gdb: microblaze: delete useless stubs
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf_die_debug. */
82 static unsigned int dwarf_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf_die_debug = 0;
86
87 /* When non-zero, dump line number entries as they are read in. */
88 static unsigned int dwarf_line_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 struct tu_stats
206 {
207 int nr_uniq_abbrev_tables;
208 int nr_symtabs;
209 int nr_symtab_sharers;
210 int nr_stmt_less_type_units;
211 int nr_all_type_units_reallocs;
212 };
213
214 /* Collection of data recorded per objfile.
215 This hangs off of dwarf2_objfile_data_key. */
216
217 struct dwarf2_per_objfile
218 {
219 struct dwarf2_section_info info;
220 struct dwarf2_section_info abbrev;
221 struct dwarf2_section_info line;
222 struct dwarf2_section_info loc;
223 struct dwarf2_section_info macinfo;
224 struct dwarf2_section_info macro;
225 struct dwarf2_section_info str;
226 struct dwarf2_section_info ranges;
227 struct dwarf2_section_info addr;
228 struct dwarf2_section_info frame;
229 struct dwarf2_section_info eh_frame;
230 struct dwarf2_section_info gdb_index;
231
232 VEC (dwarf2_section_info_def) *types;
233
234 /* Back link. */
235 struct objfile *objfile;
236
237 /* Table of all the compilation units. This is used to locate
238 the target compilation unit of a particular reference. */
239 struct dwarf2_per_cu_data **all_comp_units;
240
241 /* The number of compilation units in ALL_COMP_UNITS. */
242 int n_comp_units;
243
244 /* The number of .debug_types-related CUs. */
245 int n_type_units;
246
247 /* The number of elements allocated in all_type_units.
248 If there are skeleton-less TUs, we add them to all_type_units lazily. */
249 int n_allocated_type_units;
250
251 /* The .debug_types-related CUs (TUs).
252 This is stored in malloc space because we may realloc it. */
253 struct signatured_type **all_type_units;
254
255 /* Table of struct type_unit_group objects.
256 The hash key is the DW_AT_stmt_list value. */
257 htab_t type_unit_groups;
258
259 /* A table mapping .debug_types signatures to its signatured_type entry.
260 This is NULL if the .debug_types section hasn't been read in yet. */
261 htab_t signatured_types;
262
263 /* Type unit statistics, to see how well the scaling improvements
264 are doing. */
265 struct tu_stats tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316
317 /* Table containing line_header indexed by offset and offset_in_dwz. */
318 htab_t line_header_hash;
319 };
320
321 static struct dwarf2_per_objfile *dwarf2_per_objfile;
322
323 /* Default names of the debugging sections. */
324
325 /* Note that if the debugging section has been compressed, it might
326 have a name like .zdebug_info. */
327
328 static const struct dwarf2_debug_sections dwarf2_elf_names =
329 {
330 { ".debug_info", ".zdebug_info" },
331 { ".debug_abbrev", ".zdebug_abbrev" },
332 { ".debug_line", ".zdebug_line" },
333 { ".debug_loc", ".zdebug_loc" },
334 { ".debug_macinfo", ".zdebug_macinfo" },
335 { ".debug_macro", ".zdebug_macro" },
336 { ".debug_str", ".zdebug_str" },
337 { ".debug_ranges", ".zdebug_ranges" },
338 { ".debug_types", ".zdebug_types" },
339 { ".debug_addr", ".zdebug_addr" },
340 { ".debug_frame", ".zdebug_frame" },
341 { ".eh_frame", NULL },
342 { ".gdb_index", ".zgdb_index" },
343 23
344 };
345
346 /* List of DWO/DWP sections. */
347
348 static const struct dwop_section_names
349 {
350 struct dwarf2_section_names abbrev_dwo;
351 struct dwarf2_section_names info_dwo;
352 struct dwarf2_section_names line_dwo;
353 struct dwarf2_section_names loc_dwo;
354 struct dwarf2_section_names macinfo_dwo;
355 struct dwarf2_section_names macro_dwo;
356 struct dwarf2_section_names str_dwo;
357 struct dwarf2_section_names str_offsets_dwo;
358 struct dwarf2_section_names types_dwo;
359 struct dwarf2_section_names cu_index;
360 struct dwarf2_section_names tu_index;
361 }
362 dwop_section_names =
363 {
364 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
365 { ".debug_info.dwo", ".zdebug_info.dwo" },
366 { ".debug_line.dwo", ".zdebug_line.dwo" },
367 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
368 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
369 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
370 { ".debug_str.dwo", ".zdebug_str.dwo" },
371 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
372 { ".debug_types.dwo", ".zdebug_types.dwo" },
373 { ".debug_cu_index", ".zdebug_cu_index" },
374 { ".debug_tu_index", ".zdebug_tu_index" },
375 };
376
377 /* local data types */
378
379 /* The data in a compilation unit header, after target2host
380 translation, looks like this. */
381 struct comp_unit_head
382 {
383 unsigned int length;
384 short version;
385 unsigned char addr_size;
386 unsigned char signed_addr_p;
387 sect_offset abbrev_offset;
388
389 /* Size of file offsets; either 4 or 8. */
390 unsigned int offset_size;
391
392 /* Size of the length field; either 4 or 12. */
393 unsigned int initial_length_size;
394
395 /* Offset to the first byte of this compilation unit header in the
396 .debug_info section, for resolving relative reference dies. */
397 sect_offset offset;
398
399 /* Offset to first die in this cu from the start of the cu.
400 This will be the first byte following the compilation unit header. */
401 cu_offset first_die_offset;
402 };
403
404 /* Type used for delaying computation of method physnames.
405 See comments for compute_delayed_physnames. */
406 struct delayed_method_info
407 {
408 /* The type to which the method is attached, i.e., its parent class. */
409 struct type *type;
410
411 /* The index of the method in the type's function fieldlists. */
412 int fnfield_index;
413
414 /* The index of the method in the fieldlist. */
415 int index;
416
417 /* The name of the DIE. */
418 const char *name;
419
420 /* The DIE associated with this method. */
421 struct die_info *die;
422 };
423
424 typedef struct delayed_method_info delayed_method_info;
425 DEF_VEC_O (delayed_method_info);
426
427 /* Internal state when decoding a particular compilation unit. */
428 struct dwarf2_cu
429 {
430 /* The objfile containing this compilation unit. */
431 struct objfile *objfile;
432
433 /* The header of the compilation unit. */
434 struct comp_unit_head header;
435
436 /* Base address of this compilation unit. */
437 CORE_ADDR base_address;
438
439 /* Non-zero if base_address has been set. */
440 int base_known;
441
442 /* The language we are debugging. */
443 enum language language;
444 const struct language_defn *language_defn;
445
446 const char *producer;
447
448 /* The generic symbol table building routines have separate lists for
449 file scope symbols and all all other scopes (local scopes). So
450 we need to select the right one to pass to add_symbol_to_list().
451 We do it by keeping a pointer to the correct list in list_in_scope.
452
453 FIXME: The original dwarf code just treated the file scope as the
454 first local scope, and all other local scopes as nested local
455 scopes, and worked fine. Check to see if we really need to
456 distinguish these in buildsym.c. */
457 struct pending **list_in_scope;
458
459 /* The abbrev table for this CU.
460 Normally this points to the abbrev table in the objfile.
461 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
462 struct abbrev_table *abbrev_table;
463
464 /* Hash table holding all the loaded partial DIEs
465 with partial_die->offset.SECT_OFF as hash. */
466 htab_t partial_dies;
467
468 /* Storage for things with the same lifetime as this read-in compilation
469 unit, including partial DIEs. */
470 struct obstack comp_unit_obstack;
471
472 /* When multiple dwarf2_cu structures are living in memory, this field
473 chains them all together, so that they can be released efficiently.
474 We will probably also want a generation counter so that most-recently-used
475 compilation units are cached... */
476 struct dwarf2_per_cu_data *read_in_chain;
477
478 /* Backlink to our per_cu entry. */
479 struct dwarf2_per_cu_data *per_cu;
480
481 /* How many compilation units ago was this CU last referenced? */
482 int last_used;
483
484 /* A hash table of DIE cu_offset for following references with
485 die_info->offset.sect_off as hash. */
486 htab_t die_hash;
487
488 /* Full DIEs if read in. */
489 struct die_info *dies;
490
491 /* A set of pointers to dwarf2_per_cu_data objects for compilation
492 units referenced by this one. Only set during full symbol processing;
493 partial symbol tables do not have dependencies. */
494 htab_t dependencies;
495
496 /* Header data from the line table, during full symbol processing. */
497 struct line_header *line_header;
498
499 /* A list of methods which need to have physnames computed
500 after all type information has been read. */
501 VEC (delayed_method_info) *method_list;
502
503 /* To be copied to symtab->call_site_htab. */
504 htab_t call_site_htab;
505
506 /* Non-NULL if this CU came from a DWO file.
507 There is an invariant here that is important to remember:
508 Except for attributes copied from the top level DIE in the "main"
509 (or "stub") file in preparation for reading the DWO file
510 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
511 Either there isn't a DWO file (in which case this is NULL and the point
512 is moot), or there is and either we're not going to read it (in which
513 case this is NULL) or there is and we are reading it (in which case this
514 is non-NULL). */
515 struct dwo_unit *dwo_unit;
516
517 /* The DW_AT_addr_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE. */
520 ULONGEST addr_base;
521
522 /* The DW_AT_ranges_base attribute if present, zero otherwise
523 (zero is a valid value though).
524 Note this value comes from the Fission stub CU/TU's DIE.
525 Also note that the value is zero in the non-DWO case so this value can
526 be used without needing to know whether DWO files are in use or not.
527 N.B. This does not apply to DW_AT_ranges appearing in
528 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
529 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
530 DW_AT_ranges_base *would* have to be applied, and we'd have to care
531 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
532 ULONGEST ranges_base;
533
534 /* Mark used when releasing cached dies. */
535 unsigned int mark : 1;
536
537 /* This CU references .debug_loc. See the symtab->locations_valid field.
538 This test is imperfect as there may exist optimized debug code not using
539 any location list and still facing inlining issues if handled as
540 unoptimized code. For a future better test see GCC PR other/32998. */
541 unsigned int has_loclist : 1;
542
543 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
544 if all the producer_is_* fields are valid. This information is cached
545 because profiling CU expansion showed excessive time spent in
546 producer_is_gxx_lt_4_6. */
547 unsigned int checked_producer : 1;
548 unsigned int producer_is_gxx_lt_4_6 : 1;
549 unsigned int producer_is_gcc_lt_4_3 : 1;
550 unsigned int producer_is_icc : 1;
551
552 /* When set, the file that we're processing is known to have
553 debugging info for C++ namespaces. GCC 3.3.x did not produce
554 this information, but later versions do. */
555
556 unsigned int processing_has_namespace_info : 1;
557 };
558
559 /* Persistent data held for a compilation unit, even when not
560 processing it. We put a pointer to this structure in the
561 read_symtab_private field of the psymtab. */
562
563 struct dwarf2_per_cu_data
564 {
565 /* The start offset and length of this compilation unit.
566 NOTE: Unlike comp_unit_head.length, this length includes
567 initial_length_size.
568 If the DIE refers to a DWO file, this is always of the original die,
569 not the DWO file. */
570 sect_offset offset;
571 unsigned int length;
572
573 /* Flag indicating this compilation unit will be read in before
574 any of the current compilation units are processed. */
575 unsigned int queued : 1;
576
577 /* This flag will be set when reading partial DIEs if we need to load
578 absolutely all DIEs for this compilation unit, instead of just the ones
579 we think are interesting. It gets set if we look for a DIE in the
580 hash table and don't find it. */
581 unsigned int load_all_dies : 1;
582
583 /* Non-zero if this CU is from .debug_types.
584 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
585 this is non-zero. */
586 unsigned int is_debug_types : 1;
587
588 /* Non-zero if this CU is from the .dwz file. */
589 unsigned int is_dwz : 1;
590
591 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
592 This flag is only valid if is_debug_types is true.
593 We can't read a CU directly from a DWO file: There are required
594 attributes in the stub. */
595 unsigned int reading_dwo_directly : 1;
596
597 /* Non-zero if the TU has been read.
598 This is used to assist the "Stay in DWO Optimization" for Fission:
599 When reading a DWO, it's faster to read TUs from the DWO instead of
600 fetching them from random other DWOs (due to comdat folding).
601 If the TU has already been read, the optimization is unnecessary
602 (and unwise - we don't want to change where gdb thinks the TU lives
603 "midflight").
604 This flag is only valid if is_debug_types is true. */
605 unsigned int tu_read : 1;
606
607 /* The section this CU/TU lives in.
608 If the DIE refers to a DWO file, this is always the original die,
609 not the DWO file. */
610 struct dwarf2_section_info *section;
611
612 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
613 of the CU cache it gets reset to NULL again. */
614 struct dwarf2_cu *cu;
615
616 /* The corresponding objfile.
617 Normally we can get the objfile from dwarf2_per_objfile.
618 However we can enter this file with just a "per_cu" handle. */
619 struct objfile *objfile;
620
621 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
622 is active. Otherwise, the 'psymtab' field is active. */
623 union
624 {
625 /* The partial symbol table associated with this compilation unit,
626 or NULL for unread partial units. */
627 struct partial_symtab *psymtab;
628
629 /* Data needed by the "quick" functions. */
630 struct dwarf2_per_cu_quick_data *quick;
631 } v;
632
633 /* The CUs we import using DW_TAG_imported_unit. This is filled in
634 while reading psymtabs, used to compute the psymtab dependencies,
635 and then cleared. Then it is filled in again while reading full
636 symbols, and only deleted when the objfile is destroyed.
637
638 This is also used to work around a difference between the way gold
639 generates .gdb_index version <=7 and the way gdb does. Arguably this
640 is a gold bug. For symbols coming from TUs, gold records in the index
641 the CU that includes the TU instead of the TU itself. This breaks
642 dw2_lookup_symbol: It assumes that if the index says symbol X lives
643 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
644 will find X. Alas TUs live in their own symtab, so after expanding CU Y
645 we need to look in TU Z to find X. Fortunately, this is akin to
646 DW_TAG_imported_unit, so we just use the same mechanism: For
647 .gdb_index version <=7 this also records the TUs that the CU referred
648 to. Concurrently with this change gdb was modified to emit version 8
649 indices so we only pay a price for gold generated indices.
650 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
651 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
652 };
653
654 /* Entry in the signatured_types hash table. */
655
656 struct signatured_type
657 {
658 /* The "per_cu" object of this type.
659 This struct is used iff per_cu.is_debug_types.
660 N.B.: This is the first member so that it's easy to convert pointers
661 between them. */
662 struct dwarf2_per_cu_data per_cu;
663
664 /* The type's signature. */
665 ULONGEST signature;
666
667 /* Offset in the TU of the type's DIE, as read from the TU header.
668 If this TU is a DWO stub and the definition lives in a DWO file
669 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
670 cu_offset type_offset_in_tu;
671
672 /* Offset in the section of the type's DIE.
673 If the definition lives in a DWO file, this is the offset in the
674 .debug_types.dwo section.
675 The value is zero until the actual value is known.
676 Zero is otherwise not a valid section offset. */
677 sect_offset type_offset_in_section;
678
679 /* Type units are grouped by their DW_AT_stmt_list entry so that they
680 can share them. This points to the containing symtab. */
681 struct type_unit_group *type_unit_group;
682
683 /* The type.
684 The first time we encounter this type we fully read it in and install it
685 in the symbol tables. Subsequent times we only need the type. */
686 struct type *type;
687
688 /* Containing DWO unit.
689 This field is valid iff per_cu.reading_dwo_directly. */
690 struct dwo_unit *dwo_unit;
691 };
692
693 typedef struct signatured_type *sig_type_ptr;
694 DEF_VEC_P (sig_type_ptr);
695
696 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
697 This includes type_unit_group and quick_file_names. */
698
699 struct stmt_list_hash
700 {
701 /* The DWO unit this table is from or NULL if there is none. */
702 struct dwo_unit *dwo_unit;
703
704 /* Offset in .debug_line or .debug_line.dwo. */
705 sect_offset line_offset;
706 };
707
708 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
709 an object of this type. */
710
711 struct type_unit_group
712 {
713 /* dwarf2read.c's main "handle" on a TU symtab.
714 To simplify things we create an artificial CU that "includes" all the
715 type units using this stmt_list so that the rest of the code still has
716 a "per_cu" handle on the symtab.
717 This PER_CU is recognized by having no section. */
718 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
719 struct dwarf2_per_cu_data per_cu;
720
721 /* The TUs that share this DW_AT_stmt_list entry.
722 This is added to while parsing type units to build partial symtabs,
723 and is deleted afterwards and not used again. */
724 VEC (sig_type_ptr) *tus;
725
726 /* The compunit symtab.
727 Type units in a group needn't all be defined in the same source file,
728 so we create an essentially anonymous symtab as the compunit symtab. */
729 struct compunit_symtab *compunit_symtab;
730
731 /* The data used to construct the hash key. */
732 struct stmt_list_hash hash;
733
734 /* The number of symtabs from the line header.
735 The value here must match line_header.num_file_names. */
736 unsigned int num_symtabs;
737
738 /* The symbol tables for this TU (obtained from the files listed in
739 DW_AT_stmt_list).
740 WARNING: The order of entries here must match the order of entries
741 in the line header. After the first TU using this type_unit_group, the
742 line header for the subsequent TUs is recreated from this. This is done
743 because we need to use the same symtabs for each TU using the same
744 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
745 there's no guarantee the line header doesn't have duplicate entries. */
746 struct symtab **symtabs;
747 };
748
749 /* These sections are what may appear in a (real or virtual) DWO file. */
750
751 struct dwo_sections
752 {
753 struct dwarf2_section_info abbrev;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str;
759 struct dwarf2_section_info str_offsets;
760 /* In the case of a virtual DWO file, these two are unused. */
761 struct dwarf2_section_info info;
762 VEC (dwarf2_section_info_def) *types;
763 };
764
765 /* CUs/TUs in DWP/DWO files. */
766
767 struct dwo_unit
768 {
769 /* Backlink to the containing struct dwo_file. */
770 struct dwo_file *dwo_file;
771
772 /* The "id" that distinguishes this CU/TU.
773 .debug_info calls this "dwo_id", .debug_types calls this "signature".
774 Since signatures came first, we stick with it for consistency. */
775 ULONGEST signature;
776
777 /* The section this CU/TU lives in, in the DWO file. */
778 struct dwarf2_section_info *section;
779
780 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
781 sect_offset offset;
782 unsigned int length;
783
784 /* For types, offset in the type's DIE of the type defined by this TU. */
785 cu_offset type_offset_in_tu;
786 };
787
788 /* include/dwarf2.h defines the DWP section codes.
789 It defines a max value but it doesn't define a min value, which we
790 use for error checking, so provide one. */
791
792 enum dwp_v2_section_ids
793 {
794 DW_SECT_MIN = 1
795 };
796
797 /* Data for one DWO file.
798
799 This includes virtual DWO files (a virtual DWO file is a DWO file as it
800 appears in a DWP file). DWP files don't really have DWO files per se -
801 comdat folding of types "loses" the DWO file they came from, and from
802 a high level view DWP files appear to contain a mass of random types.
803 However, to maintain consistency with the non-DWP case we pretend DWP
804 files contain virtual DWO files, and we assign each TU with one virtual
805 DWO file (generally based on the line and abbrev section offsets -
806 a heuristic that seems to work in practice). */
807
808 struct dwo_file
809 {
810 /* The DW_AT_GNU_dwo_name attribute.
811 For virtual DWO files the name is constructed from the section offsets
812 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
813 from related CU+TUs. */
814 const char *dwo_name;
815
816 /* The DW_AT_comp_dir attribute. */
817 const char *comp_dir;
818
819 /* The bfd, when the file is open. Otherwise this is NULL.
820 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
821 bfd *dbfd;
822
823 /* The sections that make up this DWO file.
824 Remember that for virtual DWO files in DWP V2, these are virtual
825 sections (for lack of a better name). */
826 struct dwo_sections sections;
827
828 /* The CU in the file.
829 We only support one because having more than one requires hacking the
830 dwo_name of each to match, which is highly unlikely to happen.
831 Doing this means all TUs can share comp_dir: We also assume that
832 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
833 struct dwo_unit *cu;
834
835 /* Table of TUs in the file.
836 Each element is a struct dwo_unit. */
837 htab_t tus;
838 };
839
840 /* These sections are what may appear in a DWP file. */
841
842 struct dwp_sections
843 {
844 /* These are used by both DWP version 1 and 2. */
845 struct dwarf2_section_info str;
846 struct dwarf2_section_info cu_index;
847 struct dwarf2_section_info tu_index;
848
849 /* These are only used by DWP version 2 files.
850 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
851 sections are referenced by section number, and are not recorded here.
852 In DWP version 2 there is at most one copy of all these sections, each
853 section being (effectively) comprised of the concatenation of all of the
854 individual sections that exist in the version 1 format.
855 To keep the code simple we treat each of these concatenated pieces as a
856 section itself (a virtual section?). */
857 struct dwarf2_section_info abbrev;
858 struct dwarf2_section_info info;
859 struct dwarf2_section_info line;
860 struct dwarf2_section_info loc;
861 struct dwarf2_section_info macinfo;
862 struct dwarf2_section_info macro;
863 struct dwarf2_section_info str_offsets;
864 struct dwarf2_section_info types;
865 };
866
867 /* These sections are what may appear in a virtual DWO file in DWP version 1.
868 A virtual DWO file is a DWO file as it appears in a DWP file. */
869
870 struct virtual_v1_dwo_sections
871 {
872 struct dwarf2_section_info abbrev;
873 struct dwarf2_section_info line;
874 struct dwarf2_section_info loc;
875 struct dwarf2_section_info macinfo;
876 struct dwarf2_section_info macro;
877 struct dwarf2_section_info str_offsets;
878 /* Each DWP hash table entry records one CU or one TU.
879 That is recorded here, and copied to dwo_unit.section. */
880 struct dwarf2_section_info info_or_types;
881 };
882
883 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
884 In version 2, the sections of the DWO files are concatenated together
885 and stored in one section of that name. Thus each ELF section contains
886 several "virtual" sections. */
887
888 struct virtual_v2_dwo_sections
889 {
890 bfd_size_type abbrev_offset;
891 bfd_size_type abbrev_size;
892
893 bfd_size_type line_offset;
894 bfd_size_type line_size;
895
896 bfd_size_type loc_offset;
897 bfd_size_type loc_size;
898
899 bfd_size_type macinfo_offset;
900 bfd_size_type macinfo_size;
901
902 bfd_size_type macro_offset;
903 bfd_size_type macro_size;
904
905 bfd_size_type str_offsets_offset;
906 bfd_size_type str_offsets_size;
907
908 /* Each DWP hash table entry records one CU or one TU.
909 That is recorded here, and copied to dwo_unit.section. */
910 bfd_size_type info_or_types_offset;
911 bfd_size_type info_or_types_size;
912 };
913
914 /* Contents of DWP hash tables. */
915
916 struct dwp_hash_table
917 {
918 uint32_t version, nr_columns;
919 uint32_t nr_units, nr_slots;
920 const gdb_byte *hash_table, *unit_table;
921 union
922 {
923 struct
924 {
925 const gdb_byte *indices;
926 } v1;
927 struct
928 {
929 /* This is indexed by column number and gives the id of the section
930 in that column. */
931 #define MAX_NR_V2_DWO_SECTIONS \
932 (1 /* .debug_info or .debug_types */ \
933 + 1 /* .debug_abbrev */ \
934 + 1 /* .debug_line */ \
935 + 1 /* .debug_loc */ \
936 + 1 /* .debug_str_offsets */ \
937 + 1 /* .debug_macro or .debug_macinfo */)
938 int section_ids[MAX_NR_V2_DWO_SECTIONS];
939 const gdb_byte *offsets;
940 const gdb_byte *sizes;
941 } v2;
942 } section_pool;
943 };
944
945 /* Data for one DWP file. */
946
947 struct dwp_file
948 {
949 /* Name of the file. */
950 const char *name;
951
952 /* File format version. */
953 int version;
954
955 /* The bfd. */
956 bfd *dbfd;
957
958 /* Section info for this file. */
959 struct dwp_sections sections;
960
961 /* Table of CUs in the file. */
962 const struct dwp_hash_table *cus;
963
964 /* Table of TUs in the file. */
965 const struct dwp_hash_table *tus;
966
967 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
968 htab_t loaded_cus;
969 htab_t loaded_tus;
970
971 /* Table to map ELF section numbers to their sections.
972 This is only needed for the DWP V1 file format. */
973 unsigned int num_sections;
974 asection **elf_sections;
975 };
976
977 /* This represents a '.dwz' file. */
978
979 struct dwz_file
980 {
981 /* A dwz file can only contain a few sections. */
982 struct dwarf2_section_info abbrev;
983 struct dwarf2_section_info info;
984 struct dwarf2_section_info str;
985 struct dwarf2_section_info line;
986 struct dwarf2_section_info macro;
987 struct dwarf2_section_info gdb_index;
988
989 /* The dwz's BFD. */
990 bfd *dwz_bfd;
991 };
992
993 /* Struct used to pass misc. parameters to read_die_and_children, et
994 al. which are used for both .debug_info and .debug_types dies.
995 All parameters here are unchanging for the life of the call. This
996 struct exists to abstract away the constant parameters of die reading. */
997
998 struct die_reader_specs
999 {
1000 /* The bfd of die_section. */
1001 bfd* abfd;
1002
1003 /* The CU of the DIE we are parsing. */
1004 struct dwarf2_cu *cu;
1005
1006 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1007 struct dwo_file *dwo_file;
1008
1009 /* The section the die comes from.
1010 This is either .debug_info or .debug_types, or the .dwo variants. */
1011 struct dwarf2_section_info *die_section;
1012
1013 /* die_section->buffer. */
1014 const gdb_byte *buffer;
1015
1016 /* The end of the buffer. */
1017 const gdb_byte *buffer_end;
1018
1019 /* The value of the DW_AT_comp_dir attribute. */
1020 const char *comp_dir;
1021 };
1022
1023 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1024 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1025 const gdb_byte *info_ptr,
1026 struct die_info *comp_unit_die,
1027 int has_children,
1028 void *data);
1029
1030 struct file_entry
1031 {
1032 const char *name;
1033 unsigned int dir_index;
1034 unsigned int mod_time;
1035 unsigned int length;
1036 /* Non-zero if referenced by the Line Number Program. */
1037 int included_p;
1038 /* The associated symbol table, if any. */
1039 struct symtab *symtab;
1040 };
1041
1042 /* The line number information for a compilation unit (found in the
1043 .debug_line section) begins with a "statement program header",
1044 which contains the following information. */
1045 struct line_header
1046 {
1047 /* Offset of line number information in .debug_line section. */
1048 sect_offset offset;
1049
1050 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1051 unsigned offset_in_dwz : 1;
1052
1053 unsigned int total_length;
1054 unsigned short version;
1055 unsigned int header_length;
1056 unsigned char minimum_instruction_length;
1057 unsigned char maximum_ops_per_instruction;
1058 unsigned char default_is_stmt;
1059 int line_base;
1060 unsigned char line_range;
1061 unsigned char opcode_base;
1062
1063 /* standard_opcode_lengths[i] is the number of operands for the
1064 standard opcode whose value is i. This means that
1065 standard_opcode_lengths[0] is unused, and the last meaningful
1066 element is standard_opcode_lengths[opcode_base - 1]. */
1067 unsigned char *standard_opcode_lengths;
1068
1069 /* The include_directories table. NOTE! These strings are not
1070 allocated with xmalloc; instead, they are pointers into
1071 debug_line_buffer. If you try to free them, `free' will get
1072 indigestion. */
1073 unsigned int num_include_dirs, include_dirs_size;
1074 const char **include_dirs;
1075
1076 /* The file_names table. NOTE! These strings are not allocated
1077 with xmalloc; instead, they are pointers into debug_line_buffer.
1078 Don't try to free them directly. */
1079 unsigned int num_file_names, file_names_size;
1080 struct file_entry *file_names;
1081
1082 /* The start and end of the statement program following this
1083 header. These point into dwarf2_per_objfile->line_buffer. */
1084 const gdb_byte *statement_program_start, *statement_program_end;
1085 };
1086
1087 /* When we construct a partial symbol table entry we only
1088 need this much information. */
1089 struct partial_die_info
1090 {
1091 /* Offset of this DIE. */
1092 sect_offset offset;
1093
1094 /* DWARF-2 tag for this DIE. */
1095 ENUM_BITFIELD(dwarf_tag) tag : 16;
1096
1097 /* Assorted flags describing the data found in this DIE. */
1098 unsigned int has_children : 1;
1099 unsigned int is_external : 1;
1100 unsigned int is_declaration : 1;
1101 unsigned int has_type : 1;
1102 unsigned int has_specification : 1;
1103 unsigned int has_pc_info : 1;
1104 unsigned int may_be_inlined : 1;
1105
1106 /* Flag set if the SCOPE field of this structure has been
1107 computed. */
1108 unsigned int scope_set : 1;
1109
1110 /* Flag set if the DIE has a byte_size attribute. */
1111 unsigned int has_byte_size : 1;
1112
1113 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1114 unsigned int has_const_value : 1;
1115
1116 /* Flag set if any of the DIE's children are template arguments. */
1117 unsigned int has_template_arguments : 1;
1118
1119 /* Flag set if fixup_partial_die has been called on this die. */
1120 unsigned int fixup_called : 1;
1121
1122 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1123 unsigned int is_dwz : 1;
1124
1125 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1126 unsigned int spec_is_dwz : 1;
1127
1128 /* The name of this DIE. Normally the value of DW_AT_name, but
1129 sometimes a default name for unnamed DIEs. */
1130 const char *name;
1131
1132 /* The linkage name, if present. */
1133 const char *linkage_name;
1134
1135 /* The scope to prepend to our children. This is generally
1136 allocated on the comp_unit_obstack, so will disappear
1137 when this compilation unit leaves the cache. */
1138 const char *scope;
1139
1140 /* Some data associated with the partial DIE. The tag determines
1141 which field is live. */
1142 union
1143 {
1144 /* The location description associated with this DIE, if any. */
1145 struct dwarf_block *locdesc;
1146 /* The offset of an import, for DW_TAG_imported_unit. */
1147 sect_offset offset;
1148 } d;
1149
1150 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1151 CORE_ADDR lowpc;
1152 CORE_ADDR highpc;
1153
1154 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1155 DW_AT_sibling, if any. */
1156 /* NOTE: This member isn't strictly necessary, read_partial_die could
1157 return DW_AT_sibling values to its caller load_partial_dies. */
1158 const gdb_byte *sibling;
1159
1160 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1161 DW_AT_specification (or DW_AT_abstract_origin or
1162 DW_AT_extension). */
1163 sect_offset spec_offset;
1164
1165 /* Pointers to this DIE's parent, first child, and next sibling,
1166 if any. */
1167 struct partial_die_info *die_parent, *die_child, *die_sibling;
1168 };
1169
1170 /* This data structure holds the information of an abbrev. */
1171 struct abbrev_info
1172 {
1173 unsigned int number; /* number identifying abbrev */
1174 enum dwarf_tag tag; /* dwarf tag */
1175 unsigned short has_children; /* boolean */
1176 unsigned short num_attrs; /* number of attributes */
1177 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1178 struct abbrev_info *next; /* next in chain */
1179 };
1180
1181 struct attr_abbrev
1182 {
1183 ENUM_BITFIELD(dwarf_attribute) name : 16;
1184 ENUM_BITFIELD(dwarf_form) form : 16;
1185 };
1186
1187 /* Size of abbrev_table.abbrev_hash_table. */
1188 #define ABBREV_HASH_SIZE 121
1189
1190 /* Top level data structure to contain an abbreviation table. */
1191
1192 struct abbrev_table
1193 {
1194 /* Where the abbrev table came from.
1195 This is used as a sanity check when the table is used. */
1196 sect_offset offset;
1197
1198 /* Storage for the abbrev table. */
1199 struct obstack abbrev_obstack;
1200
1201 /* Hash table of abbrevs.
1202 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1203 It could be statically allocated, but the previous code didn't so we
1204 don't either. */
1205 struct abbrev_info **abbrevs;
1206 };
1207
1208 /* Attributes have a name and a value. */
1209 struct attribute
1210 {
1211 ENUM_BITFIELD(dwarf_attribute) name : 16;
1212 ENUM_BITFIELD(dwarf_form) form : 15;
1213
1214 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1215 field should be in u.str (existing only for DW_STRING) but it is kept
1216 here for better struct attribute alignment. */
1217 unsigned int string_is_canonical : 1;
1218
1219 union
1220 {
1221 const char *str;
1222 struct dwarf_block *blk;
1223 ULONGEST unsnd;
1224 LONGEST snd;
1225 CORE_ADDR addr;
1226 ULONGEST signature;
1227 }
1228 u;
1229 };
1230
1231 /* This data structure holds a complete die structure. */
1232 struct die_info
1233 {
1234 /* DWARF-2 tag for this DIE. */
1235 ENUM_BITFIELD(dwarf_tag) tag : 16;
1236
1237 /* Number of attributes */
1238 unsigned char num_attrs;
1239
1240 /* True if we're presently building the full type name for the
1241 type derived from this DIE. */
1242 unsigned char building_fullname : 1;
1243
1244 /* True if this die is in process. PR 16581. */
1245 unsigned char in_process : 1;
1246
1247 /* Abbrev number */
1248 unsigned int abbrev;
1249
1250 /* Offset in .debug_info or .debug_types section. */
1251 sect_offset offset;
1252
1253 /* The dies in a compilation unit form an n-ary tree. PARENT
1254 points to this die's parent; CHILD points to the first child of
1255 this node; and all the children of a given node are chained
1256 together via their SIBLING fields. */
1257 struct die_info *child; /* Its first child, if any. */
1258 struct die_info *sibling; /* Its next sibling, if any. */
1259 struct die_info *parent; /* Its parent, if any. */
1260
1261 /* An array of attributes, with NUM_ATTRS elements. There may be
1262 zero, but it's not common and zero-sized arrays are not
1263 sufficiently portable C. */
1264 struct attribute attrs[1];
1265 };
1266
1267 /* Get at parts of an attribute structure. */
1268
1269 #define DW_STRING(attr) ((attr)->u.str)
1270 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1271 #define DW_UNSND(attr) ((attr)->u.unsnd)
1272 #define DW_BLOCK(attr) ((attr)->u.blk)
1273 #define DW_SND(attr) ((attr)->u.snd)
1274 #define DW_ADDR(attr) ((attr)->u.addr)
1275 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1276
1277 /* Blocks are a bunch of untyped bytes. */
1278 struct dwarf_block
1279 {
1280 size_t size;
1281
1282 /* Valid only if SIZE is not zero. */
1283 const gdb_byte *data;
1284 };
1285
1286 #ifndef ATTR_ALLOC_CHUNK
1287 #define ATTR_ALLOC_CHUNK 4
1288 #endif
1289
1290 /* Allocate fields for structs, unions and enums in this size. */
1291 #ifndef DW_FIELD_ALLOC_CHUNK
1292 #define DW_FIELD_ALLOC_CHUNK 4
1293 #endif
1294
1295 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1296 but this would require a corresponding change in unpack_field_as_long
1297 and friends. */
1298 static int bits_per_byte = 8;
1299
1300 struct nextfield
1301 {
1302 struct nextfield *next;
1303 int accessibility;
1304 int virtuality;
1305 struct field field;
1306 };
1307
1308 struct nextfnfield
1309 {
1310 struct nextfnfield *next;
1311 struct fn_field fnfield;
1312 };
1313
1314 struct fnfieldlist
1315 {
1316 const char *name;
1317 int length;
1318 struct nextfnfield *head;
1319 };
1320
1321 struct typedef_field_list
1322 {
1323 struct typedef_field field;
1324 struct typedef_field_list *next;
1325 };
1326
1327 /* The routines that read and process dies for a C struct or C++ class
1328 pass lists of data member fields and lists of member function fields
1329 in an instance of a field_info structure, as defined below. */
1330 struct field_info
1331 {
1332 /* List of data member and baseclasses fields. */
1333 struct nextfield *fields, *baseclasses;
1334
1335 /* Number of fields (including baseclasses). */
1336 int nfields;
1337
1338 /* Number of baseclasses. */
1339 int nbaseclasses;
1340
1341 /* Set if the accesibility of one of the fields is not public. */
1342 int non_public_fields;
1343
1344 /* Member function fields array, entries are allocated in the order they
1345 are encountered in the object file. */
1346 struct nextfnfield *fnfields;
1347
1348 /* Member function fieldlist array, contains name of possibly overloaded
1349 member function, number of overloaded member functions and a pointer
1350 to the head of the member function field chain. */
1351 struct fnfieldlist *fnfieldlists;
1352
1353 /* Number of entries in the fnfieldlists array. */
1354 int nfnfields;
1355
1356 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1357 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1358 struct typedef_field_list *typedef_field_list;
1359 unsigned typedef_field_list_count;
1360 };
1361
1362 /* One item on the queue of compilation units to read in full symbols
1363 for. */
1364 struct dwarf2_queue_item
1365 {
1366 struct dwarf2_per_cu_data *per_cu;
1367 enum language pretend_language;
1368 struct dwarf2_queue_item *next;
1369 };
1370
1371 /* The current queue. */
1372 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1373
1374 /* Loaded secondary compilation units are kept in memory until they
1375 have not been referenced for the processing of this many
1376 compilation units. Set this to zero to disable caching. Cache
1377 sizes of up to at least twenty will improve startup time for
1378 typical inter-CU-reference binaries, at an obvious memory cost. */
1379 static int dwarf_max_cache_age = 5;
1380 static void
1381 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1382 struct cmd_list_element *c, const char *value)
1383 {
1384 fprintf_filtered (file, _("The upper bound on the age of cached "
1385 "DWARF compilation units is %s.\n"),
1386 value);
1387 }
1388 \f
1389 /* local function prototypes */
1390
1391 static const char *get_section_name (const struct dwarf2_section_info *);
1392
1393 static const char *get_section_file_name (const struct dwarf2_section_info *);
1394
1395 static void dwarf2_locate_sections (bfd *, asection *, void *);
1396
1397 static void dwarf2_find_base_address (struct die_info *die,
1398 struct dwarf2_cu *cu);
1399
1400 static struct partial_symtab *create_partial_symtab
1401 (struct dwarf2_per_cu_data *per_cu, const char *name);
1402
1403 static void dwarf2_build_psymtabs_hard (struct objfile *);
1404
1405 static void scan_partial_symbols (struct partial_die_info *,
1406 CORE_ADDR *, CORE_ADDR *,
1407 int, struct dwarf2_cu *);
1408
1409 static void add_partial_symbol (struct partial_die_info *,
1410 struct dwarf2_cu *);
1411
1412 static void add_partial_namespace (struct partial_die_info *pdi,
1413 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1414 int set_addrmap, struct dwarf2_cu *cu);
1415
1416 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1417 CORE_ADDR *highpc, int set_addrmap,
1418 struct dwarf2_cu *cu);
1419
1420 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1421 struct dwarf2_cu *cu);
1422
1423 static void add_partial_subprogram (struct partial_die_info *pdi,
1424 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1425 int need_pc, struct dwarf2_cu *cu);
1426
1427 static void dwarf2_read_symtab (struct partial_symtab *,
1428 struct objfile *);
1429
1430 static void psymtab_to_symtab_1 (struct partial_symtab *);
1431
1432 static struct abbrev_info *abbrev_table_lookup_abbrev
1433 (const struct abbrev_table *, unsigned int);
1434
1435 static struct abbrev_table *abbrev_table_read_table
1436 (struct dwarf2_section_info *, sect_offset);
1437
1438 static void abbrev_table_free (struct abbrev_table *);
1439
1440 static void abbrev_table_free_cleanup (void *);
1441
1442 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1443 struct dwarf2_section_info *);
1444
1445 static void dwarf2_free_abbrev_table (void *);
1446
1447 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1448
1449 static struct partial_die_info *load_partial_dies
1450 (const struct die_reader_specs *, const gdb_byte *, int);
1451
1452 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1453 struct partial_die_info *,
1454 struct abbrev_info *,
1455 unsigned int,
1456 const gdb_byte *);
1457
1458 static struct partial_die_info *find_partial_die (sect_offset, int,
1459 struct dwarf2_cu *);
1460
1461 static void fixup_partial_die (struct partial_die_info *,
1462 struct dwarf2_cu *);
1463
1464 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1465 struct attribute *, struct attr_abbrev *,
1466 const gdb_byte *);
1467
1468 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1469
1470 static int read_1_signed_byte (bfd *, const gdb_byte *);
1471
1472 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1475
1476 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1477
1478 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1479 unsigned int *);
1480
1481 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_checked_initial_length_and_offset
1484 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1485 unsigned int *, unsigned int *);
1486
1487 static LONGEST read_offset (bfd *, const gdb_byte *,
1488 const struct comp_unit_head *,
1489 unsigned int *);
1490
1491 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1492
1493 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1494 sect_offset);
1495
1496 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1497
1498 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1499
1500 static const char *read_indirect_string (bfd *, const gdb_byte *,
1501 const struct comp_unit_head *,
1502 unsigned int *);
1503
1504 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1505
1506 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1507
1508 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1511 const gdb_byte *,
1512 unsigned int *);
1513
1514 static const char *read_str_index (const struct die_reader_specs *reader,
1515 ULONGEST str_index);
1516
1517 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1518
1519 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1520 struct dwarf2_cu *);
1521
1522 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1523 unsigned int);
1524
1525 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1526 struct dwarf2_cu *cu);
1527
1528 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1529
1530 static struct die_info *die_specification (struct die_info *die,
1531 struct dwarf2_cu **);
1532
1533 static void free_line_header (struct line_header *lh);
1534
1535 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1536 struct dwarf2_cu *cu);
1537
1538 static void dwarf_decode_lines (struct line_header *, const char *,
1539 struct dwarf2_cu *, struct partial_symtab *,
1540 CORE_ADDR, int decode_mapping);
1541
1542 static void dwarf2_start_subfile (const char *, const char *);
1543
1544 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1545 const char *, const char *,
1546 CORE_ADDR);
1547
1548 static struct symbol *new_symbol (struct die_info *, struct type *,
1549 struct dwarf2_cu *);
1550
1551 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1552 struct dwarf2_cu *, struct symbol *);
1553
1554 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1555 struct dwarf2_cu *);
1556
1557 static void dwarf2_const_value_attr (const struct attribute *attr,
1558 struct type *type,
1559 const char *name,
1560 struct obstack *obstack,
1561 struct dwarf2_cu *cu, LONGEST *value,
1562 const gdb_byte **bytes,
1563 struct dwarf2_locexpr_baton **baton);
1564
1565 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1566
1567 static int need_gnat_info (struct dwarf2_cu *);
1568
1569 static struct type *die_descriptive_type (struct die_info *,
1570 struct dwarf2_cu *);
1571
1572 static void set_descriptive_type (struct type *, struct die_info *,
1573 struct dwarf2_cu *);
1574
1575 static struct type *die_containing_type (struct die_info *,
1576 struct dwarf2_cu *);
1577
1578 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1579 struct dwarf2_cu *);
1580
1581 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1582
1583 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1584
1585 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1586
1587 static char *typename_concat (struct obstack *obs, const char *prefix,
1588 const char *suffix, int physname,
1589 struct dwarf2_cu *cu);
1590
1591 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1592
1593 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1594
1595 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1596
1597 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1598
1599 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1600
1601 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1602 struct dwarf2_cu *, struct partial_symtab *);
1603
1604 static int dwarf2_get_pc_bounds (struct die_info *,
1605 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1606 struct partial_symtab *);
1607
1608 static void get_scope_pc_bounds (struct die_info *,
1609 CORE_ADDR *, CORE_ADDR *,
1610 struct dwarf2_cu *);
1611
1612 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1613 CORE_ADDR, struct dwarf2_cu *);
1614
1615 static void dwarf2_add_field (struct field_info *, struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static void dwarf2_attach_fields_to_type (struct field_info *,
1619 struct type *, struct dwarf2_cu *);
1620
1621 static void dwarf2_add_member_fn (struct field_info *,
1622 struct die_info *, struct type *,
1623 struct dwarf2_cu *);
1624
1625 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1626 struct type *,
1627 struct dwarf2_cu *);
1628
1629 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1630
1631 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1634
1635 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1636
1637 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1638
1639 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static struct type *read_module_type (struct die_info *die,
1642 struct dwarf2_cu *cu);
1643
1644 static const char *namespace_name (struct die_info *die,
1645 int *is_anonymous, struct dwarf2_cu *);
1646
1647 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1648
1649 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1650
1651 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1652 struct dwarf2_cu *);
1653
1654 static struct die_info *read_die_and_siblings_1
1655 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1656 struct die_info *);
1657
1658 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1659 const gdb_byte *info_ptr,
1660 const gdb_byte **new_info_ptr,
1661 struct die_info *parent);
1662
1663 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1664 struct die_info **, const gdb_byte *,
1665 int *, int);
1666
1667 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1668 struct die_info **, const gdb_byte *,
1669 int *);
1670
1671 static void process_die (struct die_info *, struct dwarf2_cu *);
1672
1673 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1674 struct obstack *);
1675
1676 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1677
1678 static const char *dwarf2_full_name (const char *name,
1679 struct die_info *die,
1680 struct dwarf2_cu *cu);
1681
1682 static const char *dwarf2_physname (const char *name, struct die_info *die,
1683 struct dwarf2_cu *cu);
1684
1685 static struct die_info *dwarf2_extension (struct die_info *die,
1686 struct dwarf2_cu **);
1687
1688 static const char *dwarf_tag_name (unsigned int);
1689
1690 static const char *dwarf_attr_name (unsigned int);
1691
1692 static const char *dwarf_form_name (unsigned int);
1693
1694 static char *dwarf_bool_name (unsigned int);
1695
1696 static const char *dwarf_type_encoding_name (unsigned int);
1697
1698 static struct die_info *sibling_die (struct die_info *);
1699
1700 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1701
1702 static void dump_die_for_error (struct die_info *);
1703
1704 static void dump_die_1 (struct ui_file *, int level, int max_level,
1705 struct die_info *);
1706
1707 /*static*/ void dump_die (struct die_info *, int max_level);
1708
1709 static void store_in_ref_table (struct die_info *,
1710 struct dwarf2_cu *);
1711
1712 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1713
1714 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1715
1716 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1717 const struct attribute *,
1718 struct dwarf2_cu **);
1719
1720 static struct die_info *follow_die_ref (struct die_info *,
1721 const struct attribute *,
1722 struct dwarf2_cu **);
1723
1724 static struct die_info *follow_die_sig (struct die_info *,
1725 const struct attribute *,
1726 struct dwarf2_cu **);
1727
1728 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1729 struct dwarf2_cu *);
1730
1731 static struct type *get_DW_AT_signature_type (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu *);
1734
1735 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1736
1737 static void read_signatured_type (struct signatured_type *);
1738
1739 /* memory allocation interface */
1740
1741 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1742
1743 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1744
1745 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1746
1747 static int attr_form_is_block (const struct attribute *);
1748
1749 static int attr_form_is_section_offset (const struct attribute *);
1750
1751 static int attr_form_is_constant (const struct attribute *);
1752
1753 static int attr_form_is_ref (const struct attribute *);
1754
1755 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1756 struct dwarf2_loclist_baton *baton,
1757 const struct attribute *attr);
1758
1759 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1760 struct symbol *sym,
1761 struct dwarf2_cu *cu,
1762 int is_block);
1763
1764 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1765 const gdb_byte *info_ptr,
1766 struct abbrev_info *abbrev);
1767
1768 static void free_stack_comp_unit (void *);
1769
1770 static hashval_t partial_die_hash (const void *item);
1771
1772 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1773
1774 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1775 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1776
1777 static void init_one_comp_unit (struct dwarf2_cu *cu,
1778 struct dwarf2_per_cu_data *per_cu);
1779
1780 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1781 struct die_info *comp_unit_die,
1782 enum language pretend_language);
1783
1784 static void free_heap_comp_unit (void *);
1785
1786 static void free_cached_comp_units (void *);
1787
1788 static void age_cached_comp_units (void);
1789
1790 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1791
1792 static struct type *set_die_type (struct die_info *, struct type *,
1793 struct dwarf2_cu *);
1794
1795 static void create_all_comp_units (struct objfile *);
1796
1797 static int create_all_type_units (struct objfile *);
1798
1799 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1800 enum language);
1801
1802 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1803 enum language);
1804
1805 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1806 enum language);
1807
1808 static void dwarf2_add_dependence (struct dwarf2_cu *,
1809 struct dwarf2_per_cu_data *);
1810
1811 static void dwarf2_mark (struct dwarf2_cu *);
1812
1813 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1814
1815 static struct type *get_die_type_at_offset (sect_offset,
1816 struct dwarf2_per_cu_data *);
1817
1818 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1819
1820 static void dwarf2_release_queue (void *dummy);
1821
1822 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1823 enum language pretend_language);
1824
1825 static void process_queue (void);
1826
1827 static void find_file_and_directory (struct die_info *die,
1828 struct dwarf2_cu *cu,
1829 const char **name, const char **comp_dir);
1830
1831 static char *file_full_name (int file, struct line_header *lh,
1832 const char *comp_dir);
1833
1834 static const gdb_byte *read_and_check_comp_unit_head
1835 (struct comp_unit_head *header,
1836 struct dwarf2_section_info *section,
1837 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1838 int is_debug_types_section);
1839
1840 static void init_cutu_and_read_dies
1841 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1842 int use_existing_cu, int keep,
1843 die_reader_func_ftype *die_reader_func, void *data);
1844
1845 static void init_cutu_and_read_dies_simple
1846 (struct dwarf2_per_cu_data *this_cu,
1847 die_reader_func_ftype *die_reader_func, void *data);
1848
1849 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1850
1851 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1852
1853 static struct dwo_unit *lookup_dwo_unit_in_dwp
1854 (struct dwp_file *dwp_file, const char *comp_dir,
1855 ULONGEST signature, int is_debug_types);
1856
1857 static struct dwp_file *get_dwp_file (void);
1858
1859 static struct dwo_unit *lookup_dwo_comp_unit
1860 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1861
1862 static struct dwo_unit *lookup_dwo_type_unit
1863 (struct signatured_type *, const char *, const char *);
1864
1865 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1866
1867 static void free_dwo_file_cleanup (void *);
1868
1869 static void process_cu_includes (void);
1870
1871 static void check_producer (struct dwarf2_cu *cu);
1872
1873 static void free_line_header_voidp (void *arg);
1874 \f
1875 /* Various complaints about symbol reading that don't abort the process. */
1876
1877 static void
1878 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1879 {
1880 complaint (&symfile_complaints,
1881 _("statement list doesn't fit in .debug_line section"));
1882 }
1883
1884 static void
1885 dwarf2_debug_line_missing_file_complaint (void)
1886 {
1887 complaint (&symfile_complaints,
1888 _(".debug_line section has line data without a file"));
1889 }
1890
1891 static void
1892 dwarf2_debug_line_missing_end_sequence_complaint (void)
1893 {
1894 complaint (&symfile_complaints,
1895 _(".debug_line section has line "
1896 "program sequence without an end"));
1897 }
1898
1899 static void
1900 dwarf2_complex_location_expr_complaint (void)
1901 {
1902 complaint (&symfile_complaints, _("location expression too complex"));
1903 }
1904
1905 static void
1906 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1907 int arg3)
1908 {
1909 complaint (&symfile_complaints,
1910 _("const value length mismatch for '%s', got %d, expected %d"),
1911 arg1, arg2, arg3);
1912 }
1913
1914 static void
1915 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1916 {
1917 complaint (&symfile_complaints,
1918 _("debug info runs off end of %s section"
1919 " [in module %s]"),
1920 get_section_name (section),
1921 get_section_file_name (section));
1922 }
1923
1924 static void
1925 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1926 {
1927 complaint (&symfile_complaints,
1928 _("macro debug info contains a "
1929 "malformed macro definition:\n`%s'"),
1930 arg1);
1931 }
1932
1933 static void
1934 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1935 {
1936 complaint (&symfile_complaints,
1937 _("invalid attribute class or form for '%s' in '%s'"),
1938 arg1, arg2);
1939 }
1940
1941 /* Hash function for line_header_hash. */
1942
1943 static hashval_t
1944 line_header_hash (const struct line_header *ofs)
1945 {
1946 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1947 }
1948
1949 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1950
1951 static hashval_t
1952 line_header_hash_voidp (const void *item)
1953 {
1954 const struct line_header *ofs = item;
1955
1956 return line_header_hash (ofs);
1957 }
1958
1959 /* Equality function for line_header_hash. */
1960
1961 static int
1962 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1963 {
1964 const struct line_header *ofs_lhs = item_lhs;
1965 const struct line_header *ofs_rhs = item_rhs;
1966
1967 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1968 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1969 }
1970
1971 \f
1972 #if WORDS_BIGENDIAN
1973
1974 /* Convert VALUE between big- and little-endian. */
1975 static offset_type
1976 byte_swap (offset_type value)
1977 {
1978 offset_type result;
1979
1980 result = (value & 0xff) << 24;
1981 result |= (value & 0xff00) << 8;
1982 result |= (value & 0xff0000) >> 8;
1983 result |= (value & 0xff000000) >> 24;
1984 return result;
1985 }
1986
1987 #define MAYBE_SWAP(V) byte_swap (V)
1988
1989 #else
1990 #define MAYBE_SWAP(V) (V)
1991 #endif /* WORDS_BIGENDIAN */
1992
1993 /* Read the given attribute value as an address, taking the attribute's
1994 form into account. */
1995
1996 static CORE_ADDR
1997 attr_value_as_address (struct attribute *attr)
1998 {
1999 CORE_ADDR addr;
2000
2001 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2002 {
2003 /* Aside from a few clearly defined exceptions, attributes that
2004 contain an address must always be in DW_FORM_addr form.
2005 Unfortunately, some compilers happen to be violating this
2006 requirement by encoding addresses using other forms, such
2007 as DW_FORM_data4 for example. For those broken compilers,
2008 we try to do our best, without any guarantee of success,
2009 to interpret the address correctly. It would also be nice
2010 to generate a complaint, but that would require us to maintain
2011 a list of legitimate cases where a non-address form is allowed,
2012 as well as update callers to pass in at least the CU's DWARF
2013 version. This is more overhead than what we're willing to
2014 expand for a pretty rare case. */
2015 addr = DW_UNSND (attr);
2016 }
2017 else
2018 addr = DW_ADDR (attr);
2019
2020 return addr;
2021 }
2022
2023 /* The suffix for an index file. */
2024 #define INDEX_SUFFIX ".gdb-index"
2025
2026 /* Try to locate the sections we need for DWARF 2 debugging
2027 information and return true if we have enough to do something.
2028 NAMES points to the dwarf2 section names, or is NULL if the standard
2029 ELF names are used. */
2030
2031 int
2032 dwarf2_has_info (struct objfile *objfile,
2033 const struct dwarf2_debug_sections *names)
2034 {
2035 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2036 if (!dwarf2_per_objfile)
2037 {
2038 /* Initialize per-objfile state. */
2039 struct dwarf2_per_objfile *data
2040 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2041
2042 memset (data, 0, sizeof (*data));
2043 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2044 dwarf2_per_objfile = data;
2045
2046 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2047 (void *) names);
2048 dwarf2_per_objfile->objfile = objfile;
2049 }
2050 return (!dwarf2_per_objfile->info.is_virtual
2051 && dwarf2_per_objfile->info.s.asection != NULL
2052 && !dwarf2_per_objfile->abbrev.is_virtual
2053 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2054 }
2055
2056 /* Return the containing section of virtual section SECTION. */
2057
2058 static struct dwarf2_section_info *
2059 get_containing_section (const struct dwarf2_section_info *section)
2060 {
2061 gdb_assert (section->is_virtual);
2062 return section->s.containing_section;
2063 }
2064
2065 /* Return the bfd owner of SECTION. */
2066
2067 static struct bfd *
2068 get_section_bfd_owner (const struct dwarf2_section_info *section)
2069 {
2070 if (section->is_virtual)
2071 {
2072 section = get_containing_section (section);
2073 gdb_assert (!section->is_virtual);
2074 }
2075 return section->s.asection->owner;
2076 }
2077
2078 /* Return the bfd section of SECTION.
2079 Returns NULL if the section is not present. */
2080
2081 static asection *
2082 get_section_bfd_section (const struct dwarf2_section_info *section)
2083 {
2084 if (section->is_virtual)
2085 {
2086 section = get_containing_section (section);
2087 gdb_assert (!section->is_virtual);
2088 }
2089 return section->s.asection;
2090 }
2091
2092 /* Return the name of SECTION. */
2093
2094 static const char *
2095 get_section_name (const struct dwarf2_section_info *section)
2096 {
2097 asection *sectp = get_section_bfd_section (section);
2098
2099 gdb_assert (sectp != NULL);
2100 return bfd_section_name (get_section_bfd_owner (section), sectp);
2101 }
2102
2103 /* Return the name of the file SECTION is in. */
2104
2105 static const char *
2106 get_section_file_name (const struct dwarf2_section_info *section)
2107 {
2108 bfd *abfd = get_section_bfd_owner (section);
2109
2110 return bfd_get_filename (abfd);
2111 }
2112
2113 /* Return the id of SECTION.
2114 Returns 0 if SECTION doesn't exist. */
2115
2116 static int
2117 get_section_id (const struct dwarf2_section_info *section)
2118 {
2119 asection *sectp = get_section_bfd_section (section);
2120
2121 if (sectp == NULL)
2122 return 0;
2123 return sectp->id;
2124 }
2125
2126 /* Return the flags of SECTION.
2127 SECTION (or containing section if this is a virtual section) must exist. */
2128
2129 static int
2130 get_section_flags (const struct dwarf2_section_info *section)
2131 {
2132 asection *sectp = get_section_bfd_section (section);
2133
2134 gdb_assert (sectp != NULL);
2135 return bfd_get_section_flags (sectp->owner, sectp);
2136 }
2137
2138 /* When loading sections, we look either for uncompressed section or for
2139 compressed section names. */
2140
2141 static int
2142 section_is_p (const char *section_name,
2143 const struct dwarf2_section_names *names)
2144 {
2145 if (names->normal != NULL
2146 && strcmp (section_name, names->normal) == 0)
2147 return 1;
2148 if (names->compressed != NULL
2149 && strcmp (section_name, names->compressed) == 0)
2150 return 1;
2151 return 0;
2152 }
2153
2154 /* This function is mapped across the sections and remembers the
2155 offset and size of each of the debugging sections we are interested
2156 in. */
2157
2158 static void
2159 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2160 {
2161 const struct dwarf2_debug_sections *names;
2162 flagword aflag = bfd_get_section_flags (abfd, sectp);
2163
2164 if (vnames == NULL)
2165 names = &dwarf2_elf_names;
2166 else
2167 names = (const struct dwarf2_debug_sections *) vnames;
2168
2169 if ((aflag & SEC_HAS_CONTENTS) == 0)
2170 {
2171 }
2172 else if (section_is_p (sectp->name, &names->info))
2173 {
2174 dwarf2_per_objfile->info.s.asection = sectp;
2175 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2176 }
2177 else if (section_is_p (sectp->name, &names->abbrev))
2178 {
2179 dwarf2_per_objfile->abbrev.s.asection = sectp;
2180 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2181 }
2182 else if (section_is_p (sectp->name, &names->line))
2183 {
2184 dwarf2_per_objfile->line.s.asection = sectp;
2185 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2186 }
2187 else if (section_is_p (sectp->name, &names->loc))
2188 {
2189 dwarf2_per_objfile->loc.s.asection = sectp;
2190 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2191 }
2192 else if (section_is_p (sectp->name, &names->macinfo))
2193 {
2194 dwarf2_per_objfile->macinfo.s.asection = sectp;
2195 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2196 }
2197 else if (section_is_p (sectp->name, &names->macro))
2198 {
2199 dwarf2_per_objfile->macro.s.asection = sectp;
2200 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2201 }
2202 else if (section_is_p (sectp->name, &names->str))
2203 {
2204 dwarf2_per_objfile->str.s.asection = sectp;
2205 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2206 }
2207 else if (section_is_p (sectp->name, &names->addr))
2208 {
2209 dwarf2_per_objfile->addr.s.asection = sectp;
2210 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2211 }
2212 else if (section_is_p (sectp->name, &names->frame))
2213 {
2214 dwarf2_per_objfile->frame.s.asection = sectp;
2215 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2216 }
2217 else if (section_is_p (sectp->name, &names->eh_frame))
2218 {
2219 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2220 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2221 }
2222 else if (section_is_p (sectp->name, &names->ranges))
2223 {
2224 dwarf2_per_objfile->ranges.s.asection = sectp;
2225 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2226 }
2227 else if (section_is_p (sectp->name, &names->types))
2228 {
2229 struct dwarf2_section_info type_section;
2230
2231 memset (&type_section, 0, sizeof (type_section));
2232 type_section.s.asection = sectp;
2233 type_section.size = bfd_get_section_size (sectp);
2234
2235 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2236 &type_section);
2237 }
2238 else if (section_is_p (sectp->name, &names->gdb_index))
2239 {
2240 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2241 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2242 }
2243
2244 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2245 && bfd_section_vma (abfd, sectp) == 0)
2246 dwarf2_per_objfile->has_section_at_zero = 1;
2247 }
2248
2249 /* A helper function that decides whether a section is empty,
2250 or not present. */
2251
2252 static int
2253 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2254 {
2255 if (section->is_virtual)
2256 return section->size == 0;
2257 return section->s.asection == NULL || section->size == 0;
2258 }
2259
2260 /* Read the contents of the section INFO.
2261 OBJFILE is the main object file, but not necessarily the file where
2262 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2263 of the DWO file.
2264 If the section is compressed, uncompress it before returning. */
2265
2266 static void
2267 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2268 {
2269 asection *sectp;
2270 bfd *abfd;
2271 gdb_byte *buf, *retbuf;
2272
2273 if (info->readin)
2274 return;
2275 info->buffer = NULL;
2276 info->readin = 1;
2277
2278 if (dwarf2_section_empty_p (info))
2279 return;
2280
2281 sectp = get_section_bfd_section (info);
2282
2283 /* If this is a virtual section we need to read in the real one first. */
2284 if (info->is_virtual)
2285 {
2286 struct dwarf2_section_info *containing_section =
2287 get_containing_section (info);
2288
2289 gdb_assert (sectp != NULL);
2290 if ((sectp->flags & SEC_RELOC) != 0)
2291 {
2292 error (_("Dwarf Error: DWP format V2 with relocations is not"
2293 " supported in section %s [in module %s]"),
2294 get_section_name (info), get_section_file_name (info));
2295 }
2296 dwarf2_read_section (objfile, containing_section);
2297 /* Other code should have already caught virtual sections that don't
2298 fit. */
2299 gdb_assert (info->virtual_offset + info->size
2300 <= containing_section->size);
2301 /* If the real section is empty or there was a problem reading the
2302 section we shouldn't get here. */
2303 gdb_assert (containing_section->buffer != NULL);
2304 info->buffer = containing_section->buffer + info->virtual_offset;
2305 return;
2306 }
2307
2308 /* If the section has relocations, we must read it ourselves.
2309 Otherwise we attach it to the BFD. */
2310 if ((sectp->flags & SEC_RELOC) == 0)
2311 {
2312 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2313 return;
2314 }
2315
2316 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2317 info->buffer = buf;
2318
2319 /* When debugging .o files, we may need to apply relocations; see
2320 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2321 We never compress sections in .o files, so we only need to
2322 try this when the section is not compressed. */
2323 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2324 if (retbuf != NULL)
2325 {
2326 info->buffer = retbuf;
2327 return;
2328 }
2329
2330 abfd = get_section_bfd_owner (info);
2331 gdb_assert (abfd != NULL);
2332
2333 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2334 || bfd_bread (buf, info->size, abfd) != info->size)
2335 {
2336 error (_("Dwarf Error: Can't read DWARF data"
2337 " in section %s [in module %s]"),
2338 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2339 }
2340 }
2341
2342 /* A helper function that returns the size of a section in a safe way.
2343 If you are positive that the section has been read before using the
2344 size, then it is safe to refer to the dwarf2_section_info object's
2345 "size" field directly. In other cases, you must call this
2346 function, because for compressed sections the size field is not set
2347 correctly until the section has been read. */
2348
2349 static bfd_size_type
2350 dwarf2_section_size (struct objfile *objfile,
2351 struct dwarf2_section_info *info)
2352 {
2353 if (!info->readin)
2354 dwarf2_read_section (objfile, info);
2355 return info->size;
2356 }
2357
2358 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2359 SECTION_NAME. */
2360
2361 void
2362 dwarf2_get_section_info (struct objfile *objfile,
2363 enum dwarf2_section_enum sect,
2364 asection **sectp, const gdb_byte **bufp,
2365 bfd_size_type *sizep)
2366 {
2367 struct dwarf2_per_objfile *data
2368 = objfile_data (objfile, dwarf2_objfile_data_key);
2369 struct dwarf2_section_info *info;
2370
2371 /* We may see an objfile without any DWARF, in which case we just
2372 return nothing. */
2373 if (data == NULL)
2374 {
2375 *sectp = NULL;
2376 *bufp = NULL;
2377 *sizep = 0;
2378 return;
2379 }
2380 switch (sect)
2381 {
2382 case DWARF2_DEBUG_FRAME:
2383 info = &data->frame;
2384 break;
2385 case DWARF2_EH_FRAME:
2386 info = &data->eh_frame;
2387 break;
2388 default:
2389 gdb_assert_not_reached ("unexpected section");
2390 }
2391
2392 dwarf2_read_section (objfile, info);
2393
2394 *sectp = get_section_bfd_section (info);
2395 *bufp = info->buffer;
2396 *sizep = info->size;
2397 }
2398
2399 /* A helper function to find the sections for a .dwz file. */
2400
2401 static void
2402 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2403 {
2404 struct dwz_file *dwz_file = arg;
2405
2406 /* Note that we only support the standard ELF names, because .dwz
2407 is ELF-only (at the time of writing). */
2408 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2409 {
2410 dwz_file->abbrev.s.asection = sectp;
2411 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2414 {
2415 dwz_file->info.s.asection = sectp;
2416 dwz_file->info.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2419 {
2420 dwz_file->str.s.asection = sectp;
2421 dwz_file->str.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2424 {
2425 dwz_file->line.s.asection = sectp;
2426 dwz_file->line.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2429 {
2430 dwz_file->macro.s.asection = sectp;
2431 dwz_file->macro.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2434 {
2435 dwz_file->gdb_index.s.asection = sectp;
2436 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2437 }
2438 }
2439
2440 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2441 there is no .gnu_debugaltlink section in the file. Error if there
2442 is such a section but the file cannot be found. */
2443
2444 static struct dwz_file *
2445 dwarf2_get_dwz_file (void)
2446 {
2447 bfd *dwz_bfd;
2448 char *data;
2449 struct cleanup *cleanup;
2450 const char *filename;
2451 struct dwz_file *result;
2452 bfd_size_type buildid_len_arg;
2453 size_t buildid_len;
2454 bfd_byte *buildid;
2455
2456 if (dwarf2_per_objfile->dwz_file != NULL)
2457 return dwarf2_per_objfile->dwz_file;
2458
2459 bfd_set_error (bfd_error_no_error);
2460 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2461 &buildid_len_arg, &buildid);
2462 if (data == NULL)
2463 {
2464 if (bfd_get_error () == bfd_error_no_error)
2465 return NULL;
2466 error (_("could not read '.gnu_debugaltlink' section: %s"),
2467 bfd_errmsg (bfd_get_error ()));
2468 }
2469 cleanup = make_cleanup (xfree, data);
2470 make_cleanup (xfree, buildid);
2471
2472 buildid_len = (size_t) buildid_len_arg;
2473
2474 filename = (const char *) data;
2475 if (!IS_ABSOLUTE_PATH (filename))
2476 {
2477 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2478 char *rel;
2479
2480 make_cleanup (xfree, abs);
2481 abs = ldirname (abs);
2482 make_cleanup (xfree, abs);
2483
2484 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2485 make_cleanup (xfree, rel);
2486 filename = rel;
2487 }
2488
2489 /* First try the file name given in the section. If that doesn't
2490 work, try to use the build-id instead. */
2491 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2492 if (dwz_bfd != NULL)
2493 {
2494 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2495 {
2496 gdb_bfd_unref (dwz_bfd);
2497 dwz_bfd = NULL;
2498 }
2499 }
2500
2501 if (dwz_bfd == NULL)
2502 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2503
2504 if (dwz_bfd == NULL)
2505 error (_("could not find '.gnu_debugaltlink' file for %s"),
2506 objfile_name (dwarf2_per_objfile->objfile));
2507
2508 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2509 struct dwz_file);
2510 result->dwz_bfd = dwz_bfd;
2511
2512 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2513
2514 do_cleanups (cleanup);
2515
2516 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2517 dwarf2_per_objfile->dwz_file = result;
2518 return result;
2519 }
2520 \f
2521 /* DWARF quick_symbols_functions support. */
2522
2523 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2524 unique line tables, so we maintain a separate table of all .debug_line
2525 derived entries to support the sharing.
2526 All the quick functions need is the list of file names. We discard the
2527 line_header when we're done and don't need to record it here. */
2528 struct quick_file_names
2529 {
2530 /* The data used to construct the hash key. */
2531 struct stmt_list_hash hash;
2532
2533 /* The number of entries in file_names, real_names. */
2534 unsigned int num_file_names;
2535
2536 /* The file names from the line table, after being run through
2537 file_full_name. */
2538 const char **file_names;
2539
2540 /* The file names from the line table after being run through
2541 gdb_realpath. These are computed lazily. */
2542 const char **real_names;
2543 };
2544
2545 /* When using the index (and thus not using psymtabs), each CU has an
2546 object of this type. This is used to hold information needed by
2547 the various "quick" methods. */
2548 struct dwarf2_per_cu_quick_data
2549 {
2550 /* The file table. This can be NULL if there was no file table
2551 or it's currently not read in.
2552 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2553 struct quick_file_names *file_names;
2554
2555 /* The corresponding symbol table. This is NULL if symbols for this
2556 CU have not yet been read. */
2557 struct compunit_symtab *compunit_symtab;
2558
2559 /* A temporary mark bit used when iterating over all CUs in
2560 expand_symtabs_matching. */
2561 unsigned int mark : 1;
2562
2563 /* True if we've tried to read the file table and found there isn't one.
2564 There will be no point in trying to read it again next time. */
2565 unsigned int no_file_data : 1;
2566 };
2567
2568 /* Utility hash function for a stmt_list_hash. */
2569
2570 static hashval_t
2571 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2572 {
2573 hashval_t v = 0;
2574
2575 if (stmt_list_hash->dwo_unit != NULL)
2576 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2577 v += stmt_list_hash->line_offset.sect_off;
2578 return v;
2579 }
2580
2581 /* Utility equality function for a stmt_list_hash. */
2582
2583 static int
2584 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2585 const struct stmt_list_hash *rhs)
2586 {
2587 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2588 return 0;
2589 if (lhs->dwo_unit != NULL
2590 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2591 return 0;
2592
2593 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2594 }
2595
2596 /* Hash function for a quick_file_names. */
2597
2598 static hashval_t
2599 hash_file_name_entry (const void *e)
2600 {
2601 const struct quick_file_names *file_data = e;
2602
2603 return hash_stmt_list_entry (&file_data->hash);
2604 }
2605
2606 /* Equality function for a quick_file_names. */
2607
2608 static int
2609 eq_file_name_entry (const void *a, const void *b)
2610 {
2611 const struct quick_file_names *ea = a;
2612 const struct quick_file_names *eb = b;
2613
2614 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2615 }
2616
2617 /* Delete function for a quick_file_names. */
2618
2619 static void
2620 delete_file_name_entry (void *e)
2621 {
2622 struct quick_file_names *file_data = e;
2623 int i;
2624
2625 for (i = 0; i < file_data->num_file_names; ++i)
2626 {
2627 xfree ((void*) file_data->file_names[i]);
2628 if (file_data->real_names)
2629 xfree ((void*) file_data->real_names[i]);
2630 }
2631
2632 /* The space for the struct itself lives on objfile_obstack,
2633 so we don't free it here. */
2634 }
2635
2636 /* Create a quick_file_names hash table. */
2637
2638 static htab_t
2639 create_quick_file_names_table (unsigned int nr_initial_entries)
2640 {
2641 return htab_create_alloc (nr_initial_entries,
2642 hash_file_name_entry, eq_file_name_entry,
2643 delete_file_name_entry, xcalloc, xfree);
2644 }
2645
2646 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2647 have to be created afterwards. You should call age_cached_comp_units after
2648 processing PER_CU->CU. dw2_setup must have been already called. */
2649
2650 static void
2651 load_cu (struct dwarf2_per_cu_data *per_cu)
2652 {
2653 if (per_cu->is_debug_types)
2654 load_full_type_unit (per_cu);
2655 else
2656 load_full_comp_unit (per_cu, language_minimal);
2657
2658 gdb_assert (per_cu->cu != NULL);
2659
2660 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2661 }
2662
2663 /* Read in the symbols for PER_CU. */
2664
2665 static void
2666 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2667 {
2668 struct cleanup *back_to;
2669
2670 /* Skip type_unit_groups, reading the type units they contain
2671 is handled elsewhere. */
2672 if (IS_TYPE_UNIT_GROUP (per_cu))
2673 return;
2674
2675 back_to = make_cleanup (dwarf2_release_queue, NULL);
2676
2677 if (dwarf2_per_objfile->using_index
2678 ? per_cu->v.quick->compunit_symtab == NULL
2679 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2680 {
2681 queue_comp_unit (per_cu, language_minimal);
2682 load_cu (per_cu);
2683
2684 /* If we just loaded a CU from a DWO, and we're working with an index
2685 that may badly handle TUs, load all the TUs in that DWO as well.
2686 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2687 if (!per_cu->is_debug_types
2688 && per_cu->cu->dwo_unit != NULL
2689 && dwarf2_per_objfile->index_table != NULL
2690 && dwarf2_per_objfile->index_table->version <= 7
2691 /* DWP files aren't supported yet. */
2692 && get_dwp_file () == NULL)
2693 queue_and_load_all_dwo_tus (per_cu);
2694 }
2695
2696 process_queue ();
2697
2698 /* Age the cache, releasing compilation units that have not
2699 been used recently. */
2700 age_cached_comp_units ();
2701
2702 do_cleanups (back_to);
2703 }
2704
2705 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2706 the objfile from which this CU came. Returns the resulting symbol
2707 table. */
2708
2709 static struct compunit_symtab *
2710 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2711 {
2712 gdb_assert (dwarf2_per_objfile->using_index);
2713 if (!per_cu->v.quick->compunit_symtab)
2714 {
2715 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2716 increment_reading_symtab ();
2717 dw2_do_instantiate_symtab (per_cu);
2718 process_cu_includes ();
2719 do_cleanups (back_to);
2720 }
2721
2722 return per_cu->v.quick->compunit_symtab;
2723 }
2724
2725 /* Return the CU/TU given its index.
2726
2727 This is intended for loops like:
2728
2729 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2730 + dwarf2_per_objfile->n_type_units); ++i)
2731 {
2732 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2733
2734 ...;
2735 }
2736 */
2737
2738 static struct dwarf2_per_cu_data *
2739 dw2_get_cutu (int index)
2740 {
2741 if (index >= dwarf2_per_objfile->n_comp_units)
2742 {
2743 index -= dwarf2_per_objfile->n_comp_units;
2744 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2745 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2746 }
2747
2748 return dwarf2_per_objfile->all_comp_units[index];
2749 }
2750
2751 /* Return the CU given its index.
2752 This differs from dw2_get_cutu in that it's for when you know INDEX
2753 refers to a CU. */
2754
2755 static struct dwarf2_per_cu_data *
2756 dw2_get_cu (int index)
2757 {
2758 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2759
2760 return dwarf2_per_objfile->all_comp_units[index];
2761 }
2762
2763 /* A helper for create_cus_from_index that handles a given list of
2764 CUs. */
2765
2766 static void
2767 create_cus_from_index_list (struct objfile *objfile,
2768 const gdb_byte *cu_list, offset_type n_elements,
2769 struct dwarf2_section_info *section,
2770 int is_dwz,
2771 int base_offset)
2772 {
2773 offset_type i;
2774
2775 for (i = 0; i < n_elements; i += 2)
2776 {
2777 struct dwarf2_per_cu_data *the_cu;
2778 ULONGEST offset, length;
2779
2780 gdb_static_assert (sizeof (ULONGEST) >= 8);
2781 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2782 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2783 cu_list += 2 * 8;
2784
2785 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2786 struct dwarf2_per_cu_data);
2787 the_cu->offset.sect_off = offset;
2788 the_cu->length = length;
2789 the_cu->objfile = objfile;
2790 the_cu->section = section;
2791 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2792 struct dwarf2_per_cu_quick_data);
2793 the_cu->is_dwz = is_dwz;
2794 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2795 }
2796 }
2797
2798 /* Read the CU list from the mapped index, and use it to create all
2799 the CU objects for this objfile. */
2800
2801 static void
2802 create_cus_from_index (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type cu_list_elements,
2804 const gdb_byte *dwz_list, offset_type dwz_elements)
2805 {
2806 struct dwz_file *dwz;
2807
2808 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2809 dwarf2_per_objfile->all_comp_units
2810 = obstack_alloc (&objfile->objfile_obstack,
2811 dwarf2_per_objfile->n_comp_units
2812 * sizeof (struct dwarf2_per_cu_data *));
2813
2814 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2815 &dwarf2_per_objfile->info, 0, 0);
2816
2817 if (dwz_elements == 0)
2818 return;
2819
2820 dwz = dwarf2_get_dwz_file ();
2821 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2822 cu_list_elements / 2);
2823 }
2824
2825 /* Create the signatured type hash table from the index. */
2826
2827 static void
2828 create_signatured_type_table_from_index (struct objfile *objfile,
2829 struct dwarf2_section_info *section,
2830 const gdb_byte *bytes,
2831 offset_type elements)
2832 {
2833 offset_type i;
2834 htab_t sig_types_hash;
2835
2836 dwarf2_per_objfile->n_type_units
2837 = dwarf2_per_objfile->n_allocated_type_units
2838 = elements / 3;
2839 dwarf2_per_objfile->all_type_units
2840 = xmalloc (dwarf2_per_objfile->n_type_units
2841 * sizeof (struct signatured_type *));
2842
2843 sig_types_hash = allocate_signatured_type_table (objfile);
2844
2845 for (i = 0; i < elements; i += 3)
2846 {
2847 struct signatured_type *sig_type;
2848 ULONGEST offset, type_offset_in_tu, signature;
2849 void **slot;
2850
2851 gdb_static_assert (sizeof (ULONGEST) >= 8);
2852 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2853 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2854 BFD_ENDIAN_LITTLE);
2855 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2856 bytes += 3 * 8;
2857
2858 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2859 struct signatured_type);
2860 sig_type->signature = signature;
2861 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2862 sig_type->per_cu.is_debug_types = 1;
2863 sig_type->per_cu.section = section;
2864 sig_type->per_cu.offset.sect_off = offset;
2865 sig_type->per_cu.objfile = objfile;
2866 sig_type->per_cu.v.quick
2867 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2868 struct dwarf2_per_cu_quick_data);
2869
2870 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2871 *slot = sig_type;
2872
2873 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2874 }
2875
2876 dwarf2_per_objfile->signatured_types = sig_types_hash;
2877 }
2878
2879 /* Read the address map data from the mapped index, and use it to
2880 populate the objfile's psymtabs_addrmap. */
2881
2882 static void
2883 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2884 {
2885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2886 const gdb_byte *iter, *end;
2887 struct obstack temp_obstack;
2888 struct addrmap *mutable_map;
2889 struct cleanup *cleanup;
2890 CORE_ADDR baseaddr;
2891
2892 obstack_init (&temp_obstack);
2893 cleanup = make_cleanup_obstack_free (&temp_obstack);
2894 mutable_map = addrmap_create_mutable (&temp_obstack);
2895
2896 iter = index->address_table;
2897 end = iter + index->address_table_size;
2898
2899 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2900
2901 while (iter < end)
2902 {
2903 ULONGEST hi, lo, cu_index;
2904 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2905 iter += 8;
2906 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2907 iter += 8;
2908 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2909 iter += 4;
2910
2911 if (lo > hi)
2912 {
2913 complaint (&symfile_complaints,
2914 _(".gdb_index address table has invalid range (%s - %s)"),
2915 hex_string (lo), hex_string (hi));
2916 continue;
2917 }
2918
2919 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2920 {
2921 complaint (&symfile_complaints,
2922 _(".gdb_index address table has invalid CU number %u"),
2923 (unsigned) cu_index);
2924 continue;
2925 }
2926
2927 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2928 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2929 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2930 }
2931
2932 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2933 &objfile->objfile_obstack);
2934 do_cleanups (cleanup);
2935 }
2936
2937 /* The hash function for strings in the mapped index. This is the same as
2938 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2939 implementation. This is necessary because the hash function is tied to the
2940 format of the mapped index file. The hash values do not have to match with
2941 SYMBOL_HASH_NEXT.
2942
2943 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2944
2945 static hashval_t
2946 mapped_index_string_hash (int index_version, const void *p)
2947 {
2948 const unsigned char *str = (const unsigned char *) p;
2949 hashval_t r = 0;
2950 unsigned char c;
2951
2952 while ((c = *str++) != 0)
2953 {
2954 if (index_version >= 5)
2955 c = tolower (c);
2956 r = r * 67 + c - 113;
2957 }
2958
2959 return r;
2960 }
2961
2962 /* Find a slot in the mapped index INDEX for the object named NAME.
2963 If NAME is found, set *VEC_OUT to point to the CU vector in the
2964 constant pool and return 1. If NAME cannot be found, return 0. */
2965
2966 static int
2967 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2968 offset_type **vec_out)
2969 {
2970 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2971 offset_type hash;
2972 offset_type slot, step;
2973 int (*cmp) (const char *, const char *);
2974
2975 if (current_language->la_language == language_cplus
2976 || current_language->la_language == language_java
2977 || current_language->la_language == language_fortran)
2978 {
2979 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2980 not contain any. */
2981
2982 if (strchr (name, '(') != NULL)
2983 {
2984 char *without_params = cp_remove_params (name);
2985
2986 if (without_params != NULL)
2987 {
2988 make_cleanup (xfree, without_params);
2989 name = without_params;
2990 }
2991 }
2992 }
2993
2994 /* Index version 4 did not support case insensitive searches. But the
2995 indices for case insensitive languages are built in lowercase, therefore
2996 simulate our NAME being searched is also lowercased. */
2997 hash = mapped_index_string_hash ((index->version == 4
2998 && case_sensitivity == case_sensitive_off
2999 ? 5 : index->version),
3000 name);
3001
3002 slot = hash & (index->symbol_table_slots - 1);
3003 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3004 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3005
3006 for (;;)
3007 {
3008 /* Convert a slot number to an offset into the table. */
3009 offset_type i = 2 * slot;
3010 const char *str;
3011 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3012 {
3013 do_cleanups (back_to);
3014 return 0;
3015 }
3016
3017 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3018 if (!cmp (name, str))
3019 {
3020 *vec_out = (offset_type *) (index->constant_pool
3021 + MAYBE_SWAP (index->symbol_table[i + 1]));
3022 do_cleanups (back_to);
3023 return 1;
3024 }
3025
3026 slot = (slot + step) & (index->symbol_table_slots - 1);
3027 }
3028 }
3029
3030 /* A helper function that reads the .gdb_index from SECTION and fills
3031 in MAP. FILENAME is the name of the file containing the section;
3032 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3033 ok to use deprecated sections.
3034
3035 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3036 out parameters that are filled in with information about the CU and
3037 TU lists in the section.
3038
3039 Returns 1 if all went well, 0 otherwise. */
3040
3041 static int
3042 read_index_from_section (struct objfile *objfile,
3043 const char *filename,
3044 int deprecated_ok,
3045 struct dwarf2_section_info *section,
3046 struct mapped_index *map,
3047 const gdb_byte **cu_list,
3048 offset_type *cu_list_elements,
3049 const gdb_byte **types_list,
3050 offset_type *types_list_elements)
3051 {
3052 const gdb_byte *addr;
3053 offset_type version;
3054 offset_type *metadata;
3055 int i;
3056
3057 if (dwarf2_section_empty_p (section))
3058 return 0;
3059
3060 /* Older elfutils strip versions could keep the section in the main
3061 executable while splitting it for the separate debug info file. */
3062 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3063 return 0;
3064
3065 dwarf2_read_section (objfile, section);
3066
3067 addr = section->buffer;
3068 /* Version check. */
3069 version = MAYBE_SWAP (*(offset_type *) addr);
3070 /* Versions earlier than 3 emitted every copy of a psymbol. This
3071 causes the index to behave very poorly for certain requests. Version 3
3072 contained incomplete addrmap. So, it seems better to just ignore such
3073 indices. */
3074 if (version < 4)
3075 {
3076 static int warning_printed = 0;
3077 if (!warning_printed)
3078 {
3079 warning (_("Skipping obsolete .gdb_index section in %s."),
3080 filename);
3081 warning_printed = 1;
3082 }
3083 return 0;
3084 }
3085 /* Index version 4 uses a different hash function than index version
3086 5 and later.
3087
3088 Versions earlier than 6 did not emit psymbols for inlined
3089 functions. Using these files will cause GDB not to be able to
3090 set breakpoints on inlined functions by name, so we ignore these
3091 indices unless the user has done
3092 "set use-deprecated-index-sections on". */
3093 if (version < 6 && !deprecated_ok)
3094 {
3095 static int warning_printed = 0;
3096 if (!warning_printed)
3097 {
3098 warning (_("\
3099 Skipping deprecated .gdb_index section in %s.\n\
3100 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3101 to use the section anyway."),
3102 filename);
3103 warning_printed = 1;
3104 }
3105 return 0;
3106 }
3107 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3108 of the TU (for symbols coming from TUs),
3109 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3110 Plus gold-generated indices can have duplicate entries for global symbols,
3111 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3112 These are just performance bugs, and we can't distinguish gdb-generated
3113 indices from gold-generated ones, so issue no warning here. */
3114
3115 /* Indexes with higher version than the one supported by GDB may be no
3116 longer backward compatible. */
3117 if (version > 8)
3118 return 0;
3119
3120 map->version = version;
3121 map->total_size = section->size;
3122
3123 metadata = (offset_type *) (addr + sizeof (offset_type));
3124
3125 i = 0;
3126 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3127 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3128 / 8);
3129 ++i;
3130
3131 *types_list = addr + MAYBE_SWAP (metadata[i]);
3132 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3133 - MAYBE_SWAP (metadata[i]))
3134 / 8);
3135 ++i;
3136
3137 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3138 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3139 - MAYBE_SWAP (metadata[i]));
3140 ++i;
3141
3142 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3143 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3144 - MAYBE_SWAP (metadata[i]))
3145 / (2 * sizeof (offset_type)));
3146 ++i;
3147
3148 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3149
3150 return 1;
3151 }
3152
3153
3154 /* Read the index file. If everything went ok, initialize the "quick"
3155 elements of all the CUs and return 1. Otherwise, return 0. */
3156
3157 static int
3158 dwarf2_read_index (struct objfile *objfile)
3159 {
3160 struct mapped_index local_map, *map;
3161 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3162 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3163 struct dwz_file *dwz;
3164
3165 if (!read_index_from_section (objfile, objfile_name (objfile),
3166 use_deprecated_index_sections,
3167 &dwarf2_per_objfile->gdb_index, &local_map,
3168 &cu_list, &cu_list_elements,
3169 &types_list, &types_list_elements))
3170 return 0;
3171
3172 /* Don't use the index if it's empty. */
3173 if (local_map.symbol_table_slots == 0)
3174 return 0;
3175
3176 /* If there is a .dwz file, read it so we can get its CU list as
3177 well. */
3178 dwz = dwarf2_get_dwz_file ();
3179 if (dwz != NULL)
3180 {
3181 struct mapped_index dwz_map;
3182 const gdb_byte *dwz_types_ignore;
3183 offset_type dwz_types_elements_ignore;
3184
3185 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3186 1,
3187 &dwz->gdb_index, &dwz_map,
3188 &dwz_list, &dwz_list_elements,
3189 &dwz_types_ignore,
3190 &dwz_types_elements_ignore))
3191 {
3192 warning (_("could not read '.gdb_index' section from %s; skipping"),
3193 bfd_get_filename (dwz->dwz_bfd));
3194 return 0;
3195 }
3196 }
3197
3198 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3199 dwz_list_elements);
3200
3201 if (types_list_elements)
3202 {
3203 struct dwarf2_section_info *section;
3204
3205 /* We can only handle a single .debug_types when we have an
3206 index. */
3207 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3208 return 0;
3209
3210 section = VEC_index (dwarf2_section_info_def,
3211 dwarf2_per_objfile->types, 0);
3212
3213 create_signatured_type_table_from_index (objfile, section, types_list,
3214 types_list_elements);
3215 }
3216
3217 create_addrmap_from_index (objfile, &local_map);
3218
3219 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3220 *map = local_map;
3221
3222 dwarf2_per_objfile->index_table = map;
3223 dwarf2_per_objfile->using_index = 1;
3224 dwarf2_per_objfile->quick_file_names_table =
3225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3226
3227 return 1;
3228 }
3229
3230 /* A helper for the "quick" functions which sets the global
3231 dwarf2_per_objfile according to OBJFILE. */
3232
3233 static void
3234 dw2_setup (struct objfile *objfile)
3235 {
3236 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3237 gdb_assert (dwarf2_per_objfile);
3238 }
3239
3240 /* die_reader_func for dw2_get_file_names. */
3241
3242 static void
3243 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3244 const gdb_byte *info_ptr,
3245 struct die_info *comp_unit_die,
3246 int has_children,
3247 void *data)
3248 {
3249 struct dwarf2_cu *cu = reader->cu;
3250 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3251 struct objfile *objfile = dwarf2_per_objfile->objfile;
3252 struct dwarf2_per_cu_data *lh_cu;
3253 struct line_header *lh;
3254 struct attribute *attr;
3255 int i;
3256 const char *name, *comp_dir;
3257 void **slot;
3258 struct quick_file_names *qfn;
3259 unsigned int line_offset;
3260
3261 gdb_assert (! this_cu->is_debug_types);
3262
3263 /* Our callers never want to match partial units -- instead they
3264 will match the enclosing full CU. */
3265 if (comp_unit_die->tag == DW_TAG_partial_unit)
3266 {
3267 this_cu->v.quick->no_file_data = 1;
3268 return;
3269 }
3270
3271 lh_cu = this_cu;
3272 lh = NULL;
3273 slot = NULL;
3274 line_offset = 0;
3275
3276 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3277 if (attr)
3278 {
3279 struct quick_file_names find_entry;
3280
3281 line_offset = DW_UNSND (attr);
3282
3283 /* We may have already read in this line header (TU line header sharing).
3284 If we have we're done. */
3285 find_entry.hash.dwo_unit = cu->dwo_unit;
3286 find_entry.hash.line_offset.sect_off = line_offset;
3287 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3288 &find_entry, INSERT);
3289 if (*slot != NULL)
3290 {
3291 lh_cu->v.quick->file_names = *slot;
3292 return;
3293 }
3294
3295 lh = dwarf_decode_line_header (line_offset, cu);
3296 }
3297 if (lh == NULL)
3298 {
3299 lh_cu->v.quick->no_file_data = 1;
3300 return;
3301 }
3302
3303 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3304 qfn->hash.dwo_unit = cu->dwo_unit;
3305 qfn->hash.line_offset.sect_off = line_offset;
3306 gdb_assert (slot != NULL);
3307 *slot = qfn;
3308
3309 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3310
3311 qfn->num_file_names = lh->num_file_names;
3312 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3313 lh->num_file_names * sizeof (char *));
3314 for (i = 0; i < lh->num_file_names; ++i)
3315 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3316 qfn->real_names = NULL;
3317
3318 free_line_header (lh);
3319
3320 lh_cu->v.quick->file_names = qfn;
3321 }
3322
3323 /* A helper for the "quick" functions which attempts to read the line
3324 table for THIS_CU. */
3325
3326 static struct quick_file_names *
3327 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3328 {
3329 /* This should never be called for TUs. */
3330 gdb_assert (! this_cu->is_debug_types);
3331 /* Nor type unit groups. */
3332 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3333
3334 if (this_cu->v.quick->file_names != NULL)
3335 return this_cu->v.quick->file_names;
3336 /* If we know there is no line data, no point in looking again. */
3337 if (this_cu->v.quick->no_file_data)
3338 return NULL;
3339
3340 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3341
3342 if (this_cu->v.quick->no_file_data)
3343 return NULL;
3344 return this_cu->v.quick->file_names;
3345 }
3346
3347 /* A helper for the "quick" functions which computes and caches the
3348 real path for a given file name from the line table. */
3349
3350 static const char *
3351 dw2_get_real_path (struct objfile *objfile,
3352 struct quick_file_names *qfn, int index)
3353 {
3354 if (qfn->real_names == NULL)
3355 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3356 qfn->num_file_names, const char *);
3357
3358 if (qfn->real_names[index] == NULL)
3359 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3360
3361 return qfn->real_names[index];
3362 }
3363
3364 static struct symtab *
3365 dw2_find_last_source_symtab (struct objfile *objfile)
3366 {
3367 struct compunit_symtab *cust;
3368 int index;
3369
3370 dw2_setup (objfile);
3371 index = dwarf2_per_objfile->n_comp_units - 1;
3372 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3373 if (cust == NULL)
3374 return NULL;
3375 return compunit_primary_filetab (cust);
3376 }
3377
3378 /* Traversal function for dw2_forget_cached_source_info. */
3379
3380 static int
3381 dw2_free_cached_file_names (void **slot, void *info)
3382 {
3383 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3384
3385 if (file_data->real_names)
3386 {
3387 int i;
3388
3389 for (i = 0; i < file_data->num_file_names; ++i)
3390 {
3391 xfree ((void*) file_data->real_names[i]);
3392 file_data->real_names[i] = NULL;
3393 }
3394 }
3395
3396 return 1;
3397 }
3398
3399 static void
3400 dw2_forget_cached_source_info (struct objfile *objfile)
3401 {
3402 dw2_setup (objfile);
3403
3404 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3405 dw2_free_cached_file_names, NULL);
3406 }
3407
3408 /* Helper function for dw2_map_symtabs_matching_filename that expands
3409 the symtabs and calls the iterator. */
3410
3411 static int
3412 dw2_map_expand_apply (struct objfile *objfile,
3413 struct dwarf2_per_cu_data *per_cu,
3414 const char *name, const char *real_path,
3415 int (*callback) (struct symtab *, void *),
3416 void *data)
3417 {
3418 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3419
3420 /* Don't visit already-expanded CUs. */
3421 if (per_cu->v.quick->compunit_symtab)
3422 return 0;
3423
3424 /* This may expand more than one symtab, and we want to iterate over
3425 all of them. */
3426 dw2_instantiate_symtab (per_cu);
3427
3428 return iterate_over_some_symtabs (name, real_path, callback, data,
3429 objfile->compunit_symtabs, last_made);
3430 }
3431
3432 /* Implementation of the map_symtabs_matching_filename method. */
3433
3434 static int
3435 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3436 const char *real_path,
3437 int (*callback) (struct symtab *, void *),
3438 void *data)
3439 {
3440 int i;
3441 const char *name_basename = lbasename (name);
3442
3443 dw2_setup (objfile);
3444
3445 /* The rule is CUs specify all the files, including those used by
3446 any TU, so there's no need to scan TUs here. */
3447
3448 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3449 {
3450 int j;
3451 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3452 struct quick_file_names *file_data;
3453
3454 /* We only need to look at symtabs not already expanded. */
3455 if (per_cu->v.quick->compunit_symtab)
3456 continue;
3457
3458 file_data = dw2_get_file_names (per_cu);
3459 if (file_data == NULL)
3460 continue;
3461
3462 for (j = 0; j < file_data->num_file_names; ++j)
3463 {
3464 const char *this_name = file_data->file_names[j];
3465 const char *this_real_name;
3466
3467 if (compare_filenames_for_search (this_name, name))
3468 {
3469 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3470 callback, data))
3471 return 1;
3472 continue;
3473 }
3474
3475 /* Before we invoke realpath, which can get expensive when many
3476 files are involved, do a quick comparison of the basenames. */
3477 if (! basenames_may_differ
3478 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3479 continue;
3480
3481 this_real_name = dw2_get_real_path (objfile, file_data, j);
3482 if (compare_filenames_for_search (this_real_name, name))
3483 {
3484 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3485 callback, data))
3486 return 1;
3487 continue;
3488 }
3489
3490 if (real_path != NULL)
3491 {
3492 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3493 gdb_assert (IS_ABSOLUTE_PATH (name));
3494 if (this_real_name != NULL
3495 && FILENAME_CMP (real_path, this_real_name) == 0)
3496 {
3497 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3498 callback, data))
3499 return 1;
3500 continue;
3501 }
3502 }
3503 }
3504 }
3505
3506 return 0;
3507 }
3508
3509 /* Struct used to manage iterating over all CUs looking for a symbol. */
3510
3511 struct dw2_symtab_iterator
3512 {
3513 /* The internalized form of .gdb_index. */
3514 struct mapped_index *index;
3515 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3516 int want_specific_block;
3517 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3518 Unused if !WANT_SPECIFIC_BLOCK. */
3519 int block_index;
3520 /* The kind of symbol we're looking for. */
3521 domain_enum domain;
3522 /* The list of CUs from the index entry of the symbol,
3523 or NULL if not found. */
3524 offset_type *vec;
3525 /* The next element in VEC to look at. */
3526 int next;
3527 /* The number of elements in VEC, or zero if there is no match. */
3528 int length;
3529 /* Have we seen a global version of the symbol?
3530 If so we can ignore all further global instances.
3531 This is to work around gold/15646, inefficient gold-generated
3532 indices. */
3533 int global_seen;
3534 };
3535
3536 /* Initialize the index symtab iterator ITER.
3537 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3538 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3539
3540 static void
3541 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3542 struct mapped_index *index,
3543 int want_specific_block,
3544 int block_index,
3545 domain_enum domain,
3546 const char *name)
3547 {
3548 iter->index = index;
3549 iter->want_specific_block = want_specific_block;
3550 iter->block_index = block_index;
3551 iter->domain = domain;
3552 iter->next = 0;
3553 iter->global_seen = 0;
3554
3555 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3556 iter->length = MAYBE_SWAP (*iter->vec);
3557 else
3558 {
3559 iter->vec = NULL;
3560 iter->length = 0;
3561 }
3562 }
3563
3564 /* Return the next matching CU or NULL if there are no more. */
3565
3566 static struct dwarf2_per_cu_data *
3567 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3568 {
3569 for ( ; iter->next < iter->length; ++iter->next)
3570 {
3571 offset_type cu_index_and_attrs =
3572 MAYBE_SWAP (iter->vec[iter->next + 1]);
3573 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3574 struct dwarf2_per_cu_data *per_cu;
3575 int want_static = iter->block_index != GLOBAL_BLOCK;
3576 /* This value is only valid for index versions >= 7. */
3577 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3578 gdb_index_symbol_kind symbol_kind =
3579 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3580 /* Only check the symbol attributes if they're present.
3581 Indices prior to version 7 don't record them,
3582 and indices >= 7 may elide them for certain symbols
3583 (gold does this). */
3584 int attrs_valid =
3585 (iter->index->version >= 7
3586 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3587
3588 /* Don't crash on bad data. */
3589 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3590 + dwarf2_per_objfile->n_type_units))
3591 {
3592 complaint (&symfile_complaints,
3593 _(".gdb_index entry has bad CU index"
3594 " [in module %s]"),
3595 objfile_name (dwarf2_per_objfile->objfile));
3596 continue;
3597 }
3598
3599 per_cu = dw2_get_cutu (cu_index);
3600
3601 /* Skip if already read in. */
3602 if (per_cu->v.quick->compunit_symtab)
3603 continue;
3604
3605 /* Check static vs global. */
3606 if (attrs_valid)
3607 {
3608 if (iter->want_specific_block
3609 && want_static != is_static)
3610 continue;
3611 /* Work around gold/15646. */
3612 if (!is_static && iter->global_seen)
3613 continue;
3614 if (!is_static)
3615 iter->global_seen = 1;
3616 }
3617
3618 /* Only check the symbol's kind if it has one. */
3619 if (attrs_valid)
3620 {
3621 switch (iter->domain)
3622 {
3623 case VAR_DOMAIN:
3624 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3625 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3626 /* Some types are also in VAR_DOMAIN. */
3627 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3628 continue;
3629 break;
3630 case STRUCT_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3632 continue;
3633 break;
3634 case LABEL_DOMAIN:
3635 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3636 continue;
3637 break;
3638 default:
3639 break;
3640 }
3641 }
3642
3643 ++iter->next;
3644 return per_cu;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 static struct compunit_symtab *
3651 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3652 const char *name, domain_enum domain)
3653 {
3654 struct compunit_symtab *stab_best = NULL;
3655 struct mapped_index *index;
3656
3657 dw2_setup (objfile);
3658
3659 index = dwarf2_per_objfile->index_table;
3660
3661 /* index is NULL if OBJF_READNOW. */
3662 if (index)
3663 {
3664 struct dw2_symtab_iterator iter;
3665 struct dwarf2_per_cu_data *per_cu;
3666
3667 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3668
3669 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3670 {
3671 struct symbol *sym, *with_opaque = NULL;
3672 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3673 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3674 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3675
3676 sym = block_find_symbol (block, name, domain,
3677 block_find_non_opaque_type_preferred,
3678 &with_opaque);
3679
3680 /* Some caution must be observed with overloaded functions
3681 and methods, since the index will not contain any overload
3682 information (but NAME might contain it). */
3683
3684 if (sym != NULL
3685 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3686 return stab;
3687 if (with_opaque != NULL
3688 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3689 stab_best = stab;
3690
3691 /* Keep looking through other CUs. */
3692 }
3693 }
3694
3695 return stab_best;
3696 }
3697
3698 static void
3699 dw2_print_stats (struct objfile *objfile)
3700 {
3701 int i, total, count;
3702
3703 dw2_setup (objfile);
3704 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3705 count = 0;
3706 for (i = 0; i < total; ++i)
3707 {
3708 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3709
3710 if (!per_cu->v.quick->compunit_symtab)
3711 ++count;
3712 }
3713 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3714 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3715 }
3716
3717 /* This dumps minimal information about the index.
3718 It is called via "mt print objfiles".
3719 One use is to verify .gdb_index has been loaded by the
3720 gdb.dwarf2/gdb-index.exp testcase. */
3721
3722 static void
3723 dw2_dump (struct objfile *objfile)
3724 {
3725 dw2_setup (objfile);
3726 gdb_assert (dwarf2_per_objfile->using_index);
3727 printf_filtered (".gdb_index:");
3728 if (dwarf2_per_objfile->index_table != NULL)
3729 {
3730 printf_filtered (" version %d\n",
3731 dwarf2_per_objfile->index_table->version);
3732 }
3733 else
3734 printf_filtered (" faked for \"readnow\"\n");
3735 printf_filtered ("\n");
3736 }
3737
3738 static void
3739 dw2_relocate (struct objfile *objfile,
3740 const struct section_offsets *new_offsets,
3741 const struct section_offsets *delta)
3742 {
3743 /* There's nothing to relocate here. */
3744 }
3745
3746 static void
3747 dw2_expand_symtabs_for_function (struct objfile *objfile,
3748 const char *func_name)
3749 {
3750 struct mapped_index *index;
3751
3752 dw2_setup (objfile);
3753
3754 index = dwarf2_per_objfile->index_table;
3755
3756 /* index is NULL if OBJF_READNOW. */
3757 if (index)
3758 {
3759 struct dw2_symtab_iterator iter;
3760 struct dwarf2_per_cu_data *per_cu;
3761
3762 /* Note: It doesn't matter what we pass for block_index here. */
3763 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3764 func_name);
3765
3766 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3767 dw2_instantiate_symtab (per_cu);
3768 }
3769 }
3770
3771 static void
3772 dw2_expand_all_symtabs (struct objfile *objfile)
3773 {
3774 int i;
3775
3776 dw2_setup (objfile);
3777
3778 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3779 + dwarf2_per_objfile->n_type_units); ++i)
3780 {
3781 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3782
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3789 const char *fullname)
3790 {
3791 int i;
3792
3793 dw2_setup (objfile);
3794
3795 /* We don't need to consider type units here.
3796 This is only called for examining code, e.g. expand_line_sal.
3797 There can be an order of magnitude (or more) more type units
3798 than comp units, and we avoid them if we can. */
3799
3800 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3801 {
3802 int j;
3803 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3804 struct quick_file_names *file_data;
3805
3806 /* We only need to look at symtabs not already expanded. */
3807 if (per_cu->v.quick->compunit_symtab)
3808 continue;
3809
3810 file_data = dw2_get_file_names (per_cu);
3811 if (file_data == NULL)
3812 continue;
3813
3814 for (j = 0; j < file_data->num_file_names; ++j)
3815 {
3816 const char *this_fullname = file_data->file_names[j];
3817
3818 if (filename_cmp (this_fullname, fullname) == 0)
3819 {
3820 dw2_instantiate_symtab (per_cu);
3821 break;
3822 }
3823 }
3824 }
3825 }
3826
3827 static void
3828 dw2_map_matching_symbols (struct objfile *objfile,
3829 const char * name, domain_enum domain,
3830 int global,
3831 int (*callback) (struct block *,
3832 struct symbol *, void *),
3833 void *data, symbol_compare_ftype *match,
3834 symbol_compare_ftype *ordered_compare)
3835 {
3836 /* Currently unimplemented; used for Ada. The function can be called if the
3837 current language is Ada for a non-Ada objfile using GNU index. As Ada
3838 does not look for non-Ada symbols this function should just return. */
3839 }
3840
3841 static void
3842 dw2_expand_symtabs_matching
3843 (struct objfile *objfile,
3844 expand_symtabs_file_matcher_ftype *file_matcher,
3845 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3846 expand_symtabs_exp_notify_ftype *expansion_notify,
3847 enum search_domain kind,
3848 void *data)
3849 {
3850 int i;
3851 offset_type iter;
3852 struct mapped_index *index;
3853
3854 dw2_setup (objfile);
3855
3856 /* index_table is NULL if OBJF_READNOW. */
3857 if (!dwarf2_per_objfile->index_table)
3858 return;
3859 index = dwarf2_per_objfile->index_table;
3860
3861 if (file_matcher != NULL)
3862 {
3863 struct cleanup *cleanup;
3864 htab_t visited_found, visited_not_found;
3865
3866 visited_found = htab_create_alloc (10,
3867 htab_hash_pointer, htab_eq_pointer,
3868 NULL, xcalloc, xfree);
3869 cleanup = make_cleanup_htab_delete (visited_found);
3870 visited_not_found = htab_create_alloc (10,
3871 htab_hash_pointer, htab_eq_pointer,
3872 NULL, xcalloc, xfree);
3873 make_cleanup_htab_delete (visited_not_found);
3874
3875 /* The rule is CUs specify all the files, including those used by
3876 any TU, so there's no need to scan TUs here. */
3877
3878 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3879 {
3880 int j;
3881 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3882 struct quick_file_names *file_data;
3883 void **slot;
3884
3885 QUIT;
3886
3887 per_cu->v.quick->mark = 0;
3888
3889 /* We only need to look at symtabs not already expanded. */
3890 if (per_cu->v.quick->compunit_symtab)
3891 continue;
3892
3893 file_data = dw2_get_file_names (per_cu);
3894 if (file_data == NULL)
3895 continue;
3896
3897 if (htab_find (visited_not_found, file_data) != NULL)
3898 continue;
3899 else if (htab_find (visited_found, file_data) != NULL)
3900 {
3901 per_cu->v.quick->mark = 1;
3902 continue;
3903 }
3904
3905 for (j = 0; j < file_data->num_file_names; ++j)
3906 {
3907 const char *this_real_name;
3908
3909 if (file_matcher (file_data->file_names[j], data, 0))
3910 {
3911 per_cu->v.quick->mark = 1;
3912 break;
3913 }
3914
3915 /* Before we invoke realpath, which can get expensive when many
3916 files are involved, do a quick comparison of the basenames. */
3917 if (!basenames_may_differ
3918 && !file_matcher (lbasename (file_data->file_names[j]),
3919 data, 1))
3920 continue;
3921
3922 this_real_name = dw2_get_real_path (objfile, file_data, j);
3923 if (file_matcher (this_real_name, data, 0))
3924 {
3925 per_cu->v.quick->mark = 1;
3926 break;
3927 }
3928 }
3929
3930 slot = htab_find_slot (per_cu->v.quick->mark
3931 ? visited_found
3932 : visited_not_found,
3933 file_data, INSERT);
3934 *slot = file_data;
3935 }
3936
3937 do_cleanups (cleanup);
3938 }
3939
3940 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3941 {
3942 offset_type idx = 2 * iter;
3943 const char *name;
3944 offset_type *vec, vec_len, vec_idx;
3945 int global_seen = 0;
3946
3947 QUIT;
3948
3949 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3950 continue;
3951
3952 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3953
3954 if (! (*symbol_matcher) (name, data))
3955 continue;
3956
3957 /* The name was matched, now expand corresponding CUs that were
3958 marked. */
3959 vec = (offset_type *) (index->constant_pool
3960 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3961 vec_len = MAYBE_SWAP (vec[0]);
3962 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3963 {
3964 struct dwarf2_per_cu_data *per_cu;
3965 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3966 /* This value is only valid for index versions >= 7. */
3967 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3968 gdb_index_symbol_kind symbol_kind =
3969 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3970 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3971 /* Only check the symbol attributes if they're present.
3972 Indices prior to version 7 don't record them,
3973 and indices >= 7 may elide them for certain symbols
3974 (gold does this). */
3975 int attrs_valid =
3976 (index->version >= 7
3977 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3978
3979 /* Work around gold/15646. */
3980 if (attrs_valid)
3981 {
3982 if (!is_static && global_seen)
3983 continue;
3984 if (!is_static)
3985 global_seen = 1;
3986 }
3987
3988 /* Only check the symbol's kind if it has one. */
3989 if (attrs_valid)
3990 {
3991 switch (kind)
3992 {
3993 case VARIABLES_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3995 continue;
3996 break;
3997 case FUNCTIONS_DOMAIN:
3998 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3999 continue;
4000 break;
4001 case TYPES_DOMAIN:
4002 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4003 continue;
4004 break;
4005 default:
4006 break;
4007 }
4008 }
4009
4010 /* Don't crash on bad data. */
4011 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4012 + dwarf2_per_objfile->n_type_units))
4013 {
4014 complaint (&symfile_complaints,
4015 _(".gdb_index entry has bad CU index"
4016 " [in module %s]"), objfile_name (objfile));
4017 continue;
4018 }
4019
4020 per_cu = dw2_get_cutu (cu_index);
4021 if (file_matcher == NULL || per_cu->v.quick->mark)
4022 {
4023 int symtab_was_null =
4024 (per_cu->v.quick->compunit_symtab == NULL);
4025
4026 dw2_instantiate_symtab (per_cu);
4027
4028 if (expansion_notify != NULL
4029 && symtab_was_null
4030 && per_cu->v.quick->compunit_symtab != NULL)
4031 {
4032 expansion_notify (per_cu->v.quick->compunit_symtab,
4033 data);
4034 }
4035 }
4036 }
4037 }
4038 }
4039
4040 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4041 symtab. */
4042
4043 static struct compunit_symtab *
4044 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4045 CORE_ADDR pc)
4046 {
4047 int i;
4048
4049 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4050 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4051 return cust;
4052
4053 if (cust->includes == NULL)
4054 return NULL;
4055
4056 for (i = 0; cust->includes[i]; ++i)
4057 {
4058 struct compunit_symtab *s = cust->includes[i];
4059
4060 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4061 if (s != NULL)
4062 return s;
4063 }
4064
4065 return NULL;
4066 }
4067
4068 static struct compunit_symtab *
4069 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4070 struct bound_minimal_symbol msymbol,
4071 CORE_ADDR pc,
4072 struct obj_section *section,
4073 int warn_if_readin)
4074 {
4075 struct dwarf2_per_cu_data *data;
4076 struct compunit_symtab *result;
4077
4078 dw2_setup (objfile);
4079
4080 if (!objfile->psymtabs_addrmap)
4081 return NULL;
4082
4083 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4084 if (!data)
4085 return NULL;
4086
4087 if (warn_if_readin && data->v.quick->compunit_symtab)
4088 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4089 paddress (get_objfile_arch (objfile), pc));
4090
4091 result
4092 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4093 pc);
4094 gdb_assert (result != NULL);
4095 return result;
4096 }
4097
4098 static void
4099 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4100 void *data, int need_fullname)
4101 {
4102 int i;
4103 struct cleanup *cleanup;
4104 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4105 NULL, xcalloc, xfree);
4106
4107 cleanup = make_cleanup_htab_delete (visited);
4108 dw2_setup (objfile);
4109
4110 /* The rule is CUs specify all the files, including those used by
4111 any TU, so there's no need to scan TUs here.
4112 We can ignore file names coming from already-expanded CUs. */
4113
4114 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4115 {
4116 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4117
4118 if (per_cu->v.quick->compunit_symtab)
4119 {
4120 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4121 INSERT);
4122
4123 *slot = per_cu->v.quick->file_names;
4124 }
4125 }
4126
4127 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4128 {
4129 int j;
4130 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4131 struct quick_file_names *file_data;
4132 void **slot;
4133
4134 /* We only need to look at symtabs not already expanded. */
4135 if (per_cu->v.quick->compunit_symtab)
4136 continue;
4137
4138 file_data = dw2_get_file_names (per_cu);
4139 if (file_data == NULL)
4140 continue;
4141
4142 slot = htab_find_slot (visited, file_data, INSERT);
4143 if (*slot)
4144 {
4145 /* Already visited. */
4146 continue;
4147 }
4148 *slot = file_data;
4149
4150 for (j = 0; j < file_data->num_file_names; ++j)
4151 {
4152 const char *this_real_name;
4153
4154 if (need_fullname)
4155 this_real_name = dw2_get_real_path (objfile, file_data, j);
4156 else
4157 this_real_name = NULL;
4158 (*fun) (file_data->file_names[j], this_real_name, data);
4159 }
4160 }
4161
4162 do_cleanups (cleanup);
4163 }
4164
4165 static int
4166 dw2_has_symbols (struct objfile *objfile)
4167 {
4168 return 1;
4169 }
4170
4171 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4172 {
4173 dw2_has_symbols,
4174 dw2_find_last_source_symtab,
4175 dw2_forget_cached_source_info,
4176 dw2_map_symtabs_matching_filename,
4177 dw2_lookup_symbol,
4178 dw2_print_stats,
4179 dw2_dump,
4180 dw2_relocate,
4181 dw2_expand_symtabs_for_function,
4182 dw2_expand_all_symtabs,
4183 dw2_expand_symtabs_with_fullname,
4184 dw2_map_matching_symbols,
4185 dw2_expand_symtabs_matching,
4186 dw2_find_pc_sect_compunit_symtab,
4187 dw2_map_symbol_filenames
4188 };
4189
4190 /* Initialize for reading DWARF for this objfile. Return 0 if this
4191 file will use psymtabs, or 1 if using the GNU index. */
4192
4193 int
4194 dwarf2_initialize_objfile (struct objfile *objfile)
4195 {
4196 /* If we're about to read full symbols, don't bother with the
4197 indices. In this case we also don't care if some other debug
4198 format is making psymtabs, because they are all about to be
4199 expanded anyway. */
4200 if ((objfile->flags & OBJF_READNOW))
4201 {
4202 int i;
4203
4204 dwarf2_per_objfile->using_index = 1;
4205 create_all_comp_units (objfile);
4206 create_all_type_units (objfile);
4207 dwarf2_per_objfile->quick_file_names_table =
4208 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4209
4210 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4211 + dwarf2_per_objfile->n_type_units); ++i)
4212 {
4213 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4214
4215 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4216 struct dwarf2_per_cu_quick_data);
4217 }
4218
4219 /* Return 1 so that gdb sees the "quick" functions. However,
4220 these functions will be no-ops because we will have expanded
4221 all symtabs. */
4222 return 1;
4223 }
4224
4225 if (dwarf2_read_index (objfile))
4226 return 1;
4227
4228 return 0;
4229 }
4230
4231 \f
4232
4233 /* Build a partial symbol table. */
4234
4235 void
4236 dwarf2_build_psymtabs (struct objfile *objfile)
4237 {
4238
4239 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4240 {
4241 init_psymbol_list (objfile, 1024);
4242 }
4243
4244 TRY
4245 {
4246 /* This isn't really ideal: all the data we allocate on the
4247 objfile's obstack is still uselessly kept around. However,
4248 freeing it seems unsafe. */
4249 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4250
4251 dwarf2_build_psymtabs_hard (objfile);
4252 discard_cleanups (cleanups);
4253 }
4254 CATCH (except, RETURN_MASK_ERROR)
4255 {
4256 exception_print (gdb_stderr, except);
4257 }
4258 END_CATCH
4259 }
4260
4261 /* Return the total length of the CU described by HEADER. */
4262
4263 static unsigned int
4264 get_cu_length (const struct comp_unit_head *header)
4265 {
4266 return header->initial_length_size + header->length;
4267 }
4268
4269 /* Return TRUE if OFFSET is within CU_HEADER. */
4270
4271 static inline int
4272 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4273 {
4274 sect_offset bottom = { cu_header->offset.sect_off };
4275 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4276
4277 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4278 }
4279
4280 /* Find the base address of the compilation unit for range lists and
4281 location lists. It will normally be specified by DW_AT_low_pc.
4282 In DWARF-3 draft 4, the base address could be overridden by
4283 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4284 compilation units with discontinuous ranges. */
4285
4286 static void
4287 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4288 {
4289 struct attribute *attr;
4290
4291 cu->base_known = 0;
4292 cu->base_address = 0;
4293
4294 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4295 if (attr)
4296 {
4297 cu->base_address = attr_value_as_address (attr);
4298 cu->base_known = 1;
4299 }
4300 else
4301 {
4302 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4303 if (attr)
4304 {
4305 cu->base_address = attr_value_as_address (attr);
4306 cu->base_known = 1;
4307 }
4308 }
4309 }
4310
4311 /* Read in the comp unit header information from the debug_info at info_ptr.
4312 NOTE: This leaves members offset, first_die_offset to be filled in
4313 by the caller. */
4314
4315 static const gdb_byte *
4316 read_comp_unit_head (struct comp_unit_head *cu_header,
4317 const gdb_byte *info_ptr, bfd *abfd)
4318 {
4319 int signed_addr;
4320 unsigned int bytes_read;
4321
4322 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4323 cu_header->initial_length_size = bytes_read;
4324 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4325 info_ptr += bytes_read;
4326 cu_header->version = read_2_bytes (abfd, info_ptr);
4327 info_ptr += 2;
4328 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4329 &bytes_read);
4330 info_ptr += bytes_read;
4331 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4332 info_ptr += 1;
4333 signed_addr = bfd_get_sign_extend_vma (abfd);
4334 if (signed_addr < 0)
4335 internal_error (__FILE__, __LINE__,
4336 _("read_comp_unit_head: dwarf from non elf file"));
4337 cu_header->signed_addr_p = signed_addr;
4338
4339 return info_ptr;
4340 }
4341
4342 /* Helper function that returns the proper abbrev section for
4343 THIS_CU. */
4344
4345 static struct dwarf2_section_info *
4346 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4347 {
4348 struct dwarf2_section_info *abbrev;
4349
4350 if (this_cu->is_dwz)
4351 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4352 else
4353 abbrev = &dwarf2_per_objfile->abbrev;
4354
4355 return abbrev;
4356 }
4357
4358 /* Subroutine of read_and_check_comp_unit_head and
4359 read_and_check_type_unit_head to simplify them.
4360 Perform various error checking on the header. */
4361
4362 static void
4363 error_check_comp_unit_head (struct comp_unit_head *header,
4364 struct dwarf2_section_info *section,
4365 struct dwarf2_section_info *abbrev_section)
4366 {
4367 bfd *abfd = get_section_bfd_owner (section);
4368 const char *filename = get_section_file_name (section);
4369
4370 if (header->version != 2 && header->version != 3 && header->version != 4)
4371 error (_("Dwarf Error: wrong version in compilation unit header "
4372 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4373 filename);
4374
4375 if (header->abbrev_offset.sect_off
4376 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4377 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4378 "(offset 0x%lx + 6) [in module %s]"),
4379 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4380 filename);
4381
4382 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4383 avoid potential 32-bit overflow. */
4384 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4385 > section->size)
4386 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4387 "(offset 0x%lx + 0) [in module %s]"),
4388 (long) header->length, (long) header->offset.sect_off,
4389 filename);
4390 }
4391
4392 /* Read in a CU/TU header and perform some basic error checking.
4393 The contents of the header are stored in HEADER.
4394 The result is a pointer to the start of the first DIE. */
4395
4396 static const gdb_byte *
4397 read_and_check_comp_unit_head (struct comp_unit_head *header,
4398 struct dwarf2_section_info *section,
4399 struct dwarf2_section_info *abbrev_section,
4400 const gdb_byte *info_ptr,
4401 int is_debug_types_section)
4402 {
4403 const gdb_byte *beg_of_comp_unit = info_ptr;
4404 bfd *abfd = get_section_bfd_owner (section);
4405
4406 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4407
4408 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4409
4410 /* If we're reading a type unit, skip over the signature and
4411 type_offset fields. */
4412 if (is_debug_types_section)
4413 info_ptr += 8 /*signature*/ + header->offset_size;
4414
4415 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4416
4417 error_check_comp_unit_head (header, section, abbrev_section);
4418
4419 return info_ptr;
4420 }
4421
4422 /* Read in the types comp unit header information from .debug_types entry at
4423 types_ptr. The result is a pointer to one past the end of the header. */
4424
4425 static const gdb_byte *
4426 read_and_check_type_unit_head (struct comp_unit_head *header,
4427 struct dwarf2_section_info *section,
4428 struct dwarf2_section_info *abbrev_section,
4429 const gdb_byte *info_ptr,
4430 ULONGEST *signature,
4431 cu_offset *type_offset_in_tu)
4432 {
4433 const gdb_byte *beg_of_comp_unit = info_ptr;
4434 bfd *abfd = get_section_bfd_owner (section);
4435
4436 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4437
4438 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4439
4440 /* If we're reading a type unit, skip over the signature and
4441 type_offset fields. */
4442 if (signature != NULL)
4443 *signature = read_8_bytes (abfd, info_ptr);
4444 info_ptr += 8;
4445 if (type_offset_in_tu != NULL)
4446 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4447 header->offset_size);
4448 info_ptr += header->offset_size;
4449
4450 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4451
4452 error_check_comp_unit_head (header, section, abbrev_section);
4453
4454 return info_ptr;
4455 }
4456
4457 /* Fetch the abbreviation table offset from a comp or type unit header. */
4458
4459 static sect_offset
4460 read_abbrev_offset (struct dwarf2_section_info *section,
4461 sect_offset offset)
4462 {
4463 bfd *abfd = get_section_bfd_owner (section);
4464 const gdb_byte *info_ptr;
4465 unsigned int length, initial_length_size, offset_size;
4466 sect_offset abbrev_offset;
4467
4468 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4469 info_ptr = section->buffer + offset.sect_off;
4470 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4471 offset_size = initial_length_size == 4 ? 4 : 8;
4472 info_ptr += initial_length_size + 2 /*version*/;
4473 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4474 return abbrev_offset;
4475 }
4476
4477 /* Allocate a new partial symtab for file named NAME and mark this new
4478 partial symtab as being an include of PST. */
4479
4480 static void
4481 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4482 struct objfile *objfile)
4483 {
4484 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4485
4486 if (!IS_ABSOLUTE_PATH (subpst->filename))
4487 {
4488 /* It shares objfile->objfile_obstack. */
4489 subpst->dirname = pst->dirname;
4490 }
4491
4492 subpst->textlow = 0;
4493 subpst->texthigh = 0;
4494
4495 subpst->dependencies = (struct partial_symtab **)
4496 obstack_alloc (&objfile->objfile_obstack,
4497 sizeof (struct partial_symtab *));
4498 subpst->dependencies[0] = pst;
4499 subpst->number_of_dependencies = 1;
4500
4501 subpst->globals_offset = 0;
4502 subpst->n_global_syms = 0;
4503 subpst->statics_offset = 0;
4504 subpst->n_static_syms = 0;
4505 subpst->compunit_symtab = NULL;
4506 subpst->read_symtab = pst->read_symtab;
4507 subpst->readin = 0;
4508
4509 /* No private part is necessary for include psymtabs. This property
4510 can be used to differentiate between such include psymtabs and
4511 the regular ones. */
4512 subpst->read_symtab_private = NULL;
4513 }
4514
4515 /* Read the Line Number Program data and extract the list of files
4516 included by the source file represented by PST. Build an include
4517 partial symtab for each of these included files. */
4518
4519 static void
4520 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4521 struct die_info *die,
4522 struct partial_symtab *pst)
4523 {
4524 struct line_header *lh = NULL;
4525 struct attribute *attr;
4526
4527 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4528 if (attr)
4529 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4530 if (lh == NULL)
4531 return; /* No linetable, so no includes. */
4532
4533 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4534 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4535
4536 free_line_header (lh);
4537 }
4538
4539 static hashval_t
4540 hash_signatured_type (const void *item)
4541 {
4542 const struct signatured_type *sig_type = item;
4543
4544 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4545 return sig_type->signature;
4546 }
4547
4548 static int
4549 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4550 {
4551 const struct signatured_type *lhs = item_lhs;
4552 const struct signatured_type *rhs = item_rhs;
4553
4554 return lhs->signature == rhs->signature;
4555 }
4556
4557 /* Allocate a hash table for signatured types. */
4558
4559 static htab_t
4560 allocate_signatured_type_table (struct objfile *objfile)
4561 {
4562 return htab_create_alloc_ex (41,
4563 hash_signatured_type,
4564 eq_signatured_type,
4565 NULL,
4566 &objfile->objfile_obstack,
4567 hashtab_obstack_allocate,
4568 dummy_obstack_deallocate);
4569 }
4570
4571 /* A helper function to add a signatured type CU to a table. */
4572
4573 static int
4574 add_signatured_type_cu_to_table (void **slot, void *datum)
4575 {
4576 struct signatured_type *sigt = *slot;
4577 struct signatured_type ***datap = datum;
4578
4579 **datap = sigt;
4580 ++*datap;
4581
4582 return 1;
4583 }
4584
4585 /* Create the hash table of all entries in the .debug_types
4586 (or .debug_types.dwo) section(s).
4587 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4588 otherwise it is NULL.
4589
4590 The result is a pointer to the hash table or NULL if there are no types.
4591
4592 Note: This function processes DWO files only, not DWP files. */
4593
4594 static htab_t
4595 create_debug_types_hash_table (struct dwo_file *dwo_file,
4596 VEC (dwarf2_section_info_def) *types)
4597 {
4598 struct objfile *objfile = dwarf2_per_objfile->objfile;
4599 htab_t types_htab = NULL;
4600 int ix;
4601 struct dwarf2_section_info *section;
4602 struct dwarf2_section_info *abbrev_section;
4603
4604 if (VEC_empty (dwarf2_section_info_def, types))
4605 return NULL;
4606
4607 abbrev_section = (dwo_file != NULL
4608 ? &dwo_file->sections.abbrev
4609 : &dwarf2_per_objfile->abbrev);
4610
4611 if (dwarf_read_debug)
4612 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4613 dwo_file ? ".dwo" : "",
4614 get_section_file_name (abbrev_section));
4615
4616 for (ix = 0;
4617 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4618 ++ix)
4619 {
4620 bfd *abfd;
4621 const gdb_byte *info_ptr, *end_ptr;
4622
4623 dwarf2_read_section (objfile, section);
4624 info_ptr = section->buffer;
4625
4626 if (info_ptr == NULL)
4627 continue;
4628
4629 /* We can't set abfd until now because the section may be empty or
4630 not present, in which case the bfd is unknown. */
4631 abfd = get_section_bfd_owner (section);
4632
4633 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4634 because we don't need to read any dies: the signature is in the
4635 header. */
4636
4637 end_ptr = info_ptr + section->size;
4638 while (info_ptr < end_ptr)
4639 {
4640 sect_offset offset;
4641 cu_offset type_offset_in_tu;
4642 ULONGEST signature;
4643 struct signatured_type *sig_type;
4644 struct dwo_unit *dwo_tu;
4645 void **slot;
4646 const gdb_byte *ptr = info_ptr;
4647 struct comp_unit_head header;
4648 unsigned int length;
4649
4650 offset.sect_off = ptr - section->buffer;
4651
4652 /* We need to read the type's signature in order to build the hash
4653 table, but we don't need anything else just yet. */
4654
4655 ptr = read_and_check_type_unit_head (&header, section,
4656 abbrev_section, ptr,
4657 &signature, &type_offset_in_tu);
4658
4659 length = get_cu_length (&header);
4660
4661 /* Skip dummy type units. */
4662 if (ptr >= info_ptr + length
4663 || peek_abbrev_code (abfd, ptr) == 0)
4664 {
4665 info_ptr += length;
4666 continue;
4667 }
4668
4669 if (types_htab == NULL)
4670 {
4671 if (dwo_file)
4672 types_htab = allocate_dwo_unit_table (objfile);
4673 else
4674 types_htab = allocate_signatured_type_table (objfile);
4675 }
4676
4677 if (dwo_file)
4678 {
4679 sig_type = NULL;
4680 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4681 struct dwo_unit);
4682 dwo_tu->dwo_file = dwo_file;
4683 dwo_tu->signature = signature;
4684 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4685 dwo_tu->section = section;
4686 dwo_tu->offset = offset;
4687 dwo_tu->length = length;
4688 }
4689 else
4690 {
4691 /* N.B.: type_offset is not usable if this type uses a DWO file.
4692 The real type_offset is in the DWO file. */
4693 dwo_tu = NULL;
4694 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4695 struct signatured_type);
4696 sig_type->signature = signature;
4697 sig_type->type_offset_in_tu = type_offset_in_tu;
4698 sig_type->per_cu.objfile = objfile;
4699 sig_type->per_cu.is_debug_types = 1;
4700 sig_type->per_cu.section = section;
4701 sig_type->per_cu.offset = offset;
4702 sig_type->per_cu.length = length;
4703 }
4704
4705 slot = htab_find_slot (types_htab,
4706 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4707 INSERT);
4708 gdb_assert (slot != NULL);
4709 if (*slot != NULL)
4710 {
4711 sect_offset dup_offset;
4712
4713 if (dwo_file)
4714 {
4715 const struct dwo_unit *dup_tu = *slot;
4716
4717 dup_offset = dup_tu->offset;
4718 }
4719 else
4720 {
4721 const struct signatured_type *dup_tu = *slot;
4722
4723 dup_offset = dup_tu->per_cu.offset;
4724 }
4725
4726 complaint (&symfile_complaints,
4727 _("debug type entry at offset 0x%x is duplicate to"
4728 " the entry at offset 0x%x, signature %s"),
4729 offset.sect_off, dup_offset.sect_off,
4730 hex_string (signature));
4731 }
4732 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4733
4734 if (dwarf_read_debug > 1)
4735 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4736 offset.sect_off,
4737 hex_string (signature));
4738
4739 info_ptr += length;
4740 }
4741 }
4742
4743 return types_htab;
4744 }
4745
4746 /* Create the hash table of all entries in the .debug_types section,
4747 and initialize all_type_units.
4748 The result is zero if there is an error (e.g. missing .debug_types section),
4749 otherwise non-zero. */
4750
4751 static int
4752 create_all_type_units (struct objfile *objfile)
4753 {
4754 htab_t types_htab;
4755 struct signatured_type **iter;
4756
4757 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4758 if (types_htab == NULL)
4759 {
4760 dwarf2_per_objfile->signatured_types = NULL;
4761 return 0;
4762 }
4763
4764 dwarf2_per_objfile->signatured_types = types_htab;
4765
4766 dwarf2_per_objfile->n_type_units
4767 = dwarf2_per_objfile->n_allocated_type_units
4768 = htab_elements (types_htab);
4769 dwarf2_per_objfile->all_type_units
4770 = xmalloc (dwarf2_per_objfile->n_type_units
4771 * sizeof (struct signatured_type *));
4772 iter = &dwarf2_per_objfile->all_type_units[0];
4773 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4774 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4775 == dwarf2_per_objfile->n_type_units);
4776
4777 return 1;
4778 }
4779
4780 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4781 If SLOT is non-NULL, it is the entry to use in the hash table.
4782 Otherwise we find one. */
4783
4784 static struct signatured_type *
4785 add_type_unit (ULONGEST sig, void **slot)
4786 {
4787 struct objfile *objfile = dwarf2_per_objfile->objfile;
4788 int n_type_units = dwarf2_per_objfile->n_type_units;
4789 struct signatured_type *sig_type;
4790
4791 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4792 ++n_type_units;
4793 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4794 {
4795 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4796 dwarf2_per_objfile->n_allocated_type_units = 1;
4797 dwarf2_per_objfile->n_allocated_type_units *= 2;
4798 dwarf2_per_objfile->all_type_units
4799 = xrealloc (dwarf2_per_objfile->all_type_units,
4800 dwarf2_per_objfile->n_allocated_type_units
4801 * sizeof (struct signatured_type *));
4802 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4803 }
4804 dwarf2_per_objfile->n_type_units = n_type_units;
4805
4806 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4807 struct signatured_type);
4808 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4809 sig_type->signature = sig;
4810 sig_type->per_cu.is_debug_types = 1;
4811 if (dwarf2_per_objfile->using_index)
4812 {
4813 sig_type->per_cu.v.quick =
4814 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4815 struct dwarf2_per_cu_quick_data);
4816 }
4817
4818 if (slot == NULL)
4819 {
4820 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4821 sig_type, INSERT);
4822 }
4823 gdb_assert (*slot == NULL);
4824 *slot = sig_type;
4825 /* The rest of sig_type must be filled in by the caller. */
4826 return sig_type;
4827 }
4828
4829 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4830 Fill in SIG_ENTRY with DWO_ENTRY. */
4831
4832 static void
4833 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4834 struct signatured_type *sig_entry,
4835 struct dwo_unit *dwo_entry)
4836 {
4837 /* Make sure we're not clobbering something we don't expect to. */
4838 gdb_assert (! sig_entry->per_cu.queued);
4839 gdb_assert (sig_entry->per_cu.cu == NULL);
4840 if (dwarf2_per_objfile->using_index)
4841 {
4842 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4843 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4844 }
4845 else
4846 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4847 gdb_assert (sig_entry->signature == dwo_entry->signature);
4848 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4849 gdb_assert (sig_entry->type_unit_group == NULL);
4850 gdb_assert (sig_entry->dwo_unit == NULL);
4851
4852 sig_entry->per_cu.section = dwo_entry->section;
4853 sig_entry->per_cu.offset = dwo_entry->offset;
4854 sig_entry->per_cu.length = dwo_entry->length;
4855 sig_entry->per_cu.reading_dwo_directly = 1;
4856 sig_entry->per_cu.objfile = objfile;
4857 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4858 sig_entry->dwo_unit = dwo_entry;
4859 }
4860
4861 /* Subroutine of lookup_signatured_type.
4862 If we haven't read the TU yet, create the signatured_type data structure
4863 for a TU to be read in directly from a DWO file, bypassing the stub.
4864 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4865 using .gdb_index, then when reading a CU we want to stay in the DWO file
4866 containing that CU. Otherwise we could end up reading several other DWO
4867 files (due to comdat folding) to process the transitive closure of all the
4868 mentioned TUs, and that can be slow. The current DWO file will have every
4869 type signature that it needs.
4870 We only do this for .gdb_index because in the psymtab case we already have
4871 to read all the DWOs to build the type unit groups. */
4872
4873 static struct signatured_type *
4874 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4875 {
4876 struct objfile *objfile = dwarf2_per_objfile->objfile;
4877 struct dwo_file *dwo_file;
4878 struct dwo_unit find_dwo_entry, *dwo_entry;
4879 struct signatured_type find_sig_entry, *sig_entry;
4880 void **slot;
4881
4882 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4883
4884 /* If TU skeletons have been removed then we may not have read in any
4885 TUs yet. */
4886 if (dwarf2_per_objfile->signatured_types == NULL)
4887 {
4888 dwarf2_per_objfile->signatured_types
4889 = allocate_signatured_type_table (objfile);
4890 }
4891
4892 /* We only ever need to read in one copy of a signatured type.
4893 Use the global signatured_types array to do our own comdat-folding
4894 of types. If this is the first time we're reading this TU, and
4895 the TU has an entry in .gdb_index, replace the recorded data from
4896 .gdb_index with this TU. */
4897
4898 find_sig_entry.signature = sig;
4899 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4900 &find_sig_entry, INSERT);
4901 sig_entry = *slot;
4902
4903 /* We can get here with the TU already read, *or* in the process of being
4904 read. Don't reassign the global entry to point to this DWO if that's
4905 the case. Also note that if the TU is already being read, it may not
4906 have come from a DWO, the program may be a mix of Fission-compiled
4907 code and non-Fission-compiled code. */
4908
4909 /* Have we already tried to read this TU?
4910 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4911 needn't exist in the global table yet). */
4912 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4913 return sig_entry;
4914
4915 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4916 dwo_unit of the TU itself. */
4917 dwo_file = cu->dwo_unit->dwo_file;
4918
4919 /* Ok, this is the first time we're reading this TU. */
4920 if (dwo_file->tus == NULL)
4921 return NULL;
4922 find_dwo_entry.signature = sig;
4923 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4924 if (dwo_entry == NULL)
4925 return NULL;
4926
4927 /* If the global table doesn't have an entry for this TU, add one. */
4928 if (sig_entry == NULL)
4929 sig_entry = add_type_unit (sig, slot);
4930
4931 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4932 sig_entry->per_cu.tu_read = 1;
4933 return sig_entry;
4934 }
4935
4936 /* Subroutine of lookup_signatured_type.
4937 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4938 then try the DWP file. If the TU stub (skeleton) has been removed then
4939 it won't be in .gdb_index. */
4940
4941 static struct signatured_type *
4942 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4943 {
4944 struct objfile *objfile = dwarf2_per_objfile->objfile;
4945 struct dwp_file *dwp_file = get_dwp_file ();
4946 struct dwo_unit *dwo_entry;
4947 struct signatured_type find_sig_entry, *sig_entry;
4948 void **slot;
4949
4950 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4951 gdb_assert (dwp_file != NULL);
4952
4953 /* If TU skeletons have been removed then we may not have read in any
4954 TUs yet. */
4955 if (dwarf2_per_objfile->signatured_types == NULL)
4956 {
4957 dwarf2_per_objfile->signatured_types
4958 = allocate_signatured_type_table (objfile);
4959 }
4960
4961 find_sig_entry.signature = sig;
4962 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4963 &find_sig_entry, INSERT);
4964 sig_entry = *slot;
4965
4966 /* Have we already tried to read this TU?
4967 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4968 needn't exist in the global table yet). */
4969 if (sig_entry != NULL)
4970 return sig_entry;
4971
4972 if (dwp_file->tus == NULL)
4973 return NULL;
4974 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4975 sig, 1 /* is_debug_types */);
4976 if (dwo_entry == NULL)
4977 return NULL;
4978
4979 sig_entry = add_type_unit (sig, slot);
4980 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4981
4982 return sig_entry;
4983 }
4984
4985 /* Lookup a signature based type for DW_FORM_ref_sig8.
4986 Returns NULL if signature SIG is not present in the table.
4987 It is up to the caller to complain about this. */
4988
4989 static struct signatured_type *
4990 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4991 {
4992 if (cu->dwo_unit
4993 && dwarf2_per_objfile->using_index)
4994 {
4995 /* We're in a DWO/DWP file, and we're using .gdb_index.
4996 These cases require special processing. */
4997 if (get_dwp_file () == NULL)
4998 return lookup_dwo_signatured_type (cu, sig);
4999 else
5000 return lookup_dwp_signatured_type (cu, sig);
5001 }
5002 else
5003 {
5004 struct signatured_type find_entry, *entry;
5005
5006 if (dwarf2_per_objfile->signatured_types == NULL)
5007 return NULL;
5008 find_entry.signature = sig;
5009 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5010 return entry;
5011 }
5012 }
5013 \f
5014 /* Low level DIE reading support. */
5015
5016 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5017
5018 static void
5019 init_cu_die_reader (struct die_reader_specs *reader,
5020 struct dwarf2_cu *cu,
5021 struct dwarf2_section_info *section,
5022 struct dwo_file *dwo_file)
5023 {
5024 gdb_assert (section->readin && section->buffer != NULL);
5025 reader->abfd = get_section_bfd_owner (section);
5026 reader->cu = cu;
5027 reader->dwo_file = dwo_file;
5028 reader->die_section = section;
5029 reader->buffer = section->buffer;
5030 reader->buffer_end = section->buffer + section->size;
5031 reader->comp_dir = NULL;
5032 }
5033
5034 /* Subroutine of init_cutu_and_read_dies to simplify it.
5035 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5036 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5037 already.
5038
5039 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5040 from it to the DIE in the DWO. If NULL we are skipping the stub.
5041 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5042 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5043 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5044 STUB_COMP_DIR may be non-NULL.
5045 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5046 are filled in with the info of the DIE from the DWO file.
5047 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5048 provided an abbrev table to use.
5049 The result is non-zero if a valid (non-dummy) DIE was found. */
5050
5051 static int
5052 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5053 struct dwo_unit *dwo_unit,
5054 int abbrev_table_provided,
5055 struct die_info *stub_comp_unit_die,
5056 const char *stub_comp_dir,
5057 struct die_reader_specs *result_reader,
5058 const gdb_byte **result_info_ptr,
5059 struct die_info **result_comp_unit_die,
5060 int *result_has_children)
5061 {
5062 struct objfile *objfile = dwarf2_per_objfile->objfile;
5063 struct dwarf2_cu *cu = this_cu->cu;
5064 struct dwarf2_section_info *section;
5065 bfd *abfd;
5066 const gdb_byte *begin_info_ptr, *info_ptr;
5067 ULONGEST signature; /* Or dwo_id. */
5068 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5069 int i,num_extra_attrs;
5070 struct dwarf2_section_info *dwo_abbrev_section;
5071 struct attribute *attr;
5072 struct die_info *comp_unit_die;
5073
5074 /* At most one of these may be provided. */
5075 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5076
5077 /* These attributes aren't processed until later:
5078 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5079 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5080 referenced later. However, these attributes are found in the stub
5081 which we won't have later. In order to not impose this complication
5082 on the rest of the code, we read them here and copy them to the
5083 DWO CU/TU die. */
5084
5085 stmt_list = NULL;
5086 low_pc = NULL;
5087 high_pc = NULL;
5088 ranges = NULL;
5089 comp_dir = NULL;
5090
5091 if (stub_comp_unit_die != NULL)
5092 {
5093 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5094 DWO file. */
5095 if (! this_cu->is_debug_types)
5096 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5097 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5098 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5099 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5100 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5101
5102 /* There should be a DW_AT_addr_base attribute here (if needed).
5103 We need the value before we can process DW_FORM_GNU_addr_index. */
5104 cu->addr_base = 0;
5105 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5106 if (attr)
5107 cu->addr_base = DW_UNSND (attr);
5108
5109 /* There should be a DW_AT_ranges_base attribute here (if needed).
5110 We need the value before we can process DW_AT_ranges. */
5111 cu->ranges_base = 0;
5112 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5113 if (attr)
5114 cu->ranges_base = DW_UNSND (attr);
5115 }
5116 else if (stub_comp_dir != NULL)
5117 {
5118 /* Reconstruct the comp_dir attribute to simplify the code below. */
5119 comp_dir = (struct attribute *)
5120 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5121 comp_dir->name = DW_AT_comp_dir;
5122 comp_dir->form = DW_FORM_string;
5123 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5124 DW_STRING (comp_dir) = stub_comp_dir;
5125 }
5126
5127 /* Set up for reading the DWO CU/TU. */
5128 cu->dwo_unit = dwo_unit;
5129 section = dwo_unit->section;
5130 dwarf2_read_section (objfile, section);
5131 abfd = get_section_bfd_owner (section);
5132 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5133 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5134 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5135
5136 if (this_cu->is_debug_types)
5137 {
5138 ULONGEST header_signature;
5139 cu_offset type_offset_in_tu;
5140 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5141
5142 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5143 dwo_abbrev_section,
5144 info_ptr,
5145 &header_signature,
5146 &type_offset_in_tu);
5147 /* This is not an assert because it can be caused by bad debug info. */
5148 if (sig_type->signature != header_signature)
5149 {
5150 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5151 " TU at offset 0x%x [in module %s]"),
5152 hex_string (sig_type->signature),
5153 hex_string (header_signature),
5154 dwo_unit->offset.sect_off,
5155 bfd_get_filename (abfd));
5156 }
5157 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5158 /* For DWOs coming from DWP files, we don't know the CU length
5159 nor the type's offset in the TU until now. */
5160 dwo_unit->length = get_cu_length (&cu->header);
5161 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5162
5163 /* Establish the type offset that can be used to lookup the type.
5164 For DWO files, we don't know it until now. */
5165 sig_type->type_offset_in_section.sect_off =
5166 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5167 }
5168 else
5169 {
5170 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5171 dwo_abbrev_section,
5172 info_ptr, 0);
5173 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5174 /* For DWOs coming from DWP files, we don't know the CU length
5175 until now. */
5176 dwo_unit->length = get_cu_length (&cu->header);
5177 }
5178
5179 /* Replace the CU's original abbrev table with the DWO's.
5180 Reminder: We can't read the abbrev table until we've read the header. */
5181 if (abbrev_table_provided)
5182 {
5183 /* Don't free the provided abbrev table, the caller of
5184 init_cutu_and_read_dies owns it. */
5185 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5186 /* Ensure the DWO abbrev table gets freed. */
5187 make_cleanup (dwarf2_free_abbrev_table, cu);
5188 }
5189 else
5190 {
5191 dwarf2_free_abbrev_table (cu);
5192 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5193 /* Leave any existing abbrev table cleanup as is. */
5194 }
5195
5196 /* Read in the die, but leave space to copy over the attributes
5197 from the stub. This has the benefit of simplifying the rest of
5198 the code - all the work to maintain the illusion of a single
5199 DW_TAG_{compile,type}_unit DIE is done here. */
5200 num_extra_attrs = ((stmt_list != NULL)
5201 + (low_pc != NULL)
5202 + (high_pc != NULL)
5203 + (ranges != NULL)
5204 + (comp_dir != NULL));
5205 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5206 result_has_children, num_extra_attrs);
5207
5208 /* Copy over the attributes from the stub to the DIE we just read in. */
5209 comp_unit_die = *result_comp_unit_die;
5210 i = comp_unit_die->num_attrs;
5211 if (stmt_list != NULL)
5212 comp_unit_die->attrs[i++] = *stmt_list;
5213 if (low_pc != NULL)
5214 comp_unit_die->attrs[i++] = *low_pc;
5215 if (high_pc != NULL)
5216 comp_unit_die->attrs[i++] = *high_pc;
5217 if (ranges != NULL)
5218 comp_unit_die->attrs[i++] = *ranges;
5219 if (comp_dir != NULL)
5220 comp_unit_die->attrs[i++] = *comp_dir;
5221 comp_unit_die->num_attrs += num_extra_attrs;
5222
5223 if (dwarf_die_debug)
5224 {
5225 fprintf_unfiltered (gdb_stdlog,
5226 "Read die from %s@0x%x of %s:\n",
5227 get_section_name (section),
5228 (unsigned) (begin_info_ptr - section->buffer),
5229 bfd_get_filename (abfd));
5230 dump_die (comp_unit_die, dwarf_die_debug);
5231 }
5232
5233 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5234 TUs by skipping the stub and going directly to the entry in the DWO file.
5235 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5236 to get it via circuitous means. Blech. */
5237 if (comp_dir != NULL)
5238 result_reader->comp_dir = DW_STRING (comp_dir);
5239
5240 /* Skip dummy compilation units. */
5241 if (info_ptr >= begin_info_ptr + dwo_unit->length
5242 || peek_abbrev_code (abfd, info_ptr) == 0)
5243 return 0;
5244
5245 *result_info_ptr = info_ptr;
5246 return 1;
5247 }
5248
5249 /* Subroutine of init_cutu_and_read_dies to simplify it.
5250 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5251 Returns NULL if the specified DWO unit cannot be found. */
5252
5253 static struct dwo_unit *
5254 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5255 struct die_info *comp_unit_die)
5256 {
5257 struct dwarf2_cu *cu = this_cu->cu;
5258 struct attribute *attr;
5259 ULONGEST signature;
5260 struct dwo_unit *dwo_unit;
5261 const char *comp_dir, *dwo_name;
5262
5263 gdb_assert (cu != NULL);
5264
5265 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5266 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5267 gdb_assert (attr != NULL);
5268 dwo_name = DW_STRING (attr);
5269 comp_dir = NULL;
5270 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5271 if (attr)
5272 comp_dir = DW_STRING (attr);
5273
5274 if (this_cu->is_debug_types)
5275 {
5276 struct signatured_type *sig_type;
5277
5278 /* Since this_cu is the first member of struct signatured_type,
5279 we can go from a pointer to one to a pointer to the other. */
5280 sig_type = (struct signatured_type *) this_cu;
5281 signature = sig_type->signature;
5282 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5283 }
5284 else
5285 {
5286 struct attribute *attr;
5287
5288 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5289 if (! attr)
5290 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5291 " [in module %s]"),
5292 dwo_name, objfile_name (this_cu->objfile));
5293 signature = DW_UNSND (attr);
5294 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5295 signature);
5296 }
5297
5298 return dwo_unit;
5299 }
5300
5301 /* Subroutine of init_cutu_and_read_dies to simplify it.
5302 See it for a description of the parameters.
5303 Read a TU directly from a DWO file, bypassing the stub.
5304
5305 Note: This function could be a little bit simpler if we shared cleanups
5306 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5307 to do, so we keep this function self-contained. Or we could move this
5308 into our caller, but it's complex enough already. */
5309
5310 static void
5311 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5312 int use_existing_cu, int keep,
5313 die_reader_func_ftype *die_reader_func,
5314 void *data)
5315 {
5316 struct dwarf2_cu *cu;
5317 struct signatured_type *sig_type;
5318 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5319 struct die_reader_specs reader;
5320 const gdb_byte *info_ptr;
5321 struct die_info *comp_unit_die;
5322 int has_children;
5323
5324 /* Verify we can do the following downcast, and that we have the
5325 data we need. */
5326 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5327 sig_type = (struct signatured_type *) this_cu;
5328 gdb_assert (sig_type->dwo_unit != NULL);
5329
5330 cleanups = make_cleanup (null_cleanup, NULL);
5331
5332 if (use_existing_cu && this_cu->cu != NULL)
5333 {
5334 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5335 cu = this_cu->cu;
5336 /* There's no need to do the rereading_dwo_cu handling that
5337 init_cutu_and_read_dies does since we don't read the stub. */
5338 }
5339 else
5340 {
5341 /* If !use_existing_cu, this_cu->cu must be NULL. */
5342 gdb_assert (this_cu->cu == NULL);
5343 cu = xmalloc (sizeof (*cu));
5344 init_one_comp_unit (cu, this_cu);
5345 /* If an error occurs while loading, release our storage. */
5346 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5347 }
5348
5349 /* A future optimization, if needed, would be to use an existing
5350 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5351 could share abbrev tables. */
5352
5353 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5354 0 /* abbrev_table_provided */,
5355 NULL /* stub_comp_unit_die */,
5356 sig_type->dwo_unit->dwo_file->comp_dir,
5357 &reader, &info_ptr,
5358 &comp_unit_die, &has_children) == 0)
5359 {
5360 /* Dummy die. */
5361 do_cleanups (cleanups);
5362 return;
5363 }
5364
5365 /* All the "real" work is done here. */
5366 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5367
5368 /* This duplicates the code in init_cutu_and_read_dies,
5369 but the alternative is making the latter more complex.
5370 This function is only for the special case of using DWO files directly:
5371 no point in overly complicating the general case just to handle this. */
5372 if (free_cu_cleanup != NULL)
5373 {
5374 if (keep)
5375 {
5376 /* We've successfully allocated this compilation unit. Let our
5377 caller clean it up when finished with it. */
5378 discard_cleanups (free_cu_cleanup);
5379
5380 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5381 So we have to manually free the abbrev table. */
5382 dwarf2_free_abbrev_table (cu);
5383
5384 /* Link this CU into read_in_chain. */
5385 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5386 dwarf2_per_objfile->read_in_chain = this_cu;
5387 }
5388 else
5389 do_cleanups (free_cu_cleanup);
5390 }
5391
5392 do_cleanups (cleanups);
5393 }
5394
5395 /* Initialize a CU (or TU) and read its DIEs.
5396 If the CU defers to a DWO file, read the DWO file as well.
5397
5398 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5399 Otherwise the table specified in the comp unit header is read in and used.
5400 This is an optimization for when we already have the abbrev table.
5401
5402 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5403 Otherwise, a new CU is allocated with xmalloc.
5404
5405 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5406 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5407
5408 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5409 linker) then DIE_READER_FUNC will not get called. */
5410
5411 static void
5412 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5413 struct abbrev_table *abbrev_table,
5414 int use_existing_cu, int keep,
5415 die_reader_func_ftype *die_reader_func,
5416 void *data)
5417 {
5418 struct objfile *objfile = dwarf2_per_objfile->objfile;
5419 struct dwarf2_section_info *section = this_cu->section;
5420 bfd *abfd = get_section_bfd_owner (section);
5421 struct dwarf2_cu *cu;
5422 const gdb_byte *begin_info_ptr, *info_ptr;
5423 struct die_reader_specs reader;
5424 struct die_info *comp_unit_die;
5425 int has_children;
5426 struct attribute *attr;
5427 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5428 struct signatured_type *sig_type = NULL;
5429 struct dwarf2_section_info *abbrev_section;
5430 /* Non-zero if CU currently points to a DWO file and we need to
5431 reread it. When this happens we need to reread the skeleton die
5432 before we can reread the DWO file (this only applies to CUs, not TUs). */
5433 int rereading_dwo_cu = 0;
5434
5435 if (dwarf_die_debug)
5436 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5437 this_cu->is_debug_types ? "type" : "comp",
5438 this_cu->offset.sect_off);
5439
5440 if (use_existing_cu)
5441 gdb_assert (keep);
5442
5443 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5444 file (instead of going through the stub), short-circuit all of this. */
5445 if (this_cu->reading_dwo_directly)
5446 {
5447 /* Narrow down the scope of possibilities to have to understand. */
5448 gdb_assert (this_cu->is_debug_types);
5449 gdb_assert (abbrev_table == NULL);
5450 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5451 die_reader_func, data);
5452 return;
5453 }
5454
5455 cleanups = make_cleanup (null_cleanup, NULL);
5456
5457 /* This is cheap if the section is already read in. */
5458 dwarf2_read_section (objfile, section);
5459
5460 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5461
5462 abbrev_section = get_abbrev_section_for_cu (this_cu);
5463
5464 if (use_existing_cu && this_cu->cu != NULL)
5465 {
5466 cu = this_cu->cu;
5467 /* If this CU is from a DWO file we need to start over, we need to
5468 refetch the attributes from the skeleton CU.
5469 This could be optimized by retrieving those attributes from when we
5470 were here the first time: the previous comp_unit_die was stored in
5471 comp_unit_obstack. But there's no data yet that we need this
5472 optimization. */
5473 if (cu->dwo_unit != NULL)
5474 rereading_dwo_cu = 1;
5475 }
5476 else
5477 {
5478 /* If !use_existing_cu, this_cu->cu must be NULL. */
5479 gdb_assert (this_cu->cu == NULL);
5480 cu = xmalloc (sizeof (*cu));
5481 init_one_comp_unit (cu, this_cu);
5482 /* If an error occurs while loading, release our storage. */
5483 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5484 }
5485
5486 /* Get the header. */
5487 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5488 {
5489 /* We already have the header, there's no need to read it in again. */
5490 info_ptr += cu->header.first_die_offset.cu_off;
5491 }
5492 else
5493 {
5494 if (this_cu->is_debug_types)
5495 {
5496 ULONGEST signature;
5497 cu_offset type_offset_in_tu;
5498
5499 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5500 abbrev_section, info_ptr,
5501 &signature,
5502 &type_offset_in_tu);
5503
5504 /* Since per_cu is the first member of struct signatured_type,
5505 we can go from a pointer to one to a pointer to the other. */
5506 sig_type = (struct signatured_type *) this_cu;
5507 gdb_assert (sig_type->signature == signature);
5508 gdb_assert (sig_type->type_offset_in_tu.cu_off
5509 == type_offset_in_tu.cu_off);
5510 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5511
5512 /* LENGTH has not been set yet for type units if we're
5513 using .gdb_index. */
5514 this_cu->length = get_cu_length (&cu->header);
5515
5516 /* Establish the type offset that can be used to lookup the type. */
5517 sig_type->type_offset_in_section.sect_off =
5518 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5519 }
5520 else
5521 {
5522 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5523 abbrev_section,
5524 info_ptr, 0);
5525
5526 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5527 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5528 }
5529 }
5530
5531 /* Skip dummy compilation units. */
5532 if (info_ptr >= begin_info_ptr + this_cu->length
5533 || peek_abbrev_code (abfd, info_ptr) == 0)
5534 {
5535 do_cleanups (cleanups);
5536 return;
5537 }
5538
5539 /* If we don't have them yet, read the abbrevs for this compilation unit.
5540 And if we need to read them now, make sure they're freed when we're
5541 done. Note that it's important that if the CU had an abbrev table
5542 on entry we don't free it when we're done: Somewhere up the call stack
5543 it may be in use. */
5544 if (abbrev_table != NULL)
5545 {
5546 gdb_assert (cu->abbrev_table == NULL);
5547 gdb_assert (cu->header.abbrev_offset.sect_off
5548 == abbrev_table->offset.sect_off);
5549 cu->abbrev_table = abbrev_table;
5550 }
5551 else if (cu->abbrev_table == NULL)
5552 {
5553 dwarf2_read_abbrevs (cu, abbrev_section);
5554 make_cleanup (dwarf2_free_abbrev_table, cu);
5555 }
5556 else if (rereading_dwo_cu)
5557 {
5558 dwarf2_free_abbrev_table (cu);
5559 dwarf2_read_abbrevs (cu, abbrev_section);
5560 }
5561
5562 /* Read the top level CU/TU die. */
5563 init_cu_die_reader (&reader, cu, section, NULL);
5564 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5565
5566 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5567 from the DWO file.
5568 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5569 DWO CU, that this test will fail (the attribute will not be present). */
5570 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5571 if (attr)
5572 {
5573 struct dwo_unit *dwo_unit;
5574 struct die_info *dwo_comp_unit_die;
5575
5576 if (has_children)
5577 {
5578 complaint (&symfile_complaints,
5579 _("compilation unit with DW_AT_GNU_dwo_name"
5580 " has children (offset 0x%x) [in module %s]"),
5581 this_cu->offset.sect_off, bfd_get_filename (abfd));
5582 }
5583 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5584 if (dwo_unit != NULL)
5585 {
5586 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5587 abbrev_table != NULL,
5588 comp_unit_die, NULL,
5589 &reader, &info_ptr,
5590 &dwo_comp_unit_die, &has_children) == 0)
5591 {
5592 /* Dummy die. */
5593 do_cleanups (cleanups);
5594 return;
5595 }
5596 comp_unit_die = dwo_comp_unit_die;
5597 }
5598 else
5599 {
5600 /* Yikes, we couldn't find the rest of the DIE, we only have
5601 the stub. A complaint has already been logged. There's
5602 not much more we can do except pass on the stub DIE to
5603 die_reader_func. We don't want to throw an error on bad
5604 debug info. */
5605 }
5606 }
5607
5608 /* All of the above is setup for this call. Yikes. */
5609 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5610
5611 /* Done, clean up. */
5612 if (free_cu_cleanup != NULL)
5613 {
5614 if (keep)
5615 {
5616 /* We've successfully allocated this compilation unit. Let our
5617 caller clean it up when finished with it. */
5618 discard_cleanups (free_cu_cleanup);
5619
5620 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5621 So we have to manually free the abbrev table. */
5622 dwarf2_free_abbrev_table (cu);
5623
5624 /* Link this CU into read_in_chain. */
5625 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5626 dwarf2_per_objfile->read_in_chain = this_cu;
5627 }
5628 else
5629 do_cleanups (free_cu_cleanup);
5630 }
5631
5632 do_cleanups (cleanups);
5633 }
5634
5635 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5636 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5637 to have already done the lookup to find the DWO file).
5638
5639 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5640 THIS_CU->is_debug_types, but nothing else.
5641
5642 We fill in THIS_CU->length.
5643
5644 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5645 linker) then DIE_READER_FUNC will not get called.
5646
5647 THIS_CU->cu is always freed when done.
5648 This is done in order to not leave THIS_CU->cu in a state where we have
5649 to care whether it refers to the "main" CU or the DWO CU. */
5650
5651 static void
5652 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5653 struct dwo_file *dwo_file,
5654 die_reader_func_ftype *die_reader_func,
5655 void *data)
5656 {
5657 struct objfile *objfile = dwarf2_per_objfile->objfile;
5658 struct dwarf2_section_info *section = this_cu->section;
5659 bfd *abfd = get_section_bfd_owner (section);
5660 struct dwarf2_section_info *abbrev_section;
5661 struct dwarf2_cu cu;
5662 const gdb_byte *begin_info_ptr, *info_ptr;
5663 struct die_reader_specs reader;
5664 struct cleanup *cleanups;
5665 struct die_info *comp_unit_die;
5666 int has_children;
5667
5668 if (dwarf_die_debug)
5669 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5670 this_cu->is_debug_types ? "type" : "comp",
5671 this_cu->offset.sect_off);
5672
5673 gdb_assert (this_cu->cu == NULL);
5674
5675 abbrev_section = (dwo_file != NULL
5676 ? &dwo_file->sections.abbrev
5677 : get_abbrev_section_for_cu (this_cu));
5678
5679 /* This is cheap if the section is already read in. */
5680 dwarf2_read_section (objfile, section);
5681
5682 init_one_comp_unit (&cu, this_cu);
5683
5684 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5685
5686 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5687 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5688 abbrev_section, info_ptr,
5689 this_cu->is_debug_types);
5690
5691 this_cu->length = get_cu_length (&cu.header);
5692
5693 /* Skip dummy compilation units. */
5694 if (info_ptr >= begin_info_ptr + this_cu->length
5695 || peek_abbrev_code (abfd, info_ptr) == 0)
5696 {
5697 do_cleanups (cleanups);
5698 return;
5699 }
5700
5701 dwarf2_read_abbrevs (&cu, abbrev_section);
5702 make_cleanup (dwarf2_free_abbrev_table, &cu);
5703
5704 init_cu_die_reader (&reader, &cu, section, dwo_file);
5705 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5706
5707 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5708
5709 do_cleanups (cleanups);
5710 }
5711
5712 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5713 does not lookup the specified DWO file.
5714 This cannot be used to read DWO files.
5715
5716 THIS_CU->cu is always freed when done.
5717 This is done in order to not leave THIS_CU->cu in a state where we have
5718 to care whether it refers to the "main" CU or the DWO CU.
5719 We can revisit this if the data shows there's a performance issue. */
5720
5721 static void
5722 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5723 die_reader_func_ftype *die_reader_func,
5724 void *data)
5725 {
5726 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5727 }
5728 \f
5729 /* Type Unit Groups.
5730
5731 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5732 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5733 so that all types coming from the same compilation (.o file) are grouped
5734 together. A future step could be to put the types in the same symtab as
5735 the CU the types ultimately came from. */
5736
5737 static hashval_t
5738 hash_type_unit_group (const void *item)
5739 {
5740 const struct type_unit_group *tu_group = item;
5741
5742 return hash_stmt_list_entry (&tu_group->hash);
5743 }
5744
5745 static int
5746 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5747 {
5748 const struct type_unit_group *lhs = item_lhs;
5749 const struct type_unit_group *rhs = item_rhs;
5750
5751 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5752 }
5753
5754 /* Allocate a hash table for type unit groups. */
5755
5756 static htab_t
5757 allocate_type_unit_groups_table (void)
5758 {
5759 return htab_create_alloc_ex (3,
5760 hash_type_unit_group,
5761 eq_type_unit_group,
5762 NULL,
5763 &dwarf2_per_objfile->objfile->objfile_obstack,
5764 hashtab_obstack_allocate,
5765 dummy_obstack_deallocate);
5766 }
5767
5768 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5769 partial symtabs. We combine several TUs per psymtab to not let the size
5770 of any one psymtab grow too big. */
5771 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5772 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5773
5774 /* Helper routine for get_type_unit_group.
5775 Create the type_unit_group object used to hold one or more TUs. */
5776
5777 static struct type_unit_group *
5778 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5779 {
5780 struct objfile *objfile = dwarf2_per_objfile->objfile;
5781 struct dwarf2_per_cu_data *per_cu;
5782 struct type_unit_group *tu_group;
5783
5784 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5785 struct type_unit_group);
5786 per_cu = &tu_group->per_cu;
5787 per_cu->objfile = objfile;
5788
5789 if (dwarf2_per_objfile->using_index)
5790 {
5791 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5792 struct dwarf2_per_cu_quick_data);
5793 }
5794 else
5795 {
5796 unsigned int line_offset = line_offset_struct.sect_off;
5797 struct partial_symtab *pst;
5798 char *name;
5799
5800 /* Give the symtab a useful name for debug purposes. */
5801 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5802 name = xstrprintf ("<type_units_%d>",
5803 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5804 else
5805 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5806
5807 pst = create_partial_symtab (per_cu, name);
5808 pst->anonymous = 1;
5809
5810 xfree (name);
5811 }
5812
5813 tu_group->hash.dwo_unit = cu->dwo_unit;
5814 tu_group->hash.line_offset = line_offset_struct;
5815
5816 return tu_group;
5817 }
5818
5819 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5820 STMT_LIST is a DW_AT_stmt_list attribute. */
5821
5822 static struct type_unit_group *
5823 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5824 {
5825 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5826 struct type_unit_group *tu_group;
5827 void **slot;
5828 unsigned int line_offset;
5829 struct type_unit_group type_unit_group_for_lookup;
5830
5831 if (dwarf2_per_objfile->type_unit_groups == NULL)
5832 {
5833 dwarf2_per_objfile->type_unit_groups =
5834 allocate_type_unit_groups_table ();
5835 }
5836
5837 /* Do we need to create a new group, or can we use an existing one? */
5838
5839 if (stmt_list)
5840 {
5841 line_offset = DW_UNSND (stmt_list);
5842 ++tu_stats->nr_symtab_sharers;
5843 }
5844 else
5845 {
5846 /* Ugh, no stmt_list. Rare, but we have to handle it.
5847 We can do various things here like create one group per TU or
5848 spread them over multiple groups to split up the expansion work.
5849 To avoid worst case scenarios (too many groups or too large groups)
5850 we, umm, group them in bunches. */
5851 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5852 | (tu_stats->nr_stmt_less_type_units
5853 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5854 ++tu_stats->nr_stmt_less_type_units;
5855 }
5856
5857 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5858 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5859 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5860 &type_unit_group_for_lookup, INSERT);
5861 if (*slot != NULL)
5862 {
5863 tu_group = *slot;
5864 gdb_assert (tu_group != NULL);
5865 }
5866 else
5867 {
5868 sect_offset line_offset_struct;
5869
5870 line_offset_struct.sect_off = line_offset;
5871 tu_group = create_type_unit_group (cu, line_offset_struct);
5872 *slot = tu_group;
5873 ++tu_stats->nr_symtabs;
5874 }
5875
5876 return tu_group;
5877 }
5878 \f
5879 /* Partial symbol tables. */
5880
5881 /* Create a psymtab named NAME and assign it to PER_CU.
5882
5883 The caller must fill in the following details:
5884 dirname, textlow, texthigh. */
5885
5886 static struct partial_symtab *
5887 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5888 {
5889 struct objfile *objfile = per_cu->objfile;
5890 struct partial_symtab *pst;
5891
5892 pst = start_psymtab_common (objfile, name, 0,
5893 objfile->global_psymbols.next,
5894 objfile->static_psymbols.next);
5895
5896 pst->psymtabs_addrmap_supported = 1;
5897
5898 /* This is the glue that links PST into GDB's symbol API. */
5899 pst->read_symtab_private = per_cu;
5900 pst->read_symtab = dwarf2_read_symtab;
5901 per_cu->v.psymtab = pst;
5902
5903 return pst;
5904 }
5905
5906 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5907 type. */
5908
5909 struct process_psymtab_comp_unit_data
5910 {
5911 /* True if we are reading a DW_TAG_partial_unit. */
5912
5913 int want_partial_unit;
5914
5915 /* The "pretend" language that is used if the CU doesn't declare a
5916 language. */
5917
5918 enum language pretend_language;
5919 };
5920
5921 /* die_reader_func for process_psymtab_comp_unit. */
5922
5923 static void
5924 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5925 const gdb_byte *info_ptr,
5926 struct die_info *comp_unit_die,
5927 int has_children,
5928 void *data)
5929 {
5930 struct dwarf2_cu *cu = reader->cu;
5931 struct objfile *objfile = cu->objfile;
5932 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5933 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5934 struct attribute *attr;
5935 CORE_ADDR baseaddr;
5936 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5937 struct partial_symtab *pst;
5938 int has_pc_info;
5939 const char *filename;
5940 struct process_psymtab_comp_unit_data *info = data;
5941
5942 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5943 return;
5944
5945 gdb_assert (! per_cu->is_debug_types);
5946
5947 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5948
5949 cu->list_in_scope = &file_symbols;
5950
5951 /* Allocate a new partial symbol table structure. */
5952 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5953 if (attr == NULL || !DW_STRING (attr))
5954 filename = "";
5955 else
5956 filename = DW_STRING (attr);
5957
5958 pst = create_partial_symtab (per_cu, filename);
5959
5960 /* This must be done before calling dwarf2_build_include_psymtabs. */
5961 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5962 if (attr != NULL)
5963 pst->dirname = DW_STRING (attr);
5964
5965 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5966
5967 dwarf2_find_base_address (comp_unit_die, cu);
5968
5969 /* Possibly set the default values of LOWPC and HIGHPC from
5970 `DW_AT_ranges'. */
5971 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5972 &best_highpc, cu, pst);
5973 if (has_pc_info == 1 && best_lowpc < best_highpc)
5974 /* Store the contiguous range if it is not empty; it can be empty for
5975 CUs with no code. */
5976 addrmap_set_empty (objfile->psymtabs_addrmap,
5977 gdbarch_adjust_dwarf2_addr (gdbarch,
5978 best_lowpc + baseaddr),
5979 gdbarch_adjust_dwarf2_addr (gdbarch,
5980 best_highpc + baseaddr) - 1,
5981 pst);
5982
5983 /* Check if comp unit has_children.
5984 If so, read the rest of the partial symbols from this comp unit.
5985 If not, there's no more debug_info for this comp unit. */
5986 if (has_children)
5987 {
5988 struct partial_die_info *first_die;
5989 CORE_ADDR lowpc, highpc;
5990
5991 lowpc = ((CORE_ADDR) -1);
5992 highpc = ((CORE_ADDR) 0);
5993
5994 first_die = load_partial_dies (reader, info_ptr, 1);
5995
5996 scan_partial_symbols (first_die, &lowpc, &highpc,
5997 ! has_pc_info, cu);
5998
5999 /* If we didn't find a lowpc, set it to highpc to avoid
6000 complaints from `maint check'. */
6001 if (lowpc == ((CORE_ADDR) -1))
6002 lowpc = highpc;
6003
6004 /* If the compilation unit didn't have an explicit address range,
6005 then use the information extracted from its child dies. */
6006 if (! has_pc_info)
6007 {
6008 best_lowpc = lowpc;
6009 best_highpc = highpc;
6010 }
6011 }
6012 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6013 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6014
6015 pst->n_global_syms = objfile->global_psymbols.next -
6016 (objfile->global_psymbols.list + pst->globals_offset);
6017 pst->n_static_syms = objfile->static_psymbols.next -
6018 (objfile->static_psymbols.list + pst->statics_offset);
6019 sort_pst_symbols (objfile, pst);
6020
6021 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6022 {
6023 int i;
6024 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6025 struct dwarf2_per_cu_data *iter;
6026
6027 /* Fill in 'dependencies' here; we fill in 'users' in a
6028 post-pass. */
6029 pst->number_of_dependencies = len;
6030 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6031 len * sizeof (struct symtab *));
6032 for (i = 0;
6033 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6034 i, iter);
6035 ++i)
6036 pst->dependencies[i] = iter->v.psymtab;
6037
6038 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6039 }
6040
6041 /* Get the list of files included in the current compilation unit,
6042 and build a psymtab for each of them. */
6043 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6044
6045 if (dwarf_read_debug)
6046 {
6047 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6048
6049 fprintf_unfiltered (gdb_stdlog,
6050 "Psymtab for %s unit @0x%x: %s - %s"
6051 ", %d global, %d static syms\n",
6052 per_cu->is_debug_types ? "type" : "comp",
6053 per_cu->offset.sect_off,
6054 paddress (gdbarch, pst->textlow),
6055 paddress (gdbarch, pst->texthigh),
6056 pst->n_global_syms, pst->n_static_syms);
6057 }
6058 }
6059
6060 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6061 Process compilation unit THIS_CU for a psymtab. */
6062
6063 static void
6064 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6065 int want_partial_unit,
6066 enum language pretend_language)
6067 {
6068 struct process_psymtab_comp_unit_data info;
6069
6070 /* If this compilation unit was already read in, free the
6071 cached copy in order to read it in again. This is
6072 necessary because we skipped some symbols when we first
6073 read in the compilation unit (see load_partial_dies).
6074 This problem could be avoided, but the benefit is unclear. */
6075 if (this_cu->cu != NULL)
6076 free_one_cached_comp_unit (this_cu);
6077
6078 gdb_assert (! this_cu->is_debug_types);
6079 info.want_partial_unit = want_partial_unit;
6080 info.pretend_language = pretend_language;
6081 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6082 process_psymtab_comp_unit_reader,
6083 &info);
6084
6085 /* Age out any secondary CUs. */
6086 age_cached_comp_units ();
6087 }
6088
6089 /* Reader function for build_type_psymtabs. */
6090
6091 static void
6092 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6093 const gdb_byte *info_ptr,
6094 struct die_info *type_unit_die,
6095 int has_children,
6096 void *data)
6097 {
6098 struct objfile *objfile = dwarf2_per_objfile->objfile;
6099 struct dwarf2_cu *cu = reader->cu;
6100 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6101 struct signatured_type *sig_type;
6102 struct type_unit_group *tu_group;
6103 struct attribute *attr;
6104 struct partial_die_info *first_die;
6105 CORE_ADDR lowpc, highpc;
6106 struct partial_symtab *pst;
6107
6108 gdb_assert (data == NULL);
6109 gdb_assert (per_cu->is_debug_types);
6110 sig_type = (struct signatured_type *) per_cu;
6111
6112 if (! has_children)
6113 return;
6114
6115 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6116 tu_group = get_type_unit_group (cu, attr);
6117
6118 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6119
6120 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6121 cu->list_in_scope = &file_symbols;
6122 pst = create_partial_symtab (per_cu, "");
6123 pst->anonymous = 1;
6124
6125 first_die = load_partial_dies (reader, info_ptr, 1);
6126
6127 lowpc = (CORE_ADDR) -1;
6128 highpc = (CORE_ADDR) 0;
6129 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6130
6131 pst->n_global_syms = objfile->global_psymbols.next -
6132 (objfile->global_psymbols.list + pst->globals_offset);
6133 pst->n_static_syms = objfile->static_psymbols.next -
6134 (objfile->static_psymbols.list + pst->statics_offset);
6135 sort_pst_symbols (objfile, pst);
6136 }
6137
6138 /* Struct used to sort TUs by their abbreviation table offset. */
6139
6140 struct tu_abbrev_offset
6141 {
6142 struct signatured_type *sig_type;
6143 sect_offset abbrev_offset;
6144 };
6145
6146 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6147
6148 static int
6149 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6150 {
6151 const struct tu_abbrev_offset * const *a = ap;
6152 const struct tu_abbrev_offset * const *b = bp;
6153 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6154 unsigned int boff = (*b)->abbrev_offset.sect_off;
6155
6156 return (aoff > boff) - (aoff < boff);
6157 }
6158
6159 /* Efficiently read all the type units.
6160 This does the bulk of the work for build_type_psymtabs.
6161
6162 The efficiency is because we sort TUs by the abbrev table they use and
6163 only read each abbrev table once. In one program there are 200K TUs
6164 sharing 8K abbrev tables.
6165
6166 The main purpose of this function is to support building the
6167 dwarf2_per_objfile->type_unit_groups table.
6168 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6169 can collapse the search space by grouping them by stmt_list.
6170 The savings can be significant, in the same program from above the 200K TUs
6171 share 8K stmt_list tables.
6172
6173 FUNC is expected to call get_type_unit_group, which will create the
6174 struct type_unit_group if necessary and add it to
6175 dwarf2_per_objfile->type_unit_groups. */
6176
6177 static void
6178 build_type_psymtabs_1 (void)
6179 {
6180 struct objfile *objfile = dwarf2_per_objfile->objfile;
6181 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6182 struct cleanup *cleanups;
6183 struct abbrev_table *abbrev_table;
6184 sect_offset abbrev_offset;
6185 struct tu_abbrev_offset *sorted_by_abbrev;
6186 struct type_unit_group **iter;
6187 int i;
6188
6189 /* It's up to the caller to not call us multiple times. */
6190 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6191
6192 if (dwarf2_per_objfile->n_type_units == 0)
6193 return;
6194
6195 /* TUs typically share abbrev tables, and there can be way more TUs than
6196 abbrev tables. Sort by abbrev table to reduce the number of times we
6197 read each abbrev table in.
6198 Alternatives are to punt or to maintain a cache of abbrev tables.
6199 This is simpler and efficient enough for now.
6200
6201 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6202 symtab to use). Typically TUs with the same abbrev offset have the same
6203 stmt_list value too so in practice this should work well.
6204
6205 The basic algorithm here is:
6206
6207 sort TUs by abbrev table
6208 for each TU with same abbrev table:
6209 read abbrev table if first user
6210 read TU top level DIE
6211 [IWBN if DWO skeletons had DW_AT_stmt_list]
6212 call FUNC */
6213
6214 if (dwarf_read_debug)
6215 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6216
6217 /* Sort in a separate table to maintain the order of all_type_units
6218 for .gdb_index: TU indices directly index all_type_units. */
6219 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6220 dwarf2_per_objfile->n_type_units);
6221 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6222 {
6223 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6224
6225 sorted_by_abbrev[i].sig_type = sig_type;
6226 sorted_by_abbrev[i].abbrev_offset =
6227 read_abbrev_offset (sig_type->per_cu.section,
6228 sig_type->per_cu.offset);
6229 }
6230 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6231 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6232 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6233
6234 abbrev_offset.sect_off = ~(unsigned) 0;
6235 abbrev_table = NULL;
6236 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6237
6238 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6239 {
6240 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6241
6242 /* Switch to the next abbrev table if necessary. */
6243 if (abbrev_table == NULL
6244 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6245 {
6246 if (abbrev_table != NULL)
6247 {
6248 abbrev_table_free (abbrev_table);
6249 /* Reset to NULL in case abbrev_table_read_table throws
6250 an error: abbrev_table_free_cleanup will get called. */
6251 abbrev_table = NULL;
6252 }
6253 abbrev_offset = tu->abbrev_offset;
6254 abbrev_table =
6255 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6256 abbrev_offset);
6257 ++tu_stats->nr_uniq_abbrev_tables;
6258 }
6259
6260 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6261 build_type_psymtabs_reader, NULL);
6262 }
6263
6264 do_cleanups (cleanups);
6265 }
6266
6267 /* Print collected type unit statistics. */
6268
6269 static void
6270 print_tu_stats (void)
6271 {
6272 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6273
6274 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6275 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6276 dwarf2_per_objfile->n_type_units);
6277 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6278 tu_stats->nr_uniq_abbrev_tables);
6279 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6280 tu_stats->nr_symtabs);
6281 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6282 tu_stats->nr_symtab_sharers);
6283 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6284 tu_stats->nr_stmt_less_type_units);
6285 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6286 tu_stats->nr_all_type_units_reallocs);
6287 }
6288
6289 /* Traversal function for build_type_psymtabs. */
6290
6291 static int
6292 build_type_psymtab_dependencies (void **slot, void *info)
6293 {
6294 struct objfile *objfile = dwarf2_per_objfile->objfile;
6295 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6296 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6297 struct partial_symtab *pst = per_cu->v.psymtab;
6298 int len = VEC_length (sig_type_ptr, tu_group->tus);
6299 struct signatured_type *iter;
6300 int i;
6301
6302 gdb_assert (len > 0);
6303 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6304
6305 pst->number_of_dependencies = len;
6306 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6307 len * sizeof (struct psymtab *));
6308 for (i = 0;
6309 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6310 ++i)
6311 {
6312 gdb_assert (iter->per_cu.is_debug_types);
6313 pst->dependencies[i] = iter->per_cu.v.psymtab;
6314 iter->type_unit_group = tu_group;
6315 }
6316
6317 VEC_free (sig_type_ptr, tu_group->tus);
6318
6319 return 1;
6320 }
6321
6322 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6323 Build partial symbol tables for the .debug_types comp-units. */
6324
6325 static void
6326 build_type_psymtabs (struct objfile *objfile)
6327 {
6328 if (! create_all_type_units (objfile))
6329 return;
6330
6331 build_type_psymtabs_1 ();
6332 }
6333
6334 /* Traversal function for process_skeletonless_type_unit.
6335 Read a TU in a DWO file and build partial symbols for it. */
6336
6337 static int
6338 process_skeletonless_type_unit (void **slot, void *info)
6339 {
6340 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6341 struct objfile *objfile = info;
6342 struct signatured_type find_entry, *entry;
6343
6344 /* If this TU doesn't exist in the global table, add it and read it in. */
6345
6346 if (dwarf2_per_objfile->signatured_types == NULL)
6347 {
6348 dwarf2_per_objfile->signatured_types
6349 = allocate_signatured_type_table (objfile);
6350 }
6351
6352 find_entry.signature = dwo_unit->signature;
6353 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6354 INSERT);
6355 /* If we've already seen this type there's nothing to do. What's happening
6356 is we're doing our own version of comdat-folding here. */
6357 if (*slot != NULL)
6358 return 1;
6359
6360 /* This does the job that create_all_type_units would have done for
6361 this TU. */
6362 entry = add_type_unit (dwo_unit->signature, slot);
6363 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6364 *slot = entry;
6365
6366 /* This does the job that build_type_psymtabs_1 would have done. */
6367 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6368 build_type_psymtabs_reader, NULL);
6369
6370 return 1;
6371 }
6372
6373 /* Traversal function for process_skeletonless_type_units. */
6374
6375 static int
6376 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6377 {
6378 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6379
6380 if (dwo_file->tus != NULL)
6381 {
6382 htab_traverse_noresize (dwo_file->tus,
6383 process_skeletonless_type_unit, info);
6384 }
6385
6386 return 1;
6387 }
6388
6389 /* Scan all TUs of DWO files, verifying we've processed them.
6390 This is needed in case a TU was emitted without its skeleton.
6391 Note: This can't be done until we know what all the DWO files are. */
6392
6393 static void
6394 process_skeletonless_type_units (struct objfile *objfile)
6395 {
6396 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6397 if (get_dwp_file () == NULL
6398 && dwarf2_per_objfile->dwo_files != NULL)
6399 {
6400 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6401 process_dwo_file_for_skeletonless_type_units,
6402 objfile);
6403 }
6404 }
6405
6406 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6407
6408 static void
6409 psymtabs_addrmap_cleanup (void *o)
6410 {
6411 struct objfile *objfile = o;
6412
6413 objfile->psymtabs_addrmap = NULL;
6414 }
6415
6416 /* Compute the 'user' field for each psymtab in OBJFILE. */
6417
6418 static void
6419 set_partial_user (struct objfile *objfile)
6420 {
6421 int i;
6422
6423 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6424 {
6425 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6426 struct partial_symtab *pst = per_cu->v.psymtab;
6427 int j;
6428
6429 if (pst == NULL)
6430 continue;
6431
6432 for (j = 0; j < pst->number_of_dependencies; ++j)
6433 {
6434 /* Set the 'user' field only if it is not already set. */
6435 if (pst->dependencies[j]->user == NULL)
6436 pst->dependencies[j]->user = pst;
6437 }
6438 }
6439 }
6440
6441 /* Build the partial symbol table by doing a quick pass through the
6442 .debug_info and .debug_abbrev sections. */
6443
6444 static void
6445 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6446 {
6447 struct cleanup *back_to, *addrmap_cleanup;
6448 struct obstack temp_obstack;
6449 int i;
6450
6451 if (dwarf_read_debug)
6452 {
6453 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6454 objfile_name (objfile));
6455 }
6456
6457 dwarf2_per_objfile->reading_partial_symbols = 1;
6458
6459 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6460
6461 /* Any cached compilation units will be linked by the per-objfile
6462 read_in_chain. Make sure to free them when we're done. */
6463 back_to = make_cleanup (free_cached_comp_units, NULL);
6464
6465 build_type_psymtabs (objfile);
6466
6467 create_all_comp_units (objfile);
6468
6469 /* Create a temporary address map on a temporary obstack. We later
6470 copy this to the final obstack. */
6471 obstack_init (&temp_obstack);
6472 make_cleanup_obstack_free (&temp_obstack);
6473 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6474 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6475
6476 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6477 {
6478 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6479
6480 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6481 }
6482
6483 /* This has to wait until we read the CUs, we need the list of DWOs. */
6484 process_skeletonless_type_units (objfile);
6485
6486 /* Now that all TUs have been processed we can fill in the dependencies. */
6487 if (dwarf2_per_objfile->type_unit_groups != NULL)
6488 {
6489 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6490 build_type_psymtab_dependencies, NULL);
6491 }
6492
6493 if (dwarf_read_debug)
6494 print_tu_stats ();
6495
6496 set_partial_user (objfile);
6497
6498 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6499 &objfile->objfile_obstack);
6500 discard_cleanups (addrmap_cleanup);
6501
6502 do_cleanups (back_to);
6503
6504 if (dwarf_read_debug)
6505 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6506 objfile_name (objfile));
6507 }
6508
6509 /* die_reader_func for load_partial_comp_unit. */
6510
6511 static void
6512 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6513 const gdb_byte *info_ptr,
6514 struct die_info *comp_unit_die,
6515 int has_children,
6516 void *data)
6517 {
6518 struct dwarf2_cu *cu = reader->cu;
6519
6520 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6521
6522 /* Check if comp unit has_children.
6523 If so, read the rest of the partial symbols from this comp unit.
6524 If not, there's no more debug_info for this comp unit. */
6525 if (has_children)
6526 load_partial_dies (reader, info_ptr, 0);
6527 }
6528
6529 /* Load the partial DIEs for a secondary CU into memory.
6530 This is also used when rereading a primary CU with load_all_dies. */
6531
6532 static void
6533 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6534 {
6535 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6536 load_partial_comp_unit_reader, NULL);
6537 }
6538
6539 static void
6540 read_comp_units_from_section (struct objfile *objfile,
6541 struct dwarf2_section_info *section,
6542 unsigned int is_dwz,
6543 int *n_allocated,
6544 int *n_comp_units,
6545 struct dwarf2_per_cu_data ***all_comp_units)
6546 {
6547 const gdb_byte *info_ptr;
6548 bfd *abfd = get_section_bfd_owner (section);
6549
6550 if (dwarf_read_debug)
6551 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6552 get_section_name (section),
6553 get_section_file_name (section));
6554
6555 dwarf2_read_section (objfile, section);
6556
6557 info_ptr = section->buffer;
6558
6559 while (info_ptr < section->buffer + section->size)
6560 {
6561 unsigned int length, initial_length_size;
6562 struct dwarf2_per_cu_data *this_cu;
6563 sect_offset offset;
6564
6565 offset.sect_off = info_ptr - section->buffer;
6566
6567 /* Read just enough information to find out where the next
6568 compilation unit is. */
6569 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6570
6571 /* Save the compilation unit for later lookup. */
6572 this_cu = obstack_alloc (&objfile->objfile_obstack,
6573 sizeof (struct dwarf2_per_cu_data));
6574 memset (this_cu, 0, sizeof (*this_cu));
6575 this_cu->offset = offset;
6576 this_cu->length = length + initial_length_size;
6577 this_cu->is_dwz = is_dwz;
6578 this_cu->objfile = objfile;
6579 this_cu->section = section;
6580
6581 if (*n_comp_units == *n_allocated)
6582 {
6583 *n_allocated *= 2;
6584 *all_comp_units = xrealloc (*all_comp_units,
6585 *n_allocated
6586 * sizeof (struct dwarf2_per_cu_data *));
6587 }
6588 (*all_comp_units)[*n_comp_units] = this_cu;
6589 ++*n_comp_units;
6590
6591 info_ptr = info_ptr + this_cu->length;
6592 }
6593 }
6594
6595 /* Create a list of all compilation units in OBJFILE.
6596 This is only done for -readnow and building partial symtabs. */
6597
6598 static void
6599 create_all_comp_units (struct objfile *objfile)
6600 {
6601 int n_allocated;
6602 int n_comp_units;
6603 struct dwarf2_per_cu_data **all_comp_units;
6604 struct dwz_file *dwz;
6605
6606 n_comp_units = 0;
6607 n_allocated = 10;
6608 all_comp_units = xmalloc (n_allocated
6609 * sizeof (struct dwarf2_per_cu_data *));
6610
6611 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6612 &n_allocated, &n_comp_units, &all_comp_units);
6613
6614 dwz = dwarf2_get_dwz_file ();
6615 if (dwz != NULL)
6616 read_comp_units_from_section (objfile, &dwz->info, 1,
6617 &n_allocated, &n_comp_units,
6618 &all_comp_units);
6619
6620 dwarf2_per_objfile->all_comp_units
6621 = obstack_alloc (&objfile->objfile_obstack,
6622 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6623 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6624 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6625 xfree (all_comp_units);
6626 dwarf2_per_objfile->n_comp_units = n_comp_units;
6627 }
6628
6629 /* Process all loaded DIEs for compilation unit CU, starting at
6630 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6631 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6632 DW_AT_ranges). See the comments of add_partial_subprogram on how
6633 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6634
6635 static void
6636 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6637 CORE_ADDR *highpc, int set_addrmap,
6638 struct dwarf2_cu *cu)
6639 {
6640 struct partial_die_info *pdi;
6641
6642 /* Now, march along the PDI's, descending into ones which have
6643 interesting children but skipping the children of the other ones,
6644 until we reach the end of the compilation unit. */
6645
6646 pdi = first_die;
6647
6648 while (pdi != NULL)
6649 {
6650 fixup_partial_die (pdi, cu);
6651
6652 /* Anonymous namespaces or modules have no name but have interesting
6653 children, so we need to look at them. Ditto for anonymous
6654 enums. */
6655
6656 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6657 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6658 || pdi->tag == DW_TAG_imported_unit)
6659 {
6660 switch (pdi->tag)
6661 {
6662 case DW_TAG_subprogram:
6663 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6664 break;
6665 case DW_TAG_constant:
6666 case DW_TAG_variable:
6667 case DW_TAG_typedef:
6668 case DW_TAG_union_type:
6669 if (!pdi->is_declaration)
6670 {
6671 add_partial_symbol (pdi, cu);
6672 }
6673 break;
6674 case DW_TAG_class_type:
6675 case DW_TAG_interface_type:
6676 case DW_TAG_structure_type:
6677 if (!pdi->is_declaration)
6678 {
6679 add_partial_symbol (pdi, cu);
6680 }
6681 break;
6682 case DW_TAG_enumeration_type:
6683 if (!pdi->is_declaration)
6684 add_partial_enumeration (pdi, cu);
6685 break;
6686 case DW_TAG_base_type:
6687 case DW_TAG_subrange_type:
6688 /* File scope base type definitions are added to the partial
6689 symbol table. */
6690 add_partial_symbol (pdi, cu);
6691 break;
6692 case DW_TAG_namespace:
6693 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6694 break;
6695 case DW_TAG_module:
6696 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6697 break;
6698 case DW_TAG_imported_unit:
6699 {
6700 struct dwarf2_per_cu_data *per_cu;
6701
6702 /* For now we don't handle imported units in type units. */
6703 if (cu->per_cu->is_debug_types)
6704 {
6705 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6706 " supported in type units [in module %s]"),
6707 objfile_name (cu->objfile));
6708 }
6709
6710 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6711 pdi->is_dwz,
6712 cu->objfile);
6713
6714 /* Go read the partial unit, if needed. */
6715 if (per_cu->v.psymtab == NULL)
6716 process_psymtab_comp_unit (per_cu, 1, cu->language);
6717
6718 VEC_safe_push (dwarf2_per_cu_ptr,
6719 cu->per_cu->imported_symtabs, per_cu);
6720 }
6721 break;
6722 case DW_TAG_imported_declaration:
6723 add_partial_symbol (pdi, cu);
6724 break;
6725 default:
6726 break;
6727 }
6728 }
6729
6730 /* If the die has a sibling, skip to the sibling. */
6731
6732 pdi = pdi->die_sibling;
6733 }
6734 }
6735
6736 /* Functions used to compute the fully scoped name of a partial DIE.
6737
6738 Normally, this is simple. For C++, the parent DIE's fully scoped
6739 name is concatenated with "::" and the partial DIE's name. For
6740 Java, the same thing occurs except that "." is used instead of "::".
6741 Enumerators are an exception; they use the scope of their parent
6742 enumeration type, i.e. the name of the enumeration type is not
6743 prepended to the enumerator.
6744
6745 There are two complexities. One is DW_AT_specification; in this
6746 case "parent" means the parent of the target of the specification,
6747 instead of the direct parent of the DIE. The other is compilers
6748 which do not emit DW_TAG_namespace; in this case we try to guess
6749 the fully qualified name of structure types from their members'
6750 linkage names. This must be done using the DIE's children rather
6751 than the children of any DW_AT_specification target. We only need
6752 to do this for structures at the top level, i.e. if the target of
6753 any DW_AT_specification (if any; otherwise the DIE itself) does not
6754 have a parent. */
6755
6756 /* Compute the scope prefix associated with PDI's parent, in
6757 compilation unit CU. The result will be allocated on CU's
6758 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6759 field. NULL is returned if no prefix is necessary. */
6760 static const char *
6761 partial_die_parent_scope (struct partial_die_info *pdi,
6762 struct dwarf2_cu *cu)
6763 {
6764 const char *grandparent_scope;
6765 struct partial_die_info *parent, *real_pdi;
6766
6767 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6768 then this means the parent of the specification DIE. */
6769
6770 real_pdi = pdi;
6771 while (real_pdi->has_specification)
6772 real_pdi = find_partial_die (real_pdi->spec_offset,
6773 real_pdi->spec_is_dwz, cu);
6774
6775 parent = real_pdi->die_parent;
6776 if (parent == NULL)
6777 return NULL;
6778
6779 if (parent->scope_set)
6780 return parent->scope;
6781
6782 fixup_partial_die (parent, cu);
6783
6784 grandparent_scope = partial_die_parent_scope (parent, cu);
6785
6786 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6787 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6788 Work around this problem here. */
6789 if (cu->language == language_cplus
6790 && parent->tag == DW_TAG_namespace
6791 && strcmp (parent->name, "::") == 0
6792 && grandparent_scope == NULL)
6793 {
6794 parent->scope = NULL;
6795 parent->scope_set = 1;
6796 return NULL;
6797 }
6798
6799 if (pdi->tag == DW_TAG_enumerator)
6800 /* Enumerators should not get the name of the enumeration as a prefix. */
6801 parent->scope = grandparent_scope;
6802 else if (parent->tag == DW_TAG_namespace
6803 || parent->tag == DW_TAG_module
6804 || parent->tag == DW_TAG_structure_type
6805 || parent->tag == DW_TAG_class_type
6806 || parent->tag == DW_TAG_interface_type
6807 || parent->tag == DW_TAG_union_type
6808 || parent->tag == DW_TAG_enumeration_type)
6809 {
6810 if (grandparent_scope == NULL)
6811 parent->scope = parent->name;
6812 else
6813 parent->scope = typename_concat (&cu->comp_unit_obstack,
6814 grandparent_scope,
6815 parent->name, 0, cu);
6816 }
6817 else
6818 {
6819 /* FIXME drow/2004-04-01: What should we be doing with
6820 function-local names? For partial symbols, we should probably be
6821 ignoring them. */
6822 complaint (&symfile_complaints,
6823 _("unhandled containing DIE tag %d for DIE at %d"),
6824 parent->tag, pdi->offset.sect_off);
6825 parent->scope = grandparent_scope;
6826 }
6827
6828 parent->scope_set = 1;
6829 return parent->scope;
6830 }
6831
6832 /* Return the fully scoped name associated with PDI, from compilation unit
6833 CU. The result will be allocated with malloc. */
6834
6835 static char *
6836 partial_die_full_name (struct partial_die_info *pdi,
6837 struct dwarf2_cu *cu)
6838 {
6839 const char *parent_scope;
6840
6841 /* If this is a template instantiation, we can not work out the
6842 template arguments from partial DIEs. So, unfortunately, we have
6843 to go through the full DIEs. At least any work we do building
6844 types here will be reused if full symbols are loaded later. */
6845 if (pdi->has_template_arguments)
6846 {
6847 fixup_partial_die (pdi, cu);
6848
6849 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6850 {
6851 struct die_info *die;
6852 struct attribute attr;
6853 struct dwarf2_cu *ref_cu = cu;
6854
6855 /* DW_FORM_ref_addr is using section offset. */
6856 attr.name = 0;
6857 attr.form = DW_FORM_ref_addr;
6858 attr.u.unsnd = pdi->offset.sect_off;
6859 die = follow_die_ref (NULL, &attr, &ref_cu);
6860
6861 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6862 }
6863 }
6864
6865 parent_scope = partial_die_parent_scope (pdi, cu);
6866 if (parent_scope == NULL)
6867 return NULL;
6868 else
6869 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6870 }
6871
6872 static void
6873 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6874 {
6875 struct objfile *objfile = cu->objfile;
6876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6877 CORE_ADDR addr = 0;
6878 const char *actual_name = NULL;
6879 CORE_ADDR baseaddr;
6880 char *built_actual_name;
6881
6882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6883
6884 built_actual_name = partial_die_full_name (pdi, cu);
6885 if (built_actual_name != NULL)
6886 actual_name = built_actual_name;
6887
6888 if (actual_name == NULL)
6889 actual_name = pdi->name;
6890
6891 switch (pdi->tag)
6892 {
6893 case DW_TAG_subprogram:
6894 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6895 if (pdi->is_external || cu->language == language_ada)
6896 {
6897 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6898 of the global scope. But in Ada, we want to be able to access
6899 nested procedures globally. So all Ada subprograms are stored
6900 in the global scope. */
6901 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6902 objfile); */
6903 add_psymbol_to_list (actual_name, strlen (actual_name),
6904 built_actual_name != NULL,
6905 VAR_DOMAIN, LOC_BLOCK,
6906 &objfile->global_psymbols,
6907 0, addr, cu->language, objfile);
6908 }
6909 else
6910 {
6911 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6912 objfile); */
6913 add_psymbol_to_list (actual_name, strlen (actual_name),
6914 built_actual_name != NULL,
6915 VAR_DOMAIN, LOC_BLOCK,
6916 &objfile->static_psymbols,
6917 0, addr, cu->language, objfile);
6918 }
6919 break;
6920 case DW_TAG_constant:
6921 {
6922 struct psymbol_allocation_list *list;
6923
6924 if (pdi->is_external)
6925 list = &objfile->global_psymbols;
6926 else
6927 list = &objfile->static_psymbols;
6928 add_psymbol_to_list (actual_name, strlen (actual_name),
6929 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6930 list, 0, 0, cu->language, objfile);
6931 }
6932 break;
6933 case DW_TAG_variable:
6934 if (pdi->d.locdesc)
6935 addr = decode_locdesc (pdi->d.locdesc, cu);
6936
6937 if (pdi->d.locdesc
6938 && addr == 0
6939 && !dwarf2_per_objfile->has_section_at_zero)
6940 {
6941 /* A global or static variable may also have been stripped
6942 out by the linker if unused, in which case its address
6943 will be nullified; do not add such variables into partial
6944 symbol table then. */
6945 }
6946 else if (pdi->is_external)
6947 {
6948 /* Global Variable.
6949 Don't enter into the minimal symbol tables as there is
6950 a minimal symbol table entry from the ELF symbols already.
6951 Enter into partial symbol table if it has a location
6952 descriptor or a type.
6953 If the location descriptor is missing, new_symbol will create
6954 a LOC_UNRESOLVED symbol, the address of the variable will then
6955 be determined from the minimal symbol table whenever the variable
6956 is referenced.
6957 The address for the partial symbol table entry is not
6958 used by GDB, but it comes in handy for debugging partial symbol
6959 table building. */
6960
6961 if (pdi->d.locdesc || pdi->has_type)
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
6963 built_actual_name != NULL,
6964 VAR_DOMAIN, LOC_STATIC,
6965 &objfile->global_psymbols,
6966 0, addr + baseaddr,
6967 cu->language, objfile);
6968 }
6969 else
6970 {
6971 int has_loc = pdi->d.locdesc != NULL;
6972
6973 /* Static Variable. Skip symbols whose value we cannot know (those
6974 without location descriptors or constant values). */
6975 if (!has_loc && !pdi->has_const_value)
6976 {
6977 xfree (built_actual_name);
6978 return;
6979 }
6980
6981 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6982 mst_file_data, objfile); */
6983 add_psymbol_to_list (actual_name, strlen (actual_name),
6984 built_actual_name != NULL,
6985 VAR_DOMAIN, LOC_STATIC,
6986 &objfile->static_psymbols,
6987 0,
6988 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6989 cu->language, objfile);
6990 }
6991 break;
6992 case DW_TAG_typedef:
6993 case DW_TAG_base_type:
6994 case DW_TAG_subrange_type:
6995 add_psymbol_to_list (actual_name, strlen (actual_name),
6996 built_actual_name != NULL,
6997 VAR_DOMAIN, LOC_TYPEDEF,
6998 &objfile->static_psymbols,
6999 0, (CORE_ADDR) 0, cu->language, objfile);
7000 break;
7001 case DW_TAG_imported_declaration:
7002 case DW_TAG_namespace:
7003 add_psymbol_to_list (actual_name, strlen (actual_name),
7004 built_actual_name != NULL,
7005 VAR_DOMAIN, LOC_TYPEDEF,
7006 &objfile->global_psymbols,
7007 0, (CORE_ADDR) 0, cu->language, objfile);
7008 break;
7009 case DW_TAG_module:
7010 add_psymbol_to_list (actual_name, strlen (actual_name),
7011 built_actual_name != NULL,
7012 MODULE_DOMAIN, LOC_TYPEDEF,
7013 &objfile->global_psymbols,
7014 0, (CORE_ADDR) 0, cu->language, objfile);
7015 break;
7016 case DW_TAG_class_type:
7017 case DW_TAG_interface_type:
7018 case DW_TAG_structure_type:
7019 case DW_TAG_union_type:
7020 case DW_TAG_enumeration_type:
7021 /* Skip external references. The DWARF standard says in the section
7022 about "Structure, Union, and Class Type Entries": "An incomplete
7023 structure, union or class type is represented by a structure,
7024 union or class entry that does not have a byte size attribute
7025 and that has a DW_AT_declaration attribute." */
7026 if (!pdi->has_byte_size && pdi->is_declaration)
7027 {
7028 xfree (built_actual_name);
7029 return;
7030 }
7031
7032 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7033 static vs. global. */
7034 add_psymbol_to_list (actual_name, strlen (actual_name),
7035 built_actual_name != NULL,
7036 STRUCT_DOMAIN, LOC_TYPEDEF,
7037 (cu->language == language_cplus
7038 || cu->language == language_java)
7039 ? &objfile->global_psymbols
7040 : &objfile->static_psymbols,
7041 0, (CORE_ADDR) 0, cu->language, objfile);
7042
7043 break;
7044 case DW_TAG_enumerator:
7045 add_psymbol_to_list (actual_name, strlen (actual_name),
7046 built_actual_name != NULL,
7047 VAR_DOMAIN, LOC_CONST,
7048 (cu->language == language_cplus
7049 || cu->language == language_java)
7050 ? &objfile->global_psymbols
7051 : &objfile->static_psymbols,
7052 0, (CORE_ADDR) 0, cu->language, objfile);
7053 break;
7054 default:
7055 break;
7056 }
7057
7058 xfree (built_actual_name);
7059 }
7060
7061 /* Read a partial die corresponding to a namespace; also, add a symbol
7062 corresponding to that namespace to the symbol table. NAMESPACE is
7063 the name of the enclosing namespace. */
7064
7065 static void
7066 add_partial_namespace (struct partial_die_info *pdi,
7067 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7068 int set_addrmap, struct dwarf2_cu *cu)
7069 {
7070 /* Add a symbol for the namespace. */
7071
7072 add_partial_symbol (pdi, cu);
7073
7074 /* Now scan partial symbols in that namespace. */
7075
7076 if (pdi->has_children)
7077 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7078 }
7079
7080 /* Read a partial die corresponding to a Fortran module. */
7081
7082 static void
7083 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7084 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7085 {
7086 /* Add a symbol for the namespace. */
7087
7088 add_partial_symbol (pdi, cu);
7089
7090 /* Now scan partial symbols in that module. */
7091
7092 if (pdi->has_children)
7093 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7094 }
7095
7096 /* Read a partial die corresponding to a subprogram and create a partial
7097 symbol for that subprogram. When the CU language allows it, this
7098 routine also defines a partial symbol for each nested subprogram
7099 that this subprogram contains. If SET_ADDRMAP is true, record the
7100 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7101 and highest PC values found in PDI.
7102
7103 PDI may also be a lexical block, in which case we simply search
7104 recursively for subprograms defined inside that lexical block.
7105 Again, this is only performed when the CU language allows this
7106 type of definitions. */
7107
7108 static void
7109 add_partial_subprogram (struct partial_die_info *pdi,
7110 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7111 int set_addrmap, struct dwarf2_cu *cu)
7112 {
7113 if (pdi->tag == DW_TAG_subprogram)
7114 {
7115 if (pdi->has_pc_info)
7116 {
7117 if (pdi->lowpc < *lowpc)
7118 *lowpc = pdi->lowpc;
7119 if (pdi->highpc > *highpc)
7120 *highpc = pdi->highpc;
7121 if (set_addrmap)
7122 {
7123 struct objfile *objfile = cu->objfile;
7124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7125 CORE_ADDR baseaddr;
7126 CORE_ADDR highpc;
7127 CORE_ADDR lowpc;
7128
7129 baseaddr = ANOFFSET (objfile->section_offsets,
7130 SECT_OFF_TEXT (objfile));
7131 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7132 pdi->lowpc + baseaddr);
7133 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7134 pdi->highpc + baseaddr);
7135 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7136 cu->per_cu->v.psymtab);
7137 }
7138 }
7139
7140 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7141 {
7142 if (!pdi->is_declaration)
7143 /* Ignore subprogram DIEs that do not have a name, they are
7144 illegal. Do not emit a complaint at this point, we will
7145 do so when we convert this psymtab into a symtab. */
7146 if (pdi->name)
7147 add_partial_symbol (pdi, cu);
7148 }
7149 }
7150
7151 if (! pdi->has_children)
7152 return;
7153
7154 if (cu->language == language_ada)
7155 {
7156 pdi = pdi->die_child;
7157 while (pdi != NULL)
7158 {
7159 fixup_partial_die (pdi, cu);
7160 if (pdi->tag == DW_TAG_subprogram
7161 || pdi->tag == DW_TAG_lexical_block)
7162 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7163 pdi = pdi->die_sibling;
7164 }
7165 }
7166 }
7167
7168 /* Read a partial die corresponding to an enumeration type. */
7169
7170 static void
7171 add_partial_enumeration (struct partial_die_info *enum_pdi,
7172 struct dwarf2_cu *cu)
7173 {
7174 struct partial_die_info *pdi;
7175
7176 if (enum_pdi->name != NULL)
7177 add_partial_symbol (enum_pdi, cu);
7178
7179 pdi = enum_pdi->die_child;
7180 while (pdi)
7181 {
7182 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7183 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7184 else
7185 add_partial_symbol (pdi, cu);
7186 pdi = pdi->die_sibling;
7187 }
7188 }
7189
7190 /* Return the initial uleb128 in the die at INFO_PTR. */
7191
7192 static unsigned int
7193 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7194 {
7195 unsigned int bytes_read;
7196
7197 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7198 }
7199
7200 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7201 Return the corresponding abbrev, or NULL if the number is zero (indicating
7202 an empty DIE). In either case *BYTES_READ will be set to the length of
7203 the initial number. */
7204
7205 static struct abbrev_info *
7206 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7207 struct dwarf2_cu *cu)
7208 {
7209 bfd *abfd = cu->objfile->obfd;
7210 unsigned int abbrev_number;
7211 struct abbrev_info *abbrev;
7212
7213 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7214
7215 if (abbrev_number == 0)
7216 return NULL;
7217
7218 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7219 if (!abbrev)
7220 {
7221 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7222 " at offset 0x%x [in module %s]"),
7223 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7224 cu->header.offset.sect_off, bfd_get_filename (abfd));
7225 }
7226
7227 return abbrev;
7228 }
7229
7230 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7231 Returns a pointer to the end of a series of DIEs, terminated by an empty
7232 DIE. Any children of the skipped DIEs will also be skipped. */
7233
7234 static const gdb_byte *
7235 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7236 {
7237 struct dwarf2_cu *cu = reader->cu;
7238 struct abbrev_info *abbrev;
7239 unsigned int bytes_read;
7240
7241 while (1)
7242 {
7243 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7244 if (abbrev == NULL)
7245 return info_ptr + bytes_read;
7246 else
7247 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7248 }
7249 }
7250
7251 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7252 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7253 abbrev corresponding to that skipped uleb128 should be passed in
7254 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7255 children. */
7256
7257 static const gdb_byte *
7258 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7259 struct abbrev_info *abbrev)
7260 {
7261 unsigned int bytes_read;
7262 struct attribute attr;
7263 bfd *abfd = reader->abfd;
7264 struct dwarf2_cu *cu = reader->cu;
7265 const gdb_byte *buffer = reader->buffer;
7266 const gdb_byte *buffer_end = reader->buffer_end;
7267 const gdb_byte *start_info_ptr = info_ptr;
7268 unsigned int form, i;
7269
7270 for (i = 0; i < abbrev->num_attrs; i++)
7271 {
7272 /* The only abbrev we care about is DW_AT_sibling. */
7273 if (abbrev->attrs[i].name == DW_AT_sibling)
7274 {
7275 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7276 if (attr.form == DW_FORM_ref_addr)
7277 complaint (&symfile_complaints,
7278 _("ignoring absolute DW_AT_sibling"));
7279 else
7280 {
7281 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7282 const gdb_byte *sibling_ptr = buffer + off;
7283
7284 if (sibling_ptr < info_ptr)
7285 complaint (&symfile_complaints,
7286 _("DW_AT_sibling points backwards"));
7287 else if (sibling_ptr > reader->buffer_end)
7288 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7289 else
7290 return sibling_ptr;
7291 }
7292 }
7293
7294 /* If it isn't DW_AT_sibling, skip this attribute. */
7295 form = abbrev->attrs[i].form;
7296 skip_attribute:
7297 switch (form)
7298 {
7299 case DW_FORM_ref_addr:
7300 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7301 and later it is offset sized. */
7302 if (cu->header.version == 2)
7303 info_ptr += cu->header.addr_size;
7304 else
7305 info_ptr += cu->header.offset_size;
7306 break;
7307 case DW_FORM_GNU_ref_alt:
7308 info_ptr += cu->header.offset_size;
7309 break;
7310 case DW_FORM_addr:
7311 info_ptr += cu->header.addr_size;
7312 break;
7313 case DW_FORM_data1:
7314 case DW_FORM_ref1:
7315 case DW_FORM_flag:
7316 info_ptr += 1;
7317 break;
7318 case DW_FORM_flag_present:
7319 break;
7320 case DW_FORM_data2:
7321 case DW_FORM_ref2:
7322 info_ptr += 2;
7323 break;
7324 case DW_FORM_data4:
7325 case DW_FORM_ref4:
7326 info_ptr += 4;
7327 break;
7328 case DW_FORM_data8:
7329 case DW_FORM_ref8:
7330 case DW_FORM_ref_sig8:
7331 info_ptr += 8;
7332 break;
7333 case DW_FORM_string:
7334 read_direct_string (abfd, info_ptr, &bytes_read);
7335 info_ptr += bytes_read;
7336 break;
7337 case DW_FORM_sec_offset:
7338 case DW_FORM_strp:
7339 case DW_FORM_GNU_strp_alt:
7340 info_ptr += cu->header.offset_size;
7341 break;
7342 case DW_FORM_exprloc:
7343 case DW_FORM_block:
7344 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7345 info_ptr += bytes_read;
7346 break;
7347 case DW_FORM_block1:
7348 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7349 break;
7350 case DW_FORM_block2:
7351 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7352 break;
7353 case DW_FORM_block4:
7354 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7355 break;
7356 case DW_FORM_sdata:
7357 case DW_FORM_udata:
7358 case DW_FORM_ref_udata:
7359 case DW_FORM_GNU_addr_index:
7360 case DW_FORM_GNU_str_index:
7361 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7362 break;
7363 case DW_FORM_indirect:
7364 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7365 info_ptr += bytes_read;
7366 /* We need to continue parsing from here, so just go back to
7367 the top. */
7368 goto skip_attribute;
7369
7370 default:
7371 error (_("Dwarf Error: Cannot handle %s "
7372 "in DWARF reader [in module %s]"),
7373 dwarf_form_name (form),
7374 bfd_get_filename (abfd));
7375 }
7376 }
7377
7378 if (abbrev->has_children)
7379 return skip_children (reader, info_ptr);
7380 else
7381 return info_ptr;
7382 }
7383
7384 /* Locate ORIG_PDI's sibling.
7385 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7386
7387 static const gdb_byte *
7388 locate_pdi_sibling (const struct die_reader_specs *reader,
7389 struct partial_die_info *orig_pdi,
7390 const gdb_byte *info_ptr)
7391 {
7392 /* Do we know the sibling already? */
7393
7394 if (orig_pdi->sibling)
7395 return orig_pdi->sibling;
7396
7397 /* Are there any children to deal with? */
7398
7399 if (!orig_pdi->has_children)
7400 return info_ptr;
7401
7402 /* Skip the children the long way. */
7403
7404 return skip_children (reader, info_ptr);
7405 }
7406
7407 /* Expand this partial symbol table into a full symbol table. SELF is
7408 not NULL. */
7409
7410 static void
7411 dwarf2_read_symtab (struct partial_symtab *self,
7412 struct objfile *objfile)
7413 {
7414 if (self->readin)
7415 {
7416 warning (_("bug: psymtab for %s is already read in."),
7417 self->filename);
7418 }
7419 else
7420 {
7421 if (info_verbose)
7422 {
7423 printf_filtered (_("Reading in symbols for %s..."),
7424 self->filename);
7425 gdb_flush (gdb_stdout);
7426 }
7427
7428 /* Restore our global data. */
7429 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7430
7431 /* If this psymtab is constructed from a debug-only objfile, the
7432 has_section_at_zero flag will not necessarily be correct. We
7433 can get the correct value for this flag by looking at the data
7434 associated with the (presumably stripped) associated objfile. */
7435 if (objfile->separate_debug_objfile_backlink)
7436 {
7437 struct dwarf2_per_objfile *dpo_backlink
7438 = objfile_data (objfile->separate_debug_objfile_backlink,
7439 dwarf2_objfile_data_key);
7440
7441 dwarf2_per_objfile->has_section_at_zero
7442 = dpo_backlink->has_section_at_zero;
7443 }
7444
7445 dwarf2_per_objfile->reading_partial_symbols = 0;
7446
7447 psymtab_to_symtab_1 (self);
7448
7449 /* Finish up the debug error message. */
7450 if (info_verbose)
7451 printf_filtered (_("done.\n"));
7452 }
7453
7454 process_cu_includes ();
7455 }
7456 \f
7457 /* Reading in full CUs. */
7458
7459 /* Add PER_CU to the queue. */
7460
7461 static void
7462 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7463 enum language pretend_language)
7464 {
7465 struct dwarf2_queue_item *item;
7466
7467 per_cu->queued = 1;
7468 item = xmalloc (sizeof (*item));
7469 item->per_cu = per_cu;
7470 item->pretend_language = pretend_language;
7471 item->next = NULL;
7472
7473 if (dwarf2_queue == NULL)
7474 dwarf2_queue = item;
7475 else
7476 dwarf2_queue_tail->next = item;
7477
7478 dwarf2_queue_tail = item;
7479 }
7480
7481 /* If PER_CU is not yet queued, add it to the queue.
7482 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7483 dependency.
7484 The result is non-zero if PER_CU was queued, otherwise the result is zero
7485 meaning either PER_CU is already queued or it is already loaded.
7486
7487 N.B. There is an invariant here that if a CU is queued then it is loaded.
7488 The caller is required to load PER_CU if we return non-zero. */
7489
7490 static int
7491 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7492 struct dwarf2_per_cu_data *per_cu,
7493 enum language pretend_language)
7494 {
7495 /* We may arrive here during partial symbol reading, if we need full
7496 DIEs to process an unusual case (e.g. template arguments). Do
7497 not queue PER_CU, just tell our caller to load its DIEs. */
7498 if (dwarf2_per_objfile->reading_partial_symbols)
7499 {
7500 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7501 return 1;
7502 return 0;
7503 }
7504
7505 /* Mark the dependence relation so that we don't flush PER_CU
7506 too early. */
7507 if (dependent_cu != NULL)
7508 dwarf2_add_dependence (dependent_cu, per_cu);
7509
7510 /* If it's already on the queue, we have nothing to do. */
7511 if (per_cu->queued)
7512 return 0;
7513
7514 /* If the compilation unit is already loaded, just mark it as
7515 used. */
7516 if (per_cu->cu != NULL)
7517 {
7518 per_cu->cu->last_used = 0;
7519 return 0;
7520 }
7521
7522 /* Add it to the queue. */
7523 queue_comp_unit (per_cu, pretend_language);
7524
7525 return 1;
7526 }
7527
7528 /* Process the queue. */
7529
7530 static void
7531 process_queue (void)
7532 {
7533 struct dwarf2_queue_item *item, *next_item;
7534
7535 if (dwarf_read_debug)
7536 {
7537 fprintf_unfiltered (gdb_stdlog,
7538 "Expanding one or more symtabs of objfile %s ...\n",
7539 objfile_name (dwarf2_per_objfile->objfile));
7540 }
7541
7542 /* The queue starts out with one item, but following a DIE reference
7543 may load a new CU, adding it to the end of the queue. */
7544 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7545 {
7546 if (dwarf2_per_objfile->using_index
7547 ? !item->per_cu->v.quick->compunit_symtab
7548 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7549 {
7550 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7551 unsigned int debug_print_threshold;
7552 char buf[100];
7553
7554 if (per_cu->is_debug_types)
7555 {
7556 struct signatured_type *sig_type =
7557 (struct signatured_type *) per_cu;
7558
7559 sprintf (buf, "TU %s at offset 0x%x",
7560 hex_string (sig_type->signature),
7561 per_cu->offset.sect_off);
7562 /* There can be 100s of TUs.
7563 Only print them in verbose mode. */
7564 debug_print_threshold = 2;
7565 }
7566 else
7567 {
7568 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7569 debug_print_threshold = 1;
7570 }
7571
7572 if (dwarf_read_debug >= debug_print_threshold)
7573 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7574
7575 if (per_cu->is_debug_types)
7576 process_full_type_unit (per_cu, item->pretend_language);
7577 else
7578 process_full_comp_unit (per_cu, item->pretend_language);
7579
7580 if (dwarf_read_debug >= debug_print_threshold)
7581 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7582 }
7583
7584 item->per_cu->queued = 0;
7585 next_item = item->next;
7586 xfree (item);
7587 }
7588
7589 dwarf2_queue_tail = NULL;
7590
7591 if (dwarf_read_debug)
7592 {
7593 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7594 objfile_name (dwarf2_per_objfile->objfile));
7595 }
7596 }
7597
7598 /* Free all allocated queue entries. This function only releases anything if
7599 an error was thrown; if the queue was processed then it would have been
7600 freed as we went along. */
7601
7602 static void
7603 dwarf2_release_queue (void *dummy)
7604 {
7605 struct dwarf2_queue_item *item, *last;
7606
7607 item = dwarf2_queue;
7608 while (item)
7609 {
7610 /* Anything still marked queued is likely to be in an
7611 inconsistent state, so discard it. */
7612 if (item->per_cu->queued)
7613 {
7614 if (item->per_cu->cu != NULL)
7615 free_one_cached_comp_unit (item->per_cu);
7616 item->per_cu->queued = 0;
7617 }
7618
7619 last = item;
7620 item = item->next;
7621 xfree (last);
7622 }
7623
7624 dwarf2_queue = dwarf2_queue_tail = NULL;
7625 }
7626
7627 /* Read in full symbols for PST, and anything it depends on. */
7628
7629 static void
7630 psymtab_to_symtab_1 (struct partial_symtab *pst)
7631 {
7632 struct dwarf2_per_cu_data *per_cu;
7633 int i;
7634
7635 if (pst->readin)
7636 return;
7637
7638 for (i = 0; i < pst->number_of_dependencies; i++)
7639 if (!pst->dependencies[i]->readin
7640 && pst->dependencies[i]->user == NULL)
7641 {
7642 /* Inform about additional files that need to be read in. */
7643 if (info_verbose)
7644 {
7645 /* FIXME: i18n: Need to make this a single string. */
7646 fputs_filtered (" ", gdb_stdout);
7647 wrap_here ("");
7648 fputs_filtered ("and ", gdb_stdout);
7649 wrap_here ("");
7650 printf_filtered ("%s...", pst->dependencies[i]->filename);
7651 wrap_here (""); /* Flush output. */
7652 gdb_flush (gdb_stdout);
7653 }
7654 psymtab_to_symtab_1 (pst->dependencies[i]);
7655 }
7656
7657 per_cu = pst->read_symtab_private;
7658
7659 if (per_cu == NULL)
7660 {
7661 /* It's an include file, no symbols to read for it.
7662 Everything is in the parent symtab. */
7663 pst->readin = 1;
7664 return;
7665 }
7666
7667 dw2_do_instantiate_symtab (per_cu);
7668 }
7669
7670 /* Trivial hash function for die_info: the hash value of a DIE
7671 is its offset in .debug_info for this objfile. */
7672
7673 static hashval_t
7674 die_hash (const void *item)
7675 {
7676 const struct die_info *die = item;
7677
7678 return die->offset.sect_off;
7679 }
7680
7681 /* Trivial comparison function for die_info structures: two DIEs
7682 are equal if they have the same offset. */
7683
7684 static int
7685 die_eq (const void *item_lhs, const void *item_rhs)
7686 {
7687 const struct die_info *die_lhs = item_lhs;
7688 const struct die_info *die_rhs = item_rhs;
7689
7690 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7691 }
7692
7693 /* die_reader_func for load_full_comp_unit.
7694 This is identical to read_signatured_type_reader,
7695 but is kept separate for now. */
7696
7697 static void
7698 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7699 const gdb_byte *info_ptr,
7700 struct die_info *comp_unit_die,
7701 int has_children,
7702 void *data)
7703 {
7704 struct dwarf2_cu *cu = reader->cu;
7705 enum language *language_ptr = data;
7706
7707 gdb_assert (cu->die_hash == NULL);
7708 cu->die_hash =
7709 htab_create_alloc_ex (cu->header.length / 12,
7710 die_hash,
7711 die_eq,
7712 NULL,
7713 &cu->comp_unit_obstack,
7714 hashtab_obstack_allocate,
7715 dummy_obstack_deallocate);
7716
7717 if (has_children)
7718 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7719 &info_ptr, comp_unit_die);
7720 cu->dies = comp_unit_die;
7721 /* comp_unit_die is not stored in die_hash, no need. */
7722
7723 /* We try not to read any attributes in this function, because not
7724 all CUs needed for references have been loaded yet, and symbol
7725 table processing isn't initialized. But we have to set the CU language,
7726 or we won't be able to build types correctly.
7727 Similarly, if we do not read the producer, we can not apply
7728 producer-specific interpretation. */
7729 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7730 }
7731
7732 /* Load the DIEs associated with PER_CU into memory. */
7733
7734 static void
7735 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7736 enum language pretend_language)
7737 {
7738 gdb_assert (! this_cu->is_debug_types);
7739
7740 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7741 load_full_comp_unit_reader, &pretend_language);
7742 }
7743
7744 /* Add a DIE to the delayed physname list. */
7745
7746 static void
7747 add_to_method_list (struct type *type, int fnfield_index, int index,
7748 const char *name, struct die_info *die,
7749 struct dwarf2_cu *cu)
7750 {
7751 struct delayed_method_info mi;
7752 mi.type = type;
7753 mi.fnfield_index = fnfield_index;
7754 mi.index = index;
7755 mi.name = name;
7756 mi.die = die;
7757 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7758 }
7759
7760 /* A cleanup for freeing the delayed method list. */
7761
7762 static void
7763 free_delayed_list (void *ptr)
7764 {
7765 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7766 if (cu->method_list != NULL)
7767 {
7768 VEC_free (delayed_method_info, cu->method_list);
7769 cu->method_list = NULL;
7770 }
7771 }
7772
7773 /* Compute the physnames of any methods on the CU's method list.
7774
7775 The computation of method physnames is delayed in order to avoid the
7776 (bad) condition that one of the method's formal parameters is of an as yet
7777 incomplete type. */
7778
7779 static void
7780 compute_delayed_physnames (struct dwarf2_cu *cu)
7781 {
7782 int i;
7783 struct delayed_method_info *mi;
7784 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7785 {
7786 const char *physname;
7787 struct fn_fieldlist *fn_flp
7788 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7789 physname = dwarf2_physname (mi->name, mi->die, cu);
7790 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7791 = physname ? physname : "";
7792 }
7793 }
7794
7795 /* Go objects should be embedded in a DW_TAG_module DIE,
7796 and it's not clear if/how imported objects will appear.
7797 To keep Go support simple until that's worked out,
7798 go back through what we've read and create something usable.
7799 We could do this while processing each DIE, and feels kinda cleaner,
7800 but that way is more invasive.
7801 This is to, for example, allow the user to type "p var" or "b main"
7802 without having to specify the package name, and allow lookups
7803 of module.object to work in contexts that use the expression
7804 parser. */
7805
7806 static void
7807 fixup_go_packaging (struct dwarf2_cu *cu)
7808 {
7809 char *package_name = NULL;
7810 struct pending *list;
7811 int i;
7812
7813 for (list = global_symbols; list != NULL; list = list->next)
7814 {
7815 for (i = 0; i < list->nsyms; ++i)
7816 {
7817 struct symbol *sym = list->symbol[i];
7818
7819 if (SYMBOL_LANGUAGE (sym) == language_go
7820 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7821 {
7822 char *this_package_name = go_symbol_package_name (sym);
7823
7824 if (this_package_name == NULL)
7825 continue;
7826 if (package_name == NULL)
7827 package_name = this_package_name;
7828 else
7829 {
7830 if (strcmp (package_name, this_package_name) != 0)
7831 complaint (&symfile_complaints,
7832 _("Symtab %s has objects from two different Go packages: %s and %s"),
7833 (symbol_symtab (sym) != NULL
7834 ? symtab_to_filename_for_display
7835 (symbol_symtab (sym))
7836 : objfile_name (cu->objfile)),
7837 this_package_name, package_name);
7838 xfree (this_package_name);
7839 }
7840 }
7841 }
7842 }
7843
7844 if (package_name != NULL)
7845 {
7846 struct objfile *objfile = cu->objfile;
7847 const char *saved_package_name
7848 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7849 package_name,
7850 strlen (package_name));
7851 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7852 saved_package_name, objfile);
7853 struct symbol *sym;
7854
7855 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7856
7857 sym = allocate_symbol (objfile);
7858 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7859 SYMBOL_SET_NAMES (sym, saved_package_name,
7860 strlen (saved_package_name), 0, objfile);
7861 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7862 e.g., "main" finds the "main" module and not C's main(). */
7863 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7864 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7865 SYMBOL_TYPE (sym) = type;
7866
7867 add_symbol_to_list (sym, &global_symbols);
7868
7869 xfree (package_name);
7870 }
7871 }
7872
7873 /* Return the symtab for PER_CU. This works properly regardless of
7874 whether we're using the index or psymtabs. */
7875
7876 static struct compunit_symtab *
7877 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7878 {
7879 return (dwarf2_per_objfile->using_index
7880 ? per_cu->v.quick->compunit_symtab
7881 : per_cu->v.psymtab->compunit_symtab);
7882 }
7883
7884 /* A helper function for computing the list of all symbol tables
7885 included by PER_CU. */
7886
7887 static void
7888 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7889 htab_t all_children, htab_t all_type_symtabs,
7890 struct dwarf2_per_cu_data *per_cu,
7891 struct compunit_symtab *immediate_parent)
7892 {
7893 void **slot;
7894 int ix;
7895 struct compunit_symtab *cust;
7896 struct dwarf2_per_cu_data *iter;
7897
7898 slot = htab_find_slot (all_children, per_cu, INSERT);
7899 if (*slot != NULL)
7900 {
7901 /* This inclusion and its children have been processed. */
7902 return;
7903 }
7904
7905 *slot = per_cu;
7906 /* Only add a CU if it has a symbol table. */
7907 cust = get_compunit_symtab (per_cu);
7908 if (cust != NULL)
7909 {
7910 /* If this is a type unit only add its symbol table if we haven't
7911 seen it yet (type unit per_cu's can share symtabs). */
7912 if (per_cu->is_debug_types)
7913 {
7914 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7915 if (*slot == NULL)
7916 {
7917 *slot = cust;
7918 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7919 if (cust->user == NULL)
7920 cust->user = immediate_parent;
7921 }
7922 }
7923 else
7924 {
7925 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7926 if (cust->user == NULL)
7927 cust->user = immediate_parent;
7928 }
7929 }
7930
7931 for (ix = 0;
7932 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7933 ++ix)
7934 {
7935 recursively_compute_inclusions (result, all_children,
7936 all_type_symtabs, iter, cust);
7937 }
7938 }
7939
7940 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7941 PER_CU. */
7942
7943 static void
7944 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7945 {
7946 gdb_assert (! per_cu->is_debug_types);
7947
7948 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7949 {
7950 int ix, len;
7951 struct dwarf2_per_cu_data *per_cu_iter;
7952 struct compunit_symtab *compunit_symtab_iter;
7953 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7954 htab_t all_children, all_type_symtabs;
7955 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7956
7957 /* If we don't have a symtab, we can just skip this case. */
7958 if (cust == NULL)
7959 return;
7960
7961 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7962 NULL, xcalloc, xfree);
7963 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7964 NULL, xcalloc, xfree);
7965
7966 for (ix = 0;
7967 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7968 ix, per_cu_iter);
7969 ++ix)
7970 {
7971 recursively_compute_inclusions (&result_symtabs, all_children,
7972 all_type_symtabs, per_cu_iter,
7973 cust);
7974 }
7975
7976 /* Now we have a transitive closure of all the included symtabs. */
7977 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7978 cust->includes
7979 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7980 (len + 1) * sizeof (struct symtab *));
7981 for (ix = 0;
7982 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7983 compunit_symtab_iter);
7984 ++ix)
7985 cust->includes[ix] = compunit_symtab_iter;
7986 cust->includes[len] = NULL;
7987
7988 VEC_free (compunit_symtab_ptr, result_symtabs);
7989 htab_delete (all_children);
7990 htab_delete (all_type_symtabs);
7991 }
7992 }
7993
7994 /* Compute the 'includes' field for the symtabs of all the CUs we just
7995 read. */
7996
7997 static void
7998 process_cu_includes (void)
7999 {
8000 int ix;
8001 struct dwarf2_per_cu_data *iter;
8002
8003 for (ix = 0;
8004 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8005 ix, iter);
8006 ++ix)
8007 {
8008 if (! iter->is_debug_types)
8009 compute_compunit_symtab_includes (iter);
8010 }
8011
8012 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8013 }
8014
8015 /* Generate full symbol information for PER_CU, whose DIEs have
8016 already been loaded into memory. */
8017
8018 static void
8019 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8020 enum language pretend_language)
8021 {
8022 struct dwarf2_cu *cu = per_cu->cu;
8023 struct objfile *objfile = per_cu->objfile;
8024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8025 CORE_ADDR lowpc, highpc;
8026 struct compunit_symtab *cust;
8027 struct cleanup *back_to, *delayed_list_cleanup;
8028 CORE_ADDR baseaddr;
8029 struct block *static_block;
8030 CORE_ADDR addr;
8031
8032 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8033
8034 buildsym_init ();
8035 back_to = make_cleanup (really_free_pendings, NULL);
8036 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037
8038 cu->list_in_scope = &file_symbols;
8039
8040 cu->language = pretend_language;
8041 cu->language_defn = language_def (cu->language);
8042
8043 /* Do line number decoding in read_file_scope () */
8044 process_die (cu->dies, cu);
8045
8046 /* For now fudge the Go package. */
8047 if (cu->language == language_go)
8048 fixup_go_packaging (cu);
8049
8050 /* Now that we have processed all the DIEs in the CU, all the types
8051 should be complete, and it should now be safe to compute all of the
8052 physnames. */
8053 compute_delayed_physnames (cu);
8054 do_cleanups (delayed_list_cleanup);
8055
8056 /* Some compilers don't define a DW_AT_high_pc attribute for the
8057 compilation unit. If the DW_AT_high_pc is missing, synthesize
8058 it, by scanning the DIE's below the compilation unit. */
8059 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8060
8061 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8062 static_block = end_symtab_get_static_block (addr, 0, 1);
8063
8064 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8065 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8066 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8067 addrmap to help ensure it has an accurate map of pc values belonging to
8068 this comp unit. */
8069 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8070
8071 cust = end_symtab_from_static_block (static_block,
8072 SECT_OFF_TEXT (objfile), 0);
8073
8074 if (cust != NULL)
8075 {
8076 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8077
8078 /* Set symtab language to language from DW_AT_language. If the
8079 compilation is from a C file generated by language preprocessors, do
8080 not set the language if it was already deduced by start_subfile. */
8081 if (!(cu->language == language_c
8082 && COMPUNIT_FILETABS (cust)->language != language_c))
8083 COMPUNIT_FILETABS (cust)->language = cu->language;
8084
8085 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8086 produce DW_AT_location with location lists but it can be possibly
8087 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8088 there were bugs in prologue debug info, fixed later in GCC-4.5
8089 by "unwind info for epilogues" patch (which is not directly related).
8090
8091 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8092 needed, it would be wrong due to missing DW_AT_producer there.
8093
8094 Still one can confuse GDB by using non-standard GCC compilation
8095 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8096 */
8097 if (cu->has_loclist && gcc_4_minor >= 5)
8098 cust->locations_valid = 1;
8099
8100 if (gcc_4_minor >= 5)
8101 cust->epilogue_unwind_valid = 1;
8102
8103 cust->call_site_htab = cu->call_site_htab;
8104 }
8105
8106 if (dwarf2_per_objfile->using_index)
8107 per_cu->v.quick->compunit_symtab = cust;
8108 else
8109 {
8110 struct partial_symtab *pst = per_cu->v.psymtab;
8111 pst->compunit_symtab = cust;
8112 pst->readin = 1;
8113 }
8114
8115 /* Push it for inclusion processing later. */
8116 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8117
8118 do_cleanups (back_to);
8119 }
8120
8121 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8122 already been loaded into memory. */
8123
8124 static void
8125 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8126 enum language pretend_language)
8127 {
8128 struct dwarf2_cu *cu = per_cu->cu;
8129 struct objfile *objfile = per_cu->objfile;
8130 struct compunit_symtab *cust;
8131 struct cleanup *back_to, *delayed_list_cleanup;
8132 struct signatured_type *sig_type;
8133
8134 gdb_assert (per_cu->is_debug_types);
8135 sig_type = (struct signatured_type *) per_cu;
8136
8137 buildsym_init ();
8138 back_to = make_cleanup (really_free_pendings, NULL);
8139 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8140
8141 cu->list_in_scope = &file_symbols;
8142
8143 cu->language = pretend_language;
8144 cu->language_defn = language_def (cu->language);
8145
8146 /* The symbol tables are set up in read_type_unit_scope. */
8147 process_die (cu->dies, cu);
8148
8149 /* For now fudge the Go package. */
8150 if (cu->language == language_go)
8151 fixup_go_packaging (cu);
8152
8153 /* Now that we have processed all the DIEs in the CU, all the types
8154 should be complete, and it should now be safe to compute all of the
8155 physnames. */
8156 compute_delayed_physnames (cu);
8157 do_cleanups (delayed_list_cleanup);
8158
8159 /* TUs share symbol tables.
8160 If this is the first TU to use this symtab, complete the construction
8161 of it with end_expandable_symtab. Otherwise, complete the addition of
8162 this TU's symbols to the existing symtab. */
8163 if (sig_type->type_unit_group->compunit_symtab == NULL)
8164 {
8165 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8166 sig_type->type_unit_group->compunit_symtab = cust;
8167
8168 if (cust != NULL)
8169 {
8170 /* Set symtab language to language from DW_AT_language. If the
8171 compilation is from a C file generated by language preprocessors,
8172 do not set the language if it was already deduced by
8173 start_subfile. */
8174 if (!(cu->language == language_c
8175 && COMPUNIT_FILETABS (cust)->language != language_c))
8176 COMPUNIT_FILETABS (cust)->language = cu->language;
8177 }
8178 }
8179 else
8180 {
8181 augment_type_symtab ();
8182 cust = sig_type->type_unit_group->compunit_symtab;
8183 }
8184
8185 if (dwarf2_per_objfile->using_index)
8186 per_cu->v.quick->compunit_symtab = cust;
8187 else
8188 {
8189 struct partial_symtab *pst = per_cu->v.psymtab;
8190 pst->compunit_symtab = cust;
8191 pst->readin = 1;
8192 }
8193
8194 do_cleanups (back_to);
8195 }
8196
8197 /* Process an imported unit DIE. */
8198
8199 static void
8200 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8201 {
8202 struct attribute *attr;
8203
8204 /* For now we don't handle imported units in type units. */
8205 if (cu->per_cu->is_debug_types)
8206 {
8207 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8208 " supported in type units [in module %s]"),
8209 objfile_name (cu->objfile));
8210 }
8211
8212 attr = dwarf2_attr (die, DW_AT_import, cu);
8213 if (attr != NULL)
8214 {
8215 struct dwarf2_per_cu_data *per_cu;
8216 struct symtab *imported_symtab;
8217 sect_offset offset;
8218 int is_dwz;
8219
8220 offset = dwarf2_get_ref_die_offset (attr);
8221 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8222 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8223
8224 /* If necessary, add it to the queue and load its DIEs. */
8225 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8226 load_full_comp_unit (per_cu, cu->language);
8227
8228 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8229 per_cu);
8230 }
8231 }
8232
8233 /* Reset the in_process bit of a die. */
8234
8235 static void
8236 reset_die_in_process (void *arg)
8237 {
8238 struct die_info *die = arg;
8239
8240 die->in_process = 0;
8241 }
8242
8243 /* Process a die and its children. */
8244
8245 static void
8246 process_die (struct die_info *die, struct dwarf2_cu *cu)
8247 {
8248 struct cleanup *in_process;
8249
8250 /* We should only be processing those not already in process. */
8251 gdb_assert (!die->in_process);
8252
8253 die->in_process = 1;
8254 in_process = make_cleanup (reset_die_in_process,die);
8255
8256 switch (die->tag)
8257 {
8258 case DW_TAG_padding:
8259 break;
8260 case DW_TAG_compile_unit:
8261 case DW_TAG_partial_unit:
8262 read_file_scope (die, cu);
8263 break;
8264 case DW_TAG_type_unit:
8265 read_type_unit_scope (die, cu);
8266 break;
8267 case DW_TAG_subprogram:
8268 case DW_TAG_inlined_subroutine:
8269 read_func_scope (die, cu);
8270 break;
8271 case DW_TAG_lexical_block:
8272 case DW_TAG_try_block:
8273 case DW_TAG_catch_block:
8274 read_lexical_block_scope (die, cu);
8275 break;
8276 case DW_TAG_GNU_call_site:
8277 read_call_site_scope (die, cu);
8278 break;
8279 case DW_TAG_class_type:
8280 case DW_TAG_interface_type:
8281 case DW_TAG_structure_type:
8282 case DW_TAG_union_type:
8283 process_structure_scope (die, cu);
8284 break;
8285 case DW_TAG_enumeration_type:
8286 process_enumeration_scope (die, cu);
8287 break;
8288
8289 /* These dies have a type, but processing them does not create
8290 a symbol or recurse to process the children. Therefore we can
8291 read them on-demand through read_type_die. */
8292 case DW_TAG_subroutine_type:
8293 case DW_TAG_set_type:
8294 case DW_TAG_array_type:
8295 case DW_TAG_pointer_type:
8296 case DW_TAG_ptr_to_member_type:
8297 case DW_TAG_reference_type:
8298 case DW_TAG_string_type:
8299 break;
8300
8301 case DW_TAG_base_type:
8302 case DW_TAG_subrange_type:
8303 case DW_TAG_typedef:
8304 /* Add a typedef symbol for the type definition, if it has a
8305 DW_AT_name. */
8306 new_symbol (die, read_type_die (die, cu), cu);
8307 break;
8308 case DW_TAG_common_block:
8309 read_common_block (die, cu);
8310 break;
8311 case DW_TAG_common_inclusion:
8312 break;
8313 case DW_TAG_namespace:
8314 cu->processing_has_namespace_info = 1;
8315 read_namespace (die, cu);
8316 break;
8317 case DW_TAG_module:
8318 cu->processing_has_namespace_info = 1;
8319 read_module (die, cu);
8320 break;
8321 case DW_TAG_imported_declaration:
8322 cu->processing_has_namespace_info = 1;
8323 if (read_namespace_alias (die, cu))
8324 break;
8325 /* The declaration is not a global namespace alias: fall through. */
8326 case DW_TAG_imported_module:
8327 cu->processing_has_namespace_info = 1;
8328 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8329 || cu->language != language_fortran))
8330 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8331 dwarf_tag_name (die->tag));
8332 read_import_statement (die, cu);
8333 break;
8334
8335 case DW_TAG_imported_unit:
8336 process_imported_unit_die (die, cu);
8337 break;
8338
8339 default:
8340 new_symbol (die, NULL, cu);
8341 break;
8342 }
8343
8344 do_cleanups (in_process);
8345 }
8346 \f
8347 /* DWARF name computation. */
8348
8349 /* A helper function for dwarf2_compute_name which determines whether DIE
8350 needs to have the name of the scope prepended to the name listed in the
8351 die. */
8352
8353 static int
8354 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8355 {
8356 struct attribute *attr;
8357
8358 switch (die->tag)
8359 {
8360 case DW_TAG_namespace:
8361 case DW_TAG_typedef:
8362 case DW_TAG_class_type:
8363 case DW_TAG_interface_type:
8364 case DW_TAG_structure_type:
8365 case DW_TAG_union_type:
8366 case DW_TAG_enumeration_type:
8367 case DW_TAG_enumerator:
8368 case DW_TAG_subprogram:
8369 case DW_TAG_inlined_subroutine:
8370 case DW_TAG_member:
8371 case DW_TAG_imported_declaration:
8372 return 1;
8373
8374 case DW_TAG_variable:
8375 case DW_TAG_constant:
8376 /* We only need to prefix "globally" visible variables. These include
8377 any variable marked with DW_AT_external or any variable that
8378 lives in a namespace. [Variables in anonymous namespaces
8379 require prefixing, but they are not DW_AT_external.] */
8380
8381 if (dwarf2_attr (die, DW_AT_specification, cu))
8382 {
8383 struct dwarf2_cu *spec_cu = cu;
8384
8385 return die_needs_namespace (die_specification (die, &spec_cu),
8386 spec_cu);
8387 }
8388
8389 attr = dwarf2_attr (die, DW_AT_external, cu);
8390 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8391 && die->parent->tag != DW_TAG_module)
8392 return 0;
8393 /* A variable in a lexical block of some kind does not need a
8394 namespace, even though in C++ such variables may be external
8395 and have a mangled name. */
8396 if (die->parent->tag == DW_TAG_lexical_block
8397 || die->parent->tag == DW_TAG_try_block
8398 || die->parent->tag == DW_TAG_catch_block
8399 || die->parent->tag == DW_TAG_subprogram)
8400 return 0;
8401 return 1;
8402
8403 default:
8404 return 0;
8405 }
8406 }
8407
8408 /* Retrieve the last character from a mem_file. */
8409
8410 static void
8411 do_ui_file_peek_last (void *object, const char *buffer, long length)
8412 {
8413 char *last_char_p = (char *) object;
8414
8415 if (length > 0)
8416 *last_char_p = buffer[length - 1];
8417 }
8418
8419 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8420 compute the physname for the object, which include a method's:
8421 - formal parameters (C++/Java),
8422 - receiver type (Go),
8423 - return type (Java).
8424
8425 The term "physname" is a bit confusing.
8426 For C++, for example, it is the demangled name.
8427 For Go, for example, it's the mangled name.
8428
8429 For Ada, return the DIE's linkage name rather than the fully qualified
8430 name. PHYSNAME is ignored..
8431
8432 The result is allocated on the objfile_obstack and canonicalized. */
8433
8434 static const char *
8435 dwarf2_compute_name (const char *name,
8436 struct die_info *die, struct dwarf2_cu *cu,
8437 int physname)
8438 {
8439 struct objfile *objfile = cu->objfile;
8440
8441 if (name == NULL)
8442 name = dwarf2_name (die, cu);
8443
8444 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8445 compute it by typename_concat inside GDB. */
8446 if (cu->language == language_ada
8447 || (cu->language == language_fortran && physname))
8448 {
8449 /* For Ada unit, we prefer the linkage name over the name, as
8450 the former contains the exported name, which the user expects
8451 to be able to reference. Ideally, we want the user to be able
8452 to reference this entity using either natural or linkage name,
8453 but we haven't started looking at this enhancement yet. */
8454 struct attribute *attr;
8455
8456 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8457 if (attr == NULL)
8458 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8459 if (attr && DW_STRING (attr))
8460 return DW_STRING (attr);
8461 }
8462
8463 /* These are the only languages we know how to qualify names in. */
8464 if (name != NULL
8465 && (cu->language == language_cplus || cu->language == language_java
8466 || cu->language == language_fortran))
8467 {
8468 if (die_needs_namespace (die, cu))
8469 {
8470 long length;
8471 const char *prefix;
8472 struct ui_file *buf;
8473 char *intermediate_name;
8474 const char *canonical_name = NULL;
8475
8476 prefix = determine_prefix (die, cu);
8477 buf = mem_fileopen ();
8478 if (*prefix != '\0')
8479 {
8480 char *prefixed_name = typename_concat (NULL, prefix, name,
8481 physname, cu);
8482
8483 fputs_unfiltered (prefixed_name, buf);
8484 xfree (prefixed_name);
8485 }
8486 else
8487 fputs_unfiltered (name, buf);
8488
8489 /* Template parameters may be specified in the DIE's DW_AT_name, or
8490 as children with DW_TAG_template_type_param or
8491 DW_TAG_value_type_param. If the latter, add them to the name
8492 here. If the name already has template parameters, then
8493 skip this step; some versions of GCC emit both, and
8494 it is more efficient to use the pre-computed name.
8495
8496 Something to keep in mind about this process: it is very
8497 unlikely, or in some cases downright impossible, to produce
8498 something that will match the mangled name of a function.
8499 If the definition of the function has the same debug info,
8500 we should be able to match up with it anyway. But fallbacks
8501 using the minimal symbol, for instance to find a method
8502 implemented in a stripped copy of libstdc++, will not work.
8503 If we do not have debug info for the definition, we will have to
8504 match them up some other way.
8505
8506 When we do name matching there is a related problem with function
8507 templates; two instantiated function templates are allowed to
8508 differ only by their return types, which we do not add here. */
8509
8510 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8511 {
8512 struct attribute *attr;
8513 struct die_info *child;
8514 int first = 1;
8515
8516 die->building_fullname = 1;
8517
8518 for (child = die->child; child != NULL; child = child->sibling)
8519 {
8520 struct type *type;
8521 LONGEST value;
8522 const gdb_byte *bytes;
8523 struct dwarf2_locexpr_baton *baton;
8524 struct value *v;
8525
8526 if (child->tag != DW_TAG_template_type_param
8527 && child->tag != DW_TAG_template_value_param)
8528 continue;
8529
8530 if (first)
8531 {
8532 fputs_unfiltered ("<", buf);
8533 first = 0;
8534 }
8535 else
8536 fputs_unfiltered (", ", buf);
8537
8538 attr = dwarf2_attr (child, DW_AT_type, cu);
8539 if (attr == NULL)
8540 {
8541 complaint (&symfile_complaints,
8542 _("template parameter missing DW_AT_type"));
8543 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8544 continue;
8545 }
8546 type = die_type (child, cu);
8547
8548 if (child->tag == DW_TAG_template_type_param)
8549 {
8550 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8551 continue;
8552 }
8553
8554 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8555 if (attr == NULL)
8556 {
8557 complaint (&symfile_complaints,
8558 _("template parameter missing "
8559 "DW_AT_const_value"));
8560 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8561 continue;
8562 }
8563
8564 dwarf2_const_value_attr (attr, type, name,
8565 &cu->comp_unit_obstack, cu,
8566 &value, &bytes, &baton);
8567
8568 if (TYPE_NOSIGN (type))
8569 /* GDB prints characters as NUMBER 'CHAR'. If that's
8570 changed, this can use value_print instead. */
8571 c_printchar (value, type, buf);
8572 else
8573 {
8574 struct value_print_options opts;
8575
8576 if (baton != NULL)
8577 v = dwarf2_evaluate_loc_desc (type, NULL,
8578 baton->data,
8579 baton->size,
8580 baton->per_cu);
8581 else if (bytes != NULL)
8582 {
8583 v = allocate_value (type);
8584 memcpy (value_contents_writeable (v), bytes,
8585 TYPE_LENGTH (type));
8586 }
8587 else
8588 v = value_from_longest (type, value);
8589
8590 /* Specify decimal so that we do not depend on
8591 the radix. */
8592 get_formatted_print_options (&opts, 'd');
8593 opts.raw = 1;
8594 value_print (v, buf, &opts);
8595 release_value (v);
8596 value_free (v);
8597 }
8598 }
8599
8600 die->building_fullname = 0;
8601
8602 if (!first)
8603 {
8604 /* Close the argument list, with a space if necessary
8605 (nested templates). */
8606 char last_char = '\0';
8607 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8608 if (last_char == '>')
8609 fputs_unfiltered (" >", buf);
8610 else
8611 fputs_unfiltered (">", buf);
8612 }
8613 }
8614
8615 /* For Java and C++ methods, append formal parameter type
8616 information, if PHYSNAME. */
8617
8618 if (physname && die->tag == DW_TAG_subprogram
8619 && (cu->language == language_cplus
8620 || cu->language == language_java))
8621 {
8622 struct type *type = read_type_die (die, cu);
8623
8624 c_type_print_args (type, buf, 1, cu->language,
8625 &type_print_raw_options);
8626
8627 if (cu->language == language_java)
8628 {
8629 /* For java, we must append the return type to method
8630 names. */
8631 if (die->tag == DW_TAG_subprogram)
8632 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8633 0, 0, &type_print_raw_options);
8634 }
8635 else if (cu->language == language_cplus)
8636 {
8637 /* Assume that an artificial first parameter is
8638 "this", but do not crash if it is not. RealView
8639 marks unnamed (and thus unused) parameters as
8640 artificial; there is no way to differentiate
8641 the two cases. */
8642 if (TYPE_NFIELDS (type) > 0
8643 && TYPE_FIELD_ARTIFICIAL (type, 0)
8644 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8645 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8646 0))))
8647 fputs_unfiltered (" const", buf);
8648 }
8649 }
8650
8651 intermediate_name = ui_file_xstrdup (buf, &length);
8652 ui_file_delete (buf);
8653
8654 if (cu->language == language_cplus)
8655 canonical_name
8656 = dwarf2_canonicalize_name (intermediate_name, cu,
8657 &objfile->per_bfd->storage_obstack);
8658
8659 /* If we only computed INTERMEDIATE_NAME, or if
8660 INTERMEDIATE_NAME is already canonical, then we need to
8661 copy it to the appropriate obstack. */
8662 if (canonical_name == NULL || canonical_name == intermediate_name)
8663 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8664 intermediate_name,
8665 strlen (intermediate_name));
8666 else
8667 name = canonical_name;
8668
8669 xfree (intermediate_name);
8670 }
8671 }
8672
8673 return name;
8674 }
8675
8676 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8677 If scope qualifiers are appropriate they will be added. The result
8678 will be allocated on the storage_obstack, or NULL if the DIE does
8679 not have a name. NAME may either be from a previous call to
8680 dwarf2_name or NULL.
8681
8682 The output string will be canonicalized (if C++/Java). */
8683
8684 static const char *
8685 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8686 {
8687 return dwarf2_compute_name (name, die, cu, 0);
8688 }
8689
8690 /* Construct a physname for the given DIE in CU. NAME may either be
8691 from a previous call to dwarf2_name or NULL. The result will be
8692 allocated on the objfile_objstack or NULL if the DIE does not have a
8693 name.
8694
8695 The output string will be canonicalized (if C++/Java). */
8696
8697 static const char *
8698 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8699 {
8700 struct objfile *objfile = cu->objfile;
8701 struct attribute *attr;
8702 const char *retval, *mangled = NULL, *canon = NULL;
8703 struct cleanup *back_to;
8704 int need_copy = 1;
8705
8706 /* In this case dwarf2_compute_name is just a shortcut not building anything
8707 on its own. */
8708 if (!die_needs_namespace (die, cu))
8709 return dwarf2_compute_name (name, die, cu, 1);
8710
8711 back_to = make_cleanup (null_cleanup, NULL);
8712
8713 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8714 if (!attr)
8715 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8716
8717 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8718 has computed. */
8719 if (attr && DW_STRING (attr))
8720 {
8721 char *demangled;
8722
8723 mangled = DW_STRING (attr);
8724
8725 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8726 type. It is easier for GDB users to search for such functions as
8727 `name(params)' than `long name(params)'. In such case the minimal
8728 symbol names do not match the full symbol names but for template
8729 functions there is never a need to look up their definition from their
8730 declaration so the only disadvantage remains the minimal symbol
8731 variant `long name(params)' does not have the proper inferior type.
8732 */
8733
8734 if (cu->language == language_go)
8735 {
8736 /* This is a lie, but we already lie to the caller new_symbol_full.
8737 new_symbol_full assumes we return the mangled name.
8738 This just undoes that lie until things are cleaned up. */
8739 demangled = NULL;
8740 }
8741 else
8742 {
8743 demangled = gdb_demangle (mangled,
8744 (DMGL_PARAMS | DMGL_ANSI
8745 | (cu->language == language_java
8746 ? DMGL_JAVA | DMGL_RET_POSTFIX
8747 : DMGL_RET_DROP)));
8748 }
8749 if (demangled)
8750 {
8751 make_cleanup (xfree, demangled);
8752 canon = demangled;
8753 }
8754 else
8755 {
8756 canon = mangled;
8757 need_copy = 0;
8758 }
8759 }
8760
8761 if (canon == NULL || check_physname)
8762 {
8763 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8764
8765 if (canon != NULL && strcmp (physname, canon) != 0)
8766 {
8767 /* It may not mean a bug in GDB. The compiler could also
8768 compute DW_AT_linkage_name incorrectly. But in such case
8769 GDB would need to be bug-to-bug compatible. */
8770
8771 complaint (&symfile_complaints,
8772 _("Computed physname <%s> does not match demangled <%s> "
8773 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8774 physname, canon, mangled, die->offset.sect_off,
8775 objfile_name (objfile));
8776
8777 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8778 is available here - over computed PHYSNAME. It is safer
8779 against both buggy GDB and buggy compilers. */
8780
8781 retval = canon;
8782 }
8783 else
8784 {
8785 retval = physname;
8786 need_copy = 0;
8787 }
8788 }
8789 else
8790 retval = canon;
8791
8792 if (need_copy)
8793 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8794 retval, strlen (retval));
8795
8796 do_cleanups (back_to);
8797 return retval;
8798 }
8799
8800 /* Inspect DIE in CU for a namespace alias. If one exists, record
8801 a new symbol for it.
8802
8803 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8804
8805 static int
8806 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8807 {
8808 struct attribute *attr;
8809
8810 /* If the die does not have a name, this is not a namespace
8811 alias. */
8812 attr = dwarf2_attr (die, DW_AT_name, cu);
8813 if (attr != NULL)
8814 {
8815 int num;
8816 struct die_info *d = die;
8817 struct dwarf2_cu *imported_cu = cu;
8818
8819 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8820 keep inspecting DIEs until we hit the underlying import. */
8821 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8822 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8823 {
8824 attr = dwarf2_attr (d, DW_AT_import, cu);
8825 if (attr == NULL)
8826 break;
8827
8828 d = follow_die_ref (d, attr, &imported_cu);
8829 if (d->tag != DW_TAG_imported_declaration)
8830 break;
8831 }
8832
8833 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8834 {
8835 complaint (&symfile_complaints,
8836 _("DIE at 0x%x has too many recursively imported "
8837 "declarations"), d->offset.sect_off);
8838 return 0;
8839 }
8840
8841 if (attr != NULL)
8842 {
8843 struct type *type;
8844 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8845
8846 type = get_die_type_at_offset (offset, cu->per_cu);
8847 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8848 {
8849 /* This declaration is a global namespace alias. Add
8850 a symbol for it whose type is the aliased namespace. */
8851 new_symbol (die, type, cu);
8852 return 1;
8853 }
8854 }
8855 }
8856
8857 return 0;
8858 }
8859
8860 /* Read the import statement specified by the given die and record it. */
8861
8862 static void
8863 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8864 {
8865 struct objfile *objfile = cu->objfile;
8866 struct attribute *import_attr;
8867 struct die_info *imported_die, *child_die;
8868 struct dwarf2_cu *imported_cu;
8869 const char *imported_name;
8870 const char *imported_name_prefix;
8871 const char *canonical_name;
8872 const char *import_alias;
8873 const char *imported_declaration = NULL;
8874 const char *import_prefix;
8875 VEC (const_char_ptr) *excludes = NULL;
8876 struct cleanup *cleanups;
8877
8878 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8879 if (import_attr == NULL)
8880 {
8881 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8882 dwarf_tag_name (die->tag));
8883 return;
8884 }
8885
8886 imported_cu = cu;
8887 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8888 imported_name = dwarf2_name (imported_die, imported_cu);
8889 if (imported_name == NULL)
8890 {
8891 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8892
8893 The import in the following code:
8894 namespace A
8895 {
8896 typedef int B;
8897 }
8898
8899 int main ()
8900 {
8901 using A::B;
8902 B b;
8903 return b;
8904 }
8905
8906 ...
8907 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8908 <52> DW_AT_decl_file : 1
8909 <53> DW_AT_decl_line : 6
8910 <54> DW_AT_import : <0x75>
8911 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8912 <59> DW_AT_name : B
8913 <5b> DW_AT_decl_file : 1
8914 <5c> DW_AT_decl_line : 2
8915 <5d> DW_AT_type : <0x6e>
8916 ...
8917 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8918 <76> DW_AT_byte_size : 4
8919 <77> DW_AT_encoding : 5 (signed)
8920
8921 imports the wrong die ( 0x75 instead of 0x58 ).
8922 This case will be ignored until the gcc bug is fixed. */
8923 return;
8924 }
8925
8926 /* Figure out the local name after import. */
8927 import_alias = dwarf2_name (die, cu);
8928
8929 /* Figure out where the statement is being imported to. */
8930 import_prefix = determine_prefix (die, cu);
8931
8932 /* Figure out what the scope of the imported die is and prepend it
8933 to the name of the imported die. */
8934 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8935
8936 if (imported_die->tag != DW_TAG_namespace
8937 && imported_die->tag != DW_TAG_module)
8938 {
8939 imported_declaration = imported_name;
8940 canonical_name = imported_name_prefix;
8941 }
8942 else if (strlen (imported_name_prefix) > 0)
8943 canonical_name = obconcat (&objfile->objfile_obstack,
8944 imported_name_prefix, "::", imported_name,
8945 (char *) NULL);
8946 else
8947 canonical_name = imported_name;
8948
8949 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8950
8951 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8952 for (child_die = die->child; child_die && child_die->tag;
8953 child_die = sibling_die (child_die))
8954 {
8955 /* DWARF-4: A Fortran use statement with a “rename list” may be
8956 represented by an imported module entry with an import attribute
8957 referring to the module and owned entries corresponding to those
8958 entities that are renamed as part of being imported. */
8959
8960 if (child_die->tag != DW_TAG_imported_declaration)
8961 {
8962 complaint (&symfile_complaints,
8963 _("child DW_TAG_imported_declaration expected "
8964 "- DIE at 0x%x [in module %s]"),
8965 child_die->offset.sect_off, objfile_name (objfile));
8966 continue;
8967 }
8968
8969 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8970 if (import_attr == NULL)
8971 {
8972 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8973 dwarf_tag_name (child_die->tag));
8974 continue;
8975 }
8976
8977 imported_cu = cu;
8978 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8979 &imported_cu);
8980 imported_name = dwarf2_name (imported_die, imported_cu);
8981 if (imported_name == NULL)
8982 {
8983 complaint (&symfile_complaints,
8984 _("child DW_TAG_imported_declaration has unknown "
8985 "imported name - DIE at 0x%x [in module %s]"),
8986 child_die->offset.sect_off, objfile_name (objfile));
8987 continue;
8988 }
8989
8990 VEC_safe_push (const_char_ptr, excludes, imported_name);
8991
8992 process_die (child_die, cu);
8993 }
8994
8995 cp_add_using_directive (import_prefix,
8996 canonical_name,
8997 import_alias,
8998 imported_declaration,
8999 excludes,
9000 0,
9001 &objfile->objfile_obstack);
9002
9003 do_cleanups (cleanups);
9004 }
9005
9006 /* Cleanup function for handle_DW_AT_stmt_list. */
9007
9008 static void
9009 free_cu_line_header (void *arg)
9010 {
9011 struct dwarf2_cu *cu = arg;
9012
9013 free_line_header (cu->line_header);
9014 cu->line_header = NULL;
9015 }
9016
9017 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9018 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9019 this, it was first present in GCC release 4.3.0. */
9020
9021 static int
9022 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9023 {
9024 if (!cu->checked_producer)
9025 check_producer (cu);
9026
9027 return cu->producer_is_gcc_lt_4_3;
9028 }
9029
9030 static void
9031 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9032 const char **name, const char **comp_dir)
9033 {
9034 struct attribute *attr;
9035
9036 *name = NULL;
9037 *comp_dir = NULL;
9038
9039 /* Find the filename. Do not use dwarf2_name here, since the filename
9040 is not a source language identifier. */
9041 attr = dwarf2_attr (die, DW_AT_name, cu);
9042 if (attr)
9043 {
9044 *name = DW_STRING (attr);
9045 }
9046
9047 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9048 if (attr)
9049 *comp_dir = DW_STRING (attr);
9050 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9051 && IS_ABSOLUTE_PATH (*name))
9052 {
9053 char *d = ldirname (*name);
9054
9055 *comp_dir = d;
9056 if (d != NULL)
9057 make_cleanup (xfree, d);
9058 }
9059 if (*comp_dir != NULL)
9060 {
9061 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9062 directory, get rid of it. */
9063 char *cp = strchr (*comp_dir, ':');
9064
9065 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9066 *comp_dir = cp + 1;
9067 }
9068
9069 if (*name == NULL)
9070 *name = "<unknown>";
9071 }
9072
9073 /* Handle DW_AT_stmt_list for a compilation unit.
9074 DIE is the DW_TAG_compile_unit die for CU.
9075 COMP_DIR is the compilation directory. LOWPC is passed to
9076 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9077
9078 static void
9079 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9080 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9081 {
9082 struct objfile *objfile = dwarf2_per_objfile->objfile;
9083 struct attribute *attr;
9084 unsigned int line_offset;
9085 struct line_header line_header_local;
9086 hashval_t line_header_local_hash;
9087 unsigned u;
9088 void **slot;
9089 int decode_mapping;
9090
9091 gdb_assert (! cu->per_cu->is_debug_types);
9092
9093 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9094 if (attr == NULL)
9095 return;
9096
9097 line_offset = DW_UNSND (attr);
9098
9099 /* The line header hash table is only created if needed (it exists to
9100 prevent redundant reading of the line table for partial_units).
9101 If we're given a partial_unit, we'll need it. If we're given a
9102 compile_unit, then use the line header hash table if it's already
9103 created, but don't create one just yet. */
9104
9105 if (dwarf2_per_objfile->line_header_hash == NULL
9106 && die->tag == DW_TAG_partial_unit)
9107 {
9108 dwarf2_per_objfile->line_header_hash
9109 = htab_create_alloc_ex (127, line_header_hash_voidp,
9110 line_header_eq_voidp,
9111 free_line_header_voidp,
9112 &objfile->objfile_obstack,
9113 hashtab_obstack_allocate,
9114 dummy_obstack_deallocate);
9115 }
9116
9117 line_header_local.offset.sect_off = line_offset;
9118 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9119 line_header_local_hash = line_header_hash (&line_header_local);
9120 if (dwarf2_per_objfile->line_header_hash != NULL)
9121 {
9122 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9123 &line_header_local,
9124 line_header_local_hash, NO_INSERT);
9125
9126 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9127 is not present in *SLOT (since if there is something in *SLOT then
9128 it will be for a partial_unit). */
9129 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9130 {
9131 gdb_assert (*slot != NULL);
9132 cu->line_header = *slot;
9133 return;
9134 }
9135 }
9136
9137 /* dwarf_decode_line_header does not yet provide sufficient information.
9138 We always have to call also dwarf_decode_lines for it. */
9139 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9140 if (cu->line_header == NULL)
9141 return;
9142
9143 if (dwarf2_per_objfile->line_header_hash == NULL)
9144 slot = NULL;
9145 else
9146 {
9147 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9148 &line_header_local,
9149 line_header_local_hash, INSERT);
9150 gdb_assert (slot != NULL);
9151 }
9152 if (slot != NULL && *slot == NULL)
9153 {
9154 /* This newly decoded line number information unit will be owned
9155 by line_header_hash hash table. */
9156 *slot = cu->line_header;
9157 }
9158 else
9159 {
9160 /* We cannot free any current entry in (*slot) as that struct line_header
9161 may be already used by multiple CUs. Create only temporary decoded
9162 line_header for this CU - it may happen at most once for each line
9163 number information unit. And if we're not using line_header_hash
9164 then this is what we want as well. */
9165 gdb_assert (die->tag != DW_TAG_partial_unit);
9166 make_cleanup (free_cu_line_header, cu);
9167 }
9168 decode_mapping = (die->tag != DW_TAG_partial_unit);
9169 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9170 decode_mapping);
9171 }
9172
9173 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9174
9175 static void
9176 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9177 {
9178 struct objfile *objfile = dwarf2_per_objfile->objfile;
9179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9180 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9181 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9182 CORE_ADDR highpc = ((CORE_ADDR) 0);
9183 struct attribute *attr;
9184 const char *name = NULL;
9185 const char *comp_dir = NULL;
9186 struct die_info *child_die;
9187 bfd *abfd = objfile->obfd;
9188 CORE_ADDR baseaddr;
9189
9190 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9191
9192 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9193
9194 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9195 from finish_block. */
9196 if (lowpc == ((CORE_ADDR) -1))
9197 lowpc = highpc;
9198 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9199
9200 find_file_and_directory (die, cu, &name, &comp_dir);
9201
9202 prepare_one_comp_unit (cu, die, cu->language);
9203
9204 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9205 standardised yet. As a workaround for the language detection we fall
9206 back to the DW_AT_producer string. */
9207 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9208 cu->language = language_opencl;
9209
9210 /* Similar hack for Go. */
9211 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9212 set_cu_language (DW_LANG_Go, cu);
9213
9214 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9215
9216 /* Decode line number information if present. We do this before
9217 processing child DIEs, so that the line header table is available
9218 for DW_AT_decl_file. */
9219 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9220
9221 /* Process all dies in compilation unit. */
9222 if (die->child != NULL)
9223 {
9224 child_die = die->child;
9225 while (child_die && child_die->tag)
9226 {
9227 process_die (child_die, cu);
9228 child_die = sibling_die (child_die);
9229 }
9230 }
9231
9232 /* Decode macro information, if present. Dwarf 2 macro information
9233 refers to information in the line number info statement program
9234 header, so we can only read it if we've read the header
9235 successfully. */
9236 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9237 if (attr && cu->line_header)
9238 {
9239 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9240 complaint (&symfile_complaints,
9241 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9242
9243 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9244 }
9245 else
9246 {
9247 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9248 if (attr && cu->line_header)
9249 {
9250 unsigned int macro_offset = DW_UNSND (attr);
9251
9252 dwarf_decode_macros (cu, macro_offset, 0);
9253 }
9254 }
9255
9256 do_cleanups (back_to);
9257 }
9258
9259 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9260 Create the set of symtabs used by this TU, or if this TU is sharing
9261 symtabs with another TU and the symtabs have already been created
9262 then restore those symtabs in the line header.
9263 We don't need the pc/line-number mapping for type units. */
9264
9265 static void
9266 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9267 {
9268 struct objfile *objfile = dwarf2_per_objfile->objfile;
9269 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9270 struct type_unit_group *tu_group;
9271 int first_time;
9272 struct line_header *lh;
9273 struct attribute *attr;
9274 unsigned int i, line_offset;
9275 struct signatured_type *sig_type;
9276
9277 gdb_assert (per_cu->is_debug_types);
9278 sig_type = (struct signatured_type *) per_cu;
9279
9280 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9281
9282 /* If we're using .gdb_index (includes -readnow) then
9283 per_cu->type_unit_group may not have been set up yet. */
9284 if (sig_type->type_unit_group == NULL)
9285 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9286 tu_group = sig_type->type_unit_group;
9287
9288 /* If we've already processed this stmt_list there's no real need to
9289 do it again, we could fake it and just recreate the part we need
9290 (file name,index -> symtab mapping). If data shows this optimization
9291 is useful we can do it then. */
9292 first_time = tu_group->compunit_symtab == NULL;
9293
9294 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9295 debug info. */
9296 lh = NULL;
9297 if (attr != NULL)
9298 {
9299 line_offset = DW_UNSND (attr);
9300 lh = dwarf_decode_line_header (line_offset, cu);
9301 }
9302 if (lh == NULL)
9303 {
9304 if (first_time)
9305 dwarf2_start_symtab (cu, "", NULL, 0);
9306 else
9307 {
9308 gdb_assert (tu_group->symtabs == NULL);
9309 restart_symtab (tu_group->compunit_symtab, "", 0);
9310 }
9311 return;
9312 }
9313
9314 cu->line_header = lh;
9315 make_cleanup (free_cu_line_header, cu);
9316
9317 if (first_time)
9318 {
9319 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9320
9321 tu_group->num_symtabs = lh->num_file_names;
9322 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9323
9324 for (i = 0; i < lh->num_file_names; ++i)
9325 {
9326 const char *dir = NULL;
9327 struct file_entry *fe = &lh->file_names[i];
9328
9329 if (fe->dir_index && lh->include_dirs != NULL)
9330 dir = lh->include_dirs[fe->dir_index - 1];
9331 dwarf2_start_subfile (fe->name, dir);
9332
9333 if (current_subfile->symtab == NULL)
9334 {
9335 /* NOTE: start_subfile will recognize when it's been passed
9336 a file it has already seen. So we can't assume there's a
9337 simple mapping from lh->file_names to subfiles, plus
9338 lh->file_names may contain dups. */
9339 current_subfile->symtab
9340 = allocate_symtab (cust, current_subfile->name);
9341 }
9342
9343 fe->symtab = current_subfile->symtab;
9344 tu_group->symtabs[i] = fe->symtab;
9345 }
9346 }
9347 else
9348 {
9349 restart_symtab (tu_group->compunit_symtab, "", 0);
9350
9351 for (i = 0; i < lh->num_file_names; ++i)
9352 {
9353 struct file_entry *fe = &lh->file_names[i];
9354
9355 fe->symtab = tu_group->symtabs[i];
9356 }
9357 }
9358
9359 /* The main symtab is allocated last. Type units don't have DW_AT_name
9360 so they don't have a "real" (so to speak) symtab anyway.
9361 There is later code that will assign the main symtab to all symbols
9362 that don't have one. We need to handle the case of a symbol with a
9363 missing symtab (DW_AT_decl_file) anyway. */
9364 }
9365
9366 /* Process DW_TAG_type_unit.
9367 For TUs we want to skip the first top level sibling if it's not the
9368 actual type being defined by this TU. In this case the first top
9369 level sibling is there to provide context only. */
9370
9371 static void
9372 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9373 {
9374 struct die_info *child_die;
9375
9376 prepare_one_comp_unit (cu, die, language_minimal);
9377
9378 /* Initialize (or reinitialize) the machinery for building symtabs.
9379 We do this before processing child DIEs, so that the line header table
9380 is available for DW_AT_decl_file. */
9381 setup_type_unit_groups (die, cu);
9382
9383 if (die->child != NULL)
9384 {
9385 child_die = die->child;
9386 while (child_die && child_die->tag)
9387 {
9388 process_die (child_die, cu);
9389 child_die = sibling_die (child_die);
9390 }
9391 }
9392 }
9393 \f
9394 /* DWO/DWP files.
9395
9396 http://gcc.gnu.org/wiki/DebugFission
9397 http://gcc.gnu.org/wiki/DebugFissionDWP
9398
9399 To simplify handling of both DWO files ("object" files with the DWARF info)
9400 and DWP files (a file with the DWOs packaged up into one file), we treat
9401 DWP files as having a collection of virtual DWO files. */
9402
9403 static hashval_t
9404 hash_dwo_file (const void *item)
9405 {
9406 const struct dwo_file *dwo_file = item;
9407 hashval_t hash;
9408
9409 hash = htab_hash_string (dwo_file->dwo_name);
9410 if (dwo_file->comp_dir != NULL)
9411 hash += htab_hash_string (dwo_file->comp_dir);
9412 return hash;
9413 }
9414
9415 static int
9416 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9417 {
9418 const struct dwo_file *lhs = item_lhs;
9419 const struct dwo_file *rhs = item_rhs;
9420
9421 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9422 return 0;
9423 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9424 return lhs->comp_dir == rhs->comp_dir;
9425 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9426 }
9427
9428 /* Allocate a hash table for DWO files. */
9429
9430 static htab_t
9431 allocate_dwo_file_hash_table (void)
9432 {
9433 struct objfile *objfile = dwarf2_per_objfile->objfile;
9434
9435 return htab_create_alloc_ex (41,
9436 hash_dwo_file,
9437 eq_dwo_file,
9438 NULL,
9439 &objfile->objfile_obstack,
9440 hashtab_obstack_allocate,
9441 dummy_obstack_deallocate);
9442 }
9443
9444 /* Lookup DWO file DWO_NAME. */
9445
9446 static void **
9447 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9448 {
9449 struct dwo_file find_entry;
9450 void **slot;
9451
9452 if (dwarf2_per_objfile->dwo_files == NULL)
9453 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9454
9455 memset (&find_entry, 0, sizeof (find_entry));
9456 find_entry.dwo_name = dwo_name;
9457 find_entry.comp_dir = comp_dir;
9458 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9459
9460 return slot;
9461 }
9462
9463 static hashval_t
9464 hash_dwo_unit (const void *item)
9465 {
9466 const struct dwo_unit *dwo_unit = item;
9467
9468 /* This drops the top 32 bits of the id, but is ok for a hash. */
9469 return dwo_unit->signature;
9470 }
9471
9472 static int
9473 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9474 {
9475 const struct dwo_unit *lhs = item_lhs;
9476 const struct dwo_unit *rhs = item_rhs;
9477
9478 /* The signature is assumed to be unique within the DWO file.
9479 So while object file CU dwo_id's always have the value zero,
9480 that's OK, assuming each object file DWO file has only one CU,
9481 and that's the rule for now. */
9482 return lhs->signature == rhs->signature;
9483 }
9484
9485 /* Allocate a hash table for DWO CUs,TUs.
9486 There is one of these tables for each of CUs,TUs for each DWO file. */
9487
9488 static htab_t
9489 allocate_dwo_unit_table (struct objfile *objfile)
9490 {
9491 /* Start out with a pretty small number.
9492 Generally DWO files contain only one CU and maybe some TUs. */
9493 return htab_create_alloc_ex (3,
9494 hash_dwo_unit,
9495 eq_dwo_unit,
9496 NULL,
9497 &objfile->objfile_obstack,
9498 hashtab_obstack_allocate,
9499 dummy_obstack_deallocate);
9500 }
9501
9502 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9503
9504 struct create_dwo_cu_data
9505 {
9506 struct dwo_file *dwo_file;
9507 struct dwo_unit dwo_unit;
9508 };
9509
9510 /* die_reader_func for create_dwo_cu. */
9511
9512 static void
9513 create_dwo_cu_reader (const struct die_reader_specs *reader,
9514 const gdb_byte *info_ptr,
9515 struct die_info *comp_unit_die,
9516 int has_children,
9517 void *datap)
9518 {
9519 struct dwarf2_cu *cu = reader->cu;
9520 struct objfile *objfile = dwarf2_per_objfile->objfile;
9521 sect_offset offset = cu->per_cu->offset;
9522 struct dwarf2_section_info *section = cu->per_cu->section;
9523 struct create_dwo_cu_data *data = datap;
9524 struct dwo_file *dwo_file = data->dwo_file;
9525 struct dwo_unit *dwo_unit = &data->dwo_unit;
9526 struct attribute *attr;
9527
9528 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9529 if (attr == NULL)
9530 {
9531 complaint (&symfile_complaints,
9532 _("Dwarf Error: debug entry at offset 0x%x is missing"
9533 " its dwo_id [in module %s]"),
9534 offset.sect_off, dwo_file->dwo_name);
9535 return;
9536 }
9537
9538 dwo_unit->dwo_file = dwo_file;
9539 dwo_unit->signature = DW_UNSND (attr);
9540 dwo_unit->section = section;
9541 dwo_unit->offset = offset;
9542 dwo_unit->length = cu->per_cu->length;
9543
9544 if (dwarf_read_debug)
9545 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9546 offset.sect_off, hex_string (dwo_unit->signature));
9547 }
9548
9549 /* Create the dwo_unit for the lone CU in DWO_FILE.
9550 Note: This function processes DWO files only, not DWP files. */
9551
9552 static struct dwo_unit *
9553 create_dwo_cu (struct dwo_file *dwo_file)
9554 {
9555 struct objfile *objfile = dwarf2_per_objfile->objfile;
9556 struct dwarf2_section_info *section = &dwo_file->sections.info;
9557 bfd *abfd;
9558 htab_t cu_htab;
9559 const gdb_byte *info_ptr, *end_ptr;
9560 struct create_dwo_cu_data create_dwo_cu_data;
9561 struct dwo_unit *dwo_unit;
9562
9563 dwarf2_read_section (objfile, section);
9564 info_ptr = section->buffer;
9565
9566 if (info_ptr == NULL)
9567 return NULL;
9568
9569 /* We can't set abfd until now because the section may be empty or
9570 not present, in which case section->asection will be NULL. */
9571 abfd = get_section_bfd_owner (section);
9572
9573 if (dwarf_read_debug)
9574 {
9575 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9576 get_section_name (section),
9577 get_section_file_name (section));
9578 }
9579
9580 create_dwo_cu_data.dwo_file = dwo_file;
9581 dwo_unit = NULL;
9582
9583 end_ptr = info_ptr + section->size;
9584 while (info_ptr < end_ptr)
9585 {
9586 struct dwarf2_per_cu_data per_cu;
9587
9588 memset (&create_dwo_cu_data.dwo_unit, 0,
9589 sizeof (create_dwo_cu_data.dwo_unit));
9590 memset (&per_cu, 0, sizeof (per_cu));
9591 per_cu.objfile = objfile;
9592 per_cu.is_debug_types = 0;
9593 per_cu.offset.sect_off = info_ptr - section->buffer;
9594 per_cu.section = section;
9595
9596 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9597 create_dwo_cu_reader,
9598 &create_dwo_cu_data);
9599
9600 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9601 {
9602 /* If we've already found one, complain. We only support one
9603 because having more than one requires hacking the dwo_name of
9604 each to match, which is highly unlikely to happen. */
9605 if (dwo_unit != NULL)
9606 {
9607 complaint (&symfile_complaints,
9608 _("Multiple CUs in DWO file %s [in module %s]"),
9609 dwo_file->dwo_name, objfile_name (objfile));
9610 break;
9611 }
9612
9613 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9614 *dwo_unit = create_dwo_cu_data.dwo_unit;
9615 }
9616
9617 info_ptr += per_cu.length;
9618 }
9619
9620 return dwo_unit;
9621 }
9622
9623 /* DWP file .debug_{cu,tu}_index section format:
9624 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9625
9626 DWP Version 1:
9627
9628 Both index sections have the same format, and serve to map a 64-bit
9629 signature to a set of section numbers. Each section begins with a header,
9630 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9631 indexes, and a pool of 32-bit section numbers. The index sections will be
9632 aligned at 8-byte boundaries in the file.
9633
9634 The index section header consists of:
9635
9636 V, 32 bit version number
9637 -, 32 bits unused
9638 N, 32 bit number of compilation units or type units in the index
9639 M, 32 bit number of slots in the hash table
9640
9641 Numbers are recorded using the byte order of the application binary.
9642
9643 The hash table begins at offset 16 in the section, and consists of an array
9644 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9645 order of the application binary). Unused slots in the hash table are 0.
9646 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9647
9648 The parallel table begins immediately after the hash table
9649 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9650 array of 32-bit indexes (using the byte order of the application binary),
9651 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9652 table contains a 32-bit index into the pool of section numbers. For unused
9653 hash table slots, the corresponding entry in the parallel table will be 0.
9654
9655 The pool of section numbers begins immediately following the hash table
9656 (at offset 16 + 12 * M from the beginning of the section). The pool of
9657 section numbers consists of an array of 32-bit words (using the byte order
9658 of the application binary). Each item in the array is indexed starting
9659 from 0. The hash table entry provides the index of the first section
9660 number in the set. Additional section numbers in the set follow, and the
9661 set is terminated by a 0 entry (section number 0 is not used in ELF).
9662
9663 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9664 section must be the first entry in the set, and the .debug_abbrev.dwo must
9665 be the second entry. Other members of the set may follow in any order.
9666
9667 ---
9668
9669 DWP Version 2:
9670
9671 DWP Version 2 combines all the .debug_info, etc. sections into one,
9672 and the entries in the index tables are now offsets into these sections.
9673 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9674 section.
9675
9676 Index Section Contents:
9677 Header
9678 Hash Table of Signatures dwp_hash_table.hash_table
9679 Parallel Table of Indices dwp_hash_table.unit_table
9680 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9681 Table of Section Sizes dwp_hash_table.v2.sizes
9682
9683 The index section header consists of:
9684
9685 V, 32 bit version number
9686 L, 32 bit number of columns in the table of section offsets
9687 N, 32 bit number of compilation units or type units in the index
9688 M, 32 bit number of slots in the hash table
9689
9690 Numbers are recorded using the byte order of the application binary.
9691
9692 The hash table has the same format as version 1.
9693 The parallel table of indices has the same format as version 1,
9694 except that the entries are origin-1 indices into the table of sections
9695 offsets and the table of section sizes.
9696
9697 The table of offsets begins immediately following the parallel table
9698 (at offset 16 + 12 * M from the beginning of the section). The table is
9699 a two-dimensional array of 32-bit words (using the byte order of the
9700 application binary), with L columns and N+1 rows, in row-major order.
9701 Each row in the array is indexed starting from 0. The first row provides
9702 a key to the remaining rows: each column in this row provides an identifier
9703 for a debug section, and the offsets in the same column of subsequent rows
9704 refer to that section. The section identifiers are:
9705
9706 DW_SECT_INFO 1 .debug_info.dwo
9707 DW_SECT_TYPES 2 .debug_types.dwo
9708 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9709 DW_SECT_LINE 4 .debug_line.dwo
9710 DW_SECT_LOC 5 .debug_loc.dwo
9711 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9712 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9713 DW_SECT_MACRO 8 .debug_macro.dwo
9714
9715 The offsets provided by the CU and TU index sections are the base offsets
9716 for the contributions made by each CU or TU to the corresponding section
9717 in the package file. Each CU and TU header contains an abbrev_offset
9718 field, used to find the abbreviations table for that CU or TU within the
9719 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9720 be interpreted as relative to the base offset given in the index section.
9721 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9722 should be interpreted as relative to the base offset for .debug_line.dwo,
9723 and offsets into other debug sections obtained from DWARF attributes should
9724 also be interpreted as relative to the corresponding base offset.
9725
9726 The table of sizes begins immediately following the table of offsets.
9727 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9728 with L columns and N rows, in row-major order. Each row in the array is
9729 indexed starting from 1 (row 0 is shared by the two tables).
9730
9731 ---
9732
9733 Hash table lookup is handled the same in version 1 and 2:
9734
9735 We assume that N and M will not exceed 2^32 - 1.
9736 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9737
9738 Given a 64-bit compilation unit signature or a type signature S, an entry
9739 in the hash table is located as follows:
9740
9741 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9742 the low-order k bits all set to 1.
9743
9744 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9745
9746 3) If the hash table entry at index H matches the signature, use that
9747 entry. If the hash table entry at index H is unused (all zeroes),
9748 terminate the search: the signature is not present in the table.
9749
9750 4) Let H = (H + H') modulo M. Repeat at Step 3.
9751
9752 Because M > N and H' and M are relatively prime, the search is guaranteed
9753 to stop at an unused slot or find the match. */
9754
9755 /* Create a hash table to map DWO IDs to their CU/TU entry in
9756 .debug_{info,types}.dwo in DWP_FILE.
9757 Returns NULL if there isn't one.
9758 Note: This function processes DWP files only, not DWO files. */
9759
9760 static struct dwp_hash_table *
9761 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9762 {
9763 struct objfile *objfile = dwarf2_per_objfile->objfile;
9764 bfd *dbfd = dwp_file->dbfd;
9765 const gdb_byte *index_ptr, *index_end;
9766 struct dwarf2_section_info *index;
9767 uint32_t version, nr_columns, nr_units, nr_slots;
9768 struct dwp_hash_table *htab;
9769
9770 if (is_debug_types)
9771 index = &dwp_file->sections.tu_index;
9772 else
9773 index = &dwp_file->sections.cu_index;
9774
9775 if (dwarf2_section_empty_p (index))
9776 return NULL;
9777 dwarf2_read_section (objfile, index);
9778
9779 index_ptr = index->buffer;
9780 index_end = index_ptr + index->size;
9781
9782 version = read_4_bytes (dbfd, index_ptr);
9783 index_ptr += 4;
9784 if (version == 2)
9785 nr_columns = read_4_bytes (dbfd, index_ptr);
9786 else
9787 nr_columns = 0;
9788 index_ptr += 4;
9789 nr_units = read_4_bytes (dbfd, index_ptr);
9790 index_ptr += 4;
9791 nr_slots = read_4_bytes (dbfd, index_ptr);
9792 index_ptr += 4;
9793
9794 if (version != 1 && version != 2)
9795 {
9796 error (_("Dwarf Error: unsupported DWP file version (%s)"
9797 " [in module %s]"),
9798 pulongest (version), dwp_file->name);
9799 }
9800 if (nr_slots != (nr_slots & -nr_slots))
9801 {
9802 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9803 " is not power of 2 [in module %s]"),
9804 pulongest (nr_slots), dwp_file->name);
9805 }
9806
9807 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9808 htab->version = version;
9809 htab->nr_columns = nr_columns;
9810 htab->nr_units = nr_units;
9811 htab->nr_slots = nr_slots;
9812 htab->hash_table = index_ptr;
9813 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9814
9815 /* Exit early if the table is empty. */
9816 if (nr_slots == 0 || nr_units == 0
9817 || (version == 2 && nr_columns == 0))
9818 {
9819 /* All must be zero. */
9820 if (nr_slots != 0 || nr_units != 0
9821 || (version == 2 && nr_columns != 0))
9822 {
9823 complaint (&symfile_complaints,
9824 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9825 " all zero [in modules %s]"),
9826 dwp_file->name);
9827 }
9828 return htab;
9829 }
9830
9831 if (version == 1)
9832 {
9833 htab->section_pool.v1.indices =
9834 htab->unit_table + sizeof (uint32_t) * nr_slots;
9835 /* It's harder to decide whether the section is too small in v1.
9836 V1 is deprecated anyway so we punt. */
9837 }
9838 else
9839 {
9840 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9841 int *ids = htab->section_pool.v2.section_ids;
9842 /* Reverse map for error checking. */
9843 int ids_seen[DW_SECT_MAX + 1];
9844 int i;
9845
9846 if (nr_columns < 2)
9847 {
9848 error (_("Dwarf Error: bad DWP hash table, too few columns"
9849 " in section table [in module %s]"),
9850 dwp_file->name);
9851 }
9852 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9853 {
9854 error (_("Dwarf Error: bad DWP hash table, too many columns"
9855 " in section table [in module %s]"),
9856 dwp_file->name);
9857 }
9858 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9859 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9860 for (i = 0; i < nr_columns; ++i)
9861 {
9862 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9863
9864 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9865 {
9866 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9867 " in section table [in module %s]"),
9868 id, dwp_file->name);
9869 }
9870 if (ids_seen[id] != -1)
9871 {
9872 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9873 " id %d in section table [in module %s]"),
9874 id, dwp_file->name);
9875 }
9876 ids_seen[id] = i;
9877 ids[i] = id;
9878 }
9879 /* Must have exactly one info or types section. */
9880 if (((ids_seen[DW_SECT_INFO] != -1)
9881 + (ids_seen[DW_SECT_TYPES] != -1))
9882 != 1)
9883 {
9884 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9885 " DWO info/types section [in module %s]"),
9886 dwp_file->name);
9887 }
9888 /* Must have an abbrev section. */
9889 if (ids_seen[DW_SECT_ABBREV] == -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9892 " section [in module %s]"),
9893 dwp_file->name);
9894 }
9895 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9896 htab->section_pool.v2.sizes =
9897 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9898 * nr_units * nr_columns);
9899 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9900 * nr_units * nr_columns))
9901 > index_end)
9902 {
9903 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9904 " [in module %s]"),
9905 dwp_file->name);
9906 }
9907 }
9908
9909 return htab;
9910 }
9911
9912 /* Update SECTIONS with the data from SECTP.
9913
9914 This function is like the other "locate" section routines that are
9915 passed to bfd_map_over_sections, but in this context the sections to
9916 read comes from the DWP V1 hash table, not the full ELF section table.
9917
9918 The result is non-zero for success, or zero if an error was found. */
9919
9920 static int
9921 locate_v1_virtual_dwo_sections (asection *sectp,
9922 struct virtual_v1_dwo_sections *sections)
9923 {
9924 const struct dwop_section_names *names = &dwop_section_names;
9925
9926 if (section_is_p (sectp->name, &names->abbrev_dwo))
9927 {
9928 /* There can be only one. */
9929 if (sections->abbrev.s.asection != NULL)
9930 return 0;
9931 sections->abbrev.s.asection = sectp;
9932 sections->abbrev.size = bfd_get_section_size (sectp);
9933 }
9934 else if (section_is_p (sectp->name, &names->info_dwo)
9935 || section_is_p (sectp->name, &names->types_dwo))
9936 {
9937 /* There can be only one. */
9938 if (sections->info_or_types.s.asection != NULL)
9939 return 0;
9940 sections->info_or_types.s.asection = sectp;
9941 sections->info_or_types.size = bfd_get_section_size (sectp);
9942 }
9943 else if (section_is_p (sectp->name, &names->line_dwo))
9944 {
9945 /* There can be only one. */
9946 if (sections->line.s.asection != NULL)
9947 return 0;
9948 sections->line.s.asection = sectp;
9949 sections->line.size = bfd_get_section_size (sectp);
9950 }
9951 else if (section_is_p (sectp->name, &names->loc_dwo))
9952 {
9953 /* There can be only one. */
9954 if (sections->loc.s.asection != NULL)
9955 return 0;
9956 sections->loc.s.asection = sectp;
9957 sections->loc.size = bfd_get_section_size (sectp);
9958 }
9959 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9960 {
9961 /* There can be only one. */
9962 if (sections->macinfo.s.asection != NULL)
9963 return 0;
9964 sections->macinfo.s.asection = sectp;
9965 sections->macinfo.size = bfd_get_section_size (sectp);
9966 }
9967 else if (section_is_p (sectp->name, &names->macro_dwo))
9968 {
9969 /* There can be only one. */
9970 if (sections->macro.s.asection != NULL)
9971 return 0;
9972 sections->macro.s.asection = sectp;
9973 sections->macro.size = bfd_get_section_size (sectp);
9974 }
9975 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9976 {
9977 /* There can be only one. */
9978 if (sections->str_offsets.s.asection != NULL)
9979 return 0;
9980 sections->str_offsets.s.asection = sectp;
9981 sections->str_offsets.size = bfd_get_section_size (sectp);
9982 }
9983 else
9984 {
9985 /* No other kind of section is valid. */
9986 return 0;
9987 }
9988
9989 return 1;
9990 }
9991
9992 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9993 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9994 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9995 This is for DWP version 1 files. */
9996
9997 static struct dwo_unit *
9998 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9999 uint32_t unit_index,
10000 const char *comp_dir,
10001 ULONGEST signature, int is_debug_types)
10002 {
10003 struct objfile *objfile = dwarf2_per_objfile->objfile;
10004 const struct dwp_hash_table *dwp_htab =
10005 is_debug_types ? dwp_file->tus : dwp_file->cus;
10006 bfd *dbfd = dwp_file->dbfd;
10007 const char *kind = is_debug_types ? "TU" : "CU";
10008 struct dwo_file *dwo_file;
10009 struct dwo_unit *dwo_unit;
10010 struct virtual_v1_dwo_sections sections;
10011 void **dwo_file_slot;
10012 char *virtual_dwo_name;
10013 struct dwarf2_section_info *cutu;
10014 struct cleanup *cleanups;
10015 int i;
10016
10017 gdb_assert (dwp_file->version == 1);
10018
10019 if (dwarf_read_debug)
10020 {
10021 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10022 kind,
10023 pulongest (unit_index), hex_string (signature),
10024 dwp_file->name);
10025 }
10026
10027 /* Fetch the sections of this DWO unit.
10028 Put a limit on the number of sections we look for so that bad data
10029 doesn't cause us to loop forever. */
10030
10031 #define MAX_NR_V1_DWO_SECTIONS \
10032 (1 /* .debug_info or .debug_types */ \
10033 + 1 /* .debug_abbrev */ \
10034 + 1 /* .debug_line */ \
10035 + 1 /* .debug_loc */ \
10036 + 1 /* .debug_str_offsets */ \
10037 + 1 /* .debug_macro or .debug_macinfo */ \
10038 + 1 /* trailing zero */)
10039
10040 memset (&sections, 0, sizeof (sections));
10041 cleanups = make_cleanup (null_cleanup, 0);
10042
10043 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10044 {
10045 asection *sectp;
10046 uint32_t section_nr =
10047 read_4_bytes (dbfd,
10048 dwp_htab->section_pool.v1.indices
10049 + (unit_index + i) * sizeof (uint32_t));
10050
10051 if (section_nr == 0)
10052 break;
10053 if (section_nr >= dwp_file->num_sections)
10054 {
10055 error (_("Dwarf Error: bad DWP hash table, section number too large"
10056 " [in module %s]"),
10057 dwp_file->name);
10058 }
10059
10060 sectp = dwp_file->elf_sections[section_nr];
10061 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10062 {
10063 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10064 " [in module %s]"),
10065 dwp_file->name);
10066 }
10067 }
10068
10069 if (i < 2
10070 || dwarf2_section_empty_p (&sections.info_or_types)
10071 || dwarf2_section_empty_p (&sections.abbrev))
10072 {
10073 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10074 " [in module %s]"),
10075 dwp_file->name);
10076 }
10077 if (i == MAX_NR_V1_DWO_SECTIONS)
10078 {
10079 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10080 " [in module %s]"),
10081 dwp_file->name);
10082 }
10083
10084 /* It's easier for the rest of the code if we fake a struct dwo_file and
10085 have dwo_unit "live" in that. At least for now.
10086
10087 The DWP file can be made up of a random collection of CUs and TUs.
10088 However, for each CU + set of TUs that came from the same original DWO
10089 file, we can combine them back into a virtual DWO file to save space
10090 (fewer struct dwo_file objects to allocate). Remember that for really
10091 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10092
10093 virtual_dwo_name =
10094 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10095 get_section_id (&sections.abbrev),
10096 get_section_id (&sections.line),
10097 get_section_id (&sections.loc),
10098 get_section_id (&sections.str_offsets));
10099 make_cleanup (xfree, virtual_dwo_name);
10100 /* Can we use an existing virtual DWO file? */
10101 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10102 /* Create one if necessary. */
10103 if (*dwo_file_slot == NULL)
10104 {
10105 if (dwarf_read_debug)
10106 {
10107 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10108 virtual_dwo_name);
10109 }
10110 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10111 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10112 virtual_dwo_name,
10113 strlen (virtual_dwo_name));
10114 dwo_file->comp_dir = comp_dir;
10115 dwo_file->sections.abbrev = sections.abbrev;
10116 dwo_file->sections.line = sections.line;
10117 dwo_file->sections.loc = sections.loc;
10118 dwo_file->sections.macinfo = sections.macinfo;
10119 dwo_file->sections.macro = sections.macro;
10120 dwo_file->sections.str_offsets = sections.str_offsets;
10121 /* The "str" section is global to the entire DWP file. */
10122 dwo_file->sections.str = dwp_file->sections.str;
10123 /* The info or types section is assigned below to dwo_unit,
10124 there's no need to record it in dwo_file.
10125 Also, we can't simply record type sections in dwo_file because
10126 we record a pointer into the vector in dwo_unit. As we collect more
10127 types we'll grow the vector and eventually have to reallocate space
10128 for it, invalidating all copies of pointers into the previous
10129 contents. */
10130 *dwo_file_slot = dwo_file;
10131 }
10132 else
10133 {
10134 if (dwarf_read_debug)
10135 {
10136 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10137 virtual_dwo_name);
10138 }
10139 dwo_file = *dwo_file_slot;
10140 }
10141 do_cleanups (cleanups);
10142
10143 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10144 dwo_unit->dwo_file = dwo_file;
10145 dwo_unit->signature = signature;
10146 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10147 sizeof (struct dwarf2_section_info));
10148 *dwo_unit->section = sections.info_or_types;
10149 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10150
10151 return dwo_unit;
10152 }
10153
10154 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10155 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10156 piece within that section used by a TU/CU, return a virtual section
10157 of just that piece. */
10158
10159 static struct dwarf2_section_info
10160 create_dwp_v2_section (struct dwarf2_section_info *section,
10161 bfd_size_type offset, bfd_size_type size)
10162 {
10163 struct dwarf2_section_info result;
10164 asection *sectp;
10165
10166 gdb_assert (section != NULL);
10167 gdb_assert (!section->is_virtual);
10168
10169 memset (&result, 0, sizeof (result));
10170 result.s.containing_section = section;
10171 result.is_virtual = 1;
10172
10173 if (size == 0)
10174 return result;
10175
10176 sectp = get_section_bfd_section (section);
10177
10178 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10179 bounds of the real section. This is a pretty-rare event, so just
10180 flag an error (easier) instead of a warning and trying to cope. */
10181 if (sectp == NULL
10182 || offset + size > bfd_get_section_size (sectp))
10183 {
10184 bfd *abfd = sectp->owner;
10185
10186 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10187 " in section %s [in module %s]"),
10188 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10189 objfile_name (dwarf2_per_objfile->objfile));
10190 }
10191
10192 result.virtual_offset = offset;
10193 result.size = size;
10194 return result;
10195 }
10196
10197 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10198 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10199 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10200 This is for DWP version 2 files. */
10201
10202 static struct dwo_unit *
10203 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10204 uint32_t unit_index,
10205 const char *comp_dir,
10206 ULONGEST signature, int is_debug_types)
10207 {
10208 struct objfile *objfile = dwarf2_per_objfile->objfile;
10209 const struct dwp_hash_table *dwp_htab =
10210 is_debug_types ? dwp_file->tus : dwp_file->cus;
10211 bfd *dbfd = dwp_file->dbfd;
10212 const char *kind = is_debug_types ? "TU" : "CU";
10213 struct dwo_file *dwo_file;
10214 struct dwo_unit *dwo_unit;
10215 struct virtual_v2_dwo_sections sections;
10216 void **dwo_file_slot;
10217 char *virtual_dwo_name;
10218 struct dwarf2_section_info *cutu;
10219 struct cleanup *cleanups;
10220 int i;
10221
10222 gdb_assert (dwp_file->version == 2);
10223
10224 if (dwarf_read_debug)
10225 {
10226 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10227 kind,
10228 pulongest (unit_index), hex_string (signature),
10229 dwp_file->name);
10230 }
10231
10232 /* Fetch the section offsets of this DWO unit. */
10233
10234 memset (&sections, 0, sizeof (sections));
10235 cleanups = make_cleanup (null_cleanup, 0);
10236
10237 for (i = 0; i < dwp_htab->nr_columns; ++i)
10238 {
10239 uint32_t offset = read_4_bytes (dbfd,
10240 dwp_htab->section_pool.v2.offsets
10241 + (((unit_index - 1) * dwp_htab->nr_columns
10242 + i)
10243 * sizeof (uint32_t)));
10244 uint32_t size = read_4_bytes (dbfd,
10245 dwp_htab->section_pool.v2.sizes
10246 + (((unit_index - 1) * dwp_htab->nr_columns
10247 + i)
10248 * sizeof (uint32_t)));
10249
10250 switch (dwp_htab->section_pool.v2.section_ids[i])
10251 {
10252 case DW_SECT_INFO:
10253 case DW_SECT_TYPES:
10254 sections.info_or_types_offset = offset;
10255 sections.info_or_types_size = size;
10256 break;
10257 case DW_SECT_ABBREV:
10258 sections.abbrev_offset = offset;
10259 sections.abbrev_size = size;
10260 break;
10261 case DW_SECT_LINE:
10262 sections.line_offset = offset;
10263 sections.line_size = size;
10264 break;
10265 case DW_SECT_LOC:
10266 sections.loc_offset = offset;
10267 sections.loc_size = size;
10268 break;
10269 case DW_SECT_STR_OFFSETS:
10270 sections.str_offsets_offset = offset;
10271 sections.str_offsets_size = size;
10272 break;
10273 case DW_SECT_MACINFO:
10274 sections.macinfo_offset = offset;
10275 sections.macinfo_size = size;
10276 break;
10277 case DW_SECT_MACRO:
10278 sections.macro_offset = offset;
10279 sections.macro_size = size;
10280 break;
10281 }
10282 }
10283
10284 /* It's easier for the rest of the code if we fake a struct dwo_file and
10285 have dwo_unit "live" in that. At least for now.
10286
10287 The DWP file can be made up of a random collection of CUs and TUs.
10288 However, for each CU + set of TUs that came from the same original DWO
10289 file, we can combine them back into a virtual DWO file to save space
10290 (fewer struct dwo_file objects to allocate). Remember that for really
10291 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10292
10293 virtual_dwo_name =
10294 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10295 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10296 (long) (sections.line_size ? sections.line_offset : 0),
10297 (long) (sections.loc_size ? sections.loc_offset : 0),
10298 (long) (sections.str_offsets_size
10299 ? sections.str_offsets_offset : 0));
10300 make_cleanup (xfree, virtual_dwo_name);
10301 /* Can we use an existing virtual DWO file? */
10302 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10303 /* Create one if necessary. */
10304 if (*dwo_file_slot == NULL)
10305 {
10306 if (dwarf_read_debug)
10307 {
10308 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10309 virtual_dwo_name);
10310 }
10311 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10312 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10313 virtual_dwo_name,
10314 strlen (virtual_dwo_name));
10315 dwo_file->comp_dir = comp_dir;
10316 dwo_file->sections.abbrev =
10317 create_dwp_v2_section (&dwp_file->sections.abbrev,
10318 sections.abbrev_offset, sections.abbrev_size);
10319 dwo_file->sections.line =
10320 create_dwp_v2_section (&dwp_file->sections.line,
10321 sections.line_offset, sections.line_size);
10322 dwo_file->sections.loc =
10323 create_dwp_v2_section (&dwp_file->sections.loc,
10324 sections.loc_offset, sections.loc_size);
10325 dwo_file->sections.macinfo =
10326 create_dwp_v2_section (&dwp_file->sections.macinfo,
10327 sections.macinfo_offset, sections.macinfo_size);
10328 dwo_file->sections.macro =
10329 create_dwp_v2_section (&dwp_file->sections.macro,
10330 sections.macro_offset, sections.macro_size);
10331 dwo_file->sections.str_offsets =
10332 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10333 sections.str_offsets_offset,
10334 sections.str_offsets_size);
10335 /* The "str" section is global to the entire DWP file. */
10336 dwo_file->sections.str = dwp_file->sections.str;
10337 /* The info or types section is assigned below to dwo_unit,
10338 there's no need to record it in dwo_file.
10339 Also, we can't simply record type sections in dwo_file because
10340 we record a pointer into the vector in dwo_unit. As we collect more
10341 types we'll grow the vector and eventually have to reallocate space
10342 for it, invalidating all copies of pointers into the previous
10343 contents. */
10344 *dwo_file_slot = dwo_file;
10345 }
10346 else
10347 {
10348 if (dwarf_read_debug)
10349 {
10350 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10351 virtual_dwo_name);
10352 }
10353 dwo_file = *dwo_file_slot;
10354 }
10355 do_cleanups (cleanups);
10356
10357 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10358 dwo_unit->dwo_file = dwo_file;
10359 dwo_unit->signature = signature;
10360 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10361 sizeof (struct dwarf2_section_info));
10362 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10363 ? &dwp_file->sections.types
10364 : &dwp_file->sections.info,
10365 sections.info_or_types_offset,
10366 sections.info_or_types_size);
10367 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10368
10369 return dwo_unit;
10370 }
10371
10372 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10373 Returns NULL if the signature isn't found. */
10374
10375 static struct dwo_unit *
10376 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10377 ULONGEST signature, int is_debug_types)
10378 {
10379 const struct dwp_hash_table *dwp_htab =
10380 is_debug_types ? dwp_file->tus : dwp_file->cus;
10381 bfd *dbfd = dwp_file->dbfd;
10382 uint32_t mask = dwp_htab->nr_slots - 1;
10383 uint32_t hash = signature & mask;
10384 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10385 unsigned int i;
10386 void **slot;
10387 struct dwo_unit find_dwo_cu, *dwo_cu;
10388
10389 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10390 find_dwo_cu.signature = signature;
10391 slot = htab_find_slot (is_debug_types
10392 ? dwp_file->loaded_tus
10393 : dwp_file->loaded_cus,
10394 &find_dwo_cu, INSERT);
10395
10396 if (*slot != NULL)
10397 return *slot;
10398
10399 /* Use a for loop so that we don't loop forever on bad debug info. */
10400 for (i = 0; i < dwp_htab->nr_slots; ++i)
10401 {
10402 ULONGEST signature_in_table;
10403
10404 signature_in_table =
10405 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10406 if (signature_in_table == signature)
10407 {
10408 uint32_t unit_index =
10409 read_4_bytes (dbfd,
10410 dwp_htab->unit_table + hash * sizeof (uint32_t));
10411
10412 if (dwp_file->version == 1)
10413 {
10414 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10415 comp_dir, signature,
10416 is_debug_types);
10417 }
10418 else
10419 {
10420 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10421 comp_dir, signature,
10422 is_debug_types);
10423 }
10424 return *slot;
10425 }
10426 if (signature_in_table == 0)
10427 return NULL;
10428 hash = (hash + hash2) & mask;
10429 }
10430
10431 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10432 " [in module %s]"),
10433 dwp_file->name);
10434 }
10435
10436 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10437 Open the file specified by FILE_NAME and hand it off to BFD for
10438 preliminary analysis. Return a newly initialized bfd *, which
10439 includes a canonicalized copy of FILE_NAME.
10440 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10441 SEARCH_CWD is true if the current directory is to be searched.
10442 It will be searched before debug-file-directory.
10443 If successful, the file is added to the bfd include table of the
10444 objfile's bfd (see gdb_bfd_record_inclusion).
10445 If unable to find/open the file, return NULL.
10446 NOTE: This function is derived from symfile_bfd_open. */
10447
10448 static bfd *
10449 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10450 {
10451 bfd *sym_bfd;
10452 int desc, flags;
10453 char *absolute_name;
10454 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10455 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10456 to debug_file_directory. */
10457 char *search_path;
10458 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10459
10460 if (search_cwd)
10461 {
10462 if (*debug_file_directory != '\0')
10463 search_path = concat (".", dirname_separator_string,
10464 debug_file_directory, NULL);
10465 else
10466 search_path = xstrdup (".");
10467 }
10468 else
10469 search_path = xstrdup (debug_file_directory);
10470
10471 flags = OPF_RETURN_REALPATH;
10472 if (is_dwp)
10473 flags |= OPF_SEARCH_IN_PATH;
10474 desc = openp (search_path, flags, file_name,
10475 O_RDONLY | O_BINARY, &absolute_name);
10476 xfree (search_path);
10477 if (desc < 0)
10478 return NULL;
10479
10480 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10481 xfree (absolute_name);
10482 if (sym_bfd == NULL)
10483 return NULL;
10484 bfd_set_cacheable (sym_bfd, 1);
10485
10486 if (!bfd_check_format (sym_bfd, bfd_object))
10487 {
10488 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10489 return NULL;
10490 }
10491
10492 /* Success. Record the bfd as having been included by the objfile's bfd.
10493 This is important because things like demangled_names_hash lives in the
10494 objfile's per_bfd space and may have references to things like symbol
10495 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10496 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10497
10498 return sym_bfd;
10499 }
10500
10501 /* Try to open DWO file FILE_NAME.
10502 COMP_DIR is the DW_AT_comp_dir attribute.
10503 The result is the bfd handle of the file.
10504 If there is a problem finding or opening the file, return NULL.
10505 Upon success, the canonicalized path of the file is stored in the bfd,
10506 same as symfile_bfd_open. */
10507
10508 static bfd *
10509 open_dwo_file (const char *file_name, const char *comp_dir)
10510 {
10511 bfd *abfd;
10512
10513 if (IS_ABSOLUTE_PATH (file_name))
10514 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10515
10516 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10517
10518 if (comp_dir != NULL)
10519 {
10520 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10521
10522 /* NOTE: If comp_dir is a relative path, this will also try the
10523 search path, which seems useful. */
10524 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10525 xfree (path_to_try);
10526 if (abfd != NULL)
10527 return abfd;
10528 }
10529
10530 /* That didn't work, try debug-file-directory, which, despite its name,
10531 is a list of paths. */
10532
10533 if (*debug_file_directory == '\0')
10534 return NULL;
10535
10536 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10537 }
10538
10539 /* This function is mapped across the sections and remembers the offset and
10540 size of each of the DWO debugging sections we are interested in. */
10541
10542 static void
10543 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10544 {
10545 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10546 const struct dwop_section_names *names = &dwop_section_names;
10547
10548 if (section_is_p (sectp->name, &names->abbrev_dwo))
10549 {
10550 dwo_sections->abbrev.s.asection = sectp;
10551 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10552 }
10553 else if (section_is_p (sectp->name, &names->info_dwo))
10554 {
10555 dwo_sections->info.s.asection = sectp;
10556 dwo_sections->info.size = bfd_get_section_size (sectp);
10557 }
10558 else if (section_is_p (sectp->name, &names->line_dwo))
10559 {
10560 dwo_sections->line.s.asection = sectp;
10561 dwo_sections->line.size = bfd_get_section_size (sectp);
10562 }
10563 else if (section_is_p (sectp->name, &names->loc_dwo))
10564 {
10565 dwo_sections->loc.s.asection = sectp;
10566 dwo_sections->loc.size = bfd_get_section_size (sectp);
10567 }
10568 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10569 {
10570 dwo_sections->macinfo.s.asection = sectp;
10571 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10572 }
10573 else if (section_is_p (sectp->name, &names->macro_dwo))
10574 {
10575 dwo_sections->macro.s.asection = sectp;
10576 dwo_sections->macro.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->str_dwo))
10579 {
10580 dwo_sections->str.s.asection = sectp;
10581 dwo_sections->str.size = bfd_get_section_size (sectp);
10582 }
10583 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10584 {
10585 dwo_sections->str_offsets.s.asection = sectp;
10586 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10587 }
10588 else if (section_is_p (sectp->name, &names->types_dwo))
10589 {
10590 struct dwarf2_section_info type_section;
10591
10592 memset (&type_section, 0, sizeof (type_section));
10593 type_section.s.asection = sectp;
10594 type_section.size = bfd_get_section_size (sectp);
10595 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10596 &type_section);
10597 }
10598 }
10599
10600 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10601 by PER_CU. This is for the non-DWP case.
10602 The result is NULL if DWO_NAME can't be found. */
10603
10604 static struct dwo_file *
10605 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10606 const char *dwo_name, const char *comp_dir)
10607 {
10608 struct objfile *objfile = dwarf2_per_objfile->objfile;
10609 struct dwo_file *dwo_file;
10610 bfd *dbfd;
10611 struct cleanup *cleanups;
10612
10613 dbfd = open_dwo_file (dwo_name, comp_dir);
10614 if (dbfd == NULL)
10615 {
10616 if (dwarf_read_debug)
10617 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10618 return NULL;
10619 }
10620 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10621 dwo_file->dwo_name = dwo_name;
10622 dwo_file->comp_dir = comp_dir;
10623 dwo_file->dbfd = dbfd;
10624
10625 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10626
10627 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10628
10629 dwo_file->cu = create_dwo_cu (dwo_file);
10630
10631 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10632 dwo_file->sections.types);
10633
10634 discard_cleanups (cleanups);
10635
10636 if (dwarf_read_debug)
10637 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10638
10639 return dwo_file;
10640 }
10641
10642 /* This function is mapped across the sections and remembers the offset and
10643 size of each of the DWP debugging sections common to version 1 and 2 that
10644 we are interested in. */
10645
10646 static void
10647 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10648 void *dwp_file_ptr)
10649 {
10650 struct dwp_file *dwp_file = dwp_file_ptr;
10651 const struct dwop_section_names *names = &dwop_section_names;
10652 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10653
10654 /* Record the ELF section number for later lookup: this is what the
10655 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10656 gdb_assert (elf_section_nr < dwp_file->num_sections);
10657 dwp_file->elf_sections[elf_section_nr] = sectp;
10658
10659 /* Look for specific sections that we need. */
10660 if (section_is_p (sectp->name, &names->str_dwo))
10661 {
10662 dwp_file->sections.str.s.asection = sectp;
10663 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10664 }
10665 else if (section_is_p (sectp->name, &names->cu_index))
10666 {
10667 dwp_file->sections.cu_index.s.asection = sectp;
10668 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10669 }
10670 else if (section_is_p (sectp->name, &names->tu_index))
10671 {
10672 dwp_file->sections.tu_index.s.asection = sectp;
10673 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10674 }
10675 }
10676
10677 /* This function is mapped across the sections and remembers the offset and
10678 size of each of the DWP version 2 debugging sections that we are interested
10679 in. This is split into a separate function because we don't know if we
10680 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10681
10682 static void
10683 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10684 {
10685 struct dwp_file *dwp_file = dwp_file_ptr;
10686 const struct dwop_section_names *names = &dwop_section_names;
10687 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10688
10689 /* Record the ELF section number for later lookup: this is what the
10690 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10691 gdb_assert (elf_section_nr < dwp_file->num_sections);
10692 dwp_file->elf_sections[elf_section_nr] = sectp;
10693
10694 /* Look for specific sections that we need. */
10695 if (section_is_p (sectp->name, &names->abbrev_dwo))
10696 {
10697 dwp_file->sections.abbrev.s.asection = sectp;
10698 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10699 }
10700 else if (section_is_p (sectp->name, &names->info_dwo))
10701 {
10702 dwp_file->sections.info.s.asection = sectp;
10703 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10704 }
10705 else if (section_is_p (sectp->name, &names->line_dwo))
10706 {
10707 dwp_file->sections.line.s.asection = sectp;
10708 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10709 }
10710 else if (section_is_p (sectp->name, &names->loc_dwo))
10711 {
10712 dwp_file->sections.loc.s.asection = sectp;
10713 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10714 }
10715 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10716 {
10717 dwp_file->sections.macinfo.s.asection = sectp;
10718 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10719 }
10720 else if (section_is_p (sectp->name, &names->macro_dwo))
10721 {
10722 dwp_file->sections.macro.s.asection = sectp;
10723 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10724 }
10725 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10726 {
10727 dwp_file->sections.str_offsets.s.asection = sectp;
10728 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10729 }
10730 else if (section_is_p (sectp->name, &names->types_dwo))
10731 {
10732 dwp_file->sections.types.s.asection = sectp;
10733 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10734 }
10735 }
10736
10737 /* Hash function for dwp_file loaded CUs/TUs. */
10738
10739 static hashval_t
10740 hash_dwp_loaded_cutus (const void *item)
10741 {
10742 const struct dwo_unit *dwo_unit = item;
10743
10744 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10745 return dwo_unit->signature;
10746 }
10747
10748 /* Equality function for dwp_file loaded CUs/TUs. */
10749
10750 static int
10751 eq_dwp_loaded_cutus (const void *a, const void *b)
10752 {
10753 const struct dwo_unit *dua = a;
10754 const struct dwo_unit *dub = b;
10755
10756 return dua->signature == dub->signature;
10757 }
10758
10759 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10760
10761 static htab_t
10762 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10763 {
10764 return htab_create_alloc_ex (3,
10765 hash_dwp_loaded_cutus,
10766 eq_dwp_loaded_cutus,
10767 NULL,
10768 &objfile->objfile_obstack,
10769 hashtab_obstack_allocate,
10770 dummy_obstack_deallocate);
10771 }
10772
10773 /* Try to open DWP file FILE_NAME.
10774 The result is the bfd handle of the file.
10775 If there is a problem finding or opening the file, return NULL.
10776 Upon success, the canonicalized path of the file is stored in the bfd,
10777 same as symfile_bfd_open. */
10778
10779 static bfd *
10780 open_dwp_file (const char *file_name)
10781 {
10782 bfd *abfd;
10783
10784 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10785 if (abfd != NULL)
10786 return abfd;
10787
10788 /* Work around upstream bug 15652.
10789 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10790 [Whether that's a "bug" is debatable, but it is getting in our way.]
10791 We have no real idea where the dwp file is, because gdb's realpath-ing
10792 of the executable's path may have discarded the needed info.
10793 [IWBN if the dwp file name was recorded in the executable, akin to
10794 .gnu_debuglink, but that doesn't exist yet.]
10795 Strip the directory from FILE_NAME and search again. */
10796 if (*debug_file_directory != '\0')
10797 {
10798 /* Don't implicitly search the current directory here.
10799 If the user wants to search "." to handle this case,
10800 it must be added to debug-file-directory. */
10801 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10802 0 /*search_cwd*/);
10803 }
10804
10805 return NULL;
10806 }
10807
10808 /* Initialize the use of the DWP file for the current objfile.
10809 By convention the name of the DWP file is ${objfile}.dwp.
10810 The result is NULL if it can't be found. */
10811
10812 static struct dwp_file *
10813 open_and_init_dwp_file (void)
10814 {
10815 struct objfile *objfile = dwarf2_per_objfile->objfile;
10816 struct dwp_file *dwp_file;
10817 char *dwp_name;
10818 bfd *dbfd;
10819 struct cleanup *cleanups;
10820
10821 /* Try to find first .dwp for the binary file before any symbolic links
10822 resolving. */
10823 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10824 cleanups = make_cleanup (xfree, dwp_name);
10825
10826 dbfd = open_dwp_file (dwp_name);
10827 if (dbfd == NULL
10828 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10829 {
10830 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10831 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10832 make_cleanup (xfree, dwp_name);
10833 dbfd = open_dwp_file (dwp_name);
10834 }
10835
10836 if (dbfd == NULL)
10837 {
10838 if (dwarf_read_debug)
10839 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10840 do_cleanups (cleanups);
10841 return NULL;
10842 }
10843 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10844 dwp_file->name = bfd_get_filename (dbfd);
10845 dwp_file->dbfd = dbfd;
10846 do_cleanups (cleanups);
10847
10848 /* +1: section 0 is unused */
10849 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10850 dwp_file->elf_sections =
10851 OBSTACK_CALLOC (&objfile->objfile_obstack,
10852 dwp_file->num_sections, asection *);
10853
10854 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10855
10856 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10857
10858 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10859
10860 /* The DWP file version is stored in the hash table. Oh well. */
10861 if (dwp_file->cus->version != dwp_file->tus->version)
10862 {
10863 /* Technically speaking, we should try to limp along, but this is
10864 pretty bizarre. We use pulongest here because that's the established
10865 portability solution (e.g, we cannot use %u for uint32_t). */
10866 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10867 " TU version %s [in DWP file %s]"),
10868 pulongest (dwp_file->cus->version),
10869 pulongest (dwp_file->tus->version), dwp_name);
10870 }
10871 dwp_file->version = dwp_file->cus->version;
10872
10873 if (dwp_file->version == 2)
10874 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10875
10876 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10877 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10878
10879 if (dwarf_read_debug)
10880 {
10881 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10882 fprintf_unfiltered (gdb_stdlog,
10883 " %s CUs, %s TUs\n",
10884 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10885 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10886 }
10887
10888 return dwp_file;
10889 }
10890
10891 /* Wrapper around open_and_init_dwp_file, only open it once. */
10892
10893 static struct dwp_file *
10894 get_dwp_file (void)
10895 {
10896 if (! dwarf2_per_objfile->dwp_checked)
10897 {
10898 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10899 dwarf2_per_objfile->dwp_checked = 1;
10900 }
10901 return dwarf2_per_objfile->dwp_file;
10902 }
10903
10904 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10905 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10906 or in the DWP file for the objfile, referenced by THIS_UNIT.
10907 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10908 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10909
10910 This is called, for example, when wanting to read a variable with a
10911 complex location. Therefore we don't want to do file i/o for every call.
10912 Therefore we don't want to look for a DWO file on every call.
10913 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10914 then we check if we've already seen DWO_NAME, and only THEN do we check
10915 for a DWO file.
10916
10917 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10918 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10919
10920 static struct dwo_unit *
10921 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10922 const char *dwo_name, const char *comp_dir,
10923 ULONGEST signature, int is_debug_types)
10924 {
10925 struct objfile *objfile = dwarf2_per_objfile->objfile;
10926 const char *kind = is_debug_types ? "TU" : "CU";
10927 void **dwo_file_slot;
10928 struct dwo_file *dwo_file;
10929 struct dwp_file *dwp_file;
10930
10931 /* First see if there's a DWP file.
10932 If we have a DWP file but didn't find the DWO inside it, don't
10933 look for the original DWO file. It makes gdb behave differently
10934 depending on whether one is debugging in the build tree. */
10935
10936 dwp_file = get_dwp_file ();
10937 if (dwp_file != NULL)
10938 {
10939 const struct dwp_hash_table *dwp_htab =
10940 is_debug_types ? dwp_file->tus : dwp_file->cus;
10941
10942 if (dwp_htab != NULL)
10943 {
10944 struct dwo_unit *dwo_cutu =
10945 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10946 signature, is_debug_types);
10947
10948 if (dwo_cutu != NULL)
10949 {
10950 if (dwarf_read_debug)
10951 {
10952 fprintf_unfiltered (gdb_stdlog,
10953 "Virtual DWO %s %s found: @%s\n",
10954 kind, hex_string (signature),
10955 host_address_to_string (dwo_cutu));
10956 }
10957 return dwo_cutu;
10958 }
10959 }
10960 }
10961 else
10962 {
10963 /* No DWP file, look for the DWO file. */
10964
10965 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10966 if (*dwo_file_slot == NULL)
10967 {
10968 /* Read in the file and build a table of the CUs/TUs it contains. */
10969 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10970 }
10971 /* NOTE: This will be NULL if unable to open the file. */
10972 dwo_file = *dwo_file_slot;
10973
10974 if (dwo_file != NULL)
10975 {
10976 struct dwo_unit *dwo_cutu = NULL;
10977
10978 if (is_debug_types && dwo_file->tus)
10979 {
10980 struct dwo_unit find_dwo_cutu;
10981
10982 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10983 find_dwo_cutu.signature = signature;
10984 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10985 }
10986 else if (!is_debug_types && dwo_file->cu)
10987 {
10988 if (signature == dwo_file->cu->signature)
10989 dwo_cutu = dwo_file->cu;
10990 }
10991
10992 if (dwo_cutu != NULL)
10993 {
10994 if (dwarf_read_debug)
10995 {
10996 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10997 kind, dwo_name, hex_string (signature),
10998 host_address_to_string (dwo_cutu));
10999 }
11000 return dwo_cutu;
11001 }
11002 }
11003 }
11004
11005 /* We didn't find it. This could mean a dwo_id mismatch, or
11006 someone deleted the DWO/DWP file, or the search path isn't set up
11007 correctly to find the file. */
11008
11009 if (dwarf_read_debug)
11010 {
11011 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11012 kind, dwo_name, hex_string (signature));
11013 }
11014
11015 /* This is a warning and not a complaint because it can be caused by
11016 pilot error (e.g., user accidentally deleting the DWO). */
11017 {
11018 /* Print the name of the DWP file if we looked there, helps the user
11019 better diagnose the problem. */
11020 char *dwp_text = NULL;
11021 struct cleanup *cleanups;
11022
11023 if (dwp_file != NULL)
11024 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11025 cleanups = make_cleanup (xfree, dwp_text);
11026
11027 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11028 " [in module %s]"),
11029 kind, dwo_name, hex_string (signature),
11030 dwp_text != NULL ? dwp_text : "",
11031 this_unit->is_debug_types ? "TU" : "CU",
11032 this_unit->offset.sect_off, objfile_name (objfile));
11033
11034 do_cleanups (cleanups);
11035 }
11036 return NULL;
11037 }
11038
11039 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11040 See lookup_dwo_cutu_unit for details. */
11041
11042 static struct dwo_unit *
11043 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11044 const char *dwo_name, const char *comp_dir,
11045 ULONGEST signature)
11046 {
11047 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11048 }
11049
11050 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11051 See lookup_dwo_cutu_unit for details. */
11052
11053 static struct dwo_unit *
11054 lookup_dwo_type_unit (struct signatured_type *this_tu,
11055 const char *dwo_name, const char *comp_dir)
11056 {
11057 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11058 }
11059
11060 /* Traversal function for queue_and_load_all_dwo_tus. */
11061
11062 static int
11063 queue_and_load_dwo_tu (void **slot, void *info)
11064 {
11065 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11066 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11067 ULONGEST signature = dwo_unit->signature;
11068 struct signatured_type *sig_type =
11069 lookup_dwo_signatured_type (per_cu->cu, signature);
11070
11071 if (sig_type != NULL)
11072 {
11073 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11074
11075 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11076 a real dependency of PER_CU on SIG_TYPE. That is detected later
11077 while processing PER_CU. */
11078 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11079 load_full_type_unit (sig_cu);
11080 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11081 }
11082
11083 return 1;
11084 }
11085
11086 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11087 The DWO may have the only definition of the type, though it may not be
11088 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11089 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11090
11091 static void
11092 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11093 {
11094 struct dwo_unit *dwo_unit;
11095 struct dwo_file *dwo_file;
11096
11097 gdb_assert (!per_cu->is_debug_types);
11098 gdb_assert (get_dwp_file () == NULL);
11099 gdb_assert (per_cu->cu != NULL);
11100
11101 dwo_unit = per_cu->cu->dwo_unit;
11102 gdb_assert (dwo_unit != NULL);
11103
11104 dwo_file = dwo_unit->dwo_file;
11105 if (dwo_file->tus != NULL)
11106 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11107 }
11108
11109 /* Free all resources associated with DWO_FILE.
11110 Close the DWO file and munmap the sections.
11111 All memory should be on the objfile obstack. */
11112
11113 static void
11114 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11115 {
11116 int ix;
11117 struct dwarf2_section_info *section;
11118
11119 /* Note: dbfd is NULL for virtual DWO files. */
11120 gdb_bfd_unref (dwo_file->dbfd);
11121
11122 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11123 }
11124
11125 /* Wrapper for free_dwo_file for use in cleanups. */
11126
11127 static void
11128 free_dwo_file_cleanup (void *arg)
11129 {
11130 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11131 struct objfile *objfile = dwarf2_per_objfile->objfile;
11132
11133 free_dwo_file (dwo_file, objfile);
11134 }
11135
11136 /* Traversal function for free_dwo_files. */
11137
11138 static int
11139 free_dwo_file_from_slot (void **slot, void *info)
11140 {
11141 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11142 struct objfile *objfile = (struct objfile *) info;
11143
11144 free_dwo_file (dwo_file, objfile);
11145
11146 return 1;
11147 }
11148
11149 /* Free all resources associated with DWO_FILES. */
11150
11151 static void
11152 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11153 {
11154 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11155 }
11156 \f
11157 /* Read in various DIEs. */
11158
11159 /* qsort helper for inherit_abstract_dies. */
11160
11161 static int
11162 unsigned_int_compar (const void *ap, const void *bp)
11163 {
11164 unsigned int a = *(unsigned int *) ap;
11165 unsigned int b = *(unsigned int *) bp;
11166
11167 return (a > b) - (b > a);
11168 }
11169
11170 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11171 Inherit only the children of the DW_AT_abstract_origin DIE not being
11172 already referenced by DW_AT_abstract_origin from the children of the
11173 current DIE. */
11174
11175 static void
11176 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11177 {
11178 struct die_info *child_die;
11179 unsigned die_children_count;
11180 /* CU offsets which were referenced by children of the current DIE. */
11181 sect_offset *offsets;
11182 sect_offset *offsets_end, *offsetp;
11183 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11184 struct die_info *origin_die;
11185 /* Iterator of the ORIGIN_DIE children. */
11186 struct die_info *origin_child_die;
11187 struct cleanup *cleanups;
11188 struct attribute *attr;
11189 struct dwarf2_cu *origin_cu;
11190 struct pending **origin_previous_list_in_scope;
11191
11192 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11193 if (!attr)
11194 return;
11195
11196 /* Note that following die references may follow to a die in a
11197 different cu. */
11198
11199 origin_cu = cu;
11200 origin_die = follow_die_ref (die, attr, &origin_cu);
11201
11202 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11203 symbols in. */
11204 origin_previous_list_in_scope = origin_cu->list_in_scope;
11205 origin_cu->list_in_scope = cu->list_in_scope;
11206
11207 if (die->tag != origin_die->tag
11208 && !(die->tag == DW_TAG_inlined_subroutine
11209 && origin_die->tag == DW_TAG_subprogram))
11210 complaint (&symfile_complaints,
11211 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11212 die->offset.sect_off, origin_die->offset.sect_off);
11213
11214 child_die = die->child;
11215 die_children_count = 0;
11216 while (child_die && child_die->tag)
11217 {
11218 child_die = sibling_die (child_die);
11219 die_children_count++;
11220 }
11221 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11222 cleanups = make_cleanup (xfree, offsets);
11223
11224 offsets_end = offsets;
11225 for (child_die = die->child;
11226 child_die && child_die->tag;
11227 child_die = sibling_die (child_die))
11228 {
11229 struct die_info *child_origin_die;
11230 struct dwarf2_cu *child_origin_cu;
11231
11232 /* We are trying to process concrete instance entries:
11233 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11234 it's not relevant to our analysis here. i.e. detecting DIEs that are
11235 present in the abstract instance but not referenced in the concrete
11236 one. */
11237 if (child_die->tag == DW_TAG_GNU_call_site)
11238 continue;
11239
11240 /* For each CHILD_DIE, find the corresponding child of
11241 ORIGIN_DIE. If there is more than one layer of
11242 DW_AT_abstract_origin, follow them all; there shouldn't be,
11243 but GCC versions at least through 4.4 generate this (GCC PR
11244 40573). */
11245 child_origin_die = child_die;
11246 child_origin_cu = cu;
11247 while (1)
11248 {
11249 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11250 child_origin_cu);
11251 if (attr == NULL)
11252 break;
11253 child_origin_die = follow_die_ref (child_origin_die, attr,
11254 &child_origin_cu);
11255 }
11256
11257 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11258 counterpart may exist. */
11259 if (child_origin_die != child_die)
11260 {
11261 if (child_die->tag != child_origin_die->tag
11262 && !(child_die->tag == DW_TAG_inlined_subroutine
11263 && child_origin_die->tag == DW_TAG_subprogram))
11264 complaint (&symfile_complaints,
11265 _("Child DIE 0x%x and its abstract origin 0x%x have "
11266 "different tags"), child_die->offset.sect_off,
11267 child_origin_die->offset.sect_off);
11268 if (child_origin_die->parent != origin_die)
11269 complaint (&symfile_complaints,
11270 _("Child DIE 0x%x and its abstract origin 0x%x have "
11271 "different parents"), child_die->offset.sect_off,
11272 child_origin_die->offset.sect_off);
11273 else
11274 *offsets_end++ = child_origin_die->offset;
11275 }
11276 }
11277 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11278 unsigned_int_compar);
11279 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11280 if (offsetp[-1].sect_off == offsetp->sect_off)
11281 complaint (&symfile_complaints,
11282 _("Multiple children of DIE 0x%x refer "
11283 "to DIE 0x%x as their abstract origin"),
11284 die->offset.sect_off, offsetp->sect_off);
11285
11286 offsetp = offsets;
11287 origin_child_die = origin_die->child;
11288 while (origin_child_die && origin_child_die->tag)
11289 {
11290 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11291 while (offsetp < offsets_end
11292 && offsetp->sect_off < origin_child_die->offset.sect_off)
11293 offsetp++;
11294 if (offsetp >= offsets_end
11295 || offsetp->sect_off > origin_child_die->offset.sect_off)
11296 {
11297 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11298 Check whether we're already processing ORIGIN_CHILD_DIE.
11299 This can happen with mutually referenced abstract_origins.
11300 PR 16581. */
11301 if (!origin_child_die->in_process)
11302 process_die (origin_child_die, origin_cu);
11303 }
11304 origin_child_die = sibling_die (origin_child_die);
11305 }
11306 origin_cu->list_in_scope = origin_previous_list_in_scope;
11307
11308 do_cleanups (cleanups);
11309 }
11310
11311 static void
11312 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11313 {
11314 struct objfile *objfile = cu->objfile;
11315 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11316 struct context_stack *newobj;
11317 CORE_ADDR lowpc;
11318 CORE_ADDR highpc;
11319 struct die_info *child_die;
11320 struct attribute *attr, *call_line, *call_file;
11321 const char *name;
11322 CORE_ADDR baseaddr;
11323 struct block *block;
11324 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11325 VEC (symbolp) *template_args = NULL;
11326 struct template_symbol *templ_func = NULL;
11327
11328 if (inlined_func)
11329 {
11330 /* If we do not have call site information, we can't show the
11331 caller of this inlined function. That's too confusing, so
11332 only use the scope for local variables. */
11333 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11334 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11335 if (call_line == NULL || call_file == NULL)
11336 {
11337 read_lexical_block_scope (die, cu);
11338 return;
11339 }
11340 }
11341
11342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11343
11344 name = dwarf2_name (die, cu);
11345
11346 /* Ignore functions with missing or empty names. These are actually
11347 illegal according to the DWARF standard. */
11348 if (name == NULL)
11349 {
11350 complaint (&symfile_complaints,
11351 _("missing name for subprogram DIE at %d"),
11352 die->offset.sect_off);
11353 return;
11354 }
11355
11356 /* Ignore functions with missing or invalid low and high pc attributes. */
11357 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11358 {
11359 attr = dwarf2_attr (die, DW_AT_external, cu);
11360 if (!attr || !DW_UNSND (attr))
11361 complaint (&symfile_complaints,
11362 _("cannot get low and high bounds "
11363 "for subprogram DIE at %d"),
11364 die->offset.sect_off);
11365 return;
11366 }
11367
11368 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11370
11371 /* If we have any template arguments, then we must allocate a
11372 different sort of symbol. */
11373 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11374 {
11375 if (child_die->tag == DW_TAG_template_type_param
11376 || child_die->tag == DW_TAG_template_value_param)
11377 {
11378 templ_func = allocate_template_symbol (objfile);
11379 templ_func->base.is_cplus_template_function = 1;
11380 break;
11381 }
11382 }
11383
11384 newobj = push_context (0, lowpc);
11385 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11386 (struct symbol *) templ_func);
11387
11388 /* If there is a location expression for DW_AT_frame_base, record
11389 it. */
11390 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11391 if (attr)
11392 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11393
11394 cu->list_in_scope = &local_symbols;
11395
11396 if (die->child != NULL)
11397 {
11398 child_die = die->child;
11399 while (child_die && child_die->tag)
11400 {
11401 if (child_die->tag == DW_TAG_template_type_param
11402 || child_die->tag == DW_TAG_template_value_param)
11403 {
11404 struct symbol *arg = new_symbol (child_die, NULL, cu);
11405
11406 if (arg != NULL)
11407 VEC_safe_push (symbolp, template_args, arg);
11408 }
11409 else
11410 process_die (child_die, cu);
11411 child_die = sibling_die (child_die);
11412 }
11413 }
11414
11415 inherit_abstract_dies (die, cu);
11416
11417 /* If we have a DW_AT_specification, we might need to import using
11418 directives from the context of the specification DIE. See the
11419 comment in determine_prefix. */
11420 if (cu->language == language_cplus
11421 && dwarf2_attr (die, DW_AT_specification, cu))
11422 {
11423 struct dwarf2_cu *spec_cu = cu;
11424 struct die_info *spec_die = die_specification (die, &spec_cu);
11425
11426 while (spec_die)
11427 {
11428 child_die = spec_die->child;
11429 while (child_die && child_die->tag)
11430 {
11431 if (child_die->tag == DW_TAG_imported_module)
11432 process_die (child_die, spec_cu);
11433 child_die = sibling_die (child_die);
11434 }
11435
11436 /* In some cases, GCC generates specification DIEs that
11437 themselves contain DW_AT_specification attributes. */
11438 spec_die = die_specification (spec_die, &spec_cu);
11439 }
11440 }
11441
11442 newobj = pop_context ();
11443 /* Make a block for the local symbols within. */
11444 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11445 lowpc, highpc);
11446
11447 /* For C++, set the block's scope. */
11448 if ((cu->language == language_cplus || cu->language == language_fortran)
11449 && cu->processing_has_namespace_info)
11450 block_set_scope (block, determine_prefix (die, cu),
11451 &objfile->objfile_obstack);
11452
11453 /* If we have address ranges, record them. */
11454 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11455
11456 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11457
11458 /* Attach template arguments to function. */
11459 if (! VEC_empty (symbolp, template_args))
11460 {
11461 gdb_assert (templ_func != NULL);
11462
11463 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11464 templ_func->template_arguments
11465 = obstack_alloc (&objfile->objfile_obstack,
11466 (templ_func->n_template_arguments
11467 * sizeof (struct symbol *)));
11468 memcpy (templ_func->template_arguments,
11469 VEC_address (symbolp, template_args),
11470 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11471 VEC_free (symbolp, template_args);
11472 }
11473
11474 /* In C++, we can have functions nested inside functions (e.g., when
11475 a function declares a class that has methods). This means that
11476 when we finish processing a function scope, we may need to go
11477 back to building a containing block's symbol lists. */
11478 local_symbols = newobj->locals;
11479 using_directives = newobj->using_directives;
11480
11481 /* If we've finished processing a top-level function, subsequent
11482 symbols go in the file symbol list. */
11483 if (outermost_context_p ())
11484 cu->list_in_scope = &file_symbols;
11485 }
11486
11487 /* Process all the DIES contained within a lexical block scope. Start
11488 a new scope, process the dies, and then close the scope. */
11489
11490 static void
11491 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11492 {
11493 struct objfile *objfile = cu->objfile;
11494 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11495 struct context_stack *newobj;
11496 CORE_ADDR lowpc, highpc;
11497 struct die_info *child_die;
11498 CORE_ADDR baseaddr;
11499
11500 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11501
11502 /* Ignore blocks with missing or invalid low and high pc attributes. */
11503 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11504 as multiple lexical blocks? Handling children in a sane way would
11505 be nasty. Might be easier to properly extend generic blocks to
11506 describe ranges. */
11507 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11508 return;
11509 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11510 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11511
11512 push_context (0, lowpc);
11513 if (die->child != NULL)
11514 {
11515 child_die = die->child;
11516 while (child_die && child_die->tag)
11517 {
11518 process_die (child_die, cu);
11519 child_die = sibling_die (child_die);
11520 }
11521 }
11522 inherit_abstract_dies (die, cu);
11523 newobj = pop_context ();
11524
11525 if (local_symbols != NULL || using_directives != NULL)
11526 {
11527 struct block *block
11528 = finish_block (0, &local_symbols, newobj->old_blocks,
11529 newobj->start_addr, highpc);
11530
11531 /* Note that recording ranges after traversing children, as we
11532 do here, means that recording a parent's ranges entails
11533 walking across all its children's ranges as they appear in
11534 the address map, which is quadratic behavior.
11535
11536 It would be nicer to record the parent's ranges before
11537 traversing its children, simply overriding whatever you find
11538 there. But since we don't even decide whether to create a
11539 block until after we've traversed its children, that's hard
11540 to do. */
11541 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11542 }
11543 local_symbols = newobj->locals;
11544 using_directives = newobj->using_directives;
11545 }
11546
11547 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11548
11549 static void
11550 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11551 {
11552 struct objfile *objfile = cu->objfile;
11553 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11554 CORE_ADDR pc, baseaddr;
11555 struct attribute *attr;
11556 struct call_site *call_site, call_site_local;
11557 void **slot;
11558 int nparams;
11559 struct die_info *child_die;
11560
11561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11562
11563 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11564 if (!attr)
11565 {
11566 complaint (&symfile_complaints,
11567 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11568 "DIE 0x%x [in module %s]"),
11569 die->offset.sect_off, objfile_name (objfile));
11570 return;
11571 }
11572 pc = attr_value_as_address (attr) + baseaddr;
11573 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11574
11575 if (cu->call_site_htab == NULL)
11576 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11577 NULL, &objfile->objfile_obstack,
11578 hashtab_obstack_allocate, NULL);
11579 call_site_local.pc = pc;
11580 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11581 if (*slot != NULL)
11582 {
11583 complaint (&symfile_complaints,
11584 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11585 "DIE 0x%x [in module %s]"),
11586 paddress (gdbarch, pc), die->offset.sect_off,
11587 objfile_name (objfile));
11588 return;
11589 }
11590
11591 /* Count parameters at the caller. */
11592
11593 nparams = 0;
11594 for (child_die = die->child; child_die && child_die->tag;
11595 child_die = sibling_die (child_die))
11596 {
11597 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11598 {
11599 complaint (&symfile_complaints,
11600 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11601 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11602 child_die->tag, child_die->offset.sect_off,
11603 objfile_name (objfile));
11604 continue;
11605 }
11606
11607 nparams++;
11608 }
11609
11610 call_site = obstack_alloc (&objfile->objfile_obstack,
11611 (sizeof (*call_site)
11612 + (sizeof (*call_site->parameter)
11613 * (nparams - 1))));
11614 *slot = call_site;
11615 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11616 call_site->pc = pc;
11617
11618 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11619 {
11620 struct die_info *func_die;
11621
11622 /* Skip also over DW_TAG_inlined_subroutine. */
11623 for (func_die = die->parent;
11624 func_die && func_die->tag != DW_TAG_subprogram
11625 && func_die->tag != DW_TAG_subroutine_type;
11626 func_die = func_die->parent);
11627
11628 /* DW_AT_GNU_all_call_sites is a superset
11629 of DW_AT_GNU_all_tail_call_sites. */
11630 if (func_die
11631 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11632 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11633 {
11634 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11635 not complete. But keep CALL_SITE for look ups via call_site_htab,
11636 both the initial caller containing the real return address PC and
11637 the final callee containing the current PC of a chain of tail
11638 calls do not need to have the tail call list complete. But any
11639 function candidate for a virtual tail call frame searched via
11640 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11641 determined unambiguously. */
11642 }
11643 else
11644 {
11645 struct type *func_type = NULL;
11646
11647 if (func_die)
11648 func_type = get_die_type (func_die, cu);
11649 if (func_type != NULL)
11650 {
11651 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11652
11653 /* Enlist this call site to the function. */
11654 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11655 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11656 }
11657 else
11658 complaint (&symfile_complaints,
11659 _("Cannot find function owning DW_TAG_GNU_call_site "
11660 "DIE 0x%x [in module %s]"),
11661 die->offset.sect_off, objfile_name (objfile));
11662 }
11663 }
11664
11665 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11666 if (attr == NULL)
11667 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11668 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11669 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11670 /* Keep NULL DWARF_BLOCK. */;
11671 else if (attr_form_is_block (attr))
11672 {
11673 struct dwarf2_locexpr_baton *dlbaton;
11674
11675 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11676 dlbaton->data = DW_BLOCK (attr)->data;
11677 dlbaton->size = DW_BLOCK (attr)->size;
11678 dlbaton->per_cu = cu->per_cu;
11679
11680 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11681 }
11682 else if (attr_form_is_ref (attr))
11683 {
11684 struct dwarf2_cu *target_cu = cu;
11685 struct die_info *target_die;
11686
11687 target_die = follow_die_ref (die, attr, &target_cu);
11688 gdb_assert (target_cu->objfile == objfile);
11689 if (die_is_declaration (target_die, target_cu))
11690 {
11691 const char *target_physname = NULL;
11692 struct attribute *target_attr;
11693
11694 /* Prefer the mangled name; otherwise compute the demangled one. */
11695 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11696 if (target_attr == NULL)
11697 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11698 target_cu);
11699 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11700 target_physname = DW_STRING (target_attr);
11701 else
11702 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11703 if (target_physname == NULL)
11704 complaint (&symfile_complaints,
11705 _("DW_AT_GNU_call_site_target target DIE has invalid "
11706 "physname, for referencing DIE 0x%x [in module %s]"),
11707 die->offset.sect_off, objfile_name (objfile));
11708 else
11709 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11710 }
11711 else
11712 {
11713 CORE_ADDR lowpc;
11714
11715 /* DW_AT_entry_pc should be preferred. */
11716 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11717 complaint (&symfile_complaints,
11718 _("DW_AT_GNU_call_site_target target DIE has invalid "
11719 "low pc, for referencing DIE 0x%x [in module %s]"),
11720 die->offset.sect_off, objfile_name (objfile));
11721 else
11722 {
11723 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11724 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11725 }
11726 }
11727 }
11728 else
11729 complaint (&symfile_complaints,
11730 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11731 "block nor reference, for DIE 0x%x [in module %s]"),
11732 die->offset.sect_off, objfile_name (objfile));
11733
11734 call_site->per_cu = cu->per_cu;
11735
11736 for (child_die = die->child;
11737 child_die && child_die->tag;
11738 child_die = sibling_die (child_die))
11739 {
11740 struct call_site_parameter *parameter;
11741 struct attribute *loc, *origin;
11742
11743 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11744 {
11745 /* Already printed the complaint above. */
11746 continue;
11747 }
11748
11749 gdb_assert (call_site->parameter_count < nparams);
11750 parameter = &call_site->parameter[call_site->parameter_count];
11751
11752 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11753 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11754 register is contained in DW_AT_GNU_call_site_value. */
11755
11756 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11757 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11758 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11759 {
11760 sect_offset offset;
11761
11762 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11763 offset = dwarf2_get_ref_die_offset (origin);
11764 if (!offset_in_cu_p (&cu->header, offset))
11765 {
11766 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11767 binding can be done only inside one CU. Such referenced DIE
11768 therefore cannot be even moved to DW_TAG_partial_unit. */
11769 complaint (&symfile_complaints,
11770 _("DW_AT_abstract_origin offset is not in CU for "
11771 "DW_TAG_GNU_call_site child DIE 0x%x "
11772 "[in module %s]"),
11773 child_die->offset.sect_off, objfile_name (objfile));
11774 continue;
11775 }
11776 parameter->u.param_offset.cu_off = (offset.sect_off
11777 - cu->header.offset.sect_off);
11778 }
11779 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11780 {
11781 complaint (&symfile_complaints,
11782 _("No DW_FORM_block* DW_AT_location for "
11783 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11784 child_die->offset.sect_off, objfile_name (objfile));
11785 continue;
11786 }
11787 else
11788 {
11789 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11790 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11791 if (parameter->u.dwarf_reg != -1)
11792 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11793 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11794 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11795 &parameter->u.fb_offset))
11796 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11797 else
11798 {
11799 complaint (&symfile_complaints,
11800 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11801 "for DW_FORM_block* DW_AT_location is supported for "
11802 "DW_TAG_GNU_call_site child DIE 0x%x "
11803 "[in module %s]"),
11804 child_die->offset.sect_off, objfile_name (objfile));
11805 continue;
11806 }
11807 }
11808
11809 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11810 if (!attr_form_is_block (attr))
11811 {
11812 complaint (&symfile_complaints,
11813 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11814 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11815 child_die->offset.sect_off, objfile_name (objfile));
11816 continue;
11817 }
11818 parameter->value = DW_BLOCK (attr)->data;
11819 parameter->value_size = DW_BLOCK (attr)->size;
11820
11821 /* Parameters are not pre-cleared by memset above. */
11822 parameter->data_value = NULL;
11823 parameter->data_value_size = 0;
11824 call_site->parameter_count++;
11825
11826 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11827 if (attr)
11828 {
11829 if (!attr_form_is_block (attr))
11830 complaint (&symfile_complaints,
11831 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11832 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11833 child_die->offset.sect_off, objfile_name (objfile));
11834 else
11835 {
11836 parameter->data_value = DW_BLOCK (attr)->data;
11837 parameter->data_value_size = DW_BLOCK (attr)->size;
11838 }
11839 }
11840 }
11841 }
11842
11843 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11844 Return 1 if the attributes are present and valid, otherwise, return 0.
11845 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11846
11847 static int
11848 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11849 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11850 struct partial_symtab *ranges_pst)
11851 {
11852 struct objfile *objfile = cu->objfile;
11853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11854 struct comp_unit_head *cu_header = &cu->header;
11855 bfd *obfd = objfile->obfd;
11856 unsigned int addr_size = cu_header->addr_size;
11857 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11858 /* Base address selection entry. */
11859 CORE_ADDR base;
11860 int found_base;
11861 unsigned int dummy;
11862 const gdb_byte *buffer;
11863 CORE_ADDR marker;
11864 int low_set;
11865 CORE_ADDR low = 0;
11866 CORE_ADDR high = 0;
11867 CORE_ADDR baseaddr;
11868
11869 found_base = cu->base_known;
11870 base = cu->base_address;
11871
11872 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11873 if (offset >= dwarf2_per_objfile->ranges.size)
11874 {
11875 complaint (&symfile_complaints,
11876 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11877 offset);
11878 return 0;
11879 }
11880 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11881
11882 /* Read in the largest possible address. */
11883 marker = read_address (obfd, buffer, cu, &dummy);
11884 if ((marker & mask) == mask)
11885 {
11886 /* If we found the largest possible address, then
11887 read the base address. */
11888 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11889 buffer += 2 * addr_size;
11890 offset += 2 * addr_size;
11891 found_base = 1;
11892 }
11893
11894 low_set = 0;
11895
11896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11897
11898 while (1)
11899 {
11900 CORE_ADDR range_beginning, range_end;
11901
11902 range_beginning = read_address (obfd, buffer, cu, &dummy);
11903 buffer += addr_size;
11904 range_end = read_address (obfd, buffer, cu, &dummy);
11905 buffer += addr_size;
11906 offset += 2 * addr_size;
11907
11908 /* An end of list marker is a pair of zero addresses. */
11909 if (range_beginning == 0 && range_end == 0)
11910 /* Found the end of list entry. */
11911 break;
11912
11913 /* Each base address selection entry is a pair of 2 values.
11914 The first is the largest possible address, the second is
11915 the base address. Check for a base address here. */
11916 if ((range_beginning & mask) == mask)
11917 {
11918 /* If we found the largest possible address, then
11919 read the base address. */
11920 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11921 found_base = 1;
11922 continue;
11923 }
11924
11925 if (!found_base)
11926 {
11927 /* We have no valid base address for the ranges
11928 data. */
11929 complaint (&symfile_complaints,
11930 _("Invalid .debug_ranges data (no base address)"));
11931 return 0;
11932 }
11933
11934 if (range_beginning > range_end)
11935 {
11936 /* Inverted range entries are invalid. */
11937 complaint (&symfile_complaints,
11938 _("Invalid .debug_ranges data (inverted range)"));
11939 return 0;
11940 }
11941
11942 /* Empty range entries have no effect. */
11943 if (range_beginning == range_end)
11944 continue;
11945
11946 range_beginning += base;
11947 range_end += base;
11948
11949 /* A not-uncommon case of bad debug info.
11950 Don't pollute the addrmap with bad data. */
11951 if (range_beginning + baseaddr == 0
11952 && !dwarf2_per_objfile->has_section_at_zero)
11953 {
11954 complaint (&symfile_complaints,
11955 _(".debug_ranges entry has start address of zero"
11956 " [in module %s]"), objfile_name (objfile));
11957 continue;
11958 }
11959
11960 if (ranges_pst != NULL)
11961 {
11962 CORE_ADDR lowpc;
11963 CORE_ADDR highpc;
11964
11965 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11966 range_beginning + baseaddr);
11967 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11968 range_end + baseaddr);
11969 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11970 ranges_pst);
11971 }
11972
11973 /* FIXME: This is recording everything as a low-high
11974 segment of consecutive addresses. We should have a
11975 data structure for discontiguous block ranges
11976 instead. */
11977 if (! low_set)
11978 {
11979 low = range_beginning;
11980 high = range_end;
11981 low_set = 1;
11982 }
11983 else
11984 {
11985 if (range_beginning < low)
11986 low = range_beginning;
11987 if (range_end > high)
11988 high = range_end;
11989 }
11990 }
11991
11992 if (! low_set)
11993 /* If the first entry is an end-of-list marker, the range
11994 describes an empty scope, i.e. no instructions. */
11995 return 0;
11996
11997 if (low_return)
11998 *low_return = low;
11999 if (high_return)
12000 *high_return = high;
12001 return 1;
12002 }
12003
12004 /* Get low and high pc attributes from a die. Return 1 if the attributes
12005 are present and valid, otherwise, return 0. Return -1 if the range is
12006 discontinuous, i.e. derived from DW_AT_ranges information. */
12007
12008 static int
12009 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12010 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12011 struct partial_symtab *pst)
12012 {
12013 struct attribute *attr;
12014 struct attribute *attr_high;
12015 CORE_ADDR low = 0;
12016 CORE_ADDR high = 0;
12017 int ret = 0;
12018
12019 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12020 if (attr_high)
12021 {
12022 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12023 if (attr)
12024 {
12025 low = attr_value_as_address (attr);
12026 high = attr_value_as_address (attr_high);
12027 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12028 high += low;
12029 }
12030 else
12031 /* Found high w/o low attribute. */
12032 return 0;
12033
12034 /* Found consecutive range of addresses. */
12035 ret = 1;
12036 }
12037 else
12038 {
12039 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12040 if (attr != NULL)
12041 {
12042 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12043 We take advantage of the fact that DW_AT_ranges does not appear
12044 in DW_TAG_compile_unit of DWO files. */
12045 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12046 unsigned int ranges_offset = (DW_UNSND (attr)
12047 + (need_ranges_base
12048 ? cu->ranges_base
12049 : 0));
12050
12051 /* Value of the DW_AT_ranges attribute is the offset in the
12052 .debug_ranges section. */
12053 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12054 return 0;
12055 /* Found discontinuous range of addresses. */
12056 ret = -1;
12057 }
12058 }
12059
12060 /* read_partial_die has also the strict LOW < HIGH requirement. */
12061 if (high <= low)
12062 return 0;
12063
12064 /* When using the GNU linker, .gnu.linkonce. sections are used to
12065 eliminate duplicate copies of functions and vtables and such.
12066 The linker will arbitrarily choose one and discard the others.
12067 The AT_*_pc values for such functions refer to local labels in
12068 these sections. If the section from that file was discarded, the
12069 labels are not in the output, so the relocs get a value of 0.
12070 If this is a discarded function, mark the pc bounds as invalid,
12071 so that GDB will ignore it. */
12072 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12073 return 0;
12074
12075 *lowpc = low;
12076 if (highpc)
12077 *highpc = high;
12078 return ret;
12079 }
12080
12081 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12082 its low and high PC addresses. Do nothing if these addresses could not
12083 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12084 and HIGHPC to the high address if greater than HIGHPC. */
12085
12086 static void
12087 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12088 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12089 struct dwarf2_cu *cu)
12090 {
12091 CORE_ADDR low, high;
12092 struct die_info *child = die->child;
12093
12094 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12095 {
12096 *lowpc = min (*lowpc, low);
12097 *highpc = max (*highpc, high);
12098 }
12099
12100 /* If the language does not allow nested subprograms (either inside
12101 subprograms or lexical blocks), we're done. */
12102 if (cu->language != language_ada)
12103 return;
12104
12105 /* Check all the children of the given DIE. If it contains nested
12106 subprograms, then check their pc bounds. Likewise, we need to
12107 check lexical blocks as well, as they may also contain subprogram
12108 definitions. */
12109 while (child && child->tag)
12110 {
12111 if (child->tag == DW_TAG_subprogram
12112 || child->tag == DW_TAG_lexical_block)
12113 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12114 child = sibling_die (child);
12115 }
12116 }
12117
12118 /* Get the low and high pc's represented by the scope DIE, and store
12119 them in *LOWPC and *HIGHPC. If the correct values can't be
12120 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12121
12122 static void
12123 get_scope_pc_bounds (struct die_info *die,
12124 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12125 struct dwarf2_cu *cu)
12126 {
12127 CORE_ADDR best_low = (CORE_ADDR) -1;
12128 CORE_ADDR best_high = (CORE_ADDR) 0;
12129 CORE_ADDR current_low, current_high;
12130
12131 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12132 {
12133 best_low = current_low;
12134 best_high = current_high;
12135 }
12136 else
12137 {
12138 struct die_info *child = die->child;
12139
12140 while (child && child->tag)
12141 {
12142 switch (child->tag) {
12143 case DW_TAG_subprogram:
12144 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12145 break;
12146 case DW_TAG_namespace:
12147 case DW_TAG_module:
12148 /* FIXME: carlton/2004-01-16: Should we do this for
12149 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12150 that current GCC's always emit the DIEs corresponding
12151 to definitions of methods of classes as children of a
12152 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12153 the DIEs giving the declarations, which could be
12154 anywhere). But I don't see any reason why the
12155 standards says that they have to be there. */
12156 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12157
12158 if (current_low != ((CORE_ADDR) -1))
12159 {
12160 best_low = min (best_low, current_low);
12161 best_high = max (best_high, current_high);
12162 }
12163 break;
12164 default:
12165 /* Ignore. */
12166 break;
12167 }
12168
12169 child = sibling_die (child);
12170 }
12171 }
12172
12173 *lowpc = best_low;
12174 *highpc = best_high;
12175 }
12176
12177 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12178 in DIE. */
12179
12180 static void
12181 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12182 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12183 {
12184 struct objfile *objfile = cu->objfile;
12185 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12186 struct attribute *attr;
12187 struct attribute *attr_high;
12188
12189 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12190 if (attr_high)
12191 {
12192 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12193 if (attr)
12194 {
12195 CORE_ADDR low = attr_value_as_address (attr);
12196 CORE_ADDR high = attr_value_as_address (attr_high);
12197
12198 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12199 high += low;
12200
12201 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12202 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12203 record_block_range (block, low, high - 1);
12204 }
12205 }
12206
12207 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12208 if (attr)
12209 {
12210 bfd *obfd = objfile->obfd;
12211 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12212 We take advantage of the fact that DW_AT_ranges does not appear
12213 in DW_TAG_compile_unit of DWO files. */
12214 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12215
12216 /* The value of the DW_AT_ranges attribute is the offset of the
12217 address range list in the .debug_ranges section. */
12218 unsigned long offset = (DW_UNSND (attr)
12219 + (need_ranges_base ? cu->ranges_base : 0));
12220 const gdb_byte *buffer;
12221
12222 /* For some target architectures, but not others, the
12223 read_address function sign-extends the addresses it returns.
12224 To recognize base address selection entries, we need a
12225 mask. */
12226 unsigned int addr_size = cu->header.addr_size;
12227 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12228
12229 /* The base address, to which the next pair is relative. Note
12230 that this 'base' is a DWARF concept: most entries in a range
12231 list are relative, to reduce the number of relocs against the
12232 debugging information. This is separate from this function's
12233 'baseaddr' argument, which GDB uses to relocate debugging
12234 information from a shared library based on the address at
12235 which the library was loaded. */
12236 CORE_ADDR base = cu->base_address;
12237 int base_known = cu->base_known;
12238
12239 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12240 if (offset >= dwarf2_per_objfile->ranges.size)
12241 {
12242 complaint (&symfile_complaints,
12243 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12244 offset);
12245 return;
12246 }
12247 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12248
12249 for (;;)
12250 {
12251 unsigned int bytes_read;
12252 CORE_ADDR start, end;
12253
12254 start = read_address (obfd, buffer, cu, &bytes_read);
12255 buffer += bytes_read;
12256 end = read_address (obfd, buffer, cu, &bytes_read);
12257 buffer += bytes_read;
12258
12259 /* Did we find the end of the range list? */
12260 if (start == 0 && end == 0)
12261 break;
12262
12263 /* Did we find a base address selection entry? */
12264 else if ((start & base_select_mask) == base_select_mask)
12265 {
12266 base = end;
12267 base_known = 1;
12268 }
12269
12270 /* We found an ordinary address range. */
12271 else
12272 {
12273 if (!base_known)
12274 {
12275 complaint (&symfile_complaints,
12276 _("Invalid .debug_ranges data "
12277 "(no base address)"));
12278 return;
12279 }
12280
12281 if (start > end)
12282 {
12283 /* Inverted range entries are invalid. */
12284 complaint (&symfile_complaints,
12285 _("Invalid .debug_ranges data "
12286 "(inverted range)"));
12287 return;
12288 }
12289
12290 /* Empty range entries have no effect. */
12291 if (start == end)
12292 continue;
12293
12294 start += base + baseaddr;
12295 end += base + baseaddr;
12296
12297 /* A not-uncommon case of bad debug info.
12298 Don't pollute the addrmap with bad data. */
12299 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12300 {
12301 complaint (&symfile_complaints,
12302 _(".debug_ranges entry has start address of zero"
12303 " [in module %s]"), objfile_name (objfile));
12304 continue;
12305 }
12306
12307 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12308 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12309 record_block_range (block, start, end - 1);
12310 }
12311 }
12312 }
12313 }
12314
12315 /* Check whether the producer field indicates either of GCC < 4.6, or the
12316 Intel C/C++ compiler, and cache the result in CU. */
12317
12318 static void
12319 check_producer (struct dwarf2_cu *cu)
12320 {
12321 const char *cs;
12322 int major, minor;
12323
12324 if (cu->producer == NULL)
12325 {
12326 /* For unknown compilers expect their behavior is DWARF version
12327 compliant.
12328
12329 GCC started to support .debug_types sections by -gdwarf-4 since
12330 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12331 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12332 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12333 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12334 }
12335 else if (producer_is_gcc (cu->producer, &major, &minor))
12336 {
12337 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12338 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12339 }
12340 else if (startswith (cu->producer, "Intel(R) C"))
12341 cu->producer_is_icc = 1;
12342 else
12343 {
12344 /* For other non-GCC compilers, expect their behavior is DWARF version
12345 compliant. */
12346 }
12347
12348 cu->checked_producer = 1;
12349 }
12350
12351 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12352 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12353 during 4.6.0 experimental. */
12354
12355 static int
12356 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12357 {
12358 if (!cu->checked_producer)
12359 check_producer (cu);
12360
12361 return cu->producer_is_gxx_lt_4_6;
12362 }
12363
12364 /* Return the default accessibility type if it is not overriden by
12365 DW_AT_accessibility. */
12366
12367 static enum dwarf_access_attribute
12368 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12369 {
12370 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12371 {
12372 /* The default DWARF 2 accessibility for members is public, the default
12373 accessibility for inheritance is private. */
12374
12375 if (die->tag != DW_TAG_inheritance)
12376 return DW_ACCESS_public;
12377 else
12378 return DW_ACCESS_private;
12379 }
12380 else
12381 {
12382 /* DWARF 3+ defines the default accessibility a different way. The same
12383 rules apply now for DW_TAG_inheritance as for the members and it only
12384 depends on the container kind. */
12385
12386 if (die->parent->tag == DW_TAG_class_type)
12387 return DW_ACCESS_private;
12388 else
12389 return DW_ACCESS_public;
12390 }
12391 }
12392
12393 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12394 offset. If the attribute was not found return 0, otherwise return
12395 1. If it was found but could not properly be handled, set *OFFSET
12396 to 0. */
12397
12398 static int
12399 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12400 LONGEST *offset)
12401 {
12402 struct attribute *attr;
12403
12404 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12405 if (attr != NULL)
12406 {
12407 *offset = 0;
12408
12409 /* Note that we do not check for a section offset first here.
12410 This is because DW_AT_data_member_location is new in DWARF 4,
12411 so if we see it, we can assume that a constant form is really
12412 a constant and not a section offset. */
12413 if (attr_form_is_constant (attr))
12414 *offset = dwarf2_get_attr_constant_value (attr, 0);
12415 else if (attr_form_is_section_offset (attr))
12416 dwarf2_complex_location_expr_complaint ();
12417 else if (attr_form_is_block (attr))
12418 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12419 else
12420 dwarf2_complex_location_expr_complaint ();
12421
12422 return 1;
12423 }
12424
12425 return 0;
12426 }
12427
12428 /* Add an aggregate field to the field list. */
12429
12430 static void
12431 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12432 struct dwarf2_cu *cu)
12433 {
12434 struct objfile *objfile = cu->objfile;
12435 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12436 struct nextfield *new_field;
12437 struct attribute *attr;
12438 struct field *fp;
12439 const char *fieldname = "";
12440
12441 /* Allocate a new field list entry and link it in. */
12442 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12443 make_cleanup (xfree, new_field);
12444 memset (new_field, 0, sizeof (struct nextfield));
12445
12446 if (die->tag == DW_TAG_inheritance)
12447 {
12448 new_field->next = fip->baseclasses;
12449 fip->baseclasses = new_field;
12450 }
12451 else
12452 {
12453 new_field->next = fip->fields;
12454 fip->fields = new_field;
12455 }
12456 fip->nfields++;
12457
12458 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12459 if (attr)
12460 new_field->accessibility = DW_UNSND (attr);
12461 else
12462 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12463 if (new_field->accessibility != DW_ACCESS_public)
12464 fip->non_public_fields = 1;
12465
12466 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12467 if (attr)
12468 new_field->virtuality = DW_UNSND (attr);
12469 else
12470 new_field->virtuality = DW_VIRTUALITY_none;
12471
12472 fp = &new_field->field;
12473
12474 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12475 {
12476 LONGEST offset;
12477
12478 /* Data member other than a C++ static data member. */
12479
12480 /* Get type of field. */
12481 fp->type = die_type (die, cu);
12482
12483 SET_FIELD_BITPOS (*fp, 0);
12484
12485 /* Get bit size of field (zero if none). */
12486 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12487 if (attr)
12488 {
12489 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12490 }
12491 else
12492 {
12493 FIELD_BITSIZE (*fp) = 0;
12494 }
12495
12496 /* Get bit offset of field. */
12497 if (handle_data_member_location (die, cu, &offset))
12498 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12499 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12500 if (attr)
12501 {
12502 if (gdbarch_bits_big_endian (gdbarch))
12503 {
12504 /* For big endian bits, the DW_AT_bit_offset gives the
12505 additional bit offset from the MSB of the containing
12506 anonymous object to the MSB of the field. We don't
12507 have to do anything special since we don't need to
12508 know the size of the anonymous object. */
12509 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12510 }
12511 else
12512 {
12513 /* For little endian bits, compute the bit offset to the
12514 MSB of the anonymous object, subtract off the number of
12515 bits from the MSB of the field to the MSB of the
12516 object, and then subtract off the number of bits of
12517 the field itself. The result is the bit offset of
12518 the LSB of the field. */
12519 int anonymous_size;
12520 int bit_offset = DW_UNSND (attr);
12521
12522 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12523 if (attr)
12524 {
12525 /* The size of the anonymous object containing
12526 the bit field is explicit, so use the
12527 indicated size (in bytes). */
12528 anonymous_size = DW_UNSND (attr);
12529 }
12530 else
12531 {
12532 /* The size of the anonymous object containing
12533 the bit field must be inferred from the type
12534 attribute of the data member containing the
12535 bit field. */
12536 anonymous_size = TYPE_LENGTH (fp->type);
12537 }
12538 SET_FIELD_BITPOS (*fp,
12539 (FIELD_BITPOS (*fp)
12540 + anonymous_size * bits_per_byte
12541 - bit_offset - FIELD_BITSIZE (*fp)));
12542 }
12543 }
12544
12545 /* Get name of field. */
12546 fieldname = dwarf2_name (die, cu);
12547 if (fieldname == NULL)
12548 fieldname = "";
12549
12550 /* The name is already allocated along with this objfile, so we don't
12551 need to duplicate it for the type. */
12552 fp->name = fieldname;
12553
12554 /* Change accessibility for artificial fields (e.g. virtual table
12555 pointer or virtual base class pointer) to private. */
12556 if (dwarf2_attr (die, DW_AT_artificial, cu))
12557 {
12558 FIELD_ARTIFICIAL (*fp) = 1;
12559 new_field->accessibility = DW_ACCESS_private;
12560 fip->non_public_fields = 1;
12561 }
12562 }
12563 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12564 {
12565 /* C++ static member. */
12566
12567 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12568 is a declaration, but all versions of G++ as of this writing
12569 (so through at least 3.2.1) incorrectly generate
12570 DW_TAG_variable tags. */
12571
12572 const char *physname;
12573
12574 /* Get name of field. */
12575 fieldname = dwarf2_name (die, cu);
12576 if (fieldname == NULL)
12577 return;
12578
12579 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12580 if (attr
12581 /* Only create a symbol if this is an external value.
12582 new_symbol checks this and puts the value in the global symbol
12583 table, which we want. If it is not external, new_symbol
12584 will try to put the value in cu->list_in_scope which is wrong. */
12585 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12586 {
12587 /* A static const member, not much different than an enum as far as
12588 we're concerned, except that we can support more types. */
12589 new_symbol (die, NULL, cu);
12590 }
12591
12592 /* Get physical name. */
12593 physname = dwarf2_physname (fieldname, die, cu);
12594
12595 /* The name is already allocated along with this objfile, so we don't
12596 need to duplicate it for the type. */
12597 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12598 FIELD_TYPE (*fp) = die_type (die, cu);
12599 FIELD_NAME (*fp) = fieldname;
12600 }
12601 else if (die->tag == DW_TAG_inheritance)
12602 {
12603 LONGEST offset;
12604
12605 /* C++ base class field. */
12606 if (handle_data_member_location (die, cu, &offset))
12607 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12608 FIELD_BITSIZE (*fp) = 0;
12609 FIELD_TYPE (*fp) = die_type (die, cu);
12610 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12611 fip->nbaseclasses++;
12612 }
12613 }
12614
12615 /* Add a typedef defined in the scope of the FIP's class. */
12616
12617 static void
12618 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12619 struct dwarf2_cu *cu)
12620 {
12621 struct objfile *objfile = cu->objfile;
12622 struct typedef_field_list *new_field;
12623 struct attribute *attr;
12624 struct typedef_field *fp;
12625 char *fieldname = "";
12626
12627 /* Allocate a new field list entry and link it in. */
12628 new_field = xzalloc (sizeof (*new_field));
12629 make_cleanup (xfree, new_field);
12630
12631 gdb_assert (die->tag == DW_TAG_typedef);
12632
12633 fp = &new_field->field;
12634
12635 /* Get name of field. */
12636 fp->name = dwarf2_name (die, cu);
12637 if (fp->name == NULL)
12638 return;
12639
12640 fp->type = read_type_die (die, cu);
12641
12642 new_field->next = fip->typedef_field_list;
12643 fip->typedef_field_list = new_field;
12644 fip->typedef_field_list_count++;
12645 }
12646
12647 /* Create the vector of fields, and attach it to the type. */
12648
12649 static void
12650 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12651 struct dwarf2_cu *cu)
12652 {
12653 int nfields = fip->nfields;
12654
12655 /* Record the field count, allocate space for the array of fields,
12656 and create blank accessibility bitfields if necessary. */
12657 TYPE_NFIELDS (type) = nfields;
12658 TYPE_FIELDS (type) = (struct field *)
12659 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12660 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12661
12662 if (fip->non_public_fields && cu->language != language_ada)
12663 {
12664 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12665
12666 TYPE_FIELD_PRIVATE_BITS (type) =
12667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12668 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12669
12670 TYPE_FIELD_PROTECTED_BITS (type) =
12671 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12672 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12673
12674 TYPE_FIELD_IGNORE_BITS (type) =
12675 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12676 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12677 }
12678
12679 /* If the type has baseclasses, allocate and clear a bit vector for
12680 TYPE_FIELD_VIRTUAL_BITS. */
12681 if (fip->nbaseclasses && cu->language != language_ada)
12682 {
12683 int num_bytes = B_BYTES (fip->nbaseclasses);
12684 unsigned char *pointer;
12685
12686 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12687 pointer = TYPE_ALLOC (type, num_bytes);
12688 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12689 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12690 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12691 }
12692
12693 /* Copy the saved-up fields into the field vector. Start from the head of
12694 the list, adding to the tail of the field array, so that they end up in
12695 the same order in the array in which they were added to the list. */
12696 while (nfields-- > 0)
12697 {
12698 struct nextfield *fieldp;
12699
12700 if (fip->fields)
12701 {
12702 fieldp = fip->fields;
12703 fip->fields = fieldp->next;
12704 }
12705 else
12706 {
12707 fieldp = fip->baseclasses;
12708 fip->baseclasses = fieldp->next;
12709 }
12710
12711 TYPE_FIELD (type, nfields) = fieldp->field;
12712 switch (fieldp->accessibility)
12713 {
12714 case DW_ACCESS_private:
12715 if (cu->language != language_ada)
12716 SET_TYPE_FIELD_PRIVATE (type, nfields);
12717 break;
12718
12719 case DW_ACCESS_protected:
12720 if (cu->language != language_ada)
12721 SET_TYPE_FIELD_PROTECTED (type, nfields);
12722 break;
12723
12724 case DW_ACCESS_public:
12725 break;
12726
12727 default:
12728 /* Unknown accessibility. Complain and treat it as public. */
12729 {
12730 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12731 fieldp->accessibility);
12732 }
12733 break;
12734 }
12735 if (nfields < fip->nbaseclasses)
12736 {
12737 switch (fieldp->virtuality)
12738 {
12739 case DW_VIRTUALITY_virtual:
12740 case DW_VIRTUALITY_pure_virtual:
12741 if (cu->language == language_ada)
12742 error (_("unexpected virtuality in component of Ada type"));
12743 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12744 break;
12745 }
12746 }
12747 }
12748 }
12749
12750 /* Return true if this member function is a constructor, false
12751 otherwise. */
12752
12753 static int
12754 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12755 {
12756 const char *fieldname;
12757 const char *type_name;
12758 int len;
12759
12760 if (die->parent == NULL)
12761 return 0;
12762
12763 if (die->parent->tag != DW_TAG_structure_type
12764 && die->parent->tag != DW_TAG_union_type
12765 && die->parent->tag != DW_TAG_class_type)
12766 return 0;
12767
12768 fieldname = dwarf2_name (die, cu);
12769 type_name = dwarf2_name (die->parent, cu);
12770 if (fieldname == NULL || type_name == NULL)
12771 return 0;
12772
12773 len = strlen (fieldname);
12774 return (strncmp (fieldname, type_name, len) == 0
12775 && (type_name[len] == '\0' || type_name[len] == '<'));
12776 }
12777
12778 /* Add a member function to the proper fieldlist. */
12779
12780 static void
12781 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12782 struct type *type, struct dwarf2_cu *cu)
12783 {
12784 struct objfile *objfile = cu->objfile;
12785 struct attribute *attr;
12786 struct fnfieldlist *flp;
12787 int i;
12788 struct fn_field *fnp;
12789 const char *fieldname;
12790 struct nextfnfield *new_fnfield;
12791 struct type *this_type;
12792 enum dwarf_access_attribute accessibility;
12793
12794 if (cu->language == language_ada)
12795 error (_("unexpected member function in Ada type"));
12796
12797 /* Get name of member function. */
12798 fieldname = dwarf2_name (die, cu);
12799 if (fieldname == NULL)
12800 return;
12801
12802 /* Look up member function name in fieldlist. */
12803 for (i = 0; i < fip->nfnfields; i++)
12804 {
12805 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12806 break;
12807 }
12808
12809 /* Create new list element if necessary. */
12810 if (i < fip->nfnfields)
12811 flp = &fip->fnfieldlists[i];
12812 else
12813 {
12814 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12815 {
12816 fip->fnfieldlists = (struct fnfieldlist *)
12817 xrealloc (fip->fnfieldlists,
12818 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12819 * sizeof (struct fnfieldlist));
12820 if (fip->nfnfields == 0)
12821 make_cleanup (free_current_contents, &fip->fnfieldlists);
12822 }
12823 flp = &fip->fnfieldlists[fip->nfnfields];
12824 flp->name = fieldname;
12825 flp->length = 0;
12826 flp->head = NULL;
12827 i = fip->nfnfields++;
12828 }
12829
12830 /* Create a new member function field and chain it to the field list
12831 entry. */
12832 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12833 make_cleanup (xfree, new_fnfield);
12834 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12835 new_fnfield->next = flp->head;
12836 flp->head = new_fnfield;
12837 flp->length++;
12838
12839 /* Fill in the member function field info. */
12840 fnp = &new_fnfield->fnfield;
12841
12842 /* Delay processing of the physname until later. */
12843 if (cu->language == language_cplus || cu->language == language_java)
12844 {
12845 add_to_method_list (type, i, flp->length - 1, fieldname,
12846 die, cu);
12847 }
12848 else
12849 {
12850 const char *physname = dwarf2_physname (fieldname, die, cu);
12851 fnp->physname = physname ? physname : "";
12852 }
12853
12854 fnp->type = alloc_type (objfile);
12855 this_type = read_type_die (die, cu);
12856 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12857 {
12858 int nparams = TYPE_NFIELDS (this_type);
12859
12860 /* TYPE is the domain of this method, and THIS_TYPE is the type
12861 of the method itself (TYPE_CODE_METHOD). */
12862 smash_to_method_type (fnp->type, type,
12863 TYPE_TARGET_TYPE (this_type),
12864 TYPE_FIELDS (this_type),
12865 TYPE_NFIELDS (this_type),
12866 TYPE_VARARGS (this_type));
12867
12868 /* Handle static member functions.
12869 Dwarf2 has no clean way to discern C++ static and non-static
12870 member functions. G++ helps GDB by marking the first
12871 parameter for non-static member functions (which is the this
12872 pointer) as artificial. We obtain this information from
12873 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12874 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12875 fnp->voffset = VOFFSET_STATIC;
12876 }
12877 else
12878 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12879 dwarf2_full_name (fieldname, die, cu));
12880
12881 /* Get fcontext from DW_AT_containing_type if present. */
12882 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12883 fnp->fcontext = die_containing_type (die, cu);
12884
12885 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12886 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12887
12888 /* Get accessibility. */
12889 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12890 if (attr)
12891 accessibility = DW_UNSND (attr);
12892 else
12893 accessibility = dwarf2_default_access_attribute (die, cu);
12894 switch (accessibility)
12895 {
12896 case DW_ACCESS_private:
12897 fnp->is_private = 1;
12898 break;
12899 case DW_ACCESS_protected:
12900 fnp->is_protected = 1;
12901 break;
12902 }
12903
12904 /* Check for artificial methods. */
12905 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12906 if (attr && DW_UNSND (attr) != 0)
12907 fnp->is_artificial = 1;
12908
12909 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12910
12911 /* Get index in virtual function table if it is a virtual member
12912 function. For older versions of GCC, this is an offset in the
12913 appropriate virtual table, as specified by DW_AT_containing_type.
12914 For everyone else, it is an expression to be evaluated relative
12915 to the object address. */
12916
12917 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12918 if (attr)
12919 {
12920 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12921 {
12922 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12923 {
12924 /* Old-style GCC. */
12925 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12926 }
12927 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12928 || (DW_BLOCK (attr)->size > 1
12929 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12930 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12931 {
12932 struct dwarf_block blk;
12933 int offset;
12934
12935 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12936 ? 1 : 2);
12937 blk.size = DW_BLOCK (attr)->size - offset;
12938 blk.data = DW_BLOCK (attr)->data + offset;
12939 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12940 if ((fnp->voffset % cu->header.addr_size) != 0)
12941 dwarf2_complex_location_expr_complaint ();
12942 else
12943 fnp->voffset /= cu->header.addr_size;
12944 fnp->voffset += 2;
12945 }
12946 else
12947 dwarf2_complex_location_expr_complaint ();
12948
12949 if (!fnp->fcontext)
12950 {
12951 /* If there is no `this' field and no DW_AT_containing_type,
12952 we cannot actually find a base class context for the
12953 vtable! */
12954 if (TYPE_NFIELDS (this_type) == 0
12955 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12956 {
12957 complaint (&symfile_complaints,
12958 _("cannot determine context for virtual member "
12959 "function \"%s\" (offset %d)"),
12960 fieldname, die->offset.sect_off);
12961 }
12962 else
12963 {
12964 fnp->fcontext
12965 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12966 }
12967 }
12968 }
12969 else if (attr_form_is_section_offset (attr))
12970 {
12971 dwarf2_complex_location_expr_complaint ();
12972 }
12973 else
12974 {
12975 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12976 fieldname);
12977 }
12978 }
12979 else
12980 {
12981 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12982 if (attr && DW_UNSND (attr))
12983 {
12984 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12985 complaint (&symfile_complaints,
12986 _("Member function \"%s\" (offset %d) is virtual "
12987 "but the vtable offset is not specified"),
12988 fieldname, die->offset.sect_off);
12989 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12990 TYPE_CPLUS_DYNAMIC (type) = 1;
12991 }
12992 }
12993 }
12994
12995 /* Create the vector of member function fields, and attach it to the type. */
12996
12997 static void
12998 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12999 struct dwarf2_cu *cu)
13000 {
13001 struct fnfieldlist *flp;
13002 int i;
13003
13004 if (cu->language == language_ada)
13005 error (_("unexpected member functions in Ada type"));
13006
13007 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13008 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13009 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13010
13011 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13012 {
13013 struct nextfnfield *nfp = flp->head;
13014 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13015 int k;
13016
13017 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13018 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13019 fn_flp->fn_fields = (struct fn_field *)
13020 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13021 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13022 fn_flp->fn_fields[k] = nfp->fnfield;
13023 }
13024
13025 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13026 }
13027
13028 /* Returns non-zero if NAME is the name of a vtable member in CU's
13029 language, zero otherwise. */
13030 static int
13031 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13032 {
13033 static const char vptr[] = "_vptr";
13034 static const char vtable[] = "vtable";
13035
13036 /* Look for the C++ and Java forms of the vtable. */
13037 if ((cu->language == language_java
13038 && startswith (name, vtable))
13039 || (startswith (name, vptr)
13040 && is_cplus_marker (name[sizeof (vptr) - 1])))
13041 return 1;
13042
13043 return 0;
13044 }
13045
13046 /* GCC outputs unnamed structures that are really pointers to member
13047 functions, with the ABI-specified layout. If TYPE describes
13048 such a structure, smash it into a member function type.
13049
13050 GCC shouldn't do this; it should just output pointer to member DIEs.
13051 This is GCC PR debug/28767. */
13052
13053 static void
13054 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13055 {
13056 struct type *pfn_type, *self_type, *new_type;
13057
13058 /* Check for a structure with no name and two children. */
13059 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13060 return;
13061
13062 /* Check for __pfn and __delta members. */
13063 if (TYPE_FIELD_NAME (type, 0) == NULL
13064 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13065 || TYPE_FIELD_NAME (type, 1) == NULL
13066 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13067 return;
13068
13069 /* Find the type of the method. */
13070 pfn_type = TYPE_FIELD_TYPE (type, 0);
13071 if (pfn_type == NULL
13072 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13073 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13074 return;
13075
13076 /* Look for the "this" argument. */
13077 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13078 if (TYPE_NFIELDS (pfn_type) == 0
13079 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13080 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13081 return;
13082
13083 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13084 new_type = alloc_type (objfile);
13085 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13086 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13087 TYPE_VARARGS (pfn_type));
13088 smash_to_methodptr_type (type, new_type);
13089 }
13090
13091 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13092 (icc). */
13093
13094 static int
13095 producer_is_icc (struct dwarf2_cu *cu)
13096 {
13097 if (!cu->checked_producer)
13098 check_producer (cu);
13099
13100 return cu->producer_is_icc;
13101 }
13102
13103 /* Called when we find the DIE that starts a structure or union scope
13104 (definition) to create a type for the structure or union. Fill in
13105 the type's name and general properties; the members will not be
13106 processed until process_structure_scope. A symbol table entry for
13107 the type will also not be done until process_structure_scope (assuming
13108 the type has a name).
13109
13110 NOTE: we need to call these functions regardless of whether or not the
13111 DIE has a DW_AT_name attribute, since it might be an anonymous
13112 structure or union. This gets the type entered into our set of
13113 user defined types. */
13114
13115 static struct type *
13116 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13117 {
13118 struct objfile *objfile = cu->objfile;
13119 struct type *type;
13120 struct attribute *attr;
13121 const char *name;
13122
13123 /* If the definition of this type lives in .debug_types, read that type.
13124 Don't follow DW_AT_specification though, that will take us back up
13125 the chain and we want to go down. */
13126 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13127 if (attr)
13128 {
13129 type = get_DW_AT_signature_type (die, attr, cu);
13130
13131 /* The type's CU may not be the same as CU.
13132 Ensure TYPE is recorded with CU in die_type_hash. */
13133 return set_die_type (die, type, cu);
13134 }
13135
13136 type = alloc_type (objfile);
13137 INIT_CPLUS_SPECIFIC (type);
13138
13139 name = dwarf2_name (die, cu);
13140 if (name != NULL)
13141 {
13142 if (cu->language == language_cplus
13143 || cu->language == language_java)
13144 {
13145 const char *full_name = dwarf2_full_name (name, die, cu);
13146
13147 /* dwarf2_full_name might have already finished building the DIE's
13148 type. If so, there is no need to continue. */
13149 if (get_die_type (die, cu) != NULL)
13150 return get_die_type (die, cu);
13151
13152 TYPE_TAG_NAME (type) = full_name;
13153 if (die->tag == DW_TAG_structure_type
13154 || die->tag == DW_TAG_class_type)
13155 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13156 }
13157 else
13158 {
13159 /* The name is already allocated along with this objfile, so
13160 we don't need to duplicate it for the type. */
13161 TYPE_TAG_NAME (type) = name;
13162 if (die->tag == DW_TAG_class_type)
13163 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13164 }
13165 }
13166
13167 if (die->tag == DW_TAG_structure_type)
13168 {
13169 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13170 }
13171 else if (die->tag == DW_TAG_union_type)
13172 {
13173 TYPE_CODE (type) = TYPE_CODE_UNION;
13174 }
13175 else
13176 {
13177 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13178 }
13179
13180 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13181 TYPE_DECLARED_CLASS (type) = 1;
13182
13183 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13184 if (attr)
13185 {
13186 TYPE_LENGTH (type) = DW_UNSND (attr);
13187 }
13188 else
13189 {
13190 TYPE_LENGTH (type) = 0;
13191 }
13192
13193 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13194 {
13195 /* ICC does not output the required DW_AT_declaration
13196 on incomplete types, but gives them a size of zero. */
13197 TYPE_STUB (type) = 1;
13198 }
13199 else
13200 TYPE_STUB_SUPPORTED (type) = 1;
13201
13202 if (die_is_declaration (die, cu))
13203 TYPE_STUB (type) = 1;
13204 else if (attr == NULL && die->child == NULL
13205 && producer_is_realview (cu->producer))
13206 /* RealView does not output the required DW_AT_declaration
13207 on incomplete types. */
13208 TYPE_STUB (type) = 1;
13209
13210 /* We need to add the type field to the die immediately so we don't
13211 infinitely recurse when dealing with pointers to the structure
13212 type within the structure itself. */
13213 set_die_type (die, type, cu);
13214
13215 /* set_die_type should be already done. */
13216 set_descriptive_type (type, die, cu);
13217
13218 return type;
13219 }
13220
13221 /* Finish creating a structure or union type, including filling in
13222 its members and creating a symbol for it. */
13223
13224 static void
13225 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13226 {
13227 struct objfile *objfile = cu->objfile;
13228 struct die_info *child_die;
13229 struct type *type;
13230
13231 type = get_die_type (die, cu);
13232 if (type == NULL)
13233 type = read_structure_type (die, cu);
13234
13235 if (die->child != NULL && ! die_is_declaration (die, cu))
13236 {
13237 struct field_info fi;
13238 VEC (symbolp) *template_args = NULL;
13239 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13240
13241 memset (&fi, 0, sizeof (struct field_info));
13242
13243 child_die = die->child;
13244
13245 while (child_die && child_die->tag)
13246 {
13247 if (child_die->tag == DW_TAG_member
13248 || child_die->tag == DW_TAG_variable)
13249 {
13250 /* NOTE: carlton/2002-11-05: A C++ static data member
13251 should be a DW_TAG_member that is a declaration, but
13252 all versions of G++ as of this writing (so through at
13253 least 3.2.1) incorrectly generate DW_TAG_variable
13254 tags for them instead. */
13255 dwarf2_add_field (&fi, child_die, cu);
13256 }
13257 else if (child_die->tag == DW_TAG_subprogram)
13258 {
13259 /* C++ member function. */
13260 dwarf2_add_member_fn (&fi, child_die, type, cu);
13261 }
13262 else if (child_die->tag == DW_TAG_inheritance)
13263 {
13264 /* C++ base class field. */
13265 dwarf2_add_field (&fi, child_die, cu);
13266 }
13267 else if (child_die->tag == DW_TAG_typedef)
13268 dwarf2_add_typedef (&fi, child_die, cu);
13269 else if (child_die->tag == DW_TAG_template_type_param
13270 || child_die->tag == DW_TAG_template_value_param)
13271 {
13272 struct symbol *arg = new_symbol (child_die, NULL, cu);
13273
13274 if (arg != NULL)
13275 VEC_safe_push (symbolp, template_args, arg);
13276 }
13277
13278 child_die = sibling_die (child_die);
13279 }
13280
13281 /* Attach template arguments to type. */
13282 if (! VEC_empty (symbolp, template_args))
13283 {
13284 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13285 TYPE_N_TEMPLATE_ARGUMENTS (type)
13286 = VEC_length (symbolp, template_args);
13287 TYPE_TEMPLATE_ARGUMENTS (type)
13288 = obstack_alloc (&objfile->objfile_obstack,
13289 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13290 * sizeof (struct symbol *)));
13291 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13292 VEC_address (symbolp, template_args),
13293 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13294 * sizeof (struct symbol *)));
13295 VEC_free (symbolp, template_args);
13296 }
13297
13298 /* Attach fields and member functions to the type. */
13299 if (fi.nfields)
13300 dwarf2_attach_fields_to_type (&fi, type, cu);
13301 if (fi.nfnfields)
13302 {
13303 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13304
13305 /* Get the type which refers to the base class (possibly this
13306 class itself) which contains the vtable pointer for the current
13307 class from the DW_AT_containing_type attribute. This use of
13308 DW_AT_containing_type is a GNU extension. */
13309
13310 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13311 {
13312 struct type *t = die_containing_type (die, cu);
13313
13314 set_type_vptr_basetype (type, t);
13315 if (type == t)
13316 {
13317 int i;
13318
13319 /* Our own class provides vtbl ptr. */
13320 for (i = TYPE_NFIELDS (t) - 1;
13321 i >= TYPE_N_BASECLASSES (t);
13322 --i)
13323 {
13324 const char *fieldname = TYPE_FIELD_NAME (t, i);
13325
13326 if (is_vtable_name (fieldname, cu))
13327 {
13328 set_type_vptr_fieldno (type, i);
13329 break;
13330 }
13331 }
13332
13333 /* Complain if virtual function table field not found. */
13334 if (i < TYPE_N_BASECLASSES (t))
13335 complaint (&symfile_complaints,
13336 _("virtual function table pointer "
13337 "not found when defining class '%s'"),
13338 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13339 "");
13340 }
13341 else
13342 {
13343 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13344 }
13345 }
13346 else if (cu->producer
13347 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13348 {
13349 /* The IBM XLC compiler does not provide direct indication
13350 of the containing type, but the vtable pointer is
13351 always named __vfp. */
13352
13353 int i;
13354
13355 for (i = TYPE_NFIELDS (type) - 1;
13356 i >= TYPE_N_BASECLASSES (type);
13357 --i)
13358 {
13359 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13360 {
13361 set_type_vptr_fieldno (type, i);
13362 set_type_vptr_basetype (type, type);
13363 break;
13364 }
13365 }
13366 }
13367 }
13368
13369 /* Copy fi.typedef_field_list linked list elements content into the
13370 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13371 if (fi.typedef_field_list)
13372 {
13373 int i = fi.typedef_field_list_count;
13374
13375 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13376 TYPE_TYPEDEF_FIELD_ARRAY (type)
13377 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13378 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13379
13380 /* Reverse the list order to keep the debug info elements order. */
13381 while (--i >= 0)
13382 {
13383 struct typedef_field *dest, *src;
13384
13385 dest = &TYPE_TYPEDEF_FIELD (type, i);
13386 src = &fi.typedef_field_list->field;
13387 fi.typedef_field_list = fi.typedef_field_list->next;
13388 *dest = *src;
13389 }
13390 }
13391
13392 do_cleanups (back_to);
13393
13394 if (HAVE_CPLUS_STRUCT (type))
13395 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13396 }
13397
13398 quirk_gcc_member_function_pointer (type, objfile);
13399
13400 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13401 snapshots) has been known to create a die giving a declaration
13402 for a class that has, as a child, a die giving a definition for a
13403 nested class. So we have to process our children even if the
13404 current die is a declaration. Normally, of course, a declaration
13405 won't have any children at all. */
13406
13407 child_die = die->child;
13408
13409 while (child_die != NULL && child_die->tag)
13410 {
13411 if (child_die->tag == DW_TAG_member
13412 || child_die->tag == DW_TAG_variable
13413 || child_die->tag == DW_TAG_inheritance
13414 || child_die->tag == DW_TAG_template_value_param
13415 || child_die->tag == DW_TAG_template_type_param)
13416 {
13417 /* Do nothing. */
13418 }
13419 else
13420 process_die (child_die, cu);
13421
13422 child_die = sibling_die (child_die);
13423 }
13424
13425 /* Do not consider external references. According to the DWARF standard,
13426 these DIEs are identified by the fact that they have no byte_size
13427 attribute, and a declaration attribute. */
13428 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13429 || !die_is_declaration (die, cu))
13430 new_symbol (die, type, cu);
13431 }
13432
13433 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13434 update TYPE using some information only available in DIE's children. */
13435
13436 static void
13437 update_enumeration_type_from_children (struct die_info *die,
13438 struct type *type,
13439 struct dwarf2_cu *cu)
13440 {
13441 struct obstack obstack;
13442 struct die_info *child_die;
13443 int unsigned_enum = 1;
13444 int flag_enum = 1;
13445 ULONGEST mask = 0;
13446 struct cleanup *old_chain;
13447
13448 obstack_init (&obstack);
13449 old_chain = make_cleanup_obstack_free (&obstack);
13450
13451 for (child_die = die->child;
13452 child_die != NULL && child_die->tag;
13453 child_die = sibling_die (child_die))
13454 {
13455 struct attribute *attr;
13456 LONGEST value;
13457 const gdb_byte *bytes;
13458 struct dwarf2_locexpr_baton *baton;
13459 const char *name;
13460
13461 if (child_die->tag != DW_TAG_enumerator)
13462 continue;
13463
13464 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13465 if (attr == NULL)
13466 continue;
13467
13468 name = dwarf2_name (child_die, cu);
13469 if (name == NULL)
13470 name = "<anonymous enumerator>";
13471
13472 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13473 &value, &bytes, &baton);
13474 if (value < 0)
13475 {
13476 unsigned_enum = 0;
13477 flag_enum = 0;
13478 }
13479 else if ((mask & value) != 0)
13480 flag_enum = 0;
13481 else
13482 mask |= value;
13483
13484 /* If we already know that the enum type is neither unsigned, nor
13485 a flag type, no need to look at the rest of the enumerates. */
13486 if (!unsigned_enum && !flag_enum)
13487 break;
13488 }
13489
13490 if (unsigned_enum)
13491 TYPE_UNSIGNED (type) = 1;
13492 if (flag_enum)
13493 TYPE_FLAG_ENUM (type) = 1;
13494
13495 do_cleanups (old_chain);
13496 }
13497
13498 /* Given a DW_AT_enumeration_type die, set its type. We do not
13499 complete the type's fields yet, or create any symbols. */
13500
13501 static struct type *
13502 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13503 {
13504 struct objfile *objfile = cu->objfile;
13505 struct type *type;
13506 struct attribute *attr;
13507 const char *name;
13508
13509 /* If the definition of this type lives in .debug_types, read that type.
13510 Don't follow DW_AT_specification though, that will take us back up
13511 the chain and we want to go down. */
13512 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13513 if (attr)
13514 {
13515 type = get_DW_AT_signature_type (die, attr, cu);
13516
13517 /* The type's CU may not be the same as CU.
13518 Ensure TYPE is recorded with CU in die_type_hash. */
13519 return set_die_type (die, type, cu);
13520 }
13521
13522 type = alloc_type (objfile);
13523
13524 TYPE_CODE (type) = TYPE_CODE_ENUM;
13525 name = dwarf2_full_name (NULL, die, cu);
13526 if (name != NULL)
13527 TYPE_TAG_NAME (type) = name;
13528
13529 attr = dwarf2_attr (die, DW_AT_type, cu);
13530 if (attr != NULL)
13531 {
13532 struct type *underlying_type = die_type (die, cu);
13533
13534 TYPE_TARGET_TYPE (type) = underlying_type;
13535 }
13536
13537 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13538 if (attr)
13539 {
13540 TYPE_LENGTH (type) = DW_UNSND (attr);
13541 }
13542 else
13543 {
13544 TYPE_LENGTH (type) = 0;
13545 }
13546
13547 /* The enumeration DIE can be incomplete. In Ada, any type can be
13548 declared as private in the package spec, and then defined only
13549 inside the package body. Such types are known as Taft Amendment
13550 Types. When another package uses such a type, an incomplete DIE
13551 may be generated by the compiler. */
13552 if (die_is_declaration (die, cu))
13553 TYPE_STUB (type) = 1;
13554
13555 /* Finish the creation of this type by using the enum's children.
13556 We must call this even when the underlying type has been provided
13557 so that we can determine if we're looking at a "flag" enum. */
13558 update_enumeration_type_from_children (die, type, cu);
13559
13560 /* If this type has an underlying type that is not a stub, then we
13561 may use its attributes. We always use the "unsigned" attribute
13562 in this situation, because ordinarily we guess whether the type
13563 is unsigned -- but the guess can be wrong and the underlying type
13564 can tell us the reality. However, we defer to a local size
13565 attribute if one exists, because this lets the compiler override
13566 the underlying type if needed. */
13567 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13568 {
13569 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13570 if (TYPE_LENGTH (type) == 0)
13571 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13572 }
13573
13574 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13575
13576 return set_die_type (die, type, cu);
13577 }
13578
13579 /* Given a pointer to a die which begins an enumeration, process all
13580 the dies that define the members of the enumeration, and create the
13581 symbol for the enumeration type.
13582
13583 NOTE: We reverse the order of the element list. */
13584
13585 static void
13586 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13587 {
13588 struct type *this_type;
13589
13590 this_type = get_die_type (die, cu);
13591 if (this_type == NULL)
13592 this_type = read_enumeration_type (die, cu);
13593
13594 if (die->child != NULL)
13595 {
13596 struct die_info *child_die;
13597 struct symbol *sym;
13598 struct field *fields = NULL;
13599 int num_fields = 0;
13600 const char *name;
13601
13602 child_die = die->child;
13603 while (child_die && child_die->tag)
13604 {
13605 if (child_die->tag != DW_TAG_enumerator)
13606 {
13607 process_die (child_die, cu);
13608 }
13609 else
13610 {
13611 name = dwarf2_name (child_die, cu);
13612 if (name)
13613 {
13614 sym = new_symbol (child_die, this_type, cu);
13615
13616 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13617 {
13618 fields = (struct field *)
13619 xrealloc (fields,
13620 (num_fields + DW_FIELD_ALLOC_CHUNK)
13621 * sizeof (struct field));
13622 }
13623
13624 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13625 FIELD_TYPE (fields[num_fields]) = NULL;
13626 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13627 FIELD_BITSIZE (fields[num_fields]) = 0;
13628
13629 num_fields++;
13630 }
13631 }
13632
13633 child_die = sibling_die (child_die);
13634 }
13635
13636 if (num_fields)
13637 {
13638 TYPE_NFIELDS (this_type) = num_fields;
13639 TYPE_FIELDS (this_type) = (struct field *)
13640 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13641 memcpy (TYPE_FIELDS (this_type), fields,
13642 sizeof (struct field) * num_fields);
13643 xfree (fields);
13644 }
13645 }
13646
13647 /* If we are reading an enum from a .debug_types unit, and the enum
13648 is a declaration, and the enum is not the signatured type in the
13649 unit, then we do not want to add a symbol for it. Adding a
13650 symbol would in some cases obscure the true definition of the
13651 enum, giving users an incomplete type when the definition is
13652 actually available. Note that we do not want to do this for all
13653 enums which are just declarations, because C++0x allows forward
13654 enum declarations. */
13655 if (cu->per_cu->is_debug_types
13656 && die_is_declaration (die, cu))
13657 {
13658 struct signatured_type *sig_type;
13659
13660 sig_type = (struct signatured_type *) cu->per_cu;
13661 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13662 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13663 return;
13664 }
13665
13666 new_symbol (die, this_type, cu);
13667 }
13668
13669 /* Extract all information from a DW_TAG_array_type DIE and put it in
13670 the DIE's type field. For now, this only handles one dimensional
13671 arrays. */
13672
13673 static struct type *
13674 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13675 {
13676 struct objfile *objfile = cu->objfile;
13677 struct die_info *child_die;
13678 struct type *type;
13679 struct type *element_type, *range_type, *index_type;
13680 struct type **range_types = NULL;
13681 struct attribute *attr;
13682 int ndim = 0;
13683 struct cleanup *back_to;
13684 const char *name;
13685 unsigned int bit_stride = 0;
13686
13687 element_type = die_type (die, cu);
13688
13689 /* The die_type call above may have already set the type for this DIE. */
13690 type = get_die_type (die, cu);
13691 if (type)
13692 return type;
13693
13694 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13695 if (attr != NULL)
13696 bit_stride = DW_UNSND (attr) * 8;
13697
13698 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13699 if (attr != NULL)
13700 bit_stride = DW_UNSND (attr);
13701
13702 /* Irix 6.2 native cc creates array types without children for
13703 arrays with unspecified length. */
13704 if (die->child == NULL)
13705 {
13706 index_type = objfile_type (objfile)->builtin_int;
13707 range_type = create_static_range_type (NULL, index_type, 0, -1);
13708 type = create_array_type_with_stride (NULL, element_type, range_type,
13709 bit_stride);
13710 return set_die_type (die, type, cu);
13711 }
13712
13713 back_to = make_cleanup (null_cleanup, NULL);
13714 child_die = die->child;
13715 while (child_die && child_die->tag)
13716 {
13717 if (child_die->tag == DW_TAG_subrange_type)
13718 {
13719 struct type *child_type = read_type_die (child_die, cu);
13720
13721 if (child_type != NULL)
13722 {
13723 /* The range type was succesfully read. Save it for the
13724 array type creation. */
13725 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13726 {
13727 range_types = (struct type **)
13728 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13729 * sizeof (struct type *));
13730 if (ndim == 0)
13731 make_cleanup (free_current_contents, &range_types);
13732 }
13733 range_types[ndim++] = child_type;
13734 }
13735 }
13736 child_die = sibling_die (child_die);
13737 }
13738
13739 /* Dwarf2 dimensions are output from left to right, create the
13740 necessary array types in backwards order. */
13741
13742 type = element_type;
13743
13744 if (read_array_order (die, cu) == DW_ORD_col_major)
13745 {
13746 int i = 0;
13747
13748 while (i < ndim)
13749 type = create_array_type_with_stride (NULL, type, range_types[i++],
13750 bit_stride);
13751 }
13752 else
13753 {
13754 while (ndim-- > 0)
13755 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13756 bit_stride);
13757 }
13758
13759 /* Understand Dwarf2 support for vector types (like they occur on
13760 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13761 array type. This is not part of the Dwarf2/3 standard yet, but a
13762 custom vendor extension. The main difference between a regular
13763 array and the vector variant is that vectors are passed by value
13764 to functions. */
13765 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13766 if (attr)
13767 make_vector_type (type);
13768
13769 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13770 implementation may choose to implement triple vectors using this
13771 attribute. */
13772 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13773 if (attr)
13774 {
13775 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13776 TYPE_LENGTH (type) = DW_UNSND (attr);
13777 else
13778 complaint (&symfile_complaints,
13779 _("DW_AT_byte_size for array type smaller "
13780 "than the total size of elements"));
13781 }
13782
13783 name = dwarf2_name (die, cu);
13784 if (name)
13785 TYPE_NAME (type) = name;
13786
13787 /* Install the type in the die. */
13788 set_die_type (die, type, cu);
13789
13790 /* set_die_type should be already done. */
13791 set_descriptive_type (type, die, cu);
13792
13793 do_cleanups (back_to);
13794
13795 return type;
13796 }
13797
13798 static enum dwarf_array_dim_ordering
13799 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13800 {
13801 struct attribute *attr;
13802
13803 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13804
13805 if (attr) return DW_SND (attr);
13806
13807 /* GNU F77 is a special case, as at 08/2004 array type info is the
13808 opposite order to the dwarf2 specification, but data is still
13809 laid out as per normal fortran.
13810
13811 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13812 version checking. */
13813
13814 if (cu->language == language_fortran
13815 && cu->producer && strstr (cu->producer, "GNU F77"))
13816 {
13817 return DW_ORD_row_major;
13818 }
13819
13820 switch (cu->language_defn->la_array_ordering)
13821 {
13822 case array_column_major:
13823 return DW_ORD_col_major;
13824 case array_row_major:
13825 default:
13826 return DW_ORD_row_major;
13827 };
13828 }
13829
13830 /* Extract all information from a DW_TAG_set_type DIE and put it in
13831 the DIE's type field. */
13832
13833 static struct type *
13834 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13835 {
13836 struct type *domain_type, *set_type;
13837 struct attribute *attr;
13838
13839 domain_type = die_type (die, cu);
13840
13841 /* The die_type call above may have already set the type for this DIE. */
13842 set_type = get_die_type (die, cu);
13843 if (set_type)
13844 return set_type;
13845
13846 set_type = create_set_type (NULL, domain_type);
13847
13848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13849 if (attr)
13850 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13851
13852 return set_die_type (die, set_type, cu);
13853 }
13854
13855 /* A helper for read_common_block that creates a locexpr baton.
13856 SYM is the symbol which we are marking as computed.
13857 COMMON_DIE is the DIE for the common block.
13858 COMMON_LOC is the location expression attribute for the common
13859 block itself.
13860 MEMBER_LOC is the location expression attribute for the particular
13861 member of the common block that we are processing.
13862 CU is the CU from which the above come. */
13863
13864 static void
13865 mark_common_block_symbol_computed (struct symbol *sym,
13866 struct die_info *common_die,
13867 struct attribute *common_loc,
13868 struct attribute *member_loc,
13869 struct dwarf2_cu *cu)
13870 {
13871 struct objfile *objfile = dwarf2_per_objfile->objfile;
13872 struct dwarf2_locexpr_baton *baton;
13873 gdb_byte *ptr;
13874 unsigned int cu_off;
13875 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13876 LONGEST offset = 0;
13877
13878 gdb_assert (common_loc && member_loc);
13879 gdb_assert (attr_form_is_block (common_loc));
13880 gdb_assert (attr_form_is_block (member_loc)
13881 || attr_form_is_constant (member_loc));
13882
13883 baton = obstack_alloc (&objfile->objfile_obstack,
13884 sizeof (struct dwarf2_locexpr_baton));
13885 baton->per_cu = cu->per_cu;
13886 gdb_assert (baton->per_cu);
13887
13888 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13889
13890 if (attr_form_is_constant (member_loc))
13891 {
13892 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13893 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13894 }
13895 else
13896 baton->size += DW_BLOCK (member_loc)->size;
13897
13898 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13899 baton->data = ptr;
13900
13901 *ptr++ = DW_OP_call4;
13902 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13903 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13904 ptr += 4;
13905
13906 if (attr_form_is_constant (member_loc))
13907 {
13908 *ptr++ = DW_OP_addr;
13909 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13910 ptr += cu->header.addr_size;
13911 }
13912 else
13913 {
13914 /* We have to copy the data here, because DW_OP_call4 will only
13915 use a DW_AT_location attribute. */
13916 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13917 ptr += DW_BLOCK (member_loc)->size;
13918 }
13919
13920 *ptr++ = DW_OP_plus;
13921 gdb_assert (ptr - baton->data == baton->size);
13922
13923 SYMBOL_LOCATION_BATON (sym) = baton;
13924 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13925 }
13926
13927 /* Create appropriate locally-scoped variables for all the
13928 DW_TAG_common_block entries. Also create a struct common_block
13929 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13930 is used to sepate the common blocks name namespace from regular
13931 variable names. */
13932
13933 static void
13934 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13935 {
13936 struct attribute *attr;
13937
13938 attr = dwarf2_attr (die, DW_AT_location, cu);
13939 if (attr)
13940 {
13941 /* Support the .debug_loc offsets. */
13942 if (attr_form_is_block (attr))
13943 {
13944 /* Ok. */
13945 }
13946 else if (attr_form_is_section_offset (attr))
13947 {
13948 dwarf2_complex_location_expr_complaint ();
13949 attr = NULL;
13950 }
13951 else
13952 {
13953 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13954 "common block member");
13955 attr = NULL;
13956 }
13957 }
13958
13959 if (die->child != NULL)
13960 {
13961 struct objfile *objfile = cu->objfile;
13962 struct die_info *child_die;
13963 size_t n_entries = 0, size;
13964 struct common_block *common_block;
13965 struct symbol *sym;
13966
13967 for (child_die = die->child;
13968 child_die && child_die->tag;
13969 child_die = sibling_die (child_die))
13970 ++n_entries;
13971
13972 size = (sizeof (struct common_block)
13973 + (n_entries - 1) * sizeof (struct symbol *));
13974 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13975 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13976 common_block->n_entries = 0;
13977
13978 for (child_die = die->child;
13979 child_die && child_die->tag;
13980 child_die = sibling_die (child_die))
13981 {
13982 /* Create the symbol in the DW_TAG_common_block block in the current
13983 symbol scope. */
13984 sym = new_symbol (child_die, NULL, cu);
13985 if (sym != NULL)
13986 {
13987 struct attribute *member_loc;
13988
13989 common_block->contents[common_block->n_entries++] = sym;
13990
13991 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13992 cu);
13993 if (member_loc)
13994 {
13995 /* GDB has handled this for a long time, but it is
13996 not specified by DWARF. It seems to have been
13997 emitted by gfortran at least as recently as:
13998 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13999 complaint (&symfile_complaints,
14000 _("Variable in common block has "
14001 "DW_AT_data_member_location "
14002 "- DIE at 0x%x [in module %s]"),
14003 child_die->offset.sect_off,
14004 objfile_name (cu->objfile));
14005
14006 if (attr_form_is_section_offset (member_loc))
14007 dwarf2_complex_location_expr_complaint ();
14008 else if (attr_form_is_constant (member_loc)
14009 || attr_form_is_block (member_loc))
14010 {
14011 if (attr)
14012 mark_common_block_symbol_computed (sym, die, attr,
14013 member_loc, cu);
14014 }
14015 else
14016 dwarf2_complex_location_expr_complaint ();
14017 }
14018 }
14019 }
14020
14021 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14022 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14023 }
14024 }
14025
14026 /* Create a type for a C++ namespace. */
14027
14028 static struct type *
14029 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14030 {
14031 struct objfile *objfile = cu->objfile;
14032 const char *previous_prefix, *name;
14033 int is_anonymous;
14034 struct type *type;
14035
14036 /* For extensions, reuse the type of the original namespace. */
14037 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14038 {
14039 struct die_info *ext_die;
14040 struct dwarf2_cu *ext_cu = cu;
14041
14042 ext_die = dwarf2_extension (die, &ext_cu);
14043 type = read_type_die (ext_die, ext_cu);
14044
14045 /* EXT_CU may not be the same as CU.
14046 Ensure TYPE is recorded with CU in die_type_hash. */
14047 return set_die_type (die, type, cu);
14048 }
14049
14050 name = namespace_name (die, &is_anonymous, cu);
14051
14052 /* Now build the name of the current namespace. */
14053
14054 previous_prefix = determine_prefix (die, cu);
14055 if (previous_prefix[0] != '\0')
14056 name = typename_concat (&objfile->objfile_obstack,
14057 previous_prefix, name, 0, cu);
14058
14059 /* Create the type. */
14060 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14061 objfile);
14062 TYPE_NAME (type) = name;
14063 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14064
14065 return set_die_type (die, type, cu);
14066 }
14067
14068 /* Read a C++ namespace. */
14069
14070 static void
14071 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14072 {
14073 struct objfile *objfile = cu->objfile;
14074 int is_anonymous;
14075
14076 /* Add a symbol associated to this if we haven't seen the namespace
14077 before. Also, add a using directive if it's an anonymous
14078 namespace. */
14079
14080 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14081 {
14082 struct type *type;
14083
14084 type = read_type_die (die, cu);
14085 new_symbol (die, type, cu);
14086
14087 namespace_name (die, &is_anonymous, cu);
14088 if (is_anonymous)
14089 {
14090 const char *previous_prefix = determine_prefix (die, cu);
14091
14092 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14093 NULL, NULL, 0, &objfile->objfile_obstack);
14094 }
14095 }
14096
14097 if (die->child != NULL)
14098 {
14099 struct die_info *child_die = die->child;
14100
14101 while (child_die && child_die->tag)
14102 {
14103 process_die (child_die, cu);
14104 child_die = sibling_die (child_die);
14105 }
14106 }
14107 }
14108
14109 /* Read a Fortran module as type. This DIE can be only a declaration used for
14110 imported module. Still we need that type as local Fortran "use ... only"
14111 declaration imports depend on the created type in determine_prefix. */
14112
14113 static struct type *
14114 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14115 {
14116 struct objfile *objfile = cu->objfile;
14117 const char *module_name;
14118 struct type *type;
14119
14120 module_name = dwarf2_name (die, cu);
14121 if (!module_name)
14122 complaint (&symfile_complaints,
14123 _("DW_TAG_module has no name, offset 0x%x"),
14124 die->offset.sect_off);
14125 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14126
14127 /* determine_prefix uses TYPE_TAG_NAME. */
14128 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14129
14130 return set_die_type (die, type, cu);
14131 }
14132
14133 /* Read a Fortran module. */
14134
14135 static void
14136 read_module (struct die_info *die, struct dwarf2_cu *cu)
14137 {
14138 struct die_info *child_die = die->child;
14139 struct type *type;
14140
14141 type = read_type_die (die, cu);
14142 new_symbol (die, type, cu);
14143
14144 while (child_die && child_die->tag)
14145 {
14146 process_die (child_die, cu);
14147 child_die = sibling_die (child_die);
14148 }
14149 }
14150
14151 /* Return the name of the namespace represented by DIE. Set
14152 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14153 namespace. */
14154
14155 static const char *
14156 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14157 {
14158 struct die_info *current_die;
14159 const char *name = NULL;
14160
14161 /* Loop through the extensions until we find a name. */
14162
14163 for (current_die = die;
14164 current_die != NULL;
14165 current_die = dwarf2_extension (die, &cu))
14166 {
14167 /* We don't use dwarf2_name here so that we can detect the absence
14168 of a name -> anonymous namespace. */
14169 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14170
14171 if (attr != NULL)
14172 name = DW_STRING (attr);
14173 if (name != NULL)
14174 break;
14175 }
14176
14177 /* Is it an anonymous namespace? */
14178
14179 *is_anonymous = (name == NULL);
14180 if (*is_anonymous)
14181 name = CP_ANONYMOUS_NAMESPACE_STR;
14182
14183 return name;
14184 }
14185
14186 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14187 the user defined type vector. */
14188
14189 static struct type *
14190 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14191 {
14192 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14193 struct comp_unit_head *cu_header = &cu->header;
14194 struct type *type;
14195 struct attribute *attr_byte_size;
14196 struct attribute *attr_address_class;
14197 int byte_size, addr_class;
14198 struct type *target_type;
14199
14200 target_type = die_type (die, cu);
14201
14202 /* The die_type call above may have already set the type for this DIE. */
14203 type = get_die_type (die, cu);
14204 if (type)
14205 return type;
14206
14207 type = lookup_pointer_type (target_type);
14208
14209 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14210 if (attr_byte_size)
14211 byte_size = DW_UNSND (attr_byte_size);
14212 else
14213 byte_size = cu_header->addr_size;
14214
14215 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14216 if (attr_address_class)
14217 addr_class = DW_UNSND (attr_address_class);
14218 else
14219 addr_class = DW_ADDR_none;
14220
14221 /* If the pointer size or address class is different than the
14222 default, create a type variant marked as such and set the
14223 length accordingly. */
14224 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14225 {
14226 if (gdbarch_address_class_type_flags_p (gdbarch))
14227 {
14228 int type_flags;
14229
14230 type_flags = gdbarch_address_class_type_flags
14231 (gdbarch, byte_size, addr_class);
14232 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14233 == 0);
14234 type = make_type_with_address_space (type, type_flags);
14235 }
14236 else if (TYPE_LENGTH (type) != byte_size)
14237 {
14238 complaint (&symfile_complaints,
14239 _("invalid pointer size %d"), byte_size);
14240 }
14241 else
14242 {
14243 /* Should we also complain about unhandled address classes? */
14244 }
14245 }
14246
14247 TYPE_LENGTH (type) = byte_size;
14248 return set_die_type (die, type, cu);
14249 }
14250
14251 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14252 the user defined type vector. */
14253
14254 static struct type *
14255 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14256 {
14257 struct type *type;
14258 struct type *to_type;
14259 struct type *domain;
14260
14261 to_type = die_type (die, cu);
14262 domain = die_containing_type (die, cu);
14263
14264 /* The calls above may have already set the type for this DIE. */
14265 type = get_die_type (die, cu);
14266 if (type)
14267 return type;
14268
14269 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14270 type = lookup_methodptr_type (to_type);
14271 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14272 {
14273 struct type *new_type = alloc_type (cu->objfile);
14274
14275 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14276 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14277 TYPE_VARARGS (to_type));
14278 type = lookup_methodptr_type (new_type);
14279 }
14280 else
14281 type = lookup_memberptr_type (to_type, domain);
14282
14283 return set_die_type (die, type, cu);
14284 }
14285
14286 /* Extract all information from a DW_TAG_reference_type DIE and add to
14287 the user defined type vector. */
14288
14289 static struct type *
14290 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14291 {
14292 struct comp_unit_head *cu_header = &cu->header;
14293 struct type *type, *target_type;
14294 struct attribute *attr;
14295
14296 target_type = die_type (die, cu);
14297
14298 /* The die_type call above may have already set the type for this DIE. */
14299 type = get_die_type (die, cu);
14300 if (type)
14301 return type;
14302
14303 type = lookup_reference_type (target_type);
14304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14305 if (attr)
14306 {
14307 TYPE_LENGTH (type) = DW_UNSND (attr);
14308 }
14309 else
14310 {
14311 TYPE_LENGTH (type) = cu_header->addr_size;
14312 }
14313 return set_die_type (die, type, cu);
14314 }
14315
14316 /* Add the given cv-qualifiers to the element type of the array. GCC
14317 outputs DWARF type qualifiers that apply to an array, not the
14318 element type. But GDB relies on the array element type to carry
14319 the cv-qualifiers. This mimics section 6.7.3 of the C99
14320 specification. */
14321
14322 static struct type *
14323 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14324 struct type *base_type, int cnst, int voltl)
14325 {
14326 struct type *el_type, *inner_array;
14327
14328 base_type = copy_type (base_type);
14329 inner_array = base_type;
14330
14331 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14332 {
14333 TYPE_TARGET_TYPE (inner_array) =
14334 copy_type (TYPE_TARGET_TYPE (inner_array));
14335 inner_array = TYPE_TARGET_TYPE (inner_array);
14336 }
14337
14338 el_type = TYPE_TARGET_TYPE (inner_array);
14339 cnst |= TYPE_CONST (el_type);
14340 voltl |= TYPE_VOLATILE (el_type);
14341 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14342
14343 return set_die_type (die, base_type, cu);
14344 }
14345
14346 static struct type *
14347 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14348 {
14349 struct type *base_type, *cv_type;
14350
14351 base_type = die_type (die, cu);
14352
14353 /* The die_type call above may have already set the type for this DIE. */
14354 cv_type = get_die_type (die, cu);
14355 if (cv_type)
14356 return cv_type;
14357
14358 /* In case the const qualifier is applied to an array type, the element type
14359 is so qualified, not the array type (section 6.7.3 of C99). */
14360 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14361 return add_array_cv_type (die, cu, base_type, 1, 0);
14362
14363 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14364 return set_die_type (die, cv_type, cu);
14365 }
14366
14367 static struct type *
14368 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14369 {
14370 struct type *base_type, *cv_type;
14371
14372 base_type = die_type (die, cu);
14373
14374 /* The die_type call above may have already set the type for this DIE. */
14375 cv_type = get_die_type (die, cu);
14376 if (cv_type)
14377 return cv_type;
14378
14379 /* In case the volatile qualifier is applied to an array type, the
14380 element type is so qualified, not the array type (section 6.7.3
14381 of C99). */
14382 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14383 return add_array_cv_type (die, cu, base_type, 0, 1);
14384
14385 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14386 return set_die_type (die, cv_type, cu);
14387 }
14388
14389 /* Handle DW_TAG_restrict_type. */
14390
14391 static struct type *
14392 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14393 {
14394 struct type *base_type, *cv_type;
14395
14396 base_type = die_type (die, cu);
14397
14398 /* The die_type call above may have already set the type for this DIE. */
14399 cv_type = get_die_type (die, cu);
14400 if (cv_type)
14401 return cv_type;
14402
14403 cv_type = make_restrict_type (base_type);
14404 return set_die_type (die, cv_type, cu);
14405 }
14406
14407 /* Handle DW_TAG_atomic_type. */
14408
14409 static struct type *
14410 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14411 {
14412 struct type *base_type, *cv_type;
14413
14414 base_type = die_type (die, cu);
14415
14416 /* The die_type call above may have already set the type for this DIE. */
14417 cv_type = get_die_type (die, cu);
14418 if (cv_type)
14419 return cv_type;
14420
14421 cv_type = make_atomic_type (base_type);
14422 return set_die_type (die, cv_type, cu);
14423 }
14424
14425 /* Extract all information from a DW_TAG_string_type DIE and add to
14426 the user defined type vector. It isn't really a user defined type,
14427 but it behaves like one, with other DIE's using an AT_user_def_type
14428 attribute to reference it. */
14429
14430 static struct type *
14431 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14432 {
14433 struct objfile *objfile = cu->objfile;
14434 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14435 struct type *type, *range_type, *index_type, *char_type;
14436 struct attribute *attr;
14437 unsigned int length;
14438
14439 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14440 if (attr)
14441 {
14442 length = DW_UNSND (attr);
14443 }
14444 else
14445 {
14446 /* Check for the DW_AT_byte_size attribute. */
14447 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14448 if (attr)
14449 {
14450 length = DW_UNSND (attr);
14451 }
14452 else
14453 {
14454 length = 1;
14455 }
14456 }
14457
14458 index_type = objfile_type (objfile)->builtin_int;
14459 range_type = create_static_range_type (NULL, index_type, 1, length);
14460 char_type = language_string_char_type (cu->language_defn, gdbarch);
14461 type = create_string_type (NULL, char_type, range_type);
14462
14463 return set_die_type (die, type, cu);
14464 }
14465
14466 /* Assuming that DIE corresponds to a function, returns nonzero
14467 if the function is prototyped. */
14468
14469 static int
14470 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14471 {
14472 struct attribute *attr;
14473
14474 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14475 if (attr && (DW_UNSND (attr) != 0))
14476 return 1;
14477
14478 /* The DWARF standard implies that the DW_AT_prototyped attribute
14479 is only meaninful for C, but the concept also extends to other
14480 languages that allow unprototyped functions (Eg: Objective C).
14481 For all other languages, assume that functions are always
14482 prototyped. */
14483 if (cu->language != language_c
14484 && cu->language != language_objc
14485 && cu->language != language_opencl)
14486 return 1;
14487
14488 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14489 prototyped and unprototyped functions; default to prototyped,
14490 since that is more common in modern code (and RealView warns
14491 about unprototyped functions). */
14492 if (producer_is_realview (cu->producer))
14493 return 1;
14494
14495 return 0;
14496 }
14497
14498 /* Handle DIES due to C code like:
14499
14500 struct foo
14501 {
14502 int (*funcp)(int a, long l);
14503 int b;
14504 };
14505
14506 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14507
14508 static struct type *
14509 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14510 {
14511 struct objfile *objfile = cu->objfile;
14512 struct type *type; /* Type that this function returns. */
14513 struct type *ftype; /* Function that returns above type. */
14514 struct attribute *attr;
14515
14516 type = die_type (die, cu);
14517
14518 /* The die_type call above may have already set the type for this DIE. */
14519 ftype = get_die_type (die, cu);
14520 if (ftype)
14521 return ftype;
14522
14523 ftype = lookup_function_type (type);
14524
14525 if (prototyped_function_p (die, cu))
14526 TYPE_PROTOTYPED (ftype) = 1;
14527
14528 /* Store the calling convention in the type if it's available in
14529 the subroutine die. Otherwise set the calling convention to
14530 the default value DW_CC_normal. */
14531 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14532 if (attr)
14533 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14534 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14535 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14536 else
14537 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14538
14539 /* Record whether the function returns normally to its caller or not
14540 if the DWARF producer set that information. */
14541 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14542 if (attr && (DW_UNSND (attr) != 0))
14543 TYPE_NO_RETURN (ftype) = 1;
14544
14545 /* We need to add the subroutine type to the die immediately so
14546 we don't infinitely recurse when dealing with parameters
14547 declared as the same subroutine type. */
14548 set_die_type (die, ftype, cu);
14549
14550 if (die->child != NULL)
14551 {
14552 struct type *void_type = objfile_type (objfile)->builtin_void;
14553 struct die_info *child_die;
14554 int nparams, iparams;
14555
14556 /* Count the number of parameters.
14557 FIXME: GDB currently ignores vararg functions, but knows about
14558 vararg member functions. */
14559 nparams = 0;
14560 child_die = die->child;
14561 while (child_die && child_die->tag)
14562 {
14563 if (child_die->tag == DW_TAG_formal_parameter)
14564 nparams++;
14565 else if (child_die->tag == DW_TAG_unspecified_parameters)
14566 TYPE_VARARGS (ftype) = 1;
14567 child_die = sibling_die (child_die);
14568 }
14569
14570 /* Allocate storage for parameters and fill them in. */
14571 TYPE_NFIELDS (ftype) = nparams;
14572 TYPE_FIELDS (ftype) = (struct field *)
14573 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14574
14575 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14576 even if we error out during the parameters reading below. */
14577 for (iparams = 0; iparams < nparams; iparams++)
14578 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14579
14580 iparams = 0;
14581 child_die = die->child;
14582 while (child_die && child_die->tag)
14583 {
14584 if (child_die->tag == DW_TAG_formal_parameter)
14585 {
14586 struct type *arg_type;
14587
14588 /* DWARF version 2 has no clean way to discern C++
14589 static and non-static member functions. G++ helps
14590 GDB by marking the first parameter for non-static
14591 member functions (which is the this pointer) as
14592 artificial. We pass this information to
14593 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14594
14595 DWARF version 3 added DW_AT_object_pointer, which GCC
14596 4.5 does not yet generate. */
14597 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14598 if (attr)
14599 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14600 else
14601 {
14602 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14603
14604 /* GCC/43521: In java, the formal parameter
14605 "this" is sometimes not marked with DW_AT_artificial. */
14606 if (cu->language == language_java)
14607 {
14608 const char *name = dwarf2_name (child_die, cu);
14609
14610 if (name && !strcmp (name, "this"))
14611 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14612 }
14613 }
14614 arg_type = die_type (child_die, cu);
14615
14616 /* RealView does not mark THIS as const, which the testsuite
14617 expects. GCC marks THIS as const in method definitions,
14618 but not in the class specifications (GCC PR 43053). */
14619 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14620 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14621 {
14622 int is_this = 0;
14623 struct dwarf2_cu *arg_cu = cu;
14624 const char *name = dwarf2_name (child_die, cu);
14625
14626 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14627 if (attr)
14628 {
14629 /* If the compiler emits this, use it. */
14630 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14631 is_this = 1;
14632 }
14633 else if (name && strcmp (name, "this") == 0)
14634 /* Function definitions will have the argument names. */
14635 is_this = 1;
14636 else if (name == NULL && iparams == 0)
14637 /* Declarations may not have the names, so like
14638 elsewhere in GDB, assume an artificial first
14639 argument is "this". */
14640 is_this = 1;
14641
14642 if (is_this)
14643 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14644 arg_type, 0);
14645 }
14646
14647 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14648 iparams++;
14649 }
14650 child_die = sibling_die (child_die);
14651 }
14652 }
14653
14654 return ftype;
14655 }
14656
14657 static struct type *
14658 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14659 {
14660 struct objfile *objfile = cu->objfile;
14661 const char *name = NULL;
14662 struct type *this_type, *target_type;
14663
14664 name = dwarf2_full_name (NULL, die, cu);
14665 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14666 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14667 TYPE_NAME (this_type) = name;
14668 set_die_type (die, this_type, cu);
14669 target_type = die_type (die, cu);
14670 if (target_type != this_type)
14671 TYPE_TARGET_TYPE (this_type) = target_type;
14672 else
14673 {
14674 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14675 spec and cause infinite loops in GDB. */
14676 complaint (&symfile_complaints,
14677 _("Self-referential DW_TAG_typedef "
14678 "- DIE at 0x%x [in module %s]"),
14679 die->offset.sect_off, objfile_name (objfile));
14680 TYPE_TARGET_TYPE (this_type) = NULL;
14681 }
14682 return this_type;
14683 }
14684
14685 /* Find a representation of a given base type and install
14686 it in the TYPE field of the die. */
14687
14688 static struct type *
14689 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14690 {
14691 struct objfile *objfile = cu->objfile;
14692 struct type *type;
14693 struct attribute *attr;
14694 int encoding = 0, size = 0;
14695 const char *name;
14696 enum type_code code = TYPE_CODE_INT;
14697 int type_flags = 0;
14698 struct type *target_type = NULL;
14699
14700 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14701 if (attr)
14702 {
14703 encoding = DW_UNSND (attr);
14704 }
14705 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14706 if (attr)
14707 {
14708 size = DW_UNSND (attr);
14709 }
14710 name = dwarf2_name (die, cu);
14711 if (!name)
14712 {
14713 complaint (&symfile_complaints,
14714 _("DW_AT_name missing from DW_TAG_base_type"));
14715 }
14716
14717 switch (encoding)
14718 {
14719 case DW_ATE_address:
14720 /* Turn DW_ATE_address into a void * pointer. */
14721 code = TYPE_CODE_PTR;
14722 type_flags |= TYPE_FLAG_UNSIGNED;
14723 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14724 break;
14725 case DW_ATE_boolean:
14726 code = TYPE_CODE_BOOL;
14727 type_flags |= TYPE_FLAG_UNSIGNED;
14728 break;
14729 case DW_ATE_complex_float:
14730 code = TYPE_CODE_COMPLEX;
14731 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14732 break;
14733 case DW_ATE_decimal_float:
14734 code = TYPE_CODE_DECFLOAT;
14735 break;
14736 case DW_ATE_float:
14737 code = TYPE_CODE_FLT;
14738 break;
14739 case DW_ATE_signed:
14740 break;
14741 case DW_ATE_unsigned:
14742 type_flags |= TYPE_FLAG_UNSIGNED;
14743 if (cu->language == language_fortran
14744 && name
14745 && startswith (name, "character("))
14746 code = TYPE_CODE_CHAR;
14747 break;
14748 case DW_ATE_signed_char:
14749 if (cu->language == language_ada || cu->language == language_m2
14750 || cu->language == language_pascal
14751 || cu->language == language_fortran)
14752 code = TYPE_CODE_CHAR;
14753 break;
14754 case DW_ATE_unsigned_char:
14755 if (cu->language == language_ada || cu->language == language_m2
14756 || cu->language == language_pascal
14757 || cu->language == language_fortran)
14758 code = TYPE_CODE_CHAR;
14759 type_flags |= TYPE_FLAG_UNSIGNED;
14760 break;
14761 case DW_ATE_UTF:
14762 /* We just treat this as an integer and then recognize the
14763 type by name elsewhere. */
14764 break;
14765
14766 default:
14767 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14768 dwarf_type_encoding_name (encoding));
14769 break;
14770 }
14771
14772 type = init_type (code, size, type_flags, NULL, objfile);
14773 TYPE_NAME (type) = name;
14774 TYPE_TARGET_TYPE (type) = target_type;
14775
14776 if (name && strcmp (name, "char") == 0)
14777 TYPE_NOSIGN (type) = 1;
14778
14779 return set_die_type (die, type, cu);
14780 }
14781
14782 /* Parse dwarf attribute if it's a block, reference or constant and put the
14783 resulting value of the attribute into struct bound_prop.
14784 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14785
14786 static int
14787 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14788 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14789 {
14790 struct dwarf2_property_baton *baton;
14791 struct obstack *obstack = &cu->objfile->objfile_obstack;
14792
14793 if (attr == NULL || prop == NULL)
14794 return 0;
14795
14796 if (attr_form_is_block (attr))
14797 {
14798 baton = obstack_alloc (obstack, sizeof (*baton));
14799 baton->referenced_type = NULL;
14800 baton->locexpr.per_cu = cu->per_cu;
14801 baton->locexpr.size = DW_BLOCK (attr)->size;
14802 baton->locexpr.data = DW_BLOCK (attr)->data;
14803 prop->data.baton = baton;
14804 prop->kind = PROP_LOCEXPR;
14805 gdb_assert (prop->data.baton != NULL);
14806 }
14807 else if (attr_form_is_ref (attr))
14808 {
14809 struct dwarf2_cu *target_cu = cu;
14810 struct die_info *target_die;
14811 struct attribute *target_attr;
14812
14813 target_die = follow_die_ref (die, attr, &target_cu);
14814 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14815 if (target_attr == NULL)
14816 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14817 target_cu);
14818 if (target_attr == NULL)
14819 return 0;
14820
14821 switch (target_attr->name)
14822 {
14823 case DW_AT_location:
14824 if (attr_form_is_section_offset (target_attr))
14825 {
14826 baton = obstack_alloc (obstack, sizeof (*baton));
14827 baton->referenced_type = die_type (target_die, target_cu);
14828 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14829 prop->data.baton = baton;
14830 prop->kind = PROP_LOCLIST;
14831 gdb_assert (prop->data.baton != NULL);
14832 }
14833 else if (attr_form_is_block (target_attr))
14834 {
14835 baton = obstack_alloc (obstack, sizeof (*baton));
14836 baton->referenced_type = die_type (target_die, target_cu);
14837 baton->locexpr.per_cu = cu->per_cu;
14838 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14839 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14840 prop->data.baton = baton;
14841 prop->kind = PROP_LOCEXPR;
14842 gdb_assert (prop->data.baton != NULL);
14843 }
14844 else
14845 {
14846 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14847 "dynamic property");
14848 return 0;
14849 }
14850 break;
14851 case DW_AT_data_member_location:
14852 {
14853 LONGEST offset;
14854
14855 if (!handle_data_member_location (target_die, target_cu,
14856 &offset))
14857 return 0;
14858
14859 baton = obstack_alloc (obstack, sizeof (*baton));
14860 baton->referenced_type = read_type_die (target_die->parent,
14861 target_cu);
14862 baton->offset_info.offset = offset;
14863 baton->offset_info.type = die_type (target_die, target_cu);
14864 prop->data.baton = baton;
14865 prop->kind = PROP_ADDR_OFFSET;
14866 break;
14867 }
14868 }
14869 }
14870 else if (attr_form_is_constant (attr))
14871 {
14872 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14873 prop->kind = PROP_CONST;
14874 }
14875 else
14876 {
14877 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14878 dwarf2_name (die, cu));
14879 return 0;
14880 }
14881
14882 return 1;
14883 }
14884
14885 /* Read the given DW_AT_subrange DIE. */
14886
14887 static struct type *
14888 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14889 {
14890 struct type *base_type, *orig_base_type;
14891 struct type *range_type;
14892 struct attribute *attr;
14893 struct dynamic_prop low, high;
14894 int low_default_is_valid;
14895 int high_bound_is_count = 0;
14896 const char *name;
14897 LONGEST negative_mask;
14898
14899 orig_base_type = die_type (die, cu);
14900 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14901 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14902 creating the range type, but we use the result of check_typedef
14903 when examining properties of the type. */
14904 base_type = check_typedef (orig_base_type);
14905
14906 /* The die_type call above may have already set the type for this DIE. */
14907 range_type = get_die_type (die, cu);
14908 if (range_type)
14909 return range_type;
14910
14911 low.kind = PROP_CONST;
14912 high.kind = PROP_CONST;
14913 high.data.const_val = 0;
14914
14915 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14916 omitting DW_AT_lower_bound. */
14917 switch (cu->language)
14918 {
14919 case language_c:
14920 case language_cplus:
14921 low.data.const_val = 0;
14922 low_default_is_valid = 1;
14923 break;
14924 case language_fortran:
14925 low.data.const_val = 1;
14926 low_default_is_valid = 1;
14927 break;
14928 case language_d:
14929 case language_java:
14930 case language_objc:
14931 low.data.const_val = 0;
14932 low_default_is_valid = (cu->header.version >= 4);
14933 break;
14934 case language_ada:
14935 case language_m2:
14936 case language_pascal:
14937 low.data.const_val = 1;
14938 low_default_is_valid = (cu->header.version >= 4);
14939 break;
14940 default:
14941 low.data.const_val = 0;
14942 low_default_is_valid = 0;
14943 break;
14944 }
14945
14946 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14947 if (attr)
14948 attr_to_dynamic_prop (attr, die, cu, &low);
14949 else if (!low_default_is_valid)
14950 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14951 "- DIE at 0x%x [in module %s]"),
14952 die->offset.sect_off, objfile_name (cu->objfile));
14953
14954 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14955 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14956 {
14957 attr = dwarf2_attr (die, DW_AT_count, cu);
14958 if (attr_to_dynamic_prop (attr, die, cu, &high))
14959 {
14960 /* If bounds are constant do the final calculation here. */
14961 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14962 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14963 else
14964 high_bound_is_count = 1;
14965 }
14966 }
14967
14968 /* Dwarf-2 specifications explicitly allows to create subrange types
14969 without specifying a base type.
14970 In that case, the base type must be set to the type of
14971 the lower bound, upper bound or count, in that order, if any of these
14972 three attributes references an object that has a type.
14973 If no base type is found, the Dwarf-2 specifications say that
14974 a signed integer type of size equal to the size of an address should
14975 be used.
14976 For the following C code: `extern char gdb_int [];'
14977 GCC produces an empty range DIE.
14978 FIXME: muller/2010-05-28: Possible references to object for low bound,
14979 high bound or count are not yet handled by this code. */
14980 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14981 {
14982 struct objfile *objfile = cu->objfile;
14983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14984 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14985 struct type *int_type = objfile_type (objfile)->builtin_int;
14986
14987 /* Test "int", "long int", and "long long int" objfile types,
14988 and select the first one having a size above or equal to the
14989 architecture address size. */
14990 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14991 base_type = int_type;
14992 else
14993 {
14994 int_type = objfile_type (objfile)->builtin_long;
14995 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14996 base_type = int_type;
14997 else
14998 {
14999 int_type = objfile_type (objfile)->builtin_long_long;
15000 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15001 base_type = int_type;
15002 }
15003 }
15004 }
15005
15006 /* Normally, the DWARF producers are expected to use a signed
15007 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15008 But this is unfortunately not always the case, as witnessed
15009 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15010 is used instead. To work around that ambiguity, we treat
15011 the bounds as signed, and thus sign-extend their values, when
15012 the base type is signed. */
15013 negative_mask =
15014 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15015 if (low.kind == PROP_CONST
15016 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15017 low.data.const_val |= negative_mask;
15018 if (high.kind == PROP_CONST
15019 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15020 high.data.const_val |= negative_mask;
15021
15022 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15023
15024 if (high_bound_is_count)
15025 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15026
15027 /* Ada expects an empty array on no boundary attributes. */
15028 if (attr == NULL && cu->language != language_ada)
15029 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15030
15031 name = dwarf2_name (die, cu);
15032 if (name)
15033 TYPE_NAME (range_type) = name;
15034
15035 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15036 if (attr)
15037 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15038
15039 set_die_type (die, range_type, cu);
15040
15041 /* set_die_type should be already done. */
15042 set_descriptive_type (range_type, die, cu);
15043
15044 return range_type;
15045 }
15046
15047 static struct type *
15048 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15049 {
15050 struct type *type;
15051
15052 /* For now, we only support the C meaning of an unspecified type: void. */
15053
15054 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15055 TYPE_NAME (type) = dwarf2_name (die, cu);
15056
15057 return set_die_type (die, type, cu);
15058 }
15059
15060 /* Read a single die and all its descendents. Set the die's sibling
15061 field to NULL; set other fields in the die correctly, and set all
15062 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15063 location of the info_ptr after reading all of those dies. PARENT
15064 is the parent of the die in question. */
15065
15066 static struct die_info *
15067 read_die_and_children (const struct die_reader_specs *reader,
15068 const gdb_byte *info_ptr,
15069 const gdb_byte **new_info_ptr,
15070 struct die_info *parent)
15071 {
15072 struct die_info *die;
15073 const gdb_byte *cur_ptr;
15074 int has_children;
15075
15076 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15077 if (die == NULL)
15078 {
15079 *new_info_ptr = cur_ptr;
15080 return NULL;
15081 }
15082 store_in_ref_table (die, reader->cu);
15083
15084 if (has_children)
15085 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15086 else
15087 {
15088 die->child = NULL;
15089 *new_info_ptr = cur_ptr;
15090 }
15091
15092 die->sibling = NULL;
15093 die->parent = parent;
15094 return die;
15095 }
15096
15097 /* Read a die, all of its descendents, and all of its siblings; set
15098 all of the fields of all of the dies correctly. Arguments are as
15099 in read_die_and_children. */
15100
15101 static struct die_info *
15102 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15103 const gdb_byte *info_ptr,
15104 const gdb_byte **new_info_ptr,
15105 struct die_info *parent)
15106 {
15107 struct die_info *first_die, *last_sibling;
15108 const gdb_byte *cur_ptr;
15109
15110 cur_ptr = info_ptr;
15111 first_die = last_sibling = NULL;
15112
15113 while (1)
15114 {
15115 struct die_info *die
15116 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15117
15118 if (die == NULL)
15119 {
15120 *new_info_ptr = cur_ptr;
15121 return first_die;
15122 }
15123
15124 if (!first_die)
15125 first_die = die;
15126 else
15127 last_sibling->sibling = die;
15128
15129 last_sibling = die;
15130 }
15131 }
15132
15133 /* Read a die, all of its descendents, and all of its siblings; set
15134 all of the fields of all of the dies correctly. Arguments are as
15135 in read_die_and_children.
15136 This the main entry point for reading a DIE and all its children. */
15137
15138 static struct die_info *
15139 read_die_and_siblings (const struct die_reader_specs *reader,
15140 const gdb_byte *info_ptr,
15141 const gdb_byte **new_info_ptr,
15142 struct die_info *parent)
15143 {
15144 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15145 new_info_ptr, parent);
15146
15147 if (dwarf_die_debug)
15148 {
15149 fprintf_unfiltered (gdb_stdlog,
15150 "Read die from %s@0x%x of %s:\n",
15151 get_section_name (reader->die_section),
15152 (unsigned) (info_ptr - reader->die_section->buffer),
15153 bfd_get_filename (reader->abfd));
15154 dump_die (die, dwarf_die_debug);
15155 }
15156
15157 return die;
15158 }
15159
15160 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15161 attributes.
15162 The caller is responsible for filling in the extra attributes
15163 and updating (*DIEP)->num_attrs.
15164 Set DIEP to point to a newly allocated die with its information,
15165 except for its child, sibling, and parent fields.
15166 Set HAS_CHILDREN to tell whether the die has children or not. */
15167
15168 static const gdb_byte *
15169 read_full_die_1 (const struct die_reader_specs *reader,
15170 struct die_info **diep, const gdb_byte *info_ptr,
15171 int *has_children, int num_extra_attrs)
15172 {
15173 unsigned int abbrev_number, bytes_read, i;
15174 sect_offset offset;
15175 struct abbrev_info *abbrev;
15176 struct die_info *die;
15177 struct dwarf2_cu *cu = reader->cu;
15178 bfd *abfd = reader->abfd;
15179
15180 offset.sect_off = info_ptr - reader->buffer;
15181 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15182 info_ptr += bytes_read;
15183 if (!abbrev_number)
15184 {
15185 *diep = NULL;
15186 *has_children = 0;
15187 return info_ptr;
15188 }
15189
15190 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15191 if (!abbrev)
15192 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15193 abbrev_number,
15194 bfd_get_filename (abfd));
15195
15196 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15197 die->offset = offset;
15198 die->tag = abbrev->tag;
15199 die->abbrev = abbrev_number;
15200
15201 /* Make the result usable.
15202 The caller needs to update num_attrs after adding the extra
15203 attributes. */
15204 die->num_attrs = abbrev->num_attrs;
15205
15206 for (i = 0; i < abbrev->num_attrs; ++i)
15207 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15208 info_ptr);
15209
15210 *diep = die;
15211 *has_children = abbrev->has_children;
15212 return info_ptr;
15213 }
15214
15215 /* Read a die and all its attributes.
15216 Set DIEP to point to a newly allocated die with its information,
15217 except for its child, sibling, and parent fields.
15218 Set HAS_CHILDREN to tell whether the die has children or not. */
15219
15220 static const gdb_byte *
15221 read_full_die (const struct die_reader_specs *reader,
15222 struct die_info **diep, const gdb_byte *info_ptr,
15223 int *has_children)
15224 {
15225 const gdb_byte *result;
15226
15227 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15228
15229 if (dwarf_die_debug)
15230 {
15231 fprintf_unfiltered (gdb_stdlog,
15232 "Read die from %s@0x%x of %s:\n",
15233 get_section_name (reader->die_section),
15234 (unsigned) (info_ptr - reader->die_section->buffer),
15235 bfd_get_filename (reader->abfd));
15236 dump_die (*diep, dwarf_die_debug);
15237 }
15238
15239 return result;
15240 }
15241 \f
15242 /* Abbreviation tables.
15243
15244 In DWARF version 2, the description of the debugging information is
15245 stored in a separate .debug_abbrev section. Before we read any
15246 dies from a section we read in all abbreviations and install them
15247 in a hash table. */
15248
15249 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15250
15251 static struct abbrev_info *
15252 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15253 {
15254 struct abbrev_info *abbrev;
15255
15256 abbrev = (struct abbrev_info *)
15257 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15258 memset (abbrev, 0, sizeof (struct abbrev_info));
15259 return abbrev;
15260 }
15261
15262 /* Add an abbreviation to the table. */
15263
15264 static void
15265 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15266 unsigned int abbrev_number,
15267 struct abbrev_info *abbrev)
15268 {
15269 unsigned int hash_number;
15270
15271 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15272 abbrev->next = abbrev_table->abbrevs[hash_number];
15273 abbrev_table->abbrevs[hash_number] = abbrev;
15274 }
15275
15276 /* Look up an abbrev in the table.
15277 Returns NULL if the abbrev is not found. */
15278
15279 static struct abbrev_info *
15280 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15281 unsigned int abbrev_number)
15282 {
15283 unsigned int hash_number;
15284 struct abbrev_info *abbrev;
15285
15286 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15287 abbrev = abbrev_table->abbrevs[hash_number];
15288
15289 while (abbrev)
15290 {
15291 if (abbrev->number == abbrev_number)
15292 return abbrev;
15293 abbrev = abbrev->next;
15294 }
15295 return NULL;
15296 }
15297
15298 /* Read in an abbrev table. */
15299
15300 static struct abbrev_table *
15301 abbrev_table_read_table (struct dwarf2_section_info *section,
15302 sect_offset offset)
15303 {
15304 struct objfile *objfile = dwarf2_per_objfile->objfile;
15305 bfd *abfd = get_section_bfd_owner (section);
15306 struct abbrev_table *abbrev_table;
15307 const gdb_byte *abbrev_ptr;
15308 struct abbrev_info *cur_abbrev;
15309 unsigned int abbrev_number, bytes_read, abbrev_name;
15310 unsigned int abbrev_form;
15311 struct attr_abbrev *cur_attrs;
15312 unsigned int allocated_attrs;
15313
15314 abbrev_table = XNEW (struct abbrev_table);
15315 abbrev_table->offset = offset;
15316 obstack_init (&abbrev_table->abbrev_obstack);
15317 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15318 (ABBREV_HASH_SIZE
15319 * sizeof (struct abbrev_info *)));
15320 memset (abbrev_table->abbrevs, 0,
15321 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15322
15323 dwarf2_read_section (objfile, section);
15324 abbrev_ptr = section->buffer + offset.sect_off;
15325 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15326 abbrev_ptr += bytes_read;
15327
15328 allocated_attrs = ATTR_ALLOC_CHUNK;
15329 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15330
15331 /* Loop until we reach an abbrev number of 0. */
15332 while (abbrev_number)
15333 {
15334 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15335
15336 /* read in abbrev header */
15337 cur_abbrev->number = abbrev_number;
15338 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15339 abbrev_ptr += bytes_read;
15340 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15341 abbrev_ptr += 1;
15342
15343 /* now read in declarations */
15344 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15345 abbrev_ptr += bytes_read;
15346 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15347 abbrev_ptr += bytes_read;
15348 while (abbrev_name)
15349 {
15350 if (cur_abbrev->num_attrs == allocated_attrs)
15351 {
15352 allocated_attrs += ATTR_ALLOC_CHUNK;
15353 cur_attrs
15354 = xrealloc (cur_attrs, (allocated_attrs
15355 * sizeof (struct attr_abbrev)));
15356 }
15357
15358 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15359 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15360 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15361 abbrev_ptr += bytes_read;
15362 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15363 abbrev_ptr += bytes_read;
15364 }
15365
15366 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15367 (cur_abbrev->num_attrs
15368 * sizeof (struct attr_abbrev)));
15369 memcpy (cur_abbrev->attrs, cur_attrs,
15370 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15371
15372 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15373
15374 /* Get next abbreviation.
15375 Under Irix6 the abbreviations for a compilation unit are not
15376 always properly terminated with an abbrev number of 0.
15377 Exit loop if we encounter an abbreviation which we have
15378 already read (which means we are about to read the abbreviations
15379 for the next compile unit) or if the end of the abbreviation
15380 table is reached. */
15381 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15382 break;
15383 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15384 abbrev_ptr += bytes_read;
15385 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15386 break;
15387 }
15388
15389 xfree (cur_attrs);
15390 return abbrev_table;
15391 }
15392
15393 /* Free the resources held by ABBREV_TABLE. */
15394
15395 static void
15396 abbrev_table_free (struct abbrev_table *abbrev_table)
15397 {
15398 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15399 xfree (abbrev_table);
15400 }
15401
15402 /* Same as abbrev_table_free but as a cleanup.
15403 We pass in a pointer to the pointer to the table so that we can
15404 set the pointer to NULL when we're done. It also simplifies
15405 build_type_psymtabs_1. */
15406
15407 static void
15408 abbrev_table_free_cleanup (void *table_ptr)
15409 {
15410 struct abbrev_table **abbrev_table_ptr = table_ptr;
15411
15412 if (*abbrev_table_ptr != NULL)
15413 abbrev_table_free (*abbrev_table_ptr);
15414 *abbrev_table_ptr = NULL;
15415 }
15416
15417 /* Read the abbrev table for CU from ABBREV_SECTION. */
15418
15419 static void
15420 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15421 struct dwarf2_section_info *abbrev_section)
15422 {
15423 cu->abbrev_table =
15424 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15425 }
15426
15427 /* Release the memory used by the abbrev table for a compilation unit. */
15428
15429 static void
15430 dwarf2_free_abbrev_table (void *ptr_to_cu)
15431 {
15432 struct dwarf2_cu *cu = ptr_to_cu;
15433
15434 if (cu->abbrev_table != NULL)
15435 abbrev_table_free (cu->abbrev_table);
15436 /* Set this to NULL so that we SEGV if we try to read it later,
15437 and also because free_comp_unit verifies this is NULL. */
15438 cu->abbrev_table = NULL;
15439 }
15440 \f
15441 /* Returns nonzero if TAG represents a type that we might generate a partial
15442 symbol for. */
15443
15444 static int
15445 is_type_tag_for_partial (int tag)
15446 {
15447 switch (tag)
15448 {
15449 #if 0
15450 /* Some types that would be reasonable to generate partial symbols for,
15451 that we don't at present. */
15452 case DW_TAG_array_type:
15453 case DW_TAG_file_type:
15454 case DW_TAG_ptr_to_member_type:
15455 case DW_TAG_set_type:
15456 case DW_TAG_string_type:
15457 case DW_TAG_subroutine_type:
15458 #endif
15459 case DW_TAG_base_type:
15460 case DW_TAG_class_type:
15461 case DW_TAG_interface_type:
15462 case DW_TAG_enumeration_type:
15463 case DW_TAG_structure_type:
15464 case DW_TAG_subrange_type:
15465 case DW_TAG_typedef:
15466 case DW_TAG_union_type:
15467 return 1;
15468 default:
15469 return 0;
15470 }
15471 }
15472
15473 /* Load all DIEs that are interesting for partial symbols into memory. */
15474
15475 static struct partial_die_info *
15476 load_partial_dies (const struct die_reader_specs *reader,
15477 const gdb_byte *info_ptr, int building_psymtab)
15478 {
15479 struct dwarf2_cu *cu = reader->cu;
15480 struct objfile *objfile = cu->objfile;
15481 struct partial_die_info *part_die;
15482 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15483 struct abbrev_info *abbrev;
15484 unsigned int bytes_read;
15485 unsigned int load_all = 0;
15486 int nesting_level = 1;
15487
15488 parent_die = NULL;
15489 last_die = NULL;
15490
15491 gdb_assert (cu->per_cu != NULL);
15492 if (cu->per_cu->load_all_dies)
15493 load_all = 1;
15494
15495 cu->partial_dies
15496 = htab_create_alloc_ex (cu->header.length / 12,
15497 partial_die_hash,
15498 partial_die_eq,
15499 NULL,
15500 &cu->comp_unit_obstack,
15501 hashtab_obstack_allocate,
15502 dummy_obstack_deallocate);
15503
15504 part_die = obstack_alloc (&cu->comp_unit_obstack,
15505 sizeof (struct partial_die_info));
15506
15507 while (1)
15508 {
15509 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15510
15511 /* A NULL abbrev means the end of a series of children. */
15512 if (abbrev == NULL)
15513 {
15514 if (--nesting_level == 0)
15515 {
15516 /* PART_DIE was probably the last thing allocated on the
15517 comp_unit_obstack, so we could call obstack_free
15518 here. We don't do that because the waste is small,
15519 and will be cleaned up when we're done with this
15520 compilation unit. This way, we're also more robust
15521 against other users of the comp_unit_obstack. */
15522 return first_die;
15523 }
15524 info_ptr += bytes_read;
15525 last_die = parent_die;
15526 parent_die = parent_die->die_parent;
15527 continue;
15528 }
15529
15530 /* Check for template arguments. We never save these; if
15531 they're seen, we just mark the parent, and go on our way. */
15532 if (parent_die != NULL
15533 && cu->language == language_cplus
15534 && (abbrev->tag == DW_TAG_template_type_param
15535 || abbrev->tag == DW_TAG_template_value_param))
15536 {
15537 parent_die->has_template_arguments = 1;
15538
15539 if (!load_all)
15540 {
15541 /* We don't need a partial DIE for the template argument. */
15542 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15543 continue;
15544 }
15545 }
15546
15547 /* We only recurse into c++ subprograms looking for template arguments.
15548 Skip their other children. */
15549 if (!load_all
15550 && cu->language == language_cplus
15551 && parent_die != NULL
15552 && parent_die->tag == DW_TAG_subprogram)
15553 {
15554 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15555 continue;
15556 }
15557
15558 /* Check whether this DIE is interesting enough to save. Normally
15559 we would not be interested in members here, but there may be
15560 later variables referencing them via DW_AT_specification (for
15561 static members). */
15562 if (!load_all
15563 && !is_type_tag_for_partial (abbrev->tag)
15564 && abbrev->tag != DW_TAG_constant
15565 && abbrev->tag != DW_TAG_enumerator
15566 && abbrev->tag != DW_TAG_subprogram
15567 && abbrev->tag != DW_TAG_lexical_block
15568 && abbrev->tag != DW_TAG_variable
15569 && abbrev->tag != DW_TAG_namespace
15570 && abbrev->tag != DW_TAG_module
15571 && abbrev->tag != DW_TAG_member
15572 && abbrev->tag != DW_TAG_imported_unit
15573 && abbrev->tag != DW_TAG_imported_declaration)
15574 {
15575 /* Otherwise we skip to the next sibling, if any. */
15576 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15577 continue;
15578 }
15579
15580 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15581 info_ptr);
15582
15583 /* This two-pass algorithm for processing partial symbols has a
15584 high cost in cache pressure. Thus, handle some simple cases
15585 here which cover the majority of C partial symbols. DIEs
15586 which neither have specification tags in them, nor could have
15587 specification tags elsewhere pointing at them, can simply be
15588 processed and discarded.
15589
15590 This segment is also optional; scan_partial_symbols and
15591 add_partial_symbol will handle these DIEs if we chain
15592 them in normally. When compilers which do not emit large
15593 quantities of duplicate debug information are more common,
15594 this code can probably be removed. */
15595
15596 /* Any complete simple types at the top level (pretty much all
15597 of them, for a language without namespaces), can be processed
15598 directly. */
15599 if (parent_die == NULL
15600 && part_die->has_specification == 0
15601 && part_die->is_declaration == 0
15602 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15603 || part_die->tag == DW_TAG_base_type
15604 || part_die->tag == DW_TAG_subrange_type))
15605 {
15606 if (building_psymtab && part_die->name != NULL)
15607 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15608 VAR_DOMAIN, LOC_TYPEDEF,
15609 &objfile->static_psymbols,
15610 0, (CORE_ADDR) 0, cu->language, objfile);
15611 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15612 continue;
15613 }
15614
15615 /* The exception for DW_TAG_typedef with has_children above is
15616 a workaround of GCC PR debug/47510. In the case of this complaint
15617 type_name_no_tag_or_error will error on such types later.
15618
15619 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15620 it could not find the child DIEs referenced later, this is checked
15621 above. In correct DWARF DW_TAG_typedef should have no children. */
15622
15623 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15624 complaint (&symfile_complaints,
15625 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15626 "- DIE at 0x%x [in module %s]"),
15627 part_die->offset.sect_off, objfile_name (objfile));
15628
15629 /* If we're at the second level, and we're an enumerator, and
15630 our parent has no specification (meaning possibly lives in a
15631 namespace elsewhere), then we can add the partial symbol now
15632 instead of queueing it. */
15633 if (part_die->tag == DW_TAG_enumerator
15634 && parent_die != NULL
15635 && parent_die->die_parent == NULL
15636 && parent_die->tag == DW_TAG_enumeration_type
15637 && parent_die->has_specification == 0)
15638 {
15639 if (part_die->name == NULL)
15640 complaint (&symfile_complaints,
15641 _("malformed enumerator DIE ignored"));
15642 else if (building_psymtab)
15643 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15644 VAR_DOMAIN, LOC_CONST,
15645 (cu->language == language_cplus
15646 || cu->language == language_java)
15647 ? &objfile->global_psymbols
15648 : &objfile->static_psymbols,
15649 0, (CORE_ADDR) 0, cu->language, objfile);
15650
15651 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15652 continue;
15653 }
15654
15655 /* We'll save this DIE so link it in. */
15656 part_die->die_parent = parent_die;
15657 part_die->die_sibling = NULL;
15658 part_die->die_child = NULL;
15659
15660 if (last_die && last_die == parent_die)
15661 last_die->die_child = part_die;
15662 else if (last_die)
15663 last_die->die_sibling = part_die;
15664
15665 last_die = part_die;
15666
15667 if (first_die == NULL)
15668 first_die = part_die;
15669
15670 /* Maybe add the DIE to the hash table. Not all DIEs that we
15671 find interesting need to be in the hash table, because we
15672 also have the parent/sibling/child chains; only those that we
15673 might refer to by offset later during partial symbol reading.
15674
15675 For now this means things that might have be the target of a
15676 DW_AT_specification, DW_AT_abstract_origin, or
15677 DW_AT_extension. DW_AT_extension will refer only to
15678 namespaces; DW_AT_abstract_origin refers to functions (and
15679 many things under the function DIE, but we do not recurse
15680 into function DIEs during partial symbol reading) and
15681 possibly variables as well; DW_AT_specification refers to
15682 declarations. Declarations ought to have the DW_AT_declaration
15683 flag. It happens that GCC forgets to put it in sometimes, but
15684 only for functions, not for types.
15685
15686 Adding more things than necessary to the hash table is harmless
15687 except for the performance cost. Adding too few will result in
15688 wasted time in find_partial_die, when we reread the compilation
15689 unit with load_all_dies set. */
15690
15691 if (load_all
15692 || abbrev->tag == DW_TAG_constant
15693 || abbrev->tag == DW_TAG_subprogram
15694 || abbrev->tag == DW_TAG_variable
15695 || abbrev->tag == DW_TAG_namespace
15696 || part_die->is_declaration)
15697 {
15698 void **slot;
15699
15700 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15701 part_die->offset.sect_off, INSERT);
15702 *slot = part_die;
15703 }
15704
15705 part_die = obstack_alloc (&cu->comp_unit_obstack,
15706 sizeof (struct partial_die_info));
15707
15708 /* For some DIEs we want to follow their children (if any). For C
15709 we have no reason to follow the children of structures; for other
15710 languages we have to, so that we can get at method physnames
15711 to infer fully qualified class names, for DW_AT_specification,
15712 and for C++ template arguments. For C++, we also look one level
15713 inside functions to find template arguments (if the name of the
15714 function does not already contain the template arguments).
15715
15716 For Ada, we need to scan the children of subprograms and lexical
15717 blocks as well because Ada allows the definition of nested
15718 entities that could be interesting for the debugger, such as
15719 nested subprograms for instance. */
15720 if (last_die->has_children
15721 && (load_all
15722 || last_die->tag == DW_TAG_namespace
15723 || last_die->tag == DW_TAG_module
15724 || last_die->tag == DW_TAG_enumeration_type
15725 || (cu->language == language_cplus
15726 && last_die->tag == DW_TAG_subprogram
15727 && (last_die->name == NULL
15728 || strchr (last_die->name, '<') == NULL))
15729 || (cu->language != language_c
15730 && (last_die->tag == DW_TAG_class_type
15731 || last_die->tag == DW_TAG_interface_type
15732 || last_die->tag == DW_TAG_structure_type
15733 || last_die->tag == DW_TAG_union_type))
15734 || (cu->language == language_ada
15735 && (last_die->tag == DW_TAG_subprogram
15736 || last_die->tag == DW_TAG_lexical_block))))
15737 {
15738 nesting_level++;
15739 parent_die = last_die;
15740 continue;
15741 }
15742
15743 /* Otherwise we skip to the next sibling, if any. */
15744 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15745
15746 /* Back to the top, do it again. */
15747 }
15748 }
15749
15750 /* Read a minimal amount of information into the minimal die structure. */
15751
15752 static const gdb_byte *
15753 read_partial_die (const struct die_reader_specs *reader,
15754 struct partial_die_info *part_die,
15755 struct abbrev_info *abbrev, unsigned int abbrev_len,
15756 const gdb_byte *info_ptr)
15757 {
15758 struct dwarf2_cu *cu = reader->cu;
15759 struct objfile *objfile = cu->objfile;
15760 const gdb_byte *buffer = reader->buffer;
15761 unsigned int i;
15762 struct attribute attr;
15763 int has_low_pc_attr = 0;
15764 int has_high_pc_attr = 0;
15765 int high_pc_relative = 0;
15766
15767 memset (part_die, 0, sizeof (struct partial_die_info));
15768
15769 part_die->offset.sect_off = info_ptr - buffer;
15770
15771 info_ptr += abbrev_len;
15772
15773 if (abbrev == NULL)
15774 return info_ptr;
15775
15776 part_die->tag = abbrev->tag;
15777 part_die->has_children = abbrev->has_children;
15778
15779 for (i = 0; i < abbrev->num_attrs; ++i)
15780 {
15781 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15782
15783 /* Store the data if it is of an attribute we want to keep in a
15784 partial symbol table. */
15785 switch (attr.name)
15786 {
15787 case DW_AT_name:
15788 switch (part_die->tag)
15789 {
15790 case DW_TAG_compile_unit:
15791 case DW_TAG_partial_unit:
15792 case DW_TAG_type_unit:
15793 /* Compilation units have a DW_AT_name that is a filename, not
15794 a source language identifier. */
15795 case DW_TAG_enumeration_type:
15796 case DW_TAG_enumerator:
15797 /* These tags always have simple identifiers already; no need
15798 to canonicalize them. */
15799 part_die->name = DW_STRING (&attr);
15800 break;
15801 default:
15802 part_die->name
15803 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15804 &objfile->per_bfd->storage_obstack);
15805 break;
15806 }
15807 break;
15808 case DW_AT_linkage_name:
15809 case DW_AT_MIPS_linkage_name:
15810 /* Note that both forms of linkage name might appear. We
15811 assume they will be the same, and we only store the last
15812 one we see. */
15813 if (cu->language == language_ada)
15814 part_die->name = DW_STRING (&attr);
15815 part_die->linkage_name = DW_STRING (&attr);
15816 break;
15817 case DW_AT_low_pc:
15818 has_low_pc_attr = 1;
15819 part_die->lowpc = attr_value_as_address (&attr);
15820 break;
15821 case DW_AT_high_pc:
15822 has_high_pc_attr = 1;
15823 part_die->highpc = attr_value_as_address (&attr);
15824 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15825 high_pc_relative = 1;
15826 break;
15827 case DW_AT_location:
15828 /* Support the .debug_loc offsets. */
15829 if (attr_form_is_block (&attr))
15830 {
15831 part_die->d.locdesc = DW_BLOCK (&attr);
15832 }
15833 else if (attr_form_is_section_offset (&attr))
15834 {
15835 dwarf2_complex_location_expr_complaint ();
15836 }
15837 else
15838 {
15839 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15840 "partial symbol information");
15841 }
15842 break;
15843 case DW_AT_external:
15844 part_die->is_external = DW_UNSND (&attr);
15845 break;
15846 case DW_AT_declaration:
15847 part_die->is_declaration = DW_UNSND (&attr);
15848 break;
15849 case DW_AT_type:
15850 part_die->has_type = 1;
15851 break;
15852 case DW_AT_abstract_origin:
15853 case DW_AT_specification:
15854 case DW_AT_extension:
15855 part_die->has_specification = 1;
15856 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15857 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15858 || cu->per_cu->is_dwz);
15859 break;
15860 case DW_AT_sibling:
15861 /* Ignore absolute siblings, they might point outside of
15862 the current compile unit. */
15863 if (attr.form == DW_FORM_ref_addr)
15864 complaint (&symfile_complaints,
15865 _("ignoring absolute DW_AT_sibling"));
15866 else
15867 {
15868 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15869 const gdb_byte *sibling_ptr = buffer + off;
15870
15871 if (sibling_ptr < info_ptr)
15872 complaint (&symfile_complaints,
15873 _("DW_AT_sibling points backwards"));
15874 else if (sibling_ptr > reader->buffer_end)
15875 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15876 else
15877 part_die->sibling = sibling_ptr;
15878 }
15879 break;
15880 case DW_AT_byte_size:
15881 part_die->has_byte_size = 1;
15882 break;
15883 case DW_AT_const_value:
15884 part_die->has_const_value = 1;
15885 break;
15886 case DW_AT_calling_convention:
15887 /* DWARF doesn't provide a way to identify a program's source-level
15888 entry point. DW_AT_calling_convention attributes are only meant
15889 to describe functions' calling conventions.
15890
15891 However, because it's a necessary piece of information in
15892 Fortran, and because DW_CC_program is the only piece of debugging
15893 information whose definition refers to a 'main program' at all,
15894 several compilers have begun marking Fortran main programs with
15895 DW_CC_program --- even when those functions use the standard
15896 calling conventions.
15897
15898 So until DWARF specifies a way to provide this information and
15899 compilers pick up the new representation, we'll support this
15900 practice. */
15901 if (DW_UNSND (&attr) == DW_CC_program
15902 && cu->language == language_fortran)
15903 set_objfile_main_name (objfile, part_die->name, language_fortran);
15904 break;
15905 case DW_AT_inline:
15906 if (DW_UNSND (&attr) == DW_INL_inlined
15907 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15908 part_die->may_be_inlined = 1;
15909 break;
15910
15911 case DW_AT_import:
15912 if (part_die->tag == DW_TAG_imported_unit)
15913 {
15914 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15915 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15916 || cu->per_cu->is_dwz);
15917 }
15918 break;
15919
15920 default:
15921 break;
15922 }
15923 }
15924
15925 if (high_pc_relative)
15926 part_die->highpc += part_die->lowpc;
15927
15928 if (has_low_pc_attr && has_high_pc_attr)
15929 {
15930 /* When using the GNU linker, .gnu.linkonce. sections are used to
15931 eliminate duplicate copies of functions and vtables and such.
15932 The linker will arbitrarily choose one and discard the others.
15933 The AT_*_pc values for such functions refer to local labels in
15934 these sections. If the section from that file was discarded, the
15935 labels are not in the output, so the relocs get a value of 0.
15936 If this is a discarded function, mark the pc bounds as invalid,
15937 so that GDB will ignore it. */
15938 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15939 {
15940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15941
15942 complaint (&symfile_complaints,
15943 _("DW_AT_low_pc %s is zero "
15944 "for DIE at 0x%x [in module %s]"),
15945 paddress (gdbarch, part_die->lowpc),
15946 part_die->offset.sect_off, objfile_name (objfile));
15947 }
15948 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15949 else if (part_die->lowpc >= part_die->highpc)
15950 {
15951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15952
15953 complaint (&symfile_complaints,
15954 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15955 "for DIE at 0x%x [in module %s]"),
15956 paddress (gdbarch, part_die->lowpc),
15957 paddress (gdbarch, part_die->highpc),
15958 part_die->offset.sect_off, objfile_name (objfile));
15959 }
15960 else
15961 part_die->has_pc_info = 1;
15962 }
15963
15964 return info_ptr;
15965 }
15966
15967 /* Find a cached partial DIE at OFFSET in CU. */
15968
15969 static struct partial_die_info *
15970 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15971 {
15972 struct partial_die_info *lookup_die = NULL;
15973 struct partial_die_info part_die;
15974
15975 part_die.offset = offset;
15976 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15977 offset.sect_off);
15978
15979 return lookup_die;
15980 }
15981
15982 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15983 except in the case of .debug_types DIEs which do not reference
15984 outside their CU (they do however referencing other types via
15985 DW_FORM_ref_sig8). */
15986
15987 static struct partial_die_info *
15988 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15989 {
15990 struct objfile *objfile = cu->objfile;
15991 struct dwarf2_per_cu_data *per_cu = NULL;
15992 struct partial_die_info *pd = NULL;
15993
15994 if (offset_in_dwz == cu->per_cu->is_dwz
15995 && offset_in_cu_p (&cu->header, offset))
15996 {
15997 pd = find_partial_die_in_comp_unit (offset, cu);
15998 if (pd != NULL)
15999 return pd;
16000 /* We missed recording what we needed.
16001 Load all dies and try again. */
16002 per_cu = cu->per_cu;
16003 }
16004 else
16005 {
16006 /* TUs don't reference other CUs/TUs (except via type signatures). */
16007 if (cu->per_cu->is_debug_types)
16008 {
16009 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16010 " external reference to offset 0x%lx [in module %s].\n"),
16011 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16012 bfd_get_filename (objfile->obfd));
16013 }
16014 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16015 objfile);
16016
16017 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16018 load_partial_comp_unit (per_cu);
16019
16020 per_cu->cu->last_used = 0;
16021 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16022 }
16023
16024 /* If we didn't find it, and not all dies have been loaded,
16025 load them all and try again. */
16026
16027 if (pd == NULL && per_cu->load_all_dies == 0)
16028 {
16029 per_cu->load_all_dies = 1;
16030
16031 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16032 THIS_CU->cu may already be in use. So we can't just free it and
16033 replace its DIEs with the ones we read in. Instead, we leave those
16034 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16035 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16036 set. */
16037 load_partial_comp_unit (per_cu);
16038
16039 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16040 }
16041
16042 if (pd == NULL)
16043 internal_error (__FILE__, __LINE__,
16044 _("could not find partial DIE 0x%x "
16045 "in cache [from module %s]\n"),
16046 offset.sect_off, bfd_get_filename (objfile->obfd));
16047 return pd;
16048 }
16049
16050 /* See if we can figure out if the class lives in a namespace. We do
16051 this by looking for a member function; its demangled name will
16052 contain namespace info, if there is any. */
16053
16054 static void
16055 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16056 struct dwarf2_cu *cu)
16057 {
16058 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16059 what template types look like, because the demangler
16060 frequently doesn't give the same name as the debug info. We
16061 could fix this by only using the demangled name to get the
16062 prefix (but see comment in read_structure_type). */
16063
16064 struct partial_die_info *real_pdi;
16065 struct partial_die_info *child_pdi;
16066
16067 /* If this DIE (this DIE's specification, if any) has a parent, then
16068 we should not do this. We'll prepend the parent's fully qualified
16069 name when we create the partial symbol. */
16070
16071 real_pdi = struct_pdi;
16072 while (real_pdi->has_specification)
16073 real_pdi = find_partial_die (real_pdi->spec_offset,
16074 real_pdi->spec_is_dwz, cu);
16075
16076 if (real_pdi->die_parent != NULL)
16077 return;
16078
16079 for (child_pdi = struct_pdi->die_child;
16080 child_pdi != NULL;
16081 child_pdi = child_pdi->die_sibling)
16082 {
16083 if (child_pdi->tag == DW_TAG_subprogram
16084 && child_pdi->linkage_name != NULL)
16085 {
16086 char *actual_class_name
16087 = language_class_name_from_physname (cu->language_defn,
16088 child_pdi->linkage_name);
16089 if (actual_class_name != NULL)
16090 {
16091 struct_pdi->name
16092 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16093 actual_class_name,
16094 strlen (actual_class_name));
16095 xfree (actual_class_name);
16096 }
16097 break;
16098 }
16099 }
16100 }
16101
16102 /* Adjust PART_DIE before generating a symbol for it. This function
16103 may set the is_external flag or change the DIE's name. */
16104
16105 static void
16106 fixup_partial_die (struct partial_die_info *part_die,
16107 struct dwarf2_cu *cu)
16108 {
16109 /* Once we've fixed up a die, there's no point in doing so again.
16110 This also avoids a memory leak if we were to call
16111 guess_partial_die_structure_name multiple times. */
16112 if (part_die->fixup_called)
16113 return;
16114
16115 /* If we found a reference attribute and the DIE has no name, try
16116 to find a name in the referred to DIE. */
16117
16118 if (part_die->name == NULL && part_die->has_specification)
16119 {
16120 struct partial_die_info *spec_die;
16121
16122 spec_die = find_partial_die (part_die->spec_offset,
16123 part_die->spec_is_dwz, cu);
16124
16125 fixup_partial_die (spec_die, cu);
16126
16127 if (spec_die->name)
16128 {
16129 part_die->name = spec_die->name;
16130
16131 /* Copy DW_AT_external attribute if it is set. */
16132 if (spec_die->is_external)
16133 part_die->is_external = spec_die->is_external;
16134 }
16135 }
16136
16137 /* Set default names for some unnamed DIEs. */
16138
16139 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16140 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16141
16142 /* If there is no parent die to provide a namespace, and there are
16143 children, see if we can determine the namespace from their linkage
16144 name. */
16145 if (cu->language == language_cplus
16146 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16147 && part_die->die_parent == NULL
16148 && part_die->has_children
16149 && (part_die->tag == DW_TAG_class_type
16150 || part_die->tag == DW_TAG_structure_type
16151 || part_die->tag == DW_TAG_union_type))
16152 guess_partial_die_structure_name (part_die, cu);
16153
16154 /* GCC might emit a nameless struct or union that has a linkage
16155 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16156 if (part_die->name == NULL
16157 && (part_die->tag == DW_TAG_class_type
16158 || part_die->tag == DW_TAG_interface_type
16159 || part_die->tag == DW_TAG_structure_type
16160 || part_die->tag == DW_TAG_union_type)
16161 && part_die->linkage_name != NULL)
16162 {
16163 char *demangled;
16164
16165 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16166 if (demangled)
16167 {
16168 const char *base;
16169
16170 /* Strip any leading namespaces/classes, keep only the base name.
16171 DW_AT_name for named DIEs does not contain the prefixes. */
16172 base = strrchr (demangled, ':');
16173 if (base && base > demangled && base[-1] == ':')
16174 base++;
16175 else
16176 base = demangled;
16177
16178 part_die->name
16179 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16180 base, strlen (base));
16181 xfree (demangled);
16182 }
16183 }
16184
16185 part_die->fixup_called = 1;
16186 }
16187
16188 /* Read an attribute value described by an attribute form. */
16189
16190 static const gdb_byte *
16191 read_attribute_value (const struct die_reader_specs *reader,
16192 struct attribute *attr, unsigned form,
16193 const gdb_byte *info_ptr)
16194 {
16195 struct dwarf2_cu *cu = reader->cu;
16196 struct objfile *objfile = cu->objfile;
16197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16198 bfd *abfd = reader->abfd;
16199 struct comp_unit_head *cu_header = &cu->header;
16200 unsigned int bytes_read;
16201 struct dwarf_block *blk;
16202
16203 attr->form = form;
16204 switch (form)
16205 {
16206 case DW_FORM_ref_addr:
16207 if (cu->header.version == 2)
16208 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16209 else
16210 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16211 &cu->header, &bytes_read);
16212 info_ptr += bytes_read;
16213 break;
16214 case DW_FORM_GNU_ref_alt:
16215 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16216 info_ptr += bytes_read;
16217 break;
16218 case DW_FORM_addr:
16219 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16220 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16221 info_ptr += bytes_read;
16222 break;
16223 case DW_FORM_block2:
16224 blk = dwarf_alloc_block (cu);
16225 blk->size = read_2_bytes (abfd, info_ptr);
16226 info_ptr += 2;
16227 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16228 info_ptr += blk->size;
16229 DW_BLOCK (attr) = blk;
16230 break;
16231 case DW_FORM_block4:
16232 blk = dwarf_alloc_block (cu);
16233 blk->size = read_4_bytes (abfd, info_ptr);
16234 info_ptr += 4;
16235 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16236 info_ptr += blk->size;
16237 DW_BLOCK (attr) = blk;
16238 break;
16239 case DW_FORM_data2:
16240 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16241 info_ptr += 2;
16242 break;
16243 case DW_FORM_data4:
16244 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16245 info_ptr += 4;
16246 break;
16247 case DW_FORM_data8:
16248 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16249 info_ptr += 8;
16250 break;
16251 case DW_FORM_sec_offset:
16252 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16253 info_ptr += bytes_read;
16254 break;
16255 case DW_FORM_string:
16256 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16257 DW_STRING_IS_CANONICAL (attr) = 0;
16258 info_ptr += bytes_read;
16259 break;
16260 case DW_FORM_strp:
16261 if (!cu->per_cu->is_dwz)
16262 {
16263 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16264 &bytes_read);
16265 DW_STRING_IS_CANONICAL (attr) = 0;
16266 info_ptr += bytes_read;
16267 break;
16268 }
16269 /* FALLTHROUGH */
16270 case DW_FORM_GNU_strp_alt:
16271 {
16272 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16273 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16274 &bytes_read);
16275
16276 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16277 DW_STRING_IS_CANONICAL (attr) = 0;
16278 info_ptr += bytes_read;
16279 }
16280 break;
16281 case DW_FORM_exprloc:
16282 case DW_FORM_block:
16283 blk = dwarf_alloc_block (cu);
16284 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16285 info_ptr += bytes_read;
16286 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16287 info_ptr += blk->size;
16288 DW_BLOCK (attr) = blk;
16289 break;
16290 case DW_FORM_block1:
16291 blk = dwarf_alloc_block (cu);
16292 blk->size = read_1_byte (abfd, info_ptr);
16293 info_ptr += 1;
16294 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16295 info_ptr += blk->size;
16296 DW_BLOCK (attr) = blk;
16297 break;
16298 case DW_FORM_data1:
16299 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16300 info_ptr += 1;
16301 break;
16302 case DW_FORM_flag:
16303 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16304 info_ptr += 1;
16305 break;
16306 case DW_FORM_flag_present:
16307 DW_UNSND (attr) = 1;
16308 break;
16309 case DW_FORM_sdata:
16310 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16311 info_ptr += bytes_read;
16312 break;
16313 case DW_FORM_udata:
16314 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16315 info_ptr += bytes_read;
16316 break;
16317 case DW_FORM_ref1:
16318 DW_UNSND (attr) = (cu->header.offset.sect_off
16319 + read_1_byte (abfd, info_ptr));
16320 info_ptr += 1;
16321 break;
16322 case DW_FORM_ref2:
16323 DW_UNSND (attr) = (cu->header.offset.sect_off
16324 + read_2_bytes (abfd, info_ptr));
16325 info_ptr += 2;
16326 break;
16327 case DW_FORM_ref4:
16328 DW_UNSND (attr) = (cu->header.offset.sect_off
16329 + read_4_bytes (abfd, info_ptr));
16330 info_ptr += 4;
16331 break;
16332 case DW_FORM_ref8:
16333 DW_UNSND (attr) = (cu->header.offset.sect_off
16334 + read_8_bytes (abfd, info_ptr));
16335 info_ptr += 8;
16336 break;
16337 case DW_FORM_ref_sig8:
16338 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16339 info_ptr += 8;
16340 break;
16341 case DW_FORM_ref_udata:
16342 DW_UNSND (attr) = (cu->header.offset.sect_off
16343 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16344 info_ptr += bytes_read;
16345 break;
16346 case DW_FORM_indirect:
16347 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16348 info_ptr += bytes_read;
16349 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16350 break;
16351 case DW_FORM_GNU_addr_index:
16352 if (reader->dwo_file == NULL)
16353 {
16354 /* For now flag a hard error.
16355 Later we can turn this into a complaint. */
16356 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16357 dwarf_form_name (form),
16358 bfd_get_filename (abfd));
16359 }
16360 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16361 info_ptr += bytes_read;
16362 break;
16363 case DW_FORM_GNU_str_index:
16364 if (reader->dwo_file == NULL)
16365 {
16366 /* For now flag a hard error.
16367 Later we can turn this into a complaint if warranted. */
16368 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16369 dwarf_form_name (form),
16370 bfd_get_filename (abfd));
16371 }
16372 {
16373 ULONGEST str_index =
16374 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16375
16376 DW_STRING (attr) = read_str_index (reader, str_index);
16377 DW_STRING_IS_CANONICAL (attr) = 0;
16378 info_ptr += bytes_read;
16379 }
16380 break;
16381 default:
16382 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16383 dwarf_form_name (form),
16384 bfd_get_filename (abfd));
16385 }
16386
16387 /* Super hack. */
16388 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16389 attr->form = DW_FORM_GNU_ref_alt;
16390
16391 /* We have seen instances where the compiler tried to emit a byte
16392 size attribute of -1 which ended up being encoded as an unsigned
16393 0xffffffff. Although 0xffffffff is technically a valid size value,
16394 an object of this size seems pretty unlikely so we can relatively
16395 safely treat these cases as if the size attribute was invalid and
16396 treat them as zero by default. */
16397 if (attr->name == DW_AT_byte_size
16398 && form == DW_FORM_data4
16399 && DW_UNSND (attr) >= 0xffffffff)
16400 {
16401 complaint
16402 (&symfile_complaints,
16403 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16404 hex_string (DW_UNSND (attr)));
16405 DW_UNSND (attr) = 0;
16406 }
16407
16408 return info_ptr;
16409 }
16410
16411 /* Read an attribute described by an abbreviated attribute. */
16412
16413 static const gdb_byte *
16414 read_attribute (const struct die_reader_specs *reader,
16415 struct attribute *attr, struct attr_abbrev *abbrev,
16416 const gdb_byte *info_ptr)
16417 {
16418 attr->name = abbrev->name;
16419 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16420 }
16421
16422 /* Read dwarf information from a buffer. */
16423
16424 static unsigned int
16425 read_1_byte (bfd *abfd, const gdb_byte *buf)
16426 {
16427 return bfd_get_8 (abfd, buf);
16428 }
16429
16430 static int
16431 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16432 {
16433 return bfd_get_signed_8 (abfd, buf);
16434 }
16435
16436 static unsigned int
16437 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16438 {
16439 return bfd_get_16 (abfd, buf);
16440 }
16441
16442 static int
16443 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16444 {
16445 return bfd_get_signed_16 (abfd, buf);
16446 }
16447
16448 static unsigned int
16449 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16450 {
16451 return bfd_get_32 (abfd, buf);
16452 }
16453
16454 static int
16455 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16456 {
16457 return bfd_get_signed_32 (abfd, buf);
16458 }
16459
16460 static ULONGEST
16461 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16462 {
16463 return bfd_get_64 (abfd, buf);
16464 }
16465
16466 static CORE_ADDR
16467 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16468 unsigned int *bytes_read)
16469 {
16470 struct comp_unit_head *cu_header = &cu->header;
16471 CORE_ADDR retval = 0;
16472
16473 if (cu_header->signed_addr_p)
16474 {
16475 switch (cu_header->addr_size)
16476 {
16477 case 2:
16478 retval = bfd_get_signed_16 (abfd, buf);
16479 break;
16480 case 4:
16481 retval = bfd_get_signed_32 (abfd, buf);
16482 break;
16483 case 8:
16484 retval = bfd_get_signed_64 (abfd, buf);
16485 break;
16486 default:
16487 internal_error (__FILE__, __LINE__,
16488 _("read_address: bad switch, signed [in module %s]"),
16489 bfd_get_filename (abfd));
16490 }
16491 }
16492 else
16493 {
16494 switch (cu_header->addr_size)
16495 {
16496 case 2:
16497 retval = bfd_get_16 (abfd, buf);
16498 break;
16499 case 4:
16500 retval = bfd_get_32 (abfd, buf);
16501 break;
16502 case 8:
16503 retval = bfd_get_64 (abfd, buf);
16504 break;
16505 default:
16506 internal_error (__FILE__, __LINE__,
16507 _("read_address: bad switch, "
16508 "unsigned [in module %s]"),
16509 bfd_get_filename (abfd));
16510 }
16511 }
16512
16513 *bytes_read = cu_header->addr_size;
16514 return retval;
16515 }
16516
16517 /* Read the initial length from a section. The (draft) DWARF 3
16518 specification allows the initial length to take up either 4 bytes
16519 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16520 bytes describe the length and all offsets will be 8 bytes in length
16521 instead of 4.
16522
16523 An older, non-standard 64-bit format is also handled by this
16524 function. The older format in question stores the initial length
16525 as an 8-byte quantity without an escape value. Lengths greater
16526 than 2^32 aren't very common which means that the initial 4 bytes
16527 is almost always zero. Since a length value of zero doesn't make
16528 sense for the 32-bit format, this initial zero can be considered to
16529 be an escape value which indicates the presence of the older 64-bit
16530 format. As written, the code can't detect (old format) lengths
16531 greater than 4GB. If it becomes necessary to handle lengths
16532 somewhat larger than 4GB, we could allow other small values (such
16533 as the non-sensical values of 1, 2, and 3) to also be used as
16534 escape values indicating the presence of the old format.
16535
16536 The value returned via bytes_read should be used to increment the
16537 relevant pointer after calling read_initial_length().
16538
16539 [ Note: read_initial_length() and read_offset() are based on the
16540 document entitled "DWARF Debugging Information Format", revision
16541 3, draft 8, dated November 19, 2001. This document was obtained
16542 from:
16543
16544 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16545
16546 This document is only a draft and is subject to change. (So beware.)
16547
16548 Details regarding the older, non-standard 64-bit format were
16549 determined empirically by examining 64-bit ELF files produced by
16550 the SGI toolchain on an IRIX 6.5 machine.
16551
16552 - Kevin, July 16, 2002
16553 ] */
16554
16555 static LONGEST
16556 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16557 {
16558 LONGEST length = bfd_get_32 (abfd, buf);
16559
16560 if (length == 0xffffffff)
16561 {
16562 length = bfd_get_64 (abfd, buf + 4);
16563 *bytes_read = 12;
16564 }
16565 else if (length == 0)
16566 {
16567 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16568 length = bfd_get_64 (abfd, buf);
16569 *bytes_read = 8;
16570 }
16571 else
16572 {
16573 *bytes_read = 4;
16574 }
16575
16576 return length;
16577 }
16578
16579 /* Cover function for read_initial_length.
16580 Returns the length of the object at BUF, and stores the size of the
16581 initial length in *BYTES_READ and stores the size that offsets will be in
16582 *OFFSET_SIZE.
16583 If the initial length size is not equivalent to that specified in
16584 CU_HEADER then issue a complaint.
16585 This is useful when reading non-comp-unit headers. */
16586
16587 static LONGEST
16588 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16589 const struct comp_unit_head *cu_header,
16590 unsigned int *bytes_read,
16591 unsigned int *offset_size)
16592 {
16593 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16594
16595 gdb_assert (cu_header->initial_length_size == 4
16596 || cu_header->initial_length_size == 8
16597 || cu_header->initial_length_size == 12);
16598
16599 if (cu_header->initial_length_size != *bytes_read)
16600 complaint (&symfile_complaints,
16601 _("intermixed 32-bit and 64-bit DWARF sections"));
16602
16603 *offset_size = (*bytes_read == 4) ? 4 : 8;
16604 return length;
16605 }
16606
16607 /* Read an offset from the data stream. The size of the offset is
16608 given by cu_header->offset_size. */
16609
16610 static LONGEST
16611 read_offset (bfd *abfd, const gdb_byte *buf,
16612 const struct comp_unit_head *cu_header,
16613 unsigned int *bytes_read)
16614 {
16615 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16616
16617 *bytes_read = cu_header->offset_size;
16618 return offset;
16619 }
16620
16621 /* Read an offset from the data stream. */
16622
16623 static LONGEST
16624 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16625 {
16626 LONGEST retval = 0;
16627
16628 switch (offset_size)
16629 {
16630 case 4:
16631 retval = bfd_get_32 (abfd, buf);
16632 break;
16633 case 8:
16634 retval = bfd_get_64 (abfd, buf);
16635 break;
16636 default:
16637 internal_error (__FILE__, __LINE__,
16638 _("read_offset_1: bad switch [in module %s]"),
16639 bfd_get_filename (abfd));
16640 }
16641
16642 return retval;
16643 }
16644
16645 static const gdb_byte *
16646 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16647 {
16648 /* If the size of a host char is 8 bits, we can return a pointer
16649 to the buffer, otherwise we have to copy the data to a buffer
16650 allocated on the temporary obstack. */
16651 gdb_assert (HOST_CHAR_BIT == 8);
16652 return buf;
16653 }
16654
16655 static const char *
16656 read_direct_string (bfd *abfd, const gdb_byte *buf,
16657 unsigned int *bytes_read_ptr)
16658 {
16659 /* If the size of a host char is 8 bits, we can return a pointer
16660 to the string, otherwise we have to copy the string to a buffer
16661 allocated on the temporary obstack. */
16662 gdb_assert (HOST_CHAR_BIT == 8);
16663 if (*buf == '\0')
16664 {
16665 *bytes_read_ptr = 1;
16666 return NULL;
16667 }
16668 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16669 return (const char *) buf;
16670 }
16671
16672 static const char *
16673 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16674 {
16675 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16676 if (dwarf2_per_objfile->str.buffer == NULL)
16677 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16678 bfd_get_filename (abfd));
16679 if (str_offset >= dwarf2_per_objfile->str.size)
16680 error (_("DW_FORM_strp pointing outside of "
16681 ".debug_str section [in module %s]"),
16682 bfd_get_filename (abfd));
16683 gdb_assert (HOST_CHAR_BIT == 8);
16684 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16685 return NULL;
16686 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16687 }
16688
16689 /* Read a string at offset STR_OFFSET in the .debug_str section from
16690 the .dwz file DWZ. Throw an error if the offset is too large. If
16691 the string consists of a single NUL byte, return NULL; otherwise
16692 return a pointer to the string. */
16693
16694 static const char *
16695 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16696 {
16697 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16698
16699 if (dwz->str.buffer == NULL)
16700 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16701 "section [in module %s]"),
16702 bfd_get_filename (dwz->dwz_bfd));
16703 if (str_offset >= dwz->str.size)
16704 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16705 ".debug_str section [in module %s]"),
16706 bfd_get_filename (dwz->dwz_bfd));
16707 gdb_assert (HOST_CHAR_BIT == 8);
16708 if (dwz->str.buffer[str_offset] == '\0')
16709 return NULL;
16710 return (const char *) (dwz->str.buffer + str_offset);
16711 }
16712
16713 static const char *
16714 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16715 const struct comp_unit_head *cu_header,
16716 unsigned int *bytes_read_ptr)
16717 {
16718 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16719
16720 return read_indirect_string_at_offset (abfd, str_offset);
16721 }
16722
16723 static ULONGEST
16724 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16725 unsigned int *bytes_read_ptr)
16726 {
16727 ULONGEST result;
16728 unsigned int num_read;
16729 int i, shift;
16730 unsigned char byte;
16731
16732 result = 0;
16733 shift = 0;
16734 num_read = 0;
16735 i = 0;
16736 while (1)
16737 {
16738 byte = bfd_get_8 (abfd, buf);
16739 buf++;
16740 num_read++;
16741 result |= ((ULONGEST) (byte & 127) << shift);
16742 if ((byte & 128) == 0)
16743 {
16744 break;
16745 }
16746 shift += 7;
16747 }
16748 *bytes_read_ptr = num_read;
16749 return result;
16750 }
16751
16752 static LONGEST
16753 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16754 unsigned int *bytes_read_ptr)
16755 {
16756 LONGEST result;
16757 int i, shift, num_read;
16758 unsigned char byte;
16759
16760 result = 0;
16761 shift = 0;
16762 num_read = 0;
16763 i = 0;
16764 while (1)
16765 {
16766 byte = bfd_get_8 (abfd, buf);
16767 buf++;
16768 num_read++;
16769 result |= ((LONGEST) (byte & 127) << shift);
16770 shift += 7;
16771 if ((byte & 128) == 0)
16772 {
16773 break;
16774 }
16775 }
16776 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16777 result |= -(((LONGEST) 1) << shift);
16778 *bytes_read_ptr = num_read;
16779 return result;
16780 }
16781
16782 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16783 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16784 ADDR_SIZE is the size of addresses from the CU header. */
16785
16786 static CORE_ADDR
16787 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16788 {
16789 struct objfile *objfile = dwarf2_per_objfile->objfile;
16790 bfd *abfd = objfile->obfd;
16791 const gdb_byte *info_ptr;
16792
16793 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16794 if (dwarf2_per_objfile->addr.buffer == NULL)
16795 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16796 objfile_name (objfile));
16797 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16798 error (_("DW_FORM_addr_index pointing outside of "
16799 ".debug_addr section [in module %s]"),
16800 objfile_name (objfile));
16801 info_ptr = (dwarf2_per_objfile->addr.buffer
16802 + addr_base + addr_index * addr_size);
16803 if (addr_size == 4)
16804 return bfd_get_32 (abfd, info_ptr);
16805 else
16806 return bfd_get_64 (abfd, info_ptr);
16807 }
16808
16809 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16810
16811 static CORE_ADDR
16812 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16813 {
16814 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16815 }
16816
16817 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16818
16819 static CORE_ADDR
16820 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16821 unsigned int *bytes_read)
16822 {
16823 bfd *abfd = cu->objfile->obfd;
16824 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16825
16826 return read_addr_index (cu, addr_index);
16827 }
16828
16829 /* Data structure to pass results from dwarf2_read_addr_index_reader
16830 back to dwarf2_read_addr_index. */
16831
16832 struct dwarf2_read_addr_index_data
16833 {
16834 ULONGEST addr_base;
16835 int addr_size;
16836 };
16837
16838 /* die_reader_func for dwarf2_read_addr_index. */
16839
16840 static void
16841 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16842 const gdb_byte *info_ptr,
16843 struct die_info *comp_unit_die,
16844 int has_children,
16845 void *data)
16846 {
16847 struct dwarf2_cu *cu = reader->cu;
16848 struct dwarf2_read_addr_index_data *aidata =
16849 (struct dwarf2_read_addr_index_data *) data;
16850
16851 aidata->addr_base = cu->addr_base;
16852 aidata->addr_size = cu->header.addr_size;
16853 }
16854
16855 /* Given an index in .debug_addr, fetch the value.
16856 NOTE: This can be called during dwarf expression evaluation,
16857 long after the debug information has been read, and thus per_cu->cu
16858 may no longer exist. */
16859
16860 CORE_ADDR
16861 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16862 unsigned int addr_index)
16863 {
16864 struct objfile *objfile = per_cu->objfile;
16865 struct dwarf2_cu *cu = per_cu->cu;
16866 ULONGEST addr_base;
16867 int addr_size;
16868
16869 /* This is intended to be called from outside this file. */
16870 dw2_setup (objfile);
16871
16872 /* We need addr_base and addr_size.
16873 If we don't have PER_CU->cu, we have to get it.
16874 Nasty, but the alternative is storing the needed info in PER_CU,
16875 which at this point doesn't seem justified: it's not clear how frequently
16876 it would get used and it would increase the size of every PER_CU.
16877 Entry points like dwarf2_per_cu_addr_size do a similar thing
16878 so we're not in uncharted territory here.
16879 Alas we need to be a bit more complicated as addr_base is contained
16880 in the DIE.
16881
16882 We don't need to read the entire CU(/TU).
16883 We just need the header and top level die.
16884
16885 IWBN to use the aging mechanism to let us lazily later discard the CU.
16886 For now we skip this optimization. */
16887
16888 if (cu != NULL)
16889 {
16890 addr_base = cu->addr_base;
16891 addr_size = cu->header.addr_size;
16892 }
16893 else
16894 {
16895 struct dwarf2_read_addr_index_data aidata;
16896
16897 /* Note: We can't use init_cutu_and_read_dies_simple here,
16898 we need addr_base. */
16899 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16900 dwarf2_read_addr_index_reader, &aidata);
16901 addr_base = aidata.addr_base;
16902 addr_size = aidata.addr_size;
16903 }
16904
16905 return read_addr_index_1 (addr_index, addr_base, addr_size);
16906 }
16907
16908 /* Given a DW_FORM_GNU_str_index, fetch the string.
16909 This is only used by the Fission support. */
16910
16911 static const char *
16912 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16913 {
16914 struct objfile *objfile = dwarf2_per_objfile->objfile;
16915 const char *objf_name = objfile_name (objfile);
16916 bfd *abfd = objfile->obfd;
16917 struct dwarf2_cu *cu = reader->cu;
16918 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16919 struct dwarf2_section_info *str_offsets_section =
16920 &reader->dwo_file->sections.str_offsets;
16921 const gdb_byte *info_ptr;
16922 ULONGEST str_offset;
16923 static const char form_name[] = "DW_FORM_GNU_str_index";
16924
16925 dwarf2_read_section (objfile, str_section);
16926 dwarf2_read_section (objfile, str_offsets_section);
16927 if (str_section->buffer == NULL)
16928 error (_("%s used without .debug_str.dwo section"
16929 " in CU at offset 0x%lx [in module %s]"),
16930 form_name, (long) cu->header.offset.sect_off, objf_name);
16931 if (str_offsets_section->buffer == NULL)
16932 error (_("%s used without .debug_str_offsets.dwo section"
16933 " in CU at offset 0x%lx [in module %s]"),
16934 form_name, (long) cu->header.offset.sect_off, objf_name);
16935 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16936 error (_("%s pointing outside of .debug_str_offsets.dwo"
16937 " section in CU at offset 0x%lx [in module %s]"),
16938 form_name, (long) cu->header.offset.sect_off, objf_name);
16939 info_ptr = (str_offsets_section->buffer
16940 + str_index * cu->header.offset_size);
16941 if (cu->header.offset_size == 4)
16942 str_offset = bfd_get_32 (abfd, info_ptr);
16943 else
16944 str_offset = bfd_get_64 (abfd, info_ptr);
16945 if (str_offset >= str_section->size)
16946 error (_("Offset from %s pointing outside of"
16947 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16948 form_name, (long) cu->header.offset.sect_off, objf_name);
16949 return (const char *) (str_section->buffer + str_offset);
16950 }
16951
16952 /* Return the length of an LEB128 number in BUF. */
16953
16954 static int
16955 leb128_size (const gdb_byte *buf)
16956 {
16957 const gdb_byte *begin = buf;
16958 gdb_byte byte;
16959
16960 while (1)
16961 {
16962 byte = *buf++;
16963 if ((byte & 128) == 0)
16964 return buf - begin;
16965 }
16966 }
16967
16968 static void
16969 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16970 {
16971 switch (lang)
16972 {
16973 case DW_LANG_C89:
16974 case DW_LANG_C99:
16975 case DW_LANG_C11:
16976 case DW_LANG_C:
16977 case DW_LANG_UPC:
16978 cu->language = language_c;
16979 break;
16980 case DW_LANG_C_plus_plus:
16981 case DW_LANG_C_plus_plus_11:
16982 case DW_LANG_C_plus_plus_14:
16983 cu->language = language_cplus;
16984 break;
16985 case DW_LANG_D:
16986 cu->language = language_d;
16987 break;
16988 case DW_LANG_Fortran77:
16989 case DW_LANG_Fortran90:
16990 case DW_LANG_Fortran95:
16991 case DW_LANG_Fortran03:
16992 case DW_LANG_Fortran08:
16993 cu->language = language_fortran;
16994 break;
16995 case DW_LANG_Go:
16996 cu->language = language_go;
16997 break;
16998 case DW_LANG_Mips_Assembler:
16999 cu->language = language_asm;
17000 break;
17001 case DW_LANG_Java:
17002 cu->language = language_java;
17003 break;
17004 case DW_LANG_Ada83:
17005 case DW_LANG_Ada95:
17006 cu->language = language_ada;
17007 break;
17008 case DW_LANG_Modula2:
17009 cu->language = language_m2;
17010 break;
17011 case DW_LANG_Pascal83:
17012 cu->language = language_pascal;
17013 break;
17014 case DW_LANG_ObjC:
17015 cu->language = language_objc;
17016 break;
17017 case DW_LANG_Cobol74:
17018 case DW_LANG_Cobol85:
17019 default:
17020 cu->language = language_minimal;
17021 break;
17022 }
17023 cu->language_defn = language_def (cu->language);
17024 }
17025
17026 /* Return the named attribute or NULL if not there. */
17027
17028 static struct attribute *
17029 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17030 {
17031 for (;;)
17032 {
17033 unsigned int i;
17034 struct attribute *spec = NULL;
17035
17036 for (i = 0; i < die->num_attrs; ++i)
17037 {
17038 if (die->attrs[i].name == name)
17039 return &die->attrs[i];
17040 if (die->attrs[i].name == DW_AT_specification
17041 || die->attrs[i].name == DW_AT_abstract_origin)
17042 spec = &die->attrs[i];
17043 }
17044
17045 if (!spec)
17046 break;
17047
17048 die = follow_die_ref (die, spec, &cu);
17049 }
17050
17051 return NULL;
17052 }
17053
17054 /* Return the named attribute or NULL if not there,
17055 but do not follow DW_AT_specification, etc.
17056 This is for use in contexts where we're reading .debug_types dies.
17057 Following DW_AT_specification, DW_AT_abstract_origin will take us
17058 back up the chain, and we want to go down. */
17059
17060 static struct attribute *
17061 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17062 {
17063 unsigned int i;
17064
17065 for (i = 0; i < die->num_attrs; ++i)
17066 if (die->attrs[i].name == name)
17067 return &die->attrs[i];
17068
17069 return NULL;
17070 }
17071
17072 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17073 and holds a non-zero value. This function should only be used for
17074 DW_FORM_flag or DW_FORM_flag_present attributes. */
17075
17076 static int
17077 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17078 {
17079 struct attribute *attr = dwarf2_attr (die, name, cu);
17080
17081 return (attr && DW_UNSND (attr));
17082 }
17083
17084 static int
17085 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17086 {
17087 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17088 which value is non-zero. However, we have to be careful with
17089 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17090 (via dwarf2_flag_true_p) follows this attribute. So we may
17091 end up accidently finding a declaration attribute that belongs
17092 to a different DIE referenced by the specification attribute,
17093 even though the given DIE does not have a declaration attribute. */
17094 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17095 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17096 }
17097
17098 /* Return the die giving the specification for DIE, if there is
17099 one. *SPEC_CU is the CU containing DIE on input, and the CU
17100 containing the return value on output. If there is no
17101 specification, but there is an abstract origin, that is
17102 returned. */
17103
17104 static struct die_info *
17105 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17106 {
17107 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17108 *spec_cu);
17109
17110 if (spec_attr == NULL)
17111 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17112
17113 if (spec_attr == NULL)
17114 return NULL;
17115 else
17116 return follow_die_ref (die, spec_attr, spec_cu);
17117 }
17118
17119 /* Free the line_header structure *LH, and any arrays and strings it
17120 refers to.
17121 NOTE: This is also used as a "cleanup" function. */
17122
17123 static void
17124 free_line_header (struct line_header *lh)
17125 {
17126 if (lh->standard_opcode_lengths)
17127 xfree (lh->standard_opcode_lengths);
17128
17129 /* Remember that all the lh->file_names[i].name pointers are
17130 pointers into debug_line_buffer, and don't need to be freed. */
17131 if (lh->file_names)
17132 xfree (lh->file_names);
17133
17134 /* Similarly for the include directory names. */
17135 if (lh->include_dirs)
17136 xfree (lh->include_dirs);
17137
17138 xfree (lh);
17139 }
17140
17141 /* Stub for free_line_header to match void * callback types. */
17142
17143 static void
17144 free_line_header_voidp (void *arg)
17145 {
17146 struct line_header *lh = arg;
17147
17148 free_line_header (lh);
17149 }
17150
17151 /* Add an entry to LH's include directory table. */
17152
17153 static void
17154 add_include_dir (struct line_header *lh, const char *include_dir)
17155 {
17156 if (dwarf_line_debug >= 2)
17157 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17158 lh->num_include_dirs + 1, include_dir);
17159
17160 /* Grow the array if necessary. */
17161 if (lh->include_dirs_size == 0)
17162 {
17163 lh->include_dirs_size = 1; /* for testing */
17164 lh->include_dirs = xmalloc (lh->include_dirs_size
17165 * sizeof (*lh->include_dirs));
17166 }
17167 else if (lh->num_include_dirs >= lh->include_dirs_size)
17168 {
17169 lh->include_dirs_size *= 2;
17170 lh->include_dirs = xrealloc (lh->include_dirs,
17171 (lh->include_dirs_size
17172 * sizeof (*lh->include_dirs)));
17173 }
17174
17175 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17176 }
17177
17178 /* Add an entry to LH's file name table. */
17179
17180 static void
17181 add_file_name (struct line_header *lh,
17182 const char *name,
17183 unsigned int dir_index,
17184 unsigned int mod_time,
17185 unsigned int length)
17186 {
17187 struct file_entry *fe;
17188
17189 if (dwarf_line_debug >= 2)
17190 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17191 lh->num_file_names + 1, name);
17192
17193 /* Grow the array if necessary. */
17194 if (lh->file_names_size == 0)
17195 {
17196 lh->file_names_size = 1; /* for testing */
17197 lh->file_names = xmalloc (lh->file_names_size
17198 * sizeof (*lh->file_names));
17199 }
17200 else if (lh->num_file_names >= lh->file_names_size)
17201 {
17202 lh->file_names_size *= 2;
17203 lh->file_names = xrealloc (lh->file_names,
17204 (lh->file_names_size
17205 * sizeof (*lh->file_names)));
17206 }
17207
17208 fe = &lh->file_names[lh->num_file_names++];
17209 fe->name = name;
17210 fe->dir_index = dir_index;
17211 fe->mod_time = mod_time;
17212 fe->length = length;
17213 fe->included_p = 0;
17214 fe->symtab = NULL;
17215 }
17216
17217 /* A convenience function to find the proper .debug_line section for a CU. */
17218
17219 static struct dwarf2_section_info *
17220 get_debug_line_section (struct dwarf2_cu *cu)
17221 {
17222 struct dwarf2_section_info *section;
17223
17224 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17225 DWO file. */
17226 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17227 section = &cu->dwo_unit->dwo_file->sections.line;
17228 else if (cu->per_cu->is_dwz)
17229 {
17230 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17231
17232 section = &dwz->line;
17233 }
17234 else
17235 section = &dwarf2_per_objfile->line;
17236
17237 return section;
17238 }
17239
17240 /* Read the statement program header starting at OFFSET in
17241 .debug_line, or .debug_line.dwo. Return a pointer
17242 to a struct line_header, allocated using xmalloc.
17243 Returns NULL if there is a problem reading the header, e.g., if it
17244 has a version we don't understand.
17245
17246 NOTE: the strings in the include directory and file name tables of
17247 the returned object point into the dwarf line section buffer,
17248 and must not be freed. */
17249
17250 static struct line_header *
17251 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17252 {
17253 struct cleanup *back_to;
17254 struct line_header *lh;
17255 const gdb_byte *line_ptr;
17256 unsigned int bytes_read, offset_size;
17257 int i;
17258 const char *cur_dir, *cur_file;
17259 struct dwarf2_section_info *section;
17260 bfd *abfd;
17261
17262 section = get_debug_line_section (cu);
17263 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17264 if (section->buffer == NULL)
17265 {
17266 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17267 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17268 else
17269 complaint (&symfile_complaints, _("missing .debug_line section"));
17270 return 0;
17271 }
17272
17273 /* We can't do this until we know the section is non-empty.
17274 Only then do we know we have such a section. */
17275 abfd = get_section_bfd_owner (section);
17276
17277 /* Make sure that at least there's room for the total_length field.
17278 That could be 12 bytes long, but we're just going to fudge that. */
17279 if (offset + 4 >= section->size)
17280 {
17281 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17282 return 0;
17283 }
17284
17285 lh = xmalloc (sizeof (*lh));
17286 memset (lh, 0, sizeof (*lh));
17287 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17288 (void *) lh);
17289
17290 lh->offset.sect_off = offset;
17291 lh->offset_in_dwz = cu->per_cu->is_dwz;
17292
17293 line_ptr = section->buffer + offset;
17294
17295 /* Read in the header. */
17296 lh->total_length =
17297 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17298 &bytes_read, &offset_size);
17299 line_ptr += bytes_read;
17300 if (line_ptr + lh->total_length > (section->buffer + section->size))
17301 {
17302 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17303 do_cleanups (back_to);
17304 return 0;
17305 }
17306 lh->statement_program_end = line_ptr + lh->total_length;
17307 lh->version = read_2_bytes (abfd, line_ptr);
17308 line_ptr += 2;
17309 if (lh->version > 4)
17310 {
17311 /* This is a version we don't understand. The format could have
17312 changed in ways we don't handle properly so just punt. */
17313 complaint (&symfile_complaints,
17314 _("unsupported version in .debug_line section"));
17315 return NULL;
17316 }
17317 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17318 line_ptr += offset_size;
17319 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17320 line_ptr += 1;
17321 if (lh->version >= 4)
17322 {
17323 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17324 line_ptr += 1;
17325 }
17326 else
17327 lh->maximum_ops_per_instruction = 1;
17328
17329 if (lh->maximum_ops_per_instruction == 0)
17330 {
17331 lh->maximum_ops_per_instruction = 1;
17332 complaint (&symfile_complaints,
17333 _("invalid maximum_ops_per_instruction "
17334 "in `.debug_line' section"));
17335 }
17336
17337 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17338 line_ptr += 1;
17339 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17340 line_ptr += 1;
17341 lh->line_range = read_1_byte (abfd, line_ptr);
17342 line_ptr += 1;
17343 lh->opcode_base = read_1_byte (abfd, line_ptr);
17344 line_ptr += 1;
17345 lh->standard_opcode_lengths
17346 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17347
17348 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17349 for (i = 1; i < lh->opcode_base; ++i)
17350 {
17351 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17352 line_ptr += 1;
17353 }
17354
17355 /* Read directory table. */
17356 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17357 {
17358 line_ptr += bytes_read;
17359 add_include_dir (lh, cur_dir);
17360 }
17361 line_ptr += bytes_read;
17362
17363 /* Read file name table. */
17364 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17365 {
17366 unsigned int dir_index, mod_time, length;
17367
17368 line_ptr += bytes_read;
17369 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17370 line_ptr += bytes_read;
17371 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17372 line_ptr += bytes_read;
17373 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17374 line_ptr += bytes_read;
17375
17376 add_file_name (lh, cur_file, dir_index, mod_time, length);
17377 }
17378 line_ptr += bytes_read;
17379 lh->statement_program_start = line_ptr;
17380
17381 if (line_ptr > (section->buffer + section->size))
17382 complaint (&symfile_complaints,
17383 _("line number info header doesn't "
17384 "fit in `.debug_line' section"));
17385
17386 discard_cleanups (back_to);
17387 return lh;
17388 }
17389
17390 /* Subroutine of dwarf_decode_lines to simplify it.
17391 Return the file name of the psymtab for included file FILE_INDEX
17392 in line header LH of PST.
17393 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17394 If space for the result is malloc'd, it will be freed by a cleanup.
17395 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17396
17397 The function creates dangling cleanup registration. */
17398
17399 static const char *
17400 psymtab_include_file_name (const struct line_header *lh, int file_index,
17401 const struct partial_symtab *pst,
17402 const char *comp_dir)
17403 {
17404 const struct file_entry fe = lh->file_names [file_index];
17405 const char *include_name = fe.name;
17406 const char *include_name_to_compare = include_name;
17407 const char *dir_name = NULL;
17408 const char *pst_filename;
17409 char *copied_name = NULL;
17410 int file_is_pst;
17411
17412 if (fe.dir_index && lh->include_dirs != NULL)
17413 dir_name = lh->include_dirs[fe.dir_index - 1];
17414
17415 if (!IS_ABSOLUTE_PATH (include_name)
17416 && (dir_name != NULL || comp_dir != NULL))
17417 {
17418 /* Avoid creating a duplicate psymtab for PST.
17419 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17420 Before we do the comparison, however, we need to account
17421 for DIR_NAME and COMP_DIR.
17422 First prepend dir_name (if non-NULL). If we still don't
17423 have an absolute path prepend comp_dir (if non-NULL).
17424 However, the directory we record in the include-file's
17425 psymtab does not contain COMP_DIR (to match the
17426 corresponding symtab(s)).
17427
17428 Example:
17429
17430 bash$ cd /tmp
17431 bash$ gcc -g ./hello.c
17432 include_name = "hello.c"
17433 dir_name = "."
17434 DW_AT_comp_dir = comp_dir = "/tmp"
17435 DW_AT_name = "./hello.c"
17436
17437 */
17438
17439 if (dir_name != NULL)
17440 {
17441 char *tem = concat (dir_name, SLASH_STRING,
17442 include_name, (char *)NULL);
17443
17444 make_cleanup (xfree, tem);
17445 include_name = tem;
17446 include_name_to_compare = include_name;
17447 }
17448 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17449 {
17450 char *tem = concat (comp_dir, SLASH_STRING,
17451 include_name, (char *)NULL);
17452
17453 make_cleanup (xfree, tem);
17454 include_name_to_compare = tem;
17455 }
17456 }
17457
17458 pst_filename = pst->filename;
17459 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17460 {
17461 copied_name = concat (pst->dirname, SLASH_STRING,
17462 pst_filename, (char *)NULL);
17463 pst_filename = copied_name;
17464 }
17465
17466 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17467
17468 if (copied_name != NULL)
17469 xfree (copied_name);
17470
17471 if (file_is_pst)
17472 return NULL;
17473 return include_name;
17474 }
17475
17476 /* State machine to track the state of the line number program. */
17477
17478 typedef struct
17479 {
17480 /* These are part of the standard DWARF line number state machine. */
17481
17482 unsigned char op_index;
17483 unsigned int file;
17484 unsigned int line;
17485 CORE_ADDR address;
17486 int is_stmt;
17487 unsigned int discriminator;
17488
17489 /* Additional bits of state we need to track. */
17490
17491 /* The last file that we called dwarf2_start_subfile for.
17492 This is only used for TLLs. */
17493 unsigned int last_file;
17494 /* The last file a line number was recorded for. */
17495 struct subfile *last_subfile;
17496
17497 /* The function to call to record a line. */
17498 record_line_ftype *record_line;
17499
17500 /* The last line number that was recorded, used to coalesce
17501 consecutive entries for the same line. This can happen, for
17502 example, when discriminators are present. PR 17276. */
17503 unsigned int last_line;
17504 int line_has_non_zero_discriminator;
17505 } lnp_state_machine;
17506
17507 /* There's a lot of static state to pass to dwarf_record_line.
17508 This keeps it all together. */
17509
17510 typedef struct
17511 {
17512 /* The gdbarch. */
17513 struct gdbarch *gdbarch;
17514
17515 /* The line number header. */
17516 struct line_header *line_header;
17517
17518 /* Non-zero if we're recording lines.
17519 Otherwise we're building partial symtabs and are just interested in
17520 finding include files mentioned by the line number program. */
17521 int record_lines_p;
17522 } lnp_reader_state;
17523
17524 /* Ignore this record_line request. */
17525
17526 static void
17527 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17528 {
17529 return;
17530 }
17531
17532 /* Return non-zero if we should add LINE to the line number table.
17533 LINE is the line to add, LAST_LINE is the last line that was added,
17534 LAST_SUBFILE is the subfile for LAST_LINE.
17535 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17536 had a non-zero discriminator.
17537
17538 We have to be careful in the presence of discriminators.
17539 E.g., for this line:
17540
17541 for (i = 0; i < 100000; i++);
17542
17543 clang can emit four line number entries for that one line,
17544 each with a different discriminator.
17545 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17546
17547 However, we want gdb to coalesce all four entries into one.
17548 Otherwise the user could stepi into the middle of the line and
17549 gdb would get confused about whether the pc really was in the
17550 middle of the line.
17551
17552 Things are further complicated by the fact that two consecutive
17553 line number entries for the same line is a heuristic used by gcc
17554 to denote the end of the prologue. So we can't just discard duplicate
17555 entries, we have to be selective about it. The heuristic we use is
17556 that we only collapse consecutive entries for the same line if at least
17557 one of those entries has a non-zero discriminator. PR 17276.
17558
17559 Note: Addresses in the line number state machine can never go backwards
17560 within one sequence, thus this coalescing is ok. */
17561
17562 static int
17563 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17564 int line_has_non_zero_discriminator,
17565 struct subfile *last_subfile)
17566 {
17567 if (current_subfile != last_subfile)
17568 return 1;
17569 if (line != last_line)
17570 return 1;
17571 /* Same line for the same file that we've seen already.
17572 As a last check, for pr 17276, only record the line if the line
17573 has never had a non-zero discriminator. */
17574 if (!line_has_non_zero_discriminator)
17575 return 1;
17576 return 0;
17577 }
17578
17579 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17580 in the line table of subfile SUBFILE. */
17581
17582 static void
17583 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17584 unsigned int line, CORE_ADDR address,
17585 record_line_ftype p_record_line)
17586 {
17587 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17588
17589 if (dwarf_line_debug)
17590 {
17591 fprintf_unfiltered (gdb_stdlog,
17592 "Recording line %u, file %s, address %s\n",
17593 line, lbasename (subfile->name),
17594 paddress (gdbarch, address));
17595 }
17596
17597 (*p_record_line) (subfile, line, addr);
17598 }
17599
17600 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17601 Mark the end of a set of line number records.
17602 The arguments are the same as for dwarf_record_line_1.
17603 If SUBFILE is NULL the request is ignored. */
17604
17605 static void
17606 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17607 CORE_ADDR address, record_line_ftype p_record_line)
17608 {
17609 if (subfile == NULL)
17610 return;
17611
17612 if (dwarf_line_debug)
17613 {
17614 fprintf_unfiltered (gdb_stdlog,
17615 "Finishing current line, file %s, address %s\n",
17616 lbasename (subfile->name),
17617 paddress (gdbarch, address));
17618 }
17619
17620 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17621 }
17622
17623 /* Record the line in STATE.
17624 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17625
17626 static void
17627 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17628 int end_sequence)
17629 {
17630 const struct line_header *lh = reader->line_header;
17631 unsigned int file, line, discriminator;
17632 int is_stmt;
17633
17634 file = state->file;
17635 line = state->line;
17636 is_stmt = state->is_stmt;
17637 discriminator = state->discriminator;
17638
17639 if (dwarf_line_debug)
17640 {
17641 fprintf_unfiltered (gdb_stdlog,
17642 "Processing actual line %u: file %u,"
17643 " address %s, is_stmt %u, discrim %u\n",
17644 line, file,
17645 paddress (reader->gdbarch, state->address),
17646 is_stmt, discriminator);
17647 }
17648
17649 if (file == 0 || file - 1 >= lh->num_file_names)
17650 dwarf2_debug_line_missing_file_complaint ();
17651 /* For now we ignore lines not starting on an instruction boundary.
17652 But not when processing end_sequence for compatibility with the
17653 previous version of the code. */
17654 else if (state->op_index == 0 || end_sequence)
17655 {
17656 lh->file_names[file - 1].included_p = 1;
17657 if (reader->record_lines_p && is_stmt)
17658 {
17659 if (state->last_subfile != current_subfile || end_sequence)
17660 {
17661 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17662 state->address, state->record_line);
17663 }
17664
17665 if (!end_sequence)
17666 {
17667 if (dwarf_record_line_p (line, state->last_line,
17668 state->line_has_non_zero_discriminator,
17669 state->last_subfile))
17670 {
17671 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17672 line, state->address,
17673 state->record_line);
17674 }
17675 state->last_subfile = current_subfile;
17676 state->last_line = line;
17677 }
17678 }
17679 }
17680 }
17681
17682 /* Initialize STATE for the start of a line number program. */
17683
17684 static void
17685 init_lnp_state_machine (lnp_state_machine *state,
17686 const lnp_reader_state *reader)
17687 {
17688 memset (state, 0, sizeof (*state));
17689
17690 /* Just starting, there is no "last file". */
17691 state->last_file = 0;
17692 state->last_subfile = NULL;
17693
17694 state->record_line = record_line;
17695
17696 state->last_line = 0;
17697 state->line_has_non_zero_discriminator = 0;
17698
17699 /* Initialize these according to the DWARF spec. */
17700 state->op_index = 0;
17701 state->file = 1;
17702 state->line = 1;
17703 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17704 was a line entry for it so that the backend has a chance to adjust it
17705 and also record it in case it needs it. This is currently used by MIPS
17706 code, cf. `mips_adjust_dwarf2_line'. */
17707 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17708 state->is_stmt = reader->line_header->default_is_stmt;
17709 state->discriminator = 0;
17710 }
17711
17712 /* Check address and if invalid nop-out the rest of the lines in this
17713 sequence. */
17714
17715 static void
17716 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17717 const gdb_byte *line_ptr,
17718 CORE_ADDR lowpc, CORE_ADDR address)
17719 {
17720 /* If address < lowpc then it's not a usable value, it's outside the
17721 pc range of the CU. However, we restrict the test to only address
17722 values of zero to preserve GDB's previous behaviour which is to
17723 handle the specific case of a function being GC'd by the linker. */
17724
17725 if (address == 0 && address < lowpc)
17726 {
17727 /* This line table is for a function which has been
17728 GCd by the linker. Ignore it. PR gdb/12528 */
17729
17730 struct objfile *objfile = cu->objfile;
17731 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17732
17733 complaint (&symfile_complaints,
17734 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17735 line_offset, objfile_name (objfile));
17736 state->record_line = noop_record_line;
17737 /* Note: sm.record_line is left as noop_record_line
17738 until we see DW_LNE_end_sequence. */
17739 }
17740 }
17741
17742 /* Subroutine of dwarf_decode_lines to simplify it.
17743 Process the line number information in LH.
17744 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17745 program in order to set included_p for every referenced header. */
17746
17747 static void
17748 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17749 const int decode_for_pst_p, CORE_ADDR lowpc)
17750 {
17751 const gdb_byte *line_ptr, *extended_end;
17752 const gdb_byte *line_end;
17753 unsigned int bytes_read, extended_len;
17754 unsigned char op_code, extended_op;
17755 CORE_ADDR baseaddr;
17756 struct objfile *objfile = cu->objfile;
17757 bfd *abfd = objfile->obfd;
17758 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17759 /* Non-zero if we're recording line info (as opposed to building partial
17760 symtabs). */
17761 int record_lines_p = !decode_for_pst_p;
17762 /* A collection of things we need to pass to dwarf_record_line. */
17763 lnp_reader_state reader_state;
17764
17765 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17766
17767 line_ptr = lh->statement_program_start;
17768 line_end = lh->statement_program_end;
17769
17770 reader_state.gdbarch = gdbarch;
17771 reader_state.line_header = lh;
17772 reader_state.record_lines_p = record_lines_p;
17773
17774 /* Read the statement sequences until there's nothing left. */
17775 while (line_ptr < line_end)
17776 {
17777 /* The DWARF line number program state machine. */
17778 lnp_state_machine state_machine;
17779 int end_sequence = 0;
17780
17781 /* Reset the state machine at the start of each sequence. */
17782 init_lnp_state_machine (&state_machine, &reader_state);
17783
17784 if (record_lines_p && lh->num_file_names >= state_machine.file)
17785 {
17786 /* Start a subfile for the current file of the state machine. */
17787 /* lh->include_dirs and lh->file_names are 0-based, but the
17788 directory and file name numbers in the statement program
17789 are 1-based. */
17790 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17791 const char *dir = NULL;
17792
17793 if (fe->dir_index && lh->include_dirs != NULL)
17794 dir = lh->include_dirs[fe->dir_index - 1];
17795
17796 dwarf2_start_subfile (fe->name, dir);
17797 }
17798
17799 /* Decode the table. */
17800 while (line_ptr < line_end && !end_sequence)
17801 {
17802 op_code = read_1_byte (abfd, line_ptr);
17803 line_ptr += 1;
17804
17805 if (op_code >= lh->opcode_base)
17806 {
17807 /* Special opcode. */
17808 unsigned char adj_opcode;
17809 CORE_ADDR addr_adj;
17810 int line_delta;
17811
17812 adj_opcode = op_code - lh->opcode_base;
17813 addr_adj = (((state_machine.op_index
17814 + (adj_opcode / lh->line_range))
17815 / lh->maximum_ops_per_instruction)
17816 * lh->minimum_instruction_length);
17817 state_machine.address
17818 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17819 state_machine.op_index = ((state_machine.op_index
17820 + (adj_opcode / lh->line_range))
17821 % lh->maximum_ops_per_instruction);
17822 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17823 state_machine.line += line_delta;
17824 if (line_delta != 0)
17825 state_machine.line_has_non_zero_discriminator
17826 = state_machine.discriminator != 0;
17827
17828 dwarf_record_line (&reader_state, &state_machine, 0);
17829 state_machine.discriminator = 0;
17830 }
17831 else switch (op_code)
17832 {
17833 case DW_LNS_extended_op:
17834 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17835 &bytes_read);
17836 line_ptr += bytes_read;
17837 extended_end = line_ptr + extended_len;
17838 extended_op = read_1_byte (abfd, line_ptr);
17839 line_ptr += 1;
17840 switch (extended_op)
17841 {
17842 case DW_LNE_end_sequence:
17843 state_machine.record_line = record_line;
17844 end_sequence = 1;
17845 break;
17846 case DW_LNE_set_address:
17847 {
17848 CORE_ADDR address
17849 = read_address (abfd, line_ptr, cu, &bytes_read);
17850
17851 line_ptr += bytes_read;
17852 check_line_address (cu, &state_machine, line_ptr,
17853 lowpc, address);
17854 state_machine.op_index = 0;
17855 address += baseaddr;
17856 state_machine.address
17857 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17858 }
17859 break;
17860 case DW_LNE_define_file:
17861 {
17862 const char *cur_file;
17863 unsigned int dir_index, mod_time, length;
17864
17865 cur_file = read_direct_string (abfd, line_ptr,
17866 &bytes_read);
17867 line_ptr += bytes_read;
17868 dir_index =
17869 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17870 line_ptr += bytes_read;
17871 mod_time =
17872 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17873 line_ptr += bytes_read;
17874 length =
17875 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17876 line_ptr += bytes_read;
17877 add_file_name (lh, cur_file, dir_index, mod_time, length);
17878 }
17879 break;
17880 case DW_LNE_set_discriminator:
17881 /* The discriminator is not interesting to the debugger;
17882 just ignore it. We still need to check its value though:
17883 if there are consecutive entries for the same
17884 (non-prologue) line we want to coalesce them.
17885 PR 17276. */
17886 state_machine.discriminator
17887 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17888 state_machine.line_has_non_zero_discriminator
17889 |= state_machine.discriminator != 0;
17890 line_ptr += bytes_read;
17891 break;
17892 default:
17893 complaint (&symfile_complaints,
17894 _("mangled .debug_line section"));
17895 return;
17896 }
17897 /* Make sure that we parsed the extended op correctly. If e.g.
17898 we expected a different address size than the producer used,
17899 we may have read the wrong number of bytes. */
17900 if (line_ptr != extended_end)
17901 {
17902 complaint (&symfile_complaints,
17903 _("mangled .debug_line section"));
17904 return;
17905 }
17906 break;
17907 case DW_LNS_copy:
17908 dwarf_record_line (&reader_state, &state_machine, 0);
17909 state_machine.discriminator = 0;
17910 break;
17911 case DW_LNS_advance_pc:
17912 {
17913 CORE_ADDR adjust
17914 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17915 CORE_ADDR addr_adj;
17916
17917 addr_adj = (((state_machine.op_index + adjust)
17918 / lh->maximum_ops_per_instruction)
17919 * lh->minimum_instruction_length);
17920 state_machine.address
17921 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17922 state_machine.op_index = ((state_machine.op_index + adjust)
17923 % lh->maximum_ops_per_instruction);
17924 line_ptr += bytes_read;
17925 }
17926 break;
17927 case DW_LNS_advance_line:
17928 {
17929 int line_delta
17930 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17931
17932 state_machine.line += line_delta;
17933 if (line_delta != 0)
17934 state_machine.line_has_non_zero_discriminator
17935 = state_machine.discriminator != 0;
17936 line_ptr += bytes_read;
17937 }
17938 break;
17939 case DW_LNS_set_file:
17940 {
17941 /* The arrays lh->include_dirs and lh->file_names are
17942 0-based, but the directory and file name numbers in
17943 the statement program are 1-based. */
17944 struct file_entry *fe;
17945 const char *dir = NULL;
17946
17947 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17948 &bytes_read);
17949 line_ptr += bytes_read;
17950 if (state_machine.file == 0
17951 || state_machine.file - 1 >= lh->num_file_names)
17952 dwarf2_debug_line_missing_file_complaint ();
17953 else
17954 {
17955 fe = &lh->file_names[state_machine.file - 1];
17956 if (fe->dir_index && lh->include_dirs != NULL)
17957 dir = lh->include_dirs[fe->dir_index - 1];
17958 if (record_lines_p)
17959 {
17960 state_machine.last_subfile = current_subfile;
17961 state_machine.line_has_non_zero_discriminator
17962 = state_machine.discriminator != 0;
17963 dwarf2_start_subfile (fe->name, dir);
17964 }
17965 }
17966 }
17967 break;
17968 case DW_LNS_set_column:
17969 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17970 line_ptr += bytes_read;
17971 break;
17972 case DW_LNS_negate_stmt:
17973 state_machine.is_stmt = (!state_machine.is_stmt);
17974 break;
17975 case DW_LNS_set_basic_block:
17976 break;
17977 /* Add to the address register of the state machine the
17978 address increment value corresponding to special opcode
17979 255. I.e., this value is scaled by the minimum
17980 instruction length since special opcode 255 would have
17981 scaled the increment. */
17982 case DW_LNS_const_add_pc:
17983 {
17984 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17985 CORE_ADDR addr_adj;
17986
17987 addr_adj = (((state_machine.op_index + adjust)
17988 / lh->maximum_ops_per_instruction)
17989 * lh->minimum_instruction_length);
17990 state_machine.address
17991 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17992 state_machine.op_index = ((state_machine.op_index + adjust)
17993 % lh->maximum_ops_per_instruction);
17994 }
17995 break;
17996 case DW_LNS_fixed_advance_pc:
17997 {
17998 CORE_ADDR addr_adj;
17999
18000 addr_adj = read_2_bytes (abfd, line_ptr);
18001 state_machine.address
18002 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18003 state_machine.op_index = 0;
18004 line_ptr += 2;
18005 }
18006 break;
18007 default:
18008 {
18009 /* Unknown standard opcode, ignore it. */
18010 int i;
18011
18012 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18013 {
18014 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18015 line_ptr += bytes_read;
18016 }
18017 }
18018 }
18019 }
18020
18021 if (!end_sequence)
18022 dwarf2_debug_line_missing_end_sequence_complaint ();
18023
18024 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18025 in which case we still finish recording the last line). */
18026 dwarf_record_line (&reader_state, &state_machine, 1);
18027 }
18028 }
18029
18030 /* Decode the Line Number Program (LNP) for the given line_header
18031 structure and CU. The actual information extracted and the type
18032 of structures created from the LNP depends on the value of PST.
18033
18034 1. If PST is NULL, then this procedure uses the data from the program
18035 to create all necessary symbol tables, and their linetables.
18036
18037 2. If PST is not NULL, this procedure reads the program to determine
18038 the list of files included by the unit represented by PST, and
18039 builds all the associated partial symbol tables.
18040
18041 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18042 It is used for relative paths in the line table.
18043 NOTE: When processing partial symtabs (pst != NULL),
18044 comp_dir == pst->dirname.
18045
18046 NOTE: It is important that psymtabs have the same file name (via strcmp)
18047 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18048 symtab we don't use it in the name of the psymtabs we create.
18049 E.g. expand_line_sal requires this when finding psymtabs to expand.
18050 A good testcase for this is mb-inline.exp.
18051
18052 LOWPC is the lowest address in CU (or 0 if not known).
18053
18054 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18055 for its PC<->lines mapping information. Otherwise only the filename
18056 table is read in. */
18057
18058 static void
18059 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18060 struct dwarf2_cu *cu, struct partial_symtab *pst,
18061 CORE_ADDR lowpc, int decode_mapping)
18062 {
18063 struct objfile *objfile = cu->objfile;
18064 const int decode_for_pst_p = (pst != NULL);
18065
18066 if (decode_mapping)
18067 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18068
18069 if (decode_for_pst_p)
18070 {
18071 int file_index;
18072
18073 /* Now that we're done scanning the Line Header Program, we can
18074 create the psymtab of each included file. */
18075 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18076 if (lh->file_names[file_index].included_p == 1)
18077 {
18078 const char *include_name =
18079 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18080 if (include_name != NULL)
18081 dwarf2_create_include_psymtab (include_name, pst, objfile);
18082 }
18083 }
18084 else
18085 {
18086 /* Make sure a symtab is created for every file, even files
18087 which contain only variables (i.e. no code with associated
18088 line numbers). */
18089 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18090 int i;
18091
18092 for (i = 0; i < lh->num_file_names; i++)
18093 {
18094 const char *dir = NULL;
18095 struct file_entry *fe;
18096
18097 fe = &lh->file_names[i];
18098 if (fe->dir_index && lh->include_dirs != NULL)
18099 dir = lh->include_dirs[fe->dir_index - 1];
18100 dwarf2_start_subfile (fe->name, dir);
18101
18102 if (current_subfile->symtab == NULL)
18103 {
18104 current_subfile->symtab
18105 = allocate_symtab (cust, current_subfile->name);
18106 }
18107 fe->symtab = current_subfile->symtab;
18108 }
18109 }
18110 }
18111
18112 /* Start a subfile for DWARF. FILENAME is the name of the file and
18113 DIRNAME the name of the source directory which contains FILENAME
18114 or NULL if not known.
18115 This routine tries to keep line numbers from identical absolute and
18116 relative file names in a common subfile.
18117
18118 Using the `list' example from the GDB testsuite, which resides in
18119 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18120 of /srcdir/list0.c yields the following debugging information for list0.c:
18121
18122 DW_AT_name: /srcdir/list0.c
18123 DW_AT_comp_dir: /compdir
18124 files.files[0].name: list0.h
18125 files.files[0].dir: /srcdir
18126 files.files[1].name: list0.c
18127 files.files[1].dir: /srcdir
18128
18129 The line number information for list0.c has to end up in a single
18130 subfile, so that `break /srcdir/list0.c:1' works as expected.
18131 start_subfile will ensure that this happens provided that we pass the
18132 concatenation of files.files[1].dir and files.files[1].name as the
18133 subfile's name. */
18134
18135 static void
18136 dwarf2_start_subfile (const char *filename, const char *dirname)
18137 {
18138 char *copy = NULL;
18139
18140 /* In order not to lose the line information directory,
18141 we concatenate it to the filename when it makes sense.
18142 Note that the Dwarf3 standard says (speaking of filenames in line
18143 information): ``The directory index is ignored for file names
18144 that represent full path names''. Thus ignoring dirname in the
18145 `else' branch below isn't an issue. */
18146
18147 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18148 {
18149 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18150 filename = copy;
18151 }
18152
18153 start_subfile (filename);
18154
18155 if (copy != NULL)
18156 xfree (copy);
18157 }
18158
18159 /* Start a symtab for DWARF.
18160 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18161
18162 static struct compunit_symtab *
18163 dwarf2_start_symtab (struct dwarf2_cu *cu,
18164 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18165 {
18166 struct compunit_symtab *cust
18167 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18168
18169 record_debugformat ("DWARF 2");
18170 record_producer (cu->producer);
18171
18172 /* We assume that we're processing GCC output. */
18173 processing_gcc_compilation = 2;
18174
18175 cu->processing_has_namespace_info = 0;
18176
18177 return cust;
18178 }
18179
18180 static void
18181 var_decode_location (struct attribute *attr, struct symbol *sym,
18182 struct dwarf2_cu *cu)
18183 {
18184 struct objfile *objfile = cu->objfile;
18185 struct comp_unit_head *cu_header = &cu->header;
18186
18187 /* NOTE drow/2003-01-30: There used to be a comment and some special
18188 code here to turn a symbol with DW_AT_external and a
18189 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18190 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18191 with some versions of binutils) where shared libraries could have
18192 relocations against symbols in their debug information - the
18193 minimal symbol would have the right address, but the debug info
18194 would not. It's no longer necessary, because we will explicitly
18195 apply relocations when we read in the debug information now. */
18196
18197 /* A DW_AT_location attribute with no contents indicates that a
18198 variable has been optimized away. */
18199 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18200 {
18201 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18202 return;
18203 }
18204
18205 /* Handle one degenerate form of location expression specially, to
18206 preserve GDB's previous behavior when section offsets are
18207 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18208 then mark this symbol as LOC_STATIC. */
18209
18210 if (attr_form_is_block (attr)
18211 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18212 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18213 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18214 && (DW_BLOCK (attr)->size
18215 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18216 {
18217 unsigned int dummy;
18218
18219 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18220 SYMBOL_VALUE_ADDRESS (sym) =
18221 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18222 else
18223 SYMBOL_VALUE_ADDRESS (sym) =
18224 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18225 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18226 fixup_symbol_section (sym, objfile);
18227 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18228 SYMBOL_SECTION (sym));
18229 return;
18230 }
18231
18232 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18233 expression evaluator, and use LOC_COMPUTED only when necessary
18234 (i.e. when the value of a register or memory location is
18235 referenced, or a thread-local block, etc.). Then again, it might
18236 not be worthwhile. I'm assuming that it isn't unless performance
18237 or memory numbers show me otherwise. */
18238
18239 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18240
18241 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18242 cu->has_loclist = 1;
18243 }
18244
18245 /* Given a pointer to a DWARF information entry, figure out if we need
18246 to make a symbol table entry for it, and if so, create a new entry
18247 and return a pointer to it.
18248 If TYPE is NULL, determine symbol type from the die, otherwise
18249 used the passed type.
18250 If SPACE is not NULL, use it to hold the new symbol. If it is
18251 NULL, allocate a new symbol on the objfile's obstack. */
18252
18253 static struct symbol *
18254 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18255 struct symbol *space)
18256 {
18257 struct objfile *objfile = cu->objfile;
18258 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18259 struct symbol *sym = NULL;
18260 const char *name;
18261 struct attribute *attr = NULL;
18262 struct attribute *attr2 = NULL;
18263 CORE_ADDR baseaddr;
18264 struct pending **list_to_add = NULL;
18265
18266 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18267
18268 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18269
18270 name = dwarf2_name (die, cu);
18271 if (name)
18272 {
18273 const char *linkagename;
18274 int suppress_add = 0;
18275
18276 if (space)
18277 sym = space;
18278 else
18279 sym = allocate_symbol (objfile);
18280 OBJSTAT (objfile, n_syms++);
18281
18282 /* Cache this symbol's name and the name's demangled form (if any). */
18283 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18284 linkagename = dwarf2_physname (name, die, cu);
18285 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18286
18287 /* Fortran does not have mangling standard and the mangling does differ
18288 between gfortran, iFort etc. */
18289 if (cu->language == language_fortran
18290 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18291 symbol_set_demangled_name (&(sym->ginfo),
18292 dwarf2_full_name (name, die, cu),
18293 NULL);
18294
18295 /* Default assumptions.
18296 Use the passed type or decode it from the die. */
18297 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18298 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18299 if (type != NULL)
18300 SYMBOL_TYPE (sym) = type;
18301 else
18302 SYMBOL_TYPE (sym) = die_type (die, cu);
18303 attr = dwarf2_attr (die,
18304 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18305 cu);
18306 if (attr)
18307 {
18308 SYMBOL_LINE (sym) = DW_UNSND (attr);
18309 }
18310
18311 attr = dwarf2_attr (die,
18312 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18313 cu);
18314 if (attr)
18315 {
18316 int file_index = DW_UNSND (attr);
18317
18318 if (cu->line_header == NULL
18319 || file_index > cu->line_header->num_file_names)
18320 complaint (&symfile_complaints,
18321 _("file index out of range"));
18322 else if (file_index > 0)
18323 {
18324 struct file_entry *fe;
18325
18326 fe = &cu->line_header->file_names[file_index - 1];
18327 symbol_set_symtab (sym, fe->symtab);
18328 }
18329 }
18330
18331 switch (die->tag)
18332 {
18333 case DW_TAG_label:
18334 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18335 if (attr)
18336 {
18337 CORE_ADDR addr;
18338
18339 addr = attr_value_as_address (attr);
18340 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18341 SYMBOL_VALUE_ADDRESS (sym) = addr;
18342 }
18343 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18344 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18345 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18346 add_symbol_to_list (sym, cu->list_in_scope);
18347 break;
18348 case DW_TAG_subprogram:
18349 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18350 finish_block. */
18351 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18352 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18353 if ((attr2 && (DW_UNSND (attr2) != 0))
18354 || cu->language == language_ada)
18355 {
18356 /* Subprograms marked external are stored as a global symbol.
18357 Ada subprograms, whether marked external or not, are always
18358 stored as a global symbol, because we want to be able to
18359 access them globally. For instance, we want to be able
18360 to break on a nested subprogram without having to
18361 specify the context. */
18362 list_to_add = &global_symbols;
18363 }
18364 else
18365 {
18366 list_to_add = cu->list_in_scope;
18367 }
18368 break;
18369 case DW_TAG_inlined_subroutine:
18370 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18371 finish_block. */
18372 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18373 SYMBOL_INLINED (sym) = 1;
18374 list_to_add = cu->list_in_scope;
18375 break;
18376 case DW_TAG_template_value_param:
18377 suppress_add = 1;
18378 /* Fall through. */
18379 case DW_TAG_constant:
18380 case DW_TAG_variable:
18381 case DW_TAG_member:
18382 /* Compilation with minimal debug info may result in
18383 variables with missing type entries. Change the
18384 misleading `void' type to something sensible. */
18385 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18386 SYMBOL_TYPE (sym)
18387 = objfile_type (objfile)->nodebug_data_symbol;
18388
18389 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18390 /* In the case of DW_TAG_member, we should only be called for
18391 static const members. */
18392 if (die->tag == DW_TAG_member)
18393 {
18394 /* dwarf2_add_field uses die_is_declaration,
18395 so we do the same. */
18396 gdb_assert (die_is_declaration (die, cu));
18397 gdb_assert (attr);
18398 }
18399 if (attr)
18400 {
18401 dwarf2_const_value (attr, sym, cu);
18402 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18403 if (!suppress_add)
18404 {
18405 if (attr2 && (DW_UNSND (attr2) != 0))
18406 list_to_add = &global_symbols;
18407 else
18408 list_to_add = cu->list_in_scope;
18409 }
18410 break;
18411 }
18412 attr = dwarf2_attr (die, DW_AT_location, cu);
18413 if (attr)
18414 {
18415 var_decode_location (attr, sym, cu);
18416 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18417
18418 /* Fortran explicitly imports any global symbols to the local
18419 scope by DW_TAG_common_block. */
18420 if (cu->language == language_fortran && die->parent
18421 && die->parent->tag == DW_TAG_common_block)
18422 attr2 = NULL;
18423
18424 if (SYMBOL_CLASS (sym) == LOC_STATIC
18425 && SYMBOL_VALUE_ADDRESS (sym) == 0
18426 && !dwarf2_per_objfile->has_section_at_zero)
18427 {
18428 /* When a static variable is eliminated by the linker,
18429 the corresponding debug information is not stripped
18430 out, but the variable address is set to null;
18431 do not add such variables into symbol table. */
18432 }
18433 else if (attr2 && (DW_UNSND (attr2) != 0))
18434 {
18435 /* Workaround gfortran PR debug/40040 - it uses
18436 DW_AT_location for variables in -fPIC libraries which may
18437 get overriden by other libraries/executable and get
18438 a different address. Resolve it by the minimal symbol
18439 which may come from inferior's executable using copy
18440 relocation. Make this workaround only for gfortran as for
18441 other compilers GDB cannot guess the minimal symbol
18442 Fortran mangling kind. */
18443 if (cu->language == language_fortran && die->parent
18444 && die->parent->tag == DW_TAG_module
18445 && cu->producer
18446 && startswith (cu->producer, "GNU Fortran "))
18447 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18448
18449 /* A variable with DW_AT_external is never static,
18450 but it may be block-scoped. */
18451 list_to_add = (cu->list_in_scope == &file_symbols
18452 ? &global_symbols : cu->list_in_scope);
18453 }
18454 else
18455 list_to_add = cu->list_in_scope;
18456 }
18457 else
18458 {
18459 /* We do not know the address of this symbol.
18460 If it is an external symbol and we have type information
18461 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18462 The address of the variable will then be determined from
18463 the minimal symbol table whenever the variable is
18464 referenced. */
18465 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18466
18467 /* Fortran explicitly imports any global symbols to the local
18468 scope by DW_TAG_common_block. */
18469 if (cu->language == language_fortran && die->parent
18470 && die->parent->tag == DW_TAG_common_block)
18471 {
18472 /* SYMBOL_CLASS doesn't matter here because
18473 read_common_block is going to reset it. */
18474 if (!suppress_add)
18475 list_to_add = cu->list_in_scope;
18476 }
18477 else if (attr2 && (DW_UNSND (attr2) != 0)
18478 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18479 {
18480 /* A variable with DW_AT_external is never static, but it
18481 may be block-scoped. */
18482 list_to_add = (cu->list_in_scope == &file_symbols
18483 ? &global_symbols : cu->list_in_scope);
18484
18485 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18486 }
18487 else if (!die_is_declaration (die, cu))
18488 {
18489 /* Use the default LOC_OPTIMIZED_OUT class. */
18490 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18491 if (!suppress_add)
18492 list_to_add = cu->list_in_scope;
18493 }
18494 }
18495 break;
18496 case DW_TAG_formal_parameter:
18497 /* If we are inside a function, mark this as an argument. If
18498 not, we might be looking at an argument to an inlined function
18499 when we do not have enough information to show inlined frames;
18500 pretend it's a local variable in that case so that the user can
18501 still see it. */
18502 if (context_stack_depth > 0
18503 && context_stack[context_stack_depth - 1].name != NULL)
18504 SYMBOL_IS_ARGUMENT (sym) = 1;
18505 attr = dwarf2_attr (die, DW_AT_location, cu);
18506 if (attr)
18507 {
18508 var_decode_location (attr, sym, cu);
18509 }
18510 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18511 if (attr)
18512 {
18513 dwarf2_const_value (attr, sym, cu);
18514 }
18515
18516 list_to_add = cu->list_in_scope;
18517 break;
18518 case DW_TAG_unspecified_parameters:
18519 /* From varargs functions; gdb doesn't seem to have any
18520 interest in this information, so just ignore it for now.
18521 (FIXME?) */
18522 break;
18523 case DW_TAG_template_type_param:
18524 suppress_add = 1;
18525 /* Fall through. */
18526 case DW_TAG_class_type:
18527 case DW_TAG_interface_type:
18528 case DW_TAG_structure_type:
18529 case DW_TAG_union_type:
18530 case DW_TAG_set_type:
18531 case DW_TAG_enumeration_type:
18532 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18533 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18534
18535 {
18536 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18537 really ever be static objects: otherwise, if you try
18538 to, say, break of a class's method and you're in a file
18539 which doesn't mention that class, it won't work unless
18540 the check for all static symbols in lookup_symbol_aux
18541 saves you. See the OtherFileClass tests in
18542 gdb.c++/namespace.exp. */
18543
18544 if (!suppress_add)
18545 {
18546 list_to_add = (cu->list_in_scope == &file_symbols
18547 && (cu->language == language_cplus
18548 || cu->language == language_java)
18549 ? &global_symbols : cu->list_in_scope);
18550
18551 /* The semantics of C++ state that "struct foo {
18552 ... }" also defines a typedef for "foo". A Java
18553 class declaration also defines a typedef for the
18554 class. */
18555 if (cu->language == language_cplus
18556 || cu->language == language_java
18557 || cu->language == language_ada)
18558 {
18559 /* The symbol's name is already allocated along
18560 with this objfile, so we don't need to
18561 duplicate it for the type. */
18562 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18563 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18564 }
18565 }
18566 }
18567 break;
18568 case DW_TAG_typedef:
18569 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18570 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18571 list_to_add = cu->list_in_scope;
18572 break;
18573 case DW_TAG_base_type:
18574 case DW_TAG_subrange_type:
18575 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18576 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18577 list_to_add = cu->list_in_scope;
18578 break;
18579 case DW_TAG_enumerator:
18580 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18581 if (attr)
18582 {
18583 dwarf2_const_value (attr, sym, cu);
18584 }
18585 {
18586 /* NOTE: carlton/2003-11-10: See comment above in the
18587 DW_TAG_class_type, etc. block. */
18588
18589 list_to_add = (cu->list_in_scope == &file_symbols
18590 && (cu->language == language_cplus
18591 || cu->language == language_java)
18592 ? &global_symbols : cu->list_in_scope);
18593 }
18594 break;
18595 case DW_TAG_imported_declaration:
18596 case DW_TAG_namespace:
18597 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18598 list_to_add = &global_symbols;
18599 break;
18600 case DW_TAG_module:
18601 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18602 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18603 list_to_add = &global_symbols;
18604 break;
18605 case DW_TAG_common_block:
18606 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18607 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18608 add_symbol_to_list (sym, cu->list_in_scope);
18609 break;
18610 default:
18611 /* Not a tag we recognize. Hopefully we aren't processing
18612 trash data, but since we must specifically ignore things
18613 we don't recognize, there is nothing else we should do at
18614 this point. */
18615 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18616 dwarf_tag_name (die->tag));
18617 break;
18618 }
18619
18620 if (suppress_add)
18621 {
18622 sym->hash_next = objfile->template_symbols;
18623 objfile->template_symbols = sym;
18624 list_to_add = NULL;
18625 }
18626
18627 if (list_to_add != NULL)
18628 add_symbol_to_list (sym, list_to_add);
18629
18630 /* For the benefit of old versions of GCC, check for anonymous
18631 namespaces based on the demangled name. */
18632 if (!cu->processing_has_namespace_info
18633 && cu->language == language_cplus)
18634 cp_scan_for_anonymous_namespaces (sym, objfile);
18635 }
18636 return (sym);
18637 }
18638
18639 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18640
18641 static struct symbol *
18642 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18643 {
18644 return new_symbol_full (die, type, cu, NULL);
18645 }
18646
18647 /* Given an attr with a DW_FORM_dataN value in host byte order,
18648 zero-extend it as appropriate for the symbol's type. The DWARF
18649 standard (v4) is not entirely clear about the meaning of using
18650 DW_FORM_dataN for a constant with a signed type, where the type is
18651 wider than the data. The conclusion of a discussion on the DWARF
18652 list was that this is unspecified. We choose to always zero-extend
18653 because that is the interpretation long in use by GCC. */
18654
18655 static gdb_byte *
18656 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18657 struct dwarf2_cu *cu, LONGEST *value, int bits)
18658 {
18659 struct objfile *objfile = cu->objfile;
18660 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18661 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18662 LONGEST l = DW_UNSND (attr);
18663
18664 if (bits < sizeof (*value) * 8)
18665 {
18666 l &= ((LONGEST) 1 << bits) - 1;
18667 *value = l;
18668 }
18669 else if (bits == sizeof (*value) * 8)
18670 *value = l;
18671 else
18672 {
18673 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18674 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18675 return bytes;
18676 }
18677
18678 return NULL;
18679 }
18680
18681 /* Read a constant value from an attribute. Either set *VALUE, or if
18682 the value does not fit in *VALUE, set *BYTES - either already
18683 allocated on the objfile obstack, or newly allocated on OBSTACK,
18684 or, set *BATON, if we translated the constant to a location
18685 expression. */
18686
18687 static void
18688 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18689 const char *name, struct obstack *obstack,
18690 struct dwarf2_cu *cu,
18691 LONGEST *value, const gdb_byte **bytes,
18692 struct dwarf2_locexpr_baton **baton)
18693 {
18694 struct objfile *objfile = cu->objfile;
18695 struct comp_unit_head *cu_header = &cu->header;
18696 struct dwarf_block *blk;
18697 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18698 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18699
18700 *value = 0;
18701 *bytes = NULL;
18702 *baton = NULL;
18703
18704 switch (attr->form)
18705 {
18706 case DW_FORM_addr:
18707 case DW_FORM_GNU_addr_index:
18708 {
18709 gdb_byte *data;
18710
18711 if (TYPE_LENGTH (type) != cu_header->addr_size)
18712 dwarf2_const_value_length_mismatch_complaint (name,
18713 cu_header->addr_size,
18714 TYPE_LENGTH (type));
18715 /* Symbols of this form are reasonably rare, so we just
18716 piggyback on the existing location code rather than writing
18717 a new implementation of symbol_computed_ops. */
18718 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18719 (*baton)->per_cu = cu->per_cu;
18720 gdb_assert ((*baton)->per_cu);
18721
18722 (*baton)->size = 2 + cu_header->addr_size;
18723 data = obstack_alloc (obstack, (*baton)->size);
18724 (*baton)->data = data;
18725
18726 data[0] = DW_OP_addr;
18727 store_unsigned_integer (&data[1], cu_header->addr_size,
18728 byte_order, DW_ADDR (attr));
18729 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18730 }
18731 break;
18732 case DW_FORM_string:
18733 case DW_FORM_strp:
18734 case DW_FORM_GNU_str_index:
18735 case DW_FORM_GNU_strp_alt:
18736 /* DW_STRING is already allocated on the objfile obstack, point
18737 directly to it. */
18738 *bytes = (const gdb_byte *) DW_STRING (attr);
18739 break;
18740 case DW_FORM_block1:
18741 case DW_FORM_block2:
18742 case DW_FORM_block4:
18743 case DW_FORM_block:
18744 case DW_FORM_exprloc:
18745 blk = DW_BLOCK (attr);
18746 if (TYPE_LENGTH (type) != blk->size)
18747 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18748 TYPE_LENGTH (type));
18749 *bytes = blk->data;
18750 break;
18751
18752 /* The DW_AT_const_value attributes are supposed to carry the
18753 symbol's value "represented as it would be on the target
18754 architecture." By the time we get here, it's already been
18755 converted to host endianness, so we just need to sign- or
18756 zero-extend it as appropriate. */
18757 case DW_FORM_data1:
18758 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18759 break;
18760 case DW_FORM_data2:
18761 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18762 break;
18763 case DW_FORM_data4:
18764 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18765 break;
18766 case DW_FORM_data8:
18767 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18768 break;
18769
18770 case DW_FORM_sdata:
18771 *value = DW_SND (attr);
18772 break;
18773
18774 case DW_FORM_udata:
18775 *value = DW_UNSND (attr);
18776 break;
18777
18778 default:
18779 complaint (&symfile_complaints,
18780 _("unsupported const value attribute form: '%s'"),
18781 dwarf_form_name (attr->form));
18782 *value = 0;
18783 break;
18784 }
18785 }
18786
18787
18788 /* Copy constant value from an attribute to a symbol. */
18789
18790 static void
18791 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18792 struct dwarf2_cu *cu)
18793 {
18794 struct objfile *objfile = cu->objfile;
18795 struct comp_unit_head *cu_header = &cu->header;
18796 LONGEST value;
18797 const gdb_byte *bytes;
18798 struct dwarf2_locexpr_baton *baton;
18799
18800 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18801 SYMBOL_PRINT_NAME (sym),
18802 &objfile->objfile_obstack, cu,
18803 &value, &bytes, &baton);
18804
18805 if (baton != NULL)
18806 {
18807 SYMBOL_LOCATION_BATON (sym) = baton;
18808 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18809 }
18810 else if (bytes != NULL)
18811 {
18812 SYMBOL_VALUE_BYTES (sym) = bytes;
18813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18814 }
18815 else
18816 {
18817 SYMBOL_VALUE (sym) = value;
18818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18819 }
18820 }
18821
18822 /* Return the type of the die in question using its DW_AT_type attribute. */
18823
18824 static struct type *
18825 die_type (struct die_info *die, struct dwarf2_cu *cu)
18826 {
18827 struct attribute *type_attr;
18828
18829 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18830 if (!type_attr)
18831 {
18832 /* A missing DW_AT_type represents a void type. */
18833 return objfile_type (cu->objfile)->builtin_void;
18834 }
18835
18836 return lookup_die_type (die, type_attr, cu);
18837 }
18838
18839 /* True iff CU's producer generates GNAT Ada auxiliary information
18840 that allows to find parallel types through that information instead
18841 of having to do expensive parallel lookups by type name. */
18842
18843 static int
18844 need_gnat_info (struct dwarf2_cu *cu)
18845 {
18846 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18847 of GNAT produces this auxiliary information, without any indication
18848 that it is produced. Part of enhancing the FSF version of GNAT
18849 to produce that information will be to put in place an indicator
18850 that we can use in order to determine whether the descriptive type
18851 info is available or not. One suggestion that has been made is
18852 to use a new attribute, attached to the CU die. For now, assume
18853 that the descriptive type info is not available. */
18854 return 0;
18855 }
18856
18857 /* Return the auxiliary type of the die in question using its
18858 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18859 attribute is not present. */
18860
18861 static struct type *
18862 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18863 {
18864 struct attribute *type_attr;
18865
18866 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18867 if (!type_attr)
18868 return NULL;
18869
18870 return lookup_die_type (die, type_attr, cu);
18871 }
18872
18873 /* If DIE has a descriptive_type attribute, then set the TYPE's
18874 descriptive type accordingly. */
18875
18876 static void
18877 set_descriptive_type (struct type *type, struct die_info *die,
18878 struct dwarf2_cu *cu)
18879 {
18880 struct type *descriptive_type = die_descriptive_type (die, cu);
18881
18882 if (descriptive_type)
18883 {
18884 ALLOCATE_GNAT_AUX_TYPE (type);
18885 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18886 }
18887 }
18888
18889 /* Return the containing type of the die in question using its
18890 DW_AT_containing_type attribute. */
18891
18892 static struct type *
18893 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18894 {
18895 struct attribute *type_attr;
18896
18897 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18898 if (!type_attr)
18899 error (_("Dwarf Error: Problem turning containing type into gdb type "
18900 "[in module %s]"), objfile_name (cu->objfile));
18901
18902 return lookup_die_type (die, type_attr, cu);
18903 }
18904
18905 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18906
18907 static struct type *
18908 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18909 {
18910 struct objfile *objfile = dwarf2_per_objfile->objfile;
18911 char *message, *saved;
18912
18913 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18914 objfile_name (objfile),
18915 cu->header.offset.sect_off,
18916 die->offset.sect_off);
18917 saved = obstack_copy0 (&objfile->objfile_obstack,
18918 message, strlen (message));
18919 xfree (message);
18920
18921 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18922 }
18923
18924 /* Look up the type of DIE in CU using its type attribute ATTR.
18925 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18926 DW_AT_containing_type.
18927 If there is no type substitute an error marker. */
18928
18929 static struct type *
18930 lookup_die_type (struct die_info *die, const struct attribute *attr,
18931 struct dwarf2_cu *cu)
18932 {
18933 struct objfile *objfile = cu->objfile;
18934 struct type *this_type;
18935
18936 gdb_assert (attr->name == DW_AT_type
18937 || attr->name == DW_AT_GNAT_descriptive_type
18938 || attr->name == DW_AT_containing_type);
18939
18940 /* First see if we have it cached. */
18941
18942 if (attr->form == DW_FORM_GNU_ref_alt)
18943 {
18944 struct dwarf2_per_cu_data *per_cu;
18945 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18946
18947 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18948 this_type = get_die_type_at_offset (offset, per_cu);
18949 }
18950 else if (attr_form_is_ref (attr))
18951 {
18952 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18953
18954 this_type = get_die_type_at_offset (offset, cu->per_cu);
18955 }
18956 else if (attr->form == DW_FORM_ref_sig8)
18957 {
18958 ULONGEST signature = DW_SIGNATURE (attr);
18959
18960 return get_signatured_type (die, signature, cu);
18961 }
18962 else
18963 {
18964 complaint (&symfile_complaints,
18965 _("Dwarf Error: Bad type attribute %s in DIE"
18966 " at 0x%x [in module %s]"),
18967 dwarf_attr_name (attr->name), die->offset.sect_off,
18968 objfile_name (objfile));
18969 return build_error_marker_type (cu, die);
18970 }
18971
18972 /* If not cached we need to read it in. */
18973
18974 if (this_type == NULL)
18975 {
18976 struct die_info *type_die = NULL;
18977 struct dwarf2_cu *type_cu = cu;
18978
18979 if (attr_form_is_ref (attr))
18980 type_die = follow_die_ref (die, attr, &type_cu);
18981 if (type_die == NULL)
18982 return build_error_marker_type (cu, die);
18983 /* If we find the type now, it's probably because the type came
18984 from an inter-CU reference and the type's CU got expanded before
18985 ours. */
18986 this_type = read_type_die (type_die, type_cu);
18987 }
18988
18989 /* If we still don't have a type use an error marker. */
18990
18991 if (this_type == NULL)
18992 return build_error_marker_type (cu, die);
18993
18994 return this_type;
18995 }
18996
18997 /* Return the type in DIE, CU.
18998 Returns NULL for invalid types.
18999
19000 This first does a lookup in die_type_hash,
19001 and only reads the die in if necessary.
19002
19003 NOTE: This can be called when reading in partial or full symbols. */
19004
19005 static struct type *
19006 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19007 {
19008 struct type *this_type;
19009
19010 this_type = get_die_type (die, cu);
19011 if (this_type)
19012 return this_type;
19013
19014 return read_type_die_1 (die, cu);
19015 }
19016
19017 /* Read the type in DIE, CU.
19018 Returns NULL for invalid types. */
19019
19020 static struct type *
19021 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19022 {
19023 struct type *this_type = NULL;
19024
19025 switch (die->tag)
19026 {
19027 case DW_TAG_class_type:
19028 case DW_TAG_interface_type:
19029 case DW_TAG_structure_type:
19030 case DW_TAG_union_type:
19031 this_type = read_structure_type (die, cu);
19032 break;
19033 case DW_TAG_enumeration_type:
19034 this_type = read_enumeration_type (die, cu);
19035 break;
19036 case DW_TAG_subprogram:
19037 case DW_TAG_subroutine_type:
19038 case DW_TAG_inlined_subroutine:
19039 this_type = read_subroutine_type (die, cu);
19040 break;
19041 case DW_TAG_array_type:
19042 this_type = read_array_type (die, cu);
19043 break;
19044 case DW_TAG_set_type:
19045 this_type = read_set_type (die, cu);
19046 break;
19047 case DW_TAG_pointer_type:
19048 this_type = read_tag_pointer_type (die, cu);
19049 break;
19050 case DW_TAG_ptr_to_member_type:
19051 this_type = read_tag_ptr_to_member_type (die, cu);
19052 break;
19053 case DW_TAG_reference_type:
19054 this_type = read_tag_reference_type (die, cu);
19055 break;
19056 case DW_TAG_const_type:
19057 this_type = read_tag_const_type (die, cu);
19058 break;
19059 case DW_TAG_volatile_type:
19060 this_type = read_tag_volatile_type (die, cu);
19061 break;
19062 case DW_TAG_restrict_type:
19063 this_type = read_tag_restrict_type (die, cu);
19064 break;
19065 case DW_TAG_string_type:
19066 this_type = read_tag_string_type (die, cu);
19067 break;
19068 case DW_TAG_typedef:
19069 this_type = read_typedef (die, cu);
19070 break;
19071 case DW_TAG_subrange_type:
19072 this_type = read_subrange_type (die, cu);
19073 break;
19074 case DW_TAG_base_type:
19075 this_type = read_base_type (die, cu);
19076 break;
19077 case DW_TAG_unspecified_type:
19078 this_type = read_unspecified_type (die, cu);
19079 break;
19080 case DW_TAG_namespace:
19081 this_type = read_namespace_type (die, cu);
19082 break;
19083 case DW_TAG_module:
19084 this_type = read_module_type (die, cu);
19085 break;
19086 case DW_TAG_atomic_type:
19087 this_type = read_tag_atomic_type (die, cu);
19088 break;
19089 default:
19090 complaint (&symfile_complaints,
19091 _("unexpected tag in read_type_die: '%s'"),
19092 dwarf_tag_name (die->tag));
19093 break;
19094 }
19095
19096 return this_type;
19097 }
19098
19099 /* See if we can figure out if the class lives in a namespace. We do
19100 this by looking for a member function; its demangled name will
19101 contain namespace info, if there is any.
19102 Return the computed name or NULL.
19103 Space for the result is allocated on the objfile's obstack.
19104 This is the full-die version of guess_partial_die_structure_name.
19105 In this case we know DIE has no useful parent. */
19106
19107 static char *
19108 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19109 {
19110 struct die_info *spec_die;
19111 struct dwarf2_cu *spec_cu;
19112 struct die_info *child;
19113
19114 spec_cu = cu;
19115 spec_die = die_specification (die, &spec_cu);
19116 if (spec_die != NULL)
19117 {
19118 die = spec_die;
19119 cu = spec_cu;
19120 }
19121
19122 for (child = die->child;
19123 child != NULL;
19124 child = child->sibling)
19125 {
19126 if (child->tag == DW_TAG_subprogram)
19127 {
19128 struct attribute *attr;
19129
19130 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
19131 if (attr == NULL)
19132 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19133 if (attr != NULL)
19134 {
19135 char *actual_name
19136 = language_class_name_from_physname (cu->language_defn,
19137 DW_STRING (attr));
19138 char *name = NULL;
19139
19140 if (actual_name != NULL)
19141 {
19142 const char *die_name = dwarf2_name (die, cu);
19143
19144 if (die_name != NULL
19145 && strcmp (die_name, actual_name) != 0)
19146 {
19147 /* Strip off the class name from the full name.
19148 We want the prefix. */
19149 int die_name_len = strlen (die_name);
19150 int actual_name_len = strlen (actual_name);
19151
19152 /* Test for '::' as a sanity check. */
19153 if (actual_name_len > die_name_len + 2
19154 && actual_name[actual_name_len
19155 - die_name_len - 1] == ':')
19156 name =
19157 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19158 actual_name,
19159 actual_name_len - die_name_len - 2);
19160 }
19161 }
19162 xfree (actual_name);
19163 return name;
19164 }
19165 }
19166 }
19167
19168 return NULL;
19169 }
19170
19171 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19172 prefix part in such case. See
19173 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19174
19175 static char *
19176 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19177 {
19178 struct attribute *attr;
19179 char *base;
19180
19181 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19182 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19183 return NULL;
19184
19185 attr = dwarf2_attr (die, DW_AT_name, cu);
19186 if (attr != NULL && DW_STRING (attr) != NULL)
19187 return NULL;
19188
19189 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19190 if (attr == NULL)
19191 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19192 if (attr == NULL || DW_STRING (attr) == NULL)
19193 return NULL;
19194
19195 /* dwarf2_name had to be already called. */
19196 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19197
19198 /* Strip the base name, keep any leading namespaces/classes. */
19199 base = strrchr (DW_STRING (attr), ':');
19200 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19201 return "";
19202
19203 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19204 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19205 }
19206
19207 /* Return the name of the namespace/class that DIE is defined within,
19208 or "" if we can't tell. The caller should not xfree the result.
19209
19210 For example, if we're within the method foo() in the following
19211 code:
19212
19213 namespace N {
19214 class C {
19215 void foo () {
19216 }
19217 };
19218 }
19219
19220 then determine_prefix on foo's die will return "N::C". */
19221
19222 static const char *
19223 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19224 {
19225 struct die_info *parent, *spec_die;
19226 struct dwarf2_cu *spec_cu;
19227 struct type *parent_type;
19228 char *retval;
19229
19230 if (cu->language != language_cplus && cu->language != language_java
19231 && cu->language != language_fortran)
19232 return "";
19233
19234 retval = anonymous_struct_prefix (die, cu);
19235 if (retval)
19236 return retval;
19237
19238 /* We have to be careful in the presence of DW_AT_specification.
19239 For example, with GCC 3.4, given the code
19240
19241 namespace N {
19242 void foo() {
19243 // Definition of N::foo.
19244 }
19245 }
19246
19247 then we'll have a tree of DIEs like this:
19248
19249 1: DW_TAG_compile_unit
19250 2: DW_TAG_namespace // N
19251 3: DW_TAG_subprogram // declaration of N::foo
19252 4: DW_TAG_subprogram // definition of N::foo
19253 DW_AT_specification // refers to die #3
19254
19255 Thus, when processing die #4, we have to pretend that we're in
19256 the context of its DW_AT_specification, namely the contex of die
19257 #3. */
19258 spec_cu = cu;
19259 spec_die = die_specification (die, &spec_cu);
19260 if (spec_die == NULL)
19261 parent = die->parent;
19262 else
19263 {
19264 parent = spec_die->parent;
19265 cu = spec_cu;
19266 }
19267
19268 if (parent == NULL)
19269 return "";
19270 else if (parent->building_fullname)
19271 {
19272 const char *name;
19273 const char *parent_name;
19274
19275 /* It has been seen on RealView 2.2 built binaries,
19276 DW_TAG_template_type_param types actually _defined_ as
19277 children of the parent class:
19278
19279 enum E {};
19280 template class <class Enum> Class{};
19281 Class<enum E> class_e;
19282
19283 1: DW_TAG_class_type (Class)
19284 2: DW_TAG_enumeration_type (E)
19285 3: DW_TAG_enumerator (enum1:0)
19286 3: DW_TAG_enumerator (enum2:1)
19287 ...
19288 2: DW_TAG_template_type_param
19289 DW_AT_type DW_FORM_ref_udata (E)
19290
19291 Besides being broken debug info, it can put GDB into an
19292 infinite loop. Consider:
19293
19294 When we're building the full name for Class<E>, we'll start
19295 at Class, and go look over its template type parameters,
19296 finding E. We'll then try to build the full name of E, and
19297 reach here. We're now trying to build the full name of E,
19298 and look over the parent DIE for containing scope. In the
19299 broken case, if we followed the parent DIE of E, we'd again
19300 find Class, and once again go look at its template type
19301 arguments, etc., etc. Simply don't consider such parent die
19302 as source-level parent of this die (it can't be, the language
19303 doesn't allow it), and break the loop here. */
19304 name = dwarf2_name (die, cu);
19305 parent_name = dwarf2_name (parent, cu);
19306 complaint (&symfile_complaints,
19307 _("template param type '%s' defined within parent '%s'"),
19308 name ? name : "<unknown>",
19309 parent_name ? parent_name : "<unknown>");
19310 return "";
19311 }
19312 else
19313 switch (parent->tag)
19314 {
19315 case DW_TAG_namespace:
19316 parent_type = read_type_die (parent, cu);
19317 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19318 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19319 Work around this problem here. */
19320 if (cu->language == language_cplus
19321 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19322 return "";
19323 /* We give a name to even anonymous namespaces. */
19324 return TYPE_TAG_NAME (parent_type);
19325 case DW_TAG_class_type:
19326 case DW_TAG_interface_type:
19327 case DW_TAG_structure_type:
19328 case DW_TAG_union_type:
19329 case DW_TAG_module:
19330 parent_type = read_type_die (parent, cu);
19331 if (TYPE_TAG_NAME (parent_type) != NULL)
19332 return TYPE_TAG_NAME (parent_type);
19333 else
19334 /* An anonymous structure is only allowed non-static data
19335 members; no typedefs, no member functions, et cetera.
19336 So it does not need a prefix. */
19337 return "";
19338 case DW_TAG_compile_unit:
19339 case DW_TAG_partial_unit:
19340 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19341 if (cu->language == language_cplus
19342 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19343 && die->child != NULL
19344 && (die->tag == DW_TAG_class_type
19345 || die->tag == DW_TAG_structure_type
19346 || die->tag == DW_TAG_union_type))
19347 {
19348 char *name = guess_full_die_structure_name (die, cu);
19349 if (name != NULL)
19350 return name;
19351 }
19352 return "";
19353 case DW_TAG_enumeration_type:
19354 parent_type = read_type_die (parent, cu);
19355 if (TYPE_DECLARED_CLASS (parent_type))
19356 {
19357 if (TYPE_TAG_NAME (parent_type) != NULL)
19358 return TYPE_TAG_NAME (parent_type);
19359 return "";
19360 }
19361 /* Fall through. */
19362 default:
19363 return determine_prefix (parent, cu);
19364 }
19365 }
19366
19367 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19368 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19369 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19370 an obconcat, otherwise allocate storage for the result. The CU argument is
19371 used to determine the language and hence, the appropriate separator. */
19372
19373 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19374
19375 static char *
19376 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19377 int physname, struct dwarf2_cu *cu)
19378 {
19379 const char *lead = "";
19380 const char *sep;
19381
19382 if (suffix == NULL || suffix[0] == '\0'
19383 || prefix == NULL || prefix[0] == '\0')
19384 sep = "";
19385 else if (cu->language == language_java)
19386 sep = ".";
19387 else if (cu->language == language_fortran && physname)
19388 {
19389 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19390 DW_AT_MIPS_linkage_name is preferred and used instead. */
19391
19392 lead = "__";
19393 sep = "_MOD_";
19394 }
19395 else
19396 sep = "::";
19397
19398 if (prefix == NULL)
19399 prefix = "";
19400 if (suffix == NULL)
19401 suffix = "";
19402
19403 if (obs == NULL)
19404 {
19405 char *retval
19406 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19407
19408 strcpy (retval, lead);
19409 strcat (retval, prefix);
19410 strcat (retval, sep);
19411 strcat (retval, suffix);
19412 return retval;
19413 }
19414 else
19415 {
19416 /* We have an obstack. */
19417 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19418 }
19419 }
19420
19421 /* Return sibling of die, NULL if no sibling. */
19422
19423 static struct die_info *
19424 sibling_die (struct die_info *die)
19425 {
19426 return die->sibling;
19427 }
19428
19429 /* Get name of a die, return NULL if not found. */
19430
19431 static const char *
19432 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19433 struct obstack *obstack)
19434 {
19435 if (name && cu->language == language_cplus)
19436 {
19437 char *canon_name = cp_canonicalize_string (name);
19438
19439 if (canon_name != NULL)
19440 {
19441 if (strcmp (canon_name, name) != 0)
19442 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19443 xfree (canon_name);
19444 }
19445 }
19446
19447 return name;
19448 }
19449
19450 /* Get name of a die, return NULL if not found.
19451 Anonymous namespaces are converted to their magic string. */
19452
19453 static const char *
19454 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19455 {
19456 struct attribute *attr;
19457
19458 attr = dwarf2_attr (die, DW_AT_name, cu);
19459 if ((!attr || !DW_STRING (attr))
19460 && die->tag != DW_TAG_namespace
19461 && die->tag != DW_TAG_class_type
19462 && die->tag != DW_TAG_interface_type
19463 && die->tag != DW_TAG_structure_type
19464 && die->tag != DW_TAG_union_type)
19465 return NULL;
19466
19467 switch (die->tag)
19468 {
19469 case DW_TAG_compile_unit:
19470 case DW_TAG_partial_unit:
19471 /* Compilation units have a DW_AT_name that is a filename, not
19472 a source language identifier. */
19473 case DW_TAG_enumeration_type:
19474 case DW_TAG_enumerator:
19475 /* These tags always have simple identifiers already; no need
19476 to canonicalize them. */
19477 return DW_STRING (attr);
19478
19479 case DW_TAG_namespace:
19480 if (attr != NULL && DW_STRING (attr) != NULL)
19481 return DW_STRING (attr);
19482 return CP_ANONYMOUS_NAMESPACE_STR;
19483
19484 case DW_TAG_subprogram:
19485 /* Java constructors will all be named "<init>", so return
19486 the class name when we see this special case. */
19487 if (cu->language == language_java
19488 && DW_STRING (attr) != NULL
19489 && strcmp (DW_STRING (attr), "<init>") == 0)
19490 {
19491 struct dwarf2_cu *spec_cu = cu;
19492 struct die_info *spec_die;
19493
19494 /* GCJ will output '<init>' for Java constructor names.
19495 For this special case, return the name of the parent class. */
19496
19497 /* GCJ may output subprogram DIEs with AT_specification set.
19498 If so, use the name of the specified DIE. */
19499 spec_die = die_specification (die, &spec_cu);
19500 if (spec_die != NULL)
19501 return dwarf2_name (spec_die, spec_cu);
19502
19503 do
19504 {
19505 die = die->parent;
19506 if (die->tag == DW_TAG_class_type)
19507 return dwarf2_name (die, cu);
19508 }
19509 while (die->tag != DW_TAG_compile_unit
19510 && die->tag != DW_TAG_partial_unit);
19511 }
19512 break;
19513
19514 case DW_TAG_class_type:
19515 case DW_TAG_interface_type:
19516 case DW_TAG_structure_type:
19517 case DW_TAG_union_type:
19518 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19519 structures or unions. These were of the form "._%d" in GCC 4.1,
19520 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19521 and GCC 4.4. We work around this problem by ignoring these. */
19522 if (attr && DW_STRING (attr)
19523 && (startswith (DW_STRING (attr), "._")
19524 || startswith (DW_STRING (attr), "<anonymous")))
19525 return NULL;
19526
19527 /* GCC might emit a nameless typedef that has a linkage name. See
19528 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19529 if (!attr || DW_STRING (attr) == NULL)
19530 {
19531 char *demangled = NULL;
19532
19533 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19534 if (attr == NULL)
19535 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19536
19537 if (attr == NULL || DW_STRING (attr) == NULL)
19538 return NULL;
19539
19540 /* Avoid demangling DW_STRING (attr) the second time on a second
19541 call for the same DIE. */
19542 if (!DW_STRING_IS_CANONICAL (attr))
19543 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19544
19545 if (demangled)
19546 {
19547 char *base;
19548
19549 /* FIXME: we already did this for the partial symbol... */
19550 DW_STRING (attr)
19551 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19552 demangled, strlen (demangled));
19553 DW_STRING_IS_CANONICAL (attr) = 1;
19554 xfree (demangled);
19555
19556 /* Strip any leading namespaces/classes, keep only the base name.
19557 DW_AT_name for named DIEs does not contain the prefixes. */
19558 base = strrchr (DW_STRING (attr), ':');
19559 if (base && base > DW_STRING (attr) && base[-1] == ':')
19560 return &base[1];
19561 else
19562 return DW_STRING (attr);
19563 }
19564 }
19565 break;
19566
19567 default:
19568 break;
19569 }
19570
19571 if (!DW_STRING_IS_CANONICAL (attr))
19572 {
19573 DW_STRING (attr)
19574 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19575 &cu->objfile->per_bfd->storage_obstack);
19576 DW_STRING_IS_CANONICAL (attr) = 1;
19577 }
19578 return DW_STRING (attr);
19579 }
19580
19581 /* Return the die that this die in an extension of, or NULL if there
19582 is none. *EXT_CU is the CU containing DIE on input, and the CU
19583 containing the return value on output. */
19584
19585 static struct die_info *
19586 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19587 {
19588 struct attribute *attr;
19589
19590 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19591 if (attr == NULL)
19592 return NULL;
19593
19594 return follow_die_ref (die, attr, ext_cu);
19595 }
19596
19597 /* Convert a DIE tag into its string name. */
19598
19599 static const char *
19600 dwarf_tag_name (unsigned tag)
19601 {
19602 const char *name = get_DW_TAG_name (tag);
19603
19604 if (name == NULL)
19605 return "DW_TAG_<unknown>";
19606
19607 return name;
19608 }
19609
19610 /* Convert a DWARF attribute code into its string name. */
19611
19612 static const char *
19613 dwarf_attr_name (unsigned attr)
19614 {
19615 const char *name;
19616
19617 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19618 if (attr == DW_AT_MIPS_fde)
19619 return "DW_AT_MIPS_fde";
19620 #else
19621 if (attr == DW_AT_HP_block_index)
19622 return "DW_AT_HP_block_index";
19623 #endif
19624
19625 name = get_DW_AT_name (attr);
19626
19627 if (name == NULL)
19628 return "DW_AT_<unknown>";
19629
19630 return name;
19631 }
19632
19633 /* Convert a DWARF value form code into its string name. */
19634
19635 static const char *
19636 dwarf_form_name (unsigned form)
19637 {
19638 const char *name = get_DW_FORM_name (form);
19639
19640 if (name == NULL)
19641 return "DW_FORM_<unknown>";
19642
19643 return name;
19644 }
19645
19646 static char *
19647 dwarf_bool_name (unsigned mybool)
19648 {
19649 if (mybool)
19650 return "TRUE";
19651 else
19652 return "FALSE";
19653 }
19654
19655 /* Convert a DWARF type code into its string name. */
19656
19657 static const char *
19658 dwarf_type_encoding_name (unsigned enc)
19659 {
19660 const char *name = get_DW_ATE_name (enc);
19661
19662 if (name == NULL)
19663 return "DW_ATE_<unknown>";
19664
19665 return name;
19666 }
19667
19668 static void
19669 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19670 {
19671 unsigned int i;
19672
19673 print_spaces (indent, f);
19674 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19675 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19676
19677 if (die->parent != NULL)
19678 {
19679 print_spaces (indent, f);
19680 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19681 die->parent->offset.sect_off);
19682 }
19683
19684 print_spaces (indent, f);
19685 fprintf_unfiltered (f, " has children: %s\n",
19686 dwarf_bool_name (die->child != NULL));
19687
19688 print_spaces (indent, f);
19689 fprintf_unfiltered (f, " attributes:\n");
19690
19691 for (i = 0; i < die->num_attrs; ++i)
19692 {
19693 print_spaces (indent, f);
19694 fprintf_unfiltered (f, " %s (%s) ",
19695 dwarf_attr_name (die->attrs[i].name),
19696 dwarf_form_name (die->attrs[i].form));
19697
19698 switch (die->attrs[i].form)
19699 {
19700 case DW_FORM_addr:
19701 case DW_FORM_GNU_addr_index:
19702 fprintf_unfiltered (f, "address: ");
19703 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19704 break;
19705 case DW_FORM_block2:
19706 case DW_FORM_block4:
19707 case DW_FORM_block:
19708 case DW_FORM_block1:
19709 fprintf_unfiltered (f, "block: size %s",
19710 pulongest (DW_BLOCK (&die->attrs[i])->size));
19711 break;
19712 case DW_FORM_exprloc:
19713 fprintf_unfiltered (f, "expression: size %s",
19714 pulongest (DW_BLOCK (&die->attrs[i])->size));
19715 break;
19716 case DW_FORM_ref_addr:
19717 fprintf_unfiltered (f, "ref address: ");
19718 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19719 break;
19720 case DW_FORM_GNU_ref_alt:
19721 fprintf_unfiltered (f, "alt ref address: ");
19722 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19723 break;
19724 case DW_FORM_ref1:
19725 case DW_FORM_ref2:
19726 case DW_FORM_ref4:
19727 case DW_FORM_ref8:
19728 case DW_FORM_ref_udata:
19729 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19730 (long) (DW_UNSND (&die->attrs[i])));
19731 break;
19732 case DW_FORM_data1:
19733 case DW_FORM_data2:
19734 case DW_FORM_data4:
19735 case DW_FORM_data8:
19736 case DW_FORM_udata:
19737 case DW_FORM_sdata:
19738 fprintf_unfiltered (f, "constant: %s",
19739 pulongest (DW_UNSND (&die->attrs[i])));
19740 break;
19741 case DW_FORM_sec_offset:
19742 fprintf_unfiltered (f, "section offset: %s",
19743 pulongest (DW_UNSND (&die->attrs[i])));
19744 break;
19745 case DW_FORM_ref_sig8:
19746 fprintf_unfiltered (f, "signature: %s",
19747 hex_string (DW_SIGNATURE (&die->attrs[i])));
19748 break;
19749 case DW_FORM_string:
19750 case DW_FORM_strp:
19751 case DW_FORM_GNU_str_index:
19752 case DW_FORM_GNU_strp_alt:
19753 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19754 DW_STRING (&die->attrs[i])
19755 ? DW_STRING (&die->attrs[i]) : "",
19756 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19757 break;
19758 case DW_FORM_flag:
19759 if (DW_UNSND (&die->attrs[i]))
19760 fprintf_unfiltered (f, "flag: TRUE");
19761 else
19762 fprintf_unfiltered (f, "flag: FALSE");
19763 break;
19764 case DW_FORM_flag_present:
19765 fprintf_unfiltered (f, "flag: TRUE");
19766 break;
19767 case DW_FORM_indirect:
19768 /* The reader will have reduced the indirect form to
19769 the "base form" so this form should not occur. */
19770 fprintf_unfiltered (f,
19771 "unexpected attribute form: DW_FORM_indirect");
19772 break;
19773 default:
19774 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19775 die->attrs[i].form);
19776 break;
19777 }
19778 fprintf_unfiltered (f, "\n");
19779 }
19780 }
19781
19782 static void
19783 dump_die_for_error (struct die_info *die)
19784 {
19785 dump_die_shallow (gdb_stderr, 0, die);
19786 }
19787
19788 static void
19789 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19790 {
19791 int indent = level * 4;
19792
19793 gdb_assert (die != NULL);
19794
19795 if (level >= max_level)
19796 return;
19797
19798 dump_die_shallow (f, indent, die);
19799
19800 if (die->child != NULL)
19801 {
19802 print_spaces (indent, f);
19803 fprintf_unfiltered (f, " Children:");
19804 if (level + 1 < max_level)
19805 {
19806 fprintf_unfiltered (f, "\n");
19807 dump_die_1 (f, level + 1, max_level, die->child);
19808 }
19809 else
19810 {
19811 fprintf_unfiltered (f,
19812 " [not printed, max nesting level reached]\n");
19813 }
19814 }
19815
19816 if (die->sibling != NULL && level > 0)
19817 {
19818 dump_die_1 (f, level, max_level, die->sibling);
19819 }
19820 }
19821
19822 /* This is called from the pdie macro in gdbinit.in.
19823 It's not static so gcc will keep a copy callable from gdb. */
19824
19825 void
19826 dump_die (struct die_info *die, int max_level)
19827 {
19828 dump_die_1 (gdb_stdlog, 0, max_level, die);
19829 }
19830
19831 static void
19832 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19833 {
19834 void **slot;
19835
19836 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19837 INSERT);
19838
19839 *slot = die;
19840 }
19841
19842 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19843 required kind. */
19844
19845 static sect_offset
19846 dwarf2_get_ref_die_offset (const struct attribute *attr)
19847 {
19848 sect_offset retval = { DW_UNSND (attr) };
19849
19850 if (attr_form_is_ref (attr))
19851 return retval;
19852
19853 retval.sect_off = 0;
19854 complaint (&symfile_complaints,
19855 _("unsupported die ref attribute form: '%s'"),
19856 dwarf_form_name (attr->form));
19857 return retval;
19858 }
19859
19860 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19861 * the value held by the attribute is not constant. */
19862
19863 static LONGEST
19864 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19865 {
19866 if (attr->form == DW_FORM_sdata)
19867 return DW_SND (attr);
19868 else if (attr->form == DW_FORM_udata
19869 || attr->form == DW_FORM_data1
19870 || attr->form == DW_FORM_data2
19871 || attr->form == DW_FORM_data4
19872 || attr->form == DW_FORM_data8)
19873 return DW_UNSND (attr);
19874 else
19875 {
19876 complaint (&symfile_complaints,
19877 _("Attribute value is not a constant (%s)"),
19878 dwarf_form_name (attr->form));
19879 return default_value;
19880 }
19881 }
19882
19883 /* Follow reference or signature attribute ATTR of SRC_DIE.
19884 On entry *REF_CU is the CU of SRC_DIE.
19885 On exit *REF_CU is the CU of the result. */
19886
19887 static struct die_info *
19888 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19889 struct dwarf2_cu **ref_cu)
19890 {
19891 struct die_info *die;
19892
19893 if (attr_form_is_ref (attr))
19894 die = follow_die_ref (src_die, attr, ref_cu);
19895 else if (attr->form == DW_FORM_ref_sig8)
19896 die = follow_die_sig (src_die, attr, ref_cu);
19897 else
19898 {
19899 dump_die_for_error (src_die);
19900 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19901 objfile_name ((*ref_cu)->objfile));
19902 }
19903
19904 return die;
19905 }
19906
19907 /* Follow reference OFFSET.
19908 On entry *REF_CU is the CU of the source die referencing OFFSET.
19909 On exit *REF_CU is the CU of the result.
19910 Returns NULL if OFFSET is invalid. */
19911
19912 static struct die_info *
19913 follow_die_offset (sect_offset offset, int offset_in_dwz,
19914 struct dwarf2_cu **ref_cu)
19915 {
19916 struct die_info temp_die;
19917 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19918
19919 gdb_assert (cu->per_cu != NULL);
19920
19921 target_cu = cu;
19922
19923 if (cu->per_cu->is_debug_types)
19924 {
19925 /* .debug_types CUs cannot reference anything outside their CU.
19926 If they need to, they have to reference a signatured type via
19927 DW_FORM_ref_sig8. */
19928 if (! offset_in_cu_p (&cu->header, offset))
19929 return NULL;
19930 }
19931 else if (offset_in_dwz != cu->per_cu->is_dwz
19932 || ! offset_in_cu_p (&cu->header, offset))
19933 {
19934 struct dwarf2_per_cu_data *per_cu;
19935
19936 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19937 cu->objfile);
19938
19939 /* If necessary, add it to the queue and load its DIEs. */
19940 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19941 load_full_comp_unit (per_cu, cu->language);
19942
19943 target_cu = per_cu->cu;
19944 }
19945 else if (cu->dies == NULL)
19946 {
19947 /* We're loading full DIEs during partial symbol reading. */
19948 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19949 load_full_comp_unit (cu->per_cu, language_minimal);
19950 }
19951
19952 *ref_cu = target_cu;
19953 temp_die.offset = offset;
19954 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19955 }
19956
19957 /* Follow reference attribute ATTR of SRC_DIE.
19958 On entry *REF_CU is the CU of SRC_DIE.
19959 On exit *REF_CU is the CU of the result. */
19960
19961 static struct die_info *
19962 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19963 struct dwarf2_cu **ref_cu)
19964 {
19965 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19966 struct dwarf2_cu *cu = *ref_cu;
19967 struct die_info *die;
19968
19969 die = follow_die_offset (offset,
19970 (attr->form == DW_FORM_GNU_ref_alt
19971 || cu->per_cu->is_dwz),
19972 ref_cu);
19973 if (!die)
19974 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19975 "at 0x%x [in module %s]"),
19976 offset.sect_off, src_die->offset.sect_off,
19977 objfile_name (cu->objfile));
19978
19979 return die;
19980 }
19981
19982 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19983 Returned value is intended for DW_OP_call*. Returned
19984 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19985
19986 struct dwarf2_locexpr_baton
19987 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19988 struct dwarf2_per_cu_data *per_cu,
19989 CORE_ADDR (*get_frame_pc) (void *baton),
19990 void *baton)
19991 {
19992 struct dwarf2_cu *cu;
19993 struct die_info *die;
19994 struct attribute *attr;
19995 struct dwarf2_locexpr_baton retval;
19996
19997 dw2_setup (per_cu->objfile);
19998
19999 if (per_cu->cu == NULL)
20000 load_cu (per_cu);
20001 cu = per_cu->cu;
20002
20003 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20004 if (!die)
20005 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20006 offset.sect_off, objfile_name (per_cu->objfile));
20007
20008 attr = dwarf2_attr (die, DW_AT_location, cu);
20009 if (!attr)
20010 {
20011 /* DWARF: "If there is no such attribute, then there is no effect.".
20012 DATA is ignored if SIZE is 0. */
20013
20014 retval.data = NULL;
20015 retval.size = 0;
20016 }
20017 else if (attr_form_is_section_offset (attr))
20018 {
20019 struct dwarf2_loclist_baton loclist_baton;
20020 CORE_ADDR pc = (*get_frame_pc) (baton);
20021 size_t size;
20022
20023 fill_in_loclist_baton (cu, &loclist_baton, attr);
20024
20025 retval.data = dwarf2_find_location_expression (&loclist_baton,
20026 &size, pc);
20027 retval.size = size;
20028 }
20029 else
20030 {
20031 if (!attr_form_is_block (attr))
20032 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20033 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20034 offset.sect_off, objfile_name (per_cu->objfile));
20035
20036 retval.data = DW_BLOCK (attr)->data;
20037 retval.size = DW_BLOCK (attr)->size;
20038 }
20039 retval.per_cu = cu->per_cu;
20040
20041 age_cached_comp_units ();
20042
20043 return retval;
20044 }
20045
20046 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20047 offset. */
20048
20049 struct dwarf2_locexpr_baton
20050 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20051 struct dwarf2_per_cu_data *per_cu,
20052 CORE_ADDR (*get_frame_pc) (void *baton),
20053 void *baton)
20054 {
20055 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20056
20057 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20058 }
20059
20060 /* Write a constant of a given type as target-ordered bytes into
20061 OBSTACK. */
20062
20063 static const gdb_byte *
20064 write_constant_as_bytes (struct obstack *obstack,
20065 enum bfd_endian byte_order,
20066 struct type *type,
20067 ULONGEST value,
20068 LONGEST *len)
20069 {
20070 gdb_byte *result;
20071
20072 *len = TYPE_LENGTH (type);
20073 result = obstack_alloc (obstack, *len);
20074 store_unsigned_integer (result, *len, byte_order, value);
20075
20076 return result;
20077 }
20078
20079 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20080 pointer to the constant bytes and set LEN to the length of the
20081 data. If memory is needed, allocate it on OBSTACK. If the DIE
20082 does not have a DW_AT_const_value, return NULL. */
20083
20084 const gdb_byte *
20085 dwarf2_fetch_constant_bytes (sect_offset offset,
20086 struct dwarf2_per_cu_data *per_cu,
20087 struct obstack *obstack,
20088 LONGEST *len)
20089 {
20090 struct dwarf2_cu *cu;
20091 struct die_info *die;
20092 struct attribute *attr;
20093 const gdb_byte *result = NULL;
20094 struct type *type;
20095 LONGEST value;
20096 enum bfd_endian byte_order;
20097
20098 dw2_setup (per_cu->objfile);
20099
20100 if (per_cu->cu == NULL)
20101 load_cu (per_cu);
20102 cu = per_cu->cu;
20103
20104 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20105 if (!die)
20106 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20107 offset.sect_off, objfile_name (per_cu->objfile));
20108
20109
20110 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20111 if (attr == NULL)
20112 return NULL;
20113
20114 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20115 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20116
20117 switch (attr->form)
20118 {
20119 case DW_FORM_addr:
20120 case DW_FORM_GNU_addr_index:
20121 {
20122 gdb_byte *tem;
20123
20124 *len = cu->header.addr_size;
20125 tem = obstack_alloc (obstack, *len);
20126 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20127 result = tem;
20128 }
20129 break;
20130 case DW_FORM_string:
20131 case DW_FORM_strp:
20132 case DW_FORM_GNU_str_index:
20133 case DW_FORM_GNU_strp_alt:
20134 /* DW_STRING is already allocated on the objfile obstack, point
20135 directly to it. */
20136 result = (const gdb_byte *) DW_STRING (attr);
20137 *len = strlen (DW_STRING (attr));
20138 break;
20139 case DW_FORM_block1:
20140 case DW_FORM_block2:
20141 case DW_FORM_block4:
20142 case DW_FORM_block:
20143 case DW_FORM_exprloc:
20144 result = DW_BLOCK (attr)->data;
20145 *len = DW_BLOCK (attr)->size;
20146 break;
20147
20148 /* The DW_AT_const_value attributes are supposed to carry the
20149 symbol's value "represented as it would be on the target
20150 architecture." By the time we get here, it's already been
20151 converted to host endianness, so we just need to sign- or
20152 zero-extend it as appropriate. */
20153 case DW_FORM_data1:
20154 type = die_type (die, cu);
20155 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20156 if (result == NULL)
20157 result = write_constant_as_bytes (obstack, byte_order,
20158 type, value, len);
20159 break;
20160 case DW_FORM_data2:
20161 type = die_type (die, cu);
20162 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20163 if (result == NULL)
20164 result = write_constant_as_bytes (obstack, byte_order,
20165 type, value, len);
20166 break;
20167 case DW_FORM_data4:
20168 type = die_type (die, cu);
20169 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20170 if (result == NULL)
20171 result = write_constant_as_bytes (obstack, byte_order,
20172 type, value, len);
20173 break;
20174 case DW_FORM_data8:
20175 type = die_type (die, cu);
20176 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20177 if (result == NULL)
20178 result = write_constant_as_bytes (obstack, byte_order,
20179 type, value, len);
20180 break;
20181
20182 case DW_FORM_sdata:
20183 type = die_type (die, cu);
20184 result = write_constant_as_bytes (obstack, byte_order,
20185 type, DW_SND (attr), len);
20186 break;
20187
20188 case DW_FORM_udata:
20189 type = die_type (die, cu);
20190 result = write_constant_as_bytes (obstack, byte_order,
20191 type, DW_UNSND (attr), len);
20192 break;
20193
20194 default:
20195 complaint (&symfile_complaints,
20196 _("unsupported const value attribute form: '%s'"),
20197 dwarf_form_name (attr->form));
20198 break;
20199 }
20200
20201 return result;
20202 }
20203
20204 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20205 PER_CU. */
20206
20207 struct type *
20208 dwarf2_get_die_type (cu_offset die_offset,
20209 struct dwarf2_per_cu_data *per_cu)
20210 {
20211 sect_offset die_offset_sect;
20212
20213 dw2_setup (per_cu->objfile);
20214
20215 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20216 return get_die_type_at_offset (die_offset_sect, per_cu);
20217 }
20218
20219 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20220 On entry *REF_CU is the CU of SRC_DIE.
20221 On exit *REF_CU is the CU of the result.
20222 Returns NULL if the referenced DIE isn't found. */
20223
20224 static struct die_info *
20225 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20226 struct dwarf2_cu **ref_cu)
20227 {
20228 struct objfile *objfile = (*ref_cu)->objfile;
20229 struct die_info temp_die;
20230 struct dwarf2_cu *sig_cu;
20231 struct die_info *die;
20232
20233 /* While it might be nice to assert sig_type->type == NULL here,
20234 we can get here for DW_AT_imported_declaration where we need
20235 the DIE not the type. */
20236
20237 /* If necessary, add it to the queue and load its DIEs. */
20238
20239 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20240 read_signatured_type (sig_type);
20241
20242 sig_cu = sig_type->per_cu.cu;
20243 gdb_assert (sig_cu != NULL);
20244 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20245 temp_die.offset = sig_type->type_offset_in_section;
20246 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20247 temp_die.offset.sect_off);
20248 if (die)
20249 {
20250 /* For .gdb_index version 7 keep track of included TUs.
20251 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20252 if (dwarf2_per_objfile->index_table != NULL
20253 && dwarf2_per_objfile->index_table->version <= 7)
20254 {
20255 VEC_safe_push (dwarf2_per_cu_ptr,
20256 (*ref_cu)->per_cu->imported_symtabs,
20257 sig_cu->per_cu);
20258 }
20259
20260 *ref_cu = sig_cu;
20261 return die;
20262 }
20263
20264 return NULL;
20265 }
20266
20267 /* Follow signatured type referenced by ATTR in SRC_DIE.
20268 On entry *REF_CU is the CU of SRC_DIE.
20269 On exit *REF_CU is the CU of the result.
20270 The result is the DIE of the type.
20271 If the referenced type cannot be found an error is thrown. */
20272
20273 static struct die_info *
20274 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20275 struct dwarf2_cu **ref_cu)
20276 {
20277 ULONGEST signature = DW_SIGNATURE (attr);
20278 struct signatured_type *sig_type;
20279 struct die_info *die;
20280
20281 gdb_assert (attr->form == DW_FORM_ref_sig8);
20282
20283 sig_type = lookup_signatured_type (*ref_cu, signature);
20284 /* sig_type will be NULL if the signatured type is missing from
20285 the debug info. */
20286 if (sig_type == NULL)
20287 {
20288 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20289 " from DIE at 0x%x [in module %s]"),
20290 hex_string (signature), src_die->offset.sect_off,
20291 objfile_name ((*ref_cu)->objfile));
20292 }
20293
20294 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20295 if (die == NULL)
20296 {
20297 dump_die_for_error (src_die);
20298 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20299 " from DIE at 0x%x [in module %s]"),
20300 hex_string (signature), src_die->offset.sect_off,
20301 objfile_name ((*ref_cu)->objfile));
20302 }
20303
20304 return die;
20305 }
20306
20307 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20308 reading in and processing the type unit if necessary. */
20309
20310 static struct type *
20311 get_signatured_type (struct die_info *die, ULONGEST signature,
20312 struct dwarf2_cu *cu)
20313 {
20314 struct signatured_type *sig_type;
20315 struct dwarf2_cu *type_cu;
20316 struct die_info *type_die;
20317 struct type *type;
20318
20319 sig_type = lookup_signatured_type (cu, signature);
20320 /* sig_type will be NULL if the signatured type is missing from
20321 the debug info. */
20322 if (sig_type == NULL)
20323 {
20324 complaint (&symfile_complaints,
20325 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20326 " from DIE at 0x%x [in module %s]"),
20327 hex_string (signature), die->offset.sect_off,
20328 objfile_name (dwarf2_per_objfile->objfile));
20329 return build_error_marker_type (cu, die);
20330 }
20331
20332 /* If we already know the type we're done. */
20333 if (sig_type->type != NULL)
20334 return sig_type->type;
20335
20336 type_cu = cu;
20337 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20338 if (type_die != NULL)
20339 {
20340 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20341 is created. This is important, for example, because for c++ classes
20342 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20343 type = read_type_die (type_die, type_cu);
20344 if (type == NULL)
20345 {
20346 complaint (&symfile_complaints,
20347 _("Dwarf Error: Cannot build signatured type %s"
20348 " referenced from DIE at 0x%x [in module %s]"),
20349 hex_string (signature), die->offset.sect_off,
20350 objfile_name (dwarf2_per_objfile->objfile));
20351 type = build_error_marker_type (cu, die);
20352 }
20353 }
20354 else
20355 {
20356 complaint (&symfile_complaints,
20357 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20358 " from DIE at 0x%x [in module %s]"),
20359 hex_string (signature), die->offset.sect_off,
20360 objfile_name (dwarf2_per_objfile->objfile));
20361 type = build_error_marker_type (cu, die);
20362 }
20363 sig_type->type = type;
20364
20365 return type;
20366 }
20367
20368 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20369 reading in and processing the type unit if necessary. */
20370
20371 static struct type *
20372 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20373 struct dwarf2_cu *cu) /* ARI: editCase function */
20374 {
20375 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20376 if (attr_form_is_ref (attr))
20377 {
20378 struct dwarf2_cu *type_cu = cu;
20379 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20380
20381 return read_type_die (type_die, type_cu);
20382 }
20383 else if (attr->form == DW_FORM_ref_sig8)
20384 {
20385 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20386 }
20387 else
20388 {
20389 complaint (&symfile_complaints,
20390 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20391 " at 0x%x [in module %s]"),
20392 dwarf_form_name (attr->form), die->offset.sect_off,
20393 objfile_name (dwarf2_per_objfile->objfile));
20394 return build_error_marker_type (cu, die);
20395 }
20396 }
20397
20398 /* Load the DIEs associated with type unit PER_CU into memory. */
20399
20400 static void
20401 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20402 {
20403 struct signatured_type *sig_type;
20404
20405 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20406 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20407
20408 /* We have the per_cu, but we need the signatured_type.
20409 Fortunately this is an easy translation. */
20410 gdb_assert (per_cu->is_debug_types);
20411 sig_type = (struct signatured_type *) per_cu;
20412
20413 gdb_assert (per_cu->cu == NULL);
20414
20415 read_signatured_type (sig_type);
20416
20417 gdb_assert (per_cu->cu != NULL);
20418 }
20419
20420 /* die_reader_func for read_signatured_type.
20421 This is identical to load_full_comp_unit_reader,
20422 but is kept separate for now. */
20423
20424 static void
20425 read_signatured_type_reader (const struct die_reader_specs *reader,
20426 const gdb_byte *info_ptr,
20427 struct die_info *comp_unit_die,
20428 int has_children,
20429 void *data)
20430 {
20431 struct dwarf2_cu *cu = reader->cu;
20432
20433 gdb_assert (cu->die_hash == NULL);
20434 cu->die_hash =
20435 htab_create_alloc_ex (cu->header.length / 12,
20436 die_hash,
20437 die_eq,
20438 NULL,
20439 &cu->comp_unit_obstack,
20440 hashtab_obstack_allocate,
20441 dummy_obstack_deallocate);
20442
20443 if (has_children)
20444 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20445 &info_ptr, comp_unit_die);
20446 cu->dies = comp_unit_die;
20447 /* comp_unit_die is not stored in die_hash, no need. */
20448
20449 /* We try not to read any attributes in this function, because not
20450 all CUs needed for references have been loaded yet, and symbol
20451 table processing isn't initialized. But we have to set the CU language,
20452 or we won't be able to build types correctly.
20453 Similarly, if we do not read the producer, we can not apply
20454 producer-specific interpretation. */
20455 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20456 }
20457
20458 /* Read in a signatured type and build its CU and DIEs.
20459 If the type is a stub for the real type in a DWO file,
20460 read in the real type from the DWO file as well. */
20461
20462 static void
20463 read_signatured_type (struct signatured_type *sig_type)
20464 {
20465 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20466
20467 gdb_assert (per_cu->is_debug_types);
20468 gdb_assert (per_cu->cu == NULL);
20469
20470 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20471 read_signatured_type_reader, NULL);
20472 sig_type->per_cu.tu_read = 1;
20473 }
20474
20475 /* Decode simple location descriptions.
20476 Given a pointer to a dwarf block that defines a location, compute
20477 the location and return the value.
20478
20479 NOTE drow/2003-11-18: This function is called in two situations
20480 now: for the address of static or global variables (partial symbols
20481 only) and for offsets into structures which are expected to be
20482 (more or less) constant. The partial symbol case should go away,
20483 and only the constant case should remain. That will let this
20484 function complain more accurately. A few special modes are allowed
20485 without complaint for global variables (for instance, global
20486 register values and thread-local values).
20487
20488 A location description containing no operations indicates that the
20489 object is optimized out. The return value is 0 for that case.
20490 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20491 callers will only want a very basic result and this can become a
20492 complaint.
20493
20494 Note that stack[0] is unused except as a default error return. */
20495
20496 static CORE_ADDR
20497 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20498 {
20499 struct objfile *objfile = cu->objfile;
20500 size_t i;
20501 size_t size = blk->size;
20502 const gdb_byte *data = blk->data;
20503 CORE_ADDR stack[64];
20504 int stacki;
20505 unsigned int bytes_read, unsnd;
20506 gdb_byte op;
20507
20508 i = 0;
20509 stacki = 0;
20510 stack[stacki] = 0;
20511 stack[++stacki] = 0;
20512
20513 while (i < size)
20514 {
20515 op = data[i++];
20516 switch (op)
20517 {
20518 case DW_OP_lit0:
20519 case DW_OP_lit1:
20520 case DW_OP_lit2:
20521 case DW_OP_lit3:
20522 case DW_OP_lit4:
20523 case DW_OP_lit5:
20524 case DW_OP_lit6:
20525 case DW_OP_lit7:
20526 case DW_OP_lit8:
20527 case DW_OP_lit9:
20528 case DW_OP_lit10:
20529 case DW_OP_lit11:
20530 case DW_OP_lit12:
20531 case DW_OP_lit13:
20532 case DW_OP_lit14:
20533 case DW_OP_lit15:
20534 case DW_OP_lit16:
20535 case DW_OP_lit17:
20536 case DW_OP_lit18:
20537 case DW_OP_lit19:
20538 case DW_OP_lit20:
20539 case DW_OP_lit21:
20540 case DW_OP_lit22:
20541 case DW_OP_lit23:
20542 case DW_OP_lit24:
20543 case DW_OP_lit25:
20544 case DW_OP_lit26:
20545 case DW_OP_lit27:
20546 case DW_OP_lit28:
20547 case DW_OP_lit29:
20548 case DW_OP_lit30:
20549 case DW_OP_lit31:
20550 stack[++stacki] = op - DW_OP_lit0;
20551 break;
20552
20553 case DW_OP_reg0:
20554 case DW_OP_reg1:
20555 case DW_OP_reg2:
20556 case DW_OP_reg3:
20557 case DW_OP_reg4:
20558 case DW_OP_reg5:
20559 case DW_OP_reg6:
20560 case DW_OP_reg7:
20561 case DW_OP_reg8:
20562 case DW_OP_reg9:
20563 case DW_OP_reg10:
20564 case DW_OP_reg11:
20565 case DW_OP_reg12:
20566 case DW_OP_reg13:
20567 case DW_OP_reg14:
20568 case DW_OP_reg15:
20569 case DW_OP_reg16:
20570 case DW_OP_reg17:
20571 case DW_OP_reg18:
20572 case DW_OP_reg19:
20573 case DW_OP_reg20:
20574 case DW_OP_reg21:
20575 case DW_OP_reg22:
20576 case DW_OP_reg23:
20577 case DW_OP_reg24:
20578 case DW_OP_reg25:
20579 case DW_OP_reg26:
20580 case DW_OP_reg27:
20581 case DW_OP_reg28:
20582 case DW_OP_reg29:
20583 case DW_OP_reg30:
20584 case DW_OP_reg31:
20585 stack[++stacki] = op - DW_OP_reg0;
20586 if (i < size)
20587 dwarf2_complex_location_expr_complaint ();
20588 break;
20589
20590 case DW_OP_regx:
20591 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20592 i += bytes_read;
20593 stack[++stacki] = unsnd;
20594 if (i < size)
20595 dwarf2_complex_location_expr_complaint ();
20596 break;
20597
20598 case DW_OP_addr:
20599 stack[++stacki] = read_address (objfile->obfd, &data[i],
20600 cu, &bytes_read);
20601 i += bytes_read;
20602 break;
20603
20604 case DW_OP_const1u:
20605 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20606 i += 1;
20607 break;
20608
20609 case DW_OP_const1s:
20610 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20611 i += 1;
20612 break;
20613
20614 case DW_OP_const2u:
20615 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20616 i += 2;
20617 break;
20618
20619 case DW_OP_const2s:
20620 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20621 i += 2;
20622 break;
20623
20624 case DW_OP_const4u:
20625 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20626 i += 4;
20627 break;
20628
20629 case DW_OP_const4s:
20630 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20631 i += 4;
20632 break;
20633
20634 case DW_OP_const8u:
20635 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20636 i += 8;
20637 break;
20638
20639 case DW_OP_constu:
20640 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20641 &bytes_read);
20642 i += bytes_read;
20643 break;
20644
20645 case DW_OP_consts:
20646 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20647 i += bytes_read;
20648 break;
20649
20650 case DW_OP_dup:
20651 stack[stacki + 1] = stack[stacki];
20652 stacki++;
20653 break;
20654
20655 case DW_OP_plus:
20656 stack[stacki - 1] += stack[stacki];
20657 stacki--;
20658 break;
20659
20660 case DW_OP_plus_uconst:
20661 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20662 &bytes_read);
20663 i += bytes_read;
20664 break;
20665
20666 case DW_OP_minus:
20667 stack[stacki - 1] -= stack[stacki];
20668 stacki--;
20669 break;
20670
20671 case DW_OP_deref:
20672 /* If we're not the last op, then we definitely can't encode
20673 this using GDB's address_class enum. This is valid for partial
20674 global symbols, although the variable's address will be bogus
20675 in the psymtab. */
20676 if (i < size)
20677 dwarf2_complex_location_expr_complaint ();
20678 break;
20679
20680 case DW_OP_GNU_push_tls_address:
20681 /* The top of the stack has the offset from the beginning
20682 of the thread control block at which the variable is located. */
20683 /* Nothing should follow this operator, so the top of stack would
20684 be returned. */
20685 /* This is valid for partial global symbols, but the variable's
20686 address will be bogus in the psymtab. Make it always at least
20687 non-zero to not look as a variable garbage collected by linker
20688 which have DW_OP_addr 0. */
20689 if (i < size)
20690 dwarf2_complex_location_expr_complaint ();
20691 stack[stacki]++;
20692 break;
20693
20694 case DW_OP_GNU_uninit:
20695 break;
20696
20697 case DW_OP_GNU_addr_index:
20698 case DW_OP_GNU_const_index:
20699 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20700 &bytes_read);
20701 i += bytes_read;
20702 break;
20703
20704 default:
20705 {
20706 const char *name = get_DW_OP_name (op);
20707
20708 if (name)
20709 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20710 name);
20711 else
20712 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20713 op);
20714 }
20715
20716 return (stack[stacki]);
20717 }
20718
20719 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20720 outside of the allocated space. Also enforce minimum>0. */
20721 if (stacki >= ARRAY_SIZE (stack) - 1)
20722 {
20723 complaint (&symfile_complaints,
20724 _("location description stack overflow"));
20725 return 0;
20726 }
20727
20728 if (stacki <= 0)
20729 {
20730 complaint (&symfile_complaints,
20731 _("location description stack underflow"));
20732 return 0;
20733 }
20734 }
20735 return (stack[stacki]);
20736 }
20737
20738 /* memory allocation interface */
20739
20740 static struct dwarf_block *
20741 dwarf_alloc_block (struct dwarf2_cu *cu)
20742 {
20743 struct dwarf_block *blk;
20744
20745 blk = (struct dwarf_block *)
20746 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20747 return (blk);
20748 }
20749
20750 static struct die_info *
20751 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20752 {
20753 struct die_info *die;
20754 size_t size = sizeof (struct die_info);
20755
20756 if (num_attrs > 1)
20757 size += (num_attrs - 1) * sizeof (struct attribute);
20758
20759 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20760 memset (die, 0, sizeof (struct die_info));
20761 return (die);
20762 }
20763
20764 \f
20765 /* Macro support. */
20766
20767 /* Return file name relative to the compilation directory of file number I in
20768 *LH's file name table. The result is allocated using xmalloc; the caller is
20769 responsible for freeing it. */
20770
20771 static char *
20772 file_file_name (int file, struct line_header *lh)
20773 {
20774 /* Is the file number a valid index into the line header's file name
20775 table? Remember that file numbers start with one, not zero. */
20776 if (1 <= file && file <= lh->num_file_names)
20777 {
20778 struct file_entry *fe = &lh->file_names[file - 1];
20779
20780 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20781 || lh->include_dirs == NULL)
20782 return xstrdup (fe->name);
20783 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20784 fe->name, NULL);
20785 }
20786 else
20787 {
20788 /* The compiler produced a bogus file number. We can at least
20789 record the macro definitions made in the file, even if we
20790 won't be able to find the file by name. */
20791 char fake_name[80];
20792
20793 xsnprintf (fake_name, sizeof (fake_name),
20794 "<bad macro file number %d>", file);
20795
20796 complaint (&symfile_complaints,
20797 _("bad file number in macro information (%d)"),
20798 file);
20799
20800 return xstrdup (fake_name);
20801 }
20802 }
20803
20804 /* Return the full name of file number I in *LH's file name table.
20805 Use COMP_DIR as the name of the current directory of the
20806 compilation. The result is allocated using xmalloc; the caller is
20807 responsible for freeing it. */
20808 static char *
20809 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20810 {
20811 /* Is the file number a valid index into the line header's file name
20812 table? Remember that file numbers start with one, not zero. */
20813 if (1 <= file && file <= lh->num_file_names)
20814 {
20815 char *relative = file_file_name (file, lh);
20816
20817 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20818 return relative;
20819 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20820 }
20821 else
20822 return file_file_name (file, lh);
20823 }
20824
20825
20826 static struct macro_source_file *
20827 macro_start_file (int file, int line,
20828 struct macro_source_file *current_file,
20829 struct line_header *lh)
20830 {
20831 /* File name relative to the compilation directory of this source file. */
20832 char *file_name = file_file_name (file, lh);
20833
20834 if (! current_file)
20835 {
20836 /* Note: We don't create a macro table for this compilation unit
20837 at all until we actually get a filename. */
20838 struct macro_table *macro_table = get_macro_table ();
20839
20840 /* If we have no current file, then this must be the start_file
20841 directive for the compilation unit's main source file. */
20842 current_file = macro_set_main (macro_table, file_name);
20843 macro_define_special (macro_table);
20844 }
20845 else
20846 current_file = macro_include (current_file, line, file_name);
20847
20848 xfree (file_name);
20849
20850 return current_file;
20851 }
20852
20853
20854 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20855 followed by a null byte. */
20856 static char *
20857 copy_string (const char *buf, int len)
20858 {
20859 char *s = xmalloc (len + 1);
20860
20861 memcpy (s, buf, len);
20862 s[len] = '\0';
20863 return s;
20864 }
20865
20866
20867 static const char *
20868 consume_improper_spaces (const char *p, const char *body)
20869 {
20870 if (*p == ' ')
20871 {
20872 complaint (&symfile_complaints,
20873 _("macro definition contains spaces "
20874 "in formal argument list:\n`%s'"),
20875 body);
20876
20877 while (*p == ' ')
20878 p++;
20879 }
20880
20881 return p;
20882 }
20883
20884
20885 static void
20886 parse_macro_definition (struct macro_source_file *file, int line,
20887 const char *body)
20888 {
20889 const char *p;
20890
20891 /* The body string takes one of two forms. For object-like macro
20892 definitions, it should be:
20893
20894 <macro name> " " <definition>
20895
20896 For function-like macro definitions, it should be:
20897
20898 <macro name> "() " <definition>
20899 or
20900 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20901
20902 Spaces may appear only where explicitly indicated, and in the
20903 <definition>.
20904
20905 The Dwarf 2 spec says that an object-like macro's name is always
20906 followed by a space, but versions of GCC around March 2002 omit
20907 the space when the macro's definition is the empty string.
20908
20909 The Dwarf 2 spec says that there should be no spaces between the
20910 formal arguments in a function-like macro's formal argument list,
20911 but versions of GCC around March 2002 include spaces after the
20912 commas. */
20913
20914
20915 /* Find the extent of the macro name. The macro name is terminated
20916 by either a space or null character (for an object-like macro) or
20917 an opening paren (for a function-like macro). */
20918 for (p = body; *p; p++)
20919 if (*p == ' ' || *p == '(')
20920 break;
20921
20922 if (*p == ' ' || *p == '\0')
20923 {
20924 /* It's an object-like macro. */
20925 int name_len = p - body;
20926 char *name = copy_string (body, name_len);
20927 const char *replacement;
20928
20929 if (*p == ' ')
20930 replacement = body + name_len + 1;
20931 else
20932 {
20933 dwarf2_macro_malformed_definition_complaint (body);
20934 replacement = body + name_len;
20935 }
20936
20937 macro_define_object (file, line, name, replacement);
20938
20939 xfree (name);
20940 }
20941 else if (*p == '(')
20942 {
20943 /* It's a function-like macro. */
20944 char *name = copy_string (body, p - body);
20945 int argc = 0;
20946 int argv_size = 1;
20947 char **argv = xmalloc (argv_size * sizeof (*argv));
20948
20949 p++;
20950
20951 p = consume_improper_spaces (p, body);
20952
20953 /* Parse the formal argument list. */
20954 while (*p && *p != ')')
20955 {
20956 /* Find the extent of the current argument name. */
20957 const char *arg_start = p;
20958
20959 while (*p && *p != ',' && *p != ')' && *p != ' ')
20960 p++;
20961
20962 if (! *p || p == arg_start)
20963 dwarf2_macro_malformed_definition_complaint (body);
20964 else
20965 {
20966 /* Make sure argv has room for the new argument. */
20967 if (argc >= argv_size)
20968 {
20969 argv_size *= 2;
20970 argv = xrealloc (argv, argv_size * sizeof (*argv));
20971 }
20972
20973 argv[argc++] = copy_string (arg_start, p - arg_start);
20974 }
20975
20976 p = consume_improper_spaces (p, body);
20977
20978 /* Consume the comma, if present. */
20979 if (*p == ',')
20980 {
20981 p++;
20982
20983 p = consume_improper_spaces (p, body);
20984 }
20985 }
20986
20987 if (*p == ')')
20988 {
20989 p++;
20990
20991 if (*p == ' ')
20992 /* Perfectly formed definition, no complaints. */
20993 macro_define_function (file, line, name,
20994 argc, (const char **) argv,
20995 p + 1);
20996 else if (*p == '\0')
20997 {
20998 /* Complain, but do define it. */
20999 dwarf2_macro_malformed_definition_complaint (body);
21000 macro_define_function (file, line, name,
21001 argc, (const char **) argv,
21002 p);
21003 }
21004 else
21005 /* Just complain. */
21006 dwarf2_macro_malformed_definition_complaint (body);
21007 }
21008 else
21009 /* Just complain. */
21010 dwarf2_macro_malformed_definition_complaint (body);
21011
21012 xfree (name);
21013 {
21014 int i;
21015
21016 for (i = 0; i < argc; i++)
21017 xfree (argv[i]);
21018 }
21019 xfree (argv);
21020 }
21021 else
21022 dwarf2_macro_malformed_definition_complaint (body);
21023 }
21024
21025 /* Skip some bytes from BYTES according to the form given in FORM.
21026 Returns the new pointer. */
21027
21028 static const gdb_byte *
21029 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21030 enum dwarf_form form,
21031 unsigned int offset_size,
21032 struct dwarf2_section_info *section)
21033 {
21034 unsigned int bytes_read;
21035
21036 switch (form)
21037 {
21038 case DW_FORM_data1:
21039 case DW_FORM_flag:
21040 ++bytes;
21041 break;
21042
21043 case DW_FORM_data2:
21044 bytes += 2;
21045 break;
21046
21047 case DW_FORM_data4:
21048 bytes += 4;
21049 break;
21050
21051 case DW_FORM_data8:
21052 bytes += 8;
21053 break;
21054
21055 case DW_FORM_string:
21056 read_direct_string (abfd, bytes, &bytes_read);
21057 bytes += bytes_read;
21058 break;
21059
21060 case DW_FORM_sec_offset:
21061 case DW_FORM_strp:
21062 case DW_FORM_GNU_strp_alt:
21063 bytes += offset_size;
21064 break;
21065
21066 case DW_FORM_block:
21067 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21068 bytes += bytes_read;
21069 break;
21070
21071 case DW_FORM_block1:
21072 bytes += 1 + read_1_byte (abfd, bytes);
21073 break;
21074 case DW_FORM_block2:
21075 bytes += 2 + read_2_bytes (abfd, bytes);
21076 break;
21077 case DW_FORM_block4:
21078 bytes += 4 + read_4_bytes (abfd, bytes);
21079 break;
21080
21081 case DW_FORM_sdata:
21082 case DW_FORM_udata:
21083 case DW_FORM_GNU_addr_index:
21084 case DW_FORM_GNU_str_index:
21085 bytes = gdb_skip_leb128 (bytes, buffer_end);
21086 if (bytes == NULL)
21087 {
21088 dwarf2_section_buffer_overflow_complaint (section);
21089 return NULL;
21090 }
21091 break;
21092
21093 default:
21094 {
21095 complain:
21096 complaint (&symfile_complaints,
21097 _("invalid form 0x%x in `%s'"),
21098 form, get_section_name (section));
21099 return NULL;
21100 }
21101 }
21102
21103 return bytes;
21104 }
21105
21106 /* A helper for dwarf_decode_macros that handles skipping an unknown
21107 opcode. Returns an updated pointer to the macro data buffer; or,
21108 on error, issues a complaint and returns NULL. */
21109
21110 static const gdb_byte *
21111 skip_unknown_opcode (unsigned int opcode,
21112 const gdb_byte **opcode_definitions,
21113 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21114 bfd *abfd,
21115 unsigned int offset_size,
21116 struct dwarf2_section_info *section)
21117 {
21118 unsigned int bytes_read, i;
21119 unsigned long arg;
21120 const gdb_byte *defn;
21121
21122 if (opcode_definitions[opcode] == NULL)
21123 {
21124 complaint (&symfile_complaints,
21125 _("unrecognized DW_MACFINO opcode 0x%x"),
21126 opcode);
21127 return NULL;
21128 }
21129
21130 defn = opcode_definitions[opcode];
21131 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21132 defn += bytes_read;
21133
21134 for (i = 0; i < arg; ++i)
21135 {
21136 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
21137 section);
21138 if (mac_ptr == NULL)
21139 {
21140 /* skip_form_bytes already issued the complaint. */
21141 return NULL;
21142 }
21143 }
21144
21145 return mac_ptr;
21146 }
21147
21148 /* A helper function which parses the header of a macro section.
21149 If the macro section is the extended (for now called "GNU") type,
21150 then this updates *OFFSET_SIZE. Returns a pointer to just after
21151 the header, or issues a complaint and returns NULL on error. */
21152
21153 static const gdb_byte *
21154 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21155 bfd *abfd,
21156 const gdb_byte *mac_ptr,
21157 unsigned int *offset_size,
21158 int section_is_gnu)
21159 {
21160 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21161
21162 if (section_is_gnu)
21163 {
21164 unsigned int version, flags;
21165
21166 version = read_2_bytes (abfd, mac_ptr);
21167 if (version != 4)
21168 {
21169 complaint (&symfile_complaints,
21170 _("unrecognized version `%d' in .debug_macro section"),
21171 version);
21172 return NULL;
21173 }
21174 mac_ptr += 2;
21175
21176 flags = read_1_byte (abfd, mac_ptr);
21177 ++mac_ptr;
21178 *offset_size = (flags & 1) ? 8 : 4;
21179
21180 if ((flags & 2) != 0)
21181 /* We don't need the line table offset. */
21182 mac_ptr += *offset_size;
21183
21184 /* Vendor opcode descriptions. */
21185 if ((flags & 4) != 0)
21186 {
21187 unsigned int i, count;
21188
21189 count = read_1_byte (abfd, mac_ptr);
21190 ++mac_ptr;
21191 for (i = 0; i < count; ++i)
21192 {
21193 unsigned int opcode, bytes_read;
21194 unsigned long arg;
21195
21196 opcode = read_1_byte (abfd, mac_ptr);
21197 ++mac_ptr;
21198 opcode_definitions[opcode] = mac_ptr;
21199 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21200 mac_ptr += bytes_read;
21201 mac_ptr += arg;
21202 }
21203 }
21204 }
21205
21206 return mac_ptr;
21207 }
21208
21209 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21210 including DW_MACRO_GNU_transparent_include. */
21211
21212 static void
21213 dwarf_decode_macro_bytes (bfd *abfd,
21214 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21215 struct macro_source_file *current_file,
21216 struct line_header *lh,
21217 struct dwarf2_section_info *section,
21218 int section_is_gnu, int section_is_dwz,
21219 unsigned int offset_size,
21220 htab_t include_hash)
21221 {
21222 struct objfile *objfile = dwarf2_per_objfile->objfile;
21223 enum dwarf_macro_record_type macinfo_type;
21224 int at_commandline;
21225 const gdb_byte *opcode_definitions[256];
21226
21227 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21228 &offset_size, section_is_gnu);
21229 if (mac_ptr == NULL)
21230 {
21231 /* We already issued a complaint. */
21232 return;
21233 }
21234
21235 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21236 GDB is still reading the definitions from command line. First
21237 DW_MACINFO_start_file will need to be ignored as it was already executed
21238 to create CURRENT_FILE for the main source holding also the command line
21239 definitions. On first met DW_MACINFO_start_file this flag is reset to
21240 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21241
21242 at_commandline = 1;
21243
21244 do
21245 {
21246 /* Do we at least have room for a macinfo type byte? */
21247 if (mac_ptr >= mac_end)
21248 {
21249 dwarf2_section_buffer_overflow_complaint (section);
21250 break;
21251 }
21252
21253 macinfo_type = read_1_byte (abfd, mac_ptr);
21254 mac_ptr++;
21255
21256 /* Note that we rely on the fact that the corresponding GNU and
21257 DWARF constants are the same. */
21258 switch (macinfo_type)
21259 {
21260 /* A zero macinfo type indicates the end of the macro
21261 information. */
21262 case 0:
21263 break;
21264
21265 case DW_MACRO_GNU_define:
21266 case DW_MACRO_GNU_undef:
21267 case DW_MACRO_GNU_define_indirect:
21268 case DW_MACRO_GNU_undef_indirect:
21269 case DW_MACRO_GNU_define_indirect_alt:
21270 case DW_MACRO_GNU_undef_indirect_alt:
21271 {
21272 unsigned int bytes_read;
21273 int line;
21274 const char *body;
21275 int is_define;
21276
21277 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21278 mac_ptr += bytes_read;
21279
21280 if (macinfo_type == DW_MACRO_GNU_define
21281 || macinfo_type == DW_MACRO_GNU_undef)
21282 {
21283 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21284 mac_ptr += bytes_read;
21285 }
21286 else
21287 {
21288 LONGEST str_offset;
21289
21290 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21291 mac_ptr += offset_size;
21292
21293 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21294 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21295 || section_is_dwz)
21296 {
21297 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21298
21299 body = read_indirect_string_from_dwz (dwz, str_offset);
21300 }
21301 else
21302 body = read_indirect_string_at_offset (abfd, str_offset);
21303 }
21304
21305 is_define = (macinfo_type == DW_MACRO_GNU_define
21306 || macinfo_type == DW_MACRO_GNU_define_indirect
21307 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21308 if (! current_file)
21309 {
21310 /* DWARF violation as no main source is present. */
21311 complaint (&symfile_complaints,
21312 _("debug info with no main source gives macro %s "
21313 "on line %d: %s"),
21314 is_define ? _("definition") : _("undefinition"),
21315 line, body);
21316 break;
21317 }
21318 if ((line == 0 && !at_commandline)
21319 || (line != 0 && at_commandline))
21320 complaint (&symfile_complaints,
21321 _("debug info gives %s macro %s with %s line %d: %s"),
21322 at_commandline ? _("command-line") : _("in-file"),
21323 is_define ? _("definition") : _("undefinition"),
21324 line == 0 ? _("zero") : _("non-zero"), line, body);
21325
21326 if (is_define)
21327 parse_macro_definition (current_file, line, body);
21328 else
21329 {
21330 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21331 || macinfo_type == DW_MACRO_GNU_undef_indirect
21332 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21333 macro_undef (current_file, line, body);
21334 }
21335 }
21336 break;
21337
21338 case DW_MACRO_GNU_start_file:
21339 {
21340 unsigned int bytes_read;
21341 int line, file;
21342
21343 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21344 mac_ptr += bytes_read;
21345 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21346 mac_ptr += bytes_read;
21347
21348 if ((line == 0 && !at_commandline)
21349 || (line != 0 && at_commandline))
21350 complaint (&symfile_complaints,
21351 _("debug info gives source %d included "
21352 "from %s at %s line %d"),
21353 file, at_commandline ? _("command-line") : _("file"),
21354 line == 0 ? _("zero") : _("non-zero"), line);
21355
21356 if (at_commandline)
21357 {
21358 /* This DW_MACRO_GNU_start_file was executed in the
21359 pass one. */
21360 at_commandline = 0;
21361 }
21362 else
21363 current_file = macro_start_file (file, line, current_file, lh);
21364 }
21365 break;
21366
21367 case DW_MACRO_GNU_end_file:
21368 if (! current_file)
21369 complaint (&symfile_complaints,
21370 _("macro debug info has an unmatched "
21371 "`close_file' directive"));
21372 else
21373 {
21374 current_file = current_file->included_by;
21375 if (! current_file)
21376 {
21377 enum dwarf_macro_record_type next_type;
21378
21379 /* GCC circa March 2002 doesn't produce the zero
21380 type byte marking the end of the compilation
21381 unit. Complain if it's not there, but exit no
21382 matter what. */
21383
21384 /* Do we at least have room for a macinfo type byte? */
21385 if (mac_ptr >= mac_end)
21386 {
21387 dwarf2_section_buffer_overflow_complaint (section);
21388 return;
21389 }
21390
21391 /* We don't increment mac_ptr here, so this is just
21392 a look-ahead. */
21393 next_type = read_1_byte (abfd, mac_ptr);
21394 if (next_type != 0)
21395 complaint (&symfile_complaints,
21396 _("no terminating 0-type entry for "
21397 "macros in `.debug_macinfo' section"));
21398
21399 return;
21400 }
21401 }
21402 break;
21403
21404 case DW_MACRO_GNU_transparent_include:
21405 case DW_MACRO_GNU_transparent_include_alt:
21406 {
21407 LONGEST offset;
21408 void **slot;
21409 bfd *include_bfd = abfd;
21410 struct dwarf2_section_info *include_section = section;
21411 struct dwarf2_section_info alt_section;
21412 const gdb_byte *include_mac_end = mac_end;
21413 int is_dwz = section_is_dwz;
21414 const gdb_byte *new_mac_ptr;
21415
21416 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21417 mac_ptr += offset_size;
21418
21419 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21420 {
21421 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21422
21423 dwarf2_read_section (objfile, &dwz->macro);
21424
21425 include_section = &dwz->macro;
21426 include_bfd = get_section_bfd_owner (include_section);
21427 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21428 is_dwz = 1;
21429 }
21430
21431 new_mac_ptr = include_section->buffer + offset;
21432 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21433
21434 if (*slot != NULL)
21435 {
21436 /* This has actually happened; see
21437 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21438 complaint (&symfile_complaints,
21439 _("recursive DW_MACRO_GNU_transparent_include in "
21440 ".debug_macro section"));
21441 }
21442 else
21443 {
21444 *slot = (void *) new_mac_ptr;
21445
21446 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21447 include_mac_end, current_file, lh,
21448 section, section_is_gnu, is_dwz,
21449 offset_size, include_hash);
21450
21451 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21452 }
21453 }
21454 break;
21455
21456 case DW_MACINFO_vendor_ext:
21457 if (!section_is_gnu)
21458 {
21459 unsigned int bytes_read;
21460 int constant;
21461
21462 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21463 mac_ptr += bytes_read;
21464 read_direct_string (abfd, mac_ptr, &bytes_read);
21465 mac_ptr += bytes_read;
21466
21467 /* We don't recognize any vendor extensions. */
21468 break;
21469 }
21470 /* FALLTHROUGH */
21471
21472 default:
21473 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21474 mac_ptr, mac_end, abfd, offset_size,
21475 section);
21476 if (mac_ptr == NULL)
21477 return;
21478 break;
21479 }
21480 } while (macinfo_type != 0);
21481 }
21482
21483 static void
21484 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21485 int section_is_gnu)
21486 {
21487 struct objfile *objfile = dwarf2_per_objfile->objfile;
21488 struct line_header *lh = cu->line_header;
21489 bfd *abfd;
21490 const gdb_byte *mac_ptr, *mac_end;
21491 struct macro_source_file *current_file = 0;
21492 enum dwarf_macro_record_type macinfo_type;
21493 unsigned int offset_size = cu->header.offset_size;
21494 const gdb_byte *opcode_definitions[256];
21495 struct cleanup *cleanup;
21496 htab_t include_hash;
21497 void **slot;
21498 struct dwarf2_section_info *section;
21499 const char *section_name;
21500
21501 if (cu->dwo_unit != NULL)
21502 {
21503 if (section_is_gnu)
21504 {
21505 section = &cu->dwo_unit->dwo_file->sections.macro;
21506 section_name = ".debug_macro.dwo";
21507 }
21508 else
21509 {
21510 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21511 section_name = ".debug_macinfo.dwo";
21512 }
21513 }
21514 else
21515 {
21516 if (section_is_gnu)
21517 {
21518 section = &dwarf2_per_objfile->macro;
21519 section_name = ".debug_macro";
21520 }
21521 else
21522 {
21523 section = &dwarf2_per_objfile->macinfo;
21524 section_name = ".debug_macinfo";
21525 }
21526 }
21527
21528 dwarf2_read_section (objfile, section);
21529 if (section->buffer == NULL)
21530 {
21531 complaint (&symfile_complaints, _("missing %s section"), section_name);
21532 return;
21533 }
21534 abfd = get_section_bfd_owner (section);
21535
21536 /* First pass: Find the name of the base filename.
21537 This filename is needed in order to process all macros whose definition
21538 (or undefinition) comes from the command line. These macros are defined
21539 before the first DW_MACINFO_start_file entry, and yet still need to be
21540 associated to the base file.
21541
21542 To determine the base file name, we scan the macro definitions until we
21543 reach the first DW_MACINFO_start_file entry. We then initialize
21544 CURRENT_FILE accordingly so that any macro definition found before the
21545 first DW_MACINFO_start_file can still be associated to the base file. */
21546
21547 mac_ptr = section->buffer + offset;
21548 mac_end = section->buffer + section->size;
21549
21550 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21551 &offset_size, section_is_gnu);
21552 if (mac_ptr == NULL)
21553 {
21554 /* We already issued a complaint. */
21555 return;
21556 }
21557
21558 do
21559 {
21560 /* Do we at least have room for a macinfo type byte? */
21561 if (mac_ptr >= mac_end)
21562 {
21563 /* Complaint is printed during the second pass as GDB will probably
21564 stop the first pass earlier upon finding
21565 DW_MACINFO_start_file. */
21566 break;
21567 }
21568
21569 macinfo_type = read_1_byte (abfd, mac_ptr);
21570 mac_ptr++;
21571
21572 /* Note that we rely on the fact that the corresponding GNU and
21573 DWARF constants are the same. */
21574 switch (macinfo_type)
21575 {
21576 /* A zero macinfo type indicates the end of the macro
21577 information. */
21578 case 0:
21579 break;
21580
21581 case DW_MACRO_GNU_define:
21582 case DW_MACRO_GNU_undef:
21583 /* Only skip the data by MAC_PTR. */
21584 {
21585 unsigned int bytes_read;
21586
21587 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21588 mac_ptr += bytes_read;
21589 read_direct_string (abfd, mac_ptr, &bytes_read);
21590 mac_ptr += bytes_read;
21591 }
21592 break;
21593
21594 case DW_MACRO_GNU_start_file:
21595 {
21596 unsigned int bytes_read;
21597 int line, file;
21598
21599 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21600 mac_ptr += bytes_read;
21601 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21602 mac_ptr += bytes_read;
21603
21604 current_file = macro_start_file (file, line, current_file, lh);
21605 }
21606 break;
21607
21608 case DW_MACRO_GNU_end_file:
21609 /* No data to skip by MAC_PTR. */
21610 break;
21611
21612 case DW_MACRO_GNU_define_indirect:
21613 case DW_MACRO_GNU_undef_indirect:
21614 case DW_MACRO_GNU_define_indirect_alt:
21615 case DW_MACRO_GNU_undef_indirect_alt:
21616 {
21617 unsigned int bytes_read;
21618
21619 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21620 mac_ptr += bytes_read;
21621 mac_ptr += offset_size;
21622 }
21623 break;
21624
21625 case DW_MACRO_GNU_transparent_include:
21626 case DW_MACRO_GNU_transparent_include_alt:
21627 /* Note that, according to the spec, a transparent include
21628 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21629 skip this opcode. */
21630 mac_ptr += offset_size;
21631 break;
21632
21633 case DW_MACINFO_vendor_ext:
21634 /* Only skip the data by MAC_PTR. */
21635 if (!section_is_gnu)
21636 {
21637 unsigned int bytes_read;
21638
21639 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21640 mac_ptr += bytes_read;
21641 read_direct_string (abfd, mac_ptr, &bytes_read);
21642 mac_ptr += bytes_read;
21643 }
21644 /* FALLTHROUGH */
21645
21646 default:
21647 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21648 mac_ptr, mac_end, abfd, offset_size,
21649 section);
21650 if (mac_ptr == NULL)
21651 return;
21652 break;
21653 }
21654 } while (macinfo_type != 0 && current_file == NULL);
21655
21656 /* Second pass: Process all entries.
21657
21658 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21659 command-line macro definitions/undefinitions. This flag is unset when we
21660 reach the first DW_MACINFO_start_file entry. */
21661
21662 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21663 NULL, xcalloc, xfree);
21664 cleanup = make_cleanup_htab_delete (include_hash);
21665 mac_ptr = section->buffer + offset;
21666 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21667 *slot = (void *) mac_ptr;
21668 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21669 current_file, lh, section,
21670 section_is_gnu, 0, offset_size, include_hash);
21671 do_cleanups (cleanup);
21672 }
21673
21674 /* Check if the attribute's form is a DW_FORM_block*
21675 if so return true else false. */
21676
21677 static int
21678 attr_form_is_block (const struct attribute *attr)
21679 {
21680 return (attr == NULL ? 0 :
21681 attr->form == DW_FORM_block1
21682 || attr->form == DW_FORM_block2
21683 || attr->form == DW_FORM_block4
21684 || attr->form == DW_FORM_block
21685 || attr->form == DW_FORM_exprloc);
21686 }
21687
21688 /* Return non-zero if ATTR's value is a section offset --- classes
21689 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21690 You may use DW_UNSND (attr) to retrieve such offsets.
21691
21692 Section 7.5.4, "Attribute Encodings", explains that no attribute
21693 may have a value that belongs to more than one of these classes; it
21694 would be ambiguous if we did, because we use the same forms for all
21695 of them. */
21696
21697 static int
21698 attr_form_is_section_offset (const struct attribute *attr)
21699 {
21700 return (attr->form == DW_FORM_data4
21701 || attr->form == DW_FORM_data8
21702 || attr->form == DW_FORM_sec_offset);
21703 }
21704
21705 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21706 zero otherwise. When this function returns true, you can apply
21707 dwarf2_get_attr_constant_value to it.
21708
21709 However, note that for some attributes you must check
21710 attr_form_is_section_offset before using this test. DW_FORM_data4
21711 and DW_FORM_data8 are members of both the constant class, and of
21712 the classes that contain offsets into other debug sections
21713 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21714 that, if an attribute's can be either a constant or one of the
21715 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21716 taken as section offsets, not constants. */
21717
21718 static int
21719 attr_form_is_constant (const struct attribute *attr)
21720 {
21721 switch (attr->form)
21722 {
21723 case DW_FORM_sdata:
21724 case DW_FORM_udata:
21725 case DW_FORM_data1:
21726 case DW_FORM_data2:
21727 case DW_FORM_data4:
21728 case DW_FORM_data8:
21729 return 1;
21730 default:
21731 return 0;
21732 }
21733 }
21734
21735
21736 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21737 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21738
21739 static int
21740 attr_form_is_ref (const struct attribute *attr)
21741 {
21742 switch (attr->form)
21743 {
21744 case DW_FORM_ref_addr:
21745 case DW_FORM_ref1:
21746 case DW_FORM_ref2:
21747 case DW_FORM_ref4:
21748 case DW_FORM_ref8:
21749 case DW_FORM_ref_udata:
21750 case DW_FORM_GNU_ref_alt:
21751 return 1;
21752 default:
21753 return 0;
21754 }
21755 }
21756
21757 /* Return the .debug_loc section to use for CU.
21758 For DWO files use .debug_loc.dwo. */
21759
21760 static struct dwarf2_section_info *
21761 cu_debug_loc_section (struct dwarf2_cu *cu)
21762 {
21763 if (cu->dwo_unit)
21764 return &cu->dwo_unit->dwo_file->sections.loc;
21765 return &dwarf2_per_objfile->loc;
21766 }
21767
21768 /* A helper function that fills in a dwarf2_loclist_baton. */
21769
21770 static void
21771 fill_in_loclist_baton (struct dwarf2_cu *cu,
21772 struct dwarf2_loclist_baton *baton,
21773 const struct attribute *attr)
21774 {
21775 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21776
21777 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21778
21779 baton->per_cu = cu->per_cu;
21780 gdb_assert (baton->per_cu);
21781 /* We don't know how long the location list is, but make sure we
21782 don't run off the edge of the section. */
21783 baton->size = section->size - DW_UNSND (attr);
21784 baton->data = section->buffer + DW_UNSND (attr);
21785 baton->base_address = cu->base_address;
21786 baton->from_dwo = cu->dwo_unit != NULL;
21787 }
21788
21789 static void
21790 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21791 struct dwarf2_cu *cu, int is_block)
21792 {
21793 struct objfile *objfile = dwarf2_per_objfile->objfile;
21794 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21795
21796 if (attr_form_is_section_offset (attr)
21797 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21798 the section. If so, fall through to the complaint in the
21799 other branch. */
21800 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21801 {
21802 struct dwarf2_loclist_baton *baton;
21803
21804 baton = obstack_alloc (&objfile->objfile_obstack,
21805 sizeof (struct dwarf2_loclist_baton));
21806
21807 fill_in_loclist_baton (cu, baton, attr);
21808
21809 if (cu->base_known == 0)
21810 complaint (&symfile_complaints,
21811 _("Location list used without "
21812 "specifying the CU base address."));
21813
21814 SYMBOL_ACLASS_INDEX (sym) = (is_block
21815 ? dwarf2_loclist_block_index
21816 : dwarf2_loclist_index);
21817 SYMBOL_LOCATION_BATON (sym) = baton;
21818 }
21819 else
21820 {
21821 struct dwarf2_locexpr_baton *baton;
21822
21823 baton = obstack_alloc (&objfile->objfile_obstack,
21824 sizeof (struct dwarf2_locexpr_baton));
21825 baton->per_cu = cu->per_cu;
21826 gdb_assert (baton->per_cu);
21827
21828 if (attr_form_is_block (attr))
21829 {
21830 /* Note that we're just copying the block's data pointer
21831 here, not the actual data. We're still pointing into the
21832 info_buffer for SYM's objfile; right now we never release
21833 that buffer, but when we do clean up properly this may
21834 need to change. */
21835 baton->size = DW_BLOCK (attr)->size;
21836 baton->data = DW_BLOCK (attr)->data;
21837 }
21838 else
21839 {
21840 dwarf2_invalid_attrib_class_complaint ("location description",
21841 SYMBOL_NATURAL_NAME (sym));
21842 baton->size = 0;
21843 }
21844
21845 SYMBOL_ACLASS_INDEX (sym) = (is_block
21846 ? dwarf2_locexpr_block_index
21847 : dwarf2_locexpr_index);
21848 SYMBOL_LOCATION_BATON (sym) = baton;
21849 }
21850 }
21851
21852 /* Return the OBJFILE associated with the compilation unit CU. If CU
21853 came from a separate debuginfo file, then the master objfile is
21854 returned. */
21855
21856 struct objfile *
21857 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21858 {
21859 struct objfile *objfile = per_cu->objfile;
21860
21861 /* Return the master objfile, so that we can report and look up the
21862 correct file containing this variable. */
21863 if (objfile->separate_debug_objfile_backlink)
21864 objfile = objfile->separate_debug_objfile_backlink;
21865
21866 return objfile;
21867 }
21868
21869 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21870 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21871 CU_HEADERP first. */
21872
21873 static const struct comp_unit_head *
21874 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21875 struct dwarf2_per_cu_data *per_cu)
21876 {
21877 const gdb_byte *info_ptr;
21878
21879 if (per_cu->cu)
21880 return &per_cu->cu->header;
21881
21882 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21883
21884 memset (cu_headerp, 0, sizeof (*cu_headerp));
21885 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21886
21887 return cu_headerp;
21888 }
21889
21890 /* Return the address size given in the compilation unit header for CU. */
21891
21892 int
21893 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21894 {
21895 struct comp_unit_head cu_header_local;
21896 const struct comp_unit_head *cu_headerp;
21897
21898 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21899
21900 return cu_headerp->addr_size;
21901 }
21902
21903 /* Return the offset size given in the compilation unit header for CU. */
21904
21905 int
21906 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21907 {
21908 struct comp_unit_head cu_header_local;
21909 const struct comp_unit_head *cu_headerp;
21910
21911 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21912
21913 return cu_headerp->offset_size;
21914 }
21915
21916 /* See its dwarf2loc.h declaration. */
21917
21918 int
21919 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21920 {
21921 struct comp_unit_head cu_header_local;
21922 const struct comp_unit_head *cu_headerp;
21923
21924 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21925
21926 if (cu_headerp->version == 2)
21927 return cu_headerp->addr_size;
21928 else
21929 return cu_headerp->offset_size;
21930 }
21931
21932 /* Return the text offset of the CU. The returned offset comes from
21933 this CU's objfile. If this objfile came from a separate debuginfo
21934 file, then the offset may be different from the corresponding
21935 offset in the parent objfile. */
21936
21937 CORE_ADDR
21938 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21939 {
21940 struct objfile *objfile = per_cu->objfile;
21941
21942 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21943 }
21944
21945 /* Locate the .debug_info compilation unit from CU's objfile which contains
21946 the DIE at OFFSET. Raises an error on failure. */
21947
21948 static struct dwarf2_per_cu_data *
21949 dwarf2_find_containing_comp_unit (sect_offset offset,
21950 unsigned int offset_in_dwz,
21951 struct objfile *objfile)
21952 {
21953 struct dwarf2_per_cu_data *this_cu;
21954 int low, high;
21955 const sect_offset *cu_off;
21956
21957 low = 0;
21958 high = dwarf2_per_objfile->n_comp_units - 1;
21959 while (high > low)
21960 {
21961 struct dwarf2_per_cu_data *mid_cu;
21962 int mid = low + (high - low) / 2;
21963
21964 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21965 cu_off = &mid_cu->offset;
21966 if (mid_cu->is_dwz > offset_in_dwz
21967 || (mid_cu->is_dwz == offset_in_dwz
21968 && cu_off->sect_off >= offset.sect_off))
21969 high = mid;
21970 else
21971 low = mid + 1;
21972 }
21973 gdb_assert (low == high);
21974 this_cu = dwarf2_per_objfile->all_comp_units[low];
21975 cu_off = &this_cu->offset;
21976 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21977 {
21978 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21979 error (_("Dwarf Error: could not find partial DIE containing "
21980 "offset 0x%lx [in module %s]"),
21981 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21982
21983 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21984 <= offset.sect_off);
21985 return dwarf2_per_objfile->all_comp_units[low-1];
21986 }
21987 else
21988 {
21989 this_cu = dwarf2_per_objfile->all_comp_units[low];
21990 if (low == dwarf2_per_objfile->n_comp_units - 1
21991 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21992 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21993 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21994 return this_cu;
21995 }
21996 }
21997
21998 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21999
22000 static void
22001 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22002 {
22003 memset (cu, 0, sizeof (*cu));
22004 per_cu->cu = cu;
22005 cu->per_cu = per_cu;
22006 cu->objfile = per_cu->objfile;
22007 obstack_init (&cu->comp_unit_obstack);
22008 }
22009
22010 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22011
22012 static void
22013 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22014 enum language pretend_language)
22015 {
22016 struct attribute *attr;
22017
22018 /* Set the language we're debugging. */
22019 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22020 if (attr)
22021 set_cu_language (DW_UNSND (attr), cu);
22022 else
22023 {
22024 cu->language = pretend_language;
22025 cu->language_defn = language_def (cu->language);
22026 }
22027
22028 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
22029 if (attr)
22030 cu->producer = DW_STRING (attr);
22031 }
22032
22033 /* Release one cached compilation unit, CU. We unlink it from the tree
22034 of compilation units, but we don't remove it from the read_in_chain;
22035 the caller is responsible for that.
22036 NOTE: DATA is a void * because this function is also used as a
22037 cleanup routine. */
22038
22039 static void
22040 free_heap_comp_unit (void *data)
22041 {
22042 struct dwarf2_cu *cu = data;
22043
22044 gdb_assert (cu->per_cu != NULL);
22045 cu->per_cu->cu = NULL;
22046 cu->per_cu = NULL;
22047
22048 obstack_free (&cu->comp_unit_obstack, NULL);
22049
22050 xfree (cu);
22051 }
22052
22053 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22054 when we're finished with it. We can't free the pointer itself, but be
22055 sure to unlink it from the cache. Also release any associated storage. */
22056
22057 static void
22058 free_stack_comp_unit (void *data)
22059 {
22060 struct dwarf2_cu *cu = data;
22061
22062 gdb_assert (cu->per_cu != NULL);
22063 cu->per_cu->cu = NULL;
22064 cu->per_cu = NULL;
22065
22066 obstack_free (&cu->comp_unit_obstack, NULL);
22067 cu->partial_dies = NULL;
22068 }
22069
22070 /* Free all cached compilation units. */
22071
22072 static void
22073 free_cached_comp_units (void *data)
22074 {
22075 struct dwarf2_per_cu_data *per_cu, **last_chain;
22076
22077 per_cu = dwarf2_per_objfile->read_in_chain;
22078 last_chain = &dwarf2_per_objfile->read_in_chain;
22079 while (per_cu != NULL)
22080 {
22081 struct dwarf2_per_cu_data *next_cu;
22082
22083 next_cu = per_cu->cu->read_in_chain;
22084
22085 free_heap_comp_unit (per_cu->cu);
22086 *last_chain = next_cu;
22087
22088 per_cu = next_cu;
22089 }
22090 }
22091
22092 /* Increase the age counter on each cached compilation unit, and free
22093 any that are too old. */
22094
22095 static void
22096 age_cached_comp_units (void)
22097 {
22098 struct dwarf2_per_cu_data *per_cu, **last_chain;
22099
22100 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22101 per_cu = dwarf2_per_objfile->read_in_chain;
22102 while (per_cu != NULL)
22103 {
22104 per_cu->cu->last_used ++;
22105 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22106 dwarf2_mark (per_cu->cu);
22107 per_cu = per_cu->cu->read_in_chain;
22108 }
22109
22110 per_cu = dwarf2_per_objfile->read_in_chain;
22111 last_chain = &dwarf2_per_objfile->read_in_chain;
22112 while (per_cu != NULL)
22113 {
22114 struct dwarf2_per_cu_data *next_cu;
22115
22116 next_cu = per_cu->cu->read_in_chain;
22117
22118 if (!per_cu->cu->mark)
22119 {
22120 free_heap_comp_unit (per_cu->cu);
22121 *last_chain = next_cu;
22122 }
22123 else
22124 last_chain = &per_cu->cu->read_in_chain;
22125
22126 per_cu = next_cu;
22127 }
22128 }
22129
22130 /* Remove a single compilation unit from the cache. */
22131
22132 static void
22133 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22134 {
22135 struct dwarf2_per_cu_data *per_cu, **last_chain;
22136
22137 per_cu = dwarf2_per_objfile->read_in_chain;
22138 last_chain = &dwarf2_per_objfile->read_in_chain;
22139 while (per_cu != NULL)
22140 {
22141 struct dwarf2_per_cu_data *next_cu;
22142
22143 next_cu = per_cu->cu->read_in_chain;
22144
22145 if (per_cu == target_per_cu)
22146 {
22147 free_heap_comp_unit (per_cu->cu);
22148 per_cu->cu = NULL;
22149 *last_chain = next_cu;
22150 break;
22151 }
22152 else
22153 last_chain = &per_cu->cu->read_in_chain;
22154
22155 per_cu = next_cu;
22156 }
22157 }
22158
22159 /* Release all extra memory associated with OBJFILE. */
22160
22161 void
22162 dwarf2_free_objfile (struct objfile *objfile)
22163 {
22164 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22165
22166 if (dwarf2_per_objfile == NULL)
22167 return;
22168
22169 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22170 free_cached_comp_units (NULL);
22171
22172 if (dwarf2_per_objfile->quick_file_names_table)
22173 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22174
22175 if (dwarf2_per_objfile->line_header_hash)
22176 htab_delete (dwarf2_per_objfile->line_header_hash);
22177
22178 /* Everything else should be on the objfile obstack. */
22179 }
22180
22181 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22182 We store these in a hash table separate from the DIEs, and preserve them
22183 when the DIEs are flushed out of cache.
22184
22185 The CU "per_cu" pointer is needed because offset alone is not enough to
22186 uniquely identify the type. A file may have multiple .debug_types sections,
22187 or the type may come from a DWO file. Furthermore, while it's more logical
22188 to use per_cu->section+offset, with Fission the section with the data is in
22189 the DWO file but we don't know that section at the point we need it.
22190 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22191 because we can enter the lookup routine, get_die_type_at_offset, from
22192 outside this file, and thus won't necessarily have PER_CU->cu.
22193 Fortunately, PER_CU is stable for the life of the objfile. */
22194
22195 struct dwarf2_per_cu_offset_and_type
22196 {
22197 const struct dwarf2_per_cu_data *per_cu;
22198 sect_offset offset;
22199 struct type *type;
22200 };
22201
22202 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22203
22204 static hashval_t
22205 per_cu_offset_and_type_hash (const void *item)
22206 {
22207 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22208
22209 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22210 }
22211
22212 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22213
22214 static int
22215 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22216 {
22217 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22218 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22219
22220 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22221 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22222 }
22223
22224 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22225 table if necessary. For convenience, return TYPE.
22226
22227 The DIEs reading must have careful ordering to:
22228 * Not cause infite loops trying to read in DIEs as a prerequisite for
22229 reading current DIE.
22230 * Not trying to dereference contents of still incompletely read in types
22231 while reading in other DIEs.
22232 * Enable referencing still incompletely read in types just by a pointer to
22233 the type without accessing its fields.
22234
22235 Therefore caller should follow these rules:
22236 * Try to fetch any prerequisite types we may need to build this DIE type
22237 before building the type and calling set_die_type.
22238 * After building type call set_die_type for current DIE as soon as
22239 possible before fetching more types to complete the current type.
22240 * Make the type as complete as possible before fetching more types. */
22241
22242 static struct type *
22243 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22244 {
22245 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22246 struct objfile *objfile = cu->objfile;
22247 struct attribute *attr;
22248 struct dynamic_prop prop;
22249
22250 /* For Ada types, make sure that the gnat-specific data is always
22251 initialized (if not already set). There are a few types where
22252 we should not be doing so, because the type-specific area is
22253 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22254 where the type-specific area is used to store the floatformat).
22255 But this is not a problem, because the gnat-specific information
22256 is actually not needed for these types. */
22257 if (need_gnat_info (cu)
22258 && TYPE_CODE (type) != TYPE_CODE_FUNC
22259 && TYPE_CODE (type) != TYPE_CODE_FLT
22260 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22261 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22262 && TYPE_CODE (type) != TYPE_CODE_METHOD
22263 && !HAVE_GNAT_AUX_INFO (type))
22264 INIT_GNAT_SPECIFIC (type);
22265
22266 /* Read DW_AT_data_location and set in type. */
22267 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22268 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22269 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22270
22271 if (dwarf2_per_objfile->die_type_hash == NULL)
22272 {
22273 dwarf2_per_objfile->die_type_hash =
22274 htab_create_alloc_ex (127,
22275 per_cu_offset_and_type_hash,
22276 per_cu_offset_and_type_eq,
22277 NULL,
22278 &objfile->objfile_obstack,
22279 hashtab_obstack_allocate,
22280 dummy_obstack_deallocate);
22281 }
22282
22283 ofs.per_cu = cu->per_cu;
22284 ofs.offset = die->offset;
22285 ofs.type = type;
22286 slot = (struct dwarf2_per_cu_offset_and_type **)
22287 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22288 if (*slot)
22289 complaint (&symfile_complaints,
22290 _("A problem internal to GDB: DIE 0x%x has type already set"),
22291 die->offset.sect_off);
22292 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22293 **slot = ofs;
22294 return type;
22295 }
22296
22297 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22298 or return NULL if the die does not have a saved type. */
22299
22300 static struct type *
22301 get_die_type_at_offset (sect_offset offset,
22302 struct dwarf2_per_cu_data *per_cu)
22303 {
22304 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22305
22306 if (dwarf2_per_objfile->die_type_hash == NULL)
22307 return NULL;
22308
22309 ofs.per_cu = per_cu;
22310 ofs.offset = offset;
22311 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22312 if (slot)
22313 return slot->type;
22314 else
22315 return NULL;
22316 }
22317
22318 /* Look up the type for DIE in CU in die_type_hash,
22319 or return NULL if DIE does not have a saved type. */
22320
22321 static struct type *
22322 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22323 {
22324 return get_die_type_at_offset (die->offset, cu->per_cu);
22325 }
22326
22327 /* Add a dependence relationship from CU to REF_PER_CU. */
22328
22329 static void
22330 dwarf2_add_dependence (struct dwarf2_cu *cu,
22331 struct dwarf2_per_cu_data *ref_per_cu)
22332 {
22333 void **slot;
22334
22335 if (cu->dependencies == NULL)
22336 cu->dependencies
22337 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22338 NULL, &cu->comp_unit_obstack,
22339 hashtab_obstack_allocate,
22340 dummy_obstack_deallocate);
22341
22342 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22343 if (*slot == NULL)
22344 *slot = ref_per_cu;
22345 }
22346
22347 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22348 Set the mark field in every compilation unit in the
22349 cache that we must keep because we are keeping CU. */
22350
22351 static int
22352 dwarf2_mark_helper (void **slot, void *data)
22353 {
22354 struct dwarf2_per_cu_data *per_cu;
22355
22356 per_cu = (struct dwarf2_per_cu_data *) *slot;
22357
22358 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22359 reading of the chain. As such dependencies remain valid it is not much
22360 useful to track and undo them during QUIT cleanups. */
22361 if (per_cu->cu == NULL)
22362 return 1;
22363
22364 if (per_cu->cu->mark)
22365 return 1;
22366 per_cu->cu->mark = 1;
22367
22368 if (per_cu->cu->dependencies != NULL)
22369 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22370
22371 return 1;
22372 }
22373
22374 /* Set the mark field in CU and in every other compilation unit in the
22375 cache that we must keep because we are keeping CU. */
22376
22377 static void
22378 dwarf2_mark (struct dwarf2_cu *cu)
22379 {
22380 if (cu->mark)
22381 return;
22382 cu->mark = 1;
22383 if (cu->dependencies != NULL)
22384 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22385 }
22386
22387 static void
22388 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22389 {
22390 while (per_cu)
22391 {
22392 per_cu->cu->mark = 0;
22393 per_cu = per_cu->cu->read_in_chain;
22394 }
22395 }
22396
22397 /* Trivial hash function for partial_die_info: the hash value of a DIE
22398 is its offset in .debug_info for this objfile. */
22399
22400 static hashval_t
22401 partial_die_hash (const void *item)
22402 {
22403 const struct partial_die_info *part_die = item;
22404
22405 return part_die->offset.sect_off;
22406 }
22407
22408 /* Trivial comparison function for partial_die_info structures: two DIEs
22409 are equal if they have the same offset. */
22410
22411 static int
22412 partial_die_eq (const void *item_lhs, const void *item_rhs)
22413 {
22414 const struct partial_die_info *part_die_lhs = item_lhs;
22415 const struct partial_die_info *part_die_rhs = item_rhs;
22416
22417 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22418 }
22419
22420 static struct cmd_list_element *set_dwarf_cmdlist;
22421 static struct cmd_list_element *show_dwarf_cmdlist;
22422
22423 static void
22424 set_dwarf_cmd (char *args, int from_tty)
22425 {
22426 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22427 gdb_stdout);
22428 }
22429
22430 static void
22431 show_dwarf_cmd (char *args, int from_tty)
22432 {
22433 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22434 }
22435
22436 /* Free data associated with OBJFILE, if necessary. */
22437
22438 static void
22439 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22440 {
22441 struct dwarf2_per_objfile *data = d;
22442 int ix;
22443
22444 /* Make sure we don't accidentally use dwarf2_per_objfile while
22445 cleaning up. */
22446 dwarf2_per_objfile = NULL;
22447
22448 for (ix = 0; ix < data->n_comp_units; ++ix)
22449 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22450
22451 for (ix = 0; ix < data->n_type_units; ++ix)
22452 VEC_free (dwarf2_per_cu_ptr,
22453 data->all_type_units[ix]->per_cu.imported_symtabs);
22454 xfree (data->all_type_units);
22455
22456 VEC_free (dwarf2_section_info_def, data->types);
22457
22458 if (data->dwo_files)
22459 free_dwo_files (data->dwo_files, objfile);
22460 if (data->dwp_file)
22461 gdb_bfd_unref (data->dwp_file->dbfd);
22462
22463 if (data->dwz_file && data->dwz_file->dwz_bfd)
22464 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22465 }
22466
22467 \f
22468 /* The "save gdb-index" command. */
22469
22470 /* The contents of the hash table we create when building the string
22471 table. */
22472 struct strtab_entry
22473 {
22474 offset_type offset;
22475 const char *str;
22476 };
22477
22478 /* Hash function for a strtab_entry.
22479
22480 Function is used only during write_hash_table so no index format backward
22481 compatibility is needed. */
22482
22483 static hashval_t
22484 hash_strtab_entry (const void *e)
22485 {
22486 const struct strtab_entry *entry = e;
22487 return mapped_index_string_hash (INT_MAX, entry->str);
22488 }
22489
22490 /* Equality function for a strtab_entry. */
22491
22492 static int
22493 eq_strtab_entry (const void *a, const void *b)
22494 {
22495 const struct strtab_entry *ea = a;
22496 const struct strtab_entry *eb = b;
22497 return !strcmp (ea->str, eb->str);
22498 }
22499
22500 /* Create a strtab_entry hash table. */
22501
22502 static htab_t
22503 create_strtab (void)
22504 {
22505 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22506 xfree, xcalloc, xfree);
22507 }
22508
22509 /* Add a string to the constant pool. Return the string's offset in
22510 host order. */
22511
22512 static offset_type
22513 add_string (htab_t table, struct obstack *cpool, const char *str)
22514 {
22515 void **slot;
22516 struct strtab_entry entry;
22517 struct strtab_entry *result;
22518
22519 entry.str = str;
22520 slot = htab_find_slot (table, &entry, INSERT);
22521 if (*slot)
22522 result = *slot;
22523 else
22524 {
22525 result = XNEW (struct strtab_entry);
22526 result->offset = obstack_object_size (cpool);
22527 result->str = str;
22528 obstack_grow_str0 (cpool, str);
22529 *slot = result;
22530 }
22531 return result->offset;
22532 }
22533
22534 /* An entry in the symbol table. */
22535 struct symtab_index_entry
22536 {
22537 /* The name of the symbol. */
22538 const char *name;
22539 /* The offset of the name in the constant pool. */
22540 offset_type index_offset;
22541 /* A sorted vector of the indices of all the CUs that hold an object
22542 of this name. */
22543 VEC (offset_type) *cu_indices;
22544 };
22545
22546 /* The symbol table. This is a power-of-2-sized hash table. */
22547 struct mapped_symtab
22548 {
22549 offset_type n_elements;
22550 offset_type size;
22551 struct symtab_index_entry **data;
22552 };
22553
22554 /* Hash function for a symtab_index_entry. */
22555
22556 static hashval_t
22557 hash_symtab_entry (const void *e)
22558 {
22559 const struct symtab_index_entry *entry = e;
22560 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22561 sizeof (offset_type) * VEC_length (offset_type,
22562 entry->cu_indices),
22563 0);
22564 }
22565
22566 /* Equality function for a symtab_index_entry. */
22567
22568 static int
22569 eq_symtab_entry (const void *a, const void *b)
22570 {
22571 const struct symtab_index_entry *ea = a;
22572 const struct symtab_index_entry *eb = b;
22573 int len = VEC_length (offset_type, ea->cu_indices);
22574 if (len != VEC_length (offset_type, eb->cu_indices))
22575 return 0;
22576 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22577 VEC_address (offset_type, eb->cu_indices),
22578 sizeof (offset_type) * len);
22579 }
22580
22581 /* Destroy a symtab_index_entry. */
22582
22583 static void
22584 delete_symtab_entry (void *p)
22585 {
22586 struct symtab_index_entry *entry = p;
22587 VEC_free (offset_type, entry->cu_indices);
22588 xfree (entry);
22589 }
22590
22591 /* Create a hash table holding symtab_index_entry objects. */
22592
22593 static htab_t
22594 create_symbol_hash_table (void)
22595 {
22596 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22597 delete_symtab_entry, xcalloc, xfree);
22598 }
22599
22600 /* Create a new mapped symtab object. */
22601
22602 static struct mapped_symtab *
22603 create_mapped_symtab (void)
22604 {
22605 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22606 symtab->n_elements = 0;
22607 symtab->size = 1024;
22608 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22609 return symtab;
22610 }
22611
22612 /* Destroy a mapped_symtab. */
22613
22614 static void
22615 cleanup_mapped_symtab (void *p)
22616 {
22617 struct mapped_symtab *symtab = p;
22618 /* The contents of the array are freed when the other hash table is
22619 destroyed. */
22620 xfree (symtab->data);
22621 xfree (symtab);
22622 }
22623
22624 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22625 the slot.
22626
22627 Function is used only during write_hash_table so no index format backward
22628 compatibility is needed. */
22629
22630 static struct symtab_index_entry **
22631 find_slot (struct mapped_symtab *symtab, const char *name)
22632 {
22633 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22634
22635 index = hash & (symtab->size - 1);
22636 step = ((hash * 17) & (symtab->size - 1)) | 1;
22637
22638 for (;;)
22639 {
22640 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22641 return &symtab->data[index];
22642 index = (index + step) & (symtab->size - 1);
22643 }
22644 }
22645
22646 /* Expand SYMTAB's hash table. */
22647
22648 static void
22649 hash_expand (struct mapped_symtab *symtab)
22650 {
22651 offset_type old_size = symtab->size;
22652 offset_type i;
22653 struct symtab_index_entry **old_entries = symtab->data;
22654
22655 symtab->size *= 2;
22656 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22657
22658 for (i = 0; i < old_size; ++i)
22659 {
22660 if (old_entries[i])
22661 {
22662 struct symtab_index_entry **slot = find_slot (symtab,
22663 old_entries[i]->name);
22664 *slot = old_entries[i];
22665 }
22666 }
22667
22668 xfree (old_entries);
22669 }
22670
22671 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22672 CU_INDEX is the index of the CU in which the symbol appears.
22673 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22674
22675 static void
22676 add_index_entry (struct mapped_symtab *symtab, const char *name,
22677 int is_static, gdb_index_symbol_kind kind,
22678 offset_type cu_index)
22679 {
22680 struct symtab_index_entry **slot;
22681 offset_type cu_index_and_attrs;
22682
22683 ++symtab->n_elements;
22684 if (4 * symtab->n_elements / 3 >= symtab->size)
22685 hash_expand (symtab);
22686
22687 slot = find_slot (symtab, name);
22688 if (!*slot)
22689 {
22690 *slot = XNEW (struct symtab_index_entry);
22691 (*slot)->name = name;
22692 /* index_offset is set later. */
22693 (*slot)->cu_indices = NULL;
22694 }
22695
22696 cu_index_and_attrs = 0;
22697 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22698 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22699 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22700
22701 /* We don't want to record an index value twice as we want to avoid the
22702 duplication.
22703 We process all global symbols and then all static symbols
22704 (which would allow us to avoid the duplication by only having to check
22705 the last entry pushed), but a symbol could have multiple kinds in one CU.
22706 To keep things simple we don't worry about the duplication here and
22707 sort and uniqufy the list after we've processed all symbols. */
22708 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22709 }
22710
22711 /* qsort helper routine for uniquify_cu_indices. */
22712
22713 static int
22714 offset_type_compare (const void *ap, const void *bp)
22715 {
22716 offset_type a = *(offset_type *) ap;
22717 offset_type b = *(offset_type *) bp;
22718
22719 return (a > b) - (b > a);
22720 }
22721
22722 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22723
22724 static void
22725 uniquify_cu_indices (struct mapped_symtab *symtab)
22726 {
22727 int i;
22728
22729 for (i = 0; i < symtab->size; ++i)
22730 {
22731 struct symtab_index_entry *entry = symtab->data[i];
22732
22733 if (entry
22734 && entry->cu_indices != NULL)
22735 {
22736 unsigned int next_to_insert, next_to_check;
22737 offset_type last_value;
22738
22739 qsort (VEC_address (offset_type, entry->cu_indices),
22740 VEC_length (offset_type, entry->cu_indices),
22741 sizeof (offset_type), offset_type_compare);
22742
22743 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22744 next_to_insert = 1;
22745 for (next_to_check = 1;
22746 next_to_check < VEC_length (offset_type, entry->cu_indices);
22747 ++next_to_check)
22748 {
22749 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22750 != last_value)
22751 {
22752 last_value = VEC_index (offset_type, entry->cu_indices,
22753 next_to_check);
22754 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22755 last_value);
22756 ++next_to_insert;
22757 }
22758 }
22759 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22760 }
22761 }
22762 }
22763
22764 /* Add a vector of indices to the constant pool. */
22765
22766 static offset_type
22767 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22768 struct symtab_index_entry *entry)
22769 {
22770 void **slot;
22771
22772 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22773 if (!*slot)
22774 {
22775 offset_type len = VEC_length (offset_type, entry->cu_indices);
22776 offset_type val = MAYBE_SWAP (len);
22777 offset_type iter;
22778 int i;
22779
22780 *slot = entry;
22781 entry->index_offset = obstack_object_size (cpool);
22782
22783 obstack_grow (cpool, &val, sizeof (val));
22784 for (i = 0;
22785 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22786 ++i)
22787 {
22788 val = MAYBE_SWAP (iter);
22789 obstack_grow (cpool, &val, sizeof (val));
22790 }
22791 }
22792 else
22793 {
22794 struct symtab_index_entry *old_entry = *slot;
22795 entry->index_offset = old_entry->index_offset;
22796 entry = old_entry;
22797 }
22798 return entry->index_offset;
22799 }
22800
22801 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22802 constant pool entries going into the obstack CPOOL. */
22803
22804 static void
22805 write_hash_table (struct mapped_symtab *symtab,
22806 struct obstack *output, struct obstack *cpool)
22807 {
22808 offset_type i;
22809 htab_t symbol_hash_table;
22810 htab_t str_table;
22811
22812 symbol_hash_table = create_symbol_hash_table ();
22813 str_table = create_strtab ();
22814
22815 /* We add all the index vectors to the constant pool first, to
22816 ensure alignment is ok. */
22817 for (i = 0; i < symtab->size; ++i)
22818 {
22819 if (symtab->data[i])
22820 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22821 }
22822
22823 /* Now write out the hash table. */
22824 for (i = 0; i < symtab->size; ++i)
22825 {
22826 offset_type str_off, vec_off;
22827
22828 if (symtab->data[i])
22829 {
22830 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22831 vec_off = symtab->data[i]->index_offset;
22832 }
22833 else
22834 {
22835 /* While 0 is a valid constant pool index, it is not valid
22836 to have 0 for both offsets. */
22837 str_off = 0;
22838 vec_off = 0;
22839 }
22840
22841 str_off = MAYBE_SWAP (str_off);
22842 vec_off = MAYBE_SWAP (vec_off);
22843
22844 obstack_grow (output, &str_off, sizeof (str_off));
22845 obstack_grow (output, &vec_off, sizeof (vec_off));
22846 }
22847
22848 htab_delete (str_table);
22849 htab_delete (symbol_hash_table);
22850 }
22851
22852 /* Struct to map psymtab to CU index in the index file. */
22853 struct psymtab_cu_index_map
22854 {
22855 struct partial_symtab *psymtab;
22856 unsigned int cu_index;
22857 };
22858
22859 static hashval_t
22860 hash_psymtab_cu_index (const void *item)
22861 {
22862 const struct psymtab_cu_index_map *map = item;
22863
22864 return htab_hash_pointer (map->psymtab);
22865 }
22866
22867 static int
22868 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22869 {
22870 const struct psymtab_cu_index_map *lhs = item_lhs;
22871 const struct psymtab_cu_index_map *rhs = item_rhs;
22872
22873 return lhs->psymtab == rhs->psymtab;
22874 }
22875
22876 /* Helper struct for building the address table. */
22877 struct addrmap_index_data
22878 {
22879 struct objfile *objfile;
22880 struct obstack *addr_obstack;
22881 htab_t cu_index_htab;
22882
22883 /* Non-zero if the previous_* fields are valid.
22884 We can't write an entry until we see the next entry (since it is only then
22885 that we know the end of the entry). */
22886 int previous_valid;
22887 /* Index of the CU in the table of all CUs in the index file. */
22888 unsigned int previous_cu_index;
22889 /* Start address of the CU. */
22890 CORE_ADDR previous_cu_start;
22891 };
22892
22893 /* Write an address entry to OBSTACK. */
22894
22895 static void
22896 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22897 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22898 {
22899 offset_type cu_index_to_write;
22900 gdb_byte addr[8];
22901 CORE_ADDR baseaddr;
22902
22903 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22904
22905 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22906 obstack_grow (obstack, addr, 8);
22907 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22908 obstack_grow (obstack, addr, 8);
22909 cu_index_to_write = MAYBE_SWAP (cu_index);
22910 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22911 }
22912
22913 /* Worker function for traversing an addrmap to build the address table. */
22914
22915 static int
22916 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22917 {
22918 struct addrmap_index_data *data = datap;
22919 struct partial_symtab *pst = obj;
22920
22921 if (data->previous_valid)
22922 add_address_entry (data->objfile, data->addr_obstack,
22923 data->previous_cu_start, start_addr,
22924 data->previous_cu_index);
22925
22926 data->previous_cu_start = start_addr;
22927 if (pst != NULL)
22928 {
22929 struct psymtab_cu_index_map find_map, *map;
22930 find_map.psymtab = pst;
22931 map = htab_find (data->cu_index_htab, &find_map);
22932 gdb_assert (map != NULL);
22933 data->previous_cu_index = map->cu_index;
22934 data->previous_valid = 1;
22935 }
22936 else
22937 data->previous_valid = 0;
22938
22939 return 0;
22940 }
22941
22942 /* Write OBJFILE's address map to OBSTACK.
22943 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22944 in the index file. */
22945
22946 static void
22947 write_address_map (struct objfile *objfile, struct obstack *obstack,
22948 htab_t cu_index_htab)
22949 {
22950 struct addrmap_index_data addrmap_index_data;
22951
22952 /* When writing the address table, we have to cope with the fact that
22953 the addrmap iterator only provides the start of a region; we have to
22954 wait until the next invocation to get the start of the next region. */
22955
22956 addrmap_index_data.objfile = objfile;
22957 addrmap_index_data.addr_obstack = obstack;
22958 addrmap_index_data.cu_index_htab = cu_index_htab;
22959 addrmap_index_data.previous_valid = 0;
22960
22961 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22962 &addrmap_index_data);
22963
22964 /* It's highly unlikely the last entry (end address = 0xff...ff)
22965 is valid, but we should still handle it.
22966 The end address is recorded as the start of the next region, but that
22967 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22968 anyway. */
22969 if (addrmap_index_data.previous_valid)
22970 add_address_entry (objfile, obstack,
22971 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22972 addrmap_index_data.previous_cu_index);
22973 }
22974
22975 /* Return the symbol kind of PSYM. */
22976
22977 static gdb_index_symbol_kind
22978 symbol_kind (struct partial_symbol *psym)
22979 {
22980 domain_enum domain = PSYMBOL_DOMAIN (psym);
22981 enum address_class aclass = PSYMBOL_CLASS (psym);
22982
22983 switch (domain)
22984 {
22985 case VAR_DOMAIN:
22986 switch (aclass)
22987 {
22988 case LOC_BLOCK:
22989 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22990 case LOC_TYPEDEF:
22991 return GDB_INDEX_SYMBOL_KIND_TYPE;
22992 case LOC_COMPUTED:
22993 case LOC_CONST_BYTES:
22994 case LOC_OPTIMIZED_OUT:
22995 case LOC_STATIC:
22996 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22997 case LOC_CONST:
22998 /* Note: It's currently impossible to recognize psyms as enum values
22999 short of reading the type info. For now punt. */
23000 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23001 default:
23002 /* There are other LOC_FOO values that one might want to classify
23003 as variables, but dwarf2read.c doesn't currently use them. */
23004 return GDB_INDEX_SYMBOL_KIND_OTHER;
23005 }
23006 case STRUCT_DOMAIN:
23007 return GDB_INDEX_SYMBOL_KIND_TYPE;
23008 default:
23009 return GDB_INDEX_SYMBOL_KIND_OTHER;
23010 }
23011 }
23012
23013 /* Add a list of partial symbols to SYMTAB. */
23014
23015 static void
23016 write_psymbols (struct mapped_symtab *symtab,
23017 htab_t psyms_seen,
23018 struct partial_symbol **psymp,
23019 int count,
23020 offset_type cu_index,
23021 int is_static)
23022 {
23023 for (; count-- > 0; ++psymp)
23024 {
23025 struct partial_symbol *psym = *psymp;
23026 void **slot;
23027
23028 if (SYMBOL_LANGUAGE (psym) == language_ada)
23029 error (_("Ada is not currently supported by the index"));
23030
23031 /* Only add a given psymbol once. */
23032 slot = htab_find_slot (psyms_seen, psym, INSERT);
23033 if (!*slot)
23034 {
23035 gdb_index_symbol_kind kind = symbol_kind (psym);
23036
23037 *slot = psym;
23038 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23039 is_static, kind, cu_index);
23040 }
23041 }
23042 }
23043
23044 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23045 exception if there is an error. */
23046
23047 static void
23048 write_obstack (FILE *file, struct obstack *obstack)
23049 {
23050 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23051 file)
23052 != obstack_object_size (obstack))
23053 error (_("couldn't data write to file"));
23054 }
23055
23056 /* Unlink a file if the argument is not NULL. */
23057
23058 static void
23059 unlink_if_set (void *p)
23060 {
23061 char **filename = p;
23062 if (*filename)
23063 unlink (*filename);
23064 }
23065
23066 /* A helper struct used when iterating over debug_types. */
23067 struct signatured_type_index_data
23068 {
23069 struct objfile *objfile;
23070 struct mapped_symtab *symtab;
23071 struct obstack *types_list;
23072 htab_t psyms_seen;
23073 int cu_index;
23074 };
23075
23076 /* A helper function that writes a single signatured_type to an
23077 obstack. */
23078
23079 static int
23080 write_one_signatured_type (void **slot, void *d)
23081 {
23082 struct signatured_type_index_data *info = d;
23083 struct signatured_type *entry = (struct signatured_type *) *slot;
23084 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23085 gdb_byte val[8];
23086
23087 write_psymbols (info->symtab,
23088 info->psyms_seen,
23089 info->objfile->global_psymbols.list
23090 + psymtab->globals_offset,
23091 psymtab->n_global_syms, info->cu_index,
23092 0);
23093 write_psymbols (info->symtab,
23094 info->psyms_seen,
23095 info->objfile->static_psymbols.list
23096 + psymtab->statics_offset,
23097 psymtab->n_static_syms, info->cu_index,
23098 1);
23099
23100 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23101 entry->per_cu.offset.sect_off);
23102 obstack_grow (info->types_list, val, 8);
23103 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23104 entry->type_offset_in_tu.cu_off);
23105 obstack_grow (info->types_list, val, 8);
23106 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23107 obstack_grow (info->types_list, val, 8);
23108
23109 ++info->cu_index;
23110
23111 return 1;
23112 }
23113
23114 /* Recurse into all "included" dependencies and write their symbols as
23115 if they appeared in this psymtab. */
23116
23117 static void
23118 recursively_write_psymbols (struct objfile *objfile,
23119 struct partial_symtab *psymtab,
23120 struct mapped_symtab *symtab,
23121 htab_t psyms_seen,
23122 offset_type cu_index)
23123 {
23124 int i;
23125
23126 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23127 if (psymtab->dependencies[i]->user != NULL)
23128 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23129 symtab, psyms_seen, cu_index);
23130
23131 write_psymbols (symtab,
23132 psyms_seen,
23133 objfile->global_psymbols.list + psymtab->globals_offset,
23134 psymtab->n_global_syms, cu_index,
23135 0);
23136 write_psymbols (symtab,
23137 psyms_seen,
23138 objfile->static_psymbols.list + psymtab->statics_offset,
23139 psymtab->n_static_syms, cu_index,
23140 1);
23141 }
23142
23143 /* Create an index file for OBJFILE in the directory DIR. */
23144
23145 static void
23146 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23147 {
23148 struct cleanup *cleanup;
23149 char *filename, *cleanup_filename;
23150 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23151 struct obstack cu_list, types_cu_list;
23152 int i;
23153 FILE *out_file;
23154 struct mapped_symtab *symtab;
23155 offset_type val, size_of_contents, total_len;
23156 struct stat st;
23157 htab_t psyms_seen;
23158 htab_t cu_index_htab;
23159 struct psymtab_cu_index_map *psymtab_cu_index_map;
23160
23161 if (dwarf2_per_objfile->using_index)
23162 error (_("Cannot use an index to create the index"));
23163
23164 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23165 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23166
23167 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23168 return;
23169
23170 if (stat (objfile_name (objfile), &st) < 0)
23171 perror_with_name (objfile_name (objfile));
23172
23173 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23174 INDEX_SUFFIX, (char *) NULL);
23175 cleanup = make_cleanup (xfree, filename);
23176
23177 out_file = gdb_fopen_cloexec (filename, "wb");
23178 if (!out_file)
23179 error (_("Can't open `%s' for writing"), filename);
23180
23181 cleanup_filename = filename;
23182 make_cleanup (unlink_if_set, &cleanup_filename);
23183
23184 symtab = create_mapped_symtab ();
23185 make_cleanup (cleanup_mapped_symtab, symtab);
23186
23187 obstack_init (&addr_obstack);
23188 make_cleanup_obstack_free (&addr_obstack);
23189
23190 obstack_init (&cu_list);
23191 make_cleanup_obstack_free (&cu_list);
23192
23193 obstack_init (&types_cu_list);
23194 make_cleanup_obstack_free (&types_cu_list);
23195
23196 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23197 NULL, xcalloc, xfree);
23198 make_cleanup_htab_delete (psyms_seen);
23199
23200 /* While we're scanning CU's create a table that maps a psymtab pointer
23201 (which is what addrmap records) to its index (which is what is recorded
23202 in the index file). This will later be needed to write the address
23203 table. */
23204 cu_index_htab = htab_create_alloc (100,
23205 hash_psymtab_cu_index,
23206 eq_psymtab_cu_index,
23207 NULL, xcalloc, xfree);
23208 make_cleanup_htab_delete (cu_index_htab);
23209 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23210 xmalloc (sizeof (struct psymtab_cu_index_map)
23211 * dwarf2_per_objfile->n_comp_units);
23212 make_cleanup (xfree, psymtab_cu_index_map);
23213
23214 /* The CU list is already sorted, so we don't need to do additional
23215 work here. Also, the debug_types entries do not appear in
23216 all_comp_units, but only in their own hash table. */
23217 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23218 {
23219 struct dwarf2_per_cu_data *per_cu
23220 = dwarf2_per_objfile->all_comp_units[i];
23221 struct partial_symtab *psymtab = per_cu->v.psymtab;
23222 gdb_byte val[8];
23223 struct psymtab_cu_index_map *map;
23224 void **slot;
23225
23226 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23227 It may be referenced from a local scope but in such case it does not
23228 need to be present in .gdb_index. */
23229 if (psymtab == NULL)
23230 continue;
23231
23232 if (psymtab->user == NULL)
23233 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23234
23235 map = &psymtab_cu_index_map[i];
23236 map->psymtab = psymtab;
23237 map->cu_index = i;
23238 slot = htab_find_slot (cu_index_htab, map, INSERT);
23239 gdb_assert (slot != NULL);
23240 gdb_assert (*slot == NULL);
23241 *slot = map;
23242
23243 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23244 per_cu->offset.sect_off);
23245 obstack_grow (&cu_list, val, 8);
23246 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23247 obstack_grow (&cu_list, val, 8);
23248 }
23249
23250 /* Dump the address map. */
23251 write_address_map (objfile, &addr_obstack, cu_index_htab);
23252
23253 /* Write out the .debug_type entries, if any. */
23254 if (dwarf2_per_objfile->signatured_types)
23255 {
23256 struct signatured_type_index_data sig_data;
23257
23258 sig_data.objfile = objfile;
23259 sig_data.symtab = symtab;
23260 sig_data.types_list = &types_cu_list;
23261 sig_data.psyms_seen = psyms_seen;
23262 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23263 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23264 write_one_signatured_type, &sig_data);
23265 }
23266
23267 /* Now that we've processed all symbols we can shrink their cu_indices
23268 lists. */
23269 uniquify_cu_indices (symtab);
23270
23271 obstack_init (&constant_pool);
23272 make_cleanup_obstack_free (&constant_pool);
23273 obstack_init (&symtab_obstack);
23274 make_cleanup_obstack_free (&symtab_obstack);
23275 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23276
23277 obstack_init (&contents);
23278 make_cleanup_obstack_free (&contents);
23279 size_of_contents = 6 * sizeof (offset_type);
23280 total_len = size_of_contents;
23281
23282 /* The version number. */
23283 val = MAYBE_SWAP (8);
23284 obstack_grow (&contents, &val, sizeof (val));
23285
23286 /* The offset of the CU list from the start of the file. */
23287 val = MAYBE_SWAP (total_len);
23288 obstack_grow (&contents, &val, sizeof (val));
23289 total_len += obstack_object_size (&cu_list);
23290
23291 /* The offset of the types CU list from the start of the file. */
23292 val = MAYBE_SWAP (total_len);
23293 obstack_grow (&contents, &val, sizeof (val));
23294 total_len += obstack_object_size (&types_cu_list);
23295
23296 /* The offset of the address table from the start of the file. */
23297 val = MAYBE_SWAP (total_len);
23298 obstack_grow (&contents, &val, sizeof (val));
23299 total_len += obstack_object_size (&addr_obstack);
23300
23301 /* The offset of the symbol table from the start of the file. */
23302 val = MAYBE_SWAP (total_len);
23303 obstack_grow (&contents, &val, sizeof (val));
23304 total_len += obstack_object_size (&symtab_obstack);
23305
23306 /* The offset of the constant pool from the start of the file. */
23307 val = MAYBE_SWAP (total_len);
23308 obstack_grow (&contents, &val, sizeof (val));
23309 total_len += obstack_object_size (&constant_pool);
23310
23311 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23312
23313 write_obstack (out_file, &contents);
23314 write_obstack (out_file, &cu_list);
23315 write_obstack (out_file, &types_cu_list);
23316 write_obstack (out_file, &addr_obstack);
23317 write_obstack (out_file, &symtab_obstack);
23318 write_obstack (out_file, &constant_pool);
23319
23320 fclose (out_file);
23321
23322 /* We want to keep the file, so we set cleanup_filename to NULL
23323 here. See unlink_if_set. */
23324 cleanup_filename = NULL;
23325
23326 do_cleanups (cleanup);
23327 }
23328
23329 /* Implementation of the `save gdb-index' command.
23330
23331 Note that the file format used by this command is documented in the
23332 GDB manual. Any changes here must be documented there. */
23333
23334 static void
23335 save_gdb_index_command (char *arg, int from_tty)
23336 {
23337 struct objfile *objfile;
23338
23339 if (!arg || !*arg)
23340 error (_("usage: save gdb-index DIRECTORY"));
23341
23342 ALL_OBJFILES (objfile)
23343 {
23344 struct stat st;
23345
23346 /* If the objfile does not correspond to an actual file, skip it. */
23347 if (stat (objfile_name (objfile), &st) < 0)
23348 continue;
23349
23350 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23351 if (dwarf2_per_objfile)
23352 {
23353
23354 TRY
23355 {
23356 write_psymtabs_to_index (objfile, arg);
23357 }
23358 CATCH (except, RETURN_MASK_ERROR)
23359 {
23360 exception_fprintf (gdb_stderr, except,
23361 _("Error while writing index for `%s': "),
23362 objfile_name (objfile));
23363 }
23364 END_CATCH
23365 }
23366 }
23367 }
23368
23369 \f
23370
23371 int dwarf_always_disassemble;
23372
23373 static void
23374 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23375 struct cmd_list_element *c, const char *value)
23376 {
23377 fprintf_filtered (file,
23378 _("Whether to always disassemble "
23379 "DWARF expressions is %s.\n"),
23380 value);
23381 }
23382
23383 static void
23384 show_check_physname (struct ui_file *file, int from_tty,
23385 struct cmd_list_element *c, const char *value)
23386 {
23387 fprintf_filtered (file,
23388 _("Whether to check \"physname\" is %s.\n"),
23389 value);
23390 }
23391
23392 void _initialize_dwarf2_read (void);
23393
23394 void
23395 _initialize_dwarf2_read (void)
23396 {
23397 struct cmd_list_element *c;
23398
23399 dwarf2_objfile_data_key
23400 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23401
23402 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23403 Set DWARF specific variables.\n\
23404 Configure DWARF variables such as the cache size"),
23405 &set_dwarf_cmdlist, "maintenance set dwarf ",
23406 0/*allow-unknown*/, &maintenance_set_cmdlist);
23407
23408 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23409 Show DWARF specific variables\n\
23410 Show DWARF variables such as the cache size"),
23411 &show_dwarf_cmdlist, "maintenance show dwarf ",
23412 0/*allow-unknown*/, &maintenance_show_cmdlist);
23413
23414 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23415 &dwarf_max_cache_age, _("\
23416 Set the upper bound on the age of cached DWARF compilation units."), _("\
23417 Show the upper bound on the age of cached DWARF compilation units."), _("\
23418 A higher limit means that cached compilation units will be stored\n\
23419 in memory longer, and more total memory will be used. Zero disables\n\
23420 caching, which can slow down startup."),
23421 NULL,
23422 show_dwarf_max_cache_age,
23423 &set_dwarf_cmdlist,
23424 &show_dwarf_cmdlist);
23425
23426 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23427 &dwarf_always_disassemble, _("\
23428 Set whether `info address' always disassembles DWARF expressions."), _("\
23429 Show whether `info address' always disassembles DWARF expressions."), _("\
23430 When enabled, DWARF expressions are always printed in an assembly-like\n\
23431 syntax. When disabled, expressions will be printed in a more\n\
23432 conversational style, when possible."),
23433 NULL,
23434 show_dwarf_always_disassemble,
23435 &set_dwarf_cmdlist,
23436 &show_dwarf_cmdlist);
23437
23438 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23439 Set debugging of the DWARF reader."), _("\
23440 Show debugging of the DWARF reader."), _("\
23441 When enabled (non-zero), debugging messages are printed during DWARF\n\
23442 reading and symtab expansion. A value of 1 (one) provides basic\n\
23443 information. A value greater than 1 provides more verbose information."),
23444 NULL,
23445 NULL,
23446 &setdebuglist, &showdebuglist);
23447
23448 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23449 Set debugging of the DWARF DIE reader."), _("\
23450 Show debugging of the DWARF DIE reader."), _("\
23451 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23452 The value is the maximum depth to print."),
23453 NULL,
23454 NULL,
23455 &setdebuglist, &showdebuglist);
23456
23457 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23458 Set debugging of the dwarf line reader."), _("\
23459 Show debugging of the dwarf line reader."), _("\
23460 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23461 A value of 1 (one) provides basic information.\n\
23462 A value greater than 1 provides more verbose information."),
23463 NULL,
23464 NULL,
23465 &setdebuglist, &showdebuglist);
23466
23467 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23468 Set cross-checking of \"physname\" code against demangler."), _("\
23469 Show cross-checking of \"physname\" code against demangler."), _("\
23470 When enabled, GDB's internal \"physname\" code is checked against\n\
23471 the demangler."),
23472 NULL, show_check_physname,
23473 &setdebuglist, &showdebuglist);
23474
23475 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23476 no_class, &use_deprecated_index_sections, _("\
23477 Set whether to use deprecated gdb_index sections."), _("\
23478 Show whether to use deprecated gdb_index sections."), _("\
23479 When enabled, deprecated .gdb_index sections are used anyway.\n\
23480 Normally they are ignored either because of a missing feature or\n\
23481 performance issue.\n\
23482 Warning: This option must be enabled before gdb reads the file."),
23483 NULL,
23484 NULL,
23485 &setlist, &showlist);
23486
23487 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23488 _("\
23489 Save a gdb-index file.\n\
23490 Usage: save gdb-index DIRECTORY"),
23491 &save_cmdlist);
23492 set_cmd_completer (c, filename_completer);
23493
23494 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23495 &dwarf2_locexpr_funcs);
23496 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23497 &dwarf2_loclist_funcs);
23498
23499 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23500 &dwarf2_block_frame_base_locexpr_funcs);
23501 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23502 &dwarf2_block_frame_base_loclist_funcs);
23503 }
This page took 0.546039 seconds and 4 git commands to generate.