1;
10685 new_field->accessibility = DW_ACCESS_private;
10686 fip->non_public_fields = 1;
10687 }
10688 }
10689 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10690 {
10691 /* C++ static member. */
10692
10693 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10694 is a declaration, but all versions of G++ as of this writing
10695 (so through at least 3.2.1) incorrectly generate
10696 DW_TAG_variable tags. */
10697
10698 const char *physname;
10699
10700 /* Get name of field. */
10701 fieldname = dwarf2_name (die, cu);
10702 if (fieldname == NULL)
10703 return;
10704
10705 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10706 if (attr
10707 /* Only create a symbol if this is an external value.
10708 new_symbol checks this and puts the value in the global symbol
10709 table, which we want. If it is not external, new_symbol
10710 will try to put the value in cu->list_in_scope which is wrong. */
10711 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10712 {
10713 /* A static const member, not much different than an enum as far as
10714 we're concerned, except that we can support more types. */
10715 new_symbol (die, NULL, cu);
10716 }
10717
10718 /* Get physical name. */
10719 physname = dwarf2_physname (fieldname, die, cu);
10720
10721 /* The name is already allocated along with this objfile, so we don't
10722 need to duplicate it for the type. */
10723 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10724 FIELD_TYPE (*fp) = die_type (die, cu);
10725 FIELD_NAME (*fp) = fieldname;
10726 }
10727 else if (die->tag == DW_TAG_inheritance)
10728 {
10729 LONGEST offset;
10730
10731 /* C++ base class field. */
10732 if (handle_data_member_location (die, cu, &offset))
10733 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10734 FIELD_BITSIZE (*fp) = 0;
10735 FIELD_TYPE (*fp) = die_type (die, cu);
10736 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10737 fip->nbaseclasses++;
10738 }
10739 }
10740
10741 /* Add a typedef defined in the scope of the FIP's class. */
10742
10743 static void
10744 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10745 struct dwarf2_cu *cu)
10746 {
10747 struct objfile *objfile = cu->objfile;
10748 struct typedef_field_list *new_field;
10749 struct attribute *attr;
10750 struct typedef_field *fp;
10751 char *fieldname = "";
10752
10753 /* Allocate a new field list entry and link it in. */
10754 new_field = xzalloc (sizeof (*new_field));
10755 make_cleanup (xfree, new_field);
10756
10757 gdb_assert (die->tag == DW_TAG_typedef);
10758
10759 fp = &new_field->field;
10760
10761 /* Get name of field. */
10762 fp->name = dwarf2_name (die, cu);
10763 if (fp->name == NULL)
10764 return;
10765
10766 fp->type = read_type_die (die, cu);
10767
10768 new_field->next = fip->typedef_field_list;
10769 fip->typedef_field_list = new_field;
10770 fip->typedef_field_list_count++;
10771 }
10772
10773 /* Create the vector of fields, and attach it to the type. */
10774
10775 static void
10776 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10777 struct dwarf2_cu *cu)
10778 {
10779 int nfields = fip->nfields;
10780
10781 /* Record the field count, allocate space for the array of fields,
10782 and create blank accessibility bitfields if necessary. */
10783 TYPE_NFIELDS (type) = nfields;
10784 TYPE_FIELDS (type) = (struct field *)
10785 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10786 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10787
10788 if (fip->non_public_fields && cu->language != language_ada)
10789 {
10790 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10791
10792 TYPE_FIELD_PRIVATE_BITS (type) =
10793 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10794 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10795
10796 TYPE_FIELD_PROTECTED_BITS (type) =
10797 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10798 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10799
10800 TYPE_FIELD_IGNORE_BITS (type) =
10801 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10802 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10803 }
10804
10805 /* If the type has baseclasses, allocate and clear a bit vector for
10806 TYPE_FIELD_VIRTUAL_BITS. */
10807 if (fip->nbaseclasses && cu->language != language_ada)
10808 {
10809 int num_bytes = B_BYTES (fip->nbaseclasses);
10810 unsigned char *pointer;
10811
10812 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10813 pointer = TYPE_ALLOC (type, num_bytes);
10814 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10815 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10816 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10817 }
10818
10819 /* Copy the saved-up fields into the field vector. Start from the head of
10820 the list, adding to the tail of the field array, so that they end up in
10821 the same order in the array in which they were added to the list. */
10822 while (nfields-- > 0)
10823 {
10824 struct nextfield *fieldp;
10825
10826 if (fip->fields)
10827 {
10828 fieldp = fip->fields;
10829 fip->fields = fieldp->next;
10830 }
10831 else
10832 {
10833 fieldp = fip->baseclasses;
10834 fip->baseclasses = fieldp->next;
10835 }
10836
10837 TYPE_FIELD (type, nfields) = fieldp->field;
10838 switch (fieldp->accessibility)
10839 {
10840 case DW_ACCESS_private:
10841 if (cu->language != language_ada)
10842 SET_TYPE_FIELD_PRIVATE (type, nfields);
10843 break;
10844
10845 case DW_ACCESS_protected:
10846 if (cu->language != language_ada)
10847 SET_TYPE_FIELD_PROTECTED (type, nfields);
10848 break;
10849
10850 case DW_ACCESS_public:
10851 break;
10852
10853 default:
10854 /* Unknown accessibility. Complain and treat it as public. */
10855 {
10856 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10857 fieldp->accessibility);
10858 }
10859 break;
10860 }
10861 if (nfields < fip->nbaseclasses)
10862 {
10863 switch (fieldp->virtuality)
10864 {
10865 case DW_VIRTUALITY_virtual:
10866 case DW_VIRTUALITY_pure_virtual:
10867 if (cu->language == language_ada)
10868 error (_("unexpected virtuality in component of Ada type"));
10869 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10870 break;
10871 }
10872 }
10873 }
10874 }
10875
10876 /* Return true if this member function is a constructor, false
10877 otherwise. */
10878
10879 static int
10880 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10881 {
10882 const char *fieldname;
10883 const char *typename;
10884 int len;
10885
10886 if (die->parent == NULL)
10887 return 0;
10888
10889 if (die->parent->tag != DW_TAG_structure_type
10890 && die->parent->tag != DW_TAG_union_type
10891 && die->parent->tag != DW_TAG_class_type)
10892 return 0;
10893
10894 fieldname = dwarf2_name (die, cu);
10895 typename = dwarf2_name (die->parent, cu);
10896 if (fieldname == NULL || typename == NULL)
10897 return 0;
10898
10899 len = strlen (fieldname);
10900 return (strncmp (fieldname, typename, len) == 0
10901 && (typename[len] == '\0' || typename[len] == '<'));
10902 }
10903
10904 /* Add a member function to the proper fieldlist. */
10905
10906 static void
10907 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10908 struct type *type, struct dwarf2_cu *cu)
10909 {
10910 struct objfile *objfile = cu->objfile;
10911 struct attribute *attr;
10912 struct fnfieldlist *flp;
10913 int i;
10914 struct fn_field *fnp;
10915 const char *fieldname;
10916 struct nextfnfield *new_fnfield;
10917 struct type *this_type;
10918 enum dwarf_access_attribute accessibility;
10919
10920 if (cu->language == language_ada)
10921 error (_("unexpected member function in Ada type"));
10922
10923 /* Get name of member function. */
10924 fieldname = dwarf2_name (die, cu);
10925 if (fieldname == NULL)
10926 return;
10927
10928 /* Look up member function name in fieldlist. */
10929 for (i = 0; i < fip->nfnfields; i++)
10930 {
10931 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10932 break;
10933 }
10934
10935 /* Create new list element if necessary. */
10936 if (i < fip->nfnfields)
10937 flp = &fip->fnfieldlists[i];
10938 else
10939 {
10940 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10941 {
10942 fip->fnfieldlists = (struct fnfieldlist *)
10943 xrealloc (fip->fnfieldlists,
10944 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10945 * sizeof (struct fnfieldlist));
10946 if (fip->nfnfields == 0)
10947 make_cleanup (free_current_contents, &fip->fnfieldlists);
10948 }
10949 flp = &fip->fnfieldlists[fip->nfnfields];
10950 flp->name = fieldname;
10951 flp->length = 0;
10952 flp->head = NULL;
10953 i = fip->nfnfields++;
10954 }
10955
10956 /* Create a new member function field and chain it to the field list
10957 entry. */
10958 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10959 make_cleanup (xfree, new_fnfield);
10960 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10961 new_fnfield->next = flp->head;
10962 flp->head = new_fnfield;
10963 flp->length++;
10964
10965 /* Fill in the member function field info. */
10966 fnp = &new_fnfield->fnfield;
10967
10968 /* Delay processing of the physname until later. */
10969 if (cu->language == language_cplus || cu->language == language_java)
10970 {
10971 add_to_method_list (type, i, flp->length - 1, fieldname,
10972 die, cu);
10973 }
10974 else
10975 {
10976 const char *physname = dwarf2_physname (fieldname, die, cu);
10977 fnp->physname = physname ? physname : "";
10978 }
10979
10980 fnp->type = alloc_type (objfile);
10981 this_type = read_type_die (die, cu);
10982 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10983 {
10984 int nparams = TYPE_NFIELDS (this_type);
10985
10986 /* TYPE is the domain of this method, and THIS_TYPE is the type
10987 of the method itself (TYPE_CODE_METHOD). */
10988 smash_to_method_type (fnp->type, type,
10989 TYPE_TARGET_TYPE (this_type),
10990 TYPE_FIELDS (this_type),
10991 TYPE_NFIELDS (this_type),
10992 TYPE_VARARGS (this_type));
10993
10994 /* Handle static member functions.
10995 Dwarf2 has no clean way to discern C++ static and non-static
10996 member functions. G++ helps GDB by marking the first
10997 parameter for non-static member functions (which is the this
10998 pointer) as artificial. We obtain this information from
10999 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11000 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11001 fnp->voffset = VOFFSET_STATIC;
11002 }
11003 else
11004 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11005 dwarf2_full_name (fieldname, die, cu));
11006
11007 /* Get fcontext from DW_AT_containing_type if present. */
11008 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11009 fnp->fcontext = die_containing_type (die, cu);
11010
11011 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11012 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11013
11014 /* Get accessibility. */
11015 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11016 if (attr)
11017 accessibility = DW_UNSND (attr);
11018 else
11019 accessibility = dwarf2_default_access_attribute (die, cu);
11020 switch (accessibility)
11021 {
11022 case DW_ACCESS_private:
11023 fnp->is_private = 1;
11024 break;
11025 case DW_ACCESS_protected:
11026 fnp->is_protected = 1;
11027 break;
11028 }
11029
11030 /* Check for artificial methods. */
11031 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11032 if (attr && DW_UNSND (attr) != 0)
11033 fnp->is_artificial = 1;
11034
11035 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11036
11037 /* Get index in virtual function table if it is a virtual member
11038 function. For older versions of GCC, this is an offset in the
11039 appropriate virtual table, as specified by DW_AT_containing_type.
11040 For everyone else, it is an expression to be evaluated relative
11041 to the object address. */
11042
11043 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11044 if (attr)
11045 {
11046 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11047 {
11048 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11049 {
11050 /* Old-style GCC. */
11051 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11052 }
11053 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11054 || (DW_BLOCK (attr)->size > 1
11055 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11056 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11057 {
11058 struct dwarf_block blk;
11059 int offset;
11060
11061 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11062 ? 1 : 2);
11063 blk.size = DW_BLOCK (attr)->size - offset;
11064 blk.data = DW_BLOCK (attr)->data + offset;
11065 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11066 if ((fnp->voffset % cu->header.addr_size) != 0)
11067 dwarf2_complex_location_expr_complaint ();
11068 else
11069 fnp->voffset /= cu->header.addr_size;
11070 fnp->voffset += 2;
11071 }
11072 else
11073 dwarf2_complex_location_expr_complaint ();
11074
11075 if (!fnp->fcontext)
11076 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11077 }
11078 else if (attr_form_is_section_offset (attr))
11079 {
11080 dwarf2_complex_location_expr_complaint ();
11081 }
11082 else
11083 {
11084 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11085 fieldname);
11086 }
11087 }
11088 else
11089 {
11090 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11091 if (attr && DW_UNSND (attr))
11092 {
11093 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11094 complaint (&symfile_complaints,
11095 _("Member function \"%s\" (offset %d) is virtual "
11096 "but the vtable offset is not specified"),
11097 fieldname, die->offset.sect_off);
11098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11099 TYPE_CPLUS_DYNAMIC (type) = 1;
11100 }
11101 }
11102 }
11103
11104 /* Create the vector of member function fields, and attach it to the type. */
11105
11106 static void
11107 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11108 struct dwarf2_cu *cu)
11109 {
11110 struct fnfieldlist *flp;
11111 int i;
11112
11113 if (cu->language == language_ada)
11114 error (_("unexpected member functions in Ada type"));
11115
11116 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11117 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11118 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11119
11120 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11121 {
11122 struct nextfnfield *nfp = flp->head;
11123 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11124 int k;
11125
11126 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11127 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11128 fn_flp->fn_fields = (struct fn_field *)
11129 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11130 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11131 fn_flp->fn_fields[k] = nfp->fnfield;
11132 }
11133
11134 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11135 }
11136
11137 /* Returns non-zero if NAME is the name of a vtable member in CU's
11138 language, zero otherwise. */
11139 static int
11140 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11141 {
11142 static const char vptr[] = "_vptr";
11143 static const char vtable[] = "vtable";
11144
11145 /* Look for the C++ and Java forms of the vtable. */
11146 if ((cu->language == language_java
11147 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11148 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11149 && is_cplus_marker (name[sizeof (vptr) - 1])))
11150 return 1;
11151
11152 return 0;
11153 }
11154
11155 /* GCC outputs unnamed structures that are really pointers to member
11156 functions, with the ABI-specified layout. If TYPE describes
11157 such a structure, smash it into a member function type.
11158
11159 GCC shouldn't do this; it should just output pointer to member DIEs.
11160 This is GCC PR debug/28767. */
11161
11162 static void
11163 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11164 {
11165 struct type *pfn_type, *domain_type, *new_type;
11166
11167 /* Check for a structure with no name and two children. */
11168 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11169 return;
11170
11171 /* Check for __pfn and __delta members. */
11172 if (TYPE_FIELD_NAME (type, 0) == NULL
11173 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11174 || TYPE_FIELD_NAME (type, 1) == NULL
11175 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11176 return;
11177
11178 /* Find the type of the method. */
11179 pfn_type = TYPE_FIELD_TYPE (type, 0);
11180 if (pfn_type == NULL
11181 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11182 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11183 return;
11184
11185 /* Look for the "this" argument. */
11186 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11187 if (TYPE_NFIELDS (pfn_type) == 0
11188 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11189 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11190 return;
11191
11192 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11193 new_type = alloc_type (objfile);
11194 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11195 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11196 TYPE_VARARGS (pfn_type));
11197 smash_to_methodptr_type (type, new_type);
11198 }
11199
11200 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11201 (icc). */
11202
11203 static int
11204 producer_is_icc (struct dwarf2_cu *cu)
11205 {
11206 if (!cu->checked_producer)
11207 check_producer (cu);
11208
11209 return cu->producer_is_icc;
11210 }
11211
11212 /* Called when we find the DIE that starts a structure or union scope
11213 (definition) to create a type for the structure or union. Fill in
11214 the type's name and general properties; the members will not be
11215 processed until process_structure_type.
11216
11217 NOTE: we need to call these functions regardless of whether or not the
11218 DIE has a DW_AT_name attribute, since it might be an anonymous
11219 structure or union. This gets the type entered into our set of
11220 user defined types.
11221
11222 However, if the structure is incomplete (an opaque struct/union)
11223 then suppress creating a symbol table entry for it since gdb only
11224 wants to find the one with the complete definition. Note that if
11225 it is complete, we just call new_symbol, which does it's own
11226 checking about whether the struct/union is anonymous or not (and
11227 suppresses creating a symbol table entry itself). */
11228
11229 static struct type *
11230 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11231 {
11232 struct objfile *objfile = cu->objfile;
11233 struct type *type;
11234 struct attribute *attr;
11235 const char *name;
11236
11237 /* If the definition of this type lives in .debug_types, read that type.
11238 Don't follow DW_AT_specification though, that will take us back up
11239 the chain and we want to go down. */
11240 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11241 if (attr)
11242 {
11243 struct dwarf2_cu *type_cu = cu;
11244 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11245
11246 /* We could just recurse on read_structure_type, but we need to call
11247 get_die_type to ensure only one type for this DIE is created.
11248 This is important, for example, because for c++ classes we need
11249 TYPE_NAME set which is only done by new_symbol. Blech. */
11250 type = read_type_die (type_die, type_cu);
11251
11252 /* TYPE_CU may not be the same as CU.
11253 Ensure TYPE is recorded in CU's type_hash table. */
11254 return set_die_type (die, type, cu);
11255 }
11256
11257 type = alloc_type (objfile);
11258 INIT_CPLUS_SPECIFIC (type);
11259
11260 name = dwarf2_name (die, cu);
11261 if (name != NULL)
11262 {
11263 if (cu->language == language_cplus
11264 || cu->language == language_java)
11265 {
11266 const char *full_name = dwarf2_full_name (name, die, cu);
11267
11268 /* dwarf2_full_name might have already finished building the DIE's
11269 type. If so, there is no need to continue. */
11270 if (get_die_type (die, cu) != NULL)
11271 return get_die_type (die, cu);
11272
11273 TYPE_TAG_NAME (type) = full_name;
11274 if (die->tag == DW_TAG_structure_type
11275 || die->tag == DW_TAG_class_type)
11276 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11277 }
11278 else
11279 {
11280 /* The name is already allocated along with this objfile, so
11281 we don't need to duplicate it for the type. */
11282 TYPE_TAG_NAME (type) = name;
11283 if (die->tag == DW_TAG_class_type)
11284 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11285 }
11286 }
11287
11288 if (die->tag == DW_TAG_structure_type)
11289 {
11290 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11291 }
11292 else if (die->tag == DW_TAG_union_type)
11293 {
11294 TYPE_CODE (type) = TYPE_CODE_UNION;
11295 }
11296 else
11297 {
11298 TYPE_CODE (type) = TYPE_CODE_CLASS;
11299 }
11300
11301 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11302 TYPE_DECLARED_CLASS (type) = 1;
11303
11304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11305 if (attr)
11306 {
11307 TYPE_LENGTH (type) = DW_UNSND (attr);
11308 }
11309 else
11310 {
11311 TYPE_LENGTH (type) = 0;
11312 }
11313
11314 if (producer_is_icc (cu))
11315 {
11316 /* ICC does not output the required DW_AT_declaration
11317 on incomplete types, but gives them a size of zero. */
11318 }
11319 else
11320 TYPE_STUB_SUPPORTED (type) = 1;
11321
11322 if (die_is_declaration (die, cu))
11323 TYPE_STUB (type) = 1;
11324 else if (attr == NULL && die->child == NULL
11325 && producer_is_realview (cu->producer))
11326 /* RealView does not output the required DW_AT_declaration
11327 on incomplete types. */
11328 TYPE_STUB (type) = 1;
11329
11330 /* We need to add the type field to the die immediately so we don't
11331 infinitely recurse when dealing with pointers to the structure
11332 type within the structure itself. */
11333 set_die_type (die, type, cu);
11334
11335 /* set_die_type should be already done. */
11336 set_descriptive_type (type, die, cu);
11337
11338 return type;
11339 }
11340
11341 /* Finish creating a structure or union type, including filling in
11342 its members and creating a symbol for it. */
11343
11344 static void
11345 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11346 {
11347 struct objfile *objfile = cu->objfile;
11348 struct die_info *child_die = die->child;
11349 struct type *type;
11350
11351 type = get_die_type (die, cu);
11352 if (type == NULL)
11353 type = read_structure_type (die, cu);
11354
11355 if (die->child != NULL && ! die_is_declaration (die, cu))
11356 {
11357 struct field_info fi;
11358 struct die_info *child_die;
11359 VEC (symbolp) *template_args = NULL;
11360 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11361
11362 memset (&fi, 0, sizeof (struct field_info));
11363
11364 child_die = die->child;
11365
11366 while (child_die && child_die->tag)
11367 {
11368 if (child_die->tag == DW_TAG_member
11369 || child_die->tag == DW_TAG_variable)
11370 {
11371 /* NOTE: carlton/2002-11-05: A C++ static data member
11372 should be a DW_TAG_member that is a declaration, but
11373 all versions of G++ as of this writing (so through at
11374 least 3.2.1) incorrectly generate DW_TAG_variable
11375 tags for them instead. */
11376 dwarf2_add_field (&fi, child_die, cu);
11377 }
11378 else if (child_die->tag == DW_TAG_subprogram)
11379 {
11380 /* C++ member function. */
11381 dwarf2_add_member_fn (&fi, child_die, type, cu);
11382 }
11383 else if (child_die->tag == DW_TAG_inheritance)
11384 {
11385 /* C++ base class field. */
11386 dwarf2_add_field (&fi, child_die, cu);
11387 }
11388 else if (child_die->tag == DW_TAG_typedef)
11389 dwarf2_add_typedef (&fi, child_die, cu);
11390 else if (child_die->tag == DW_TAG_template_type_param
11391 || child_die->tag == DW_TAG_template_value_param)
11392 {
11393 struct symbol *arg = new_symbol (child_die, NULL, cu);
11394
11395 if (arg != NULL)
11396 VEC_safe_push (symbolp, template_args, arg);
11397 }
11398
11399 child_die = sibling_die (child_die);
11400 }
11401
11402 /* Attach template arguments to type. */
11403 if (! VEC_empty (symbolp, template_args))
11404 {
11405 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11406 TYPE_N_TEMPLATE_ARGUMENTS (type)
11407 = VEC_length (symbolp, template_args);
11408 TYPE_TEMPLATE_ARGUMENTS (type)
11409 = obstack_alloc (&objfile->objfile_obstack,
11410 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11411 * sizeof (struct symbol *)));
11412 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11413 VEC_address (symbolp, template_args),
11414 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11415 * sizeof (struct symbol *)));
11416 VEC_free (symbolp, template_args);
11417 }
11418
11419 /* Attach fields and member functions to the type. */
11420 if (fi.nfields)
11421 dwarf2_attach_fields_to_type (&fi, type, cu);
11422 if (fi.nfnfields)
11423 {
11424 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11425
11426 /* Get the type which refers to the base class (possibly this
11427 class itself) which contains the vtable pointer for the current
11428 class from the DW_AT_containing_type attribute. This use of
11429 DW_AT_containing_type is a GNU extension. */
11430
11431 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11432 {
11433 struct type *t = die_containing_type (die, cu);
11434
11435 TYPE_VPTR_BASETYPE (type) = t;
11436 if (type == t)
11437 {
11438 int i;
11439
11440 /* Our own class provides vtbl ptr. */
11441 for (i = TYPE_NFIELDS (t) - 1;
11442 i >= TYPE_N_BASECLASSES (t);
11443 --i)
11444 {
11445 const char *fieldname = TYPE_FIELD_NAME (t, i);
11446
11447 if (is_vtable_name (fieldname, cu))
11448 {
11449 TYPE_VPTR_FIELDNO (type) = i;
11450 break;
11451 }
11452 }
11453
11454 /* Complain if virtual function table field not found. */
11455 if (i < TYPE_N_BASECLASSES (t))
11456 complaint (&symfile_complaints,
11457 _("virtual function table pointer "
11458 "not found when defining class '%s'"),
11459 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11460 "");
11461 }
11462 else
11463 {
11464 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11465 }
11466 }
11467 else if (cu->producer
11468 && strncmp (cu->producer,
11469 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11470 {
11471 /* The IBM XLC compiler does not provide direct indication
11472 of the containing type, but the vtable pointer is
11473 always named __vfp. */
11474
11475 int i;
11476
11477 for (i = TYPE_NFIELDS (type) - 1;
11478 i >= TYPE_N_BASECLASSES (type);
11479 --i)
11480 {
11481 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11482 {
11483 TYPE_VPTR_FIELDNO (type) = i;
11484 TYPE_VPTR_BASETYPE (type) = type;
11485 break;
11486 }
11487 }
11488 }
11489 }
11490
11491 /* Copy fi.typedef_field_list linked list elements content into the
11492 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11493 if (fi.typedef_field_list)
11494 {
11495 int i = fi.typedef_field_list_count;
11496
11497 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11498 TYPE_TYPEDEF_FIELD_ARRAY (type)
11499 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11500 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11501
11502 /* Reverse the list order to keep the debug info elements order. */
11503 while (--i >= 0)
11504 {
11505 struct typedef_field *dest, *src;
11506
11507 dest = &TYPE_TYPEDEF_FIELD (type, i);
11508 src = &fi.typedef_field_list->field;
11509 fi.typedef_field_list = fi.typedef_field_list->next;
11510 *dest = *src;
11511 }
11512 }
11513
11514 do_cleanups (back_to);
11515
11516 if (HAVE_CPLUS_STRUCT (type))
11517 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11518 }
11519
11520 quirk_gcc_member_function_pointer (type, objfile);
11521
11522 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11523 snapshots) has been known to create a die giving a declaration
11524 for a class that has, as a child, a die giving a definition for a
11525 nested class. So we have to process our children even if the
11526 current die is a declaration. Normally, of course, a declaration
11527 won't have any children at all. */
11528
11529 while (child_die != NULL && child_die->tag)
11530 {
11531 if (child_die->tag == DW_TAG_member
11532 || child_die->tag == DW_TAG_variable
11533 || child_die->tag == DW_TAG_inheritance
11534 || child_die->tag == DW_TAG_template_value_param
11535 || child_die->tag == DW_TAG_template_type_param)
11536 {
11537 /* Do nothing. */
11538 }
11539 else
11540 process_die (child_die, cu);
11541
11542 child_die = sibling_die (child_die);
11543 }
11544
11545 /* Do not consider external references. According to the DWARF standard,
11546 these DIEs are identified by the fact that they have no byte_size
11547 attribute, and a declaration attribute. */
11548 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11549 || !die_is_declaration (die, cu))
11550 new_symbol (die, type, cu);
11551 }
11552
11553 /* Given a DW_AT_enumeration_type die, set its type. We do not
11554 complete the type's fields yet, or create any symbols. */
11555
11556 static struct type *
11557 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11558 {
11559 struct objfile *objfile = cu->objfile;
11560 struct type *type;
11561 struct attribute *attr;
11562 const char *name;
11563
11564 /* If the definition of this type lives in .debug_types, read that type.
11565 Don't follow DW_AT_specification though, that will take us back up
11566 the chain and we want to go down. */
11567 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11568 if (attr)
11569 {
11570 struct dwarf2_cu *type_cu = cu;
11571 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11572
11573 type = read_type_die (type_die, type_cu);
11574
11575 /* TYPE_CU may not be the same as CU.
11576 Ensure TYPE is recorded in CU's type_hash table. */
11577 return set_die_type (die, type, cu);
11578 }
11579
11580 type = alloc_type (objfile);
11581
11582 TYPE_CODE (type) = TYPE_CODE_ENUM;
11583 name = dwarf2_full_name (NULL, die, cu);
11584 if (name != NULL)
11585 TYPE_TAG_NAME (type) = name;
11586
11587 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11588 if (attr)
11589 {
11590 TYPE_LENGTH (type) = DW_UNSND (attr);
11591 }
11592 else
11593 {
11594 TYPE_LENGTH (type) = 0;
11595 }
11596
11597 /* The enumeration DIE can be incomplete. In Ada, any type can be
11598 declared as private in the package spec, and then defined only
11599 inside the package body. Such types are known as Taft Amendment
11600 Types. When another package uses such a type, an incomplete DIE
11601 may be generated by the compiler. */
11602 if (die_is_declaration (die, cu))
11603 TYPE_STUB (type) = 1;
11604
11605 return set_die_type (die, type, cu);
11606 }
11607
11608 /* Given a pointer to a die which begins an enumeration, process all
11609 the dies that define the members of the enumeration, and create the
11610 symbol for the enumeration type.
11611
11612 NOTE: We reverse the order of the element list. */
11613
11614 static void
11615 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11616 {
11617 struct type *this_type;
11618
11619 this_type = get_die_type (die, cu);
11620 if (this_type == NULL)
11621 this_type = read_enumeration_type (die, cu);
11622
11623 if (die->child != NULL)
11624 {
11625 struct die_info *child_die;
11626 struct symbol *sym;
11627 struct field *fields = NULL;
11628 int num_fields = 0;
11629 int unsigned_enum = 1;
11630 const char *name;
11631 int flag_enum = 1;
11632 ULONGEST mask = 0;
11633
11634 child_die = die->child;
11635 while (child_die && child_die->tag)
11636 {
11637 if (child_die->tag != DW_TAG_enumerator)
11638 {
11639 process_die (child_die, cu);
11640 }
11641 else
11642 {
11643 name = dwarf2_name (child_die, cu);
11644 if (name)
11645 {
11646 sym = new_symbol (child_die, this_type, cu);
11647 if (SYMBOL_VALUE (sym) < 0)
11648 {
11649 unsigned_enum = 0;
11650 flag_enum = 0;
11651 }
11652 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11653 flag_enum = 0;
11654 else
11655 mask |= SYMBOL_VALUE (sym);
11656
11657 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11658 {
11659 fields = (struct field *)
11660 xrealloc (fields,
11661 (num_fields + DW_FIELD_ALLOC_CHUNK)
11662 * sizeof (struct field));
11663 }
11664
11665 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11666 FIELD_TYPE (fields[num_fields]) = NULL;
11667 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11668 FIELD_BITSIZE (fields[num_fields]) = 0;
11669
11670 num_fields++;
11671 }
11672 }
11673
11674 child_die = sibling_die (child_die);
11675 }
11676
11677 if (num_fields)
11678 {
11679 TYPE_NFIELDS (this_type) = num_fields;
11680 TYPE_FIELDS (this_type) = (struct field *)
11681 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11682 memcpy (TYPE_FIELDS (this_type), fields,
11683 sizeof (struct field) * num_fields);
11684 xfree (fields);
11685 }
11686 if (unsigned_enum)
11687 TYPE_UNSIGNED (this_type) = 1;
11688 if (flag_enum)
11689 TYPE_FLAG_ENUM (this_type) = 1;
11690 }
11691
11692 /* If we are reading an enum from a .debug_types unit, and the enum
11693 is a declaration, and the enum is not the signatured type in the
11694 unit, then we do not want to add a symbol for it. Adding a
11695 symbol would in some cases obscure the true definition of the
11696 enum, giving users an incomplete type when the definition is
11697 actually available. Note that we do not want to do this for all
11698 enums which are just declarations, because C++0x allows forward
11699 enum declarations. */
11700 if (cu->per_cu->is_debug_types
11701 && die_is_declaration (die, cu))
11702 {
11703 struct signatured_type *sig_type;
11704
11705 sig_type
11706 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11707 cu->per_cu->info_or_types_section,
11708 cu->per_cu->offset);
11709 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11710 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11711 return;
11712 }
11713
11714 new_symbol (die, this_type, cu);
11715 }
11716
11717 /* Extract all information from a DW_TAG_array_type DIE and put it in
11718 the DIE's type field. For now, this only handles one dimensional
11719 arrays. */
11720
11721 static struct type *
11722 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11723 {
11724 struct objfile *objfile = cu->objfile;
11725 struct die_info *child_die;
11726 struct type *type;
11727 struct type *element_type, *range_type, *index_type;
11728 struct type **range_types = NULL;
11729 struct attribute *attr;
11730 int ndim = 0;
11731 struct cleanup *back_to;
11732 const char *name;
11733
11734 element_type = die_type (die, cu);
11735
11736 /* The die_type call above may have already set the type for this DIE. */
11737 type = get_die_type (die, cu);
11738 if (type)
11739 return type;
11740
11741 /* Irix 6.2 native cc creates array types without children for
11742 arrays with unspecified length. */
11743 if (die->child == NULL)
11744 {
11745 index_type = objfile_type (objfile)->builtin_int;
11746 range_type = create_range_type (NULL, index_type, 0, -1);
11747 type = create_array_type (NULL, element_type, range_type);
11748 return set_die_type (die, type, cu);
11749 }
11750
11751 back_to = make_cleanup (null_cleanup, NULL);
11752 child_die = die->child;
11753 while (child_die && child_die->tag)
11754 {
11755 if (child_die->tag == DW_TAG_subrange_type)
11756 {
11757 struct type *child_type = read_type_die (child_die, cu);
11758
11759 if (child_type != NULL)
11760 {
11761 /* The range type was succesfully read. Save it for the
11762 array type creation. */
11763 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11764 {
11765 range_types = (struct type **)
11766 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11767 * sizeof (struct type *));
11768 if (ndim == 0)
11769 make_cleanup (free_current_contents, &range_types);
11770 }
11771 range_types[ndim++] = child_type;
11772 }
11773 }
11774 child_die = sibling_die (child_die);
11775 }
11776
11777 /* Dwarf2 dimensions are output from left to right, create the
11778 necessary array types in backwards order. */
11779
11780 type = element_type;
11781
11782 if (read_array_order (die, cu) == DW_ORD_col_major)
11783 {
11784 int i = 0;
11785
11786 while (i < ndim)
11787 type = create_array_type (NULL, type, range_types[i++]);
11788 }
11789 else
11790 {
11791 while (ndim-- > 0)
11792 type = create_array_type (NULL, type, range_types[ndim]);
11793 }
11794
11795 /* Understand Dwarf2 support for vector types (like they occur on
11796 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11797 array type. This is not part of the Dwarf2/3 standard yet, but a
11798 custom vendor extension. The main difference between a regular
11799 array and the vector variant is that vectors are passed by value
11800 to functions. */
11801 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11802 if (attr)
11803 make_vector_type (type);
11804
11805 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11806 implementation may choose to implement triple vectors using this
11807 attribute. */
11808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11809 if (attr)
11810 {
11811 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11812 TYPE_LENGTH (type) = DW_UNSND (attr);
11813 else
11814 complaint (&symfile_complaints,
11815 _("DW_AT_byte_size for array type smaller "
11816 "than the total size of elements"));
11817 }
11818
11819 name = dwarf2_name (die, cu);
11820 if (name)
11821 TYPE_NAME (type) = name;
11822
11823 /* Install the type in the die. */
11824 set_die_type (die, type, cu);
11825
11826 /* set_die_type should be already done. */
11827 set_descriptive_type (type, die, cu);
11828
11829 do_cleanups (back_to);
11830
11831 return type;
11832 }
11833
11834 static enum dwarf_array_dim_ordering
11835 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11836 {
11837 struct attribute *attr;
11838
11839 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11840
11841 if (attr) return DW_SND (attr);
11842
11843 /* GNU F77 is a special case, as at 08/2004 array type info is the
11844 opposite order to the dwarf2 specification, but data is still
11845 laid out as per normal fortran.
11846
11847 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11848 version checking. */
11849
11850 if (cu->language == language_fortran
11851 && cu->producer && strstr (cu->producer, "GNU F77"))
11852 {
11853 return DW_ORD_row_major;
11854 }
11855
11856 switch (cu->language_defn->la_array_ordering)
11857 {
11858 case array_column_major:
11859 return DW_ORD_col_major;
11860 case array_row_major:
11861 default:
11862 return DW_ORD_row_major;
11863 };
11864 }
11865
11866 /* Extract all information from a DW_TAG_set_type DIE and put it in
11867 the DIE's type field. */
11868
11869 static struct type *
11870 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11871 {
11872 struct type *domain_type, *set_type;
11873 struct attribute *attr;
11874
11875 domain_type = die_type (die, cu);
11876
11877 /* The die_type call above may have already set the type for this DIE. */
11878 set_type = get_die_type (die, cu);
11879 if (set_type)
11880 return set_type;
11881
11882 set_type = create_set_type (NULL, domain_type);
11883
11884 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11885 if (attr)
11886 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11887
11888 return set_die_type (die, set_type, cu);
11889 }
11890
11891 /* A helper for read_common_block that creates a locexpr baton.
11892 SYM is the symbol which we are marking as computed.
11893 COMMON_DIE is the DIE for the common block.
11894 COMMON_LOC is the location expression attribute for the common
11895 block itself.
11896 MEMBER_LOC is the location expression attribute for the particular
11897 member of the common block that we are processing.
11898 CU is the CU from which the above come. */
11899
11900 static void
11901 mark_common_block_symbol_computed (struct symbol *sym,
11902 struct die_info *common_die,
11903 struct attribute *common_loc,
11904 struct attribute *member_loc,
11905 struct dwarf2_cu *cu)
11906 {
11907 struct objfile *objfile = dwarf2_per_objfile->objfile;
11908 struct dwarf2_locexpr_baton *baton;
11909 gdb_byte *ptr;
11910 unsigned int cu_off;
11911 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11912 LONGEST offset = 0;
11913
11914 gdb_assert (common_loc && member_loc);
11915 gdb_assert (attr_form_is_block (common_loc));
11916 gdb_assert (attr_form_is_block (member_loc)
11917 || attr_form_is_constant (member_loc));
11918
11919 baton = obstack_alloc (&objfile->objfile_obstack,
11920 sizeof (struct dwarf2_locexpr_baton));
11921 baton->per_cu = cu->per_cu;
11922 gdb_assert (baton->per_cu);
11923
11924 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11925
11926 if (attr_form_is_constant (member_loc))
11927 {
11928 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11929 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11930 }
11931 else
11932 baton->size += DW_BLOCK (member_loc)->size;
11933
11934 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11935 baton->data = ptr;
11936
11937 *ptr++ = DW_OP_call4;
11938 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11939 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11940 ptr += 4;
11941
11942 if (attr_form_is_constant (member_loc))
11943 {
11944 *ptr++ = DW_OP_addr;
11945 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11946 ptr += cu->header.addr_size;
11947 }
11948 else
11949 {
11950 /* We have to copy the data here, because DW_OP_call4 will only
11951 use a DW_AT_location attribute. */
11952 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11953 ptr += DW_BLOCK (member_loc)->size;
11954 }
11955
11956 *ptr++ = DW_OP_plus;
11957 gdb_assert (ptr - baton->data == baton->size);
11958
11959 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11960 SYMBOL_LOCATION_BATON (sym) = baton;
11961 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11962 }
11963
11964 /* Create appropriate locally-scoped variables for all the
11965 DW_TAG_common_block entries. Also create a struct common_block
11966 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11967 is used to sepate the common blocks name namespace from regular
11968 variable names. */
11969
11970 static void
11971 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11972 {
11973 struct attribute *attr;
11974
11975 attr = dwarf2_attr (die, DW_AT_location, cu);
11976 if (attr)
11977 {
11978 /* Support the .debug_loc offsets. */
11979 if (attr_form_is_block (attr))
11980 {
11981 /* Ok. */
11982 }
11983 else if (attr_form_is_section_offset (attr))
11984 {
11985 dwarf2_complex_location_expr_complaint ();
11986 attr = NULL;
11987 }
11988 else
11989 {
11990 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11991 "common block member");
11992 attr = NULL;
11993 }
11994 }
11995
11996 if (die->child != NULL)
11997 {
11998 struct objfile *objfile = cu->objfile;
11999 struct die_info *child_die;
12000 size_t n_entries = 0, size;
12001 struct common_block *common_block;
12002 struct symbol *sym;
12003
12004 for (child_die = die->child;
12005 child_die && child_die->tag;
12006 child_die = sibling_die (child_die))
12007 ++n_entries;
12008
12009 size = (sizeof (struct common_block)
12010 + (n_entries - 1) * sizeof (struct symbol *));
12011 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12012 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12013 common_block->n_entries = 0;
12014
12015 for (child_die = die->child;
12016 child_die && child_die->tag;
12017 child_die = sibling_die (child_die))
12018 {
12019 /* Create the symbol in the DW_TAG_common_block block in the current
12020 symbol scope. */
12021 sym = new_symbol (child_die, NULL, cu);
12022 if (sym != NULL)
12023 {
12024 struct attribute *member_loc;
12025
12026 common_block->contents[common_block->n_entries++] = sym;
12027
12028 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12029 cu);
12030 if (member_loc)
12031 {
12032 /* GDB has handled this for a long time, but it is
12033 not specified by DWARF. It seems to have been
12034 emitted by gfortran at least as recently as:
12035 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12036 complaint (&symfile_complaints,
12037 _("Variable in common block has "
12038 "DW_AT_data_member_location "
12039 "- DIE at 0x%x [in module %s]"),
12040 child_die->offset.sect_off, cu->objfile->name);
12041
12042 if (attr_form_is_section_offset (member_loc))
12043 dwarf2_complex_location_expr_complaint ();
12044 else if (attr_form_is_constant (member_loc)
12045 || attr_form_is_block (member_loc))
12046 {
12047 if (attr)
12048 mark_common_block_symbol_computed (sym, die, attr,
12049 member_loc, cu);
12050 }
12051 else
12052 dwarf2_complex_location_expr_complaint ();
12053 }
12054 }
12055 }
12056
12057 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12058 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12059 }
12060 }
12061
12062 /* Create a type for a C++ namespace. */
12063
12064 static struct type *
12065 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12066 {
12067 struct objfile *objfile = cu->objfile;
12068 const char *previous_prefix, *name;
12069 int is_anonymous;
12070 struct type *type;
12071
12072 /* For extensions, reuse the type of the original namespace. */
12073 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12074 {
12075 struct die_info *ext_die;
12076 struct dwarf2_cu *ext_cu = cu;
12077
12078 ext_die = dwarf2_extension (die, &ext_cu);
12079 type = read_type_die (ext_die, ext_cu);
12080
12081 /* EXT_CU may not be the same as CU.
12082 Ensure TYPE is recorded in CU's type_hash table. */
12083 return set_die_type (die, type, cu);
12084 }
12085
12086 name = namespace_name (die, &is_anonymous, cu);
12087
12088 /* Now build the name of the current namespace. */
12089
12090 previous_prefix = determine_prefix (die, cu);
12091 if (previous_prefix[0] != '\0')
12092 name = typename_concat (&objfile->objfile_obstack,
12093 previous_prefix, name, 0, cu);
12094
12095 /* Create the type. */
12096 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12097 objfile);
12098 TYPE_NAME (type) = name;
12099 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12100
12101 return set_die_type (die, type, cu);
12102 }
12103
12104 /* Read a C++ namespace. */
12105
12106 static void
12107 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12108 {
12109 struct objfile *objfile = cu->objfile;
12110 int is_anonymous;
12111
12112 /* Add a symbol associated to this if we haven't seen the namespace
12113 before. Also, add a using directive if it's an anonymous
12114 namespace. */
12115
12116 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12117 {
12118 struct type *type;
12119
12120 type = read_type_die (die, cu);
12121 new_symbol (die, type, cu);
12122
12123 namespace_name (die, &is_anonymous, cu);
12124 if (is_anonymous)
12125 {
12126 const char *previous_prefix = determine_prefix (die, cu);
12127
12128 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12129 NULL, NULL, 0, &objfile->objfile_obstack);
12130 }
12131 }
12132
12133 if (die->child != NULL)
12134 {
12135 struct die_info *child_die = die->child;
12136
12137 while (child_die && child_die->tag)
12138 {
12139 process_die (child_die, cu);
12140 child_die = sibling_die (child_die);
12141 }
12142 }
12143 }
12144
12145 /* Read a Fortran module as type. This DIE can be only a declaration used for
12146 imported module. Still we need that type as local Fortran "use ... only"
12147 declaration imports depend on the created type in determine_prefix. */
12148
12149 static struct type *
12150 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12151 {
12152 struct objfile *objfile = cu->objfile;
12153 const char *module_name;
12154 struct type *type;
12155
12156 module_name = dwarf2_name (die, cu);
12157 if (!module_name)
12158 complaint (&symfile_complaints,
12159 _("DW_TAG_module has no name, offset 0x%x"),
12160 die->offset.sect_off);
12161 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12162
12163 /* determine_prefix uses TYPE_TAG_NAME. */
12164 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12165
12166 return set_die_type (die, type, cu);
12167 }
12168
12169 /* Read a Fortran module. */
12170
12171 static void
12172 read_module (struct die_info *die, struct dwarf2_cu *cu)
12173 {
12174 struct die_info *child_die = die->child;
12175
12176 while (child_die && child_die->tag)
12177 {
12178 process_die (child_die, cu);
12179 child_die = sibling_die (child_die);
12180 }
12181 }
12182
12183 /* Return the name of the namespace represented by DIE. Set
12184 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12185 namespace. */
12186
12187 static const char *
12188 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12189 {
12190 struct die_info *current_die;
12191 const char *name = NULL;
12192
12193 /* Loop through the extensions until we find a name. */
12194
12195 for (current_die = die;
12196 current_die != NULL;
12197 current_die = dwarf2_extension (die, &cu))
12198 {
12199 name = dwarf2_name (current_die, cu);
12200 if (name != NULL)
12201 break;
12202 }
12203
12204 /* Is it an anonymous namespace? */
12205
12206 *is_anonymous = (name == NULL);
12207 if (*is_anonymous)
12208 name = CP_ANONYMOUS_NAMESPACE_STR;
12209
12210 return name;
12211 }
12212
12213 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12214 the user defined type vector. */
12215
12216 static struct type *
12217 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12218 {
12219 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12220 struct comp_unit_head *cu_header = &cu->header;
12221 struct type *type;
12222 struct attribute *attr_byte_size;
12223 struct attribute *attr_address_class;
12224 int byte_size, addr_class;
12225 struct type *target_type;
12226
12227 target_type = die_type (die, cu);
12228
12229 /* The die_type call above may have already set the type for this DIE. */
12230 type = get_die_type (die, cu);
12231 if (type)
12232 return type;
12233
12234 type = lookup_pointer_type (target_type);
12235
12236 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12237 if (attr_byte_size)
12238 byte_size = DW_UNSND (attr_byte_size);
12239 else
12240 byte_size = cu_header->addr_size;
12241
12242 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12243 if (attr_address_class)
12244 addr_class = DW_UNSND (attr_address_class);
12245 else
12246 addr_class = DW_ADDR_none;
12247
12248 /* If the pointer size or address class is different than the
12249 default, create a type variant marked as such and set the
12250 length accordingly. */
12251 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12252 {
12253 if (gdbarch_address_class_type_flags_p (gdbarch))
12254 {
12255 int type_flags;
12256
12257 type_flags = gdbarch_address_class_type_flags
12258 (gdbarch, byte_size, addr_class);
12259 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12260 == 0);
12261 type = make_type_with_address_space (type, type_flags);
12262 }
12263 else if (TYPE_LENGTH (type) != byte_size)
12264 {
12265 complaint (&symfile_complaints,
12266 _("invalid pointer size %d"), byte_size);
12267 }
12268 else
12269 {
12270 /* Should we also complain about unhandled address classes? */
12271 }
12272 }
12273
12274 TYPE_LENGTH (type) = byte_size;
12275 return set_die_type (die, type, cu);
12276 }
12277
12278 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12279 the user defined type vector. */
12280
12281 static struct type *
12282 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12283 {
12284 struct type *type;
12285 struct type *to_type;
12286 struct type *domain;
12287
12288 to_type = die_type (die, cu);
12289 domain = die_containing_type (die, cu);
12290
12291 /* The calls above may have already set the type for this DIE. */
12292 type = get_die_type (die, cu);
12293 if (type)
12294 return type;
12295
12296 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12297 type = lookup_methodptr_type (to_type);
12298 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12299 {
12300 struct type *new_type = alloc_type (cu->objfile);
12301
12302 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12303 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12304 TYPE_VARARGS (to_type));
12305 type = lookup_methodptr_type (new_type);
12306 }
12307 else
12308 type = lookup_memberptr_type (to_type, domain);
12309
12310 return set_die_type (die, type, cu);
12311 }
12312
12313 /* Extract all information from a DW_TAG_reference_type DIE and add to
12314 the user defined type vector. */
12315
12316 static struct type *
12317 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12318 {
12319 struct comp_unit_head *cu_header = &cu->header;
12320 struct type *type, *target_type;
12321 struct attribute *attr;
12322
12323 target_type = die_type (die, cu);
12324
12325 /* The die_type call above may have already set the type for this DIE. */
12326 type = get_die_type (die, cu);
12327 if (type)
12328 return type;
12329
12330 type = lookup_reference_type (target_type);
12331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12332 if (attr)
12333 {
12334 TYPE_LENGTH (type) = DW_UNSND (attr);
12335 }
12336 else
12337 {
12338 TYPE_LENGTH (type) = cu_header->addr_size;
12339 }
12340 return set_die_type (die, type, cu);
12341 }
12342
12343 static struct type *
12344 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12345 {
12346 struct type *base_type, *cv_type;
12347
12348 base_type = die_type (die, cu);
12349
12350 /* The die_type call above may have already set the type for this DIE. */
12351 cv_type = get_die_type (die, cu);
12352 if (cv_type)
12353 return cv_type;
12354
12355 /* In case the const qualifier is applied to an array type, the element type
12356 is so qualified, not the array type (section 6.7.3 of C99). */
12357 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12358 {
12359 struct type *el_type, *inner_array;
12360
12361 base_type = copy_type (base_type);
12362 inner_array = base_type;
12363
12364 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12365 {
12366 TYPE_TARGET_TYPE (inner_array) =
12367 copy_type (TYPE_TARGET_TYPE (inner_array));
12368 inner_array = TYPE_TARGET_TYPE (inner_array);
12369 }
12370
12371 el_type = TYPE_TARGET_TYPE (inner_array);
12372 TYPE_TARGET_TYPE (inner_array) =
12373 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12374
12375 return set_die_type (die, base_type, cu);
12376 }
12377
12378 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12379 return set_die_type (die, cv_type, cu);
12380 }
12381
12382 static struct type *
12383 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12384 {
12385 struct type *base_type, *cv_type;
12386
12387 base_type = die_type (die, cu);
12388
12389 /* The die_type call above may have already set the type for this DIE. */
12390 cv_type = get_die_type (die, cu);
12391 if (cv_type)
12392 return cv_type;
12393
12394 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12395 return set_die_type (die, cv_type, cu);
12396 }
12397
12398 /* Handle DW_TAG_restrict_type. */
12399
12400 static struct type *
12401 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12402 {
12403 struct type *base_type, *cv_type;
12404
12405 base_type = die_type (die, cu);
12406
12407 /* The die_type call above may have already set the type for this DIE. */
12408 cv_type = get_die_type (die, cu);
12409 if (cv_type)
12410 return cv_type;
12411
12412 cv_type = make_restrict_type (base_type);
12413 return set_die_type (die, cv_type, cu);
12414 }
12415
12416 /* Extract all information from a DW_TAG_string_type DIE and add to
12417 the user defined type vector. It isn't really a user defined type,
12418 but it behaves like one, with other DIE's using an AT_user_def_type
12419 attribute to reference it. */
12420
12421 static struct type *
12422 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12423 {
12424 struct objfile *objfile = cu->objfile;
12425 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12426 struct type *type, *range_type, *index_type, *char_type;
12427 struct attribute *attr;
12428 unsigned int length;
12429
12430 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12431 if (attr)
12432 {
12433 length = DW_UNSND (attr);
12434 }
12435 else
12436 {
12437 /* Check for the DW_AT_byte_size attribute. */
12438 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12439 if (attr)
12440 {
12441 length = DW_UNSND (attr);
12442 }
12443 else
12444 {
12445 length = 1;
12446 }
12447 }
12448
12449 index_type = objfile_type (objfile)->builtin_int;
12450 range_type = create_range_type (NULL, index_type, 1, length);
12451 char_type = language_string_char_type (cu->language_defn, gdbarch);
12452 type = create_string_type (NULL, char_type, range_type);
12453
12454 return set_die_type (die, type, cu);
12455 }
12456
12457 /* Handle DIES due to C code like:
12458
12459 struct foo
12460 {
12461 int (*funcp)(int a, long l);
12462 int b;
12463 };
12464
12465 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12466
12467 static struct type *
12468 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12469 {
12470 struct objfile *objfile = cu->objfile;
12471 struct type *type; /* Type that this function returns. */
12472 struct type *ftype; /* Function that returns above type. */
12473 struct attribute *attr;
12474
12475 type = die_type (die, cu);
12476
12477 /* The die_type call above may have already set the type for this DIE. */
12478 ftype = get_die_type (die, cu);
12479 if (ftype)
12480 return ftype;
12481
12482 ftype = lookup_function_type (type);
12483
12484 /* All functions in C++, Pascal and Java have prototypes. */
12485 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12486 if ((attr && (DW_UNSND (attr) != 0))
12487 || cu->language == language_cplus
12488 || cu->language == language_java
12489 || cu->language == language_pascal)
12490 TYPE_PROTOTYPED (ftype) = 1;
12491 else if (producer_is_realview (cu->producer))
12492 /* RealView does not emit DW_AT_prototyped. We can not
12493 distinguish prototyped and unprototyped functions; default to
12494 prototyped, since that is more common in modern code (and
12495 RealView warns about unprototyped functions). */
12496 TYPE_PROTOTYPED (ftype) = 1;
12497
12498 /* Store the calling convention in the type if it's available in
12499 the subroutine die. Otherwise set the calling convention to
12500 the default value DW_CC_normal. */
12501 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12502 if (attr)
12503 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12504 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12505 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12506 else
12507 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12508
12509 /* We need to add the subroutine type to the die immediately so
12510 we don't infinitely recurse when dealing with parameters
12511 declared as the same subroutine type. */
12512 set_die_type (die, ftype, cu);
12513
12514 if (die->child != NULL)
12515 {
12516 struct type *void_type = objfile_type (objfile)->builtin_void;
12517 struct die_info *child_die;
12518 int nparams, iparams;
12519
12520 /* Count the number of parameters.
12521 FIXME: GDB currently ignores vararg functions, but knows about
12522 vararg member functions. */
12523 nparams = 0;
12524 child_die = die->child;
12525 while (child_die && child_die->tag)
12526 {
12527 if (child_die->tag == DW_TAG_formal_parameter)
12528 nparams++;
12529 else if (child_die->tag == DW_TAG_unspecified_parameters)
12530 TYPE_VARARGS (ftype) = 1;
12531 child_die = sibling_die (child_die);
12532 }
12533
12534 /* Allocate storage for parameters and fill them in. */
12535 TYPE_NFIELDS (ftype) = nparams;
12536 TYPE_FIELDS (ftype) = (struct field *)
12537 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12538
12539 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12540 even if we error out during the parameters reading below. */
12541 for (iparams = 0; iparams < nparams; iparams++)
12542 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12543
12544 iparams = 0;
12545 child_die = die->child;
12546 while (child_die && child_die->tag)
12547 {
12548 if (child_die->tag == DW_TAG_formal_parameter)
12549 {
12550 struct type *arg_type;
12551
12552 /* DWARF version 2 has no clean way to discern C++
12553 static and non-static member functions. G++ helps
12554 GDB by marking the first parameter for non-static
12555 member functions (which is the this pointer) as
12556 artificial. We pass this information to
12557 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12558
12559 DWARF version 3 added DW_AT_object_pointer, which GCC
12560 4.5 does not yet generate. */
12561 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12562 if (attr)
12563 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12564 else
12565 {
12566 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12567
12568 /* GCC/43521: In java, the formal parameter
12569 "this" is sometimes not marked with DW_AT_artificial. */
12570 if (cu->language == language_java)
12571 {
12572 const char *name = dwarf2_name (child_die, cu);
12573
12574 if (name && !strcmp (name, "this"))
12575 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12576 }
12577 }
12578 arg_type = die_type (child_die, cu);
12579
12580 /* RealView does not mark THIS as const, which the testsuite
12581 expects. GCC marks THIS as const in method definitions,
12582 but not in the class specifications (GCC PR 43053). */
12583 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12584 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12585 {
12586 int is_this = 0;
12587 struct dwarf2_cu *arg_cu = cu;
12588 const char *name = dwarf2_name (child_die, cu);
12589
12590 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12591 if (attr)
12592 {
12593 /* If the compiler emits this, use it. */
12594 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12595 is_this = 1;
12596 }
12597 else if (name && strcmp (name, "this") == 0)
12598 /* Function definitions will have the argument names. */
12599 is_this = 1;
12600 else if (name == NULL && iparams == 0)
12601 /* Declarations may not have the names, so like
12602 elsewhere in GDB, assume an artificial first
12603 argument is "this". */
12604 is_this = 1;
12605
12606 if (is_this)
12607 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12608 arg_type, 0);
12609 }
12610
12611 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12612 iparams++;
12613 }
12614 child_die = sibling_die (child_die);
12615 }
12616 }
12617
12618 return ftype;
12619 }
12620
12621 static struct type *
12622 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12623 {
12624 struct objfile *objfile = cu->objfile;
12625 const char *name = NULL;
12626 struct type *this_type, *target_type;
12627
12628 name = dwarf2_full_name (NULL, die, cu);
12629 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12630 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12631 TYPE_NAME (this_type) = name;
12632 set_die_type (die, this_type, cu);
12633 target_type = die_type (die, cu);
12634 if (target_type != this_type)
12635 TYPE_TARGET_TYPE (this_type) = target_type;
12636 else
12637 {
12638 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12639 spec and cause infinite loops in GDB. */
12640 complaint (&symfile_complaints,
12641 _("Self-referential DW_TAG_typedef "
12642 "- DIE at 0x%x [in module %s]"),
12643 die->offset.sect_off, objfile->name);
12644 TYPE_TARGET_TYPE (this_type) = NULL;
12645 }
12646 return this_type;
12647 }
12648
12649 /* Find a representation of a given base type and install
12650 it in the TYPE field of the die. */
12651
12652 static struct type *
12653 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12654 {
12655 struct objfile *objfile = cu->objfile;
12656 struct type *type;
12657 struct attribute *attr;
12658 int encoding = 0, size = 0;
12659 const char *name;
12660 enum type_code code = TYPE_CODE_INT;
12661 int type_flags = 0;
12662 struct type *target_type = NULL;
12663
12664 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12665 if (attr)
12666 {
12667 encoding = DW_UNSND (attr);
12668 }
12669 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12670 if (attr)
12671 {
12672 size = DW_UNSND (attr);
12673 }
12674 name = dwarf2_name (die, cu);
12675 if (!name)
12676 {
12677 complaint (&symfile_complaints,
12678 _("DW_AT_name missing from DW_TAG_base_type"));
12679 }
12680
12681 switch (encoding)
12682 {
12683 case DW_ATE_address:
12684 /* Turn DW_ATE_address into a void * pointer. */
12685 code = TYPE_CODE_PTR;
12686 type_flags |= TYPE_FLAG_UNSIGNED;
12687 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12688 break;
12689 case DW_ATE_boolean:
12690 code = TYPE_CODE_BOOL;
12691 type_flags |= TYPE_FLAG_UNSIGNED;
12692 break;
12693 case DW_ATE_complex_float:
12694 code = TYPE_CODE_COMPLEX;
12695 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12696 break;
12697 case DW_ATE_decimal_float:
12698 code = TYPE_CODE_DECFLOAT;
12699 break;
12700 case DW_ATE_float:
12701 code = TYPE_CODE_FLT;
12702 break;
12703 case DW_ATE_signed:
12704 break;
12705 case DW_ATE_unsigned:
12706 type_flags |= TYPE_FLAG_UNSIGNED;
12707 if (cu->language == language_fortran
12708 && name
12709 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12710 code = TYPE_CODE_CHAR;
12711 break;
12712 case DW_ATE_signed_char:
12713 if (cu->language == language_ada || cu->language == language_m2
12714 || cu->language == language_pascal
12715 || cu->language == language_fortran)
12716 code = TYPE_CODE_CHAR;
12717 break;
12718 case DW_ATE_unsigned_char:
12719 if (cu->language == language_ada || cu->language == language_m2
12720 || cu->language == language_pascal
12721 || cu->language == language_fortran)
12722 code = TYPE_CODE_CHAR;
12723 type_flags |= TYPE_FLAG_UNSIGNED;
12724 break;
12725 case DW_ATE_UTF:
12726 /* We just treat this as an integer and then recognize the
12727 type by name elsewhere. */
12728 break;
12729
12730 default:
12731 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12732 dwarf_type_encoding_name (encoding));
12733 break;
12734 }
12735
12736 type = init_type (code, size, type_flags, NULL, objfile);
12737 TYPE_NAME (type) = name;
12738 TYPE_TARGET_TYPE (type) = target_type;
12739
12740 if (name && strcmp (name, "char") == 0)
12741 TYPE_NOSIGN (type) = 1;
12742
12743 return set_die_type (die, type, cu);
12744 }
12745
12746 /* Read the given DW_AT_subrange DIE. */
12747
12748 static struct type *
12749 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12750 {
12751 struct type *base_type, *orig_base_type;
12752 struct type *range_type;
12753 struct attribute *attr;
12754 LONGEST low, high;
12755 int low_default_is_valid;
12756 const char *name;
12757 LONGEST negative_mask;
12758
12759 orig_base_type = die_type (die, cu);
12760 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12761 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12762 creating the range type, but we use the result of check_typedef
12763 when examining properties of the type. */
12764 base_type = check_typedef (orig_base_type);
12765
12766 /* The die_type call above may have already set the type for this DIE. */
12767 range_type = get_die_type (die, cu);
12768 if (range_type)
12769 return range_type;
12770
12771 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12772 omitting DW_AT_lower_bound. */
12773 switch (cu->language)
12774 {
12775 case language_c:
12776 case language_cplus:
12777 low = 0;
12778 low_default_is_valid = 1;
12779 break;
12780 case language_fortran:
12781 low = 1;
12782 low_default_is_valid = 1;
12783 break;
12784 case language_d:
12785 case language_java:
12786 case language_objc:
12787 low = 0;
12788 low_default_is_valid = (cu->header.version >= 4);
12789 break;
12790 case language_ada:
12791 case language_m2:
12792 case language_pascal:
12793 low = 1;
12794 low_default_is_valid = (cu->header.version >= 4);
12795 break;
12796 default:
12797 low = 0;
12798 low_default_is_valid = 0;
12799 break;
12800 }
12801
12802 /* FIXME: For variable sized arrays either of these could be
12803 a variable rather than a constant value. We'll allow it,
12804 but we don't know how to handle it. */
12805 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12806 if (attr)
12807 low = dwarf2_get_attr_constant_value (attr, low);
12808 else if (!low_default_is_valid)
12809 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12810 "- DIE at 0x%x [in module %s]"),
12811 die->offset.sect_off, cu->objfile->name);
12812
12813 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12814 if (attr)
12815 {
12816 if (attr_form_is_block (attr) || is_ref_attr (attr))
12817 {
12818 /* GCC encodes arrays with unspecified or dynamic length
12819 with a DW_FORM_block1 attribute or a reference attribute.
12820 FIXME: GDB does not yet know how to handle dynamic
12821 arrays properly, treat them as arrays with unspecified
12822 length for now.
12823
12824 FIXME: jimb/2003-09-22: GDB does not really know
12825 how to handle arrays of unspecified length
12826 either; we just represent them as zero-length
12827 arrays. Choose an appropriate upper bound given
12828 the lower bound we've computed above. */
12829 high = low - 1;
12830 }
12831 else
12832 high = dwarf2_get_attr_constant_value (attr, 1);
12833 }
12834 else
12835 {
12836 attr = dwarf2_attr (die, DW_AT_count, cu);
12837 if (attr)
12838 {
12839 int count = dwarf2_get_attr_constant_value (attr, 1);
12840 high = low + count - 1;
12841 }
12842 else
12843 {
12844 /* Unspecified array length. */
12845 high = low - 1;
12846 }
12847 }
12848
12849 /* Dwarf-2 specifications explicitly allows to create subrange types
12850 without specifying a base type.
12851 In that case, the base type must be set to the type of
12852 the lower bound, upper bound or count, in that order, if any of these
12853 three attributes references an object that has a type.
12854 If no base type is found, the Dwarf-2 specifications say that
12855 a signed integer type of size equal to the size of an address should
12856 be used.
12857 For the following C code: `extern char gdb_int [];'
12858 GCC produces an empty range DIE.
12859 FIXME: muller/2010-05-28: Possible references to object for low bound,
12860 high bound or count are not yet handled by this code. */
12861 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12862 {
12863 struct objfile *objfile = cu->objfile;
12864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12865 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12866 struct type *int_type = objfile_type (objfile)->builtin_int;
12867
12868 /* Test "int", "long int", and "long long int" objfile types,
12869 and select the first one having a size above or equal to the
12870 architecture address size. */
12871 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12872 base_type = int_type;
12873 else
12874 {
12875 int_type = objfile_type (objfile)->builtin_long;
12876 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12877 base_type = int_type;
12878 else
12879 {
12880 int_type = objfile_type (objfile)->builtin_long_long;
12881 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12882 base_type = int_type;
12883 }
12884 }
12885 }
12886
12887 negative_mask =
12888 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12889 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12890 low |= negative_mask;
12891 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12892 high |= negative_mask;
12893
12894 range_type = create_range_type (NULL, orig_base_type, low, high);
12895
12896 /* Mark arrays with dynamic length at least as an array of unspecified
12897 length. GDB could check the boundary but before it gets implemented at
12898 least allow accessing the array elements. */
12899 if (attr && attr_form_is_block (attr))
12900 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12901
12902 /* Ada expects an empty array on no boundary attributes. */
12903 if (attr == NULL && cu->language != language_ada)
12904 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12905
12906 name = dwarf2_name (die, cu);
12907 if (name)
12908 TYPE_NAME (range_type) = name;
12909
12910 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12911 if (attr)
12912 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12913
12914 set_die_type (die, range_type, cu);
12915
12916 /* set_die_type should be already done. */
12917 set_descriptive_type (range_type, die, cu);
12918
12919 return range_type;
12920 }
12921
12922 static struct type *
12923 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12924 {
12925 struct type *type;
12926
12927 /* For now, we only support the C meaning of an unspecified type: void. */
12928
12929 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12930 TYPE_NAME (type) = dwarf2_name (die, cu);
12931
12932 return set_die_type (die, type, cu);
12933 }
12934
12935 /* Read a single die and all its descendents. Set the die's sibling
12936 field to NULL; set other fields in the die correctly, and set all
12937 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12938 location of the info_ptr after reading all of those dies. PARENT
12939 is the parent of the die in question. */
12940
12941 static struct die_info *
12942 read_die_and_children (const struct die_reader_specs *reader,
12943 gdb_byte *info_ptr,
12944 gdb_byte **new_info_ptr,
12945 struct die_info *parent)
12946 {
12947 struct die_info *die;
12948 gdb_byte *cur_ptr;
12949 int has_children;
12950
12951 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12952 if (die == NULL)
12953 {
12954 *new_info_ptr = cur_ptr;
12955 return NULL;
12956 }
12957 store_in_ref_table (die, reader->cu);
12958
12959 if (has_children)
12960 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12961 else
12962 {
12963 die->child = NULL;
12964 *new_info_ptr = cur_ptr;
12965 }
12966
12967 die->sibling = NULL;
12968 die->parent = parent;
12969 return die;
12970 }
12971
12972 /* Read a die, all of its descendents, and all of its siblings; set
12973 all of the fields of all of the dies correctly. Arguments are as
12974 in read_die_and_children. */
12975
12976 static struct die_info *
12977 read_die_and_siblings (const struct die_reader_specs *reader,
12978 gdb_byte *info_ptr,
12979 gdb_byte **new_info_ptr,
12980 struct die_info *parent)
12981 {
12982 struct die_info *first_die, *last_sibling;
12983 gdb_byte *cur_ptr;
12984
12985 cur_ptr = info_ptr;
12986 first_die = last_sibling = NULL;
12987
12988 while (1)
12989 {
12990 struct die_info *die
12991 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12992
12993 if (die == NULL)
12994 {
12995 *new_info_ptr = cur_ptr;
12996 return first_die;
12997 }
12998
12999 if (!first_die)
13000 first_die = die;
13001 else
13002 last_sibling->sibling = die;
13003
13004 last_sibling = die;
13005 }
13006 }
13007
13008 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13009 attributes.
13010 The caller is responsible for filling in the extra attributes
13011 and updating (*DIEP)->num_attrs.
13012 Set DIEP to point to a newly allocated die with its information,
13013 except for its child, sibling, and parent fields.
13014 Set HAS_CHILDREN to tell whether the die has children or not. */
13015
13016 static gdb_byte *
13017 read_full_die_1 (const struct die_reader_specs *reader,
13018 struct die_info **diep, gdb_byte *info_ptr,
13019 int *has_children, int num_extra_attrs)
13020 {
13021 unsigned int abbrev_number, bytes_read, i;
13022 sect_offset offset;
13023 struct abbrev_info *abbrev;
13024 struct die_info *die;
13025 struct dwarf2_cu *cu = reader->cu;
13026 bfd *abfd = reader->abfd;
13027
13028 offset.sect_off = info_ptr - reader->buffer;
13029 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13030 info_ptr += bytes_read;
13031 if (!abbrev_number)
13032 {
13033 *diep = NULL;
13034 *has_children = 0;
13035 return info_ptr;
13036 }
13037
13038 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13039 if (!abbrev)
13040 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13041 abbrev_number,
13042 bfd_get_filename (abfd));
13043
13044 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13045 die->offset = offset;
13046 die->tag = abbrev->tag;
13047 die->abbrev = abbrev_number;
13048
13049 /* Make the result usable.
13050 The caller needs to update num_attrs after adding the extra
13051 attributes. */
13052 die->num_attrs = abbrev->num_attrs;
13053
13054 for (i = 0; i < abbrev->num_attrs; ++i)
13055 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13056 info_ptr);
13057
13058 *diep = die;
13059 *has_children = abbrev->has_children;
13060 return info_ptr;
13061 }
13062
13063 /* Read a die and all its attributes.
13064 Set DIEP to point to a newly allocated die with its information,
13065 except for its child, sibling, and parent fields.
13066 Set HAS_CHILDREN to tell whether the die has children or not. */
13067
13068 static gdb_byte *
13069 read_full_die (const struct die_reader_specs *reader,
13070 struct die_info **diep, gdb_byte *info_ptr,
13071 int *has_children)
13072 {
13073 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13074 }
13075 \f
13076 /* Abbreviation tables.
13077
13078 In DWARF version 2, the description of the debugging information is
13079 stored in a separate .debug_abbrev section. Before we read any
13080 dies from a section we read in all abbreviations and install them
13081 in a hash table. */
13082
13083 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13084
13085 static struct abbrev_info *
13086 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13087 {
13088 struct abbrev_info *abbrev;
13089
13090 abbrev = (struct abbrev_info *)
13091 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13092 memset (abbrev, 0, sizeof (struct abbrev_info));
13093 return abbrev;
13094 }
13095
13096 /* Add an abbreviation to the table. */
13097
13098 static void
13099 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13100 unsigned int abbrev_number,
13101 struct abbrev_info *abbrev)
13102 {
13103 unsigned int hash_number;
13104
13105 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13106 abbrev->next = abbrev_table->abbrevs[hash_number];
13107 abbrev_table->abbrevs[hash_number] = abbrev;
13108 }
13109
13110 /* Look up an abbrev in the table.
13111 Returns NULL if the abbrev is not found. */
13112
13113 static struct abbrev_info *
13114 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13115 unsigned int abbrev_number)
13116 {
13117 unsigned int hash_number;
13118 struct abbrev_info *abbrev;
13119
13120 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13121 abbrev = abbrev_table->abbrevs[hash_number];
13122
13123 while (abbrev)
13124 {
13125 if (abbrev->number == abbrev_number)
13126 return abbrev;
13127 abbrev = abbrev->next;
13128 }
13129 return NULL;
13130 }
13131
13132 /* Read in an abbrev table. */
13133
13134 static struct abbrev_table *
13135 abbrev_table_read_table (struct dwarf2_section_info *section,
13136 sect_offset offset)
13137 {
13138 struct objfile *objfile = dwarf2_per_objfile->objfile;
13139 bfd *abfd = section->asection->owner;
13140 struct abbrev_table *abbrev_table;
13141 gdb_byte *abbrev_ptr;
13142 struct abbrev_info *cur_abbrev;
13143 unsigned int abbrev_number, bytes_read, abbrev_name;
13144 unsigned int abbrev_form;
13145 struct attr_abbrev *cur_attrs;
13146 unsigned int allocated_attrs;
13147
13148 abbrev_table = XMALLOC (struct abbrev_table);
13149 abbrev_table->offset = offset;
13150 obstack_init (&abbrev_table->abbrev_obstack);
13151 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13152 (ABBREV_HASH_SIZE
13153 * sizeof (struct abbrev_info *)));
13154 memset (abbrev_table->abbrevs, 0,
13155 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13156
13157 dwarf2_read_section (objfile, section);
13158 abbrev_ptr = section->buffer + offset.sect_off;
13159 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13160 abbrev_ptr += bytes_read;
13161
13162 allocated_attrs = ATTR_ALLOC_CHUNK;
13163 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13164
13165 /* Loop until we reach an abbrev number of 0. */
13166 while (abbrev_number)
13167 {
13168 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13169
13170 /* read in abbrev header */
13171 cur_abbrev->number = abbrev_number;
13172 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13173 abbrev_ptr += bytes_read;
13174 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13175 abbrev_ptr += 1;
13176
13177 /* now read in declarations */
13178 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13179 abbrev_ptr += bytes_read;
13180 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13181 abbrev_ptr += bytes_read;
13182 while (abbrev_name)
13183 {
13184 if (cur_abbrev->num_attrs == allocated_attrs)
13185 {
13186 allocated_attrs += ATTR_ALLOC_CHUNK;
13187 cur_attrs
13188 = xrealloc (cur_attrs, (allocated_attrs
13189 * sizeof (struct attr_abbrev)));
13190 }
13191
13192 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13193 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13194 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13195 abbrev_ptr += bytes_read;
13196 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13197 abbrev_ptr += bytes_read;
13198 }
13199
13200 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13201 (cur_abbrev->num_attrs
13202 * sizeof (struct attr_abbrev)));
13203 memcpy (cur_abbrev->attrs, cur_attrs,
13204 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13205
13206 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13207
13208 /* Get next abbreviation.
13209 Under Irix6 the abbreviations for a compilation unit are not
13210 always properly terminated with an abbrev number of 0.
13211 Exit loop if we encounter an abbreviation which we have
13212 already read (which means we are about to read the abbreviations
13213 for the next compile unit) or if the end of the abbreviation
13214 table is reached. */
13215 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13216 break;
13217 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13218 abbrev_ptr += bytes_read;
13219 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13220 break;
13221 }
13222
13223 xfree (cur_attrs);
13224 return abbrev_table;
13225 }
13226
13227 /* Free the resources held by ABBREV_TABLE. */
13228
13229 static void
13230 abbrev_table_free (struct abbrev_table *abbrev_table)
13231 {
13232 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13233 xfree (abbrev_table);
13234 }
13235
13236 /* Same as abbrev_table_free but as a cleanup.
13237 We pass in a pointer to the pointer to the table so that we can
13238 set the pointer to NULL when we're done. It also simplifies
13239 build_type_unit_groups. */
13240
13241 static void
13242 abbrev_table_free_cleanup (void *table_ptr)
13243 {
13244 struct abbrev_table **abbrev_table_ptr = table_ptr;
13245
13246 if (*abbrev_table_ptr != NULL)
13247 abbrev_table_free (*abbrev_table_ptr);
13248 *abbrev_table_ptr = NULL;
13249 }
13250
13251 /* Read the abbrev table for CU from ABBREV_SECTION. */
13252
13253 static void
13254 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13255 struct dwarf2_section_info *abbrev_section)
13256 {
13257 cu->abbrev_table =
13258 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13259 }
13260
13261 /* Release the memory used by the abbrev table for a compilation unit. */
13262
13263 static void
13264 dwarf2_free_abbrev_table (void *ptr_to_cu)
13265 {
13266 struct dwarf2_cu *cu = ptr_to_cu;
13267
13268 abbrev_table_free (cu->abbrev_table);
13269 /* Set this to NULL so that we SEGV if we try to read it later,
13270 and also because free_comp_unit verifies this is NULL. */
13271 cu->abbrev_table = NULL;
13272 }
13273 \f
13274 /* Returns nonzero if TAG represents a type that we might generate a partial
13275 symbol for. */
13276
13277 static int
13278 is_type_tag_for_partial (int tag)
13279 {
13280 switch (tag)
13281 {
13282 #if 0
13283 /* Some types that would be reasonable to generate partial symbols for,
13284 that we don't at present. */
13285 case DW_TAG_array_type:
13286 case DW_TAG_file_type:
13287 case DW_TAG_ptr_to_member_type:
13288 case DW_TAG_set_type:
13289 case DW_TAG_string_type:
13290 case DW_TAG_subroutine_type:
13291 #endif
13292 case DW_TAG_base_type:
13293 case DW_TAG_class_type:
13294 case DW_TAG_interface_type:
13295 case DW_TAG_enumeration_type:
13296 case DW_TAG_structure_type:
13297 case DW_TAG_subrange_type:
13298 case DW_TAG_typedef:
13299 case DW_TAG_union_type:
13300 return 1;
13301 default:
13302 return 0;
13303 }
13304 }
13305
13306 /* Load all DIEs that are interesting for partial symbols into memory. */
13307
13308 static struct partial_die_info *
13309 load_partial_dies (const struct die_reader_specs *reader,
13310 gdb_byte *info_ptr, int building_psymtab)
13311 {
13312 struct dwarf2_cu *cu = reader->cu;
13313 struct objfile *objfile = cu->objfile;
13314 struct partial_die_info *part_die;
13315 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13316 struct abbrev_info *abbrev;
13317 unsigned int bytes_read;
13318 unsigned int load_all = 0;
13319 int nesting_level = 1;
13320
13321 parent_die = NULL;
13322 last_die = NULL;
13323
13324 gdb_assert (cu->per_cu != NULL);
13325 if (cu->per_cu->load_all_dies)
13326 load_all = 1;
13327
13328 cu->partial_dies
13329 = htab_create_alloc_ex (cu->header.length / 12,
13330 partial_die_hash,
13331 partial_die_eq,
13332 NULL,
13333 &cu->comp_unit_obstack,
13334 hashtab_obstack_allocate,
13335 dummy_obstack_deallocate);
13336
13337 part_die = obstack_alloc (&cu->comp_unit_obstack,
13338 sizeof (struct partial_die_info));
13339
13340 while (1)
13341 {
13342 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13343
13344 /* A NULL abbrev means the end of a series of children. */
13345 if (abbrev == NULL)
13346 {
13347 if (--nesting_level == 0)
13348 {
13349 /* PART_DIE was probably the last thing allocated on the
13350 comp_unit_obstack, so we could call obstack_free
13351 here. We don't do that because the waste is small,
13352 and will be cleaned up when we're done with this
13353 compilation unit. This way, we're also more robust
13354 against other users of the comp_unit_obstack. */
13355 return first_die;
13356 }
13357 info_ptr += bytes_read;
13358 last_die = parent_die;
13359 parent_die = parent_die->die_parent;
13360 continue;
13361 }
13362
13363 /* Check for template arguments. We never save these; if
13364 they're seen, we just mark the parent, and go on our way. */
13365 if (parent_die != NULL
13366 && cu->language == language_cplus
13367 && (abbrev->tag == DW_TAG_template_type_param
13368 || abbrev->tag == DW_TAG_template_value_param))
13369 {
13370 parent_die->has_template_arguments = 1;
13371
13372 if (!load_all)
13373 {
13374 /* We don't need a partial DIE for the template argument. */
13375 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13376 continue;
13377 }
13378 }
13379
13380 /* We only recurse into c++ subprograms looking for template arguments.
13381 Skip their other children. */
13382 if (!load_all
13383 && cu->language == language_cplus
13384 && parent_die != NULL
13385 && parent_die->tag == DW_TAG_subprogram)
13386 {
13387 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13388 continue;
13389 }
13390
13391 /* Check whether this DIE is interesting enough to save. Normally
13392 we would not be interested in members here, but there may be
13393 later variables referencing them via DW_AT_specification (for
13394 static members). */
13395 if (!load_all
13396 && !is_type_tag_for_partial (abbrev->tag)
13397 && abbrev->tag != DW_TAG_constant
13398 && abbrev->tag != DW_TAG_enumerator
13399 && abbrev->tag != DW_TAG_subprogram
13400 && abbrev->tag != DW_TAG_lexical_block
13401 && abbrev->tag != DW_TAG_variable
13402 && abbrev->tag != DW_TAG_namespace
13403 && abbrev->tag != DW_TAG_module
13404 && abbrev->tag != DW_TAG_member
13405 && abbrev->tag != DW_TAG_imported_unit)
13406 {
13407 /* Otherwise we skip to the next sibling, if any. */
13408 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13409 continue;
13410 }
13411
13412 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13413 info_ptr);
13414
13415 /* This two-pass algorithm for processing partial symbols has a
13416 high cost in cache pressure. Thus, handle some simple cases
13417 here which cover the majority of C partial symbols. DIEs
13418 which neither have specification tags in them, nor could have
13419 specification tags elsewhere pointing at them, can simply be
13420 processed and discarded.
13421
13422 This segment is also optional; scan_partial_symbols and
13423 add_partial_symbol will handle these DIEs if we chain
13424 them in normally. When compilers which do not emit large
13425 quantities of duplicate debug information are more common,
13426 this code can probably be removed. */
13427
13428 /* Any complete simple types at the top level (pretty much all
13429 of them, for a language without namespaces), can be processed
13430 directly. */
13431 if (parent_die == NULL
13432 && part_die->has_specification == 0
13433 && part_die->is_declaration == 0
13434 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13435 || part_die->tag == DW_TAG_base_type
13436 || part_die->tag == DW_TAG_subrange_type))
13437 {
13438 if (building_psymtab && part_die->name != NULL)
13439 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13440 VAR_DOMAIN, LOC_TYPEDEF,
13441 &objfile->static_psymbols,
13442 0, (CORE_ADDR) 0, cu->language, objfile);
13443 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13444 continue;
13445 }
13446
13447 /* The exception for DW_TAG_typedef with has_children above is
13448 a workaround of GCC PR debug/47510. In the case of this complaint
13449 type_name_no_tag_or_error will error on such types later.
13450
13451 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13452 it could not find the child DIEs referenced later, this is checked
13453 above. In correct DWARF DW_TAG_typedef should have no children. */
13454
13455 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13456 complaint (&symfile_complaints,
13457 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13458 "- DIE at 0x%x [in module %s]"),
13459 part_die->offset.sect_off, objfile->name);
13460
13461 /* If we're at the second level, and we're an enumerator, and
13462 our parent has no specification (meaning possibly lives in a
13463 namespace elsewhere), then we can add the partial symbol now
13464 instead of queueing it. */
13465 if (part_die->tag == DW_TAG_enumerator
13466 && parent_die != NULL
13467 && parent_die->die_parent == NULL
13468 && parent_die->tag == DW_TAG_enumeration_type
13469 && parent_die->has_specification == 0)
13470 {
13471 if (part_die->name == NULL)
13472 complaint (&symfile_complaints,
13473 _("malformed enumerator DIE ignored"));
13474 else if (building_psymtab)
13475 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13476 VAR_DOMAIN, LOC_CONST,
13477 (cu->language == language_cplus
13478 || cu->language == language_java)
13479 ? &objfile->global_psymbols
13480 : &objfile->static_psymbols,
13481 0, (CORE_ADDR) 0, cu->language, objfile);
13482
13483 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13484 continue;
13485 }
13486
13487 /* We'll save this DIE so link it in. */
13488 part_die->die_parent = parent_die;
13489 part_die->die_sibling = NULL;
13490 part_die->die_child = NULL;
13491
13492 if (last_die && last_die == parent_die)
13493 last_die->die_child = part_die;
13494 else if (last_die)
13495 last_die->die_sibling = part_die;
13496
13497 last_die = part_die;
13498
13499 if (first_die == NULL)
13500 first_die = part_die;
13501
13502 /* Maybe add the DIE to the hash table. Not all DIEs that we
13503 find interesting need to be in the hash table, because we
13504 also have the parent/sibling/child chains; only those that we
13505 might refer to by offset later during partial symbol reading.
13506
13507 For now this means things that might have be the target of a
13508 DW_AT_specification, DW_AT_abstract_origin, or
13509 DW_AT_extension. DW_AT_extension will refer only to
13510 namespaces; DW_AT_abstract_origin refers to functions (and
13511 many things under the function DIE, but we do not recurse
13512 into function DIEs during partial symbol reading) and
13513 possibly variables as well; DW_AT_specification refers to
13514 declarations. Declarations ought to have the DW_AT_declaration
13515 flag. It happens that GCC forgets to put it in sometimes, but
13516 only for functions, not for types.
13517
13518 Adding more things than necessary to the hash table is harmless
13519 except for the performance cost. Adding too few will result in
13520 wasted time in find_partial_die, when we reread the compilation
13521 unit with load_all_dies set. */
13522
13523 if (load_all
13524 || abbrev->tag == DW_TAG_constant
13525 || abbrev->tag == DW_TAG_subprogram
13526 || abbrev->tag == DW_TAG_variable
13527 || abbrev->tag == DW_TAG_namespace
13528 || part_die->is_declaration)
13529 {
13530 void **slot;
13531
13532 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13533 part_die->offset.sect_off, INSERT);
13534 *slot = part_die;
13535 }
13536
13537 part_die = obstack_alloc (&cu->comp_unit_obstack,
13538 sizeof (struct partial_die_info));
13539
13540 /* For some DIEs we want to follow their children (if any). For C
13541 we have no reason to follow the children of structures; for other
13542 languages we have to, so that we can get at method physnames
13543 to infer fully qualified class names, for DW_AT_specification,
13544 and for C++ template arguments. For C++, we also look one level
13545 inside functions to find template arguments (if the name of the
13546 function does not already contain the template arguments).
13547
13548 For Ada, we need to scan the children of subprograms and lexical
13549 blocks as well because Ada allows the definition of nested
13550 entities that could be interesting for the debugger, such as
13551 nested subprograms for instance. */
13552 if (last_die->has_children
13553 && (load_all
13554 || last_die->tag == DW_TAG_namespace
13555 || last_die->tag == DW_TAG_module
13556 || last_die->tag == DW_TAG_enumeration_type
13557 || (cu->language == language_cplus
13558 && last_die->tag == DW_TAG_subprogram
13559 && (last_die->name == NULL
13560 || strchr (last_die->name, '<') == NULL))
13561 || (cu->language != language_c
13562 && (last_die->tag == DW_TAG_class_type
13563 || last_die->tag == DW_TAG_interface_type
13564 || last_die->tag == DW_TAG_structure_type
13565 || last_die->tag == DW_TAG_union_type))
13566 || (cu->language == language_ada
13567 && (last_die->tag == DW_TAG_subprogram
13568 || last_die->tag == DW_TAG_lexical_block))))
13569 {
13570 nesting_level++;
13571 parent_die = last_die;
13572 continue;
13573 }
13574
13575 /* Otherwise we skip to the next sibling, if any. */
13576 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13577
13578 /* Back to the top, do it again. */
13579 }
13580 }
13581
13582 /* Read a minimal amount of information into the minimal die structure. */
13583
13584 static gdb_byte *
13585 read_partial_die (const struct die_reader_specs *reader,
13586 struct partial_die_info *part_die,
13587 struct abbrev_info *abbrev, unsigned int abbrev_len,
13588 gdb_byte *info_ptr)
13589 {
13590 struct dwarf2_cu *cu = reader->cu;
13591 struct objfile *objfile = cu->objfile;
13592 gdb_byte *buffer = reader->buffer;
13593 unsigned int i;
13594 struct attribute attr;
13595 int has_low_pc_attr = 0;
13596 int has_high_pc_attr = 0;
13597 int high_pc_relative = 0;
13598
13599 memset (part_die, 0, sizeof (struct partial_die_info));
13600
13601 part_die->offset.sect_off = info_ptr - buffer;
13602
13603 info_ptr += abbrev_len;
13604
13605 if (abbrev == NULL)
13606 return info_ptr;
13607
13608 part_die->tag = abbrev->tag;
13609 part_die->has_children = abbrev->has_children;
13610
13611 for (i = 0; i < abbrev->num_attrs; ++i)
13612 {
13613 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13614
13615 /* Store the data if it is of an attribute we want to keep in a
13616 partial symbol table. */
13617 switch (attr.name)
13618 {
13619 case DW_AT_name:
13620 switch (part_die->tag)
13621 {
13622 case DW_TAG_compile_unit:
13623 case DW_TAG_partial_unit:
13624 case DW_TAG_type_unit:
13625 /* Compilation units have a DW_AT_name that is a filename, not
13626 a source language identifier. */
13627 case DW_TAG_enumeration_type:
13628 case DW_TAG_enumerator:
13629 /* These tags always have simple identifiers already; no need
13630 to canonicalize them. */
13631 part_die->name = DW_STRING (&attr);
13632 break;
13633 default:
13634 part_die->name
13635 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13636 &objfile->objfile_obstack);
13637 break;
13638 }
13639 break;
13640 case DW_AT_linkage_name:
13641 case DW_AT_MIPS_linkage_name:
13642 /* Note that both forms of linkage name might appear. We
13643 assume they will be the same, and we only store the last
13644 one we see. */
13645 if (cu->language == language_ada)
13646 part_die->name = DW_STRING (&attr);
13647 part_die->linkage_name = DW_STRING (&attr);
13648 break;
13649 case DW_AT_low_pc:
13650 has_low_pc_attr = 1;
13651 part_die->lowpc = DW_ADDR (&attr);
13652 break;
13653 case DW_AT_high_pc:
13654 has_high_pc_attr = 1;
13655 if (attr.form == DW_FORM_addr
13656 || attr.form == DW_FORM_GNU_addr_index)
13657 part_die->highpc = DW_ADDR (&attr);
13658 else
13659 {
13660 high_pc_relative = 1;
13661 part_die->highpc = DW_UNSND (&attr);
13662 }
13663 break;
13664 case DW_AT_location:
13665 /* Support the .debug_loc offsets. */
13666 if (attr_form_is_block (&attr))
13667 {
13668 part_die->d.locdesc = DW_BLOCK (&attr);
13669 }
13670 else if (attr_form_is_section_offset (&attr))
13671 {
13672 dwarf2_complex_location_expr_complaint ();
13673 }
13674 else
13675 {
13676 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13677 "partial symbol information");
13678 }
13679 break;
13680 case DW_AT_external:
13681 part_die->is_external = DW_UNSND (&attr);
13682 break;
13683 case DW_AT_declaration:
13684 part_die->is_declaration = DW_UNSND (&attr);
13685 break;
13686 case DW_AT_type:
13687 part_die->has_type = 1;
13688 break;
13689 case DW_AT_abstract_origin:
13690 case DW_AT_specification:
13691 case DW_AT_extension:
13692 part_die->has_specification = 1;
13693 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13694 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13695 || cu->per_cu->is_dwz);
13696 break;
13697 case DW_AT_sibling:
13698 /* Ignore absolute siblings, they might point outside of
13699 the current compile unit. */
13700 if (attr.form == DW_FORM_ref_addr)
13701 complaint (&symfile_complaints,
13702 _("ignoring absolute DW_AT_sibling"));
13703 else
13704 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13705 break;
13706 case DW_AT_byte_size:
13707 part_die->has_byte_size = 1;
13708 break;
13709 case DW_AT_calling_convention:
13710 /* DWARF doesn't provide a way to identify a program's source-level
13711 entry point. DW_AT_calling_convention attributes are only meant
13712 to describe functions' calling conventions.
13713
13714 However, because it's a necessary piece of information in
13715 Fortran, and because DW_CC_program is the only piece of debugging
13716 information whose definition refers to a 'main program' at all,
13717 several compilers have begun marking Fortran main programs with
13718 DW_CC_program --- even when those functions use the standard
13719 calling conventions.
13720
13721 So until DWARF specifies a way to provide this information and
13722 compilers pick up the new representation, we'll support this
13723 practice. */
13724 if (DW_UNSND (&attr) == DW_CC_program
13725 && cu->language == language_fortran)
13726 {
13727 set_main_name (part_die->name);
13728
13729 /* As this DIE has a static linkage the name would be difficult
13730 to look up later. */
13731 language_of_main = language_fortran;
13732 }
13733 break;
13734 case DW_AT_inline:
13735 if (DW_UNSND (&attr) == DW_INL_inlined
13736 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13737 part_die->may_be_inlined = 1;
13738 break;
13739
13740 case DW_AT_import:
13741 if (part_die->tag == DW_TAG_imported_unit)
13742 {
13743 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13744 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13745 || cu->per_cu->is_dwz);
13746 }
13747 break;
13748
13749 default:
13750 break;
13751 }
13752 }
13753
13754 if (high_pc_relative)
13755 part_die->highpc += part_die->lowpc;
13756
13757 if (has_low_pc_attr && has_high_pc_attr)
13758 {
13759 /* When using the GNU linker, .gnu.linkonce. sections are used to
13760 eliminate duplicate copies of functions and vtables and such.
13761 The linker will arbitrarily choose one and discard the others.
13762 The AT_*_pc values for such functions refer to local labels in
13763 these sections. If the section from that file was discarded, the
13764 labels are not in the output, so the relocs get a value of 0.
13765 If this is a discarded function, mark the pc bounds as invalid,
13766 so that GDB will ignore it. */
13767 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13768 {
13769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13770
13771 complaint (&symfile_complaints,
13772 _("DW_AT_low_pc %s is zero "
13773 "for DIE at 0x%x [in module %s]"),
13774 paddress (gdbarch, part_die->lowpc),
13775 part_die->offset.sect_off, objfile->name);
13776 }
13777 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13778 else if (part_die->lowpc >= part_die->highpc)
13779 {
13780 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13781
13782 complaint (&symfile_complaints,
13783 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13784 "for DIE at 0x%x [in module %s]"),
13785 paddress (gdbarch, part_die->lowpc),
13786 paddress (gdbarch, part_die->highpc),
13787 part_die->offset.sect_off, objfile->name);
13788 }
13789 else
13790 part_die->has_pc_info = 1;
13791 }
13792
13793 return info_ptr;
13794 }
13795
13796 /* Find a cached partial DIE at OFFSET in CU. */
13797
13798 static struct partial_die_info *
13799 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13800 {
13801 struct partial_die_info *lookup_die = NULL;
13802 struct partial_die_info part_die;
13803
13804 part_die.offset = offset;
13805 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13806 offset.sect_off);
13807
13808 return lookup_die;
13809 }
13810
13811 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13812 except in the case of .debug_types DIEs which do not reference
13813 outside their CU (they do however referencing other types via
13814 DW_FORM_ref_sig8). */
13815
13816 static struct partial_die_info *
13817 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13818 {
13819 struct objfile *objfile = cu->objfile;
13820 struct dwarf2_per_cu_data *per_cu = NULL;
13821 struct partial_die_info *pd = NULL;
13822
13823 if (offset_in_dwz == cu->per_cu->is_dwz
13824 && offset_in_cu_p (&cu->header, offset))
13825 {
13826 pd = find_partial_die_in_comp_unit (offset, cu);
13827 if (pd != NULL)
13828 return pd;
13829 /* We missed recording what we needed.
13830 Load all dies and try again. */
13831 per_cu = cu->per_cu;
13832 }
13833 else
13834 {
13835 /* TUs don't reference other CUs/TUs (except via type signatures). */
13836 if (cu->per_cu->is_debug_types)
13837 {
13838 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13839 " external reference to offset 0x%lx [in module %s].\n"),
13840 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13841 bfd_get_filename (objfile->obfd));
13842 }
13843 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13844 objfile);
13845
13846 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13847 load_partial_comp_unit (per_cu);
13848
13849 per_cu->cu->last_used = 0;
13850 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13851 }
13852
13853 /* If we didn't find it, and not all dies have been loaded,
13854 load them all and try again. */
13855
13856 if (pd == NULL && per_cu->load_all_dies == 0)
13857 {
13858 per_cu->load_all_dies = 1;
13859
13860 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13861 THIS_CU->cu may already be in use. So we can't just free it and
13862 replace its DIEs with the ones we read in. Instead, we leave those
13863 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13864 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13865 set. */
13866 load_partial_comp_unit (per_cu);
13867
13868 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13869 }
13870
13871 if (pd == NULL)
13872 internal_error (__FILE__, __LINE__,
13873 _("could not find partial DIE 0x%x "
13874 "in cache [from module %s]\n"),
13875 offset.sect_off, bfd_get_filename (objfile->obfd));
13876 return pd;
13877 }
13878
13879 /* See if we can figure out if the class lives in a namespace. We do
13880 this by looking for a member function; its demangled name will
13881 contain namespace info, if there is any. */
13882
13883 static void
13884 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13885 struct dwarf2_cu *cu)
13886 {
13887 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13888 what template types look like, because the demangler
13889 frequently doesn't give the same name as the debug info. We
13890 could fix this by only using the demangled name to get the
13891 prefix (but see comment in read_structure_type). */
13892
13893 struct partial_die_info *real_pdi;
13894 struct partial_die_info *child_pdi;
13895
13896 /* If this DIE (this DIE's specification, if any) has a parent, then
13897 we should not do this. We'll prepend the parent's fully qualified
13898 name when we create the partial symbol. */
13899
13900 real_pdi = struct_pdi;
13901 while (real_pdi->has_specification)
13902 real_pdi = find_partial_die (real_pdi->spec_offset,
13903 real_pdi->spec_is_dwz, cu);
13904
13905 if (real_pdi->die_parent != NULL)
13906 return;
13907
13908 for (child_pdi = struct_pdi->die_child;
13909 child_pdi != NULL;
13910 child_pdi = child_pdi->die_sibling)
13911 {
13912 if (child_pdi->tag == DW_TAG_subprogram
13913 && child_pdi->linkage_name != NULL)
13914 {
13915 char *actual_class_name
13916 = language_class_name_from_physname (cu->language_defn,
13917 child_pdi->linkage_name);
13918 if (actual_class_name != NULL)
13919 {
13920 struct_pdi->name
13921 = obstack_copy0 (&cu->objfile->objfile_obstack,
13922 actual_class_name,
13923 strlen (actual_class_name));
13924 xfree (actual_class_name);
13925 }
13926 break;
13927 }
13928 }
13929 }
13930
13931 /* Adjust PART_DIE before generating a symbol for it. This function
13932 may set the is_external flag or change the DIE's name. */
13933
13934 static void
13935 fixup_partial_die (struct partial_die_info *part_die,
13936 struct dwarf2_cu *cu)
13937 {
13938 /* Once we've fixed up a die, there's no point in doing so again.
13939 This also avoids a memory leak if we were to call
13940 guess_partial_die_structure_name multiple times. */
13941 if (part_die->fixup_called)
13942 return;
13943
13944 /* If we found a reference attribute and the DIE has no name, try
13945 to find a name in the referred to DIE. */
13946
13947 if (part_die->name == NULL && part_die->has_specification)
13948 {
13949 struct partial_die_info *spec_die;
13950
13951 spec_die = find_partial_die (part_die->spec_offset,
13952 part_die->spec_is_dwz, cu);
13953
13954 fixup_partial_die (spec_die, cu);
13955
13956 if (spec_die->name)
13957 {
13958 part_die->name = spec_die->name;
13959
13960 /* Copy DW_AT_external attribute if it is set. */
13961 if (spec_die->is_external)
13962 part_die->is_external = spec_die->is_external;
13963 }
13964 }
13965
13966 /* Set default names for some unnamed DIEs. */
13967
13968 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13969 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13970
13971 /* If there is no parent die to provide a namespace, and there are
13972 children, see if we can determine the namespace from their linkage
13973 name. */
13974 if (cu->language == language_cplus
13975 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13976 && part_die->die_parent == NULL
13977 && part_die->has_children
13978 && (part_die->tag == DW_TAG_class_type
13979 || part_die->tag == DW_TAG_structure_type
13980 || part_die->tag == DW_TAG_union_type))
13981 guess_partial_die_structure_name (part_die, cu);
13982
13983 /* GCC might emit a nameless struct or union that has a linkage
13984 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13985 if (part_die->name == NULL
13986 && (part_die->tag == DW_TAG_class_type
13987 || part_die->tag == DW_TAG_interface_type
13988 || part_die->tag == DW_TAG_structure_type
13989 || part_die->tag == DW_TAG_union_type)
13990 && part_die->linkage_name != NULL)
13991 {
13992 char *demangled;
13993
13994 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13995 if (demangled)
13996 {
13997 const char *base;
13998
13999 /* Strip any leading namespaces/classes, keep only the base name.
14000 DW_AT_name for named DIEs does not contain the prefixes. */
14001 base = strrchr (demangled, ':');
14002 if (base && base > demangled && base[-1] == ':')
14003 base++;
14004 else
14005 base = demangled;
14006
14007 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14008 base, strlen (base));
14009 xfree (demangled);
14010 }
14011 }
14012
14013 part_die->fixup_called = 1;
14014 }
14015
14016 /* Read an attribute value described by an attribute form. */
14017
14018 static gdb_byte *
14019 read_attribute_value (const struct die_reader_specs *reader,
14020 struct attribute *attr, unsigned form,
14021 gdb_byte *info_ptr)
14022 {
14023 struct dwarf2_cu *cu = reader->cu;
14024 bfd *abfd = reader->abfd;
14025 struct comp_unit_head *cu_header = &cu->header;
14026 unsigned int bytes_read;
14027 struct dwarf_block *blk;
14028
14029 attr->form = form;
14030 switch (form)
14031 {
14032 case DW_FORM_ref_addr:
14033 if (cu->header.version == 2)
14034 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14035 else
14036 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14037 &cu->header, &bytes_read);
14038 info_ptr += bytes_read;
14039 break;
14040 case DW_FORM_GNU_ref_alt:
14041 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14042 info_ptr += bytes_read;
14043 break;
14044 case DW_FORM_addr:
14045 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14046 info_ptr += bytes_read;
14047 break;
14048 case DW_FORM_block2:
14049 blk = dwarf_alloc_block (cu);
14050 blk->size = read_2_bytes (abfd, info_ptr);
14051 info_ptr += 2;
14052 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14053 info_ptr += blk->size;
14054 DW_BLOCK (attr) = blk;
14055 break;
14056 case DW_FORM_block4:
14057 blk = dwarf_alloc_block (cu);
14058 blk->size = read_4_bytes (abfd, info_ptr);
14059 info_ptr += 4;
14060 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14061 info_ptr += blk->size;
14062 DW_BLOCK (attr) = blk;
14063 break;
14064 case DW_FORM_data2:
14065 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14066 info_ptr += 2;
14067 break;
14068 case DW_FORM_data4:
14069 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14070 info_ptr += 4;
14071 break;
14072 case DW_FORM_data8:
14073 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14074 info_ptr += 8;
14075 break;
14076 case DW_FORM_sec_offset:
14077 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14078 info_ptr += bytes_read;
14079 break;
14080 case DW_FORM_string:
14081 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14082 DW_STRING_IS_CANONICAL (attr) = 0;
14083 info_ptr += bytes_read;
14084 break;
14085 case DW_FORM_strp:
14086 if (!cu->per_cu->is_dwz)
14087 {
14088 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14089 &bytes_read);
14090 DW_STRING_IS_CANONICAL (attr) = 0;
14091 info_ptr += bytes_read;
14092 break;
14093 }
14094 /* FALLTHROUGH */
14095 case DW_FORM_GNU_strp_alt:
14096 {
14097 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14098 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14099 &bytes_read);
14100
14101 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14102 DW_STRING_IS_CANONICAL (attr) = 0;
14103 info_ptr += bytes_read;
14104 }
14105 break;
14106 case DW_FORM_exprloc:
14107 case DW_FORM_block:
14108 blk = dwarf_alloc_block (cu);
14109 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14110 info_ptr += bytes_read;
14111 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14112 info_ptr += blk->size;
14113 DW_BLOCK (attr) = blk;
14114 break;
14115 case DW_FORM_block1:
14116 blk = dwarf_alloc_block (cu);
14117 blk->size = read_1_byte (abfd, info_ptr);
14118 info_ptr += 1;
14119 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14120 info_ptr += blk->size;
14121 DW_BLOCK (attr) = blk;
14122 break;
14123 case DW_FORM_data1:
14124 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14125 info_ptr += 1;
14126 break;
14127 case DW_FORM_flag:
14128 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14129 info_ptr += 1;
14130 break;
14131 case DW_FORM_flag_present:
14132 DW_UNSND (attr) = 1;
14133 break;
14134 case DW_FORM_sdata:
14135 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14136 info_ptr += bytes_read;
14137 break;
14138 case DW_FORM_udata:
14139 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14140 info_ptr += bytes_read;
14141 break;
14142 case DW_FORM_ref1:
14143 DW_UNSND (attr) = (cu->header.offset.sect_off
14144 + read_1_byte (abfd, info_ptr));
14145 info_ptr += 1;
14146 break;
14147 case DW_FORM_ref2:
14148 DW_UNSND (attr) = (cu->header.offset.sect_off
14149 + read_2_bytes (abfd, info_ptr));
14150 info_ptr += 2;
14151 break;
14152 case DW_FORM_ref4:
14153 DW_UNSND (attr) = (cu->header.offset.sect_off
14154 + read_4_bytes (abfd, info_ptr));
14155 info_ptr += 4;
14156 break;
14157 case DW_FORM_ref8:
14158 DW_UNSND (attr) = (cu->header.offset.sect_off
14159 + read_8_bytes (abfd, info_ptr));
14160 info_ptr += 8;
14161 break;
14162 case DW_FORM_ref_sig8:
14163 /* Convert the signature to something we can record in DW_UNSND
14164 for later lookup.
14165 NOTE: This is NULL if the type wasn't found. */
14166 DW_SIGNATURED_TYPE (attr) =
14167 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14168 info_ptr += 8;
14169 break;
14170 case DW_FORM_ref_udata:
14171 DW_UNSND (attr) = (cu->header.offset.sect_off
14172 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14173 info_ptr += bytes_read;
14174 break;
14175 case DW_FORM_indirect:
14176 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14177 info_ptr += bytes_read;
14178 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14179 break;
14180 case DW_FORM_GNU_addr_index:
14181 if (reader->dwo_file == NULL)
14182 {
14183 /* For now flag a hard error.
14184 Later we can turn this into a complaint. */
14185 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14186 dwarf_form_name (form),
14187 bfd_get_filename (abfd));
14188 }
14189 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14190 info_ptr += bytes_read;
14191 break;
14192 case DW_FORM_GNU_str_index:
14193 if (reader->dwo_file == NULL)
14194 {
14195 /* For now flag a hard error.
14196 Later we can turn this into a complaint if warranted. */
14197 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14198 dwarf_form_name (form),
14199 bfd_get_filename (abfd));
14200 }
14201 {
14202 ULONGEST str_index =
14203 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14204
14205 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14206 DW_STRING_IS_CANONICAL (attr) = 0;
14207 info_ptr += bytes_read;
14208 }
14209 break;
14210 default:
14211 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14212 dwarf_form_name (form),
14213 bfd_get_filename (abfd));
14214 }
14215
14216 /* Super hack. */
14217 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14218 attr->form = DW_FORM_GNU_ref_alt;
14219
14220 /* We have seen instances where the compiler tried to emit a byte
14221 size attribute of -1 which ended up being encoded as an unsigned
14222 0xffffffff. Although 0xffffffff is technically a valid size value,
14223 an object of this size seems pretty unlikely so we can relatively
14224 safely treat these cases as if the size attribute was invalid and
14225 treat them as zero by default. */
14226 if (attr->name == DW_AT_byte_size
14227 && form == DW_FORM_data4
14228 && DW_UNSND (attr) >= 0xffffffff)
14229 {
14230 complaint
14231 (&symfile_complaints,
14232 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14233 hex_string (DW_UNSND (attr)));
14234 DW_UNSND (attr) = 0;
14235 }
14236
14237 return info_ptr;
14238 }
14239
14240 /* Read an attribute described by an abbreviated attribute. */
14241
14242 static gdb_byte *
14243 read_attribute (const struct die_reader_specs *reader,
14244 struct attribute *attr, struct attr_abbrev *abbrev,
14245 gdb_byte *info_ptr)
14246 {
14247 attr->name = abbrev->name;
14248 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14249 }
14250
14251 /* Read dwarf information from a buffer. */
14252
14253 static unsigned int
14254 read_1_byte (bfd *abfd, const gdb_byte *buf)
14255 {
14256 return bfd_get_8 (abfd, buf);
14257 }
14258
14259 static int
14260 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14261 {
14262 return bfd_get_signed_8 (abfd, buf);
14263 }
14264
14265 static unsigned int
14266 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14267 {
14268 return bfd_get_16 (abfd, buf);
14269 }
14270
14271 static int
14272 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14273 {
14274 return bfd_get_signed_16 (abfd, buf);
14275 }
14276
14277 static unsigned int
14278 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14279 {
14280 return bfd_get_32 (abfd, buf);
14281 }
14282
14283 static int
14284 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14285 {
14286 return bfd_get_signed_32 (abfd, buf);
14287 }
14288
14289 static ULONGEST
14290 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14291 {
14292 return bfd_get_64 (abfd, buf);
14293 }
14294
14295 static CORE_ADDR
14296 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14297 unsigned int *bytes_read)
14298 {
14299 struct comp_unit_head *cu_header = &cu->header;
14300 CORE_ADDR retval = 0;
14301
14302 if (cu_header->signed_addr_p)
14303 {
14304 switch (cu_header->addr_size)
14305 {
14306 case 2:
14307 retval = bfd_get_signed_16 (abfd, buf);
14308 break;
14309 case 4:
14310 retval = bfd_get_signed_32 (abfd, buf);
14311 break;
14312 case 8:
14313 retval = bfd_get_signed_64 (abfd, buf);
14314 break;
14315 default:
14316 internal_error (__FILE__, __LINE__,
14317 _("read_address: bad switch, signed [in module %s]"),
14318 bfd_get_filename (abfd));
14319 }
14320 }
14321 else
14322 {
14323 switch (cu_header->addr_size)
14324 {
14325 case 2:
14326 retval = bfd_get_16 (abfd, buf);
14327 break;
14328 case 4:
14329 retval = bfd_get_32 (abfd, buf);
14330 break;
14331 case 8:
14332 retval = bfd_get_64 (abfd, buf);
14333 break;
14334 default:
14335 internal_error (__FILE__, __LINE__,
14336 _("read_address: bad switch, "
14337 "unsigned [in module %s]"),
14338 bfd_get_filename (abfd));
14339 }
14340 }
14341
14342 *bytes_read = cu_header->addr_size;
14343 return retval;
14344 }
14345
14346 /* Read the initial length from a section. The (draft) DWARF 3
14347 specification allows the initial length to take up either 4 bytes
14348 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14349 bytes describe the length and all offsets will be 8 bytes in length
14350 instead of 4.
14351
14352 An older, non-standard 64-bit format is also handled by this
14353 function. The older format in question stores the initial length
14354 as an 8-byte quantity without an escape value. Lengths greater
14355 than 2^32 aren't very common which means that the initial 4 bytes
14356 is almost always zero. Since a length value of zero doesn't make
14357 sense for the 32-bit format, this initial zero can be considered to
14358 be an escape value which indicates the presence of the older 64-bit
14359 format. As written, the code can't detect (old format) lengths
14360 greater than 4GB. If it becomes necessary to handle lengths
14361 somewhat larger than 4GB, we could allow other small values (such
14362 as the non-sensical values of 1, 2, and 3) to also be used as
14363 escape values indicating the presence of the old format.
14364
14365 The value returned via bytes_read should be used to increment the
14366 relevant pointer after calling read_initial_length().
14367
14368 [ Note: read_initial_length() and read_offset() are based on the
14369 document entitled "DWARF Debugging Information Format", revision
14370 3, draft 8, dated November 19, 2001. This document was obtained
14371 from:
14372
14373 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14374
14375 This document is only a draft and is subject to change. (So beware.)
14376
14377 Details regarding the older, non-standard 64-bit format were
14378 determined empirically by examining 64-bit ELF files produced by
14379 the SGI toolchain on an IRIX 6.5 machine.
14380
14381 - Kevin, July 16, 2002
14382 ] */
14383
14384 static LONGEST
14385 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14386 {
14387 LONGEST length = bfd_get_32 (abfd, buf);
14388
14389 if (length == 0xffffffff)
14390 {
14391 length = bfd_get_64 (abfd, buf + 4);
14392 *bytes_read = 12;
14393 }
14394 else if (length == 0)
14395 {
14396 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14397 length = bfd_get_64 (abfd, buf);
14398 *bytes_read = 8;
14399 }
14400 else
14401 {
14402 *bytes_read = 4;
14403 }
14404
14405 return length;
14406 }
14407
14408 /* Cover function for read_initial_length.
14409 Returns the length of the object at BUF, and stores the size of the
14410 initial length in *BYTES_READ and stores the size that offsets will be in
14411 *OFFSET_SIZE.
14412 If the initial length size is not equivalent to that specified in
14413 CU_HEADER then issue a complaint.
14414 This is useful when reading non-comp-unit headers. */
14415
14416 static LONGEST
14417 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14418 const struct comp_unit_head *cu_header,
14419 unsigned int *bytes_read,
14420 unsigned int *offset_size)
14421 {
14422 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14423
14424 gdb_assert (cu_header->initial_length_size == 4
14425 || cu_header->initial_length_size == 8
14426 || cu_header->initial_length_size == 12);
14427
14428 if (cu_header->initial_length_size != *bytes_read)
14429 complaint (&symfile_complaints,
14430 _("intermixed 32-bit and 64-bit DWARF sections"));
14431
14432 *offset_size = (*bytes_read == 4) ? 4 : 8;
14433 return length;
14434 }
14435
14436 /* Read an offset from the data stream. The size of the offset is
14437 given by cu_header->offset_size. */
14438
14439 static LONGEST
14440 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14441 unsigned int *bytes_read)
14442 {
14443 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14444
14445 *bytes_read = cu_header->offset_size;
14446 return offset;
14447 }
14448
14449 /* Read an offset from the data stream. */
14450
14451 static LONGEST
14452 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14453 {
14454 LONGEST retval = 0;
14455
14456 switch (offset_size)
14457 {
14458 case 4:
14459 retval = bfd_get_32 (abfd, buf);
14460 break;
14461 case 8:
14462 retval = bfd_get_64 (abfd, buf);
14463 break;
14464 default:
14465 internal_error (__FILE__, __LINE__,
14466 _("read_offset_1: bad switch [in module %s]"),
14467 bfd_get_filename (abfd));
14468 }
14469
14470 return retval;
14471 }
14472
14473 static gdb_byte *
14474 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14475 {
14476 /* If the size of a host char is 8 bits, we can return a pointer
14477 to the buffer, otherwise we have to copy the data to a buffer
14478 allocated on the temporary obstack. */
14479 gdb_assert (HOST_CHAR_BIT == 8);
14480 return buf;
14481 }
14482
14483 static char *
14484 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14485 {
14486 /* If the size of a host char is 8 bits, we can return a pointer
14487 to the string, otherwise we have to copy the string to a buffer
14488 allocated on the temporary obstack. */
14489 gdb_assert (HOST_CHAR_BIT == 8);
14490 if (*buf == '\0')
14491 {
14492 *bytes_read_ptr = 1;
14493 return NULL;
14494 }
14495 *bytes_read_ptr = strlen ((char *) buf) + 1;
14496 return (char *) buf;
14497 }
14498
14499 static char *
14500 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14501 {
14502 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14503 if (dwarf2_per_objfile->str.buffer == NULL)
14504 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14505 bfd_get_filename (abfd));
14506 if (str_offset >= dwarf2_per_objfile->str.size)
14507 error (_("DW_FORM_strp pointing outside of "
14508 ".debug_str section [in module %s]"),
14509 bfd_get_filename (abfd));
14510 gdb_assert (HOST_CHAR_BIT == 8);
14511 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14512 return NULL;
14513 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14514 }
14515
14516 /* Read a string at offset STR_OFFSET in the .debug_str section from
14517 the .dwz file DWZ. Throw an error if the offset is too large. If
14518 the string consists of a single NUL byte, return NULL; otherwise
14519 return a pointer to the string. */
14520
14521 static char *
14522 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14523 {
14524 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14525
14526 if (dwz->str.buffer == NULL)
14527 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14528 "section [in module %s]"),
14529 bfd_get_filename (dwz->dwz_bfd));
14530 if (str_offset >= dwz->str.size)
14531 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14532 ".debug_str section [in module %s]"),
14533 bfd_get_filename (dwz->dwz_bfd));
14534 gdb_assert (HOST_CHAR_BIT == 8);
14535 if (dwz->str.buffer[str_offset] == '\0')
14536 return NULL;
14537 return (char *) (dwz->str.buffer + str_offset);
14538 }
14539
14540 static char *
14541 read_indirect_string (bfd *abfd, gdb_byte *buf,
14542 const struct comp_unit_head *cu_header,
14543 unsigned int *bytes_read_ptr)
14544 {
14545 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14546
14547 return read_indirect_string_at_offset (abfd, str_offset);
14548 }
14549
14550 static ULONGEST
14551 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14552 {
14553 ULONGEST result;
14554 unsigned int num_read;
14555 int i, shift;
14556 unsigned char byte;
14557
14558 result = 0;
14559 shift = 0;
14560 num_read = 0;
14561 i = 0;
14562 while (1)
14563 {
14564 byte = bfd_get_8 (abfd, buf);
14565 buf++;
14566 num_read++;
14567 result |= ((ULONGEST) (byte & 127) << shift);
14568 if ((byte & 128) == 0)
14569 {
14570 break;
14571 }
14572 shift += 7;
14573 }
14574 *bytes_read_ptr = num_read;
14575 return result;
14576 }
14577
14578 static LONGEST
14579 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14580 {
14581 LONGEST result;
14582 int i, shift, num_read;
14583 unsigned char byte;
14584
14585 result = 0;
14586 shift = 0;
14587 num_read = 0;
14588 i = 0;
14589 while (1)
14590 {
14591 byte = bfd_get_8 (abfd, buf);
14592 buf++;
14593 num_read++;
14594 result |= ((LONGEST) (byte & 127) << shift);
14595 shift += 7;
14596 if ((byte & 128) == 0)
14597 {
14598 break;
14599 }
14600 }
14601 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14602 result |= -(((LONGEST) 1) << shift);
14603 *bytes_read_ptr = num_read;
14604 return result;
14605 }
14606
14607 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14608 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14609 ADDR_SIZE is the size of addresses from the CU header. */
14610
14611 static CORE_ADDR
14612 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14613 {
14614 struct objfile *objfile = dwarf2_per_objfile->objfile;
14615 bfd *abfd = objfile->obfd;
14616 const gdb_byte *info_ptr;
14617
14618 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14619 if (dwarf2_per_objfile->addr.buffer == NULL)
14620 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14621 objfile->name);
14622 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14623 error (_("DW_FORM_addr_index pointing outside of "
14624 ".debug_addr section [in module %s]"),
14625 objfile->name);
14626 info_ptr = (dwarf2_per_objfile->addr.buffer
14627 + addr_base + addr_index * addr_size);
14628 if (addr_size == 4)
14629 return bfd_get_32 (abfd, info_ptr);
14630 else
14631 return bfd_get_64 (abfd, info_ptr);
14632 }
14633
14634 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14635
14636 static CORE_ADDR
14637 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14638 {
14639 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14640 }
14641
14642 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14643
14644 static CORE_ADDR
14645 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14646 unsigned int *bytes_read)
14647 {
14648 bfd *abfd = cu->objfile->obfd;
14649 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14650
14651 return read_addr_index (cu, addr_index);
14652 }
14653
14654 /* Data structure to pass results from dwarf2_read_addr_index_reader
14655 back to dwarf2_read_addr_index. */
14656
14657 struct dwarf2_read_addr_index_data
14658 {
14659 ULONGEST addr_base;
14660 int addr_size;
14661 };
14662
14663 /* die_reader_func for dwarf2_read_addr_index. */
14664
14665 static void
14666 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14667 gdb_byte *info_ptr,
14668 struct die_info *comp_unit_die,
14669 int has_children,
14670 void *data)
14671 {
14672 struct dwarf2_cu *cu = reader->cu;
14673 struct dwarf2_read_addr_index_data *aidata =
14674 (struct dwarf2_read_addr_index_data *) data;
14675
14676 aidata->addr_base = cu->addr_base;
14677 aidata->addr_size = cu->header.addr_size;
14678 }
14679
14680 /* Given an index in .debug_addr, fetch the value.
14681 NOTE: This can be called during dwarf expression evaluation,
14682 long after the debug information has been read, and thus per_cu->cu
14683 may no longer exist. */
14684
14685 CORE_ADDR
14686 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14687 unsigned int addr_index)
14688 {
14689 struct objfile *objfile = per_cu->objfile;
14690 struct dwarf2_cu *cu = per_cu->cu;
14691 ULONGEST addr_base;
14692 int addr_size;
14693
14694 /* This is intended to be called from outside this file. */
14695 dw2_setup (objfile);
14696
14697 /* We need addr_base and addr_size.
14698 If we don't have PER_CU->cu, we have to get it.
14699 Nasty, but the alternative is storing the needed info in PER_CU,
14700 which at this point doesn't seem justified: it's not clear how frequently
14701 it would get used and it would increase the size of every PER_CU.
14702 Entry points like dwarf2_per_cu_addr_size do a similar thing
14703 so we're not in uncharted territory here.
14704 Alas we need to be a bit more complicated as addr_base is contained
14705 in the DIE.
14706
14707 We don't need to read the entire CU(/TU).
14708 We just need the header and top level die.
14709
14710 IWBN to use the aging mechanism to let us lazily later discard the CU.
14711 For now we skip this optimization. */
14712
14713 if (cu != NULL)
14714 {
14715 addr_base = cu->addr_base;
14716 addr_size = cu->header.addr_size;
14717 }
14718 else
14719 {
14720 struct dwarf2_read_addr_index_data aidata;
14721
14722 /* Note: We can't use init_cutu_and_read_dies_simple here,
14723 we need addr_base. */
14724 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14725 dwarf2_read_addr_index_reader, &aidata);
14726 addr_base = aidata.addr_base;
14727 addr_size = aidata.addr_size;
14728 }
14729
14730 return read_addr_index_1 (addr_index, addr_base, addr_size);
14731 }
14732
14733 /* Given a DW_AT_str_index, fetch the string. */
14734
14735 static char *
14736 read_str_index (const struct die_reader_specs *reader,
14737 struct dwarf2_cu *cu, ULONGEST str_index)
14738 {
14739 struct objfile *objfile = dwarf2_per_objfile->objfile;
14740 const char *dwo_name = objfile->name;
14741 bfd *abfd = objfile->obfd;
14742 struct dwo_sections *sections = &reader->dwo_file->sections;
14743 gdb_byte *info_ptr;
14744 ULONGEST str_offset;
14745
14746 dwarf2_read_section (objfile, &sections->str);
14747 dwarf2_read_section (objfile, &sections->str_offsets);
14748 if (sections->str.buffer == NULL)
14749 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14750 " in CU at offset 0x%lx [in module %s]"),
14751 (long) cu->header.offset.sect_off, dwo_name);
14752 if (sections->str_offsets.buffer == NULL)
14753 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14754 " in CU at offset 0x%lx [in module %s]"),
14755 (long) cu->header.offset.sect_off, dwo_name);
14756 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14757 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14758 " section in CU at offset 0x%lx [in module %s]"),
14759 (long) cu->header.offset.sect_off, dwo_name);
14760 info_ptr = (sections->str_offsets.buffer
14761 + str_index * cu->header.offset_size);
14762 if (cu->header.offset_size == 4)
14763 str_offset = bfd_get_32 (abfd, info_ptr);
14764 else
14765 str_offset = bfd_get_64 (abfd, info_ptr);
14766 if (str_offset >= sections->str.size)
14767 error (_("Offset from DW_FORM_str_index pointing outside of"
14768 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14769 (long) cu->header.offset.sect_off, dwo_name);
14770 return (char *) (sections->str.buffer + str_offset);
14771 }
14772
14773 /* Return the length of an LEB128 number in BUF. */
14774
14775 static int
14776 leb128_size (const gdb_byte *buf)
14777 {
14778 const gdb_byte *begin = buf;
14779 gdb_byte byte;
14780
14781 while (1)
14782 {
14783 byte = *buf++;
14784 if ((byte & 128) == 0)
14785 return buf - begin;
14786 }
14787 }
14788
14789 static void
14790 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14791 {
14792 switch (lang)
14793 {
14794 case DW_LANG_C89:
14795 case DW_LANG_C99:
14796 case DW_LANG_C:
14797 cu->language = language_c;
14798 break;
14799 case DW_LANG_C_plus_plus:
14800 cu->language = language_cplus;
14801 break;
14802 case DW_LANG_D:
14803 cu->language = language_d;
14804 break;
14805 case DW_LANG_Fortran77:
14806 case DW_LANG_Fortran90:
14807 case DW_LANG_Fortran95:
14808 cu->language = language_fortran;
14809 break;
14810 case DW_LANG_Go:
14811 cu->language = language_go;
14812 break;
14813 case DW_LANG_Mips_Assembler:
14814 cu->language = language_asm;
14815 break;
14816 case DW_LANG_Java:
14817 cu->language = language_java;
14818 break;
14819 case DW_LANG_Ada83:
14820 case DW_LANG_Ada95:
14821 cu->language = language_ada;
14822 break;
14823 case DW_LANG_Modula2:
14824 cu->language = language_m2;
14825 break;
14826 case DW_LANG_Pascal83:
14827 cu->language = language_pascal;
14828 break;
14829 case DW_LANG_ObjC:
14830 cu->language = language_objc;
14831 break;
14832 case DW_LANG_Cobol74:
14833 case DW_LANG_Cobol85:
14834 default:
14835 cu->language = language_minimal;
14836 break;
14837 }
14838 cu->language_defn = language_def (cu->language);
14839 }
14840
14841 /* Return the named attribute or NULL if not there. */
14842
14843 static struct attribute *
14844 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14845 {
14846 for (;;)
14847 {
14848 unsigned int i;
14849 struct attribute *spec = NULL;
14850
14851 for (i = 0; i < die->num_attrs; ++i)
14852 {
14853 if (die->attrs[i].name == name)
14854 return &die->attrs[i];
14855 if (die->attrs[i].name == DW_AT_specification
14856 || die->attrs[i].name == DW_AT_abstract_origin)
14857 spec = &die->attrs[i];
14858 }
14859
14860 if (!spec)
14861 break;
14862
14863 die = follow_die_ref (die, spec, &cu);
14864 }
14865
14866 return NULL;
14867 }
14868
14869 /* Return the named attribute or NULL if not there,
14870 but do not follow DW_AT_specification, etc.
14871 This is for use in contexts where we're reading .debug_types dies.
14872 Following DW_AT_specification, DW_AT_abstract_origin will take us
14873 back up the chain, and we want to go down. */
14874
14875 static struct attribute *
14876 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14877 {
14878 unsigned int i;
14879
14880 for (i = 0; i < die->num_attrs; ++i)
14881 if (die->attrs[i].name == name)
14882 return &die->attrs[i];
14883
14884 return NULL;
14885 }
14886
14887 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14888 and holds a non-zero value. This function should only be used for
14889 DW_FORM_flag or DW_FORM_flag_present attributes. */
14890
14891 static int
14892 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14893 {
14894 struct attribute *attr = dwarf2_attr (die, name, cu);
14895
14896 return (attr && DW_UNSND (attr));
14897 }
14898
14899 static int
14900 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14901 {
14902 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14903 which value is non-zero. However, we have to be careful with
14904 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14905 (via dwarf2_flag_true_p) follows this attribute. So we may
14906 end up accidently finding a declaration attribute that belongs
14907 to a different DIE referenced by the specification attribute,
14908 even though the given DIE does not have a declaration attribute. */
14909 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14910 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14911 }
14912
14913 /* Return the die giving the specification for DIE, if there is
14914 one. *SPEC_CU is the CU containing DIE on input, and the CU
14915 containing the return value on output. If there is no
14916 specification, but there is an abstract origin, that is
14917 returned. */
14918
14919 static struct die_info *
14920 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14921 {
14922 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14923 *spec_cu);
14924
14925 if (spec_attr == NULL)
14926 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14927
14928 if (spec_attr == NULL)
14929 return NULL;
14930 else
14931 return follow_die_ref (die, spec_attr, spec_cu);
14932 }
14933
14934 /* Free the line_header structure *LH, and any arrays and strings it
14935 refers to.
14936 NOTE: This is also used as a "cleanup" function. */
14937
14938 static void
14939 free_line_header (struct line_header *lh)
14940 {
14941 if (lh->standard_opcode_lengths)
14942 xfree (lh->standard_opcode_lengths);
14943
14944 /* Remember that all the lh->file_names[i].name pointers are
14945 pointers into debug_line_buffer, and don't need to be freed. */
14946 if (lh->file_names)
14947 xfree (lh->file_names);
14948
14949 /* Similarly for the include directory names. */
14950 if (lh->include_dirs)
14951 xfree (lh->include_dirs);
14952
14953 xfree (lh);
14954 }
14955
14956 /* Add an entry to LH's include directory table. */
14957
14958 static void
14959 add_include_dir (struct line_header *lh, char *include_dir)
14960 {
14961 /* Grow the array if necessary. */
14962 if (lh->include_dirs_size == 0)
14963 {
14964 lh->include_dirs_size = 1; /* for testing */
14965 lh->include_dirs = xmalloc (lh->include_dirs_size
14966 * sizeof (*lh->include_dirs));
14967 }
14968 else if (lh->num_include_dirs >= lh->include_dirs_size)
14969 {
14970 lh->include_dirs_size *= 2;
14971 lh->include_dirs = xrealloc (lh->include_dirs,
14972 (lh->include_dirs_size
14973 * sizeof (*lh->include_dirs)));
14974 }
14975
14976 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14977 }
14978
14979 /* Add an entry to LH's file name table. */
14980
14981 static void
14982 add_file_name (struct line_header *lh,
14983 char *name,
14984 unsigned int dir_index,
14985 unsigned int mod_time,
14986 unsigned int length)
14987 {
14988 struct file_entry *fe;
14989
14990 /* Grow the array if necessary. */
14991 if (lh->file_names_size == 0)
14992 {
14993 lh->file_names_size = 1; /* for testing */
14994 lh->file_names = xmalloc (lh->file_names_size
14995 * sizeof (*lh->file_names));
14996 }
14997 else if (lh->num_file_names >= lh->file_names_size)
14998 {
14999 lh->file_names_size *= 2;
15000 lh->file_names = xrealloc (lh->file_names,
15001 (lh->file_names_size
15002 * sizeof (*lh->file_names)));
15003 }
15004
15005 fe = &lh->file_names[lh->num_file_names++];
15006 fe->name = name;
15007 fe->dir_index = dir_index;
15008 fe->mod_time = mod_time;
15009 fe->length = length;
15010 fe->included_p = 0;
15011 fe->symtab = NULL;
15012 }
15013
15014 /* A convenience function to find the proper .debug_line section for a
15015 CU. */
15016
15017 static struct dwarf2_section_info *
15018 get_debug_line_section (struct dwarf2_cu *cu)
15019 {
15020 struct dwarf2_section_info *section;
15021
15022 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15023 DWO file. */
15024 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15025 section = &cu->dwo_unit->dwo_file->sections.line;
15026 else if (cu->per_cu->is_dwz)
15027 {
15028 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15029
15030 section = &dwz->line;
15031 }
15032 else
15033 section = &dwarf2_per_objfile->line;
15034
15035 return section;
15036 }
15037
15038 /* Read the statement program header starting at OFFSET in
15039 .debug_line, or .debug_line.dwo. Return a pointer
15040 to a struct line_header, allocated using xmalloc.
15041
15042 NOTE: the strings in the include directory and file name tables of
15043 the returned object point into the dwarf line section buffer,
15044 and must not be freed. */
15045
15046 static struct line_header *
15047 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15048 {
15049 struct cleanup *back_to;
15050 struct line_header *lh;
15051 gdb_byte *line_ptr;
15052 unsigned int bytes_read, offset_size;
15053 int i;
15054 char *cur_dir, *cur_file;
15055 struct dwarf2_section_info *section;
15056 bfd *abfd;
15057
15058 section = get_debug_line_section (cu);
15059 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15060 if (section->buffer == NULL)
15061 {
15062 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15063 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15064 else
15065 complaint (&symfile_complaints, _("missing .debug_line section"));
15066 return 0;
15067 }
15068
15069 /* We can't do this until we know the section is non-empty.
15070 Only then do we know we have such a section. */
15071 abfd = section->asection->owner;
15072
15073 /* Make sure that at least there's room for the total_length field.
15074 That could be 12 bytes long, but we're just going to fudge that. */
15075 if (offset + 4 >= section->size)
15076 {
15077 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15078 return 0;
15079 }
15080
15081 lh = xmalloc (sizeof (*lh));
15082 memset (lh, 0, sizeof (*lh));
15083 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15084 (void *) lh);
15085
15086 line_ptr = section->buffer + offset;
15087
15088 /* Read in the header. */
15089 lh->total_length =
15090 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15091 &bytes_read, &offset_size);
15092 line_ptr += bytes_read;
15093 if (line_ptr + lh->total_length > (section->buffer + section->size))
15094 {
15095 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15096 return 0;
15097 }
15098 lh->statement_program_end = line_ptr + lh->total_length;
15099 lh->version = read_2_bytes (abfd, line_ptr);
15100 line_ptr += 2;
15101 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15102 line_ptr += offset_size;
15103 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15104 line_ptr += 1;
15105 if (lh->version >= 4)
15106 {
15107 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15108 line_ptr += 1;
15109 }
15110 else
15111 lh->maximum_ops_per_instruction = 1;
15112
15113 if (lh->maximum_ops_per_instruction == 0)
15114 {
15115 lh->maximum_ops_per_instruction = 1;
15116 complaint (&symfile_complaints,
15117 _("invalid maximum_ops_per_instruction "
15118 "in `.debug_line' section"));
15119 }
15120
15121 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15122 line_ptr += 1;
15123 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15124 line_ptr += 1;
15125 lh->line_range = read_1_byte (abfd, line_ptr);
15126 line_ptr += 1;
15127 lh->opcode_base = read_1_byte (abfd, line_ptr);
15128 line_ptr += 1;
15129 lh->standard_opcode_lengths
15130 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15131
15132 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15133 for (i = 1; i < lh->opcode_base; ++i)
15134 {
15135 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15136 line_ptr += 1;
15137 }
15138
15139 /* Read directory table. */
15140 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15141 {
15142 line_ptr += bytes_read;
15143 add_include_dir (lh, cur_dir);
15144 }
15145 line_ptr += bytes_read;
15146
15147 /* Read file name table. */
15148 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15149 {
15150 unsigned int dir_index, mod_time, length;
15151
15152 line_ptr += bytes_read;
15153 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15154 line_ptr += bytes_read;
15155 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15156 line_ptr += bytes_read;
15157 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15158 line_ptr += bytes_read;
15159
15160 add_file_name (lh, cur_file, dir_index, mod_time, length);
15161 }
15162 line_ptr += bytes_read;
15163 lh->statement_program_start = line_ptr;
15164
15165 if (line_ptr > (section->buffer + section->size))
15166 complaint (&symfile_complaints,
15167 _("line number info header doesn't "
15168 "fit in `.debug_line' section"));
15169
15170 discard_cleanups (back_to);
15171 return lh;
15172 }
15173
15174 /* Subroutine of dwarf_decode_lines to simplify it.
15175 Return the file name of the psymtab for included file FILE_INDEX
15176 in line header LH of PST.
15177 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15178 If space for the result is malloc'd, it will be freed by a cleanup.
15179 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15180
15181 The function creates dangling cleanup registration. */
15182
15183 static char *
15184 psymtab_include_file_name (const struct line_header *lh, int file_index,
15185 const struct partial_symtab *pst,
15186 const char *comp_dir)
15187 {
15188 const struct file_entry fe = lh->file_names [file_index];
15189 char *include_name = fe.name;
15190 char *include_name_to_compare = include_name;
15191 char *dir_name = NULL;
15192 const char *pst_filename;
15193 char *copied_name = NULL;
15194 int file_is_pst;
15195
15196 if (fe.dir_index)
15197 dir_name = lh->include_dirs[fe.dir_index - 1];
15198
15199 if (!IS_ABSOLUTE_PATH (include_name)
15200 && (dir_name != NULL || comp_dir != NULL))
15201 {
15202 /* Avoid creating a duplicate psymtab for PST.
15203 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15204 Before we do the comparison, however, we need to account
15205 for DIR_NAME and COMP_DIR.
15206 First prepend dir_name (if non-NULL). If we still don't
15207 have an absolute path prepend comp_dir (if non-NULL).
15208 However, the directory we record in the include-file's
15209 psymtab does not contain COMP_DIR (to match the
15210 corresponding symtab(s)).
15211
15212 Example:
15213
15214 bash$ cd /tmp
15215 bash$ gcc -g ./hello.c
15216 include_name = "hello.c"
15217 dir_name = "."
15218 DW_AT_comp_dir = comp_dir = "/tmp"
15219 DW_AT_name = "./hello.c" */
15220
15221 if (dir_name != NULL)
15222 {
15223 include_name = concat (dir_name, SLASH_STRING,
15224 include_name, (char *)NULL);
15225 include_name_to_compare = include_name;
15226 make_cleanup (xfree, include_name);
15227 }
15228 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15229 {
15230 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15231 include_name, (char *)NULL);
15232 }
15233 }
15234
15235 pst_filename = pst->filename;
15236 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15237 {
15238 copied_name = concat (pst->dirname, SLASH_STRING,
15239 pst_filename, (char *)NULL);
15240 pst_filename = copied_name;
15241 }
15242
15243 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15244
15245 if (include_name_to_compare != include_name)
15246 xfree (include_name_to_compare);
15247 if (copied_name != NULL)
15248 xfree (copied_name);
15249
15250 if (file_is_pst)
15251 return NULL;
15252 return include_name;
15253 }
15254
15255 /* Ignore this record_line request. */
15256
15257 static void
15258 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15259 {
15260 return;
15261 }
15262
15263 /* Subroutine of dwarf_decode_lines to simplify it.
15264 Process the line number information in LH. */
15265
15266 static void
15267 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15268 struct dwarf2_cu *cu, struct partial_symtab *pst)
15269 {
15270 gdb_byte *line_ptr, *extended_end;
15271 gdb_byte *line_end;
15272 unsigned int bytes_read, extended_len;
15273 unsigned char op_code, extended_op, adj_opcode;
15274 CORE_ADDR baseaddr;
15275 struct objfile *objfile = cu->objfile;
15276 bfd *abfd = objfile->obfd;
15277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15278 const int decode_for_pst_p = (pst != NULL);
15279 struct subfile *last_subfile = NULL;
15280 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15281 = record_line;
15282
15283 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15284
15285 line_ptr = lh->statement_program_start;
15286 line_end = lh->statement_program_end;
15287
15288 /* Read the statement sequences until there's nothing left. */
15289 while (line_ptr < line_end)
15290 {
15291 /* state machine registers */
15292 CORE_ADDR address = 0;
15293 unsigned int file = 1;
15294 unsigned int line = 1;
15295 unsigned int column = 0;
15296 int is_stmt = lh->default_is_stmt;
15297 int basic_block = 0;
15298 int end_sequence = 0;
15299 CORE_ADDR addr;
15300 unsigned char op_index = 0;
15301
15302 if (!decode_for_pst_p && lh->num_file_names >= file)
15303 {
15304 /* Start a subfile for the current file of the state machine. */
15305 /* lh->include_dirs and lh->file_names are 0-based, but the
15306 directory and file name numbers in the statement program
15307 are 1-based. */
15308 struct file_entry *fe = &lh->file_names[file - 1];
15309 char *dir = NULL;
15310
15311 if (fe->dir_index)
15312 dir = lh->include_dirs[fe->dir_index - 1];
15313
15314 dwarf2_start_subfile (fe->name, dir, comp_dir);
15315 }
15316
15317 /* Decode the table. */
15318 while (!end_sequence)
15319 {
15320 op_code = read_1_byte (abfd, line_ptr);
15321 line_ptr += 1;
15322 if (line_ptr > line_end)
15323 {
15324 dwarf2_debug_line_missing_end_sequence_complaint ();
15325 break;
15326 }
15327
15328 if (op_code >= lh->opcode_base)
15329 {
15330 /* Special operand. */
15331 adj_opcode = op_code - lh->opcode_base;
15332 address += (((op_index + (adj_opcode / lh->line_range))
15333 / lh->maximum_ops_per_instruction)
15334 * lh->minimum_instruction_length);
15335 op_index = ((op_index + (adj_opcode / lh->line_range))
15336 % lh->maximum_ops_per_instruction);
15337 line += lh->line_base + (adj_opcode % lh->line_range);
15338 if (lh->num_file_names < file || file == 0)
15339 dwarf2_debug_line_missing_file_complaint ();
15340 /* For now we ignore lines not starting on an
15341 instruction boundary. */
15342 else if (op_index == 0)
15343 {
15344 lh->file_names[file - 1].included_p = 1;
15345 if (!decode_for_pst_p && is_stmt)
15346 {
15347 if (last_subfile != current_subfile)
15348 {
15349 addr = gdbarch_addr_bits_remove (gdbarch, address);
15350 if (last_subfile)
15351 (*p_record_line) (last_subfile, 0, addr);
15352 last_subfile = current_subfile;
15353 }
15354 /* Append row to matrix using current values. */
15355 addr = gdbarch_addr_bits_remove (gdbarch, address);
15356 (*p_record_line) (current_subfile, line, addr);
15357 }
15358 }
15359 basic_block = 0;
15360 }
15361 else switch (op_code)
15362 {
15363 case DW_LNS_extended_op:
15364 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15365 &bytes_read);
15366 line_ptr += bytes_read;
15367 extended_end = line_ptr + extended_len;
15368 extended_op = read_1_byte (abfd, line_ptr);
15369 line_ptr += 1;
15370 switch (extended_op)
15371 {
15372 case DW_LNE_end_sequence:
15373 p_record_line = record_line;
15374 end_sequence = 1;
15375 break;
15376 case DW_LNE_set_address:
15377 address = read_address (abfd, line_ptr, cu, &bytes_read);
15378
15379 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15380 {
15381 /* This line table is for a function which has been
15382 GCd by the linker. Ignore it. PR gdb/12528 */
15383
15384 long line_offset
15385 = line_ptr - get_debug_line_section (cu)->buffer;
15386
15387 complaint (&symfile_complaints,
15388 _(".debug_line address at offset 0x%lx is 0 "
15389 "[in module %s]"),
15390 line_offset, objfile->name);
15391 p_record_line = noop_record_line;
15392 }
15393
15394 op_index = 0;
15395 line_ptr += bytes_read;
15396 address += baseaddr;
15397 break;
15398 case DW_LNE_define_file:
15399 {
15400 char *cur_file;
15401 unsigned int dir_index, mod_time, length;
15402
15403 cur_file = read_direct_string (abfd, line_ptr,
15404 &bytes_read);
15405 line_ptr += bytes_read;
15406 dir_index =
15407 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15408 line_ptr += bytes_read;
15409 mod_time =
15410 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15411 line_ptr += bytes_read;
15412 length =
15413 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15414 line_ptr += bytes_read;
15415 add_file_name (lh, cur_file, dir_index, mod_time, length);
15416 }
15417 break;
15418 case DW_LNE_set_discriminator:
15419 /* The discriminator is not interesting to the debugger;
15420 just ignore it. */
15421 line_ptr = extended_end;
15422 break;
15423 default:
15424 complaint (&symfile_complaints,
15425 _("mangled .debug_line section"));
15426 return;
15427 }
15428 /* Make sure that we parsed the extended op correctly. If e.g.
15429 we expected a different address size than the producer used,
15430 we may have read the wrong number of bytes. */
15431 if (line_ptr != extended_end)
15432 {
15433 complaint (&symfile_complaints,
15434 _("mangled .debug_line section"));
15435 return;
15436 }
15437 break;
15438 case DW_LNS_copy:
15439 if (lh->num_file_names < file || file == 0)
15440 dwarf2_debug_line_missing_file_complaint ();
15441 else
15442 {
15443 lh->file_names[file - 1].included_p = 1;
15444 if (!decode_for_pst_p && is_stmt)
15445 {
15446 if (last_subfile != current_subfile)
15447 {
15448 addr = gdbarch_addr_bits_remove (gdbarch, address);
15449 if (last_subfile)
15450 (*p_record_line) (last_subfile, 0, addr);
15451 last_subfile = current_subfile;
15452 }
15453 addr = gdbarch_addr_bits_remove (gdbarch, address);
15454 (*p_record_line) (current_subfile, line, addr);
15455 }
15456 }
15457 basic_block = 0;
15458 break;
15459 case DW_LNS_advance_pc:
15460 {
15461 CORE_ADDR adjust
15462 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15463
15464 address += (((op_index + adjust)
15465 / lh->maximum_ops_per_instruction)
15466 * lh->minimum_instruction_length);
15467 op_index = ((op_index + adjust)
15468 % lh->maximum_ops_per_instruction);
15469 line_ptr += bytes_read;
15470 }
15471 break;
15472 case DW_LNS_advance_line:
15473 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15474 line_ptr += bytes_read;
15475 break;
15476 case DW_LNS_set_file:
15477 {
15478 /* The arrays lh->include_dirs and lh->file_names are
15479 0-based, but the directory and file name numbers in
15480 the statement program are 1-based. */
15481 struct file_entry *fe;
15482 char *dir = NULL;
15483
15484 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15485 line_ptr += bytes_read;
15486 if (lh->num_file_names < file || file == 0)
15487 dwarf2_debug_line_missing_file_complaint ();
15488 else
15489 {
15490 fe = &lh->file_names[file - 1];
15491 if (fe->dir_index)
15492 dir = lh->include_dirs[fe->dir_index - 1];
15493 if (!decode_for_pst_p)
15494 {
15495 last_subfile = current_subfile;
15496 dwarf2_start_subfile (fe->name, dir, comp_dir);
15497 }
15498 }
15499 }
15500 break;
15501 case DW_LNS_set_column:
15502 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15503 line_ptr += bytes_read;
15504 break;
15505 case DW_LNS_negate_stmt:
15506 is_stmt = (!is_stmt);
15507 break;
15508 case DW_LNS_set_basic_block:
15509 basic_block = 1;
15510 break;
15511 /* Add to the address register of the state machine the
15512 address increment value corresponding to special opcode
15513 255. I.e., this value is scaled by the minimum
15514 instruction length since special opcode 255 would have
15515 scaled the increment. */
15516 case DW_LNS_const_add_pc:
15517 {
15518 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15519
15520 address += (((op_index + adjust)
15521 / lh->maximum_ops_per_instruction)
15522 * lh->minimum_instruction_length);
15523 op_index = ((op_index + adjust)
15524 % lh->maximum_ops_per_instruction);
15525 }
15526 break;
15527 case DW_LNS_fixed_advance_pc:
15528 address += read_2_bytes (abfd, line_ptr);
15529 op_index = 0;
15530 line_ptr += 2;
15531 break;
15532 default:
15533 {
15534 /* Unknown standard opcode, ignore it. */
15535 int i;
15536
15537 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15538 {
15539 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15540 line_ptr += bytes_read;
15541 }
15542 }
15543 }
15544 }
15545 if (lh->num_file_names < file || file == 0)
15546 dwarf2_debug_line_missing_file_complaint ();
15547 else
15548 {
15549 lh->file_names[file - 1].included_p = 1;
15550 if (!decode_for_pst_p)
15551 {
15552 addr = gdbarch_addr_bits_remove (gdbarch, address);
15553 (*p_record_line) (current_subfile, 0, addr);
15554 }
15555 }
15556 }
15557 }
15558
15559 /* Decode the Line Number Program (LNP) for the given line_header
15560 structure and CU. The actual information extracted and the type
15561 of structures created from the LNP depends on the value of PST.
15562
15563 1. If PST is NULL, then this procedure uses the data from the program
15564 to create all necessary symbol tables, and their linetables.
15565
15566 2. If PST is not NULL, this procedure reads the program to determine
15567 the list of files included by the unit represented by PST, and
15568 builds all the associated partial symbol tables.
15569
15570 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15571 It is used for relative paths in the line table.
15572 NOTE: When processing partial symtabs (pst != NULL),
15573 comp_dir == pst->dirname.
15574
15575 NOTE: It is important that psymtabs have the same file name (via strcmp)
15576 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15577 symtab we don't use it in the name of the psymtabs we create.
15578 E.g. expand_line_sal requires this when finding psymtabs to expand.
15579 A good testcase for this is mb-inline.exp. */
15580
15581 static void
15582 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15583 struct dwarf2_cu *cu, struct partial_symtab *pst,
15584 int want_line_info)
15585 {
15586 struct objfile *objfile = cu->objfile;
15587 const int decode_for_pst_p = (pst != NULL);
15588 struct subfile *first_subfile = current_subfile;
15589
15590 if (want_line_info)
15591 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15592
15593 if (decode_for_pst_p)
15594 {
15595 int file_index;
15596
15597 /* Now that we're done scanning the Line Header Program, we can
15598 create the psymtab of each included file. */
15599 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15600 if (lh->file_names[file_index].included_p == 1)
15601 {
15602 char *include_name =
15603 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15604 if (include_name != NULL)
15605 dwarf2_create_include_psymtab (include_name, pst, objfile);
15606 }
15607 }
15608 else
15609 {
15610 /* Make sure a symtab is created for every file, even files
15611 which contain only variables (i.e. no code with associated
15612 line numbers). */
15613 int i;
15614
15615 for (i = 0; i < lh->num_file_names; i++)
15616 {
15617 char *dir = NULL;
15618 struct file_entry *fe;
15619
15620 fe = &lh->file_names[i];
15621 if (fe->dir_index)
15622 dir = lh->include_dirs[fe->dir_index - 1];
15623 dwarf2_start_subfile (fe->name, dir, comp_dir);
15624
15625 /* Skip the main file; we don't need it, and it must be
15626 allocated last, so that it will show up before the
15627 non-primary symtabs in the objfile's symtab list. */
15628 if (current_subfile == first_subfile)
15629 continue;
15630
15631 if (current_subfile->symtab == NULL)
15632 current_subfile->symtab = allocate_symtab (current_subfile->name,
15633 objfile);
15634 fe->symtab = current_subfile->symtab;
15635 }
15636 }
15637 }
15638
15639 /* Start a subfile for DWARF. FILENAME is the name of the file and
15640 DIRNAME the name of the source directory which contains FILENAME
15641 or NULL if not known. COMP_DIR is the compilation directory for the
15642 linetable's compilation unit or NULL if not known.
15643 This routine tries to keep line numbers from identical absolute and
15644 relative file names in a common subfile.
15645
15646 Using the `list' example from the GDB testsuite, which resides in
15647 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15648 of /srcdir/list0.c yields the following debugging information for list0.c:
15649
15650 DW_AT_name: /srcdir/list0.c
15651 DW_AT_comp_dir: /compdir
15652 files.files[0].name: list0.h
15653 files.files[0].dir: /srcdir
15654 files.files[1].name: list0.c
15655 files.files[1].dir: /srcdir
15656
15657 The line number information for list0.c has to end up in a single
15658 subfile, so that `break /srcdir/list0.c:1' works as expected.
15659 start_subfile will ensure that this happens provided that we pass the
15660 concatenation of files.files[1].dir and files.files[1].name as the
15661 subfile's name. */
15662
15663 static void
15664 dwarf2_start_subfile (char *filename, const char *dirname,
15665 const char *comp_dir)
15666 {
15667 char *fullname;
15668
15669 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15670 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15671 second argument to start_subfile. To be consistent, we do the
15672 same here. In order not to lose the line information directory,
15673 we concatenate it to the filename when it makes sense.
15674 Note that the Dwarf3 standard says (speaking of filenames in line
15675 information): ``The directory index is ignored for file names
15676 that represent full path names''. Thus ignoring dirname in the
15677 `else' branch below isn't an issue. */
15678
15679 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15680 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15681 else
15682 fullname = filename;
15683
15684 start_subfile (fullname, comp_dir);
15685
15686 if (fullname != filename)
15687 xfree (fullname);
15688 }
15689
15690 /* Start a symtab for DWARF.
15691 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15692
15693 static void
15694 dwarf2_start_symtab (struct dwarf2_cu *cu,
15695 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15696 {
15697 start_symtab (name, comp_dir, low_pc);
15698 record_debugformat ("DWARF 2");
15699 record_producer (cu->producer);
15700
15701 /* We assume that we're processing GCC output. */
15702 processing_gcc_compilation = 2;
15703
15704 cu->processing_has_namespace_info = 0;
15705 }
15706
15707 static void
15708 var_decode_location (struct attribute *attr, struct symbol *sym,
15709 struct dwarf2_cu *cu)
15710 {
15711 struct objfile *objfile = cu->objfile;
15712 struct comp_unit_head *cu_header = &cu->header;
15713
15714 /* NOTE drow/2003-01-30: There used to be a comment and some special
15715 code here to turn a symbol with DW_AT_external and a
15716 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15717 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15718 with some versions of binutils) where shared libraries could have
15719 relocations against symbols in their debug information - the
15720 minimal symbol would have the right address, but the debug info
15721 would not. It's no longer necessary, because we will explicitly
15722 apply relocations when we read in the debug information now. */
15723
15724 /* A DW_AT_location attribute with no contents indicates that a
15725 variable has been optimized away. */
15726 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15727 {
15728 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15729 return;
15730 }
15731
15732 /* Handle one degenerate form of location expression specially, to
15733 preserve GDB's previous behavior when section offsets are
15734 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15735 then mark this symbol as LOC_STATIC. */
15736
15737 if (attr_form_is_block (attr)
15738 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15739 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15740 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15741 && (DW_BLOCK (attr)->size
15742 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15743 {
15744 unsigned int dummy;
15745
15746 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15747 SYMBOL_VALUE_ADDRESS (sym) =
15748 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15749 else
15750 SYMBOL_VALUE_ADDRESS (sym) =
15751 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15752 SYMBOL_CLASS (sym) = LOC_STATIC;
15753 fixup_symbol_section (sym, objfile);
15754 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15755 SYMBOL_SECTION (sym));
15756 return;
15757 }
15758
15759 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15760 expression evaluator, and use LOC_COMPUTED only when necessary
15761 (i.e. when the value of a register or memory location is
15762 referenced, or a thread-local block, etc.). Then again, it might
15763 not be worthwhile. I'm assuming that it isn't unless performance
15764 or memory numbers show me otherwise. */
15765
15766 dwarf2_symbol_mark_computed (attr, sym, cu);
15767 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15768
15769 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15770 cu->has_loclist = 1;
15771 }
15772
15773 /* Given a pointer to a DWARF information entry, figure out if we need
15774 to make a symbol table entry for it, and if so, create a new entry
15775 and return a pointer to it.
15776 If TYPE is NULL, determine symbol type from the die, otherwise
15777 used the passed type.
15778 If SPACE is not NULL, use it to hold the new symbol. If it is
15779 NULL, allocate a new symbol on the objfile's obstack. */
15780
15781 static struct symbol *
15782 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15783 struct symbol *space)
15784 {
15785 struct objfile *objfile = cu->objfile;
15786 struct symbol *sym = NULL;
15787 const char *name;
15788 struct attribute *attr = NULL;
15789 struct attribute *attr2 = NULL;
15790 CORE_ADDR baseaddr;
15791 struct pending **list_to_add = NULL;
15792
15793 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15794
15795 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15796
15797 name = dwarf2_name (die, cu);
15798 if (name)
15799 {
15800 const char *linkagename;
15801 int suppress_add = 0;
15802
15803 if (space)
15804 sym = space;
15805 else
15806 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15807 OBJSTAT (objfile, n_syms++);
15808
15809 /* Cache this symbol's name and the name's demangled form (if any). */
15810 SYMBOL_SET_LANGUAGE (sym, cu->language);
15811 linkagename = dwarf2_physname (name, die, cu);
15812 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15813
15814 /* Fortran does not have mangling standard and the mangling does differ
15815 between gfortran, iFort etc. */
15816 if (cu->language == language_fortran
15817 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15818 symbol_set_demangled_name (&(sym->ginfo),
15819 dwarf2_full_name (name, die, cu),
15820 NULL);
15821
15822 /* Default assumptions.
15823 Use the passed type or decode it from the die. */
15824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15825 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15826 if (type != NULL)
15827 SYMBOL_TYPE (sym) = type;
15828 else
15829 SYMBOL_TYPE (sym) = die_type (die, cu);
15830 attr = dwarf2_attr (die,
15831 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15832 cu);
15833 if (attr)
15834 {
15835 SYMBOL_LINE (sym) = DW_UNSND (attr);
15836 }
15837
15838 attr = dwarf2_attr (die,
15839 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15840 cu);
15841 if (attr)
15842 {
15843 int file_index = DW_UNSND (attr);
15844
15845 if (cu->line_header == NULL
15846 || file_index > cu->line_header->num_file_names)
15847 complaint (&symfile_complaints,
15848 _("file index out of range"));
15849 else if (file_index > 0)
15850 {
15851 struct file_entry *fe;
15852
15853 fe = &cu->line_header->file_names[file_index - 1];
15854 SYMBOL_SYMTAB (sym) = fe->symtab;
15855 }
15856 }
15857
15858 switch (die->tag)
15859 {
15860 case DW_TAG_label:
15861 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15862 if (attr)
15863 {
15864 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15865 }
15866 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15867 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15868 SYMBOL_CLASS (sym) = LOC_LABEL;
15869 add_symbol_to_list (sym, cu->list_in_scope);
15870 break;
15871 case DW_TAG_subprogram:
15872 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15873 finish_block. */
15874 SYMBOL_CLASS (sym) = LOC_BLOCK;
15875 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15876 if ((attr2 && (DW_UNSND (attr2) != 0))
15877 || cu->language == language_ada)
15878 {
15879 /* Subprograms marked external are stored as a global symbol.
15880 Ada subprograms, whether marked external or not, are always
15881 stored as a global symbol, because we want to be able to
15882 access them globally. For instance, we want to be able
15883 to break on a nested subprogram without having to
15884 specify the context. */
15885 list_to_add = &global_symbols;
15886 }
15887 else
15888 {
15889 list_to_add = cu->list_in_scope;
15890 }
15891 break;
15892 case DW_TAG_inlined_subroutine:
15893 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15894 finish_block. */
15895 SYMBOL_CLASS (sym) = LOC_BLOCK;
15896 SYMBOL_INLINED (sym) = 1;
15897 list_to_add = cu->list_in_scope;
15898 break;
15899 case DW_TAG_template_value_param:
15900 suppress_add = 1;
15901 /* Fall through. */
15902 case DW_TAG_constant:
15903 case DW_TAG_variable:
15904 case DW_TAG_member:
15905 /* Compilation with minimal debug info may result in
15906 variables with missing type entries. Change the
15907 misleading `void' type to something sensible. */
15908 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15909 SYMBOL_TYPE (sym)
15910 = objfile_type (objfile)->nodebug_data_symbol;
15911
15912 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15913 /* In the case of DW_TAG_member, we should only be called for
15914 static const members. */
15915 if (die->tag == DW_TAG_member)
15916 {
15917 /* dwarf2_add_field uses die_is_declaration,
15918 so we do the same. */
15919 gdb_assert (die_is_declaration (die, cu));
15920 gdb_assert (attr);
15921 }
15922 if (attr)
15923 {
15924 dwarf2_const_value (attr, sym, cu);
15925 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15926 if (!suppress_add)
15927 {
15928 if (attr2 && (DW_UNSND (attr2) != 0))
15929 list_to_add = &global_symbols;
15930 else
15931 list_to_add = cu->list_in_scope;
15932 }
15933 break;
15934 }
15935 attr = dwarf2_attr (die, DW_AT_location, cu);
15936 if (attr)
15937 {
15938 var_decode_location (attr, sym, cu);
15939 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15940
15941 /* Fortran explicitly imports any global symbols to the local
15942 scope by DW_TAG_common_block. */
15943 if (cu->language == language_fortran && die->parent
15944 && die->parent->tag == DW_TAG_common_block)
15945 attr2 = NULL;
15946
15947 if (SYMBOL_CLASS (sym) == LOC_STATIC
15948 && SYMBOL_VALUE_ADDRESS (sym) == 0
15949 && !dwarf2_per_objfile->has_section_at_zero)
15950 {
15951 /* When a static variable is eliminated by the linker,
15952 the corresponding debug information is not stripped
15953 out, but the variable address is set to null;
15954 do not add such variables into symbol table. */
15955 }
15956 else if (attr2 && (DW_UNSND (attr2) != 0))
15957 {
15958 /* Workaround gfortran PR debug/40040 - it uses
15959 DW_AT_location for variables in -fPIC libraries which may
15960 get overriden by other libraries/executable and get
15961 a different address. Resolve it by the minimal symbol
15962 which may come from inferior's executable using copy
15963 relocation. Make this workaround only for gfortran as for
15964 other compilers GDB cannot guess the minimal symbol
15965 Fortran mangling kind. */
15966 if (cu->language == language_fortran && die->parent
15967 && die->parent->tag == DW_TAG_module
15968 && cu->producer
15969 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15970 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15971
15972 /* A variable with DW_AT_external is never static,
15973 but it may be block-scoped. */
15974 list_to_add = (cu->list_in_scope == &file_symbols
15975 ? &global_symbols : cu->list_in_scope);
15976 }
15977 else
15978 list_to_add = cu->list_in_scope;
15979 }
15980 else
15981 {
15982 /* We do not know the address of this symbol.
15983 If it is an external symbol and we have type information
15984 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15985 The address of the variable will then be determined from
15986 the minimal symbol table whenever the variable is
15987 referenced. */
15988 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15989
15990 /* Fortran explicitly imports any global symbols to the local
15991 scope by DW_TAG_common_block. */
15992 if (cu->language == language_fortran && die->parent
15993 && die->parent->tag == DW_TAG_common_block)
15994 {
15995 /* SYMBOL_CLASS doesn't matter here because
15996 read_common_block is going to reset it. */
15997 if (!suppress_add)
15998 list_to_add = cu->list_in_scope;
15999 }
16000 else if (attr2 && (DW_UNSND (attr2) != 0)
16001 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16002 {
16003 /* A variable with DW_AT_external is never static, but it
16004 may be block-scoped. */
16005 list_to_add = (cu->list_in_scope == &file_symbols
16006 ? &global_symbols : cu->list_in_scope);
16007
16008 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
16009 }
16010 else if (!die_is_declaration (die, cu))
16011 {
16012 /* Use the default LOC_OPTIMIZED_OUT class. */
16013 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16014 if (!suppress_add)
16015 list_to_add = cu->list_in_scope;
16016 }
16017 }
16018 break;
16019 case DW_TAG_formal_parameter:
16020 /* If we are inside a function, mark this as an argument. If
16021 not, we might be looking at an argument to an inlined function
16022 when we do not have enough information to show inlined frames;
16023 pretend it's a local variable in that case so that the user can
16024 still see it. */
16025 if (context_stack_depth > 0
16026 && context_stack[context_stack_depth - 1].name != NULL)
16027 SYMBOL_IS_ARGUMENT (sym) = 1;
16028 attr = dwarf2_attr (die, DW_AT_location, cu);
16029 if (attr)
16030 {
16031 var_decode_location (attr, sym, cu);
16032 }
16033 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16034 if (attr)
16035 {
16036 dwarf2_const_value (attr, sym, cu);
16037 }
16038
16039 list_to_add = cu->list_in_scope;
16040 break;
16041 case DW_TAG_unspecified_parameters:
16042 /* From varargs functions; gdb doesn't seem to have any
16043 interest in this information, so just ignore it for now.
16044 (FIXME?) */
16045 break;
16046 case DW_TAG_template_type_param:
16047 suppress_add = 1;
16048 /* Fall through. */
16049 case DW_TAG_class_type:
16050 case DW_TAG_interface_type:
16051 case DW_TAG_structure_type:
16052 case DW_TAG_union_type:
16053 case DW_TAG_set_type:
16054 case DW_TAG_enumeration_type:
16055 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16056 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16057
16058 {
16059 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16060 really ever be static objects: otherwise, if you try
16061 to, say, break of a class's method and you're in a file
16062 which doesn't mention that class, it won't work unless
16063 the check for all static symbols in lookup_symbol_aux
16064 saves you. See the OtherFileClass tests in
16065 gdb.c++/namespace.exp. */
16066
16067 if (!suppress_add)
16068 {
16069 list_to_add = (cu->list_in_scope == &file_symbols
16070 && (cu->language == language_cplus
16071 || cu->language == language_java)
16072 ? &global_symbols : cu->list_in_scope);
16073
16074 /* The semantics of C++ state that "struct foo {
16075 ... }" also defines a typedef for "foo". A Java
16076 class declaration also defines a typedef for the
16077 class. */
16078 if (cu->language == language_cplus
16079 || cu->language == language_java
16080 || cu->language == language_ada)
16081 {
16082 /* The symbol's name is already allocated along
16083 with this objfile, so we don't need to
16084 duplicate it for the type. */
16085 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16086 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16087 }
16088 }
16089 }
16090 break;
16091 case DW_TAG_typedef:
16092 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16093 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16094 list_to_add = cu->list_in_scope;
16095 break;
16096 case DW_TAG_base_type:
16097 case DW_TAG_subrange_type:
16098 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16099 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16100 list_to_add = cu->list_in_scope;
16101 break;
16102 case DW_TAG_enumerator:
16103 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16104 if (attr)
16105 {
16106 dwarf2_const_value (attr, sym, cu);
16107 }
16108 {
16109 /* NOTE: carlton/2003-11-10: See comment above in the
16110 DW_TAG_class_type, etc. block. */
16111
16112 list_to_add = (cu->list_in_scope == &file_symbols
16113 && (cu->language == language_cplus
16114 || cu->language == language_java)
16115 ? &global_symbols : cu->list_in_scope);
16116 }
16117 break;
16118 case DW_TAG_namespace:
16119 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16120 list_to_add = &global_symbols;
16121 break;
16122 case DW_TAG_common_block:
16123 SYMBOL_CLASS (sym) = LOC_COMMON_BLOCK;
16124 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16125 add_symbol_to_list (sym, cu->list_in_scope);
16126 break;
16127 default:
16128 /* Not a tag we recognize. Hopefully we aren't processing
16129 trash data, but since we must specifically ignore things
16130 we don't recognize, there is nothing else we should do at
16131 this point. */
16132 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16133 dwarf_tag_name (die->tag));
16134 break;
16135 }
16136
16137 if (suppress_add)
16138 {
16139 sym->hash_next = objfile->template_symbols;
16140 objfile->template_symbols = sym;
16141 list_to_add = NULL;
16142 }
16143
16144 if (list_to_add != NULL)
16145 add_symbol_to_list (sym, list_to_add);
16146
16147 /* For the benefit of old versions of GCC, check for anonymous
16148 namespaces based on the demangled name. */
16149 if (!cu->processing_has_namespace_info
16150 && cu->language == language_cplus)
16151 cp_scan_for_anonymous_namespaces (sym, objfile);
16152 }
16153 return (sym);
16154 }
16155
16156 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16157
16158 static struct symbol *
16159 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16160 {
16161 return new_symbol_full (die, type, cu, NULL);
16162 }
16163
16164 /* Given an attr with a DW_FORM_dataN value in host byte order,
16165 zero-extend it as appropriate for the symbol's type. The DWARF
16166 standard (v4) is not entirely clear about the meaning of using
16167 DW_FORM_dataN for a constant with a signed type, where the type is
16168 wider than the data. The conclusion of a discussion on the DWARF
16169 list was that this is unspecified. We choose to always zero-extend
16170 because that is the interpretation long in use by GCC. */
16171
16172 static gdb_byte *
16173 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16174 const char *name, struct obstack *obstack,
16175 struct dwarf2_cu *cu, LONGEST *value, int bits)
16176 {
16177 struct objfile *objfile = cu->objfile;
16178 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16179 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16180 LONGEST l = DW_UNSND (attr);
16181
16182 if (bits < sizeof (*value) * 8)
16183 {
16184 l &= ((LONGEST) 1 << bits) - 1;
16185 *value = l;
16186 }
16187 else if (bits == sizeof (*value) * 8)
16188 *value = l;
16189 else
16190 {
16191 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16192 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16193 return bytes;
16194 }
16195
16196 return NULL;
16197 }
16198
16199 /* Read a constant value from an attribute. Either set *VALUE, or if
16200 the value does not fit in *VALUE, set *BYTES - either already
16201 allocated on the objfile obstack, or newly allocated on OBSTACK,
16202 or, set *BATON, if we translated the constant to a location
16203 expression. */
16204
16205 static void
16206 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16207 const char *name, struct obstack *obstack,
16208 struct dwarf2_cu *cu,
16209 LONGEST *value, gdb_byte **bytes,
16210 struct dwarf2_locexpr_baton **baton)
16211 {
16212 struct objfile *objfile = cu->objfile;
16213 struct comp_unit_head *cu_header = &cu->header;
16214 struct dwarf_block *blk;
16215 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16216 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16217
16218 *value = 0;
16219 *bytes = NULL;
16220 *baton = NULL;
16221
16222 switch (attr->form)
16223 {
16224 case DW_FORM_addr:
16225 case DW_FORM_GNU_addr_index:
16226 {
16227 gdb_byte *data;
16228
16229 if (TYPE_LENGTH (type) != cu_header->addr_size)
16230 dwarf2_const_value_length_mismatch_complaint (name,
16231 cu_header->addr_size,
16232 TYPE_LENGTH (type));
16233 /* Symbols of this form are reasonably rare, so we just
16234 piggyback on the existing location code rather than writing
16235 a new implementation of symbol_computed_ops. */
16236 *baton = obstack_alloc (&objfile->objfile_obstack,
16237 sizeof (struct dwarf2_locexpr_baton));
16238 (*baton)->per_cu = cu->per_cu;
16239 gdb_assert ((*baton)->per_cu);
16240
16241 (*baton)->size = 2 + cu_header->addr_size;
16242 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16243 (*baton)->data = data;
16244
16245 data[0] = DW_OP_addr;
16246 store_unsigned_integer (&data[1], cu_header->addr_size,
16247 byte_order, DW_ADDR (attr));
16248 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16249 }
16250 break;
16251 case DW_FORM_string:
16252 case DW_FORM_strp:
16253 case DW_FORM_GNU_str_index:
16254 case DW_FORM_GNU_strp_alt:
16255 /* DW_STRING is already allocated on the objfile obstack, point
16256 directly to it. */
16257 *bytes = (gdb_byte *) DW_STRING (attr);
16258 break;
16259 case DW_FORM_block1:
16260 case DW_FORM_block2:
16261 case DW_FORM_block4:
16262 case DW_FORM_block:
16263 case DW_FORM_exprloc:
16264 blk = DW_BLOCK (attr);
16265 if (TYPE_LENGTH (type) != blk->size)
16266 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16267 TYPE_LENGTH (type));
16268 *bytes = blk->data;
16269 break;
16270
16271 /* The DW_AT_const_value attributes are supposed to carry the
16272 symbol's value "represented as it would be on the target
16273 architecture." By the time we get here, it's already been
16274 converted to host endianness, so we just need to sign- or
16275 zero-extend it as appropriate. */
16276 case DW_FORM_data1:
16277 *bytes = dwarf2_const_value_data (attr, type, name,
16278 obstack, cu, value, 8);
16279 break;
16280 case DW_FORM_data2:
16281 *bytes = dwarf2_const_value_data (attr, type, name,
16282 obstack, cu, value, 16);
16283 break;
16284 case DW_FORM_data4:
16285 *bytes = dwarf2_const_value_data (attr, type, name,
16286 obstack, cu, value, 32);
16287 break;
16288 case DW_FORM_data8:
16289 *bytes = dwarf2_const_value_data (attr, type, name,
16290 obstack, cu, value, 64);
16291 break;
16292
16293 case DW_FORM_sdata:
16294 *value = DW_SND (attr);
16295 break;
16296
16297 case DW_FORM_udata:
16298 *value = DW_UNSND (attr);
16299 break;
16300
16301 default:
16302 complaint (&symfile_complaints,
16303 _("unsupported const value attribute form: '%s'"),
16304 dwarf_form_name (attr->form));
16305 *value = 0;
16306 break;
16307 }
16308 }
16309
16310
16311 /* Copy constant value from an attribute to a symbol. */
16312
16313 static void
16314 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16315 struct dwarf2_cu *cu)
16316 {
16317 struct objfile *objfile = cu->objfile;
16318 struct comp_unit_head *cu_header = &cu->header;
16319 LONGEST value;
16320 gdb_byte *bytes;
16321 struct dwarf2_locexpr_baton *baton;
16322
16323 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16324 SYMBOL_PRINT_NAME (sym),
16325 &objfile->objfile_obstack, cu,
16326 &value, &bytes, &baton);
16327
16328 if (baton != NULL)
16329 {
16330 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16331 SYMBOL_LOCATION_BATON (sym) = baton;
16332 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16333 }
16334 else if (bytes != NULL)
16335 {
16336 SYMBOL_VALUE_BYTES (sym) = bytes;
16337 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16338 }
16339 else
16340 {
16341 SYMBOL_VALUE (sym) = value;
16342 SYMBOL_CLASS (sym) = LOC_CONST;
16343 }
16344 }
16345
16346 /* Return the type of the die in question using its DW_AT_type attribute. */
16347
16348 static struct type *
16349 die_type (struct die_info *die, struct dwarf2_cu *cu)
16350 {
16351 struct attribute *type_attr;
16352
16353 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16354 if (!type_attr)
16355 {
16356 /* A missing DW_AT_type represents a void type. */
16357 return objfile_type (cu->objfile)->builtin_void;
16358 }
16359
16360 return lookup_die_type (die, type_attr, cu);
16361 }
16362
16363 /* True iff CU's producer generates GNAT Ada auxiliary information
16364 that allows to find parallel types through that information instead
16365 of having to do expensive parallel lookups by type name. */
16366
16367 static int
16368 need_gnat_info (struct dwarf2_cu *cu)
16369 {
16370 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16371 of GNAT produces this auxiliary information, without any indication
16372 that it is produced. Part of enhancing the FSF version of GNAT
16373 to produce that information will be to put in place an indicator
16374 that we can use in order to determine whether the descriptive type
16375 info is available or not. One suggestion that has been made is
16376 to use a new attribute, attached to the CU die. For now, assume
16377 that the descriptive type info is not available. */
16378 return 0;
16379 }
16380
16381 /* Return the auxiliary type of the die in question using its
16382 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16383 attribute is not present. */
16384
16385 static struct type *
16386 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16387 {
16388 struct attribute *type_attr;
16389
16390 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16391 if (!type_attr)
16392 return NULL;
16393
16394 return lookup_die_type (die, type_attr, cu);
16395 }
16396
16397 /* If DIE has a descriptive_type attribute, then set the TYPE's
16398 descriptive type accordingly. */
16399
16400 static void
16401 set_descriptive_type (struct type *type, struct die_info *die,
16402 struct dwarf2_cu *cu)
16403 {
16404 struct type *descriptive_type = die_descriptive_type (die, cu);
16405
16406 if (descriptive_type)
16407 {
16408 ALLOCATE_GNAT_AUX_TYPE (type);
16409 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16410 }
16411 }
16412
16413 /* Return the containing type of the die in question using its
16414 DW_AT_containing_type attribute. */
16415
16416 static struct type *
16417 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16418 {
16419 struct attribute *type_attr;
16420
16421 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16422 if (!type_attr)
16423 error (_("Dwarf Error: Problem turning containing type into gdb type "
16424 "[in module %s]"), cu->objfile->name);
16425
16426 return lookup_die_type (die, type_attr, cu);
16427 }
16428
16429 /* Look up the type of DIE in CU using its type attribute ATTR.
16430 If there is no type substitute an error marker. */
16431
16432 static struct type *
16433 lookup_die_type (struct die_info *die, struct attribute *attr,
16434 struct dwarf2_cu *cu)
16435 {
16436 struct objfile *objfile = cu->objfile;
16437 struct type *this_type;
16438
16439 /* First see if we have it cached. */
16440
16441 if (attr->form == DW_FORM_GNU_ref_alt)
16442 {
16443 struct dwarf2_per_cu_data *per_cu;
16444 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16445
16446 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16447 this_type = get_die_type_at_offset (offset, per_cu);
16448 }
16449 else if (is_ref_attr (attr))
16450 {
16451 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16452
16453 this_type = get_die_type_at_offset (offset, cu->per_cu);
16454 }
16455 else if (attr->form == DW_FORM_ref_sig8)
16456 {
16457 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16458
16459 /* sig_type will be NULL if the signatured type is missing from
16460 the debug info. */
16461 if (sig_type == NULL)
16462 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16463 "at 0x%x [in module %s]"),
16464 die->offset.sect_off, objfile->name);
16465
16466 gdb_assert (sig_type->per_cu.is_debug_types);
16467 /* If we haven't filled in type_offset_in_section yet, then we
16468 haven't read the type in yet. */
16469 this_type = NULL;
16470 if (sig_type->type_offset_in_section.sect_off != 0)
16471 {
16472 this_type =
16473 get_die_type_at_offset (sig_type->type_offset_in_section,
16474 &sig_type->per_cu);
16475 }
16476 }
16477 else
16478 {
16479 dump_die_for_error (die);
16480 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16481 dwarf_attr_name (attr->name), objfile->name);
16482 }
16483
16484 /* If not cached we need to read it in. */
16485
16486 if (this_type == NULL)
16487 {
16488 struct die_info *type_die;
16489 struct dwarf2_cu *type_cu = cu;
16490
16491 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16492 /* If we found the type now, it's probably because the type came
16493 from an inter-CU reference and the type's CU got expanded before
16494 ours. */
16495 this_type = get_die_type (type_die, type_cu);
16496 if (this_type == NULL)
16497 this_type = read_type_die_1 (type_die, type_cu);
16498 }
16499
16500 /* If we still don't have a type use an error marker. */
16501
16502 if (this_type == NULL)
16503 {
16504 char *message, *saved;
16505
16506 /* read_type_die already issued a complaint. */
16507 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16508 objfile->name,
16509 cu->header.offset.sect_off,
16510 die->offset.sect_off);
16511 saved = obstack_copy0 (&objfile->objfile_obstack,
16512 message, strlen (message));
16513 xfree (message);
16514
16515 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16516 }
16517
16518 return this_type;
16519 }
16520
16521 /* Return the type in DIE, CU.
16522 Returns NULL for invalid types.
16523
16524 This first does a lookup in the appropriate type_hash table,
16525 and only reads the die in if necessary.
16526
16527 NOTE: This can be called when reading in partial or full symbols. */
16528
16529 static struct type *
16530 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16531 {
16532 struct type *this_type;
16533
16534 this_type = get_die_type (die, cu);
16535 if (this_type)
16536 return this_type;
16537
16538 return read_type_die_1 (die, cu);
16539 }
16540
16541 /* Read the type in DIE, CU.
16542 Returns NULL for invalid types. */
16543
16544 static struct type *
16545 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16546 {
16547 struct type *this_type = NULL;
16548
16549 switch (die->tag)
16550 {
16551 case DW_TAG_class_type:
16552 case DW_TAG_interface_type:
16553 case DW_TAG_structure_type:
16554 case DW_TAG_union_type:
16555 this_type = read_structure_type (die, cu);
16556 break;
16557 case DW_TAG_enumeration_type:
16558 this_type = read_enumeration_type (die, cu);
16559 break;
16560 case DW_TAG_subprogram:
16561 case DW_TAG_subroutine_type:
16562 case DW_TAG_inlined_subroutine:
16563 this_type = read_subroutine_type (die, cu);
16564 break;
16565 case DW_TAG_array_type:
16566 this_type = read_array_type (die, cu);
16567 break;
16568 case DW_TAG_set_type:
16569 this_type = read_set_type (die, cu);
16570 break;
16571 case DW_TAG_pointer_type:
16572 this_type = read_tag_pointer_type (die, cu);
16573 break;
16574 case DW_TAG_ptr_to_member_type:
16575 this_type = read_tag_ptr_to_member_type (die, cu);
16576 break;
16577 case DW_TAG_reference_type:
16578 this_type = read_tag_reference_type (die, cu);
16579 break;
16580 case DW_TAG_const_type:
16581 this_type = read_tag_const_type (die, cu);
16582 break;
16583 case DW_TAG_volatile_type:
16584 this_type = read_tag_volatile_type (die, cu);
16585 break;
16586 case DW_TAG_restrict_type:
16587 this_type = read_tag_restrict_type (die, cu);
16588 break;
16589 case DW_TAG_string_type:
16590 this_type = read_tag_string_type (die, cu);
16591 break;
16592 case DW_TAG_typedef:
16593 this_type = read_typedef (die, cu);
16594 break;
16595 case DW_TAG_subrange_type:
16596 this_type = read_subrange_type (die, cu);
16597 break;
16598 case DW_TAG_base_type:
16599 this_type = read_base_type (die, cu);
16600 break;
16601 case DW_TAG_unspecified_type:
16602 this_type = read_unspecified_type (die, cu);
16603 break;
16604 case DW_TAG_namespace:
16605 this_type = read_namespace_type (die, cu);
16606 break;
16607 case DW_TAG_module:
16608 this_type = read_module_type (die, cu);
16609 break;
16610 default:
16611 complaint (&symfile_complaints,
16612 _("unexpected tag in read_type_die: '%s'"),
16613 dwarf_tag_name (die->tag));
16614 break;
16615 }
16616
16617 return this_type;
16618 }
16619
16620 /* See if we can figure out if the class lives in a namespace. We do
16621 this by looking for a member function; its demangled name will
16622 contain namespace info, if there is any.
16623 Return the computed name or NULL.
16624 Space for the result is allocated on the objfile's obstack.
16625 This is the full-die version of guess_partial_die_structure_name.
16626 In this case we know DIE has no useful parent. */
16627
16628 static char *
16629 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16630 {
16631 struct die_info *spec_die;
16632 struct dwarf2_cu *spec_cu;
16633 struct die_info *child;
16634
16635 spec_cu = cu;
16636 spec_die = die_specification (die, &spec_cu);
16637 if (spec_die != NULL)
16638 {
16639 die = spec_die;
16640 cu = spec_cu;
16641 }
16642
16643 for (child = die->child;
16644 child != NULL;
16645 child = child->sibling)
16646 {
16647 if (child->tag == DW_TAG_subprogram)
16648 {
16649 struct attribute *attr;
16650
16651 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16652 if (attr == NULL)
16653 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16654 if (attr != NULL)
16655 {
16656 char *actual_name
16657 = language_class_name_from_physname (cu->language_defn,
16658 DW_STRING (attr));
16659 char *name = NULL;
16660
16661 if (actual_name != NULL)
16662 {
16663 const char *die_name = dwarf2_name (die, cu);
16664
16665 if (die_name != NULL
16666 && strcmp (die_name, actual_name) != 0)
16667 {
16668 /* Strip off the class name from the full name.
16669 We want the prefix. */
16670 int die_name_len = strlen (die_name);
16671 int actual_name_len = strlen (actual_name);
16672
16673 /* Test for '::' as a sanity check. */
16674 if (actual_name_len > die_name_len + 2
16675 && actual_name[actual_name_len
16676 - die_name_len - 1] == ':')
16677 name =
16678 obstack_copy0 (&cu->objfile->objfile_obstack,
16679 actual_name,
16680 actual_name_len - die_name_len - 2);
16681 }
16682 }
16683 xfree (actual_name);
16684 return name;
16685 }
16686 }
16687 }
16688
16689 return NULL;
16690 }
16691
16692 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16693 prefix part in such case. See
16694 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16695
16696 static char *
16697 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16698 {
16699 struct attribute *attr;
16700 char *base;
16701
16702 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16703 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16704 return NULL;
16705
16706 attr = dwarf2_attr (die, DW_AT_name, cu);
16707 if (attr != NULL && DW_STRING (attr) != NULL)
16708 return NULL;
16709
16710 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16711 if (attr == NULL)
16712 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16713 if (attr == NULL || DW_STRING (attr) == NULL)
16714 return NULL;
16715
16716 /* dwarf2_name had to be already called. */
16717 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16718
16719 /* Strip the base name, keep any leading namespaces/classes. */
16720 base = strrchr (DW_STRING (attr), ':');
16721 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16722 return "";
16723
16724 return obstack_copy0 (&cu->objfile->objfile_obstack,
16725 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16726 }
16727
16728 /* Return the name of the namespace/class that DIE is defined within,
16729 or "" if we can't tell. The caller should not xfree the result.
16730
16731 For example, if we're within the method foo() in the following
16732 code:
16733
16734 namespace N {
16735 class C {
16736 void foo () {
16737 }
16738 };
16739 }
16740
16741 then determine_prefix on foo's die will return "N::C". */
16742
16743 static const char *
16744 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16745 {
16746 struct die_info *parent, *spec_die;
16747 struct dwarf2_cu *spec_cu;
16748 struct type *parent_type;
16749 char *retval;
16750
16751 if (cu->language != language_cplus && cu->language != language_java
16752 && cu->language != language_fortran)
16753 return "";
16754
16755 retval = anonymous_struct_prefix (die, cu);
16756 if (retval)
16757 return retval;
16758
16759 /* We have to be careful in the presence of DW_AT_specification.
16760 For example, with GCC 3.4, given the code
16761
16762 namespace N {
16763 void foo() {
16764 // Definition of N::foo.
16765 }
16766 }
16767
16768 then we'll have a tree of DIEs like this:
16769
16770 1: DW_TAG_compile_unit
16771 2: DW_TAG_namespace // N
16772 3: DW_TAG_subprogram // declaration of N::foo
16773 4: DW_TAG_subprogram // definition of N::foo
16774 DW_AT_specification // refers to die #3
16775
16776 Thus, when processing die #4, we have to pretend that we're in
16777 the context of its DW_AT_specification, namely the contex of die
16778 #3. */
16779 spec_cu = cu;
16780 spec_die = die_specification (die, &spec_cu);
16781 if (spec_die == NULL)
16782 parent = die->parent;
16783 else
16784 {
16785 parent = spec_die->parent;
16786 cu = spec_cu;
16787 }
16788
16789 if (parent == NULL)
16790 return "";
16791 else if (parent->building_fullname)
16792 {
16793 const char *name;
16794 const char *parent_name;
16795
16796 /* It has been seen on RealView 2.2 built binaries,
16797 DW_TAG_template_type_param types actually _defined_ as
16798 children of the parent class:
16799
16800 enum E {};
16801 template class <class Enum> Class{};
16802 Class<enum E> class_e;
16803
16804 1: DW_TAG_class_type (Class)
16805 2: DW_TAG_enumeration_type (E)
16806 3: DW_TAG_enumerator (enum1:0)
16807 3: DW_TAG_enumerator (enum2:1)
16808 ...
16809 2: DW_TAG_template_type_param
16810 DW_AT_type DW_FORM_ref_udata (E)
16811
16812 Besides being broken debug info, it can put GDB into an
16813 infinite loop. Consider:
16814
16815 When we're building the full name for Class<E>, we'll start
16816 at Class, and go look over its template type parameters,
16817 finding E. We'll then try to build the full name of E, and
16818 reach here. We're now trying to build the full name of E,
16819 and look over the parent DIE for containing scope. In the
16820 broken case, if we followed the parent DIE of E, we'd again
16821 find Class, and once again go look at its template type
16822 arguments, etc., etc. Simply don't consider such parent die
16823 as source-level parent of this die (it can't be, the language
16824 doesn't allow it), and break the loop here. */
16825 name = dwarf2_name (die, cu);
16826 parent_name = dwarf2_name (parent, cu);
16827 complaint (&symfile_complaints,
16828 _("template param type '%s' defined within parent '%s'"),
16829 name ? name : "<unknown>",
16830 parent_name ? parent_name : "<unknown>");
16831 return "";
16832 }
16833 else
16834 switch (parent->tag)
16835 {
16836 case DW_TAG_namespace:
16837 parent_type = read_type_die (parent, cu);
16838 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16839 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16840 Work around this problem here. */
16841 if (cu->language == language_cplus
16842 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16843 return "";
16844 /* We give a name to even anonymous namespaces. */
16845 return TYPE_TAG_NAME (parent_type);
16846 case DW_TAG_class_type:
16847 case DW_TAG_interface_type:
16848 case DW_TAG_structure_type:
16849 case DW_TAG_union_type:
16850 case DW_TAG_module:
16851 parent_type = read_type_die (parent, cu);
16852 if (TYPE_TAG_NAME (parent_type) != NULL)
16853 return TYPE_TAG_NAME (parent_type);
16854 else
16855 /* An anonymous structure is only allowed non-static data
16856 members; no typedefs, no member functions, et cetera.
16857 So it does not need a prefix. */
16858 return "";
16859 case DW_TAG_compile_unit:
16860 case DW_TAG_partial_unit:
16861 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16862 if (cu->language == language_cplus
16863 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16864 && die->child != NULL
16865 && (die->tag == DW_TAG_class_type
16866 || die->tag == DW_TAG_structure_type
16867 || die->tag == DW_TAG_union_type))
16868 {
16869 char *name = guess_full_die_structure_name (die, cu);
16870 if (name != NULL)
16871 return name;
16872 }
16873 return "";
16874 default:
16875 return determine_prefix (parent, cu);
16876 }
16877 }
16878
16879 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16880 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16881 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16882 an obconcat, otherwise allocate storage for the result. The CU argument is
16883 used to determine the language and hence, the appropriate separator. */
16884
16885 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16886
16887 static char *
16888 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16889 int physname, struct dwarf2_cu *cu)
16890 {
16891 const char *lead = "";
16892 const char *sep;
16893
16894 if (suffix == NULL || suffix[0] == '\0'
16895 || prefix == NULL || prefix[0] == '\0')
16896 sep = "";
16897 else if (cu->language == language_java)
16898 sep = ".";
16899 else if (cu->language == language_fortran && physname)
16900 {
16901 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16902 DW_AT_MIPS_linkage_name is preferred and used instead. */
16903
16904 lead = "__";
16905 sep = "_MOD_";
16906 }
16907 else
16908 sep = "::";
16909
16910 if (prefix == NULL)
16911 prefix = "";
16912 if (suffix == NULL)
16913 suffix = "";
16914
16915 if (obs == NULL)
16916 {
16917 char *retval
16918 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16919
16920 strcpy (retval, lead);
16921 strcat (retval, prefix);
16922 strcat (retval, sep);
16923 strcat (retval, suffix);
16924 return retval;
16925 }
16926 else
16927 {
16928 /* We have an obstack. */
16929 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16930 }
16931 }
16932
16933 /* Return sibling of die, NULL if no sibling. */
16934
16935 static struct die_info *
16936 sibling_die (struct die_info *die)
16937 {
16938 return die->sibling;
16939 }
16940
16941 /* Get name of a die, return NULL if not found. */
16942
16943 static const char *
16944 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16945 struct obstack *obstack)
16946 {
16947 if (name && cu->language == language_cplus)
16948 {
16949 char *canon_name = cp_canonicalize_string (name);
16950
16951 if (canon_name != NULL)
16952 {
16953 if (strcmp (canon_name, name) != 0)
16954 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16955 xfree (canon_name);
16956 }
16957 }
16958
16959 return name;
16960 }
16961
16962 /* Get name of a die, return NULL if not found. */
16963
16964 static const char *
16965 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16966 {
16967 struct attribute *attr;
16968
16969 attr = dwarf2_attr (die, DW_AT_name, cu);
16970 if ((!attr || !DW_STRING (attr))
16971 && die->tag != DW_TAG_class_type
16972 && die->tag != DW_TAG_interface_type
16973 && die->tag != DW_TAG_structure_type
16974 && die->tag != DW_TAG_union_type)
16975 return NULL;
16976
16977 switch (die->tag)
16978 {
16979 case DW_TAG_compile_unit:
16980 case DW_TAG_partial_unit:
16981 /* Compilation units have a DW_AT_name that is a filename, not
16982 a source language identifier. */
16983 case DW_TAG_enumeration_type:
16984 case DW_TAG_enumerator:
16985 /* These tags always have simple identifiers already; no need
16986 to canonicalize them. */
16987 return DW_STRING (attr);
16988
16989 case DW_TAG_subprogram:
16990 /* Java constructors will all be named "<init>", so return
16991 the class name when we see this special case. */
16992 if (cu->language == language_java
16993 && DW_STRING (attr) != NULL
16994 && strcmp (DW_STRING (attr), "<init>") == 0)
16995 {
16996 struct dwarf2_cu *spec_cu = cu;
16997 struct die_info *spec_die;
16998
16999 /* GCJ will output '<init>' for Java constructor names.
17000 For this special case, return the name of the parent class. */
17001
17002 /* GCJ may output suprogram DIEs with AT_specification set.
17003 If so, use the name of the specified DIE. */
17004 spec_die = die_specification (die, &spec_cu);
17005 if (spec_die != NULL)
17006 return dwarf2_name (spec_die, spec_cu);
17007
17008 do
17009 {
17010 die = die->parent;
17011 if (die->tag == DW_TAG_class_type)
17012 return dwarf2_name (die, cu);
17013 }
17014 while (die->tag != DW_TAG_compile_unit
17015 && die->tag != DW_TAG_partial_unit);
17016 }
17017 break;
17018
17019 case DW_TAG_class_type:
17020 case DW_TAG_interface_type:
17021 case DW_TAG_structure_type:
17022 case DW_TAG_union_type:
17023 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17024 structures or unions. These were of the form "._%d" in GCC 4.1,
17025 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17026 and GCC 4.4. We work around this problem by ignoring these. */
17027 if (attr && DW_STRING (attr)
17028 && (strncmp (DW_STRING (attr), "._", 2) == 0
17029 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17030 return NULL;
17031
17032 /* GCC might emit a nameless typedef that has a linkage name. See
17033 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17034 if (!attr || DW_STRING (attr) == NULL)
17035 {
17036 char *demangled = NULL;
17037
17038 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17039 if (attr == NULL)
17040 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17041
17042 if (attr == NULL || DW_STRING (attr) == NULL)
17043 return NULL;
17044
17045 /* Avoid demangling DW_STRING (attr) the second time on a second
17046 call for the same DIE. */
17047 if (!DW_STRING_IS_CANONICAL (attr))
17048 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17049
17050 if (demangled)
17051 {
17052 char *base;
17053
17054 /* FIXME: we already did this for the partial symbol... */
17055 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17056 demangled, strlen (demangled));
17057 DW_STRING_IS_CANONICAL (attr) = 1;
17058 xfree (demangled);
17059
17060 /* Strip any leading namespaces/classes, keep only the base name.
17061 DW_AT_name for named DIEs does not contain the prefixes. */
17062 base = strrchr (DW_STRING (attr), ':');
17063 if (base && base > DW_STRING (attr) && base[-1] == ':')
17064 return &base[1];
17065 else
17066 return DW_STRING (attr);
17067 }
17068 }
17069 break;
17070
17071 default:
17072 break;
17073 }
17074
17075 if (!DW_STRING_IS_CANONICAL (attr))
17076 {
17077 DW_STRING (attr)
17078 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17079 &cu->objfile->objfile_obstack);
17080 DW_STRING_IS_CANONICAL (attr) = 1;
17081 }
17082 return DW_STRING (attr);
17083 }
17084
17085 /* Return the die that this die in an extension of, or NULL if there
17086 is none. *EXT_CU is the CU containing DIE on input, and the CU
17087 containing the return value on output. */
17088
17089 static struct die_info *
17090 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17091 {
17092 struct attribute *attr;
17093
17094 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17095 if (attr == NULL)
17096 return NULL;
17097
17098 return follow_die_ref (die, attr, ext_cu);
17099 }
17100
17101 /* Convert a DIE tag into its string name. */
17102
17103 static const char *
17104 dwarf_tag_name (unsigned tag)
17105 {
17106 const char *name = get_DW_TAG_name (tag);
17107
17108 if (name == NULL)
17109 return "DW_TAG_<unknown>";
17110
17111 return name;
17112 }
17113
17114 /* Convert a DWARF attribute code into its string name. */
17115
17116 static const char *
17117 dwarf_attr_name (unsigned attr)
17118 {
17119 const char *name;
17120
17121 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17122 if (attr == DW_AT_MIPS_fde)
17123 return "DW_AT_MIPS_fde";
17124 #else
17125 if (attr == DW_AT_HP_block_index)
17126 return "DW_AT_HP_block_index";
17127 #endif
17128
17129 name = get_DW_AT_name (attr);
17130
17131 if (name == NULL)
17132 return "DW_AT_<unknown>";
17133
17134 return name;
17135 }
17136
17137 /* Convert a DWARF value form code into its string name. */
17138
17139 static const char *
17140 dwarf_form_name (unsigned form)
17141 {
17142 const char *name = get_DW_FORM_name (form);
17143
17144 if (name == NULL)
17145 return "DW_FORM_<unknown>";
17146
17147 return name;
17148 }
17149
17150 static char *
17151 dwarf_bool_name (unsigned mybool)
17152 {
17153 if (mybool)
17154 return "TRUE";
17155 else
17156 return "FALSE";
17157 }
17158
17159 /* Convert a DWARF type code into its string name. */
17160
17161 static const char *
17162 dwarf_type_encoding_name (unsigned enc)
17163 {
17164 const char *name = get_DW_ATE_name (enc);
17165
17166 if (name == NULL)
17167 return "DW_ATE_<unknown>";
17168
17169 return name;
17170 }
17171
17172 static void
17173 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17174 {
17175 unsigned int i;
17176
17177 print_spaces (indent, f);
17178 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17179 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17180
17181 if (die->parent != NULL)
17182 {
17183 print_spaces (indent, f);
17184 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17185 die->parent->offset.sect_off);
17186 }
17187
17188 print_spaces (indent, f);
17189 fprintf_unfiltered (f, " has children: %s\n",
17190 dwarf_bool_name (die->child != NULL));
17191
17192 print_spaces (indent, f);
17193 fprintf_unfiltered (f, " attributes:\n");
17194
17195 for (i = 0; i < die->num_attrs; ++i)
17196 {
17197 print_spaces (indent, f);
17198 fprintf_unfiltered (f, " %s (%s) ",
17199 dwarf_attr_name (die->attrs[i].name),
17200 dwarf_form_name (die->attrs[i].form));
17201
17202 switch (die->attrs[i].form)
17203 {
17204 case DW_FORM_addr:
17205 case DW_FORM_GNU_addr_index:
17206 fprintf_unfiltered (f, "address: ");
17207 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17208 break;
17209 case DW_FORM_block2:
17210 case DW_FORM_block4:
17211 case DW_FORM_block:
17212 case DW_FORM_block1:
17213 fprintf_unfiltered (f, "block: size %s",
17214 pulongest (DW_BLOCK (&die->attrs[i])->size));
17215 break;
17216 case DW_FORM_exprloc:
17217 fprintf_unfiltered (f, "expression: size %s",
17218 pulongest (DW_BLOCK (&die->attrs[i])->size));
17219 break;
17220 case DW_FORM_ref_addr:
17221 fprintf_unfiltered (f, "ref address: ");
17222 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17223 break;
17224 case DW_FORM_GNU_ref_alt:
17225 fprintf_unfiltered (f, "alt ref address: ");
17226 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17227 break;
17228 case DW_FORM_ref1:
17229 case DW_FORM_ref2:
17230 case DW_FORM_ref4:
17231 case DW_FORM_ref8:
17232 case DW_FORM_ref_udata:
17233 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17234 (long) (DW_UNSND (&die->attrs[i])));
17235 break;
17236 case DW_FORM_data1:
17237 case DW_FORM_data2:
17238 case DW_FORM_data4:
17239 case DW_FORM_data8:
17240 case DW_FORM_udata:
17241 case DW_FORM_sdata:
17242 fprintf_unfiltered (f, "constant: %s",
17243 pulongest (DW_UNSND (&die->attrs[i])));
17244 break;
17245 case DW_FORM_sec_offset:
17246 fprintf_unfiltered (f, "section offset: %s",
17247 pulongest (DW_UNSND (&die->attrs[i])));
17248 break;
17249 case DW_FORM_ref_sig8:
17250 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17251 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17252 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17253 else
17254 fprintf_unfiltered (f, "signatured type, offset: unknown");
17255 break;
17256 case DW_FORM_string:
17257 case DW_FORM_strp:
17258 case DW_FORM_GNU_str_index:
17259 case DW_FORM_GNU_strp_alt:
17260 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17261 DW_STRING (&die->attrs[i])
17262 ? DW_STRING (&die->attrs[i]) : "",
17263 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17264 break;
17265 case DW_FORM_flag:
17266 if (DW_UNSND (&die->attrs[i]))
17267 fprintf_unfiltered (f, "flag: TRUE");
17268 else
17269 fprintf_unfiltered (f, "flag: FALSE");
17270 break;
17271 case DW_FORM_flag_present:
17272 fprintf_unfiltered (f, "flag: TRUE");
17273 break;
17274 case DW_FORM_indirect:
17275 /* The reader will have reduced the indirect form to
17276 the "base form" so this form should not occur. */
17277 fprintf_unfiltered (f,
17278 "unexpected attribute form: DW_FORM_indirect");
17279 break;
17280 default:
17281 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17282 die->attrs[i].form);
17283 break;
17284 }
17285 fprintf_unfiltered (f, "\n");
17286 }
17287 }
17288
17289 static void
17290 dump_die_for_error (struct die_info *die)
17291 {
17292 dump_die_shallow (gdb_stderr, 0, die);
17293 }
17294
17295 static void
17296 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17297 {
17298 int indent = level * 4;
17299
17300 gdb_assert (die != NULL);
17301
17302 if (level >= max_level)
17303 return;
17304
17305 dump_die_shallow (f, indent, die);
17306
17307 if (die->child != NULL)
17308 {
17309 print_spaces (indent, f);
17310 fprintf_unfiltered (f, " Children:");
17311 if (level + 1 < max_level)
17312 {
17313 fprintf_unfiltered (f, "\n");
17314 dump_die_1 (f, level + 1, max_level, die->child);
17315 }
17316 else
17317 {
17318 fprintf_unfiltered (f,
17319 " [not printed, max nesting level reached]\n");
17320 }
17321 }
17322
17323 if (die->sibling != NULL && level > 0)
17324 {
17325 dump_die_1 (f, level, max_level, die->sibling);
17326 }
17327 }
17328
17329 /* This is called from the pdie macro in gdbinit.in.
17330 It's not static so gcc will keep a copy callable from gdb. */
17331
17332 void
17333 dump_die (struct die_info *die, int max_level)
17334 {
17335 dump_die_1 (gdb_stdlog, 0, max_level, die);
17336 }
17337
17338 static void
17339 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17340 {
17341 void **slot;
17342
17343 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17344 INSERT);
17345
17346 *slot = die;
17347 }
17348
17349 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17350 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17351
17352 static int
17353 is_ref_attr (struct attribute *attr)
17354 {
17355 switch (attr->form)
17356 {
17357 case DW_FORM_ref_addr:
17358 case DW_FORM_ref1:
17359 case DW_FORM_ref2:
17360 case DW_FORM_ref4:
17361 case DW_FORM_ref8:
17362 case DW_FORM_ref_udata:
17363 case DW_FORM_GNU_ref_alt:
17364 return 1;
17365 default:
17366 return 0;
17367 }
17368 }
17369
17370 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17371 required kind. */
17372
17373 static sect_offset
17374 dwarf2_get_ref_die_offset (struct attribute *attr)
17375 {
17376 sect_offset retval = { DW_UNSND (attr) };
17377
17378 if (is_ref_attr (attr))
17379 return retval;
17380
17381 retval.sect_off = 0;
17382 complaint (&symfile_complaints,
17383 _("unsupported die ref attribute form: '%s'"),
17384 dwarf_form_name (attr->form));
17385 return retval;
17386 }
17387
17388 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17389 * the value held by the attribute is not constant. */
17390
17391 static LONGEST
17392 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17393 {
17394 if (attr->form == DW_FORM_sdata)
17395 return DW_SND (attr);
17396 else if (attr->form == DW_FORM_udata
17397 || attr->form == DW_FORM_data1
17398 || attr->form == DW_FORM_data2
17399 || attr->form == DW_FORM_data4
17400 || attr->form == DW_FORM_data8)
17401 return DW_UNSND (attr);
17402 else
17403 {
17404 complaint (&symfile_complaints,
17405 _("Attribute value is not a constant (%s)"),
17406 dwarf_form_name (attr->form));
17407 return default_value;
17408 }
17409 }
17410
17411 /* Follow reference or signature attribute ATTR of SRC_DIE.
17412 On entry *REF_CU is the CU of SRC_DIE.
17413 On exit *REF_CU is the CU of the result. */
17414
17415 static struct die_info *
17416 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17417 struct dwarf2_cu **ref_cu)
17418 {
17419 struct die_info *die;
17420
17421 if (is_ref_attr (attr))
17422 die = follow_die_ref (src_die, attr, ref_cu);
17423 else if (attr->form == DW_FORM_ref_sig8)
17424 die = follow_die_sig (src_die, attr, ref_cu);
17425 else
17426 {
17427 dump_die_for_error (src_die);
17428 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17429 (*ref_cu)->objfile->name);
17430 }
17431
17432 return die;
17433 }
17434
17435 /* Follow reference OFFSET.
17436 On entry *REF_CU is the CU of the source die referencing OFFSET.
17437 On exit *REF_CU is the CU of the result.
17438 Returns NULL if OFFSET is invalid. */
17439
17440 static struct die_info *
17441 follow_die_offset (sect_offset offset, int offset_in_dwz,
17442 struct dwarf2_cu **ref_cu)
17443 {
17444 struct die_info temp_die;
17445 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17446
17447 gdb_assert (cu->per_cu != NULL);
17448
17449 target_cu = cu;
17450
17451 if (cu->per_cu->is_debug_types)
17452 {
17453 /* .debug_types CUs cannot reference anything outside their CU.
17454 If they need to, they have to reference a signatured type via
17455 DW_FORM_ref_sig8. */
17456 if (! offset_in_cu_p (&cu->header, offset))
17457 return NULL;
17458 }
17459 else if (offset_in_dwz != cu->per_cu->is_dwz
17460 || ! offset_in_cu_p (&cu->header, offset))
17461 {
17462 struct dwarf2_per_cu_data *per_cu;
17463
17464 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17465 cu->objfile);
17466
17467 /* If necessary, add it to the queue and load its DIEs. */
17468 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17469 load_full_comp_unit (per_cu, cu->language);
17470
17471 target_cu = per_cu->cu;
17472 }
17473 else if (cu->dies == NULL)
17474 {
17475 /* We're loading full DIEs during partial symbol reading. */
17476 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17477 load_full_comp_unit (cu->per_cu, language_minimal);
17478 }
17479
17480 *ref_cu = target_cu;
17481 temp_die.offset = offset;
17482 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17483 }
17484
17485 /* Follow reference attribute ATTR of SRC_DIE.
17486 On entry *REF_CU is the CU of SRC_DIE.
17487 On exit *REF_CU is the CU of the result. */
17488
17489 static struct die_info *
17490 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17491 struct dwarf2_cu **ref_cu)
17492 {
17493 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17494 struct dwarf2_cu *cu = *ref_cu;
17495 struct die_info *die;
17496
17497 die = follow_die_offset (offset,
17498 (attr->form == DW_FORM_GNU_ref_alt
17499 || cu->per_cu->is_dwz),
17500 ref_cu);
17501 if (!die)
17502 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17503 "at 0x%x [in module %s]"),
17504 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17505
17506 return die;
17507 }
17508
17509 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17510 Returned value is intended for DW_OP_call*. Returned
17511 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17512
17513 struct dwarf2_locexpr_baton
17514 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17515 struct dwarf2_per_cu_data *per_cu,
17516 CORE_ADDR (*get_frame_pc) (void *baton),
17517 void *baton)
17518 {
17519 struct dwarf2_cu *cu;
17520 struct die_info *die;
17521 struct attribute *attr;
17522 struct dwarf2_locexpr_baton retval;
17523
17524 dw2_setup (per_cu->objfile);
17525
17526 if (per_cu->cu == NULL)
17527 load_cu (per_cu);
17528 cu = per_cu->cu;
17529
17530 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17531 if (!die)
17532 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17533 offset.sect_off, per_cu->objfile->name);
17534
17535 attr = dwarf2_attr (die, DW_AT_location, cu);
17536 if (!attr)
17537 {
17538 /* DWARF: "If there is no such attribute, then there is no effect.".
17539 DATA is ignored if SIZE is 0. */
17540
17541 retval.data = NULL;
17542 retval.size = 0;
17543 }
17544 else if (attr_form_is_section_offset (attr))
17545 {
17546 struct dwarf2_loclist_baton loclist_baton;
17547 CORE_ADDR pc = (*get_frame_pc) (baton);
17548 size_t size;
17549
17550 fill_in_loclist_baton (cu, &loclist_baton, attr);
17551
17552 retval.data = dwarf2_find_location_expression (&loclist_baton,
17553 &size, pc);
17554 retval.size = size;
17555 }
17556 else
17557 {
17558 if (!attr_form_is_block (attr))
17559 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17560 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17561 offset.sect_off, per_cu->objfile->name);
17562
17563 retval.data = DW_BLOCK (attr)->data;
17564 retval.size = DW_BLOCK (attr)->size;
17565 }
17566 retval.per_cu = cu->per_cu;
17567
17568 age_cached_comp_units ();
17569
17570 return retval;
17571 }
17572
17573 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17574 offset. */
17575
17576 struct dwarf2_locexpr_baton
17577 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17578 struct dwarf2_per_cu_data *per_cu,
17579 CORE_ADDR (*get_frame_pc) (void *baton),
17580 void *baton)
17581 {
17582 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17583
17584 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17585 }
17586
17587 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17588 PER_CU. */
17589
17590 struct type *
17591 dwarf2_get_die_type (cu_offset die_offset,
17592 struct dwarf2_per_cu_data *per_cu)
17593 {
17594 sect_offset die_offset_sect;
17595
17596 dw2_setup (per_cu->objfile);
17597
17598 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17599 return get_die_type_at_offset (die_offset_sect, per_cu);
17600 }
17601
17602 /* Follow the signature attribute ATTR in SRC_DIE.
17603 On entry *REF_CU is the CU of SRC_DIE.
17604 On exit *REF_CU is the CU of the result. */
17605
17606 static struct die_info *
17607 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17608 struct dwarf2_cu **ref_cu)
17609 {
17610 struct objfile *objfile = (*ref_cu)->objfile;
17611 struct die_info temp_die;
17612 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17613 struct dwarf2_cu *sig_cu;
17614 struct die_info *die;
17615
17616 /* sig_type will be NULL if the signatured type is missing from
17617 the debug info. */
17618 if (sig_type == NULL)
17619 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17620 "at 0x%x [in module %s]"),
17621 src_die->offset.sect_off, objfile->name);
17622
17623 /* If necessary, add it to the queue and load its DIEs. */
17624
17625 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17626 read_signatured_type (sig_type);
17627
17628 gdb_assert (sig_type->per_cu.cu != NULL);
17629
17630 sig_cu = sig_type->per_cu.cu;
17631 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17632 temp_die.offset = sig_type->type_offset_in_section;
17633 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17634 temp_die.offset.sect_off);
17635 if (die)
17636 {
17637 /* For .gdb_index version 7 keep track of included TUs.
17638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17639 if (dwarf2_per_objfile->index_table != NULL
17640 && dwarf2_per_objfile->index_table->version <= 7)
17641 {
17642 VEC_safe_push (dwarf2_per_cu_ptr,
17643 (*ref_cu)->per_cu->imported_symtabs,
17644 sig_cu->per_cu);
17645 }
17646
17647 *ref_cu = sig_cu;
17648 return die;
17649 }
17650
17651 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17652 "from DIE at 0x%x [in module %s]"),
17653 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17654 }
17655
17656 /* Given an offset of a signatured type, return its signatured_type. */
17657
17658 static struct signatured_type *
17659 lookup_signatured_type_at_offset (struct objfile *objfile,
17660 struct dwarf2_section_info *section,
17661 sect_offset offset)
17662 {
17663 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17664 unsigned int length, initial_length_size;
17665 unsigned int sig_offset;
17666 struct signatured_type find_entry, *sig_type;
17667
17668 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17669 sig_offset = (initial_length_size
17670 + 2 /*version*/
17671 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17672 + 1 /*address_size*/);
17673 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17674 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17675
17676 /* This is only used to lookup previously recorded types.
17677 If we didn't find it, it's our bug. */
17678 gdb_assert (sig_type != NULL);
17679 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17680
17681 return sig_type;
17682 }
17683
17684 /* Load the DIEs associated with type unit PER_CU into memory. */
17685
17686 static void
17687 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17688 {
17689 struct signatured_type *sig_type;
17690
17691 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17692 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17693
17694 /* We have the per_cu, but we need the signatured_type.
17695 Fortunately this is an easy translation. */
17696 gdb_assert (per_cu->is_debug_types);
17697 sig_type = (struct signatured_type *) per_cu;
17698
17699 gdb_assert (per_cu->cu == NULL);
17700
17701 read_signatured_type (sig_type);
17702
17703 gdb_assert (per_cu->cu != NULL);
17704 }
17705
17706 /* die_reader_func for read_signatured_type.
17707 This is identical to load_full_comp_unit_reader,
17708 but is kept separate for now. */
17709
17710 static void
17711 read_signatured_type_reader (const struct die_reader_specs *reader,
17712 gdb_byte *info_ptr,
17713 struct die_info *comp_unit_die,
17714 int has_children,
17715 void *data)
17716 {
17717 struct dwarf2_cu *cu = reader->cu;
17718
17719 gdb_assert (cu->die_hash == NULL);
17720 cu->die_hash =
17721 htab_create_alloc_ex (cu->header.length / 12,
17722 die_hash,
17723 die_eq,
17724 NULL,
17725 &cu->comp_unit_obstack,
17726 hashtab_obstack_allocate,
17727 dummy_obstack_deallocate);
17728
17729 if (has_children)
17730 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17731 &info_ptr, comp_unit_die);
17732 cu->dies = comp_unit_die;
17733 /* comp_unit_die is not stored in die_hash, no need. */
17734
17735 /* We try not to read any attributes in this function, because not
17736 all CUs needed for references have been loaded yet, and symbol
17737 table processing isn't initialized. But we have to set the CU language,
17738 or we won't be able to build types correctly.
17739 Similarly, if we do not read the producer, we can not apply
17740 producer-specific interpretation. */
17741 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17742 }
17743
17744 /* Read in a signatured type and build its CU and DIEs.
17745 If the type is a stub for the real type in a DWO file,
17746 read in the real type from the DWO file as well. */
17747
17748 static void
17749 read_signatured_type (struct signatured_type *sig_type)
17750 {
17751 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17752
17753 gdb_assert (per_cu->is_debug_types);
17754 gdb_assert (per_cu->cu == NULL);
17755
17756 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17757 read_signatured_type_reader, NULL);
17758 }
17759
17760 /* Decode simple location descriptions.
17761 Given a pointer to a dwarf block that defines a location, compute
17762 the location and return the value.
17763
17764 NOTE drow/2003-11-18: This function is called in two situations
17765 now: for the address of static or global variables (partial symbols
17766 only) and for offsets into structures which are expected to be
17767 (more or less) constant. The partial symbol case should go away,
17768 and only the constant case should remain. That will let this
17769 function complain more accurately. A few special modes are allowed
17770 without complaint for global variables (for instance, global
17771 register values and thread-local values).
17772
17773 A location description containing no operations indicates that the
17774 object is optimized out. The return value is 0 for that case.
17775 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17776 callers will only want a very basic result and this can become a
17777 complaint.
17778
17779 Note that stack[0] is unused except as a default error return. */
17780
17781 static CORE_ADDR
17782 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17783 {
17784 struct objfile *objfile = cu->objfile;
17785 size_t i;
17786 size_t size = blk->size;
17787 gdb_byte *data = blk->data;
17788 CORE_ADDR stack[64];
17789 int stacki;
17790 unsigned int bytes_read, unsnd;
17791 gdb_byte op;
17792
17793 i = 0;
17794 stacki = 0;
17795 stack[stacki] = 0;
17796 stack[++stacki] = 0;
17797
17798 while (i < size)
17799 {
17800 op = data[i++];
17801 switch (op)
17802 {
17803 case DW_OP_lit0:
17804 case DW_OP_lit1:
17805 case DW_OP_lit2:
17806 case DW_OP_lit3:
17807 case DW_OP_lit4:
17808 case DW_OP_lit5:
17809 case DW_OP_lit6:
17810 case DW_OP_lit7:
17811 case DW_OP_lit8:
17812 case DW_OP_lit9:
17813 case DW_OP_lit10:
17814 case DW_OP_lit11:
17815 case DW_OP_lit12:
17816 case DW_OP_lit13:
17817 case DW_OP_lit14:
17818 case DW_OP_lit15:
17819 case DW_OP_lit16:
17820 case DW_OP_lit17:
17821 case DW_OP_lit18:
17822 case DW_OP_lit19:
17823 case DW_OP_lit20:
17824 case DW_OP_lit21:
17825 case DW_OP_lit22:
17826 case DW_OP_lit23:
17827 case DW_OP_lit24:
17828 case DW_OP_lit25:
17829 case DW_OP_lit26:
17830 case DW_OP_lit27:
17831 case DW_OP_lit28:
17832 case DW_OP_lit29:
17833 case DW_OP_lit30:
17834 case DW_OP_lit31:
17835 stack[++stacki] = op - DW_OP_lit0;
17836 break;
17837
17838 case DW_OP_reg0:
17839 case DW_OP_reg1:
17840 case DW_OP_reg2:
17841 case DW_OP_reg3:
17842 case DW_OP_reg4:
17843 case DW_OP_reg5:
17844 case DW_OP_reg6:
17845 case DW_OP_reg7:
17846 case DW_OP_reg8:
17847 case DW_OP_reg9:
17848 case DW_OP_reg10:
17849 case DW_OP_reg11:
17850 case DW_OP_reg12:
17851 case DW_OP_reg13:
17852 case DW_OP_reg14:
17853 case DW_OP_reg15:
17854 case DW_OP_reg16:
17855 case DW_OP_reg17:
17856 case DW_OP_reg18:
17857 case DW_OP_reg19:
17858 case DW_OP_reg20:
17859 case DW_OP_reg21:
17860 case DW_OP_reg22:
17861 case DW_OP_reg23:
17862 case DW_OP_reg24:
17863 case DW_OP_reg25:
17864 case DW_OP_reg26:
17865 case DW_OP_reg27:
17866 case DW_OP_reg28:
17867 case DW_OP_reg29:
17868 case DW_OP_reg30:
17869 case DW_OP_reg31:
17870 stack[++stacki] = op - DW_OP_reg0;
17871 if (i < size)
17872 dwarf2_complex_location_expr_complaint ();
17873 break;
17874
17875 case DW_OP_regx:
17876 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17877 i += bytes_read;
17878 stack[++stacki] = unsnd;
17879 if (i < size)
17880 dwarf2_complex_location_expr_complaint ();
17881 break;
17882
17883 case DW_OP_addr:
17884 stack[++stacki] = read_address (objfile->obfd, &data[i],
17885 cu, &bytes_read);
17886 i += bytes_read;
17887 break;
17888
17889 case DW_OP_const1u:
17890 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17891 i += 1;
17892 break;
17893
17894 case DW_OP_const1s:
17895 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17896 i += 1;
17897 break;
17898
17899 case DW_OP_const2u:
17900 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17901 i += 2;
17902 break;
17903
17904 case DW_OP_const2s:
17905 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17906 i += 2;
17907 break;
17908
17909 case DW_OP_const4u:
17910 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17911 i += 4;
17912 break;
17913
17914 case DW_OP_const4s:
17915 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17916 i += 4;
17917 break;
17918
17919 case DW_OP_const8u:
17920 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17921 i += 8;
17922 break;
17923
17924 case DW_OP_constu:
17925 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17926 &bytes_read);
17927 i += bytes_read;
17928 break;
17929
17930 case DW_OP_consts:
17931 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17932 i += bytes_read;
17933 break;
17934
17935 case DW_OP_dup:
17936 stack[stacki + 1] = stack[stacki];
17937 stacki++;
17938 break;
17939
17940 case DW_OP_plus:
17941 stack[stacki - 1] += stack[stacki];
17942 stacki--;
17943 break;
17944
17945 case DW_OP_plus_uconst:
17946 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17947 &bytes_read);
17948 i += bytes_read;
17949 break;
17950
17951 case DW_OP_minus:
17952 stack[stacki - 1] -= stack[stacki];
17953 stacki--;
17954 break;
17955
17956 case DW_OP_deref:
17957 /* If we're not the last op, then we definitely can't encode
17958 this using GDB's address_class enum. This is valid for partial
17959 global symbols, although the variable's address will be bogus
17960 in the psymtab. */
17961 if (i < size)
17962 dwarf2_complex_location_expr_complaint ();
17963 break;
17964
17965 case DW_OP_GNU_push_tls_address:
17966 /* The top of the stack has the offset from the beginning
17967 of the thread control block at which the variable is located. */
17968 /* Nothing should follow this operator, so the top of stack would
17969 be returned. */
17970 /* This is valid for partial global symbols, but the variable's
17971 address will be bogus in the psymtab. Make it always at least
17972 non-zero to not look as a variable garbage collected by linker
17973 which have DW_OP_addr 0. */
17974 if (i < size)
17975 dwarf2_complex_location_expr_complaint ();
17976 stack[stacki]++;
17977 break;
17978
17979 case DW_OP_GNU_uninit:
17980 break;
17981
17982 case DW_OP_GNU_addr_index:
17983 case DW_OP_GNU_const_index:
17984 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17985 &bytes_read);
17986 i += bytes_read;
17987 break;
17988
17989 default:
17990 {
17991 const char *name = get_DW_OP_name (op);
17992
17993 if (name)
17994 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17995 name);
17996 else
17997 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17998 op);
17999 }
18000
18001 return (stack[stacki]);
18002 }
18003
18004 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18005 outside of the allocated space. Also enforce minimum>0. */
18006 if (stacki >= ARRAY_SIZE (stack) - 1)
18007 {
18008 complaint (&symfile_complaints,
18009 _("location description stack overflow"));
18010 return 0;
18011 }
18012
18013 if (stacki <= 0)
18014 {
18015 complaint (&symfile_complaints,
18016 _("location description stack underflow"));
18017 return 0;
18018 }
18019 }
18020 return (stack[stacki]);
18021 }
18022
18023 /* memory allocation interface */
18024
18025 static struct dwarf_block *
18026 dwarf_alloc_block (struct dwarf2_cu *cu)
18027 {
18028 struct dwarf_block *blk;
18029
18030 blk = (struct dwarf_block *)
18031 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18032 return (blk);
18033 }
18034
18035 static struct die_info *
18036 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18037 {
18038 struct die_info *die;
18039 size_t size = sizeof (struct die_info);
18040
18041 if (num_attrs > 1)
18042 size += (num_attrs - 1) * sizeof (struct attribute);
18043
18044 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18045 memset (die, 0, sizeof (struct die_info));
18046 return (die);
18047 }
18048
18049 \f
18050 /* Macro support. */
18051
18052 /* Return file name relative to the compilation directory of file number I in
18053 *LH's file name table. The result is allocated using xmalloc; the caller is
18054 responsible for freeing it. */
18055
18056 static char *
18057 file_file_name (int file, struct line_header *lh)
18058 {
18059 /* Is the file number a valid index into the line header's file name
18060 table? Remember that file numbers start with one, not zero. */
18061 if (1 <= file && file <= lh->num_file_names)
18062 {
18063 struct file_entry *fe = &lh->file_names[file - 1];
18064
18065 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18066 return xstrdup (fe->name);
18067 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18068 fe->name, NULL);
18069 }
18070 else
18071 {
18072 /* The compiler produced a bogus file number. We can at least
18073 record the macro definitions made in the file, even if we
18074 won't be able to find the file by name. */
18075 char fake_name[80];
18076
18077 xsnprintf (fake_name, sizeof (fake_name),
18078 "<bad macro file number %d>", file);
18079
18080 complaint (&symfile_complaints,
18081 _("bad file number in macro information (%d)"),
18082 file);
18083
18084 return xstrdup (fake_name);
18085 }
18086 }
18087
18088 /* Return the full name of file number I in *LH's file name table.
18089 Use COMP_DIR as the name of the current directory of the
18090 compilation. The result is allocated using xmalloc; the caller is
18091 responsible for freeing it. */
18092 static char *
18093 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18094 {
18095 /* Is the file number a valid index into the line header's file name
18096 table? Remember that file numbers start with one, not zero. */
18097 if (1 <= file && file <= lh->num_file_names)
18098 {
18099 char *relative = file_file_name (file, lh);
18100
18101 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18102 return relative;
18103 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18104 }
18105 else
18106 return file_file_name (file, lh);
18107 }
18108
18109
18110 static struct macro_source_file *
18111 macro_start_file (int file, int line,
18112 struct macro_source_file *current_file,
18113 const char *comp_dir,
18114 struct line_header *lh, struct objfile *objfile)
18115 {
18116 /* File name relative to the compilation directory of this source file. */
18117 char *file_name = file_file_name (file, lh);
18118
18119 /* We don't create a macro table for this compilation unit
18120 at all until we actually get a filename. */
18121 if (! pending_macros)
18122 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18123 objfile->per_bfd->macro_cache,
18124 comp_dir);
18125
18126 if (! current_file)
18127 {
18128 /* If we have no current file, then this must be the start_file
18129 directive for the compilation unit's main source file. */
18130 current_file = macro_set_main (pending_macros, file_name);
18131 macro_define_special (pending_macros);
18132 }
18133 else
18134 current_file = macro_include (current_file, line, file_name);
18135
18136 xfree (file_name);
18137
18138 return current_file;
18139 }
18140
18141
18142 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18143 followed by a null byte. */
18144 static char *
18145 copy_string (const char *buf, int len)
18146 {
18147 char *s = xmalloc (len + 1);
18148
18149 memcpy (s, buf, len);
18150 s[len] = '\0';
18151 return s;
18152 }
18153
18154
18155 static const char *
18156 consume_improper_spaces (const char *p, const char *body)
18157 {
18158 if (*p == ' ')
18159 {
18160 complaint (&symfile_complaints,
18161 _("macro definition contains spaces "
18162 "in formal argument list:\n`%s'"),
18163 body);
18164
18165 while (*p == ' ')
18166 p++;
18167 }
18168
18169 return p;
18170 }
18171
18172
18173 static void
18174 parse_macro_definition (struct macro_source_file *file, int line,
18175 const char *body)
18176 {
18177 const char *p;
18178
18179 /* The body string takes one of two forms. For object-like macro
18180 definitions, it should be:
18181
18182 <macro name> " " <definition>
18183
18184 For function-like macro definitions, it should be:
18185
18186 <macro name> "() " <definition>
18187 or
18188 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18189
18190 Spaces may appear only where explicitly indicated, and in the
18191 <definition>.
18192
18193 The Dwarf 2 spec says that an object-like macro's name is always
18194 followed by a space, but versions of GCC around March 2002 omit
18195 the space when the macro's definition is the empty string.
18196
18197 The Dwarf 2 spec says that there should be no spaces between the
18198 formal arguments in a function-like macro's formal argument list,
18199 but versions of GCC around March 2002 include spaces after the
18200 commas. */
18201
18202
18203 /* Find the extent of the macro name. The macro name is terminated
18204 by either a space or null character (for an object-like macro) or
18205 an opening paren (for a function-like macro). */
18206 for (p = body; *p; p++)
18207 if (*p == ' ' || *p == '(')
18208 break;
18209
18210 if (*p == ' ' || *p == '\0')
18211 {
18212 /* It's an object-like macro. */
18213 int name_len = p - body;
18214 char *name = copy_string (body, name_len);
18215 const char *replacement;
18216
18217 if (*p == ' ')
18218 replacement = body + name_len + 1;
18219 else
18220 {
18221 dwarf2_macro_malformed_definition_complaint (body);
18222 replacement = body + name_len;
18223 }
18224
18225 macro_define_object (file, line, name, replacement);
18226
18227 xfree (name);
18228 }
18229 else if (*p == '(')
18230 {
18231 /* It's a function-like macro. */
18232 char *name = copy_string (body, p - body);
18233 int argc = 0;
18234 int argv_size = 1;
18235 char **argv = xmalloc (argv_size * sizeof (*argv));
18236
18237 p++;
18238
18239 p = consume_improper_spaces (p, body);
18240
18241 /* Parse the formal argument list. */
18242 while (*p && *p != ')')
18243 {
18244 /* Find the extent of the current argument name. */
18245 const char *arg_start = p;
18246
18247 while (*p && *p != ',' && *p != ')' && *p != ' ')
18248 p++;
18249
18250 if (! *p || p == arg_start)
18251 dwarf2_macro_malformed_definition_complaint (body);
18252 else
18253 {
18254 /* Make sure argv has room for the new argument. */
18255 if (argc >= argv_size)
18256 {
18257 argv_size *= 2;
18258 argv = xrealloc (argv, argv_size * sizeof (*argv));
18259 }
18260
18261 argv[argc++] = copy_string (arg_start, p - arg_start);
18262 }
18263
18264 p = consume_improper_spaces (p, body);
18265
18266 /* Consume the comma, if present. */
18267 if (*p == ',')
18268 {
18269 p++;
18270
18271 p = consume_improper_spaces (p, body);
18272 }
18273 }
18274
18275 if (*p == ')')
18276 {
18277 p++;
18278
18279 if (*p == ' ')
18280 /* Perfectly formed definition, no complaints. */
18281 macro_define_function (file, line, name,
18282 argc, (const char **) argv,
18283 p + 1);
18284 else if (*p == '\0')
18285 {
18286 /* Complain, but do define it. */
18287 dwarf2_macro_malformed_definition_complaint (body);
18288 macro_define_function (file, line, name,
18289 argc, (const char **) argv,
18290 p);
18291 }
18292 else
18293 /* Just complain. */
18294 dwarf2_macro_malformed_definition_complaint (body);
18295 }
18296 else
18297 /* Just complain. */
18298 dwarf2_macro_malformed_definition_complaint (body);
18299
18300 xfree (name);
18301 {
18302 int i;
18303
18304 for (i = 0; i < argc; i++)
18305 xfree (argv[i]);
18306 }
18307 xfree (argv);
18308 }
18309 else
18310 dwarf2_macro_malformed_definition_complaint (body);
18311 }
18312
18313 /* Skip some bytes from BYTES according to the form given in FORM.
18314 Returns the new pointer. */
18315
18316 static gdb_byte *
18317 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18318 enum dwarf_form form,
18319 unsigned int offset_size,
18320 struct dwarf2_section_info *section)
18321 {
18322 unsigned int bytes_read;
18323
18324 switch (form)
18325 {
18326 case DW_FORM_data1:
18327 case DW_FORM_flag:
18328 ++bytes;
18329 break;
18330
18331 case DW_FORM_data2:
18332 bytes += 2;
18333 break;
18334
18335 case DW_FORM_data4:
18336 bytes += 4;
18337 break;
18338
18339 case DW_FORM_data8:
18340 bytes += 8;
18341 break;
18342
18343 case DW_FORM_string:
18344 read_direct_string (abfd, bytes, &bytes_read);
18345 bytes += bytes_read;
18346 break;
18347
18348 case DW_FORM_sec_offset:
18349 case DW_FORM_strp:
18350 case DW_FORM_GNU_strp_alt:
18351 bytes += offset_size;
18352 break;
18353
18354 case DW_FORM_block:
18355 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18356 bytes += bytes_read;
18357 break;
18358
18359 case DW_FORM_block1:
18360 bytes += 1 + read_1_byte (abfd, bytes);
18361 break;
18362 case DW_FORM_block2:
18363 bytes += 2 + read_2_bytes (abfd, bytes);
18364 break;
18365 case DW_FORM_block4:
18366 bytes += 4 + read_4_bytes (abfd, bytes);
18367 break;
18368
18369 case DW_FORM_sdata:
18370 case DW_FORM_udata:
18371 case DW_FORM_GNU_addr_index:
18372 case DW_FORM_GNU_str_index:
18373 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18374 if (bytes == NULL)
18375 {
18376 dwarf2_section_buffer_overflow_complaint (section);
18377 return NULL;
18378 }
18379 break;
18380
18381 default:
18382 {
18383 complain:
18384 complaint (&symfile_complaints,
18385 _("invalid form 0x%x in `%s'"),
18386 form,
18387 section->asection->name);
18388 return NULL;
18389 }
18390 }
18391
18392 return bytes;
18393 }
18394
18395 /* A helper for dwarf_decode_macros that handles skipping an unknown
18396 opcode. Returns an updated pointer to the macro data buffer; or,
18397 on error, issues a complaint and returns NULL. */
18398
18399 static gdb_byte *
18400 skip_unknown_opcode (unsigned int opcode,
18401 gdb_byte **opcode_definitions,
18402 gdb_byte *mac_ptr, gdb_byte *mac_end,
18403 bfd *abfd,
18404 unsigned int offset_size,
18405 struct dwarf2_section_info *section)
18406 {
18407 unsigned int bytes_read, i;
18408 unsigned long arg;
18409 gdb_byte *defn;
18410
18411 if (opcode_definitions[opcode] == NULL)
18412 {
18413 complaint (&symfile_complaints,
18414 _("unrecognized DW_MACFINO opcode 0x%x"),
18415 opcode);
18416 return NULL;
18417 }
18418
18419 defn = opcode_definitions[opcode];
18420 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18421 defn += bytes_read;
18422
18423 for (i = 0; i < arg; ++i)
18424 {
18425 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18426 section);
18427 if (mac_ptr == NULL)
18428 {
18429 /* skip_form_bytes already issued the complaint. */
18430 return NULL;
18431 }
18432 }
18433
18434 return mac_ptr;
18435 }
18436
18437 /* A helper function which parses the header of a macro section.
18438 If the macro section is the extended (for now called "GNU") type,
18439 then this updates *OFFSET_SIZE. Returns a pointer to just after
18440 the header, or issues a complaint and returns NULL on error. */
18441
18442 static gdb_byte *
18443 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18444 bfd *abfd,
18445 gdb_byte *mac_ptr,
18446 unsigned int *offset_size,
18447 int section_is_gnu)
18448 {
18449 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18450
18451 if (section_is_gnu)
18452 {
18453 unsigned int version, flags;
18454
18455 version = read_2_bytes (abfd, mac_ptr);
18456 if (version != 4)
18457 {
18458 complaint (&symfile_complaints,
18459 _("unrecognized version `%d' in .debug_macro section"),
18460 version);
18461 return NULL;
18462 }
18463 mac_ptr += 2;
18464
18465 flags = read_1_byte (abfd, mac_ptr);
18466 ++mac_ptr;
18467 *offset_size = (flags & 1) ? 8 : 4;
18468
18469 if ((flags & 2) != 0)
18470 /* We don't need the line table offset. */
18471 mac_ptr += *offset_size;
18472
18473 /* Vendor opcode descriptions. */
18474 if ((flags & 4) != 0)
18475 {
18476 unsigned int i, count;
18477
18478 count = read_1_byte (abfd, mac_ptr);
18479 ++mac_ptr;
18480 for (i = 0; i < count; ++i)
18481 {
18482 unsigned int opcode, bytes_read;
18483 unsigned long arg;
18484
18485 opcode = read_1_byte (abfd, mac_ptr);
18486 ++mac_ptr;
18487 opcode_definitions[opcode] = mac_ptr;
18488 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18489 mac_ptr += bytes_read;
18490 mac_ptr += arg;
18491 }
18492 }
18493 }
18494
18495 return mac_ptr;
18496 }
18497
18498 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18499 including DW_MACRO_GNU_transparent_include. */
18500
18501 static void
18502 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18503 struct macro_source_file *current_file,
18504 struct line_header *lh, const char *comp_dir,
18505 struct dwarf2_section_info *section,
18506 int section_is_gnu, int section_is_dwz,
18507 unsigned int offset_size,
18508 struct objfile *objfile,
18509 htab_t include_hash)
18510 {
18511 enum dwarf_macro_record_type macinfo_type;
18512 int at_commandline;
18513 gdb_byte *opcode_definitions[256];
18514
18515 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18516 &offset_size, section_is_gnu);
18517 if (mac_ptr == NULL)
18518 {
18519 /* We already issued a complaint. */
18520 return;
18521 }
18522
18523 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18524 GDB is still reading the definitions from command line. First
18525 DW_MACINFO_start_file will need to be ignored as it was already executed
18526 to create CURRENT_FILE for the main source holding also the command line
18527 definitions. On first met DW_MACINFO_start_file this flag is reset to
18528 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18529
18530 at_commandline = 1;
18531
18532 do
18533 {
18534 /* Do we at least have room for a macinfo type byte? */
18535 if (mac_ptr >= mac_end)
18536 {
18537 dwarf2_section_buffer_overflow_complaint (section);
18538 break;
18539 }
18540
18541 macinfo_type = read_1_byte (abfd, mac_ptr);
18542 mac_ptr++;
18543
18544 /* Note that we rely on the fact that the corresponding GNU and
18545 DWARF constants are the same. */
18546 switch (macinfo_type)
18547 {
18548 /* A zero macinfo type indicates the end of the macro
18549 information. */
18550 case 0:
18551 break;
18552
18553 case DW_MACRO_GNU_define:
18554 case DW_MACRO_GNU_undef:
18555 case DW_MACRO_GNU_define_indirect:
18556 case DW_MACRO_GNU_undef_indirect:
18557 case DW_MACRO_GNU_define_indirect_alt:
18558 case DW_MACRO_GNU_undef_indirect_alt:
18559 {
18560 unsigned int bytes_read;
18561 int line;
18562 char *body;
18563 int is_define;
18564
18565 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18566 mac_ptr += bytes_read;
18567
18568 if (macinfo_type == DW_MACRO_GNU_define
18569 || macinfo_type == DW_MACRO_GNU_undef)
18570 {
18571 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18572 mac_ptr += bytes_read;
18573 }
18574 else
18575 {
18576 LONGEST str_offset;
18577
18578 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18579 mac_ptr += offset_size;
18580
18581 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18582 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18583 || section_is_dwz)
18584 {
18585 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18586
18587 body = read_indirect_string_from_dwz (dwz, str_offset);
18588 }
18589 else
18590 body = read_indirect_string_at_offset (abfd, str_offset);
18591 }
18592
18593 is_define = (macinfo_type == DW_MACRO_GNU_define
18594 || macinfo_type == DW_MACRO_GNU_define_indirect
18595 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18596 if (! current_file)
18597 {
18598 /* DWARF violation as no main source is present. */
18599 complaint (&symfile_complaints,
18600 _("debug info with no main source gives macro %s "
18601 "on line %d: %s"),
18602 is_define ? _("definition") : _("undefinition"),
18603 line, body);
18604 break;
18605 }
18606 if ((line == 0 && !at_commandline)
18607 || (line != 0 && at_commandline))
18608 complaint (&symfile_complaints,
18609 _("debug info gives %s macro %s with %s line %d: %s"),
18610 at_commandline ? _("command-line") : _("in-file"),
18611 is_define ? _("definition") : _("undefinition"),
18612 line == 0 ? _("zero") : _("non-zero"), line, body);
18613
18614 if (is_define)
18615 parse_macro_definition (current_file, line, body);
18616 else
18617 {
18618 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18619 || macinfo_type == DW_MACRO_GNU_undef_indirect
18620 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18621 macro_undef (current_file, line, body);
18622 }
18623 }
18624 break;
18625
18626 case DW_MACRO_GNU_start_file:
18627 {
18628 unsigned int bytes_read;
18629 int line, file;
18630
18631 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18632 mac_ptr += bytes_read;
18633 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18634 mac_ptr += bytes_read;
18635
18636 if ((line == 0 && !at_commandline)
18637 || (line != 0 && at_commandline))
18638 complaint (&symfile_complaints,
18639 _("debug info gives source %d included "
18640 "from %s at %s line %d"),
18641 file, at_commandline ? _("command-line") : _("file"),
18642 line == 0 ? _("zero") : _("non-zero"), line);
18643
18644 if (at_commandline)
18645 {
18646 /* This DW_MACRO_GNU_start_file was executed in the
18647 pass one. */
18648 at_commandline = 0;
18649 }
18650 else
18651 current_file = macro_start_file (file, line,
18652 current_file, comp_dir,
18653 lh, objfile);
18654 }
18655 break;
18656
18657 case DW_MACRO_GNU_end_file:
18658 if (! current_file)
18659 complaint (&symfile_complaints,
18660 _("macro debug info has an unmatched "
18661 "`close_file' directive"));
18662 else
18663 {
18664 current_file = current_file->included_by;
18665 if (! current_file)
18666 {
18667 enum dwarf_macro_record_type next_type;
18668
18669 /* GCC circa March 2002 doesn't produce the zero
18670 type byte marking the end of the compilation
18671 unit. Complain if it's not there, but exit no
18672 matter what. */
18673
18674 /* Do we at least have room for a macinfo type byte? */
18675 if (mac_ptr >= mac_end)
18676 {
18677 dwarf2_section_buffer_overflow_complaint (section);
18678 return;
18679 }
18680
18681 /* We don't increment mac_ptr here, so this is just
18682 a look-ahead. */
18683 next_type = read_1_byte (abfd, mac_ptr);
18684 if (next_type != 0)
18685 complaint (&symfile_complaints,
18686 _("no terminating 0-type entry for "
18687 "macros in `.debug_macinfo' section"));
18688
18689 return;
18690 }
18691 }
18692 break;
18693
18694 case DW_MACRO_GNU_transparent_include:
18695 case DW_MACRO_GNU_transparent_include_alt:
18696 {
18697 LONGEST offset;
18698 void **slot;
18699 bfd *include_bfd = abfd;
18700 struct dwarf2_section_info *include_section = section;
18701 struct dwarf2_section_info alt_section;
18702 gdb_byte *include_mac_end = mac_end;
18703 int is_dwz = section_is_dwz;
18704 gdb_byte *new_mac_ptr;
18705
18706 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18707 mac_ptr += offset_size;
18708
18709 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18710 {
18711 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18712
18713 dwarf2_read_section (dwarf2_per_objfile->objfile,
18714 &dwz->macro);
18715
18716 include_bfd = dwz->macro.asection->owner;
18717 include_section = &dwz->macro;
18718 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18719 is_dwz = 1;
18720 }
18721
18722 new_mac_ptr = include_section->buffer + offset;
18723 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18724
18725 if (*slot != NULL)
18726 {
18727 /* This has actually happened; see
18728 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18729 complaint (&symfile_complaints,
18730 _("recursive DW_MACRO_GNU_transparent_include in "
18731 ".debug_macro section"));
18732 }
18733 else
18734 {
18735 *slot = new_mac_ptr;
18736
18737 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18738 include_mac_end, current_file,
18739 lh, comp_dir,
18740 section, section_is_gnu, is_dwz,
18741 offset_size, objfile, include_hash);
18742
18743 htab_remove_elt (include_hash, new_mac_ptr);
18744 }
18745 }
18746 break;
18747
18748 case DW_MACINFO_vendor_ext:
18749 if (!section_is_gnu)
18750 {
18751 unsigned int bytes_read;
18752 int constant;
18753
18754 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18755 mac_ptr += bytes_read;
18756 read_direct_string (abfd, mac_ptr, &bytes_read);
18757 mac_ptr += bytes_read;
18758
18759 /* We don't recognize any vendor extensions. */
18760 break;
18761 }
18762 /* FALLTHROUGH */
18763
18764 default:
18765 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18766 mac_ptr, mac_end, abfd, offset_size,
18767 section);
18768 if (mac_ptr == NULL)
18769 return;
18770 break;
18771 }
18772 } while (macinfo_type != 0);
18773 }
18774
18775 static void
18776 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18777 const char *comp_dir, int section_is_gnu)
18778 {
18779 struct objfile *objfile = dwarf2_per_objfile->objfile;
18780 struct line_header *lh = cu->line_header;
18781 bfd *abfd;
18782 gdb_byte *mac_ptr, *mac_end;
18783 struct macro_source_file *current_file = 0;
18784 enum dwarf_macro_record_type macinfo_type;
18785 unsigned int offset_size = cu->header.offset_size;
18786 gdb_byte *opcode_definitions[256];
18787 struct cleanup *cleanup;
18788 htab_t include_hash;
18789 void **slot;
18790 struct dwarf2_section_info *section;
18791 const char *section_name;
18792
18793 if (cu->dwo_unit != NULL)
18794 {
18795 if (section_is_gnu)
18796 {
18797 section = &cu->dwo_unit->dwo_file->sections.macro;
18798 section_name = ".debug_macro.dwo";
18799 }
18800 else
18801 {
18802 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18803 section_name = ".debug_macinfo.dwo";
18804 }
18805 }
18806 else
18807 {
18808 if (section_is_gnu)
18809 {
18810 section = &dwarf2_per_objfile->macro;
18811 section_name = ".debug_macro";
18812 }
18813 else
18814 {
18815 section = &dwarf2_per_objfile->macinfo;
18816 section_name = ".debug_macinfo";
18817 }
18818 }
18819
18820 dwarf2_read_section (objfile, section);
18821 if (section->buffer == NULL)
18822 {
18823 complaint (&symfile_complaints, _("missing %s section"), section_name);
18824 return;
18825 }
18826 abfd = section->asection->owner;
18827
18828 /* First pass: Find the name of the base filename.
18829 This filename is needed in order to process all macros whose definition
18830 (or undefinition) comes from the command line. These macros are defined
18831 before the first DW_MACINFO_start_file entry, and yet still need to be
18832 associated to the base file.
18833
18834 To determine the base file name, we scan the macro definitions until we
18835 reach the first DW_MACINFO_start_file entry. We then initialize
18836 CURRENT_FILE accordingly so that any macro definition found before the
18837 first DW_MACINFO_start_file can still be associated to the base file. */
18838
18839 mac_ptr = section->buffer + offset;
18840 mac_end = section->buffer + section->size;
18841
18842 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18843 &offset_size, section_is_gnu);
18844 if (mac_ptr == NULL)
18845 {
18846 /* We already issued a complaint. */
18847 return;
18848 }
18849
18850 do
18851 {
18852 /* Do we at least have room for a macinfo type byte? */
18853 if (mac_ptr >= mac_end)
18854 {
18855 /* Complaint is printed during the second pass as GDB will probably
18856 stop the first pass earlier upon finding
18857 DW_MACINFO_start_file. */
18858 break;
18859 }
18860
18861 macinfo_type = read_1_byte (abfd, mac_ptr);
18862 mac_ptr++;
18863
18864 /* Note that we rely on the fact that the corresponding GNU and
18865 DWARF constants are the same. */
18866 switch (macinfo_type)
18867 {
18868 /* A zero macinfo type indicates the end of the macro
18869 information. */
18870 case 0:
18871 break;
18872
18873 case DW_MACRO_GNU_define:
18874 case DW_MACRO_GNU_undef:
18875 /* Only skip the data by MAC_PTR. */
18876 {
18877 unsigned int bytes_read;
18878
18879 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18880 mac_ptr += bytes_read;
18881 read_direct_string (abfd, mac_ptr, &bytes_read);
18882 mac_ptr += bytes_read;
18883 }
18884 break;
18885
18886 case DW_MACRO_GNU_start_file:
18887 {
18888 unsigned int bytes_read;
18889 int line, file;
18890
18891 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18892 mac_ptr += bytes_read;
18893 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18894 mac_ptr += bytes_read;
18895
18896 current_file = macro_start_file (file, line, current_file,
18897 comp_dir, lh, objfile);
18898 }
18899 break;
18900
18901 case DW_MACRO_GNU_end_file:
18902 /* No data to skip by MAC_PTR. */
18903 break;
18904
18905 case DW_MACRO_GNU_define_indirect:
18906 case DW_MACRO_GNU_undef_indirect:
18907 case DW_MACRO_GNU_define_indirect_alt:
18908 case DW_MACRO_GNU_undef_indirect_alt:
18909 {
18910 unsigned int bytes_read;
18911
18912 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18913 mac_ptr += bytes_read;
18914 mac_ptr += offset_size;
18915 }
18916 break;
18917
18918 case DW_MACRO_GNU_transparent_include:
18919 case DW_MACRO_GNU_transparent_include_alt:
18920 /* Note that, according to the spec, a transparent include
18921 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18922 skip this opcode. */
18923 mac_ptr += offset_size;
18924 break;
18925
18926 case DW_MACINFO_vendor_ext:
18927 /* Only skip the data by MAC_PTR. */
18928 if (!section_is_gnu)
18929 {
18930 unsigned int bytes_read;
18931
18932 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18933 mac_ptr += bytes_read;
18934 read_direct_string (abfd, mac_ptr, &bytes_read);
18935 mac_ptr += bytes_read;
18936 }
18937 /* FALLTHROUGH */
18938
18939 default:
18940 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18941 mac_ptr, mac_end, abfd, offset_size,
18942 section);
18943 if (mac_ptr == NULL)
18944 return;
18945 break;
18946 }
18947 } while (macinfo_type != 0 && current_file == NULL);
18948
18949 /* Second pass: Process all entries.
18950
18951 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18952 command-line macro definitions/undefinitions. This flag is unset when we
18953 reach the first DW_MACINFO_start_file entry. */
18954
18955 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18956 NULL, xcalloc, xfree);
18957 cleanup = make_cleanup_htab_delete (include_hash);
18958 mac_ptr = section->buffer + offset;
18959 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18960 *slot = mac_ptr;
18961 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18962 current_file, lh, comp_dir, section,
18963 section_is_gnu, 0,
18964 offset_size, objfile, include_hash);
18965 do_cleanups (cleanup);
18966 }
18967
18968 /* Check if the attribute's form is a DW_FORM_block*
18969 if so return true else false. */
18970
18971 static int
18972 attr_form_is_block (struct attribute *attr)
18973 {
18974 return (attr == NULL ? 0 :
18975 attr->form == DW_FORM_block1
18976 || attr->form == DW_FORM_block2
18977 || attr->form == DW_FORM_block4
18978 || attr->form == DW_FORM_block
18979 || attr->form == DW_FORM_exprloc);
18980 }
18981
18982 /* Return non-zero if ATTR's value is a section offset --- classes
18983 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18984 You may use DW_UNSND (attr) to retrieve such offsets.
18985
18986 Section 7.5.4, "Attribute Encodings", explains that no attribute
18987 may have a value that belongs to more than one of these classes; it
18988 would be ambiguous if we did, because we use the same forms for all
18989 of them. */
18990
18991 static int
18992 attr_form_is_section_offset (struct attribute *attr)
18993 {
18994 return (attr->form == DW_FORM_data4
18995 || attr->form == DW_FORM_data8
18996 || attr->form == DW_FORM_sec_offset);
18997 }
18998
18999 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19000 zero otherwise. When this function returns true, you can apply
19001 dwarf2_get_attr_constant_value to it.
19002
19003 However, note that for some attributes you must check
19004 attr_form_is_section_offset before using this test. DW_FORM_data4
19005 and DW_FORM_data8 are members of both the constant class, and of
19006 the classes that contain offsets into other debug sections
19007 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19008 that, if an attribute's can be either a constant or one of the
19009 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19010 taken as section offsets, not constants. */
19011
19012 static int
19013 attr_form_is_constant (struct attribute *attr)
19014 {
19015 switch (attr->form)
19016 {
19017 case DW_FORM_sdata:
19018 case DW_FORM_udata:
19019 case DW_FORM_data1:
19020 case DW_FORM_data2:
19021 case DW_FORM_data4:
19022 case DW_FORM_data8:
19023 return 1;
19024 default:
19025 return 0;
19026 }
19027 }
19028
19029 /* Return the .debug_loc section to use for CU.
19030 For DWO files use .debug_loc.dwo. */
19031
19032 static struct dwarf2_section_info *
19033 cu_debug_loc_section (struct dwarf2_cu *cu)
19034 {
19035 if (cu->dwo_unit)
19036 return &cu->dwo_unit->dwo_file->sections.loc;
19037 return &dwarf2_per_objfile->loc;
19038 }
19039
19040 /* A helper function that fills in a dwarf2_loclist_baton. */
19041
19042 static void
19043 fill_in_loclist_baton (struct dwarf2_cu *cu,
19044 struct dwarf2_loclist_baton *baton,
19045 struct attribute *attr)
19046 {
19047 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19048
19049 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19050
19051 baton->per_cu = cu->per_cu;
19052 gdb_assert (baton->per_cu);
19053 /* We don't know how long the location list is, but make sure we
19054 don't run off the edge of the section. */
19055 baton->size = section->size - DW_UNSND (attr);
19056 baton->data = section->buffer + DW_UNSND (attr);
19057 baton->base_address = cu->base_address;
19058 baton->from_dwo = cu->dwo_unit != NULL;
19059 }
19060
19061 static void
19062 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19063 struct dwarf2_cu *cu)
19064 {
19065 struct objfile *objfile = dwarf2_per_objfile->objfile;
19066 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19067
19068 if (attr_form_is_section_offset (attr)
19069 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19070 the section. If so, fall through to the complaint in the
19071 other branch. */
19072 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19073 {
19074 struct dwarf2_loclist_baton *baton;
19075
19076 baton = obstack_alloc (&objfile->objfile_obstack,
19077 sizeof (struct dwarf2_loclist_baton));
19078
19079 fill_in_loclist_baton (cu, baton, attr);
19080
19081 if (cu->base_known == 0)
19082 complaint (&symfile_complaints,
19083 _("Location list used without "
19084 "specifying the CU base address."));
19085
19086 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19087 SYMBOL_LOCATION_BATON (sym) = baton;
19088 }
19089 else
19090 {
19091 struct dwarf2_locexpr_baton *baton;
19092
19093 baton = obstack_alloc (&objfile->objfile_obstack,
19094 sizeof (struct dwarf2_locexpr_baton));
19095 baton->per_cu = cu->per_cu;
19096 gdb_assert (baton->per_cu);
19097
19098 if (attr_form_is_block (attr))
19099 {
19100 /* Note that we're just copying the block's data pointer
19101 here, not the actual data. We're still pointing into the
19102 info_buffer for SYM's objfile; right now we never release
19103 that buffer, but when we do clean up properly this may
19104 need to change. */
19105 baton->size = DW_BLOCK (attr)->size;
19106 baton->data = DW_BLOCK (attr)->data;
19107 }
19108 else
19109 {
19110 dwarf2_invalid_attrib_class_complaint ("location description",
19111 SYMBOL_NATURAL_NAME (sym));
19112 baton->size = 0;
19113 }
19114
19115 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19116 SYMBOL_LOCATION_BATON (sym) = baton;
19117 }
19118 }
19119
19120 /* Return the OBJFILE associated with the compilation unit CU. If CU
19121 came from a separate debuginfo file, then the master objfile is
19122 returned. */
19123
19124 struct objfile *
19125 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19126 {
19127 struct objfile *objfile = per_cu->objfile;
19128
19129 /* Return the master objfile, so that we can report and look up the
19130 correct file containing this variable. */
19131 if (objfile->separate_debug_objfile_backlink)
19132 objfile = objfile->separate_debug_objfile_backlink;
19133
19134 return objfile;
19135 }
19136
19137 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19138 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19139 CU_HEADERP first. */
19140
19141 static const struct comp_unit_head *
19142 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19143 struct dwarf2_per_cu_data *per_cu)
19144 {
19145 gdb_byte *info_ptr;
19146
19147 if (per_cu->cu)
19148 return &per_cu->cu->header;
19149
19150 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19151
19152 memset (cu_headerp, 0, sizeof (*cu_headerp));
19153 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19154
19155 return cu_headerp;
19156 }
19157
19158 /* Return the address size given in the compilation unit header for CU. */
19159
19160 int
19161 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19162 {
19163 struct comp_unit_head cu_header_local;
19164 const struct comp_unit_head *cu_headerp;
19165
19166 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19167
19168 return cu_headerp->addr_size;
19169 }
19170
19171 /* Return the offset size given in the compilation unit header for CU. */
19172
19173 int
19174 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19175 {
19176 struct comp_unit_head cu_header_local;
19177 const struct comp_unit_head *cu_headerp;
19178
19179 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19180
19181 return cu_headerp->offset_size;
19182 }
19183
19184 /* See its dwarf2loc.h declaration. */
19185
19186 int
19187 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19188 {
19189 struct comp_unit_head cu_header_local;
19190 const struct comp_unit_head *cu_headerp;
19191
19192 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19193
19194 if (cu_headerp->version == 2)
19195 return cu_headerp->addr_size;
19196 else
19197 return cu_headerp->offset_size;
19198 }
19199
19200 /* Return the text offset of the CU. The returned offset comes from
19201 this CU's objfile. If this objfile came from a separate debuginfo
19202 file, then the offset may be different from the corresponding
19203 offset in the parent objfile. */
19204
19205 CORE_ADDR
19206 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19207 {
19208 struct objfile *objfile = per_cu->objfile;
19209
19210 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19211 }
19212
19213 /* Locate the .debug_info compilation unit from CU's objfile which contains
19214 the DIE at OFFSET. Raises an error on failure. */
19215
19216 static struct dwarf2_per_cu_data *
19217 dwarf2_find_containing_comp_unit (sect_offset offset,
19218 unsigned int offset_in_dwz,
19219 struct objfile *objfile)
19220 {
19221 struct dwarf2_per_cu_data *this_cu;
19222 int low, high;
19223 const sect_offset *cu_off;
19224
19225 low = 0;
19226 high = dwarf2_per_objfile->n_comp_units - 1;
19227 while (high > low)
19228 {
19229 struct dwarf2_per_cu_data *mid_cu;
19230 int mid = low + (high - low) / 2;
19231
19232 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19233 cu_off = &mid_cu->offset;
19234 if (mid_cu->is_dwz > offset_in_dwz
19235 || (mid_cu->is_dwz == offset_in_dwz
19236 && cu_off->sect_off >= offset.sect_off))
19237 high = mid;
19238 else
19239 low = mid + 1;
19240 }
19241 gdb_assert (low == high);
19242 this_cu = dwarf2_per_objfile->all_comp_units[low];
19243 cu_off = &this_cu->offset;
19244 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19245 {
19246 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19247 error (_("Dwarf Error: could not find partial DIE containing "
19248 "offset 0x%lx [in module %s]"),
19249 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19250
19251 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19252 <= offset.sect_off);
19253 return dwarf2_per_objfile->all_comp_units[low-1];
19254 }
19255 else
19256 {
19257 this_cu = dwarf2_per_objfile->all_comp_units[low];
19258 if (low == dwarf2_per_objfile->n_comp_units - 1
19259 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19260 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19261 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19262 return this_cu;
19263 }
19264 }
19265
19266 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19267
19268 static void
19269 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19270 {
19271 memset (cu, 0, sizeof (*cu));
19272 per_cu->cu = cu;
19273 cu->per_cu = per_cu;
19274 cu->objfile = per_cu->objfile;
19275 obstack_init (&cu->comp_unit_obstack);
19276 }
19277
19278 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19279
19280 static void
19281 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19282 enum language pretend_language)
19283 {
19284 struct attribute *attr;
19285
19286 /* Set the language we're debugging. */
19287 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19288 if (attr)
19289 set_cu_language (DW_UNSND (attr), cu);
19290 else
19291 {
19292 cu->language = pretend_language;
19293 cu->language_defn = language_def (cu->language);
19294 }
19295
19296 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19297 if (attr)
19298 cu->producer = DW_STRING (attr);
19299 }
19300
19301 /* Release one cached compilation unit, CU. We unlink it from the tree
19302 of compilation units, but we don't remove it from the read_in_chain;
19303 the caller is responsible for that.
19304 NOTE: DATA is a void * because this function is also used as a
19305 cleanup routine. */
19306
19307 static void
19308 free_heap_comp_unit (void *data)
19309 {
19310 struct dwarf2_cu *cu = data;
19311
19312 gdb_assert (cu->per_cu != NULL);
19313 cu->per_cu->cu = NULL;
19314 cu->per_cu = NULL;
19315
19316 obstack_free (&cu->comp_unit_obstack, NULL);
19317
19318 xfree (cu);
19319 }
19320
19321 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19322 when we're finished with it. We can't free the pointer itself, but be
19323 sure to unlink it from the cache. Also release any associated storage. */
19324
19325 static void
19326 free_stack_comp_unit (void *data)
19327 {
19328 struct dwarf2_cu *cu = data;
19329
19330 gdb_assert (cu->per_cu != NULL);
19331 cu->per_cu->cu = NULL;
19332 cu->per_cu = NULL;
19333
19334 obstack_free (&cu->comp_unit_obstack, NULL);
19335 cu->partial_dies = NULL;
19336 }
19337
19338 /* Free all cached compilation units. */
19339
19340 static void
19341 free_cached_comp_units (void *data)
19342 {
19343 struct dwarf2_per_cu_data *per_cu, **last_chain;
19344
19345 per_cu = dwarf2_per_objfile->read_in_chain;
19346 last_chain = &dwarf2_per_objfile->read_in_chain;
19347 while (per_cu != NULL)
19348 {
19349 struct dwarf2_per_cu_data *next_cu;
19350
19351 next_cu = per_cu->cu->read_in_chain;
19352
19353 free_heap_comp_unit (per_cu->cu);
19354 *last_chain = next_cu;
19355
19356 per_cu = next_cu;
19357 }
19358 }
19359
19360 /* Increase the age counter on each cached compilation unit, and free
19361 any that are too old. */
19362
19363 static void
19364 age_cached_comp_units (void)
19365 {
19366 struct dwarf2_per_cu_data *per_cu, **last_chain;
19367
19368 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19369 per_cu = dwarf2_per_objfile->read_in_chain;
19370 while (per_cu != NULL)
19371 {
19372 per_cu->cu->last_used ++;
19373 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19374 dwarf2_mark (per_cu->cu);
19375 per_cu = per_cu->cu->read_in_chain;
19376 }
19377
19378 per_cu = dwarf2_per_objfile->read_in_chain;
19379 last_chain = &dwarf2_per_objfile->read_in_chain;
19380 while (per_cu != NULL)
19381 {
19382 struct dwarf2_per_cu_data *next_cu;
19383
19384 next_cu = per_cu->cu->read_in_chain;
19385
19386 if (!per_cu->cu->mark)
19387 {
19388 free_heap_comp_unit (per_cu->cu);
19389 *last_chain = next_cu;
19390 }
19391 else
19392 last_chain = &per_cu->cu->read_in_chain;
19393
19394 per_cu = next_cu;
19395 }
19396 }
19397
19398 /* Remove a single compilation unit from the cache. */
19399
19400 static void
19401 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19402 {
19403 struct dwarf2_per_cu_data *per_cu, **last_chain;
19404
19405 per_cu = dwarf2_per_objfile->read_in_chain;
19406 last_chain = &dwarf2_per_objfile->read_in_chain;
19407 while (per_cu != NULL)
19408 {
19409 struct dwarf2_per_cu_data *next_cu;
19410
19411 next_cu = per_cu->cu->read_in_chain;
19412
19413 if (per_cu == target_per_cu)
19414 {
19415 free_heap_comp_unit (per_cu->cu);
19416 per_cu->cu = NULL;
19417 *last_chain = next_cu;
19418 break;
19419 }
19420 else
19421 last_chain = &per_cu->cu->read_in_chain;
19422
19423 per_cu = next_cu;
19424 }
19425 }
19426
19427 /* Release all extra memory associated with OBJFILE. */
19428
19429 void
19430 dwarf2_free_objfile (struct objfile *objfile)
19431 {
19432 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19433
19434 if (dwarf2_per_objfile == NULL)
19435 return;
19436
19437 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19438 free_cached_comp_units (NULL);
19439
19440 if (dwarf2_per_objfile->quick_file_names_table)
19441 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19442
19443 /* Everything else should be on the objfile obstack. */
19444 }
19445
19446 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19447 We store these in a hash table separate from the DIEs, and preserve them
19448 when the DIEs are flushed out of cache.
19449
19450 The CU "per_cu" pointer is needed because offset alone is not enough to
19451 uniquely identify the type. A file may have multiple .debug_types sections,
19452 or the type may come from a DWO file. We have to use something in
19453 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19454 routine, get_die_type_at_offset, from outside this file, and thus won't
19455 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19456 of the objfile. */
19457
19458 struct dwarf2_per_cu_offset_and_type
19459 {
19460 const struct dwarf2_per_cu_data *per_cu;
19461 sect_offset offset;
19462 struct type *type;
19463 };
19464
19465 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19466
19467 static hashval_t
19468 per_cu_offset_and_type_hash (const void *item)
19469 {
19470 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19471
19472 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19473 }
19474
19475 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19476
19477 static int
19478 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19479 {
19480 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19481 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19482
19483 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19484 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19485 }
19486
19487 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19488 table if necessary. For convenience, return TYPE.
19489
19490 The DIEs reading must have careful ordering to:
19491 * Not cause infite loops trying to read in DIEs as a prerequisite for
19492 reading current DIE.
19493 * Not trying to dereference contents of still incompletely read in types
19494 while reading in other DIEs.
19495 * Enable referencing still incompletely read in types just by a pointer to
19496 the type without accessing its fields.
19497
19498 Therefore caller should follow these rules:
19499 * Try to fetch any prerequisite types we may need to build this DIE type
19500 before building the type and calling set_die_type.
19501 * After building type call set_die_type for current DIE as soon as
19502 possible before fetching more types to complete the current type.
19503 * Make the type as complete as possible before fetching more types. */
19504
19505 static struct type *
19506 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19507 {
19508 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19509 struct objfile *objfile = cu->objfile;
19510
19511 /* For Ada types, make sure that the gnat-specific data is always
19512 initialized (if not already set). There are a few types where
19513 we should not be doing so, because the type-specific area is
19514 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19515 where the type-specific area is used to store the floatformat).
19516 But this is not a problem, because the gnat-specific information
19517 is actually not needed for these types. */
19518 if (need_gnat_info (cu)
19519 && TYPE_CODE (type) != TYPE_CODE_FUNC
19520 && TYPE_CODE (type) != TYPE_CODE_FLT
19521 && !HAVE_GNAT_AUX_INFO (type))
19522 INIT_GNAT_SPECIFIC (type);
19523
19524 if (dwarf2_per_objfile->die_type_hash == NULL)
19525 {
19526 dwarf2_per_objfile->die_type_hash =
19527 htab_create_alloc_ex (127,
19528 per_cu_offset_and_type_hash,
19529 per_cu_offset_and_type_eq,
19530 NULL,
19531 &objfile->objfile_obstack,
19532 hashtab_obstack_allocate,
19533 dummy_obstack_deallocate);
19534 }
19535
19536 ofs.per_cu = cu->per_cu;
19537 ofs.offset = die->offset;
19538 ofs.type = type;
19539 slot = (struct dwarf2_per_cu_offset_and_type **)
19540 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19541 if (*slot)
19542 complaint (&symfile_complaints,
19543 _("A problem internal to GDB: DIE 0x%x has type already set"),
19544 die->offset.sect_off);
19545 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19546 **slot = ofs;
19547 return type;
19548 }
19549
19550 /* Look up the type for the die at OFFSET in the appropriate type_hash
19551 table, or return NULL if the die does not have a saved type. */
19552
19553 static struct type *
19554 get_die_type_at_offset (sect_offset offset,
19555 struct dwarf2_per_cu_data *per_cu)
19556 {
19557 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19558
19559 if (dwarf2_per_objfile->die_type_hash == NULL)
19560 return NULL;
19561
19562 ofs.per_cu = per_cu;
19563 ofs.offset = offset;
19564 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19565 if (slot)
19566 return slot->type;
19567 else
19568 return NULL;
19569 }
19570
19571 /* Look up the type for DIE in the appropriate type_hash table,
19572 or return NULL if DIE does not have a saved type. */
19573
19574 static struct type *
19575 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19576 {
19577 return get_die_type_at_offset (die->offset, cu->per_cu);
19578 }
19579
19580 /* Add a dependence relationship from CU to REF_PER_CU. */
19581
19582 static void
19583 dwarf2_add_dependence (struct dwarf2_cu *cu,
19584 struct dwarf2_per_cu_data *ref_per_cu)
19585 {
19586 void **slot;
19587
19588 if (cu->dependencies == NULL)
19589 cu->dependencies
19590 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19591 NULL, &cu->comp_unit_obstack,
19592 hashtab_obstack_allocate,
19593 dummy_obstack_deallocate);
19594
19595 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19596 if (*slot == NULL)
19597 *slot = ref_per_cu;
19598 }
19599
19600 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19601 Set the mark field in every compilation unit in the
19602 cache that we must keep because we are keeping CU. */
19603
19604 static int
19605 dwarf2_mark_helper (void **slot, void *data)
19606 {
19607 struct dwarf2_per_cu_data *per_cu;
19608
19609 per_cu = (struct dwarf2_per_cu_data *) *slot;
19610
19611 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19612 reading of the chain. As such dependencies remain valid it is not much
19613 useful to track and undo them during QUIT cleanups. */
19614 if (per_cu->cu == NULL)
19615 return 1;
19616
19617 if (per_cu->cu->mark)
19618 return 1;
19619 per_cu->cu->mark = 1;
19620
19621 if (per_cu->cu->dependencies != NULL)
19622 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19623
19624 return 1;
19625 }
19626
19627 /* Set the mark field in CU and in every other compilation unit in the
19628 cache that we must keep because we are keeping CU. */
19629
19630 static void
19631 dwarf2_mark (struct dwarf2_cu *cu)
19632 {
19633 if (cu->mark)
19634 return;
19635 cu->mark = 1;
19636 if (cu->dependencies != NULL)
19637 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19638 }
19639
19640 static void
19641 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19642 {
19643 while (per_cu)
19644 {
19645 per_cu->cu->mark = 0;
19646 per_cu = per_cu->cu->read_in_chain;
19647 }
19648 }
19649
19650 /* Trivial hash function for partial_die_info: the hash value of a DIE
19651 is its offset in .debug_info for this objfile. */
19652
19653 static hashval_t
19654 partial_die_hash (const void *item)
19655 {
19656 const struct partial_die_info *part_die = item;
19657
19658 return part_die->offset.sect_off;
19659 }
19660
19661 /* Trivial comparison function for partial_die_info structures: two DIEs
19662 are equal if they have the same offset. */
19663
19664 static int
19665 partial_die_eq (const void *item_lhs, const void *item_rhs)
19666 {
19667 const struct partial_die_info *part_die_lhs = item_lhs;
19668 const struct partial_die_info *part_die_rhs = item_rhs;
19669
19670 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19671 }
19672
19673 static struct cmd_list_element *set_dwarf2_cmdlist;
19674 static struct cmd_list_element *show_dwarf2_cmdlist;
19675
19676 static void
19677 set_dwarf2_cmd (char *args, int from_tty)
19678 {
19679 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19680 }
19681
19682 static void
19683 show_dwarf2_cmd (char *args, int from_tty)
19684 {
19685 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19686 }
19687
19688 /* Free data associated with OBJFILE, if necessary. */
19689
19690 static void
19691 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19692 {
19693 struct dwarf2_per_objfile *data = d;
19694 int ix;
19695
19696 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19697 VEC_free (dwarf2_per_cu_ptr,
19698 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19699
19700 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19701 VEC_free (dwarf2_per_cu_ptr,
19702 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19703
19704 VEC_free (dwarf2_section_info_def, data->types);
19705
19706 if (data->dwo_files)
19707 free_dwo_files (data->dwo_files, objfile);
19708
19709 if (data->dwz_file && data->dwz_file->dwz_bfd)
19710 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19711 }
19712
19713 \f
19714 /* The "save gdb-index" command. */
19715
19716 /* The contents of the hash table we create when building the string
19717 table. */
19718 struct strtab_entry
19719 {
19720 offset_type offset;
19721 const char *str;
19722 };
19723
19724 /* Hash function for a strtab_entry.
19725
19726 Function is used only during write_hash_table so no index format backward
19727 compatibility is needed. */
19728
19729 static hashval_t
19730 hash_strtab_entry (const void *e)
19731 {
19732 const struct strtab_entry *entry = e;
19733 return mapped_index_string_hash (INT_MAX, entry->str);
19734 }
19735
19736 /* Equality function for a strtab_entry. */
19737
19738 static int
19739 eq_strtab_entry (const void *a, const void *b)
19740 {
19741 const struct strtab_entry *ea = a;
19742 const struct strtab_entry *eb = b;
19743 return !strcmp (ea->str, eb->str);
19744 }
19745
19746 /* Create a strtab_entry hash table. */
19747
19748 static htab_t
19749 create_strtab (void)
19750 {
19751 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19752 xfree, xcalloc, xfree);
19753 }
19754
19755 /* Add a string to the constant pool. Return the string's offset in
19756 host order. */
19757
19758 static offset_type
19759 add_string (htab_t table, struct obstack *cpool, const char *str)
19760 {
19761 void **slot;
19762 struct strtab_entry entry;
19763 struct strtab_entry *result;
19764
19765 entry.str = str;
19766 slot = htab_find_slot (table, &entry, INSERT);
19767 if (*slot)
19768 result = *slot;
19769 else
19770 {
19771 result = XNEW (struct strtab_entry);
19772 result->offset = obstack_object_size (cpool);
19773 result->str = str;
19774 obstack_grow_str0 (cpool, str);
19775 *slot = result;
19776 }
19777 return result->offset;
19778 }
19779
19780 /* An entry in the symbol table. */
19781 struct symtab_index_entry
19782 {
19783 /* The name of the symbol. */
19784 const char *name;
19785 /* The offset of the name in the constant pool. */
19786 offset_type index_offset;
19787 /* A sorted vector of the indices of all the CUs that hold an object
19788 of this name. */
19789 VEC (offset_type) *cu_indices;
19790 };
19791
19792 /* The symbol table. This is a power-of-2-sized hash table. */
19793 struct mapped_symtab
19794 {
19795 offset_type n_elements;
19796 offset_type size;
19797 struct symtab_index_entry **data;
19798 };
19799
19800 /* Hash function for a symtab_index_entry. */
19801
19802 static hashval_t
19803 hash_symtab_entry (const void *e)
19804 {
19805 const struct symtab_index_entry *entry = e;
19806 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19807 sizeof (offset_type) * VEC_length (offset_type,
19808 entry->cu_indices),
19809 0);
19810 }
19811
19812 /* Equality function for a symtab_index_entry. */
19813
19814 static int
19815 eq_symtab_entry (const void *a, const void *b)
19816 {
19817 const struct symtab_index_entry *ea = a;
19818 const struct symtab_index_entry *eb = b;
19819 int len = VEC_length (offset_type, ea->cu_indices);
19820 if (len != VEC_length (offset_type, eb->cu_indices))
19821 return 0;
19822 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19823 VEC_address (offset_type, eb->cu_indices),
19824 sizeof (offset_type) * len);
19825 }
19826
19827 /* Destroy a symtab_index_entry. */
19828
19829 static void
19830 delete_symtab_entry (void *p)
19831 {
19832 struct symtab_index_entry *entry = p;
19833 VEC_free (offset_type, entry->cu_indices);
19834 xfree (entry);
19835 }
19836
19837 /* Create a hash table holding symtab_index_entry objects. */
19838
19839 static htab_t
19840 create_symbol_hash_table (void)
19841 {
19842 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19843 delete_symtab_entry, xcalloc, xfree);
19844 }
19845
19846 /* Create a new mapped symtab object. */
19847
19848 static struct mapped_symtab *
19849 create_mapped_symtab (void)
19850 {
19851 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19852 symtab->n_elements = 0;
19853 symtab->size = 1024;
19854 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19855 return symtab;
19856 }
19857
19858 /* Destroy a mapped_symtab. */
19859
19860 static void
19861 cleanup_mapped_symtab (void *p)
19862 {
19863 struct mapped_symtab *symtab = p;
19864 /* The contents of the array are freed when the other hash table is
19865 destroyed. */
19866 xfree (symtab->data);
19867 xfree (symtab);
19868 }
19869
19870 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19871 the slot.
19872
19873 Function is used only during write_hash_table so no index format backward
19874 compatibility is needed. */
19875
19876 static struct symtab_index_entry **
19877 find_slot (struct mapped_symtab *symtab, const char *name)
19878 {
19879 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19880
19881 index = hash & (symtab->size - 1);
19882 step = ((hash * 17) & (symtab->size - 1)) | 1;
19883
19884 for (;;)
19885 {
19886 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19887 return &symtab->data[index];
19888 index = (index + step) & (symtab->size - 1);
19889 }
19890 }
19891
19892 /* Expand SYMTAB's hash table. */
19893
19894 static void
19895 hash_expand (struct mapped_symtab *symtab)
19896 {
19897 offset_type old_size = symtab->size;
19898 offset_type i;
19899 struct symtab_index_entry **old_entries = symtab->data;
19900
19901 symtab->size *= 2;
19902 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19903
19904 for (i = 0; i < old_size; ++i)
19905 {
19906 if (old_entries[i])
19907 {
19908 struct symtab_index_entry **slot = find_slot (symtab,
19909 old_entries[i]->name);
19910 *slot = old_entries[i];
19911 }
19912 }
19913
19914 xfree (old_entries);
19915 }
19916
19917 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19918 CU_INDEX is the index of the CU in which the symbol appears.
19919 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19920
19921 static void
19922 add_index_entry (struct mapped_symtab *symtab, const char *name,
19923 int is_static, gdb_index_symbol_kind kind,
19924 offset_type cu_index)
19925 {
19926 struct symtab_index_entry **slot;
19927 offset_type cu_index_and_attrs;
19928
19929 ++symtab->n_elements;
19930 if (4 * symtab->n_elements / 3 >= symtab->size)
19931 hash_expand (symtab);
19932
19933 slot = find_slot (symtab, name);
19934 if (!*slot)
19935 {
19936 *slot = XNEW (struct symtab_index_entry);
19937 (*slot)->name = name;
19938 /* index_offset is set later. */
19939 (*slot)->cu_indices = NULL;
19940 }
19941
19942 cu_index_and_attrs = 0;
19943 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19944 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19945 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19946
19947 /* We don't want to record an index value twice as we want to avoid the
19948 duplication.
19949 We process all global symbols and then all static symbols
19950 (which would allow us to avoid the duplication by only having to check
19951 the last entry pushed), but a symbol could have multiple kinds in one CU.
19952 To keep things simple we don't worry about the duplication here and
19953 sort and uniqufy the list after we've processed all symbols. */
19954 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19955 }
19956
19957 /* qsort helper routine for uniquify_cu_indices. */
19958
19959 static int
19960 offset_type_compare (const void *ap, const void *bp)
19961 {
19962 offset_type a = *(offset_type *) ap;
19963 offset_type b = *(offset_type *) bp;
19964
19965 return (a > b) - (b > a);
19966 }
19967
19968 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19969
19970 static void
19971 uniquify_cu_indices (struct mapped_symtab *symtab)
19972 {
19973 int i;
19974
19975 for (i = 0; i < symtab->size; ++i)
19976 {
19977 struct symtab_index_entry *entry = symtab->data[i];
19978
19979 if (entry
19980 && entry->cu_indices != NULL)
19981 {
19982 unsigned int next_to_insert, next_to_check;
19983 offset_type last_value;
19984
19985 qsort (VEC_address (offset_type, entry->cu_indices),
19986 VEC_length (offset_type, entry->cu_indices),
19987 sizeof (offset_type), offset_type_compare);
19988
19989 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19990 next_to_insert = 1;
19991 for (next_to_check = 1;
19992 next_to_check < VEC_length (offset_type, entry->cu_indices);
19993 ++next_to_check)
19994 {
19995 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19996 != last_value)
19997 {
19998 last_value = VEC_index (offset_type, entry->cu_indices,
19999 next_to_check);
20000 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20001 last_value);
20002 ++next_to_insert;
20003 }
20004 }
20005 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20006 }
20007 }
20008 }
20009
20010 /* Add a vector of indices to the constant pool. */
20011
20012 static offset_type
20013 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20014 struct symtab_index_entry *entry)
20015 {
20016 void **slot;
20017
20018 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20019 if (!*slot)
20020 {
20021 offset_type len = VEC_length (offset_type, entry->cu_indices);
20022 offset_type val = MAYBE_SWAP (len);
20023 offset_type iter;
20024 int i;
20025
20026 *slot = entry;
20027 entry->index_offset = obstack_object_size (cpool);
20028
20029 obstack_grow (cpool, &val, sizeof (val));
20030 for (i = 0;
20031 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20032 ++i)
20033 {
20034 val = MAYBE_SWAP (iter);
20035 obstack_grow (cpool, &val, sizeof (val));
20036 }
20037 }
20038 else
20039 {
20040 struct symtab_index_entry *old_entry = *slot;
20041 entry->index_offset = old_entry->index_offset;
20042 entry = old_entry;
20043 }
20044 return entry->index_offset;
20045 }
20046
20047 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20048 constant pool entries going into the obstack CPOOL. */
20049
20050 static void
20051 write_hash_table (struct mapped_symtab *symtab,
20052 struct obstack *output, struct obstack *cpool)
20053 {
20054 offset_type i;
20055 htab_t symbol_hash_table;
20056 htab_t str_table;
20057
20058 symbol_hash_table = create_symbol_hash_table ();
20059 str_table = create_strtab ();
20060
20061 /* We add all the index vectors to the constant pool first, to
20062 ensure alignment is ok. */
20063 for (i = 0; i < symtab->size; ++i)
20064 {
20065 if (symtab->data[i])
20066 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20067 }
20068
20069 /* Now write out the hash table. */
20070 for (i = 0; i < symtab->size; ++i)
20071 {
20072 offset_type str_off, vec_off;
20073
20074 if (symtab->data[i])
20075 {
20076 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20077 vec_off = symtab->data[i]->index_offset;
20078 }
20079 else
20080 {
20081 /* While 0 is a valid constant pool index, it is not valid
20082 to have 0 for both offsets. */
20083 str_off = 0;
20084 vec_off = 0;
20085 }
20086
20087 str_off = MAYBE_SWAP (str_off);
20088 vec_off = MAYBE_SWAP (vec_off);
20089
20090 obstack_grow (output, &str_off, sizeof (str_off));
20091 obstack_grow (output, &vec_off, sizeof (vec_off));
20092 }
20093
20094 htab_delete (str_table);
20095 htab_delete (symbol_hash_table);
20096 }
20097
20098 /* Struct to map psymtab to CU index in the index file. */
20099 struct psymtab_cu_index_map
20100 {
20101 struct partial_symtab *psymtab;
20102 unsigned int cu_index;
20103 };
20104
20105 static hashval_t
20106 hash_psymtab_cu_index (const void *item)
20107 {
20108 const struct psymtab_cu_index_map *map = item;
20109
20110 return htab_hash_pointer (map->psymtab);
20111 }
20112
20113 static int
20114 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20115 {
20116 const struct psymtab_cu_index_map *lhs = item_lhs;
20117 const struct psymtab_cu_index_map *rhs = item_rhs;
20118
20119 return lhs->psymtab == rhs->psymtab;
20120 }
20121
20122 /* Helper struct for building the address table. */
20123 struct addrmap_index_data
20124 {
20125 struct objfile *objfile;
20126 struct obstack *addr_obstack;
20127 htab_t cu_index_htab;
20128
20129 /* Non-zero if the previous_* fields are valid.
20130 We can't write an entry until we see the next entry (since it is only then
20131 that we know the end of the entry). */
20132 int previous_valid;
20133 /* Index of the CU in the table of all CUs in the index file. */
20134 unsigned int previous_cu_index;
20135 /* Start address of the CU. */
20136 CORE_ADDR previous_cu_start;
20137 };
20138
20139 /* Write an address entry to OBSTACK. */
20140
20141 static void
20142 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20143 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20144 {
20145 offset_type cu_index_to_write;
20146 char addr[8];
20147 CORE_ADDR baseaddr;
20148
20149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20150
20151 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20152 obstack_grow (obstack, addr, 8);
20153 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20154 obstack_grow (obstack, addr, 8);
20155 cu_index_to_write = MAYBE_SWAP (cu_index);
20156 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20157 }
20158
20159 /* Worker function for traversing an addrmap to build the address table. */
20160
20161 static int
20162 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20163 {
20164 struct addrmap_index_data *data = datap;
20165 struct partial_symtab *pst = obj;
20166
20167 if (data->previous_valid)
20168 add_address_entry (data->objfile, data->addr_obstack,
20169 data->previous_cu_start, start_addr,
20170 data->previous_cu_index);
20171
20172 data->previous_cu_start = start_addr;
20173 if (pst != NULL)
20174 {
20175 struct psymtab_cu_index_map find_map, *map;
20176 find_map.psymtab = pst;
20177 map = htab_find (data->cu_index_htab, &find_map);
20178 gdb_assert (map != NULL);
20179 data->previous_cu_index = map->cu_index;
20180 data->previous_valid = 1;
20181 }
20182 else
20183 data->previous_valid = 0;
20184
20185 return 0;
20186 }
20187
20188 /* Write OBJFILE's address map to OBSTACK.
20189 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20190 in the index file. */
20191
20192 static void
20193 write_address_map (struct objfile *objfile, struct obstack *obstack,
20194 htab_t cu_index_htab)
20195 {
20196 struct addrmap_index_data addrmap_index_data;
20197
20198 /* When writing the address table, we have to cope with the fact that
20199 the addrmap iterator only provides the start of a region; we have to
20200 wait until the next invocation to get the start of the next region. */
20201
20202 addrmap_index_data.objfile = objfile;
20203 addrmap_index_data.addr_obstack = obstack;
20204 addrmap_index_data.cu_index_htab = cu_index_htab;
20205 addrmap_index_data.previous_valid = 0;
20206
20207 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20208 &addrmap_index_data);
20209
20210 /* It's highly unlikely the last entry (end address = 0xff...ff)
20211 is valid, but we should still handle it.
20212 The end address is recorded as the start of the next region, but that
20213 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20214 anyway. */
20215 if (addrmap_index_data.previous_valid)
20216 add_address_entry (objfile, obstack,
20217 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20218 addrmap_index_data.previous_cu_index);
20219 }
20220
20221 /* Return the symbol kind of PSYM. */
20222
20223 static gdb_index_symbol_kind
20224 symbol_kind (struct partial_symbol *psym)
20225 {
20226 domain_enum domain = PSYMBOL_DOMAIN (psym);
20227 enum address_class aclass = PSYMBOL_CLASS (psym);
20228
20229 switch (domain)
20230 {
20231 case VAR_DOMAIN:
20232 switch (aclass)
20233 {
20234 case LOC_BLOCK:
20235 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20236 case LOC_TYPEDEF:
20237 return GDB_INDEX_SYMBOL_KIND_TYPE;
20238 case LOC_COMPUTED:
20239 case LOC_CONST_BYTES:
20240 case LOC_OPTIMIZED_OUT:
20241 case LOC_STATIC:
20242 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20243 case LOC_CONST:
20244 /* Note: It's currently impossible to recognize psyms as enum values
20245 short of reading the type info. For now punt. */
20246 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20247 default:
20248 /* There are other LOC_FOO values that one might want to classify
20249 as variables, but dwarf2read.c doesn't currently use them. */
20250 return GDB_INDEX_SYMBOL_KIND_OTHER;
20251 }
20252 case STRUCT_DOMAIN:
20253 return GDB_INDEX_SYMBOL_KIND_TYPE;
20254 default:
20255 return GDB_INDEX_SYMBOL_KIND_OTHER;
20256 }
20257 }
20258
20259 /* Add a list of partial symbols to SYMTAB. */
20260
20261 static void
20262 write_psymbols (struct mapped_symtab *symtab,
20263 htab_t psyms_seen,
20264 struct partial_symbol **psymp,
20265 int count,
20266 offset_type cu_index,
20267 int is_static)
20268 {
20269 for (; count-- > 0; ++psymp)
20270 {
20271 struct partial_symbol *psym = *psymp;
20272 void **slot;
20273
20274 if (SYMBOL_LANGUAGE (psym) == language_ada)
20275 error (_("Ada is not currently supported by the index"));
20276
20277 /* Only add a given psymbol once. */
20278 slot = htab_find_slot (psyms_seen, psym, INSERT);
20279 if (!*slot)
20280 {
20281 gdb_index_symbol_kind kind = symbol_kind (psym);
20282
20283 *slot = psym;
20284 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20285 is_static, kind, cu_index);
20286 }
20287 }
20288 }
20289
20290 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20291 exception if there is an error. */
20292
20293 static void
20294 write_obstack (FILE *file, struct obstack *obstack)
20295 {
20296 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20297 file)
20298 != obstack_object_size (obstack))
20299 error (_("couldn't data write to file"));
20300 }
20301
20302 /* Unlink a file if the argument is not NULL. */
20303
20304 static void
20305 unlink_if_set (void *p)
20306 {
20307 char **filename = p;
20308 if (*filename)
20309 unlink (*filename);
20310 }
20311
20312 /* A helper struct used when iterating over debug_types. */
20313 struct signatured_type_index_data
20314 {
20315 struct objfile *objfile;
20316 struct mapped_symtab *symtab;
20317 struct obstack *types_list;
20318 htab_t psyms_seen;
20319 int cu_index;
20320 };
20321
20322 /* A helper function that writes a single signatured_type to an
20323 obstack. */
20324
20325 static int
20326 write_one_signatured_type (void **slot, void *d)
20327 {
20328 struct signatured_type_index_data *info = d;
20329 struct signatured_type *entry = (struct signatured_type *) *slot;
20330 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20331 struct partial_symtab *psymtab = per_cu->v.psymtab;
20332 gdb_byte val[8];
20333
20334 write_psymbols (info->symtab,
20335 info->psyms_seen,
20336 info->objfile->global_psymbols.list
20337 + psymtab->globals_offset,
20338 psymtab->n_global_syms, info->cu_index,
20339 0);
20340 write_psymbols (info->symtab,
20341 info->psyms_seen,
20342 info->objfile->static_psymbols.list
20343 + psymtab->statics_offset,
20344 psymtab->n_static_syms, info->cu_index,
20345 1);
20346
20347 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20348 entry->per_cu.offset.sect_off);
20349 obstack_grow (info->types_list, val, 8);
20350 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20351 entry->type_offset_in_tu.cu_off);
20352 obstack_grow (info->types_list, val, 8);
20353 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20354 obstack_grow (info->types_list, val, 8);
20355
20356 ++info->cu_index;
20357
20358 return 1;
20359 }
20360
20361 /* Recurse into all "included" dependencies and write their symbols as
20362 if they appeared in this psymtab. */
20363
20364 static void
20365 recursively_write_psymbols (struct objfile *objfile,
20366 struct partial_symtab *psymtab,
20367 struct mapped_symtab *symtab,
20368 htab_t psyms_seen,
20369 offset_type cu_index)
20370 {
20371 int i;
20372
20373 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20374 if (psymtab->dependencies[i]->user != NULL)
20375 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20376 symtab, psyms_seen, cu_index);
20377
20378 write_psymbols (symtab,
20379 psyms_seen,
20380 objfile->global_psymbols.list + psymtab->globals_offset,
20381 psymtab->n_global_syms, cu_index,
20382 0);
20383 write_psymbols (symtab,
20384 psyms_seen,
20385 objfile->static_psymbols.list + psymtab->statics_offset,
20386 psymtab->n_static_syms, cu_index,
20387 1);
20388 }
20389
20390 /* Create an index file for OBJFILE in the directory DIR. */
20391
20392 static void
20393 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20394 {
20395 struct cleanup *cleanup;
20396 char *filename, *cleanup_filename;
20397 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20398 struct obstack cu_list, types_cu_list;
20399 int i;
20400 FILE *out_file;
20401 struct mapped_symtab *symtab;
20402 offset_type val, size_of_contents, total_len;
20403 struct stat st;
20404 htab_t psyms_seen;
20405 htab_t cu_index_htab;
20406 struct psymtab_cu_index_map *psymtab_cu_index_map;
20407
20408 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20409 return;
20410
20411 if (dwarf2_per_objfile->using_index)
20412 error (_("Cannot use an index to create the index"));
20413
20414 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20415 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20416
20417 if (stat (objfile->name, &st) < 0)
20418 perror_with_name (objfile->name);
20419
20420 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20421 INDEX_SUFFIX, (char *) NULL);
20422 cleanup = make_cleanup (xfree, filename);
20423
20424 out_file = fopen (filename, "wb");
20425 if (!out_file)
20426 error (_("Can't open `%s' for writing"), filename);
20427
20428 cleanup_filename = filename;
20429 make_cleanup (unlink_if_set, &cleanup_filename);
20430
20431 symtab = create_mapped_symtab ();
20432 make_cleanup (cleanup_mapped_symtab, symtab);
20433
20434 obstack_init (&addr_obstack);
20435 make_cleanup_obstack_free (&addr_obstack);
20436
20437 obstack_init (&cu_list);
20438 make_cleanup_obstack_free (&cu_list);
20439
20440 obstack_init (&types_cu_list);
20441 make_cleanup_obstack_free (&types_cu_list);
20442
20443 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20444 NULL, xcalloc, xfree);
20445 make_cleanup_htab_delete (psyms_seen);
20446
20447 /* While we're scanning CU's create a table that maps a psymtab pointer
20448 (which is what addrmap records) to its index (which is what is recorded
20449 in the index file). This will later be needed to write the address
20450 table. */
20451 cu_index_htab = htab_create_alloc (100,
20452 hash_psymtab_cu_index,
20453 eq_psymtab_cu_index,
20454 NULL, xcalloc, xfree);
20455 make_cleanup_htab_delete (cu_index_htab);
20456 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20457 xmalloc (sizeof (struct psymtab_cu_index_map)
20458 * dwarf2_per_objfile->n_comp_units);
20459 make_cleanup (xfree, psymtab_cu_index_map);
20460
20461 /* The CU list is already sorted, so we don't need to do additional
20462 work here. Also, the debug_types entries do not appear in
20463 all_comp_units, but only in their own hash table. */
20464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20465 {
20466 struct dwarf2_per_cu_data *per_cu
20467 = dwarf2_per_objfile->all_comp_units[i];
20468 struct partial_symtab *psymtab = per_cu->v.psymtab;
20469 gdb_byte val[8];
20470 struct psymtab_cu_index_map *map;
20471 void **slot;
20472
20473 if (psymtab->user == NULL)
20474 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20475
20476 map = &psymtab_cu_index_map[i];
20477 map->psymtab = psymtab;
20478 map->cu_index = i;
20479 slot = htab_find_slot (cu_index_htab, map, INSERT);
20480 gdb_assert (slot != NULL);
20481 gdb_assert (*slot == NULL);
20482 *slot = map;
20483
20484 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20485 per_cu->offset.sect_off);
20486 obstack_grow (&cu_list, val, 8);
20487 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20488 obstack_grow (&cu_list, val, 8);
20489 }
20490
20491 /* Dump the address map. */
20492 write_address_map (objfile, &addr_obstack, cu_index_htab);
20493
20494 /* Write out the .debug_type entries, if any. */
20495 if (dwarf2_per_objfile->signatured_types)
20496 {
20497 struct signatured_type_index_data sig_data;
20498
20499 sig_data.objfile = objfile;
20500 sig_data.symtab = symtab;
20501 sig_data.types_list = &types_cu_list;
20502 sig_data.psyms_seen = psyms_seen;
20503 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20504 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20505 write_one_signatured_type, &sig_data);
20506 }
20507
20508 /* Now that we've processed all symbols we can shrink their cu_indices
20509 lists. */
20510 uniquify_cu_indices (symtab);
20511
20512 obstack_init (&constant_pool);
20513 make_cleanup_obstack_free (&constant_pool);
20514 obstack_init (&symtab_obstack);
20515 make_cleanup_obstack_free (&symtab_obstack);
20516 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20517
20518 obstack_init (&contents);
20519 make_cleanup_obstack_free (&contents);
20520 size_of_contents = 6 * sizeof (offset_type);
20521 total_len = size_of_contents;
20522
20523 /* The version number. */
20524 val = MAYBE_SWAP (8);
20525 obstack_grow (&contents, &val, sizeof (val));
20526
20527 /* The offset of the CU list from the start of the file. */
20528 val = MAYBE_SWAP (total_len);
20529 obstack_grow (&contents, &val, sizeof (val));
20530 total_len += obstack_object_size (&cu_list);
20531
20532 /* The offset of the types CU list from the start of the file. */
20533 val = MAYBE_SWAP (total_len);
20534 obstack_grow (&contents, &val, sizeof (val));
20535 total_len += obstack_object_size (&types_cu_list);
20536
20537 /* The offset of the address table from the start of the file. */
20538 val = MAYBE_SWAP (total_len);
20539 obstack_grow (&contents, &val, sizeof (val));
20540 total_len += obstack_object_size (&addr_obstack);
20541
20542 /* The offset of the symbol table from the start of the file. */
20543 val = MAYBE_SWAP (total_len);
20544 obstack_grow (&contents, &val, sizeof (val));
20545 total_len += obstack_object_size (&symtab_obstack);
20546
20547 /* The offset of the constant pool from the start of the file. */
20548 val = MAYBE_SWAP (total_len);
20549 obstack_grow (&contents, &val, sizeof (val));
20550 total_len += obstack_object_size (&constant_pool);
20551
20552 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20553
20554 write_obstack (out_file, &contents);
20555 write_obstack (out_file, &cu_list);
20556 write_obstack (out_file, &types_cu_list);
20557 write_obstack (out_file, &addr_obstack);
20558 write_obstack (out_file, &symtab_obstack);
20559 write_obstack (out_file, &constant_pool);
20560
20561 fclose (out_file);
20562
20563 /* We want to keep the file, so we set cleanup_filename to NULL
20564 here. See unlink_if_set. */
20565 cleanup_filename = NULL;
20566
20567 do_cleanups (cleanup);
20568 }
20569
20570 /* Implementation of the `save gdb-index' command.
20571
20572 Note that the file format used by this command is documented in the
20573 GDB manual. Any changes here must be documented there. */
20574
20575 static void
20576 save_gdb_index_command (char *arg, int from_tty)
20577 {
20578 struct objfile *objfile;
20579
20580 if (!arg || !*arg)
20581 error (_("usage: save gdb-index DIRECTORY"));
20582
20583 ALL_OBJFILES (objfile)
20584 {
20585 struct stat st;
20586
20587 /* If the objfile does not correspond to an actual file, skip it. */
20588 if (stat (objfile->name, &st) < 0)
20589 continue;
20590
20591 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20592 if (dwarf2_per_objfile)
20593 {
20594 volatile struct gdb_exception except;
20595
20596 TRY_CATCH (except, RETURN_MASK_ERROR)
20597 {
20598 write_psymtabs_to_index (objfile, arg);
20599 }
20600 if (except.reason < 0)
20601 exception_fprintf (gdb_stderr, except,
20602 _("Error while writing index for `%s': "),
20603 objfile->name);
20604 }
20605 }
20606 }
20607
20608 \f
20609
20610 int dwarf2_always_disassemble;
20611
20612 static void
20613 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20614 struct cmd_list_element *c, const char *value)
20615 {
20616 fprintf_filtered (file,
20617 _("Whether to always disassemble "
20618 "DWARF expressions is %s.\n"),
20619 value);
20620 }
20621
20622 static void
20623 show_check_physname (struct ui_file *file, int from_tty,
20624 struct cmd_list_element *c, const char *value)
20625 {
20626 fprintf_filtered (file,
20627 _("Whether to check \"physname\" is %s.\n"),
20628 value);
20629 }
20630
20631 void _initialize_dwarf2_read (void);
20632
20633 void
20634 _initialize_dwarf2_read (void)
20635 {
20636 struct cmd_list_element *c;
20637
20638 dwarf2_objfile_data_key
20639 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20640
20641 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20642 Set DWARF 2 specific variables.\n\
20643 Configure DWARF 2 variables such as the cache size"),
20644 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20645 0/*allow-unknown*/, &maintenance_set_cmdlist);
20646
20647 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20648 Show DWARF 2 specific variables\n\
20649 Show DWARF 2 variables such as the cache size"),
20650 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20651 0/*allow-unknown*/, &maintenance_show_cmdlist);
20652
20653 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20654 &dwarf2_max_cache_age, _("\
20655 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20656 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20657 A higher limit means that cached compilation units will be stored\n\
20658 in memory longer, and more total memory will be used. Zero disables\n\
20659 caching, which can slow down startup."),
20660 NULL,
20661 show_dwarf2_max_cache_age,
20662 &set_dwarf2_cmdlist,
20663 &show_dwarf2_cmdlist);
20664
20665 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20666 &dwarf2_always_disassemble, _("\
20667 Set whether `info address' always disassembles DWARF expressions."), _("\
20668 Show whether `info address' always disassembles DWARF expressions."), _("\
20669 When enabled, DWARF expressions are always printed in an assembly-like\n\
20670 syntax. When disabled, expressions will be printed in a more\n\
20671 conversational style, when possible."),
20672 NULL,
20673 show_dwarf2_always_disassemble,
20674 &set_dwarf2_cmdlist,
20675 &show_dwarf2_cmdlist);
20676
20677 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20678 Set debugging of the dwarf2 reader."), _("\
20679 Show debugging of the dwarf2 reader."), _("\
20680 When enabled, debugging messages are printed during dwarf2 reading\n\
20681 and symtab expansion."),
20682 NULL,
20683 NULL,
20684 &setdebuglist, &showdebuglist);
20685
20686 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20687 Set debugging of the dwarf2 DIE reader."), _("\
20688 Show debugging of the dwarf2 DIE reader."), _("\
20689 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20690 The value is the maximum depth to print."),
20691 NULL,
20692 NULL,
20693 &setdebuglist, &showdebuglist);
20694
20695 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20696 Set cross-checking of \"physname\" code against demangler."), _("\
20697 Show cross-checking of \"physname\" code against demangler."), _("\
20698 When enabled, GDB's internal \"physname\" code is checked against\n\
20699 the demangler."),
20700 NULL, show_check_physname,
20701 &setdebuglist, &showdebuglist);
20702
20703 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20704 no_class, &use_deprecated_index_sections, _("\
20705 Set whether to use deprecated gdb_index sections."), _("\
20706 Show whether to use deprecated gdb_index sections."), _("\
20707 When enabled, deprecated .gdb_index sections are used anyway.\n\
20708 Normally they are ignored either because of a missing feature or\n\
20709 performance issue.\n\
20710 Warning: This option must be enabled before gdb reads the file."),
20711 NULL,
20712 NULL,
20713 &setlist, &showlist);
20714
20715 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20716 _("\
20717 Save a gdb-index file.\n\
20718 Usage: save gdb-index DIRECTORY"),
20719 &save_cmdlist);
20720 set_cmd_completer (c, filename_completer);
20721 }
This page took 0.484773 seconds and 4 git commands to generate.