2005-10-31 Andrew Stubbs <andrew.stubbs@st.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256 };
257
258 /* Fixed size for the DIE hash table. */
259 #ifndef REF_HASH_SIZE
260 #define REF_HASH_SIZE 1021
261 #endif
262
263 /* Internal state when decoding a particular compilation unit. */
264 struct dwarf2_cu
265 {
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
380 htab_t type_hash;
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
384 };
385
386 /* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389 struct line_header
390 {
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
418 {
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
423 int included_p; /* Non-zero if referenced by the Line Number Program. */
424 } *file_names;
425
426 /* The start and end of the statement program following this
427 header. These point into dwarf2_per_objfile->line_buffer. */
428 char *statement_program_start, *statement_program_end;
429 };
430
431 /* When we construct a partial symbol table entry we only
432 need this much information. */
433 struct partial_die_info
434 {
435 /* Offset of this DIE. */
436 unsigned int offset;
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag) tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
451 unsigned int has_stmt_list : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
461 char *name;
462 char *dirname;
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
478 char *sibling;
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493 /* This data structure holds the information of an abbrev. */
494 struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504 struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510 /* This data structure holds a complete die structure. */
511 struct die_info
512 {
513 enum dwarf_tag tag; /* Tag indicating type of die */
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
528
529 struct type *type; /* Cached type information */
530 };
531
532 /* Attributes have a name and a value */
533 struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
541 unsigned long unsnd;
542 long int snd;
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
548 struct function_range
549 {
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554 };
555
556 /* Get at parts of an attribute structure */
557
558 #define DW_STRING(attr) ((attr)->u.str)
559 #define DW_UNSND(attr) ((attr)->u.unsnd)
560 #define DW_BLOCK(attr) ((attr)->u.blk)
561 #define DW_SND(attr) ((attr)->u.snd)
562 #define DW_ADDR(attr) ((attr)->u.addr)
563
564 /* Blocks are a bunch of untyped bytes. */
565 struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
571 #ifndef ATTR_ALLOC_CHUNK
572 #define ATTR_ALLOC_CHUNK 4
573 #endif
574
575 /* Allocate fields for structs, unions and enums in this size. */
576 #ifndef DW_FIELD_ALLOC_CHUNK
577 #define DW_FIELD_ALLOC_CHUNK 4
578 #endif
579
580 /* A zeroed version of a partial die for initialization purposes. */
581 static struct partial_die_info zeroed_partial_die;
582
583 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
584 but this would require a corresponding change in unpack_field_as_long
585 and friends. */
586 static int bits_per_byte = 8;
587
588 /* The routines that read and process dies for a C struct or C++ class
589 pass lists of data member fields and lists of member function fields
590 in an instance of a field_info structure, as defined below. */
591 struct field_info
592 {
593 /* List of data member and baseclasses fields. */
594 struct nextfield
595 {
596 struct nextfield *next;
597 int accessibility;
598 int virtuality;
599 struct field field;
600 }
601 *fields;
602
603 /* Number of fields. */
604 int nfields;
605
606 /* Number of baseclasses. */
607 int nbaseclasses;
608
609 /* Set if the accesibility of one of the fields is not public. */
610 int non_public_fields;
611
612 /* Member function fields array, entries are allocated in the order they
613 are encountered in the object file. */
614 struct nextfnfield
615 {
616 struct nextfnfield *next;
617 struct fn_field fnfield;
618 }
619 *fnfields;
620
621 /* Member function fieldlist array, contains name of possibly overloaded
622 member function, number of overloaded member functions and a pointer
623 to the head of the member function field chain. */
624 struct fnfieldlist
625 {
626 char *name;
627 int length;
628 struct nextfnfield *head;
629 }
630 *fnfieldlists;
631
632 /* Number of entries in the fnfieldlists array. */
633 int nfnfields;
634 };
635
636 /* One item on the queue of compilation units to read in full symbols
637 for. */
638 struct dwarf2_queue_item
639 {
640 struct dwarf2_per_cu_data *per_cu;
641 struct dwarf2_queue_item *next;
642 };
643
644 /* The current queue. */
645 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
646
647 /* Loaded secondary compilation units are kept in memory until they
648 have not been referenced for the processing of this many
649 compilation units. Set this to zero to disable caching. Cache
650 sizes of up to at least twenty will improve startup time for
651 typical inter-CU-reference binaries, at an obvious memory cost. */
652 static int dwarf2_max_cache_age = 5;
653 static void
654 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
655 struct cmd_list_element *c, const char *value)
656 {
657 fprintf_filtered (file, _("\
658 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
659 value);
660 }
661
662
663 /* Various complaints about symbol reading that don't abort the process */
664
665 static void
666 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
667 {
668 complaint (&symfile_complaints,
669 _("statement list doesn't fit in .debug_line section"));
670 }
671
672 static void
673 dwarf2_complex_location_expr_complaint (void)
674 {
675 complaint (&symfile_complaints, _("location expression too complex"));
676 }
677
678 static void
679 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
680 int arg3)
681 {
682 complaint (&symfile_complaints,
683 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
684 arg2, arg3);
685 }
686
687 static void
688 dwarf2_macros_too_long_complaint (void)
689 {
690 complaint (&symfile_complaints,
691 _("macro info runs off end of `.debug_macinfo' section"));
692 }
693
694 static void
695 dwarf2_macro_malformed_definition_complaint (const char *arg1)
696 {
697 complaint (&symfile_complaints,
698 _("macro debug info contains a malformed macro definition:\n`%s'"),
699 arg1);
700 }
701
702 static void
703 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
704 {
705 complaint (&symfile_complaints,
706 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
707 }
708
709 /* local function prototypes */
710
711 static void dwarf2_locate_sections (bfd *, asection *, void *);
712
713 #if 0
714 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
715 #endif
716
717 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
718 struct objfile *);
719
720 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
721 struct partial_die_info *,
722 struct partial_symtab *);
723
724 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
725
726 static void scan_partial_symbols (struct partial_die_info *,
727 CORE_ADDR *, CORE_ADDR *,
728 struct dwarf2_cu *);
729
730 static void add_partial_symbol (struct partial_die_info *,
731 struct dwarf2_cu *);
732
733 static int pdi_needs_namespace (enum dwarf_tag tag);
734
735 static void add_partial_namespace (struct partial_die_info *pdi,
736 CORE_ADDR *lowpc, CORE_ADDR *highpc,
737 struct dwarf2_cu *cu);
738
739 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
740 struct dwarf2_cu *cu);
741
742 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
743 char *info_ptr,
744 bfd *abfd,
745 struct dwarf2_cu *cu);
746
747 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
748
749 static void psymtab_to_symtab_1 (struct partial_symtab *);
750
751 char *dwarf2_read_section (struct objfile *, asection *);
752
753 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
754
755 static void dwarf2_free_abbrev_table (void *);
756
757 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
758
759 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
760 struct dwarf2_cu *);
761
762 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
763 struct dwarf2_cu *);
764
765 static char *read_partial_die (struct partial_die_info *,
766 struct abbrev_info *abbrev, unsigned int,
767 bfd *, char *, struct dwarf2_cu *);
768
769 static struct partial_die_info *find_partial_die (unsigned long,
770 struct dwarf2_cu *);
771
772 static void fixup_partial_die (struct partial_die_info *,
773 struct dwarf2_cu *);
774
775 static char *read_full_die (struct die_info **, bfd *, char *,
776 struct dwarf2_cu *, int *);
777
778 static char *read_attribute (struct attribute *, struct attr_abbrev *,
779 bfd *, char *, struct dwarf2_cu *);
780
781 static char *read_attribute_value (struct attribute *, unsigned,
782 bfd *, char *, struct dwarf2_cu *);
783
784 static unsigned int read_1_byte (bfd *, char *);
785
786 static int read_1_signed_byte (bfd *, char *);
787
788 static unsigned int read_2_bytes (bfd *, char *);
789
790 static unsigned int read_4_bytes (bfd *, char *);
791
792 static unsigned long read_8_bytes (bfd *, char *);
793
794 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
795 int *bytes_read);
796
797 static LONGEST read_initial_length (bfd *, char *,
798 struct comp_unit_head *, int *bytes_read);
799
800 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
801 int *bytes_read);
802
803 static char *read_n_bytes (bfd *, char *, unsigned int);
804
805 static char *read_string (bfd *, char *, unsigned int *);
806
807 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
808 unsigned int *);
809
810 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
811
812 static long read_signed_leb128 (bfd *, char *, unsigned int *);
813
814 static char *skip_leb128 (bfd *, char *);
815
816 static void set_cu_language (unsigned int, struct dwarf2_cu *);
817
818 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
819 struct dwarf2_cu *);
820
821 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
822 struct dwarf2_cu *cu);
823
824 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
825
826 static struct die_info *die_specification (struct die_info *die,
827 struct dwarf2_cu *);
828
829 static void free_line_header (struct line_header *lh);
830
831 static void add_file_name (struct line_header *, char *, unsigned int,
832 unsigned int, unsigned int);
833
834 static struct line_header *(dwarf_decode_line_header
835 (unsigned int offset,
836 bfd *abfd, struct dwarf2_cu *cu));
837
838 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
839 struct dwarf2_cu *, struct partial_symtab *);
840
841 static void dwarf2_start_subfile (char *, char *);
842
843 static struct symbol *new_symbol (struct die_info *, struct type *,
844 struct dwarf2_cu *);
845
846 static void dwarf2_const_value (struct attribute *, struct symbol *,
847 struct dwarf2_cu *);
848
849 static void dwarf2_const_value_data (struct attribute *attr,
850 struct symbol *sym,
851 int bits);
852
853 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
854
855 static struct type *die_containing_type (struct die_info *,
856 struct dwarf2_cu *);
857
858 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
859
860 static void read_type_die (struct die_info *, struct dwarf2_cu *);
861
862 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
863
864 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
865 struct dwarf2_cu *);
866
867 static void read_typedef (struct die_info *, struct dwarf2_cu *);
868
869 static void read_base_type (struct die_info *, struct dwarf2_cu *);
870
871 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
872
873 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
874
875 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
876
877 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
878
879 static int dwarf2_get_pc_bounds (struct die_info *,
880 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
881
882 static void get_scope_pc_bounds (struct die_info *,
883 CORE_ADDR *, CORE_ADDR *,
884 struct dwarf2_cu *);
885
886 static void dwarf2_add_field (struct field_info *, struct die_info *,
887 struct dwarf2_cu *);
888
889 static void dwarf2_attach_fields_to_type (struct field_info *,
890 struct type *, struct dwarf2_cu *);
891
892 static void dwarf2_add_member_fn (struct field_info *,
893 struct die_info *, struct type *,
894 struct dwarf2_cu *);
895
896 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
897 struct type *, struct dwarf2_cu *);
898
899 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
900
901 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
902
903 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
904
905 static void read_common_block (struct die_info *, struct dwarf2_cu *);
906
907 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
908
909 static const char *namespace_name (struct die_info *die,
910 int *is_anonymous, struct dwarf2_cu *);
911
912 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
913
914 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
915
916 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
917
918 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
919
920 static void read_array_type (struct die_info *, struct dwarf2_cu *);
921
922 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
923 struct dwarf2_cu *);
924
925 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
926
927 static void read_tag_ptr_to_member_type (struct die_info *,
928 struct dwarf2_cu *);
929
930 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
931
932 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
933
934 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
935
936 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
937
938 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
939
940 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
941
942 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
943 struct dwarf2_cu *,
944 char **new_info_ptr,
945 struct die_info *parent);
946
947 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
948 struct dwarf2_cu *,
949 char **new_info_ptr,
950 struct die_info *parent);
951
952 static void free_die_list (struct die_info *);
953
954 static void process_die (struct die_info *, struct dwarf2_cu *);
955
956 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
957
958 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
959
960 static struct die_info *dwarf2_extension (struct die_info *die,
961 struct dwarf2_cu *);
962
963 static char *dwarf_tag_name (unsigned int);
964
965 static char *dwarf_attr_name (unsigned int);
966
967 static char *dwarf_form_name (unsigned int);
968
969 static char *dwarf_stack_op_name (unsigned int);
970
971 static char *dwarf_bool_name (unsigned int);
972
973 static char *dwarf_type_encoding_name (unsigned int);
974
975 #if 0
976 static char *dwarf_cfi_name (unsigned int);
977
978 struct die_info *copy_die (struct die_info *);
979 #endif
980
981 static struct die_info *sibling_die (struct die_info *);
982
983 static void dump_die (struct die_info *);
984
985 static void dump_die_list (struct die_info *);
986
987 static void store_in_ref_table (unsigned int, struct die_info *,
988 struct dwarf2_cu *);
989
990 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
991 struct dwarf2_cu *);
992
993 static int dwarf2_get_attr_constant_value (struct attribute *, int);
994
995 static struct die_info *follow_die_ref (struct die_info *,
996 struct attribute *,
997 struct dwarf2_cu *);
998
999 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1000 struct dwarf2_cu *);
1001
1002 /* memory allocation interface */
1003
1004 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1005
1006 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1007
1008 static struct die_info *dwarf_alloc_die (void);
1009
1010 static void initialize_cu_func_list (struct dwarf2_cu *);
1011
1012 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1013 struct dwarf2_cu *);
1014
1015 static void dwarf_decode_macros (struct line_header *, unsigned int,
1016 char *, bfd *, struct dwarf2_cu *);
1017
1018 static int attr_form_is_block (struct attribute *);
1019
1020 static void
1021 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1022 struct dwarf2_cu *cu);
1023
1024 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1025 struct dwarf2_cu *cu);
1026
1027 static void free_stack_comp_unit (void *);
1028
1029 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1030
1031 static void dummy_obstack_deallocate (void *object, void *data);
1032
1033 static hashval_t partial_die_hash (const void *item);
1034
1035 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1036
1037 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1038 (unsigned long offset, struct objfile *objfile);
1039
1040 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1041 (unsigned long offset, struct objfile *objfile);
1042
1043 static void free_one_comp_unit (void *);
1044
1045 static void free_cached_comp_units (void *);
1046
1047 static void age_cached_comp_units (void);
1048
1049 static void free_one_cached_comp_unit (void *);
1050
1051 static void set_die_type (struct die_info *, struct type *,
1052 struct dwarf2_cu *);
1053
1054 static void reset_die_and_siblings_types (struct die_info *,
1055 struct dwarf2_cu *);
1056
1057 static void create_all_comp_units (struct objfile *);
1058
1059 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1060
1061 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063 static void dwarf2_add_dependence (struct dwarf2_cu *,
1064 struct dwarf2_per_cu_data *);
1065
1066 static void dwarf2_mark (struct dwarf2_cu *);
1067
1068 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1069
1070 /* Try to locate the sections we need for DWARF 2 debugging
1071 information and return true if we have enough to do something. */
1072
1073 int
1074 dwarf2_has_info (struct objfile *objfile)
1075 {
1076 struct dwarf2_per_objfile *data;
1077
1078 /* Initialize per-objfile state. */
1079 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1080 memset (data, 0, sizeof (*data));
1081 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1082 dwarf2_per_objfile = data;
1083
1084 dwarf_info_section = 0;
1085 dwarf_abbrev_section = 0;
1086 dwarf_line_section = 0;
1087 dwarf_str_section = 0;
1088 dwarf_macinfo_section = 0;
1089 dwarf_frame_section = 0;
1090 dwarf_eh_frame_section = 0;
1091 dwarf_ranges_section = 0;
1092 dwarf_loc_section = 0;
1093
1094 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1095 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1096 }
1097
1098 /* This function is mapped across the sections and remembers the
1099 offset and size of each of the debugging sections we are interested
1100 in. */
1101
1102 static void
1103 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1104 {
1105 if (strcmp (sectp->name, INFO_SECTION) == 0)
1106 {
1107 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1108 dwarf_info_section = sectp;
1109 }
1110 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1111 {
1112 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1113 dwarf_abbrev_section = sectp;
1114 }
1115 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1116 {
1117 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1118 dwarf_line_section = sectp;
1119 }
1120 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1121 {
1122 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1123 dwarf_pubnames_section = sectp;
1124 }
1125 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1126 {
1127 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1128 dwarf_aranges_section = sectp;
1129 }
1130 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1131 {
1132 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1133 dwarf_loc_section = sectp;
1134 }
1135 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1136 {
1137 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1138 dwarf_macinfo_section = sectp;
1139 }
1140 else if (strcmp (sectp->name, STR_SECTION) == 0)
1141 {
1142 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1143 dwarf_str_section = sectp;
1144 }
1145 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1146 {
1147 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1148 dwarf_frame_section = sectp;
1149 }
1150 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1151 {
1152 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1153 if (aflag & SEC_HAS_CONTENTS)
1154 {
1155 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1156 dwarf_eh_frame_section = sectp;
1157 }
1158 }
1159 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1162 dwarf_ranges_section = sectp;
1163 }
1164 }
1165
1166 /* Build a partial symbol table. */
1167
1168 void
1169 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1170 {
1171 /* We definitely need the .debug_info and .debug_abbrev sections */
1172
1173 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1174 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1175
1176 if (dwarf_line_section)
1177 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1178 else
1179 dwarf2_per_objfile->line_buffer = NULL;
1180
1181 if (dwarf_str_section)
1182 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1183 else
1184 dwarf2_per_objfile->str_buffer = NULL;
1185
1186 if (dwarf_macinfo_section)
1187 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1188 dwarf_macinfo_section);
1189 else
1190 dwarf2_per_objfile->macinfo_buffer = NULL;
1191
1192 if (dwarf_ranges_section)
1193 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1194 else
1195 dwarf2_per_objfile->ranges_buffer = NULL;
1196
1197 if (dwarf_loc_section)
1198 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1199 else
1200 dwarf2_per_objfile->loc_buffer = NULL;
1201
1202 if (mainline
1203 || (objfile->global_psymbols.size == 0
1204 && objfile->static_psymbols.size == 0))
1205 {
1206 init_psymbol_list (objfile, 1024);
1207 }
1208
1209 #if 0
1210 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1211 {
1212 /* Things are significantly easier if we have .debug_aranges and
1213 .debug_pubnames sections */
1214
1215 dwarf2_build_psymtabs_easy (objfile, mainline);
1216 }
1217 else
1218 #endif
1219 /* only test this case for now */
1220 {
1221 /* In this case we have to work a bit harder */
1222 dwarf2_build_psymtabs_hard (objfile, mainline);
1223 }
1224 }
1225
1226 #if 0
1227 /* Build the partial symbol table from the information in the
1228 .debug_pubnames and .debug_aranges sections. */
1229
1230 static void
1231 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1232 {
1233 bfd *abfd = objfile->obfd;
1234 char *aranges_buffer, *pubnames_buffer;
1235 char *aranges_ptr, *pubnames_ptr;
1236 unsigned int entry_length, version, info_offset, info_size;
1237
1238 pubnames_buffer = dwarf2_read_section (objfile,
1239 dwarf_pubnames_section);
1240 pubnames_ptr = pubnames_buffer;
1241 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1242 {
1243 struct comp_unit_head cu_header;
1244 int bytes_read;
1245
1246 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1247 &bytes_read);
1248 pubnames_ptr += bytes_read;
1249 version = read_1_byte (abfd, pubnames_ptr);
1250 pubnames_ptr += 1;
1251 info_offset = read_4_bytes (abfd, pubnames_ptr);
1252 pubnames_ptr += 4;
1253 info_size = read_4_bytes (abfd, pubnames_ptr);
1254 pubnames_ptr += 4;
1255 }
1256
1257 aranges_buffer = dwarf2_read_section (objfile,
1258 dwarf_aranges_section);
1259
1260 }
1261 #endif
1262
1263 /* Read in the comp unit header information from the debug_info at
1264 info_ptr. */
1265
1266 static char *
1267 read_comp_unit_head (struct comp_unit_head *cu_header,
1268 char *info_ptr, bfd *abfd)
1269 {
1270 int signed_addr;
1271 int bytes_read;
1272 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1273 &bytes_read);
1274 info_ptr += bytes_read;
1275 cu_header->version = read_2_bytes (abfd, info_ptr);
1276 info_ptr += 2;
1277 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1278 &bytes_read);
1279 info_ptr += bytes_read;
1280 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1281 info_ptr += 1;
1282 signed_addr = bfd_get_sign_extend_vma (abfd);
1283 if (signed_addr < 0)
1284 internal_error (__FILE__, __LINE__,
1285 _("read_comp_unit_head: dwarf from non elf file"));
1286 cu_header->signed_addr_p = signed_addr;
1287 return info_ptr;
1288 }
1289
1290 static char *
1291 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1292 bfd *abfd)
1293 {
1294 char *beg_of_comp_unit = info_ptr;
1295
1296 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1297
1298 if (header->version != 2)
1299 error (_("Dwarf Error: wrong version in compilation unit header "
1300 "(is %d, should be %d) [in module %s]"), header->version,
1301 2, bfd_get_filename (abfd));
1302
1303 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1304 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1305 "(offset 0x%lx + 6) [in module %s]"),
1306 (long) header->abbrev_offset,
1307 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1308 bfd_get_filename (abfd));
1309
1310 if (beg_of_comp_unit + header->length + header->initial_length_size
1311 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1312 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1313 "(offset 0x%lx + 0) [in module %s]"),
1314 (long) header->length,
1315 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1316 bfd_get_filename (abfd));
1317
1318 return info_ptr;
1319 }
1320
1321 /* Allocate a new partial symtab for file named NAME and mark this new
1322 partial symtab as being an include of PST. */
1323
1324 static void
1325 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1326 struct objfile *objfile)
1327 {
1328 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1329
1330 subpst->section_offsets = pst->section_offsets;
1331 subpst->textlow = 0;
1332 subpst->texthigh = 0;
1333
1334 subpst->dependencies = (struct partial_symtab **)
1335 obstack_alloc (&objfile->objfile_obstack,
1336 sizeof (struct partial_symtab *));
1337 subpst->dependencies[0] = pst;
1338 subpst->number_of_dependencies = 1;
1339
1340 subpst->globals_offset = 0;
1341 subpst->n_global_syms = 0;
1342 subpst->statics_offset = 0;
1343 subpst->n_static_syms = 0;
1344 subpst->symtab = NULL;
1345 subpst->read_symtab = pst->read_symtab;
1346 subpst->readin = 0;
1347
1348 /* No private part is necessary for include psymtabs. This property
1349 can be used to differentiate between such include psymtabs and
1350 the regular ones. */
1351 subpst->read_symtab_private = NULL;
1352 }
1353
1354 /* Read the Line Number Program data and extract the list of files
1355 included by the source file represented by PST. Build an include
1356 partial symtab for each of these included files.
1357
1358 This procedure assumes that there *is* a Line Number Program in
1359 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1360 before calling this procedure. */
1361
1362 static void
1363 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1364 struct partial_die_info *pdi,
1365 struct partial_symtab *pst)
1366 {
1367 struct objfile *objfile = cu->objfile;
1368 bfd *abfd = objfile->obfd;
1369 struct line_header *lh;
1370
1371 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1372 if (lh == NULL)
1373 return; /* No linetable, so no includes. */
1374
1375 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1376
1377 free_line_header (lh);
1378 }
1379
1380
1381 /* Build the partial symbol table by doing a quick pass through the
1382 .debug_info and .debug_abbrev sections. */
1383
1384 static void
1385 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1386 {
1387 /* Instead of reading this into a big buffer, we should probably use
1388 mmap() on architectures that support it. (FIXME) */
1389 bfd *abfd = objfile->obfd;
1390 char *info_ptr;
1391 char *beg_of_comp_unit;
1392 struct partial_die_info comp_unit_die;
1393 struct partial_symtab *pst;
1394 struct cleanup *back_to;
1395 CORE_ADDR lowpc, highpc, baseaddr;
1396
1397 info_ptr = dwarf2_per_objfile->info_buffer;
1398
1399 /* Any cached compilation units will be linked by the per-objfile
1400 read_in_chain. Make sure to free them when we're done. */
1401 back_to = make_cleanup (free_cached_comp_units, NULL);
1402
1403 create_all_comp_units (objfile);
1404
1405 /* Since the objects we're extracting from .debug_info vary in
1406 length, only the individual functions to extract them (like
1407 read_comp_unit_head and load_partial_die) can really know whether
1408 the buffer is large enough to hold another complete object.
1409
1410 At the moment, they don't actually check that. If .debug_info
1411 holds just one extra byte after the last compilation unit's dies,
1412 then read_comp_unit_head will happily read off the end of the
1413 buffer. read_partial_die is similarly casual. Those functions
1414 should be fixed.
1415
1416 For this loop condition, simply checking whether there's any data
1417 left at all should be sufficient. */
1418 while (info_ptr < (dwarf2_per_objfile->info_buffer
1419 + dwarf2_per_objfile->info_size))
1420 {
1421 struct cleanup *back_to_inner;
1422 struct dwarf2_cu cu;
1423 struct abbrev_info *abbrev;
1424 unsigned int bytes_read;
1425 struct dwarf2_per_cu_data *this_cu;
1426
1427 beg_of_comp_unit = info_ptr;
1428
1429 memset (&cu, 0, sizeof (cu));
1430
1431 obstack_init (&cu.comp_unit_obstack);
1432
1433 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1434
1435 cu.objfile = objfile;
1436 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1437
1438 /* Complete the cu_header */
1439 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1440 cu.header.first_die_ptr = info_ptr;
1441 cu.header.cu_head_ptr = beg_of_comp_unit;
1442
1443 cu.list_in_scope = &file_symbols;
1444
1445 /* Read the abbrevs for this compilation unit into a table */
1446 dwarf2_read_abbrevs (abfd, &cu);
1447 make_cleanup (dwarf2_free_abbrev_table, &cu);
1448
1449 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1450
1451 /* Read the compilation unit die */
1452 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1453 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1454 abfd, info_ptr, &cu);
1455
1456 /* Set the language we're debugging */
1457 set_cu_language (comp_unit_die.language, &cu);
1458
1459 /* Allocate a new partial symbol table structure */
1460 pst = start_psymtab_common (objfile, objfile->section_offsets,
1461 comp_unit_die.name ? comp_unit_die.name : "",
1462 comp_unit_die.lowpc,
1463 objfile->global_psymbols.next,
1464 objfile->static_psymbols.next);
1465
1466 if (comp_unit_die.dirname)
1467 pst->dirname = xstrdup (comp_unit_die.dirname);
1468
1469 pst->read_symtab_private = (char *) this_cu;
1470
1471 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1472
1473 /* Store the function that reads in the rest of the symbol table */
1474 pst->read_symtab = dwarf2_psymtab_to_symtab;
1475
1476 /* If this compilation unit was already read in, free the
1477 cached copy in order to read it in again. This is
1478 necessary because we skipped some symbols when we first
1479 read in the compilation unit (see load_partial_dies).
1480 This problem could be avoided, but the benefit is
1481 unclear. */
1482 if (this_cu->cu != NULL)
1483 free_one_cached_comp_unit (this_cu->cu);
1484
1485 cu.per_cu = this_cu;
1486
1487 /* Note that this is a pointer to our stack frame, being
1488 added to a global data structure. It will be cleaned up
1489 in free_stack_comp_unit when we finish with this
1490 compilation unit. */
1491 this_cu->cu = &cu;
1492
1493 this_cu->psymtab = pst;
1494
1495 /* Check if comp unit has_children.
1496 If so, read the rest of the partial symbols from this comp unit.
1497 If not, there's no more debug_info for this comp unit. */
1498 if (comp_unit_die.has_children)
1499 {
1500 struct partial_die_info *first_die;
1501
1502 lowpc = ((CORE_ADDR) -1);
1503 highpc = ((CORE_ADDR) 0);
1504
1505 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1506
1507 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1508
1509 /* If we didn't find a lowpc, set it to highpc to avoid
1510 complaints from `maint check'. */
1511 if (lowpc == ((CORE_ADDR) -1))
1512 lowpc = highpc;
1513
1514 /* If the compilation unit didn't have an explicit address range,
1515 then use the information extracted from its child dies. */
1516 if (! comp_unit_die.has_pc_info)
1517 {
1518 comp_unit_die.lowpc = lowpc;
1519 comp_unit_die.highpc = highpc;
1520 }
1521 }
1522 pst->textlow = comp_unit_die.lowpc + baseaddr;
1523 pst->texthigh = comp_unit_die.highpc + baseaddr;
1524
1525 pst->n_global_syms = objfile->global_psymbols.next -
1526 (objfile->global_psymbols.list + pst->globals_offset);
1527 pst->n_static_syms = objfile->static_psymbols.next -
1528 (objfile->static_psymbols.list + pst->statics_offset);
1529 sort_pst_symbols (pst);
1530
1531 /* If there is already a psymtab or symtab for a file of this
1532 name, remove it. (If there is a symtab, more drastic things
1533 also happen.) This happens in VxWorks. */
1534 free_named_symtabs (pst->filename);
1535
1536 info_ptr = beg_of_comp_unit + cu.header.length
1537 + cu.header.initial_length_size;
1538
1539 if (comp_unit_die.has_stmt_list)
1540 {
1541 /* Get the list of files included in the current compilation unit,
1542 and build a psymtab for each of them. */
1543 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1544 }
1545
1546 do_cleanups (back_to_inner);
1547 }
1548 do_cleanups (back_to);
1549 }
1550
1551 /* Load the DIEs for a secondary CU into memory. */
1552
1553 static void
1554 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1555 {
1556 bfd *abfd = objfile->obfd;
1557 char *info_ptr, *beg_of_comp_unit;
1558 struct partial_die_info comp_unit_die;
1559 struct dwarf2_cu *cu;
1560 struct abbrev_info *abbrev;
1561 unsigned int bytes_read;
1562 struct cleanup *back_to;
1563
1564 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1565 beg_of_comp_unit = info_ptr;
1566
1567 cu = xmalloc (sizeof (struct dwarf2_cu));
1568 memset (cu, 0, sizeof (struct dwarf2_cu));
1569
1570 obstack_init (&cu->comp_unit_obstack);
1571
1572 cu->objfile = objfile;
1573 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1574
1575 /* Complete the cu_header. */
1576 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1577 cu->header.first_die_ptr = info_ptr;
1578 cu->header.cu_head_ptr = beg_of_comp_unit;
1579
1580 /* Read the abbrevs for this compilation unit into a table. */
1581 dwarf2_read_abbrevs (abfd, cu);
1582 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1583
1584 /* Read the compilation unit die. */
1585 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1586 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1587 abfd, info_ptr, cu);
1588
1589 /* Set the language we're debugging. */
1590 set_cu_language (comp_unit_die.language, cu);
1591
1592 /* Link this compilation unit into the compilation unit tree. */
1593 this_cu->cu = cu;
1594 cu->per_cu = this_cu;
1595
1596 /* Check if comp unit has_children.
1597 If so, read the rest of the partial symbols from this comp unit.
1598 If not, there's no more debug_info for this comp unit. */
1599 if (comp_unit_die.has_children)
1600 load_partial_dies (abfd, info_ptr, 0, cu);
1601
1602 do_cleanups (back_to);
1603 }
1604
1605 /* Create a list of all compilation units in OBJFILE. We do this only
1606 if an inter-comp-unit reference is found; presumably if there is one,
1607 there will be many, and one will occur early in the .debug_info section.
1608 So there's no point in building this list incrementally. */
1609
1610 static void
1611 create_all_comp_units (struct objfile *objfile)
1612 {
1613 int n_allocated;
1614 int n_comp_units;
1615 struct dwarf2_per_cu_data **all_comp_units;
1616 char *info_ptr = dwarf2_per_objfile->info_buffer;
1617
1618 n_comp_units = 0;
1619 n_allocated = 10;
1620 all_comp_units = xmalloc (n_allocated
1621 * sizeof (struct dwarf2_per_cu_data *));
1622
1623 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1624 {
1625 struct comp_unit_head cu_header;
1626 char *beg_of_comp_unit;
1627 struct dwarf2_per_cu_data *this_cu;
1628 unsigned long offset;
1629 int bytes_read;
1630
1631 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1632
1633 /* Read just enough information to find out where the next
1634 compilation unit is. */
1635 cu_header.initial_length_size = 0;
1636 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1637 &cu_header, &bytes_read);
1638
1639 /* Save the compilation unit for later lookup. */
1640 this_cu = obstack_alloc (&objfile->objfile_obstack,
1641 sizeof (struct dwarf2_per_cu_data));
1642 memset (this_cu, 0, sizeof (*this_cu));
1643 this_cu->offset = offset;
1644 this_cu->length = cu_header.length + cu_header.initial_length_size;
1645
1646 if (n_comp_units == n_allocated)
1647 {
1648 n_allocated *= 2;
1649 all_comp_units = xrealloc (all_comp_units,
1650 n_allocated
1651 * sizeof (struct dwarf2_per_cu_data *));
1652 }
1653 all_comp_units[n_comp_units++] = this_cu;
1654
1655 info_ptr = info_ptr + this_cu->length;
1656 }
1657
1658 dwarf2_per_objfile->all_comp_units
1659 = obstack_alloc (&objfile->objfile_obstack,
1660 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1661 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1662 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1663 xfree (all_comp_units);
1664 dwarf2_per_objfile->n_comp_units = n_comp_units;
1665 }
1666
1667 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1668 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1669 in CU. */
1670
1671 static void
1672 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1673 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1674 {
1675 struct objfile *objfile = cu->objfile;
1676 bfd *abfd = objfile->obfd;
1677 struct partial_die_info *pdi;
1678
1679 /* Now, march along the PDI's, descending into ones which have
1680 interesting children but skipping the children of the other ones,
1681 until we reach the end of the compilation unit. */
1682
1683 pdi = first_die;
1684
1685 while (pdi != NULL)
1686 {
1687 fixup_partial_die (pdi, cu);
1688
1689 /* Anonymous namespaces have no name but have interesting
1690 children, so we need to look at them. Ditto for anonymous
1691 enums. */
1692
1693 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1694 || pdi->tag == DW_TAG_enumeration_type)
1695 {
1696 switch (pdi->tag)
1697 {
1698 case DW_TAG_subprogram:
1699 if (pdi->has_pc_info)
1700 {
1701 if (pdi->lowpc < *lowpc)
1702 {
1703 *lowpc = pdi->lowpc;
1704 }
1705 if (pdi->highpc > *highpc)
1706 {
1707 *highpc = pdi->highpc;
1708 }
1709 if (!pdi->is_declaration)
1710 {
1711 add_partial_symbol (pdi, cu);
1712 }
1713 }
1714 break;
1715 case DW_TAG_variable:
1716 case DW_TAG_typedef:
1717 case DW_TAG_union_type:
1718 if (!pdi->is_declaration)
1719 {
1720 add_partial_symbol (pdi, cu);
1721 }
1722 break;
1723 case DW_TAG_class_type:
1724 case DW_TAG_structure_type:
1725 if (!pdi->is_declaration)
1726 {
1727 add_partial_symbol (pdi, cu);
1728 }
1729 break;
1730 case DW_TAG_enumeration_type:
1731 if (!pdi->is_declaration)
1732 add_partial_enumeration (pdi, cu);
1733 break;
1734 case DW_TAG_base_type:
1735 case DW_TAG_subrange_type:
1736 /* File scope base type definitions are added to the partial
1737 symbol table. */
1738 add_partial_symbol (pdi, cu);
1739 break;
1740 case DW_TAG_namespace:
1741 add_partial_namespace (pdi, lowpc, highpc, cu);
1742 break;
1743 default:
1744 break;
1745 }
1746 }
1747
1748 /* If the die has a sibling, skip to the sibling. */
1749
1750 pdi = pdi->die_sibling;
1751 }
1752 }
1753
1754 /* Functions used to compute the fully scoped name of a partial DIE.
1755
1756 Normally, this is simple. For C++, the parent DIE's fully scoped
1757 name is concatenated with "::" and the partial DIE's name. For
1758 Java, the same thing occurs except that "." is used instead of "::".
1759 Enumerators are an exception; they use the scope of their parent
1760 enumeration type, i.e. the name of the enumeration type is not
1761 prepended to the enumerator.
1762
1763 There are two complexities. One is DW_AT_specification; in this
1764 case "parent" means the parent of the target of the specification,
1765 instead of the direct parent of the DIE. The other is compilers
1766 which do not emit DW_TAG_namespace; in this case we try to guess
1767 the fully qualified name of structure types from their members'
1768 linkage names. This must be done using the DIE's children rather
1769 than the children of any DW_AT_specification target. We only need
1770 to do this for structures at the top level, i.e. if the target of
1771 any DW_AT_specification (if any; otherwise the DIE itself) does not
1772 have a parent. */
1773
1774 /* Compute the scope prefix associated with PDI's parent, in
1775 compilation unit CU. The result will be allocated on CU's
1776 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1777 field. NULL is returned if no prefix is necessary. */
1778 static char *
1779 partial_die_parent_scope (struct partial_die_info *pdi,
1780 struct dwarf2_cu *cu)
1781 {
1782 char *grandparent_scope;
1783 struct partial_die_info *parent, *real_pdi;
1784
1785 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1786 then this means the parent of the specification DIE. */
1787
1788 real_pdi = pdi;
1789 while (real_pdi->has_specification)
1790 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1791
1792 parent = real_pdi->die_parent;
1793 if (parent == NULL)
1794 return NULL;
1795
1796 if (parent->scope_set)
1797 return parent->scope;
1798
1799 fixup_partial_die (parent, cu);
1800
1801 grandparent_scope = partial_die_parent_scope (parent, cu);
1802
1803 if (parent->tag == DW_TAG_namespace
1804 || parent->tag == DW_TAG_structure_type
1805 || parent->tag == DW_TAG_class_type
1806 || parent->tag == DW_TAG_union_type)
1807 {
1808 if (grandparent_scope == NULL)
1809 parent->scope = parent->name;
1810 else
1811 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1812 parent->name, cu);
1813 }
1814 else if (parent->tag == DW_TAG_enumeration_type)
1815 /* Enumerators should not get the name of the enumeration as a prefix. */
1816 parent->scope = grandparent_scope;
1817 else
1818 {
1819 /* FIXME drow/2004-04-01: What should we be doing with
1820 function-local names? For partial symbols, we should probably be
1821 ignoring them. */
1822 complaint (&symfile_complaints,
1823 _("unhandled containing DIE tag %d for DIE at %d"),
1824 parent->tag, pdi->offset);
1825 parent->scope = grandparent_scope;
1826 }
1827
1828 parent->scope_set = 1;
1829 return parent->scope;
1830 }
1831
1832 /* Return the fully scoped name associated with PDI, from compilation unit
1833 CU. The result will be allocated with malloc. */
1834 static char *
1835 partial_die_full_name (struct partial_die_info *pdi,
1836 struct dwarf2_cu *cu)
1837 {
1838 char *parent_scope;
1839
1840 parent_scope = partial_die_parent_scope (pdi, cu);
1841 if (parent_scope == NULL)
1842 return NULL;
1843 else
1844 return typename_concat (NULL, parent_scope, pdi->name, cu);
1845 }
1846
1847 static void
1848 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1849 {
1850 struct objfile *objfile = cu->objfile;
1851 CORE_ADDR addr = 0;
1852 char *actual_name;
1853 const char *my_prefix;
1854 const struct partial_symbol *psym = NULL;
1855 CORE_ADDR baseaddr;
1856 int built_actual_name = 0;
1857
1858 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1859
1860 actual_name = NULL;
1861
1862 if (pdi_needs_namespace (pdi->tag))
1863 {
1864 actual_name = partial_die_full_name (pdi, cu);
1865 if (actual_name)
1866 built_actual_name = 1;
1867 }
1868
1869 if (actual_name == NULL)
1870 actual_name = pdi->name;
1871
1872 switch (pdi->tag)
1873 {
1874 case DW_TAG_subprogram:
1875 if (pdi->is_external)
1876 {
1877 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1878 mst_text, objfile); */
1879 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1880 VAR_DOMAIN, LOC_BLOCK,
1881 &objfile->global_psymbols,
1882 0, pdi->lowpc + baseaddr,
1883 cu->language, objfile);
1884 }
1885 else
1886 {
1887 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1888 mst_file_text, objfile); */
1889 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1890 VAR_DOMAIN, LOC_BLOCK,
1891 &objfile->static_psymbols,
1892 0, pdi->lowpc + baseaddr,
1893 cu->language, objfile);
1894 }
1895 break;
1896 case DW_TAG_variable:
1897 if (pdi->is_external)
1898 {
1899 /* Global Variable.
1900 Don't enter into the minimal symbol tables as there is
1901 a minimal symbol table entry from the ELF symbols already.
1902 Enter into partial symbol table if it has a location
1903 descriptor or a type.
1904 If the location descriptor is missing, new_symbol will create
1905 a LOC_UNRESOLVED symbol, the address of the variable will then
1906 be determined from the minimal symbol table whenever the variable
1907 is referenced.
1908 The address for the partial symbol table entry is not
1909 used by GDB, but it comes in handy for debugging partial symbol
1910 table building. */
1911
1912 if (pdi->locdesc)
1913 addr = decode_locdesc (pdi->locdesc, cu);
1914 if (pdi->locdesc || pdi->has_type)
1915 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1916 VAR_DOMAIN, LOC_STATIC,
1917 &objfile->global_psymbols,
1918 0, addr + baseaddr,
1919 cu->language, objfile);
1920 }
1921 else
1922 {
1923 /* Static Variable. Skip symbols without location descriptors. */
1924 if (pdi->locdesc == NULL)
1925 return;
1926 addr = decode_locdesc (pdi->locdesc, cu);
1927 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1928 mst_file_data, objfile); */
1929 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1930 VAR_DOMAIN, LOC_STATIC,
1931 &objfile->static_psymbols,
1932 0, addr + baseaddr,
1933 cu->language, objfile);
1934 }
1935 break;
1936 case DW_TAG_typedef:
1937 case DW_TAG_base_type:
1938 case DW_TAG_subrange_type:
1939 add_psymbol_to_list (actual_name, strlen (actual_name),
1940 VAR_DOMAIN, LOC_TYPEDEF,
1941 &objfile->static_psymbols,
1942 0, (CORE_ADDR) 0, cu->language, objfile);
1943 break;
1944 case DW_TAG_namespace:
1945 add_psymbol_to_list (actual_name, strlen (actual_name),
1946 VAR_DOMAIN, LOC_TYPEDEF,
1947 &objfile->global_psymbols,
1948 0, (CORE_ADDR) 0, cu->language, objfile);
1949 break;
1950 case DW_TAG_class_type:
1951 case DW_TAG_structure_type:
1952 case DW_TAG_union_type:
1953 case DW_TAG_enumeration_type:
1954 /* Skip aggregate types without children, these are external
1955 references. */
1956 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1957 static vs. global. */
1958 if (pdi->has_children == 0)
1959 return;
1960 add_psymbol_to_list (actual_name, strlen (actual_name),
1961 STRUCT_DOMAIN, LOC_TYPEDEF,
1962 (cu->language == language_cplus
1963 || cu->language == language_java)
1964 ? &objfile->global_psymbols
1965 : &objfile->static_psymbols,
1966 0, (CORE_ADDR) 0, cu->language, objfile);
1967
1968 if (cu->language == language_cplus
1969 || cu->language == language_java)
1970 {
1971 /* For C++ and Java, these implicitly act as typedefs as well. */
1972 add_psymbol_to_list (actual_name, strlen (actual_name),
1973 VAR_DOMAIN, LOC_TYPEDEF,
1974 &objfile->global_psymbols,
1975 0, (CORE_ADDR) 0, cu->language, objfile);
1976 }
1977 break;
1978 case DW_TAG_enumerator:
1979 add_psymbol_to_list (actual_name, strlen (actual_name),
1980 VAR_DOMAIN, LOC_CONST,
1981 (cu->language == language_cplus
1982 || cu->language == language_java)
1983 ? &objfile->global_psymbols
1984 : &objfile->static_psymbols,
1985 0, (CORE_ADDR) 0, cu->language, objfile);
1986 break;
1987 default:
1988 break;
1989 }
1990
1991 /* Check to see if we should scan the name for possible namespace
1992 info. Only do this if this is C++, if we don't have namespace
1993 debugging info in the file, if the psym is of an appropriate type
1994 (otherwise we'll have psym == NULL), and if we actually had a
1995 mangled name to begin with. */
1996
1997 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1998 cases which do not set PSYM above? */
1999
2000 if (cu->language == language_cplus
2001 && cu->has_namespace_info == 0
2002 && psym != NULL
2003 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2004 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2005 objfile);
2006
2007 if (built_actual_name)
2008 xfree (actual_name);
2009 }
2010
2011 /* Determine whether a die of type TAG living in a C++ class or
2012 namespace needs to have the name of the scope prepended to the
2013 name listed in the die. */
2014
2015 static int
2016 pdi_needs_namespace (enum dwarf_tag tag)
2017 {
2018 switch (tag)
2019 {
2020 case DW_TAG_namespace:
2021 case DW_TAG_typedef:
2022 case DW_TAG_class_type:
2023 case DW_TAG_structure_type:
2024 case DW_TAG_union_type:
2025 case DW_TAG_enumeration_type:
2026 case DW_TAG_enumerator:
2027 return 1;
2028 default:
2029 return 0;
2030 }
2031 }
2032
2033 /* Read a partial die corresponding to a namespace; also, add a symbol
2034 corresponding to that namespace to the symbol table. NAMESPACE is
2035 the name of the enclosing namespace. */
2036
2037 static void
2038 add_partial_namespace (struct partial_die_info *pdi,
2039 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2040 struct dwarf2_cu *cu)
2041 {
2042 struct objfile *objfile = cu->objfile;
2043
2044 /* Add a symbol for the namespace. */
2045
2046 add_partial_symbol (pdi, cu);
2047
2048 /* Now scan partial symbols in that namespace. */
2049
2050 if (pdi->has_children)
2051 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2052 }
2053
2054 /* See if we can figure out if the class lives in a namespace. We do
2055 this by looking for a member function; its demangled name will
2056 contain namespace info, if there is any. */
2057
2058 static void
2059 guess_structure_name (struct partial_die_info *struct_pdi,
2060 struct dwarf2_cu *cu)
2061 {
2062 if ((cu->language == language_cplus
2063 || cu->language == language_java)
2064 && cu->has_namespace_info == 0
2065 && struct_pdi->has_children)
2066 {
2067 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2068 what template types look like, because the demangler
2069 frequently doesn't give the same name as the debug info. We
2070 could fix this by only using the demangled name to get the
2071 prefix (but see comment in read_structure_type). */
2072
2073 struct partial_die_info *child_pdi = struct_pdi->die_child;
2074 struct partial_die_info *real_pdi;
2075
2076 /* If this DIE (this DIE's specification, if any) has a parent, then
2077 we should not do this. We'll prepend the parent's fully qualified
2078 name when we create the partial symbol. */
2079
2080 real_pdi = struct_pdi;
2081 while (real_pdi->has_specification)
2082 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2083
2084 if (real_pdi->die_parent != NULL)
2085 return;
2086
2087 while (child_pdi != NULL)
2088 {
2089 if (child_pdi->tag == DW_TAG_subprogram)
2090 {
2091 char *actual_class_name
2092 = language_class_name_from_physname (cu->language_defn,
2093 child_pdi->name);
2094 if (actual_class_name != NULL)
2095 {
2096 struct_pdi->name
2097 = obsavestring (actual_class_name,
2098 strlen (actual_class_name),
2099 &cu->comp_unit_obstack);
2100 xfree (actual_class_name);
2101 }
2102 break;
2103 }
2104
2105 child_pdi = child_pdi->die_sibling;
2106 }
2107 }
2108 }
2109
2110 /* Read a partial die corresponding to an enumeration type. */
2111
2112 static void
2113 add_partial_enumeration (struct partial_die_info *enum_pdi,
2114 struct dwarf2_cu *cu)
2115 {
2116 struct objfile *objfile = cu->objfile;
2117 bfd *abfd = objfile->obfd;
2118 struct partial_die_info *pdi;
2119
2120 if (enum_pdi->name != NULL)
2121 add_partial_symbol (enum_pdi, cu);
2122
2123 pdi = enum_pdi->die_child;
2124 while (pdi)
2125 {
2126 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2127 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2128 else
2129 add_partial_symbol (pdi, cu);
2130 pdi = pdi->die_sibling;
2131 }
2132 }
2133
2134 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2135 Return the corresponding abbrev, or NULL if the number is zero (indicating
2136 an empty DIE). In either case *BYTES_READ will be set to the length of
2137 the initial number. */
2138
2139 static struct abbrev_info *
2140 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2141 {
2142 bfd *abfd = cu->objfile->obfd;
2143 unsigned int abbrev_number;
2144 struct abbrev_info *abbrev;
2145
2146 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2147
2148 if (abbrev_number == 0)
2149 return NULL;
2150
2151 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2152 if (!abbrev)
2153 {
2154 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2155 bfd_get_filename (abfd));
2156 }
2157
2158 return abbrev;
2159 }
2160
2161 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2162 pointer to the end of a series of DIEs, terminated by an empty
2163 DIE. Any children of the skipped DIEs will also be skipped. */
2164
2165 static char *
2166 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2167 {
2168 struct abbrev_info *abbrev;
2169 unsigned int bytes_read;
2170
2171 while (1)
2172 {
2173 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2174 if (abbrev == NULL)
2175 return info_ptr + bytes_read;
2176 else
2177 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2178 }
2179 }
2180
2181 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2182 should point just after the initial uleb128 of a DIE, and the
2183 abbrev corresponding to that skipped uleb128 should be passed in
2184 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2185 children. */
2186
2187 static char *
2188 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2189 struct dwarf2_cu *cu)
2190 {
2191 unsigned int bytes_read;
2192 struct attribute attr;
2193 bfd *abfd = cu->objfile->obfd;
2194 unsigned int form, i;
2195
2196 for (i = 0; i < abbrev->num_attrs; i++)
2197 {
2198 /* The only abbrev we care about is DW_AT_sibling. */
2199 if (abbrev->attrs[i].name == DW_AT_sibling)
2200 {
2201 read_attribute (&attr, &abbrev->attrs[i],
2202 abfd, info_ptr, cu);
2203 if (attr.form == DW_FORM_ref_addr)
2204 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2205 else
2206 return dwarf2_per_objfile->info_buffer
2207 + dwarf2_get_ref_die_offset (&attr, cu);
2208 }
2209
2210 /* If it isn't DW_AT_sibling, skip this attribute. */
2211 form = abbrev->attrs[i].form;
2212 skip_attribute:
2213 switch (form)
2214 {
2215 case DW_FORM_addr:
2216 case DW_FORM_ref_addr:
2217 info_ptr += cu->header.addr_size;
2218 break;
2219 case DW_FORM_data1:
2220 case DW_FORM_ref1:
2221 case DW_FORM_flag:
2222 info_ptr += 1;
2223 break;
2224 case DW_FORM_data2:
2225 case DW_FORM_ref2:
2226 info_ptr += 2;
2227 break;
2228 case DW_FORM_data4:
2229 case DW_FORM_ref4:
2230 info_ptr += 4;
2231 break;
2232 case DW_FORM_data8:
2233 case DW_FORM_ref8:
2234 info_ptr += 8;
2235 break;
2236 case DW_FORM_string:
2237 read_string (abfd, info_ptr, &bytes_read);
2238 info_ptr += bytes_read;
2239 break;
2240 case DW_FORM_strp:
2241 info_ptr += cu->header.offset_size;
2242 break;
2243 case DW_FORM_block:
2244 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2245 info_ptr += bytes_read;
2246 break;
2247 case DW_FORM_block1:
2248 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2249 break;
2250 case DW_FORM_block2:
2251 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2252 break;
2253 case DW_FORM_block4:
2254 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2255 break;
2256 case DW_FORM_sdata:
2257 case DW_FORM_udata:
2258 case DW_FORM_ref_udata:
2259 info_ptr = skip_leb128 (abfd, info_ptr);
2260 break;
2261 case DW_FORM_indirect:
2262 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2263 info_ptr += bytes_read;
2264 /* We need to continue parsing from here, so just go back to
2265 the top. */
2266 goto skip_attribute;
2267
2268 default:
2269 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2270 dwarf_form_name (form),
2271 bfd_get_filename (abfd));
2272 }
2273 }
2274
2275 if (abbrev->has_children)
2276 return skip_children (info_ptr, cu);
2277 else
2278 return info_ptr;
2279 }
2280
2281 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2282 the next DIE after ORIG_PDI. */
2283
2284 static char *
2285 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2286 bfd *abfd, struct dwarf2_cu *cu)
2287 {
2288 /* Do we know the sibling already? */
2289
2290 if (orig_pdi->sibling)
2291 return orig_pdi->sibling;
2292
2293 /* Are there any children to deal with? */
2294
2295 if (!orig_pdi->has_children)
2296 return info_ptr;
2297
2298 /* Skip the children the long way. */
2299
2300 return skip_children (info_ptr, cu);
2301 }
2302
2303 /* Expand this partial symbol table into a full symbol table. */
2304
2305 static void
2306 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2307 {
2308 /* FIXME: This is barely more than a stub. */
2309 if (pst != NULL)
2310 {
2311 if (pst->readin)
2312 {
2313 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2314 }
2315 else
2316 {
2317 if (info_verbose)
2318 {
2319 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2320 gdb_flush (gdb_stdout);
2321 }
2322
2323 /* Restore our global data. */
2324 dwarf2_per_objfile = objfile_data (pst->objfile,
2325 dwarf2_objfile_data_key);
2326
2327 psymtab_to_symtab_1 (pst);
2328
2329 /* Finish up the debug error message. */
2330 if (info_verbose)
2331 printf_filtered (_("done.\n"));
2332 }
2333 }
2334 }
2335
2336 /* Add PER_CU to the queue. */
2337
2338 static void
2339 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2340 {
2341 struct dwarf2_queue_item *item;
2342
2343 per_cu->queued = 1;
2344 item = xmalloc (sizeof (*item));
2345 item->per_cu = per_cu;
2346 item->next = NULL;
2347
2348 if (dwarf2_queue == NULL)
2349 dwarf2_queue = item;
2350 else
2351 dwarf2_queue_tail->next = item;
2352
2353 dwarf2_queue_tail = item;
2354 }
2355
2356 /* Process the queue. */
2357
2358 static void
2359 process_queue (struct objfile *objfile)
2360 {
2361 struct dwarf2_queue_item *item, *next_item;
2362
2363 /* Initially, there is just one item on the queue. Load its DIEs,
2364 and the DIEs of any other compilation units it requires,
2365 transitively. */
2366
2367 for (item = dwarf2_queue; item != NULL; item = item->next)
2368 {
2369 /* Read in this compilation unit. This may add new items to
2370 the end of the queue. */
2371 load_full_comp_unit (item->per_cu);
2372
2373 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2374 dwarf2_per_objfile->read_in_chain = item->per_cu;
2375
2376 /* If this compilation unit has already had full symbols created,
2377 reset the TYPE fields in each DIE. */
2378 if (item->per_cu->psymtab->readin)
2379 reset_die_and_siblings_types (item->per_cu->cu->dies,
2380 item->per_cu->cu);
2381 }
2382
2383 /* Now everything left on the queue needs to be read in. Process
2384 them, one at a time, removing from the queue as we finish. */
2385 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2386 {
2387 if (!item->per_cu->psymtab->readin)
2388 process_full_comp_unit (item->per_cu);
2389
2390 item->per_cu->queued = 0;
2391 next_item = item->next;
2392 xfree (item);
2393 }
2394
2395 dwarf2_queue_tail = NULL;
2396 }
2397
2398 /* Free all allocated queue entries. This function only releases anything if
2399 an error was thrown; if the queue was processed then it would have been
2400 freed as we went along. */
2401
2402 static void
2403 dwarf2_release_queue (void *dummy)
2404 {
2405 struct dwarf2_queue_item *item, *last;
2406
2407 item = dwarf2_queue;
2408 while (item)
2409 {
2410 /* Anything still marked queued is likely to be in an
2411 inconsistent state, so discard it. */
2412 if (item->per_cu->queued)
2413 {
2414 if (item->per_cu->cu != NULL)
2415 free_one_cached_comp_unit (item->per_cu->cu);
2416 item->per_cu->queued = 0;
2417 }
2418
2419 last = item;
2420 item = item->next;
2421 xfree (last);
2422 }
2423
2424 dwarf2_queue = dwarf2_queue_tail = NULL;
2425 }
2426
2427 /* Read in full symbols for PST, and anything it depends on. */
2428
2429 static void
2430 psymtab_to_symtab_1 (struct partial_symtab *pst)
2431 {
2432 struct dwarf2_per_cu_data *per_cu;
2433 struct cleanup *back_to;
2434 int i;
2435
2436 for (i = 0; i < pst->number_of_dependencies; i++)
2437 if (!pst->dependencies[i]->readin)
2438 {
2439 /* Inform about additional files that need to be read in. */
2440 if (info_verbose)
2441 {
2442 /* FIXME: i18n: Need to make this a single string. */
2443 fputs_filtered (" ", gdb_stdout);
2444 wrap_here ("");
2445 fputs_filtered ("and ", gdb_stdout);
2446 wrap_here ("");
2447 printf_filtered ("%s...", pst->dependencies[i]->filename);
2448 wrap_here (""); /* Flush output */
2449 gdb_flush (gdb_stdout);
2450 }
2451 psymtab_to_symtab_1 (pst->dependencies[i]);
2452 }
2453
2454 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2455
2456 if (per_cu == NULL)
2457 {
2458 /* It's an include file, no symbols to read for it.
2459 Everything is in the parent symtab. */
2460 pst->readin = 1;
2461 return;
2462 }
2463
2464 back_to = make_cleanup (dwarf2_release_queue, NULL);
2465
2466 queue_comp_unit (per_cu);
2467
2468 process_queue (pst->objfile);
2469
2470 /* Age the cache, releasing compilation units that have not
2471 been used recently. */
2472 age_cached_comp_units ();
2473
2474 do_cleanups (back_to);
2475 }
2476
2477 /* Load the DIEs associated with PST and PER_CU into memory. */
2478
2479 static struct dwarf2_cu *
2480 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2481 {
2482 struct partial_symtab *pst = per_cu->psymtab;
2483 bfd *abfd = pst->objfile->obfd;
2484 struct dwarf2_cu *cu;
2485 unsigned long offset;
2486 char *info_ptr;
2487 struct cleanup *back_to, *free_cu_cleanup;
2488 struct attribute *attr;
2489 CORE_ADDR baseaddr;
2490
2491 /* Set local variables from the partial symbol table info. */
2492 offset = per_cu->offset;
2493
2494 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2495
2496 cu = xmalloc (sizeof (struct dwarf2_cu));
2497 memset (cu, 0, sizeof (struct dwarf2_cu));
2498
2499 /* If an error occurs while loading, release our storage. */
2500 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2501
2502 cu->objfile = pst->objfile;
2503
2504 /* read in the comp_unit header */
2505 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2506
2507 /* Read the abbrevs for this compilation unit */
2508 dwarf2_read_abbrevs (abfd, cu);
2509 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2510
2511 cu->header.offset = offset;
2512
2513 cu->per_cu = per_cu;
2514 per_cu->cu = cu;
2515
2516 /* We use this obstack for block values in dwarf_alloc_block. */
2517 obstack_init (&cu->comp_unit_obstack);
2518
2519 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2520
2521 /* We try not to read any attributes in this function, because not
2522 all objfiles needed for references have been loaded yet, and symbol
2523 table processing isn't initialized. But we have to set the CU language,
2524 or we won't be able to build types correctly. */
2525 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2526 if (attr)
2527 set_cu_language (DW_UNSND (attr), cu);
2528 else
2529 set_cu_language (language_minimal, cu);
2530
2531 do_cleanups (back_to);
2532
2533 /* We've successfully allocated this compilation unit. Let our caller
2534 clean it up when finished with it. */
2535 discard_cleanups (free_cu_cleanup);
2536
2537 return cu;
2538 }
2539
2540 /* Generate full symbol information for PST and CU, whose DIEs have
2541 already been loaded into memory. */
2542
2543 static void
2544 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2545 {
2546 struct partial_symtab *pst = per_cu->psymtab;
2547 struct dwarf2_cu *cu = per_cu->cu;
2548 struct objfile *objfile = pst->objfile;
2549 bfd *abfd = objfile->obfd;
2550 CORE_ADDR lowpc, highpc;
2551 struct symtab *symtab;
2552 struct cleanup *back_to;
2553 struct attribute *attr;
2554 CORE_ADDR baseaddr;
2555
2556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2557
2558 /* We're in the global namespace. */
2559 processing_current_prefix = "";
2560
2561 buildsym_init ();
2562 back_to = make_cleanup (really_free_pendings, NULL);
2563
2564 cu->list_in_scope = &file_symbols;
2565
2566 /* Find the base address of the compilation unit for range lists and
2567 location lists. It will normally be specified by DW_AT_low_pc.
2568 In DWARF-3 draft 4, the base address could be overridden by
2569 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2570 compilation units with discontinuous ranges. */
2571
2572 cu->header.base_known = 0;
2573 cu->header.base_address = 0;
2574
2575 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2576 if (attr)
2577 {
2578 cu->header.base_address = DW_ADDR (attr);
2579 cu->header.base_known = 1;
2580 }
2581 else
2582 {
2583 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2584 if (attr)
2585 {
2586 cu->header.base_address = DW_ADDR (attr);
2587 cu->header.base_known = 1;
2588 }
2589 }
2590
2591 /* Do line number decoding in read_file_scope () */
2592 process_die (cu->dies, cu);
2593
2594 /* Some compilers don't define a DW_AT_high_pc attribute for the
2595 compilation unit. If the DW_AT_high_pc is missing, synthesize
2596 it, by scanning the DIE's below the compilation unit. */
2597 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2598
2599 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2600
2601 /* Set symtab language to language from DW_AT_language.
2602 If the compilation is from a C file generated by language preprocessors,
2603 do not set the language if it was already deduced by start_subfile. */
2604 if (symtab != NULL
2605 && !(cu->language == language_c && symtab->language != language_c))
2606 {
2607 symtab->language = cu->language;
2608 }
2609 pst->symtab = symtab;
2610 pst->readin = 1;
2611
2612 do_cleanups (back_to);
2613 }
2614
2615 /* Process a die and its children. */
2616
2617 static void
2618 process_die (struct die_info *die, struct dwarf2_cu *cu)
2619 {
2620 switch (die->tag)
2621 {
2622 case DW_TAG_padding:
2623 break;
2624 case DW_TAG_compile_unit:
2625 read_file_scope (die, cu);
2626 break;
2627 case DW_TAG_subprogram:
2628 read_subroutine_type (die, cu);
2629 read_func_scope (die, cu);
2630 break;
2631 case DW_TAG_inlined_subroutine:
2632 /* FIXME: These are ignored for now.
2633 They could be used to set breakpoints on all inlined instances
2634 of a function and make GDB `next' properly over inlined functions. */
2635 break;
2636 case DW_TAG_lexical_block:
2637 case DW_TAG_try_block:
2638 case DW_TAG_catch_block:
2639 read_lexical_block_scope (die, cu);
2640 break;
2641 case DW_TAG_class_type:
2642 case DW_TAG_structure_type:
2643 case DW_TAG_union_type:
2644 read_structure_type (die, cu);
2645 process_structure_scope (die, cu);
2646 break;
2647 case DW_TAG_enumeration_type:
2648 read_enumeration_type (die, cu);
2649 process_enumeration_scope (die, cu);
2650 break;
2651
2652 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2653 a symbol or process any children. Therefore it doesn't do anything
2654 that won't be done on-demand by read_type_die. */
2655 case DW_TAG_subroutine_type:
2656 read_subroutine_type (die, cu);
2657 break;
2658 case DW_TAG_array_type:
2659 read_array_type (die, cu);
2660 break;
2661 case DW_TAG_pointer_type:
2662 read_tag_pointer_type (die, cu);
2663 break;
2664 case DW_TAG_ptr_to_member_type:
2665 read_tag_ptr_to_member_type (die, cu);
2666 break;
2667 case DW_TAG_reference_type:
2668 read_tag_reference_type (die, cu);
2669 break;
2670 case DW_TAG_string_type:
2671 read_tag_string_type (die, cu);
2672 break;
2673 /* END FIXME */
2674
2675 case DW_TAG_base_type:
2676 read_base_type (die, cu);
2677 /* Add a typedef symbol for the type definition, if it has a
2678 DW_AT_name. */
2679 new_symbol (die, die->type, cu);
2680 break;
2681 case DW_TAG_subrange_type:
2682 read_subrange_type (die, cu);
2683 /* Add a typedef symbol for the type definition, if it has a
2684 DW_AT_name. */
2685 new_symbol (die, die->type, cu);
2686 break;
2687 case DW_TAG_common_block:
2688 read_common_block (die, cu);
2689 break;
2690 case DW_TAG_common_inclusion:
2691 break;
2692 case DW_TAG_namespace:
2693 processing_has_namespace_info = 1;
2694 read_namespace (die, cu);
2695 break;
2696 case DW_TAG_imported_declaration:
2697 case DW_TAG_imported_module:
2698 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2699 information contained in these. DW_TAG_imported_declaration
2700 dies shouldn't have children; DW_TAG_imported_module dies
2701 shouldn't in the C++ case, but conceivably could in the
2702 Fortran case, so we'll have to replace this gdb_assert if
2703 Fortran compilers start generating that info. */
2704 processing_has_namespace_info = 1;
2705 gdb_assert (die->child == NULL);
2706 break;
2707 default:
2708 new_symbol (die, NULL, cu);
2709 break;
2710 }
2711 }
2712
2713 static void
2714 initialize_cu_func_list (struct dwarf2_cu *cu)
2715 {
2716 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2717 }
2718
2719 static void
2720 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2721 {
2722 struct objfile *objfile = cu->objfile;
2723 struct comp_unit_head *cu_header = &cu->header;
2724 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2725 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2726 CORE_ADDR highpc = ((CORE_ADDR) 0);
2727 struct attribute *attr;
2728 char *name = "<unknown>";
2729 char *comp_dir = NULL;
2730 struct die_info *child_die;
2731 bfd *abfd = objfile->obfd;
2732 struct line_header *line_header = 0;
2733 CORE_ADDR baseaddr;
2734
2735 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2736
2737 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2738
2739 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2740 from finish_block. */
2741 if (lowpc == ((CORE_ADDR) -1))
2742 lowpc = highpc;
2743 lowpc += baseaddr;
2744 highpc += baseaddr;
2745
2746 attr = dwarf2_attr (die, DW_AT_name, cu);
2747 if (attr)
2748 {
2749 name = DW_STRING (attr);
2750 }
2751 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2752 if (attr)
2753 {
2754 comp_dir = DW_STRING (attr);
2755 if (comp_dir)
2756 {
2757 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2758 directory, get rid of it. */
2759 char *cp = strchr (comp_dir, ':');
2760
2761 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2762 comp_dir = cp + 1;
2763 }
2764 }
2765
2766 attr = dwarf2_attr (die, DW_AT_language, cu);
2767 if (attr)
2768 {
2769 set_cu_language (DW_UNSND (attr), cu);
2770 }
2771
2772 attr = dwarf2_attr (die, DW_AT_producer, cu);
2773 if (attr)
2774 cu->producer = DW_STRING (attr);
2775
2776 /* We assume that we're processing GCC output. */
2777 processing_gcc_compilation = 2;
2778 #if 0
2779 /* FIXME:Do something here. */
2780 if (dip->at_producer != NULL)
2781 {
2782 handle_producer (dip->at_producer);
2783 }
2784 #endif
2785
2786 /* The compilation unit may be in a different language or objfile,
2787 zero out all remembered fundamental types. */
2788 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2789
2790 start_symtab (name, comp_dir, lowpc);
2791 record_debugformat ("DWARF 2");
2792
2793 initialize_cu_func_list (cu);
2794
2795 /* Process all dies in compilation unit. */
2796 if (die->child != NULL)
2797 {
2798 child_die = die->child;
2799 while (child_die && child_die->tag)
2800 {
2801 process_die (child_die, cu);
2802 child_die = sibling_die (child_die);
2803 }
2804 }
2805
2806 /* Decode line number information if present. */
2807 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2808 if (attr)
2809 {
2810 unsigned int line_offset = DW_UNSND (attr);
2811 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2812 if (line_header)
2813 {
2814 make_cleanup ((make_cleanup_ftype *) free_line_header,
2815 (void *) line_header);
2816 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2817 }
2818 }
2819
2820 /* Decode macro information, if present. Dwarf 2 macro information
2821 refers to information in the line number info statement program
2822 header, so we can only read it if we've read the header
2823 successfully. */
2824 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2825 if (attr && line_header)
2826 {
2827 unsigned int macro_offset = DW_UNSND (attr);
2828 dwarf_decode_macros (line_header, macro_offset,
2829 comp_dir, abfd, cu);
2830 }
2831 do_cleanups (back_to);
2832 }
2833
2834 static void
2835 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2836 struct dwarf2_cu *cu)
2837 {
2838 struct function_range *thisfn;
2839
2840 thisfn = (struct function_range *)
2841 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2842 thisfn->name = name;
2843 thisfn->lowpc = lowpc;
2844 thisfn->highpc = highpc;
2845 thisfn->seen_line = 0;
2846 thisfn->next = NULL;
2847
2848 if (cu->last_fn == NULL)
2849 cu->first_fn = thisfn;
2850 else
2851 cu->last_fn->next = thisfn;
2852
2853 cu->last_fn = thisfn;
2854 }
2855
2856 static void
2857 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2858 {
2859 struct objfile *objfile = cu->objfile;
2860 struct context_stack *new;
2861 CORE_ADDR lowpc;
2862 CORE_ADDR highpc;
2863 struct die_info *child_die;
2864 struct attribute *attr;
2865 char *name;
2866 const char *previous_prefix = processing_current_prefix;
2867 struct cleanup *back_to = NULL;
2868 CORE_ADDR baseaddr;
2869
2870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2871
2872 name = dwarf2_linkage_name (die, cu);
2873
2874 /* Ignore functions with missing or empty names and functions with
2875 missing or invalid low and high pc attributes. */
2876 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2877 return;
2878
2879 if (cu->language == language_cplus
2880 || cu->language == language_java)
2881 {
2882 struct die_info *spec_die = die_specification (die, cu);
2883
2884 /* NOTE: carlton/2004-01-23: We have to be careful in the
2885 presence of DW_AT_specification. For example, with GCC 3.4,
2886 given the code
2887
2888 namespace N {
2889 void foo() {
2890 // Definition of N::foo.
2891 }
2892 }
2893
2894 then we'll have a tree of DIEs like this:
2895
2896 1: DW_TAG_compile_unit
2897 2: DW_TAG_namespace // N
2898 3: DW_TAG_subprogram // declaration of N::foo
2899 4: DW_TAG_subprogram // definition of N::foo
2900 DW_AT_specification // refers to die #3
2901
2902 Thus, when processing die #4, we have to pretend that we're
2903 in the context of its DW_AT_specification, namely the contex
2904 of die #3. */
2905
2906 if (spec_die != NULL)
2907 {
2908 char *specification_prefix = determine_prefix (spec_die, cu);
2909 processing_current_prefix = specification_prefix;
2910 back_to = make_cleanup (xfree, specification_prefix);
2911 }
2912 }
2913
2914 lowpc += baseaddr;
2915 highpc += baseaddr;
2916
2917 /* Record the function range for dwarf_decode_lines. */
2918 add_to_cu_func_list (name, lowpc, highpc, cu);
2919
2920 new = push_context (0, lowpc);
2921 new->name = new_symbol (die, die->type, cu);
2922
2923 /* If there is a location expression for DW_AT_frame_base, record
2924 it. */
2925 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2926 if (attr)
2927 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2928 expression is being recorded directly in the function's symbol
2929 and not in a separate frame-base object. I guess this hack is
2930 to avoid adding some sort of frame-base adjunct/annex to the
2931 function's symbol :-(. The problem with doing this is that it
2932 results in a function symbol with a location expression that
2933 has nothing to do with the location of the function, ouch! The
2934 relationship should be: a function's symbol has-a frame base; a
2935 frame-base has-a location expression. */
2936 dwarf2_symbol_mark_computed (attr, new->name, cu);
2937
2938 cu->list_in_scope = &local_symbols;
2939
2940 if (die->child != NULL)
2941 {
2942 child_die = die->child;
2943 while (child_die && child_die->tag)
2944 {
2945 process_die (child_die, cu);
2946 child_die = sibling_die (child_die);
2947 }
2948 }
2949
2950 new = pop_context ();
2951 /* Make a block for the local symbols within. */
2952 finish_block (new->name, &local_symbols, new->old_blocks,
2953 lowpc, highpc, objfile);
2954
2955 /* In C++, we can have functions nested inside functions (e.g., when
2956 a function declares a class that has methods). This means that
2957 when we finish processing a function scope, we may need to go
2958 back to building a containing block's symbol lists. */
2959 local_symbols = new->locals;
2960 param_symbols = new->params;
2961
2962 /* If we've finished processing a top-level function, subsequent
2963 symbols go in the file symbol list. */
2964 if (outermost_context_p ())
2965 cu->list_in_scope = &file_symbols;
2966
2967 processing_current_prefix = previous_prefix;
2968 if (back_to != NULL)
2969 do_cleanups (back_to);
2970 }
2971
2972 /* Process all the DIES contained within a lexical block scope. Start
2973 a new scope, process the dies, and then close the scope. */
2974
2975 static void
2976 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2977 {
2978 struct objfile *objfile = cu->objfile;
2979 struct context_stack *new;
2980 CORE_ADDR lowpc, highpc;
2981 struct die_info *child_die;
2982 CORE_ADDR baseaddr;
2983
2984 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2985
2986 /* Ignore blocks with missing or invalid low and high pc attributes. */
2987 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2988 as multiple lexical blocks? Handling children in a sane way would
2989 be nasty. Might be easier to properly extend generic blocks to
2990 describe ranges. */
2991 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2992 return;
2993 lowpc += baseaddr;
2994 highpc += baseaddr;
2995
2996 push_context (0, lowpc);
2997 if (die->child != NULL)
2998 {
2999 child_die = die->child;
3000 while (child_die && child_die->tag)
3001 {
3002 process_die (child_die, cu);
3003 child_die = sibling_die (child_die);
3004 }
3005 }
3006 new = pop_context ();
3007
3008 if (local_symbols != NULL)
3009 {
3010 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3011 highpc, objfile);
3012 }
3013 local_symbols = new->locals;
3014 }
3015
3016 /* Get low and high pc attributes from a die. Return 1 if the attributes
3017 are present and valid, otherwise, return 0. Return -1 if the range is
3018 discontinuous, i.e. derived from DW_AT_ranges information. */
3019 static int
3020 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3021 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3022 {
3023 struct objfile *objfile = cu->objfile;
3024 struct comp_unit_head *cu_header = &cu->header;
3025 struct attribute *attr;
3026 bfd *obfd = objfile->obfd;
3027 CORE_ADDR low = 0;
3028 CORE_ADDR high = 0;
3029 int ret = 0;
3030
3031 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3032 if (attr)
3033 {
3034 high = DW_ADDR (attr);
3035 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3036 if (attr)
3037 low = DW_ADDR (attr);
3038 else
3039 /* Found high w/o low attribute. */
3040 return 0;
3041
3042 /* Found consecutive range of addresses. */
3043 ret = 1;
3044 }
3045 else
3046 {
3047 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3048 if (attr != NULL)
3049 {
3050 unsigned int addr_size = cu_header->addr_size;
3051 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3052 /* Value of the DW_AT_ranges attribute is the offset in the
3053 .debug_ranges section. */
3054 unsigned int offset = DW_UNSND (attr);
3055 /* Base address selection entry. */
3056 CORE_ADDR base;
3057 int found_base;
3058 int dummy;
3059 char *buffer;
3060 CORE_ADDR marker;
3061 int low_set;
3062
3063 found_base = cu_header->base_known;
3064 base = cu_header->base_address;
3065
3066 if (offset >= dwarf2_per_objfile->ranges_size)
3067 {
3068 complaint (&symfile_complaints,
3069 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3070 offset);
3071 return 0;
3072 }
3073 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3074
3075 /* Read in the largest possible address. */
3076 marker = read_address (obfd, buffer, cu, &dummy);
3077 if ((marker & mask) == mask)
3078 {
3079 /* If we found the largest possible address, then
3080 read the base address. */
3081 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3082 buffer += 2 * addr_size;
3083 offset += 2 * addr_size;
3084 found_base = 1;
3085 }
3086
3087 low_set = 0;
3088
3089 while (1)
3090 {
3091 CORE_ADDR range_beginning, range_end;
3092
3093 range_beginning = read_address (obfd, buffer, cu, &dummy);
3094 buffer += addr_size;
3095 range_end = read_address (obfd, buffer, cu, &dummy);
3096 buffer += addr_size;
3097 offset += 2 * addr_size;
3098
3099 /* An end of list marker is a pair of zero addresses. */
3100 if (range_beginning == 0 && range_end == 0)
3101 /* Found the end of list entry. */
3102 break;
3103
3104 /* Each base address selection entry is a pair of 2 values.
3105 The first is the largest possible address, the second is
3106 the base address. Check for a base address here. */
3107 if ((range_beginning & mask) == mask)
3108 {
3109 /* If we found the largest possible address, then
3110 read the base address. */
3111 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3112 found_base = 1;
3113 continue;
3114 }
3115
3116 if (!found_base)
3117 {
3118 /* We have no valid base address for the ranges
3119 data. */
3120 complaint (&symfile_complaints,
3121 _("Invalid .debug_ranges data (no base address)"));
3122 return 0;
3123 }
3124
3125 range_beginning += base;
3126 range_end += base;
3127
3128 /* FIXME: This is recording everything as a low-high
3129 segment of consecutive addresses. We should have a
3130 data structure for discontiguous block ranges
3131 instead. */
3132 if (! low_set)
3133 {
3134 low = range_beginning;
3135 high = range_end;
3136 low_set = 1;
3137 }
3138 else
3139 {
3140 if (range_beginning < low)
3141 low = range_beginning;
3142 if (range_end > high)
3143 high = range_end;
3144 }
3145 }
3146
3147 if (! low_set)
3148 /* If the first entry is an end-of-list marker, the range
3149 describes an empty scope, i.e. no instructions. */
3150 return 0;
3151
3152 ret = -1;
3153 }
3154 }
3155
3156 if (high < low)
3157 return 0;
3158
3159 /* When using the GNU linker, .gnu.linkonce. sections are used to
3160 eliminate duplicate copies of functions and vtables and such.
3161 The linker will arbitrarily choose one and discard the others.
3162 The AT_*_pc values for such functions refer to local labels in
3163 these sections. If the section from that file was discarded, the
3164 labels are not in the output, so the relocs get a value of 0.
3165 If this is a discarded function, mark the pc bounds as invalid,
3166 so that GDB will ignore it. */
3167 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3168 return 0;
3169
3170 *lowpc = low;
3171 *highpc = high;
3172 return ret;
3173 }
3174
3175 /* Get the low and high pc's represented by the scope DIE, and store
3176 them in *LOWPC and *HIGHPC. If the correct values can't be
3177 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3178
3179 static void
3180 get_scope_pc_bounds (struct die_info *die,
3181 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3182 struct dwarf2_cu *cu)
3183 {
3184 CORE_ADDR best_low = (CORE_ADDR) -1;
3185 CORE_ADDR best_high = (CORE_ADDR) 0;
3186 CORE_ADDR current_low, current_high;
3187
3188 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3189 {
3190 best_low = current_low;
3191 best_high = current_high;
3192 }
3193 else
3194 {
3195 struct die_info *child = die->child;
3196
3197 while (child && child->tag)
3198 {
3199 switch (child->tag) {
3200 case DW_TAG_subprogram:
3201 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3202 {
3203 best_low = min (best_low, current_low);
3204 best_high = max (best_high, current_high);
3205 }
3206 break;
3207 case DW_TAG_namespace:
3208 /* FIXME: carlton/2004-01-16: Should we do this for
3209 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3210 that current GCC's always emit the DIEs corresponding
3211 to definitions of methods of classes as children of a
3212 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3213 the DIEs giving the declarations, which could be
3214 anywhere). But I don't see any reason why the
3215 standards says that they have to be there. */
3216 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3217
3218 if (current_low != ((CORE_ADDR) -1))
3219 {
3220 best_low = min (best_low, current_low);
3221 best_high = max (best_high, current_high);
3222 }
3223 break;
3224 default:
3225 /* Ignore. */
3226 break;
3227 }
3228
3229 child = sibling_die (child);
3230 }
3231 }
3232
3233 *lowpc = best_low;
3234 *highpc = best_high;
3235 }
3236
3237 /* Add an aggregate field to the field list. */
3238
3239 static void
3240 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3241 struct dwarf2_cu *cu)
3242 {
3243 struct objfile *objfile = cu->objfile;
3244 struct nextfield *new_field;
3245 struct attribute *attr;
3246 struct field *fp;
3247 char *fieldname = "";
3248
3249 /* Allocate a new field list entry and link it in. */
3250 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3251 make_cleanup (xfree, new_field);
3252 memset (new_field, 0, sizeof (struct nextfield));
3253 new_field->next = fip->fields;
3254 fip->fields = new_field;
3255 fip->nfields++;
3256
3257 /* Handle accessibility and virtuality of field.
3258 The default accessibility for members is public, the default
3259 accessibility for inheritance is private. */
3260 if (die->tag != DW_TAG_inheritance)
3261 new_field->accessibility = DW_ACCESS_public;
3262 else
3263 new_field->accessibility = DW_ACCESS_private;
3264 new_field->virtuality = DW_VIRTUALITY_none;
3265
3266 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3267 if (attr)
3268 new_field->accessibility = DW_UNSND (attr);
3269 if (new_field->accessibility != DW_ACCESS_public)
3270 fip->non_public_fields = 1;
3271 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3272 if (attr)
3273 new_field->virtuality = DW_UNSND (attr);
3274
3275 fp = &new_field->field;
3276
3277 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3278 {
3279 /* Data member other than a C++ static data member. */
3280
3281 /* Get type of field. */
3282 fp->type = die_type (die, cu);
3283
3284 FIELD_STATIC_KIND (*fp) = 0;
3285
3286 /* Get bit size of field (zero if none). */
3287 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3288 if (attr)
3289 {
3290 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3291 }
3292 else
3293 {
3294 FIELD_BITSIZE (*fp) = 0;
3295 }
3296
3297 /* Get bit offset of field. */
3298 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3299 if (attr)
3300 {
3301 FIELD_BITPOS (*fp) =
3302 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3303 }
3304 else
3305 FIELD_BITPOS (*fp) = 0;
3306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3307 if (attr)
3308 {
3309 if (BITS_BIG_ENDIAN)
3310 {
3311 /* For big endian bits, the DW_AT_bit_offset gives the
3312 additional bit offset from the MSB of the containing
3313 anonymous object to the MSB of the field. We don't
3314 have to do anything special since we don't need to
3315 know the size of the anonymous object. */
3316 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3317 }
3318 else
3319 {
3320 /* For little endian bits, compute the bit offset to the
3321 MSB of the anonymous object, subtract off the number of
3322 bits from the MSB of the field to the MSB of the
3323 object, and then subtract off the number of bits of
3324 the field itself. The result is the bit offset of
3325 the LSB of the field. */
3326 int anonymous_size;
3327 int bit_offset = DW_UNSND (attr);
3328
3329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3330 if (attr)
3331 {
3332 /* The size of the anonymous object containing
3333 the bit field is explicit, so use the
3334 indicated size (in bytes). */
3335 anonymous_size = DW_UNSND (attr);
3336 }
3337 else
3338 {
3339 /* The size of the anonymous object containing
3340 the bit field must be inferred from the type
3341 attribute of the data member containing the
3342 bit field. */
3343 anonymous_size = TYPE_LENGTH (fp->type);
3344 }
3345 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3346 - bit_offset - FIELD_BITSIZE (*fp);
3347 }
3348 }
3349
3350 /* Get name of field. */
3351 attr = dwarf2_attr (die, DW_AT_name, cu);
3352 if (attr && DW_STRING (attr))
3353 fieldname = DW_STRING (attr);
3354
3355 /* The name is already allocated along with this objfile, so we don't
3356 need to duplicate it for the type. */
3357 fp->name = fieldname;
3358
3359 /* Change accessibility for artificial fields (e.g. virtual table
3360 pointer or virtual base class pointer) to private. */
3361 if (dwarf2_attr (die, DW_AT_artificial, cu))
3362 {
3363 new_field->accessibility = DW_ACCESS_private;
3364 fip->non_public_fields = 1;
3365 }
3366 }
3367 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3368 {
3369 /* C++ static member. */
3370
3371 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3372 is a declaration, but all versions of G++ as of this writing
3373 (so through at least 3.2.1) incorrectly generate
3374 DW_TAG_variable tags. */
3375
3376 char *physname;
3377
3378 /* Get name of field. */
3379 attr = dwarf2_attr (die, DW_AT_name, cu);
3380 if (attr && DW_STRING (attr))
3381 fieldname = DW_STRING (attr);
3382 else
3383 return;
3384
3385 /* Get physical name. */
3386 physname = dwarf2_linkage_name (die, cu);
3387
3388 /* The name is already allocated along with this objfile, so we don't
3389 need to duplicate it for the type. */
3390 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3391 FIELD_TYPE (*fp) = die_type (die, cu);
3392 FIELD_NAME (*fp) = fieldname;
3393 }
3394 else if (die->tag == DW_TAG_inheritance)
3395 {
3396 /* C++ base class field. */
3397 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3398 if (attr)
3399 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3400 * bits_per_byte);
3401 FIELD_BITSIZE (*fp) = 0;
3402 FIELD_STATIC_KIND (*fp) = 0;
3403 FIELD_TYPE (*fp) = die_type (die, cu);
3404 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3405 fip->nbaseclasses++;
3406 }
3407 }
3408
3409 /* Create the vector of fields, and attach it to the type. */
3410
3411 static void
3412 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3413 struct dwarf2_cu *cu)
3414 {
3415 int nfields = fip->nfields;
3416
3417 /* Record the field count, allocate space for the array of fields,
3418 and create blank accessibility bitfields if necessary. */
3419 TYPE_NFIELDS (type) = nfields;
3420 TYPE_FIELDS (type) = (struct field *)
3421 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3422 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3423
3424 if (fip->non_public_fields)
3425 {
3426 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3427
3428 TYPE_FIELD_PRIVATE_BITS (type) =
3429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3430 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3431
3432 TYPE_FIELD_PROTECTED_BITS (type) =
3433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3434 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3435
3436 TYPE_FIELD_IGNORE_BITS (type) =
3437 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3438 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3439 }
3440
3441 /* If the type has baseclasses, allocate and clear a bit vector for
3442 TYPE_FIELD_VIRTUAL_BITS. */
3443 if (fip->nbaseclasses)
3444 {
3445 int num_bytes = B_BYTES (fip->nbaseclasses);
3446 char *pointer;
3447
3448 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3449 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3450 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3451 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3452 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3453 }
3454
3455 /* Copy the saved-up fields into the field vector. Start from the head
3456 of the list, adding to the tail of the field array, so that they end
3457 up in the same order in the array in which they were added to the list. */
3458 while (nfields-- > 0)
3459 {
3460 TYPE_FIELD (type, nfields) = fip->fields->field;
3461 switch (fip->fields->accessibility)
3462 {
3463 case DW_ACCESS_private:
3464 SET_TYPE_FIELD_PRIVATE (type, nfields);
3465 break;
3466
3467 case DW_ACCESS_protected:
3468 SET_TYPE_FIELD_PROTECTED (type, nfields);
3469 break;
3470
3471 case DW_ACCESS_public:
3472 break;
3473
3474 default:
3475 /* Unknown accessibility. Complain and treat it as public. */
3476 {
3477 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3478 fip->fields->accessibility);
3479 }
3480 break;
3481 }
3482 if (nfields < fip->nbaseclasses)
3483 {
3484 switch (fip->fields->virtuality)
3485 {
3486 case DW_VIRTUALITY_virtual:
3487 case DW_VIRTUALITY_pure_virtual:
3488 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3489 break;
3490 }
3491 }
3492 fip->fields = fip->fields->next;
3493 }
3494 }
3495
3496 /* Add a member function to the proper fieldlist. */
3497
3498 static void
3499 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3500 struct type *type, struct dwarf2_cu *cu)
3501 {
3502 struct objfile *objfile = cu->objfile;
3503 struct attribute *attr;
3504 struct fnfieldlist *flp;
3505 int i;
3506 struct fn_field *fnp;
3507 char *fieldname;
3508 char *physname;
3509 struct nextfnfield *new_fnfield;
3510
3511 /* Get name of member function. */
3512 attr = dwarf2_attr (die, DW_AT_name, cu);
3513 if (attr && DW_STRING (attr))
3514 fieldname = DW_STRING (attr);
3515 else
3516 return;
3517
3518 /* Get the mangled name. */
3519 physname = dwarf2_linkage_name (die, cu);
3520
3521 /* Look up member function name in fieldlist. */
3522 for (i = 0; i < fip->nfnfields; i++)
3523 {
3524 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3525 break;
3526 }
3527
3528 /* Create new list element if necessary. */
3529 if (i < fip->nfnfields)
3530 flp = &fip->fnfieldlists[i];
3531 else
3532 {
3533 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3534 {
3535 fip->fnfieldlists = (struct fnfieldlist *)
3536 xrealloc (fip->fnfieldlists,
3537 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3538 * sizeof (struct fnfieldlist));
3539 if (fip->nfnfields == 0)
3540 make_cleanup (free_current_contents, &fip->fnfieldlists);
3541 }
3542 flp = &fip->fnfieldlists[fip->nfnfields];
3543 flp->name = fieldname;
3544 flp->length = 0;
3545 flp->head = NULL;
3546 fip->nfnfields++;
3547 }
3548
3549 /* Create a new member function field and chain it to the field list
3550 entry. */
3551 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3552 make_cleanup (xfree, new_fnfield);
3553 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3554 new_fnfield->next = flp->head;
3555 flp->head = new_fnfield;
3556 flp->length++;
3557
3558 /* Fill in the member function field info. */
3559 fnp = &new_fnfield->fnfield;
3560 /* The name is already allocated along with this objfile, so we don't
3561 need to duplicate it for the type. */
3562 fnp->physname = physname ? physname : "";
3563 fnp->type = alloc_type (objfile);
3564 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3565 {
3566 int nparams = TYPE_NFIELDS (die->type);
3567
3568 /* TYPE is the domain of this method, and DIE->TYPE is the type
3569 of the method itself (TYPE_CODE_METHOD). */
3570 smash_to_method_type (fnp->type, type,
3571 TYPE_TARGET_TYPE (die->type),
3572 TYPE_FIELDS (die->type),
3573 TYPE_NFIELDS (die->type),
3574 TYPE_VARARGS (die->type));
3575
3576 /* Handle static member functions.
3577 Dwarf2 has no clean way to discern C++ static and non-static
3578 member functions. G++ helps GDB by marking the first
3579 parameter for non-static member functions (which is the
3580 this pointer) as artificial. We obtain this information
3581 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3582 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3583 fnp->voffset = VOFFSET_STATIC;
3584 }
3585 else
3586 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3587 physname);
3588
3589 /* Get fcontext from DW_AT_containing_type if present. */
3590 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3591 fnp->fcontext = die_containing_type (die, cu);
3592
3593 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3594 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3595
3596 /* Get accessibility. */
3597 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3598 if (attr)
3599 {
3600 switch (DW_UNSND (attr))
3601 {
3602 case DW_ACCESS_private:
3603 fnp->is_private = 1;
3604 break;
3605 case DW_ACCESS_protected:
3606 fnp->is_protected = 1;
3607 break;
3608 }
3609 }
3610
3611 /* Check for artificial methods. */
3612 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3613 if (attr && DW_UNSND (attr) != 0)
3614 fnp->is_artificial = 1;
3615
3616 /* Get index in virtual function table if it is a virtual member function. */
3617 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3618 if (attr)
3619 {
3620 /* Support the .debug_loc offsets */
3621 if (attr_form_is_block (attr))
3622 {
3623 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3624 }
3625 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3626 {
3627 dwarf2_complex_location_expr_complaint ();
3628 }
3629 else
3630 {
3631 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3632 fieldname);
3633 }
3634 }
3635 }
3636
3637 /* Create the vector of member function fields, and attach it to the type. */
3638
3639 static void
3640 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3641 struct dwarf2_cu *cu)
3642 {
3643 struct fnfieldlist *flp;
3644 int total_length = 0;
3645 int i;
3646
3647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3648 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3649 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3650
3651 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3652 {
3653 struct nextfnfield *nfp = flp->head;
3654 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3655 int k;
3656
3657 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3658 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3659 fn_flp->fn_fields = (struct fn_field *)
3660 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3661 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3662 fn_flp->fn_fields[k] = nfp->fnfield;
3663
3664 total_length += flp->length;
3665 }
3666
3667 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3668 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3669 }
3670
3671
3672 /* Returns non-zero if NAME is the name of a vtable member in CU's
3673 language, zero otherwise. */
3674 static int
3675 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3676 {
3677 static const char vptr[] = "_vptr";
3678 static const char vtable[] = "vtable";
3679
3680 /* Look for the C++ and Java forms of the vtable. */
3681 if ((cu->language == language_java
3682 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3683 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3684 && is_cplus_marker (name[sizeof (vptr) - 1])))
3685 return 1;
3686
3687 return 0;
3688 }
3689
3690
3691 /* Called when we find the DIE that starts a structure or union scope
3692 (definition) to process all dies that define the members of the
3693 structure or union.
3694
3695 NOTE: we need to call struct_type regardless of whether or not the
3696 DIE has an at_name attribute, since it might be an anonymous
3697 structure or union. This gets the type entered into our set of
3698 user defined types.
3699
3700 However, if the structure is incomplete (an opaque struct/union)
3701 then suppress creating a symbol table entry for it since gdb only
3702 wants to find the one with the complete definition. Note that if
3703 it is complete, we just call new_symbol, which does it's own
3704 checking about whether the struct/union is anonymous or not (and
3705 suppresses creating a symbol table entry itself). */
3706
3707 static void
3708 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3709 {
3710 struct objfile *objfile = cu->objfile;
3711 struct type *type;
3712 struct attribute *attr;
3713 const char *previous_prefix = processing_current_prefix;
3714 struct cleanup *back_to = NULL;
3715
3716 if (die->type)
3717 return;
3718
3719 type = alloc_type (objfile);
3720
3721 INIT_CPLUS_SPECIFIC (type);
3722 attr = dwarf2_attr (die, DW_AT_name, cu);
3723 if (attr && DW_STRING (attr))
3724 {
3725 if (cu->language == language_cplus
3726 || cu->language == language_java)
3727 {
3728 char *new_prefix = determine_class_name (die, cu);
3729 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3730 strlen (new_prefix),
3731 &objfile->objfile_obstack);
3732 back_to = make_cleanup (xfree, new_prefix);
3733 processing_current_prefix = new_prefix;
3734 }
3735 else
3736 {
3737 /* The name is already allocated along with this objfile, so
3738 we don't need to duplicate it for the type. */
3739 TYPE_TAG_NAME (type) = DW_STRING (attr);
3740 }
3741 }
3742
3743 if (die->tag == DW_TAG_structure_type)
3744 {
3745 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3746 }
3747 else if (die->tag == DW_TAG_union_type)
3748 {
3749 TYPE_CODE (type) = TYPE_CODE_UNION;
3750 }
3751 else
3752 {
3753 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3754 in gdbtypes.h. */
3755 TYPE_CODE (type) = TYPE_CODE_CLASS;
3756 }
3757
3758 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3759 if (attr)
3760 {
3761 TYPE_LENGTH (type) = DW_UNSND (attr);
3762 }
3763 else
3764 {
3765 TYPE_LENGTH (type) = 0;
3766 }
3767
3768 if (die_is_declaration (die, cu))
3769 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3770
3771 /* We need to add the type field to the die immediately so we don't
3772 infinitely recurse when dealing with pointers to the structure
3773 type within the structure itself. */
3774 set_die_type (die, type, cu);
3775
3776 if (die->child != NULL && ! die_is_declaration (die, cu))
3777 {
3778 struct field_info fi;
3779 struct die_info *child_die;
3780 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3781
3782 memset (&fi, 0, sizeof (struct field_info));
3783
3784 child_die = die->child;
3785
3786 while (child_die && child_die->tag)
3787 {
3788 if (child_die->tag == DW_TAG_member
3789 || child_die->tag == DW_TAG_variable)
3790 {
3791 /* NOTE: carlton/2002-11-05: A C++ static data member
3792 should be a DW_TAG_member that is a declaration, but
3793 all versions of G++ as of this writing (so through at
3794 least 3.2.1) incorrectly generate DW_TAG_variable
3795 tags for them instead. */
3796 dwarf2_add_field (&fi, child_die, cu);
3797 }
3798 else if (child_die->tag == DW_TAG_subprogram)
3799 {
3800 /* C++ member function. */
3801 read_type_die (child_die, cu);
3802 dwarf2_add_member_fn (&fi, child_die, type, cu);
3803 }
3804 else if (child_die->tag == DW_TAG_inheritance)
3805 {
3806 /* C++ base class field. */
3807 dwarf2_add_field (&fi, child_die, cu);
3808 }
3809 child_die = sibling_die (child_die);
3810 }
3811
3812 /* Attach fields and member functions to the type. */
3813 if (fi.nfields)
3814 dwarf2_attach_fields_to_type (&fi, type, cu);
3815 if (fi.nfnfields)
3816 {
3817 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3818
3819 /* Get the type which refers to the base class (possibly this
3820 class itself) which contains the vtable pointer for the current
3821 class from the DW_AT_containing_type attribute. */
3822
3823 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3824 {
3825 struct type *t = die_containing_type (die, cu);
3826
3827 TYPE_VPTR_BASETYPE (type) = t;
3828 if (type == t)
3829 {
3830 int i;
3831
3832 /* Our own class provides vtbl ptr. */
3833 for (i = TYPE_NFIELDS (t) - 1;
3834 i >= TYPE_N_BASECLASSES (t);
3835 --i)
3836 {
3837 char *fieldname = TYPE_FIELD_NAME (t, i);
3838
3839 if (is_vtable_name (fieldname, cu))
3840 {
3841 TYPE_VPTR_FIELDNO (type) = i;
3842 break;
3843 }
3844 }
3845
3846 /* Complain if virtual function table field not found. */
3847 if (i < TYPE_N_BASECLASSES (t))
3848 complaint (&symfile_complaints,
3849 _("virtual function table pointer not found when defining class '%s'"),
3850 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3851 "");
3852 }
3853 else
3854 {
3855 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3856 }
3857 }
3858 }
3859
3860 do_cleanups (back_to);
3861 }
3862
3863 processing_current_prefix = previous_prefix;
3864 if (back_to != NULL)
3865 do_cleanups (back_to);
3866 }
3867
3868 static void
3869 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3870 {
3871 struct objfile *objfile = cu->objfile;
3872 const char *previous_prefix = processing_current_prefix;
3873 struct die_info *child_die = die->child;
3874
3875 if (TYPE_TAG_NAME (die->type) != NULL)
3876 processing_current_prefix = TYPE_TAG_NAME (die->type);
3877
3878 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3879 snapshots) has been known to create a die giving a declaration
3880 for a class that has, as a child, a die giving a definition for a
3881 nested class. So we have to process our children even if the
3882 current die is a declaration. Normally, of course, a declaration
3883 won't have any children at all. */
3884
3885 while (child_die != NULL && child_die->tag)
3886 {
3887 if (child_die->tag == DW_TAG_member
3888 || child_die->tag == DW_TAG_variable
3889 || child_die->tag == DW_TAG_inheritance)
3890 {
3891 /* Do nothing. */
3892 }
3893 else
3894 process_die (child_die, cu);
3895
3896 child_die = sibling_die (child_die);
3897 }
3898
3899 if (die->child != NULL && ! die_is_declaration (die, cu))
3900 new_symbol (die, die->type, cu);
3901
3902 processing_current_prefix = previous_prefix;
3903 }
3904
3905 /* Given a DW_AT_enumeration_type die, set its type. We do not
3906 complete the type's fields yet, or create any symbols. */
3907
3908 static void
3909 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3910 {
3911 struct objfile *objfile = cu->objfile;
3912 struct type *type;
3913 struct attribute *attr;
3914
3915 if (die->type)
3916 return;
3917
3918 type = alloc_type (objfile);
3919
3920 TYPE_CODE (type) = TYPE_CODE_ENUM;
3921 attr = dwarf2_attr (die, DW_AT_name, cu);
3922 if (attr && DW_STRING (attr))
3923 {
3924 char *name = DW_STRING (attr);
3925
3926 if (processing_has_namespace_info)
3927 {
3928 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3929 processing_current_prefix,
3930 name, cu);
3931 }
3932 else
3933 {
3934 /* The name is already allocated along with this objfile, so
3935 we don't need to duplicate it for the type. */
3936 TYPE_TAG_NAME (type) = name;
3937 }
3938 }
3939
3940 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3941 if (attr)
3942 {
3943 TYPE_LENGTH (type) = DW_UNSND (attr);
3944 }
3945 else
3946 {
3947 TYPE_LENGTH (type) = 0;
3948 }
3949
3950 set_die_type (die, type, cu);
3951 }
3952
3953 /* Determine the name of the type represented by DIE, which should be
3954 a named C++ or Java compound type. Return the name in question; the caller
3955 is responsible for xfree()'ing it. */
3956
3957 static char *
3958 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3959 {
3960 struct cleanup *back_to = NULL;
3961 struct die_info *spec_die = die_specification (die, cu);
3962 char *new_prefix = NULL;
3963
3964 /* If this is the definition of a class that is declared by another
3965 die, then processing_current_prefix may not be accurate; see
3966 read_func_scope for a similar example. */
3967 if (spec_die != NULL)
3968 {
3969 char *specification_prefix = determine_prefix (spec_die, cu);
3970 processing_current_prefix = specification_prefix;
3971 back_to = make_cleanup (xfree, specification_prefix);
3972 }
3973
3974 /* If we don't have namespace debug info, guess the name by trying
3975 to demangle the names of members, just like we did in
3976 guess_structure_name. */
3977 if (!processing_has_namespace_info)
3978 {
3979 struct die_info *child;
3980
3981 for (child = die->child;
3982 child != NULL && child->tag != 0;
3983 child = sibling_die (child))
3984 {
3985 if (child->tag == DW_TAG_subprogram)
3986 {
3987 new_prefix
3988 = language_class_name_from_physname (cu->language_defn,
3989 dwarf2_linkage_name
3990 (child, cu));
3991
3992 if (new_prefix != NULL)
3993 break;
3994 }
3995 }
3996 }
3997
3998 if (new_prefix == NULL)
3999 {
4000 const char *name = dwarf2_name (die, cu);
4001 new_prefix = typename_concat (NULL, processing_current_prefix,
4002 name ? name : "<<anonymous>>",
4003 cu);
4004 }
4005
4006 if (back_to != NULL)
4007 do_cleanups (back_to);
4008
4009 return new_prefix;
4010 }
4011
4012 /* Given a pointer to a die which begins an enumeration, process all
4013 the dies that define the members of the enumeration, and create the
4014 symbol for the enumeration type.
4015
4016 NOTE: We reverse the order of the element list. */
4017
4018 static void
4019 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4020 {
4021 struct objfile *objfile = cu->objfile;
4022 struct die_info *child_die;
4023 struct field *fields;
4024 struct attribute *attr;
4025 struct symbol *sym;
4026 int num_fields;
4027 int unsigned_enum = 1;
4028
4029 num_fields = 0;
4030 fields = NULL;
4031 if (die->child != NULL)
4032 {
4033 child_die = die->child;
4034 while (child_die && child_die->tag)
4035 {
4036 if (child_die->tag != DW_TAG_enumerator)
4037 {
4038 process_die (child_die, cu);
4039 }
4040 else
4041 {
4042 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4043 if (attr)
4044 {
4045 sym = new_symbol (child_die, die->type, cu);
4046 if (SYMBOL_VALUE (sym) < 0)
4047 unsigned_enum = 0;
4048
4049 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4050 {
4051 fields = (struct field *)
4052 xrealloc (fields,
4053 (num_fields + DW_FIELD_ALLOC_CHUNK)
4054 * sizeof (struct field));
4055 }
4056
4057 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4058 FIELD_TYPE (fields[num_fields]) = NULL;
4059 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4060 FIELD_BITSIZE (fields[num_fields]) = 0;
4061 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4062
4063 num_fields++;
4064 }
4065 }
4066
4067 child_die = sibling_die (child_die);
4068 }
4069
4070 if (num_fields)
4071 {
4072 TYPE_NFIELDS (die->type) = num_fields;
4073 TYPE_FIELDS (die->type) = (struct field *)
4074 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4075 memcpy (TYPE_FIELDS (die->type), fields,
4076 sizeof (struct field) * num_fields);
4077 xfree (fields);
4078 }
4079 if (unsigned_enum)
4080 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4081 }
4082
4083 new_symbol (die, die->type, cu);
4084 }
4085
4086 /* Extract all information from a DW_TAG_array_type DIE and put it in
4087 the DIE's type field. For now, this only handles one dimensional
4088 arrays. */
4089
4090 static void
4091 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4092 {
4093 struct objfile *objfile = cu->objfile;
4094 struct die_info *child_die;
4095 struct type *type = NULL;
4096 struct type *element_type, *range_type, *index_type;
4097 struct type **range_types = NULL;
4098 struct attribute *attr;
4099 int ndim = 0;
4100 struct cleanup *back_to;
4101
4102 /* Return if we've already decoded this type. */
4103 if (die->type)
4104 {
4105 return;
4106 }
4107
4108 element_type = die_type (die, cu);
4109
4110 /* Irix 6.2 native cc creates array types without children for
4111 arrays with unspecified length. */
4112 if (die->child == NULL)
4113 {
4114 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4115 range_type = create_range_type (NULL, index_type, 0, -1);
4116 set_die_type (die, create_array_type (NULL, element_type, range_type),
4117 cu);
4118 return;
4119 }
4120
4121 back_to = make_cleanup (null_cleanup, NULL);
4122 child_die = die->child;
4123 while (child_die && child_die->tag)
4124 {
4125 if (child_die->tag == DW_TAG_subrange_type)
4126 {
4127 read_subrange_type (child_die, cu);
4128
4129 if (child_die->type != NULL)
4130 {
4131 /* The range type was succesfully read. Save it for
4132 the array type creation. */
4133 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4134 {
4135 range_types = (struct type **)
4136 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4137 * sizeof (struct type *));
4138 if (ndim == 0)
4139 make_cleanup (free_current_contents, &range_types);
4140 }
4141 range_types[ndim++] = child_die->type;
4142 }
4143 }
4144 child_die = sibling_die (child_die);
4145 }
4146
4147 /* Dwarf2 dimensions are output from left to right, create the
4148 necessary array types in backwards order. */
4149
4150 type = element_type;
4151
4152 if (read_array_order (die, cu) == DW_ORD_col_major)
4153 {
4154 int i = 0;
4155 while (i < ndim)
4156 type = create_array_type (NULL, type, range_types[i++]);
4157 }
4158 else
4159 {
4160 while (ndim-- > 0)
4161 type = create_array_type (NULL, type, range_types[ndim]);
4162 }
4163
4164 /* Understand Dwarf2 support for vector types (like they occur on
4165 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4166 array type. This is not part of the Dwarf2/3 standard yet, but a
4167 custom vendor extension. The main difference between a regular
4168 array and the vector variant is that vectors are passed by value
4169 to functions. */
4170 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4171 if (attr)
4172 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4173
4174 do_cleanups (back_to);
4175
4176 /* Install the type in the die. */
4177 set_die_type (die, type, cu);
4178 }
4179
4180 static enum dwarf_array_dim_ordering
4181 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4182 {
4183 struct attribute *attr;
4184
4185 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4186
4187 if (attr) return DW_SND (attr);
4188
4189 /*
4190 GNU F77 is a special case, as at 08/2004 array type info is the
4191 opposite order to the dwarf2 specification, but data is still
4192 laid out as per normal fortran.
4193
4194 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4195 version checking.
4196 */
4197
4198 if (cu->language == language_fortran &&
4199 cu->producer && strstr (cu->producer, "GNU F77"))
4200 {
4201 return DW_ORD_row_major;
4202 }
4203
4204 switch (cu->language_defn->la_array_ordering)
4205 {
4206 case array_column_major:
4207 return DW_ORD_col_major;
4208 case array_row_major:
4209 default:
4210 return DW_ORD_row_major;
4211 };
4212 }
4213
4214
4215 /* First cut: install each common block member as a global variable. */
4216
4217 static void
4218 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4219 {
4220 struct die_info *child_die;
4221 struct attribute *attr;
4222 struct symbol *sym;
4223 CORE_ADDR base = (CORE_ADDR) 0;
4224
4225 attr = dwarf2_attr (die, DW_AT_location, cu);
4226 if (attr)
4227 {
4228 /* Support the .debug_loc offsets */
4229 if (attr_form_is_block (attr))
4230 {
4231 base = decode_locdesc (DW_BLOCK (attr), cu);
4232 }
4233 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4234 {
4235 dwarf2_complex_location_expr_complaint ();
4236 }
4237 else
4238 {
4239 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4240 "common block member");
4241 }
4242 }
4243 if (die->child != NULL)
4244 {
4245 child_die = die->child;
4246 while (child_die && child_die->tag)
4247 {
4248 sym = new_symbol (child_die, NULL, cu);
4249 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4250 if (attr)
4251 {
4252 SYMBOL_VALUE_ADDRESS (sym) =
4253 base + decode_locdesc (DW_BLOCK (attr), cu);
4254 add_symbol_to_list (sym, &global_symbols);
4255 }
4256 child_die = sibling_die (child_die);
4257 }
4258 }
4259 }
4260
4261 /* Read a C++ namespace. */
4262
4263 static void
4264 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4265 {
4266 struct objfile *objfile = cu->objfile;
4267 const char *previous_prefix = processing_current_prefix;
4268 const char *name;
4269 int is_anonymous;
4270 struct die_info *current_die;
4271 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4272
4273 name = namespace_name (die, &is_anonymous, cu);
4274
4275 /* Now build the name of the current namespace. */
4276
4277 if (previous_prefix[0] == '\0')
4278 {
4279 processing_current_prefix = name;
4280 }
4281 else
4282 {
4283 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4284 make_cleanup (xfree, temp_name);
4285 processing_current_prefix = temp_name;
4286 }
4287
4288 /* Add a symbol associated to this if we haven't seen the namespace
4289 before. Also, add a using directive if it's an anonymous
4290 namespace. */
4291
4292 if (dwarf2_extension (die, cu) == NULL)
4293 {
4294 struct type *type;
4295
4296 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4297 this cast will hopefully become unnecessary. */
4298 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4299 (char *) processing_current_prefix,
4300 objfile);
4301 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4302
4303 new_symbol (die, type, cu);
4304 set_die_type (die, type, cu);
4305
4306 if (is_anonymous)
4307 cp_add_using_directive (processing_current_prefix,
4308 strlen (previous_prefix),
4309 strlen (processing_current_prefix));
4310 }
4311
4312 if (die->child != NULL)
4313 {
4314 struct die_info *child_die = die->child;
4315
4316 while (child_die && child_die->tag)
4317 {
4318 process_die (child_die, cu);
4319 child_die = sibling_die (child_die);
4320 }
4321 }
4322
4323 processing_current_prefix = previous_prefix;
4324 do_cleanups (back_to);
4325 }
4326
4327 /* Return the name of the namespace represented by DIE. Set
4328 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4329 namespace. */
4330
4331 static const char *
4332 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4333 {
4334 struct die_info *current_die;
4335 const char *name = NULL;
4336
4337 /* Loop through the extensions until we find a name. */
4338
4339 for (current_die = die;
4340 current_die != NULL;
4341 current_die = dwarf2_extension (die, cu))
4342 {
4343 name = dwarf2_name (current_die, cu);
4344 if (name != NULL)
4345 break;
4346 }
4347
4348 /* Is it an anonymous namespace? */
4349
4350 *is_anonymous = (name == NULL);
4351 if (*is_anonymous)
4352 name = "(anonymous namespace)";
4353
4354 return name;
4355 }
4356
4357 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4358 the user defined type vector. */
4359
4360 static void
4361 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4362 {
4363 struct comp_unit_head *cu_header = &cu->header;
4364 struct type *type;
4365 struct attribute *attr_byte_size;
4366 struct attribute *attr_address_class;
4367 int byte_size, addr_class;
4368
4369 if (die->type)
4370 {
4371 return;
4372 }
4373
4374 type = lookup_pointer_type (die_type (die, cu));
4375
4376 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4377 if (attr_byte_size)
4378 byte_size = DW_UNSND (attr_byte_size);
4379 else
4380 byte_size = cu_header->addr_size;
4381
4382 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4383 if (attr_address_class)
4384 addr_class = DW_UNSND (attr_address_class);
4385 else
4386 addr_class = DW_ADDR_none;
4387
4388 /* If the pointer size or address class is different than the
4389 default, create a type variant marked as such and set the
4390 length accordingly. */
4391 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4392 {
4393 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4394 {
4395 int type_flags;
4396
4397 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4398 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4399 type = make_type_with_address_space (type, type_flags);
4400 }
4401 else if (TYPE_LENGTH (type) != byte_size)
4402 {
4403 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4404 }
4405 else {
4406 /* Should we also complain about unhandled address classes? */
4407 }
4408 }
4409
4410 TYPE_LENGTH (type) = byte_size;
4411 set_die_type (die, type, cu);
4412 }
4413
4414 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4415 the user defined type vector. */
4416
4417 static void
4418 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4419 {
4420 struct objfile *objfile = cu->objfile;
4421 struct type *type;
4422 struct type *to_type;
4423 struct type *domain;
4424
4425 if (die->type)
4426 {
4427 return;
4428 }
4429
4430 type = alloc_type (objfile);
4431 to_type = die_type (die, cu);
4432 domain = die_containing_type (die, cu);
4433 smash_to_member_type (type, domain, to_type);
4434
4435 set_die_type (die, type, cu);
4436 }
4437
4438 /* Extract all information from a DW_TAG_reference_type DIE and add to
4439 the user defined type vector. */
4440
4441 static void
4442 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4443 {
4444 struct comp_unit_head *cu_header = &cu->header;
4445 struct type *type;
4446 struct attribute *attr;
4447
4448 if (die->type)
4449 {
4450 return;
4451 }
4452
4453 type = lookup_reference_type (die_type (die, cu));
4454 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4455 if (attr)
4456 {
4457 TYPE_LENGTH (type) = DW_UNSND (attr);
4458 }
4459 else
4460 {
4461 TYPE_LENGTH (type) = cu_header->addr_size;
4462 }
4463 set_die_type (die, type, cu);
4464 }
4465
4466 static void
4467 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4468 {
4469 struct type *base_type;
4470
4471 if (die->type)
4472 {
4473 return;
4474 }
4475
4476 base_type = die_type (die, cu);
4477 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4478 cu);
4479 }
4480
4481 static void
4482 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4483 {
4484 struct type *base_type;
4485
4486 if (die->type)
4487 {
4488 return;
4489 }
4490
4491 base_type = die_type (die, cu);
4492 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4493 cu);
4494 }
4495
4496 /* Extract all information from a DW_TAG_string_type DIE and add to
4497 the user defined type vector. It isn't really a user defined type,
4498 but it behaves like one, with other DIE's using an AT_user_def_type
4499 attribute to reference it. */
4500
4501 static void
4502 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4503 {
4504 struct objfile *objfile = cu->objfile;
4505 struct type *type, *range_type, *index_type, *char_type;
4506 struct attribute *attr;
4507 unsigned int length;
4508
4509 if (die->type)
4510 {
4511 return;
4512 }
4513
4514 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4515 if (attr)
4516 {
4517 length = DW_UNSND (attr);
4518 }
4519 else
4520 {
4521 /* check for the DW_AT_byte_size attribute */
4522 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4523 if (attr)
4524 {
4525 length = DW_UNSND (attr);
4526 }
4527 else
4528 {
4529 length = 1;
4530 }
4531 }
4532 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4533 range_type = create_range_type (NULL, index_type, 1, length);
4534 if (cu->language == language_fortran)
4535 {
4536 /* Need to create a unique string type for bounds
4537 information */
4538 type = create_string_type (0, range_type);
4539 }
4540 else
4541 {
4542 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4543 type = create_string_type (char_type, range_type);
4544 }
4545 set_die_type (die, type, cu);
4546 }
4547
4548 /* Handle DIES due to C code like:
4549
4550 struct foo
4551 {
4552 int (*funcp)(int a, long l);
4553 int b;
4554 };
4555
4556 ('funcp' generates a DW_TAG_subroutine_type DIE)
4557 */
4558
4559 static void
4560 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4561 {
4562 struct type *type; /* Type that this function returns */
4563 struct type *ftype; /* Function that returns above type */
4564 struct attribute *attr;
4565
4566 /* Decode the type that this subroutine returns */
4567 if (die->type)
4568 {
4569 return;
4570 }
4571 type = die_type (die, cu);
4572 ftype = make_function_type (type, (struct type **) 0);
4573
4574 /* All functions in C++ and Java have prototypes. */
4575 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4576 if ((attr && (DW_UNSND (attr) != 0))
4577 || cu->language == language_cplus
4578 || cu->language == language_java)
4579 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4580
4581 if (die->child != NULL)
4582 {
4583 struct die_info *child_die;
4584 int nparams = 0;
4585 int iparams = 0;
4586
4587 /* Count the number of parameters.
4588 FIXME: GDB currently ignores vararg functions, but knows about
4589 vararg member functions. */
4590 child_die = die->child;
4591 while (child_die && child_die->tag)
4592 {
4593 if (child_die->tag == DW_TAG_formal_parameter)
4594 nparams++;
4595 else if (child_die->tag == DW_TAG_unspecified_parameters)
4596 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4597 child_die = sibling_die (child_die);
4598 }
4599
4600 /* Allocate storage for parameters and fill them in. */
4601 TYPE_NFIELDS (ftype) = nparams;
4602 TYPE_FIELDS (ftype) = (struct field *)
4603 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4604
4605 child_die = die->child;
4606 while (child_die && child_die->tag)
4607 {
4608 if (child_die->tag == DW_TAG_formal_parameter)
4609 {
4610 /* Dwarf2 has no clean way to discern C++ static and non-static
4611 member functions. G++ helps GDB by marking the first
4612 parameter for non-static member functions (which is the
4613 this pointer) as artificial. We pass this information
4614 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4615 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4616 if (attr)
4617 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4618 else
4619 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4620 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4621 iparams++;
4622 }
4623 child_die = sibling_die (child_die);
4624 }
4625 }
4626
4627 set_die_type (die, ftype, cu);
4628 }
4629
4630 static void
4631 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4632 {
4633 struct objfile *objfile = cu->objfile;
4634 struct attribute *attr;
4635 char *name = NULL;
4636
4637 if (!die->type)
4638 {
4639 attr = dwarf2_attr (die, DW_AT_name, cu);
4640 if (attr && DW_STRING (attr))
4641 {
4642 name = DW_STRING (attr);
4643 }
4644 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4645 TYPE_FLAG_TARGET_STUB, name, objfile),
4646 cu);
4647 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4648 }
4649 }
4650
4651 /* Find a representation of a given base type and install
4652 it in the TYPE field of the die. */
4653
4654 static void
4655 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4656 {
4657 struct objfile *objfile = cu->objfile;
4658 struct type *type;
4659 struct attribute *attr;
4660 int encoding = 0, size = 0;
4661
4662 /* If we've already decoded this die, this is a no-op. */
4663 if (die->type)
4664 {
4665 return;
4666 }
4667
4668 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4669 if (attr)
4670 {
4671 encoding = DW_UNSND (attr);
4672 }
4673 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4674 if (attr)
4675 {
4676 size = DW_UNSND (attr);
4677 }
4678 attr = dwarf2_attr (die, DW_AT_name, cu);
4679 if (attr && DW_STRING (attr))
4680 {
4681 enum type_code code = TYPE_CODE_INT;
4682 int type_flags = 0;
4683
4684 switch (encoding)
4685 {
4686 case DW_ATE_address:
4687 /* Turn DW_ATE_address into a void * pointer. */
4688 code = TYPE_CODE_PTR;
4689 type_flags |= TYPE_FLAG_UNSIGNED;
4690 break;
4691 case DW_ATE_boolean:
4692 code = TYPE_CODE_BOOL;
4693 type_flags |= TYPE_FLAG_UNSIGNED;
4694 break;
4695 case DW_ATE_complex_float:
4696 code = TYPE_CODE_COMPLEX;
4697 break;
4698 case DW_ATE_float:
4699 code = TYPE_CODE_FLT;
4700 break;
4701 case DW_ATE_signed:
4702 case DW_ATE_signed_char:
4703 break;
4704 case DW_ATE_unsigned:
4705 case DW_ATE_unsigned_char:
4706 type_flags |= TYPE_FLAG_UNSIGNED;
4707 break;
4708 default:
4709 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4710 dwarf_type_encoding_name (encoding));
4711 break;
4712 }
4713 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4714 if (encoding == DW_ATE_address)
4715 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4716 cu);
4717 else if (encoding == DW_ATE_complex_float)
4718 {
4719 if (size == 32)
4720 TYPE_TARGET_TYPE (type)
4721 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4722 else if (size == 16)
4723 TYPE_TARGET_TYPE (type)
4724 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4725 else if (size == 8)
4726 TYPE_TARGET_TYPE (type)
4727 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4728 }
4729 }
4730 else
4731 {
4732 type = dwarf_base_type (encoding, size, cu);
4733 }
4734 set_die_type (die, type, cu);
4735 }
4736
4737 /* Read the given DW_AT_subrange DIE. */
4738
4739 static void
4740 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4741 {
4742 struct type *base_type;
4743 struct type *range_type;
4744 struct attribute *attr;
4745 int low = 0;
4746 int high = -1;
4747
4748 /* If we have already decoded this die, then nothing more to do. */
4749 if (die->type)
4750 return;
4751
4752 base_type = die_type (die, cu);
4753 if (base_type == NULL)
4754 {
4755 complaint (&symfile_complaints,
4756 _("DW_AT_type missing from DW_TAG_subrange_type"));
4757 return;
4758 }
4759
4760 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4761 base_type = alloc_type (NULL);
4762
4763 if (cu->language == language_fortran)
4764 {
4765 /* FORTRAN implies a lower bound of 1, if not given. */
4766 low = 1;
4767 }
4768
4769 /* FIXME: For variable sized arrays either of these could be
4770 a variable rather than a constant value. We'll allow it,
4771 but we don't know how to handle it. */
4772 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4773 if (attr)
4774 low = dwarf2_get_attr_constant_value (attr, 0);
4775
4776 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4777 if (attr)
4778 {
4779 if (attr->form == DW_FORM_block1)
4780 {
4781 /* GCC encodes arrays with unspecified or dynamic length
4782 with a DW_FORM_block1 attribute.
4783 FIXME: GDB does not yet know how to handle dynamic
4784 arrays properly, treat them as arrays with unspecified
4785 length for now.
4786
4787 FIXME: jimb/2003-09-22: GDB does not really know
4788 how to handle arrays of unspecified length
4789 either; we just represent them as zero-length
4790 arrays. Choose an appropriate upper bound given
4791 the lower bound we've computed above. */
4792 high = low - 1;
4793 }
4794 else
4795 high = dwarf2_get_attr_constant_value (attr, 1);
4796 }
4797
4798 range_type = create_range_type (NULL, base_type, low, high);
4799
4800 attr = dwarf2_attr (die, DW_AT_name, cu);
4801 if (attr && DW_STRING (attr))
4802 TYPE_NAME (range_type) = DW_STRING (attr);
4803
4804 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4805 if (attr)
4806 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4807
4808 set_die_type (die, range_type, cu);
4809 }
4810
4811
4812 /* Read a whole compilation unit into a linked list of dies. */
4813
4814 static struct die_info *
4815 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4816 {
4817 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4818 }
4819
4820 /* Read a single die and all its descendents. Set the die's sibling
4821 field to NULL; set other fields in the die correctly, and set all
4822 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4823 location of the info_ptr after reading all of those dies. PARENT
4824 is the parent of the die in question. */
4825
4826 static struct die_info *
4827 read_die_and_children (char *info_ptr, bfd *abfd,
4828 struct dwarf2_cu *cu,
4829 char **new_info_ptr,
4830 struct die_info *parent)
4831 {
4832 struct die_info *die;
4833 char *cur_ptr;
4834 int has_children;
4835
4836 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4837 store_in_ref_table (die->offset, die, cu);
4838
4839 if (has_children)
4840 {
4841 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4842 new_info_ptr, die);
4843 }
4844 else
4845 {
4846 die->child = NULL;
4847 *new_info_ptr = cur_ptr;
4848 }
4849
4850 die->sibling = NULL;
4851 die->parent = parent;
4852 return die;
4853 }
4854
4855 /* Read a die, all of its descendents, and all of its siblings; set
4856 all of the fields of all of the dies correctly. Arguments are as
4857 in read_die_and_children. */
4858
4859 static struct die_info *
4860 read_die_and_siblings (char *info_ptr, bfd *abfd,
4861 struct dwarf2_cu *cu,
4862 char **new_info_ptr,
4863 struct die_info *parent)
4864 {
4865 struct die_info *first_die, *last_sibling;
4866 char *cur_ptr;
4867
4868 cur_ptr = info_ptr;
4869 first_die = last_sibling = NULL;
4870
4871 while (1)
4872 {
4873 struct die_info *die
4874 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4875
4876 if (!first_die)
4877 {
4878 first_die = die;
4879 }
4880 else
4881 {
4882 last_sibling->sibling = die;
4883 }
4884
4885 if (die->tag == 0)
4886 {
4887 *new_info_ptr = cur_ptr;
4888 return first_die;
4889 }
4890 else
4891 {
4892 last_sibling = die;
4893 }
4894 }
4895 }
4896
4897 /* Free a linked list of dies. */
4898
4899 static void
4900 free_die_list (struct die_info *dies)
4901 {
4902 struct die_info *die, *next;
4903
4904 die = dies;
4905 while (die)
4906 {
4907 if (die->child != NULL)
4908 free_die_list (die->child);
4909 next = die->sibling;
4910 xfree (die->attrs);
4911 xfree (die);
4912 die = next;
4913 }
4914 }
4915
4916 /* Read the contents of the section at OFFSET and of size SIZE from the
4917 object file specified by OBJFILE into the objfile_obstack and return it. */
4918
4919 char *
4920 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4921 {
4922 bfd *abfd = objfile->obfd;
4923 char *buf, *retbuf;
4924 bfd_size_type size = bfd_get_section_size (sectp);
4925
4926 if (size == 0)
4927 return NULL;
4928
4929 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4930 retbuf
4931 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4932 if (retbuf != NULL)
4933 return retbuf;
4934
4935 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4936 || bfd_bread (buf, size, abfd) != size)
4937 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
4938 bfd_get_filename (abfd));
4939
4940 return buf;
4941 }
4942
4943 /* In DWARF version 2, the description of the debugging information is
4944 stored in a separate .debug_abbrev section. Before we read any
4945 dies from a section we read in all abbreviations and install them
4946 in a hash table. This function also sets flags in CU describing
4947 the data found in the abbrev table. */
4948
4949 static void
4950 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4951 {
4952 struct comp_unit_head *cu_header = &cu->header;
4953 char *abbrev_ptr;
4954 struct abbrev_info *cur_abbrev;
4955 unsigned int abbrev_number, bytes_read, abbrev_name;
4956 unsigned int abbrev_form, hash_number;
4957 struct attr_abbrev *cur_attrs;
4958 unsigned int allocated_attrs;
4959
4960 /* Initialize dwarf2 abbrevs */
4961 obstack_init (&cu->abbrev_obstack);
4962 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4963 (ABBREV_HASH_SIZE
4964 * sizeof (struct abbrev_info *)));
4965 memset (cu->dwarf2_abbrevs, 0,
4966 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4967
4968 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4969 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4970 abbrev_ptr += bytes_read;
4971
4972 allocated_attrs = ATTR_ALLOC_CHUNK;
4973 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4974
4975 /* loop until we reach an abbrev number of 0 */
4976 while (abbrev_number)
4977 {
4978 cur_abbrev = dwarf_alloc_abbrev (cu);
4979
4980 /* read in abbrev header */
4981 cur_abbrev->number = abbrev_number;
4982 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4983 abbrev_ptr += bytes_read;
4984 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4985 abbrev_ptr += 1;
4986
4987 if (cur_abbrev->tag == DW_TAG_namespace)
4988 cu->has_namespace_info = 1;
4989
4990 /* now read in declarations */
4991 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4992 abbrev_ptr += bytes_read;
4993 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4994 abbrev_ptr += bytes_read;
4995 while (abbrev_name)
4996 {
4997 if (cur_abbrev->num_attrs == allocated_attrs)
4998 {
4999 allocated_attrs += ATTR_ALLOC_CHUNK;
5000 cur_attrs
5001 = xrealloc (cur_attrs, (allocated_attrs
5002 * sizeof (struct attr_abbrev)));
5003 }
5004
5005 /* Record whether this compilation unit might have
5006 inter-compilation-unit references. If we don't know what form
5007 this attribute will have, then it might potentially be a
5008 DW_FORM_ref_addr, so we conservatively expect inter-CU
5009 references. */
5010
5011 if (abbrev_form == DW_FORM_ref_addr
5012 || abbrev_form == DW_FORM_indirect)
5013 cu->has_form_ref_addr = 1;
5014
5015 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5016 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5017 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5018 abbrev_ptr += bytes_read;
5019 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5020 abbrev_ptr += bytes_read;
5021 }
5022
5023 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5024 (cur_abbrev->num_attrs
5025 * sizeof (struct attr_abbrev)));
5026 memcpy (cur_abbrev->attrs, cur_attrs,
5027 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5028
5029 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5030 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5031 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5032
5033 /* Get next abbreviation.
5034 Under Irix6 the abbreviations for a compilation unit are not
5035 always properly terminated with an abbrev number of 0.
5036 Exit loop if we encounter an abbreviation which we have
5037 already read (which means we are about to read the abbreviations
5038 for the next compile unit) or if the end of the abbreviation
5039 table is reached. */
5040 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5041 >= dwarf2_per_objfile->abbrev_size)
5042 break;
5043 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5044 abbrev_ptr += bytes_read;
5045 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5046 break;
5047 }
5048
5049 xfree (cur_attrs);
5050 }
5051
5052 /* Release the memory used by the abbrev table for a compilation unit. */
5053
5054 static void
5055 dwarf2_free_abbrev_table (void *ptr_to_cu)
5056 {
5057 struct dwarf2_cu *cu = ptr_to_cu;
5058
5059 obstack_free (&cu->abbrev_obstack, NULL);
5060 cu->dwarf2_abbrevs = NULL;
5061 }
5062
5063 /* Lookup an abbrev_info structure in the abbrev hash table. */
5064
5065 static struct abbrev_info *
5066 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5067 {
5068 unsigned int hash_number;
5069 struct abbrev_info *abbrev;
5070
5071 hash_number = number % ABBREV_HASH_SIZE;
5072 abbrev = cu->dwarf2_abbrevs[hash_number];
5073
5074 while (abbrev)
5075 {
5076 if (abbrev->number == number)
5077 return abbrev;
5078 else
5079 abbrev = abbrev->next;
5080 }
5081 return NULL;
5082 }
5083
5084 /* Returns nonzero if TAG represents a type that we might generate a partial
5085 symbol for. */
5086
5087 static int
5088 is_type_tag_for_partial (int tag)
5089 {
5090 switch (tag)
5091 {
5092 #if 0
5093 /* Some types that would be reasonable to generate partial symbols for,
5094 that we don't at present. */
5095 case DW_TAG_array_type:
5096 case DW_TAG_file_type:
5097 case DW_TAG_ptr_to_member_type:
5098 case DW_TAG_set_type:
5099 case DW_TAG_string_type:
5100 case DW_TAG_subroutine_type:
5101 #endif
5102 case DW_TAG_base_type:
5103 case DW_TAG_class_type:
5104 case DW_TAG_enumeration_type:
5105 case DW_TAG_structure_type:
5106 case DW_TAG_subrange_type:
5107 case DW_TAG_typedef:
5108 case DW_TAG_union_type:
5109 return 1;
5110 default:
5111 return 0;
5112 }
5113 }
5114
5115 /* Load all DIEs that are interesting for partial symbols into memory. */
5116
5117 static struct partial_die_info *
5118 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5119 struct dwarf2_cu *cu)
5120 {
5121 struct partial_die_info *part_die;
5122 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5123 struct abbrev_info *abbrev;
5124 unsigned int bytes_read;
5125
5126 int nesting_level = 1;
5127
5128 parent_die = NULL;
5129 last_die = NULL;
5130
5131 cu->partial_dies
5132 = htab_create_alloc_ex (cu->header.length / 12,
5133 partial_die_hash,
5134 partial_die_eq,
5135 NULL,
5136 &cu->comp_unit_obstack,
5137 hashtab_obstack_allocate,
5138 dummy_obstack_deallocate);
5139
5140 part_die = obstack_alloc (&cu->comp_unit_obstack,
5141 sizeof (struct partial_die_info));
5142
5143 while (1)
5144 {
5145 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5146
5147 /* A NULL abbrev means the end of a series of children. */
5148 if (abbrev == NULL)
5149 {
5150 if (--nesting_level == 0)
5151 {
5152 /* PART_DIE was probably the last thing allocated on the
5153 comp_unit_obstack, so we could call obstack_free
5154 here. We don't do that because the waste is small,
5155 and will be cleaned up when we're done with this
5156 compilation unit. This way, we're also more robust
5157 against other users of the comp_unit_obstack. */
5158 return first_die;
5159 }
5160 info_ptr += bytes_read;
5161 last_die = parent_die;
5162 parent_die = parent_die->die_parent;
5163 continue;
5164 }
5165
5166 /* Check whether this DIE is interesting enough to save. */
5167 if (!is_type_tag_for_partial (abbrev->tag)
5168 && abbrev->tag != DW_TAG_enumerator
5169 && abbrev->tag != DW_TAG_subprogram
5170 && abbrev->tag != DW_TAG_variable
5171 && abbrev->tag != DW_TAG_namespace)
5172 {
5173 /* Otherwise we skip to the next sibling, if any. */
5174 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5175 continue;
5176 }
5177
5178 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5179 abfd, info_ptr, cu);
5180
5181 /* This two-pass algorithm for processing partial symbols has a
5182 high cost in cache pressure. Thus, handle some simple cases
5183 here which cover the majority of C partial symbols. DIEs
5184 which neither have specification tags in them, nor could have
5185 specification tags elsewhere pointing at them, can simply be
5186 processed and discarded.
5187
5188 This segment is also optional; scan_partial_symbols and
5189 add_partial_symbol will handle these DIEs if we chain
5190 them in normally. When compilers which do not emit large
5191 quantities of duplicate debug information are more common,
5192 this code can probably be removed. */
5193
5194 /* Any complete simple types at the top level (pretty much all
5195 of them, for a language without namespaces), can be processed
5196 directly. */
5197 if (parent_die == NULL
5198 && part_die->has_specification == 0
5199 && part_die->is_declaration == 0
5200 && (part_die->tag == DW_TAG_typedef
5201 || part_die->tag == DW_TAG_base_type
5202 || part_die->tag == DW_TAG_subrange_type))
5203 {
5204 if (building_psymtab && part_die->name != NULL)
5205 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5206 VAR_DOMAIN, LOC_TYPEDEF,
5207 &cu->objfile->static_psymbols,
5208 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5209 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5210 continue;
5211 }
5212
5213 /* If we're at the second level, and we're an enumerator, and
5214 our parent has no specification (meaning possibly lives in a
5215 namespace elsewhere), then we can add the partial symbol now
5216 instead of queueing it. */
5217 if (part_die->tag == DW_TAG_enumerator
5218 && parent_die != NULL
5219 && parent_die->die_parent == NULL
5220 && parent_die->tag == DW_TAG_enumeration_type
5221 && parent_die->has_specification == 0)
5222 {
5223 if (part_die->name == NULL)
5224 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5225 else if (building_psymtab)
5226 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5227 VAR_DOMAIN, LOC_CONST,
5228 (cu->language == language_cplus
5229 || cu->language == language_java)
5230 ? &cu->objfile->global_psymbols
5231 : &cu->objfile->static_psymbols,
5232 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5233
5234 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5235 continue;
5236 }
5237
5238 /* We'll save this DIE so link it in. */
5239 part_die->die_parent = parent_die;
5240 part_die->die_sibling = NULL;
5241 part_die->die_child = NULL;
5242
5243 if (last_die && last_die == parent_die)
5244 last_die->die_child = part_die;
5245 else if (last_die)
5246 last_die->die_sibling = part_die;
5247
5248 last_die = part_die;
5249
5250 if (first_die == NULL)
5251 first_die = part_die;
5252
5253 /* Maybe add the DIE to the hash table. Not all DIEs that we
5254 find interesting need to be in the hash table, because we
5255 also have the parent/sibling/child chains; only those that we
5256 might refer to by offset later during partial symbol reading.
5257
5258 For now this means things that might have be the target of a
5259 DW_AT_specification, DW_AT_abstract_origin, or
5260 DW_AT_extension. DW_AT_extension will refer only to
5261 namespaces; DW_AT_abstract_origin refers to functions (and
5262 many things under the function DIE, but we do not recurse
5263 into function DIEs during partial symbol reading) and
5264 possibly variables as well; DW_AT_specification refers to
5265 declarations. Declarations ought to have the DW_AT_declaration
5266 flag. It happens that GCC forgets to put it in sometimes, but
5267 only for functions, not for types.
5268
5269 Adding more things than necessary to the hash table is harmless
5270 except for the performance cost. Adding too few will result in
5271 internal errors in find_partial_die. */
5272
5273 if (abbrev->tag == DW_TAG_subprogram
5274 || abbrev->tag == DW_TAG_variable
5275 || abbrev->tag == DW_TAG_namespace
5276 || part_die->is_declaration)
5277 {
5278 void **slot;
5279
5280 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5281 part_die->offset, INSERT);
5282 *slot = part_die;
5283 }
5284
5285 part_die = obstack_alloc (&cu->comp_unit_obstack,
5286 sizeof (struct partial_die_info));
5287
5288 /* For some DIEs we want to follow their children (if any). For C
5289 we have no reason to follow the children of structures; for other
5290 languages we have to, both so that we can get at method physnames
5291 to infer fully qualified class names, and for DW_AT_specification. */
5292 if (last_die->has_children
5293 && (last_die->tag == DW_TAG_namespace
5294 || last_die->tag == DW_TAG_enumeration_type
5295 || (cu->language != language_c
5296 && (last_die->tag == DW_TAG_class_type
5297 || last_die->tag == DW_TAG_structure_type
5298 || last_die->tag == DW_TAG_union_type))))
5299 {
5300 nesting_level++;
5301 parent_die = last_die;
5302 continue;
5303 }
5304
5305 /* Otherwise we skip to the next sibling, if any. */
5306 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5307
5308 /* Back to the top, do it again. */
5309 }
5310 }
5311
5312 /* Read a minimal amount of information into the minimal die structure. */
5313
5314 static char *
5315 read_partial_die (struct partial_die_info *part_die,
5316 struct abbrev_info *abbrev,
5317 unsigned int abbrev_len, bfd *abfd,
5318 char *info_ptr, struct dwarf2_cu *cu)
5319 {
5320 unsigned int bytes_read, i;
5321 struct attribute attr;
5322 int has_low_pc_attr = 0;
5323 int has_high_pc_attr = 0;
5324
5325 memset (part_die, 0, sizeof (struct partial_die_info));
5326
5327 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5328
5329 info_ptr += abbrev_len;
5330
5331 if (abbrev == NULL)
5332 return info_ptr;
5333
5334 part_die->tag = abbrev->tag;
5335 part_die->has_children = abbrev->has_children;
5336
5337 for (i = 0; i < abbrev->num_attrs; ++i)
5338 {
5339 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5340
5341 /* Store the data if it is of an attribute we want to keep in a
5342 partial symbol table. */
5343 switch (attr.name)
5344 {
5345 case DW_AT_name:
5346
5347 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5348 if (part_die->name == NULL)
5349 part_die->name = DW_STRING (&attr);
5350 break;
5351 case DW_AT_comp_dir:
5352 if (part_die->dirname == NULL)
5353 part_die->dirname = DW_STRING (&attr);
5354 break;
5355 case DW_AT_MIPS_linkage_name:
5356 part_die->name = DW_STRING (&attr);
5357 break;
5358 case DW_AT_low_pc:
5359 has_low_pc_attr = 1;
5360 part_die->lowpc = DW_ADDR (&attr);
5361 break;
5362 case DW_AT_high_pc:
5363 has_high_pc_attr = 1;
5364 part_die->highpc = DW_ADDR (&attr);
5365 break;
5366 case DW_AT_location:
5367 /* Support the .debug_loc offsets */
5368 if (attr_form_is_block (&attr))
5369 {
5370 part_die->locdesc = DW_BLOCK (&attr);
5371 }
5372 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5373 {
5374 dwarf2_complex_location_expr_complaint ();
5375 }
5376 else
5377 {
5378 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5379 "partial symbol information");
5380 }
5381 break;
5382 case DW_AT_language:
5383 part_die->language = DW_UNSND (&attr);
5384 break;
5385 case DW_AT_external:
5386 part_die->is_external = DW_UNSND (&attr);
5387 break;
5388 case DW_AT_declaration:
5389 part_die->is_declaration = DW_UNSND (&attr);
5390 break;
5391 case DW_AT_type:
5392 part_die->has_type = 1;
5393 break;
5394 case DW_AT_abstract_origin:
5395 case DW_AT_specification:
5396 case DW_AT_extension:
5397 part_die->has_specification = 1;
5398 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5399 break;
5400 case DW_AT_sibling:
5401 /* Ignore absolute siblings, they might point outside of
5402 the current compile unit. */
5403 if (attr.form == DW_FORM_ref_addr)
5404 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5405 else
5406 part_die->sibling = dwarf2_per_objfile->info_buffer
5407 + dwarf2_get_ref_die_offset (&attr, cu);
5408 break;
5409 case DW_AT_stmt_list:
5410 part_die->has_stmt_list = 1;
5411 part_die->line_offset = DW_UNSND (&attr);
5412 break;
5413 default:
5414 break;
5415 }
5416 }
5417
5418 /* When using the GNU linker, .gnu.linkonce. sections are used to
5419 eliminate duplicate copies of functions and vtables and such.
5420 The linker will arbitrarily choose one and discard the others.
5421 The AT_*_pc values for such functions refer to local labels in
5422 these sections. If the section from that file was discarded, the
5423 labels are not in the output, so the relocs get a value of 0.
5424 If this is a discarded function, mark the pc bounds as invalid,
5425 so that GDB will ignore it. */
5426 if (has_low_pc_attr && has_high_pc_attr
5427 && part_die->lowpc < part_die->highpc
5428 && (part_die->lowpc != 0
5429 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5430 part_die->has_pc_info = 1;
5431 return info_ptr;
5432 }
5433
5434 /* Find a cached partial DIE at OFFSET in CU. */
5435
5436 static struct partial_die_info *
5437 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5438 {
5439 struct partial_die_info *lookup_die = NULL;
5440 struct partial_die_info part_die;
5441
5442 part_die.offset = offset;
5443 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5444
5445 if (lookup_die == NULL)
5446 internal_error (__FILE__, __LINE__,
5447 _("could not find partial DIE in cache\n"));
5448
5449 return lookup_die;
5450 }
5451
5452 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5453
5454 static struct partial_die_info *
5455 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5456 {
5457 struct dwarf2_per_cu_data *per_cu;
5458
5459 if (offset >= cu->header.offset
5460 && offset < cu->header.offset + cu->header.length)
5461 return find_partial_die_in_comp_unit (offset, cu);
5462
5463 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5464
5465 if (per_cu->cu == NULL)
5466 {
5467 load_comp_unit (per_cu, cu->objfile);
5468 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5469 dwarf2_per_objfile->read_in_chain = per_cu;
5470 }
5471
5472 per_cu->cu->last_used = 0;
5473 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5474 }
5475
5476 /* Adjust PART_DIE before generating a symbol for it. This function
5477 may set the is_external flag or change the DIE's name. */
5478
5479 static void
5480 fixup_partial_die (struct partial_die_info *part_die,
5481 struct dwarf2_cu *cu)
5482 {
5483 /* If we found a reference attribute and the DIE has no name, try
5484 to find a name in the referred to DIE. */
5485
5486 if (part_die->name == NULL && part_die->has_specification)
5487 {
5488 struct partial_die_info *spec_die;
5489
5490 spec_die = find_partial_die (part_die->spec_offset, cu);
5491
5492 fixup_partial_die (spec_die, cu);
5493
5494 if (spec_die->name)
5495 {
5496 part_die->name = spec_die->name;
5497
5498 /* Copy DW_AT_external attribute if it is set. */
5499 if (spec_die->is_external)
5500 part_die->is_external = spec_die->is_external;
5501 }
5502 }
5503
5504 /* Set default names for some unnamed DIEs. */
5505 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5506 || part_die->tag == DW_TAG_class_type))
5507 part_die->name = "(anonymous class)";
5508
5509 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5510 part_die->name = "(anonymous namespace)";
5511
5512 if (part_die->tag == DW_TAG_structure_type
5513 || part_die->tag == DW_TAG_class_type
5514 || part_die->tag == DW_TAG_union_type)
5515 guess_structure_name (part_die, cu);
5516 }
5517
5518 /* Read the die from the .debug_info section buffer. Set DIEP to
5519 point to a newly allocated die with its information, except for its
5520 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5521 whether the die has children or not. */
5522
5523 static char *
5524 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5525 struct dwarf2_cu *cu, int *has_children)
5526 {
5527 unsigned int abbrev_number, bytes_read, i, offset;
5528 struct abbrev_info *abbrev;
5529 struct die_info *die;
5530
5531 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5532 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5533 info_ptr += bytes_read;
5534 if (!abbrev_number)
5535 {
5536 die = dwarf_alloc_die ();
5537 die->tag = 0;
5538 die->abbrev = abbrev_number;
5539 die->type = NULL;
5540 *diep = die;
5541 *has_children = 0;
5542 return info_ptr;
5543 }
5544
5545 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5546 if (!abbrev)
5547 {
5548 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5549 abbrev_number,
5550 bfd_get_filename (abfd));
5551 }
5552 die = dwarf_alloc_die ();
5553 die->offset = offset;
5554 die->tag = abbrev->tag;
5555 die->abbrev = abbrev_number;
5556 die->type = NULL;
5557
5558 die->num_attrs = abbrev->num_attrs;
5559 die->attrs = (struct attribute *)
5560 xmalloc (die->num_attrs * sizeof (struct attribute));
5561
5562 for (i = 0; i < abbrev->num_attrs; ++i)
5563 {
5564 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5565 abfd, info_ptr, cu);
5566
5567 /* If this attribute is an absolute reference to a different
5568 compilation unit, make sure that compilation unit is loaded
5569 also. */
5570 if (die->attrs[i].form == DW_FORM_ref_addr
5571 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5572 || (DW_ADDR (&die->attrs[i])
5573 >= cu->header.offset + cu->header.length)))
5574 {
5575 struct dwarf2_per_cu_data *per_cu;
5576 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5577 cu->objfile);
5578
5579 /* Mark the dependence relation so that we don't flush PER_CU
5580 too early. */
5581 dwarf2_add_dependence (cu, per_cu);
5582
5583 /* If it's already on the queue, we have nothing to do. */
5584 if (per_cu->queued)
5585 continue;
5586
5587 /* If the compilation unit is already loaded, just mark it as
5588 used. */
5589 if (per_cu->cu != NULL)
5590 {
5591 per_cu->cu->last_used = 0;
5592 continue;
5593 }
5594
5595 /* Add it to the queue. */
5596 queue_comp_unit (per_cu);
5597 }
5598 }
5599
5600 *diep = die;
5601 *has_children = abbrev->has_children;
5602 return info_ptr;
5603 }
5604
5605 /* Read an attribute value described by an attribute form. */
5606
5607 static char *
5608 read_attribute_value (struct attribute *attr, unsigned form,
5609 bfd *abfd, char *info_ptr,
5610 struct dwarf2_cu *cu)
5611 {
5612 struct comp_unit_head *cu_header = &cu->header;
5613 unsigned int bytes_read;
5614 struct dwarf_block *blk;
5615
5616 attr->form = form;
5617 switch (form)
5618 {
5619 case DW_FORM_addr:
5620 case DW_FORM_ref_addr:
5621 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5622 info_ptr += bytes_read;
5623 break;
5624 case DW_FORM_block2:
5625 blk = dwarf_alloc_block (cu);
5626 blk->size = read_2_bytes (abfd, info_ptr);
5627 info_ptr += 2;
5628 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5629 info_ptr += blk->size;
5630 DW_BLOCK (attr) = blk;
5631 break;
5632 case DW_FORM_block4:
5633 blk = dwarf_alloc_block (cu);
5634 blk->size = read_4_bytes (abfd, info_ptr);
5635 info_ptr += 4;
5636 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5637 info_ptr += blk->size;
5638 DW_BLOCK (attr) = blk;
5639 break;
5640 case DW_FORM_data2:
5641 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5642 info_ptr += 2;
5643 break;
5644 case DW_FORM_data4:
5645 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5646 info_ptr += 4;
5647 break;
5648 case DW_FORM_data8:
5649 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5650 info_ptr += 8;
5651 break;
5652 case DW_FORM_string:
5653 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5654 info_ptr += bytes_read;
5655 break;
5656 case DW_FORM_strp:
5657 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5658 &bytes_read);
5659 info_ptr += bytes_read;
5660 break;
5661 case DW_FORM_block:
5662 blk = dwarf_alloc_block (cu);
5663 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5664 info_ptr += bytes_read;
5665 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5666 info_ptr += blk->size;
5667 DW_BLOCK (attr) = blk;
5668 break;
5669 case DW_FORM_block1:
5670 blk = dwarf_alloc_block (cu);
5671 blk->size = read_1_byte (abfd, info_ptr);
5672 info_ptr += 1;
5673 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5674 info_ptr += blk->size;
5675 DW_BLOCK (attr) = blk;
5676 break;
5677 case DW_FORM_data1:
5678 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5679 info_ptr += 1;
5680 break;
5681 case DW_FORM_flag:
5682 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5683 info_ptr += 1;
5684 break;
5685 case DW_FORM_sdata:
5686 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5687 info_ptr += bytes_read;
5688 break;
5689 case DW_FORM_udata:
5690 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5691 info_ptr += bytes_read;
5692 break;
5693 case DW_FORM_ref1:
5694 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5695 info_ptr += 1;
5696 break;
5697 case DW_FORM_ref2:
5698 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5699 info_ptr += 2;
5700 break;
5701 case DW_FORM_ref4:
5702 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5703 info_ptr += 4;
5704 break;
5705 case DW_FORM_ref8:
5706 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5707 info_ptr += 8;
5708 break;
5709 case DW_FORM_ref_udata:
5710 DW_ADDR (attr) = (cu->header.offset
5711 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5712 info_ptr += bytes_read;
5713 break;
5714 case DW_FORM_indirect:
5715 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5716 info_ptr += bytes_read;
5717 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5718 break;
5719 default:
5720 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5721 dwarf_form_name (form),
5722 bfd_get_filename (abfd));
5723 }
5724 return info_ptr;
5725 }
5726
5727 /* Read an attribute described by an abbreviated attribute. */
5728
5729 static char *
5730 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5731 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5732 {
5733 attr->name = abbrev->name;
5734 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5735 }
5736
5737 /* read dwarf information from a buffer */
5738
5739 static unsigned int
5740 read_1_byte (bfd *abfd, char *buf)
5741 {
5742 return bfd_get_8 (abfd, (bfd_byte *) buf);
5743 }
5744
5745 static int
5746 read_1_signed_byte (bfd *abfd, char *buf)
5747 {
5748 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5749 }
5750
5751 static unsigned int
5752 read_2_bytes (bfd *abfd, char *buf)
5753 {
5754 return bfd_get_16 (abfd, (bfd_byte *) buf);
5755 }
5756
5757 static int
5758 read_2_signed_bytes (bfd *abfd, char *buf)
5759 {
5760 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5761 }
5762
5763 static unsigned int
5764 read_4_bytes (bfd *abfd, char *buf)
5765 {
5766 return bfd_get_32 (abfd, (bfd_byte *) buf);
5767 }
5768
5769 static int
5770 read_4_signed_bytes (bfd *abfd, char *buf)
5771 {
5772 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5773 }
5774
5775 static unsigned long
5776 read_8_bytes (bfd *abfd, char *buf)
5777 {
5778 return bfd_get_64 (abfd, (bfd_byte *) buf);
5779 }
5780
5781 static CORE_ADDR
5782 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5783 {
5784 struct comp_unit_head *cu_header = &cu->header;
5785 CORE_ADDR retval = 0;
5786
5787 if (cu_header->signed_addr_p)
5788 {
5789 switch (cu_header->addr_size)
5790 {
5791 case 2:
5792 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5793 break;
5794 case 4:
5795 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5796 break;
5797 case 8:
5798 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5799 break;
5800 default:
5801 internal_error (__FILE__, __LINE__,
5802 _("read_address: bad switch, signed [in module %s]"),
5803 bfd_get_filename (abfd));
5804 }
5805 }
5806 else
5807 {
5808 switch (cu_header->addr_size)
5809 {
5810 case 2:
5811 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5812 break;
5813 case 4:
5814 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5815 break;
5816 case 8:
5817 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5818 break;
5819 default:
5820 internal_error (__FILE__, __LINE__,
5821 _("read_address: bad switch, unsigned [in module %s]"),
5822 bfd_get_filename (abfd));
5823 }
5824 }
5825
5826 *bytes_read = cu_header->addr_size;
5827 return retval;
5828 }
5829
5830 /* Read the initial length from a section. The (draft) DWARF 3
5831 specification allows the initial length to take up either 4 bytes
5832 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5833 bytes describe the length and all offsets will be 8 bytes in length
5834 instead of 4.
5835
5836 An older, non-standard 64-bit format is also handled by this
5837 function. The older format in question stores the initial length
5838 as an 8-byte quantity without an escape value. Lengths greater
5839 than 2^32 aren't very common which means that the initial 4 bytes
5840 is almost always zero. Since a length value of zero doesn't make
5841 sense for the 32-bit format, this initial zero can be considered to
5842 be an escape value which indicates the presence of the older 64-bit
5843 format. As written, the code can't detect (old format) lengths
5844 greater than 4GB. If it becomes necessary to handle lengths
5845 somewhat larger than 4GB, we could allow other small values (such
5846 as the non-sensical values of 1, 2, and 3) to also be used as
5847 escape values indicating the presence of the old format.
5848
5849 The value returned via bytes_read should be used to increment the
5850 relevant pointer after calling read_initial_length().
5851
5852 As a side effect, this function sets the fields initial_length_size
5853 and offset_size in cu_header to the values appropriate for the
5854 length field. (The format of the initial length field determines
5855 the width of file offsets to be fetched later with read_offset().)
5856
5857 [ Note: read_initial_length() and read_offset() are based on the
5858 document entitled "DWARF Debugging Information Format", revision
5859 3, draft 8, dated November 19, 2001. This document was obtained
5860 from:
5861
5862 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5863
5864 This document is only a draft and is subject to change. (So beware.)
5865
5866 Details regarding the older, non-standard 64-bit format were
5867 determined empirically by examining 64-bit ELF files produced by
5868 the SGI toolchain on an IRIX 6.5 machine.
5869
5870 - Kevin, July 16, 2002
5871 ] */
5872
5873 static LONGEST
5874 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5875 int *bytes_read)
5876 {
5877 LONGEST length = bfd_get_32 (abfd, (bfd_byte *) buf);
5878
5879 if (length == 0xffffffff)
5880 {
5881 length = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5882 *bytes_read = 12;
5883 }
5884 else if (length == 0)
5885 {
5886 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
5887 length = bfd_get_64 (abfd, (bfd_byte *) buf);
5888 *bytes_read = 8;
5889 }
5890 else
5891 {
5892 *bytes_read = 4;
5893 }
5894
5895 if (cu_header)
5896 {
5897 gdb_assert (cu_header->initial_length_size == 0
5898 || cu_header->initial_length_size == 4
5899 || cu_header->initial_length_size == 8
5900 || cu_header->initial_length_size == 12);
5901
5902 if (cu_header->initial_length_size != 0
5903 && cu_header->initial_length_size != *bytes_read)
5904 complaint (&symfile_complaints,
5905 _("intermixed 32-bit and 64-bit DWARF sections"));
5906
5907 cu_header->initial_length_size = *bytes_read;
5908 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
5909 }
5910
5911 return length;
5912 }
5913
5914 /* Read an offset from the data stream. The size of the offset is
5915 given by cu_header->offset_size. */
5916
5917 static LONGEST
5918 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5919 int *bytes_read)
5920 {
5921 LONGEST retval = 0;
5922
5923 switch (cu_header->offset_size)
5924 {
5925 case 4:
5926 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5927 *bytes_read = 4;
5928 break;
5929 case 8:
5930 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5931 *bytes_read = 8;
5932 break;
5933 default:
5934 internal_error (__FILE__, __LINE__,
5935 _("read_offset: bad switch [in module %s]"),
5936 bfd_get_filename (abfd));
5937 }
5938
5939 return retval;
5940 }
5941
5942 static char *
5943 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5944 {
5945 /* If the size of a host char is 8 bits, we can return a pointer
5946 to the buffer, otherwise we have to copy the data to a buffer
5947 allocated on the temporary obstack. */
5948 gdb_assert (HOST_CHAR_BIT == 8);
5949 return buf;
5950 }
5951
5952 static char *
5953 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5954 {
5955 /* If the size of a host char is 8 bits, we can return a pointer
5956 to the string, otherwise we have to copy the string to a buffer
5957 allocated on the temporary obstack. */
5958 gdb_assert (HOST_CHAR_BIT == 8);
5959 if (*buf == '\0')
5960 {
5961 *bytes_read_ptr = 1;
5962 return NULL;
5963 }
5964 *bytes_read_ptr = strlen (buf) + 1;
5965 return buf;
5966 }
5967
5968 static char *
5969 read_indirect_string (bfd *abfd, char *buf,
5970 const struct comp_unit_head *cu_header,
5971 unsigned int *bytes_read_ptr)
5972 {
5973 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5974 (int *) bytes_read_ptr);
5975
5976 if (dwarf2_per_objfile->str_buffer == NULL)
5977 {
5978 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
5979 bfd_get_filename (abfd));
5980 return NULL;
5981 }
5982 if (str_offset >= dwarf2_per_objfile->str_size)
5983 {
5984 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
5985 bfd_get_filename (abfd));
5986 return NULL;
5987 }
5988 gdb_assert (HOST_CHAR_BIT == 8);
5989 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5990 return NULL;
5991 return dwarf2_per_objfile->str_buffer + str_offset;
5992 }
5993
5994 static unsigned long
5995 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5996 {
5997 unsigned long result;
5998 unsigned int num_read;
5999 int i, shift;
6000 unsigned char byte;
6001
6002 result = 0;
6003 shift = 0;
6004 num_read = 0;
6005 i = 0;
6006 while (1)
6007 {
6008 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6009 buf++;
6010 num_read++;
6011 result |= ((unsigned long)(byte & 127) << shift);
6012 if ((byte & 128) == 0)
6013 {
6014 break;
6015 }
6016 shift += 7;
6017 }
6018 *bytes_read_ptr = num_read;
6019 return result;
6020 }
6021
6022 static long
6023 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6024 {
6025 long result;
6026 int i, shift, num_read;
6027 unsigned char byte;
6028
6029 result = 0;
6030 shift = 0;
6031 num_read = 0;
6032 i = 0;
6033 while (1)
6034 {
6035 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6036 buf++;
6037 num_read++;
6038 result |= ((long)(byte & 127) << shift);
6039 shift += 7;
6040 if ((byte & 128) == 0)
6041 {
6042 break;
6043 }
6044 }
6045 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6046 result |= -(((long)1) << shift);
6047 *bytes_read_ptr = num_read;
6048 return result;
6049 }
6050
6051 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6052
6053 static char *
6054 skip_leb128 (bfd *abfd, char *buf)
6055 {
6056 int byte;
6057
6058 while (1)
6059 {
6060 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6061 buf++;
6062 if ((byte & 128) == 0)
6063 return buf;
6064 }
6065 }
6066
6067 static void
6068 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6069 {
6070 switch (lang)
6071 {
6072 case DW_LANG_C89:
6073 case DW_LANG_C:
6074 cu->language = language_c;
6075 break;
6076 case DW_LANG_C_plus_plus:
6077 cu->language = language_cplus;
6078 break;
6079 case DW_LANG_Fortran77:
6080 case DW_LANG_Fortran90:
6081 case DW_LANG_Fortran95:
6082 cu->language = language_fortran;
6083 break;
6084 case DW_LANG_Mips_Assembler:
6085 cu->language = language_asm;
6086 break;
6087 case DW_LANG_Java:
6088 cu->language = language_java;
6089 break;
6090 case DW_LANG_Ada83:
6091 case DW_LANG_Ada95:
6092 cu->language = language_ada;
6093 break;
6094 case DW_LANG_Cobol74:
6095 case DW_LANG_Cobol85:
6096 case DW_LANG_Pascal83:
6097 case DW_LANG_Modula2:
6098 default:
6099 cu->language = language_minimal;
6100 break;
6101 }
6102 cu->language_defn = language_def (cu->language);
6103 }
6104
6105 /* Return the named attribute or NULL if not there. */
6106
6107 static struct attribute *
6108 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6109 {
6110 unsigned int i;
6111 struct attribute *spec = NULL;
6112
6113 for (i = 0; i < die->num_attrs; ++i)
6114 {
6115 if (die->attrs[i].name == name)
6116 return &die->attrs[i];
6117 if (die->attrs[i].name == DW_AT_specification
6118 || die->attrs[i].name == DW_AT_abstract_origin)
6119 spec = &die->attrs[i];
6120 }
6121
6122 if (spec)
6123 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6124
6125 return NULL;
6126 }
6127
6128 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6129 and holds a non-zero value. This function should only be used for
6130 DW_FORM_flag attributes. */
6131
6132 static int
6133 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6134 {
6135 struct attribute *attr = dwarf2_attr (die, name, cu);
6136
6137 return (attr && DW_UNSND (attr));
6138 }
6139
6140 static int
6141 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6142 {
6143 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6144 which value is non-zero. However, we have to be careful with
6145 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6146 (via dwarf2_flag_true_p) follows this attribute. So we may
6147 end up accidently finding a declaration attribute that belongs
6148 to a different DIE referenced by the specification attribute,
6149 even though the given DIE does not have a declaration attribute. */
6150 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6151 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6152 }
6153
6154 /* Return the die giving the specification for DIE, if there is
6155 one. */
6156
6157 static struct die_info *
6158 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6159 {
6160 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6161
6162 if (spec_attr == NULL)
6163 return NULL;
6164 else
6165 return follow_die_ref (die, spec_attr, cu);
6166 }
6167
6168 /* Free the line_header structure *LH, and any arrays and strings it
6169 refers to. */
6170 static void
6171 free_line_header (struct line_header *lh)
6172 {
6173 if (lh->standard_opcode_lengths)
6174 xfree (lh->standard_opcode_lengths);
6175
6176 /* Remember that all the lh->file_names[i].name pointers are
6177 pointers into debug_line_buffer, and don't need to be freed. */
6178 if (lh->file_names)
6179 xfree (lh->file_names);
6180
6181 /* Similarly for the include directory names. */
6182 if (lh->include_dirs)
6183 xfree (lh->include_dirs);
6184
6185 xfree (lh);
6186 }
6187
6188
6189 /* Add an entry to LH's include directory table. */
6190 static void
6191 add_include_dir (struct line_header *lh, char *include_dir)
6192 {
6193 /* Grow the array if necessary. */
6194 if (lh->include_dirs_size == 0)
6195 {
6196 lh->include_dirs_size = 1; /* for testing */
6197 lh->include_dirs = xmalloc (lh->include_dirs_size
6198 * sizeof (*lh->include_dirs));
6199 }
6200 else if (lh->num_include_dirs >= lh->include_dirs_size)
6201 {
6202 lh->include_dirs_size *= 2;
6203 lh->include_dirs = xrealloc (lh->include_dirs,
6204 (lh->include_dirs_size
6205 * sizeof (*lh->include_dirs)));
6206 }
6207
6208 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6209 }
6210
6211
6212 /* Add an entry to LH's file name table. */
6213 static void
6214 add_file_name (struct line_header *lh,
6215 char *name,
6216 unsigned int dir_index,
6217 unsigned int mod_time,
6218 unsigned int length)
6219 {
6220 struct file_entry *fe;
6221
6222 /* Grow the array if necessary. */
6223 if (lh->file_names_size == 0)
6224 {
6225 lh->file_names_size = 1; /* for testing */
6226 lh->file_names = xmalloc (lh->file_names_size
6227 * sizeof (*lh->file_names));
6228 }
6229 else if (lh->num_file_names >= lh->file_names_size)
6230 {
6231 lh->file_names_size *= 2;
6232 lh->file_names = xrealloc (lh->file_names,
6233 (lh->file_names_size
6234 * sizeof (*lh->file_names)));
6235 }
6236
6237 fe = &lh->file_names[lh->num_file_names++];
6238 fe->name = name;
6239 fe->dir_index = dir_index;
6240 fe->mod_time = mod_time;
6241 fe->length = length;
6242 fe->included_p = 0;
6243 }
6244
6245
6246 /* Read the statement program header starting at OFFSET in
6247 .debug_line, according to the endianness of ABFD. Return a pointer
6248 to a struct line_header, allocated using xmalloc.
6249
6250 NOTE: the strings in the include directory and file name tables of
6251 the returned object point into debug_line_buffer, and must not be
6252 freed. */
6253 static struct line_header *
6254 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6255 struct dwarf2_cu *cu)
6256 {
6257 struct cleanup *back_to;
6258 struct line_header *lh;
6259 char *line_ptr;
6260 int bytes_read;
6261 int i;
6262 char *cur_dir, *cur_file;
6263
6264 if (dwarf2_per_objfile->line_buffer == NULL)
6265 {
6266 complaint (&symfile_complaints, _("missing .debug_line section"));
6267 return 0;
6268 }
6269
6270 /* Make sure that at least there's room for the total_length field.
6271 That could be 12 bytes long, but we're just going to fudge that. */
6272 if (offset + 4 >= dwarf2_per_objfile->line_size)
6273 {
6274 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6275 return 0;
6276 }
6277
6278 lh = xmalloc (sizeof (*lh));
6279 memset (lh, 0, sizeof (*lh));
6280 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6281 (void *) lh);
6282
6283 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6284
6285 /* Read in the header. */
6286 lh->total_length =
6287 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6288 line_ptr += bytes_read;
6289 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6290 + dwarf2_per_objfile->line_size))
6291 {
6292 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6293 return 0;
6294 }
6295 lh->statement_program_end = line_ptr + lh->total_length;
6296 lh->version = read_2_bytes (abfd, line_ptr);
6297 line_ptr += 2;
6298 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6299 line_ptr += bytes_read;
6300 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6301 line_ptr += 1;
6302 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6303 line_ptr += 1;
6304 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6305 line_ptr += 1;
6306 lh->line_range = read_1_byte (abfd, line_ptr);
6307 line_ptr += 1;
6308 lh->opcode_base = read_1_byte (abfd, line_ptr);
6309 line_ptr += 1;
6310 lh->standard_opcode_lengths
6311 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6312
6313 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6314 for (i = 1; i < lh->opcode_base; ++i)
6315 {
6316 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6317 line_ptr += 1;
6318 }
6319
6320 /* Read directory table. */
6321 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6322 {
6323 line_ptr += bytes_read;
6324 add_include_dir (lh, cur_dir);
6325 }
6326 line_ptr += bytes_read;
6327
6328 /* Read file name table. */
6329 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6330 {
6331 unsigned int dir_index, mod_time, length;
6332
6333 line_ptr += bytes_read;
6334 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6335 line_ptr += bytes_read;
6336 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6337 line_ptr += bytes_read;
6338 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6339 line_ptr += bytes_read;
6340
6341 add_file_name (lh, cur_file, dir_index, mod_time, length);
6342 }
6343 line_ptr += bytes_read;
6344 lh->statement_program_start = line_ptr;
6345
6346 if (line_ptr > (dwarf2_per_objfile->line_buffer
6347 + dwarf2_per_objfile->line_size))
6348 complaint (&symfile_complaints,
6349 _("line number info header doesn't fit in `.debug_line' section"));
6350
6351 discard_cleanups (back_to);
6352 return lh;
6353 }
6354
6355 /* This function exists to work around a bug in certain compilers
6356 (particularly GCC 2.95), in which the first line number marker of a
6357 function does not show up until after the prologue, right before
6358 the second line number marker. This function shifts ADDRESS down
6359 to the beginning of the function if necessary, and is called on
6360 addresses passed to record_line. */
6361
6362 static CORE_ADDR
6363 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6364 {
6365 struct function_range *fn;
6366
6367 /* Find the function_range containing address. */
6368 if (!cu->first_fn)
6369 return address;
6370
6371 if (!cu->cached_fn)
6372 cu->cached_fn = cu->first_fn;
6373
6374 fn = cu->cached_fn;
6375 while (fn)
6376 if (fn->lowpc <= address && fn->highpc > address)
6377 goto found;
6378 else
6379 fn = fn->next;
6380
6381 fn = cu->first_fn;
6382 while (fn && fn != cu->cached_fn)
6383 if (fn->lowpc <= address && fn->highpc > address)
6384 goto found;
6385 else
6386 fn = fn->next;
6387
6388 return address;
6389
6390 found:
6391 if (fn->seen_line)
6392 return address;
6393 if (address != fn->lowpc)
6394 complaint (&symfile_complaints,
6395 _("misplaced first line number at 0x%lx for '%s'"),
6396 (unsigned long) address, fn->name);
6397 fn->seen_line = 1;
6398 return fn->lowpc;
6399 }
6400
6401 /* Decode the Line Number Program (LNP) for the given line_header
6402 structure and CU. The actual information extracted and the type
6403 of structures created from the LNP depends on the value of PST.
6404
6405 1. If PST is NULL, then this procedure uses the data from the program
6406 to create all necessary symbol tables, and their linetables.
6407 The compilation directory of the file is passed in COMP_DIR,
6408 and must not be NULL.
6409
6410 2. If PST is not NULL, this procedure reads the program to determine
6411 the list of files included by the unit represented by PST, and
6412 builds all the associated partial symbol tables. In this case,
6413 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6414 is not used to compute the full name of the symtab, and therefore
6415 omitting it when building the partial symtab does not introduce
6416 the potential for inconsistency - a partial symtab and its associated
6417 symbtab having a different fullname -). */
6418
6419 static void
6420 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6421 struct dwarf2_cu *cu, struct partial_symtab *pst)
6422 {
6423 char *line_ptr;
6424 char *line_end;
6425 unsigned int bytes_read;
6426 unsigned char op_code, extended_op, adj_opcode;
6427 CORE_ADDR baseaddr;
6428 struct objfile *objfile = cu->objfile;
6429 const int decode_for_pst_p = (pst != NULL);
6430
6431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6432
6433 line_ptr = lh->statement_program_start;
6434 line_end = lh->statement_program_end;
6435
6436 /* Read the statement sequences until there's nothing left. */
6437 while (line_ptr < line_end)
6438 {
6439 /* state machine registers */
6440 CORE_ADDR address = 0;
6441 unsigned int file = 1;
6442 unsigned int line = 1;
6443 unsigned int column = 0;
6444 int is_stmt = lh->default_is_stmt;
6445 int basic_block = 0;
6446 int end_sequence = 0;
6447
6448 if (!decode_for_pst_p && lh->num_file_names >= file)
6449 {
6450 /* Start a subfile for the current file of the state machine. */
6451 /* lh->include_dirs and lh->file_names are 0-based, but the
6452 directory and file name numbers in the statement program
6453 are 1-based. */
6454 struct file_entry *fe = &lh->file_names[file - 1];
6455 char *dir;
6456
6457 if (fe->dir_index)
6458 dir = lh->include_dirs[fe->dir_index - 1];
6459 else
6460 dir = comp_dir;
6461 dwarf2_start_subfile (fe->name, dir);
6462 }
6463
6464 /* Decode the table. */
6465 while (!end_sequence)
6466 {
6467 op_code = read_1_byte (abfd, line_ptr);
6468 line_ptr += 1;
6469
6470 if (op_code >= lh->opcode_base)
6471 {
6472 /* Special operand. */
6473 adj_opcode = op_code - lh->opcode_base;
6474 address += (adj_opcode / lh->line_range)
6475 * lh->minimum_instruction_length;
6476 line += lh->line_base + (adj_opcode % lh->line_range);
6477 lh->file_names[file - 1].included_p = 1;
6478 if (!decode_for_pst_p)
6479 {
6480 /* Append row to matrix using current values. */
6481 record_line (current_subfile, line,
6482 check_cu_functions (address, cu));
6483 }
6484 basic_block = 1;
6485 }
6486 else switch (op_code)
6487 {
6488 case DW_LNS_extended_op:
6489 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6490 line_ptr += bytes_read;
6491 extended_op = read_1_byte (abfd, line_ptr);
6492 line_ptr += 1;
6493 switch (extended_op)
6494 {
6495 case DW_LNE_end_sequence:
6496 end_sequence = 1;
6497 lh->file_names[file - 1].included_p = 1;
6498 if (!decode_for_pst_p)
6499 record_line (current_subfile, 0, address);
6500 break;
6501 case DW_LNE_set_address:
6502 address = read_address (abfd, line_ptr, cu, &bytes_read);
6503 line_ptr += bytes_read;
6504 address += baseaddr;
6505 break;
6506 case DW_LNE_define_file:
6507 {
6508 char *cur_file;
6509 unsigned int dir_index, mod_time, length;
6510
6511 cur_file = read_string (abfd, line_ptr, &bytes_read);
6512 line_ptr += bytes_read;
6513 dir_index =
6514 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6515 line_ptr += bytes_read;
6516 mod_time =
6517 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6518 line_ptr += bytes_read;
6519 length =
6520 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6521 line_ptr += bytes_read;
6522 add_file_name (lh, cur_file, dir_index, mod_time, length);
6523 }
6524 break;
6525 default:
6526 complaint (&symfile_complaints,
6527 _("mangled .debug_line section"));
6528 return;
6529 }
6530 break;
6531 case DW_LNS_copy:
6532 lh->file_names[file - 1].included_p = 1;
6533 if (!decode_for_pst_p)
6534 record_line (current_subfile, line,
6535 check_cu_functions (address, cu));
6536 basic_block = 0;
6537 break;
6538 case DW_LNS_advance_pc:
6539 address += lh->minimum_instruction_length
6540 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6541 line_ptr += bytes_read;
6542 break;
6543 case DW_LNS_advance_line:
6544 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6545 line_ptr += bytes_read;
6546 break;
6547 case DW_LNS_set_file:
6548 {
6549 /* The arrays lh->include_dirs and lh->file_names are
6550 0-based, but the directory and file name numbers in
6551 the statement program are 1-based. */
6552 struct file_entry *fe;
6553 char *dir;
6554
6555 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6556 line_ptr += bytes_read;
6557 fe = &lh->file_names[file - 1];
6558 if (fe->dir_index)
6559 dir = lh->include_dirs[fe->dir_index - 1];
6560 else
6561 dir = comp_dir;
6562 if (!decode_for_pst_p)
6563 dwarf2_start_subfile (fe->name, dir);
6564 }
6565 break;
6566 case DW_LNS_set_column:
6567 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6568 line_ptr += bytes_read;
6569 break;
6570 case DW_LNS_negate_stmt:
6571 is_stmt = (!is_stmt);
6572 break;
6573 case DW_LNS_set_basic_block:
6574 basic_block = 1;
6575 break;
6576 /* Add to the address register of the state machine the
6577 address increment value corresponding to special opcode
6578 255. I.e., this value is scaled by the minimum
6579 instruction length since special opcode 255 would have
6580 scaled the the increment. */
6581 case DW_LNS_const_add_pc:
6582 address += (lh->minimum_instruction_length
6583 * ((255 - lh->opcode_base) / lh->line_range));
6584 break;
6585 case DW_LNS_fixed_advance_pc:
6586 address += read_2_bytes (abfd, line_ptr);
6587 line_ptr += 2;
6588 break;
6589 default:
6590 {
6591 /* Unknown standard opcode, ignore it. */
6592 int i;
6593
6594 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6595 {
6596 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6597 line_ptr += bytes_read;
6598 }
6599 }
6600 }
6601 }
6602 }
6603
6604 if (decode_for_pst_p)
6605 {
6606 int file_index;
6607
6608 /* Now that we're done scanning the Line Header Program, we can
6609 create the psymtab of each included file. */
6610 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6611 if (lh->file_names[file_index].included_p == 1)
6612 {
6613 const struct file_entry fe = lh->file_names [file_index];
6614 char *include_name = fe.name;
6615 char *dir_name = NULL;
6616 char *pst_filename = pst->filename;
6617
6618 if (fe.dir_index)
6619 dir_name = lh->include_dirs[fe.dir_index - 1];
6620
6621 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6622 {
6623 include_name = concat (dir_name, SLASH_STRING,
6624 include_name, (char *)NULL);
6625 make_cleanup (xfree, include_name);
6626 }
6627
6628 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6629 {
6630 pst_filename = concat (pst->dirname, SLASH_STRING,
6631 pst_filename, (char *)NULL);
6632 make_cleanup (xfree, pst_filename);
6633 }
6634
6635 if (strcmp (include_name, pst_filename) != 0)
6636 dwarf2_create_include_psymtab (include_name, pst, objfile);
6637 }
6638 }
6639 }
6640
6641 /* Start a subfile for DWARF. FILENAME is the name of the file and
6642 DIRNAME the name of the source directory which contains FILENAME
6643 or NULL if not known.
6644 This routine tries to keep line numbers from identical absolute and
6645 relative file names in a common subfile.
6646
6647 Using the `list' example from the GDB testsuite, which resides in
6648 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6649 of /srcdir/list0.c yields the following debugging information for list0.c:
6650
6651 DW_AT_name: /srcdir/list0.c
6652 DW_AT_comp_dir: /compdir
6653 files.files[0].name: list0.h
6654 files.files[0].dir: /srcdir
6655 files.files[1].name: list0.c
6656 files.files[1].dir: /srcdir
6657
6658 The line number information for list0.c has to end up in a single
6659 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6660
6661 static void
6662 dwarf2_start_subfile (char *filename, char *dirname)
6663 {
6664 /* If the filename isn't absolute, try to match an existing subfile
6665 with the full pathname. */
6666
6667 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6668 {
6669 struct subfile *subfile;
6670 char *fullname = concat (dirname, "/", filename, (char *)NULL);
6671
6672 for (subfile = subfiles; subfile; subfile = subfile->next)
6673 {
6674 if (FILENAME_CMP (subfile->name, fullname) == 0)
6675 {
6676 current_subfile = subfile;
6677 xfree (fullname);
6678 return;
6679 }
6680 }
6681 xfree (fullname);
6682 }
6683 start_subfile (filename, dirname);
6684 }
6685
6686 static void
6687 var_decode_location (struct attribute *attr, struct symbol *sym,
6688 struct dwarf2_cu *cu)
6689 {
6690 struct objfile *objfile = cu->objfile;
6691 struct comp_unit_head *cu_header = &cu->header;
6692
6693 /* NOTE drow/2003-01-30: There used to be a comment and some special
6694 code here to turn a symbol with DW_AT_external and a
6695 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6696 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6697 with some versions of binutils) where shared libraries could have
6698 relocations against symbols in their debug information - the
6699 minimal symbol would have the right address, but the debug info
6700 would not. It's no longer necessary, because we will explicitly
6701 apply relocations when we read in the debug information now. */
6702
6703 /* A DW_AT_location attribute with no contents indicates that a
6704 variable has been optimized away. */
6705 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6706 {
6707 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6708 return;
6709 }
6710
6711 /* Handle one degenerate form of location expression specially, to
6712 preserve GDB's previous behavior when section offsets are
6713 specified. If this is just a DW_OP_addr then mark this symbol
6714 as LOC_STATIC. */
6715
6716 if (attr_form_is_block (attr)
6717 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6718 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6719 {
6720 int dummy;
6721
6722 SYMBOL_VALUE_ADDRESS (sym) =
6723 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6724 fixup_symbol_section (sym, objfile);
6725 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6726 SYMBOL_SECTION (sym));
6727 SYMBOL_CLASS (sym) = LOC_STATIC;
6728 return;
6729 }
6730
6731 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6732 expression evaluator, and use LOC_COMPUTED only when necessary
6733 (i.e. when the value of a register or memory location is
6734 referenced, or a thread-local block, etc.). Then again, it might
6735 not be worthwhile. I'm assuming that it isn't unless performance
6736 or memory numbers show me otherwise. */
6737
6738 dwarf2_symbol_mark_computed (attr, sym, cu);
6739 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6740 }
6741
6742 /* Given a pointer to a DWARF information entry, figure out if we need
6743 to make a symbol table entry for it, and if so, create a new entry
6744 and return a pointer to it.
6745 If TYPE is NULL, determine symbol type from the die, otherwise
6746 used the passed type. */
6747
6748 static struct symbol *
6749 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6750 {
6751 struct objfile *objfile = cu->objfile;
6752 struct symbol *sym = NULL;
6753 char *name;
6754 struct attribute *attr = NULL;
6755 struct attribute *attr2 = NULL;
6756 CORE_ADDR baseaddr;
6757
6758 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6759
6760 if (die->tag != DW_TAG_namespace)
6761 name = dwarf2_linkage_name (die, cu);
6762 else
6763 name = TYPE_NAME (type);
6764
6765 if (name)
6766 {
6767 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6768 sizeof (struct symbol));
6769 OBJSTAT (objfile, n_syms++);
6770 memset (sym, 0, sizeof (struct symbol));
6771
6772 /* Cache this symbol's name and the name's demangled form (if any). */
6773 SYMBOL_LANGUAGE (sym) = cu->language;
6774 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6775
6776 /* Default assumptions.
6777 Use the passed type or decode it from the die. */
6778 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6779 SYMBOL_CLASS (sym) = LOC_STATIC;
6780 if (type != NULL)
6781 SYMBOL_TYPE (sym) = type;
6782 else
6783 SYMBOL_TYPE (sym) = die_type (die, cu);
6784 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6785 if (attr)
6786 {
6787 SYMBOL_LINE (sym) = DW_UNSND (attr);
6788 }
6789 switch (die->tag)
6790 {
6791 case DW_TAG_label:
6792 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6793 if (attr)
6794 {
6795 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6796 }
6797 SYMBOL_CLASS (sym) = LOC_LABEL;
6798 break;
6799 case DW_TAG_subprogram:
6800 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6801 finish_block. */
6802 SYMBOL_CLASS (sym) = LOC_BLOCK;
6803 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6804 if (attr2 && (DW_UNSND (attr2) != 0))
6805 {
6806 add_symbol_to_list (sym, &global_symbols);
6807 }
6808 else
6809 {
6810 add_symbol_to_list (sym, cu->list_in_scope);
6811 }
6812 break;
6813 case DW_TAG_variable:
6814 /* Compilation with minimal debug info may result in variables
6815 with missing type entries. Change the misleading `void' type
6816 to something sensible. */
6817 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6818 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6819 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6820 "<variable, no debug info>",
6821 objfile);
6822 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6823 if (attr)
6824 {
6825 dwarf2_const_value (attr, sym, cu);
6826 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6827 if (attr2 && (DW_UNSND (attr2) != 0))
6828 add_symbol_to_list (sym, &global_symbols);
6829 else
6830 add_symbol_to_list (sym, cu->list_in_scope);
6831 break;
6832 }
6833 attr = dwarf2_attr (die, DW_AT_location, cu);
6834 if (attr)
6835 {
6836 var_decode_location (attr, sym, cu);
6837 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6838 if (attr2 && (DW_UNSND (attr2) != 0))
6839 add_symbol_to_list (sym, &global_symbols);
6840 else
6841 add_symbol_to_list (sym, cu->list_in_scope);
6842 }
6843 else
6844 {
6845 /* We do not know the address of this symbol.
6846 If it is an external symbol and we have type information
6847 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6848 The address of the variable will then be determined from
6849 the minimal symbol table whenever the variable is
6850 referenced. */
6851 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6852 if (attr2 && (DW_UNSND (attr2) != 0)
6853 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6854 {
6855 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6856 add_symbol_to_list (sym, &global_symbols);
6857 }
6858 }
6859 break;
6860 case DW_TAG_formal_parameter:
6861 attr = dwarf2_attr (die, DW_AT_location, cu);
6862 if (attr)
6863 {
6864 var_decode_location (attr, sym, cu);
6865 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6866 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6867 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6868 }
6869 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6870 if (attr)
6871 {
6872 dwarf2_const_value (attr, sym, cu);
6873 }
6874 add_symbol_to_list (sym, cu->list_in_scope);
6875 break;
6876 case DW_TAG_unspecified_parameters:
6877 /* From varargs functions; gdb doesn't seem to have any
6878 interest in this information, so just ignore it for now.
6879 (FIXME?) */
6880 break;
6881 case DW_TAG_class_type:
6882 case DW_TAG_structure_type:
6883 case DW_TAG_union_type:
6884 case DW_TAG_enumeration_type:
6885 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6886 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6887
6888 /* Make sure that the symbol includes appropriate enclosing
6889 classes/namespaces in its name. These are calculated in
6890 read_structure_type, and the correct name is saved in
6891 the type. */
6892
6893 if (cu->language == language_cplus
6894 || cu->language == language_java)
6895 {
6896 struct type *type = SYMBOL_TYPE (sym);
6897
6898 if (TYPE_TAG_NAME (type) != NULL)
6899 {
6900 /* FIXME: carlton/2003-11-10: Should this use
6901 SYMBOL_SET_NAMES instead? (The same problem also
6902 arises further down in this function.) */
6903 /* The type's name is already allocated along with
6904 this objfile, so we don't need to duplicate it
6905 for the symbol. */
6906 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6907 }
6908 }
6909
6910 {
6911 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6912 really ever be static objects: otherwise, if you try
6913 to, say, break of a class's method and you're in a file
6914 which doesn't mention that class, it won't work unless
6915 the check for all static symbols in lookup_symbol_aux
6916 saves you. See the OtherFileClass tests in
6917 gdb.c++/namespace.exp. */
6918
6919 struct pending **list_to_add;
6920
6921 list_to_add = (cu->list_in_scope == &file_symbols
6922 && (cu->language == language_cplus
6923 || cu->language == language_java)
6924 ? &global_symbols : cu->list_in_scope);
6925
6926 add_symbol_to_list (sym, list_to_add);
6927
6928 /* The semantics of C++ state that "struct foo { ... }" also
6929 defines a typedef for "foo". A Java class declaration also
6930 defines a typedef for the class. Synthesize a typedef symbol
6931 so that "ptype foo" works as expected. */
6932 if (cu->language == language_cplus
6933 || cu->language == language_java)
6934 {
6935 struct symbol *typedef_sym = (struct symbol *)
6936 obstack_alloc (&objfile->objfile_obstack,
6937 sizeof (struct symbol));
6938 *typedef_sym = *sym;
6939 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6940 /* The symbol's name is already allocated along with
6941 this objfile, so we don't need to duplicate it for
6942 the type. */
6943 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6944 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
6945 add_symbol_to_list (typedef_sym, list_to_add);
6946 }
6947 }
6948 break;
6949 case DW_TAG_typedef:
6950 if (processing_has_namespace_info
6951 && processing_current_prefix[0] != '\0')
6952 {
6953 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6954 processing_current_prefix,
6955 name, cu);
6956 }
6957 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6958 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6959 add_symbol_to_list (sym, cu->list_in_scope);
6960 break;
6961 case DW_TAG_base_type:
6962 case DW_TAG_subrange_type:
6963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6964 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6965 add_symbol_to_list (sym, cu->list_in_scope);
6966 break;
6967 case DW_TAG_enumerator:
6968 if (processing_has_namespace_info
6969 && processing_current_prefix[0] != '\0')
6970 {
6971 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6972 processing_current_prefix,
6973 name, cu);
6974 }
6975 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6976 if (attr)
6977 {
6978 dwarf2_const_value (attr, sym, cu);
6979 }
6980 {
6981 /* NOTE: carlton/2003-11-10: See comment above in the
6982 DW_TAG_class_type, etc. block. */
6983
6984 struct pending **list_to_add;
6985
6986 list_to_add = (cu->list_in_scope == &file_symbols
6987 && (cu->language == language_cplus
6988 || cu->language == language_java)
6989 ? &global_symbols : cu->list_in_scope);
6990
6991 add_symbol_to_list (sym, list_to_add);
6992 }
6993 break;
6994 case DW_TAG_namespace:
6995 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6996 add_symbol_to_list (sym, &global_symbols);
6997 break;
6998 default:
6999 /* Not a tag we recognize. Hopefully we aren't processing
7000 trash data, but since we must specifically ignore things
7001 we don't recognize, there is nothing else we should do at
7002 this point. */
7003 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7004 dwarf_tag_name (die->tag));
7005 break;
7006 }
7007 }
7008 return (sym);
7009 }
7010
7011 /* Copy constant value from an attribute to a symbol. */
7012
7013 static void
7014 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7015 struct dwarf2_cu *cu)
7016 {
7017 struct objfile *objfile = cu->objfile;
7018 struct comp_unit_head *cu_header = &cu->header;
7019 struct dwarf_block *blk;
7020
7021 switch (attr->form)
7022 {
7023 case DW_FORM_addr:
7024 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7025 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7026 cu_header->addr_size,
7027 TYPE_LENGTH (SYMBOL_TYPE
7028 (sym)));
7029 SYMBOL_VALUE_BYTES (sym) = (char *)
7030 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7031 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7032 it's body - store_unsigned_integer. */
7033 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7034 DW_ADDR (attr));
7035 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7036 break;
7037 case DW_FORM_block1:
7038 case DW_FORM_block2:
7039 case DW_FORM_block4:
7040 case DW_FORM_block:
7041 blk = DW_BLOCK (attr);
7042 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7043 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7044 blk->size,
7045 TYPE_LENGTH (SYMBOL_TYPE
7046 (sym)));
7047 SYMBOL_VALUE_BYTES (sym) = (char *)
7048 obstack_alloc (&objfile->objfile_obstack, blk->size);
7049 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7050 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7051 break;
7052
7053 /* The DW_AT_const_value attributes are supposed to carry the
7054 symbol's value "represented as it would be on the target
7055 architecture." By the time we get here, it's already been
7056 converted to host endianness, so we just need to sign- or
7057 zero-extend it as appropriate. */
7058 case DW_FORM_data1:
7059 dwarf2_const_value_data (attr, sym, 8);
7060 break;
7061 case DW_FORM_data2:
7062 dwarf2_const_value_data (attr, sym, 16);
7063 break;
7064 case DW_FORM_data4:
7065 dwarf2_const_value_data (attr, sym, 32);
7066 break;
7067 case DW_FORM_data8:
7068 dwarf2_const_value_data (attr, sym, 64);
7069 break;
7070
7071 case DW_FORM_sdata:
7072 SYMBOL_VALUE (sym) = DW_SND (attr);
7073 SYMBOL_CLASS (sym) = LOC_CONST;
7074 break;
7075
7076 case DW_FORM_udata:
7077 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7078 SYMBOL_CLASS (sym) = LOC_CONST;
7079 break;
7080
7081 default:
7082 complaint (&symfile_complaints,
7083 _("unsupported const value attribute form: '%s'"),
7084 dwarf_form_name (attr->form));
7085 SYMBOL_VALUE (sym) = 0;
7086 SYMBOL_CLASS (sym) = LOC_CONST;
7087 break;
7088 }
7089 }
7090
7091
7092 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7093 or zero-extend it as appropriate for the symbol's type. */
7094 static void
7095 dwarf2_const_value_data (struct attribute *attr,
7096 struct symbol *sym,
7097 int bits)
7098 {
7099 LONGEST l = DW_UNSND (attr);
7100
7101 if (bits < sizeof (l) * 8)
7102 {
7103 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7104 l &= ((LONGEST) 1 << bits) - 1;
7105 else
7106 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7107 }
7108
7109 SYMBOL_VALUE (sym) = l;
7110 SYMBOL_CLASS (sym) = LOC_CONST;
7111 }
7112
7113
7114 /* Return the type of the die in question using its DW_AT_type attribute. */
7115
7116 static struct type *
7117 die_type (struct die_info *die, struct dwarf2_cu *cu)
7118 {
7119 struct type *type;
7120 struct attribute *type_attr;
7121 struct die_info *type_die;
7122
7123 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7124 if (!type_attr)
7125 {
7126 /* A missing DW_AT_type represents a void type. */
7127 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7128 }
7129 else
7130 type_die = follow_die_ref (die, type_attr, cu);
7131
7132 type = tag_type_to_type (type_die, cu);
7133 if (!type)
7134 {
7135 dump_die (type_die);
7136 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7137 cu->objfile->name);
7138 }
7139 return type;
7140 }
7141
7142 /* Return the containing type of the die in question using its
7143 DW_AT_containing_type attribute. */
7144
7145 static struct type *
7146 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7147 {
7148 struct type *type = NULL;
7149 struct attribute *type_attr;
7150 struct die_info *type_die = NULL;
7151
7152 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7153 if (type_attr)
7154 {
7155 type_die = follow_die_ref (die, type_attr, cu);
7156 type = tag_type_to_type (type_die, cu);
7157 }
7158 if (!type)
7159 {
7160 if (type_die)
7161 dump_die (type_die);
7162 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7163 cu->objfile->name);
7164 }
7165 return type;
7166 }
7167
7168 static struct type *
7169 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7170 {
7171 if (die->type)
7172 {
7173 return die->type;
7174 }
7175 else
7176 {
7177 read_type_die (die, cu);
7178 if (!die->type)
7179 {
7180 dump_die (die);
7181 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7182 cu->objfile->name);
7183 }
7184 return die->type;
7185 }
7186 }
7187
7188 static void
7189 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7190 {
7191 char *prefix = determine_prefix (die, cu);
7192 const char *old_prefix = processing_current_prefix;
7193 struct cleanup *back_to = make_cleanup (xfree, prefix);
7194 processing_current_prefix = prefix;
7195
7196 switch (die->tag)
7197 {
7198 case DW_TAG_class_type:
7199 case DW_TAG_structure_type:
7200 case DW_TAG_union_type:
7201 read_structure_type (die, cu);
7202 break;
7203 case DW_TAG_enumeration_type:
7204 read_enumeration_type (die, cu);
7205 break;
7206 case DW_TAG_subprogram:
7207 case DW_TAG_subroutine_type:
7208 read_subroutine_type (die, cu);
7209 break;
7210 case DW_TAG_array_type:
7211 read_array_type (die, cu);
7212 break;
7213 case DW_TAG_pointer_type:
7214 read_tag_pointer_type (die, cu);
7215 break;
7216 case DW_TAG_ptr_to_member_type:
7217 read_tag_ptr_to_member_type (die, cu);
7218 break;
7219 case DW_TAG_reference_type:
7220 read_tag_reference_type (die, cu);
7221 break;
7222 case DW_TAG_const_type:
7223 read_tag_const_type (die, cu);
7224 break;
7225 case DW_TAG_volatile_type:
7226 read_tag_volatile_type (die, cu);
7227 break;
7228 case DW_TAG_string_type:
7229 read_tag_string_type (die, cu);
7230 break;
7231 case DW_TAG_typedef:
7232 read_typedef (die, cu);
7233 break;
7234 case DW_TAG_subrange_type:
7235 read_subrange_type (die, cu);
7236 break;
7237 case DW_TAG_base_type:
7238 read_base_type (die, cu);
7239 break;
7240 default:
7241 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
7242 dwarf_tag_name (die->tag));
7243 break;
7244 }
7245
7246 processing_current_prefix = old_prefix;
7247 do_cleanups (back_to);
7248 }
7249
7250 /* Return the name of the namespace/class that DIE is defined within,
7251 or "" if we can't tell. The caller should xfree the result. */
7252
7253 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7254 therein) for an example of how to use this function to deal with
7255 DW_AT_specification. */
7256
7257 static char *
7258 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7259 {
7260 struct die_info *parent;
7261
7262 if (cu->language != language_cplus
7263 && cu->language != language_java)
7264 return NULL;
7265
7266 parent = die->parent;
7267
7268 if (parent == NULL)
7269 {
7270 return xstrdup ("");
7271 }
7272 else
7273 {
7274 switch (parent->tag) {
7275 case DW_TAG_namespace:
7276 {
7277 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7278 before doing this check? */
7279 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7280 {
7281 return xstrdup (TYPE_TAG_NAME (parent->type));
7282 }
7283 else
7284 {
7285 int dummy;
7286 char *parent_prefix = determine_prefix (parent, cu);
7287 char *retval = typename_concat (NULL, parent_prefix,
7288 namespace_name (parent, &dummy,
7289 cu),
7290 cu);
7291 xfree (parent_prefix);
7292 return retval;
7293 }
7294 }
7295 break;
7296 case DW_TAG_class_type:
7297 case DW_TAG_structure_type:
7298 {
7299 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7300 {
7301 return xstrdup (TYPE_TAG_NAME (parent->type));
7302 }
7303 else
7304 {
7305 const char *old_prefix = processing_current_prefix;
7306 char *new_prefix = determine_prefix (parent, cu);
7307 char *retval;
7308
7309 processing_current_prefix = new_prefix;
7310 retval = determine_class_name (parent, cu);
7311 processing_current_prefix = old_prefix;
7312
7313 xfree (new_prefix);
7314 return retval;
7315 }
7316 }
7317 default:
7318 return determine_prefix (parent, cu);
7319 }
7320 }
7321 }
7322
7323 /* Return a newly-allocated string formed by concatenating PREFIX and
7324 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7325 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7326 perform an obconcat, otherwise allocate storage for the result. The CU argument
7327 is used to determine the language and hence, the appropriate separator. */
7328
7329 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7330
7331 static char *
7332 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7333 struct dwarf2_cu *cu)
7334 {
7335 char *sep;
7336
7337 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7338 sep = "";
7339 else if (cu->language == language_java)
7340 sep = ".";
7341 else
7342 sep = "::";
7343
7344 if (obs == NULL)
7345 {
7346 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7347 retval[0] = '\0';
7348
7349 if (prefix)
7350 {
7351 strcpy (retval, prefix);
7352 strcat (retval, sep);
7353 }
7354 if (suffix)
7355 strcat (retval, suffix);
7356
7357 return retval;
7358 }
7359 else
7360 {
7361 /* We have an obstack. */
7362 return obconcat (obs, prefix, sep, suffix);
7363 }
7364 }
7365
7366 static struct type *
7367 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7368 {
7369 struct objfile *objfile = cu->objfile;
7370
7371 /* FIXME - this should not produce a new (struct type *)
7372 every time. It should cache base types. */
7373 struct type *type;
7374 switch (encoding)
7375 {
7376 case DW_ATE_address:
7377 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7378 return type;
7379 case DW_ATE_boolean:
7380 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7381 return type;
7382 case DW_ATE_complex_float:
7383 if (size == 16)
7384 {
7385 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7386 }
7387 else
7388 {
7389 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7390 }
7391 return type;
7392 case DW_ATE_float:
7393 if (size == 8)
7394 {
7395 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7396 }
7397 else
7398 {
7399 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7400 }
7401 return type;
7402 case DW_ATE_signed:
7403 switch (size)
7404 {
7405 case 1:
7406 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7407 break;
7408 case 2:
7409 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7410 break;
7411 default:
7412 case 4:
7413 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7414 break;
7415 }
7416 return type;
7417 case DW_ATE_signed_char:
7418 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7419 return type;
7420 case DW_ATE_unsigned:
7421 switch (size)
7422 {
7423 case 1:
7424 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7425 break;
7426 case 2:
7427 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7428 break;
7429 default:
7430 case 4:
7431 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7432 break;
7433 }
7434 return type;
7435 case DW_ATE_unsigned_char:
7436 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7437 return type;
7438 default:
7439 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7440 return type;
7441 }
7442 }
7443
7444 #if 0
7445 struct die_info *
7446 copy_die (struct die_info *old_die)
7447 {
7448 struct die_info *new_die;
7449 int i, num_attrs;
7450
7451 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7452 memset (new_die, 0, sizeof (struct die_info));
7453
7454 new_die->tag = old_die->tag;
7455 new_die->has_children = old_die->has_children;
7456 new_die->abbrev = old_die->abbrev;
7457 new_die->offset = old_die->offset;
7458 new_die->type = NULL;
7459
7460 num_attrs = old_die->num_attrs;
7461 new_die->num_attrs = num_attrs;
7462 new_die->attrs = (struct attribute *)
7463 xmalloc (num_attrs * sizeof (struct attribute));
7464
7465 for (i = 0; i < old_die->num_attrs; ++i)
7466 {
7467 new_die->attrs[i].name = old_die->attrs[i].name;
7468 new_die->attrs[i].form = old_die->attrs[i].form;
7469 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7470 }
7471
7472 new_die->next = NULL;
7473 return new_die;
7474 }
7475 #endif
7476
7477 /* Return sibling of die, NULL if no sibling. */
7478
7479 static struct die_info *
7480 sibling_die (struct die_info *die)
7481 {
7482 return die->sibling;
7483 }
7484
7485 /* Get linkage name of a die, return NULL if not found. */
7486
7487 static char *
7488 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7489 {
7490 struct attribute *attr;
7491
7492 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7493 if (attr && DW_STRING (attr))
7494 return DW_STRING (attr);
7495 attr = dwarf2_attr (die, DW_AT_name, cu);
7496 if (attr && DW_STRING (attr))
7497 return DW_STRING (attr);
7498 return NULL;
7499 }
7500
7501 /* Get name of a die, return NULL if not found. */
7502
7503 static char *
7504 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7505 {
7506 struct attribute *attr;
7507
7508 attr = dwarf2_attr (die, DW_AT_name, cu);
7509 if (attr && DW_STRING (attr))
7510 return DW_STRING (attr);
7511 return NULL;
7512 }
7513
7514 /* Return the die that this die in an extension of, or NULL if there
7515 is none. */
7516
7517 static struct die_info *
7518 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7519 {
7520 struct attribute *attr;
7521
7522 attr = dwarf2_attr (die, DW_AT_extension, cu);
7523 if (attr == NULL)
7524 return NULL;
7525
7526 return follow_die_ref (die, attr, cu);
7527 }
7528
7529 /* Convert a DIE tag into its string name. */
7530
7531 static char *
7532 dwarf_tag_name (unsigned tag)
7533 {
7534 switch (tag)
7535 {
7536 case DW_TAG_padding:
7537 return "DW_TAG_padding";
7538 case DW_TAG_array_type:
7539 return "DW_TAG_array_type";
7540 case DW_TAG_class_type:
7541 return "DW_TAG_class_type";
7542 case DW_TAG_entry_point:
7543 return "DW_TAG_entry_point";
7544 case DW_TAG_enumeration_type:
7545 return "DW_TAG_enumeration_type";
7546 case DW_TAG_formal_parameter:
7547 return "DW_TAG_formal_parameter";
7548 case DW_TAG_imported_declaration:
7549 return "DW_TAG_imported_declaration";
7550 case DW_TAG_label:
7551 return "DW_TAG_label";
7552 case DW_TAG_lexical_block:
7553 return "DW_TAG_lexical_block";
7554 case DW_TAG_member:
7555 return "DW_TAG_member";
7556 case DW_TAG_pointer_type:
7557 return "DW_TAG_pointer_type";
7558 case DW_TAG_reference_type:
7559 return "DW_TAG_reference_type";
7560 case DW_TAG_compile_unit:
7561 return "DW_TAG_compile_unit";
7562 case DW_TAG_string_type:
7563 return "DW_TAG_string_type";
7564 case DW_TAG_structure_type:
7565 return "DW_TAG_structure_type";
7566 case DW_TAG_subroutine_type:
7567 return "DW_TAG_subroutine_type";
7568 case DW_TAG_typedef:
7569 return "DW_TAG_typedef";
7570 case DW_TAG_union_type:
7571 return "DW_TAG_union_type";
7572 case DW_TAG_unspecified_parameters:
7573 return "DW_TAG_unspecified_parameters";
7574 case DW_TAG_variant:
7575 return "DW_TAG_variant";
7576 case DW_TAG_common_block:
7577 return "DW_TAG_common_block";
7578 case DW_TAG_common_inclusion:
7579 return "DW_TAG_common_inclusion";
7580 case DW_TAG_inheritance:
7581 return "DW_TAG_inheritance";
7582 case DW_TAG_inlined_subroutine:
7583 return "DW_TAG_inlined_subroutine";
7584 case DW_TAG_module:
7585 return "DW_TAG_module";
7586 case DW_TAG_ptr_to_member_type:
7587 return "DW_TAG_ptr_to_member_type";
7588 case DW_TAG_set_type:
7589 return "DW_TAG_set_type";
7590 case DW_TAG_subrange_type:
7591 return "DW_TAG_subrange_type";
7592 case DW_TAG_with_stmt:
7593 return "DW_TAG_with_stmt";
7594 case DW_TAG_access_declaration:
7595 return "DW_TAG_access_declaration";
7596 case DW_TAG_base_type:
7597 return "DW_TAG_base_type";
7598 case DW_TAG_catch_block:
7599 return "DW_TAG_catch_block";
7600 case DW_TAG_const_type:
7601 return "DW_TAG_const_type";
7602 case DW_TAG_constant:
7603 return "DW_TAG_constant";
7604 case DW_TAG_enumerator:
7605 return "DW_TAG_enumerator";
7606 case DW_TAG_file_type:
7607 return "DW_TAG_file_type";
7608 case DW_TAG_friend:
7609 return "DW_TAG_friend";
7610 case DW_TAG_namelist:
7611 return "DW_TAG_namelist";
7612 case DW_TAG_namelist_item:
7613 return "DW_TAG_namelist_item";
7614 case DW_TAG_packed_type:
7615 return "DW_TAG_packed_type";
7616 case DW_TAG_subprogram:
7617 return "DW_TAG_subprogram";
7618 case DW_TAG_template_type_param:
7619 return "DW_TAG_template_type_param";
7620 case DW_TAG_template_value_param:
7621 return "DW_TAG_template_value_param";
7622 case DW_TAG_thrown_type:
7623 return "DW_TAG_thrown_type";
7624 case DW_TAG_try_block:
7625 return "DW_TAG_try_block";
7626 case DW_TAG_variant_part:
7627 return "DW_TAG_variant_part";
7628 case DW_TAG_variable:
7629 return "DW_TAG_variable";
7630 case DW_TAG_volatile_type:
7631 return "DW_TAG_volatile_type";
7632 case DW_TAG_dwarf_procedure:
7633 return "DW_TAG_dwarf_procedure";
7634 case DW_TAG_restrict_type:
7635 return "DW_TAG_restrict_type";
7636 case DW_TAG_interface_type:
7637 return "DW_TAG_interface_type";
7638 case DW_TAG_namespace:
7639 return "DW_TAG_namespace";
7640 case DW_TAG_imported_module:
7641 return "DW_TAG_imported_module";
7642 case DW_TAG_unspecified_type:
7643 return "DW_TAG_unspecified_type";
7644 case DW_TAG_partial_unit:
7645 return "DW_TAG_partial_unit";
7646 case DW_TAG_imported_unit:
7647 return "DW_TAG_imported_unit";
7648 case DW_TAG_MIPS_loop:
7649 return "DW_TAG_MIPS_loop";
7650 case DW_TAG_format_label:
7651 return "DW_TAG_format_label";
7652 case DW_TAG_function_template:
7653 return "DW_TAG_function_template";
7654 case DW_TAG_class_template:
7655 return "DW_TAG_class_template";
7656 default:
7657 return "DW_TAG_<unknown>";
7658 }
7659 }
7660
7661 /* Convert a DWARF attribute code into its string name. */
7662
7663 static char *
7664 dwarf_attr_name (unsigned attr)
7665 {
7666 switch (attr)
7667 {
7668 case DW_AT_sibling:
7669 return "DW_AT_sibling";
7670 case DW_AT_location:
7671 return "DW_AT_location";
7672 case DW_AT_name:
7673 return "DW_AT_name";
7674 case DW_AT_ordering:
7675 return "DW_AT_ordering";
7676 case DW_AT_subscr_data:
7677 return "DW_AT_subscr_data";
7678 case DW_AT_byte_size:
7679 return "DW_AT_byte_size";
7680 case DW_AT_bit_offset:
7681 return "DW_AT_bit_offset";
7682 case DW_AT_bit_size:
7683 return "DW_AT_bit_size";
7684 case DW_AT_element_list:
7685 return "DW_AT_element_list";
7686 case DW_AT_stmt_list:
7687 return "DW_AT_stmt_list";
7688 case DW_AT_low_pc:
7689 return "DW_AT_low_pc";
7690 case DW_AT_high_pc:
7691 return "DW_AT_high_pc";
7692 case DW_AT_language:
7693 return "DW_AT_language";
7694 case DW_AT_member:
7695 return "DW_AT_member";
7696 case DW_AT_discr:
7697 return "DW_AT_discr";
7698 case DW_AT_discr_value:
7699 return "DW_AT_discr_value";
7700 case DW_AT_visibility:
7701 return "DW_AT_visibility";
7702 case DW_AT_import:
7703 return "DW_AT_import";
7704 case DW_AT_string_length:
7705 return "DW_AT_string_length";
7706 case DW_AT_common_reference:
7707 return "DW_AT_common_reference";
7708 case DW_AT_comp_dir:
7709 return "DW_AT_comp_dir";
7710 case DW_AT_const_value:
7711 return "DW_AT_const_value";
7712 case DW_AT_containing_type:
7713 return "DW_AT_containing_type";
7714 case DW_AT_default_value:
7715 return "DW_AT_default_value";
7716 case DW_AT_inline:
7717 return "DW_AT_inline";
7718 case DW_AT_is_optional:
7719 return "DW_AT_is_optional";
7720 case DW_AT_lower_bound:
7721 return "DW_AT_lower_bound";
7722 case DW_AT_producer:
7723 return "DW_AT_producer";
7724 case DW_AT_prototyped:
7725 return "DW_AT_prototyped";
7726 case DW_AT_return_addr:
7727 return "DW_AT_return_addr";
7728 case DW_AT_start_scope:
7729 return "DW_AT_start_scope";
7730 case DW_AT_stride_size:
7731 return "DW_AT_stride_size";
7732 case DW_AT_upper_bound:
7733 return "DW_AT_upper_bound";
7734 case DW_AT_abstract_origin:
7735 return "DW_AT_abstract_origin";
7736 case DW_AT_accessibility:
7737 return "DW_AT_accessibility";
7738 case DW_AT_address_class:
7739 return "DW_AT_address_class";
7740 case DW_AT_artificial:
7741 return "DW_AT_artificial";
7742 case DW_AT_base_types:
7743 return "DW_AT_base_types";
7744 case DW_AT_calling_convention:
7745 return "DW_AT_calling_convention";
7746 case DW_AT_count:
7747 return "DW_AT_count";
7748 case DW_AT_data_member_location:
7749 return "DW_AT_data_member_location";
7750 case DW_AT_decl_column:
7751 return "DW_AT_decl_column";
7752 case DW_AT_decl_file:
7753 return "DW_AT_decl_file";
7754 case DW_AT_decl_line:
7755 return "DW_AT_decl_line";
7756 case DW_AT_declaration:
7757 return "DW_AT_declaration";
7758 case DW_AT_discr_list:
7759 return "DW_AT_discr_list";
7760 case DW_AT_encoding:
7761 return "DW_AT_encoding";
7762 case DW_AT_external:
7763 return "DW_AT_external";
7764 case DW_AT_frame_base:
7765 return "DW_AT_frame_base";
7766 case DW_AT_friend:
7767 return "DW_AT_friend";
7768 case DW_AT_identifier_case:
7769 return "DW_AT_identifier_case";
7770 case DW_AT_macro_info:
7771 return "DW_AT_macro_info";
7772 case DW_AT_namelist_items:
7773 return "DW_AT_namelist_items";
7774 case DW_AT_priority:
7775 return "DW_AT_priority";
7776 case DW_AT_segment:
7777 return "DW_AT_segment";
7778 case DW_AT_specification:
7779 return "DW_AT_specification";
7780 case DW_AT_static_link:
7781 return "DW_AT_static_link";
7782 case DW_AT_type:
7783 return "DW_AT_type";
7784 case DW_AT_use_location:
7785 return "DW_AT_use_location";
7786 case DW_AT_variable_parameter:
7787 return "DW_AT_variable_parameter";
7788 case DW_AT_virtuality:
7789 return "DW_AT_virtuality";
7790 case DW_AT_vtable_elem_location:
7791 return "DW_AT_vtable_elem_location";
7792 case DW_AT_allocated:
7793 return "DW_AT_allocated";
7794 case DW_AT_associated:
7795 return "DW_AT_associated";
7796 case DW_AT_data_location:
7797 return "DW_AT_data_location";
7798 case DW_AT_stride:
7799 return "DW_AT_stride";
7800 case DW_AT_entry_pc:
7801 return "DW_AT_entry_pc";
7802 case DW_AT_use_UTF8:
7803 return "DW_AT_use_UTF8";
7804 case DW_AT_extension:
7805 return "DW_AT_extension";
7806 case DW_AT_ranges:
7807 return "DW_AT_ranges";
7808 case DW_AT_trampoline:
7809 return "DW_AT_trampoline";
7810 case DW_AT_call_column:
7811 return "DW_AT_call_column";
7812 case DW_AT_call_file:
7813 return "DW_AT_call_file";
7814 case DW_AT_call_line:
7815 return "DW_AT_call_line";
7816 #ifdef MIPS
7817 case DW_AT_MIPS_fde:
7818 return "DW_AT_MIPS_fde";
7819 case DW_AT_MIPS_loop_begin:
7820 return "DW_AT_MIPS_loop_begin";
7821 case DW_AT_MIPS_tail_loop_begin:
7822 return "DW_AT_MIPS_tail_loop_begin";
7823 case DW_AT_MIPS_epilog_begin:
7824 return "DW_AT_MIPS_epilog_begin";
7825 case DW_AT_MIPS_loop_unroll_factor:
7826 return "DW_AT_MIPS_loop_unroll_factor";
7827 case DW_AT_MIPS_software_pipeline_depth:
7828 return "DW_AT_MIPS_software_pipeline_depth";
7829 #endif
7830 case DW_AT_MIPS_linkage_name:
7831 return "DW_AT_MIPS_linkage_name";
7832
7833 case DW_AT_sf_names:
7834 return "DW_AT_sf_names";
7835 case DW_AT_src_info:
7836 return "DW_AT_src_info";
7837 case DW_AT_mac_info:
7838 return "DW_AT_mac_info";
7839 case DW_AT_src_coords:
7840 return "DW_AT_src_coords";
7841 case DW_AT_body_begin:
7842 return "DW_AT_body_begin";
7843 case DW_AT_body_end:
7844 return "DW_AT_body_end";
7845 case DW_AT_GNU_vector:
7846 return "DW_AT_GNU_vector";
7847 default:
7848 return "DW_AT_<unknown>";
7849 }
7850 }
7851
7852 /* Convert a DWARF value form code into its string name. */
7853
7854 static char *
7855 dwarf_form_name (unsigned form)
7856 {
7857 switch (form)
7858 {
7859 case DW_FORM_addr:
7860 return "DW_FORM_addr";
7861 case DW_FORM_block2:
7862 return "DW_FORM_block2";
7863 case DW_FORM_block4:
7864 return "DW_FORM_block4";
7865 case DW_FORM_data2:
7866 return "DW_FORM_data2";
7867 case DW_FORM_data4:
7868 return "DW_FORM_data4";
7869 case DW_FORM_data8:
7870 return "DW_FORM_data8";
7871 case DW_FORM_string:
7872 return "DW_FORM_string";
7873 case DW_FORM_block:
7874 return "DW_FORM_block";
7875 case DW_FORM_block1:
7876 return "DW_FORM_block1";
7877 case DW_FORM_data1:
7878 return "DW_FORM_data1";
7879 case DW_FORM_flag:
7880 return "DW_FORM_flag";
7881 case DW_FORM_sdata:
7882 return "DW_FORM_sdata";
7883 case DW_FORM_strp:
7884 return "DW_FORM_strp";
7885 case DW_FORM_udata:
7886 return "DW_FORM_udata";
7887 case DW_FORM_ref_addr:
7888 return "DW_FORM_ref_addr";
7889 case DW_FORM_ref1:
7890 return "DW_FORM_ref1";
7891 case DW_FORM_ref2:
7892 return "DW_FORM_ref2";
7893 case DW_FORM_ref4:
7894 return "DW_FORM_ref4";
7895 case DW_FORM_ref8:
7896 return "DW_FORM_ref8";
7897 case DW_FORM_ref_udata:
7898 return "DW_FORM_ref_udata";
7899 case DW_FORM_indirect:
7900 return "DW_FORM_indirect";
7901 default:
7902 return "DW_FORM_<unknown>";
7903 }
7904 }
7905
7906 /* Convert a DWARF stack opcode into its string name. */
7907
7908 static char *
7909 dwarf_stack_op_name (unsigned op)
7910 {
7911 switch (op)
7912 {
7913 case DW_OP_addr:
7914 return "DW_OP_addr";
7915 case DW_OP_deref:
7916 return "DW_OP_deref";
7917 case DW_OP_const1u:
7918 return "DW_OP_const1u";
7919 case DW_OP_const1s:
7920 return "DW_OP_const1s";
7921 case DW_OP_const2u:
7922 return "DW_OP_const2u";
7923 case DW_OP_const2s:
7924 return "DW_OP_const2s";
7925 case DW_OP_const4u:
7926 return "DW_OP_const4u";
7927 case DW_OP_const4s:
7928 return "DW_OP_const4s";
7929 case DW_OP_const8u:
7930 return "DW_OP_const8u";
7931 case DW_OP_const8s:
7932 return "DW_OP_const8s";
7933 case DW_OP_constu:
7934 return "DW_OP_constu";
7935 case DW_OP_consts:
7936 return "DW_OP_consts";
7937 case DW_OP_dup:
7938 return "DW_OP_dup";
7939 case DW_OP_drop:
7940 return "DW_OP_drop";
7941 case DW_OP_over:
7942 return "DW_OP_over";
7943 case DW_OP_pick:
7944 return "DW_OP_pick";
7945 case DW_OP_swap:
7946 return "DW_OP_swap";
7947 case DW_OP_rot:
7948 return "DW_OP_rot";
7949 case DW_OP_xderef:
7950 return "DW_OP_xderef";
7951 case DW_OP_abs:
7952 return "DW_OP_abs";
7953 case DW_OP_and:
7954 return "DW_OP_and";
7955 case DW_OP_div:
7956 return "DW_OP_div";
7957 case DW_OP_minus:
7958 return "DW_OP_minus";
7959 case DW_OP_mod:
7960 return "DW_OP_mod";
7961 case DW_OP_mul:
7962 return "DW_OP_mul";
7963 case DW_OP_neg:
7964 return "DW_OP_neg";
7965 case DW_OP_not:
7966 return "DW_OP_not";
7967 case DW_OP_or:
7968 return "DW_OP_or";
7969 case DW_OP_plus:
7970 return "DW_OP_plus";
7971 case DW_OP_plus_uconst:
7972 return "DW_OP_plus_uconst";
7973 case DW_OP_shl:
7974 return "DW_OP_shl";
7975 case DW_OP_shr:
7976 return "DW_OP_shr";
7977 case DW_OP_shra:
7978 return "DW_OP_shra";
7979 case DW_OP_xor:
7980 return "DW_OP_xor";
7981 case DW_OP_bra:
7982 return "DW_OP_bra";
7983 case DW_OP_eq:
7984 return "DW_OP_eq";
7985 case DW_OP_ge:
7986 return "DW_OP_ge";
7987 case DW_OP_gt:
7988 return "DW_OP_gt";
7989 case DW_OP_le:
7990 return "DW_OP_le";
7991 case DW_OP_lt:
7992 return "DW_OP_lt";
7993 case DW_OP_ne:
7994 return "DW_OP_ne";
7995 case DW_OP_skip:
7996 return "DW_OP_skip";
7997 case DW_OP_lit0:
7998 return "DW_OP_lit0";
7999 case DW_OP_lit1:
8000 return "DW_OP_lit1";
8001 case DW_OP_lit2:
8002 return "DW_OP_lit2";
8003 case DW_OP_lit3:
8004 return "DW_OP_lit3";
8005 case DW_OP_lit4:
8006 return "DW_OP_lit4";
8007 case DW_OP_lit5:
8008 return "DW_OP_lit5";
8009 case DW_OP_lit6:
8010 return "DW_OP_lit6";
8011 case DW_OP_lit7:
8012 return "DW_OP_lit7";
8013 case DW_OP_lit8:
8014 return "DW_OP_lit8";
8015 case DW_OP_lit9:
8016 return "DW_OP_lit9";
8017 case DW_OP_lit10:
8018 return "DW_OP_lit10";
8019 case DW_OP_lit11:
8020 return "DW_OP_lit11";
8021 case DW_OP_lit12:
8022 return "DW_OP_lit12";
8023 case DW_OP_lit13:
8024 return "DW_OP_lit13";
8025 case DW_OP_lit14:
8026 return "DW_OP_lit14";
8027 case DW_OP_lit15:
8028 return "DW_OP_lit15";
8029 case DW_OP_lit16:
8030 return "DW_OP_lit16";
8031 case DW_OP_lit17:
8032 return "DW_OP_lit17";
8033 case DW_OP_lit18:
8034 return "DW_OP_lit18";
8035 case DW_OP_lit19:
8036 return "DW_OP_lit19";
8037 case DW_OP_lit20:
8038 return "DW_OP_lit20";
8039 case DW_OP_lit21:
8040 return "DW_OP_lit21";
8041 case DW_OP_lit22:
8042 return "DW_OP_lit22";
8043 case DW_OP_lit23:
8044 return "DW_OP_lit23";
8045 case DW_OP_lit24:
8046 return "DW_OP_lit24";
8047 case DW_OP_lit25:
8048 return "DW_OP_lit25";
8049 case DW_OP_lit26:
8050 return "DW_OP_lit26";
8051 case DW_OP_lit27:
8052 return "DW_OP_lit27";
8053 case DW_OP_lit28:
8054 return "DW_OP_lit28";
8055 case DW_OP_lit29:
8056 return "DW_OP_lit29";
8057 case DW_OP_lit30:
8058 return "DW_OP_lit30";
8059 case DW_OP_lit31:
8060 return "DW_OP_lit31";
8061 case DW_OP_reg0:
8062 return "DW_OP_reg0";
8063 case DW_OP_reg1:
8064 return "DW_OP_reg1";
8065 case DW_OP_reg2:
8066 return "DW_OP_reg2";
8067 case DW_OP_reg3:
8068 return "DW_OP_reg3";
8069 case DW_OP_reg4:
8070 return "DW_OP_reg4";
8071 case DW_OP_reg5:
8072 return "DW_OP_reg5";
8073 case DW_OP_reg6:
8074 return "DW_OP_reg6";
8075 case DW_OP_reg7:
8076 return "DW_OP_reg7";
8077 case DW_OP_reg8:
8078 return "DW_OP_reg8";
8079 case DW_OP_reg9:
8080 return "DW_OP_reg9";
8081 case DW_OP_reg10:
8082 return "DW_OP_reg10";
8083 case DW_OP_reg11:
8084 return "DW_OP_reg11";
8085 case DW_OP_reg12:
8086 return "DW_OP_reg12";
8087 case DW_OP_reg13:
8088 return "DW_OP_reg13";
8089 case DW_OP_reg14:
8090 return "DW_OP_reg14";
8091 case DW_OP_reg15:
8092 return "DW_OP_reg15";
8093 case DW_OP_reg16:
8094 return "DW_OP_reg16";
8095 case DW_OP_reg17:
8096 return "DW_OP_reg17";
8097 case DW_OP_reg18:
8098 return "DW_OP_reg18";
8099 case DW_OP_reg19:
8100 return "DW_OP_reg19";
8101 case DW_OP_reg20:
8102 return "DW_OP_reg20";
8103 case DW_OP_reg21:
8104 return "DW_OP_reg21";
8105 case DW_OP_reg22:
8106 return "DW_OP_reg22";
8107 case DW_OP_reg23:
8108 return "DW_OP_reg23";
8109 case DW_OP_reg24:
8110 return "DW_OP_reg24";
8111 case DW_OP_reg25:
8112 return "DW_OP_reg25";
8113 case DW_OP_reg26:
8114 return "DW_OP_reg26";
8115 case DW_OP_reg27:
8116 return "DW_OP_reg27";
8117 case DW_OP_reg28:
8118 return "DW_OP_reg28";
8119 case DW_OP_reg29:
8120 return "DW_OP_reg29";
8121 case DW_OP_reg30:
8122 return "DW_OP_reg30";
8123 case DW_OP_reg31:
8124 return "DW_OP_reg31";
8125 case DW_OP_breg0:
8126 return "DW_OP_breg0";
8127 case DW_OP_breg1:
8128 return "DW_OP_breg1";
8129 case DW_OP_breg2:
8130 return "DW_OP_breg2";
8131 case DW_OP_breg3:
8132 return "DW_OP_breg3";
8133 case DW_OP_breg4:
8134 return "DW_OP_breg4";
8135 case DW_OP_breg5:
8136 return "DW_OP_breg5";
8137 case DW_OP_breg6:
8138 return "DW_OP_breg6";
8139 case DW_OP_breg7:
8140 return "DW_OP_breg7";
8141 case DW_OP_breg8:
8142 return "DW_OP_breg8";
8143 case DW_OP_breg9:
8144 return "DW_OP_breg9";
8145 case DW_OP_breg10:
8146 return "DW_OP_breg10";
8147 case DW_OP_breg11:
8148 return "DW_OP_breg11";
8149 case DW_OP_breg12:
8150 return "DW_OP_breg12";
8151 case DW_OP_breg13:
8152 return "DW_OP_breg13";
8153 case DW_OP_breg14:
8154 return "DW_OP_breg14";
8155 case DW_OP_breg15:
8156 return "DW_OP_breg15";
8157 case DW_OP_breg16:
8158 return "DW_OP_breg16";
8159 case DW_OP_breg17:
8160 return "DW_OP_breg17";
8161 case DW_OP_breg18:
8162 return "DW_OP_breg18";
8163 case DW_OP_breg19:
8164 return "DW_OP_breg19";
8165 case DW_OP_breg20:
8166 return "DW_OP_breg20";
8167 case DW_OP_breg21:
8168 return "DW_OP_breg21";
8169 case DW_OP_breg22:
8170 return "DW_OP_breg22";
8171 case DW_OP_breg23:
8172 return "DW_OP_breg23";
8173 case DW_OP_breg24:
8174 return "DW_OP_breg24";
8175 case DW_OP_breg25:
8176 return "DW_OP_breg25";
8177 case DW_OP_breg26:
8178 return "DW_OP_breg26";
8179 case DW_OP_breg27:
8180 return "DW_OP_breg27";
8181 case DW_OP_breg28:
8182 return "DW_OP_breg28";
8183 case DW_OP_breg29:
8184 return "DW_OP_breg29";
8185 case DW_OP_breg30:
8186 return "DW_OP_breg30";
8187 case DW_OP_breg31:
8188 return "DW_OP_breg31";
8189 case DW_OP_regx:
8190 return "DW_OP_regx";
8191 case DW_OP_fbreg:
8192 return "DW_OP_fbreg";
8193 case DW_OP_bregx:
8194 return "DW_OP_bregx";
8195 case DW_OP_piece:
8196 return "DW_OP_piece";
8197 case DW_OP_deref_size:
8198 return "DW_OP_deref_size";
8199 case DW_OP_xderef_size:
8200 return "DW_OP_xderef_size";
8201 case DW_OP_nop:
8202 return "DW_OP_nop";
8203 /* DWARF 3 extensions. */
8204 case DW_OP_push_object_address:
8205 return "DW_OP_push_object_address";
8206 case DW_OP_call2:
8207 return "DW_OP_call2";
8208 case DW_OP_call4:
8209 return "DW_OP_call4";
8210 case DW_OP_call_ref:
8211 return "DW_OP_call_ref";
8212 /* GNU extensions. */
8213 case DW_OP_GNU_push_tls_address:
8214 return "DW_OP_GNU_push_tls_address";
8215 default:
8216 return "OP_<unknown>";
8217 }
8218 }
8219
8220 static char *
8221 dwarf_bool_name (unsigned mybool)
8222 {
8223 if (mybool)
8224 return "TRUE";
8225 else
8226 return "FALSE";
8227 }
8228
8229 /* Convert a DWARF type code into its string name. */
8230
8231 static char *
8232 dwarf_type_encoding_name (unsigned enc)
8233 {
8234 switch (enc)
8235 {
8236 case DW_ATE_address:
8237 return "DW_ATE_address";
8238 case DW_ATE_boolean:
8239 return "DW_ATE_boolean";
8240 case DW_ATE_complex_float:
8241 return "DW_ATE_complex_float";
8242 case DW_ATE_float:
8243 return "DW_ATE_float";
8244 case DW_ATE_signed:
8245 return "DW_ATE_signed";
8246 case DW_ATE_signed_char:
8247 return "DW_ATE_signed_char";
8248 case DW_ATE_unsigned:
8249 return "DW_ATE_unsigned";
8250 case DW_ATE_unsigned_char:
8251 return "DW_ATE_unsigned_char";
8252 case DW_ATE_imaginary_float:
8253 return "DW_ATE_imaginary_float";
8254 default:
8255 return "DW_ATE_<unknown>";
8256 }
8257 }
8258
8259 /* Convert a DWARF call frame info operation to its string name. */
8260
8261 #if 0
8262 static char *
8263 dwarf_cfi_name (unsigned cfi_opc)
8264 {
8265 switch (cfi_opc)
8266 {
8267 case DW_CFA_advance_loc:
8268 return "DW_CFA_advance_loc";
8269 case DW_CFA_offset:
8270 return "DW_CFA_offset";
8271 case DW_CFA_restore:
8272 return "DW_CFA_restore";
8273 case DW_CFA_nop:
8274 return "DW_CFA_nop";
8275 case DW_CFA_set_loc:
8276 return "DW_CFA_set_loc";
8277 case DW_CFA_advance_loc1:
8278 return "DW_CFA_advance_loc1";
8279 case DW_CFA_advance_loc2:
8280 return "DW_CFA_advance_loc2";
8281 case DW_CFA_advance_loc4:
8282 return "DW_CFA_advance_loc4";
8283 case DW_CFA_offset_extended:
8284 return "DW_CFA_offset_extended";
8285 case DW_CFA_restore_extended:
8286 return "DW_CFA_restore_extended";
8287 case DW_CFA_undefined:
8288 return "DW_CFA_undefined";
8289 case DW_CFA_same_value:
8290 return "DW_CFA_same_value";
8291 case DW_CFA_register:
8292 return "DW_CFA_register";
8293 case DW_CFA_remember_state:
8294 return "DW_CFA_remember_state";
8295 case DW_CFA_restore_state:
8296 return "DW_CFA_restore_state";
8297 case DW_CFA_def_cfa:
8298 return "DW_CFA_def_cfa";
8299 case DW_CFA_def_cfa_register:
8300 return "DW_CFA_def_cfa_register";
8301 case DW_CFA_def_cfa_offset:
8302 return "DW_CFA_def_cfa_offset";
8303
8304 /* DWARF 3 */
8305 case DW_CFA_def_cfa_expression:
8306 return "DW_CFA_def_cfa_expression";
8307 case DW_CFA_expression:
8308 return "DW_CFA_expression";
8309 case DW_CFA_offset_extended_sf:
8310 return "DW_CFA_offset_extended_sf";
8311 case DW_CFA_def_cfa_sf:
8312 return "DW_CFA_def_cfa_sf";
8313 case DW_CFA_def_cfa_offset_sf:
8314 return "DW_CFA_def_cfa_offset_sf";
8315
8316 /* SGI/MIPS specific */
8317 case DW_CFA_MIPS_advance_loc8:
8318 return "DW_CFA_MIPS_advance_loc8";
8319
8320 /* GNU extensions */
8321 case DW_CFA_GNU_window_save:
8322 return "DW_CFA_GNU_window_save";
8323 case DW_CFA_GNU_args_size:
8324 return "DW_CFA_GNU_args_size";
8325 case DW_CFA_GNU_negative_offset_extended:
8326 return "DW_CFA_GNU_negative_offset_extended";
8327
8328 default:
8329 return "DW_CFA_<unknown>";
8330 }
8331 }
8332 #endif
8333
8334 static void
8335 dump_die (struct die_info *die)
8336 {
8337 unsigned int i;
8338
8339 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8340 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8341 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8342 dwarf_bool_name (die->child != NULL));
8343
8344 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8345 for (i = 0; i < die->num_attrs; ++i)
8346 {
8347 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8348 dwarf_attr_name (die->attrs[i].name),
8349 dwarf_form_name (die->attrs[i].form));
8350 switch (die->attrs[i].form)
8351 {
8352 case DW_FORM_ref_addr:
8353 case DW_FORM_addr:
8354 fprintf_unfiltered (gdb_stderr, "address: ");
8355 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8356 break;
8357 case DW_FORM_block2:
8358 case DW_FORM_block4:
8359 case DW_FORM_block:
8360 case DW_FORM_block1:
8361 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8362 break;
8363 case DW_FORM_ref1:
8364 case DW_FORM_ref2:
8365 case DW_FORM_ref4:
8366 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8367 (long) (DW_ADDR (&die->attrs[i])));
8368 break;
8369 case DW_FORM_data1:
8370 case DW_FORM_data2:
8371 case DW_FORM_data4:
8372 case DW_FORM_data8:
8373 case DW_FORM_udata:
8374 case DW_FORM_sdata:
8375 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8376 break;
8377 case DW_FORM_string:
8378 case DW_FORM_strp:
8379 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8380 DW_STRING (&die->attrs[i])
8381 ? DW_STRING (&die->attrs[i]) : "");
8382 break;
8383 case DW_FORM_flag:
8384 if (DW_UNSND (&die->attrs[i]))
8385 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8386 else
8387 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8388 break;
8389 case DW_FORM_indirect:
8390 /* the reader will have reduced the indirect form to
8391 the "base form" so this form should not occur */
8392 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8393 break;
8394 default:
8395 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8396 die->attrs[i].form);
8397 }
8398 fprintf_unfiltered (gdb_stderr, "\n");
8399 }
8400 }
8401
8402 static void
8403 dump_die_list (struct die_info *die)
8404 {
8405 while (die)
8406 {
8407 dump_die (die);
8408 if (die->child != NULL)
8409 dump_die_list (die->child);
8410 if (die->sibling != NULL)
8411 dump_die_list (die->sibling);
8412 }
8413 }
8414
8415 static void
8416 store_in_ref_table (unsigned int offset, struct die_info *die,
8417 struct dwarf2_cu *cu)
8418 {
8419 int h;
8420 struct die_info *old;
8421
8422 h = (offset % REF_HASH_SIZE);
8423 old = cu->die_ref_table[h];
8424 die->next_ref = old;
8425 cu->die_ref_table[h] = die;
8426 }
8427
8428 static unsigned int
8429 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8430 {
8431 unsigned int result = 0;
8432
8433 switch (attr->form)
8434 {
8435 case DW_FORM_ref_addr:
8436 case DW_FORM_ref1:
8437 case DW_FORM_ref2:
8438 case DW_FORM_ref4:
8439 case DW_FORM_ref8:
8440 case DW_FORM_ref_udata:
8441 result = DW_ADDR (attr);
8442 break;
8443 default:
8444 complaint (&symfile_complaints,
8445 _("unsupported die ref attribute form: '%s'"),
8446 dwarf_form_name (attr->form));
8447 }
8448 return result;
8449 }
8450
8451 /* Return the constant value held by the given attribute. Return -1
8452 if the value held by the attribute is not constant. */
8453
8454 static int
8455 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8456 {
8457 if (attr->form == DW_FORM_sdata)
8458 return DW_SND (attr);
8459 else if (attr->form == DW_FORM_udata
8460 || attr->form == DW_FORM_data1
8461 || attr->form == DW_FORM_data2
8462 || attr->form == DW_FORM_data4
8463 || attr->form == DW_FORM_data8)
8464 return DW_UNSND (attr);
8465 else
8466 {
8467 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8468 dwarf_form_name (attr->form));
8469 return default_value;
8470 }
8471 }
8472
8473 static struct die_info *
8474 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8475 struct dwarf2_cu *cu)
8476 {
8477 struct die_info *die;
8478 unsigned int offset;
8479 int h;
8480 struct die_info temp_die;
8481 struct dwarf2_cu *target_cu;
8482
8483 offset = dwarf2_get_ref_die_offset (attr, cu);
8484
8485 if (DW_ADDR (attr) < cu->header.offset
8486 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8487 {
8488 struct dwarf2_per_cu_data *per_cu;
8489 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8490 cu->objfile);
8491 target_cu = per_cu->cu;
8492 }
8493 else
8494 target_cu = cu;
8495
8496 h = (offset % REF_HASH_SIZE);
8497 die = target_cu->die_ref_table[h];
8498 while (die)
8499 {
8500 if (die->offset == offset)
8501 return die;
8502 die = die->next_ref;
8503 }
8504
8505 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8506 "at 0x%lx [in module %s]"),
8507 (long) src_die->offset, (long) offset, cu->objfile->name);
8508
8509 return NULL;
8510 }
8511
8512 static struct type *
8513 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8514 struct dwarf2_cu *cu)
8515 {
8516 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8517 {
8518 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8519 typeid, objfile->name);
8520 }
8521
8522 /* Look for this particular type in the fundamental type vector. If
8523 one is not found, create and install one appropriate for the
8524 current language and the current target machine. */
8525
8526 if (cu->ftypes[typeid] == NULL)
8527 {
8528 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8529 }
8530
8531 return (cu->ftypes[typeid]);
8532 }
8533
8534 /* Decode simple location descriptions.
8535 Given a pointer to a dwarf block that defines a location, compute
8536 the location and return the value.
8537
8538 NOTE drow/2003-11-18: This function is called in two situations
8539 now: for the address of static or global variables (partial symbols
8540 only) and for offsets into structures which are expected to be
8541 (more or less) constant. The partial symbol case should go away,
8542 and only the constant case should remain. That will let this
8543 function complain more accurately. A few special modes are allowed
8544 without complaint for global variables (for instance, global
8545 register values and thread-local values).
8546
8547 A location description containing no operations indicates that the
8548 object is optimized out. The return value is 0 for that case.
8549 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8550 callers will only want a very basic result and this can become a
8551 complaint.
8552
8553 Note that stack[0] is unused except as a default error return.
8554 Note that stack overflow is not yet handled. */
8555
8556 static CORE_ADDR
8557 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8558 {
8559 struct objfile *objfile = cu->objfile;
8560 struct comp_unit_head *cu_header = &cu->header;
8561 int i;
8562 int size = blk->size;
8563 char *data = blk->data;
8564 CORE_ADDR stack[64];
8565 int stacki;
8566 unsigned int bytes_read, unsnd;
8567 unsigned char op;
8568
8569 i = 0;
8570 stacki = 0;
8571 stack[stacki] = 0;
8572
8573 while (i < size)
8574 {
8575 op = data[i++];
8576 switch (op)
8577 {
8578 case DW_OP_lit0:
8579 case DW_OP_lit1:
8580 case DW_OP_lit2:
8581 case DW_OP_lit3:
8582 case DW_OP_lit4:
8583 case DW_OP_lit5:
8584 case DW_OP_lit6:
8585 case DW_OP_lit7:
8586 case DW_OP_lit8:
8587 case DW_OP_lit9:
8588 case DW_OP_lit10:
8589 case DW_OP_lit11:
8590 case DW_OP_lit12:
8591 case DW_OP_lit13:
8592 case DW_OP_lit14:
8593 case DW_OP_lit15:
8594 case DW_OP_lit16:
8595 case DW_OP_lit17:
8596 case DW_OP_lit18:
8597 case DW_OP_lit19:
8598 case DW_OP_lit20:
8599 case DW_OP_lit21:
8600 case DW_OP_lit22:
8601 case DW_OP_lit23:
8602 case DW_OP_lit24:
8603 case DW_OP_lit25:
8604 case DW_OP_lit26:
8605 case DW_OP_lit27:
8606 case DW_OP_lit28:
8607 case DW_OP_lit29:
8608 case DW_OP_lit30:
8609 case DW_OP_lit31:
8610 stack[++stacki] = op - DW_OP_lit0;
8611 break;
8612
8613 case DW_OP_reg0:
8614 case DW_OP_reg1:
8615 case DW_OP_reg2:
8616 case DW_OP_reg3:
8617 case DW_OP_reg4:
8618 case DW_OP_reg5:
8619 case DW_OP_reg6:
8620 case DW_OP_reg7:
8621 case DW_OP_reg8:
8622 case DW_OP_reg9:
8623 case DW_OP_reg10:
8624 case DW_OP_reg11:
8625 case DW_OP_reg12:
8626 case DW_OP_reg13:
8627 case DW_OP_reg14:
8628 case DW_OP_reg15:
8629 case DW_OP_reg16:
8630 case DW_OP_reg17:
8631 case DW_OP_reg18:
8632 case DW_OP_reg19:
8633 case DW_OP_reg20:
8634 case DW_OP_reg21:
8635 case DW_OP_reg22:
8636 case DW_OP_reg23:
8637 case DW_OP_reg24:
8638 case DW_OP_reg25:
8639 case DW_OP_reg26:
8640 case DW_OP_reg27:
8641 case DW_OP_reg28:
8642 case DW_OP_reg29:
8643 case DW_OP_reg30:
8644 case DW_OP_reg31:
8645 stack[++stacki] = op - DW_OP_reg0;
8646 if (i < size)
8647 dwarf2_complex_location_expr_complaint ();
8648 break;
8649
8650 case DW_OP_regx:
8651 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8652 i += bytes_read;
8653 stack[++stacki] = unsnd;
8654 if (i < size)
8655 dwarf2_complex_location_expr_complaint ();
8656 break;
8657
8658 case DW_OP_addr:
8659 stack[++stacki] = read_address (objfile->obfd, &data[i],
8660 cu, &bytes_read);
8661 i += bytes_read;
8662 break;
8663
8664 case DW_OP_const1u:
8665 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8666 i += 1;
8667 break;
8668
8669 case DW_OP_const1s:
8670 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8671 i += 1;
8672 break;
8673
8674 case DW_OP_const2u:
8675 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8676 i += 2;
8677 break;
8678
8679 case DW_OP_const2s:
8680 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8681 i += 2;
8682 break;
8683
8684 case DW_OP_const4u:
8685 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8686 i += 4;
8687 break;
8688
8689 case DW_OP_const4s:
8690 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8691 i += 4;
8692 break;
8693
8694 case DW_OP_constu:
8695 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8696 &bytes_read);
8697 i += bytes_read;
8698 break;
8699
8700 case DW_OP_consts:
8701 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8702 i += bytes_read;
8703 break;
8704
8705 case DW_OP_dup:
8706 stack[stacki + 1] = stack[stacki];
8707 stacki++;
8708 break;
8709
8710 case DW_OP_plus:
8711 stack[stacki - 1] += stack[stacki];
8712 stacki--;
8713 break;
8714
8715 case DW_OP_plus_uconst:
8716 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8717 i += bytes_read;
8718 break;
8719
8720 case DW_OP_minus:
8721 stack[stacki - 1] -= stack[stacki];
8722 stacki--;
8723 break;
8724
8725 case DW_OP_deref:
8726 /* If we're not the last op, then we definitely can't encode
8727 this using GDB's address_class enum. This is valid for partial
8728 global symbols, although the variable's address will be bogus
8729 in the psymtab. */
8730 if (i < size)
8731 dwarf2_complex_location_expr_complaint ();
8732 break;
8733
8734 case DW_OP_GNU_push_tls_address:
8735 /* The top of the stack has the offset from the beginning
8736 of the thread control block at which the variable is located. */
8737 /* Nothing should follow this operator, so the top of stack would
8738 be returned. */
8739 /* This is valid for partial global symbols, but the variable's
8740 address will be bogus in the psymtab. */
8741 if (i < size)
8742 dwarf2_complex_location_expr_complaint ();
8743 break;
8744
8745 default:
8746 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8747 dwarf_stack_op_name (op));
8748 return (stack[stacki]);
8749 }
8750 }
8751 return (stack[stacki]);
8752 }
8753
8754 /* memory allocation interface */
8755
8756 static struct dwarf_block *
8757 dwarf_alloc_block (struct dwarf2_cu *cu)
8758 {
8759 struct dwarf_block *blk;
8760
8761 blk = (struct dwarf_block *)
8762 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8763 return (blk);
8764 }
8765
8766 static struct abbrev_info *
8767 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8768 {
8769 struct abbrev_info *abbrev;
8770
8771 abbrev = (struct abbrev_info *)
8772 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8773 memset (abbrev, 0, sizeof (struct abbrev_info));
8774 return (abbrev);
8775 }
8776
8777 static struct die_info *
8778 dwarf_alloc_die (void)
8779 {
8780 struct die_info *die;
8781
8782 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8783 memset (die, 0, sizeof (struct die_info));
8784 return (die);
8785 }
8786
8787 \f
8788 /* Macro support. */
8789
8790
8791 /* Return the full name of file number I in *LH's file name table.
8792 Use COMP_DIR as the name of the current directory of the
8793 compilation. The result is allocated using xmalloc; the caller is
8794 responsible for freeing it. */
8795 static char *
8796 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8797 {
8798 struct file_entry *fe = &lh->file_names[file - 1];
8799
8800 if (IS_ABSOLUTE_PATH (fe->name))
8801 return xstrdup (fe->name);
8802 else
8803 {
8804 const char *dir;
8805 int dir_len;
8806 char *full_name;
8807
8808 if (fe->dir_index)
8809 dir = lh->include_dirs[fe->dir_index - 1];
8810 else
8811 dir = comp_dir;
8812
8813 if (dir)
8814 {
8815 dir_len = strlen (dir);
8816 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8817 strcpy (full_name, dir);
8818 full_name[dir_len] = '/';
8819 strcpy (full_name + dir_len + 1, fe->name);
8820 return full_name;
8821 }
8822 else
8823 return xstrdup (fe->name);
8824 }
8825 }
8826
8827
8828 static struct macro_source_file *
8829 macro_start_file (int file, int line,
8830 struct macro_source_file *current_file,
8831 const char *comp_dir,
8832 struct line_header *lh, struct objfile *objfile)
8833 {
8834 /* The full name of this source file. */
8835 char *full_name = file_full_name (file, lh, comp_dir);
8836
8837 /* We don't create a macro table for this compilation unit
8838 at all until we actually get a filename. */
8839 if (! pending_macros)
8840 pending_macros = new_macro_table (&objfile->objfile_obstack,
8841 objfile->macro_cache);
8842
8843 if (! current_file)
8844 /* If we have no current file, then this must be the start_file
8845 directive for the compilation unit's main source file. */
8846 current_file = macro_set_main (pending_macros, full_name);
8847 else
8848 current_file = macro_include (current_file, line, full_name);
8849
8850 xfree (full_name);
8851
8852 return current_file;
8853 }
8854
8855
8856 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8857 followed by a null byte. */
8858 static char *
8859 copy_string (const char *buf, int len)
8860 {
8861 char *s = xmalloc (len + 1);
8862 memcpy (s, buf, len);
8863 s[len] = '\0';
8864
8865 return s;
8866 }
8867
8868
8869 static const char *
8870 consume_improper_spaces (const char *p, const char *body)
8871 {
8872 if (*p == ' ')
8873 {
8874 complaint (&symfile_complaints,
8875 _("macro definition contains spaces in formal argument list:\n`%s'"),
8876 body);
8877
8878 while (*p == ' ')
8879 p++;
8880 }
8881
8882 return p;
8883 }
8884
8885
8886 static void
8887 parse_macro_definition (struct macro_source_file *file, int line,
8888 const char *body)
8889 {
8890 const char *p;
8891
8892 /* The body string takes one of two forms. For object-like macro
8893 definitions, it should be:
8894
8895 <macro name> " " <definition>
8896
8897 For function-like macro definitions, it should be:
8898
8899 <macro name> "() " <definition>
8900 or
8901 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8902
8903 Spaces may appear only where explicitly indicated, and in the
8904 <definition>.
8905
8906 The Dwarf 2 spec says that an object-like macro's name is always
8907 followed by a space, but versions of GCC around March 2002 omit
8908 the space when the macro's definition is the empty string.
8909
8910 The Dwarf 2 spec says that there should be no spaces between the
8911 formal arguments in a function-like macro's formal argument list,
8912 but versions of GCC around March 2002 include spaces after the
8913 commas. */
8914
8915
8916 /* Find the extent of the macro name. The macro name is terminated
8917 by either a space or null character (for an object-like macro) or
8918 an opening paren (for a function-like macro). */
8919 for (p = body; *p; p++)
8920 if (*p == ' ' || *p == '(')
8921 break;
8922
8923 if (*p == ' ' || *p == '\0')
8924 {
8925 /* It's an object-like macro. */
8926 int name_len = p - body;
8927 char *name = copy_string (body, name_len);
8928 const char *replacement;
8929
8930 if (*p == ' ')
8931 replacement = body + name_len + 1;
8932 else
8933 {
8934 dwarf2_macro_malformed_definition_complaint (body);
8935 replacement = body + name_len;
8936 }
8937
8938 macro_define_object (file, line, name, replacement);
8939
8940 xfree (name);
8941 }
8942 else if (*p == '(')
8943 {
8944 /* It's a function-like macro. */
8945 char *name = copy_string (body, p - body);
8946 int argc = 0;
8947 int argv_size = 1;
8948 char **argv = xmalloc (argv_size * sizeof (*argv));
8949
8950 p++;
8951
8952 p = consume_improper_spaces (p, body);
8953
8954 /* Parse the formal argument list. */
8955 while (*p && *p != ')')
8956 {
8957 /* Find the extent of the current argument name. */
8958 const char *arg_start = p;
8959
8960 while (*p && *p != ',' && *p != ')' && *p != ' ')
8961 p++;
8962
8963 if (! *p || p == arg_start)
8964 dwarf2_macro_malformed_definition_complaint (body);
8965 else
8966 {
8967 /* Make sure argv has room for the new argument. */
8968 if (argc >= argv_size)
8969 {
8970 argv_size *= 2;
8971 argv = xrealloc (argv, argv_size * sizeof (*argv));
8972 }
8973
8974 argv[argc++] = copy_string (arg_start, p - arg_start);
8975 }
8976
8977 p = consume_improper_spaces (p, body);
8978
8979 /* Consume the comma, if present. */
8980 if (*p == ',')
8981 {
8982 p++;
8983
8984 p = consume_improper_spaces (p, body);
8985 }
8986 }
8987
8988 if (*p == ')')
8989 {
8990 p++;
8991
8992 if (*p == ' ')
8993 /* Perfectly formed definition, no complaints. */
8994 macro_define_function (file, line, name,
8995 argc, (const char **) argv,
8996 p + 1);
8997 else if (*p == '\0')
8998 {
8999 /* Complain, but do define it. */
9000 dwarf2_macro_malformed_definition_complaint (body);
9001 macro_define_function (file, line, name,
9002 argc, (const char **) argv,
9003 p);
9004 }
9005 else
9006 /* Just complain. */
9007 dwarf2_macro_malformed_definition_complaint (body);
9008 }
9009 else
9010 /* Just complain. */
9011 dwarf2_macro_malformed_definition_complaint (body);
9012
9013 xfree (name);
9014 {
9015 int i;
9016
9017 for (i = 0; i < argc; i++)
9018 xfree (argv[i]);
9019 }
9020 xfree (argv);
9021 }
9022 else
9023 dwarf2_macro_malformed_definition_complaint (body);
9024 }
9025
9026
9027 static void
9028 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9029 char *comp_dir, bfd *abfd,
9030 struct dwarf2_cu *cu)
9031 {
9032 char *mac_ptr, *mac_end;
9033 struct macro_source_file *current_file = 0;
9034
9035 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9036 {
9037 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9038 return;
9039 }
9040
9041 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9042 mac_end = dwarf2_per_objfile->macinfo_buffer
9043 + dwarf2_per_objfile->macinfo_size;
9044
9045 for (;;)
9046 {
9047 enum dwarf_macinfo_record_type macinfo_type;
9048
9049 /* Do we at least have room for a macinfo type byte? */
9050 if (mac_ptr >= mac_end)
9051 {
9052 dwarf2_macros_too_long_complaint ();
9053 return;
9054 }
9055
9056 macinfo_type = read_1_byte (abfd, mac_ptr);
9057 mac_ptr++;
9058
9059 switch (macinfo_type)
9060 {
9061 /* A zero macinfo type indicates the end of the macro
9062 information. */
9063 case 0:
9064 return;
9065
9066 case DW_MACINFO_define:
9067 case DW_MACINFO_undef:
9068 {
9069 int bytes_read;
9070 int line;
9071 char *body;
9072
9073 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9074 mac_ptr += bytes_read;
9075 body = read_string (abfd, mac_ptr, &bytes_read);
9076 mac_ptr += bytes_read;
9077
9078 if (! current_file)
9079 complaint (&symfile_complaints,
9080 _("debug info gives macro %s outside of any file: %s"),
9081 macinfo_type ==
9082 DW_MACINFO_define ? "definition" : macinfo_type ==
9083 DW_MACINFO_undef ? "undefinition" :
9084 "something-or-other", body);
9085 else
9086 {
9087 if (macinfo_type == DW_MACINFO_define)
9088 parse_macro_definition (current_file, line, body);
9089 else if (macinfo_type == DW_MACINFO_undef)
9090 macro_undef (current_file, line, body);
9091 }
9092 }
9093 break;
9094
9095 case DW_MACINFO_start_file:
9096 {
9097 int bytes_read;
9098 int line, file;
9099
9100 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9101 mac_ptr += bytes_read;
9102 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9103 mac_ptr += bytes_read;
9104
9105 current_file = macro_start_file (file, line,
9106 current_file, comp_dir,
9107 lh, cu->objfile);
9108 }
9109 break;
9110
9111 case DW_MACINFO_end_file:
9112 if (! current_file)
9113 complaint (&symfile_complaints,
9114 _("macro debug info has an unmatched `close_file' directive"));
9115 else
9116 {
9117 current_file = current_file->included_by;
9118 if (! current_file)
9119 {
9120 enum dwarf_macinfo_record_type next_type;
9121
9122 /* GCC circa March 2002 doesn't produce the zero
9123 type byte marking the end of the compilation
9124 unit. Complain if it's not there, but exit no
9125 matter what. */
9126
9127 /* Do we at least have room for a macinfo type byte? */
9128 if (mac_ptr >= mac_end)
9129 {
9130 dwarf2_macros_too_long_complaint ();
9131 return;
9132 }
9133
9134 /* We don't increment mac_ptr here, so this is just
9135 a look-ahead. */
9136 next_type = read_1_byte (abfd, mac_ptr);
9137 if (next_type != 0)
9138 complaint (&symfile_complaints,
9139 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9140
9141 return;
9142 }
9143 }
9144 break;
9145
9146 case DW_MACINFO_vendor_ext:
9147 {
9148 int bytes_read;
9149 int constant;
9150 char *string;
9151
9152 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9153 mac_ptr += bytes_read;
9154 string = read_string (abfd, mac_ptr, &bytes_read);
9155 mac_ptr += bytes_read;
9156
9157 /* We don't recognize any vendor extensions. */
9158 }
9159 break;
9160 }
9161 }
9162 }
9163
9164 /* Check if the attribute's form is a DW_FORM_block*
9165 if so return true else false. */
9166 static int
9167 attr_form_is_block (struct attribute *attr)
9168 {
9169 return (attr == NULL ? 0 :
9170 attr->form == DW_FORM_block1
9171 || attr->form == DW_FORM_block2
9172 || attr->form == DW_FORM_block4
9173 || attr->form == DW_FORM_block);
9174 }
9175
9176 static void
9177 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9178 struct dwarf2_cu *cu)
9179 {
9180 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9181 {
9182 struct dwarf2_loclist_baton *baton;
9183
9184 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9185 sizeof (struct dwarf2_loclist_baton));
9186 baton->objfile = cu->objfile;
9187
9188 /* We don't know how long the location list is, but make sure we
9189 don't run off the edge of the section. */
9190 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9191 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9192 baton->base_address = cu->header.base_address;
9193 if (cu->header.base_known == 0)
9194 complaint (&symfile_complaints,
9195 _("Location list used without specifying the CU base address."));
9196
9197 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9198 SYMBOL_LOCATION_BATON (sym) = baton;
9199 }
9200 else
9201 {
9202 struct dwarf2_locexpr_baton *baton;
9203
9204 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9205 sizeof (struct dwarf2_locexpr_baton));
9206 baton->objfile = cu->objfile;
9207
9208 if (attr_form_is_block (attr))
9209 {
9210 /* Note that we're just copying the block's data pointer
9211 here, not the actual data. We're still pointing into the
9212 info_buffer for SYM's objfile; right now we never release
9213 that buffer, but when we do clean up properly this may
9214 need to change. */
9215 baton->size = DW_BLOCK (attr)->size;
9216 baton->data = DW_BLOCK (attr)->data;
9217 }
9218 else
9219 {
9220 dwarf2_invalid_attrib_class_complaint ("location description",
9221 SYMBOL_NATURAL_NAME (sym));
9222 baton->size = 0;
9223 baton->data = NULL;
9224 }
9225
9226 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9227 SYMBOL_LOCATION_BATON (sym) = baton;
9228 }
9229 }
9230
9231 /* Locate the compilation unit from CU's objfile which contains the
9232 DIE at OFFSET. Raises an error on failure. */
9233
9234 static struct dwarf2_per_cu_data *
9235 dwarf2_find_containing_comp_unit (unsigned long offset,
9236 struct objfile *objfile)
9237 {
9238 struct dwarf2_per_cu_data *this_cu;
9239 int low, high;
9240
9241 low = 0;
9242 high = dwarf2_per_objfile->n_comp_units - 1;
9243 while (high > low)
9244 {
9245 int mid = low + (high - low) / 2;
9246 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9247 high = mid;
9248 else
9249 low = mid + 1;
9250 }
9251 gdb_assert (low == high);
9252 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9253 {
9254 if (low == 0)
9255 error (_("Dwarf Error: could not find partial DIE containing "
9256 "offset 0x%lx [in module %s]"),
9257 (long) offset, bfd_get_filename (objfile->obfd));
9258
9259 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9260 return dwarf2_per_objfile->all_comp_units[low-1];
9261 }
9262 else
9263 {
9264 this_cu = dwarf2_per_objfile->all_comp_units[low];
9265 if (low == dwarf2_per_objfile->n_comp_units - 1
9266 && offset >= this_cu->offset + this_cu->length)
9267 error (_("invalid dwarf2 offset %ld"), offset);
9268 gdb_assert (offset < this_cu->offset + this_cu->length);
9269 return this_cu;
9270 }
9271 }
9272
9273 /* Locate the compilation unit from OBJFILE which is located at exactly
9274 OFFSET. Raises an error on failure. */
9275
9276 static struct dwarf2_per_cu_data *
9277 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9278 {
9279 struct dwarf2_per_cu_data *this_cu;
9280 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9281 if (this_cu->offset != offset)
9282 error (_("no compilation unit with offset %ld."), offset);
9283 return this_cu;
9284 }
9285
9286 /* Release one cached compilation unit, CU. We unlink it from the tree
9287 of compilation units, but we don't remove it from the read_in_chain;
9288 the caller is responsible for that. */
9289
9290 static void
9291 free_one_comp_unit (void *data)
9292 {
9293 struct dwarf2_cu *cu = data;
9294
9295 if (cu->per_cu != NULL)
9296 cu->per_cu->cu = NULL;
9297 cu->per_cu = NULL;
9298
9299 obstack_free (&cu->comp_unit_obstack, NULL);
9300 if (cu->dies)
9301 free_die_list (cu->dies);
9302
9303 xfree (cu);
9304 }
9305
9306 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9307 when we're finished with it. We can't free the pointer itself, but be
9308 sure to unlink it from the cache. Also release any associated storage
9309 and perform cache maintenance.
9310
9311 Only used during partial symbol parsing. */
9312
9313 static void
9314 free_stack_comp_unit (void *data)
9315 {
9316 struct dwarf2_cu *cu = data;
9317
9318 obstack_free (&cu->comp_unit_obstack, NULL);
9319 cu->partial_dies = NULL;
9320
9321 if (cu->per_cu != NULL)
9322 {
9323 /* This compilation unit is on the stack in our caller, so we
9324 should not xfree it. Just unlink it. */
9325 cu->per_cu->cu = NULL;
9326 cu->per_cu = NULL;
9327
9328 /* If we had a per-cu pointer, then we may have other compilation
9329 units loaded, so age them now. */
9330 age_cached_comp_units ();
9331 }
9332 }
9333
9334 /* Free all cached compilation units. */
9335
9336 static void
9337 free_cached_comp_units (void *data)
9338 {
9339 struct dwarf2_per_cu_data *per_cu, **last_chain;
9340
9341 per_cu = dwarf2_per_objfile->read_in_chain;
9342 last_chain = &dwarf2_per_objfile->read_in_chain;
9343 while (per_cu != NULL)
9344 {
9345 struct dwarf2_per_cu_data *next_cu;
9346
9347 next_cu = per_cu->cu->read_in_chain;
9348
9349 free_one_comp_unit (per_cu->cu);
9350 *last_chain = next_cu;
9351
9352 per_cu = next_cu;
9353 }
9354 }
9355
9356 /* Increase the age counter on each cached compilation unit, and free
9357 any that are too old. */
9358
9359 static void
9360 age_cached_comp_units (void)
9361 {
9362 struct dwarf2_per_cu_data *per_cu, **last_chain;
9363
9364 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9365 per_cu = dwarf2_per_objfile->read_in_chain;
9366 while (per_cu != NULL)
9367 {
9368 per_cu->cu->last_used ++;
9369 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9370 dwarf2_mark (per_cu->cu);
9371 per_cu = per_cu->cu->read_in_chain;
9372 }
9373
9374 per_cu = dwarf2_per_objfile->read_in_chain;
9375 last_chain = &dwarf2_per_objfile->read_in_chain;
9376 while (per_cu != NULL)
9377 {
9378 struct dwarf2_per_cu_data *next_cu;
9379
9380 next_cu = per_cu->cu->read_in_chain;
9381
9382 if (!per_cu->cu->mark)
9383 {
9384 free_one_comp_unit (per_cu->cu);
9385 *last_chain = next_cu;
9386 }
9387 else
9388 last_chain = &per_cu->cu->read_in_chain;
9389
9390 per_cu = next_cu;
9391 }
9392 }
9393
9394 /* Remove a single compilation unit from the cache. */
9395
9396 static void
9397 free_one_cached_comp_unit (void *target_cu)
9398 {
9399 struct dwarf2_per_cu_data *per_cu, **last_chain;
9400
9401 per_cu = dwarf2_per_objfile->read_in_chain;
9402 last_chain = &dwarf2_per_objfile->read_in_chain;
9403 while (per_cu != NULL)
9404 {
9405 struct dwarf2_per_cu_data *next_cu;
9406
9407 next_cu = per_cu->cu->read_in_chain;
9408
9409 if (per_cu->cu == target_cu)
9410 {
9411 free_one_comp_unit (per_cu->cu);
9412 *last_chain = next_cu;
9413 break;
9414 }
9415 else
9416 last_chain = &per_cu->cu->read_in_chain;
9417
9418 per_cu = next_cu;
9419 }
9420 }
9421
9422 /* A pair of DIE offset and GDB type pointer. We store these
9423 in a hash table separate from the DIEs, and preserve them
9424 when the DIEs are flushed out of cache. */
9425
9426 struct dwarf2_offset_and_type
9427 {
9428 unsigned int offset;
9429 struct type *type;
9430 };
9431
9432 /* Hash function for a dwarf2_offset_and_type. */
9433
9434 static hashval_t
9435 offset_and_type_hash (const void *item)
9436 {
9437 const struct dwarf2_offset_and_type *ofs = item;
9438 return ofs->offset;
9439 }
9440
9441 /* Equality function for a dwarf2_offset_and_type. */
9442
9443 static int
9444 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9445 {
9446 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9447 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9448 return ofs_lhs->offset == ofs_rhs->offset;
9449 }
9450
9451 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9452 table if necessary. */
9453
9454 static void
9455 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9456 {
9457 struct dwarf2_offset_and_type **slot, ofs;
9458
9459 die->type = type;
9460
9461 if (cu->per_cu == NULL)
9462 return;
9463
9464 if (cu->per_cu->type_hash == NULL)
9465 cu->per_cu->type_hash
9466 = htab_create_alloc_ex (cu->header.length / 24,
9467 offset_and_type_hash,
9468 offset_and_type_eq,
9469 NULL,
9470 &cu->objfile->objfile_obstack,
9471 hashtab_obstack_allocate,
9472 dummy_obstack_deallocate);
9473
9474 ofs.offset = die->offset;
9475 ofs.type = type;
9476 slot = (struct dwarf2_offset_and_type **)
9477 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9478 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9479 **slot = ofs;
9480 }
9481
9482 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9483 have a saved type. */
9484
9485 static struct type *
9486 get_die_type (struct die_info *die, htab_t type_hash)
9487 {
9488 struct dwarf2_offset_and_type *slot, ofs;
9489
9490 ofs.offset = die->offset;
9491 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9492 if (slot)
9493 return slot->type;
9494 else
9495 return NULL;
9496 }
9497
9498 /* Restore the types of the DIE tree starting at START_DIE from the hash
9499 table saved in CU. */
9500
9501 static void
9502 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9503 {
9504 struct die_info *die;
9505
9506 if (cu->per_cu->type_hash == NULL)
9507 return;
9508
9509 for (die = start_die; die != NULL; die = die->sibling)
9510 {
9511 die->type = get_die_type (die, cu->per_cu->type_hash);
9512 if (die->child != NULL)
9513 reset_die_and_siblings_types (die->child, cu);
9514 }
9515 }
9516
9517 /* Set the mark field in CU and in every other compilation unit in the
9518 cache that we must keep because we are keeping CU. */
9519
9520 /* Add a dependence relationship from CU to REF_PER_CU. */
9521
9522 static void
9523 dwarf2_add_dependence (struct dwarf2_cu *cu,
9524 struct dwarf2_per_cu_data *ref_per_cu)
9525 {
9526 void **slot;
9527
9528 if (cu->dependencies == NULL)
9529 cu->dependencies
9530 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9531 NULL, &cu->comp_unit_obstack,
9532 hashtab_obstack_allocate,
9533 dummy_obstack_deallocate);
9534
9535 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9536 if (*slot == NULL)
9537 *slot = ref_per_cu;
9538 }
9539
9540 /* Set the mark field in CU and in every other compilation unit in the
9541 cache that we must keep because we are keeping CU. */
9542
9543 static int
9544 dwarf2_mark_helper (void **slot, void *data)
9545 {
9546 struct dwarf2_per_cu_data *per_cu;
9547
9548 per_cu = (struct dwarf2_per_cu_data *) *slot;
9549 if (per_cu->cu->mark)
9550 return 1;
9551 per_cu->cu->mark = 1;
9552
9553 if (per_cu->cu->dependencies != NULL)
9554 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9555
9556 return 1;
9557 }
9558
9559 static void
9560 dwarf2_mark (struct dwarf2_cu *cu)
9561 {
9562 if (cu->mark)
9563 return;
9564 cu->mark = 1;
9565 if (cu->dependencies != NULL)
9566 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9567 }
9568
9569 static void
9570 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9571 {
9572 while (per_cu)
9573 {
9574 per_cu->cu->mark = 0;
9575 per_cu = per_cu->cu->read_in_chain;
9576 }
9577 }
9578
9579 /* Allocation function for the libiberty hash table which uses an
9580 obstack. */
9581
9582 static void *
9583 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9584 {
9585 unsigned int total = size * count;
9586 void *ptr = obstack_alloc ((struct obstack *) data, total);
9587 memset (ptr, 0, total);
9588 return ptr;
9589 }
9590
9591 /* Trivial deallocation function for the libiberty splay tree and hash
9592 table - don't deallocate anything. Rely on later deletion of the
9593 obstack. */
9594
9595 static void
9596 dummy_obstack_deallocate (void *object, void *data)
9597 {
9598 return;
9599 }
9600
9601 /* Trivial hash function for partial_die_info: the hash value of a DIE
9602 is its offset in .debug_info for this objfile. */
9603
9604 static hashval_t
9605 partial_die_hash (const void *item)
9606 {
9607 const struct partial_die_info *part_die = item;
9608 return part_die->offset;
9609 }
9610
9611 /* Trivial comparison function for partial_die_info structures: two DIEs
9612 are equal if they have the same offset. */
9613
9614 static int
9615 partial_die_eq (const void *item_lhs, const void *item_rhs)
9616 {
9617 const struct partial_die_info *part_die_lhs = item_lhs;
9618 const struct partial_die_info *part_die_rhs = item_rhs;
9619 return part_die_lhs->offset == part_die_rhs->offset;
9620 }
9621
9622 static struct cmd_list_element *set_dwarf2_cmdlist;
9623 static struct cmd_list_element *show_dwarf2_cmdlist;
9624
9625 static void
9626 set_dwarf2_cmd (char *args, int from_tty)
9627 {
9628 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9629 }
9630
9631 static void
9632 show_dwarf2_cmd (char *args, int from_tty)
9633 {
9634 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9635 }
9636
9637 void _initialize_dwarf2_read (void);
9638
9639 void
9640 _initialize_dwarf2_read (void)
9641 {
9642 dwarf2_objfile_data_key = register_objfile_data ();
9643
9644 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9645 Set DWARF 2 specific variables.\n\
9646 Configure DWARF 2 variables such as the cache size"),
9647 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9648 0/*allow-unknown*/, &maintenance_set_cmdlist);
9649
9650 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9651 Show DWARF 2 specific variables\n\
9652 Show DWARF 2 variables such as the cache size"),
9653 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9654 0/*allow-unknown*/, &maintenance_show_cmdlist);
9655
9656 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9657 &dwarf2_max_cache_age, _("\
9658 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9659 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9660 A higher limit means that cached compilation units will be stored\n\
9661 in memory longer, and more total memory will be used. Zero disables\n\
9662 caching, which can slow down startup."),
9663 NULL,
9664 show_dwarf2_max_cache_age,
9665 &set_dwarf2_cmdlist,
9666 &show_dwarf2_cmdlist);
9667 }
This page took 0.231968 seconds and 4 git commands to generate.