The error message in the function was saying
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backlink to our per_cu entry. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* Non-zero if the TU has been read.
562 This is used to assist the "Stay in DWO Optimization" for Fission:
563 When reading a DWO, it's faster to read TUs from the DWO instead of
564 fetching them from random other DWOs (due to comdat folding).
565 If the TU has already been read, the optimization is unnecessary
566 (and unwise - we don't want to change where gdb thinks the TU lives
567 "midflight").
568 This flag is only valid if is_debug_types is true. */
569 unsigned int tu_read : 1;
570
571 /* The section this CU/TU lives in.
572 If the DIE refers to a DWO file, this is always the original die,
573 not the DWO file. */
574 struct dwarf2_section_info *section;
575
576 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
577 of the CU cache it gets reset to NULL again. */
578 struct dwarf2_cu *cu;
579
580 /* The corresponding objfile.
581 Normally we can get the objfile from dwarf2_per_objfile.
582 However we can enter this file with just a "per_cu" handle. */
583 struct objfile *objfile;
584
585 /* When using partial symbol tables, the 'psymtab' field is active.
586 Otherwise the 'quick' field is active. */
587 union
588 {
589 /* The partial symbol table associated with this compilation unit,
590 or NULL for unread partial units. */
591 struct partial_symtab *psymtab;
592
593 /* Data needed by the "quick" functions. */
594 struct dwarf2_per_cu_quick_data *quick;
595 } v;
596
597 /* The CUs we import using DW_TAG_imported_unit. This is filled in
598 while reading psymtabs, used to compute the psymtab dependencies,
599 and then cleared. Then it is filled in again while reading full
600 symbols, and only deleted when the objfile is destroyed.
601
602 This is also used to work around a difference between the way gold
603 generates .gdb_index version <=7 and the way gdb does. Arguably this
604 is a gold bug. For symbols coming from TUs, gold records in the index
605 the CU that includes the TU instead of the TU itself. This breaks
606 dw2_lookup_symbol: It assumes that if the index says symbol X lives
607 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
608 will find X. Alas TUs live in their own symtab, so after expanding CU Y
609 we need to look in TU Z to find X. Fortunately, this is akin to
610 DW_TAG_imported_unit, so we just use the same mechanism: For
611 .gdb_index version <=7 this also records the TUs that the CU referred
612 to. Concurrently with this change gdb was modified to emit version 8
613 indices so we only pay a price for gold generated indices.
614 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
615 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
616 };
617
618 /* Entry in the signatured_types hash table. */
619
620 struct signatured_type
621 {
622 /* The "per_cu" object of this type.
623 This struct is used iff per_cu.is_debug_types.
624 N.B.: This is the first member so that it's easy to convert pointers
625 between them. */
626 struct dwarf2_per_cu_data per_cu;
627
628 /* The type's signature. */
629 ULONGEST signature;
630
631 /* Offset in the TU of the type's DIE, as read from the TU header.
632 If this TU is a DWO stub and the definition lives in a DWO file
633 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
634 cu_offset type_offset_in_tu;
635
636 /* Offset in the section of the type's DIE.
637 If the definition lives in a DWO file, this is the offset in the
638 .debug_types.dwo section.
639 The value is zero until the actual value is known.
640 Zero is otherwise not a valid section offset. */
641 sect_offset type_offset_in_section;
642
643 /* Type units are grouped by their DW_AT_stmt_list entry so that they
644 can share them. This points to the containing symtab. */
645 struct type_unit_group *type_unit_group;
646
647 /* The type.
648 The first time we encounter this type we fully read it in and install it
649 in the symbol tables. Subsequent times we only need the type. */
650 struct type *type;
651
652 /* Containing DWO unit.
653 This field is valid iff per_cu.reading_dwo_directly. */
654 struct dwo_unit *dwo_unit;
655 };
656
657 typedef struct signatured_type *sig_type_ptr;
658 DEF_VEC_P (sig_type_ptr);
659
660 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
661 This includes type_unit_group and quick_file_names. */
662
663 struct stmt_list_hash
664 {
665 /* The DWO unit this table is from or NULL if there is none. */
666 struct dwo_unit *dwo_unit;
667
668 /* Offset in .debug_line or .debug_line.dwo. */
669 sect_offset line_offset;
670 };
671
672 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
673 an object of this type. */
674
675 struct type_unit_group
676 {
677 /* dwarf2read.c's main "handle" on a TU symtab.
678 To simplify things we create an artificial CU that "includes" all the
679 type units using this stmt_list so that the rest of the code still has
680 a "per_cu" handle on the symtab.
681 This PER_CU is recognized by having no section. */
682 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
683 struct dwarf2_per_cu_data per_cu;
684
685 /* The TUs that share this DW_AT_stmt_list entry.
686 This is added to while parsing type units to build partial symtabs,
687 and is deleted afterwards and not used again. */
688 VEC (sig_type_ptr) *tus;
689
690 /* The primary symtab.
691 Type units in a group needn't all be defined in the same source file,
692 so we create an essentially anonymous symtab as the primary symtab. */
693 struct symtab *primary_symtab;
694
695 /* The data used to construct the hash key. */
696 struct stmt_list_hash hash;
697
698 /* The number of symtabs from the line header.
699 The value here must match line_header.num_file_names. */
700 unsigned int num_symtabs;
701
702 /* The symbol tables for this TU (obtained from the files listed in
703 DW_AT_stmt_list).
704 WARNING: The order of entries here must match the order of entries
705 in the line header. After the first TU using this type_unit_group, the
706 line header for the subsequent TUs is recreated from this. This is done
707 because we need to use the same symtabs for each TU using the same
708 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
709 there's no guarantee the line header doesn't have duplicate entries. */
710 struct symtab **symtabs;
711 };
712
713 /* These sections are what may appear in a DWO file. */
714
715 struct dwo_sections
716 {
717 struct dwarf2_section_info abbrev;
718 struct dwarf2_section_info line;
719 struct dwarf2_section_info loc;
720 struct dwarf2_section_info macinfo;
721 struct dwarf2_section_info macro;
722 struct dwarf2_section_info str;
723 struct dwarf2_section_info str_offsets;
724 /* In the case of a virtual DWO file, these two are unused. */
725 struct dwarf2_section_info info;
726 VEC (dwarf2_section_info_def) *types;
727 };
728
729 /* CUs/TUs in DWP/DWO files. */
730
731 struct dwo_unit
732 {
733 /* Backlink to the containing struct dwo_file. */
734 struct dwo_file *dwo_file;
735
736 /* The "id" that distinguishes this CU/TU.
737 .debug_info calls this "dwo_id", .debug_types calls this "signature".
738 Since signatures came first, we stick with it for consistency. */
739 ULONGEST signature;
740
741 /* The section this CU/TU lives in, in the DWO file. */
742 struct dwarf2_section_info *section;
743
744 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
745 sect_offset offset;
746 unsigned int length;
747
748 /* For types, offset in the type's DIE of the type defined by this TU. */
749 cu_offset type_offset_in_tu;
750 };
751
752 /* Data for one DWO file.
753 This includes virtual DWO files that have been packaged into a
754 DWP file. */
755
756 struct dwo_file
757 {
758 /* The DW_AT_GNU_dwo_name attribute.
759 For virtual DWO files the name is constructed from the section offsets
760 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
761 from related CU+TUs. */
762 const char *dwo_name;
763
764 /* The DW_AT_comp_dir attribute. */
765 const char *comp_dir;
766
767 /* The bfd, when the file is open. Otherwise this is NULL.
768 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
769 bfd *dbfd;
770
771 /* Section info for this file. */
772 struct dwo_sections sections;
773
774 /* The CU in the file.
775 We only support one because having more than one requires hacking the
776 dwo_name of each to match, which is highly unlikely to happen.
777 Doing this means all TUs can share comp_dir: We also assume that
778 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
779 struct dwo_unit *cu;
780
781 /* Table of TUs in the file.
782 Each element is a struct dwo_unit. */
783 htab_t tus;
784 };
785
786 /* These sections are what may appear in a DWP file. */
787
788 struct dwp_sections
789 {
790 struct dwarf2_section_info str;
791 struct dwarf2_section_info cu_index;
792 struct dwarf2_section_info tu_index;
793 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
794 by section number. We don't need to record them here. */
795 };
796
797 /* These sections are what may appear in a virtual DWO file. */
798
799 struct virtual_dwo_sections
800 {
801 struct dwarf2_section_info abbrev;
802 struct dwarf2_section_info line;
803 struct dwarf2_section_info loc;
804 struct dwarf2_section_info macinfo;
805 struct dwarf2_section_info macro;
806 struct dwarf2_section_info str_offsets;
807 /* Each DWP hash table entry records one CU or one TU.
808 That is recorded here, and copied to dwo_unit.section. */
809 struct dwarf2_section_info info_or_types;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table, *section_pool;
818 };
819
820 /* Data for one DWP file. */
821
822 struct dwp_file
823 {
824 /* Name of the file. */
825 const char *name;
826
827 /* The bfd. */
828 bfd *dbfd;
829
830 /* Section info for this file. */
831 struct dwp_sections sections;
832
833 /* Table of CUs in the file. */
834 const struct dwp_hash_table *cus;
835
836 /* Table of TUs in the file. */
837 const struct dwp_hash_table *tus;
838
839 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
840 htab_t loaded_cutus;
841
842 /* Table to map ELF section numbers to their sections. */
843 unsigned int num_sections;
844 asection **elf_sections;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 /* A dwz file can only contain a few sections. */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info str;
855 struct dwarf2_section_info line;
856 struct dwarf2_section_info macro;
857 struct dwarf2_section_info gdb_index;
858
859 /* The dwz's BFD. */
860 bfd *dwz_bfd;
861 };
862
863 /* Struct used to pass misc. parameters to read_die_and_children, et
864 al. which are used for both .debug_info and .debug_types dies.
865 All parameters here are unchanging for the life of the call. This
866 struct exists to abstract away the constant parameters of die reading. */
867
868 struct die_reader_specs
869 {
870 /* die_section->asection->owner. */
871 bfd* abfd;
872
873 /* The CU of the DIE we are parsing. */
874 struct dwarf2_cu *cu;
875
876 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
877 struct dwo_file *dwo_file;
878
879 /* The section the die comes from.
880 This is either .debug_info or .debug_types, or the .dwo variants. */
881 struct dwarf2_section_info *die_section;
882
883 /* die_section->buffer. */
884 const gdb_byte *buffer;
885
886 /* The end of the buffer. */
887 const gdb_byte *buffer_end;
888
889 /* The value of the DW_AT_comp_dir attribute. */
890 const char *comp_dir;
891 };
892
893 /* Type of function passed to init_cutu_and_read_dies, et.al. */
894 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
895 const gdb_byte *info_ptr,
896 struct die_info *comp_unit_die,
897 int has_children,
898 void *data);
899
900 /* The line number information for a compilation unit (found in the
901 .debug_line section) begins with a "statement program header",
902 which contains the following information. */
903 struct line_header
904 {
905 unsigned int total_length;
906 unsigned short version;
907 unsigned int header_length;
908 unsigned char minimum_instruction_length;
909 unsigned char maximum_ops_per_instruction;
910 unsigned char default_is_stmt;
911 int line_base;
912 unsigned char line_range;
913 unsigned char opcode_base;
914
915 /* standard_opcode_lengths[i] is the number of operands for the
916 standard opcode whose value is i. This means that
917 standard_opcode_lengths[0] is unused, and the last meaningful
918 element is standard_opcode_lengths[opcode_base - 1]. */
919 unsigned char *standard_opcode_lengths;
920
921 /* The include_directories table. NOTE! These strings are not
922 allocated with xmalloc; instead, they are pointers into
923 debug_line_buffer. If you try to free them, `free' will get
924 indigestion. */
925 unsigned int num_include_dirs, include_dirs_size;
926 const char **include_dirs;
927
928 /* The file_names table. NOTE! These strings are not allocated
929 with xmalloc; instead, they are pointers into debug_line_buffer.
930 Don't try to free them directly. */
931 unsigned int num_file_names, file_names_size;
932 struct file_entry
933 {
934 const char *name;
935 unsigned int dir_index;
936 unsigned int mod_time;
937 unsigned int length;
938 int included_p; /* Non-zero if referenced by the Line Number Program. */
939 struct symtab *symtab; /* The associated symbol table, if any. */
940 } *file_names;
941
942 /* The start and end of the statement program following this
943 header. These point into dwarf2_per_objfile->line_buffer. */
944 const gdb_byte *statement_program_start, *statement_program_end;
945 };
946
947 /* When we construct a partial symbol table entry we only
948 need this much information. */
949 struct partial_die_info
950 {
951 /* Offset of this DIE. */
952 sect_offset offset;
953
954 /* DWARF-2 tag for this DIE. */
955 ENUM_BITFIELD(dwarf_tag) tag : 16;
956
957 /* Assorted flags describing the data found in this DIE. */
958 unsigned int has_children : 1;
959 unsigned int is_external : 1;
960 unsigned int is_declaration : 1;
961 unsigned int has_type : 1;
962 unsigned int has_specification : 1;
963 unsigned int has_pc_info : 1;
964 unsigned int may_be_inlined : 1;
965
966 /* Flag set if the SCOPE field of this structure has been
967 computed. */
968 unsigned int scope_set : 1;
969
970 /* Flag set if the DIE has a byte_size attribute. */
971 unsigned int has_byte_size : 1;
972
973 /* Flag set if any of the DIE's children are template arguments. */
974 unsigned int has_template_arguments : 1;
975
976 /* Flag set if fixup_partial_die has been called on this die. */
977 unsigned int fixup_called : 1;
978
979 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
980 unsigned int is_dwz : 1;
981
982 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
983 unsigned int spec_is_dwz : 1;
984
985 /* The name of this DIE. Normally the value of DW_AT_name, but
986 sometimes a default name for unnamed DIEs. */
987 const char *name;
988
989 /* The linkage name, if present. */
990 const char *linkage_name;
991
992 /* The scope to prepend to our children. This is generally
993 allocated on the comp_unit_obstack, so will disappear
994 when this compilation unit leaves the cache. */
995 const char *scope;
996
997 /* Some data associated with the partial DIE. The tag determines
998 which field is live. */
999 union
1000 {
1001 /* The location description associated with this DIE, if any. */
1002 struct dwarf_block *locdesc;
1003 /* The offset of an import, for DW_TAG_imported_unit. */
1004 sect_offset offset;
1005 } d;
1006
1007 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1008 CORE_ADDR lowpc;
1009 CORE_ADDR highpc;
1010
1011 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1012 DW_AT_sibling, if any. */
1013 /* NOTE: This member isn't strictly necessary, read_partial_die could
1014 return DW_AT_sibling values to its caller load_partial_dies. */
1015 const gdb_byte *sibling;
1016
1017 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1018 DW_AT_specification (or DW_AT_abstract_origin or
1019 DW_AT_extension). */
1020 sect_offset spec_offset;
1021
1022 /* Pointers to this DIE's parent, first child, and next sibling,
1023 if any. */
1024 struct partial_die_info *die_parent, *die_child, *die_sibling;
1025 };
1026
1027 /* This data structure holds the information of an abbrev. */
1028 struct abbrev_info
1029 {
1030 unsigned int number; /* number identifying abbrev */
1031 enum dwarf_tag tag; /* dwarf tag */
1032 unsigned short has_children; /* boolean */
1033 unsigned short num_attrs; /* number of attributes */
1034 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1035 struct abbrev_info *next; /* next in chain */
1036 };
1037
1038 struct attr_abbrev
1039 {
1040 ENUM_BITFIELD(dwarf_attribute) name : 16;
1041 ENUM_BITFIELD(dwarf_form) form : 16;
1042 };
1043
1044 /* Size of abbrev_table.abbrev_hash_table. */
1045 #define ABBREV_HASH_SIZE 121
1046
1047 /* Top level data structure to contain an abbreviation table. */
1048
1049 struct abbrev_table
1050 {
1051 /* Where the abbrev table came from.
1052 This is used as a sanity check when the table is used. */
1053 sect_offset offset;
1054
1055 /* Storage for the abbrev table. */
1056 struct obstack abbrev_obstack;
1057
1058 /* Hash table of abbrevs.
1059 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1060 It could be statically allocated, but the previous code didn't so we
1061 don't either. */
1062 struct abbrev_info **abbrevs;
1063 };
1064
1065 /* Attributes have a name and a value. */
1066 struct attribute
1067 {
1068 ENUM_BITFIELD(dwarf_attribute) name : 16;
1069 ENUM_BITFIELD(dwarf_form) form : 15;
1070
1071 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1072 field should be in u.str (existing only for DW_STRING) but it is kept
1073 here for better struct attribute alignment. */
1074 unsigned int string_is_canonical : 1;
1075
1076 union
1077 {
1078 const char *str;
1079 struct dwarf_block *blk;
1080 ULONGEST unsnd;
1081 LONGEST snd;
1082 CORE_ADDR addr;
1083 ULONGEST signature;
1084 }
1085 u;
1086 };
1087
1088 /* This data structure holds a complete die structure. */
1089 struct die_info
1090 {
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1093
1094 /* Number of attributes */
1095 unsigned char num_attrs;
1096
1097 /* True if we're presently building the full type name for the
1098 type derived from this DIE. */
1099 unsigned char building_fullname : 1;
1100
1101 /* Abbrev number */
1102 unsigned int abbrev;
1103
1104 /* Offset in .debug_info or .debug_types section. */
1105 sect_offset offset;
1106
1107 /* The dies in a compilation unit form an n-ary tree. PARENT
1108 points to this die's parent; CHILD points to the first child of
1109 this node; and all the children of a given node are chained
1110 together via their SIBLING fields. */
1111 struct die_info *child; /* Its first child, if any. */
1112 struct die_info *sibling; /* Its next sibling, if any. */
1113 struct die_info *parent; /* Its parent, if any. */
1114
1115 /* An array of attributes, with NUM_ATTRS elements. There may be
1116 zero, but it's not common and zero-sized arrays are not
1117 sufficiently portable C. */
1118 struct attribute attrs[1];
1119 };
1120
1121 /* Get at parts of an attribute structure. */
1122
1123 #define DW_STRING(attr) ((attr)->u.str)
1124 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1125 #define DW_UNSND(attr) ((attr)->u.unsnd)
1126 #define DW_BLOCK(attr) ((attr)->u.blk)
1127 #define DW_SND(attr) ((attr)->u.snd)
1128 #define DW_ADDR(attr) ((attr)->u.addr)
1129 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1130
1131 /* Blocks are a bunch of untyped bytes. */
1132 struct dwarf_block
1133 {
1134 size_t size;
1135
1136 /* Valid only if SIZE is not zero. */
1137 const gdb_byte *data;
1138 };
1139
1140 #ifndef ATTR_ALLOC_CHUNK
1141 #define ATTR_ALLOC_CHUNK 4
1142 #endif
1143
1144 /* Allocate fields for structs, unions and enums in this size. */
1145 #ifndef DW_FIELD_ALLOC_CHUNK
1146 #define DW_FIELD_ALLOC_CHUNK 4
1147 #endif
1148
1149 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1150 but this would require a corresponding change in unpack_field_as_long
1151 and friends. */
1152 static int bits_per_byte = 8;
1153
1154 /* The routines that read and process dies for a C struct or C++ class
1155 pass lists of data member fields and lists of member function fields
1156 in an instance of a field_info structure, as defined below. */
1157 struct field_info
1158 {
1159 /* List of data member and baseclasses fields. */
1160 struct nextfield
1161 {
1162 struct nextfield *next;
1163 int accessibility;
1164 int virtuality;
1165 struct field field;
1166 }
1167 *fields, *baseclasses;
1168
1169 /* Number of fields (including baseclasses). */
1170 int nfields;
1171
1172 /* Number of baseclasses. */
1173 int nbaseclasses;
1174
1175 /* Set if the accesibility of one of the fields is not public. */
1176 int non_public_fields;
1177
1178 /* Member function fields array, entries are allocated in the order they
1179 are encountered in the object file. */
1180 struct nextfnfield
1181 {
1182 struct nextfnfield *next;
1183 struct fn_field fnfield;
1184 }
1185 *fnfields;
1186
1187 /* Member function fieldlist array, contains name of possibly overloaded
1188 member function, number of overloaded member functions and a pointer
1189 to the head of the member function field chain. */
1190 struct fnfieldlist
1191 {
1192 const char *name;
1193 int length;
1194 struct nextfnfield *head;
1195 }
1196 *fnfieldlists;
1197
1198 /* Number of entries in the fnfieldlists array. */
1199 int nfnfields;
1200
1201 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1202 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1203 struct typedef_field_list
1204 {
1205 struct typedef_field field;
1206 struct typedef_field_list *next;
1207 }
1208 *typedef_field_list;
1209 unsigned typedef_field_list_count;
1210 };
1211
1212 /* One item on the queue of compilation units to read in full symbols
1213 for. */
1214 struct dwarf2_queue_item
1215 {
1216 struct dwarf2_per_cu_data *per_cu;
1217 enum language pretend_language;
1218 struct dwarf2_queue_item *next;
1219 };
1220
1221 /* The current queue. */
1222 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1223
1224 /* Loaded secondary compilation units are kept in memory until they
1225 have not been referenced for the processing of this many
1226 compilation units. Set this to zero to disable caching. Cache
1227 sizes of up to at least twenty will improve startup time for
1228 typical inter-CU-reference binaries, at an obvious memory cost. */
1229 static int dwarf2_max_cache_age = 5;
1230 static void
1231 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1232 struct cmd_list_element *c, const char *value)
1233 {
1234 fprintf_filtered (file, _("The upper bound on the age of cached "
1235 "dwarf2 compilation units is %s.\n"),
1236 value);
1237 }
1238
1239
1240 /* Various complaints about symbol reading that don't abort the process. */
1241
1242 static void
1243 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1244 {
1245 complaint (&symfile_complaints,
1246 _("statement list doesn't fit in .debug_line section"));
1247 }
1248
1249 static void
1250 dwarf2_debug_line_missing_file_complaint (void)
1251 {
1252 complaint (&symfile_complaints,
1253 _(".debug_line section has line data without a file"));
1254 }
1255
1256 static void
1257 dwarf2_debug_line_missing_end_sequence_complaint (void)
1258 {
1259 complaint (&symfile_complaints,
1260 _(".debug_line section has line "
1261 "program sequence without an end"));
1262 }
1263
1264 static void
1265 dwarf2_complex_location_expr_complaint (void)
1266 {
1267 complaint (&symfile_complaints, _("location expression too complex"));
1268 }
1269
1270 static void
1271 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1272 int arg3)
1273 {
1274 complaint (&symfile_complaints,
1275 _("const value length mismatch for '%s', got %d, expected %d"),
1276 arg1, arg2, arg3);
1277 }
1278
1279 static void
1280 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1281 {
1282 complaint (&symfile_complaints,
1283 _("debug info runs off end of %s section"
1284 " [in module %s]"),
1285 section->asection->name,
1286 bfd_get_filename (section->asection->owner));
1287 }
1288
1289 static void
1290 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1291 {
1292 complaint (&symfile_complaints,
1293 _("macro debug info contains a "
1294 "malformed macro definition:\n`%s'"),
1295 arg1);
1296 }
1297
1298 static void
1299 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1300 {
1301 complaint (&symfile_complaints,
1302 _("invalid attribute class or form for '%s' in '%s'"),
1303 arg1, arg2);
1304 }
1305
1306 /* local function prototypes */
1307
1308 static void dwarf2_locate_sections (bfd *, asection *, void *);
1309
1310 static void dwarf2_find_base_address (struct die_info *die,
1311 struct dwarf2_cu *cu);
1312
1313 static struct partial_symtab *create_partial_symtab
1314 (struct dwarf2_per_cu_data *per_cu, const char *name);
1315
1316 static void dwarf2_build_psymtabs_hard (struct objfile *);
1317
1318 static void scan_partial_symbols (struct partial_die_info *,
1319 CORE_ADDR *, CORE_ADDR *,
1320 int, struct dwarf2_cu *);
1321
1322 static void add_partial_symbol (struct partial_die_info *,
1323 struct dwarf2_cu *);
1324
1325 static void add_partial_namespace (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1327 int need_pc, struct dwarf2_cu *cu);
1328
1329 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1330 CORE_ADDR *highpc, int need_pc,
1331 struct dwarf2_cu *cu);
1332
1333 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1334 struct dwarf2_cu *cu);
1335
1336 static void add_partial_subprogram (struct partial_die_info *pdi,
1337 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1338 int need_pc, struct dwarf2_cu *cu);
1339
1340 static void dwarf2_read_symtab (struct partial_symtab *,
1341 struct objfile *);
1342
1343 static void psymtab_to_symtab_1 (struct partial_symtab *);
1344
1345 static struct abbrev_info *abbrev_table_lookup_abbrev
1346 (const struct abbrev_table *, unsigned int);
1347
1348 static struct abbrev_table *abbrev_table_read_table
1349 (struct dwarf2_section_info *, sect_offset);
1350
1351 static void abbrev_table_free (struct abbrev_table *);
1352
1353 static void abbrev_table_free_cleanup (void *);
1354
1355 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1356 struct dwarf2_section_info *);
1357
1358 static void dwarf2_free_abbrev_table (void *);
1359
1360 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1361
1362 static struct partial_die_info *load_partial_dies
1363 (const struct die_reader_specs *, const gdb_byte *, int);
1364
1365 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1366 struct partial_die_info *,
1367 struct abbrev_info *,
1368 unsigned int,
1369 const gdb_byte *);
1370
1371 static struct partial_die_info *find_partial_die (sect_offset, int,
1372 struct dwarf2_cu *);
1373
1374 static void fixup_partial_die (struct partial_die_info *,
1375 struct dwarf2_cu *);
1376
1377 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1378 struct attribute *, struct attr_abbrev *,
1379 const gdb_byte *);
1380
1381 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1382
1383 static int read_1_signed_byte (bfd *, const gdb_byte *);
1384
1385 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1386
1387 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1388
1389 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1390
1391 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1392 unsigned int *);
1393
1394 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1395
1396 static LONGEST read_checked_initial_length_and_offset
1397 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1398 unsigned int *, unsigned int *);
1399
1400 static LONGEST read_offset (bfd *, const gdb_byte *,
1401 const struct comp_unit_head *,
1402 unsigned int *);
1403
1404 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1405
1406 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1407 sect_offset);
1408
1409 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1410
1411 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1412
1413 static const char *read_indirect_string (bfd *, const gdb_byte *,
1414 const struct comp_unit_head *,
1415 unsigned int *);
1416
1417 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1418
1419 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1420
1421 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1422
1423 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1424 const gdb_byte *,
1425 unsigned int *);
1426
1427 static const char *read_str_index (const struct die_reader_specs *reader,
1428 struct dwarf2_cu *cu, ULONGEST str_index);
1429
1430 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1431
1432 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1433 struct dwarf2_cu *);
1434
1435 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1436 unsigned int);
1437
1438 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1439 struct dwarf2_cu *cu);
1440
1441 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1442
1443 static struct die_info *die_specification (struct die_info *die,
1444 struct dwarf2_cu **);
1445
1446 static void free_line_header (struct line_header *lh);
1447
1448 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1449 struct dwarf2_cu *cu);
1450
1451 static void dwarf_decode_lines (struct line_header *, const char *,
1452 struct dwarf2_cu *, struct partial_symtab *,
1453 int);
1454
1455 static void dwarf2_start_subfile (const char *, const char *, const char *);
1456
1457 static void dwarf2_start_symtab (struct dwarf2_cu *,
1458 const char *, const char *, CORE_ADDR);
1459
1460 static struct symbol *new_symbol (struct die_info *, struct type *,
1461 struct dwarf2_cu *);
1462
1463 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1464 struct dwarf2_cu *, struct symbol *);
1465
1466 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1467 struct dwarf2_cu *);
1468
1469 static void dwarf2_const_value_attr (const struct attribute *attr,
1470 struct type *type,
1471 const char *name,
1472 struct obstack *obstack,
1473 struct dwarf2_cu *cu, LONGEST *value,
1474 const gdb_byte **bytes,
1475 struct dwarf2_locexpr_baton **baton);
1476
1477 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1478
1479 static int need_gnat_info (struct dwarf2_cu *);
1480
1481 static struct type *die_descriptive_type (struct die_info *,
1482 struct dwarf2_cu *);
1483
1484 static void set_descriptive_type (struct type *, struct die_info *,
1485 struct dwarf2_cu *);
1486
1487 static struct type *die_containing_type (struct die_info *,
1488 struct dwarf2_cu *);
1489
1490 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1491 struct dwarf2_cu *);
1492
1493 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1494
1495 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1496
1497 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1498
1499 static char *typename_concat (struct obstack *obs, const char *prefix,
1500 const char *suffix, int physname,
1501 struct dwarf2_cu *cu);
1502
1503 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1504
1505 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1506
1507 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1508
1509 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1510
1511 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1512
1513 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1514 struct dwarf2_cu *, struct partial_symtab *);
1515
1516 static int dwarf2_get_pc_bounds (struct die_info *,
1517 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1518 struct partial_symtab *);
1519
1520 static void get_scope_pc_bounds (struct die_info *,
1521 CORE_ADDR *, CORE_ADDR *,
1522 struct dwarf2_cu *);
1523
1524 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1525 CORE_ADDR, struct dwarf2_cu *);
1526
1527 static void dwarf2_add_field (struct field_info *, struct die_info *,
1528 struct dwarf2_cu *);
1529
1530 static void dwarf2_attach_fields_to_type (struct field_info *,
1531 struct type *, struct dwarf2_cu *);
1532
1533 static void dwarf2_add_member_fn (struct field_info *,
1534 struct die_info *, struct type *,
1535 struct dwarf2_cu *);
1536
1537 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1538 struct type *,
1539 struct dwarf2_cu *);
1540
1541 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1542
1543 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1544
1545 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1546
1547 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1548
1549 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1550
1551 static struct type *read_module_type (struct die_info *die,
1552 struct dwarf2_cu *cu);
1553
1554 static const char *namespace_name (struct die_info *die,
1555 int *is_anonymous, struct dwarf2_cu *);
1556
1557 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1558
1559 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1560
1561 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1562 struct dwarf2_cu *);
1563
1564 static struct die_info *read_die_and_siblings_1
1565 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1566 struct die_info *);
1567
1568 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1569 const gdb_byte *info_ptr,
1570 const gdb_byte **new_info_ptr,
1571 struct die_info *parent);
1572
1573 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1574 struct die_info **, const gdb_byte *,
1575 int *, int);
1576
1577 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1578 struct die_info **, const gdb_byte *,
1579 int *);
1580
1581 static void process_die (struct die_info *, struct dwarf2_cu *);
1582
1583 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1584 struct obstack *);
1585
1586 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1587
1588 static const char *dwarf2_full_name (const char *name,
1589 struct die_info *die,
1590 struct dwarf2_cu *cu);
1591
1592 static const char *dwarf2_physname (const char *name, struct die_info *die,
1593 struct dwarf2_cu *cu);
1594
1595 static struct die_info *dwarf2_extension (struct die_info *die,
1596 struct dwarf2_cu **);
1597
1598 static const char *dwarf_tag_name (unsigned int);
1599
1600 static const char *dwarf_attr_name (unsigned int);
1601
1602 static const char *dwarf_form_name (unsigned int);
1603
1604 static char *dwarf_bool_name (unsigned int);
1605
1606 static const char *dwarf_type_encoding_name (unsigned int);
1607
1608 static struct die_info *sibling_die (struct die_info *);
1609
1610 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1611
1612 static void dump_die_for_error (struct die_info *);
1613
1614 static void dump_die_1 (struct ui_file *, int level, int max_level,
1615 struct die_info *);
1616
1617 /*static*/ void dump_die (struct die_info *, int max_level);
1618
1619 static void store_in_ref_table (struct die_info *,
1620 struct dwarf2_cu *);
1621
1622 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1623
1624 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1625
1626 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1627 const struct attribute *,
1628 struct dwarf2_cu **);
1629
1630 static struct die_info *follow_die_ref (struct die_info *,
1631 const struct attribute *,
1632 struct dwarf2_cu **);
1633
1634 static struct die_info *follow_die_sig (struct die_info *,
1635 const struct attribute *,
1636 struct dwarf2_cu **);
1637
1638 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1639 struct dwarf2_cu *);
1640
1641 static struct type *get_DW_AT_signature_type (struct die_info *,
1642 const struct attribute *,
1643 struct dwarf2_cu *);
1644
1645 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1646
1647 static void read_signatured_type (struct signatured_type *);
1648
1649 static struct type_unit_group *get_type_unit_group
1650 (struct dwarf2_cu *, const struct attribute *);
1651
1652 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1653
1654 /* memory allocation interface */
1655
1656 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1657
1658 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1659
1660 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1661 const char *, int);
1662
1663 static int attr_form_is_block (const struct attribute *);
1664
1665 static int attr_form_is_section_offset (const struct attribute *);
1666
1667 static int attr_form_is_constant (const struct attribute *);
1668
1669 static int attr_form_is_ref (const struct attribute *);
1670
1671 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1672 struct dwarf2_loclist_baton *baton,
1673 const struct attribute *attr);
1674
1675 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1676 struct symbol *sym,
1677 struct dwarf2_cu *cu,
1678 int is_block);
1679
1680 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1681 const gdb_byte *info_ptr,
1682 struct abbrev_info *abbrev);
1683
1684 static void free_stack_comp_unit (void *);
1685
1686 static hashval_t partial_die_hash (const void *item);
1687
1688 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1689
1690 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1691 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1692
1693 static void init_one_comp_unit (struct dwarf2_cu *cu,
1694 struct dwarf2_per_cu_data *per_cu);
1695
1696 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1697 struct die_info *comp_unit_die,
1698 enum language pretend_language);
1699
1700 static void free_heap_comp_unit (void *);
1701
1702 static void free_cached_comp_units (void *);
1703
1704 static void age_cached_comp_units (void);
1705
1706 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1707
1708 static struct type *set_die_type (struct die_info *, struct type *,
1709 struct dwarf2_cu *);
1710
1711 static void create_all_comp_units (struct objfile *);
1712
1713 static int create_all_type_units (struct objfile *);
1714
1715 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1716 enum language);
1717
1718 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1719 enum language);
1720
1721 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1722 enum language);
1723
1724 static void dwarf2_add_dependence (struct dwarf2_cu *,
1725 struct dwarf2_per_cu_data *);
1726
1727 static void dwarf2_mark (struct dwarf2_cu *);
1728
1729 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1730
1731 static struct type *get_die_type_at_offset (sect_offset,
1732 struct dwarf2_per_cu_data *);
1733
1734 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static void dwarf2_release_queue (void *dummy);
1737
1738 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1739 enum language pretend_language);
1740
1741 static void process_queue (void);
1742
1743 static void find_file_and_directory (struct die_info *die,
1744 struct dwarf2_cu *cu,
1745 const char **name, const char **comp_dir);
1746
1747 static char *file_full_name (int file, struct line_header *lh,
1748 const char *comp_dir);
1749
1750 static const gdb_byte *read_and_check_comp_unit_head
1751 (struct comp_unit_head *header,
1752 struct dwarf2_section_info *section,
1753 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1754 int is_debug_types_section);
1755
1756 static void init_cutu_and_read_dies
1757 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1758 int use_existing_cu, int keep,
1759 die_reader_func_ftype *die_reader_func, void *data);
1760
1761 static void init_cutu_and_read_dies_simple
1762 (struct dwarf2_per_cu_data *this_cu,
1763 die_reader_func_ftype *die_reader_func, void *data);
1764
1765 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1766
1767 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1768
1769 static struct dwo_unit *lookup_dwo_in_dwp
1770 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1771 const char *comp_dir, ULONGEST signature, int is_debug_types);
1772
1773 static struct dwp_file *get_dwp_file (void);
1774
1775 static struct dwo_unit *lookup_dwo_comp_unit
1776 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1777
1778 static struct dwo_unit *lookup_dwo_type_unit
1779 (struct signatured_type *, const char *, const char *);
1780
1781 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1782
1783 static void free_dwo_file_cleanup (void *);
1784
1785 static void process_cu_includes (void);
1786
1787 static void check_producer (struct dwarf2_cu *cu);
1788
1789 #if WORDS_BIGENDIAN
1790
1791 /* Convert VALUE between big- and little-endian. */
1792 static offset_type
1793 byte_swap (offset_type value)
1794 {
1795 offset_type result;
1796
1797 result = (value & 0xff) << 24;
1798 result |= (value & 0xff00) << 8;
1799 result |= (value & 0xff0000) >> 8;
1800 result |= (value & 0xff000000) >> 24;
1801 return result;
1802 }
1803
1804 #define MAYBE_SWAP(V) byte_swap (V)
1805
1806 #else
1807 #define MAYBE_SWAP(V) (V)
1808 #endif /* WORDS_BIGENDIAN */
1809
1810 /* The suffix for an index file. */
1811 #define INDEX_SUFFIX ".gdb-index"
1812
1813 /* Try to locate the sections we need for DWARF 2 debugging
1814 information and return true if we have enough to do something.
1815 NAMES points to the dwarf2 section names, or is NULL if the standard
1816 ELF names are used. */
1817
1818 int
1819 dwarf2_has_info (struct objfile *objfile,
1820 const struct dwarf2_debug_sections *names)
1821 {
1822 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1823 if (!dwarf2_per_objfile)
1824 {
1825 /* Initialize per-objfile state. */
1826 struct dwarf2_per_objfile *data
1827 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1828
1829 memset (data, 0, sizeof (*data));
1830 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1831 dwarf2_per_objfile = data;
1832
1833 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1834 (void *) names);
1835 dwarf2_per_objfile->objfile = objfile;
1836 }
1837 return (dwarf2_per_objfile->info.asection != NULL
1838 && dwarf2_per_objfile->abbrev.asection != NULL);
1839 }
1840
1841 /* When loading sections, we look either for uncompressed section or for
1842 compressed section names. */
1843
1844 static int
1845 section_is_p (const char *section_name,
1846 const struct dwarf2_section_names *names)
1847 {
1848 if (names->normal != NULL
1849 && strcmp (section_name, names->normal) == 0)
1850 return 1;
1851 if (names->compressed != NULL
1852 && strcmp (section_name, names->compressed) == 0)
1853 return 1;
1854 return 0;
1855 }
1856
1857 /* This function is mapped across the sections and remembers the
1858 offset and size of each of the debugging sections we are interested
1859 in. */
1860
1861 static void
1862 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1863 {
1864 const struct dwarf2_debug_sections *names;
1865 flagword aflag = bfd_get_section_flags (abfd, sectp);
1866
1867 if (vnames == NULL)
1868 names = &dwarf2_elf_names;
1869 else
1870 names = (const struct dwarf2_debug_sections *) vnames;
1871
1872 if ((aflag & SEC_HAS_CONTENTS) == 0)
1873 {
1874 }
1875 else if (section_is_p (sectp->name, &names->info))
1876 {
1877 dwarf2_per_objfile->info.asection = sectp;
1878 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1879 }
1880 else if (section_is_p (sectp->name, &names->abbrev))
1881 {
1882 dwarf2_per_objfile->abbrev.asection = sectp;
1883 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1884 }
1885 else if (section_is_p (sectp->name, &names->line))
1886 {
1887 dwarf2_per_objfile->line.asection = sectp;
1888 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1889 }
1890 else if (section_is_p (sectp->name, &names->loc))
1891 {
1892 dwarf2_per_objfile->loc.asection = sectp;
1893 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1894 }
1895 else if (section_is_p (sectp->name, &names->macinfo))
1896 {
1897 dwarf2_per_objfile->macinfo.asection = sectp;
1898 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1899 }
1900 else if (section_is_p (sectp->name, &names->macro))
1901 {
1902 dwarf2_per_objfile->macro.asection = sectp;
1903 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1904 }
1905 else if (section_is_p (sectp->name, &names->str))
1906 {
1907 dwarf2_per_objfile->str.asection = sectp;
1908 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1909 }
1910 else if (section_is_p (sectp->name, &names->addr))
1911 {
1912 dwarf2_per_objfile->addr.asection = sectp;
1913 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1914 }
1915 else if (section_is_p (sectp->name, &names->frame))
1916 {
1917 dwarf2_per_objfile->frame.asection = sectp;
1918 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1919 }
1920 else if (section_is_p (sectp->name, &names->eh_frame))
1921 {
1922 dwarf2_per_objfile->eh_frame.asection = sectp;
1923 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1924 }
1925 else if (section_is_p (sectp->name, &names->ranges))
1926 {
1927 dwarf2_per_objfile->ranges.asection = sectp;
1928 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1929 }
1930 else if (section_is_p (sectp->name, &names->types))
1931 {
1932 struct dwarf2_section_info type_section;
1933
1934 memset (&type_section, 0, sizeof (type_section));
1935 type_section.asection = sectp;
1936 type_section.size = bfd_get_section_size (sectp);
1937
1938 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1939 &type_section);
1940 }
1941 else if (section_is_p (sectp->name, &names->gdb_index))
1942 {
1943 dwarf2_per_objfile->gdb_index.asection = sectp;
1944 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1945 }
1946
1947 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1948 && bfd_section_vma (abfd, sectp) == 0)
1949 dwarf2_per_objfile->has_section_at_zero = 1;
1950 }
1951
1952 /* A helper function that decides whether a section is empty,
1953 or not present. */
1954
1955 static int
1956 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1957 {
1958 return info->asection == NULL || info->size == 0;
1959 }
1960
1961 /* Read the contents of the section INFO.
1962 OBJFILE is the main object file, but not necessarily the file where
1963 the section comes from. E.g., for DWO files INFO->asection->owner
1964 is the bfd of the DWO file.
1965 If the section is compressed, uncompress it before returning. */
1966
1967 static void
1968 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1969 {
1970 asection *sectp = info->asection;
1971 bfd *abfd;
1972 gdb_byte *buf, *retbuf;
1973 unsigned char header[4];
1974
1975 if (info->readin)
1976 return;
1977 info->buffer = NULL;
1978 info->readin = 1;
1979
1980 if (dwarf2_section_empty_p (info))
1981 return;
1982
1983 abfd = sectp->owner;
1984
1985 /* If the section has relocations, we must read it ourselves.
1986 Otherwise we attach it to the BFD. */
1987 if ((sectp->flags & SEC_RELOC) == 0)
1988 {
1989 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1990 return;
1991 }
1992
1993 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1994 info->buffer = buf;
1995
1996 /* When debugging .o files, we may need to apply relocations; see
1997 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1998 We never compress sections in .o files, so we only need to
1999 try this when the section is not compressed. */
2000 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2001 if (retbuf != NULL)
2002 {
2003 info->buffer = retbuf;
2004 return;
2005 }
2006
2007 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2008 || bfd_bread (buf, info->size, abfd) != info->size)
2009 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2010 bfd_get_filename (abfd));
2011 }
2012
2013 /* A helper function that returns the size of a section in a safe way.
2014 If you are positive that the section has been read before using the
2015 size, then it is safe to refer to the dwarf2_section_info object's
2016 "size" field directly. In other cases, you must call this
2017 function, because for compressed sections the size field is not set
2018 correctly until the section has been read. */
2019
2020 static bfd_size_type
2021 dwarf2_section_size (struct objfile *objfile,
2022 struct dwarf2_section_info *info)
2023 {
2024 if (!info->readin)
2025 dwarf2_read_section (objfile, info);
2026 return info->size;
2027 }
2028
2029 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2030 SECTION_NAME. */
2031
2032 void
2033 dwarf2_get_section_info (struct objfile *objfile,
2034 enum dwarf2_section_enum sect,
2035 asection **sectp, const gdb_byte **bufp,
2036 bfd_size_type *sizep)
2037 {
2038 struct dwarf2_per_objfile *data
2039 = objfile_data (objfile, dwarf2_objfile_data_key);
2040 struct dwarf2_section_info *info;
2041
2042 /* We may see an objfile without any DWARF, in which case we just
2043 return nothing. */
2044 if (data == NULL)
2045 {
2046 *sectp = NULL;
2047 *bufp = NULL;
2048 *sizep = 0;
2049 return;
2050 }
2051 switch (sect)
2052 {
2053 case DWARF2_DEBUG_FRAME:
2054 info = &data->frame;
2055 break;
2056 case DWARF2_EH_FRAME:
2057 info = &data->eh_frame;
2058 break;
2059 default:
2060 gdb_assert_not_reached ("unexpected section");
2061 }
2062
2063 dwarf2_read_section (objfile, info);
2064
2065 *sectp = info->asection;
2066 *bufp = info->buffer;
2067 *sizep = info->size;
2068 }
2069
2070 /* A helper function to find the sections for a .dwz file. */
2071
2072 static void
2073 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2074 {
2075 struct dwz_file *dwz_file = arg;
2076
2077 /* Note that we only support the standard ELF names, because .dwz
2078 is ELF-only (at the time of writing). */
2079 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2080 {
2081 dwz_file->abbrev.asection = sectp;
2082 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2083 }
2084 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2085 {
2086 dwz_file->info.asection = sectp;
2087 dwz_file->info.size = bfd_get_section_size (sectp);
2088 }
2089 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2090 {
2091 dwz_file->str.asection = sectp;
2092 dwz_file->str.size = bfd_get_section_size (sectp);
2093 }
2094 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2095 {
2096 dwz_file->line.asection = sectp;
2097 dwz_file->line.size = bfd_get_section_size (sectp);
2098 }
2099 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2100 {
2101 dwz_file->macro.asection = sectp;
2102 dwz_file->macro.size = bfd_get_section_size (sectp);
2103 }
2104 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2105 {
2106 dwz_file->gdb_index.asection = sectp;
2107 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2108 }
2109 }
2110
2111 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2112 there is no .gnu_debugaltlink section in the file. Error if there
2113 is such a section but the file cannot be found. */
2114
2115 static struct dwz_file *
2116 dwarf2_get_dwz_file (void)
2117 {
2118 bfd *dwz_bfd;
2119 char *data;
2120 struct cleanup *cleanup;
2121 const char *filename;
2122 struct dwz_file *result;
2123 unsigned long buildid;
2124
2125 if (dwarf2_per_objfile->dwz_file != NULL)
2126 return dwarf2_per_objfile->dwz_file;
2127
2128 bfd_set_error (bfd_error_no_error);
2129 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2130 &buildid);
2131 if (data == NULL)
2132 {
2133 if (bfd_get_error () == bfd_error_no_error)
2134 return NULL;
2135 error (_("could not read '.gnu_debugaltlink' section: %s"),
2136 bfd_errmsg (bfd_get_error ()));
2137 }
2138 cleanup = make_cleanup (xfree, data);
2139
2140 filename = (const char *) data;
2141 if (!IS_ABSOLUTE_PATH (filename))
2142 {
2143 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2144 char *rel;
2145
2146 make_cleanup (xfree, abs);
2147 abs = ldirname (abs);
2148 make_cleanup (xfree, abs);
2149
2150 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2151 make_cleanup (xfree, rel);
2152 filename = rel;
2153 }
2154
2155 /* The format is just a NUL-terminated file name, followed by the
2156 build-id. For now, though, we ignore the build-id. */
2157 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2158 if (dwz_bfd == NULL)
2159 error (_("could not read '%s': %s"), filename,
2160 bfd_errmsg (bfd_get_error ()));
2161
2162 if (!bfd_check_format (dwz_bfd, bfd_object))
2163 {
2164 gdb_bfd_unref (dwz_bfd);
2165 error (_("file '%s' was not usable: %s"), filename,
2166 bfd_errmsg (bfd_get_error ()));
2167 }
2168
2169 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2170 struct dwz_file);
2171 result->dwz_bfd = dwz_bfd;
2172
2173 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2174
2175 do_cleanups (cleanup);
2176
2177 dwarf2_per_objfile->dwz_file = result;
2178 return result;
2179 }
2180 \f
2181 /* DWARF quick_symbols_functions support. */
2182
2183 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2184 unique line tables, so we maintain a separate table of all .debug_line
2185 derived entries to support the sharing.
2186 All the quick functions need is the list of file names. We discard the
2187 line_header when we're done and don't need to record it here. */
2188 struct quick_file_names
2189 {
2190 /* The data used to construct the hash key. */
2191 struct stmt_list_hash hash;
2192
2193 /* The number of entries in file_names, real_names. */
2194 unsigned int num_file_names;
2195
2196 /* The file names from the line table, after being run through
2197 file_full_name. */
2198 const char **file_names;
2199
2200 /* The file names from the line table after being run through
2201 gdb_realpath. These are computed lazily. */
2202 const char **real_names;
2203 };
2204
2205 /* When using the index (and thus not using psymtabs), each CU has an
2206 object of this type. This is used to hold information needed by
2207 the various "quick" methods. */
2208 struct dwarf2_per_cu_quick_data
2209 {
2210 /* The file table. This can be NULL if there was no file table
2211 or it's currently not read in.
2212 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2213 struct quick_file_names *file_names;
2214
2215 /* The corresponding symbol table. This is NULL if symbols for this
2216 CU have not yet been read. */
2217 struct symtab *symtab;
2218
2219 /* A temporary mark bit used when iterating over all CUs in
2220 expand_symtabs_matching. */
2221 unsigned int mark : 1;
2222
2223 /* True if we've tried to read the file table and found there isn't one.
2224 There will be no point in trying to read it again next time. */
2225 unsigned int no_file_data : 1;
2226 };
2227
2228 /* Utility hash function for a stmt_list_hash. */
2229
2230 static hashval_t
2231 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2232 {
2233 hashval_t v = 0;
2234
2235 if (stmt_list_hash->dwo_unit != NULL)
2236 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2237 v += stmt_list_hash->line_offset.sect_off;
2238 return v;
2239 }
2240
2241 /* Utility equality function for a stmt_list_hash. */
2242
2243 static int
2244 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2245 const struct stmt_list_hash *rhs)
2246 {
2247 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2248 return 0;
2249 if (lhs->dwo_unit != NULL
2250 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2251 return 0;
2252
2253 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2254 }
2255
2256 /* Hash function for a quick_file_names. */
2257
2258 static hashval_t
2259 hash_file_name_entry (const void *e)
2260 {
2261 const struct quick_file_names *file_data = e;
2262
2263 return hash_stmt_list_entry (&file_data->hash);
2264 }
2265
2266 /* Equality function for a quick_file_names. */
2267
2268 static int
2269 eq_file_name_entry (const void *a, const void *b)
2270 {
2271 const struct quick_file_names *ea = a;
2272 const struct quick_file_names *eb = b;
2273
2274 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2275 }
2276
2277 /* Delete function for a quick_file_names. */
2278
2279 static void
2280 delete_file_name_entry (void *e)
2281 {
2282 struct quick_file_names *file_data = e;
2283 int i;
2284
2285 for (i = 0; i < file_data->num_file_names; ++i)
2286 {
2287 xfree ((void*) file_data->file_names[i]);
2288 if (file_data->real_names)
2289 xfree ((void*) file_data->real_names[i]);
2290 }
2291
2292 /* The space for the struct itself lives on objfile_obstack,
2293 so we don't free it here. */
2294 }
2295
2296 /* Create a quick_file_names hash table. */
2297
2298 static htab_t
2299 create_quick_file_names_table (unsigned int nr_initial_entries)
2300 {
2301 return htab_create_alloc (nr_initial_entries,
2302 hash_file_name_entry, eq_file_name_entry,
2303 delete_file_name_entry, xcalloc, xfree);
2304 }
2305
2306 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2307 have to be created afterwards. You should call age_cached_comp_units after
2308 processing PER_CU->CU. dw2_setup must have been already called. */
2309
2310 static void
2311 load_cu (struct dwarf2_per_cu_data *per_cu)
2312 {
2313 if (per_cu->is_debug_types)
2314 load_full_type_unit (per_cu);
2315 else
2316 load_full_comp_unit (per_cu, language_minimal);
2317
2318 gdb_assert (per_cu->cu != NULL);
2319
2320 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2321 }
2322
2323 /* Read in the symbols for PER_CU. */
2324
2325 static void
2326 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2327 {
2328 struct cleanup *back_to;
2329
2330 /* Skip type_unit_groups, reading the type units they contain
2331 is handled elsewhere. */
2332 if (IS_TYPE_UNIT_GROUP (per_cu))
2333 return;
2334
2335 back_to = make_cleanup (dwarf2_release_queue, NULL);
2336
2337 if (dwarf2_per_objfile->using_index
2338 ? per_cu->v.quick->symtab == NULL
2339 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2340 {
2341 queue_comp_unit (per_cu, language_minimal);
2342 load_cu (per_cu);
2343
2344 /* If we just loaded a CU from a DWO, and we're working with an index
2345 that may badly handle TUs, load all the TUs in that DWO as well.
2346 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2347 if (!per_cu->is_debug_types
2348 && per_cu->cu->dwo_unit != NULL
2349 && dwarf2_per_objfile->index_table != NULL
2350 && dwarf2_per_objfile->index_table->version <= 7
2351 /* DWP files aren't supported yet. */
2352 && get_dwp_file () == NULL)
2353 queue_and_load_all_dwo_tus (per_cu);
2354 }
2355
2356 process_queue ();
2357
2358 /* Age the cache, releasing compilation units that have not
2359 been used recently. */
2360 age_cached_comp_units ();
2361
2362 do_cleanups (back_to);
2363 }
2364
2365 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2366 the objfile from which this CU came. Returns the resulting symbol
2367 table. */
2368
2369 static struct symtab *
2370 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2371 {
2372 gdb_assert (dwarf2_per_objfile->using_index);
2373 if (!per_cu->v.quick->symtab)
2374 {
2375 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2376 increment_reading_symtab ();
2377 dw2_do_instantiate_symtab (per_cu);
2378 process_cu_includes ();
2379 do_cleanups (back_to);
2380 }
2381 return per_cu->v.quick->symtab;
2382 }
2383
2384 /* Return the CU given its index.
2385
2386 This is intended for loops like:
2387
2388 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2389 + dwarf2_per_objfile->n_type_units); ++i)
2390 {
2391 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2392
2393 ...;
2394 }
2395 */
2396
2397 static struct dwarf2_per_cu_data *
2398 dw2_get_cu (int index)
2399 {
2400 if (index >= dwarf2_per_objfile->n_comp_units)
2401 {
2402 index -= dwarf2_per_objfile->n_comp_units;
2403 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2404 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2405 }
2406
2407 return dwarf2_per_objfile->all_comp_units[index];
2408 }
2409
2410 /* Return the primary CU given its index.
2411 The difference between this function and dw2_get_cu is in the handling
2412 of type units (TUs). Here we return the type_unit_group object.
2413
2414 This is intended for loops like:
2415
2416 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2417 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2418 {
2419 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2420
2421 ...;
2422 }
2423 */
2424
2425 static struct dwarf2_per_cu_data *
2426 dw2_get_primary_cu (int index)
2427 {
2428 if (index >= dwarf2_per_objfile->n_comp_units)
2429 {
2430 index -= dwarf2_per_objfile->n_comp_units;
2431 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2432 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2433 }
2434
2435 return dwarf2_per_objfile->all_comp_units[index];
2436 }
2437
2438 /* A helper for create_cus_from_index that handles a given list of
2439 CUs. */
2440
2441 static void
2442 create_cus_from_index_list (struct objfile *objfile,
2443 const gdb_byte *cu_list, offset_type n_elements,
2444 struct dwarf2_section_info *section,
2445 int is_dwz,
2446 int base_offset)
2447 {
2448 offset_type i;
2449
2450 for (i = 0; i < n_elements; i += 2)
2451 {
2452 struct dwarf2_per_cu_data *the_cu;
2453 ULONGEST offset, length;
2454
2455 gdb_static_assert (sizeof (ULONGEST) >= 8);
2456 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2457 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2458 cu_list += 2 * 8;
2459
2460 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2461 struct dwarf2_per_cu_data);
2462 the_cu->offset.sect_off = offset;
2463 the_cu->length = length;
2464 the_cu->objfile = objfile;
2465 the_cu->section = section;
2466 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2467 struct dwarf2_per_cu_quick_data);
2468 the_cu->is_dwz = is_dwz;
2469 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2470 }
2471 }
2472
2473 /* Read the CU list from the mapped index, and use it to create all
2474 the CU objects for this objfile. */
2475
2476 static void
2477 create_cus_from_index (struct objfile *objfile,
2478 const gdb_byte *cu_list, offset_type cu_list_elements,
2479 const gdb_byte *dwz_list, offset_type dwz_elements)
2480 {
2481 struct dwz_file *dwz;
2482
2483 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2484 dwarf2_per_objfile->all_comp_units
2485 = obstack_alloc (&objfile->objfile_obstack,
2486 dwarf2_per_objfile->n_comp_units
2487 * sizeof (struct dwarf2_per_cu_data *));
2488
2489 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2490 &dwarf2_per_objfile->info, 0, 0);
2491
2492 if (dwz_elements == 0)
2493 return;
2494
2495 dwz = dwarf2_get_dwz_file ();
2496 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2497 cu_list_elements / 2);
2498 }
2499
2500 /* Create the signatured type hash table from the index. */
2501
2502 static void
2503 create_signatured_type_table_from_index (struct objfile *objfile,
2504 struct dwarf2_section_info *section,
2505 const gdb_byte *bytes,
2506 offset_type elements)
2507 {
2508 offset_type i;
2509 htab_t sig_types_hash;
2510
2511 dwarf2_per_objfile->n_type_units = elements / 3;
2512 dwarf2_per_objfile->all_type_units
2513 = xmalloc (dwarf2_per_objfile->n_type_units
2514 * sizeof (struct signatured_type *));
2515
2516 sig_types_hash = allocate_signatured_type_table (objfile);
2517
2518 for (i = 0; i < elements; i += 3)
2519 {
2520 struct signatured_type *sig_type;
2521 ULONGEST offset, type_offset_in_tu, signature;
2522 void **slot;
2523
2524 gdb_static_assert (sizeof (ULONGEST) >= 8);
2525 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2526 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2527 BFD_ENDIAN_LITTLE);
2528 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2529 bytes += 3 * 8;
2530
2531 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2532 struct signatured_type);
2533 sig_type->signature = signature;
2534 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2535 sig_type->per_cu.is_debug_types = 1;
2536 sig_type->per_cu.section = section;
2537 sig_type->per_cu.offset.sect_off = offset;
2538 sig_type->per_cu.objfile = objfile;
2539 sig_type->per_cu.v.quick
2540 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2541 struct dwarf2_per_cu_quick_data);
2542
2543 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2544 *slot = sig_type;
2545
2546 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2547 }
2548
2549 dwarf2_per_objfile->signatured_types = sig_types_hash;
2550 }
2551
2552 /* Read the address map data from the mapped index, and use it to
2553 populate the objfile's psymtabs_addrmap. */
2554
2555 static void
2556 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2557 {
2558 const gdb_byte *iter, *end;
2559 struct obstack temp_obstack;
2560 struct addrmap *mutable_map;
2561 struct cleanup *cleanup;
2562 CORE_ADDR baseaddr;
2563
2564 obstack_init (&temp_obstack);
2565 cleanup = make_cleanup_obstack_free (&temp_obstack);
2566 mutable_map = addrmap_create_mutable (&temp_obstack);
2567
2568 iter = index->address_table;
2569 end = iter + index->address_table_size;
2570
2571 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2572
2573 while (iter < end)
2574 {
2575 ULONGEST hi, lo, cu_index;
2576 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2577 iter += 8;
2578 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2579 iter += 8;
2580 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2581 iter += 4;
2582
2583 if (lo > hi)
2584 {
2585 complaint (&symfile_complaints,
2586 _(".gdb_index address table has invalid range (%s - %s)"),
2587 hex_string (lo), hex_string (hi));
2588 continue;
2589 }
2590
2591 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2592 {
2593 complaint (&symfile_complaints,
2594 _(".gdb_index address table has invalid CU number %u"),
2595 (unsigned) cu_index);
2596 continue;
2597 }
2598
2599 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2600 dw2_get_cu (cu_index));
2601 }
2602
2603 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2604 &objfile->objfile_obstack);
2605 do_cleanups (cleanup);
2606 }
2607
2608 /* The hash function for strings in the mapped index. This is the same as
2609 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2610 implementation. This is necessary because the hash function is tied to the
2611 format of the mapped index file. The hash values do not have to match with
2612 SYMBOL_HASH_NEXT.
2613
2614 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2615
2616 static hashval_t
2617 mapped_index_string_hash (int index_version, const void *p)
2618 {
2619 const unsigned char *str = (const unsigned char *) p;
2620 hashval_t r = 0;
2621 unsigned char c;
2622
2623 while ((c = *str++) != 0)
2624 {
2625 if (index_version >= 5)
2626 c = tolower (c);
2627 r = r * 67 + c - 113;
2628 }
2629
2630 return r;
2631 }
2632
2633 /* Find a slot in the mapped index INDEX for the object named NAME.
2634 If NAME is found, set *VEC_OUT to point to the CU vector in the
2635 constant pool and return 1. If NAME cannot be found, return 0. */
2636
2637 static int
2638 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2639 offset_type **vec_out)
2640 {
2641 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2642 offset_type hash;
2643 offset_type slot, step;
2644 int (*cmp) (const char *, const char *);
2645
2646 if (current_language->la_language == language_cplus
2647 || current_language->la_language == language_java
2648 || current_language->la_language == language_fortran)
2649 {
2650 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2651 not contain any. */
2652 const char *paren = strchr (name, '(');
2653
2654 if (paren)
2655 {
2656 char *dup;
2657
2658 dup = xmalloc (paren - name + 1);
2659 memcpy (dup, name, paren - name);
2660 dup[paren - name] = 0;
2661
2662 make_cleanup (xfree, dup);
2663 name = dup;
2664 }
2665 }
2666
2667 /* Index version 4 did not support case insensitive searches. But the
2668 indices for case insensitive languages are built in lowercase, therefore
2669 simulate our NAME being searched is also lowercased. */
2670 hash = mapped_index_string_hash ((index->version == 4
2671 && case_sensitivity == case_sensitive_off
2672 ? 5 : index->version),
2673 name);
2674
2675 slot = hash & (index->symbol_table_slots - 1);
2676 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2677 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2678
2679 for (;;)
2680 {
2681 /* Convert a slot number to an offset into the table. */
2682 offset_type i = 2 * slot;
2683 const char *str;
2684 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2685 {
2686 do_cleanups (back_to);
2687 return 0;
2688 }
2689
2690 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2691 if (!cmp (name, str))
2692 {
2693 *vec_out = (offset_type *) (index->constant_pool
2694 + MAYBE_SWAP (index->symbol_table[i + 1]));
2695 do_cleanups (back_to);
2696 return 1;
2697 }
2698
2699 slot = (slot + step) & (index->symbol_table_slots - 1);
2700 }
2701 }
2702
2703 /* A helper function that reads the .gdb_index from SECTION and fills
2704 in MAP. FILENAME is the name of the file containing the section;
2705 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2706 ok to use deprecated sections.
2707
2708 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2709 out parameters that are filled in with information about the CU and
2710 TU lists in the section.
2711
2712 Returns 1 if all went well, 0 otherwise. */
2713
2714 static int
2715 read_index_from_section (struct objfile *objfile,
2716 const char *filename,
2717 int deprecated_ok,
2718 struct dwarf2_section_info *section,
2719 struct mapped_index *map,
2720 const gdb_byte **cu_list,
2721 offset_type *cu_list_elements,
2722 const gdb_byte **types_list,
2723 offset_type *types_list_elements)
2724 {
2725 const gdb_byte *addr;
2726 offset_type version;
2727 offset_type *metadata;
2728 int i;
2729
2730 if (dwarf2_section_empty_p (section))
2731 return 0;
2732
2733 /* Older elfutils strip versions could keep the section in the main
2734 executable while splitting it for the separate debug info file. */
2735 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2736 return 0;
2737
2738 dwarf2_read_section (objfile, section);
2739
2740 addr = section->buffer;
2741 /* Version check. */
2742 version = MAYBE_SWAP (*(offset_type *) addr);
2743 /* Versions earlier than 3 emitted every copy of a psymbol. This
2744 causes the index to behave very poorly for certain requests. Version 3
2745 contained incomplete addrmap. So, it seems better to just ignore such
2746 indices. */
2747 if (version < 4)
2748 {
2749 static int warning_printed = 0;
2750 if (!warning_printed)
2751 {
2752 warning (_("Skipping obsolete .gdb_index section in %s."),
2753 filename);
2754 warning_printed = 1;
2755 }
2756 return 0;
2757 }
2758 /* Index version 4 uses a different hash function than index version
2759 5 and later.
2760
2761 Versions earlier than 6 did not emit psymbols for inlined
2762 functions. Using these files will cause GDB not to be able to
2763 set breakpoints on inlined functions by name, so we ignore these
2764 indices unless the user has done
2765 "set use-deprecated-index-sections on". */
2766 if (version < 6 && !deprecated_ok)
2767 {
2768 static int warning_printed = 0;
2769 if (!warning_printed)
2770 {
2771 warning (_("\
2772 Skipping deprecated .gdb_index section in %s.\n\
2773 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2774 to use the section anyway."),
2775 filename);
2776 warning_printed = 1;
2777 }
2778 return 0;
2779 }
2780 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2781 of the TU (for symbols coming from TUs). It's just a performance bug, and
2782 we can't distinguish gdb-generated indices from gold-generated ones, so
2783 nothing to do here. */
2784
2785 /* Indexes with higher version than the one supported by GDB may be no
2786 longer backward compatible. */
2787 if (version > 8)
2788 return 0;
2789
2790 map->version = version;
2791 map->total_size = section->size;
2792
2793 metadata = (offset_type *) (addr + sizeof (offset_type));
2794
2795 i = 0;
2796 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2797 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2798 / 8);
2799 ++i;
2800
2801 *types_list = addr + MAYBE_SWAP (metadata[i]);
2802 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2803 - MAYBE_SWAP (metadata[i]))
2804 / 8);
2805 ++i;
2806
2807 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2808 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2809 - MAYBE_SWAP (metadata[i]));
2810 ++i;
2811
2812 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2813 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2814 - MAYBE_SWAP (metadata[i]))
2815 / (2 * sizeof (offset_type)));
2816 ++i;
2817
2818 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2819
2820 return 1;
2821 }
2822
2823
2824 /* Read the index file. If everything went ok, initialize the "quick"
2825 elements of all the CUs and return 1. Otherwise, return 0. */
2826
2827 static int
2828 dwarf2_read_index (struct objfile *objfile)
2829 {
2830 struct mapped_index local_map, *map;
2831 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2832 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2833 struct dwz_file *dwz;
2834
2835 if (!read_index_from_section (objfile, objfile->name,
2836 use_deprecated_index_sections,
2837 &dwarf2_per_objfile->gdb_index, &local_map,
2838 &cu_list, &cu_list_elements,
2839 &types_list, &types_list_elements))
2840 return 0;
2841
2842 /* Don't use the index if it's empty. */
2843 if (local_map.symbol_table_slots == 0)
2844 return 0;
2845
2846 /* If there is a .dwz file, read it so we can get its CU list as
2847 well. */
2848 dwz = dwarf2_get_dwz_file ();
2849 if (dwz != NULL)
2850 {
2851 struct mapped_index dwz_map;
2852 const gdb_byte *dwz_types_ignore;
2853 offset_type dwz_types_elements_ignore;
2854
2855 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2856 1,
2857 &dwz->gdb_index, &dwz_map,
2858 &dwz_list, &dwz_list_elements,
2859 &dwz_types_ignore,
2860 &dwz_types_elements_ignore))
2861 {
2862 warning (_("could not read '.gdb_index' section from %s; skipping"),
2863 bfd_get_filename (dwz->dwz_bfd));
2864 return 0;
2865 }
2866 }
2867
2868 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2869 dwz_list_elements);
2870
2871 if (types_list_elements)
2872 {
2873 struct dwarf2_section_info *section;
2874
2875 /* We can only handle a single .debug_types when we have an
2876 index. */
2877 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2878 return 0;
2879
2880 section = VEC_index (dwarf2_section_info_def,
2881 dwarf2_per_objfile->types, 0);
2882
2883 create_signatured_type_table_from_index (objfile, section, types_list,
2884 types_list_elements);
2885 }
2886
2887 create_addrmap_from_index (objfile, &local_map);
2888
2889 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2890 *map = local_map;
2891
2892 dwarf2_per_objfile->index_table = map;
2893 dwarf2_per_objfile->using_index = 1;
2894 dwarf2_per_objfile->quick_file_names_table =
2895 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2896
2897 return 1;
2898 }
2899
2900 /* A helper for the "quick" functions which sets the global
2901 dwarf2_per_objfile according to OBJFILE. */
2902
2903 static void
2904 dw2_setup (struct objfile *objfile)
2905 {
2906 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2907 gdb_assert (dwarf2_per_objfile);
2908 }
2909
2910 /* die_reader_func for dw2_get_file_names. */
2911
2912 static void
2913 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2914 const gdb_byte *info_ptr,
2915 struct die_info *comp_unit_die,
2916 int has_children,
2917 void *data)
2918 {
2919 struct dwarf2_cu *cu = reader->cu;
2920 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2921 struct objfile *objfile = dwarf2_per_objfile->objfile;
2922 struct dwarf2_per_cu_data *lh_cu;
2923 struct line_header *lh;
2924 struct attribute *attr;
2925 int i;
2926 const char *name, *comp_dir;
2927 void **slot;
2928 struct quick_file_names *qfn;
2929 unsigned int line_offset;
2930
2931 gdb_assert (! this_cu->is_debug_types);
2932
2933 /* Our callers never want to match partial units -- instead they
2934 will match the enclosing full CU. */
2935 if (comp_unit_die->tag == DW_TAG_partial_unit)
2936 {
2937 this_cu->v.quick->no_file_data = 1;
2938 return;
2939 }
2940
2941 lh_cu = this_cu;
2942 lh = NULL;
2943 slot = NULL;
2944 line_offset = 0;
2945
2946 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2947 if (attr)
2948 {
2949 struct quick_file_names find_entry;
2950
2951 line_offset = DW_UNSND (attr);
2952
2953 /* We may have already read in this line header (TU line header sharing).
2954 If we have we're done. */
2955 find_entry.hash.dwo_unit = cu->dwo_unit;
2956 find_entry.hash.line_offset.sect_off = line_offset;
2957 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2958 &find_entry, INSERT);
2959 if (*slot != NULL)
2960 {
2961 lh_cu->v.quick->file_names = *slot;
2962 return;
2963 }
2964
2965 lh = dwarf_decode_line_header (line_offset, cu);
2966 }
2967 if (lh == NULL)
2968 {
2969 lh_cu->v.quick->no_file_data = 1;
2970 return;
2971 }
2972
2973 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2974 qfn->hash.dwo_unit = cu->dwo_unit;
2975 qfn->hash.line_offset.sect_off = line_offset;
2976 gdb_assert (slot != NULL);
2977 *slot = qfn;
2978
2979 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2980
2981 qfn->num_file_names = lh->num_file_names;
2982 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2983 lh->num_file_names * sizeof (char *));
2984 for (i = 0; i < lh->num_file_names; ++i)
2985 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2986 qfn->real_names = NULL;
2987
2988 free_line_header (lh);
2989
2990 lh_cu->v.quick->file_names = qfn;
2991 }
2992
2993 /* A helper for the "quick" functions which attempts to read the line
2994 table for THIS_CU. */
2995
2996 static struct quick_file_names *
2997 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2998 {
2999 /* This should never be called for TUs. */
3000 gdb_assert (! this_cu->is_debug_types);
3001 /* Nor type unit groups. */
3002 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3003
3004 if (this_cu->v.quick->file_names != NULL)
3005 return this_cu->v.quick->file_names;
3006 /* If we know there is no line data, no point in looking again. */
3007 if (this_cu->v.quick->no_file_data)
3008 return NULL;
3009
3010 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3011
3012 if (this_cu->v.quick->no_file_data)
3013 return NULL;
3014 return this_cu->v.quick->file_names;
3015 }
3016
3017 /* A helper for the "quick" functions which computes and caches the
3018 real path for a given file name from the line table. */
3019
3020 static const char *
3021 dw2_get_real_path (struct objfile *objfile,
3022 struct quick_file_names *qfn, int index)
3023 {
3024 if (qfn->real_names == NULL)
3025 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3026 qfn->num_file_names, sizeof (char *));
3027
3028 if (qfn->real_names[index] == NULL)
3029 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3030
3031 return qfn->real_names[index];
3032 }
3033
3034 static struct symtab *
3035 dw2_find_last_source_symtab (struct objfile *objfile)
3036 {
3037 int index;
3038
3039 dw2_setup (objfile);
3040 index = dwarf2_per_objfile->n_comp_units - 1;
3041 return dw2_instantiate_symtab (dw2_get_cu (index));
3042 }
3043
3044 /* Traversal function for dw2_forget_cached_source_info. */
3045
3046 static int
3047 dw2_free_cached_file_names (void **slot, void *info)
3048 {
3049 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3050
3051 if (file_data->real_names)
3052 {
3053 int i;
3054
3055 for (i = 0; i < file_data->num_file_names; ++i)
3056 {
3057 xfree ((void*) file_data->real_names[i]);
3058 file_data->real_names[i] = NULL;
3059 }
3060 }
3061
3062 return 1;
3063 }
3064
3065 static void
3066 dw2_forget_cached_source_info (struct objfile *objfile)
3067 {
3068 dw2_setup (objfile);
3069
3070 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3071 dw2_free_cached_file_names, NULL);
3072 }
3073
3074 /* Helper function for dw2_map_symtabs_matching_filename that expands
3075 the symtabs and calls the iterator. */
3076
3077 static int
3078 dw2_map_expand_apply (struct objfile *objfile,
3079 struct dwarf2_per_cu_data *per_cu,
3080 const char *name, const char *real_path,
3081 int (*callback) (struct symtab *, void *),
3082 void *data)
3083 {
3084 struct symtab *last_made = objfile->symtabs;
3085
3086 /* Don't visit already-expanded CUs. */
3087 if (per_cu->v.quick->symtab)
3088 return 0;
3089
3090 /* This may expand more than one symtab, and we want to iterate over
3091 all of them. */
3092 dw2_instantiate_symtab (per_cu);
3093
3094 return iterate_over_some_symtabs (name, real_path, callback, data,
3095 objfile->symtabs, last_made);
3096 }
3097
3098 /* Implementation of the map_symtabs_matching_filename method. */
3099
3100 static int
3101 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3102 const char *real_path,
3103 int (*callback) (struct symtab *, void *),
3104 void *data)
3105 {
3106 int i;
3107 const char *name_basename = lbasename (name);
3108
3109 dw2_setup (objfile);
3110
3111 /* The rule is CUs specify all the files, including those used by
3112 any TU, so there's no need to scan TUs here. */
3113
3114 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3115 {
3116 int j;
3117 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3118 struct quick_file_names *file_data;
3119
3120 /* We only need to look at symtabs not already expanded. */
3121 if (per_cu->v.quick->symtab)
3122 continue;
3123
3124 file_data = dw2_get_file_names (per_cu);
3125 if (file_data == NULL)
3126 continue;
3127
3128 for (j = 0; j < file_data->num_file_names; ++j)
3129 {
3130 const char *this_name = file_data->file_names[j];
3131 const char *this_real_name;
3132
3133 if (compare_filenames_for_search (this_name, name))
3134 {
3135 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3136 callback, data))
3137 return 1;
3138 continue;
3139 }
3140
3141 /* Before we invoke realpath, which can get expensive when many
3142 files are involved, do a quick comparison of the basenames. */
3143 if (! basenames_may_differ
3144 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3145 continue;
3146
3147 this_real_name = dw2_get_real_path (objfile, file_data, j);
3148 if (compare_filenames_for_search (this_real_name, name))
3149 {
3150 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3151 callback, data))
3152 return 1;
3153 continue;
3154 }
3155
3156 if (real_path != NULL)
3157 {
3158 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3159 gdb_assert (IS_ABSOLUTE_PATH (name));
3160 if (this_real_name != NULL
3161 && FILENAME_CMP (real_path, this_real_name) == 0)
3162 {
3163 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3164 callback, data))
3165 return 1;
3166 continue;
3167 }
3168 }
3169 }
3170 }
3171
3172 return 0;
3173 }
3174
3175 /* Struct used to manage iterating over all CUs looking for a symbol. */
3176
3177 struct dw2_symtab_iterator
3178 {
3179 /* The internalized form of .gdb_index. */
3180 struct mapped_index *index;
3181 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3182 int want_specific_block;
3183 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3184 Unused if !WANT_SPECIFIC_BLOCK. */
3185 int block_index;
3186 /* The kind of symbol we're looking for. */
3187 domain_enum domain;
3188 /* The list of CUs from the index entry of the symbol,
3189 or NULL if not found. */
3190 offset_type *vec;
3191 /* The next element in VEC to look at. */
3192 int next;
3193 /* The number of elements in VEC, or zero if there is no match. */
3194 int length;
3195 };
3196
3197 /* Initialize the index symtab iterator ITER.
3198 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3199 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3200
3201 static void
3202 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3203 struct mapped_index *index,
3204 int want_specific_block,
3205 int block_index,
3206 domain_enum domain,
3207 const char *name)
3208 {
3209 iter->index = index;
3210 iter->want_specific_block = want_specific_block;
3211 iter->block_index = block_index;
3212 iter->domain = domain;
3213 iter->next = 0;
3214
3215 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3216 iter->length = MAYBE_SWAP (*iter->vec);
3217 else
3218 {
3219 iter->vec = NULL;
3220 iter->length = 0;
3221 }
3222 }
3223
3224 /* Return the next matching CU or NULL if there are no more. */
3225
3226 static struct dwarf2_per_cu_data *
3227 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3228 {
3229 for ( ; iter->next < iter->length; ++iter->next)
3230 {
3231 offset_type cu_index_and_attrs =
3232 MAYBE_SWAP (iter->vec[iter->next + 1]);
3233 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3234 struct dwarf2_per_cu_data *per_cu;
3235 int want_static = iter->block_index != GLOBAL_BLOCK;
3236 /* This value is only valid for index versions >= 7. */
3237 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3238 gdb_index_symbol_kind symbol_kind =
3239 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3240 /* Only check the symbol attributes if they're present.
3241 Indices prior to version 7 don't record them,
3242 and indices >= 7 may elide them for certain symbols
3243 (gold does this). */
3244 int attrs_valid =
3245 (iter->index->version >= 7
3246 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3247
3248 /* Don't crash on bad data. */
3249 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3250 + dwarf2_per_objfile->n_type_units))
3251 {
3252 complaint (&symfile_complaints,
3253 _(".gdb_index entry has bad CU index"
3254 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3255 continue;
3256 }
3257
3258 per_cu = dw2_get_cu (cu_index);
3259
3260 /* Skip if already read in. */
3261 if (per_cu->v.quick->symtab)
3262 continue;
3263
3264 if (attrs_valid
3265 && iter->want_specific_block
3266 && want_static != is_static)
3267 continue;
3268
3269 /* Only check the symbol's kind if it has one. */
3270 if (attrs_valid)
3271 {
3272 switch (iter->domain)
3273 {
3274 case VAR_DOMAIN:
3275 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3276 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3277 /* Some types are also in VAR_DOMAIN. */
3278 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3279 continue;
3280 break;
3281 case STRUCT_DOMAIN:
3282 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3283 continue;
3284 break;
3285 case LABEL_DOMAIN:
3286 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3287 continue;
3288 break;
3289 default:
3290 break;
3291 }
3292 }
3293
3294 ++iter->next;
3295 return per_cu;
3296 }
3297
3298 return NULL;
3299 }
3300
3301 static struct symtab *
3302 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3303 const char *name, domain_enum domain)
3304 {
3305 struct symtab *stab_best = NULL;
3306 struct mapped_index *index;
3307
3308 dw2_setup (objfile);
3309
3310 index = dwarf2_per_objfile->index_table;
3311
3312 /* index is NULL if OBJF_READNOW. */
3313 if (index)
3314 {
3315 struct dw2_symtab_iterator iter;
3316 struct dwarf2_per_cu_data *per_cu;
3317
3318 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3319
3320 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3321 {
3322 struct symbol *sym = NULL;
3323 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3324
3325 /* Some caution must be observed with overloaded functions
3326 and methods, since the index will not contain any overload
3327 information (but NAME might contain it). */
3328 if (stab->primary)
3329 {
3330 struct blockvector *bv = BLOCKVECTOR (stab);
3331 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3332
3333 sym = lookup_block_symbol (block, name, domain);
3334 }
3335
3336 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3337 {
3338 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3339 return stab;
3340
3341 stab_best = stab;
3342 }
3343
3344 /* Keep looking through other CUs. */
3345 }
3346 }
3347
3348 return stab_best;
3349 }
3350
3351 static void
3352 dw2_print_stats (struct objfile *objfile)
3353 {
3354 int i, total, count;
3355
3356 dw2_setup (objfile);
3357 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3358 count = 0;
3359 for (i = 0; i < total; ++i)
3360 {
3361 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3362
3363 if (!per_cu->v.quick->symtab)
3364 ++count;
3365 }
3366 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3367 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3368 }
3369
3370 /* This dumps minimal information about the index.
3371 It is called via "mt print objfiles".
3372 One use is to verify .gdb_index has been loaded by the
3373 gdb.dwarf2/gdb-index.exp testcase. */
3374
3375 static void
3376 dw2_dump (struct objfile *objfile)
3377 {
3378 dw2_setup (objfile);
3379 gdb_assert (dwarf2_per_objfile->using_index);
3380 printf_filtered (".gdb_index:");
3381 if (dwarf2_per_objfile->index_table != NULL)
3382 {
3383 printf_filtered (" version %d\n",
3384 dwarf2_per_objfile->index_table->version);
3385 }
3386 else
3387 printf_filtered (" faked for \"readnow\"\n");
3388 printf_filtered ("\n");
3389 }
3390
3391 static void
3392 dw2_relocate (struct objfile *objfile,
3393 const struct section_offsets *new_offsets,
3394 const struct section_offsets *delta)
3395 {
3396 /* There's nothing to relocate here. */
3397 }
3398
3399 static void
3400 dw2_expand_symtabs_for_function (struct objfile *objfile,
3401 const char *func_name)
3402 {
3403 struct mapped_index *index;
3404
3405 dw2_setup (objfile);
3406
3407 index = dwarf2_per_objfile->index_table;
3408
3409 /* index is NULL if OBJF_READNOW. */
3410 if (index)
3411 {
3412 struct dw2_symtab_iterator iter;
3413 struct dwarf2_per_cu_data *per_cu;
3414
3415 /* Note: It doesn't matter what we pass for block_index here. */
3416 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3417 func_name);
3418
3419 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3420 dw2_instantiate_symtab (per_cu);
3421 }
3422 }
3423
3424 static void
3425 dw2_expand_all_symtabs (struct objfile *objfile)
3426 {
3427 int i;
3428
3429 dw2_setup (objfile);
3430
3431 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3432 + dwarf2_per_objfile->n_type_units); ++i)
3433 {
3434 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3435
3436 dw2_instantiate_symtab (per_cu);
3437 }
3438 }
3439
3440 static void
3441 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3442 const char *fullname)
3443 {
3444 int i;
3445
3446 dw2_setup (objfile);
3447
3448 /* We don't need to consider type units here.
3449 This is only called for examining code, e.g. expand_line_sal.
3450 There can be an order of magnitude (or more) more type units
3451 than comp units, and we avoid them if we can. */
3452
3453 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3454 {
3455 int j;
3456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3457 struct quick_file_names *file_data;
3458
3459 /* We only need to look at symtabs not already expanded. */
3460 if (per_cu->v.quick->symtab)
3461 continue;
3462
3463 file_data = dw2_get_file_names (per_cu);
3464 if (file_data == NULL)
3465 continue;
3466
3467 for (j = 0; j < file_data->num_file_names; ++j)
3468 {
3469 const char *this_fullname = file_data->file_names[j];
3470
3471 if (filename_cmp (this_fullname, fullname) == 0)
3472 {
3473 dw2_instantiate_symtab (per_cu);
3474 break;
3475 }
3476 }
3477 }
3478 }
3479
3480 static void
3481 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3482 struct objfile *objfile, int global,
3483 int (*callback) (struct block *,
3484 struct symbol *, void *),
3485 void *data, symbol_compare_ftype *match,
3486 symbol_compare_ftype *ordered_compare)
3487 {
3488 /* Currently unimplemented; used for Ada. The function can be called if the
3489 current language is Ada for a non-Ada objfile using GNU index. As Ada
3490 does not look for non-Ada symbols this function should just return. */
3491 }
3492
3493 static void
3494 dw2_expand_symtabs_matching
3495 (struct objfile *objfile,
3496 int (*file_matcher) (const char *, void *, int basenames),
3497 int (*name_matcher) (const char *, void *),
3498 enum search_domain kind,
3499 void *data)
3500 {
3501 int i;
3502 offset_type iter;
3503 struct mapped_index *index;
3504
3505 dw2_setup (objfile);
3506
3507 /* index_table is NULL if OBJF_READNOW. */
3508 if (!dwarf2_per_objfile->index_table)
3509 return;
3510 index = dwarf2_per_objfile->index_table;
3511
3512 if (file_matcher != NULL)
3513 {
3514 struct cleanup *cleanup;
3515 htab_t visited_found, visited_not_found;
3516
3517 visited_found = htab_create_alloc (10,
3518 htab_hash_pointer, htab_eq_pointer,
3519 NULL, xcalloc, xfree);
3520 cleanup = make_cleanup_htab_delete (visited_found);
3521 visited_not_found = htab_create_alloc (10,
3522 htab_hash_pointer, htab_eq_pointer,
3523 NULL, xcalloc, xfree);
3524 make_cleanup_htab_delete (visited_not_found);
3525
3526 /* The rule is CUs specify all the files, including those used by
3527 any TU, so there's no need to scan TUs here. */
3528
3529 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3530 {
3531 int j;
3532 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3533 struct quick_file_names *file_data;
3534 void **slot;
3535
3536 per_cu->v.quick->mark = 0;
3537
3538 /* We only need to look at symtabs not already expanded. */
3539 if (per_cu->v.quick->symtab)
3540 continue;
3541
3542 file_data = dw2_get_file_names (per_cu);
3543 if (file_data == NULL)
3544 continue;
3545
3546 if (htab_find (visited_not_found, file_data) != NULL)
3547 continue;
3548 else if (htab_find (visited_found, file_data) != NULL)
3549 {
3550 per_cu->v.quick->mark = 1;
3551 continue;
3552 }
3553
3554 for (j = 0; j < file_data->num_file_names; ++j)
3555 {
3556 const char *this_real_name;
3557
3558 if (file_matcher (file_data->file_names[j], data, 0))
3559 {
3560 per_cu->v.quick->mark = 1;
3561 break;
3562 }
3563
3564 /* Before we invoke realpath, which can get expensive when many
3565 files are involved, do a quick comparison of the basenames. */
3566 if (!basenames_may_differ
3567 && !file_matcher (lbasename (file_data->file_names[j]),
3568 data, 1))
3569 continue;
3570
3571 this_real_name = dw2_get_real_path (objfile, file_data, j);
3572 if (file_matcher (this_real_name, data, 0))
3573 {
3574 per_cu->v.quick->mark = 1;
3575 break;
3576 }
3577 }
3578
3579 slot = htab_find_slot (per_cu->v.quick->mark
3580 ? visited_found
3581 : visited_not_found,
3582 file_data, INSERT);
3583 *slot = file_data;
3584 }
3585
3586 do_cleanups (cleanup);
3587 }
3588
3589 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3590 {
3591 offset_type idx = 2 * iter;
3592 const char *name;
3593 offset_type *vec, vec_len, vec_idx;
3594
3595 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3596 continue;
3597
3598 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3599
3600 if (! (*name_matcher) (name, data))
3601 continue;
3602
3603 /* The name was matched, now expand corresponding CUs that were
3604 marked. */
3605 vec = (offset_type *) (index->constant_pool
3606 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3607 vec_len = MAYBE_SWAP (vec[0]);
3608 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3609 {
3610 struct dwarf2_per_cu_data *per_cu;
3611 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3615 /* Only check the symbol attributes if they're present.
3616 Indices prior to version 7 don't record them,
3617 and indices >= 7 may elide them for certain symbols
3618 (gold does this). */
3619 int attrs_valid =
3620 (index->version >= 7
3621 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3622
3623 /* Only check the symbol's kind if it has one. */
3624 if (attrs_valid)
3625 {
3626 switch (kind)
3627 {
3628 case VARIABLES_DOMAIN:
3629 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3630 continue;
3631 break;
3632 case FUNCTIONS_DOMAIN:
3633 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3634 continue;
3635 break;
3636 case TYPES_DOMAIN:
3637 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3638 continue;
3639 break;
3640 default:
3641 break;
3642 }
3643 }
3644
3645 /* Don't crash on bad data. */
3646 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3647 + dwarf2_per_objfile->n_type_units))
3648 {
3649 complaint (&symfile_complaints,
3650 _(".gdb_index entry has bad CU index"
3651 " [in module %s]"), objfile->name);
3652 continue;
3653 }
3654
3655 per_cu = dw2_get_cu (cu_index);
3656 if (file_matcher == NULL || per_cu->v.quick->mark)
3657 dw2_instantiate_symtab (per_cu);
3658 }
3659 }
3660 }
3661
3662 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3663 symtab. */
3664
3665 static struct symtab *
3666 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3667 {
3668 int i;
3669
3670 if (BLOCKVECTOR (symtab) != NULL
3671 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3672 return symtab;
3673
3674 if (symtab->includes == NULL)
3675 return NULL;
3676
3677 for (i = 0; symtab->includes[i]; ++i)
3678 {
3679 struct symtab *s = symtab->includes[i];
3680
3681 s = recursively_find_pc_sect_symtab (s, pc);
3682 if (s != NULL)
3683 return s;
3684 }
3685
3686 return NULL;
3687 }
3688
3689 static struct symtab *
3690 dw2_find_pc_sect_symtab (struct objfile *objfile,
3691 struct minimal_symbol *msymbol,
3692 CORE_ADDR pc,
3693 struct obj_section *section,
3694 int warn_if_readin)
3695 {
3696 struct dwarf2_per_cu_data *data;
3697 struct symtab *result;
3698
3699 dw2_setup (objfile);
3700
3701 if (!objfile->psymtabs_addrmap)
3702 return NULL;
3703
3704 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3705 if (!data)
3706 return NULL;
3707
3708 if (warn_if_readin && data->v.quick->symtab)
3709 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3710 paddress (get_objfile_arch (objfile), pc));
3711
3712 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3713 gdb_assert (result != NULL);
3714 return result;
3715 }
3716
3717 static void
3718 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3719 void *data, int need_fullname)
3720 {
3721 int i;
3722 struct cleanup *cleanup;
3723 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3724 NULL, xcalloc, xfree);
3725
3726 cleanup = make_cleanup_htab_delete (visited);
3727 dw2_setup (objfile);
3728
3729 /* The rule is CUs specify all the files, including those used by
3730 any TU, so there's no need to scan TUs here.
3731 We can ignore file names coming from already-expanded CUs. */
3732
3733 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3734 {
3735 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3736
3737 if (per_cu->v.quick->symtab)
3738 {
3739 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3740 INSERT);
3741
3742 *slot = per_cu->v.quick->file_names;
3743 }
3744 }
3745
3746 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3747 {
3748 int j;
3749 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3750 struct quick_file_names *file_data;
3751 void **slot;
3752
3753 /* We only need to look at symtabs not already expanded. */
3754 if (per_cu->v.quick->symtab)
3755 continue;
3756
3757 file_data = dw2_get_file_names (per_cu);
3758 if (file_data == NULL)
3759 continue;
3760
3761 slot = htab_find_slot (visited, file_data, INSERT);
3762 if (*slot)
3763 {
3764 /* Already visited. */
3765 continue;
3766 }
3767 *slot = file_data;
3768
3769 for (j = 0; j < file_data->num_file_names; ++j)
3770 {
3771 const char *this_real_name;
3772
3773 if (need_fullname)
3774 this_real_name = dw2_get_real_path (objfile, file_data, j);
3775 else
3776 this_real_name = NULL;
3777 (*fun) (file_data->file_names[j], this_real_name, data);
3778 }
3779 }
3780
3781 do_cleanups (cleanup);
3782 }
3783
3784 static int
3785 dw2_has_symbols (struct objfile *objfile)
3786 {
3787 return 1;
3788 }
3789
3790 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3791 {
3792 dw2_has_symbols,
3793 dw2_find_last_source_symtab,
3794 dw2_forget_cached_source_info,
3795 dw2_map_symtabs_matching_filename,
3796 dw2_lookup_symbol,
3797 dw2_print_stats,
3798 dw2_dump,
3799 dw2_relocate,
3800 dw2_expand_symtabs_for_function,
3801 dw2_expand_all_symtabs,
3802 dw2_expand_symtabs_with_fullname,
3803 dw2_map_matching_symbols,
3804 dw2_expand_symtabs_matching,
3805 dw2_find_pc_sect_symtab,
3806 dw2_map_symbol_filenames
3807 };
3808
3809 /* Initialize for reading DWARF for this objfile. Return 0 if this
3810 file will use psymtabs, or 1 if using the GNU index. */
3811
3812 int
3813 dwarf2_initialize_objfile (struct objfile *objfile)
3814 {
3815 /* If we're about to read full symbols, don't bother with the
3816 indices. In this case we also don't care if some other debug
3817 format is making psymtabs, because they are all about to be
3818 expanded anyway. */
3819 if ((objfile->flags & OBJF_READNOW))
3820 {
3821 int i;
3822
3823 dwarf2_per_objfile->using_index = 1;
3824 create_all_comp_units (objfile);
3825 create_all_type_units (objfile);
3826 dwarf2_per_objfile->quick_file_names_table =
3827 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3828
3829 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3830 + dwarf2_per_objfile->n_type_units); ++i)
3831 {
3832 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3833
3834 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3835 struct dwarf2_per_cu_quick_data);
3836 }
3837
3838 /* Return 1 so that gdb sees the "quick" functions. However,
3839 these functions will be no-ops because we will have expanded
3840 all symtabs. */
3841 return 1;
3842 }
3843
3844 if (dwarf2_read_index (objfile))
3845 return 1;
3846
3847 return 0;
3848 }
3849
3850 \f
3851
3852 /* Build a partial symbol table. */
3853
3854 void
3855 dwarf2_build_psymtabs (struct objfile *objfile)
3856 {
3857 volatile struct gdb_exception except;
3858
3859 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3860 {
3861 init_psymbol_list (objfile, 1024);
3862 }
3863
3864 TRY_CATCH (except, RETURN_MASK_ERROR)
3865 {
3866 /* This isn't really ideal: all the data we allocate on the
3867 objfile's obstack is still uselessly kept around. However,
3868 freeing it seems unsafe. */
3869 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3870
3871 dwarf2_build_psymtabs_hard (objfile);
3872 discard_cleanups (cleanups);
3873 }
3874 if (except.reason < 0)
3875 exception_print (gdb_stderr, except);
3876 }
3877
3878 /* Return the total length of the CU described by HEADER. */
3879
3880 static unsigned int
3881 get_cu_length (const struct comp_unit_head *header)
3882 {
3883 return header->initial_length_size + header->length;
3884 }
3885
3886 /* Return TRUE if OFFSET is within CU_HEADER. */
3887
3888 static inline int
3889 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3890 {
3891 sect_offset bottom = { cu_header->offset.sect_off };
3892 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3893
3894 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3895 }
3896
3897 /* Find the base address of the compilation unit for range lists and
3898 location lists. It will normally be specified by DW_AT_low_pc.
3899 In DWARF-3 draft 4, the base address could be overridden by
3900 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3901 compilation units with discontinuous ranges. */
3902
3903 static void
3904 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3905 {
3906 struct attribute *attr;
3907
3908 cu->base_known = 0;
3909 cu->base_address = 0;
3910
3911 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3912 if (attr)
3913 {
3914 cu->base_address = DW_ADDR (attr);
3915 cu->base_known = 1;
3916 }
3917 else
3918 {
3919 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3920 if (attr)
3921 {
3922 cu->base_address = DW_ADDR (attr);
3923 cu->base_known = 1;
3924 }
3925 }
3926 }
3927
3928 /* Read in the comp unit header information from the debug_info at info_ptr.
3929 NOTE: This leaves members offset, first_die_offset to be filled in
3930 by the caller. */
3931
3932 static const gdb_byte *
3933 read_comp_unit_head (struct comp_unit_head *cu_header,
3934 const gdb_byte *info_ptr, bfd *abfd)
3935 {
3936 int signed_addr;
3937 unsigned int bytes_read;
3938
3939 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3940 cu_header->initial_length_size = bytes_read;
3941 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3942 info_ptr += bytes_read;
3943 cu_header->version = read_2_bytes (abfd, info_ptr);
3944 info_ptr += 2;
3945 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3946 &bytes_read);
3947 info_ptr += bytes_read;
3948 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3949 info_ptr += 1;
3950 signed_addr = bfd_get_sign_extend_vma (abfd);
3951 if (signed_addr < 0)
3952 internal_error (__FILE__, __LINE__,
3953 _("read_comp_unit_head: dwarf from non elf file"));
3954 cu_header->signed_addr_p = signed_addr;
3955
3956 return info_ptr;
3957 }
3958
3959 /* Helper function that returns the proper abbrev section for
3960 THIS_CU. */
3961
3962 static struct dwarf2_section_info *
3963 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3964 {
3965 struct dwarf2_section_info *abbrev;
3966
3967 if (this_cu->is_dwz)
3968 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3969 else
3970 abbrev = &dwarf2_per_objfile->abbrev;
3971
3972 return abbrev;
3973 }
3974
3975 /* Subroutine of read_and_check_comp_unit_head and
3976 read_and_check_type_unit_head to simplify them.
3977 Perform various error checking on the header. */
3978
3979 static void
3980 error_check_comp_unit_head (struct comp_unit_head *header,
3981 struct dwarf2_section_info *section,
3982 struct dwarf2_section_info *abbrev_section)
3983 {
3984 bfd *abfd = section->asection->owner;
3985 const char *filename = bfd_get_filename (abfd);
3986
3987 if (header->version != 2 && header->version != 3 && header->version != 4)
3988 error (_("Dwarf Error: wrong version in compilation unit header "
3989 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3990 filename);
3991
3992 if (header->abbrev_offset.sect_off
3993 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3994 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3995 "(offset 0x%lx + 6) [in module %s]"),
3996 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3997 filename);
3998
3999 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4000 avoid potential 32-bit overflow. */
4001 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4002 > section->size)
4003 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4004 "(offset 0x%lx + 0) [in module %s]"),
4005 (long) header->length, (long) header->offset.sect_off,
4006 filename);
4007 }
4008
4009 /* Read in a CU/TU header and perform some basic error checking.
4010 The contents of the header are stored in HEADER.
4011 The result is a pointer to the start of the first DIE. */
4012
4013 static const gdb_byte *
4014 read_and_check_comp_unit_head (struct comp_unit_head *header,
4015 struct dwarf2_section_info *section,
4016 struct dwarf2_section_info *abbrev_section,
4017 const gdb_byte *info_ptr,
4018 int is_debug_types_section)
4019 {
4020 const gdb_byte *beg_of_comp_unit = info_ptr;
4021 bfd *abfd = section->asection->owner;
4022
4023 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4024
4025 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4026
4027 /* If we're reading a type unit, skip over the signature and
4028 type_offset fields. */
4029 if (is_debug_types_section)
4030 info_ptr += 8 /*signature*/ + header->offset_size;
4031
4032 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4033
4034 error_check_comp_unit_head (header, section, abbrev_section);
4035
4036 return info_ptr;
4037 }
4038
4039 /* Read in the types comp unit header information from .debug_types entry at
4040 types_ptr. The result is a pointer to one past the end of the header. */
4041
4042 static const gdb_byte *
4043 read_and_check_type_unit_head (struct comp_unit_head *header,
4044 struct dwarf2_section_info *section,
4045 struct dwarf2_section_info *abbrev_section,
4046 const gdb_byte *info_ptr,
4047 ULONGEST *signature,
4048 cu_offset *type_offset_in_tu)
4049 {
4050 const gdb_byte *beg_of_comp_unit = info_ptr;
4051 bfd *abfd = section->asection->owner;
4052
4053 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4054
4055 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4056
4057 /* If we're reading a type unit, skip over the signature and
4058 type_offset fields. */
4059 if (signature != NULL)
4060 *signature = read_8_bytes (abfd, info_ptr);
4061 info_ptr += 8;
4062 if (type_offset_in_tu != NULL)
4063 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4064 header->offset_size);
4065 info_ptr += header->offset_size;
4066
4067 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4068
4069 error_check_comp_unit_head (header, section, abbrev_section);
4070
4071 return info_ptr;
4072 }
4073
4074 /* Fetch the abbreviation table offset from a comp or type unit header. */
4075
4076 static sect_offset
4077 read_abbrev_offset (struct dwarf2_section_info *section,
4078 sect_offset offset)
4079 {
4080 bfd *abfd = section->asection->owner;
4081 const gdb_byte *info_ptr;
4082 unsigned int length, initial_length_size, offset_size;
4083 sect_offset abbrev_offset;
4084
4085 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4086 info_ptr = section->buffer + offset.sect_off;
4087 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4088 offset_size = initial_length_size == 4 ? 4 : 8;
4089 info_ptr += initial_length_size + 2 /*version*/;
4090 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4091 return abbrev_offset;
4092 }
4093
4094 /* Allocate a new partial symtab for file named NAME and mark this new
4095 partial symtab as being an include of PST. */
4096
4097 static void
4098 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4099 struct objfile *objfile)
4100 {
4101 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4102
4103 if (!IS_ABSOLUTE_PATH (subpst->filename))
4104 {
4105 /* It shares objfile->objfile_obstack. */
4106 subpst->dirname = pst->dirname;
4107 }
4108
4109 subpst->section_offsets = pst->section_offsets;
4110 subpst->textlow = 0;
4111 subpst->texthigh = 0;
4112
4113 subpst->dependencies = (struct partial_symtab **)
4114 obstack_alloc (&objfile->objfile_obstack,
4115 sizeof (struct partial_symtab *));
4116 subpst->dependencies[0] = pst;
4117 subpst->number_of_dependencies = 1;
4118
4119 subpst->globals_offset = 0;
4120 subpst->n_global_syms = 0;
4121 subpst->statics_offset = 0;
4122 subpst->n_static_syms = 0;
4123 subpst->symtab = NULL;
4124 subpst->read_symtab = pst->read_symtab;
4125 subpst->readin = 0;
4126
4127 /* No private part is necessary for include psymtabs. This property
4128 can be used to differentiate between such include psymtabs and
4129 the regular ones. */
4130 subpst->read_symtab_private = NULL;
4131 }
4132
4133 /* Read the Line Number Program data and extract the list of files
4134 included by the source file represented by PST. Build an include
4135 partial symtab for each of these included files. */
4136
4137 static void
4138 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4139 struct die_info *die,
4140 struct partial_symtab *pst)
4141 {
4142 struct line_header *lh = NULL;
4143 struct attribute *attr;
4144
4145 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4146 if (attr)
4147 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4148 if (lh == NULL)
4149 return; /* No linetable, so no includes. */
4150
4151 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4152 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4153
4154 free_line_header (lh);
4155 }
4156
4157 static hashval_t
4158 hash_signatured_type (const void *item)
4159 {
4160 const struct signatured_type *sig_type = item;
4161
4162 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4163 return sig_type->signature;
4164 }
4165
4166 static int
4167 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4168 {
4169 const struct signatured_type *lhs = item_lhs;
4170 const struct signatured_type *rhs = item_rhs;
4171
4172 return lhs->signature == rhs->signature;
4173 }
4174
4175 /* Allocate a hash table for signatured types. */
4176
4177 static htab_t
4178 allocate_signatured_type_table (struct objfile *objfile)
4179 {
4180 return htab_create_alloc_ex (41,
4181 hash_signatured_type,
4182 eq_signatured_type,
4183 NULL,
4184 &objfile->objfile_obstack,
4185 hashtab_obstack_allocate,
4186 dummy_obstack_deallocate);
4187 }
4188
4189 /* A helper function to add a signatured type CU to a table. */
4190
4191 static int
4192 add_signatured_type_cu_to_table (void **slot, void *datum)
4193 {
4194 struct signatured_type *sigt = *slot;
4195 struct signatured_type ***datap = datum;
4196
4197 **datap = sigt;
4198 ++*datap;
4199
4200 return 1;
4201 }
4202
4203 /* Create the hash table of all entries in the .debug_types
4204 (or .debug_types.dwo) section(s).
4205 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4206 otherwise it is NULL.
4207
4208 The result is a pointer to the hash table or NULL if there are no types.
4209
4210 Note: This function processes DWO files only, not DWP files. */
4211
4212 static htab_t
4213 create_debug_types_hash_table (struct dwo_file *dwo_file,
4214 VEC (dwarf2_section_info_def) *types)
4215 {
4216 struct objfile *objfile = dwarf2_per_objfile->objfile;
4217 htab_t types_htab = NULL;
4218 int ix;
4219 struct dwarf2_section_info *section;
4220 struct dwarf2_section_info *abbrev_section;
4221
4222 if (VEC_empty (dwarf2_section_info_def, types))
4223 return NULL;
4224
4225 abbrev_section = (dwo_file != NULL
4226 ? &dwo_file->sections.abbrev
4227 : &dwarf2_per_objfile->abbrev);
4228
4229 if (dwarf2_read_debug)
4230 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4231 dwo_file ? ".dwo" : "",
4232 bfd_get_filename (abbrev_section->asection->owner));
4233
4234 for (ix = 0;
4235 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4236 ++ix)
4237 {
4238 bfd *abfd;
4239 const gdb_byte *info_ptr, *end_ptr;
4240 struct dwarf2_section_info *abbrev_section;
4241
4242 dwarf2_read_section (objfile, section);
4243 info_ptr = section->buffer;
4244
4245 if (info_ptr == NULL)
4246 continue;
4247
4248 /* We can't set abfd until now because the section may be empty or
4249 not present, in which case section->asection will be NULL. */
4250 abfd = section->asection->owner;
4251
4252 if (dwo_file)
4253 abbrev_section = &dwo_file->sections.abbrev;
4254 else
4255 abbrev_section = &dwarf2_per_objfile->abbrev;
4256
4257 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4258 because we don't need to read any dies: the signature is in the
4259 header. */
4260
4261 end_ptr = info_ptr + section->size;
4262 while (info_ptr < end_ptr)
4263 {
4264 sect_offset offset;
4265 cu_offset type_offset_in_tu;
4266 ULONGEST signature;
4267 struct signatured_type *sig_type;
4268 struct dwo_unit *dwo_tu;
4269 void **slot;
4270 const gdb_byte *ptr = info_ptr;
4271 struct comp_unit_head header;
4272 unsigned int length;
4273
4274 offset.sect_off = ptr - section->buffer;
4275
4276 /* We need to read the type's signature in order to build the hash
4277 table, but we don't need anything else just yet. */
4278
4279 ptr = read_and_check_type_unit_head (&header, section,
4280 abbrev_section, ptr,
4281 &signature, &type_offset_in_tu);
4282
4283 length = get_cu_length (&header);
4284
4285 /* Skip dummy type units. */
4286 if (ptr >= info_ptr + length
4287 || peek_abbrev_code (abfd, ptr) == 0)
4288 {
4289 info_ptr += length;
4290 continue;
4291 }
4292
4293 if (types_htab == NULL)
4294 {
4295 if (dwo_file)
4296 types_htab = allocate_dwo_unit_table (objfile);
4297 else
4298 types_htab = allocate_signatured_type_table (objfile);
4299 }
4300
4301 if (dwo_file)
4302 {
4303 sig_type = NULL;
4304 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4305 struct dwo_unit);
4306 dwo_tu->dwo_file = dwo_file;
4307 dwo_tu->signature = signature;
4308 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4309 dwo_tu->section = section;
4310 dwo_tu->offset = offset;
4311 dwo_tu->length = length;
4312 }
4313 else
4314 {
4315 /* N.B.: type_offset is not usable if this type uses a DWO file.
4316 The real type_offset is in the DWO file. */
4317 dwo_tu = NULL;
4318 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4319 struct signatured_type);
4320 sig_type->signature = signature;
4321 sig_type->type_offset_in_tu = type_offset_in_tu;
4322 sig_type->per_cu.objfile = objfile;
4323 sig_type->per_cu.is_debug_types = 1;
4324 sig_type->per_cu.section = section;
4325 sig_type->per_cu.offset = offset;
4326 sig_type->per_cu.length = length;
4327 }
4328
4329 slot = htab_find_slot (types_htab,
4330 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4331 INSERT);
4332 gdb_assert (slot != NULL);
4333 if (*slot != NULL)
4334 {
4335 sect_offset dup_offset;
4336
4337 if (dwo_file)
4338 {
4339 const struct dwo_unit *dup_tu = *slot;
4340
4341 dup_offset = dup_tu->offset;
4342 }
4343 else
4344 {
4345 const struct signatured_type *dup_tu = *slot;
4346
4347 dup_offset = dup_tu->per_cu.offset;
4348 }
4349
4350 complaint (&symfile_complaints,
4351 _("debug type entry at offset 0x%x is duplicate to"
4352 " the entry at offset 0x%x, signature %s"),
4353 offset.sect_off, dup_offset.sect_off,
4354 hex_string (signature));
4355 }
4356 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4357
4358 if (dwarf2_read_debug)
4359 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4360 offset.sect_off,
4361 hex_string (signature));
4362
4363 info_ptr += length;
4364 }
4365 }
4366
4367 return types_htab;
4368 }
4369
4370 /* Create the hash table of all entries in the .debug_types section,
4371 and initialize all_type_units.
4372 The result is zero if there is an error (e.g. missing .debug_types section),
4373 otherwise non-zero. */
4374
4375 static int
4376 create_all_type_units (struct objfile *objfile)
4377 {
4378 htab_t types_htab;
4379 struct signatured_type **iter;
4380
4381 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4382 if (types_htab == NULL)
4383 {
4384 dwarf2_per_objfile->signatured_types = NULL;
4385 return 0;
4386 }
4387
4388 dwarf2_per_objfile->signatured_types = types_htab;
4389
4390 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4391 dwarf2_per_objfile->all_type_units
4392 = xmalloc (dwarf2_per_objfile->n_type_units
4393 * sizeof (struct signatured_type *));
4394 iter = &dwarf2_per_objfile->all_type_units[0];
4395 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4396 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4397 == dwarf2_per_objfile->n_type_units);
4398
4399 return 1;
4400 }
4401
4402 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4403 Fill in SIG_ENTRY with DWO_ENTRY. */
4404
4405 static void
4406 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4407 struct signatured_type *sig_entry,
4408 struct dwo_unit *dwo_entry)
4409 {
4410 /* Make sure we're not clobbering something we don't expect to. */
4411 gdb_assert (! sig_entry->per_cu.queued);
4412 gdb_assert (sig_entry->per_cu.cu == NULL);
4413 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4414 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4415 gdb_assert (sig_entry->signature == dwo_entry->signature);
4416 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4417 gdb_assert (sig_entry->type_unit_group == NULL);
4418 gdb_assert (sig_entry->dwo_unit == NULL);
4419
4420 sig_entry->per_cu.section = dwo_entry->section;
4421 sig_entry->per_cu.offset = dwo_entry->offset;
4422 sig_entry->per_cu.length = dwo_entry->length;
4423 sig_entry->per_cu.reading_dwo_directly = 1;
4424 sig_entry->per_cu.objfile = objfile;
4425 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4426 sig_entry->dwo_unit = dwo_entry;
4427 }
4428
4429 /* Subroutine of lookup_signatured_type.
4430 If we haven't read the TU yet, create the signatured_type data structure
4431 for a TU to be read in directly from a DWO file, bypassing the stub.
4432 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4433 using .gdb_index, then when reading a CU we want to stay in the DWO file
4434 containing that CU. Otherwise we could end up reading several other DWO
4435 files (due to comdat folding) to process the transitive closure of all the
4436 mentioned TUs, and that can be slow. The current DWO file will have every
4437 type signature that it needs.
4438 We only do this for .gdb_index because in the psymtab case we already have
4439 to read all the DWOs to build the type unit groups. */
4440
4441 static struct signatured_type *
4442 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4443 {
4444 struct objfile *objfile = dwarf2_per_objfile->objfile;
4445 struct dwo_file *dwo_file;
4446 struct dwo_unit find_dwo_entry, *dwo_entry;
4447 struct signatured_type find_sig_entry, *sig_entry;
4448
4449 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4450
4451 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4452 dwo_unit of the TU itself. */
4453 dwo_file = cu->dwo_unit->dwo_file;
4454
4455 /* We only ever need to read in one copy of a signatured type.
4456 Just use the global signatured_types array. If this is the first time
4457 we're reading this type, replace the recorded data from .gdb_index with
4458 this TU. */
4459
4460 if (dwarf2_per_objfile->signatured_types == NULL)
4461 return NULL;
4462 find_sig_entry.signature = sig;
4463 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4464 if (sig_entry == NULL)
4465 return NULL;
4466
4467 /* We can get here with the TU already read, *or* in the process of being
4468 read. Don't reassign it if that's the case. Also note that if the TU is
4469 already being read, it may not have come from a DWO, the program may be
4470 a mix of Fission-compiled code and non-Fission-compiled code. */
4471 /* Have we already tried to read this TU? */
4472 if (sig_entry->per_cu.tu_read)
4473 return sig_entry;
4474
4475 /* Ok, this is the first time we're reading this TU. */
4476 if (dwo_file->tus == NULL)
4477 return NULL;
4478 find_dwo_entry.signature = sig;
4479 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4480 if (dwo_entry == NULL)
4481 return NULL;
4482
4483 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4484 sig_entry->per_cu.tu_read = 1;
4485 return sig_entry;
4486 }
4487
4488 /* Subroutine of lookup_dwp_signatured_type.
4489 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4490
4491 static struct signatured_type *
4492 add_type_unit (ULONGEST sig)
4493 {
4494 struct objfile *objfile = dwarf2_per_objfile->objfile;
4495 int n_type_units = dwarf2_per_objfile->n_type_units;
4496 struct signatured_type *sig_type;
4497 void **slot;
4498
4499 ++n_type_units;
4500 dwarf2_per_objfile->all_type_units =
4501 xrealloc (dwarf2_per_objfile->all_type_units,
4502 n_type_units * sizeof (struct signatured_type *));
4503 dwarf2_per_objfile->n_type_units = n_type_units;
4504 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4505 struct signatured_type);
4506 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4507 sig_type->signature = sig;
4508 sig_type->per_cu.is_debug_types = 1;
4509 sig_type->per_cu.v.quick =
4510 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4511 struct dwarf2_per_cu_quick_data);
4512 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4513 sig_type, INSERT);
4514 gdb_assert (*slot == NULL);
4515 *slot = sig_type;
4516 /* The rest of sig_type must be filled in by the caller. */
4517 return sig_type;
4518 }
4519
4520 /* Subroutine of lookup_signatured_type.
4521 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4522 then try the DWP file.
4523 Normally this "can't happen", but if there's a bug in signature
4524 generation and/or the DWP file is built incorrectly, it can happen.
4525 Using the type directly from the DWP file means we don't have the stub
4526 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4527 not critical. [Eventually the stub may go away for type units anyway.] */
4528
4529 static struct signatured_type *
4530 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4531 {
4532 struct objfile *objfile = dwarf2_per_objfile->objfile;
4533 struct dwp_file *dwp_file = get_dwp_file ();
4534 struct dwo_unit *dwo_entry;
4535 struct signatured_type find_sig_entry, *sig_entry;
4536
4537 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4538 gdb_assert (dwp_file != NULL);
4539
4540 if (dwarf2_per_objfile->signatured_types != NULL)
4541 {
4542 find_sig_entry.signature = sig;
4543 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4544 &find_sig_entry);
4545 if (sig_entry != NULL)
4546 return sig_entry;
4547 }
4548
4549 /* This is the "shouldn't happen" case.
4550 Try the DWP file and hope for the best. */
4551 if (dwp_file->tus == NULL)
4552 return NULL;
4553 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4554 sig, 1 /* is_debug_types */);
4555 if (dwo_entry == NULL)
4556 return NULL;
4557
4558 sig_entry = add_type_unit (sig);
4559 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4560
4561 /* The caller will signal a complaint if we return NULL.
4562 Here we don't return NULL but we still want to complain. */
4563 complaint (&symfile_complaints,
4564 _("Bad type signature %s referenced by %s at 0x%x,"
4565 " coping by using copy in DWP [in module %s]"),
4566 hex_string (sig),
4567 cu->per_cu->is_debug_types ? "TU" : "CU",
4568 cu->per_cu->offset.sect_off,
4569 objfile->name);
4570
4571 return sig_entry;
4572 }
4573
4574 /* Lookup a signature based type for DW_FORM_ref_sig8.
4575 Returns NULL if signature SIG is not present in the table.
4576 It is up to the caller to complain about this. */
4577
4578 static struct signatured_type *
4579 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4580 {
4581 if (cu->dwo_unit
4582 && dwarf2_per_objfile->using_index)
4583 {
4584 /* We're in a DWO/DWP file, and we're using .gdb_index.
4585 These cases require special processing. */
4586 if (get_dwp_file () == NULL)
4587 return lookup_dwo_signatured_type (cu, sig);
4588 else
4589 return lookup_dwp_signatured_type (cu, sig);
4590 }
4591 else
4592 {
4593 struct signatured_type find_entry, *entry;
4594
4595 if (dwarf2_per_objfile->signatured_types == NULL)
4596 return NULL;
4597 find_entry.signature = sig;
4598 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4599 return entry;
4600 }
4601 }
4602 \f
4603 /* Low level DIE reading support. */
4604
4605 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4606
4607 static void
4608 init_cu_die_reader (struct die_reader_specs *reader,
4609 struct dwarf2_cu *cu,
4610 struct dwarf2_section_info *section,
4611 struct dwo_file *dwo_file)
4612 {
4613 gdb_assert (section->readin && section->buffer != NULL);
4614 reader->abfd = section->asection->owner;
4615 reader->cu = cu;
4616 reader->dwo_file = dwo_file;
4617 reader->die_section = section;
4618 reader->buffer = section->buffer;
4619 reader->buffer_end = section->buffer + section->size;
4620 reader->comp_dir = NULL;
4621 }
4622
4623 /* Subroutine of init_cutu_and_read_dies to simplify it.
4624 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4625 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4626 already.
4627
4628 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4629 from it to the DIE in the DWO. If NULL we are skipping the stub.
4630 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4631 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4632 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4633 COMP_DIR must be non-NULL.
4634 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4635 are filled in with the info of the DIE from the DWO file.
4636 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4637 provided an abbrev table to use.
4638 The result is non-zero if a valid (non-dummy) DIE was found. */
4639
4640 static int
4641 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4642 struct dwo_unit *dwo_unit,
4643 int abbrev_table_provided,
4644 struct die_info *stub_comp_unit_die,
4645 const char *stub_comp_dir,
4646 struct die_reader_specs *result_reader,
4647 const gdb_byte **result_info_ptr,
4648 struct die_info **result_comp_unit_die,
4649 int *result_has_children)
4650 {
4651 struct objfile *objfile = dwarf2_per_objfile->objfile;
4652 struct dwarf2_cu *cu = this_cu->cu;
4653 struct dwarf2_section_info *section;
4654 bfd *abfd;
4655 const gdb_byte *begin_info_ptr, *info_ptr;
4656 const char *comp_dir_string;
4657 ULONGEST signature; /* Or dwo_id. */
4658 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4659 int i,num_extra_attrs;
4660 struct dwarf2_section_info *dwo_abbrev_section;
4661 struct attribute *attr;
4662 struct attribute comp_dir_attr;
4663 struct die_info *comp_unit_die;
4664
4665 /* Both can't be provided. */
4666 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4667
4668 /* These attributes aren't processed until later:
4669 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4670 However, the attribute is found in the stub which we won't have later.
4671 In order to not impose this complication on the rest of the code,
4672 we read them here and copy them to the DWO CU/TU die. */
4673
4674 stmt_list = NULL;
4675 low_pc = NULL;
4676 high_pc = NULL;
4677 ranges = NULL;
4678 comp_dir = NULL;
4679
4680 if (stub_comp_unit_die != NULL)
4681 {
4682 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4683 DWO file. */
4684 if (! this_cu->is_debug_types)
4685 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4686 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4687 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4688 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4689 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4690
4691 /* There should be a DW_AT_addr_base attribute here (if needed).
4692 We need the value before we can process DW_FORM_GNU_addr_index. */
4693 cu->addr_base = 0;
4694 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4695 if (attr)
4696 cu->addr_base = DW_UNSND (attr);
4697
4698 /* There should be a DW_AT_ranges_base attribute here (if needed).
4699 We need the value before we can process DW_AT_ranges. */
4700 cu->ranges_base = 0;
4701 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4702 if (attr)
4703 cu->ranges_base = DW_UNSND (attr);
4704 }
4705 else if (stub_comp_dir != NULL)
4706 {
4707 /* Reconstruct the comp_dir attribute to simplify the code below. */
4708 comp_dir = (struct attribute *)
4709 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4710 comp_dir->name = DW_AT_comp_dir;
4711 comp_dir->form = DW_FORM_string;
4712 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4713 DW_STRING (comp_dir) = stub_comp_dir;
4714 }
4715
4716 /* Set up for reading the DWO CU/TU. */
4717 cu->dwo_unit = dwo_unit;
4718 section = dwo_unit->section;
4719 dwarf2_read_section (objfile, section);
4720 abfd = section->asection->owner;
4721 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4722 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4723 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4724
4725 if (this_cu->is_debug_types)
4726 {
4727 ULONGEST header_signature;
4728 cu_offset type_offset_in_tu;
4729 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4730
4731 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4732 dwo_abbrev_section,
4733 info_ptr,
4734 &header_signature,
4735 &type_offset_in_tu);
4736 /* This is not an assert because it can be caused by bad debug info. */
4737 if (sig_type->signature != header_signature)
4738 {
4739 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4740 " TU at offset 0x%x [in module %s]"),
4741 hex_string (sig_type->signature),
4742 hex_string (header_signature),
4743 dwo_unit->offset.sect_off,
4744 bfd_get_filename (abfd));
4745 }
4746 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4747 /* For DWOs coming from DWP files, we don't know the CU length
4748 nor the type's offset in the TU until now. */
4749 dwo_unit->length = get_cu_length (&cu->header);
4750 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4751
4752 /* Establish the type offset that can be used to lookup the type.
4753 For DWO files, we don't know it until now. */
4754 sig_type->type_offset_in_section.sect_off =
4755 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4756 }
4757 else
4758 {
4759 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4760 dwo_abbrev_section,
4761 info_ptr, 0);
4762 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4763 /* For DWOs coming from DWP files, we don't know the CU length
4764 until now. */
4765 dwo_unit->length = get_cu_length (&cu->header);
4766 }
4767
4768 /* Replace the CU's original abbrev table with the DWO's.
4769 Reminder: We can't read the abbrev table until we've read the header. */
4770 if (abbrev_table_provided)
4771 {
4772 /* Don't free the provided abbrev table, the caller of
4773 init_cutu_and_read_dies owns it. */
4774 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4775 /* Ensure the DWO abbrev table gets freed. */
4776 make_cleanup (dwarf2_free_abbrev_table, cu);
4777 }
4778 else
4779 {
4780 dwarf2_free_abbrev_table (cu);
4781 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4782 /* Leave any existing abbrev table cleanup as is. */
4783 }
4784
4785 /* Read in the die, but leave space to copy over the attributes
4786 from the stub. This has the benefit of simplifying the rest of
4787 the code - all the work to maintain the illusion of a single
4788 DW_TAG_{compile,type}_unit DIE is done here. */
4789 num_extra_attrs = ((stmt_list != NULL)
4790 + (low_pc != NULL)
4791 + (high_pc != NULL)
4792 + (ranges != NULL)
4793 + (comp_dir != NULL));
4794 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4795 result_has_children, num_extra_attrs);
4796
4797 /* Copy over the attributes from the stub to the DIE we just read in. */
4798 comp_unit_die = *result_comp_unit_die;
4799 i = comp_unit_die->num_attrs;
4800 if (stmt_list != NULL)
4801 comp_unit_die->attrs[i++] = *stmt_list;
4802 if (low_pc != NULL)
4803 comp_unit_die->attrs[i++] = *low_pc;
4804 if (high_pc != NULL)
4805 comp_unit_die->attrs[i++] = *high_pc;
4806 if (ranges != NULL)
4807 comp_unit_die->attrs[i++] = *ranges;
4808 if (comp_dir != NULL)
4809 comp_unit_die->attrs[i++] = *comp_dir;
4810 comp_unit_die->num_attrs += num_extra_attrs;
4811
4812 if (dwarf2_die_debug)
4813 {
4814 fprintf_unfiltered (gdb_stdlog,
4815 "Read die from %s@0x%x of %s:\n",
4816 bfd_section_name (abfd, section->asection),
4817 (unsigned) (begin_info_ptr - section->buffer),
4818 bfd_get_filename (abfd));
4819 dump_die (comp_unit_die, dwarf2_die_debug);
4820 }
4821
4822 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4823 TUs by skipping the stub and going directly to the entry in the DWO file.
4824 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4825 to get it via circuitous means. Blech. */
4826 if (comp_dir != NULL)
4827 result_reader->comp_dir = DW_STRING (comp_dir);
4828
4829 /* Skip dummy compilation units. */
4830 if (info_ptr >= begin_info_ptr + dwo_unit->length
4831 || peek_abbrev_code (abfd, info_ptr) == 0)
4832 return 0;
4833
4834 *result_info_ptr = info_ptr;
4835 return 1;
4836 }
4837
4838 /* Subroutine of init_cutu_and_read_dies to simplify it.
4839 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4840 Returns NULL if the specified DWO unit cannot be found. */
4841
4842 static struct dwo_unit *
4843 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4844 struct die_info *comp_unit_die)
4845 {
4846 struct dwarf2_cu *cu = this_cu->cu;
4847 struct attribute *attr;
4848 ULONGEST signature;
4849 struct dwo_unit *dwo_unit;
4850 const char *comp_dir, *dwo_name;
4851
4852 gdb_assert (cu != NULL);
4853
4854 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4855 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4856 gdb_assert (attr != NULL);
4857 dwo_name = DW_STRING (attr);
4858 comp_dir = NULL;
4859 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4860 if (attr)
4861 comp_dir = DW_STRING (attr);
4862
4863 if (this_cu->is_debug_types)
4864 {
4865 struct signatured_type *sig_type;
4866
4867 /* Since this_cu is the first member of struct signatured_type,
4868 we can go from a pointer to one to a pointer to the other. */
4869 sig_type = (struct signatured_type *) this_cu;
4870 signature = sig_type->signature;
4871 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4872 }
4873 else
4874 {
4875 struct attribute *attr;
4876
4877 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4878 if (! attr)
4879 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4880 " [in module %s]"),
4881 dwo_name, this_cu->objfile->name);
4882 signature = DW_UNSND (attr);
4883 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4884 signature);
4885 }
4886
4887 return dwo_unit;
4888 }
4889
4890 /* Subroutine of init_cutu_and_read_dies to simplify it.
4891 Read a TU directly from a DWO file, bypassing the stub. */
4892
4893 static void
4894 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4895 die_reader_func_ftype *die_reader_func,
4896 void *data)
4897 {
4898 struct dwarf2_cu *cu;
4899 struct signatured_type *sig_type;
4900 struct cleanup *cleanups, *free_cu_cleanup;
4901 struct die_reader_specs reader;
4902 const gdb_byte *info_ptr;
4903 struct die_info *comp_unit_die;
4904 int has_children;
4905
4906 /* Verify we can do the following downcast, and that we have the
4907 data we need. */
4908 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4909 sig_type = (struct signatured_type *) this_cu;
4910 gdb_assert (sig_type->dwo_unit != NULL);
4911
4912 cleanups = make_cleanup (null_cleanup, NULL);
4913
4914 gdb_assert (this_cu->cu == NULL);
4915 cu = xmalloc (sizeof (*cu));
4916 init_one_comp_unit (cu, this_cu);
4917 /* If an error occurs while loading, release our storage. */
4918 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4919
4920 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4921 0 /* abbrev_table_provided */,
4922 NULL /* stub_comp_unit_die */,
4923 sig_type->dwo_unit->dwo_file->comp_dir,
4924 &reader, &info_ptr,
4925 &comp_unit_die, &has_children) == 0)
4926 {
4927 /* Dummy die. */
4928 do_cleanups (cleanups);
4929 return;
4930 }
4931
4932 /* All the "real" work is done here. */
4933 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4934
4935 /* This duplicates some code in init_cutu_and_read_dies,
4936 but the alternative is making the latter more complex.
4937 This function is only for the special case of using DWO files directly:
4938 no point in overly complicating the general case just to handle this. */
4939 if (keep)
4940 {
4941 /* We've successfully allocated this compilation unit. Let our
4942 caller clean it up when finished with it. */
4943 discard_cleanups (free_cu_cleanup);
4944
4945 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4946 So we have to manually free the abbrev table. */
4947 dwarf2_free_abbrev_table (cu);
4948
4949 /* Link this CU into read_in_chain. */
4950 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4951 dwarf2_per_objfile->read_in_chain = this_cu;
4952 }
4953 else
4954 do_cleanups (free_cu_cleanup);
4955
4956 do_cleanups (cleanups);
4957 }
4958
4959 /* Initialize a CU (or TU) and read its DIEs.
4960 If the CU defers to a DWO file, read the DWO file as well.
4961
4962 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4963 Otherwise the table specified in the comp unit header is read in and used.
4964 This is an optimization for when we already have the abbrev table.
4965
4966 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4967 Otherwise, a new CU is allocated with xmalloc.
4968
4969 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4970 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4971
4972 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4973 linker) then DIE_READER_FUNC will not get called. */
4974
4975 static void
4976 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4977 struct abbrev_table *abbrev_table,
4978 int use_existing_cu, int keep,
4979 die_reader_func_ftype *die_reader_func,
4980 void *data)
4981 {
4982 struct objfile *objfile = dwarf2_per_objfile->objfile;
4983 struct dwarf2_section_info *section = this_cu->section;
4984 bfd *abfd = section->asection->owner;
4985 struct dwarf2_cu *cu;
4986 const gdb_byte *begin_info_ptr, *info_ptr;
4987 struct die_reader_specs reader;
4988 struct die_info *comp_unit_die;
4989 int has_children;
4990 struct attribute *attr;
4991 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4992 struct signatured_type *sig_type = NULL;
4993 struct dwarf2_section_info *abbrev_section;
4994 /* Non-zero if CU currently points to a DWO file and we need to
4995 reread it. When this happens we need to reread the skeleton die
4996 before we can reread the DWO file (this only applies to CUs, not TUs). */
4997 int rereading_dwo_cu = 0;
4998
4999 if (dwarf2_die_debug)
5000 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5001 this_cu->is_debug_types ? "type" : "comp",
5002 this_cu->offset.sect_off);
5003
5004 if (use_existing_cu)
5005 gdb_assert (keep);
5006
5007 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5008 file (instead of going through the stub), short-circuit all of this. */
5009 if (this_cu->reading_dwo_directly)
5010 {
5011 /* Narrow down the scope of possibilities to have to understand. */
5012 gdb_assert (this_cu->is_debug_types);
5013 gdb_assert (abbrev_table == NULL);
5014 gdb_assert (!use_existing_cu);
5015 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5016 return;
5017 }
5018
5019 cleanups = make_cleanup (null_cleanup, NULL);
5020
5021 /* This is cheap if the section is already read in. */
5022 dwarf2_read_section (objfile, section);
5023
5024 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5025
5026 abbrev_section = get_abbrev_section_for_cu (this_cu);
5027
5028 if (use_existing_cu && this_cu->cu != NULL)
5029 {
5030 cu = this_cu->cu;
5031
5032 /* If this CU is from a DWO file we need to start over, we need to
5033 refetch the attributes from the skeleton CU.
5034 This could be optimized by retrieving those attributes from when we
5035 were here the first time: the previous comp_unit_die was stored in
5036 comp_unit_obstack. But there's no data yet that we need this
5037 optimization. */
5038 if (cu->dwo_unit != NULL)
5039 rereading_dwo_cu = 1;
5040 }
5041 else
5042 {
5043 /* If !use_existing_cu, this_cu->cu must be NULL. */
5044 gdb_assert (this_cu->cu == NULL);
5045
5046 cu = xmalloc (sizeof (*cu));
5047 init_one_comp_unit (cu, this_cu);
5048
5049 /* If an error occurs while loading, release our storage. */
5050 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5051 }
5052
5053 /* Get the header. */
5054 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5055 {
5056 /* We already have the header, there's no need to read it in again. */
5057 info_ptr += cu->header.first_die_offset.cu_off;
5058 }
5059 else
5060 {
5061 if (this_cu->is_debug_types)
5062 {
5063 ULONGEST signature;
5064 cu_offset type_offset_in_tu;
5065
5066 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5067 abbrev_section, info_ptr,
5068 &signature,
5069 &type_offset_in_tu);
5070
5071 /* Since per_cu is the first member of struct signatured_type,
5072 we can go from a pointer to one to a pointer to the other. */
5073 sig_type = (struct signatured_type *) this_cu;
5074 gdb_assert (sig_type->signature == signature);
5075 gdb_assert (sig_type->type_offset_in_tu.cu_off
5076 == type_offset_in_tu.cu_off);
5077 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5078
5079 /* LENGTH has not been set yet for type units if we're
5080 using .gdb_index. */
5081 this_cu->length = get_cu_length (&cu->header);
5082
5083 /* Establish the type offset that can be used to lookup the type. */
5084 sig_type->type_offset_in_section.sect_off =
5085 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5086 }
5087 else
5088 {
5089 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5090 abbrev_section,
5091 info_ptr, 0);
5092
5093 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5094 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5095 }
5096 }
5097
5098 /* Skip dummy compilation units. */
5099 if (info_ptr >= begin_info_ptr + this_cu->length
5100 || peek_abbrev_code (abfd, info_ptr) == 0)
5101 {
5102 do_cleanups (cleanups);
5103 return;
5104 }
5105
5106 /* If we don't have them yet, read the abbrevs for this compilation unit.
5107 And if we need to read them now, make sure they're freed when we're
5108 done. Note that it's important that if the CU had an abbrev table
5109 on entry we don't free it when we're done: Somewhere up the call stack
5110 it may be in use. */
5111 if (abbrev_table != NULL)
5112 {
5113 gdb_assert (cu->abbrev_table == NULL);
5114 gdb_assert (cu->header.abbrev_offset.sect_off
5115 == abbrev_table->offset.sect_off);
5116 cu->abbrev_table = abbrev_table;
5117 }
5118 else if (cu->abbrev_table == NULL)
5119 {
5120 dwarf2_read_abbrevs (cu, abbrev_section);
5121 make_cleanup (dwarf2_free_abbrev_table, cu);
5122 }
5123 else if (rereading_dwo_cu)
5124 {
5125 dwarf2_free_abbrev_table (cu);
5126 dwarf2_read_abbrevs (cu, abbrev_section);
5127 }
5128
5129 /* Read the top level CU/TU die. */
5130 init_cu_die_reader (&reader, cu, section, NULL);
5131 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5132
5133 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5134 from the DWO file.
5135 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5136 DWO CU, that this test will fail (the attribute will not be present). */
5137 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5138 if (attr)
5139 {
5140 struct dwo_unit *dwo_unit;
5141 struct die_info *dwo_comp_unit_die;
5142
5143 if (has_children)
5144 {
5145 complaint (&symfile_complaints,
5146 _("compilation unit with DW_AT_GNU_dwo_name"
5147 " has children (offset 0x%x) [in module %s]"),
5148 this_cu->offset.sect_off, bfd_get_filename (abfd));
5149 }
5150 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5151 if (dwo_unit != NULL)
5152 {
5153 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5154 abbrev_table != NULL,
5155 comp_unit_die, NULL,
5156 &reader, &info_ptr,
5157 &dwo_comp_unit_die, &has_children) == 0)
5158 {
5159 /* Dummy die. */
5160 do_cleanups (cleanups);
5161 return;
5162 }
5163 comp_unit_die = dwo_comp_unit_die;
5164 }
5165 else
5166 {
5167 /* Yikes, we couldn't find the rest of the DIE, we only have
5168 the stub. A complaint has already been logged. There's
5169 not much more we can do except pass on the stub DIE to
5170 die_reader_func. We don't want to throw an error on bad
5171 debug info. */
5172 }
5173 }
5174
5175 /* All of the above is setup for this call. Yikes. */
5176 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5177
5178 /* Done, clean up. */
5179 if (free_cu_cleanup != NULL)
5180 {
5181 if (keep)
5182 {
5183 /* We've successfully allocated this compilation unit. Let our
5184 caller clean it up when finished with it. */
5185 discard_cleanups (free_cu_cleanup);
5186
5187 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5188 So we have to manually free the abbrev table. */
5189 dwarf2_free_abbrev_table (cu);
5190
5191 /* Link this CU into read_in_chain. */
5192 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5193 dwarf2_per_objfile->read_in_chain = this_cu;
5194 }
5195 else
5196 do_cleanups (free_cu_cleanup);
5197 }
5198
5199 do_cleanups (cleanups);
5200 }
5201
5202 /* Read CU/TU THIS_CU in section SECTION,
5203 but do not follow DW_AT_GNU_dwo_name if present.
5204 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5205 to have already done the lookup to find the DWO/DWP file).
5206
5207 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5208 THIS_CU->is_debug_types, but nothing else.
5209
5210 We fill in THIS_CU->length.
5211
5212 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5213 linker) then DIE_READER_FUNC will not get called.
5214
5215 THIS_CU->cu is always freed when done.
5216 This is done in order to not leave THIS_CU->cu in a state where we have
5217 to care whether it refers to the "main" CU or the DWO CU. */
5218
5219 static void
5220 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5221 struct dwarf2_section_info *abbrev_section,
5222 struct dwo_file *dwo_file,
5223 die_reader_func_ftype *die_reader_func,
5224 void *data)
5225 {
5226 struct objfile *objfile = dwarf2_per_objfile->objfile;
5227 struct dwarf2_section_info *section = this_cu->section;
5228 bfd *abfd = section->asection->owner;
5229 struct dwarf2_cu cu;
5230 const gdb_byte *begin_info_ptr, *info_ptr;
5231 struct die_reader_specs reader;
5232 struct cleanup *cleanups;
5233 struct die_info *comp_unit_die;
5234 int has_children;
5235
5236 if (dwarf2_die_debug)
5237 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5238 this_cu->is_debug_types ? "type" : "comp",
5239 this_cu->offset.sect_off);
5240
5241 gdb_assert (this_cu->cu == NULL);
5242
5243 /* This is cheap if the section is already read in. */
5244 dwarf2_read_section (objfile, section);
5245
5246 init_one_comp_unit (&cu, this_cu);
5247
5248 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5249
5250 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5251 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5252 abbrev_section, info_ptr,
5253 this_cu->is_debug_types);
5254
5255 this_cu->length = get_cu_length (&cu.header);
5256
5257 /* Skip dummy compilation units. */
5258 if (info_ptr >= begin_info_ptr + this_cu->length
5259 || peek_abbrev_code (abfd, info_ptr) == 0)
5260 {
5261 do_cleanups (cleanups);
5262 return;
5263 }
5264
5265 dwarf2_read_abbrevs (&cu, abbrev_section);
5266 make_cleanup (dwarf2_free_abbrev_table, &cu);
5267
5268 init_cu_die_reader (&reader, &cu, section, dwo_file);
5269 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5270
5271 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5272
5273 do_cleanups (cleanups);
5274 }
5275
5276 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5277 does not lookup the specified DWO file.
5278 This cannot be used to read DWO files.
5279
5280 THIS_CU->cu is always freed when done.
5281 This is done in order to not leave THIS_CU->cu in a state where we have
5282 to care whether it refers to the "main" CU or the DWO CU.
5283 We can revisit this if the data shows there's a performance issue. */
5284
5285 static void
5286 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5287 die_reader_func_ftype *die_reader_func,
5288 void *data)
5289 {
5290 init_cutu_and_read_dies_no_follow (this_cu,
5291 get_abbrev_section_for_cu (this_cu),
5292 NULL,
5293 die_reader_func, data);
5294 }
5295 \f
5296 /* Type Unit Groups.
5297
5298 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5299 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5300 so that all types coming from the same compilation (.o file) are grouped
5301 together. A future step could be to put the types in the same symtab as
5302 the CU the types ultimately came from. */
5303
5304 static hashval_t
5305 hash_type_unit_group (const void *item)
5306 {
5307 const struct type_unit_group *tu_group = item;
5308
5309 return hash_stmt_list_entry (&tu_group->hash);
5310 }
5311
5312 static int
5313 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5314 {
5315 const struct type_unit_group *lhs = item_lhs;
5316 const struct type_unit_group *rhs = item_rhs;
5317
5318 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5319 }
5320
5321 /* Allocate a hash table for type unit groups. */
5322
5323 static htab_t
5324 allocate_type_unit_groups_table (void)
5325 {
5326 return htab_create_alloc_ex (3,
5327 hash_type_unit_group,
5328 eq_type_unit_group,
5329 NULL,
5330 &dwarf2_per_objfile->objfile->objfile_obstack,
5331 hashtab_obstack_allocate,
5332 dummy_obstack_deallocate);
5333 }
5334
5335 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5336 partial symtabs. We combine several TUs per psymtab to not let the size
5337 of any one psymtab grow too big. */
5338 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5339 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5340
5341 /* Helper routine for get_type_unit_group.
5342 Create the type_unit_group object used to hold one or more TUs. */
5343
5344 static struct type_unit_group *
5345 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5346 {
5347 struct objfile *objfile = dwarf2_per_objfile->objfile;
5348 struct dwarf2_per_cu_data *per_cu;
5349 struct type_unit_group *tu_group;
5350
5351 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5352 struct type_unit_group);
5353 per_cu = &tu_group->per_cu;
5354 per_cu->objfile = objfile;
5355
5356 if (dwarf2_per_objfile->using_index)
5357 {
5358 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5359 struct dwarf2_per_cu_quick_data);
5360 }
5361 else
5362 {
5363 unsigned int line_offset = line_offset_struct.sect_off;
5364 struct partial_symtab *pst;
5365 char *name;
5366
5367 /* Give the symtab a useful name for debug purposes. */
5368 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5369 name = xstrprintf ("<type_units_%d>",
5370 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5371 else
5372 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5373
5374 pst = create_partial_symtab (per_cu, name);
5375 pst->anonymous = 1;
5376
5377 xfree (name);
5378 }
5379
5380 tu_group->hash.dwo_unit = cu->dwo_unit;
5381 tu_group->hash.line_offset = line_offset_struct;
5382
5383 return tu_group;
5384 }
5385
5386 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5387 STMT_LIST is a DW_AT_stmt_list attribute. */
5388
5389 static struct type_unit_group *
5390 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5391 {
5392 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5393 struct type_unit_group *tu_group;
5394 void **slot;
5395 unsigned int line_offset;
5396 struct type_unit_group type_unit_group_for_lookup;
5397
5398 if (dwarf2_per_objfile->type_unit_groups == NULL)
5399 {
5400 dwarf2_per_objfile->type_unit_groups =
5401 allocate_type_unit_groups_table ();
5402 }
5403
5404 /* Do we need to create a new group, or can we use an existing one? */
5405
5406 if (stmt_list)
5407 {
5408 line_offset = DW_UNSND (stmt_list);
5409 ++tu_stats->nr_symtab_sharers;
5410 }
5411 else
5412 {
5413 /* Ugh, no stmt_list. Rare, but we have to handle it.
5414 We can do various things here like create one group per TU or
5415 spread them over multiple groups to split up the expansion work.
5416 To avoid worst case scenarios (too many groups or too large groups)
5417 we, umm, group them in bunches. */
5418 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5419 | (tu_stats->nr_stmt_less_type_units
5420 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5421 ++tu_stats->nr_stmt_less_type_units;
5422 }
5423
5424 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5425 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5426 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5427 &type_unit_group_for_lookup, INSERT);
5428 if (*slot != NULL)
5429 {
5430 tu_group = *slot;
5431 gdb_assert (tu_group != NULL);
5432 }
5433 else
5434 {
5435 sect_offset line_offset_struct;
5436
5437 line_offset_struct.sect_off = line_offset;
5438 tu_group = create_type_unit_group (cu, line_offset_struct);
5439 *slot = tu_group;
5440 ++tu_stats->nr_symtabs;
5441 }
5442
5443 return tu_group;
5444 }
5445
5446 /* Struct used to sort TUs by their abbreviation table offset. */
5447
5448 struct tu_abbrev_offset
5449 {
5450 struct signatured_type *sig_type;
5451 sect_offset abbrev_offset;
5452 };
5453
5454 /* Helper routine for build_type_unit_groups, passed to qsort. */
5455
5456 static int
5457 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5458 {
5459 const struct tu_abbrev_offset * const *a = ap;
5460 const struct tu_abbrev_offset * const *b = bp;
5461 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5462 unsigned int boff = (*b)->abbrev_offset.sect_off;
5463
5464 return (aoff > boff) - (aoff < boff);
5465 }
5466
5467 /* A helper function to add a type_unit_group to a table. */
5468
5469 static int
5470 add_type_unit_group_to_table (void **slot, void *datum)
5471 {
5472 struct type_unit_group *tu_group = *slot;
5473 struct type_unit_group ***datap = datum;
5474
5475 **datap = tu_group;
5476 ++*datap;
5477
5478 return 1;
5479 }
5480
5481 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5482 each one passing FUNC,DATA.
5483
5484 The efficiency is because we sort TUs by the abbrev table they use and
5485 only read each abbrev table once. In one program there are 200K TUs
5486 sharing 8K abbrev tables.
5487
5488 The main purpose of this function is to support building the
5489 dwarf2_per_objfile->type_unit_groups table.
5490 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5491 can collapse the search space by grouping them by stmt_list.
5492 The savings can be significant, in the same program from above the 200K TUs
5493 share 8K stmt_list tables.
5494
5495 FUNC is expected to call get_type_unit_group, which will create the
5496 struct type_unit_group if necessary and add it to
5497 dwarf2_per_objfile->type_unit_groups. */
5498
5499 static void
5500 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5501 {
5502 struct objfile *objfile = dwarf2_per_objfile->objfile;
5503 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5504 struct cleanup *cleanups;
5505 struct abbrev_table *abbrev_table;
5506 sect_offset abbrev_offset;
5507 struct tu_abbrev_offset *sorted_by_abbrev;
5508 struct type_unit_group **iter;
5509 int i;
5510
5511 /* It's up to the caller to not call us multiple times. */
5512 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5513
5514 if (dwarf2_per_objfile->n_type_units == 0)
5515 return;
5516
5517 /* TUs typically share abbrev tables, and there can be way more TUs than
5518 abbrev tables. Sort by abbrev table to reduce the number of times we
5519 read each abbrev table in.
5520 Alternatives are to punt or to maintain a cache of abbrev tables.
5521 This is simpler and efficient enough for now.
5522
5523 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5524 symtab to use). Typically TUs with the same abbrev offset have the same
5525 stmt_list value too so in practice this should work well.
5526
5527 The basic algorithm here is:
5528
5529 sort TUs by abbrev table
5530 for each TU with same abbrev table:
5531 read abbrev table if first user
5532 read TU top level DIE
5533 [IWBN if DWO skeletons had DW_AT_stmt_list]
5534 call FUNC */
5535
5536 if (dwarf2_read_debug)
5537 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5538
5539 /* Sort in a separate table to maintain the order of all_type_units
5540 for .gdb_index: TU indices directly index all_type_units. */
5541 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5542 dwarf2_per_objfile->n_type_units);
5543 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5544 {
5545 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5546
5547 sorted_by_abbrev[i].sig_type = sig_type;
5548 sorted_by_abbrev[i].abbrev_offset =
5549 read_abbrev_offset (sig_type->per_cu.section,
5550 sig_type->per_cu.offset);
5551 }
5552 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5553 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5554 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5555
5556 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5557 called any number of times, so we don't reset tu_stats here. */
5558
5559 abbrev_offset.sect_off = ~(unsigned) 0;
5560 abbrev_table = NULL;
5561 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5562
5563 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5564 {
5565 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5566
5567 /* Switch to the next abbrev table if necessary. */
5568 if (abbrev_table == NULL
5569 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5570 {
5571 if (abbrev_table != NULL)
5572 {
5573 abbrev_table_free (abbrev_table);
5574 /* Reset to NULL in case abbrev_table_read_table throws
5575 an error: abbrev_table_free_cleanup will get called. */
5576 abbrev_table = NULL;
5577 }
5578 abbrev_offset = tu->abbrev_offset;
5579 abbrev_table =
5580 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5581 abbrev_offset);
5582 ++tu_stats->nr_uniq_abbrev_tables;
5583 }
5584
5585 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5586 func, data);
5587 }
5588
5589 /* type_unit_groups can be NULL if there is an error in the debug info.
5590 Just create an empty table so the rest of gdb doesn't have to watch
5591 for this error case. */
5592 if (dwarf2_per_objfile->type_unit_groups == NULL)
5593 {
5594 dwarf2_per_objfile->type_unit_groups =
5595 allocate_type_unit_groups_table ();
5596 dwarf2_per_objfile->n_type_unit_groups = 0;
5597 }
5598
5599 /* Create a vector of pointers to primary type units to make it easy to
5600 iterate over them and CUs. See dw2_get_primary_cu. */
5601 dwarf2_per_objfile->n_type_unit_groups =
5602 htab_elements (dwarf2_per_objfile->type_unit_groups);
5603 dwarf2_per_objfile->all_type_unit_groups =
5604 obstack_alloc (&objfile->objfile_obstack,
5605 dwarf2_per_objfile->n_type_unit_groups
5606 * sizeof (struct type_unit_group *));
5607 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5608 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5609 add_type_unit_group_to_table, &iter);
5610 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5611 == dwarf2_per_objfile->n_type_unit_groups);
5612
5613 do_cleanups (cleanups);
5614
5615 if (dwarf2_read_debug)
5616 {
5617 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5618 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5619 dwarf2_per_objfile->n_type_units);
5620 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5621 tu_stats->nr_uniq_abbrev_tables);
5622 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5623 tu_stats->nr_symtabs);
5624 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5625 tu_stats->nr_symtab_sharers);
5626 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5627 tu_stats->nr_stmt_less_type_units);
5628 }
5629 }
5630 \f
5631 /* Partial symbol tables. */
5632
5633 /* Create a psymtab named NAME and assign it to PER_CU.
5634
5635 The caller must fill in the following details:
5636 dirname, textlow, texthigh. */
5637
5638 static struct partial_symtab *
5639 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5640 {
5641 struct objfile *objfile = per_cu->objfile;
5642 struct partial_symtab *pst;
5643
5644 pst = start_psymtab_common (objfile, objfile->section_offsets,
5645 name, 0,
5646 objfile->global_psymbols.next,
5647 objfile->static_psymbols.next);
5648
5649 pst->psymtabs_addrmap_supported = 1;
5650
5651 /* This is the glue that links PST into GDB's symbol API. */
5652 pst->read_symtab_private = per_cu;
5653 pst->read_symtab = dwarf2_read_symtab;
5654 per_cu->v.psymtab = pst;
5655
5656 return pst;
5657 }
5658
5659 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5660 type. */
5661
5662 struct process_psymtab_comp_unit_data
5663 {
5664 /* True if we are reading a DW_TAG_partial_unit. */
5665
5666 int want_partial_unit;
5667
5668 /* The "pretend" language that is used if the CU doesn't declare a
5669 language. */
5670
5671 enum language pretend_language;
5672 };
5673
5674 /* die_reader_func for process_psymtab_comp_unit. */
5675
5676 static void
5677 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5678 const gdb_byte *info_ptr,
5679 struct die_info *comp_unit_die,
5680 int has_children,
5681 void *data)
5682 {
5683 struct dwarf2_cu *cu = reader->cu;
5684 struct objfile *objfile = cu->objfile;
5685 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5686 struct attribute *attr;
5687 CORE_ADDR baseaddr;
5688 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5689 struct partial_symtab *pst;
5690 int has_pc_info;
5691 const char *filename;
5692 struct process_psymtab_comp_unit_data *info = data;
5693
5694 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5695 return;
5696
5697 gdb_assert (! per_cu->is_debug_types);
5698
5699 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5700
5701 cu->list_in_scope = &file_symbols;
5702
5703 /* Allocate a new partial symbol table structure. */
5704 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5705 if (attr == NULL || !DW_STRING (attr))
5706 filename = "";
5707 else
5708 filename = DW_STRING (attr);
5709
5710 pst = create_partial_symtab (per_cu, filename);
5711
5712 /* This must be done before calling dwarf2_build_include_psymtabs. */
5713 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5714 if (attr != NULL)
5715 pst->dirname = DW_STRING (attr);
5716
5717 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5718
5719 dwarf2_find_base_address (comp_unit_die, cu);
5720
5721 /* Possibly set the default values of LOWPC and HIGHPC from
5722 `DW_AT_ranges'. */
5723 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5724 &best_highpc, cu, pst);
5725 if (has_pc_info == 1 && best_lowpc < best_highpc)
5726 /* Store the contiguous range if it is not empty; it can be empty for
5727 CUs with no code. */
5728 addrmap_set_empty (objfile->psymtabs_addrmap,
5729 best_lowpc + baseaddr,
5730 best_highpc + baseaddr - 1, pst);
5731
5732 /* Check if comp unit has_children.
5733 If so, read the rest of the partial symbols from this comp unit.
5734 If not, there's no more debug_info for this comp unit. */
5735 if (has_children)
5736 {
5737 struct partial_die_info *first_die;
5738 CORE_ADDR lowpc, highpc;
5739
5740 lowpc = ((CORE_ADDR) -1);
5741 highpc = ((CORE_ADDR) 0);
5742
5743 first_die = load_partial_dies (reader, info_ptr, 1);
5744
5745 scan_partial_symbols (first_die, &lowpc, &highpc,
5746 ! has_pc_info, cu);
5747
5748 /* If we didn't find a lowpc, set it to highpc to avoid
5749 complaints from `maint check'. */
5750 if (lowpc == ((CORE_ADDR) -1))
5751 lowpc = highpc;
5752
5753 /* If the compilation unit didn't have an explicit address range,
5754 then use the information extracted from its child dies. */
5755 if (! has_pc_info)
5756 {
5757 best_lowpc = lowpc;
5758 best_highpc = highpc;
5759 }
5760 }
5761 pst->textlow = best_lowpc + baseaddr;
5762 pst->texthigh = best_highpc + baseaddr;
5763
5764 pst->n_global_syms = objfile->global_psymbols.next -
5765 (objfile->global_psymbols.list + pst->globals_offset);
5766 pst->n_static_syms = objfile->static_psymbols.next -
5767 (objfile->static_psymbols.list + pst->statics_offset);
5768 sort_pst_symbols (objfile, pst);
5769
5770 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5771 {
5772 int i;
5773 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5774 struct dwarf2_per_cu_data *iter;
5775
5776 /* Fill in 'dependencies' here; we fill in 'users' in a
5777 post-pass. */
5778 pst->number_of_dependencies = len;
5779 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5780 len * sizeof (struct symtab *));
5781 for (i = 0;
5782 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5783 i, iter);
5784 ++i)
5785 pst->dependencies[i] = iter->v.psymtab;
5786
5787 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5788 }
5789
5790 /* Get the list of files included in the current compilation unit,
5791 and build a psymtab for each of them. */
5792 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5793
5794 if (dwarf2_read_debug)
5795 {
5796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5797
5798 fprintf_unfiltered (gdb_stdlog,
5799 "Psymtab for %s unit @0x%x: %s - %s"
5800 ", %d global, %d static syms\n",
5801 per_cu->is_debug_types ? "type" : "comp",
5802 per_cu->offset.sect_off,
5803 paddress (gdbarch, pst->textlow),
5804 paddress (gdbarch, pst->texthigh),
5805 pst->n_global_syms, pst->n_static_syms);
5806 }
5807 }
5808
5809 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5810 Process compilation unit THIS_CU for a psymtab. */
5811
5812 static void
5813 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5814 int want_partial_unit,
5815 enum language pretend_language)
5816 {
5817 struct process_psymtab_comp_unit_data info;
5818
5819 /* If this compilation unit was already read in, free the
5820 cached copy in order to read it in again. This is
5821 necessary because we skipped some symbols when we first
5822 read in the compilation unit (see load_partial_dies).
5823 This problem could be avoided, but the benefit is unclear. */
5824 if (this_cu->cu != NULL)
5825 free_one_cached_comp_unit (this_cu);
5826
5827 gdb_assert (! this_cu->is_debug_types);
5828 info.want_partial_unit = want_partial_unit;
5829 info.pretend_language = pretend_language;
5830 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5831 process_psymtab_comp_unit_reader,
5832 &info);
5833
5834 /* Age out any secondary CUs. */
5835 age_cached_comp_units ();
5836 }
5837
5838 /* Reader function for build_type_psymtabs. */
5839
5840 static void
5841 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5842 const gdb_byte *info_ptr,
5843 struct die_info *type_unit_die,
5844 int has_children,
5845 void *data)
5846 {
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 struct dwarf2_cu *cu = reader->cu;
5849 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5850 struct signatured_type *sig_type;
5851 struct type_unit_group *tu_group;
5852 struct attribute *attr;
5853 struct partial_die_info *first_die;
5854 CORE_ADDR lowpc, highpc;
5855 struct partial_symtab *pst;
5856
5857 gdb_assert (data == NULL);
5858 gdb_assert (per_cu->is_debug_types);
5859 sig_type = (struct signatured_type *) per_cu;
5860
5861 if (! has_children)
5862 return;
5863
5864 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5865 tu_group = get_type_unit_group (cu, attr);
5866
5867 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5868
5869 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5870 cu->list_in_scope = &file_symbols;
5871 pst = create_partial_symtab (per_cu, "");
5872 pst->anonymous = 1;
5873
5874 first_die = load_partial_dies (reader, info_ptr, 1);
5875
5876 lowpc = (CORE_ADDR) -1;
5877 highpc = (CORE_ADDR) 0;
5878 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5879
5880 pst->n_global_syms = objfile->global_psymbols.next -
5881 (objfile->global_psymbols.list + pst->globals_offset);
5882 pst->n_static_syms = objfile->static_psymbols.next -
5883 (objfile->static_psymbols.list + pst->statics_offset);
5884 sort_pst_symbols (objfile, pst);
5885 }
5886
5887 /* Traversal function for build_type_psymtabs. */
5888
5889 static int
5890 build_type_psymtab_dependencies (void **slot, void *info)
5891 {
5892 struct objfile *objfile = dwarf2_per_objfile->objfile;
5893 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5894 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5895 struct partial_symtab *pst = per_cu->v.psymtab;
5896 int len = VEC_length (sig_type_ptr, tu_group->tus);
5897 struct signatured_type *iter;
5898 int i;
5899
5900 gdb_assert (len > 0);
5901 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5902
5903 pst->number_of_dependencies = len;
5904 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5905 len * sizeof (struct psymtab *));
5906 for (i = 0;
5907 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5908 ++i)
5909 {
5910 gdb_assert (iter->per_cu.is_debug_types);
5911 pst->dependencies[i] = iter->per_cu.v.psymtab;
5912 iter->type_unit_group = tu_group;
5913 }
5914
5915 VEC_free (sig_type_ptr, tu_group->tus);
5916
5917 return 1;
5918 }
5919
5920 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5921 Build partial symbol tables for the .debug_types comp-units. */
5922
5923 static void
5924 build_type_psymtabs (struct objfile *objfile)
5925 {
5926 if (! create_all_type_units (objfile))
5927 return;
5928
5929 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5930
5931 /* Now that all TUs have been processed we can fill in the dependencies. */
5932 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5933 build_type_psymtab_dependencies, NULL);
5934 }
5935
5936 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5937
5938 static void
5939 psymtabs_addrmap_cleanup (void *o)
5940 {
5941 struct objfile *objfile = o;
5942
5943 objfile->psymtabs_addrmap = NULL;
5944 }
5945
5946 /* Compute the 'user' field for each psymtab in OBJFILE. */
5947
5948 static void
5949 set_partial_user (struct objfile *objfile)
5950 {
5951 int i;
5952
5953 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5954 {
5955 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5956 struct partial_symtab *pst = per_cu->v.psymtab;
5957 int j;
5958
5959 if (pst == NULL)
5960 continue;
5961
5962 for (j = 0; j < pst->number_of_dependencies; ++j)
5963 {
5964 /* Set the 'user' field only if it is not already set. */
5965 if (pst->dependencies[j]->user == NULL)
5966 pst->dependencies[j]->user = pst;
5967 }
5968 }
5969 }
5970
5971 /* Build the partial symbol table by doing a quick pass through the
5972 .debug_info and .debug_abbrev sections. */
5973
5974 static void
5975 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5976 {
5977 struct cleanup *back_to, *addrmap_cleanup;
5978 struct obstack temp_obstack;
5979 int i;
5980
5981 if (dwarf2_read_debug)
5982 {
5983 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5984 objfile->name);
5985 }
5986
5987 dwarf2_per_objfile->reading_partial_symbols = 1;
5988
5989 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5990
5991 /* Any cached compilation units will be linked by the per-objfile
5992 read_in_chain. Make sure to free them when we're done. */
5993 back_to = make_cleanup (free_cached_comp_units, NULL);
5994
5995 build_type_psymtabs (objfile);
5996
5997 create_all_comp_units (objfile);
5998
5999 /* Create a temporary address map on a temporary obstack. We later
6000 copy this to the final obstack. */
6001 obstack_init (&temp_obstack);
6002 make_cleanup_obstack_free (&temp_obstack);
6003 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6004 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6005
6006 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6007 {
6008 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6009
6010 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6011 }
6012
6013 set_partial_user (objfile);
6014
6015 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6016 &objfile->objfile_obstack);
6017 discard_cleanups (addrmap_cleanup);
6018
6019 do_cleanups (back_to);
6020
6021 if (dwarf2_read_debug)
6022 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6023 objfile->name);
6024 }
6025
6026 /* die_reader_func for load_partial_comp_unit. */
6027
6028 static void
6029 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6030 const gdb_byte *info_ptr,
6031 struct die_info *comp_unit_die,
6032 int has_children,
6033 void *data)
6034 {
6035 struct dwarf2_cu *cu = reader->cu;
6036
6037 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6038
6039 /* Check if comp unit has_children.
6040 If so, read the rest of the partial symbols from this comp unit.
6041 If not, there's no more debug_info for this comp unit. */
6042 if (has_children)
6043 load_partial_dies (reader, info_ptr, 0);
6044 }
6045
6046 /* Load the partial DIEs for a secondary CU into memory.
6047 This is also used when rereading a primary CU with load_all_dies. */
6048
6049 static void
6050 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6051 {
6052 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6053 load_partial_comp_unit_reader, NULL);
6054 }
6055
6056 static void
6057 read_comp_units_from_section (struct objfile *objfile,
6058 struct dwarf2_section_info *section,
6059 unsigned int is_dwz,
6060 int *n_allocated,
6061 int *n_comp_units,
6062 struct dwarf2_per_cu_data ***all_comp_units)
6063 {
6064 const gdb_byte *info_ptr;
6065 bfd *abfd = section->asection->owner;
6066
6067 if (dwarf2_read_debug)
6068 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6069 section->asection->name, bfd_get_filename (abfd));
6070
6071 dwarf2_read_section (objfile, section);
6072
6073 info_ptr = section->buffer;
6074
6075 while (info_ptr < section->buffer + section->size)
6076 {
6077 unsigned int length, initial_length_size;
6078 struct dwarf2_per_cu_data *this_cu;
6079 sect_offset offset;
6080
6081 offset.sect_off = info_ptr - section->buffer;
6082
6083 /* Read just enough information to find out where the next
6084 compilation unit is. */
6085 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6086
6087 /* Save the compilation unit for later lookup. */
6088 this_cu = obstack_alloc (&objfile->objfile_obstack,
6089 sizeof (struct dwarf2_per_cu_data));
6090 memset (this_cu, 0, sizeof (*this_cu));
6091 this_cu->offset = offset;
6092 this_cu->length = length + initial_length_size;
6093 this_cu->is_dwz = is_dwz;
6094 this_cu->objfile = objfile;
6095 this_cu->section = section;
6096
6097 if (*n_comp_units == *n_allocated)
6098 {
6099 *n_allocated *= 2;
6100 *all_comp_units = xrealloc (*all_comp_units,
6101 *n_allocated
6102 * sizeof (struct dwarf2_per_cu_data *));
6103 }
6104 (*all_comp_units)[*n_comp_units] = this_cu;
6105 ++*n_comp_units;
6106
6107 info_ptr = info_ptr + this_cu->length;
6108 }
6109 }
6110
6111 /* Create a list of all compilation units in OBJFILE.
6112 This is only done for -readnow and building partial symtabs. */
6113
6114 static void
6115 create_all_comp_units (struct objfile *objfile)
6116 {
6117 int n_allocated;
6118 int n_comp_units;
6119 struct dwarf2_per_cu_data **all_comp_units;
6120 struct dwz_file *dwz;
6121
6122 n_comp_units = 0;
6123 n_allocated = 10;
6124 all_comp_units = xmalloc (n_allocated
6125 * sizeof (struct dwarf2_per_cu_data *));
6126
6127 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6128 &n_allocated, &n_comp_units, &all_comp_units);
6129
6130 dwz = dwarf2_get_dwz_file ();
6131 if (dwz != NULL)
6132 read_comp_units_from_section (objfile, &dwz->info, 1,
6133 &n_allocated, &n_comp_units,
6134 &all_comp_units);
6135
6136 dwarf2_per_objfile->all_comp_units
6137 = obstack_alloc (&objfile->objfile_obstack,
6138 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6139 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6140 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6141 xfree (all_comp_units);
6142 dwarf2_per_objfile->n_comp_units = n_comp_units;
6143 }
6144
6145 /* Process all loaded DIEs for compilation unit CU, starting at
6146 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6147 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6148 DW_AT_ranges). If NEED_PC is set, then this function will set
6149 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6150 and record the covered ranges in the addrmap. */
6151
6152 static void
6153 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6154 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6155 {
6156 struct partial_die_info *pdi;
6157
6158 /* Now, march along the PDI's, descending into ones which have
6159 interesting children but skipping the children of the other ones,
6160 until we reach the end of the compilation unit. */
6161
6162 pdi = first_die;
6163
6164 while (pdi != NULL)
6165 {
6166 fixup_partial_die (pdi, cu);
6167
6168 /* Anonymous namespaces or modules have no name but have interesting
6169 children, so we need to look at them. Ditto for anonymous
6170 enums. */
6171
6172 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6173 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6174 || pdi->tag == DW_TAG_imported_unit)
6175 {
6176 switch (pdi->tag)
6177 {
6178 case DW_TAG_subprogram:
6179 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6180 break;
6181 case DW_TAG_constant:
6182 case DW_TAG_variable:
6183 case DW_TAG_typedef:
6184 case DW_TAG_union_type:
6185 if (!pdi->is_declaration)
6186 {
6187 add_partial_symbol (pdi, cu);
6188 }
6189 break;
6190 case DW_TAG_class_type:
6191 case DW_TAG_interface_type:
6192 case DW_TAG_structure_type:
6193 if (!pdi->is_declaration)
6194 {
6195 add_partial_symbol (pdi, cu);
6196 }
6197 break;
6198 case DW_TAG_enumeration_type:
6199 if (!pdi->is_declaration)
6200 add_partial_enumeration (pdi, cu);
6201 break;
6202 case DW_TAG_base_type:
6203 case DW_TAG_subrange_type:
6204 /* File scope base type definitions are added to the partial
6205 symbol table. */
6206 add_partial_symbol (pdi, cu);
6207 break;
6208 case DW_TAG_namespace:
6209 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6210 break;
6211 case DW_TAG_module:
6212 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6213 break;
6214 case DW_TAG_imported_unit:
6215 {
6216 struct dwarf2_per_cu_data *per_cu;
6217
6218 /* For now we don't handle imported units in type units. */
6219 if (cu->per_cu->is_debug_types)
6220 {
6221 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6222 " supported in type units [in module %s]"),
6223 cu->objfile->name);
6224 }
6225
6226 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6227 pdi->is_dwz,
6228 cu->objfile);
6229
6230 /* Go read the partial unit, if needed. */
6231 if (per_cu->v.psymtab == NULL)
6232 process_psymtab_comp_unit (per_cu, 1, cu->language);
6233
6234 VEC_safe_push (dwarf2_per_cu_ptr,
6235 cu->per_cu->imported_symtabs, per_cu);
6236 }
6237 break;
6238 default:
6239 break;
6240 }
6241 }
6242
6243 /* If the die has a sibling, skip to the sibling. */
6244
6245 pdi = pdi->die_sibling;
6246 }
6247 }
6248
6249 /* Functions used to compute the fully scoped name of a partial DIE.
6250
6251 Normally, this is simple. For C++, the parent DIE's fully scoped
6252 name is concatenated with "::" and the partial DIE's name. For
6253 Java, the same thing occurs except that "." is used instead of "::".
6254 Enumerators are an exception; they use the scope of their parent
6255 enumeration type, i.e. the name of the enumeration type is not
6256 prepended to the enumerator.
6257
6258 There are two complexities. One is DW_AT_specification; in this
6259 case "parent" means the parent of the target of the specification,
6260 instead of the direct parent of the DIE. The other is compilers
6261 which do not emit DW_TAG_namespace; in this case we try to guess
6262 the fully qualified name of structure types from their members'
6263 linkage names. This must be done using the DIE's children rather
6264 than the children of any DW_AT_specification target. We only need
6265 to do this for structures at the top level, i.e. if the target of
6266 any DW_AT_specification (if any; otherwise the DIE itself) does not
6267 have a parent. */
6268
6269 /* Compute the scope prefix associated with PDI's parent, in
6270 compilation unit CU. The result will be allocated on CU's
6271 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6272 field. NULL is returned if no prefix is necessary. */
6273 static const char *
6274 partial_die_parent_scope (struct partial_die_info *pdi,
6275 struct dwarf2_cu *cu)
6276 {
6277 const char *grandparent_scope;
6278 struct partial_die_info *parent, *real_pdi;
6279
6280 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6281 then this means the parent of the specification DIE. */
6282
6283 real_pdi = pdi;
6284 while (real_pdi->has_specification)
6285 real_pdi = find_partial_die (real_pdi->spec_offset,
6286 real_pdi->spec_is_dwz, cu);
6287
6288 parent = real_pdi->die_parent;
6289 if (parent == NULL)
6290 return NULL;
6291
6292 if (parent->scope_set)
6293 return parent->scope;
6294
6295 fixup_partial_die (parent, cu);
6296
6297 grandparent_scope = partial_die_parent_scope (parent, cu);
6298
6299 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6300 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6301 Work around this problem here. */
6302 if (cu->language == language_cplus
6303 && parent->tag == DW_TAG_namespace
6304 && strcmp (parent->name, "::") == 0
6305 && grandparent_scope == NULL)
6306 {
6307 parent->scope = NULL;
6308 parent->scope_set = 1;
6309 return NULL;
6310 }
6311
6312 if (pdi->tag == DW_TAG_enumerator)
6313 /* Enumerators should not get the name of the enumeration as a prefix. */
6314 parent->scope = grandparent_scope;
6315 else if (parent->tag == DW_TAG_namespace
6316 || parent->tag == DW_TAG_module
6317 || parent->tag == DW_TAG_structure_type
6318 || parent->tag == DW_TAG_class_type
6319 || parent->tag == DW_TAG_interface_type
6320 || parent->tag == DW_TAG_union_type
6321 || parent->tag == DW_TAG_enumeration_type)
6322 {
6323 if (grandparent_scope == NULL)
6324 parent->scope = parent->name;
6325 else
6326 parent->scope = typename_concat (&cu->comp_unit_obstack,
6327 grandparent_scope,
6328 parent->name, 0, cu);
6329 }
6330 else
6331 {
6332 /* FIXME drow/2004-04-01: What should we be doing with
6333 function-local names? For partial symbols, we should probably be
6334 ignoring them. */
6335 complaint (&symfile_complaints,
6336 _("unhandled containing DIE tag %d for DIE at %d"),
6337 parent->tag, pdi->offset.sect_off);
6338 parent->scope = grandparent_scope;
6339 }
6340
6341 parent->scope_set = 1;
6342 return parent->scope;
6343 }
6344
6345 /* Return the fully scoped name associated with PDI, from compilation unit
6346 CU. The result will be allocated with malloc. */
6347
6348 static char *
6349 partial_die_full_name (struct partial_die_info *pdi,
6350 struct dwarf2_cu *cu)
6351 {
6352 const char *parent_scope;
6353
6354 /* If this is a template instantiation, we can not work out the
6355 template arguments from partial DIEs. So, unfortunately, we have
6356 to go through the full DIEs. At least any work we do building
6357 types here will be reused if full symbols are loaded later. */
6358 if (pdi->has_template_arguments)
6359 {
6360 fixup_partial_die (pdi, cu);
6361
6362 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6363 {
6364 struct die_info *die;
6365 struct attribute attr;
6366 struct dwarf2_cu *ref_cu = cu;
6367
6368 /* DW_FORM_ref_addr is using section offset. */
6369 attr.name = 0;
6370 attr.form = DW_FORM_ref_addr;
6371 attr.u.unsnd = pdi->offset.sect_off;
6372 die = follow_die_ref (NULL, &attr, &ref_cu);
6373
6374 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6375 }
6376 }
6377
6378 parent_scope = partial_die_parent_scope (pdi, cu);
6379 if (parent_scope == NULL)
6380 return NULL;
6381 else
6382 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6383 }
6384
6385 static void
6386 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6387 {
6388 struct objfile *objfile = cu->objfile;
6389 CORE_ADDR addr = 0;
6390 const char *actual_name = NULL;
6391 CORE_ADDR baseaddr;
6392 char *built_actual_name;
6393
6394 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6395
6396 built_actual_name = partial_die_full_name (pdi, cu);
6397 if (built_actual_name != NULL)
6398 actual_name = built_actual_name;
6399
6400 if (actual_name == NULL)
6401 actual_name = pdi->name;
6402
6403 switch (pdi->tag)
6404 {
6405 case DW_TAG_subprogram:
6406 if (pdi->is_external || cu->language == language_ada)
6407 {
6408 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6409 of the global scope. But in Ada, we want to be able to access
6410 nested procedures globally. So all Ada subprograms are stored
6411 in the global scope. */
6412 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6413 mst_text, objfile); */
6414 add_psymbol_to_list (actual_name, strlen (actual_name),
6415 built_actual_name != NULL,
6416 VAR_DOMAIN, LOC_BLOCK,
6417 &objfile->global_psymbols,
6418 0, pdi->lowpc + baseaddr,
6419 cu->language, objfile);
6420 }
6421 else
6422 {
6423 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6424 mst_file_text, objfile); */
6425 add_psymbol_to_list (actual_name, strlen (actual_name),
6426 built_actual_name != NULL,
6427 VAR_DOMAIN, LOC_BLOCK,
6428 &objfile->static_psymbols,
6429 0, pdi->lowpc + baseaddr,
6430 cu->language, objfile);
6431 }
6432 break;
6433 case DW_TAG_constant:
6434 {
6435 struct psymbol_allocation_list *list;
6436
6437 if (pdi->is_external)
6438 list = &objfile->global_psymbols;
6439 else
6440 list = &objfile->static_psymbols;
6441 add_psymbol_to_list (actual_name, strlen (actual_name),
6442 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6443 list, 0, 0, cu->language, objfile);
6444 }
6445 break;
6446 case DW_TAG_variable:
6447 if (pdi->d.locdesc)
6448 addr = decode_locdesc (pdi->d.locdesc, cu);
6449
6450 if (pdi->d.locdesc
6451 && addr == 0
6452 && !dwarf2_per_objfile->has_section_at_zero)
6453 {
6454 /* A global or static variable may also have been stripped
6455 out by the linker if unused, in which case its address
6456 will be nullified; do not add such variables into partial
6457 symbol table then. */
6458 }
6459 else if (pdi->is_external)
6460 {
6461 /* Global Variable.
6462 Don't enter into the minimal symbol tables as there is
6463 a minimal symbol table entry from the ELF symbols already.
6464 Enter into partial symbol table if it has a location
6465 descriptor or a type.
6466 If the location descriptor is missing, new_symbol will create
6467 a LOC_UNRESOLVED symbol, the address of the variable will then
6468 be determined from the minimal symbol table whenever the variable
6469 is referenced.
6470 The address for the partial symbol table entry is not
6471 used by GDB, but it comes in handy for debugging partial symbol
6472 table building. */
6473
6474 if (pdi->d.locdesc || pdi->has_type)
6475 add_psymbol_to_list (actual_name, strlen (actual_name),
6476 built_actual_name != NULL,
6477 VAR_DOMAIN, LOC_STATIC,
6478 &objfile->global_psymbols,
6479 0, addr + baseaddr,
6480 cu->language, objfile);
6481 }
6482 else
6483 {
6484 /* Static Variable. Skip symbols without location descriptors. */
6485 if (pdi->d.locdesc == NULL)
6486 {
6487 xfree (built_actual_name);
6488 return;
6489 }
6490 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6491 mst_file_data, objfile); */
6492 add_psymbol_to_list (actual_name, strlen (actual_name),
6493 built_actual_name != NULL,
6494 VAR_DOMAIN, LOC_STATIC,
6495 &objfile->static_psymbols,
6496 0, addr + baseaddr,
6497 cu->language, objfile);
6498 }
6499 break;
6500 case DW_TAG_typedef:
6501 case DW_TAG_base_type:
6502 case DW_TAG_subrange_type:
6503 add_psymbol_to_list (actual_name, strlen (actual_name),
6504 built_actual_name != NULL,
6505 VAR_DOMAIN, LOC_TYPEDEF,
6506 &objfile->static_psymbols,
6507 0, (CORE_ADDR) 0, cu->language, objfile);
6508 break;
6509 case DW_TAG_namespace:
6510 add_psymbol_to_list (actual_name, strlen (actual_name),
6511 built_actual_name != NULL,
6512 VAR_DOMAIN, LOC_TYPEDEF,
6513 &objfile->global_psymbols,
6514 0, (CORE_ADDR) 0, cu->language, objfile);
6515 break;
6516 case DW_TAG_class_type:
6517 case DW_TAG_interface_type:
6518 case DW_TAG_structure_type:
6519 case DW_TAG_union_type:
6520 case DW_TAG_enumeration_type:
6521 /* Skip external references. The DWARF standard says in the section
6522 about "Structure, Union, and Class Type Entries": "An incomplete
6523 structure, union or class type is represented by a structure,
6524 union or class entry that does not have a byte size attribute
6525 and that has a DW_AT_declaration attribute." */
6526 if (!pdi->has_byte_size && pdi->is_declaration)
6527 {
6528 xfree (built_actual_name);
6529 return;
6530 }
6531
6532 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6533 static vs. global. */
6534 add_psymbol_to_list (actual_name, strlen (actual_name),
6535 built_actual_name != NULL,
6536 STRUCT_DOMAIN, LOC_TYPEDEF,
6537 (cu->language == language_cplus
6538 || cu->language == language_java)
6539 ? &objfile->global_psymbols
6540 : &objfile->static_psymbols,
6541 0, (CORE_ADDR) 0, cu->language, objfile);
6542
6543 break;
6544 case DW_TAG_enumerator:
6545 add_psymbol_to_list (actual_name, strlen (actual_name),
6546 built_actual_name != NULL,
6547 VAR_DOMAIN, LOC_CONST,
6548 (cu->language == language_cplus
6549 || cu->language == language_java)
6550 ? &objfile->global_psymbols
6551 : &objfile->static_psymbols,
6552 0, (CORE_ADDR) 0, cu->language, objfile);
6553 break;
6554 default:
6555 break;
6556 }
6557
6558 xfree (built_actual_name);
6559 }
6560
6561 /* Read a partial die corresponding to a namespace; also, add a symbol
6562 corresponding to that namespace to the symbol table. NAMESPACE is
6563 the name of the enclosing namespace. */
6564
6565 static void
6566 add_partial_namespace (struct partial_die_info *pdi,
6567 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6568 int need_pc, struct dwarf2_cu *cu)
6569 {
6570 /* Add a symbol for the namespace. */
6571
6572 add_partial_symbol (pdi, cu);
6573
6574 /* Now scan partial symbols in that namespace. */
6575
6576 if (pdi->has_children)
6577 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6578 }
6579
6580 /* Read a partial die corresponding to a Fortran module. */
6581
6582 static void
6583 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6584 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6585 {
6586 /* Now scan partial symbols in that module. */
6587
6588 if (pdi->has_children)
6589 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6590 }
6591
6592 /* Read a partial die corresponding to a subprogram and create a partial
6593 symbol for that subprogram. When the CU language allows it, this
6594 routine also defines a partial symbol for each nested subprogram
6595 that this subprogram contains.
6596
6597 DIE my also be a lexical block, in which case we simply search
6598 recursively for suprograms defined inside that lexical block.
6599 Again, this is only performed when the CU language allows this
6600 type of definitions. */
6601
6602 static void
6603 add_partial_subprogram (struct partial_die_info *pdi,
6604 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6605 int need_pc, struct dwarf2_cu *cu)
6606 {
6607 if (pdi->tag == DW_TAG_subprogram)
6608 {
6609 if (pdi->has_pc_info)
6610 {
6611 if (pdi->lowpc < *lowpc)
6612 *lowpc = pdi->lowpc;
6613 if (pdi->highpc > *highpc)
6614 *highpc = pdi->highpc;
6615 if (need_pc)
6616 {
6617 CORE_ADDR baseaddr;
6618 struct objfile *objfile = cu->objfile;
6619
6620 baseaddr = ANOFFSET (objfile->section_offsets,
6621 SECT_OFF_TEXT (objfile));
6622 addrmap_set_empty (objfile->psymtabs_addrmap,
6623 pdi->lowpc + baseaddr,
6624 pdi->highpc - 1 + baseaddr,
6625 cu->per_cu->v.psymtab);
6626 }
6627 }
6628
6629 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6630 {
6631 if (!pdi->is_declaration)
6632 /* Ignore subprogram DIEs that do not have a name, they are
6633 illegal. Do not emit a complaint at this point, we will
6634 do so when we convert this psymtab into a symtab. */
6635 if (pdi->name)
6636 add_partial_symbol (pdi, cu);
6637 }
6638 }
6639
6640 if (! pdi->has_children)
6641 return;
6642
6643 if (cu->language == language_ada)
6644 {
6645 pdi = pdi->die_child;
6646 while (pdi != NULL)
6647 {
6648 fixup_partial_die (pdi, cu);
6649 if (pdi->tag == DW_TAG_subprogram
6650 || pdi->tag == DW_TAG_lexical_block)
6651 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6652 pdi = pdi->die_sibling;
6653 }
6654 }
6655 }
6656
6657 /* Read a partial die corresponding to an enumeration type. */
6658
6659 static void
6660 add_partial_enumeration (struct partial_die_info *enum_pdi,
6661 struct dwarf2_cu *cu)
6662 {
6663 struct partial_die_info *pdi;
6664
6665 if (enum_pdi->name != NULL)
6666 add_partial_symbol (enum_pdi, cu);
6667
6668 pdi = enum_pdi->die_child;
6669 while (pdi)
6670 {
6671 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6672 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6673 else
6674 add_partial_symbol (pdi, cu);
6675 pdi = pdi->die_sibling;
6676 }
6677 }
6678
6679 /* Return the initial uleb128 in the die at INFO_PTR. */
6680
6681 static unsigned int
6682 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6683 {
6684 unsigned int bytes_read;
6685
6686 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6687 }
6688
6689 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6690 Return the corresponding abbrev, or NULL if the number is zero (indicating
6691 an empty DIE). In either case *BYTES_READ will be set to the length of
6692 the initial number. */
6693
6694 static struct abbrev_info *
6695 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6696 struct dwarf2_cu *cu)
6697 {
6698 bfd *abfd = cu->objfile->obfd;
6699 unsigned int abbrev_number;
6700 struct abbrev_info *abbrev;
6701
6702 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6703
6704 if (abbrev_number == 0)
6705 return NULL;
6706
6707 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6708 if (!abbrev)
6709 {
6710 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6711 abbrev_number, bfd_get_filename (abfd));
6712 }
6713
6714 return abbrev;
6715 }
6716
6717 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6718 Returns a pointer to the end of a series of DIEs, terminated by an empty
6719 DIE. Any children of the skipped DIEs will also be skipped. */
6720
6721 static const gdb_byte *
6722 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6723 {
6724 struct dwarf2_cu *cu = reader->cu;
6725 struct abbrev_info *abbrev;
6726 unsigned int bytes_read;
6727
6728 while (1)
6729 {
6730 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6731 if (abbrev == NULL)
6732 return info_ptr + bytes_read;
6733 else
6734 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6735 }
6736 }
6737
6738 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6739 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6740 abbrev corresponding to that skipped uleb128 should be passed in
6741 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6742 children. */
6743
6744 static const gdb_byte *
6745 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6746 struct abbrev_info *abbrev)
6747 {
6748 unsigned int bytes_read;
6749 struct attribute attr;
6750 bfd *abfd = reader->abfd;
6751 struct dwarf2_cu *cu = reader->cu;
6752 const gdb_byte *buffer = reader->buffer;
6753 const gdb_byte *buffer_end = reader->buffer_end;
6754 const gdb_byte *start_info_ptr = info_ptr;
6755 unsigned int form, i;
6756
6757 for (i = 0; i < abbrev->num_attrs; i++)
6758 {
6759 /* The only abbrev we care about is DW_AT_sibling. */
6760 if (abbrev->attrs[i].name == DW_AT_sibling)
6761 {
6762 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6763 if (attr.form == DW_FORM_ref_addr)
6764 complaint (&symfile_complaints,
6765 _("ignoring absolute DW_AT_sibling"));
6766 else
6767 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6768 }
6769
6770 /* If it isn't DW_AT_sibling, skip this attribute. */
6771 form = abbrev->attrs[i].form;
6772 skip_attribute:
6773 switch (form)
6774 {
6775 case DW_FORM_ref_addr:
6776 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6777 and later it is offset sized. */
6778 if (cu->header.version == 2)
6779 info_ptr += cu->header.addr_size;
6780 else
6781 info_ptr += cu->header.offset_size;
6782 break;
6783 case DW_FORM_GNU_ref_alt:
6784 info_ptr += cu->header.offset_size;
6785 break;
6786 case DW_FORM_addr:
6787 info_ptr += cu->header.addr_size;
6788 break;
6789 case DW_FORM_data1:
6790 case DW_FORM_ref1:
6791 case DW_FORM_flag:
6792 info_ptr += 1;
6793 break;
6794 case DW_FORM_flag_present:
6795 break;
6796 case DW_FORM_data2:
6797 case DW_FORM_ref2:
6798 info_ptr += 2;
6799 break;
6800 case DW_FORM_data4:
6801 case DW_FORM_ref4:
6802 info_ptr += 4;
6803 break;
6804 case DW_FORM_data8:
6805 case DW_FORM_ref8:
6806 case DW_FORM_ref_sig8:
6807 info_ptr += 8;
6808 break;
6809 case DW_FORM_string:
6810 read_direct_string (abfd, info_ptr, &bytes_read);
6811 info_ptr += bytes_read;
6812 break;
6813 case DW_FORM_sec_offset:
6814 case DW_FORM_strp:
6815 case DW_FORM_GNU_strp_alt:
6816 info_ptr += cu->header.offset_size;
6817 break;
6818 case DW_FORM_exprloc:
6819 case DW_FORM_block:
6820 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6821 info_ptr += bytes_read;
6822 break;
6823 case DW_FORM_block1:
6824 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6825 break;
6826 case DW_FORM_block2:
6827 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6828 break;
6829 case DW_FORM_block4:
6830 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6831 break;
6832 case DW_FORM_sdata:
6833 case DW_FORM_udata:
6834 case DW_FORM_ref_udata:
6835 case DW_FORM_GNU_addr_index:
6836 case DW_FORM_GNU_str_index:
6837 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6838 break;
6839 case DW_FORM_indirect:
6840 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6841 info_ptr += bytes_read;
6842 /* We need to continue parsing from here, so just go back to
6843 the top. */
6844 goto skip_attribute;
6845
6846 default:
6847 error (_("Dwarf Error: Cannot handle %s "
6848 "in DWARF reader [in module %s]"),
6849 dwarf_form_name (form),
6850 bfd_get_filename (abfd));
6851 }
6852 }
6853
6854 if (abbrev->has_children)
6855 return skip_children (reader, info_ptr);
6856 else
6857 return info_ptr;
6858 }
6859
6860 /* Locate ORIG_PDI's sibling.
6861 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6862
6863 static const gdb_byte *
6864 locate_pdi_sibling (const struct die_reader_specs *reader,
6865 struct partial_die_info *orig_pdi,
6866 const gdb_byte *info_ptr)
6867 {
6868 /* Do we know the sibling already? */
6869
6870 if (orig_pdi->sibling)
6871 return orig_pdi->sibling;
6872
6873 /* Are there any children to deal with? */
6874
6875 if (!orig_pdi->has_children)
6876 return info_ptr;
6877
6878 /* Skip the children the long way. */
6879
6880 return skip_children (reader, info_ptr);
6881 }
6882
6883 /* Expand this partial symbol table into a full symbol table. SELF is
6884 not NULL. */
6885
6886 static void
6887 dwarf2_read_symtab (struct partial_symtab *self,
6888 struct objfile *objfile)
6889 {
6890 if (self->readin)
6891 {
6892 warning (_("bug: psymtab for %s is already read in."),
6893 self->filename);
6894 }
6895 else
6896 {
6897 if (info_verbose)
6898 {
6899 printf_filtered (_("Reading in symbols for %s..."),
6900 self->filename);
6901 gdb_flush (gdb_stdout);
6902 }
6903
6904 /* Restore our global data. */
6905 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6906
6907 /* If this psymtab is constructed from a debug-only objfile, the
6908 has_section_at_zero flag will not necessarily be correct. We
6909 can get the correct value for this flag by looking at the data
6910 associated with the (presumably stripped) associated objfile. */
6911 if (objfile->separate_debug_objfile_backlink)
6912 {
6913 struct dwarf2_per_objfile *dpo_backlink
6914 = objfile_data (objfile->separate_debug_objfile_backlink,
6915 dwarf2_objfile_data_key);
6916
6917 dwarf2_per_objfile->has_section_at_zero
6918 = dpo_backlink->has_section_at_zero;
6919 }
6920
6921 dwarf2_per_objfile->reading_partial_symbols = 0;
6922
6923 psymtab_to_symtab_1 (self);
6924
6925 /* Finish up the debug error message. */
6926 if (info_verbose)
6927 printf_filtered (_("done.\n"));
6928 }
6929
6930 process_cu_includes ();
6931 }
6932 \f
6933 /* Reading in full CUs. */
6934
6935 /* Add PER_CU to the queue. */
6936
6937 static void
6938 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6939 enum language pretend_language)
6940 {
6941 struct dwarf2_queue_item *item;
6942
6943 per_cu->queued = 1;
6944 item = xmalloc (sizeof (*item));
6945 item->per_cu = per_cu;
6946 item->pretend_language = pretend_language;
6947 item->next = NULL;
6948
6949 if (dwarf2_queue == NULL)
6950 dwarf2_queue = item;
6951 else
6952 dwarf2_queue_tail->next = item;
6953
6954 dwarf2_queue_tail = item;
6955 }
6956
6957 /* If PER_CU is not yet queued, add it to the queue.
6958 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
6959 dependency.
6960 The result is non-zero if PER_CU was queued, otherwise the result is zero
6961 meaning either PER_CU is already queued or it is already loaded.
6962
6963 N.B. There is an invariant here that if a CU is queued then it is loaded.
6964 The caller is required to load PER_CU if we return non-zero. */
6965
6966 static int
6967 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
6968 struct dwarf2_per_cu_data *per_cu,
6969 enum language pretend_language)
6970 {
6971 /* We may arrive here during partial symbol reading, if we need full
6972 DIEs to process an unusual case (e.g. template arguments). Do
6973 not queue PER_CU, just tell our caller to load its DIEs. */
6974 if (dwarf2_per_objfile->reading_partial_symbols)
6975 {
6976 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6977 return 1;
6978 return 0;
6979 }
6980
6981 /* Mark the dependence relation so that we don't flush PER_CU
6982 too early. */
6983 if (dependent_cu != NULL)
6984 dwarf2_add_dependence (dependent_cu, per_cu);
6985
6986 /* If it's already on the queue, we have nothing to do. */
6987 if (per_cu->queued)
6988 return 0;
6989
6990 /* If the compilation unit is already loaded, just mark it as
6991 used. */
6992 if (per_cu->cu != NULL)
6993 {
6994 per_cu->cu->last_used = 0;
6995 return 0;
6996 }
6997
6998 /* Add it to the queue. */
6999 queue_comp_unit (per_cu, pretend_language);
7000
7001 return 1;
7002 }
7003
7004 /* Process the queue. */
7005
7006 static void
7007 process_queue (void)
7008 {
7009 struct dwarf2_queue_item *item, *next_item;
7010
7011 if (dwarf2_read_debug)
7012 {
7013 fprintf_unfiltered (gdb_stdlog,
7014 "Expanding one or more symtabs of objfile %s ...\n",
7015 dwarf2_per_objfile->objfile->name);
7016 }
7017
7018 /* The queue starts out with one item, but following a DIE reference
7019 may load a new CU, adding it to the end of the queue. */
7020 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7021 {
7022 if (dwarf2_per_objfile->using_index
7023 ? !item->per_cu->v.quick->symtab
7024 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7025 {
7026 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7027 char buf[100];
7028
7029 if (per_cu->is_debug_types)
7030 {
7031 struct signatured_type *sig_type =
7032 (struct signatured_type *) per_cu;
7033
7034 sprintf (buf, "TU %s at offset 0x%x",
7035 hex_string (sig_type->signature), per_cu->offset.sect_off);
7036 }
7037 else
7038 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7039
7040 if (dwarf2_read_debug)
7041 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7042
7043 if (per_cu->is_debug_types)
7044 process_full_type_unit (per_cu, item->pretend_language);
7045 else
7046 process_full_comp_unit (per_cu, item->pretend_language);
7047
7048 if (dwarf2_read_debug)
7049 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7050 }
7051
7052 item->per_cu->queued = 0;
7053 next_item = item->next;
7054 xfree (item);
7055 }
7056
7057 dwarf2_queue_tail = NULL;
7058
7059 if (dwarf2_read_debug)
7060 {
7061 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7062 dwarf2_per_objfile->objfile->name);
7063 }
7064 }
7065
7066 /* Free all allocated queue entries. This function only releases anything if
7067 an error was thrown; if the queue was processed then it would have been
7068 freed as we went along. */
7069
7070 static void
7071 dwarf2_release_queue (void *dummy)
7072 {
7073 struct dwarf2_queue_item *item, *last;
7074
7075 item = dwarf2_queue;
7076 while (item)
7077 {
7078 /* Anything still marked queued is likely to be in an
7079 inconsistent state, so discard it. */
7080 if (item->per_cu->queued)
7081 {
7082 if (item->per_cu->cu != NULL)
7083 free_one_cached_comp_unit (item->per_cu);
7084 item->per_cu->queued = 0;
7085 }
7086
7087 last = item;
7088 item = item->next;
7089 xfree (last);
7090 }
7091
7092 dwarf2_queue = dwarf2_queue_tail = NULL;
7093 }
7094
7095 /* Read in full symbols for PST, and anything it depends on. */
7096
7097 static void
7098 psymtab_to_symtab_1 (struct partial_symtab *pst)
7099 {
7100 struct dwarf2_per_cu_data *per_cu;
7101 int i;
7102
7103 if (pst->readin)
7104 return;
7105
7106 for (i = 0; i < pst->number_of_dependencies; i++)
7107 if (!pst->dependencies[i]->readin
7108 && pst->dependencies[i]->user == NULL)
7109 {
7110 /* Inform about additional files that need to be read in. */
7111 if (info_verbose)
7112 {
7113 /* FIXME: i18n: Need to make this a single string. */
7114 fputs_filtered (" ", gdb_stdout);
7115 wrap_here ("");
7116 fputs_filtered ("and ", gdb_stdout);
7117 wrap_here ("");
7118 printf_filtered ("%s...", pst->dependencies[i]->filename);
7119 wrap_here (""); /* Flush output. */
7120 gdb_flush (gdb_stdout);
7121 }
7122 psymtab_to_symtab_1 (pst->dependencies[i]);
7123 }
7124
7125 per_cu = pst->read_symtab_private;
7126
7127 if (per_cu == NULL)
7128 {
7129 /* It's an include file, no symbols to read for it.
7130 Everything is in the parent symtab. */
7131 pst->readin = 1;
7132 return;
7133 }
7134
7135 dw2_do_instantiate_symtab (per_cu);
7136 }
7137
7138 /* Trivial hash function for die_info: the hash value of a DIE
7139 is its offset in .debug_info for this objfile. */
7140
7141 static hashval_t
7142 die_hash (const void *item)
7143 {
7144 const struct die_info *die = item;
7145
7146 return die->offset.sect_off;
7147 }
7148
7149 /* Trivial comparison function for die_info structures: two DIEs
7150 are equal if they have the same offset. */
7151
7152 static int
7153 die_eq (const void *item_lhs, const void *item_rhs)
7154 {
7155 const struct die_info *die_lhs = item_lhs;
7156 const struct die_info *die_rhs = item_rhs;
7157
7158 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7159 }
7160
7161 /* die_reader_func for load_full_comp_unit.
7162 This is identical to read_signatured_type_reader,
7163 but is kept separate for now. */
7164
7165 static void
7166 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7167 const gdb_byte *info_ptr,
7168 struct die_info *comp_unit_die,
7169 int has_children,
7170 void *data)
7171 {
7172 struct dwarf2_cu *cu = reader->cu;
7173 enum language *language_ptr = data;
7174
7175 gdb_assert (cu->die_hash == NULL);
7176 cu->die_hash =
7177 htab_create_alloc_ex (cu->header.length / 12,
7178 die_hash,
7179 die_eq,
7180 NULL,
7181 &cu->comp_unit_obstack,
7182 hashtab_obstack_allocate,
7183 dummy_obstack_deallocate);
7184
7185 if (has_children)
7186 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7187 &info_ptr, comp_unit_die);
7188 cu->dies = comp_unit_die;
7189 /* comp_unit_die is not stored in die_hash, no need. */
7190
7191 /* We try not to read any attributes in this function, because not
7192 all CUs needed for references have been loaded yet, and symbol
7193 table processing isn't initialized. But we have to set the CU language,
7194 or we won't be able to build types correctly.
7195 Similarly, if we do not read the producer, we can not apply
7196 producer-specific interpretation. */
7197 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7198 }
7199
7200 /* Load the DIEs associated with PER_CU into memory. */
7201
7202 static void
7203 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7204 enum language pretend_language)
7205 {
7206 gdb_assert (! this_cu->is_debug_types);
7207
7208 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7209 load_full_comp_unit_reader, &pretend_language);
7210 }
7211
7212 /* Add a DIE to the delayed physname list. */
7213
7214 static void
7215 add_to_method_list (struct type *type, int fnfield_index, int index,
7216 const char *name, struct die_info *die,
7217 struct dwarf2_cu *cu)
7218 {
7219 struct delayed_method_info mi;
7220 mi.type = type;
7221 mi.fnfield_index = fnfield_index;
7222 mi.index = index;
7223 mi.name = name;
7224 mi.die = die;
7225 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7226 }
7227
7228 /* A cleanup for freeing the delayed method list. */
7229
7230 static void
7231 free_delayed_list (void *ptr)
7232 {
7233 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7234 if (cu->method_list != NULL)
7235 {
7236 VEC_free (delayed_method_info, cu->method_list);
7237 cu->method_list = NULL;
7238 }
7239 }
7240
7241 /* Compute the physnames of any methods on the CU's method list.
7242
7243 The computation of method physnames is delayed in order to avoid the
7244 (bad) condition that one of the method's formal parameters is of an as yet
7245 incomplete type. */
7246
7247 static void
7248 compute_delayed_physnames (struct dwarf2_cu *cu)
7249 {
7250 int i;
7251 struct delayed_method_info *mi;
7252 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7253 {
7254 const char *physname;
7255 struct fn_fieldlist *fn_flp
7256 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7257 physname = dwarf2_physname (mi->name, mi->die, cu);
7258 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7259 }
7260 }
7261
7262 /* Go objects should be embedded in a DW_TAG_module DIE,
7263 and it's not clear if/how imported objects will appear.
7264 To keep Go support simple until that's worked out,
7265 go back through what we've read and create something usable.
7266 We could do this while processing each DIE, and feels kinda cleaner,
7267 but that way is more invasive.
7268 This is to, for example, allow the user to type "p var" or "b main"
7269 without having to specify the package name, and allow lookups
7270 of module.object to work in contexts that use the expression
7271 parser. */
7272
7273 static void
7274 fixup_go_packaging (struct dwarf2_cu *cu)
7275 {
7276 char *package_name = NULL;
7277 struct pending *list;
7278 int i;
7279
7280 for (list = global_symbols; list != NULL; list = list->next)
7281 {
7282 for (i = 0; i < list->nsyms; ++i)
7283 {
7284 struct symbol *sym = list->symbol[i];
7285
7286 if (SYMBOL_LANGUAGE (sym) == language_go
7287 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7288 {
7289 char *this_package_name = go_symbol_package_name (sym);
7290
7291 if (this_package_name == NULL)
7292 continue;
7293 if (package_name == NULL)
7294 package_name = this_package_name;
7295 else
7296 {
7297 if (strcmp (package_name, this_package_name) != 0)
7298 complaint (&symfile_complaints,
7299 _("Symtab %s has objects from two different Go packages: %s and %s"),
7300 (SYMBOL_SYMTAB (sym)
7301 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7302 : cu->objfile->name),
7303 this_package_name, package_name);
7304 xfree (this_package_name);
7305 }
7306 }
7307 }
7308 }
7309
7310 if (package_name != NULL)
7311 {
7312 struct objfile *objfile = cu->objfile;
7313 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7314 package_name,
7315 strlen (package_name));
7316 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7317 saved_package_name, objfile);
7318 struct symbol *sym;
7319
7320 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7321
7322 sym = allocate_symbol (objfile);
7323 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7324 SYMBOL_SET_NAMES (sym, saved_package_name,
7325 strlen (saved_package_name), 0, objfile);
7326 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7327 e.g., "main" finds the "main" module and not C's main(). */
7328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7329 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7330 SYMBOL_TYPE (sym) = type;
7331
7332 add_symbol_to_list (sym, &global_symbols);
7333
7334 xfree (package_name);
7335 }
7336 }
7337
7338 /* Return the symtab for PER_CU. This works properly regardless of
7339 whether we're using the index or psymtabs. */
7340
7341 static struct symtab *
7342 get_symtab (struct dwarf2_per_cu_data *per_cu)
7343 {
7344 return (dwarf2_per_objfile->using_index
7345 ? per_cu->v.quick->symtab
7346 : per_cu->v.psymtab->symtab);
7347 }
7348
7349 /* A helper function for computing the list of all symbol tables
7350 included by PER_CU. */
7351
7352 static void
7353 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7354 htab_t all_children, htab_t all_type_symtabs,
7355 struct dwarf2_per_cu_data *per_cu,
7356 struct symtab *immediate_parent)
7357 {
7358 void **slot;
7359 int ix;
7360 struct symtab *symtab;
7361 struct dwarf2_per_cu_data *iter;
7362
7363 slot = htab_find_slot (all_children, per_cu, INSERT);
7364 if (*slot != NULL)
7365 {
7366 /* This inclusion and its children have been processed. */
7367 return;
7368 }
7369
7370 *slot = per_cu;
7371 /* Only add a CU if it has a symbol table. */
7372 symtab = get_symtab (per_cu);
7373 if (symtab != NULL)
7374 {
7375 /* If this is a type unit only add its symbol table if we haven't
7376 seen it yet (type unit per_cu's can share symtabs). */
7377 if (per_cu->is_debug_types)
7378 {
7379 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7380 if (*slot == NULL)
7381 {
7382 *slot = symtab;
7383 VEC_safe_push (symtab_ptr, *result, symtab);
7384 if (symtab->user == NULL)
7385 symtab->user = immediate_parent;
7386 }
7387 }
7388 else
7389 {
7390 VEC_safe_push (symtab_ptr, *result, symtab);
7391 if (symtab->user == NULL)
7392 symtab->user = immediate_parent;
7393 }
7394 }
7395
7396 for (ix = 0;
7397 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7398 ++ix)
7399 {
7400 recursively_compute_inclusions (result, all_children,
7401 all_type_symtabs, iter, symtab);
7402 }
7403 }
7404
7405 /* Compute the symtab 'includes' fields for the symtab related to
7406 PER_CU. */
7407
7408 static void
7409 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7410 {
7411 gdb_assert (! per_cu->is_debug_types);
7412
7413 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7414 {
7415 int ix, len;
7416 struct dwarf2_per_cu_data *per_cu_iter;
7417 struct symtab *symtab_iter;
7418 VEC (symtab_ptr) *result_symtabs = NULL;
7419 htab_t all_children, all_type_symtabs;
7420 struct symtab *symtab = get_symtab (per_cu);
7421
7422 /* If we don't have a symtab, we can just skip this case. */
7423 if (symtab == NULL)
7424 return;
7425
7426 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7427 NULL, xcalloc, xfree);
7428 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7429 NULL, xcalloc, xfree);
7430
7431 for (ix = 0;
7432 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7433 ix, per_cu_iter);
7434 ++ix)
7435 {
7436 recursively_compute_inclusions (&result_symtabs, all_children,
7437 all_type_symtabs, per_cu_iter,
7438 symtab);
7439 }
7440
7441 /* Now we have a transitive closure of all the included symtabs. */
7442 len = VEC_length (symtab_ptr, result_symtabs);
7443 symtab->includes
7444 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7445 (len + 1) * sizeof (struct symtab *));
7446 for (ix = 0;
7447 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7448 ++ix)
7449 symtab->includes[ix] = symtab_iter;
7450 symtab->includes[len] = NULL;
7451
7452 VEC_free (symtab_ptr, result_symtabs);
7453 htab_delete (all_children);
7454 htab_delete (all_type_symtabs);
7455 }
7456 }
7457
7458 /* Compute the 'includes' field for the symtabs of all the CUs we just
7459 read. */
7460
7461 static void
7462 process_cu_includes (void)
7463 {
7464 int ix;
7465 struct dwarf2_per_cu_data *iter;
7466
7467 for (ix = 0;
7468 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7469 ix, iter);
7470 ++ix)
7471 {
7472 if (! iter->is_debug_types)
7473 compute_symtab_includes (iter);
7474 }
7475
7476 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7477 }
7478
7479 /* Generate full symbol information for PER_CU, whose DIEs have
7480 already been loaded into memory. */
7481
7482 static void
7483 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7484 enum language pretend_language)
7485 {
7486 struct dwarf2_cu *cu = per_cu->cu;
7487 struct objfile *objfile = per_cu->objfile;
7488 CORE_ADDR lowpc, highpc;
7489 struct symtab *symtab;
7490 struct cleanup *back_to, *delayed_list_cleanup;
7491 CORE_ADDR baseaddr;
7492 struct block *static_block;
7493
7494 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7495
7496 buildsym_init ();
7497 back_to = make_cleanup (really_free_pendings, NULL);
7498 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7499
7500 cu->list_in_scope = &file_symbols;
7501
7502 cu->language = pretend_language;
7503 cu->language_defn = language_def (cu->language);
7504
7505 /* Do line number decoding in read_file_scope () */
7506 process_die (cu->dies, cu);
7507
7508 /* For now fudge the Go package. */
7509 if (cu->language == language_go)
7510 fixup_go_packaging (cu);
7511
7512 /* Now that we have processed all the DIEs in the CU, all the types
7513 should be complete, and it should now be safe to compute all of the
7514 physnames. */
7515 compute_delayed_physnames (cu);
7516 do_cleanups (delayed_list_cleanup);
7517
7518 /* Some compilers don't define a DW_AT_high_pc attribute for the
7519 compilation unit. If the DW_AT_high_pc is missing, synthesize
7520 it, by scanning the DIE's below the compilation unit. */
7521 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7522
7523 static_block
7524 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7525
7526 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7527 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7528 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7529 addrmap to help ensure it has an accurate map of pc values belonging to
7530 this comp unit. */
7531 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7532
7533 symtab = end_symtab_from_static_block (static_block, objfile,
7534 SECT_OFF_TEXT (objfile), 0);
7535
7536 if (symtab != NULL)
7537 {
7538 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7539
7540 /* Set symtab language to language from DW_AT_language. If the
7541 compilation is from a C file generated by language preprocessors, do
7542 not set the language if it was already deduced by start_subfile. */
7543 if (!(cu->language == language_c && symtab->language != language_c))
7544 symtab->language = cu->language;
7545
7546 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7547 produce DW_AT_location with location lists but it can be possibly
7548 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7549 there were bugs in prologue debug info, fixed later in GCC-4.5
7550 by "unwind info for epilogues" patch (which is not directly related).
7551
7552 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7553 needed, it would be wrong due to missing DW_AT_producer there.
7554
7555 Still one can confuse GDB by using non-standard GCC compilation
7556 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7557 */
7558 if (cu->has_loclist && gcc_4_minor >= 5)
7559 symtab->locations_valid = 1;
7560
7561 if (gcc_4_minor >= 5)
7562 symtab->epilogue_unwind_valid = 1;
7563
7564 symtab->call_site_htab = cu->call_site_htab;
7565 }
7566
7567 if (dwarf2_per_objfile->using_index)
7568 per_cu->v.quick->symtab = symtab;
7569 else
7570 {
7571 struct partial_symtab *pst = per_cu->v.psymtab;
7572 pst->symtab = symtab;
7573 pst->readin = 1;
7574 }
7575
7576 /* Push it for inclusion processing later. */
7577 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7578
7579 do_cleanups (back_to);
7580 }
7581
7582 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7583 already been loaded into memory. */
7584
7585 static void
7586 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7587 enum language pretend_language)
7588 {
7589 struct dwarf2_cu *cu = per_cu->cu;
7590 struct objfile *objfile = per_cu->objfile;
7591 struct symtab *symtab;
7592 struct cleanup *back_to, *delayed_list_cleanup;
7593 struct signatured_type *sig_type;
7594
7595 gdb_assert (per_cu->is_debug_types);
7596 sig_type = (struct signatured_type *) per_cu;
7597
7598 buildsym_init ();
7599 back_to = make_cleanup (really_free_pendings, NULL);
7600 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7601
7602 cu->list_in_scope = &file_symbols;
7603
7604 cu->language = pretend_language;
7605 cu->language_defn = language_def (cu->language);
7606
7607 /* The symbol tables are set up in read_type_unit_scope. */
7608 process_die (cu->dies, cu);
7609
7610 /* For now fudge the Go package. */
7611 if (cu->language == language_go)
7612 fixup_go_packaging (cu);
7613
7614 /* Now that we have processed all the DIEs in the CU, all the types
7615 should be complete, and it should now be safe to compute all of the
7616 physnames. */
7617 compute_delayed_physnames (cu);
7618 do_cleanups (delayed_list_cleanup);
7619
7620 /* TUs share symbol tables.
7621 If this is the first TU to use this symtab, complete the construction
7622 of it with end_expandable_symtab. Otherwise, complete the addition of
7623 this TU's symbols to the existing symtab. */
7624 if (sig_type->type_unit_group->primary_symtab == NULL)
7625 {
7626 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7627 sig_type->type_unit_group->primary_symtab = symtab;
7628
7629 if (symtab != NULL)
7630 {
7631 /* Set symtab language to language from DW_AT_language. If the
7632 compilation is from a C file generated by language preprocessors,
7633 do not set the language if it was already deduced by
7634 start_subfile. */
7635 if (!(cu->language == language_c && symtab->language != language_c))
7636 symtab->language = cu->language;
7637 }
7638 }
7639 else
7640 {
7641 augment_type_symtab (objfile,
7642 sig_type->type_unit_group->primary_symtab);
7643 symtab = sig_type->type_unit_group->primary_symtab;
7644 }
7645
7646 if (dwarf2_per_objfile->using_index)
7647 per_cu->v.quick->symtab = symtab;
7648 else
7649 {
7650 struct partial_symtab *pst = per_cu->v.psymtab;
7651 pst->symtab = symtab;
7652 pst->readin = 1;
7653 }
7654
7655 do_cleanups (back_to);
7656 }
7657
7658 /* Process an imported unit DIE. */
7659
7660 static void
7661 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7662 {
7663 struct attribute *attr;
7664
7665 /* For now we don't handle imported units in type units. */
7666 if (cu->per_cu->is_debug_types)
7667 {
7668 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7669 " supported in type units [in module %s]"),
7670 cu->objfile->name);
7671 }
7672
7673 attr = dwarf2_attr (die, DW_AT_import, cu);
7674 if (attr != NULL)
7675 {
7676 struct dwarf2_per_cu_data *per_cu;
7677 struct symtab *imported_symtab;
7678 sect_offset offset;
7679 int is_dwz;
7680
7681 offset = dwarf2_get_ref_die_offset (attr);
7682 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7683 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7684
7685 /* If necessary, add it to the queue and load its DIEs. */
7686 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7687 load_full_comp_unit (per_cu, cu->language);
7688
7689 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7690 per_cu);
7691 }
7692 }
7693
7694 /* Process a die and its children. */
7695
7696 static void
7697 process_die (struct die_info *die, struct dwarf2_cu *cu)
7698 {
7699 switch (die->tag)
7700 {
7701 case DW_TAG_padding:
7702 break;
7703 case DW_TAG_compile_unit:
7704 case DW_TAG_partial_unit:
7705 read_file_scope (die, cu);
7706 break;
7707 case DW_TAG_type_unit:
7708 read_type_unit_scope (die, cu);
7709 break;
7710 case DW_TAG_subprogram:
7711 case DW_TAG_inlined_subroutine:
7712 read_func_scope (die, cu);
7713 break;
7714 case DW_TAG_lexical_block:
7715 case DW_TAG_try_block:
7716 case DW_TAG_catch_block:
7717 read_lexical_block_scope (die, cu);
7718 break;
7719 case DW_TAG_GNU_call_site:
7720 read_call_site_scope (die, cu);
7721 break;
7722 case DW_TAG_class_type:
7723 case DW_TAG_interface_type:
7724 case DW_TAG_structure_type:
7725 case DW_TAG_union_type:
7726 process_structure_scope (die, cu);
7727 break;
7728 case DW_TAG_enumeration_type:
7729 process_enumeration_scope (die, cu);
7730 break;
7731
7732 /* These dies have a type, but processing them does not create
7733 a symbol or recurse to process the children. Therefore we can
7734 read them on-demand through read_type_die. */
7735 case DW_TAG_subroutine_type:
7736 case DW_TAG_set_type:
7737 case DW_TAG_array_type:
7738 case DW_TAG_pointer_type:
7739 case DW_TAG_ptr_to_member_type:
7740 case DW_TAG_reference_type:
7741 case DW_TAG_string_type:
7742 break;
7743
7744 case DW_TAG_base_type:
7745 case DW_TAG_subrange_type:
7746 case DW_TAG_typedef:
7747 /* Add a typedef symbol for the type definition, if it has a
7748 DW_AT_name. */
7749 new_symbol (die, read_type_die (die, cu), cu);
7750 break;
7751 case DW_TAG_common_block:
7752 read_common_block (die, cu);
7753 break;
7754 case DW_TAG_common_inclusion:
7755 break;
7756 case DW_TAG_namespace:
7757 cu->processing_has_namespace_info = 1;
7758 read_namespace (die, cu);
7759 break;
7760 case DW_TAG_module:
7761 cu->processing_has_namespace_info = 1;
7762 read_module (die, cu);
7763 break;
7764 case DW_TAG_imported_declaration:
7765 case DW_TAG_imported_module:
7766 cu->processing_has_namespace_info = 1;
7767 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7768 || cu->language != language_fortran))
7769 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7770 dwarf_tag_name (die->tag));
7771 read_import_statement (die, cu);
7772 break;
7773
7774 case DW_TAG_imported_unit:
7775 process_imported_unit_die (die, cu);
7776 break;
7777
7778 default:
7779 new_symbol (die, NULL, cu);
7780 break;
7781 }
7782 }
7783 \f
7784 /* DWARF name computation. */
7785
7786 /* A helper function for dwarf2_compute_name which determines whether DIE
7787 needs to have the name of the scope prepended to the name listed in the
7788 die. */
7789
7790 static int
7791 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7792 {
7793 struct attribute *attr;
7794
7795 switch (die->tag)
7796 {
7797 case DW_TAG_namespace:
7798 case DW_TAG_typedef:
7799 case DW_TAG_class_type:
7800 case DW_TAG_interface_type:
7801 case DW_TAG_structure_type:
7802 case DW_TAG_union_type:
7803 case DW_TAG_enumeration_type:
7804 case DW_TAG_enumerator:
7805 case DW_TAG_subprogram:
7806 case DW_TAG_member:
7807 return 1;
7808
7809 case DW_TAG_variable:
7810 case DW_TAG_constant:
7811 /* We only need to prefix "globally" visible variables. These include
7812 any variable marked with DW_AT_external or any variable that
7813 lives in a namespace. [Variables in anonymous namespaces
7814 require prefixing, but they are not DW_AT_external.] */
7815
7816 if (dwarf2_attr (die, DW_AT_specification, cu))
7817 {
7818 struct dwarf2_cu *spec_cu = cu;
7819
7820 return die_needs_namespace (die_specification (die, &spec_cu),
7821 spec_cu);
7822 }
7823
7824 attr = dwarf2_attr (die, DW_AT_external, cu);
7825 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7826 && die->parent->tag != DW_TAG_module)
7827 return 0;
7828 /* A variable in a lexical block of some kind does not need a
7829 namespace, even though in C++ such variables may be external
7830 and have a mangled name. */
7831 if (die->parent->tag == DW_TAG_lexical_block
7832 || die->parent->tag == DW_TAG_try_block
7833 || die->parent->tag == DW_TAG_catch_block
7834 || die->parent->tag == DW_TAG_subprogram)
7835 return 0;
7836 return 1;
7837
7838 default:
7839 return 0;
7840 }
7841 }
7842
7843 /* Retrieve the last character from a mem_file. */
7844
7845 static void
7846 do_ui_file_peek_last (void *object, const char *buffer, long length)
7847 {
7848 char *last_char_p = (char *) object;
7849
7850 if (length > 0)
7851 *last_char_p = buffer[length - 1];
7852 }
7853
7854 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7855 compute the physname for the object, which include a method's:
7856 - formal parameters (C++/Java),
7857 - receiver type (Go),
7858 - return type (Java).
7859
7860 The term "physname" is a bit confusing.
7861 For C++, for example, it is the demangled name.
7862 For Go, for example, it's the mangled name.
7863
7864 For Ada, return the DIE's linkage name rather than the fully qualified
7865 name. PHYSNAME is ignored..
7866
7867 The result is allocated on the objfile_obstack and canonicalized. */
7868
7869 static const char *
7870 dwarf2_compute_name (const char *name,
7871 struct die_info *die, struct dwarf2_cu *cu,
7872 int physname)
7873 {
7874 struct objfile *objfile = cu->objfile;
7875
7876 if (name == NULL)
7877 name = dwarf2_name (die, cu);
7878
7879 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7880 compute it by typename_concat inside GDB. */
7881 if (cu->language == language_ada
7882 || (cu->language == language_fortran && physname))
7883 {
7884 /* For Ada unit, we prefer the linkage name over the name, as
7885 the former contains the exported name, which the user expects
7886 to be able to reference. Ideally, we want the user to be able
7887 to reference this entity using either natural or linkage name,
7888 but we haven't started looking at this enhancement yet. */
7889 struct attribute *attr;
7890
7891 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7892 if (attr == NULL)
7893 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7894 if (attr && DW_STRING (attr))
7895 return DW_STRING (attr);
7896 }
7897
7898 /* These are the only languages we know how to qualify names in. */
7899 if (name != NULL
7900 && (cu->language == language_cplus || cu->language == language_java
7901 || cu->language == language_fortran))
7902 {
7903 if (die_needs_namespace (die, cu))
7904 {
7905 long length;
7906 const char *prefix;
7907 struct ui_file *buf;
7908
7909 prefix = determine_prefix (die, cu);
7910 buf = mem_fileopen ();
7911 if (*prefix != '\0')
7912 {
7913 char *prefixed_name = typename_concat (NULL, prefix, name,
7914 physname, cu);
7915
7916 fputs_unfiltered (prefixed_name, buf);
7917 xfree (prefixed_name);
7918 }
7919 else
7920 fputs_unfiltered (name, buf);
7921
7922 /* Template parameters may be specified in the DIE's DW_AT_name, or
7923 as children with DW_TAG_template_type_param or
7924 DW_TAG_value_type_param. If the latter, add them to the name
7925 here. If the name already has template parameters, then
7926 skip this step; some versions of GCC emit both, and
7927 it is more efficient to use the pre-computed name.
7928
7929 Something to keep in mind about this process: it is very
7930 unlikely, or in some cases downright impossible, to produce
7931 something that will match the mangled name of a function.
7932 If the definition of the function has the same debug info,
7933 we should be able to match up with it anyway. But fallbacks
7934 using the minimal symbol, for instance to find a method
7935 implemented in a stripped copy of libstdc++, will not work.
7936 If we do not have debug info for the definition, we will have to
7937 match them up some other way.
7938
7939 When we do name matching there is a related problem with function
7940 templates; two instantiated function templates are allowed to
7941 differ only by their return types, which we do not add here. */
7942
7943 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7944 {
7945 struct attribute *attr;
7946 struct die_info *child;
7947 int first = 1;
7948
7949 die->building_fullname = 1;
7950
7951 for (child = die->child; child != NULL; child = child->sibling)
7952 {
7953 struct type *type;
7954 LONGEST value;
7955 const gdb_byte *bytes;
7956 struct dwarf2_locexpr_baton *baton;
7957 struct value *v;
7958
7959 if (child->tag != DW_TAG_template_type_param
7960 && child->tag != DW_TAG_template_value_param)
7961 continue;
7962
7963 if (first)
7964 {
7965 fputs_unfiltered ("<", buf);
7966 first = 0;
7967 }
7968 else
7969 fputs_unfiltered (", ", buf);
7970
7971 attr = dwarf2_attr (child, DW_AT_type, cu);
7972 if (attr == NULL)
7973 {
7974 complaint (&symfile_complaints,
7975 _("template parameter missing DW_AT_type"));
7976 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7977 continue;
7978 }
7979 type = die_type (child, cu);
7980
7981 if (child->tag == DW_TAG_template_type_param)
7982 {
7983 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7984 continue;
7985 }
7986
7987 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7988 if (attr == NULL)
7989 {
7990 complaint (&symfile_complaints,
7991 _("template parameter missing "
7992 "DW_AT_const_value"));
7993 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7994 continue;
7995 }
7996
7997 dwarf2_const_value_attr (attr, type, name,
7998 &cu->comp_unit_obstack, cu,
7999 &value, &bytes, &baton);
8000
8001 if (TYPE_NOSIGN (type))
8002 /* GDB prints characters as NUMBER 'CHAR'. If that's
8003 changed, this can use value_print instead. */
8004 c_printchar (value, type, buf);
8005 else
8006 {
8007 struct value_print_options opts;
8008
8009 if (baton != NULL)
8010 v = dwarf2_evaluate_loc_desc (type, NULL,
8011 baton->data,
8012 baton->size,
8013 baton->per_cu);
8014 else if (bytes != NULL)
8015 {
8016 v = allocate_value (type);
8017 memcpy (value_contents_writeable (v), bytes,
8018 TYPE_LENGTH (type));
8019 }
8020 else
8021 v = value_from_longest (type, value);
8022
8023 /* Specify decimal so that we do not depend on
8024 the radix. */
8025 get_formatted_print_options (&opts, 'd');
8026 opts.raw = 1;
8027 value_print (v, buf, &opts);
8028 release_value (v);
8029 value_free (v);
8030 }
8031 }
8032
8033 die->building_fullname = 0;
8034
8035 if (!first)
8036 {
8037 /* Close the argument list, with a space if necessary
8038 (nested templates). */
8039 char last_char = '\0';
8040 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8041 if (last_char == '>')
8042 fputs_unfiltered (" >", buf);
8043 else
8044 fputs_unfiltered (">", buf);
8045 }
8046 }
8047
8048 /* For Java and C++ methods, append formal parameter type
8049 information, if PHYSNAME. */
8050
8051 if (physname && die->tag == DW_TAG_subprogram
8052 && (cu->language == language_cplus
8053 || cu->language == language_java))
8054 {
8055 struct type *type = read_type_die (die, cu);
8056
8057 c_type_print_args (type, buf, 1, cu->language,
8058 &type_print_raw_options);
8059
8060 if (cu->language == language_java)
8061 {
8062 /* For java, we must append the return type to method
8063 names. */
8064 if (die->tag == DW_TAG_subprogram)
8065 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8066 0, 0, &type_print_raw_options);
8067 }
8068 else if (cu->language == language_cplus)
8069 {
8070 /* Assume that an artificial first parameter is
8071 "this", but do not crash if it is not. RealView
8072 marks unnamed (and thus unused) parameters as
8073 artificial; there is no way to differentiate
8074 the two cases. */
8075 if (TYPE_NFIELDS (type) > 0
8076 && TYPE_FIELD_ARTIFICIAL (type, 0)
8077 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8078 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8079 0))))
8080 fputs_unfiltered (" const", buf);
8081 }
8082 }
8083
8084 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8085 &length);
8086 ui_file_delete (buf);
8087
8088 if (cu->language == language_cplus)
8089 {
8090 const char *cname
8091 = dwarf2_canonicalize_name (name, cu,
8092 &objfile->objfile_obstack);
8093
8094 if (cname != NULL)
8095 name = cname;
8096 }
8097 }
8098 }
8099
8100 return name;
8101 }
8102
8103 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8104 If scope qualifiers are appropriate they will be added. The result
8105 will be allocated on the objfile_obstack, or NULL if the DIE does
8106 not have a name. NAME may either be from a previous call to
8107 dwarf2_name or NULL.
8108
8109 The output string will be canonicalized (if C++/Java). */
8110
8111 static const char *
8112 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8113 {
8114 return dwarf2_compute_name (name, die, cu, 0);
8115 }
8116
8117 /* Construct a physname for the given DIE in CU. NAME may either be
8118 from a previous call to dwarf2_name or NULL. The result will be
8119 allocated on the objfile_objstack or NULL if the DIE does not have a
8120 name.
8121
8122 The output string will be canonicalized (if C++/Java). */
8123
8124 static const char *
8125 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8126 {
8127 struct objfile *objfile = cu->objfile;
8128 struct attribute *attr;
8129 const char *retval, *mangled = NULL, *canon = NULL;
8130 struct cleanup *back_to;
8131 int need_copy = 1;
8132
8133 /* In this case dwarf2_compute_name is just a shortcut not building anything
8134 on its own. */
8135 if (!die_needs_namespace (die, cu))
8136 return dwarf2_compute_name (name, die, cu, 1);
8137
8138 back_to = make_cleanup (null_cleanup, NULL);
8139
8140 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8141 if (!attr)
8142 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8143
8144 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8145 has computed. */
8146 if (attr && DW_STRING (attr))
8147 {
8148 char *demangled;
8149
8150 mangled = DW_STRING (attr);
8151
8152 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8153 type. It is easier for GDB users to search for such functions as
8154 `name(params)' than `long name(params)'. In such case the minimal
8155 symbol names do not match the full symbol names but for template
8156 functions there is never a need to look up their definition from their
8157 declaration so the only disadvantage remains the minimal symbol
8158 variant `long name(params)' does not have the proper inferior type.
8159 */
8160
8161 if (cu->language == language_go)
8162 {
8163 /* This is a lie, but we already lie to the caller new_symbol_full.
8164 new_symbol_full assumes we return the mangled name.
8165 This just undoes that lie until things are cleaned up. */
8166 demangled = NULL;
8167 }
8168 else
8169 {
8170 demangled = gdb_demangle (mangled,
8171 (DMGL_PARAMS | DMGL_ANSI
8172 | (cu->language == language_java
8173 ? DMGL_JAVA | DMGL_RET_POSTFIX
8174 : DMGL_RET_DROP)));
8175 }
8176 if (demangled)
8177 {
8178 make_cleanup (xfree, demangled);
8179 canon = demangled;
8180 }
8181 else
8182 {
8183 canon = mangled;
8184 need_copy = 0;
8185 }
8186 }
8187
8188 if (canon == NULL || check_physname)
8189 {
8190 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8191
8192 if (canon != NULL && strcmp (physname, canon) != 0)
8193 {
8194 /* It may not mean a bug in GDB. The compiler could also
8195 compute DW_AT_linkage_name incorrectly. But in such case
8196 GDB would need to be bug-to-bug compatible. */
8197
8198 complaint (&symfile_complaints,
8199 _("Computed physname <%s> does not match demangled <%s> "
8200 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8201 physname, canon, mangled, die->offset.sect_off, objfile->name);
8202
8203 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8204 is available here - over computed PHYSNAME. It is safer
8205 against both buggy GDB and buggy compilers. */
8206
8207 retval = canon;
8208 }
8209 else
8210 {
8211 retval = physname;
8212 need_copy = 0;
8213 }
8214 }
8215 else
8216 retval = canon;
8217
8218 if (need_copy)
8219 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8220
8221 do_cleanups (back_to);
8222 return retval;
8223 }
8224
8225 /* Read the import statement specified by the given die and record it. */
8226
8227 static void
8228 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8229 {
8230 struct objfile *objfile = cu->objfile;
8231 struct attribute *import_attr;
8232 struct die_info *imported_die, *child_die;
8233 struct dwarf2_cu *imported_cu;
8234 const char *imported_name;
8235 const char *imported_name_prefix;
8236 const char *canonical_name;
8237 const char *import_alias;
8238 const char *imported_declaration = NULL;
8239 const char *import_prefix;
8240 VEC (const_char_ptr) *excludes = NULL;
8241 struct cleanup *cleanups;
8242
8243 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8244 if (import_attr == NULL)
8245 {
8246 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8247 dwarf_tag_name (die->tag));
8248 return;
8249 }
8250
8251 imported_cu = cu;
8252 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8253 imported_name = dwarf2_name (imported_die, imported_cu);
8254 if (imported_name == NULL)
8255 {
8256 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8257
8258 The import in the following code:
8259 namespace A
8260 {
8261 typedef int B;
8262 }
8263
8264 int main ()
8265 {
8266 using A::B;
8267 B b;
8268 return b;
8269 }
8270
8271 ...
8272 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8273 <52> DW_AT_decl_file : 1
8274 <53> DW_AT_decl_line : 6
8275 <54> DW_AT_import : <0x75>
8276 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8277 <59> DW_AT_name : B
8278 <5b> DW_AT_decl_file : 1
8279 <5c> DW_AT_decl_line : 2
8280 <5d> DW_AT_type : <0x6e>
8281 ...
8282 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8283 <76> DW_AT_byte_size : 4
8284 <77> DW_AT_encoding : 5 (signed)
8285
8286 imports the wrong die ( 0x75 instead of 0x58 ).
8287 This case will be ignored until the gcc bug is fixed. */
8288 return;
8289 }
8290
8291 /* Figure out the local name after import. */
8292 import_alias = dwarf2_name (die, cu);
8293
8294 /* Figure out where the statement is being imported to. */
8295 import_prefix = determine_prefix (die, cu);
8296
8297 /* Figure out what the scope of the imported die is and prepend it
8298 to the name of the imported die. */
8299 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8300
8301 if (imported_die->tag != DW_TAG_namespace
8302 && imported_die->tag != DW_TAG_module)
8303 {
8304 imported_declaration = imported_name;
8305 canonical_name = imported_name_prefix;
8306 }
8307 else if (strlen (imported_name_prefix) > 0)
8308 canonical_name = obconcat (&objfile->objfile_obstack,
8309 imported_name_prefix, "::", imported_name,
8310 (char *) NULL);
8311 else
8312 canonical_name = imported_name;
8313
8314 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8315
8316 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8317 for (child_die = die->child; child_die && child_die->tag;
8318 child_die = sibling_die (child_die))
8319 {
8320 /* DWARF-4: A Fortran use statement with a “rename list” may be
8321 represented by an imported module entry with an import attribute
8322 referring to the module and owned entries corresponding to those
8323 entities that are renamed as part of being imported. */
8324
8325 if (child_die->tag != DW_TAG_imported_declaration)
8326 {
8327 complaint (&symfile_complaints,
8328 _("child DW_TAG_imported_declaration expected "
8329 "- DIE at 0x%x [in module %s]"),
8330 child_die->offset.sect_off, objfile->name);
8331 continue;
8332 }
8333
8334 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8335 if (import_attr == NULL)
8336 {
8337 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8338 dwarf_tag_name (child_die->tag));
8339 continue;
8340 }
8341
8342 imported_cu = cu;
8343 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8344 &imported_cu);
8345 imported_name = dwarf2_name (imported_die, imported_cu);
8346 if (imported_name == NULL)
8347 {
8348 complaint (&symfile_complaints,
8349 _("child DW_TAG_imported_declaration has unknown "
8350 "imported name - DIE at 0x%x [in module %s]"),
8351 child_die->offset.sect_off, objfile->name);
8352 continue;
8353 }
8354
8355 VEC_safe_push (const_char_ptr, excludes, imported_name);
8356
8357 process_die (child_die, cu);
8358 }
8359
8360 cp_add_using_directive (import_prefix,
8361 canonical_name,
8362 import_alias,
8363 imported_declaration,
8364 excludes,
8365 0,
8366 &objfile->objfile_obstack);
8367
8368 do_cleanups (cleanups);
8369 }
8370
8371 /* Cleanup function for handle_DW_AT_stmt_list. */
8372
8373 static void
8374 free_cu_line_header (void *arg)
8375 {
8376 struct dwarf2_cu *cu = arg;
8377
8378 free_line_header (cu->line_header);
8379 cu->line_header = NULL;
8380 }
8381
8382 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8383 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8384 this, it was first present in GCC release 4.3.0. */
8385
8386 static int
8387 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8388 {
8389 if (!cu->checked_producer)
8390 check_producer (cu);
8391
8392 return cu->producer_is_gcc_lt_4_3;
8393 }
8394
8395 static void
8396 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8397 const char **name, const char **comp_dir)
8398 {
8399 struct attribute *attr;
8400
8401 *name = NULL;
8402 *comp_dir = NULL;
8403
8404 /* Find the filename. Do not use dwarf2_name here, since the filename
8405 is not a source language identifier. */
8406 attr = dwarf2_attr (die, DW_AT_name, cu);
8407 if (attr)
8408 {
8409 *name = DW_STRING (attr);
8410 }
8411
8412 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8413 if (attr)
8414 *comp_dir = DW_STRING (attr);
8415 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8416 && IS_ABSOLUTE_PATH (*name))
8417 {
8418 char *d = ldirname (*name);
8419
8420 *comp_dir = d;
8421 if (d != NULL)
8422 make_cleanup (xfree, d);
8423 }
8424 if (*comp_dir != NULL)
8425 {
8426 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8427 directory, get rid of it. */
8428 char *cp = strchr (*comp_dir, ':');
8429
8430 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8431 *comp_dir = cp + 1;
8432 }
8433
8434 if (*name == NULL)
8435 *name = "<unknown>";
8436 }
8437
8438 /* Handle DW_AT_stmt_list for a compilation unit.
8439 DIE is the DW_TAG_compile_unit die for CU.
8440 COMP_DIR is the compilation directory.
8441 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8442
8443 static void
8444 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8445 const char *comp_dir) /* ARI: editCase function */
8446 {
8447 struct attribute *attr;
8448
8449 gdb_assert (! cu->per_cu->is_debug_types);
8450
8451 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8452 if (attr)
8453 {
8454 unsigned int line_offset = DW_UNSND (attr);
8455 struct line_header *line_header
8456 = dwarf_decode_line_header (line_offset, cu);
8457
8458 if (line_header)
8459 {
8460 cu->line_header = line_header;
8461 make_cleanup (free_cu_line_header, cu);
8462 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8463 }
8464 }
8465 }
8466
8467 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8468
8469 static void
8470 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8471 {
8472 struct objfile *objfile = dwarf2_per_objfile->objfile;
8473 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8474 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8475 CORE_ADDR highpc = ((CORE_ADDR) 0);
8476 struct attribute *attr;
8477 const char *name = NULL;
8478 const char *comp_dir = NULL;
8479 struct die_info *child_die;
8480 bfd *abfd = objfile->obfd;
8481 CORE_ADDR baseaddr;
8482
8483 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8484
8485 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8486
8487 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8488 from finish_block. */
8489 if (lowpc == ((CORE_ADDR) -1))
8490 lowpc = highpc;
8491 lowpc += baseaddr;
8492 highpc += baseaddr;
8493
8494 find_file_and_directory (die, cu, &name, &comp_dir);
8495
8496 prepare_one_comp_unit (cu, die, cu->language);
8497
8498 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8499 standardised yet. As a workaround for the language detection we fall
8500 back to the DW_AT_producer string. */
8501 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8502 cu->language = language_opencl;
8503
8504 /* Similar hack for Go. */
8505 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8506 set_cu_language (DW_LANG_Go, cu);
8507
8508 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8509
8510 /* Decode line number information if present. We do this before
8511 processing child DIEs, so that the line header table is available
8512 for DW_AT_decl_file. */
8513 handle_DW_AT_stmt_list (die, cu, comp_dir);
8514
8515 /* Process all dies in compilation unit. */
8516 if (die->child != NULL)
8517 {
8518 child_die = die->child;
8519 while (child_die && child_die->tag)
8520 {
8521 process_die (child_die, cu);
8522 child_die = sibling_die (child_die);
8523 }
8524 }
8525
8526 /* Decode macro information, if present. Dwarf 2 macro information
8527 refers to information in the line number info statement program
8528 header, so we can only read it if we've read the header
8529 successfully. */
8530 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8531 if (attr && cu->line_header)
8532 {
8533 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8534 complaint (&symfile_complaints,
8535 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8536
8537 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8538 }
8539 else
8540 {
8541 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8542 if (attr && cu->line_header)
8543 {
8544 unsigned int macro_offset = DW_UNSND (attr);
8545
8546 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8547 }
8548 }
8549
8550 do_cleanups (back_to);
8551 }
8552
8553 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8554 Create the set of symtabs used by this TU, or if this TU is sharing
8555 symtabs with another TU and the symtabs have already been created
8556 then restore those symtabs in the line header.
8557 We don't need the pc/line-number mapping for type units. */
8558
8559 static void
8560 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8561 {
8562 struct objfile *objfile = dwarf2_per_objfile->objfile;
8563 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8564 struct type_unit_group *tu_group;
8565 int first_time;
8566 struct line_header *lh;
8567 struct attribute *attr;
8568 unsigned int i, line_offset;
8569 struct signatured_type *sig_type;
8570
8571 gdb_assert (per_cu->is_debug_types);
8572 sig_type = (struct signatured_type *) per_cu;
8573
8574 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8575
8576 /* If we're using .gdb_index (includes -readnow) then
8577 per_cu->type_unit_group may not have been set up yet. */
8578 if (sig_type->type_unit_group == NULL)
8579 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8580 tu_group = sig_type->type_unit_group;
8581
8582 /* If we've already processed this stmt_list there's no real need to
8583 do it again, we could fake it and just recreate the part we need
8584 (file name,index -> symtab mapping). If data shows this optimization
8585 is useful we can do it then. */
8586 first_time = tu_group->primary_symtab == NULL;
8587
8588 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8589 debug info. */
8590 lh = NULL;
8591 if (attr != NULL)
8592 {
8593 line_offset = DW_UNSND (attr);
8594 lh = dwarf_decode_line_header (line_offset, cu);
8595 }
8596 if (lh == NULL)
8597 {
8598 if (first_time)
8599 dwarf2_start_symtab (cu, "", NULL, 0);
8600 else
8601 {
8602 gdb_assert (tu_group->symtabs == NULL);
8603 restart_symtab (0);
8604 }
8605 /* Note: The primary symtab will get allocated at the end. */
8606 return;
8607 }
8608
8609 cu->line_header = lh;
8610 make_cleanup (free_cu_line_header, cu);
8611
8612 if (first_time)
8613 {
8614 dwarf2_start_symtab (cu, "", NULL, 0);
8615
8616 tu_group->num_symtabs = lh->num_file_names;
8617 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8618
8619 for (i = 0; i < lh->num_file_names; ++i)
8620 {
8621 const char *dir = NULL;
8622 struct file_entry *fe = &lh->file_names[i];
8623
8624 if (fe->dir_index)
8625 dir = lh->include_dirs[fe->dir_index - 1];
8626 dwarf2_start_subfile (fe->name, dir, NULL);
8627
8628 /* Note: We don't have to watch for the main subfile here, type units
8629 don't have DW_AT_name. */
8630
8631 if (current_subfile->symtab == NULL)
8632 {
8633 /* NOTE: start_subfile will recognize when it's been passed
8634 a file it has already seen. So we can't assume there's a
8635 simple mapping from lh->file_names to subfiles,
8636 lh->file_names may contain dups. */
8637 current_subfile->symtab = allocate_symtab (current_subfile->name,
8638 objfile);
8639 }
8640
8641 fe->symtab = current_subfile->symtab;
8642 tu_group->symtabs[i] = fe->symtab;
8643 }
8644 }
8645 else
8646 {
8647 restart_symtab (0);
8648
8649 for (i = 0; i < lh->num_file_names; ++i)
8650 {
8651 struct file_entry *fe = &lh->file_names[i];
8652
8653 fe->symtab = tu_group->symtabs[i];
8654 }
8655 }
8656
8657 /* The main symtab is allocated last. Type units don't have DW_AT_name
8658 so they don't have a "real" (so to speak) symtab anyway.
8659 There is later code that will assign the main symtab to all symbols
8660 that don't have one. We need to handle the case of a symbol with a
8661 missing symtab (DW_AT_decl_file) anyway. */
8662 }
8663
8664 /* Process DW_TAG_type_unit.
8665 For TUs we want to skip the first top level sibling if it's not the
8666 actual type being defined by this TU. In this case the first top
8667 level sibling is there to provide context only. */
8668
8669 static void
8670 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8671 {
8672 struct die_info *child_die;
8673
8674 prepare_one_comp_unit (cu, die, language_minimal);
8675
8676 /* Initialize (or reinitialize) the machinery for building symtabs.
8677 We do this before processing child DIEs, so that the line header table
8678 is available for DW_AT_decl_file. */
8679 setup_type_unit_groups (die, cu);
8680
8681 if (die->child != NULL)
8682 {
8683 child_die = die->child;
8684 while (child_die && child_die->tag)
8685 {
8686 process_die (child_die, cu);
8687 child_die = sibling_die (child_die);
8688 }
8689 }
8690 }
8691 \f
8692 /* DWO/DWP files.
8693
8694 http://gcc.gnu.org/wiki/DebugFission
8695 http://gcc.gnu.org/wiki/DebugFissionDWP
8696
8697 To simplify handling of both DWO files ("object" files with the DWARF info)
8698 and DWP files (a file with the DWOs packaged up into one file), we treat
8699 DWP files as having a collection of virtual DWO files. */
8700
8701 static hashval_t
8702 hash_dwo_file (const void *item)
8703 {
8704 const struct dwo_file *dwo_file = item;
8705 hashval_t hash;
8706
8707 hash = htab_hash_string (dwo_file->dwo_name);
8708 if (dwo_file->comp_dir != NULL)
8709 hash += htab_hash_string (dwo_file->comp_dir);
8710 return hash;
8711 }
8712
8713 static int
8714 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8715 {
8716 const struct dwo_file *lhs = item_lhs;
8717 const struct dwo_file *rhs = item_rhs;
8718
8719 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8720 return 0;
8721 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8722 return lhs->comp_dir == rhs->comp_dir;
8723 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8724 }
8725
8726 /* Allocate a hash table for DWO files. */
8727
8728 static htab_t
8729 allocate_dwo_file_hash_table (void)
8730 {
8731 struct objfile *objfile = dwarf2_per_objfile->objfile;
8732
8733 return htab_create_alloc_ex (41,
8734 hash_dwo_file,
8735 eq_dwo_file,
8736 NULL,
8737 &objfile->objfile_obstack,
8738 hashtab_obstack_allocate,
8739 dummy_obstack_deallocate);
8740 }
8741
8742 /* Lookup DWO file DWO_NAME. */
8743
8744 static void **
8745 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8746 {
8747 struct dwo_file find_entry;
8748 void **slot;
8749
8750 if (dwarf2_per_objfile->dwo_files == NULL)
8751 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8752
8753 memset (&find_entry, 0, sizeof (find_entry));
8754 find_entry.dwo_name = dwo_name;
8755 find_entry.comp_dir = comp_dir;
8756 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8757
8758 return slot;
8759 }
8760
8761 static hashval_t
8762 hash_dwo_unit (const void *item)
8763 {
8764 const struct dwo_unit *dwo_unit = item;
8765
8766 /* This drops the top 32 bits of the id, but is ok for a hash. */
8767 return dwo_unit->signature;
8768 }
8769
8770 static int
8771 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8772 {
8773 const struct dwo_unit *lhs = item_lhs;
8774 const struct dwo_unit *rhs = item_rhs;
8775
8776 /* The signature is assumed to be unique within the DWO file.
8777 So while object file CU dwo_id's always have the value zero,
8778 that's OK, assuming each object file DWO file has only one CU,
8779 and that's the rule for now. */
8780 return lhs->signature == rhs->signature;
8781 }
8782
8783 /* Allocate a hash table for DWO CUs,TUs.
8784 There is one of these tables for each of CUs,TUs for each DWO file. */
8785
8786 static htab_t
8787 allocate_dwo_unit_table (struct objfile *objfile)
8788 {
8789 /* Start out with a pretty small number.
8790 Generally DWO files contain only one CU and maybe some TUs. */
8791 return htab_create_alloc_ex (3,
8792 hash_dwo_unit,
8793 eq_dwo_unit,
8794 NULL,
8795 &objfile->objfile_obstack,
8796 hashtab_obstack_allocate,
8797 dummy_obstack_deallocate);
8798 }
8799
8800 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8801
8802 struct create_dwo_cu_data
8803 {
8804 struct dwo_file *dwo_file;
8805 struct dwo_unit dwo_unit;
8806 };
8807
8808 /* die_reader_func for create_dwo_cu. */
8809
8810 static void
8811 create_dwo_cu_reader (const struct die_reader_specs *reader,
8812 const gdb_byte *info_ptr,
8813 struct die_info *comp_unit_die,
8814 int has_children,
8815 void *datap)
8816 {
8817 struct dwarf2_cu *cu = reader->cu;
8818 struct objfile *objfile = dwarf2_per_objfile->objfile;
8819 sect_offset offset = cu->per_cu->offset;
8820 struct dwarf2_section_info *section = cu->per_cu->section;
8821 struct create_dwo_cu_data *data = datap;
8822 struct dwo_file *dwo_file = data->dwo_file;
8823 struct dwo_unit *dwo_unit = &data->dwo_unit;
8824 struct attribute *attr;
8825
8826 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8827 if (attr == NULL)
8828 {
8829 complaint (&symfile_complaints,
8830 _("Dwarf Error: debug entry at offset 0x%x is missing"
8831 " its dwo_id [in module %s]"),
8832 offset.sect_off, dwo_file->dwo_name);
8833 return;
8834 }
8835
8836 dwo_unit->dwo_file = dwo_file;
8837 dwo_unit->signature = DW_UNSND (attr);
8838 dwo_unit->section = section;
8839 dwo_unit->offset = offset;
8840 dwo_unit->length = cu->per_cu->length;
8841
8842 if (dwarf2_read_debug)
8843 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8844 offset.sect_off, hex_string (dwo_unit->signature));
8845 }
8846
8847 /* Create the dwo_unit for the lone CU in DWO_FILE.
8848 Note: This function processes DWO files only, not DWP files. */
8849
8850 static struct dwo_unit *
8851 create_dwo_cu (struct dwo_file *dwo_file)
8852 {
8853 struct objfile *objfile = dwarf2_per_objfile->objfile;
8854 struct dwarf2_section_info *section = &dwo_file->sections.info;
8855 bfd *abfd;
8856 htab_t cu_htab;
8857 const gdb_byte *info_ptr, *end_ptr;
8858 struct create_dwo_cu_data create_dwo_cu_data;
8859 struct dwo_unit *dwo_unit;
8860
8861 dwarf2_read_section (objfile, section);
8862 info_ptr = section->buffer;
8863
8864 if (info_ptr == NULL)
8865 return NULL;
8866
8867 /* We can't set abfd until now because the section may be empty or
8868 not present, in which case section->asection will be NULL. */
8869 abfd = section->asection->owner;
8870
8871 if (dwarf2_read_debug)
8872 {
8873 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8874 bfd_section_name (abfd, section->asection),
8875 bfd_get_filename (abfd));
8876 }
8877
8878 create_dwo_cu_data.dwo_file = dwo_file;
8879 dwo_unit = NULL;
8880
8881 end_ptr = info_ptr + section->size;
8882 while (info_ptr < end_ptr)
8883 {
8884 struct dwarf2_per_cu_data per_cu;
8885
8886 memset (&create_dwo_cu_data.dwo_unit, 0,
8887 sizeof (create_dwo_cu_data.dwo_unit));
8888 memset (&per_cu, 0, sizeof (per_cu));
8889 per_cu.objfile = objfile;
8890 per_cu.is_debug_types = 0;
8891 per_cu.offset.sect_off = info_ptr - section->buffer;
8892 per_cu.section = section;
8893
8894 init_cutu_and_read_dies_no_follow (&per_cu,
8895 &dwo_file->sections.abbrev,
8896 dwo_file,
8897 create_dwo_cu_reader,
8898 &create_dwo_cu_data);
8899
8900 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8901 {
8902 /* If we've already found one, complain. We only support one
8903 because having more than one requires hacking the dwo_name of
8904 each to match, which is highly unlikely to happen. */
8905 if (dwo_unit != NULL)
8906 {
8907 complaint (&symfile_complaints,
8908 _("Multiple CUs in DWO file %s [in module %s]"),
8909 dwo_file->dwo_name, objfile->name);
8910 break;
8911 }
8912
8913 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8914 *dwo_unit = create_dwo_cu_data.dwo_unit;
8915 }
8916
8917 info_ptr += per_cu.length;
8918 }
8919
8920 return dwo_unit;
8921 }
8922
8923 /* DWP file .debug_{cu,tu}_index section format:
8924 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8925
8926 DWP Version 1:
8927
8928 Both index sections have the same format, and serve to map a 64-bit
8929 signature to a set of section numbers. Each section begins with a header,
8930 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8931 indexes, and a pool of 32-bit section numbers. The index sections will be
8932 aligned at 8-byte boundaries in the file.
8933
8934 The index section header consists of:
8935
8936 V, 32 bit version number
8937 -, 32 bits unused
8938 N, 32 bit number of compilation units or type units in the index
8939 M, 32 bit number of slots in the hash table
8940
8941 Numbers are recorded using the byte order of the application binary.
8942
8943 We assume that N and M will not exceed 2^32 - 1.
8944
8945 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8946
8947 The hash table begins at offset 16 in the section, and consists of an array
8948 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8949 order of the application binary). Unused slots in the hash table are 0.
8950 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8951
8952 The parallel table begins immediately after the hash table
8953 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8954 array of 32-bit indexes (using the byte order of the application binary),
8955 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8956 table contains a 32-bit index into the pool of section numbers. For unused
8957 hash table slots, the corresponding entry in the parallel table will be 0.
8958
8959 Given a 64-bit compilation unit signature or a type signature S, an entry
8960 in the hash table is located as follows:
8961
8962 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8963 the low-order k bits all set to 1.
8964
8965 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8966
8967 3) If the hash table entry at index H matches the signature, use that
8968 entry. If the hash table entry at index H is unused (all zeroes),
8969 terminate the search: the signature is not present in the table.
8970
8971 4) Let H = (H + H') modulo M. Repeat at Step 3.
8972
8973 Because M > N and H' and M are relatively prime, the search is guaranteed
8974 to stop at an unused slot or find the match.
8975
8976 The pool of section numbers begins immediately following the hash table
8977 (at offset 16 + 12 * M from the beginning of the section). The pool of
8978 section numbers consists of an array of 32-bit words (using the byte order
8979 of the application binary). Each item in the array is indexed starting
8980 from 0. The hash table entry provides the index of the first section
8981 number in the set. Additional section numbers in the set follow, and the
8982 set is terminated by a 0 entry (section number 0 is not used in ELF).
8983
8984 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8985 section must be the first entry in the set, and the .debug_abbrev.dwo must
8986 be the second entry. Other members of the set may follow in any order. */
8987
8988 /* Create a hash table to map DWO IDs to their CU/TU entry in
8989 .debug_{info,types}.dwo in DWP_FILE.
8990 Returns NULL if there isn't one.
8991 Note: This function processes DWP files only, not DWO files. */
8992
8993 static struct dwp_hash_table *
8994 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8995 {
8996 struct objfile *objfile = dwarf2_per_objfile->objfile;
8997 bfd *dbfd = dwp_file->dbfd;
8998 const gdb_byte *index_ptr, *index_end;
8999 struct dwarf2_section_info *index;
9000 uint32_t version, nr_units, nr_slots;
9001 struct dwp_hash_table *htab;
9002
9003 if (is_debug_types)
9004 index = &dwp_file->sections.tu_index;
9005 else
9006 index = &dwp_file->sections.cu_index;
9007
9008 if (dwarf2_section_empty_p (index))
9009 return NULL;
9010 dwarf2_read_section (objfile, index);
9011
9012 index_ptr = index->buffer;
9013 index_end = index_ptr + index->size;
9014
9015 version = read_4_bytes (dbfd, index_ptr);
9016 index_ptr += 8; /* Skip the unused word. */
9017 nr_units = read_4_bytes (dbfd, index_ptr);
9018 index_ptr += 4;
9019 nr_slots = read_4_bytes (dbfd, index_ptr);
9020 index_ptr += 4;
9021
9022 if (version != 1)
9023 {
9024 error (_("Dwarf Error: unsupported DWP file version (%s)"
9025 " [in module %s]"),
9026 pulongest (version), dwp_file->name);
9027 }
9028 if (nr_slots != (nr_slots & -nr_slots))
9029 {
9030 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9031 " is not power of 2 [in module %s]"),
9032 pulongest (nr_slots), dwp_file->name);
9033 }
9034
9035 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9036 htab->nr_units = nr_units;
9037 htab->nr_slots = nr_slots;
9038 htab->hash_table = index_ptr;
9039 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9040 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9041
9042 return htab;
9043 }
9044
9045 /* Update SECTIONS with the data from SECTP.
9046
9047 This function is like the other "locate" section routines that are
9048 passed to bfd_map_over_sections, but in this context the sections to
9049 read comes from the DWP hash table, not the full ELF section table.
9050
9051 The result is non-zero for success, or zero if an error was found. */
9052
9053 static int
9054 locate_virtual_dwo_sections (asection *sectp,
9055 struct virtual_dwo_sections *sections)
9056 {
9057 const struct dwop_section_names *names = &dwop_section_names;
9058
9059 if (section_is_p (sectp->name, &names->abbrev_dwo))
9060 {
9061 /* There can be only one. */
9062 if (sections->abbrev.asection != NULL)
9063 return 0;
9064 sections->abbrev.asection = sectp;
9065 sections->abbrev.size = bfd_get_section_size (sectp);
9066 }
9067 else if (section_is_p (sectp->name, &names->info_dwo)
9068 || section_is_p (sectp->name, &names->types_dwo))
9069 {
9070 /* There can be only one. */
9071 if (sections->info_or_types.asection != NULL)
9072 return 0;
9073 sections->info_or_types.asection = sectp;
9074 sections->info_or_types.size = bfd_get_section_size (sectp);
9075 }
9076 else if (section_is_p (sectp->name, &names->line_dwo))
9077 {
9078 /* There can be only one. */
9079 if (sections->line.asection != NULL)
9080 return 0;
9081 sections->line.asection = sectp;
9082 sections->line.size = bfd_get_section_size (sectp);
9083 }
9084 else if (section_is_p (sectp->name, &names->loc_dwo))
9085 {
9086 /* There can be only one. */
9087 if (sections->loc.asection != NULL)
9088 return 0;
9089 sections->loc.asection = sectp;
9090 sections->loc.size = bfd_get_section_size (sectp);
9091 }
9092 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9093 {
9094 /* There can be only one. */
9095 if (sections->macinfo.asection != NULL)
9096 return 0;
9097 sections->macinfo.asection = sectp;
9098 sections->macinfo.size = bfd_get_section_size (sectp);
9099 }
9100 else if (section_is_p (sectp->name, &names->macro_dwo))
9101 {
9102 /* There can be only one. */
9103 if (sections->macro.asection != NULL)
9104 return 0;
9105 sections->macro.asection = sectp;
9106 sections->macro.size = bfd_get_section_size (sectp);
9107 }
9108 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9109 {
9110 /* There can be only one. */
9111 if (sections->str_offsets.asection != NULL)
9112 return 0;
9113 sections->str_offsets.asection = sectp;
9114 sections->str_offsets.size = bfd_get_section_size (sectp);
9115 }
9116 else
9117 {
9118 /* No other kind of section is valid. */
9119 return 0;
9120 }
9121
9122 return 1;
9123 }
9124
9125 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9126 HTAB is the hash table from the DWP file.
9127 SECTION_INDEX is the index of the DWO in HTAB.
9128 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9129
9130 static struct dwo_unit *
9131 create_dwo_in_dwp (struct dwp_file *dwp_file,
9132 const struct dwp_hash_table *htab,
9133 uint32_t section_index,
9134 const char *comp_dir,
9135 ULONGEST signature, int is_debug_types)
9136 {
9137 struct objfile *objfile = dwarf2_per_objfile->objfile;
9138 bfd *dbfd = dwp_file->dbfd;
9139 const char *kind = is_debug_types ? "TU" : "CU";
9140 struct dwo_file *dwo_file;
9141 struct dwo_unit *dwo_unit;
9142 struct virtual_dwo_sections sections;
9143 void **dwo_file_slot;
9144 char *virtual_dwo_name;
9145 struct dwarf2_section_info *cutu;
9146 struct cleanup *cleanups;
9147 int i;
9148
9149 if (dwarf2_read_debug)
9150 {
9151 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9152 kind,
9153 pulongest (section_index), hex_string (signature),
9154 dwp_file->name);
9155 }
9156
9157 /* Fetch the sections of this DWO.
9158 Put a limit on the number of sections we look for so that bad data
9159 doesn't cause us to loop forever. */
9160
9161 #define MAX_NR_DWO_SECTIONS \
9162 (1 /* .debug_info or .debug_types */ \
9163 + 1 /* .debug_abbrev */ \
9164 + 1 /* .debug_line */ \
9165 + 1 /* .debug_loc */ \
9166 + 1 /* .debug_str_offsets */ \
9167 + 1 /* .debug_macro */ \
9168 + 1 /* .debug_macinfo */ \
9169 + 1 /* trailing zero */)
9170
9171 memset (&sections, 0, sizeof (sections));
9172 cleanups = make_cleanup (null_cleanup, 0);
9173
9174 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9175 {
9176 asection *sectp;
9177 uint32_t section_nr =
9178 read_4_bytes (dbfd,
9179 htab->section_pool
9180 + (section_index + i) * sizeof (uint32_t));
9181
9182 if (section_nr == 0)
9183 break;
9184 if (section_nr >= dwp_file->num_sections)
9185 {
9186 error (_("Dwarf Error: bad DWP hash table, section number too large"
9187 " [in module %s]"),
9188 dwp_file->name);
9189 }
9190
9191 sectp = dwp_file->elf_sections[section_nr];
9192 if (! locate_virtual_dwo_sections (sectp, &sections))
9193 {
9194 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9195 " [in module %s]"),
9196 dwp_file->name);
9197 }
9198 }
9199
9200 if (i < 2
9201 || sections.info_or_types.asection == NULL
9202 || sections.abbrev.asection == NULL)
9203 {
9204 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9205 " [in module %s]"),
9206 dwp_file->name);
9207 }
9208 if (i == MAX_NR_DWO_SECTIONS)
9209 {
9210 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9211 " [in module %s]"),
9212 dwp_file->name);
9213 }
9214
9215 /* It's easier for the rest of the code if we fake a struct dwo_file and
9216 have dwo_unit "live" in that. At least for now.
9217
9218 The DWP file can be made up of a random collection of CUs and TUs.
9219 However, for each CU + set of TUs that came from the same original DWO
9220 file, we want to combine them back into a virtual DWO file to save space
9221 (fewer struct dwo_file objects to allocated). Remember that for really
9222 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9223
9224 virtual_dwo_name =
9225 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9226 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9227 sections.line.asection ? sections.line.asection->id : 0,
9228 sections.loc.asection ? sections.loc.asection->id : 0,
9229 (sections.str_offsets.asection
9230 ? sections.str_offsets.asection->id
9231 : 0));
9232 make_cleanup (xfree, virtual_dwo_name);
9233 /* Can we use an existing virtual DWO file? */
9234 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9235 /* Create one if necessary. */
9236 if (*dwo_file_slot == NULL)
9237 {
9238 if (dwarf2_read_debug)
9239 {
9240 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9241 virtual_dwo_name);
9242 }
9243 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9244 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9245 virtual_dwo_name,
9246 strlen (virtual_dwo_name));
9247 dwo_file->comp_dir = comp_dir;
9248 dwo_file->sections.abbrev = sections.abbrev;
9249 dwo_file->sections.line = sections.line;
9250 dwo_file->sections.loc = sections.loc;
9251 dwo_file->sections.macinfo = sections.macinfo;
9252 dwo_file->sections.macro = sections.macro;
9253 dwo_file->sections.str_offsets = sections.str_offsets;
9254 /* The "str" section is global to the entire DWP file. */
9255 dwo_file->sections.str = dwp_file->sections.str;
9256 /* The info or types section is assigned later to dwo_unit,
9257 there's no need to record it in dwo_file.
9258 Also, we can't simply record type sections in dwo_file because
9259 we record a pointer into the vector in dwo_unit. As we collect more
9260 types we'll grow the vector and eventually have to reallocate space
9261 for it, invalidating all the pointers into the current copy. */
9262 *dwo_file_slot = dwo_file;
9263 }
9264 else
9265 {
9266 if (dwarf2_read_debug)
9267 {
9268 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9269 virtual_dwo_name);
9270 }
9271 dwo_file = *dwo_file_slot;
9272 }
9273 do_cleanups (cleanups);
9274
9275 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9276 dwo_unit->dwo_file = dwo_file;
9277 dwo_unit->signature = signature;
9278 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9279 sizeof (struct dwarf2_section_info));
9280 *dwo_unit->section = sections.info_or_types;
9281 /* offset, length, type_offset_in_tu are set later. */
9282
9283 return dwo_unit;
9284 }
9285
9286 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9287
9288 static struct dwo_unit *
9289 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9290 const struct dwp_hash_table *htab,
9291 const char *comp_dir,
9292 ULONGEST signature, int is_debug_types)
9293 {
9294 bfd *dbfd = dwp_file->dbfd;
9295 uint32_t mask = htab->nr_slots - 1;
9296 uint32_t hash = signature & mask;
9297 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9298 unsigned int i;
9299 void **slot;
9300 struct dwo_unit find_dwo_cu, *dwo_cu;
9301
9302 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9303 find_dwo_cu.signature = signature;
9304 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9305
9306 if (*slot != NULL)
9307 return *slot;
9308
9309 /* Use a for loop so that we don't loop forever on bad debug info. */
9310 for (i = 0; i < htab->nr_slots; ++i)
9311 {
9312 ULONGEST signature_in_table;
9313
9314 signature_in_table =
9315 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9316 if (signature_in_table == signature)
9317 {
9318 uint32_t section_index =
9319 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9320
9321 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9322 comp_dir, signature, is_debug_types);
9323 return *slot;
9324 }
9325 if (signature_in_table == 0)
9326 return NULL;
9327 hash = (hash + hash2) & mask;
9328 }
9329
9330 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9331 " [in module %s]"),
9332 dwp_file->name);
9333 }
9334
9335 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9336 Open the file specified by FILE_NAME and hand it off to BFD for
9337 preliminary analysis. Return a newly initialized bfd *, which
9338 includes a canonicalized copy of FILE_NAME.
9339 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9340 SEARCH_CWD is true if the current directory is to be searched.
9341 It will be searched before debug-file-directory.
9342 If unable to find/open the file, return NULL.
9343 NOTE: This function is derived from symfile_bfd_open. */
9344
9345 static bfd *
9346 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9347 {
9348 bfd *sym_bfd;
9349 int desc, flags;
9350 char *absolute_name;
9351 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9352 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9353 to debug_file_directory. */
9354 char *search_path;
9355 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9356
9357 if (search_cwd)
9358 {
9359 if (*debug_file_directory != '\0')
9360 search_path = concat (".", dirname_separator_string,
9361 debug_file_directory, NULL);
9362 else
9363 search_path = xstrdup (".");
9364 }
9365 else
9366 search_path = xstrdup (debug_file_directory);
9367
9368 flags = OPF_RETURN_REALPATH;
9369 if (is_dwp)
9370 flags |= OPF_SEARCH_IN_PATH;
9371 desc = openp (search_path, flags, file_name,
9372 O_RDONLY | O_BINARY, &absolute_name);
9373 xfree (search_path);
9374 if (desc < 0)
9375 return NULL;
9376
9377 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9378 xfree (absolute_name);
9379 if (sym_bfd == NULL)
9380 return NULL;
9381 bfd_set_cacheable (sym_bfd, 1);
9382
9383 if (!bfd_check_format (sym_bfd, bfd_object))
9384 {
9385 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9386 return NULL;
9387 }
9388
9389 return sym_bfd;
9390 }
9391
9392 /* Try to open DWO file FILE_NAME.
9393 COMP_DIR is the DW_AT_comp_dir attribute.
9394 The result is the bfd handle of the file.
9395 If there is a problem finding or opening the file, return NULL.
9396 Upon success, the canonicalized path of the file is stored in the bfd,
9397 same as symfile_bfd_open. */
9398
9399 static bfd *
9400 open_dwo_file (const char *file_name, const char *comp_dir)
9401 {
9402 bfd *abfd;
9403
9404 if (IS_ABSOLUTE_PATH (file_name))
9405 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9406
9407 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9408
9409 if (comp_dir != NULL)
9410 {
9411 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9412
9413 /* NOTE: If comp_dir is a relative path, this will also try the
9414 search path, which seems useful. */
9415 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9416 xfree (path_to_try);
9417 if (abfd != NULL)
9418 return abfd;
9419 }
9420
9421 /* That didn't work, try debug-file-directory, which, despite its name,
9422 is a list of paths. */
9423
9424 if (*debug_file_directory == '\0')
9425 return NULL;
9426
9427 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9428 }
9429
9430 /* This function is mapped across the sections and remembers the offset and
9431 size of each of the DWO debugging sections we are interested in. */
9432
9433 static void
9434 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9435 {
9436 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9437 const struct dwop_section_names *names = &dwop_section_names;
9438
9439 if (section_is_p (sectp->name, &names->abbrev_dwo))
9440 {
9441 dwo_sections->abbrev.asection = sectp;
9442 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9443 }
9444 else if (section_is_p (sectp->name, &names->info_dwo))
9445 {
9446 dwo_sections->info.asection = sectp;
9447 dwo_sections->info.size = bfd_get_section_size (sectp);
9448 }
9449 else if (section_is_p (sectp->name, &names->line_dwo))
9450 {
9451 dwo_sections->line.asection = sectp;
9452 dwo_sections->line.size = bfd_get_section_size (sectp);
9453 }
9454 else if (section_is_p (sectp->name, &names->loc_dwo))
9455 {
9456 dwo_sections->loc.asection = sectp;
9457 dwo_sections->loc.size = bfd_get_section_size (sectp);
9458 }
9459 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9460 {
9461 dwo_sections->macinfo.asection = sectp;
9462 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9463 }
9464 else if (section_is_p (sectp->name, &names->macro_dwo))
9465 {
9466 dwo_sections->macro.asection = sectp;
9467 dwo_sections->macro.size = bfd_get_section_size (sectp);
9468 }
9469 else if (section_is_p (sectp->name, &names->str_dwo))
9470 {
9471 dwo_sections->str.asection = sectp;
9472 dwo_sections->str.size = bfd_get_section_size (sectp);
9473 }
9474 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9475 {
9476 dwo_sections->str_offsets.asection = sectp;
9477 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9478 }
9479 else if (section_is_p (sectp->name, &names->types_dwo))
9480 {
9481 struct dwarf2_section_info type_section;
9482
9483 memset (&type_section, 0, sizeof (type_section));
9484 type_section.asection = sectp;
9485 type_section.size = bfd_get_section_size (sectp);
9486 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9487 &type_section);
9488 }
9489 }
9490
9491 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9492 by PER_CU. This is for the non-DWP case.
9493 The result is NULL if DWO_NAME can't be found. */
9494
9495 static struct dwo_file *
9496 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9497 const char *dwo_name, const char *comp_dir)
9498 {
9499 struct objfile *objfile = dwarf2_per_objfile->objfile;
9500 struct dwo_file *dwo_file;
9501 bfd *dbfd;
9502 struct cleanup *cleanups;
9503
9504 dbfd = open_dwo_file (dwo_name, comp_dir);
9505 if (dbfd == NULL)
9506 {
9507 if (dwarf2_read_debug)
9508 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9509 return NULL;
9510 }
9511 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9512 dwo_file->dwo_name = dwo_name;
9513 dwo_file->comp_dir = comp_dir;
9514 dwo_file->dbfd = dbfd;
9515
9516 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9517
9518 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9519
9520 dwo_file->cu = create_dwo_cu (dwo_file);
9521
9522 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9523 dwo_file->sections.types);
9524
9525 discard_cleanups (cleanups);
9526
9527 if (dwarf2_read_debug)
9528 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9529
9530 return dwo_file;
9531 }
9532
9533 /* This function is mapped across the sections and remembers the offset and
9534 size of each of the DWP debugging sections we are interested in. */
9535
9536 static void
9537 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9538 {
9539 struct dwp_file *dwp_file = dwp_file_ptr;
9540 const struct dwop_section_names *names = &dwop_section_names;
9541 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9542
9543 /* Record the ELF section number for later lookup: this is what the
9544 .debug_cu_index,.debug_tu_index tables use. */
9545 gdb_assert (elf_section_nr < dwp_file->num_sections);
9546 dwp_file->elf_sections[elf_section_nr] = sectp;
9547
9548 /* Look for specific sections that we need. */
9549 if (section_is_p (sectp->name, &names->str_dwo))
9550 {
9551 dwp_file->sections.str.asection = sectp;
9552 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9553 }
9554 else if (section_is_p (sectp->name, &names->cu_index))
9555 {
9556 dwp_file->sections.cu_index.asection = sectp;
9557 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9558 }
9559 else if (section_is_p (sectp->name, &names->tu_index))
9560 {
9561 dwp_file->sections.tu_index.asection = sectp;
9562 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9563 }
9564 }
9565
9566 /* Hash function for dwp_file loaded CUs/TUs. */
9567
9568 static hashval_t
9569 hash_dwp_loaded_cutus (const void *item)
9570 {
9571 const struct dwo_unit *dwo_unit = item;
9572
9573 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9574 return dwo_unit->signature;
9575 }
9576
9577 /* Equality function for dwp_file loaded CUs/TUs. */
9578
9579 static int
9580 eq_dwp_loaded_cutus (const void *a, const void *b)
9581 {
9582 const struct dwo_unit *dua = a;
9583 const struct dwo_unit *dub = b;
9584
9585 return dua->signature == dub->signature;
9586 }
9587
9588 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9589
9590 static htab_t
9591 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9592 {
9593 return htab_create_alloc_ex (3,
9594 hash_dwp_loaded_cutus,
9595 eq_dwp_loaded_cutus,
9596 NULL,
9597 &objfile->objfile_obstack,
9598 hashtab_obstack_allocate,
9599 dummy_obstack_deallocate);
9600 }
9601
9602 /* Try to open DWP file FILE_NAME.
9603 The result is the bfd handle of the file.
9604 If there is a problem finding or opening the file, return NULL.
9605 Upon success, the canonicalized path of the file is stored in the bfd,
9606 same as symfile_bfd_open. */
9607
9608 static bfd *
9609 open_dwp_file (const char *file_name)
9610 {
9611 bfd *abfd;
9612
9613 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9614 if (abfd != NULL)
9615 return abfd;
9616
9617 /* Work around upstream bug 15652.
9618 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9619 [Whether that's a "bug" is debatable, but it is getting in our way.]
9620 We have no real idea where the dwp file is, because gdb's realpath-ing
9621 of the executable's path may have discarded the needed info.
9622 [IWBN if the dwp file name was recorded in the executable, akin to
9623 .gnu_debuglink, but that doesn't exist yet.]
9624 Strip the directory from FILE_NAME and search again. */
9625 if (*debug_file_directory != '\0')
9626 {
9627 /* Don't implicitly search the current directory here.
9628 If the user wants to search "." to handle this case,
9629 it must be added to debug-file-directory. */
9630 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9631 0 /*search_cwd*/);
9632 }
9633
9634 return NULL;
9635 }
9636
9637 /* Initialize the use of the DWP file for the current objfile.
9638 By convention the name of the DWP file is ${objfile}.dwp.
9639 The result is NULL if it can't be found. */
9640
9641 static struct dwp_file *
9642 open_and_init_dwp_file (void)
9643 {
9644 struct objfile *objfile = dwarf2_per_objfile->objfile;
9645 struct dwp_file *dwp_file;
9646 char *dwp_name;
9647 bfd *dbfd;
9648 struct cleanup *cleanups;
9649
9650 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9651 cleanups = make_cleanup (xfree, dwp_name);
9652
9653 dbfd = open_dwp_file (dwp_name);
9654 if (dbfd == NULL)
9655 {
9656 if (dwarf2_read_debug)
9657 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9658 do_cleanups (cleanups);
9659 return NULL;
9660 }
9661 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9662 dwp_file->name = bfd_get_filename (dbfd);
9663 dwp_file->dbfd = dbfd;
9664 do_cleanups (cleanups);
9665
9666 /* +1: section 0 is unused */
9667 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9668 dwp_file->elf_sections =
9669 OBSTACK_CALLOC (&objfile->objfile_obstack,
9670 dwp_file->num_sections, asection *);
9671
9672 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9673
9674 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9675
9676 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9677
9678 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9679
9680 if (dwarf2_read_debug)
9681 {
9682 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9683 fprintf_unfiltered (gdb_stdlog,
9684 " %s CUs, %s TUs\n",
9685 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9686 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9687 }
9688
9689 return dwp_file;
9690 }
9691
9692 /* Wrapper around open_and_init_dwp_file, only open it once. */
9693
9694 static struct dwp_file *
9695 get_dwp_file (void)
9696 {
9697 if (! dwarf2_per_objfile->dwp_checked)
9698 {
9699 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9700 dwarf2_per_objfile->dwp_checked = 1;
9701 }
9702 return dwarf2_per_objfile->dwp_file;
9703 }
9704
9705 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9706 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9707 or in the DWP file for the objfile, referenced by THIS_UNIT.
9708 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9709 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9710
9711 This is called, for example, when wanting to read a variable with a
9712 complex location. Therefore we don't want to do file i/o for every call.
9713 Therefore we don't want to look for a DWO file on every call.
9714 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9715 then we check if we've already seen DWO_NAME, and only THEN do we check
9716 for a DWO file.
9717
9718 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9719 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9720
9721 static struct dwo_unit *
9722 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9723 const char *dwo_name, const char *comp_dir,
9724 ULONGEST signature, int is_debug_types)
9725 {
9726 struct objfile *objfile = dwarf2_per_objfile->objfile;
9727 const char *kind = is_debug_types ? "TU" : "CU";
9728 void **dwo_file_slot;
9729 struct dwo_file *dwo_file;
9730 struct dwp_file *dwp_file;
9731
9732 /* First see if there's a DWP file.
9733 If we have a DWP file but didn't find the DWO inside it, don't
9734 look for the original DWO file. It makes gdb behave differently
9735 depending on whether one is debugging in the build tree. */
9736
9737 dwp_file = get_dwp_file ();
9738 if (dwp_file != NULL)
9739 {
9740 const struct dwp_hash_table *dwp_htab =
9741 is_debug_types ? dwp_file->tus : dwp_file->cus;
9742
9743 if (dwp_htab != NULL)
9744 {
9745 struct dwo_unit *dwo_cutu =
9746 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9747 signature, is_debug_types);
9748
9749 if (dwo_cutu != NULL)
9750 {
9751 if (dwarf2_read_debug)
9752 {
9753 fprintf_unfiltered (gdb_stdlog,
9754 "Virtual DWO %s %s found: @%s\n",
9755 kind, hex_string (signature),
9756 host_address_to_string (dwo_cutu));
9757 }
9758 return dwo_cutu;
9759 }
9760 }
9761 }
9762 else
9763 {
9764 /* No DWP file, look for the DWO file. */
9765
9766 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9767 if (*dwo_file_slot == NULL)
9768 {
9769 /* Read in the file and build a table of the CUs/TUs it contains. */
9770 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9771 }
9772 /* NOTE: This will be NULL if unable to open the file. */
9773 dwo_file = *dwo_file_slot;
9774
9775 if (dwo_file != NULL)
9776 {
9777 struct dwo_unit *dwo_cutu = NULL;
9778
9779 if (is_debug_types && dwo_file->tus)
9780 {
9781 struct dwo_unit find_dwo_cutu;
9782
9783 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9784 find_dwo_cutu.signature = signature;
9785 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9786 }
9787 else if (!is_debug_types && dwo_file->cu)
9788 {
9789 if (signature == dwo_file->cu->signature)
9790 dwo_cutu = dwo_file->cu;
9791 }
9792
9793 if (dwo_cutu != NULL)
9794 {
9795 if (dwarf2_read_debug)
9796 {
9797 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9798 kind, dwo_name, hex_string (signature),
9799 host_address_to_string (dwo_cutu));
9800 }
9801 return dwo_cutu;
9802 }
9803 }
9804 }
9805
9806 /* We didn't find it. This could mean a dwo_id mismatch, or
9807 someone deleted the DWO/DWP file, or the search path isn't set up
9808 correctly to find the file. */
9809
9810 if (dwarf2_read_debug)
9811 {
9812 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9813 kind, dwo_name, hex_string (signature));
9814 }
9815
9816 /* This is a warning and not a complaint because it can be caused by
9817 pilot error (e.g., user accidentally deleting the DWO). */
9818 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9819 " [in module %s]"),
9820 kind, dwo_name, hex_string (signature),
9821 this_unit->is_debug_types ? "TU" : "CU",
9822 this_unit->offset.sect_off, objfile->name);
9823 return NULL;
9824 }
9825
9826 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9827 See lookup_dwo_cutu_unit for details. */
9828
9829 static struct dwo_unit *
9830 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9831 const char *dwo_name, const char *comp_dir,
9832 ULONGEST signature)
9833 {
9834 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9835 }
9836
9837 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9838 See lookup_dwo_cutu_unit for details. */
9839
9840 static struct dwo_unit *
9841 lookup_dwo_type_unit (struct signatured_type *this_tu,
9842 const char *dwo_name, const char *comp_dir)
9843 {
9844 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9845 }
9846
9847 /* Traversal function for queue_and_load_all_dwo_tus. */
9848
9849 static int
9850 queue_and_load_dwo_tu (void **slot, void *info)
9851 {
9852 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9853 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
9854 ULONGEST signature = dwo_unit->signature;
9855 struct signatured_type *sig_type =
9856 lookup_dwo_signatured_type (per_cu->cu, signature);
9857
9858 if (sig_type != NULL)
9859 {
9860 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
9861
9862 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
9863 a real dependency of PER_CU on SIG_TYPE. That is detected later
9864 while processing PER_CU. */
9865 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
9866 load_full_type_unit (sig_cu);
9867 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
9868 }
9869
9870 return 1;
9871 }
9872
9873 /* Queue all TUs contained in the DWO of PER_CU to be read in.
9874 The DWO may have the only definition of the type, though it may not be
9875 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
9876 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
9877
9878 static void
9879 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
9880 {
9881 struct dwo_unit *dwo_unit;
9882 struct dwo_file *dwo_file;
9883
9884 gdb_assert (!per_cu->is_debug_types);
9885 gdb_assert (get_dwp_file () == NULL);
9886 gdb_assert (per_cu->cu != NULL);
9887
9888 dwo_unit = per_cu->cu->dwo_unit;
9889 gdb_assert (dwo_unit != NULL);
9890
9891 dwo_file = dwo_unit->dwo_file;
9892 if (dwo_file->tus != NULL)
9893 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
9894 }
9895
9896 /* Free all resources associated with DWO_FILE.
9897 Close the DWO file and munmap the sections.
9898 All memory should be on the objfile obstack. */
9899
9900 static void
9901 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9902 {
9903 int ix;
9904 struct dwarf2_section_info *section;
9905
9906 /* Note: dbfd is NULL for virtual DWO files. */
9907 gdb_bfd_unref (dwo_file->dbfd);
9908
9909 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9910 }
9911
9912 /* Wrapper for free_dwo_file for use in cleanups. */
9913
9914 static void
9915 free_dwo_file_cleanup (void *arg)
9916 {
9917 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9918 struct objfile *objfile = dwarf2_per_objfile->objfile;
9919
9920 free_dwo_file (dwo_file, objfile);
9921 }
9922
9923 /* Traversal function for free_dwo_files. */
9924
9925 static int
9926 free_dwo_file_from_slot (void **slot, void *info)
9927 {
9928 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9929 struct objfile *objfile = (struct objfile *) info;
9930
9931 free_dwo_file (dwo_file, objfile);
9932
9933 return 1;
9934 }
9935
9936 /* Free all resources associated with DWO_FILES. */
9937
9938 static void
9939 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9940 {
9941 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9942 }
9943 \f
9944 /* Read in various DIEs. */
9945
9946 /* qsort helper for inherit_abstract_dies. */
9947
9948 static int
9949 unsigned_int_compar (const void *ap, const void *bp)
9950 {
9951 unsigned int a = *(unsigned int *) ap;
9952 unsigned int b = *(unsigned int *) bp;
9953
9954 return (a > b) - (b > a);
9955 }
9956
9957 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9958 Inherit only the children of the DW_AT_abstract_origin DIE not being
9959 already referenced by DW_AT_abstract_origin from the children of the
9960 current DIE. */
9961
9962 static void
9963 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9964 {
9965 struct die_info *child_die;
9966 unsigned die_children_count;
9967 /* CU offsets which were referenced by children of the current DIE. */
9968 sect_offset *offsets;
9969 sect_offset *offsets_end, *offsetp;
9970 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9971 struct die_info *origin_die;
9972 /* Iterator of the ORIGIN_DIE children. */
9973 struct die_info *origin_child_die;
9974 struct cleanup *cleanups;
9975 struct attribute *attr;
9976 struct dwarf2_cu *origin_cu;
9977 struct pending **origin_previous_list_in_scope;
9978
9979 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9980 if (!attr)
9981 return;
9982
9983 /* Note that following die references may follow to a die in a
9984 different cu. */
9985
9986 origin_cu = cu;
9987 origin_die = follow_die_ref (die, attr, &origin_cu);
9988
9989 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9990 symbols in. */
9991 origin_previous_list_in_scope = origin_cu->list_in_scope;
9992 origin_cu->list_in_scope = cu->list_in_scope;
9993
9994 if (die->tag != origin_die->tag
9995 && !(die->tag == DW_TAG_inlined_subroutine
9996 && origin_die->tag == DW_TAG_subprogram))
9997 complaint (&symfile_complaints,
9998 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9999 die->offset.sect_off, origin_die->offset.sect_off);
10000
10001 child_die = die->child;
10002 die_children_count = 0;
10003 while (child_die && child_die->tag)
10004 {
10005 child_die = sibling_die (child_die);
10006 die_children_count++;
10007 }
10008 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10009 cleanups = make_cleanup (xfree, offsets);
10010
10011 offsets_end = offsets;
10012 child_die = die->child;
10013 while (child_die && child_die->tag)
10014 {
10015 /* For each CHILD_DIE, find the corresponding child of
10016 ORIGIN_DIE. If there is more than one layer of
10017 DW_AT_abstract_origin, follow them all; there shouldn't be,
10018 but GCC versions at least through 4.4 generate this (GCC PR
10019 40573). */
10020 struct die_info *child_origin_die = child_die;
10021 struct dwarf2_cu *child_origin_cu = cu;
10022
10023 while (1)
10024 {
10025 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10026 child_origin_cu);
10027 if (attr == NULL)
10028 break;
10029 child_origin_die = follow_die_ref (child_origin_die, attr,
10030 &child_origin_cu);
10031 }
10032
10033 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10034 counterpart may exist. */
10035 if (child_origin_die != child_die)
10036 {
10037 if (child_die->tag != child_origin_die->tag
10038 && !(child_die->tag == DW_TAG_inlined_subroutine
10039 && child_origin_die->tag == DW_TAG_subprogram))
10040 complaint (&symfile_complaints,
10041 _("Child DIE 0x%x and its abstract origin 0x%x have "
10042 "different tags"), child_die->offset.sect_off,
10043 child_origin_die->offset.sect_off);
10044 if (child_origin_die->parent != origin_die)
10045 complaint (&symfile_complaints,
10046 _("Child DIE 0x%x and its abstract origin 0x%x have "
10047 "different parents"), child_die->offset.sect_off,
10048 child_origin_die->offset.sect_off);
10049 else
10050 *offsets_end++ = child_origin_die->offset;
10051 }
10052 child_die = sibling_die (child_die);
10053 }
10054 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10055 unsigned_int_compar);
10056 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10057 if (offsetp[-1].sect_off == offsetp->sect_off)
10058 complaint (&symfile_complaints,
10059 _("Multiple children of DIE 0x%x refer "
10060 "to DIE 0x%x as their abstract origin"),
10061 die->offset.sect_off, offsetp->sect_off);
10062
10063 offsetp = offsets;
10064 origin_child_die = origin_die->child;
10065 while (origin_child_die && origin_child_die->tag)
10066 {
10067 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10068 while (offsetp < offsets_end
10069 && offsetp->sect_off < origin_child_die->offset.sect_off)
10070 offsetp++;
10071 if (offsetp >= offsets_end
10072 || offsetp->sect_off > origin_child_die->offset.sect_off)
10073 {
10074 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10075 process_die (origin_child_die, origin_cu);
10076 }
10077 origin_child_die = sibling_die (origin_child_die);
10078 }
10079 origin_cu->list_in_scope = origin_previous_list_in_scope;
10080
10081 do_cleanups (cleanups);
10082 }
10083
10084 static void
10085 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10086 {
10087 struct objfile *objfile = cu->objfile;
10088 struct context_stack *new;
10089 CORE_ADDR lowpc;
10090 CORE_ADDR highpc;
10091 struct die_info *child_die;
10092 struct attribute *attr, *call_line, *call_file;
10093 const char *name;
10094 CORE_ADDR baseaddr;
10095 struct block *block;
10096 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10097 VEC (symbolp) *template_args = NULL;
10098 struct template_symbol *templ_func = NULL;
10099
10100 if (inlined_func)
10101 {
10102 /* If we do not have call site information, we can't show the
10103 caller of this inlined function. That's too confusing, so
10104 only use the scope for local variables. */
10105 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10106 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10107 if (call_line == NULL || call_file == NULL)
10108 {
10109 read_lexical_block_scope (die, cu);
10110 return;
10111 }
10112 }
10113
10114 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10115
10116 name = dwarf2_name (die, cu);
10117
10118 /* Ignore functions with missing or empty names. These are actually
10119 illegal according to the DWARF standard. */
10120 if (name == NULL)
10121 {
10122 complaint (&symfile_complaints,
10123 _("missing name for subprogram DIE at %d"),
10124 die->offset.sect_off);
10125 return;
10126 }
10127
10128 /* Ignore functions with missing or invalid low and high pc attributes. */
10129 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10130 {
10131 attr = dwarf2_attr (die, DW_AT_external, cu);
10132 if (!attr || !DW_UNSND (attr))
10133 complaint (&symfile_complaints,
10134 _("cannot get low and high bounds "
10135 "for subprogram DIE at %d"),
10136 die->offset.sect_off);
10137 return;
10138 }
10139
10140 lowpc += baseaddr;
10141 highpc += baseaddr;
10142
10143 /* If we have any template arguments, then we must allocate a
10144 different sort of symbol. */
10145 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10146 {
10147 if (child_die->tag == DW_TAG_template_type_param
10148 || child_die->tag == DW_TAG_template_value_param)
10149 {
10150 templ_func = allocate_template_symbol (objfile);
10151 templ_func->base.is_cplus_template_function = 1;
10152 break;
10153 }
10154 }
10155
10156 new = push_context (0, lowpc);
10157 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10158 (struct symbol *) templ_func);
10159
10160 /* If there is a location expression for DW_AT_frame_base, record
10161 it. */
10162 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10163 if (attr)
10164 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10165
10166 cu->list_in_scope = &local_symbols;
10167
10168 if (die->child != NULL)
10169 {
10170 child_die = die->child;
10171 while (child_die && child_die->tag)
10172 {
10173 if (child_die->tag == DW_TAG_template_type_param
10174 || child_die->tag == DW_TAG_template_value_param)
10175 {
10176 struct symbol *arg = new_symbol (child_die, NULL, cu);
10177
10178 if (arg != NULL)
10179 VEC_safe_push (symbolp, template_args, arg);
10180 }
10181 else
10182 process_die (child_die, cu);
10183 child_die = sibling_die (child_die);
10184 }
10185 }
10186
10187 inherit_abstract_dies (die, cu);
10188
10189 /* If we have a DW_AT_specification, we might need to import using
10190 directives from the context of the specification DIE. See the
10191 comment in determine_prefix. */
10192 if (cu->language == language_cplus
10193 && dwarf2_attr (die, DW_AT_specification, cu))
10194 {
10195 struct dwarf2_cu *spec_cu = cu;
10196 struct die_info *spec_die = die_specification (die, &spec_cu);
10197
10198 while (spec_die)
10199 {
10200 child_die = spec_die->child;
10201 while (child_die && child_die->tag)
10202 {
10203 if (child_die->tag == DW_TAG_imported_module)
10204 process_die (child_die, spec_cu);
10205 child_die = sibling_die (child_die);
10206 }
10207
10208 /* In some cases, GCC generates specification DIEs that
10209 themselves contain DW_AT_specification attributes. */
10210 spec_die = die_specification (spec_die, &spec_cu);
10211 }
10212 }
10213
10214 new = pop_context ();
10215 /* Make a block for the local symbols within. */
10216 block = finish_block (new->name, &local_symbols, new->old_blocks,
10217 lowpc, highpc, objfile);
10218
10219 /* For C++, set the block's scope. */
10220 if ((cu->language == language_cplus || cu->language == language_fortran)
10221 && cu->processing_has_namespace_info)
10222 block_set_scope (block, determine_prefix (die, cu),
10223 &objfile->objfile_obstack);
10224
10225 /* If we have address ranges, record them. */
10226 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10227
10228 /* Attach template arguments to function. */
10229 if (! VEC_empty (symbolp, template_args))
10230 {
10231 gdb_assert (templ_func != NULL);
10232
10233 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10234 templ_func->template_arguments
10235 = obstack_alloc (&objfile->objfile_obstack,
10236 (templ_func->n_template_arguments
10237 * sizeof (struct symbol *)));
10238 memcpy (templ_func->template_arguments,
10239 VEC_address (symbolp, template_args),
10240 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10241 VEC_free (symbolp, template_args);
10242 }
10243
10244 /* In C++, we can have functions nested inside functions (e.g., when
10245 a function declares a class that has methods). This means that
10246 when we finish processing a function scope, we may need to go
10247 back to building a containing block's symbol lists. */
10248 local_symbols = new->locals;
10249 using_directives = new->using_directives;
10250
10251 /* If we've finished processing a top-level function, subsequent
10252 symbols go in the file symbol list. */
10253 if (outermost_context_p ())
10254 cu->list_in_scope = &file_symbols;
10255 }
10256
10257 /* Process all the DIES contained within a lexical block scope. Start
10258 a new scope, process the dies, and then close the scope. */
10259
10260 static void
10261 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10262 {
10263 struct objfile *objfile = cu->objfile;
10264 struct context_stack *new;
10265 CORE_ADDR lowpc, highpc;
10266 struct die_info *child_die;
10267 CORE_ADDR baseaddr;
10268
10269 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10270
10271 /* Ignore blocks with missing or invalid low and high pc attributes. */
10272 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10273 as multiple lexical blocks? Handling children in a sane way would
10274 be nasty. Might be easier to properly extend generic blocks to
10275 describe ranges. */
10276 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10277 return;
10278 lowpc += baseaddr;
10279 highpc += baseaddr;
10280
10281 push_context (0, lowpc);
10282 if (die->child != NULL)
10283 {
10284 child_die = die->child;
10285 while (child_die && child_die->tag)
10286 {
10287 process_die (child_die, cu);
10288 child_die = sibling_die (child_die);
10289 }
10290 }
10291 new = pop_context ();
10292
10293 if (local_symbols != NULL || using_directives != NULL)
10294 {
10295 struct block *block
10296 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10297 highpc, objfile);
10298
10299 /* Note that recording ranges after traversing children, as we
10300 do here, means that recording a parent's ranges entails
10301 walking across all its children's ranges as they appear in
10302 the address map, which is quadratic behavior.
10303
10304 It would be nicer to record the parent's ranges before
10305 traversing its children, simply overriding whatever you find
10306 there. But since we don't even decide whether to create a
10307 block until after we've traversed its children, that's hard
10308 to do. */
10309 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10310 }
10311 local_symbols = new->locals;
10312 using_directives = new->using_directives;
10313 }
10314
10315 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10316
10317 static void
10318 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10319 {
10320 struct objfile *objfile = cu->objfile;
10321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10322 CORE_ADDR pc, baseaddr;
10323 struct attribute *attr;
10324 struct call_site *call_site, call_site_local;
10325 void **slot;
10326 int nparams;
10327 struct die_info *child_die;
10328
10329 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10330
10331 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10332 if (!attr)
10333 {
10334 complaint (&symfile_complaints,
10335 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10336 "DIE 0x%x [in module %s]"),
10337 die->offset.sect_off, objfile->name);
10338 return;
10339 }
10340 pc = DW_ADDR (attr) + baseaddr;
10341
10342 if (cu->call_site_htab == NULL)
10343 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10344 NULL, &objfile->objfile_obstack,
10345 hashtab_obstack_allocate, NULL);
10346 call_site_local.pc = pc;
10347 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10348 if (*slot != NULL)
10349 {
10350 complaint (&symfile_complaints,
10351 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10352 "DIE 0x%x [in module %s]"),
10353 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10354 return;
10355 }
10356
10357 /* Count parameters at the caller. */
10358
10359 nparams = 0;
10360 for (child_die = die->child; child_die && child_die->tag;
10361 child_die = sibling_die (child_die))
10362 {
10363 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10364 {
10365 complaint (&symfile_complaints,
10366 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10367 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10368 child_die->tag, child_die->offset.sect_off, objfile->name);
10369 continue;
10370 }
10371
10372 nparams++;
10373 }
10374
10375 call_site = obstack_alloc (&objfile->objfile_obstack,
10376 (sizeof (*call_site)
10377 + (sizeof (*call_site->parameter)
10378 * (nparams - 1))));
10379 *slot = call_site;
10380 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10381 call_site->pc = pc;
10382
10383 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10384 {
10385 struct die_info *func_die;
10386
10387 /* Skip also over DW_TAG_inlined_subroutine. */
10388 for (func_die = die->parent;
10389 func_die && func_die->tag != DW_TAG_subprogram
10390 && func_die->tag != DW_TAG_subroutine_type;
10391 func_die = func_die->parent);
10392
10393 /* DW_AT_GNU_all_call_sites is a superset
10394 of DW_AT_GNU_all_tail_call_sites. */
10395 if (func_die
10396 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10397 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10398 {
10399 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10400 not complete. But keep CALL_SITE for look ups via call_site_htab,
10401 both the initial caller containing the real return address PC and
10402 the final callee containing the current PC of a chain of tail
10403 calls do not need to have the tail call list complete. But any
10404 function candidate for a virtual tail call frame searched via
10405 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10406 determined unambiguously. */
10407 }
10408 else
10409 {
10410 struct type *func_type = NULL;
10411
10412 if (func_die)
10413 func_type = get_die_type (func_die, cu);
10414 if (func_type != NULL)
10415 {
10416 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10417
10418 /* Enlist this call site to the function. */
10419 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10420 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10421 }
10422 else
10423 complaint (&symfile_complaints,
10424 _("Cannot find function owning DW_TAG_GNU_call_site "
10425 "DIE 0x%x [in module %s]"),
10426 die->offset.sect_off, objfile->name);
10427 }
10428 }
10429
10430 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10431 if (attr == NULL)
10432 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10433 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10434 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10435 /* Keep NULL DWARF_BLOCK. */;
10436 else if (attr_form_is_block (attr))
10437 {
10438 struct dwarf2_locexpr_baton *dlbaton;
10439
10440 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10441 dlbaton->data = DW_BLOCK (attr)->data;
10442 dlbaton->size = DW_BLOCK (attr)->size;
10443 dlbaton->per_cu = cu->per_cu;
10444
10445 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10446 }
10447 else if (attr_form_is_ref (attr))
10448 {
10449 struct dwarf2_cu *target_cu = cu;
10450 struct die_info *target_die;
10451
10452 target_die = follow_die_ref (die, attr, &target_cu);
10453 gdb_assert (target_cu->objfile == objfile);
10454 if (die_is_declaration (target_die, target_cu))
10455 {
10456 const char *target_physname = NULL;
10457 struct attribute *target_attr;
10458
10459 /* Prefer the mangled name; otherwise compute the demangled one. */
10460 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10461 if (target_attr == NULL)
10462 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10463 target_cu);
10464 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10465 target_physname = DW_STRING (target_attr);
10466 else
10467 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10468 if (target_physname == NULL)
10469 complaint (&symfile_complaints,
10470 _("DW_AT_GNU_call_site_target target DIE has invalid "
10471 "physname, for referencing DIE 0x%x [in module %s]"),
10472 die->offset.sect_off, objfile->name);
10473 else
10474 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10475 }
10476 else
10477 {
10478 CORE_ADDR lowpc;
10479
10480 /* DW_AT_entry_pc should be preferred. */
10481 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10482 complaint (&symfile_complaints,
10483 _("DW_AT_GNU_call_site_target target DIE has invalid "
10484 "low pc, for referencing DIE 0x%x [in module %s]"),
10485 die->offset.sect_off, objfile->name);
10486 else
10487 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10488 }
10489 }
10490 else
10491 complaint (&symfile_complaints,
10492 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10493 "block nor reference, for DIE 0x%x [in module %s]"),
10494 die->offset.sect_off, objfile->name);
10495
10496 call_site->per_cu = cu->per_cu;
10497
10498 for (child_die = die->child;
10499 child_die && child_die->tag;
10500 child_die = sibling_die (child_die))
10501 {
10502 struct call_site_parameter *parameter;
10503 struct attribute *loc, *origin;
10504
10505 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10506 {
10507 /* Already printed the complaint above. */
10508 continue;
10509 }
10510
10511 gdb_assert (call_site->parameter_count < nparams);
10512 parameter = &call_site->parameter[call_site->parameter_count];
10513
10514 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10515 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10516 register is contained in DW_AT_GNU_call_site_value. */
10517
10518 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10519 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10520 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
10521 {
10522 sect_offset offset;
10523
10524 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10525 offset = dwarf2_get_ref_die_offset (origin);
10526 if (!offset_in_cu_p (&cu->header, offset))
10527 {
10528 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10529 binding can be done only inside one CU. Such referenced DIE
10530 therefore cannot be even moved to DW_TAG_partial_unit. */
10531 complaint (&symfile_complaints,
10532 _("DW_AT_abstract_origin offset is not in CU for "
10533 "DW_TAG_GNU_call_site child DIE 0x%x "
10534 "[in module %s]"),
10535 child_die->offset.sect_off, objfile->name);
10536 continue;
10537 }
10538 parameter->u.param_offset.cu_off = (offset.sect_off
10539 - cu->header.offset.sect_off);
10540 }
10541 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10542 {
10543 complaint (&symfile_complaints,
10544 _("No DW_FORM_block* DW_AT_location for "
10545 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10546 child_die->offset.sect_off, objfile->name);
10547 continue;
10548 }
10549 else
10550 {
10551 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10552 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10553 if (parameter->u.dwarf_reg != -1)
10554 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10555 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10556 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10557 &parameter->u.fb_offset))
10558 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10559 else
10560 {
10561 complaint (&symfile_complaints,
10562 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10563 "for DW_FORM_block* DW_AT_location is supported for "
10564 "DW_TAG_GNU_call_site child DIE 0x%x "
10565 "[in module %s]"),
10566 child_die->offset.sect_off, objfile->name);
10567 continue;
10568 }
10569 }
10570
10571 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10572 if (!attr_form_is_block (attr))
10573 {
10574 complaint (&symfile_complaints,
10575 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10576 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10577 child_die->offset.sect_off, objfile->name);
10578 continue;
10579 }
10580 parameter->value = DW_BLOCK (attr)->data;
10581 parameter->value_size = DW_BLOCK (attr)->size;
10582
10583 /* Parameters are not pre-cleared by memset above. */
10584 parameter->data_value = NULL;
10585 parameter->data_value_size = 0;
10586 call_site->parameter_count++;
10587
10588 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10589 if (attr)
10590 {
10591 if (!attr_form_is_block (attr))
10592 complaint (&symfile_complaints,
10593 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10594 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10595 child_die->offset.sect_off, objfile->name);
10596 else
10597 {
10598 parameter->data_value = DW_BLOCK (attr)->data;
10599 parameter->data_value_size = DW_BLOCK (attr)->size;
10600 }
10601 }
10602 }
10603 }
10604
10605 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10606 Return 1 if the attributes are present and valid, otherwise, return 0.
10607 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10608
10609 static int
10610 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10611 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10612 struct partial_symtab *ranges_pst)
10613 {
10614 struct objfile *objfile = cu->objfile;
10615 struct comp_unit_head *cu_header = &cu->header;
10616 bfd *obfd = objfile->obfd;
10617 unsigned int addr_size = cu_header->addr_size;
10618 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10619 /* Base address selection entry. */
10620 CORE_ADDR base;
10621 int found_base;
10622 unsigned int dummy;
10623 const gdb_byte *buffer;
10624 CORE_ADDR marker;
10625 int low_set;
10626 CORE_ADDR low = 0;
10627 CORE_ADDR high = 0;
10628 CORE_ADDR baseaddr;
10629
10630 found_base = cu->base_known;
10631 base = cu->base_address;
10632
10633 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10634 if (offset >= dwarf2_per_objfile->ranges.size)
10635 {
10636 complaint (&symfile_complaints,
10637 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10638 offset);
10639 return 0;
10640 }
10641 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10642
10643 /* Read in the largest possible address. */
10644 marker = read_address (obfd, buffer, cu, &dummy);
10645 if ((marker & mask) == mask)
10646 {
10647 /* If we found the largest possible address, then
10648 read the base address. */
10649 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10650 buffer += 2 * addr_size;
10651 offset += 2 * addr_size;
10652 found_base = 1;
10653 }
10654
10655 low_set = 0;
10656
10657 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10658
10659 while (1)
10660 {
10661 CORE_ADDR range_beginning, range_end;
10662
10663 range_beginning = read_address (obfd, buffer, cu, &dummy);
10664 buffer += addr_size;
10665 range_end = read_address (obfd, buffer, cu, &dummy);
10666 buffer += addr_size;
10667 offset += 2 * addr_size;
10668
10669 /* An end of list marker is a pair of zero addresses. */
10670 if (range_beginning == 0 && range_end == 0)
10671 /* Found the end of list entry. */
10672 break;
10673
10674 /* Each base address selection entry is a pair of 2 values.
10675 The first is the largest possible address, the second is
10676 the base address. Check for a base address here. */
10677 if ((range_beginning & mask) == mask)
10678 {
10679 /* If we found the largest possible address, then
10680 read the base address. */
10681 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10682 found_base = 1;
10683 continue;
10684 }
10685
10686 if (!found_base)
10687 {
10688 /* We have no valid base address for the ranges
10689 data. */
10690 complaint (&symfile_complaints,
10691 _("Invalid .debug_ranges data (no base address)"));
10692 return 0;
10693 }
10694
10695 if (range_beginning > range_end)
10696 {
10697 /* Inverted range entries are invalid. */
10698 complaint (&symfile_complaints,
10699 _("Invalid .debug_ranges data (inverted range)"));
10700 return 0;
10701 }
10702
10703 /* Empty range entries have no effect. */
10704 if (range_beginning == range_end)
10705 continue;
10706
10707 range_beginning += base;
10708 range_end += base;
10709
10710 /* A not-uncommon case of bad debug info.
10711 Don't pollute the addrmap with bad data. */
10712 if (range_beginning + baseaddr == 0
10713 && !dwarf2_per_objfile->has_section_at_zero)
10714 {
10715 complaint (&symfile_complaints,
10716 _(".debug_ranges entry has start address of zero"
10717 " [in module %s]"), objfile->name);
10718 continue;
10719 }
10720
10721 if (ranges_pst != NULL)
10722 addrmap_set_empty (objfile->psymtabs_addrmap,
10723 range_beginning + baseaddr,
10724 range_end - 1 + baseaddr,
10725 ranges_pst);
10726
10727 /* FIXME: This is recording everything as a low-high
10728 segment of consecutive addresses. We should have a
10729 data structure for discontiguous block ranges
10730 instead. */
10731 if (! low_set)
10732 {
10733 low = range_beginning;
10734 high = range_end;
10735 low_set = 1;
10736 }
10737 else
10738 {
10739 if (range_beginning < low)
10740 low = range_beginning;
10741 if (range_end > high)
10742 high = range_end;
10743 }
10744 }
10745
10746 if (! low_set)
10747 /* If the first entry is an end-of-list marker, the range
10748 describes an empty scope, i.e. no instructions. */
10749 return 0;
10750
10751 if (low_return)
10752 *low_return = low;
10753 if (high_return)
10754 *high_return = high;
10755 return 1;
10756 }
10757
10758 /* Get low and high pc attributes from a die. Return 1 if the attributes
10759 are present and valid, otherwise, return 0. Return -1 if the range is
10760 discontinuous, i.e. derived from DW_AT_ranges information. */
10761
10762 static int
10763 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10764 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10765 struct partial_symtab *pst)
10766 {
10767 struct attribute *attr;
10768 struct attribute *attr_high;
10769 CORE_ADDR low = 0;
10770 CORE_ADDR high = 0;
10771 int ret = 0;
10772
10773 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10774 if (attr_high)
10775 {
10776 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10777 if (attr)
10778 {
10779 low = DW_ADDR (attr);
10780 if (attr_high->form == DW_FORM_addr
10781 || attr_high->form == DW_FORM_GNU_addr_index)
10782 high = DW_ADDR (attr_high);
10783 else
10784 high = low + DW_UNSND (attr_high);
10785 }
10786 else
10787 /* Found high w/o low attribute. */
10788 return 0;
10789
10790 /* Found consecutive range of addresses. */
10791 ret = 1;
10792 }
10793 else
10794 {
10795 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10796 if (attr != NULL)
10797 {
10798 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10799 We take advantage of the fact that DW_AT_ranges does not appear
10800 in DW_TAG_compile_unit of DWO files. */
10801 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10802 unsigned int ranges_offset = (DW_UNSND (attr)
10803 + (need_ranges_base
10804 ? cu->ranges_base
10805 : 0));
10806
10807 /* Value of the DW_AT_ranges attribute is the offset in the
10808 .debug_ranges section. */
10809 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10810 return 0;
10811 /* Found discontinuous range of addresses. */
10812 ret = -1;
10813 }
10814 }
10815
10816 /* read_partial_die has also the strict LOW < HIGH requirement. */
10817 if (high <= low)
10818 return 0;
10819
10820 /* When using the GNU linker, .gnu.linkonce. sections are used to
10821 eliminate duplicate copies of functions and vtables and such.
10822 The linker will arbitrarily choose one and discard the others.
10823 The AT_*_pc values for such functions refer to local labels in
10824 these sections. If the section from that file was discarded, the
10825 labels are not in the output, so the relocs get a value of 0.
10826 If this is a discarded function, mark the pc bounds as invalid,
10827 so that GDB will ignore it. */
10828 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10829 return 0;
10830
10831 *lowpc = low;
10832 if (highpc)
10833 *highpc = high;
10834 return ret;
10835 }
10836
10837 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10838 its low and high PC addresses. Do nothing if these addresses could not
10839 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10840 and HIGHPC to the high address if greater than HIGHPC. */
10841
10842 static void
10843 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10844 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10845 struct dwarf2_cu *cu)
10846 {
10847 CORE_ADDR low, high;
10848 struct die_info *child = die->child;
10849
10850 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10851 {
10852 *lowpc = min (*lowpc, low);
10853 *highpc = max (*highpc, high);
10854 }
10855
10856 /* If the language does not allow nested subprograms (either inside
10857 subprograms or lexical blocks), we're done. */
10858 if (cu->language != language_ada)
10859 return;
10860
10861 /* Check all the children of the given DIE. If it contains nested
10862 subprograms, then check their pc bounds. Likewise, we need to
10863 check lexical blocks as well, as they may also contain subprogram
10864 definitions. */
10865 while (child && child->tag)
10866 {
10867 if (child->tag == DW_TAG_subprogram
10868 || child->tag == DW_TAG_lexical_block)
10869 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10870 child = sibling_die (child);
10871 }
10872 }
10873
10874 /* Get the low and high pc's represented by the scope DIE, and store
10875 them in *LOWPC and *HIGHPC. If the correct values can't be
10876 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10877
10878 static void
10879 get_scope_pc_bounds (struct die_info *die,
10880 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10881 struct dwarf2_cu *cu)
10882 {
10883 CORE_ADDR best_low = (CORE_ADDR) -1;
10884 CORE_ADDR best_high = (CORE_ADDR) 0;
10885 CORE_ADDR current_low, current_high;
10886
10887 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10888 {
10889 best_low = current_low;
10890 best_high = current_high;
10891 }
10892 else
10893 {
10894 struct die_info *child = die->child;
10895
10896 while (child && child->tag)
10897 {
10898 switch (child->tag) {
10899 case DW_TAG_subprogram:
10900 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10901 break;
10902 case DW_TAG_namespace:
10903 case DW_TAG_module:
10904 /* FIXME: carlton/2004-01-16: Should we do this for
10905 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10906 that current GCC's always emit the DIEs corresponding
10907 to definitions of methods of classes as children of a
10908 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10909 the DIEs giving the declarations, which could be
10910 anywhere). But I don't see any reason why the
10911 standards says that they have to be there. */
10912 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10913
10914 if (current_low != ((CORE_ADDR) -1))
10915 {
10916 best_low = min (best_low, current_low);
10917 best_high = max (best_high, current_high);
10918 }
10919 break;
10920 default:
10921 /* Ignore. */
10922 break;
10923 }
10924
10925 child = sibling_die (child);
10926 }
10927 }
10928
10929 *lowpc = best_low;
10930 *highpc = best_high;
10931 }
10932
10933 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10934 in DIE. */
10935
10936 static void
10937 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10938 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10939 {
10940 struct objfile *objfile = cu->objfile;
10941 struct attribute *attr;
10942 struct attribute *attr_high;
10943
10944 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10945 if (attr_high)
10946 {
10947 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10948 if (attr)
10949 {
10950 CORE_ADDR low = DW_ADDR (attr);
10951 CORE_ADDR high;
10952 if (attr_high->form == DW_FORM_addr
10953 || attr_high->form == DW_FORM_GNU_addr_index)
10954 high = DW_ADDR (attr_high);
10955 else
10956 high = low + DW_UNSND (attr_high);
10957
10958 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10959 }
10960 }
10961
10962 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10963 if (attr)
10964 {
10965 bfd *obfd = objfile->obfd;
10966 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10967 We take advantage of the fact that DW_AT_ranges does not appear
10968 in DW_TAG_compile_unit of DWO files. */
10969 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10970
10971 /* The value of the DW_AT_ranges attribute is the offset of the
10972 address range list in the .debug_ranges section. */
10973 unsigned long offset = (DW_UNSND (attr)
10974 + (need_ranges_base ? cu->ranges_base : 0));
10975 const gdb_byte *buffer;
10976
10977 /* For some target architectures, but not others, the
10978 read_address function sign-extends the addresses it returns.
10979 To recognize base address selection entries, we need a
10980 mask. */
10981 unsigned int addr_size = cu->header.addr_size;
10982 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10983
10984 /* The base address, to which the next pair is relative. Note
10985 that this 'base' is a DWARF concept: most entries in a range
10986 list are relative, to reduce the number of relocs against the
10987 debugging information. This is separate from this function's
10988 'baseaddr' argument, which GDB uses to relocate debugging
10989 information from a shared library based on the address at
10990 which the library was loaded. */
10991 CORE_ADDR base = cu->base_address;
10992 int base_known = cu->base_known;
10993
10994 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10995 if (offset >= dwarf2_per_objfile->ranges.size)
10996 {
10997 complaint (&symfile_complaints,
10998 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10999 offset);
11000 return;
11001 }
11002 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11003
11004 for (;;)
11005 {
11006 unsigned int bytes_read;
11007 CORE_ADDR start, end;
11008
11009 start = read_address (obfd, buffer, cu, &bytes_read);
11010 buffer += bytes_read;
11011 end = read_address (obfd, buffer, cu, &bytes_read);
11012 buffer += bytes_read;
11013
11014 /* Did we find the end of the range list? */
11015 if (start == 0 && end == 0)
11016 break;
11017
11018 /* Did we find a base address selection entry? */
11019 else if ((start & base_select_mask) == base_select_mask)
11020 {
11021 base = end;
11022 base_known = 1;
11023 }
11024
11025 /* We found an ordinary address range. */
11026 else
11027 {
11028 if (!base_known)
11029 {
11030 complaint (&symfile_complaints,
11031 _("Invalid .debug_ranges data "
11032 "(no base address)"));
11033 return;
11034 }
11035
11036 if (start > end)
11037 {
11038 /* Inverted range entries are invalid. */
11039 complaint (&symfile_complaints,
11040 _("Invalid .debug_ranges data "
11041 "(inverted range)"));
11042 return;
11043 }
11044
11045 /* Empty range entries have no effect. */
11046 if (start == end)
11047 continue;
11048
11049 start += base + baseaddr;
11050 end += base + baseaddr;
11051
11052 /* A not-uncommon case of bad debug info.
11053 Don't pollute the addrmap with bad data. */
11054 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11055 {
11056 complaint (&symfile_complaints,
11057 _(".debug_ranges entry has start address of zero"
11058 " [in module %s]"), objfile->name);
11059 continue;
11060 }
11061
11062 record_block_range (block, start, end - 1);
11063 }
11064 }
11065 }
11066 }
11067
11068 /* Check whether the producer field indicates either of GCC < 4.6, or the
11069 Intel C/C++ compiler, and cache the result in CU. */
11070
11071 static void
11072 check_producer (struct dwarf2_cu *cu)
11073 {
11074 const char *cs;
11075 int major, minor, release;
11076
11077 if (cu->producer == NULL)
11078 {
11079 /* For unknown compilers expect their behavior is DWARF version
11080 compliant.
11081
11082 GCC started to support .debug_types sections by -gdwarf-4 since
11083 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11084 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11085 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11086 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11087 }
11088 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11089 {
11090 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11091
11092 cs = &cu->producer[strlen ("GNU ")];
11093 while (*cs && !isdigit (*cs))
11094 cs++;
11095 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11096 {
11097 /* Not recognized as GCC. */
11098 }
11099 else
11100 {
11101 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11102 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11103 }
11104 }
11105 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11106 cu->producer_is_icc = 1;
11107 else
11108 {
11109 /* For other non-GCC compilers, expect their behavior is DWARF version
11110 compliant. */
11111 }
11112
11113 cu->checked_producer = 1;
11114 }
11115
11116 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11117 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11118 during 4.6.0 experimental. */
11119
11120 static int
11121 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11122 {
11123 if (!cu->checked_producer)
11124 check_producer (cu);
11125
11126 return cu->producer_is_gxx_lt_4_6;
11127 }
11128
11129 /* Return the default accessibility type if it is not overriden by
11130 DW_AT_accessibility. */
11131
11132 static enum dwarf_access_attribute
11133 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11134 {
11135 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11136 {
11137 /* The default DWARF 2 accessibility for members is public, the default
11138 accessibility for inheritance is private. */
11139
11140 if (die->tag != DW_TAG_inheritance)
11141 return DW_ACCESS_public;
11142 else
11143 return DW_ACCESS_private;
11144 }
11145 else
11146 {
11147 /* DWARF 3+ defines the default accessibility a different way. The same
11148 rules apply now for DW_TAG_inheritance as for the members and it only
11149 depends on the container kind. */
11150
11151 if (die->parent->tag == DW_TAG_class_type)
11152 return DW_ACCESS_private;
11153 else
11154 return DW_ACCESS_public;
11155 }
11156 }
11157
11158 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11159 offset. If the attribute was not found return 0, otherwise return
11160 1. If it was found but could not properly be handled, set *OFFSET
11161 to 0. */
11162
11163 static int
11164 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11165 LONGEST *offset)
11166 {
11167 struct attribute *attr;
11168
11169 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11170 if (attr != NULL)
11171 {
11172 *offset = 0;
11173
11174 /* Note that we do not check for a section offset first here.
11175 This is because DW_AT_data_member_location is new in DWARF 4,
11176 so if we see it, we can assume that a constant form is really
11177 a constant and not a section offset. */
11178 if (attr_form_is_constant (attr))
11179 *offset = dwarf2_get_attr_constant_value (attr, 0);
11180 else if (attr_form_is_section_offset (attr))
11181 dwarf2_complex_location_expr_complaint ();
11182 else if (attr_form_is_block (attr))
11183 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11184 else
11185 dwarf2_complex_location_expr_complaint ();
11186
11187 return 1;
11188 }
11189
11190 return 0;
11191 }
11192
11193 /* Add an aggregate field to the field list. */
11194
11195 static void
11196 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11197 struct dwarf2_cu *cu)
11198 {
11199 struct objfile *objfile = cu->objfile;
11200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11201 struct nextfield *new_field;
11202 struct attribute *attr;
11203 struct field *fp;
11204 const char *fieldname = "";
11205
11206 /* Allocate a new field list entry and link it in. */
11207 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11208 make_cleanup (xfree, new_field);
11209 memset (new_field, 0, sizeof (struct nextfield));
11210
11211 if (die->tag == DW_TAG_inheritance)
11212 {
11213 new_field->next = fip->baseclasses;
11214 fip->baseclasses = new_field;
11215 }
11216 else
11217 {
11218 new_field->next = fip->fields;
11219 fip->fields = new_field;
11220 }
11221 fip->nfields++;
11222
11223 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11224 if (attr)
11225 new_field->accessibility = DW_UNSND (attr);
11226 else
11227 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11228 if (new_field->accessibility != DW_ACCESS_public)
11229 fip->non_public_fields = 1;
11230
11231 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11232 if (attr)
11233 new_field->virtuality = DW_UNSND (attr);
11234 else
11235 new_field->virtuality = DW_VIRTUALITY_none;
11236
11237 fp = &new_field->field;
11238
11239 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11240 {
11241 LONGEST offset;
11242
11243 /* Data member other than a C++ static data member. */
11244
11245 /* Get type of field. */
11246 fp->type = die_type (die, cu);
11247
11248 SET_FIELD_BITPOS (*fp, 0);
11249
11250 /* Get bit size of field (zero if none). */
11251 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11252 if (attr)
11253 {
11254 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11255 }
11256 else
11257 {
11258 FIELD_BITSIZE (*fp) = 0;
11259 }
11260
11261 /* Get bit offset of field. */
11262 if (handle_data_member_location (die, cu, &offset))
11263 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11264 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11265 if (attr)
11266 {
11267 if (gdbarch_bits_big_endian (gdbarch))
11268 {
11269 /* For big endian bits, the DW_AT_bit_offset gives the
11270 additional bit offset from the MSB of the containing
11271 anonymous object to the MSB of the field. We don't
11272 have to do anything special since we don't need to
11273 know the size of the anonymous object. */
11274 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11275 }
11276 else
11277 {
11278 /* For little endian bits, compute the bit offset to the
11279 MSB of the anonymous object, subtract off the number of
11280 bits from the MSB of the field to the MSB of the
11281 object, and then subtract off the number of bits of
11282 the field itself. The result is the bit offset of
11283 the LSB of the field. */
11284 int anonymous_size;
11285 int bit_offset = DW_UNSND (attr);
11286
11287 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11288 if (attr)
11289 {
11290 /* The size of the anonymous object containing
11291 the bit field is explicit, so use the
11292 indicated size (in bytes). */
11293 anonymous_size = DW_UNSND (attr);
11294 }
11295 else
11296 {
11297 /* The size of the anonymous object containing
11298 the bit field must be inferred from the type
11299 attribute of the data member containing the
11300 bit field. */
11301 anonymous_size = TYPE_LENGTH (fp->type);
11302 }
11303 SET_FIELD_BITPOS (*fp,
11304 (FIELD_BITPOS (*fp)
11305 + anonymous_size * bits_per_byte
11306 - bit_offset - FIELD_BITSIZE (*fp)));
11307 }
11308 }
11309
11310 /* Get name of field. */
11311 fieldname = dwarf2_name (die, cu);
11312 if (fieldname == NULL)
11313 fieldname = "";
11314
11315 /* The name is already allocated along with this objfile, so we don't
11316 need to duplicate it for the type. */
11317 fp->name = fieldname;
11318
11319 /* Change accessibility for artificial fields (e.g. virtual table
11320 pointer or virtual base class pointer) to private. */
11321 if (dwarf2_attr (die, DW_AT_artificial, cu))
11322 {
11323 FIELD_ARTIFICIAL (*fp) = 1;
11324 new_field->accessibility = DW_ACCESS_private;
11325 fip->non_public_fields = 1;
11326 }
11327 }
11328 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11329 {
11330 /* C++ static member. */
11331
11332 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11333 is a declaration, but all versions of G++ as of this writing
11334 (so through at least 3.2.1) incorrectly generate
11335 DW_TAG_variable tags. */
11336
11337 const char *physname;
11338
11339 /* Get name of field. */
11340 fieldname = dwarf2_name (die, cu);
11341 if (fieldname == NULL)
11342 return;
11343
11344 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11345 if (attr
11346 /* Only create a symbol if this is an external value.
11347 new_symbol checks this and puts the value in the global symbol
11348 table, which we want. If it is not external, new_symbol
11349 will try to put the value in cu->list_in_scope which is wrong. */
11350 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11351 {
11352 /* A static const member, not much different than an enum as far as
11353 we're concerned, except that we can support more types. */
11354 new_symbol (die, NULL, cu);
11355 }
11356
11357 /* Get physical name. */
11358 physname = dwarf2_physname (fieldname, die, cu);
11359
11360 /* The name is already allocated along with this objfile, so we don't
11361 need to duplicate it for the type. */
11362 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11363 FIELD_TYPE (*fp) = die_type (die, cu);
11364 FIELD_NAME (*fp) = fieldname;
11365 }
11366 else if (die->tag == DW_TAG_inheritance)
11367 {
11368 LONGEST offset;
11369
11370 /* C++ base class field. */
11371 if (handle_data_member_location (die, cu, &offset))
11372 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11373 FIELD_BITSIZE (*fp) = 0;
11374 FIELD_TYPE (*fp) = die_type (die, cu);
11375 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11376 fip->nbaseclasses++;
11377 }
11378 }
11379
11380 /* Add a typedef defined in the scope of the FIP's class. */
11381
11382 static void
11383 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11384 struct dwarf2_cu *cu)
11385 {
11386 struct objfile *objfile = cu->objfile;
11387 struct typedef_field_list *new_field;
11388 struct attribute *attr;
11389 struct typedef_field *fp;
11390 char *fieldname = "";
11391
11392 /* Allocate a new field list entry and link it in. */
11393 new_field = xzalloc (sizeof (*new_field));
11394 make_cleanup (xfree, new_field);
11395
11396 gdb_assert (die->tag == DW_TAG_typedef);
11397
11398 fp = &new_field->field;
11399
11400 /* Get name of field. */
11401 fp->name = dwarf2_name (die, cu);
11402 if (fp->name == NULL)
11403 return;
11404
11405 fp->type = read_type_die (die, cu);
11406
11407 new_field->next = fip->typedef_field_list;
11408 fip->typedef_field_list = new_field;
11409 fip->typedef_field_list_count++;
11410 }
11411
11412 /* Create the vector of fields, and attach it to the type. */
11413
11414 static void
11415 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11416 struct dwarf2_cu *cu)
11417 {
11418 int nfields = fip->nfields;
11419
11420 /* Record the field count, allocate space for the array of fields,
11421 and create blank accessibility bitfields if necessary. */
11422 TYPE_NFIELDS (type) = nfields;
11423 TYPE_FIELDS (type) = (struct field *)
11424 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11425 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11426
11427 if (fip->non_public_fields && cu->language != language_ada)
11428 {
11429 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11430
11431 TYPE_FIELD_PRIVATE_BITS (type) =
11432 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11433 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11434
11435 TYPE_FIELD_PROTECTED_BITS (type) =
11436 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11437 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11438
11439 TYPE_FIELD_IGNORE_BITS (type) =
11440 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11441 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11442 }
11443
11444 /* If the type has baseclasses, allocate and clear a bit vector for
11445 TYPE_FIELD_VIRTUAL_BITS. */
11446 if (fip->nbaseclasses && cu->language != language_ada)
11447 {
11448 int num_bytes = B_BYTES (fip->nbaseclasses);
11449 unsigned char *pointer;
11450
11451 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11452 pointer = TYPE_ALLOC (type, num_bytes);
11453 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11454 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11455 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11456 }
11457
11458 /* Copy the saved-up fields into the field vector. Start from the head of
11459 the list, adding to the tail of the field array, so that they end up in
11460 the same order in the array in which they were added to the list. */
11461 while (nfields-- > 0)
11462 {
11463 struct nextfield *fieldp;
11464
11465 if (fip->fields)
11466 {
11467 fieldp = fip->fields;
11468 fip->fields = fieldp->next;
11469 }
11470 else
11471 {
11472 fieldp = fip->baseclasses;
11473 fip->baseclasses = fieldp->next;
11474 }
11475
11476 TYPE_FIELD (type, nfields) = fieldp->field;
11477 switch (fieldp->accessibility)
11478 {
11479 case DW_ACCESS_private:
11480 if (cu->language != language_ada)
11481 SET_TYPE_FIELD_PRIVATE (type, nfields);
11482 break;
11483
11484 case DW_ACCESS_protected:
11485 if (cu->language != language_ada)
11486 SET_TYPE_FIELD_PROTECTED (type, nfields);
11487 break;
11488
11489 case DW_ACCESS_public:
11490 break;
11491
11492 default:
11493 /* Unknown accessibility. Complain and treat it as public. */
11494 {
11495 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11496 fieldp->accessibility);
11497 }
11498 break;
11499 }
11500 if (nfields < fip->nbaseclasses)
11501 {
11502 switch (fieldp->virtuality)
11503 {
11504 case DW_VIRTUALITY_virtual:
11505 case DW_VIRTUALITY_pure_virtual:
11506 if (cu->language == language_ada)
11507 error (_("unexpected virtuality in component of Ada type"));
11508 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11509 break;
11510 }
11511 }
11512 }
11513 }
11514
11515 /* Return true if this member function is a constructor, false
11516 otherwise. */
11517
11518 static int
11519 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11520 {
11521 const char *fieldname;
11522 const char *typename;
11523 int len;
11524
11525 if (die->parent == NULL)
11526 return 0;
11527
11528 if (die->parent->tag != DW_TAG_structure_type
11529 && die->parent->tag != DW_TAG_union_type
11530 && die->parent->tag != DW_TAG_class_type)
11531 return 0;
11532
11533 fieldname = dwarf2_name (die, cu);
11534 typename = dwarf2_name (die->parent, cu);
11535 if (fieldname == NULL || typename == NULL)
11536 return 0;
11537
11538 len = strlen (fieldname);
11539 return (strncmp (fieldname, typename, len) == 0
11540 && (typename[len] == '\0' || typename[len] == '<'));
11541 }
11542
11543 /* Add a member function to the proper fieldlist. */
11544
11545 static void
11546 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11547 struct type *type, struct dwarf2_cu *cu)
11548 {
11549 struct objfile *objfile = cu->objfile;
11550 struct attribute *attr;
11551 struct fnfieldlist *flp;
11552 int i;
11553 struct fn_field *fnp;
11554 const char *fieldname;
11555 struct nextfnfield *new_fnfield;
11556 struct type *this_type;
11557 enum dwarf_access_attribute accessibility;
11558
11559 if (cu->language == language_ada)
11560 error (_("unexpected member function in Ada type"));
11561
11562 /* Get name of member function. */
11563 fieldname = dwarf2_name (die, cu);
11564 if (fieldname == NULL)
11565 return;
11566
11567 /* Look up member function name in fieldlist. */
11568 for (i = 0; i < fip->nfnfields; i++)
11569 {
11570 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11571 break;
11572 }
11573
11574 /* Create new list element if necessary. */
11575 if (i < fip->nfnfields)
11576 flp = &fip->fnfieldlists[i];
11577 else
11578 {
11579 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11580 {
11581 fip->fnfieldlists = (struct fnfieldlist *)
11582 xrealloc (fip->fnfieldlists,
11583 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11584 * sizeof (struct fnfieldlist));
11585 if (fip->nfnfields == 0)
11586 make_cleanup (free_current_contents, &fip->fnfieldlists);
11587 }
11588 flp = &fip->fnfieldlists[fip->nfnfields];
11589 flp->name = fieldname;
11590 flp->length = 0;
11591 flp->head = NULL;
11592 i = fip->nfnfields++;
11593 }
11594
11595 /* Create a new member function field and chain it to the field list
11596 entry. */
11597 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11598 make_cleanup (xfree, new_fnfield);
11599 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11600 new_fnfield->next = flp->head;
11601 flp->head = new_fnfield;
11602 flp->length++;
11603
11604 /* Fill in the member function field info. */
11605 fnp = &new_fnfield->fnfield;
11606
11607 /* Delay processing of the physname until later. */
11608 if (cu->language == language_cplus || cu->language == language_java)
11609 {
11610 add_to_method_list (type, i, flp->length - 1, fieldname,
11611 die, cu);
11612 }
11613 else
11614 {
11615 const char *physname = dwarf2_physname (fieldname, die, cu);
11616 fnp->physname = physname ? physname : "";
11617 }
11618
11619 fnp->type = alloc_type (objfile);
11620 this_type = read_type_die (die, cu);
11621 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11622 {
11623 int nparams = TYPE_NFIELDS (this_type);
11624
11625 /* TYPE is the domain of this method, and THIS_TYPE is the type
11626 of the method itself (TYPE_CODE_METHOD). */
11627 smash_to_method_type (fnp->type, type,
11628 TYPE_TARGET_TYPE (this_type),
11629 TYPE_FIELDS (this_type),
11630 TYPE_NFIELDS (this_type),
11631 TYPE_VARARGS (this_type));
11632
11633 /* Handle static member functions.
11634 Dwarf2 has no clean way to discern C++ static and non-static
11635 member functions. G++ helps GDB by marking the first
11636 parameter for non-static member functions (which is the this
11637 pointer) as artificial. We obtain this information from
11638 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11639 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11640 fnp->voffset = VOFFSET_STATIC;
11641 }
11642 else
11643 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11644 dwarf2_full_name (fieldname, die, cu));
11645
11646 /* Get fcontext from DW_AT_containing_type if present. */
11647 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11648 fnp->fcontext = die_containing_type (die, cu);
11649
11650 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11651 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11652
11653 /* Get accessibility. */
11654 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11655 if (attr)
11656 accessibility = DW_UNSND (attr);
11657 else
11658 accessibility = dwarf2_default_access_attribute (die, cu);
11659 switch (accessibility)
11660 {
11661 case DW_ACCESS_private:
11662 fnp->is_private = 1;
11663 break;
11664 case DW_ACCESS_protected:
11665 fnp->is_protected = 1;
11666 break;
11667 }
11668
11669 /* Check for artificial methods. */
11670 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11671 if (attr && DW_UNSND (attr) != 0)
11672 fnp->is_artificial = 1;
11673
11674 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11675
11676 /* Get index in virtual function table if it is a virtual member
11677 function. For older versions of GCC, this is an offset in the
11678 appropriate virtual table, as specified by DW_AT_containing_type.
11679 For everyone else, it is an expression to be evaluated relative
11680 to the object address. */
11681
11682 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11683 if (attr)
11684 {
11685 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11686 {
11687 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11688 {
11689 /* Old-style GCC. */
11690 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11691 }
11692 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11693 || (DW_BLOCK (attr)->size > 1
11694 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11695 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11696 {
11697 struct dwarf_block blk;
11698 int offset;
11699
11700 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11701 ? 1 : 2);
11702 blk.size = DW_BLOCK (attr)->size - offset;
11703 blk.data = DW_BLOCK (attr)->data + offset;
11704 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11705 if ((fnp->voffset % cu->header.addr_size) != 0)
11706 dwarf2_complex_location_expr_complaint ();
11707 else
11708 fnp->voffset /= cu->header.addr_size;
11709 fnp->voffset += 2;
11710 }
11711 else
11712 dwarf2_complex_location_expr_complaint ();
11713
11714 if (!fnp->fcontext)
11715 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11716 }
11717 else if (attr_form_is_section_offset (attr))
11718 {
11719 dwarf2_complex_location_expr_complaint ();
11720 }
11721 else
11722 {
11723 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11724 fieldname);
11725 }
11726 }
11727 else
11728 {
11729 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11730 if (attr && DW_UNSND (attr))
11731 {
11732 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11733 complaint (&symfile_complaints,
11734 _("Member function \"%s\" (offset %d) is virtual "
11735 "but the vtable offset is not specified"),
11736 fieldname, die->offset.sect_off);
11737 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11738 TYPE_CPLUS_DYNAMIC (type) = 1;
11739 }
11740 }
11741 }
11742
11743 /* Create the vector of member function fields, and attach it to the type. */
11744
11745 static void
11746 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11747 struct dwarf2_cu *cu)
11748 {
11749 struct fnfieldlist *flp;
11750 int i;
11751
11752 if (cu->language == language_ada)
11753 error (_("unexpected member functions in Ada type"));
11754
11755 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11756 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11757 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11758
11759 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11760 {
11761 struct nextfnfield *nfp = flp->head;
11762 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11763 int k;
11764
11765 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11766 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11767 fn_flp->fn_fields = (struct fn_field *)
11768 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11769 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11770 fn_flp->fn_fields[k] = nfp->fnfield;
11771 }
11772
11773 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11774 }
11775
11776 /* Returns non-zero if NAME is the name of a vtable member in CU's
11777 language, zero otherwise. */
11778 static int
11779 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11780 {
11781 static const char vptr[] = "_vptr";
11782 static const char vtable[] = "vtable";
11783
11784 /* Look for the C++ and Java forms of the vtable. */
11785 if ((cu->language == language_java
11786 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11787 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11788 && is_cplus_marker (name[sizeof (vptr) - 1])))
11789 return 1;
11790
11791 return 0;
11792 }
11793
11794 /* GCC outputs unnamed structures that are really pointers to member
11795 functions, with the ABI-specified layout. If TYPE describes
11796 such a structure, smash it into a member function type.
11797
11798 GCC shouldn't do this; it should just output pointer to member DIEs.
11799 This is GCC PR debug/28767. */
11800
11801 static void
11802 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11803 {
11804 struct type *pfn_type, *domain_type, *new_type;
11805
11806 /* Check for a structure with no name and two children. */
11807 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11808 return;
11809
11810 /* Check for __pfn and __delta members. */
11811 if (TYPE_FIELD_NAME (type, 0) == NULL
11812 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11813 || TYPE_FIELD_NAME (type, 1) == NULL
11814 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11815 return;
11816
11817 /* Find the type of the method. */
11818 pfn_type = TYPE_FIELD_TYPE (type, 0);
11819 if (pfn_type == NULL
11820 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11821 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11822 return;
11823
11824 /* Look for the "this" argument. */
11825 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11826 if (TYPE_NFIELDS (pfn_type) == 0
11827 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11828 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11829 return;
11830
11831 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11832 new_type = alloc_type (objfile);
11833 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11834 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11835 TYPE_VARARGS (pfn_type));
11836 smash_to_methodptr_type (type, new_type);
11837 }
11838
11839 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11840 (icc). */
11841
11842 static int
11843 producer_is_icc (struct dwarf2_cu *cu)
11844 {
11845 if (!cu->checked_producer)
11846 check_producer (cu);
11847
11848 return cu->producer_is_icc;
11849 }
11850
11851 /* Called when we find the DIE that starts a structure or union scope
11852 (definition) to create a type for the structure or union. Fill in
11853 the type's name and general properties; the members will not be
11854 processed until process_structure_scope.
11855
11856 NOTE: we need to call these functions regardless of whether or not the
11857 DIE has a DW_AT_name attribute, since it might be an anonymous
11858 structure or union. This gets the type entered into our set of
11859 user defined types.
11860
11861 However, if the structure is incomplete (an opaque struct/union)
11862 then suppress creating a symbol table entry for it since gdb only
11863 wants to find the one with the complete definition. Note that if
11864 it is complete, we just call new_symbol, which does it's own
11865 checking about whether the struct/union is anonymous or not (and
11866 suppresses creating a symbol table entry itself). */
11867
11868 static struct type *
11869 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11870 {
11871 struct objfile *objfile = cu->objfile;
11872 struct type *type;
11873 struct attribute *attr;
11874 const char *name;
11875
11876 /* If the definition of this type lives in .debug_types, read that type.
11877 Don't follow DW_AT_specification though, that will take us back up
11878 the chain and we want to go down. */
11879 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11880 if (attr)
11881 {
11882 type = get_DW_AT_signature_type (die, attr, cu);
11883
11884 /* The type's CU may not be the same as CU.
11885 Ensure TYPE is recorded with CU in die_type_hash. */
11886 return set_die_type (die, type, cu);
11887 }
11888
11889 type = alloc_type (objfile);
11890 INIT_CPLUS_SPECIFIC (type);
11891
11892 name = dwarf2_name (die, cu);
11893 if (name != NULL)
11894 {
11895 if (cu->language == language_cplus
11896 || cu->language == language_java)
11897 {
11898 const char *full_name = dwarf2_full_name (name, die, cu);
11899
11900 /* dwarf2_full_name might have already finished building the DIE's
11901 type. If so, there is no need to continue. */
11902 if (get_die_type (die, cu) != NULL)
11903 return get_die_type (die, cu);
11904
11905 TYPE_TAG_NAME (type) = full_name;
11906 if (die->tag == DW_TAG_structure_type
11907 || die->tag == DW_TAG_class_type)
11908 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11909 }
11910 else
11911 {
11912 /* The name is already allocated along with this objfile, so
11913 we don't need to duplicate it for the type. */
11914 TYPE_TAG_NAME (type) = name;
11915 if (die->tag == DW_TAG_class_type)
11916 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11917 }
11918 }
11919
11920 if (die->tag == DW_TAG_structure_type)
11921 {
11922 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11923 }
11924 else if (die->tag == DW_TAG_union_type)
11925 {
11926 TYPE_CODE (type) = TYPE_CODE_UNION;
11927 }
11928 else
11929 {
11930 TYPE_CODE (type) = TYPE_CODE_CLASS;
11931 }
11932
11933 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11934 TYPE_DECLARED_CLASS (type) = 1;
11935
11936 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11937 if (attr)
11938 {
11939 TYPE_LENGTH (type) = DW_UNSND (attr);
11940 }
11941 else
11942 {
11943 TYPE_LENGTH (type) = 0;
11944 }
11945
11946 if (producer_is_icc (cu))
11947 {
11948 /* ICC does not output the required DW_AT_declaration
11949 on incomplete types, but gives them a size of zero. */
11950 }
11951 else
11952 TYPE_STUB_SUPPORTED (type) = 1;
11953
11954 if (die_is_declaration (die, cu))
11955 TYPE_STUB (type) = 1;
11956 else if (attr == NULL && die->child == NULL
11957 && producer_is_realview (cu->producer))
11958 /* RealView does not output the required DW_AT_declaration
11959 on incomplete types. */
11960 TYPE_STUB (type) = 1;
11961
11962 /* We need to add the type field to the die immediately so we don't
11963 infinitely recurse when dealing with pointers to the structure
11964 type within the structure itself. */
11965 set_die_type (die, type, cu);
11966
11967 /* set_die_type should be already done. */
11968 set_descriptive_type (type, die, cu);
11969
11970 return type;
11971 }
11972
11973 /* Finish creating a structure or union type, including filling in
11974 its members and creating a symbol for it. */
11975
11976 static void
11977 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11978 {
11979 struct objfile *objfile = cu->objfile;
11980 struct die_info *child_die = die->child;
11981 struct type *type;
11982
11983 type = get_die_type (die, cu);
11984 if (type == NULL)
11985 type = read_structure_type (die, cu);
11986
11987 if (die->child != NULL && ! die_is_declaration (die, cu))
11988 {
11989 struct field_info fi;
11990 struct die_info *child_die;
11991 VEC (symbolp) *template_args = NULL;
11992 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11993
11994 memset (&fi, 0, sizeof (struct field_info));
11995
11996 child_die = die->child;
11997
11998 while (child_die && child_die->tag)
11999 {
12000 if (child_die->tag == DW_TAG_member
12001 || child_die->tag == DW_TAG_variable)
12002 {
12003 /* NOTE: carlton/2002-11-05: A C++ static data member
12004 should be a DW_TAG_member that is a declaration, but
12005 all versions of G++ as of this writing (so through at
12006 least 3.2.1) incorrectly generate DW_TAG_variable
12007 tags for them instead. */
12008 dwarf2_add_field (&fi, child_die, cu);
12009 }
12010 else if (child_die->tag == DW_TAG_subprogram)
12011 {
12012 /* C++ member function. */
12013 dwarf2_add_member_fn (&fi, child_die, type, cu);
12014 }
12015 else if (child_die->tag == DW_TAG_inheritance)
12016 {
12017 /* C++ base class field. */
12018 dwarf2_add_field (&fi, child_die, cu);
12019 }
12020 else if (child_die->tag == DW_TAG_typedef)
12021 dwarf2_add_typedef (&fi, child_die, cu);
12022 else if (child_die->tag == DW_TAG_template_type_param
12023 || child_die->tag == DW_TAG_template_value_param)
12024 {
12025 struct symbol *arg = new_symbol (child_die, NULL, cu);
12026
12027 if (arg != NULL)
12028 VEC_safe_push (symbolp, template_args, arg);
12029 }
12030
12031 child_die = sibling_die (child_die);
12032 }
12033
12034 /* Attach template arguments to type. */
12035 if (! VEC_empty (symbolp, template_args))
12036 {
12037 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12038 TYPE_N_TEMPLATE_ARGUMENTS (type)
12039 = VEC_length (symbolp, template_args);
12040 TYPE_TEMPLATE_ARGUMENTS (type)
12041 = obstack_alloc (&objfile->objfile_obstack,
12042 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12043 * sizeof (struct symbol *)));
12044 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12045 VEC_address (symbolp, template_args),
12046 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12047 * sizeof (struct symbol *)));
12048 VEC_free (symbolp, template_args);
12049 }
12050
12051 /* Attach fields and member functions to the type. */
12052 if (fi.nfields)
12053 dwarf2_attach_fields_to_type (&fi, type, cu);
12054 if (fi.nfnfields)
12055 {
12056 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12057
12058 /* Get the type which refers to the base class (possibly this
12059 class itself) which contains the vtable pointer for the current
12060 class from the DW_AT_containing_type attribute. This use of
12061 DW_AT_containing_type is a GNU extension. */
12062
12063 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12064 {
12065 struct type *t = die_containing_type (die, cu);
12066
12067 TYPE_VPTR_BASETYPE (type) = t;
12068 if (type == t)
12069 {
12070 int i;
12071
12072 /* Our own class provides vtbl ptr. */
12073 for (i = TYPE_NFIELDS (t) - 1;
12074 i >= TYPE_N_BASECLASSES (t);
12075 --i)
12076 {
12077 const char *fieldname = TYPE_FIELD_NAME (t, i);
12078
12079 if (is_vtable_name (fieldname, cu))
12080 {
12081 TYPE_VPTR_FIELDNO (type) = i;
12082 break;
12083 }
12084 }
12085
12086 /* Complain if virtual function table field not found. */
12087 if (i < TYPE_N_BASECLASSES (t))
12088 complaint (&symfile_complaints,
12089 _("virtual function table pointer "
12090 "not found when defining class '%s'"),
12091 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12092 "");
12093 }
12094 else
12095 {
12096 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12097 }
12098 }
12099 else if (cu->producer
12100 && strncmp (cu->producer,
12101 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12102 {
12103 /* The IBM XLC compiler does not provide direct indication
12104 of the containing type, but the vtable pointer is
12105 always named __vfp. */
12106
12107 int i;
12108
12109 for (i = TYPE_NFIELDS (type) - 1;
12110 i >= TYPE_N_BASECLASSES (type);
12111 --i)
12112 {
12113 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12114 {
12115 TYPE_VPTR_FIELDNO (type) = i;
12116 TYPE_VPTR_BASETYPE (type) = type;
12117 break;
12118 }
12119 }
12120 }
12121 }
12122
12123 /* Copy fi.typedef_field_list linked list elements content into the
12124 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12125 if (fi.typedef_field_list)
12126 {
12127 int i = fi.typedef_field_list_count;
12128
12129 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12130 TYPE_TYPEDEF_FIELD_ARRAY (type)
12131 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12132 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12133
12134 /* Reverse the list order to keep the debug info elements order. */
12135 while (--i >= 0)
12136 {
12137 struct typedef_field *dest, *src;
12138
12139 dest = &TYPE_TYPEDEF_FIELD (type, i);
12140 src = &fi.typedef_field_list->field;
12141 fi.typedef_field_list = fi.typedef_field_list->next;
12142 *dest = *src;
12143 }
12144 }
12145
12146 do_cleanups (back_to);
12147
12148 if (HAVE_CPLUS_STRUCT (type))
12149 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12150 }
12151
12152 quirk_gcc_member_function_pointer (type, objfile);
12153
12154 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12155 snapshots) has been known to create a die giving a declaration
12156 for a class that has, as a child, a die giving a definition for a
12157 nested class. So we have to process our children even if the
12158 current die is a declaration. Normally, of course, a declaration
12159 won't have any children at all. */
12160
12161 while (child_die != NULL && child_die->tag)
12162 {
12163 if (child_die->tag == DW_TAG_member
12164 || child_die->tag == DW_TAG_variable
12165 || child_die->tag == DW_TAG_inheritance
12166 || child_die->tag == DW_TAG_template_value_param
12167 || child_die->tag == DW_TAG_template_type_param)
12168 {
12169 /* Do nothing. */
12170 }
12171 else
12172 process_die (child_die, cu);
12173
12174 child_die = sibling_die (child_die);
12175 }
12176
12177 /* Do not consider external references. According to the DWARF standard,
12178 these DIEs are identified by the fact that they have no byte_size
12179 attribute, and a declaration attribute. */
12180 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12181 || !die_is_declaration (die, cu))
12182 new_symbol (die, type, cu);
12183 }
12184
12185 /* Given a DW_AT_enumeration_type die, set its type. We do not
12186 complete the type's fields yet, or create any symbols. */
12187
12188 static struct type *
12189 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12190 {
12191 struct objfile *objfile = cu->objfile;
12192 struct type *type;
12193 struct attribute *attr;
12194 const char *name;
12195
12196 /* If the definition of this type lives in .debug_types, read that type.
12197 Don't follow DW_AT_specification though, that will take us back up
12198 the chain and we want to go down. */
12199 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12200 if (attr)
12201 {
12202 type = get_DW_AT_signature_type (die, attr, cu);
12203
12204 /* The type's CU may not be the same as CU.
12205 Ensure TYPE is recorded with CU in die_type_hash. */
12206 return set_die_type (die, type, cu);
12207 }
12208
12209 type = alloc_type (objfile);
12210
12211 TYPE_CODE (type) = TYPE_CODE_ENUM;
12212 name = dwarf2_full_name (NULL, die, cu);
12213 if (name != NULL)
12214 TYPE_TAG_NAME (type) = name;
12215
12216 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12217 if (attr)
12218 {
12219 TYPE_LENGTH (type) = DW_UNSND (attr);
12220 }
12221 else
12222 {
12223 TYPE_LENGTH (type) = 0;
12224 }
12225
12226 /* The enumeration DIE can be incomplete. In Ada, any type can be
12227 declared as private in the package spec, and then defined only
12228 inside the package body. Such types are known as Taft Amendment
12229 Types. When another package uses such a type, an incomplete DIE
12230 may be generated by the compiler. */
12231 if (die_is_declaration (die, cu))
12232 TYPE_STUB (type) = 1;
12233
12234 return set_die_type (die, type, cu);
12235 }
12236
12237 /* Given a pointer to a die which begins an enumeration, process all
12238 the dies that define the members of the enumeration, and create the
12239 symbol for the enumeration type.
12240
12241 NOTE: We reverse the order of the element list. */
12242
12243 static void
12244 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12245 {
12246 struct type *this_type;
12247
12248 this_type = get_die_type (die, cu);
12249 if (this_type == NULL)
12250 this_type = read_enumeration_type (die, cu);
12251
12252 if (die->child != NULL)
12253 {
12254 struct die_info *child_die;
12255 struct symbol *sym;
12256 struct field *fields = NULL;
12257 int num_fields = 0;
12258 int unsigned_enum = 1;
12259 const char *name;
12260 int flag_enum = 1;
12261 ULONGEST mask = 0;
12262
12263 child_die = die->child;
12264 while (child_die && child_die->tag)
12265 {
12266 if (child_die->tag != DW_TAG_enumerator)
12267 {
12268 process_die (child_die, cu);
12269 }
12270 else
12271 {
12272 name = dwarf2_name (child_die, cu);
12273 if (name)
12274 {
12275 sym = new_symbol (child_die, this_type, cu);
12276 if (SYMBOL_VALUE (sym) < 0)
12277 {
12278 unsigned_enum = 0;
12279 flag_enum = 0;
12280 }
12281 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12282 flag_enum = 0;
12283 else
12284 mask |= SYMBOL_VALUE (sym);
12285
12286 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12287 {
12288 fields = (struct field *)
12289 xrealloc (fields,
12290 (num_fields + DW_FIELD_ALLOC_CHUNK)
12291 * sizeof (struct field));
12292 }
12293
12294 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12295 FIELD_TYPE (fields[num_fields]) = NULL;
12296 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12297 FIELD_BITSIZE (fields[num_fields]) = 0;
12298
12299 num_fields++;
12300 }
12301 }
12302
12303 child_die = sibling_die (child_die);
12304 }
12305
12306 if (num_fields)
12307 {
12308 TYPE_NFIELDS (this_type) = num_fields;
12309 TYPE_FIELDS (this_type) = (struct field *)
12310 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12311 memcpy (TYPE_FIELDS (this_type), fields,
12312 sizeof (struct field) * num_fields);
12313 xfree (fields);
12314 }
12315 if (unsigned_enum)
12316 TYPE_UNSIGNED (this_type) = 1;
12317 if (flag_enum)
12318 TYPE_FLAG_ENUM (this_type) = 1;
12319 }
12320
12321 /* If we are reading an enum from a .debug_types unit, and the enum
12322 is a declaration, and the enum is not the signatured type in the
12323 unit, then we do not want to add a symbol for it. Adding a
12324 symbol would in some cases obscure the true definition of the
12325 enum, giving users an incomplete type when the definition is
12326 actually available. Note that we do not want to do this for all
12327 enums which are just declarations, because C++0x allows forward
12328 enum declarations. */
12329 if (cu->per_cu->is_debug_types
12330 && die_is_declaration (die, cu))
12331 {
12332 struct signatured_type *sig_type;
12333
12334 sig_type = (struct signatured_type *) cu->per_cu;
12335 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12336 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12337 return;
12338 }
12339
12340 new_symbol (die, this_type, cu);
12341 }
12342
12343 /* Extract all information from a DW_TAG_array_type DIE and put it in
12344 the DIE's type field. For now, this only handles one dimensional
12345 arrays. */
12346
12347 static struct type *
12348 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12349 {
12350 struct objfile *objfile = cu->objfile;
12351 struct die_info *child_die;
12352 struct type *type;
12353 struct type *element_type, *range_type, *index_type;
12354 struct type **range_types = NULL;
12355 struct attribute *attr;
12356 int ndim = 0;
12357 struct cleanup *back_to;
12358 const char *name;
12359
12360 element_type = die_type (die, cu);
12361
12362 /* The die_type call above may have already set the type for this DIE. */
12363 type = get_die_type (die, cu);
12364 if (type)
12365 return type;
12366
12367 /* Irix 6.2 native cc creates array types without children for
12368 arrays with unspecified length. */
12369 if (die->child == NULL)
12370 {
12371 index_type = objfile_type (objfile)->builtin_int;
12372 range_type = create_range_type (NULL, index_type, 0, -1);
12373 type = create_array_type (NULL, element_type, range_type);
12374 return set_die_type (die, type, cu);
12375 }
12376
12377 back_to = make_cleanup (null_cleanup, NULL);
12378 child_die = die->child;
12379 while (child_die && child_die->tag)
12380 {
12381 if (child_die->tag == DW_TAG_subrange_type)
12382 {
12383 struct type *child_type = read_type_die (child_die, cu);
12384
12385 if (child_type != NULL)
12386 {
12387 /* The range type was succesfully read. Save it for the
12388 array type creation. */
12389 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12390 {
12391 range_types = (struct type **)
12392 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12393 * sizeof (struct type *));
12394 if (ndim == 0)
12395 make_cleanup (free_current_contents, &range_types);
12396 }
12397 range_types[ndim++] = child_type;
12398 }
12399 }
12400 child_die = sibling_die (child_die);
12401 }
12402
12403 /* Dwarf2 dimensions are output from left to right, create the
12404 necessary array types in backwards order. */
12405
12406 type = element_type;
12407
12408 if (read_array_order (die, cu) == DW_ORD_col_major)
12409 {
12410 int i = 0;
12411
12412 while (i < ndim)
12413 type = create_array_type (NULL, type, range_types[i++]);
12414 }
12415 else
12416 {
12417 while (ndim-- > 0)
12418 type = create_array_type (NULL, type, range_types[ndim]);
12419 }
12420
12421 /* Understand Dwarf2 support for vector types (like they occur on
12422 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12423 array type. This is not part of the Dwarf2/3 standard yet, but a
12424 custom vendor extension. The main difference between a regular
12425 array and the vector variant is that vectors are passed by value
12426 to functions. */
12427 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12428 if (attr)
12429 make_vector_type (type);
12430
12431 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12432 implementation may choose to implement triple vectors using this
12433 attribute. */
12434 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12435 if (attr)
12436 {
12437 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12438 TYPE_LENGTH (type) = DW_UNSND (attr);
12439 else
12440 complaint (&symfile_complaints,
12441 _("DW_AT_byte_size for array type smaller "
12442 "than the total size of elements"));
12443 }
12444
12445 name = dwarf2_name (die, cu);
12446 if (name)
12447 TYPE_NAME (type) = name;
12448
12449 /* Install the type in the die. */
12450 set_die_type (die, type, cu);
12451
12452 /* set_die_type should be already done. */
12453 set_descriptive_type (type, die, cu);
12454
12455 do_cleanups (back_to);
12456
12457 return type;
12458 }
12459
12460 static enum dwarf_array_dim_ordering
12461 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12462 {
12463 struct attribute *attr;
12464
12465 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12466
12467 if (attr) return DW_SND (attr);
12468
12469 /* GNU F77 is a special case, as at 08/2004 array type info is the
12470 opposite order to the dwarf2 specification, but data is still
12471 laid out as per normal fortran.
12472
12473 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12474 version checking. */
12475
12476 if (cu->language == language_fortran
12477 && cu->producer && strstr (cu->producer, "GNU F77"))
12478 {
12479 return DW_ORD_row_major;
12480 }
12481
12482 switch (cu->language_defn->la_array_ordering)
12483 {
12484 case array_column_major:
12485 return DW_ORD_col_major;
12486 case array_row_major:
12487 default:
12488 return DW_ORD_row_major;
12489 };
12490 }
12491
12492 /* Extract all information from a DW_TAG_set_type DIE and put it in
12493 the DIE's type field. */
12494
12495 static struct type *
12496 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12497 {
12498 struct type *domain_type, *set_type;
12499 struct attribute *attr;
12500
12501 domain_type = die_type (die, cu);
12502
12503 /* The die_type call above may have already set the type for this DIE. */
12504 set_type = get_die_type (die, cu);
12505 if (set_type)
12506 return set_type;
12507
12508 set_type = create_set_type (NULL, domain_type);
12509
12510 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12511 if (attr)
12512 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12513
12514 return set_die_type (die, set_type, cu);
12515 }
12516
12517 /* A helper for read_common_block that creates a locexpr baton.
12518 SYM is the symbol which we are marking as computed.
12519 COMMON_DIE is the DIE for the common block.
12520 COMMON_LOC is the location expression attribute for the common
12521 block itself.
12522 MEMBER_LOC is the location expression attribute for the particular
12523 member of the common block that we are processing.
12524 CU is the CU from which the above come. */
12525
12526 static void
12527 mark_common_block_symbol_computed (struct symbol *sym,
12528 struct die_info *common_die,
12529 struct attribute *common_loc,
12530 struct attribute *member_loc,
12531 struct dwarf2_cu *cu)
12532 {
12533 struct objfile *objfile = dwarf2_per_objfile->objfile;
12534 struct dwarf2_locexpr_baton *baton;
12535 gdb_byte *ptr;
12536 unsigned int cu_off;
12537 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12538 LONGEST offset = 0;
12539
12540 gdb_assert (common_loc && member_loc);
12541 gdb_assert (attr_form_is_block (common_loc));
12542 gdb_assert (attr_form_is_block (member_loc)
12543 || attr_form_is_constant (member_loc));
12544
12545 baton = obstack_alloc (&objfile->objfile_obstack,
12546 sizeof (struct dwarf2_locexpr_baton));
12547 baton->per_cu = cu->per_cu;
12548 gdb_assert (baton->per_cu);
12549
12550 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12551
12552 if (attr_form_is_constant (member_loc))
12553 {
12554 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12555 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12556 }
12557 else
12558 baton->size += DW_BLOCK (member_loc)->size;
12559
12560 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12561 baton->data = ptr;
12562
12563 *ptr++ = DW_OP_call4;
12564 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12565 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12566 ptr += 4;
12567
12568 if (attr_form_is_constant (member_loc))
12569 {
12570 *ptr++ = DW_OP_addr;
12571 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12572 ptr += cu->header.addr_size;
12573 }
12574 else
12575 {
12576 /* We have to copy the data here, because DW_OP_call4 will only
12577 use a DW_AT_location attribute. */
12578 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12579 ptr += DW_BLOCK (member_loc)->size;
12580 }
12581
12582 *ptr++ = DW_OP_plus;
12583 gdb_assert (ptr - baton->data == baton->size);
12584
12585 SYMBOL_LOCATION_BATON (sym) = baton;
12586 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12587 }
12588
12589 /* Create appropriate locally-scoped variables for all the
12590 DW_TAG_common_block entries. Also create a struct common_block
12591 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12592 is used to sepate the common blocks name namespace from regular
12593 variable names. */
12594
12595 static void
12596 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12597 {
12598 struct attribute *attr;
12599
12600 attr = dwarf2_attr (die, DW_AT_location, cu);
12601 if (attr)
12602 {
12603 /* Support the .debug_loc offsets. */
12604 if (attr_form_is_block (attr))
12605 {
12606 /* Ok. */
12607 }
12608 else if (attr_form_is_section_offset (attr))
12609 {
12610 dwarf2_complex_location_expr_complaint ();
12611 attr = NULL;
12612 }
12613 else
12614 {
12615 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12616 "common block member");
12617 attr = NULL;
12618 }
12619 }
12620
12621 if (die->child != NULL)
12622 {
12623 struct objfile *objfile = cu->objfile;
12624 struct die_info *child_die;
12625 size_t n_entries = 0, size;
12626 struct common_block *common_block;
12627 struct symbol *sym;
12628
12629 for (child_die = die->child;
12630 child_die && child_die->tag;
12631 child_die = sibling_die (child_die))
12632 ++n_entries;
12633
12634 size = (sizeof (struct common_block)
12635 + (n_entries - 1) * sizeof (struct symbol *));
12636 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12637 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12638 common_block->n_entries = 0;
12639
12640 for (child_die = die->child;
12641 child_die && child_die->tag;
12642 child_die = sibling_die (child_die))
12643 {
12644 /* Create the symbol in the DW_TAG_common_block block in the current
12645 symbol scope. */
12646 sym = new_symbol (child_die, NULL, cu);
12647 if (sym != NULL)
12648 {
12649 struct attribute *member_loc;
12650
12651 common_block->contents[common_block->n_entries++] = sym;
12652
12653 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12654 cu);
12655 if (member_loc)
12656 {
12657 /* GDB has handled this for a long time, but it is
12658 not specified by DWARF. It seems to have been
12659 emitted by gfortran at least as recently as:
12660 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12661 complaint (&symfile_complaints,
12662 _("Variable in common block has "
12663 "DW_AT_data_member_location "
12664 "- DIE at 0x%x [in module %s]"),
12665 child_die->offset.sect_off, cu->objfile->name);
12666
12667 if (attr_form_is_section_offset (member_loc))
12668 dwarf2_complex_location_expr_complaint ();
12669 else if (attr_form_is_constant (member_loc)
12670 || attr_form_is_block (member_loc))
12671 {
12672 if (attr)
12673 mark_common_block_symbol_computed (sym, die, attr,
12674 member_loc, cu);
12675 }
12676 else
12677 dwarf2_complex_location_expr_complaint ();
12678 }
12679 }
12680 }
12681
12682 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12683 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12684 }
12685 }
12686
12687 /* Create a type for a C++ namespace. */
12688
12689 static struct type *
12690 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12691 {
12692 struct objfile *objfile = cu->objfile;
12693 const char *previous_prefix, *name;
12694 int is_anonymous;
12695 struct type *type;
12696
12697 /* For extensions, reuse the type of the original namespace. */
12698 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12699 {
12700 struct die_info *ext_die;
12701 struct dwarf2_cu *ext_cu = cu;
12702
12703 ext_die = dwarf2_extension (die, &ext_cu);
12704 type = read_type_die (ext_die, ext_cu);
12705
12706 /* EXT_CU may not be the same as CU.
12707 Ensure TYPE is recorded with CU in die_type_hash. */
12708 return set_die_type (die, type, cu);
12709 }
12710
12711 name = namespace_name (die, &is_anonymous, cu);
12712
12713 /* Now build the name of the current namespace. */
12714
12715 previous_prefix = determine_prefix (die, cu);
12716 if (previous_prefix[0] != '\0')
12717 name = typename_concat (&objfile->objfile_obstack,
12718 previous_prefix, name, 0, cu);
12719
12720 /* Create the type. */
12721 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12722 objfile);
12723 TYPE_NAME (type) = name;
12724 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12725
12726 return set_die_type (die, type, cu);
12727 }
12728
12729 /* Read a C++ namespace. */
12730
12731 static void
12732 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12733 {
12734 struct objfile *objfile = cu->objfile;
12735 int is_anonymous;
12736
12737 /* Add a symbol associated to this if we haven't seen the namespace
12738 before. Also, add a using directive if it's an anonymous
12739 namespace. */
12740
12741 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12742 {
12743 struct type *type;
12744
12745 type = read_type_die (die, cu);
12746 new_symbol (die, type, cu);
12747
12748 namespace_name (die, &is_anonymous, cu);
12749 if (is_anonymous)
12750 {
12751 const char *previous_prefix = determine_prefix (die, cu);
12752
12753 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12754 NULL, NULL, 0, &objfile->objfile_obstack);
12755 }
12756 }
12757
12758 if (die->child != NULL)
12759 {
12760 struct die_info *child_die = die->child;
12761
12762 while (child_die && child_die->tag)
12763 {
12764 process_die (child_die, cu);
12765 child_die = sibling_die (child_die);
12766 }
12767 }
12768 }
12769
12770 /* Read a Fortran module as type. This DIE can be only a declaration used for
12771 imported module. Still we need that type as local Fortran "use ... only"
12772 declaration imports depend on the created type in determine_prefix. */
12773
12774 static struct type *
12775 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12776 {
12777 struct objfile *objfile = cu->objfile;
12778 const char *module_name;
12779 struct type *type;
12780
12781 module_name = dwarf2_name (die, cu);
12782 if (!module_name)
12783 complaint (&symfile_complaints,
12784 _("DW_TAG_module has no name, offset 0x%x"),
12785 die->offset.sect_off);
12786 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12787
12788 /* determine_prefix uses TYPE_TAG_NAME. */
12789 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12790
12791 return set_die_type (die, type, cu);
12792 }
12793
12794 /* Read a Fortran module. */
12795
12796 static void
12797 read_module (struct die_info *die, struct dwarf2_cu *cu)
12798 {
12799 struct die_info *child_die = die->child;
12800
12801 while (child_die && child_die->tag)
12802 {
12803 process_die (child_die, cu);
12804 child_die = sibling_die (child_die);
12805 }
12806 }
12807
12808 /* Return the name of the namespace represented by DIE. Set
12809 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12810 namespace. */
12811
12812 static const char *
12813 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12814 {
12815 struct die_info *current_die;
12816 const char *name = NULL;
12817
12818 /* Loop through the extensions until we find a name. */
12819
12820 for (current_die = die;
12821 current_die != NULL;
12822 current_die = dwarf2_extension (die, &cu))
12823 {
12824 name = dwarf2_name (current_die, cu);
12825 if (name != NULL)
12826 break;
12827 }
12828
12829 /* Is it an anonymous namespace? */
12830
12831 *is_anonymous = (name == NULL);
12832 if (*is_anonymous)
12833 name = CP_ANONYMOUS_NAMESPACE_STR;
12834
12835 return name;
12836 }
12837
12838 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12839 the user defined type vector. */
12840
12841 static struct type *
12842 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12843 {
12844 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12845 struct comp_unit_head *cu_header = &cu->header;
12846 struct type *type;
12847 struct attribute *attr_byte_size;
12848 struct attribute *attr_address_class;
12849 int byte_size, addr_class;
12850 struct type *target_type;
12851
12852 target_type = die_type (die, cu);
12853
12854 /* The die_type call above may have already set the type for this DIE. */
12855 type = get_die_type (die, cu);
12856 if (type)
12857 return type;
12858
12859 type = lookup_pointer_type (target_type);
12860
12861 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12862 if (attr_byte_size)
12863 byte_size = DW_UNSND (attr_byte_size);
12864 else
12865 byte_size = cu_header->addr_size;
12866
12867 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12868 if (attr_address_class)
12869 addr_class = DW_UNSND (attr_address_class);
12870 else
12871 addr_class = DW_ADDR_none;
12872
12873 /* If the pointer size or address class is different than the
12874 default, create a type variant marked as such and set the
12875 length accordingly. */
12876 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12877 {
12878 if (gdbarch_address_class_type_flags_p (gdbarch))
12879 {
12880 int type_flags;
12881
12882 type_flags = gdbarch_address_class_type_flags
12883 (gdbarch, byte_size, addr_class);
12884 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12885 == 0);
12886 type = make_type_with_address_space (type, type_flags);
12887 }
12888 else if (TYPE_LENGTH (type) != byte_size)
12889 {
12890 complaint (&symfile_complaints,
12891 _("invalid pointer size %d"), byte_size);
12892 }
12893 else
12894 {
12895 /* Should we also complain about unhandled address classes? */
12896 }
12897 }
12898
12899 TYPE_LENGTH (type) = byte_size;
12900 return set_die_type (die, type, cu);
12901 }
12902
12903 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12904 the user defined type vector. */
12905
12906 static struct type *
12907 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12908 {
12909 struct type *type;
12910 struct type *to_type;
12911 struct type *domain;
12912
12913 to_type = die_type (die, cu);
12914 domain = die_containing_type (die, cu);
12915
12916 /* The calls above may have already set the type for this DIE. */
12917 type = get_die_type (die, cu);
12918 if (type)
12919 return type;
12920
12921 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12922 type = lookup_methodptr_type (to_type);
12923 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12924 {
12925 struct type *new_type = alloc_type (cu->objfile);
12926
12927 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12928 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12929 TYPE_VARARGS (to_type));
12930 type = lookup_methodptr_type (new_type);
12931 }
12932 else
12933 type = lookup_memberptr_type (to_type, domain);
12934
12935 return set_die_type (die, type, cu);
12936 }
12937
12938 /* Extract all information from a DW_TAG_reference_type DIE and add to
12939 the user defined type vector. */
12940
12941 static struct type *
12942 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12943 {
12944 struct comp_unit_head *cu_header = &cu->header;
12945 struct type *type, *target_type;
12946 struct attribute *attr;
12947
12948 target_type = die_type (die, cu);
12949
12950 /* The die_type call above may have already set the type for this DIE. */
12951 type = get_die_type (die, cu);
12952 if (type)
12953 return type;
12954
12955 type = lookup_reference_type (target_type);
12956 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12957 if (attr)
12958 {
12959 TYPE_LENGTH (type) = DW_UNSND (attr);
12960 }
12961 else
12962 {
12963 TYPE_LENGTH (type) = cu_header->addr_size;
12964 }
12965 return set_die_type (die, type, cu);
12966 }
12967
12968 static struct type *
12969 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12970 {
12971 struct type *base_type, *cv_type;
12972
12973 base_type = die_type (die, cu);
12974
12975 /* The die_type call above may have already set the type for this DIE. */
12976 cv_type = get_die_type (die, cu);
12977 if (cv_type)
12978 return cv_type;
12979
12980 /* In case the const qualifier is applied to an array type, the element type
12981 is so qualified, not the array type (section 6.7.3 of C99). */
12982 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12983 {
12984 struct type *el_type, *inner_array;
12985
12986 base_type = copy_type (base_type);
12987 inner_array = base_type;
12988
12989 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12990 {
12991 TYPE_TARGET_TYPE (inner_array) =
12992 copy_type (TYPE_TARGET_TYPE (inner_array));
12993 inner_array = TYPE_TARGET_TYPE (inner_array);
12994 }
12995
12996 el_type = TYPE_TARGET_TYPE (inner_array);
12997 TYPE_TARGET_TYPE (inner_array) =
12998 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12999
13000 return set_die_type (die, base_type, cu);
13001 }
13002
13003 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13004 return set_die_type (die, cv_type, cu);
13005 }
13006
13007 static struct type *
13008 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13009 {
13010 struct type *base_type, *cv_type;
13011
13012 base_type = die_type (die, cu);
13013
13014 /* The die_type call above may have already set the type for this DIE. */
13015 cv_type = get_die_type (die, cu);
13016 if (cv_type)
13017 return cv_type;
13018
13019 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13020 return set_die_type (die, cv_type, cu);
13021 }
13022
13023 /* Handle DW_TAG_restrict_type. */
13024
13025 static struct type *
13026 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13027 {
13028 struct type *base_type, *cv_type;
13029
13030 base_type = die_type (die, cu);
13031
13032 /* The die_type call above may have already set the type for this DIE. */
13033 cv_type = get_die_type (die, cu);
13034 if (cv_type)
13035 return cv_type;
13036
13037 cv_type = make_restrict_type (base_type);
13038 return set_die_type (die, cv_type, cu);
13039 }
13040
13041 /* Extract all information from a DW_TAG_string_type DIE and add to
13042 the user defined type vector. It isn't really a user defined type,
13043 but it behaves like one, with other DIE's using an AT_user_def_type
13044 attribute to reference it. */
13045
13046 static struct type *
13047 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13048 {
13049 struct objfile *objfile = cu->objfile;
13050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13051 struct type *type, *range_type, *index_type, *char_type;
13052 struct attribute *attr;
13053 unsigned int length;
13054
13055 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13056 if (attr)
13057 {
13058 length = DW_UNSND (attr);
13059 }
13060 else
13061 {
13062 /* Check for the DW_AT_byte_size attribute. */
13063 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13064 if (attr)
13065 {
13066 length = DW_UNSND (attr);
13067 }
13068 else
13069 {
13070 length = 1;
13071 }
13072 }
13073
13074 index_type = objfile_type (objfile)->builtin_int;
13075 range_type = create_range_type (NULL, index_type, 1, length);
13076 char_type = language_string_char_type (cu->language_defn, gdbarch);
13077 type = create_string_type (NULL, char_type, range_type);
13078
13079 return set_die_type (die, type, cu);
13080 }
13081
13082 /* Assuming that DIE corresponds to a function, returns nonzero
13083 if the function is prototyped. */
13084
13085 static int
13086 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13087 {
13088 struct attribute *attr;
13089
13090 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13091 if (attr && (DW_UNSND (attr) != 0))
13092 return 1;
13093
13094 /* The DWARF standard implies that the DW_AT_prototyped attribute
13095 is only meaninful for C, but the concept also extends to other
13096 languages that allow unprototyped functions (Eg: Objective C).
13097 For all other languages, assume that functions are always
13098 prototyped. */
13099 if (cu->language != language_c
13100 && cu->language != language_objc
13101 && cu->language != language_opencl)
13102 return 1;
13103
13104 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13105 prototyped and unprototyped functions; default to prototyped,
13106 since that is more common in modern code (and RealView warns
13107 about unprototyped functions). */
13108 if (producer_is_realview (cu->producer))
13109 return 1;
13110
13111 return 0;
13112 }
13113
13114 /* Handle DIES due to C code like:
13115
13116 struct foo
13117 {
13118 int (*funcp)(int a, long l);
13119 int b;
13120 };
13121
13122 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13123
13124 static struct type *
13125 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13126 {
13127 struct objfile *objfile = cu->objfile;
13128 struct type *type; /* Type that this function returns. */
13129 struct type *ftype; /* Function that returns above type. */
13130 struct attribute *attr;
13131
13132 type = die_type (die, cu);
13133
13134 /* The die_type call above may have already set the type for this DIE. */
13135 ftype = get_die_type (die, cu);
13136 if (ftype)
13137 return ftype;
13138
13139 ftype = lookup_function_type (type);
13140
13141 if (prototyped_function_p (die, cu))
13142 TYPE_PROTOTYPED (ftype) = 1;
13143
13144 /* Store the calling convention in the type if it's available in
13145 the subroutine die. Otherwise set the calling convention to
13146 the default value DW_CC_normal. */
13147 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13148 if (attr)
13149 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13150 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13151 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13152 else
13153 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13154
13155 /* We need to add the subroutine type to the die immediately so
13156 we don't infinitely recurse when dealing with parameters
13157 declared as the same subroutine type. */
13158 set_die_type (die, ftype, cu);
13159
13160 if (die->child != NULL)
13161 {
13162 struct type *void_type = objfile_type (objfile)->builtin_void;
13163 struct die_info *child_die;
13164 int nparams, iparams;
13165
13166 /* Count the number of parameters.
13167 FIXME: GDB currently ignores vararg functions, but knows about
13168 vararg member functions. */
13169 nparams = 0;
13170 child_die = die->child;
13171 while (child_die && child_die->tag)
13172 {
13173 if (child_die->tag == DW_TAG_formal_parameter)
13174 nparams++;
13175 else if (child_die->tag == DW_TAG_unspecified_parameters)
13176 TYPE_VARARGS (ftype) = 1;
13177 child_die = sibling_die (child_die);
13178 }
13179
13180 /* Allocate storage for parameters and fill them in. */
13181 TYPE_NFIELDS (ftype) = nparams;
13182 TYPE_FIELDS (ftype) = (struct field *)
13183 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13184
13185 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13186 even if we error out during the parameters reading below. */
13187 for (iparams = 0; iparams < nparams; iparams++)
13188 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13189
13190 iparams = 0;
13191 child_die = die->child;
13192 while (child_die && child_die->tag)
13193 {
13194 if (child_die->tag == DW_TAG_formal_parameter)
13195 {
13196 struct type *arg_type;
13197
13198 /* DWARF version 2 has no clean way to discern C++
13199 static and non-static member functions. G++ helps
13200 GDB by marking the first parameter for non-static
13201 member functions (which is the this pointer) as
13202 artificial. We pass this information to
13203 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13204
13205 DWARF version 3 added DW_AT_object_pointer, which GCC
13206 4.5 does not yet generate. */
13207 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13208 if (attr)
13209 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13210 else
13211 {
13212 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13213
13214 /* GCC/43521: In java, the formal parameter
13215 "this" is sometimes not marked with DW_AT_artificial. */
13216 if (cu->language == language_java)
13217 {
13218 const char *name = dwarf2_name (child_die, cu);
13219
13220 if (name && !strcmp (name, "this"))
13221 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13222 }
13223 }
13224 arg_type = die_type (child_die, cu);
13225
13226 /* RealView does not mark THIS as const, which the testsuite
13227 expects. GCC marks THIS as const in method definitions,
13228 but not in the class specifications (GCC PR 43053). */
13229 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13230 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13231 {
13232 int is_this = 0;
13233 struct dwarf2_cu *arg_cu = cu;
13234 const char *name = dwarf2_name (child_die, cu);
13235
13236 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13237 if (attr)
13238 {
13239 /* If the compiler emits this, use it. */
13240 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13241 is_this = 1;
13242 }
13243 else if (name && strcmp (name, "this") == 0)
13244 /* Function definitions will have the argument names. */
13245 is_this = 1;
13246 else if (name == NULL && iparams == 0)
13247 /* Declarations may not have the names, so like
13248 elsewhere in GDB, assume an artificial first
13249 argument is "this". */
13250 is_this = 1;
13251
13252 if (is_this)
13253 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13254 arg_type, 0);
13255 }
13256
13257 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13258 iparams++;
13259 }
13260 child_die = sibling_die (child_die);
13261 }
13262 }
13263
13264 return ftype;
13265 }
13266
13267 static struct type *
13268 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13269 {
13270 struct objfile *objfile = cu->objfile;
13271 const char *name = NULL;
13272 struct type *this_type, *target_type;
13273
13274 name = dwarf2_full_name (NULL, die, cu);
13275 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13276 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13277 TYPE_NAME (this_type) = name;
13278 set_die_type (die, this_type, cu);
13279 target_type = die_type (die, cu);
13280 if (target_type != this_type)
13281 TYPE_TARGET_TYPE (this_type) = target_type;
13282 else
13283 {
13284 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13285 spec and cause infinite loops in GDB. */
13286 complaint (&symfile_complaints,
13287 _("Self-referential DW_TAG_typedef "
13288 "- DIE at 0x%x [in module %s]"),
13289 die->offset.sect_off, objfile->name);
13290 TYPE_TARGET_TYPE (this_type) = NULL;
13291 }
13292 return this_type;
13293 }
13294
13295 /* Find a representation of a given base type and install
13296 it in the TYPE field of the die. */
13297
13298 static struct type *
13299 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13300 {
13301 struct objfile *objfile = cu->objfile;
13302 struct type *type;
13303 struct attribute *attr;
13304 int encoding = 0, size = 0;
13305 const char *name;
13306 enum type_code code = TYPE_CODE_INT;
13307 int type_flags = 0;
13308 struct type *target_type = NULL;
13309
13310 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13311 if (attr)
13312 {
13313 encoding = DW_UNSND (attr);
13314 }
13315 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13316 if (attr)
13317 {
13318 size = DW_UNSND (attr);
13319 }
13320 name = dwarf2_name (die, cu);
13321 if (!name)
13322 {
13323 complaint (&symfile_complaints,
13324 _("DW_AT_name missing from DW_TAG_base_type"));
13325 }
13326
13327 switch (encoding)
13328 {
13329 case DW_ATE_address:
13330 /* Turn DW_ATE_address into a void * pointer. */
13331 code = TYPE_CODE_PTR;
13332 type_flags |= TYPE_FLAG_UNSIGNED;
13333 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13334 break;
13335 case DW_ATE_boolean:
13336 code = TYPE_CODE_BOOL;
13337 type_flags |= TYPE_FLAG_UNSIGNED;
13338 break;
13339 case DW_ATE_complex_float:
13340 code = TYPE_CODE_COMPLEX;
13341 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13342 break;
13343 case DW_ATE_decimal_float:
13344 code = TYPE_CODE_DECFLOAT;
13345 break;
13346 case DW_ATE_float:
13347 code = TYPE_CODE_FLT;
13348 break;
13349 case DW_ATE_signed:
13350 break;
13351 case DW_ATE_unsigned:
13352 type_flags |= TYPE_FLAG_UNSIGNED;
13353 if (cu->language == language_fortran
13354 && name
13355 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13356 code = TYPE_CODE_CHAR;
13357 break;
13358 case DW_ATE_signed_char:
13359 if (cu->language == language_ada || cu->language == language_m2
13360 || cu->language == language_pascal
13361 || cu->language == language_fortran)
13362 code = TYPE_CODE_CHAR;
13363 break;
13364 case DW_ATE_unsigned_char:
13365 if (cu->language == language_ada || cu->language == language_m2
13366 || cu->language == language_pascal
13367 || cu->language == language_fortran)
13368 code = TYPE_CODE_CHAR;
13369 type_flags |= TYPE_FLAG_UNSIGNED;
13370 break;
13371 case DW_ATE_UTF:
13372 /* We just treat this as an integer and then recognize the
13373 type by name elsewhere. */
13374 break;
13375
13376 default:
13377 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13378 dwarf_type_encoding_name (encoding));
13379 break;
13380 }
13381
13382 type = init_type (code, size, type_flags, NULL, objfile);
13383 TYPE_NAME (type) = name;
13384 TYPE_TARGET_TYPE (type) = target_type;
13385
13386 if (name && strcmp (name, "char") == 0)
13387 TYPE_NOSIGN (type) = 1;
13388
13389 return set_die_type (die, type, cu);
13390 }
13391
13392 /* Read the given DW_AT_subrange DIE. */
13393
13394 static struct type *
13395 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13396 {
13397 struct type *base_type, *orig_base_type;
13398 struct type *range_type;
13399 struct attribute *attr;
13400 LONGEST low, high;
13401 int low_default_is_valid;
13402 const char *name;
13403 LONGEST negative_mask;
13404
13405 orig_base_type = die_type (die, cu);
13406 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13407 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13408 creating the range type, but we use the result of check_typedef
13409 when examining properties of the type. */
13410 base_type = check_typedef (orig_base_type);
13411
13412 /* The die_type call above may have already set the type for this DIE. */
13413 range_type = get_die_type (die, cu);
13414 if (range_type)
13415 return range_type;
13416
13417 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13418 omitting DW_AT_lower_bound. */
13419 switch (cu->language)
13420 {
13421 case language_c:
13422 case language_cplus:
13423 low = 0;
13424 low_default_is_valid = 1;
13425 break;
13426 case language_fortran:
13427 low = 1;
13428 low_default_is_valid = 1;
13429 break;
13430 case language_d:
13431 case language_java:
13432 case language_objc:
13433 low = 0;
13434 low_default_is_valid = (cu->header.version >= 4);
13435 break;
13436 case language_ada:
13437 case language_m2:
13438 case language_pascal:
13439 low = 1;
13440 low_default_is_valid = (cu->header.version >= 4);
13441 break;
13442 default:
13443 low = 0;
13444 low_default_is_valid = 0;
13445 break;
13446 }
13447
13448 /* FIXME: For variable sized arrays either of these could be
13449 a variable rather than a constant value. We'll allow it,
13450 but we don't know how to handle it. */
13451 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13452 if (attr)
13453 low = dwarf2_get_attr_constant_value (attr, low);
13454 else if (!low_default_is_valid)
13455 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13456 "- DIE at 0x%x [in module %s]"),
13457 die->offset.sect_off, cu->objfile->name);
13458
13459 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13460 if (attr)
13461 {
13462 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
13463 {
13464 /* GCC encodes arrays with unspecified or dynamic length
13465 with a DW_FORM_block1 attribute or a reference attribute.
13466 FIXME: GDB does not yet know how to handle dynamic
13467 arrays properly, treat them as arrays with unspecified
13468 length for now.
13469
13470 FIXME: jimb/2003-09-22: GDB does not really know
13471 how to handle arrays of unspecified length
13472 either; we just represent them as zero-length
13473 arrays. Choose an appropriate upper bound given
13474 the lower bound we've computed above. */
13475 high = low - 1;
13476 }
13477 else
13478 high = dwarf2_get_attr_constant_value (attr, 1);
13479 }
13480 else
13481 {
13482 attr = dwarf2_attr (die, DW_AT_count, cu);
13483 if (attr)
13484 {
13485 int count = dwarf2_get_attr_constant_value (attr, 1);
13486 high = low + count - 1;
13487 }
13488 else
13489 {
13490 /* Unspecified array length. */
13491 high = low - 1;
13492 }
13493 }
13494
13495 /* Dwarf-2 specifications explicitly allows to create subrange types
13496 without specifying a base type.
13497 In that case, the base type must be set to the type of
13498 the lower bound, upper bound or count, in that order, if any of these
13499 three attributes references an object that has a type.
13500 If no base type is found, the Dwarf-2 specifications say that
13501 a signed integer type of size equal to the size of an address should
13502 be used.
13503 For the following C code: `extern char gdb_int [];'
13504 GCC produces an empty range DIE.
13505 FIXME: muller/2010-05-28: Possible references to object for low bound,
13506 high bound or count are not yet handled by this code. */
13507 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13508 {
13509 struct objfile *objfile = cu->objfile;
13510 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13511 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13512 struct type *int_type = objfile_type (objfile)->builtin_int;
13513
13514 /* Test "int", "long int", and "long long int" objfile types,
13515 and select the first one having a size above or equal to the
13516 architecture address size. */
13517 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13518 base_type = int_type;
13519 else
13520 {
13521 int_type = objfile_type (objfile)->builtin_long;
13522 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13523 base_type = int_type;
13524 else
13525 {
13526 int_type = objfile_type (objfile)->builtin_long_long;
13527 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13528 base_type = int_type;
13529 }
13530 }
13531 }
13532
13533 negative_mask =
13534 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13535 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13536 low |= negative_mask;
13537 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13538 high |= negative_mask;
13539
13540 range_type = create_range_type (NULL, orig_base_type, low, high);
13541
13542 /* Mark arrays with dynamic length at least as an array of unspecified
13543 length. GDB could check the boundary but before it gets implemented at
13544 least allow accessing the array elements. */
13545 if (attr && attr_form_is_block (attr))
13546 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13547
13548 /* Ada expects an empty array on no boundary attributes. */
13549 if (attr == NULL && cu->language != language_ada)
13550 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13551
13552 name = dwarf2_name (die, cu);
13553 if (name)
13554 TYPE_NAME (range_type) = name;
13555
13556 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13557 if (attr)
13558 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13559
13560 set_die_type (die, range_type, cu);
13561
13562 /* set_die_type should be already done. */
13563 set_descriptive_type (range_type, die, cu);
13564
13565 return range_type;
13566 }
13567
13568 static struct type *
13569 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13570 {
13571 struct type *type;
13572
13573 /* For now, we only support the C meaning of an unspecified type: void. */
13574
13575 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13576 TYPE_NAME (type) = dwarf2_name (die, cu);
13577
13578 return set_die_type (die, type, cu);
13579 }
13580
13581 /* Read a single die and all its descendents. Set the die's sibling
13582 field to NULL; set other fields in the die correctly, and set all
13583 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13584 location of the info_ptr after reading all of those dies. PARENT
13585 is the parent of the die in question. */
13586
13587 static struct die_info *
13588 read_die_and_children (const struct die_reader_specs *reader,
13589 const gdb_byte *info_ptr,
13590 const gdb_byte **new_info_ptr,
13591 struct die_info *parent)
13592 {
13593 struct die_info *die;
13594 const gdb_byte *cur_ptr;
13595 int has_children;
13596
13597 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13598 if (die == NULL)
13599 {
13600 *new_info_ptr = cur_ptr;
13601 return NULL;
13602 }
13603 store_in_ref_table (die, reader->cu);
13604
13605 if (has_children)
13606 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13607 else
13608 {
13609 die->child = NULL;
13610 *new_info_ptr = cur_ptr;
13611 }
13612
13613 die->sibling = NULL;
13614 die->parent = parent;
13615 return die;
13616 }
13617
13618 /* Read a die, all of its descendents, and all of its siblings; set
13619 all of the fields of all of the dies correctly. Arguments are as
13620 in read_die_and_children. */
13621
13622 static struct die_info *
13623 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13624 const gdb_byte *info_ptr,
13625 const gdb_byte **new_info_ptr,
13626 struct die_info *parent)
13627 {
13628 struct die_info *first_die, *last_sibling;
13629 const gdb_byte *cur_ptr;
13630
13631 cur_ptr = info_ptr;
13632 first_die = last_sibling = NULL;
13633
13634 while (1)
13635 {
13636 struct die_info *die
13637 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13638
13639 if (die == NULL)
13640 {
13641 *new_info_ptr = cur_ptr;
13642 return first_die;
13643 }
13644
13645 if (!first_die)
13646 first_die = die;
13647 else
13648 last_sibling->sibling = die;
13649
13650 last_sibling = die;
13651 }
13652 }
13653
13654 /* Read a die, all of its descendents, and all of its siblings; set
13655 all of the fields of all of the dies correctly. Arguments are as
13656 in read_die_and_children.
13657 This the main entry point for reading a DIE and all its children. */
13658
13659 static struct die_info *
13660 read_die_and_siblings (const struct die_reader_specs *reader,
13661 const gdb_byte *info_ptr,
13662 const gdb_byte **new_info_ptr,
13663 struct die_info *parent)
13664 {
13665 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13666 new_info_ptr, parent);
13667
13668 if (dwarf2_die_debug)
13669 {
13670 fprintf_unfiltered (gdb_stdlog,
13671 "Read die from %s@0x%x of %s:\n",
13672 bfd_section_name (reader->abfd,
13673 reader->die_section->asection),
13674 (unsigned) (info_ptr - reader->die_section->buffer),
13675 bfd_get_filename (reader->abfd));
13676 dump_die (die, dwarf2_die_debug);
13677 }
13678
13679 return die;
13680 }
13681
13682 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13683 attributes.
13684 The caller is responsible for filling in the extra attributes
13685 and updating (*DIEP)->num_attrs.
13686 Set DIEP to point to a newly allocated die with its information,
13687 except for its child, sibling, and parent fields.
13688 Set HAS_CHILDREN to tell whether the die has children or not. */
13689
13690 static const gdb_byte *
13691 read_full_die_1 (const struct die_reader_specs *reader,
13692 struct die_info **diep, const gdb_byte *info_ptr,
13693 int *has_children, int num_extra_attrs)
13694 {
13695 unsigned int abbrev_number, bytes_read, i;
13696 sect_offset offset;
13697 struct abbrev_info *abbrev;
13698 struct die_info *die;
13699 struct dwarf2_cu *cu = reader->cu;
13700 bfd *abfd = reader->abfd;
13701
13702 offset.sect_off = info_ptr - reader->buffer;
13703 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13704 info_ptr += bytes_read;
13705 if (!abbrev_number)
13706 {
13707 *diep = NULL;
13708 *has_children = 0;
13709 return info_ptr;
13710 }
13711
13712 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13713 if (!abbrev)
13714 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13715 abbrev_number,
13716 bfd_get_filename (abfd));
13717
13718 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13719 die->offset = offset;
13720 die->tag = abbrev->tag;
13721 die->abbrev = abbrev_number;
13722
13723 /* Make the result usable.
13724 The caller needs to update num_attrs after adding the extra
13725 attributes. */
13726 die->num_attrs = abbrev->num_attrs;
13727
13728 for (i = 0; i < abbrev->num_attrs; ++i)
13729 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13730 info_ptr);
13731
13732 *diep = die;
13733 *has_children = abbrev->has_children;
13734 return info_ptr;
13735 }
13736
13737 /* Read a die and all its attributes.
13738 Set DIEP to point to a newly allocated die with its information,
13739 except for its child, sibling, and parent fields.
13740 Set HAS_CHILDREN to tell whether the die has children or not. */
13741
13742 static const gdb_byte *
13743 read_full_die (const struct die_reader_specs *reader,
13744 struct die_info **diep, const gdb_byte *info_ptr,
13745 int *has_children)
13746 {
13747 const gdb_byte *result;
13748
13749 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13750
13751 if (dwarf2_die_debug)
13752 {
13753 fprintf_unfiltered (gdb_stdlog,
13754 "Read die from %s@0x%x of %s:\n",
13755 bfd_section_name (reader->abfd,
13756 reader->die_section->asection),
13757 (unsigned) (info_ptr - reader->die_section->buffer),
13758 bfd_get_filename (reader->abfd));
13759 dump_die (*diep, dwarf2_die_debug);
13760 }
13761
13762 return result;
13763 }
13764 \f
13765 /* Abbreviation tables.
13766
13767 In DWARF version 2, the description of the debugging information is
13768 stored in a separate .debug_abbrev section. Before we read any
13769 dies from a section we read in all abbreviations and install them
13770 in a hash table. */
13771
13772 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13773
13774 static struct abbrev_info *
13775 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13776 {
13777 struct abbrev_info *abbrev;
13778
13779 abbrev = (struct abbrev_info *)
13780 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13781 memset (abbrev, 0, sizeof (struct abbrev_info));
13782 return abbrev;
13783 }
13784
13785 /* Add an abbreviation to the table. */
13786
13787 static void
13788 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13789 unsigned int abbrev_number,
13790 struct abbrev_info *abbrev)
13791 {
13792 unsigned int hash_number;
13793
13794 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13795 abbrev->next = abbrev_table->abbrevs[hash_number];
13796 abbrev_table->abbrevs[hash_number] = abbrev;
13797 }
13798
13799 /* Look up an abbrev in the table.
13800 Returns NULL if the abbrev is not found. */
13801
13802 static struct abbrev_info *
13803 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13804 unsigned int abbrev_number)
13805 {
13806 unsigned int hash_number;
13807 struct abbrev_info *abbrev;
13808
13809 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13810 abbrev = abbrev_table->abbrevs[hash_number];
13811
13812 while (abbrev)
13813 {
13814 if (abbrev->number == abbrev_number)
13815 return abbrev;
13816 abbrev = abbrev->next;
13817 }
13818 return NULL;
13819 }
13820
13821 /* Read in an abbrev table. */
13822
13823 static struct abbrev_table *
13824 abbrev_table_read_table (struct dwarf2_section_info *section,
13825 sect_offset offset)
13826 {
13827 struct objfile *objfile = dwarf2_per_objfile->objfile;
13828 bfd *abfd = section->asection->owner;
13829 struct abbrev_table *abbrev_table;
13830 const gdb_byte *abbrev_ptr;
13831 struct abbrev_info *cur_abbrev;
13832 unsigned int abbrev_number, bytes_read, abbrev_name;
13833 unsigned int abbrev_form;
13834 struct attr_abbrev *cur_attrs;
13835 unsigned int allocated_attrs;
13836
13837 abbrev_table = XMALLOC (struct abbrev_table);
13838 abbrev_table->offset = offset;
13839 obstack_init (&abbrev_table->abbrev_obstack);
13840 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13841 (ABBREV_HASH_SIZE
13842 * sizeof (struct abbrev_info *)));
13843 memset (abbrev_table->abbrevs, 0,
13844 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13845
13846 dwarf2_read_section (objfile, section);
13847 abbrev_ptr = section->buffer + offset.sect_off;
13848 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13849 abbrev_ptr += bytes_read;
13850
13851 allocated_attrs = ATTR_ALLOC_CHUNK;
13852 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13853
13854 /* Loop until we reach an abbrev number of 0. */
13855 while (abbrev_number)
13856 {
13857 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13858
13859 /* read in abbrev header */
13860 cur_abbrev->number = abbrev_number;
13861 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13862 abbrev_ptr += bytes_read;
13863 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13864 abbrev_ptr += 1;
13865
13866 /* now read in declarations */
13867 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13868 abbrev_ptr += bytes_read;
13869 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13870 abbrev_ptr += bytes_read;
13871 while (abbrev_name)
13872 {
13873 if (cur_abbrev->num_attrs == allocated_attrs)
13874 {
13875 allocated_attrs += ATTR_ALLOC_CHUNK;
13876 cur_attrs
13877 = xrealloc (cur_attrs, (allocated_attrs
13878 * sizeof (struct attr_abbrev)));
13879 }
13880
13881 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13882 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13883 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13884 abbrev_ptr += bytes_read;
13885 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13886 abbrev_ptr += bytes_read;
13887 }
13888
13889 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13890 (cur_abbrev->num_attrs
13891 * sizeof (struct attr_abbrev)));
13892 memcpy (cur_abbrev->attrs, cur_attrs,
13893 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13894
13895 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13896
13897 /* Get next abbreviation.
13898 Under Irix6 the abbreviations for a compilation unit are not
13899 always properly terminated with an abbrev number of 0.
13900 Exit loop if we encounter an abbreviation which we have
13901 already read (which means we are about to read the abbreviations
13902 for the next compile unit) or if the end of the abbreviation
13903 table is reached. */
13904 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13905 break;
13906 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13907 abbrev_ptr += bytes_read;
13908 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13909 break;
13910 }
13911
13912 xfree (cur_attrs);
13913 return abbrev_table;
13914 }
13915
13916 /* Free the resources held by ABBREV_TABLE. */
13917
13918 static void
13919 abbrev_table_free (struct abbrev_table *abbrev_table)
13920 {
13921 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13922 xfree (abbrev_table);
13923 }
13924
13925 /* Same as abbrev_table_free but as a cleanup.
13926 We pass in a pointer to the pointer to the table so that we can
13927 set the pointer to NULL when we're done. It also simplifies
13928 build_type_unit_groups. */
13929
13930 static void
13931 abbrev_table_free_cleanup (void *table_ptr)
13932 {
13933 struct abbrev_table **abbrev_table_ptr = table_ptr;
13934
13935 if (*abbrev_table_ptr != NULL)
13936 abbrev_table_free (*abbrev_table_ptr);
13937 *abbrev_table_ptr = NULL;
13938 }
13939
13940 /* Read the abbrev table for CU from ABBREV_SECTION. */
13941
13942 static void
13943 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13944 struct dwarf2_section_info *abbrev_section)
13945 {
13946 cu->abbrev_table =
13947 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13948 }
13949
13950 /* Release the memory used by the abbrev table for a compilation unit. */
13951
13952 static void
13953 dwarf2_free_abbrev_table (void *ptr_to_cu)
13954 {
13955 struct dwarf2_cu *cu = ptr_to_cu;
13956
13957 if (cu->abbrev_table != NULL)
13958 abbrev_table_free (cu->abbrev_table);
13959 /* Set this to NULL so that we SEGV if we try to read it later,
13960 and also because free_comp_unit verifies this is NULL. */
13961 cu->abbrev_table = NULL;
13962 }
13963 \f
13964 /* Returns nonzero if TAG represents a type that we might generate a partial
13965 symbol for. */
13966
13967 static int
13968 is_type_tag_for_partial (int tag)
13969 {
13970 switch (tag)
13971 {
13972 #if 0
13973 /* Some types that would be reasonable to generate partial symbols for,
13974 that we don't at present. */
13975 case DW_TAG_array_type:
13976 case DW_TAG_file_type:
13977 case DW_TAG_ptr_to_member_type:
13978 case DW_TAG_set_type:
13979 case DW_TAG_string_type:
13980 case DW_TAG_subroutine_type:
13981 #endif
13982 case DW_TAG_base_type:
13983 case DW_TAG_class_type:
13984 case DW_TAG_interface_type:
13985 case DW_TAG_enumeration_type:
13986 case DW_TAG_structure_type:
13987 case DW_TAG_subrange_type:
13988 case DW_TAG_typedef:
13989 case DW_TAG_union_type:
13990 return 1;
13991 default:
13992 return 0;
13993 }
13994 }
13995
13996 /* Load all DIEs that are interesting for partial symbols into memory. */
13997
13998 static struct partial_die_info *
13999 load_partial_dies (const struct die_reader_specs *reader,
14000 const gdb_byte *info_ptr, int building_psymtab)
14001 {
14002 struct dwarf2_cu *cu = reader->cu;
14003 struct objfile *objfile = cu->objfile;
14004 struct partial_die_info *part_die;
14005 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14006 struct abbrev_info *abbrev;
14007 unsigned int bytes_read;
14008 unsigned int load_all = 0;
14009 int nesting_level = 1;
14010
14011 parent_die = NULL;
14012 last_die = NULL;
14013
14014 gdb_assert (cu->per_cu != NULL);
14015 if (cu->per_cu->load_all_dies)
14016 load_all = 1;
14017
14018 cu->partial_dies
14019 = htab_create_alloc_ex (cu->header.length / 12,
14020 partial_die_hash,
14021 partial_die_eq,
14022 NULL,
14023 &cu->comp_unit_obstack,
14024 hashtab_obstack_allocate,
14025 dummy_obstack_deallocate);
14026
14027 part_die = obstack_alloc (&cu->comp_unit_obstack,
14028 sizeof (struct partial_die_info));
14029
14030 while (1)
14031 {
14032 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14033
14034 /* A NULL abbrev means the end of a series of children. */
14035 if (abbrev == NULL)
14036 {
14037 if (--nesting_level == 0)
14038 {
14039 /* PART_DIE was probably the last thing allocated on the
14040 comp_unit_obstack, so we could call obstack_free
14041 here. We don't do that because the waste is small,
14042 and will be cleaned up when we're done with this
14043 compilation unit. This way, we're also more robust
14044 against other users of the comp_unit_obstack. */
14045 return first_die;
14046 }
14047 info_ptr += bytes_read;
14048 last_die = parent_die;
14049 parent_die = parent_die->die_parent;
14050 continue;
14051 }
14052
14053 /* Check for template arguments. We never save these; if
14054 they're seen, we just mark the parent, and go on our way. */
14055 if (parent_die != NULL
14056 && cu->language == language_cplus
14057 && (abbrev->tag == DW_TAG_template_type_param
14058 || abbrev->tag == DW_TAG_template_value_param))
14059 {
14060 parent_die->has_template_arguments = 1;
14061
14062 if (!load_all)
14063 {
14064 /* We don't need a partial DIE for the template argument. */
14065 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14066 continue;
14067 }
14068 }
14069
14070 /* We only recurse into c++ subprograms looking for template arguments.
14071 Skip their other children. */
14072 if (!load_all
14073 && cu->language == language_cplus
14074 && parent_die != NULL
14075 && parent_die->tag == DW_TAG_subprogram)
14076 {
14077 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14078 continue;
14079 }
14080
14081 /* Check whether this DIE is interesting enough to save. Normally
14082 we would not be interested in members here, but there may be
14083 later variables referencing them via DW_AT_specification (for
14084 static members). */
14085 if (!load_all
14086 && !is_type_tag_for_partial (abbrev->tag)
14087 && abbrev->tag != DW_TAG_constant
14088 && abbrev->tag != DW_TAG_enumerator
14089 && abbrev->tag != DW_TAG_subprogram
14090 && abbrev->tag != DW_TAG_lexical_block
14091 && abbrev->tag != DW_TAG_variable
14092 && abbrev->tag != DW_TAG_namespace
14093 && abbrev->tag != DW_TAG_module
14094 && abbrev->tag != DW_TAG_member
14095 && abbrev->tag != DW_TAG_imported_unit)
14096 {
14097 /* Otherwise we skip to the next sibling, if any. */
14098 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14099 continue;
14100 }
14101
14102 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14103 info_ptr);
14104
14105 /* This two-pass algorithm for processing partial symbols has a
14106 high cost in cache pressure. Thus, handle some simple cases
14107 here which cover the majority of C partial symbols. DIEs
14108 which neither have specification tags in them, nor could have
14109 specification tags elsewhere pointing at them, can simply be
14110 processed and discarded.
14111
14112 This segment is also optional; scan_partial_symbols and
14113 add_partial_symbol will handle these DIEs if we chain
14114 them in normally. When compilers which do not emit large
14115 quantities of duplicate debug information are more common,
14116 this code can probably be removed. */
14117
14118 /* Any complete simple types at the top level (pretty much all
14119 of them, for a language without namespaces), can be processed
14120 directly. */
14121 if (parent_die == NULL
14122 && part_die->has_specification == 0
14123 && part_die->is_declaration == 0
14124 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14125 || part_die->tag == DW_TAG_base_type
14126 || part_die->tag == DW_TAG_subrange_type))
14127 {
14128 if (building_psymtab && part_die->name != NULL)
14129 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14130 VAR_DOMAIN, LOC_TYPEDEF,
14131 &objfile->static_psymbols,
14132 0, (CORE_ADDR) 0, cu->language, objfile);
14133 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14134 continue;
14135 }
14136
14137 /* The exception for DW_TAG_typedef with has_children above is
14138 a workaround of GCC PR debug/47510. In the case of this complaint
14139 type_name_no_tag_or_error will error on such types later.
14140
14141 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14142 it could not find the child DIEs referenced later, this is checked
14143 above. In correct DWARF DW_TAG_typedef should have no children. */
14144
14145 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14146 complaint (&symfile_complaints,
14147 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14148 "- DIE at 0x%x [in module %s]"),
14149 part_die->offset.sect_off, objfile->name);
14150
14151 /* If we're at the second level, and we're an enumerator, and
14152 our parent has no specification (meaning possibly lives in a
14153 namespace elsewhere), then we can add the partial symbol now
14154 instead of queueing it. */
14155 if (part_die->tag == DW_TAG_enumerator
14156 && parent_die != NULL
14157 && parent_die->die_parent == NULL
14158 && parent_die->tag == DW_TAG_enumeration_type
14159 && parent_die->has_specification == 0)
14160 {
14161 if (part_die->name == NULL)
14162 complaint (&symfile_complaints,
14163 _("malformed enumerator DIE ignored"));
14164 else if (building_psymtab)
14165 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14166 VAR_DOMAIN, LOC_CONST,
14167 (cu->language == language_cplus
14168 || cu->language == language_java)
14169 ? &objfile->global_psymbols
14170 : &objfile->static_psymbols,
14171 0, (CORE_ADDR) 0, cu->language, objfile);
14172
14173 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14174 continue;
14175 }
14176
14177 /* We'll save this DIE so link it in. */
14178 part_die->die_parent = parent_die;
14179 part_die->die_sibling = NULL;
14180 part_die->die_child = NULL;
14181
14182 if (last_die && last_die == parent_die)
14183 last_die->die_child = part_die;
14184 else if (last_die)
14185 last_die->die_sibling = part_die;
14186
14187 last_die = part_die;
14188
14189 if (first_die == NULL)
14190 first_die = part_die;
14191
14192 /* Maybe add the DIE to the hash table. Not all DIEs that we
14193 find interesting need to be in the hash table, because we
14194 also have the parent/sibling/child chains; only those that we
14195 might refer to by offset later during partial symbol reading.
14196
14197 For now this means things that might have be the target of a
14198 DW_AT_specification, DW_AT_abstract_origin, or
14199 DW_AT_extension. DW_AT_extension will refer only to
14200 namespaces; DW_AT_abstract_origin refers to functions (and
14201 many things under the function DIE, but we do not recurse
14202 into function DIEs during partial symbol reading) and
14203 possibly variables as well; DW_AT_specification refers to
14204 declarations. Declarations ought to have the DW_AT_declaration
14205 flag. It happens that GCC forgets to put it in sometimes, but
14206 only for functions, not for types.
14207
14208 Adding more things than necessary to the hash table is harmless
14209 except for the performance cost. Adding too few will result in
14210 wasted time in find_partial_die, when we reread the compilation
14211 unit with load_all_dies set. */
14212
14213 if (load_all
14214 || abbrev->tag == DW_TAG_constant
14215 || abbrev->tag == DW_TAG_subprogram
14216 || abbrev->tag == DW_TAG_variable
14217 || abbrev->tag == DW_TAG_namespace
14218 || part_die->is_declaration)
14219 {
14220 void **slot;
14221
14222 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14223 part_die->offset.sect_off, INSERT);
14224 *slot = part_die;
14225 }
14226
14227 part_die = obstack_alloc (&cu->comp_unit_obstack,
14228 sizeof (struct partial_die_info));
14229
14230 /* For some DIEs we want to follow their children (if any). For C
14231 we have no reason to follow the children of structures; for other
14232 languages we have to, so that we can get at method physnames
14233 to infer fully qualified class names, for DW_AT_specification,
14234 and for C++ template arguments. For C++, we also look one level
14235 inside functions to find template arguments (if the name of the
14236 function does not already contain the template arguments).
14237
14238 For Ada, we need to scan the children of subprograms and lexical
14239 blocks as well because Ada allows the definition of nested
14240 entities that could be interesting for the debugger, such as
14241 nested subprograms for instance. */
14242 if (last_die->has_children
14243 && (load_all
14244 || last_die->tag == DW_TAG_namespace
14245 || last_die->tag == DW_TAG_module
14246 || last_die->tag == DW_TAG_enumeration_type
14247 || (cu->language == language_cplus
14248 && last_die->tag == DW_TAG_subprogram
14249 && (last_die->name == NULL
14250 || strchr (last_die->name, '<') == NULL))
14251 || (cu->language != language_c
14252 && (last_die->tag == DW_TAG_class_type
14253 || last_die->tag == DW_TAG_interface_type
14254 || last_die->tag == DW_TAG_structure_type
14255 || last_die->tag == DW_TAG_union_type))
14256 || (cu->language == language_ada
14257 && (last_die->tag == DW_TAG_subprogram
14258 || last_die->tag == DW_TAG_lexical_block))))
14259 {
14260 nesting_level++;
14261 parent_die = last_die;
14262 continue;
14263 }
14264
14265 /* Otherwise we skip to the next sibling, if any. */
14266 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14267
14268 /* Back to the top, do it again. */
14269 }
14270 }
14271
14272 /* Read a minimal amount of information into the minimal die structure. */
14273
14274 static const gdb_byte *
14275 read_partial_die (const struct die_reader_specs *reader,
14276 struct partial_die_info *part_die,
14277 struct abbrev_info *abbrev, unsigned int abbrev_len,
14278 const gdb_byte *info_ptr)
14279 {
14280 struct dwarf2_cu *cu = reader->cu;
14281 struct objfile *objfile = cu->objfile;
14282 const gdb_byte *buffer = reader->buffer;
14283 unsigned int i;
14284 struct attribute attr;
14285 int has_low_pc_attr = 0;
14286 int has_high_pc_attr = 0;
14287 int high_pc_relative = 0;
14288
14289 memset (part_die, 0, sizeof (struct partial_die_info));
14290
14291 part_die->offset.sect_off = info_ptr - buffer;
14292
14293 info_ptr += abbrev_len;
14294
14295 if (abbrev == NULL)
14296 return info_ptr;
14297
14298 part_die->tag = abbrev->tag;
14299 part_die->has_children = abbrev->has_children;
14300
14301 for (i = 0; i < abbrev->num_attrs; ++i)
14302 {
14303 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14304
14305 /* Store the data if it is of an attribute we want to keep in a
14306 partial symbol table. */
14307 switch (attr.name)
14308 {
14309 case DW_AT_name:
14310 switch (part_die->tag)
14311 {
14312 case DW_TAG_compile_unit:
14313 case DW_TAG_partial_unit:
14314 case DW_TAG_type_unit:
14315 /* Compilation units have a DW_AT_name that is a filename, not
14316 a source language identifier. */
14317 case DW_TAG_enumeration_type:
14318 case DW_TAG_enumerator:
14319 /* These tags always have simple identifiers already; no need
14320 to canonicalize them. */
14321 part_die->name = DW_STRING (&attr);
14322 break;
14323 default:
14324 part_die->name
14325 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14326 &objfile->objfile_obstack);
14327 break;
14328 }
14329 break;
14330 case DW_AT_linkage_name:
14331 case DW_AT_MIPS_linkage_name:
14332 /* Note that both forms of linkage name might appear. We
14333 assume they will be the same, and we only store the last
14334 one we see. */
14335 if (cu->language == language_ada)
14336 part_die->name = DW_STRING (&attr);
14337 part_die->linkage_name = DW_STRING (&attr);
14338 break;
14339 case DW_AT_low_pc:
14340 has_low_pc_attr = 1;
14341 part_die->lowpc = DW_ADDR (&attr);
14342 break;
14343 case DW_AT_high_pc:
14344 has_high_pc_attr = 1;
14345 if (attr.form == DW_FORM_addr
14346 || attr.form == DW_FORM_GNU_addr_index)
14347 part_die->highpc = DW_ADDR (&attr);
14348 else
14349 {
14350 high_pc_relative = 1;
14351 part_die->highpc = DW_UNSND (&attr);
14352 }
14353 break;
14354 case DW_AT_location:
14355 /* Support the .debug_loc offsets. */
14356 if (attr_form_is_block (&attr))
14357 {
14358 part_die->d.locdesc = DW_BLOCK (&attr);
14359 }
14360 else if (attr_form_is_section_offset (&attr))
14361 {
14362 dwarf2_complex_location_expr_complaint ();
14363 }
14364 else
14365 {
14366 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14367 "partial symbol information");
14368 }
14369 break;
14370 case DW_AT_external:
14371 part_die->is_external = DW_UNSND (&attr);
14372 break;
14373 case DW_AT_declaration:
14374 part_die->is_declaration = DW_UNSND (&attr);
14375 break;
14376 case DW_AT_type:
14377 part_die->has_type = 1;
14378 break;
14379 case DW_AT_abstract_origin:
14380 case DW_AT_specification:
14381 case DW_AT_extension:
14382 part_die->has_specification = 1;
14383 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14384 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14385 || cu->per_cu->is_dwz);
14386 break;
14387 case DW_AT_sibling:
14388 /* Ignore absolute siblings, they might point outside of
14389 the current compile unit. */
14390 if (attr.form == DW_FORM_ref_addr)
14391 complaint (&symfile_complaints,
14392 _("ignoring absolute DW_AT_sibling"));
14393 else
14394 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14395 break;
14396 case DW_AT_byte_size:
14397 part_die->has_byte_size = 1;
14398 break;
14399 case DW_AT_calling_convention:
14400 /* DWARF doesn't provide a way to identify a program's source-level
14401 entry point. DW_AT_calling_convention attributes are only meant
14402 to describe functions' calling conventions.
14403
14404 However, because it's a necessary piece of information in
14405 Fortran, and because DW_CC_program is the only piece of debugging
14406 information whose definition refers to a 'main program' at all,
14407 several compilers have begun marking Fortran main programs with
14408 DW_CC_program --- even when those functions use the standard
14409 calling conventions.
14410
14411 So until DWARF specifies a way to provide this information and
14412 compilers pick up the new representation, we'll support this
14413 practice. */
14414 if (DW_UNSND (&attr) == DW_CC_program
14415 && cu->language == language_fortran)
14416 {
14417 set_main_name (part_die->name);
14418
14419 /* As this DIE has a static linkage the name would be difficult
14420 to look up later. */
14421 language_of_main = language_fortran;
14422 }
14423 break;
14424 case DW_AT_inline:
14425 if (DW_UNSND (&attr) == DW_INL_inlined
14426 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14427 part_die->may_be_inlined = 1;
14428 break;
14429
14430 case DW_AT_import:
14431 if (part_die->tag == DW_TAG_imported_unit)
14432 {
14433 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14434 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14435 || cu->per_cu->is_dwz);
14436 }
14437 break;
14438
14439 default:
14440 break;
14441 }
14442 }
14443
14444 if (high_pc_relative)
14445 part_die->highpc += part_die->lowpc;
14446
14447 if (has_low_pc_attr && has_high_pc_attr)
14448 {
14449 /* When using the GNU linker, .gnu.linkonce. sections are used to
14450 eliminate duplicate copies of functions and vtables and such.
14451 The linker will arbitrarily choose one and discard the others.
14452 The AT_*_pc values for such functions refer to local labels in
14453 these sections. If the section from that file was discarded, the
14454 labels are not in the output, so the relocs get a value of 0.
14455 If this is a discarded function, mark the pc bounds as invalid,
14456 so that GDB will ignore it. */
14457 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14458 {
14459 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14460
14461 complaint (&symfile_complaints,
14462 _("DW_AT_low_pc %s is zero "
14463 "for DIE at 0x%x [in module %s]"),
14464 paddress (gdbarch, part_die->lowpc),
14465 part_die->offset.sect_off, objfile->name);
14466 }
14467 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14468 else if (part_die->lowpc >= part_die->highpc)
14469 {
14470 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14471
14472 complaint (&symfile_complaints,
14473 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14474 "for DIE at 0x%x [in module %s]"),
14475 paddress (gdbarch, part_die->lowpc),
14476 paddress (gdbarch, part_die->highpc),
14477 part_die->offset.sect_off, objfile->name);
14478 }
14479 else
14480 part_die->has_pc_info = 1;
14481 }
14482
14483 return info_ptr;
14484 }
14485
14486 /* Find a cached partial DIE at OFFSET in CU. */
14487
14488 static struct partial_die_info *
14489 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14490 {
14491 struct partial_die_info *lookup_die = NULL;
14492 struct partial_die_info part_die;
14493
14494 part_die.offset = offset;
14495 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14496 offset.sect_off);
14497
14498 return lookup_die;
14499 }
14500
14501 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14502 except in the case of .debug_types DIEs which do not reference
14503 outside their CU (they do however referencing other types via
14504 DW_FORM_ref_sig8). */
14505
14506 static struct partial_die_info *
14507 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14508 {
14509 struct objfile *objfile = cu->objfile;
14510 struct dwarf2_per_cu_data *per_cu = NULL;
14511 struct partial_die_info *pd = NULL;
14512
14513 if (offset_in_dwz == cu->per_cu->is_dwz
14514 && offset_in_cu_p (&cu->header, offset))
14515 {
14516 pd = find_partial_die_in_comp_unit (offset, cu);
14517 if (pd != NULL)
14518 return pd;
14519 /* We missed recording what we needed.
14520 Load all dies and try again. */
14521 per_cu = cu->per_cu;
14522 }
14523 else
14524 {
14525 /* TUs don't reference other CUs/TUs (except via type signatures). */
14526 if (cu->per_cu->is_debug_types)
14527 {
14528 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14529 " external reference to offset 0x%lx [in module %s].\n"),
14530 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14531 bfd_get_filename (objfile->obfd));
14532 }
14533 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14534 objfile);
14535
14536 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14537 load_partial_comp_unit (per_cu);
14538
14539 per_cu->cu->last_used = 0;
14540 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14541 }
14542
14543 /* If we didn't find it, and not all dies have been loaded,
14544 load them all and try again. */
14545
14546 if (pd == NULL && per_cu->load_all_dies == 0)
14547 {
14548 per_cu->load_all_dies = 1;
14549
14550 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14551 THIS_CU->cu may already be in use. So we can't just free it and
14552 replace its DIEs with the ones we read in. Instead, we leave those
14553 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14554 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14555 set. */
14556 load_partial_comp_unit (per_cu);
14557
14558 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14559 }
14560
14561 if (pd == NULL)
14562 internal_error (__FILE__, __LINE__,
14563 _("could not find partial DIE 0x%x "
14564 "in cache [from module %s]\n"),
14565 offset.sect_off, bfd_get_filename (objfile->obfd));
14566 return pd;
14567 }
14568
14569 /* See if we can figure out if the class lives in a namespace. We do
14570 this by looking for a member function; its demangled name will
14571 contain namespace info, if there is any. */
14572
14573 static void
14574 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14575 struct dwarf2_cu *cu)
14576 {
14577 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14578 what template types look like, because the demangler
14579 frequently doesn't give the same name as the debug info. We
14580 could fix this by only using the demangled name to get the
14581 prefix (but see comment in read_structure_type). */
14582
14583 struct partial_die_info *real_pdi;
14584 struct partial_die_info *child_pdi;
14585
14586 /* If this DIE (this DIE's specification, if any) has a parent, then
14587 we should not do this. We'll prepend the parent's fully qualified
14588 name when we create the partial symbol. */
14589
14590 real_pdi = struct_pdi;
14591 while (real_pdi->has_specification)
14592 real_pdi = find_partial_die (real_pdi->spec_offset,
14593 real_pdi->spec_is_dwz, cu);
14594
14595 if (real_pdi->die_parent != NULL)
14596 return;
14597
14598 for (child_pdi = struct_pdi->die_child;
14599 child_pdi != NULL;
14600 child_pdi = child_pdi->die_sibling)
14601 {
14602 if (child_pdi->tag == DW_TAG_subprogram
14603 && child_pdi->linkage_name != NULL)
14604 {
14605 char *actual_class_name
14606 = language_class_name_from_physname (cu->language_defn,
14607 child_pdi->linkage_name);
14608 if (actual_class_name != NULL)
14609 {
14610 struct_pdi->name
14611 = obstack_copy0 (&cu->objfile->objfile_obstack,
14612 actual_class_name,
14613 strlen (actual_class_name));
14614 xfree (actual_class_name);
14615 }
14616 break;
14617 }
14618 }
14619 }
14620
14621 /* Adjust PART_DIE before generating a symbol for it. This function
14622 may set the is_external flag or change the DIE's name. */
14623
14624 static void
14625 fixup_partial_die (struct partial_die_info *part_die,
14626 struct dwarf2_cu *cu)
14627 {
14628 /* Once we've fixed up a die, there's no point in doing so again.
14629 This also avoids a memory leak if we were to call
14630 guess_partial_die_structure_name multiple times. */
14631 if (part_die->fixup_called)
14632 return;
14633
14634 /* If we found a reference attribute and the DIE has no name, try
14635 to find a name in the referred to DIE. */
14636
14637 if (part_die->name == NULL && part_die->has_specification)
14638 {
14639 struct partial_die_info *spec_die;
14640
14641 spec_die = find_partial_die (part_die->spec_offset,
14642 part_die->spec_is_dwz, cu);
14643
14644 fixup_partial_die (spec_die, cu);
14645
14646 if (spec_die->name)
14647 {
14648 part_die->name = spec_die->name;
14649
14650 /* Copy DW_AT_external attribute if it is set. */
14651 if (spec_die->is_external)
14652 part_die->is_external = spec_die->is_external;
14653 }
14654 }
14655
14656 /* Set default names for some unnamed DIEs. */
14657
14658 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14659 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14660
14661 /* If there is no parent die to provide a namespace, and there are
14662 children, see if we can determine the namespace from their linkage
14663 name. */
14664 if (cu->language == language_cplus
14665 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14666 && part_die->die_parent == NULL
14667 && part_die->has_children
14668 && (part_die->tag == DW_TAG_class_type
14669 || part_die->tag == DW_TAG_structure_type
14670 || part_die->tag == DW_TAG_union_type))
14671 guess_partial_die_structure_name (part_die, cu);
14672
14673 /* GCC might emit a nameless struct or union that has a linkage
14674 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14675 if (part_die->name == NULL
14676 && (part_die->tag == DW_TAG_class_type
14677 || part_die->tag == DW_TAG_interface_type
14678 || part_die->tag == DW_TAG_structure_type
14679 || part_die->tag == DW_TAG_union_type)
14680 && part_die->linkage_name != NULL)
14681 {
14682 char *demangled;
14683
14684 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14685 if (demangled)
14686 {
14687 const char *base;
14688
14689 /* Strip any leading namespaces/classes, keep only the base name.
14690 DW_AT_name for named DIEs does not contain the prefixes. */
14691 base = strrchr (demangled, ':');
14692 if (base && base > demangled && base[-1] == ':')
14693 base++;
14694 else
14695 base = demangled;
14696
14697 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14698 base, strlen (base));
14699 xfree (demangled);
14700 }
14701 }
14702
14703 part_die->fixup_called = 1;
14704 }
14705
14706 /* Read an attribute value described by an attribute form. */
14707
14708 static const gdb_byte *
14709 read_attribute_value (const struct die_reader_specs *reader,
14710 struct attribute *attr, unsigned form,
14711 const gdb_byte *info_ptr)
14712 {
14713 struct dwarf2_cu *cu = reader->cu;
14714 bfd *abfd = reader->abfd;
14715 struct comp_unit_head *cu_header = &cu->header;
14716 unsigned int bytes_read;
14717 struct dwarf_block *blk;
14718
14719 attr->form = form;
14720 switch (form)
14721 {
14722 case DW_FORM_ref_addr:
14723 if (cu->header.version == 2)
14724 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14725 else
14726 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14727 &cu->header, &bytes_read);
14728 info_ptr += bytes_read;
14729 break;
14730 case DW_FORM_GNU_ref_alt:
14731 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14732 info_ptr += bytes_read;
14733 break;
14734 case DW_FORM_addr:
14735 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14736 info_ptr += bytes_read;
14737 break;
14738 case DW_FORM_block2:
14739 blk = dwarf_alloc_block (cu);
14740 blk->size = read_2_bytes (abfd, info_ptr);
14741 info_ptr += 2;
14742 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14743 info_ptr += blk->size;
14744 DW_BLOCK (attr) = blk;
14745 break;
14746 case DW_FORM_block4:
14747 blk = dwarf_alloc_block (cu);
14748 blk->size = read_4_bytes (abfd, info_ptr);
14749 info_ptr += 4;
14750 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14751 info_ptr += blk->size;
14752 DW_BLOCK (attr) = blk;
14753 break;
14754 case DW_FORM_data2:
14755 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14756 info_ptr += 2;
14757 break;
14758 case DW_FORM_data4:
14759 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14760 info_ptr += 4;
14761 break;
14762 case DW_FORM_data8:
14763 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14764 info_ptr += 8;
14765 break;
14766 case DW_FORM_sec_offset:
14767 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14768 info_ptr += bytes_read;
14769 break;
14770 case DW_FORM_string:
14771 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14772 DW_STRING_IS_CANONICAL (attr) = 0;
14773 info_ptr += bytes_read;
14774 break;
14775 case DW_FORM_strp:
14776 if (!cu->per_cu->is_dwz)
14777 {
14778 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14779 &bytes_read);
14780 DW_STRING_IS_CANONICAL (attr) = 0;
14781 info_ptr += bytes_read;
14782 break;
14783 }
14784 /* FALLTHROUGH */
14785 case DW_FORM_GNU_strp_alt:
14786 {
14787 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14788 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14789 &bytes_read);
14790
14791 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14792 DW_STRING_IS_CANONICAL (attr) = 0;
14793 info_ptr += bytes_read;
14794 }
14795 break;
14796 case DW_FORM_exprloc:
14797 case DW_FORM_block:
14798 blk = dwarf_alloc_block (cu);
14799 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14800 info_ptr += bytes_read;
14801 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14802 info_ptr += blk->size;
14803 DW_BLOCK (attr) = blk;
14804 break;
14805 case DW_FORM_block1:
14806 blk = dwarf_alloc_block (cu);
14807 blk->size = read_1_byte (abfd, info_ptr);
14808 info_ptr += 1;
14809 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14810 info_ptr += blk->size;
14811 DW_BLOCK (attr) = blk;
14812 break;
14813 case DW_FORM_data1:
14814 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14815 info_ptr += 1;
14816 break;
14817 case DW_FORM_flag:
14818 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14819 info_ptr += 1;
14820 break;
14821 case DW_FORM_flag_present:
14822 DW_UNSND (attr) = 1;
14823 break;
14824 case DW_FORM_sdata:
14825 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14826 info_ptr += bytes_read;
14827 break;
14828 case DW_FORM_udata:
14829 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14830 info_ptr += bytes_read;
14831 break;
14832 case DW_FORM_ref1:
14833 DW_UNSND (attr) = (cu->header.offset.sect_off
14834 + read_1_byte (abfd, info_ptr));
14835 info_ptr += 1;
14836 break;
14837 case DW_FORM_ref2:
14838 DW_UNSND (attr) = (cu->header.offset.sect_off
14839 + read_2_bytes (abfd, info_ptr));
14840 info_ptr += 2;
14841 break;
14842 case DW_FORM_ref4:
14843 DW_UNSND (attr) = (cu->header.offset.sect_off
14844 + read_4_bytes (abfd, info_ptr));
14845 info_ptr += 4;
14846 break;
14847 case DW_FORM_ref8:
14848 DW_UNSND (attr) = (cu->header.offset.sect_off
14849 + read_8_bytes (abfd, info_ptr));
14850 info_ptr += 8;
14851 break;
14852 case DW_FORM_ref_sig8:
14853 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14854 info_ptr += 8;
14855 break;
14856 case DW_FORM_ref_udata:
14857 DW_UNSND (attr) = (cu->header.offset.sect_off
14858 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14859 info_ptr += bytes_read;
14860 break;
14861 case DW_FORM_indirect:
14862 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14863 info_ptr += bytes_read;
14864 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14865 break;
14866 case DW_FORM_GNU_addr_index:
14867 if (reader->dwo_file == NULL)
14868 {
14869 /* For now flag a hard error.
14870 Later we can turn this into a complaint. */
14871 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14872 dwarf_form_name (form),
14873 bfd_get_filename (abfd));
14874 }
14875 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14876 info_ptr += bytes_read;
14877 break;
14878 case DW_FORM_GNU_str_index:
14879 if (reader->dwo_file == NULL)
14880 {
14881 /* For now flag a hard error.
14882 Later we can turn this into a complaint if warranted. */
14883 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14884 dwarf_form_name (form),
14885 bfd_get_filename (abfd));
14886 }
14887 {
14888 ULONGEST str_index =
14889 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14890
14891 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14892 DW_STRING_IS_CANONICAL (attr) = 0;
14893 info_ptr += bytes_read;
14894 }
14895 break;
14896 default:
14897 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14898 dwarf_form_name (form),
14899 bfd_get_filename (abfd));
14900 }
14901
14902 /* Super hack. */
14903 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
14904 attr->form = DW_FORM_GNU_ref_alt;
14905
14906 /* We have seen instances where the compiler tried to emit a byte
14907 size attribute of -1 which ended up being encoded as an unsigned
14908 0xffffffff. Although 0xffffffff is technically a valid size value,
14909 an object of this size seems pretty unlikely so we can relatively
14910 safely treat these cases as if the size attribute was invalid and
14911 treat them as zero by default. */
14912 if (attr->name == DW_AT_byte_size
14913 && form == DW_FORM_data4
14914 && DW_UNSND (attr) >= 0xffffffff)
14915 {
14916 complaint
14917 (&symfile_complaints,
14918 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14919 hex_string (DW_UNSND (attr)));
14920 DW_UNSND (attr) = 0;
14921 }
14922
14923 return info_ptr;
14924 }
14925
14926 /* Read an attribute described by an abbreviated attribute. */
14927
14928 static const gdb_byte *
14929 read_attribute (const struct die_reader_specs *reader,
14930 struct attribute *attr, struct attr_abbrev *abbrev,
14931 const gdb_byte *info_ptr)
14932 {
14933 attr->name = abbrev->name;
14934 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14935 }
14936
14937 /* Read dwarf information from a buffer. */
14938
14939 static unsigned int
14940 read_1_byte (bfd *abfd, const gdb_byte *buf)
14941 {
14942 return bfd_get_8 (abfd, buf);
14943 }
14944
14945 static int
14946 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14947 {
14948 return bfd_get_signed_8 (abfd, buf);
14949 }
14950
14951 static unsigned int
14952 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14953 {
14954 return bfd_get_16 (abfd, buf);
14955 }
14956
14957 static int
14958 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14959 {
14960 return bfd_get_signed_16 (abfd, buf);
14961 }
14962
14963 static unsigned int
14964 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14965 {
14966 return bfd_get_32 (abfd, buf);
14967 }
14968
14969 static int
14970 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14971 {
14972 return bfd_get_signed_32 (abfd, buf);
14973 }
14974
14975 static ULONGEST
14976 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14977 {
14978 return bfd_get_64 (abfd, buf);
14979 }
14980
14981 static CORE_ADDR
14982 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14983 unsigned int *bytes_read)
14984 {
14985 struct comp_unit_head *cu_header = &cu->header;
14986 CORE_ADDR retval = 0;
14987
14988 if (cu_header->signed_addr_p)
14989 {
14990 switch (cu_header->addr_size)
14991 {
14992 case 2:
14993 retval = bfd_get_signed_16 (abfd, buf);
14994 break;
14995 case 4:
14996 retval = bfd_get_signed_32 (abfd, buf);
14997 break;
14998 case 8:
14999 retval = bfd_get_signed_64 (abfd, buf);
15000 break;
15001 default:
15002 internal_error (__FILE__, __LINE__,
15003 _("read_address: bad switch, signed [in module %s]"),
15004 bfd_get_filename (abfd));
15005 }
15006 }
15007 else
15008 {
15009 switch (cu_header->addr_size)
15010 {
15011 case 2:
15012 retval = bfd_get_16 (abfd, buf);
15013 break;
15014 case 4:
15015 retval = bfd_get_32 (abfd, buf);
15016 break;
15017 case 8:
15018 retval = bfd_get_64 (abfd, buf);
15019 break;
15020 default:
15021 internal_error (__FILE__, __LINE__,
15022 _("read_address: bad switch, "
15023 "unsigned [in module %s]"),
15024 bfd_get_filename (abfd));
15025 }
15026 }
15027
15028 *bytes_read = cu_header->addr_size;
15029 return retval;
15030 }
15031
15032 /* Read the initial length from a section. The (draft) DWARF 3
15033 specification allows the initial length to take up either 4 bytes
15034 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15035 bytes describe the length and all offsets will be 8 bytes in length
15036 instead of 4.
15037
15038 An older, non-standard 64-bit format is also handled by this
15039 function. The older format in question stores the initial length
15040 as an 8-byte quantity without an escape value. Lengths greater
15041 than 2^32 aren't very common which means that the initial 4 bytes
15042 is almost always zero. Since a length value of zero doesn't make
15043 sense for the 32-bit format, this initial zero can be considered to
15044 be an escape value which indicates the presence of the older 64-bit
15045 format. As written, the code can't detect (old format) lengths
15046 greater than 4GB. If it becomes necessary to handle lengths
15047 somewhat larger than 4GB, we could allow other small values (such
15048 as the non-sensical values of 1, 2, and 3) to also be used as
15049 escape values indicating the presence of the old format.
15050
15051 The value returned via bytes_read should be used to increment the
15052 relevant pointer after calling read_initial_length().
15053
15054 [ Note: read_initial_length() and read_offset() are based on the
15055 document entitled "DWARF Debugging Information Format", revision
15056 3, draft 8, dated November 19, 2001. This document was obtained
15057 from:
15058
15059 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15060
15061 This document is only a draft and is subject to change. (So beware.)
15062
15063 Details regarding the older, non-standard 64-bit format were
15064 determined empirically by examining 64-bit ELF files produced by
15065 the SGI toolchain on an IRIX 6.5 machine.
15066
15067 - Kevin, July 16, 2002
15068 ] */
15069
15070 static LONGEST
15071 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15072 {
15073 LONGEST length = bfd_get_32 (abfd, buf);
15074
15075 if (length == 0xffffffff)
15076 {
15077 length = bfd_get_64 (abfd, buf + 4);
15078 *bytes_read = 12;
15079 }
15080 else if (length == 0)
15081 {
15082 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15083 length = bfd_get_64 (abfd, buf);
15084 *bytes_read = 8;
15085 }
15086 else
15087 {
15088 *bytes_read = 4;
15089 }
15090
15091 return length;
15092 }
15093
15094 /* Cover function for read_initial_length.
15095 Returns the length of the object at BUF, and stores the size of the
15096 initial length in *BYTES_READ and stores the size that offsets will be in
15097 *OFFSET_SIZE.
15098 If the initial length size is not equivalent to that specified in
15099 CU_HEADER then issue a complaint.
15100 This is useful when reading non-comp-unit headers. */
15101
15102 static LONGEST
15103 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15104 const struct comp_unit_head *cu_header,
15105 unsigned int *bytes_read,
15106 unsigned int *offset_size)
15107 {
15108 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15109
15110 gdb_assert (cu_header->initial_length_size == 4
15111 || cu_header->initial_length_size == 8
15112 || cu_header->initial_length_size == 12);
15113
15114 if (cu_header->initial_length_size != *bytes_read)
15115 complaint (&symfile_complaints,
15116 _("intermixed 32-bit and 64-bit DWARF sections"));
15117
15118 *offset_size = (*bytes_read == 4) ? 4 : 8;
15119 return length;
15120 }
15121
15122 /* Read an offset from the data stream. The size of the offset is
15123 given by cu_header->offset_size. */
15124
15125 static LONGEST
15126 read_offset (bfd *abfd, const gdb_byte *buf,
15127 const struct comp_unit_head *cu_header,
15128 unsigned int *bytes_read)
15129 {
15130 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15131
15132 *bytes_read = cu_header->offset_size;
15133 return offset;
15134 }
15135
15136 /* Read an offset from the data stream. */
15137
15138 static LONGEST
15139 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15140 {
15141 LONGEST retval = 0;
15142
15143 switch (offset_size)
15144 {
15145 case 4:
15146 retval = bfd_get_32 (abfd, buf);
15147 break;
15148 case 8:
15149 retval = bfd_get_64 (abfd, buf);
15150 break;
15151 default:
15152 internal_error (__FILE__, __LINE__,
15153 _("read_offset_1: bad switch [in module %s]"),
15154 bfd_get_filename (abfd));
15155 }
15156
15157 return retval;
15158 }
15159
15160 static const gdb_byte *
15161 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15162 {
15163 /* If the size of a host char is 8 bits, we can return a pointer
15164 to the buffer, otherwise we have to copy the data to a buffer
15165 allocated on the temporary obstack. */
15166 gdb_assert (HOST_CHAR_BIT == 8);
15167 return buf;
15168 }
15169
15170 static const char *
15171 read_direct_string (bfd *abfd, const gdb_byte *buf,
15172 unsigned int *bytes_read_ptr)
15173 {
15174 /* If the size of a host char is 8 bits, we can return a pointer
15175 to the string, otherwise we have to copy the string to a buffer
15176 allocated on the temporary obstack. */
15177 gdb_assert (HOST_CHAR_BIT == 8);
15178 if (*buf == '\0')
15179 {
15180 *bytes_read_ptr = 1;
15181 return NULL;
15182 }
15183 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15184 return (const char *) buf;
15185 }
15186
15187 static const char *
15188 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15189 {
15190 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15191 if (dwarf2_per_objfile->str.buffer == NULL)
15192 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15193 bfd_get_filename (abfd));
15194 if (str_offset >= dwarf2_per_objfile->str.size)
15195 error (_("DW_FORM_strp pointing outside of "
15196 ".debug_str section [in module %s]"),
15197 bfd_get_filename (abfd));
15198 gdb_assert (HOST_CHAR_BIT == 8);
15199 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15200 return NULL;
15201 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15202 }
15203
15204 /* Read a string at offset STR_OFFSET in the .debug_str section from
15205 the .dwz file DWZ. Throw an error if the offset is too large. If
15206 the string consists of a single NUL byte, return NULL; otherwise
15207 return a pointer to the string. */
15208
15209 static const char *
15210 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15211 {
15212 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15213
15214 if (dwz->str.buffer == NULL)
15215 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15216 "section [in module %s]"),
15217 bfd_get_filename (dwz->dwz_bfd));
15218 if (str_offset >= dwz->str.size)
15219 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15220 ".debug_str section [in module %s]"),
15221 bfd_get_filename (dwz->dwz_bfd));
15222 gdb_assert (HOST_CHAR_BIT == 8);
15223 if (dwz->str.buffer[str_offset] == '\0')
15224 return NULL;
15225 return (const char *) (dwz->str.buffer + str_offset);
15226 }
15227
15228 static const char *
15229 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15230 const struct comp_unit_head *cu_header,
15231 unsigned int *bytes_read_ptr)
15232 {
15233 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15234
15235 return read_indirect_string_at_offset (abfd, str_offset);
15236 }
15237
15238 static ULONGEST
15239 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15240 unsigned int *bytes_read_ptr)
15241 {
15242 ULONGEST result;
15243 unsigned int num_read;
15244 int i, shift;
15245 unsigned char byte;
15246
15247 result = 0;
15248 shift = 0;
15249 num_read = 0;
15250 i = 0;
15251 while (1)
15252 {
15253 byte = bfd_get_8 (abfd, buf);
15254 buf++;
15255 num_read++;
15256 result |= ((ULONGEST) (byte & 127) << shift);
15257 if ((byte & 128) == 0)
15258 {
15259 break;
15260 }
15261 shift += 7;
15262 }
15263 *bytes_read_ptr = num_read;
15264 return result;
15265 }
15266
15267 static LONGEST
15268 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15269 unsigned int *bytes_read_ptr)
15270 {
15271 LONGEST result;
15272 int i, shift, num_read;
15273 unsigned char byte;
15274
15275 result = 0;
15276 shift = 0;
15277 num_read = 0;
15278 i = 0;
15279 while (1)
15280 {
15281 byte = bfd_get_8 (abfd, buf);
15282 buf++;
15283 num_read++;
15284 result |= ((LONGEST) (byte & 127) << shift);
15285 shift += 7;
15286 if ((byte & 128) == 0)
15287 {
15288 break;
15289 }
15290 }
15291 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15292 result |= -(((LONGEST) 1) << shift);
15293 *bytes_read_ptr = num_read;
15294 return result;
15295 }
15296
15297 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15298 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15299 ADDR_SIZE is the size of addresses from the CU header. */
15300
15301 static CORE_ADDR
15302 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15303 {
15304 struct objfile *objfile = dwarf2_per_objfile->objfile;
15305 bfd *abfd = objfile->obfd;
15306 const gdb_byte *info_ptr;
15307
15308 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15309 if (dwarf2_per_objfile->addr.buffer == NULL)
15310 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15311 objfile->name);
15312 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15313 error (_("DW_FORM_addr_index pointing outside of "
15314 ".debug_addr section [in module %s]"),
15315 objfile->name);
15316 info_ptr = (dwarf2_per_objfile->addr.buffer
15317 + addr_base + addr_index * addr_size);
15318 if (addr_size == 4)
15319 return bfd_get_32 (abfd, info_ptr);
15320 else
15321 return bfd_get_64 (abfd, info_ptr);
15322 }
15323
15324 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15325
15326 static CORE_ADDR
15327 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15328 {
15329 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15330 }
15331
15332 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15333
15334 static CORE_ADDR
15335 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15336 unsigned int *bytes_read)
15337 {
15338 bfd *abfd = cu->objfile->obfd;
15339 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15340
15341 return read_addr_index (cu, addr_index);
15342 }
15343
15344 /* Data structure to pass results from dwarf2_read_addr_index_reader
15345 back to dwarf2_read_addr_index. */
15346
15347 struct dwarf2_read_addr_index_data
15348 {
15349 ULONGEST addr_base;
15350 int addr_size;
15351 };
15352
15353 /* die_reader_func for dwarf2_read_addr_index. */
15354
15355 static void
15356 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15357 const gdb_byte *info_ptr,
15358 struct die_info *comp_unit_die,
15359 int has_children,
15360 void *data)
15361 {
15362 struct dwarf2_cu *cu = reader->cu;
15363 struct dwarf2_read_addr_index_data *aidata =
15364 (struct dwarf2_read_addr_index_data *) data;
15365
15366 aidata->addr_base = cu->addr_base;
15367 aidata->addr_size = cu->header.addr_size;
15368 }
15369
15370 /* Given an index in .debug_addr, fetch the value.
15371 NOTE: This can be called during dwarf expression evaluation,
15372 long after the debug information has been read, and thus per_cu->cu
15373 may no longer exist. */
15374
15375 CORE_ADDR
15376 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15377 unsigned int addr_index)
15378 {
15379 struct objfile *objfile = per_cu->objfile;
15380 struct dwarf2_cu *cu = per_cu->cu;
15381 ULONGEST addr_base;
15382 int addr_size;
15383
15384 /* This is intended to be called from outside this file. */
15385 dw2_setup (objfile);
15386
15387 /* We need addr_base and addr_size.
15388 If we don't have PER_CU->cu, we have to get it.
15389 Nasty, but the alternative is storing the needed info in PER_CU,
15390 which at this point doesn't seem justified: it's not clear how frequently
15391 it would get used and it would increase the size of every PER_CU.
15392 Entry points like dwarf2_per_cu_addr_size do a similar thing
15393 so we're not in uncharted territory here.
15394 Alas we need to be a bit more complicated as addr_base is contained
15395 in the DIE.
15396
15397 We don't need to read the entire CU(/TU).
15398 We just need the header and top level die.
15399
15400 IWBN to use the aging mechanism to let us lazily later discard the CU.
15401 For now we skip this optimization. */
15402
15403 if (cu != NULL)
15404 {
15405 addr_base = cu->addr_base;
15406 addr_size = cu->header.addr_size;
15407 }
15408 else
15409 {
15410 struct dwarf2_read_addr_index_data aidata;
15411
15412 /* Note: We can't use init_cutu_and_read_dies_simple here,
15413 we need addr_base. */
15414 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15415 dwarf2_read_addr_index_reader, &aidata);
15416 addr_base = aidata.addr_base;
15417 addr_size = aidata.addr_size;
15418 }
15419
15420 return read_addr_index_1 (addr_index, addr_base, addr_size);
15421 }
15422
15423 /* Given a DW_AT_str_index, fetch the string. */
15424
15425 static const char *
15426 read_str_index (const struct die_reader_specs *reader,
15427 struct dwarf2_cu *cu, ULONGEST str_index)
15428 {
15429 struct objfile *objfile = dwarf2_per_objfile->objfile;
15430 const char *dwo_name = objfile->name;
15431 bfd *abfd = objfile->obfd;
15432 struct dwo_sections *sections = &reader->dwo_file->sections;
15433 const gdb_byte *info_ptr;
15434 ULONGEST str_offset;
15435
15436 dwarf2_read_section (objfile, &sections->str);
15437 dwarf2_read_section (objfile, &sections->str_offsets);
15438 if (sections->str.buffer == NULL)
15439 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15440 " in CU at offset 0x%lx [in module %s]"),
15441 (long) cu->header.offset.sect_off, dwo_name);
15442 if (sections->str_offsets.buffer == NULL)
15443 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15444 " in CU at offset 0x%lx [in module %s]"),
15445 (long) cu->header.offset.sect_off, dwo_name);
15446 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15447 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15448 " section in CU at offset 0x%lx [in module %s]"),
15449 (long) cu->header.offset.sect_off, dwo_name);
15450 info_ptr = (sections->str_offsets.buffer
15451 + str_index * cu->header.offset_size);
15452 if (cu->header.offset_size == 4)
15453 str_offset = bfd_get_32 (abfd, info_ptr);
15454 else
15455 str_offset = bfd_get_64 (abfd, info_ptr);
15456 if (str_offset >= sections->str.size)
15457 error (_("Offset from DW_FORM_str_index pointing outside of"
15458 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15459 (long) cu->header.offset.sect_off, dwo_name);
15460 return (const char *) (sections->str.buffer + str_offset);
15461 }
15462
15463 /* Return the length of an LEB128 number in BUF. */
15464
15465 static int
15466 leb128_size (const gdb_byte *buf)
15467 {
15468 const gdb_byte *begin = buf;
15469 gdb_byte byte;
15470
15471 while (1)
15472 {
15473 byte = *buf++;
15474 if ((byte & 128) == 0)
15475 return buf - begin;
15476 }
15477 }
15478
15479 static void
15480 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15481 {
15482 switch (lang)
15483 {
15484 case DW_LANG_C89:
15485 case DW_LANG_C99:
15486 case DW_LANG_C:
15487 case DW_LANG_UPC:
15488 cu->language = language_c;
15489 break;
15490 case DW_LANG_C_plus_plus:
15491 cu->language = language_cplus;
15492 break;
15493 case DW_LANG_D:
15494 cu->language = language_d;
15495 break;
15496 case DW_LANG_Fortran77:
15497 case DW_LANG_Fortran90:
15498 case DW_LANG_Fortran95:
15499 cu->language = language_fortran;
15500 break;
15501 case DW_LANG_Go:
15502 cu->language = language_go;
15503 break;
15504 case DW_LANG_Mips_Assembler:
15505 cu->language = language_asm;
15506 break;
15507 case DW_LANG_Java:
15508 cu->language = language_java;
15509 break;
15510 case DW_LANG_Ada83:
15511 case DW_LANG_Ada95:
15512 cu->language = language_ada;
15513 break;
15514 case DW_LANG_Modula2:
15515 cu->language = language_m2;
15516 break;
15517 case DW_LANG_Pascal83:
15518 cu->language = language_pascal;
15519 break;
15520 case DW_LANG_ObjC:
15521 cu->language = language_objc;
15522 break;
15523 case DW_LANG_Cobol74:
15524 case DW_LANG_Cobol85:
15525 default:
15526 cu->language = language_minimal;
15527 break;
15528 }
15529 cu->language_defn = language_def (cu->language);
15530 }
15531
15532 /* Return the named attribute or NULL if not there. */
15533
15534 static struct attribute *
15535 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15536 {
15537 for (;;)
15538 {
15539 unsigned int i;
15540 struct attribute *spec = NULL;
15541
15542 for (i = 0; i < die->num_attrs; ++i)
15543 {
15544 if (die->attrs[i].name == name)
15545 return &die->attrs[i];
15546 if (die->attrs[i].name == DW_AT_specification
15547 || die->attrs[i].name == DW_AT_abstract_origin)
15548 spec = &die->attrs[i];
15549 }
15550
15551 if (!spec)
15552 break;
15553
15554 die = follow_die_ref (die, spec, &cu);
15555 }
15556
15557 return NULL;
15558 }
15559
15560 /* Return the named attribute or NULL if not there,
15561 but do not follow DW_AT_specification, etc.
15562 This is for use in contexts where we're reading .debug_types dies.
15563 Following DW_AT_specification, DW_AT_abstract_origin will take us
15564 back up the chain, and we want to go down. */
15565
15566 static struct attribute *
15567 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15568 {
15569 unsigned int i;
15570
15571 for (i = 0; i < die->num_attrs; ++i)
15572 if (die->attrs[i].name == name)
15573 return &die->attrs[i];
15574
15575 return NULL;
15576 }
15577
15578 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15579 and holds a non-zero value. This function should only be used for
15580 DW_FORM_flag or DW_FORM_flag_present attributes. */
15581
15582 static int
15583 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15584 {
15585 struct attribute *attr = dwarf2_attr (die, name, cu);
15586
15587 return (attr && DW_UNSND (attr));
15588 }
15589
15590 static int
15591 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15592 {
15593 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15594 which value is non-zero. However, we have to be careful with
15595 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15596 (via dwarf2_flag_true_p) follows this attribute. So we may
15597 end up accidently finding a declaration attribute that belongs
15598 to a different DIE referenced by the specification attribute,
15599 even though the given DIE does not have a declaration attribute. */
15600 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15601 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15602 }
15603
15604 /* Return the die giving the specification for DIE, if there is
15605 one. *SPEC_CU is the CU containing DIE on input, and the CU
15606 containing the return value on output. If there is no
15607 specification, but there is an abstract origin, that is
15608 returned. */
15609
15610 static struct die_info *
15611 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15612 {
15613 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15614 *spec_cu);
15615
15616 if (spec_attr == NULL)
15617 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15618
15619 if (spec_attr == NULL)
15620 return NULL;
15621 else
15622 return follow_die_ref (die, spec_attr, spec_cu);
15623 }
15624
15625 /* Free the line_header structure *LH, and any arrays and strings it
15626 refers to.
15627 NOTE: This is also used as a "cleanup" function. */
15628
15629 static void
15630 free_line_header (struct line_header *lh)
15631 {
15632 if (lh->standard_opcode_lengths)
15633 xfree (lh->standard_opcode_lengths);
15634
15635 /* Remember that all the lh->file_names[i].name pointers are
15636 pointers into debug_line_buffer, and don't need to be freed. */
15637 if (lh->file_names)
15638 xfree (lh->file_names);
15639
15640 /* Similarly for the include directory names. */
15641 if (lh->include_dirs)
15642 xfree (lh->include_dirs);
15643
15644 xfree (lh);
15645 }
15646
15647 /* Add an entry to LH's include directory table. */
15648
15649 static void
15650 add_include_dir (struct line_header *lh, const char *include_dir)
15651 {
15652 /* Grow the array if necessary. */
15653 if (lh->include_dirs_size == 0)
15654 {
15655 lh->include_dirs_size = 1; /* for testing */
15656 lh->include_dirs = xmalloc (lh->include_dirs_size
15657 * sizeof (*lh->include_dirs));
15658 }
15659 else if (lh->num_include_dirs >= lh->include_dirs_size)
15660 {
15661 lh->include_dirs_size *= 2;
15662 lh->include_dirs = xrealloc (lh->include_dirs,
15663 (lh->include_dirs_size
15664 * sizeof (*lh->include_dirs)));
15665 }
15666
15667 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15668 }
15669
15670 /* Add an entry to LH's file name table. */
15671
15672 static void
15673 add_file_name (struct line_header *lh,
15674 const char *name,
15675 unsigned int dir_index,
15676 unsigned int mod_time,
15677 unsigned int length)
15678 {
15679 struct file_entry *fe;
15680
15681 /* Grow the array if necessary. */
15682 if (lh->file_names_size == 0)
15683 {
15684 lh->file_names_size = 1; /* for testing */
15685 lh->file_names = xmalloc (lh->file_names_size
15686 * sizeof (*lh->file_names));
15687 }
15688 else if (lh->num_file_names >= lh->file_names_size)
15689 {
15690 lh->file_names_size *= 2;
15691 lh->file_names = xrealloc (lh->file_names,
15692 (lh->file_names_size
15693 * sizeof (*lh->file_names)));
15694 }
15695
15696 fe = &lh->file_names[lh->num_file_names++];
15697 fe->name = name;
15698 fe->dir_index = dir_index;
15699 fe->mod_time = mod_time;
15700 fe->length = length;
15701 fe->included_p = 0;
15702 fe->symtab = NULL;
15703 }
15704
15705 /* A convenience function to find the proper .debug_line section for a
15706 CU. */
15707
15708 static struct dwarf2_section_info *
15709 get_debug_line_section (struct dwarf2_cu *cu)
15710 {
15711 struct dwarf2_section_info *section;
15712
15713 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15714 DWO file. */
15715 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15716 section = &cu->dwo_unit->dwo_file->sections.line;
15717 else if (cu->per_cu->is_dwz)
15718 {
15719 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15720
15721 section = &dwz->line;
15722 }
15723 else
15724 section = &dwarf2_per_objfile->line;
15725
15726 return section;
15727 }
15728
15729 /* Read the statement program header starting at OFFSET in
15730 .debug_line, or .debug_line.dwo. Return a pointer
15731 to a struct line_header, allocated using xmalloc.
15732
15733 NOTE: the strings in the include directory and file name tables of
15734 the returned object point into the dwarf line section buffer,
15735 and must not be freed. */
15736
15737 static struct line_header *
15738 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15739 {
15740 struct cleanup *back_to;
15741 struct line_header *lh;
15742 const gdb_byte *line_ptr;
15743 unsigned int bytes_read, offset_size;
15744 int i;
15745 const char *cur_dir, *cur_file;
15746 struct dwarf2_section_info *section;
15747 bfd *abfd;
15748
15749 section = get_debug_line_section (cu);
15750 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15751 if (section->buffer == NULL)
15752 {
15753 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15754 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15755 else
15756 complaint (&symfile_complaints, _("missing .debug_line section"));
15757 return 0;
15758 }
15759
15760 /* We can't do this until we know the section is non-empty.
15761 Only then do we know we have such a section. */
15762 abfd = section->asection->owner;
15763
15764 /* Make sure that at least there's room for the total_length field.
15765 That could be 12 bytes long, but we're just going to fudge that. */
15766 if (offset + 4 >= section->size)
15767 {
15768 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15769 return 0;
15770 }
15771
15772 lh = xmalloc (sizeof (*lh));
15773 memset (lh, 0, sizeof (*lh));
15774 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15775 (void *) lh);
15776
15777 line_ptr = section->buffer + offset;
15778
15779 /* Read in the header. */
15780 lh->total_length =
15781 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15782 &bytes_read, &offset_size);
15783 line_ptr += bytes_read;
15784 if (line_ptr + lh->total_length > (section->buffer + section->size))
15785 {
15786 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15787 do_cleanups (back_to);
15788 return 0;
15789 }
15790 lh->statement_program_end = line_ptr + lh->total_length;
15791 lh->version = read_2_bytes (abfd, line_ptr);
15792 line_ptr += 2;
15793 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15794 line_ptr += offset_size;
15795 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15796 line_ptr += 1;
15797 if (lh->version >= 4)
15798 {
15799 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15800 line_ptr += 1;
15801 }
15802 else
15803 lh->maximum_ops_per_instruction = 1;
15804
15805 if (lh->maximum_ops_per_instruction == 0)
15806 {
15807 lh->maximum_ops_per_instruction = 1;
15808 complaint (&symfile_complaints,
15809 _("invalid maximum_ops_per_instruction "
15810 "in `.debug_line' section"));
15811 }
15812
15813 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15814 line_ptr += 1;
15815 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15816 line_ptr += 1;
15817 lh->line_range = read_1_byte (abfd, line_ptr);
15818 line_ptr += 1;
15819 lh->opcode_base = read_1_byte (abfd, line_ptr);
15820 line_ptr += 1;
15821 lh->standard_opcode_lengths
15822 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15823
15824 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15825 for (i = 1; i < lh->opcode_base; ++i)
15826 {
15827 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15828 line_ptr += 1;
15829 }
15830
15831 /* Read directory table. */
15832 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15833 {
15834 line_ptr += bytes_read;
15835 add_include_dir (lh, cur_dir);
15836 }
15837 line_ptr += bytes_read;
15838
15839 /* Read file name table. */
15840 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15841 {
15842 unsigned int dir_index, mod_time, length;
15843
15844 line_ptr += bytes_read;
15845 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15846 line_ptr += bytes_read;
15847 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15848 line_ptr += bytes_read;
15849 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15850 line_ptr += bytes_read;
15851
15852 add_file_name (lh, cur_file, dir_index, mod_time, length);
15853 }
15854 line_ptr += bytes_read;
15855 lh->statement_program_start = line_ptr;
15856
15857 if (line_ptr > (section->buffer + section->size))
15858 complaint (&symfile_complaints,
15859 _("line number info header doesn't "
15860 "fit in `.debug_line' section"));
15861
15862 discard_cleanups (back_to);
15863 return lh;
15864 }
15865
15866 /* Subroutine of dwarf_decode_lines to simplify it.
15867 Return the file name of the psymtab for included file FILE_INDEX
15868 in line header LH of PST.
15869 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15870 If space for the result is malloc'd, it will be freed by a cleanup.
15871 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15872
15873 The function creates dangling cleanup registration. */
15874
15875 static const char *
15876 psymtab_include_file_name (const struct line_header *lh, int file_index,
15877 const struct partial_symtab *pst,
15878 const char *comp_dir)
15879 {
15880 const struct file_entry fe = lh->file_names [file_index];
15881 const char *include_name = fe.name;
15882 const char *include_name_to_compare = include_name;
15883 const char *dir_name = NULL;
15884 const char *pst_filename;
15885 char *copied_name = NULL;
15886 int file_is_pst;
15887
15888 if (fe.dir_index)
15889 dir_name = lh->include_dirs[fe.dir_index - 1];
15890
15891 if (!IS_ABSOLUTE_PATH (include_name)
15892 && (dir_name != NULL || comp_dir != NULL))
15893 {
15894 /* Avoid creating a duplicate psymtab for PST.
15895 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15896 Before we do the comparison, however, we need to account
15897 for DIR_NAME and COMP_DIR.
15898 First prepend dir_name (if non-NULL). If we still don't
15899 have an absolute path prepend comp_dir (if non-NULL).
15900 However, the directory we record in the include-file's
15901 psymtab does not contain COMP_DIR (to match the
15902 corresponding symtab(s)).
15903
15904 Example:
15905
15906 bash$ cd /tmp
15907 bash$ gcc -g ./hello.c
15908 include_name = "hello.c"
15909 dir_name = "."
15910 DW_AT_comp_dir = comp_dir = "/tmp"
15911 DW_AT_name = "./hello.c" */
15912
15913 if (dir_name != NULL)
15914 {
15915 char *tem = concat (dir_name, SLASH_STRING,
15916 include_name, (char *)NULL);
15917
15918 make_cleanup (xfree, tem);
15919 include_name = tem;
15920 include_name_to_compare = include_name;
15921 }
15922 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15923 {
15924 char *tem = concat (comp_dir, SLASH_STRING,
15925 include_name, (char *)NULL);
15926
15927 make_cleanup (xfree, tem);
15928 include_name_to_compare = tem;
15929 }
15930 }
15931
15932 pst_filename = pst->filename;
15933 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15934 {
15935 copied_name = concat (pst->dirname, SLASH_STRING,
15936 pst_filename, (char *)NULL);
15937 pst_filename = copied_name;
15938 }
15939
15940 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15941
15942 if (copied_name != NULL)
15943 xfree (copied_name);
15944
15945 if (file_is_pst)
15946 return NULL;
15947 return include_name;
15948 }
15949
15950 /* Ignore this record_line request. */
15951
15952 static void
15953 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15954 {
15955 return;
15956 }
15957
15958 /* Subroutine of dwarf_decode_lines to simplify it.
15959 Process the line number information in LH. */
15960
15961 static void
15962 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15963 struct dwarf2_cu *cu, struct partial_symtab *pst)
15964 {
15965 const gdb_byte *line_ptr, *extended_end;
15966 const gdb_byte *line_end;
15967 unsigned int bytes_read, extended_len;
15968 unsigned char op_code, extended_op, adj_opcode;
15969 CORE_ADDR baseaddr;
15970 struct objfile *objfile = cu->objfile;
15971 bfd *abfd = objfile->obfd;
15972 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15973 const int decode_for_pst_p = (pst != NULL);
15974 struct subfile *last_subfile = NULL;
15975 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15976 = record_line;
15977
15978 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15979
15980 line_ptr = lh->statement_program_start;
15981 line_end = lh->statement_program_end;
15982
15983 /* Read the statement sequences until there's nothing left. */
15984 while (line_ptr < line_end)
15985 {
15986 /* state machine registers */
15987 CORE_ADDR address = 0;
15988 unsigned int file = 1;
15989 unsigned int line = 1;
15990 unsigned int column = 0;
15991 int is_stmt = lh->default_is_stmt;
15992 int basic_block = 0;
15993 int end_sequence = 0;
15994 CORE_ADDR addr;
15995 unsigned char op_index = 0;
15996
15997 if (!decode_for_pst_p && lh->num_file_names >= file)
15998 {
15999 /* Start a subfile for the current file of the state machine. */
16000 /* lh->include_dirs and lh->file_names are 0-based, but the
16001 directory and file name numbers in the statement program
16002 are 1-based. */
16003 struct file_entry *fe = &lh->file_names[file - 1];
16004 const char *dir = NULL;
16005
16006 if (fe->dir_index)
16007 dir = lh->include_dirs[fe->dir_index - 1];
16008
16009 dwarf2_start_subfile (fe->name, dir, comp_dir);
16010 }
16011
16012 /* Decode the table. */
16013 while (!end_sequence)
16014 {
16015 op_code = read_1_byte (abfd, line_ptr);
16016 line_ptr += 1;
16017 if (line_ptr > line_end)
16018 {
16019 dwarf2_debug_line_missing_end_sequence_complaint ();
16020 break;
16021 }
16022
16023 if (op_code >= lh->opcode_base)
16024 {
16025 /* Special operand. */
16026 adj_opcode = op_code - lh->opcode_base;
16027 address += (((op_index + (adj_opcode / lh->line_range))
16028 / lh->maximum_ops_per_instruction)
16029 * lh->minimum_instruction_length);
16030 op_index = ((op_index + (adj_opcode / lh->line_range))
16031 % lh->maximum_ops_per_instruction);
16032 line += lh->line_base + (adj_opcode % lh->line_range);
16033 if (lh->num_file_names < file || file == 0)
16034 dwarf2_debug_line_missing_file_complaint ();
16035 /* For now we ignore lines not starting on an
16036 instruction boundary. */
16037 else if (op_index == 0)
16038 {
16039 lh->file_names[file - 1].included_p = 1;
16040 if (!decode_for_pst_p && is_stmt)
16041 {
16042 if (last_subfile != current_subfile)
16043 {
16044 addr = gdbarch_addr_bits_remove (gdbarch, address);
16045 if (last_subfile)
16046 (*p_record_line) (last_subfile, 0, addr);
16047 last_subfile = current_subfile;
16048 }
16049 /* Append row to matrix using current values. */
16050 addr = gdbarch_addr_bits_remove (gdbarch, address);
16051 (*p_record_line) (current_subfile, line, addr);
16052 }
16053 }
16054 basic_block = 0;
16055 }
16056 else switch (op_code)
16057 {
16058 case DW_LNS_extended_op:
16059 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16060 &bytes_read);
16061 line_ptr += bytes_read;
16062 extended_end = line_ptr + extended_len;
16063 extended_op = read_1_byte (abfd, line_ptr);
16064 line_ptr += 1;
16065 switch (extended_op)
16066 {
16067 case DW_LNE_end_sequence:
16068 p_record_line = record_line;
16069 end_sequence = 1;
16070 break;
16071 case DW_LNE_set_address:
16072 address = read_address (abfd, line_ptr, cu, &bytes_read);
16073
16074 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16075 {
16076 /* This line table is for a function which has been
16077 GCd by the linker. Ignore it. PR gdb/12528 */
16078
16079 long line_offset
16080 = line_ptr - get_debug_line_section (cu)->buffer;
16081
16082 complaint (&symfile_complaints,
16083 _(".debug_line address at offset 0x%lx is 0 "
16084 "[in module %s]"),
16085 line_offset, objfile->name);
16086 p_record_line = noop_record_line;
16087 }
16088
16089 op_index = 0;
16090 line_ptr += bytes_read;
16091 address += baseaddr;
16092 break;
16093 case DW_LNE_define_file:
16094 {
16095 const char *cur_file;
16096 unsigned int dir_index, mod_time, length;
16097
16098 cur_file = read_direct_string (abfd, line_ptr,
16099 &bytes_read);
16100 line_ptr += bytes_read;
16101 dir_index =
16102 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16103 line_ptr += bytes_read;
16104 mod_time =
16105 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16106 line_ptr += bytes_read;
16107 length =
16108 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16109 line_ptr += bytes_read;
16110 add_file_name (lh, cur_file, dir_index, mod_time, length);
16111 }
16112 break;
16113 case DW_LNE_set_discriminator:
16114 /* The discriminator is not interesting to the debugger;
16115 just ignore it. */
16116 line_ptr = extended_end;
16117 break;
16118 default:
16119 complaint (&symfile_complaints,
16120 _("mangled .debug_line section"));
16121 return;
16122 }
16123 /* Make sure that we parsed the extended op correctly. If e.g.
16124 we expected a different address size than the producer used,
16125 we may have read the wrong number of bytes. */
16126 if (line_ptr != extended_end)
16127 {
16128 complaint (&symfile_complaints,
16129 _("mangled .debug_line section"));
16130 return;
16131 }
16132 break;
16133 case DW_LNS_copy:
16134 if (lh->num_file_names < file || file == 0)
16135 dwarf2_debug_line_missing_file_complaint ();
16136 else
16137 {
16138 lh->file_names[file - 1].included_p = 1;
16139 if (!decode_for_pst_p && is_stmt)
16140 {
16141 if (last_subfile != current_subfile)
16142 {
16143 addr = gdbarch_addr_bits_remove (gdbarch, address);
16144 if (last_subfile)
16145 (*p_record_line) (last_subfile, 0, addr);
16146 last_subfile = current_subfile;
16147 }
16148 addr = gdbarch_addr_bits_remove (gdbarch, address);
16149 (*p_record_line) (current_subfile, line, addr);
16150 }
16151 }
16152 basic_block = 0;
16153 break;
16154 case DW_LNS_advance_pc:
16155 {
16156 CORE_ADDR adjust
16157 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16158
16159 address += (((op_index + adjust)
16160 / lh->maximum_ops_per_instruction)
16161 * lh->minimum_instruction_length);
16162 op_index = ((op_index + adjust)
16163 % lh->maximum_ops_per_instruction);
16164 line_ptr += bytes_read;
16165 }
16166 break;
16167 case DW_LNS_advance_line:
16168 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16169 line_ptr += bytes_read;
16170 break;
16171 case DW_LNS_set_file:
16172 {
16173 /* The arrays lh->include_dirs and lh->file_names are
16174 0-based, but the directory and file name numbers in
16175 the statement program are 1-based. */
16176 struct file_entry *fe;
16177 const char *dir = NULL;
16178
16179 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16180 line_ptr += bytes_read;
16181 if (lh->num_file_names < file || file == 0)
16182 dwarf2_debug_line_missing_file_complaint ();
16183 else
16184 {
16185 fe = &lh->file_names[file - 1];
16186 if (fe->dir_index)
16187 dir = lh->include_dirs[fe->dir_index - 1];
16188 if (!decode_for_pst_p)
16189 {
16190 last_subfile = current_subfile;
16191 dwarf2_start_subfile (fe->name, dir, comp_dir);
16192 }
16193 }
16194 }
16195 break;
16196 case DW_LNS_set_column:
16197 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16198 line_ptr += bytes_read;
16199 break;
16200 case DW_LNS_negate_stmt:
16201 is_stmt = (!is_stmt);
16202 break;
16203 case DW_LNS_set_basic_block:
16204 basic_block = 1;
16205 break;
16206 /* Add to the address register of the state machine the
16207 address increment value corresponding to special opcode
16208 255. I.e., this value is scaled by the minimum
16209 instruction length since special opcode 255 would have
16210 scaled the increment. */
16211 case DW_LNS_const_add_pc:
16212 {
16213 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16214
16215 address += (((op_index + adjust)
16216 / lh->maximum_ops_per_instruction)
16217 * lh->minimum_instruction_length);
16218 op_index = ((op_index + adjust)
16219 % lh->maximum_ops_per_instruction);
16220 }
16221 break;
16222 case DW_LNS_fixed_advance_pc:
16223 address += read_2_bytes (abfd, line_ptr);
16224 op_index = 0;
16225 line_ptr += 2;
16226 break;
16227 default:
16228 {
16229 /* Unknown standard opcode, ignore it. */
16230 int i;
16231
16232 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16233 {
16234 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16235 line_ptr += bytes_read;
16236 }
16237 }
16238 }
16239 }
16240 if (lh->num_file_names < file || file == 0)
16241 dwarf2_debug_line_missing_file_complaint ();
16242 else
16243 {
16244 lh->file_names[file - 1].included_p = 1;
16245 if (!decode_for_pst_p)
16246 {
16247 addr = gdbarch_addr_bits_remove (gdbarch, address);
16248 (*p_record_line) (current_subfile, 0, addr);
16249 }
16250 }
16251 }
16252 }
16253
16254 /* Decode the Line Number Program (LNP) for the given line_header
16255 structure and CU. The actual information extracted and the type
16256 of structures created from the LNP depends on the value of PST.
16257
16258 1. If PST is NULL, then this procedure uses the data from the program
16259 to create all necessary symbol tables, and their linetables.
16260
16261 2. If PST is not NULL, this procedure reads the program to determine
16262 the list of files included by the unit represented by PST, and
16263 builds all the associated partial symbol tables.
16264
16265 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16266 It is used for relative paths in the line table.
16267 NOTE: When processing partial symtabs (pst != NULL),
16268 comp_dir == pst->dirname.
16269
16270 NOTE: It is important that psymtabs have the same file name (via strcmp)
16271 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16272 symtab we don't use it in the name of the psymtabs we create.
16273 E.g. expand_line_sal requires this when finding psymtabs to expand.
16274 A good testcase for this is mb-inline.exp. */
16275
16276 static void
16277 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16278 struct dwarf2_cu *cu, struct partial_symtab *pst,
16279 int want_line_info)
16280 {
16281 struct objfile *objfile = cu->objfile;
16282 const int decode_for_pst_p = (pst != NULL);
16283 struct subfile *first_subfile = current_subfile;
16284
16285 if (want_line_info)
16286 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16287
16288 if (decode_for_pst_p)
16289 {
16290 int file_index;
16291
16292 /* Now that we're done scanning the Line Header Program, we can
16293 create the psymtab of each included file. */
16294 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16295 if (lh->file_names[file_index].included_p == 1)
16296 {
16297 const char *include_name =
16298 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16299 if (include_name != NULL)
16300 dwarf2_create_include_psymtab (include_name, pst, objfile);
16301 }
16302 }
16303 else
16304 {
16305 /* Make sure a symtab is created for every file, even files
16306 which contain only variables (i.e. no code with associated
16307 line numbers). */
16308 int i;
16309
16310 for (i = 0; i < lh->num_file_names; i++)
16311 {
16312 const char *dir = NULL;
16313 struct file_entry *fe;
16314
16315 fe = &lh->file_names[i];
16316 if (fe->dir_index)
16317 dir = lh->include_dirs[fe->dir_index - 1];
16318 dwarf2_start_subfile (fe->name, dir, comp_dir);
16319
16320 /* Skip the main file; we don't need it, and it must be
16321 allocated last, so that it will show up before the
16322 non-primary symtabs in the objfile's symtab list. */
16323 if (current_subfile == first_subfile)
16324 continue;
16325
16326 if (current_subfile->symtab == NULL)
16327 current_subfile->symtab = allocate_symtab (current_subfile->name,
16328 objfile);
16329 fe->symtab = current_subfile->symtab;
16330 }
16331 }
16332 }
16333
16334 /* Start a subfile for DWARF. FILENAME is the name of the file and
16335 DIRNAME the name of the source directory which contains FILENAME
16336 or NULL if not known. COMP_DIR is the compilation directory for the
16337 linetable's compilation unit or NULL if not known.
16338 This routine tries to keep line numbers from identical absolute and
16339 relative file names in a common subfile.
16340
16341 Using the `list' example from the GDB testsuite, which resides in
16342 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16343 of /srcdir/list0.c yields the following debugging information for list0.c:
16344
16345 DW_AT_name: /srcdir/list0.c
16346 DW_AT_comp_dir: /compdir
16347 files.files[0].name: list0.h
16348 files.files[0].dir: /srcdir
16349 files.files[1].name: list0.c
16350 files.files[1].dir: /srcdir
16351
16352 The line number information for list0.c has to end up in a single
16353 subfile, so that `break /srcdir/list0.c:1' works as expected.
16354 start_subfile will ensure that this happens provided that we pass the
16355 concatenation of files.files[1].dir and files.files[1].name as the
16356 subfile's name. */
16357
16358 static void
16359 dwarf2_start_subfile (const char *filename, const char *dirname,
16360 const char *comp_dir)
16361 {
16362 char *copy = NULL;
16363
16364 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16365 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16366 second argument to start_subfile. To be consistent, we do the
16367 same here. In order not to lose the line information directory,
16368 we concatenate it to the filename when it makes sense.
16369 Note that the Dwarf3 standard says (speaking of filenames in line
16370 information): ``The directory index is ignored for file names
16371 that represent full path names''. Thus ignoring dirname in the
16372 `else' branch below isn't an issue. */
16373
16374 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16375 {
16376 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16377 filename = copy;
16378 }
16379
16380 start_subfile (filename, comp_dir);
16381
16382 if (copy != NULL)
16383 xfree (copy);
16384 }
16385
16386 /* Start a symtab for DWARF.
16387 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16388
16389 static void
16390 dwarf2_start_symtab (struct dwarf2_cu *cu,
16391 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16392 {
16393 start_symtab (name, comp_dir, low_pc);
16394 record_debugformat ("DWARF 2");
16395 record_producer (cu->producer);
16396
16397 /* We assume that we're processing GCC output. */
16398 processing_gcc_compilation = 2;
16399
16400 cu->processing_has_namespace_info = 0;
16401 }
16402
16403 static void
16404 var_decode_location (struct attribute *attr, struct symbol *sym,
16405 struct dwarf2_cu *cu)
16406 {
16407 struct objfile *objfile = cu->objfile;
16408 struct comp_unit_head *cu_header = &cu->header;
16409
16410 /* NOTE drow/2003-01-30: There used to be a comment and some special
16411 code here to turn a symbol with DW_AT_external and a
16412 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16413 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16414 with some versions of binutils) where shared libraries could have
16415 relocations against symbols in their debug information - the
16416 minimal symbol would have the right address, but the debug info
16417 would not. It's no longer necessary, because we will explicitly
16418 apply relocations when we read in the debug information now. */
16419
16420 /* A DW_AT_location attribute with no contents indicates that a
16421 variable has been optimized away. */
16422 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16423 {
16424 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16425 return;
16426 }
16427
16428 /* Handle one degenerate form of location expression specially, to
16429 preserve GDB's previous behavior when section offsets are
16430 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16431 then mark this symbol as LOC_STATIC. */
16432
16433 if (attr_form_is_block (attr)
16434 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16435 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16436 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16437 && (DW_BLOCK (attr)->size
16438 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16439 {
16440 unsigned int dummy;
16441
16442 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16443 SYMBOL_VALUE_ADDRESS (sym) =
16444 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16445 else
16446 SYMBOL_VALUE_ADDRESS (sym) =
16447 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16448 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16449 fixup_symbol_section (sym, objfile);
16450 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16451 SYMBOL_SECTION (sym));
16452 return;
16453 }
16454
16455 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16456 expression evaluator, and use LOC_COMPUTED only when necessary
16457 (i.e. when the value of a register or memory location is
16458 referenced, or a thread-local block, etc.). Then again, it might
16459 not be worthwhile. I'm assuming that it isn't unless performance
16460 or memory numbers show me otherwise. */
16461
16462 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16463
16464 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16465 cu->has_loclist = 1;
16466 }
16467
16468 /* Given a pointer to a DWARF information entry, figure out if we need
16469 to make a symbol table entry for it, and if so, create a new entry
16470 and return a pointer to it.
16471 If TYPE is NULL, determine symbol type from the die, otherwise
16472 used the passed type.
16473 If SPACE is not NULL, use it to hold the new symbol. If it is
16474 NULL, allocate a new symbol on the objfile's obstack. */
16475
16476 static struct symbol *
16477 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16478 struct symbol *space)
16479 {
16480 struct objfile *objfile = cu->objfile;
16481 struct symbol *sym = NULL;
16482 const char *name;
16483 struct attribute *attr = NULL;
16484 struct attribute *attr2 = NULL;
16485 CORE_ADDR baseaddr;
16486 struct pending **list_to_add = NULL;
16487
16488 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16489
16490 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16491
16492 name = dwarf2_name (die, cu);
16493 if (name)
16494 {
16495 const char *linkagename;
16496 int suppress_add = 0;
16497
16498 if (space)
16499 sym = space;
16500 else
16501 sym = allocate_symbol (objfile);
16502 OBJSTAT (objfile, n_syms++);
16503
16504 /* Cache this symbol's name and the name's demangled form (if any). */
16505 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16506 linkagename = dwarf2_physname (name, die, cu);
16507 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16508
16509 /* Fortran does not have mangling standard and the mangling does differ
16510 between gfortran, iFort etc. */
16511 if (cu->language == language_fortran
16512 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16513 symbol_set_demangled_name (&(sym->ginfo),
16514 dwarf2_full_name (name, die, cu),
16515 NULL);
16516
16517 /* Default assumptions.
16518 Use the passed type or decode it from the die. */
16519 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16520 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16521 if (type != NULL)
16522 SYMBOL_TYPE (sym) = type;
16523 else
16524 SYMBOL_TYPE (sym) = die_type (die, cu);
16525 attr = dwarf2_attr (die,
16526 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16527 cu);
16528 if (attr)
16529 {
16530 SYMBOL_LINE (sym) = DW_UNSND (attr);
16531 }
16532
16533 attr = dwarf2_attr (die,
16534 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16535 cu);
16536 if (attr)
16537 {
16538 int file_index = DW_UNSND (attr);
16539
16540 if (cu->line_header == NULL
16541 || file_index > cu->line_header->num_file_names)
16542 complaint (&symfile_complaints,
16543 _("file index out of range"));
16544 else if (file_index > 0)
16545 {
16546 struct file_entry *fe;
16547
16548 fe = &cu->line_header->file_names[file_index - 1];
16549 SYMBOL_SYMTAB (sym) = fe->symtab;
16550 }
16551 }
16552
16553 switch (die->tag)
16554 {
16555 case DW_TAG_label:
16556 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16557 if (attr)
16558 {
16559 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16560 }
16561 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16562 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16563 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16564 add_symbol_to_list (sym, cu->list_in_scope);
16565 break;
16566 case DW_TAG_subprogram:
16567 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16568 finish_block. */
16569 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16570 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16571 if ((attr2 && (DW_UNSND (attr2) != 0))
16572 || cu->language == language_ada)
16573 {
16574 /* Subprograms marked external are stored as a global symbol.
16575 Ada subprograms, whether marked external or not, are always
16576 stored as a global symbol, because we want to be able to
16577 access them globally. For instance, we want to be able
16578 to break on a nested subprogram without having to
16579 specify the context. */
16580 list_to_add = &global_symbols;
16581 }
16582 else
16583 {
16584 list_to_add = cu->list_in_scope;
16585 }
16586 break;
16587 case DW_TAG_inlined_subroutine:
16588 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16589 finish_block. */
16590 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16591 SYMBOL_INLINED (sym) = 1;
16592 list_to_add = cu->list_in_scope;
16593 break;
16594 case DW_TAG_template_value_param:
16595 suppress_add = 1;
16596 /* Fall through. */
16597 case DW_TAG_constant:
16598 case DW_TAG_variable:
16599 case DW_TAG_member:
16600 /* Compilation with minimal debug info may result in
16601 variables with missing type entries. Change the
16602 misleading `void' type to something sensible. */
16603 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16604 SYMBOL_TYPE (sym)
16605 = objfile_type (objfile)->nodebug_data_symbol;
16606
16607 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16608 /* In the case of DW_TAG_member, we should only be called for
16609 static const members. */
16610 if (die->tag == DW_TAG_member)
16611 {
16612 /* dwarf2_add_field uses die_is_declaration,
16613 so we do the same. */
16614 gdb_assert (die_is_declaration (die, cu));
16615 gdb_assert (attr);
16616 }
16617 if (attr)
16618 {
16619 dwarf2_const_value (attr, sym, cu);
16620 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16621 if (!suppress_add)
16622 {
16623 if (attr2 && (DW_UNSND (attr2) != 0))
16624 list_to_add = &global_symbols;
16625 else
16626 list_to_add = cu->list_in_scope;
16627 }
16628 break;
16629 }
16630 attr = dwarf2_attr (die, DW_AT_location, cu);
16631 if (attr)
16632 {
16633 var_decode_location (attr, sym, cu);
16634 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16635
16636 /* Fortran explicitly imports any global symbols to the local
16637 scope by DW_TAG_common_block. */
16638 if (cu->language == language_fortran && die->parent
16639 && die->parent->tag == DW_TAG_common_block)
16640 attr2 = NULL;
16641
16642 if (SYMBOL_CLASS (sym) == LOC_STATIC
16643 && SYMBOL_VALUE_ADDRESS (sym) == 0
16644 && !dwarf2_per_objfile->has_section_at_zero)
16645 {
16646 /* When a static variable is eliminated by the linker,
16647 the corresponding debug information is not stripped
16648 out, but the variable address is set to null;
16649 do not add such variables into symbol table. */
16650 }
16651 else if (attr2 && (DW_UNSND (attr2) != 0))
16652 {
16653 /* Workaround gfortran PR debug/40040 - it uses
16654 DW_AT_location for variables in -fPIC libraries which may
16655 get overriden by other libraries/executable and get
16656 a different address. Resolve it by the minimal symbol
16657 which may come from inferior's executable using copy
16658 relocation. Make this workaround only for gfortran as for
16659 other compilers GDB cannot guess the minimal symbol
16660 Fortran mangling kind. */
16661 if (cu->language == language_fortran && die->parent
16662 && die->parent->tag == DW_TAG_module
16663 && cu->producer
16664 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16665 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16666
16667 /* A variable with DW_AT_external is never static,
16668 but it may be block-scoped. */
16669 list_to_add = (cu->list_in_scope == &file_symbols
16670 ? &global_symbols : cu->list_in_scope);
16671 }
16672 else
16673 list_to_add = cu->list_in_scope;
16674 }
16675 else
16676 {
16677 /* We do not know the address of this symbol.
16678 If it is an external symbol and we have type information
16679 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16680 The address of the variable will then be determined from
16681 the minimal symbol table whenever the variable is
16682 referenced. */
16683 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16684
16685 /* Fortran explicitly imports any global symbols to the local
16686 scope by DW_TAG_common_block. */
16687 if (cu->language == language_fortran && die->parent
16688 && die->parent->tag == DW_TAG_common_block)
16689 {
16690 /* SYMBOL_CLASS doesn't matter here because
16691 read_common_block is going to reset it. */
16692 if (!suppress_add)
16693 list_to_add = cu->list_in_scope;
16694 }
16695 else if (attr2 && (DW_UNSND (attr2) != 0)
16696 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16697 {
16698 /* A variable with DW_AT_external is never static, but it
16699 may be block-scoped. */
16700 list_to_add = (cu->list_in_scope == &file_symbols
16701 ? &global_symbols : cu->list_in_scope);
16702
16703 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16704 }
16705 else if (!die_is_declaration (die, cu))
16706 {
16707 /* Use the default LOC_OPTIMIZED_OUT class. */
16708 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16709 if (!suppress_add)
16710 list_to_add = cu->list_in_scope;
16711 }
16712 }
16713 break;
16714 case DW_TAG_formal_parameter:
16715 /* If we are inside a function, mark this as an argument. If
16716 not, we might be looking at an argument to an inlined function
16717 when we do not have enough information to show inlined frames;
16718 pretend it's a local variable in that case so that the user can
16719 still see it. */
16720 if (context_stack_depth > 0
16721 && context_stack[context_stack_depth - 1].name != NULL)
16722 SYMBOL_IS_ARGUMENT (sym) = 1;
16723 attr = dwarf2_attr (die, DW_AT_location, cu);
16724 if (attr)
16725 {
16726 var_decode_location (attr, sym, cu);
16727 }
16728 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16729 if (attr)
16730 {
16731 dwarf2_const_value (attr, sym, cu);
16732 }
16733
16734 list_to_add = cu->list_in_scope;
16735 break;
16736 case DW_TAG_unspecified_parameters:
16737 /* From varargs functions; gdb doesn't seem to have any
16738 interest in this information, so just ignore it for now.
16739 (FIXME?) */
16740 break;
16741 case DW_TAG_template_type_param:
16742 suppress_add = 1;
16743 /* Fall through. */
16744 case DW_TAG_class_type:
16745 case DW_TAG_interface_type:
16746 case DW_TAG_structure_type:
16747 case DW_TAG_union_type:
16748 case DW_TAG_set_type:
16749 case DW_TAG_enumeration_type:
16750 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16751 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16752
16753 {
16754 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16755 really ever be static objects: otherwise, if you try
16756 to, say, break of a class's method and you're in a file
16757 which doesn't mention that class, it won't work unless
16758 the check for all static symbols in lookup_symbol_aux
16759 saves you. See the OtherFileClass tests in
16760 gdb.c++/namespace.exp. */
16761
16762 if (!suppress_add)
16763 {
16764 list_to_add = (cu->list_in_scope == &file_symbols
16765 && (cu->language == language_cplus
16766 || cu->language == language_java)
16767 ? &global_symbols : cu->list_in_scope);
16768
16769 /* The semantics of C++ state that "struct foo {
16770 ... }" also defines a typedef for "foo". A Java
16771 class declaration also defines a typedef for the
16772 class. */
16773 if (cu->language == language_cplus
16774 || cu->language == language_java
16775 || cu->language == language_ada)
16776 {
16777 /* The symbol's name is already allocated along
16778 with this objfile, so we don't need to
16779 duplicate it for the type. */
16780 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16781 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16782 }
16783 }
16784 }
16785 break;
16786 case DW_TAG_typedef:
16787 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16788 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16789 list_to_add = cu->list_in_scope;
16790 break;
16791 case DW_TAG_base_type:
16792 case DW_TAG_subrange_type:
16793 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16794 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16795 list_to_add = cu->list_in_scope;
16796 break;
16797 case DW_TAG_enumerator:
16798 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16799 if (attr)
16800 {
16801 dwarf2_const_value (attr, sym, cu);
16802 }
16803 {
16804 /* NOTE: carlton/2003-11-10: See comment above in the
16805 DW_TAG_class_type, etc. block. */
16806
16807 list_to_add = (cu->list_in_scope == &file_symbols
16808 && (cu->language == language_cplus
16809 || cu->language == language_java)
16810 ? &global_symbols : cu->list_in_scope);
16811 }
16812 break;
16813 case DW_TAG_namespace:
16814 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16815 list_to_add = &global_symbols;
16816 break;
16817 case DW_TAG_common_block:
16818 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16819 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16820 add_symbol_to_list (sym, cu->list_in_scope);
16821 break;
16822 default:
16823 /* Not a tag we recognize. Hopefully we aren't processing
16824 trash data, but since we must specifically ignore things
16825 we don't recognize, there is nothing else we should do at
16826 this point. */
16827 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16828 dwarf_tag_name (die->tag));
16829 break;
16830 }
16831
16832 if (suppress_add)
16833 {
16834 sym->hash_next = objfile->template_symbols;
16835 objfile->template_symbols = sym;
16836 list_to_add = NULL;
16837 }
16838
16839 if (list_to_add != NULL)
16840 add_symbol_to_list (sym, list_to_add);
16841
16842 /* For the benefit of old versions of GCC, check for anonymous
16843 namespaces based on the demangled name. */
16844 if (!cu->processing_has_namespace_info
16845 && cu->language == language_cplus)
16846 cp_scan_for_anonymous_namespaces (sym, objfile);
16847 }
16848 return (sym);
16849 }
16850
16851 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16852
16853 static struct symbol *
16854 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16855 {
16856 return new_symbol_full (die, type, cu, NULL);
16857 }
16858
16859 /* Given an attr with a DW_FORM_dataN value in host byte order,
16860 zero-extend it as appropriate for the symbol's type. The DWARF
16861 standard (v4) is not entirely clear about the meaning of using
16862 DW_FORM_dataN for a constant with a signed type, where the type is
16863 wider than the data. The conclusion of a discussion on the DWARF
16864 list was that this is unspecified. We choose to always zero-extend
16865 because that is the interpretation long in use by GCC. */
16866
16867 static gdb_byte *
16868 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
16869 struct dwarf2_cu *cu, LONGEST *value, int bits)
16870 {
16871 struct objfile *objfile = cu->objfile;
16872 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16873 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16874 LONGEST l = DW_UNSND (attr);
16875
16876 if (bits < sizeof (*value) * 8)
16877 {
16878 l &= ((LONGEST) 1 << bits) - 1;
16879 *value = l;
16880 }
16881 else if (bits == sizeof (*value) * 8)
16882 *value = l;
16883 else
16884 {
16885 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16886 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16887 return bytes;
16888 }
16889
16890 return NULL;
16891 }
16892
16893 /* Read a constant value from an attribute. Either set *VALUE, or if
16894 the value does not fit in *VALUE, set *BYTES - either already
16895 allocated on the objfile obstack, or newly allocated on OBSTACK,
16896 or, set *BATON, if we translated the constant to a location
16897 expression. */
16898
16899 static void
16900 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
16901 const char *name, struct obstack *obstack,
16902 struct dwarf2_cu *cu,
16903 LONGEST *value, const gdb_byte **bytes,
16904 struct dwarf2_locexpr_baton **baton)
16905 {
16906 struct objfile *objfile = cu->objfile;
16907 struct comp_unit_head *cu_header = &cu->header;
16908 struct dwarf_block *blk;
16909 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16910 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16911
16912 *value = 0;
16913 *bytes = NULL;
16914 *baton = NULL;
16915
16916 switch (attr->form)
16917 {
16918 case DW_FORM_addr:
16919 case DW_FORM_GNU_addr_index:
16920 {
16921 gdb_byte *data;
16922
16923 if (TYPE_LENGTH (type) != cu_header->addr_size)
16924 dwarf2_const_value_length_mismatch_complaint (name,
16925 cu_header->addr_size,
16926 TYPE_LENGTH (type));
16927 /* Symbols of this form are reasonably rare, so we just
16928 piggyback on the existing location code rather than writing
16929 a new implementation of symbol_computed_ops. */
16930 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16931 (*baton)->per_cu = cu->per_cu;
16932 gdb_assert ((*baton)->per_cu);
16933
16934 (*baton)->size = 2 + cu_header->addr_size;
16935 data = obstack_alloc (obstack, (*baton)->size);
16936 (*baton)->data = data;
16937
16938 data[0] = DW_OP_addr;
16939 store_unsigned_integer (&data[1], cu_header->addr_size,
16940 byte_order, DW_ADDR (attr));
16941 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16942 }
16943 break;
16944 case DW_FORM_string:
16945 case DW_FORM_strp:
16946 case DW_FORM_GNU_str_index:
16947 case DW_FORM_GNU_strp_alt:
16948 /* DW_STRING is already allocated on the objfile obstack, point
16949 directly to it. */
16950 *bytes = (const gdb_byte *) DW_STRING (attr);
16951 break;
16952 case DW_FORM_block1:
16953 case DW_FORM_block2:
16954 case DW_FORM_block4:
16955 case DW_FORM_block:
16956 case DW_FORM_exprloc:
16957 blk = DW_BLOCK (attr);
16958 if (TYPE_LENGTH (type) != blk->size)
16959 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16960 TYPE_LENGTH (type));
16961 *bytes = blk->data;
16962 break;
16963
16964 /* The DW_AT_const_value attributes are supposed to carry the
16965 symbol's value "represented as it would be on the target
16966 architecture." By the time we get here, it's already been
16967 converted to host endianness, so we just need to sign- or
16968 zero-extend it as appropriate. */
16969 case DW_FORM_data1:
16970 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16971 break;
16972 case DW_FORM_data2:
16973 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16974 break;
16975 case DW_FORM_data4:
16976 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16977 break;
16978 case DW_FORM_data8:
16979 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16980 break;
16981
16982 case DW_FORM_sdata:
16983 *value = DW_SND (attr);
16984 break;
16985
16986 case DW_FORM_udata:
16987 *value = DW_UNSND (attr);
16988 break;
16989
16990 default:
16991 complaint (&symfile_complaints,
16992 _("unsupported const value attribute form: '%s'"),
16993 dwarf_form_name (attr->form));
16994 *value = 0;
16995 break;
16996 }
16997 }
16998
16999
17000 /* Copy constant value from an attribute to a symbol. */
17001
17002 static void
17003 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17004 struct dwarf2_cu *cu)
17005 {
17006 struct objfile *objfile = cu->objfile;
17007 struct comp_unit_head *cu_header = &cu->header;
17008 LONGEST value;
17009 const gdb_byte *bytes;
17010 struct dwarf2_locexpr_baton *baton;
17011
17012 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17013 SYMBOL_PRINT_NAME (sym),
17014 &objfile->objfile_obstack, cu,
17015 &value, &bytes, &baton);
17016
17017 if (baton != NULL)
17018 {
17019 SYMBOL_LOCATION_BATON (sym) = baton;
17020 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17021 }
17022 else if (bytes != NULL)
17023 {
17024 SYMBOL_VALUE_BYTES (sym) = bytes;
17025 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17026 }
17027 else
17028 {
17029 SYMBOL_VALUE (sym) = value;
17030 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17031 }
17032 }
17033
17034 /* Return the type of the die in question using its DW_AT_type attribute. */
17035
17036 static struct type *
17037 die_type (struct die_info *die, struct dwarf2_cu *cu)
17038 {
17039 struct attribute *type_attr;
17040
17041 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17042 if (!type_attr)
17043 {
17044 /* A missing DW_AT_type represents a void type. */
17045 return objfile_type (cu->objfile)->builtin_void;
17046 }
17047
17048 return lookup_die_type (die, type_attr, cu);
17049 }
17050
17051 /* True iff CU's producer generates GNAT Ada auxiliary information
17052 that allows to find parallel types through that information instead
17053 of having to do expensive parallel lookups by type name. */
17054
17055 static int
17056 need_gnat_info (struct dwarf2_cu *cu)
17057 {
17058 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17059 of GNAT produces this auxiliary information, without any indication
17060 that it is produced. Part of enhancing the FSF version of GNAT
17061 to produce that information will be to put in place an indicator
17062 that we can use in order to determine whether the descriptive type
17063 info is available or not. One suggestion that has been made is
17064 to use a new attribute, attached to the CU die. For now, assume
17065 that the descriptive type info is not available. */
17066 return 0;
17067 }
17068
17069 /* Return the auxiliary type of the die in question using its
17070 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17071 attribute is not present. */
17072
17073 static struct type *
17074 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17075 {
17076 struct attribute *type_attr;
17077
17078 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17079 if (!type_attr)
17080 return NULL;
17081
17082 return lookup_die_type (die, type_attr, cu);
17083 }
17084
17085 /* If DIE has a descriptive_type attribute, then set the TYPE's
17086 descriptive type accordingly. */
17087
17088 static void
17089 set_descriptive_type (struct type *type, struct die_info *die,
17090 struct dwarf2_cu *cu)
17091 {
17092 struct type *descriptive_type = die_descriptive_type (die, cu);
17093
17094 if (descriptive_type)
17095 {
17096 ALLOCATE_GNAT_AUX_TYPE (type);
17097 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17098 }
17099 }
17100
17101 /* Return the containing type of the die in question using its
17102 DW_AT_containing_type attribute. */
17103
17104 static struct type *
17105 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17106 {
17107 struct attribute *type_attr;
17108
17109 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17110 if (!type_attr)
17111 error (_("Dwarf Error: Problem turning containing type into gdb type "
17112 "[in module %s]"), cu->objfile->name);
17113
17114 return lookup_die_type (die, type_attr, cu);
17115 }
17116
17117 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17118
17119 static struct type *
17120 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17121 {
17122 struct objfile *objfile = dwarf2_per_objfile->objfile;
17123 char *message, *saved;
17124
17125 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17126 objfile->name,
17127 cu->header.offset.sect_off,
17128 die->offset.sect_off);
17129 saved = obstack_copy0 (&objfile->objfile_obstack,
17130 message, strlen (message));
17131 xfree (message);
17132
17133 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17134 }
17135
17136 /* Look up the type of DIE in CU using its type attribute ATTR.
17137 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17138 DW_AT_containing_type.
17139 If there is no type substitute an error marker. */
17140
17141 static struct type *
17142 lookup_die_type (struct die_info *die, const struct attribute *attr,
17143 struct dwarf2_cu *cu)
17144 {
17145 struct objfile *objfile = cu->objfile;
17146 struct type *this_type;
17147
17148 gdb_assert (attr->name == DW_AT_type
17149 || attr->name == DW_AT_GNAT_descriptive_type
17150 || attr->name == DW_AT_containing_type);
17151
17152 /* First see if we have it cached. */
17153
17154 if (attr->form == DW_FORM_GNU_ref_alt)
17155 {
17156 struct dwarf2_per_cu_data *per_cu;
17157 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17158
17159 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17160 this_type = get_die_type_at_offset (offset, per_cu);
17161 }
17162 else if (attr_form_is_ref (attr))
17163 {
17164 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17165
17166 this_type = get_die_type_at_offset (offset, cu->per_cu);
17167 }
17168 else if (attr->form == DW_FORM_ref_sig8)
17169 {
17170 ULONGEST signature = DW_SIGNATURE (attr);
17171
17172 return get_signatured_type (die, signature, cu);
17173 }
17174 else
17175 {
17176 complaint (&symfile_complaints,
17177 _("Dwarf Error: Bad type attribute %s in DIE"
17178 " at 0x%x [in module %s]"),
17179 dwarf_attr_name (attr->name), die->offset.sect_off,
17180 objfile->name);
17181 return build_error_marker_type (cu, die);
17182 }
17183
17184 /* If not cached we need to read it in. */
17185
17186 if (this_type == NULL)
17187 {
17188 struct die_info *type_die = NULL;
17189 struct dwarf2_cu *type_cu = cu;
17190
17191 if (attr_form_is_ref (attr))
17192 type_die = follow_die_ref (die, attr, &type_cu);
17193 if (type_die == NULL)
17194 return build_error_marker_type (cu, die);
17195 /* If we find the type now, it's probably because the type came
17196 from an inter-CU reference and the type's CU got expanded before
17197 ours. */
17198 this_type = read_type_die (type_die, type_cu);
17199 }
17200
17201 /* If we still don't have a type use an error marker. */
17202
17203 if (this_type == NULL)
17204 return build_error_marker_type (cu, die);
17205
17206 return this_type;
17207 }
17208
17209 /* Return the type in DIE, CU.
17210 Returns NULL for invalid types.
17211
17212 This first does a lookup in die_type_hash,
17213 and only reads the die in if necessary.
17214
17215 NOTE: This can be called when reading in partial or full symbols. */
17216
17217 static struct type *
17218 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17219 {
17220 struct type *this_type;
17221
17222 this_type = get_die_type (die, cu);
17223 if (this_type)
17224 return this_type;
17225
17226 return read_type_die_1 (die, cu);
17227 }
17228
17229 /* Read the type in DIE, CU.
17230 Returns NULL for invalid types. */
17231
17232 static struct type *
17233 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17234 {
17235 struct type *this_type = NULL;
17236
17237 switch (die->tag)
17238 {
17239 case DW_TAG_class_type:
17240 case DW_TAG_interface_type:
17241 case DW_TAG_structure_type:
17242 case DW_TAG_union_type:
17243 this_type = read_structure_type (die, cu);
17244 break;
17245 case DW_TAG_enumeration_type:
17246 this_type = read_enumeration_type (die, cu);
17247 break;
17248 case DW_TAG_subprogram:
17249 case DW_TAG_subroutine_type:
17250 case DW_TAG_inlined_subroutine:
17251 this_type = read_subroutine_type (die, cu);
17252 break;
17253 case DW_TAG_array_type:
17254 this_type = read_array_type (die, cu);
17255 break;
17256 case DW_TAG_set_type:
17257 this_type = read_set_type (die, cu);
17258 break;
17259 case DW_TAG_pointer_type:
17260 this_type = read_tag_pointer_type (die, cu);
17261 break;
17262 case DW_TAG_ptr_to_member_type:
17263 this_type = read_tag_ptr_to_member_type (die, cu);
17264 break;
17265 case DW_TAG_reference_type:
17266 this_type = read_tag_reference_type (die, cu);
17267 break;
17268 case DW_TAG_const_type:
17269 this_type = read_tag_const_type (die, cu);
17270 break;
17271 case DW_TAG_volatile_type:
17272 this_type = read_tag_volatile_type (die, cu);
17273 break;
17274 case DW_TAG_restrict_type:
17275 this_type = read_tag_restrict_type (die, cu);
17276 break;
17277 case DW_TAG_string_type:
17278 this_type = read_tag_string_type (die, cu);
17279 break;
17280 case DW_TAG_typedef:
17281 this_type = read_typedef (die, cu);
17282 break;
17283 case DW_TAG_subrange_type:
17284 this_type = read_subrange_type (die, cu);
17285 break;
17286 case DW_TAG_base_type:
17287 this_type = read_base_type (die, cu);
17288 break;
17289 case DW_TAG_unspecified_type:
17290 this_type = read_unspecified_type (die, cu);
17291 break;
17292 case DW_TAG_namespace:
17293 this_type = read_namespace_type (die, cu);
17294 break;
17295 case DW_TAG_module:
17296 this_type = read_module_type (die, cu);
17297 break;
17298 default:
17299 complaint (&symfile_complaints,
17300 _("unexpected tag in read_type_die: '%s'"),
17301 dwarf_tag_name (die->tag));
17302 break;
17303 }
17304
17305 return this_type;
17306 }
17307
17308 /* See if we can figure out if the class lives in a namespace. We do
17309 this by looking for a member function; its demangled name will
17310 contain namespace info, if there is any.
17311 Return the computed name or NULL.
17312 Space for the result is allocated on the objfile's obstack.
17313 This is the full-die version of guess_partial_die_structure_name.
17314 In this case we know DIE has no useful parent. */
17315
17316 static char *
17317 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17318 {
17319 struct die_info *spec_die;
17320 struct dwarf2_cu *spec_cu;
17321 struct die_info *child;
17322
17323 spec_cu = cu;
17324 spec_die = die_specification (die, &spec_cu);
17325 if (spec_die != NULL)
17326 {
17327 die = spec_die;
17328 cu = spec_cu;
17329 }
17330
17331 for (child = die->child;
17332 child != NULL;
17333 child = child->sibling)
17334 {
17335 if (child->tag == DW_TAG_subprogram)
17336 {
17337 struct attribute *attr;
17338
17339 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17340 if (attr == NULL)
17341 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17342 if (attr != NULL)
17343 {
17344 char *actual_name
17345 = language_class_name_from_physname (cu->language_defn,
17346 DW_STRING (attr));
17347 char *name = NULL;
17348
17349 if (actual_name != NULL)
17350 {
17351 const char *die_name = dwarf2_name (die, cu);
17352
17353 if (die_name != NULL
17354 && strcmp (die_name, actual_name) != 0)
17355 {
17356 /* Strip off the class name from the full name.
17357 We want the prefix. */
17358 int die_name_len = strlen (die_name);
17359 int actual_name_len = strlen (actual_name);
17360
17361 /* Test for '::' as a sanity check. */
17362 if (actual_name_len > die_name_len + 2
17363 && actual_name[actual_name_len
17364 - die_name_len - 1] == ':')
17365 name =
17366 obstack_copy0 (&cu->objfile->objfile_obstack,
17367 actual_name,
17368 actual_name_len - die_name_len - 2);
17369 }
17370 }
17371 xfree (actual_name);
17372 return name;
17373 }
17374 }
17375 }
17376
17377 return NULL;
17378 }
17379
17380 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17381 prefix part in such case. See
17382 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17383
17384 static char *
17385 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17386 {
17387 struct attribute *attr;
17388 char *base;
17389
17390 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17391 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17392 return NULL;
17393
17394 attr = dwarf2_attr (die, DW_AT_name, cu);
17395 if (attr != NULL && DW_STRING (attr) != NULL)
17396 return NULL;
17397
17398 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17399 if (attr == NULL)
17400 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17401 if (attr == NULL || DW_STRING (attr) == NULL)
17402 return NULL;
17403
17404 /* dwarf2_name had to be already called. */
17405 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17406
17407 /* Strip the base name, keep any leading namespaces/classes. */
17408 base = strrchr (DW_STRING (attr), ':');
17409 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17410 return "";
17411
17412 return obstack_copy0 (&cu->objfile->objfile_obstack,
17413 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17414 }
17415
17416 /* Return the name of the namespace/class that DIE is defined within,
17417 or "" if we can't tell. The caller should not xfree the result.
17418
17419 For example, if we're within the method foo() in the following
17420 code:
17421
17422 namespace N {
17423 class C {
17424 void foo () {
17425 }
17426 };
17427 }
17428
17429 then determine_prefix on foo's die will return "N::C". */
17430
17431 static const char *
17432 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17433 {
17434 struct die_info *parent, *spec_die;
17435 struct dwarf2_cu *spec_cu;
17436 struct type *parent_type;
17437 char *retval;
17438
17439 if (cu->language != language_cplus && cu->language != language_java
17440 && cu->language != language_fortran)
17441 return "";
17442
17443 retval = anonymous_struct_prefix (die, cu);
17444 if (retval)
17445 return retval;
17446
17447 /* We have to be careful in the presence of DW_AT_specification.
17448 For example, with GCC 3.4, given the code
17449
17450 namespace N {
17451 void foo() {
17452 // Definition of N::foo.
17453 }
17454 }
17455
17456 then we'll have a tree of DIEs like this:
17457
17458 1: DW_TAG_compile_unit
17459 2: DW_TAG_namespace // N
17460 3: DW_TAG_subprogram // declaration of N::foo
17461 4: DW_TAG_subprogram // definition of N::foo
17462 DW_AT_specification // refers to die #3
17463
17464 Thus, when processing die #4, we have to pretend that we're in
17465 the context of its DW_AT_specification, namely the contex of die
17466 #3. */
17467 spec_cu = cu;
17468 spec_die = die_specification (die, &spec_cu);
17469 if (spec_die == NULL)
17470 parent = die->parent;
17471 else
17472 {
17473 parent = spec_die->parent;
17474 cu = spec_cu;
17475 }
17476
17477 if (parent == NULL)
17478 return "";
17479 else if (parent->building_fullname)
17480 {
17481 const char *name;
17482 const char *parent_name;
17483
17484 /* It has been seen on RealView 2.2 built binaries,
17485 DW_TAG_template_type_param types actually _defined_ as
17486 children of the parent class:
17487
17488 enum E {};
17489 template class <class Enum> Class{};
17490 Class<enum E> class_e;
17491
17492 1: DW_TAG_class_type (Class)
17493 2: DW_TAG_enumeration_type (E)
17494 3: DW_TAG_enumerator (enum1:0)
17495 3: DW_TAG_enumerator (enum2:1)
17496 ...
17497 2: DW_TAG_template_type_param
17498 DW_AT_type DW_FORM_ref_udata (E)
17499
17500 Besides being broken debug info, it can put GDB into an
17501 infinite loop. Consider:
17502
17503 When we're building the full name for Class<E>, we'll start
17504 at Class, and go look over its template type parameters,
17505 finding E. We'll then try to build the full name of E, and
17506 reach here. We're now trying to build the full name of E,
17507 and look over the parent DIE for containing scope. In the
17508 broken case, if we followed the parent DIE of E, we'd again
17509 find Class, and once again go look at its template type
17510 arguments, etc., etc. Simply don't consider such parent die
17511 as source-level parent of this die (it can't be, the language
17512 doesn't allow it), and break the loop here. */
17513 name = dwarf2_name (die, cu);
17514 parent_name = dwarf2_name (parent, cu);
17515 complaint (&symfile_complaints,
17516 _("template param type '%s' defined within parent '%s'"),
17517 name ? name : "<unknown>",
17518 parent_name ? parent_name : "<unknown>");
17519 return "";
17520 }
17521 else
17522 switch (parent->tag)
17523 {
17524 case DW_TAG_namespace:
17525 parent_type = read_type_die (parent, cu);
17526 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17527 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17528 Work around this problem here. */
17529 if (cu->language == language_cplus
17530 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17531 return "";
17532 /* We give a name to even anonymous namespaces. */
17533 return TYPE_TAG_NAME (parent_type);
17534 case DW_TAG_class_type:
17535 case DW_TAG_interface_type:
17536 case DW_TAG_structure_type:
17537 case DW_TAG_union_type:
17538 case DW_TAG_module:
17539 parent_type = read_type_die (parent, cu);
17540 if (TYPE_TAG_NAME (parent_type) != NULL)
17541 return TYPE_TAG_NAME (parent_type);
17542 else
17543 /* An anonymous structure is only allowed non-static data
17544 members; no typedefs, no member functions, et cetera.
17545 So it does not need a prefix. */
17546 return "";
17547 case DW_TAG_compile_unit:
17548 case DW_TAG_partial_unit:
17549 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17550 if (cu->language == language_cplus
17551 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17552 && die->child != NULL
17553 && (die->tag == DW_TAG_class_type
17554 || die->tag == DW_TAG_structure_type
17555 || die->tag == DW_TAG_union_type))
17556 {
17557 char *name = guess_full_die_structure_name (die, cu);
17558 if (name != NULL)
17559 return name;
17560 }
17561 return "";
17562 default:
17563 return determine_prefix (parent, cu);
17564 }
17565 }
17566
17567 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17568 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17569 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17570 an obconcat, otherwise allocate storage for the result. The CU argument is
17571 used to determine the language and hence, the appropriate separator. */
17572
17573 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17574
17575 static char *
17576 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17577 int physname, struct dwarf2_cu *cu)
17578 {
17579 const char *lead = "";
17580 const char *sep;
17581
17582 if (suffix == NULL || suffix[0] == '\0'
17583 || prefix == NULL || prefix[0] == '\0')
17584 sep = "";
17585 else if (cu->language == language_java)
17586 sep = ".";
17587 else if (cu->language == language_fortran && physname)
17588 {
17589 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17590 DW_AT_MIPS_linkage_name is preferred and used instead. */
17591
17592 lead = "__";
17593 sep = "_MOD_";
17594 }
17595 else
17596 sep = "::";
17597
17598 if (prefix == NULL)
17599 prefix = "";
17600 if (suffix == NULL)
17601 suffix = "";
17602
17603 if (obs == NULL)
17604 {
17605 char *retval
17606 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17607
17608 strcpy (retval, lead);
17609 strcat (retval, prefix);
17610 strcat (retval, sep);
17611 strcat (retval, suffix);
17612 return retval;
17613 }
17614 else
17615 {
17616 /* We have an obstack. */
17617 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17618 }
17619 }
17620
17621 /* Return sibling of die, NULL if no sibling. */
17622
17623 static struct die_info *
17624 sibling_die (struct die_info *die)
17625 {
17626 return die->sibling;
17627 }
17628
17629 /* Get name of a die, return NULL if not found. */
17630
17631 static const char *
17632 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17633 struct obstack *obstack)
17634 {
17635 if (name && cu->language == language_cplus)
17636 {
17637 char *canon_name = cp_canonicalize_string (name);
17638
17639 if (canon_name != NULL)
17640 {
17641 if (strcmp (canon_name, name) != 0)
17642 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17643 xfree (canon_name);
17644 }
17645 }
17646
17647 return name;
17648 }
17649
17650 /* Get name of a die, return NULL if not found. */
17651
17652 static const char *
17653 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17654 {
17655 struct attribute *attr;
17656
17657 attr = dwarf2_attr (die, DW_AT_name, cu);
17658 if ((!attr || !DW_STRING (attr))
17659 && die->tag != DW_TAG_class_type
17660 && die->tag != DW_TAG_interface_type
17661 && die->tag != DW_TAG_structure_type
17662 && die->tag != DW_TAG_union_type)
17663 return NULL;
17664
17665 switch (die->tag)
17666 {
17667 case DW_TAG_compile_unit:
17668 case DW_TAG_partial_unit:
17669 /* Compilation units have a DW_AT_name that is a filename, not
17670 a source language identifier. */
17671 case DW_TAG_enumeration_type:
17672 case DW_TAG_enumerator:
17673 /* These tags always have simple identifiers already; no need
17674 to canonicalize them. */
17675 return DW_STRING (attr);
17676
17677 case DW_TAG_subprogram:
17678 /* Java constructors will all be named "<init>", so return
17679 the class name when we see this special case. */
17680 if (cu->language == language_java
17681 && DW_STRING (attr) != NULL
17682 && strcmp (DW_STRING (attr), "<init>") == 0)
17683 {
17684 struct dwarf2_cu *spec_cu = cu;
17685 struct die_info *spec_die;
17686
17687 /* GCJ will output '<init>' for Java constructor names.
17688 For this special case, return the name of the parent class. */
17689
17690 /* GCJ may output suprogram DIEs with AT_specification set.
17691 If so, use the name of the specified DIE. */
17692 spec_die = die_specification (die, &spec_cu);
17693 if (spec_die != NULL)
17694 return dwarf2_name (spec_die, spec_cu);
17695
17696 do
17697 {
17698 die = die->parent;
17699 if (die->tag == DW_TAG_class_type)
17700 return dwarf2_name (die, cu);
17701 }
17702 while (die->tag != DW_TAG_compile_unit
17703 && die->tag != DW_TAG_partial_unit);
17704 }
17705 break;
17706
17707 case DW_TAG_class_type:
17708 case DW_TAG_interface_type:
17709 case DW_TAG_structure_type:
17710 case DW_TAG_union_type:
17711 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17712 structures or unions. These were of the form "._%d" in GCC 4.1,
17713 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17714 and GCC 4.4. We work around this problem by ignoring these. */
17715 if (attr && DW_STRING (attr)
17716 && (strncmp (DW_STRING (attr), "._", 2) == 0
17717 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17718 return NULL;
17719
17720 /* GCC might emit a nameless typedef that has a linkage name. See
17721 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17722 if (!attr || DW_STRING (attr) == NULL)
17723 {
17724 char *demangled = NULL;
17725
17726 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17727 if (attr == NULL)
17728 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17729
17730 if (attr == NULL || DW_STRING (attr) == NULL)
17731 return NULL;
17732
17733 /* Avoid demangling DW_STRING (attr) the second time on a second
17734 call for the same DIE. */
17735 if (!DW_STRING_IS_CANONICAL (attr))
17736 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17737
17738 if (demangled)
17739 {
17740 char *base;
17741
17742 /* FIXME: we already did this for the partial symbol... */
17743 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17744 demangled, strlen (demangled));
17745 DW_STRING_IS_CANONICAL (attr) = 1;
17746 xfree (demangled);
17747
17748 /* Strip any leading namespaces/classes, keep only the base name.
17749 DW_AT_name for named DIEs does not contain the prefixes. */
17750 base = strrchr (DW_STRING (attr), ':');
17751 if (base && base > DW_STRING (attr) && base[-1] == ':')
17752 return &base[1];
17753 else
17754 return DW_STRING (attr);
17755 }
17756 }
17757 break;
17758
17759 default:
17760 break;
17761 }
17762
17763 if (!DW_STRING_IS_CANONICAL (attr))
17764 {
17765 DW_STRING (attr)
17766 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17767 &cu->objfile->objfile_obstack);
17768 DW_STRING_IS_CANONICAL (attr) = 1;
17769 }
17770 return DW_STRING (attr);
17771 }
17772
17773 /* Return the die that this die in an extension of, or NULL if there
17774 is none. *EXT_CU is the CU containing DIE on input, and the CU
17775 containing the return value on output. */
17776
17777 static struct die_info *
17778 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17779 {
17780 struct attribute *attr;
17781
17782 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17783 if (attr == NULL)
17784 return NULL;
17785
17786 return follow_die_ref (die, attr, ext_cu);
17787 }
17788
17789 /* Convert a DIE tag into its string name. */
17790
17791 static const char *
17792 dwarf_tag_name (unsigned tag)
17793 {
17794 const char *name = get_DW_TAG_name (tag);
17795
17796 if (name == NULL)
17797 return "DW_TAG_<unknown>";
17798
17799 return name;
17800 }
17801
17802 /* Convert a DWARF attribute code into its string name. */
17803
17804 static const char *
17805 dwarf_attr_name (unsigned attr)
17806 {
17807 const char *name;
17808
17809 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17810 if (attr == DW_AT_MIPS_fde)
17811 return "DW_AT_MIPS_fde";
17812 #else
17813 if (attr == DW_AT_HP_block_index)
17814 return "DW_AT_HP_block_index";
17815 #endif
17816
17817 name = get_DW_AT_name (attr);
17818
17819 if (name == NULL)
17820 return "DW_AT_<unknown>";
17821
17822 return name;
17823 }
17824
17825 /* Convert a DWARF value form code into its string name. */
17826
17827 static const char *
17828 dwarf_form_name (unsigned form)
17829 {
17830 const char *name = get_DW_FORM_name (form);
17831
17832 if (name == NULL)
17833 return "DW_FORM_<unknown>";
17834
17835 return name;
17836 }
17837
17838 static char *
17839 dwarf_bool_name (unsigned mybool)
17840 {
17841 if (mybool)
17842 return "TRUE";
17843 else
17844 return "FALSE";
17845 }
17846
17847 /* Convert a DWARF type code into its string name. */
17848
17849 static const char *
17850 dwarf_type_encoding_name (unsigned enc)
17851 {
17852 const char *name = get_DW_ATE_name (enc);
17853
17854 if (name == NULL)
17855 return "DW_ATE_<unknown>";
17856
17857 return name;
17858 }
17859
17860 static void
17861 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17862 {
17863 unsigned int i;
17864
17865 print_spaces (indent, f);
17866 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17867 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17868
17869 if (die->parent != NULL)
17870 {
17871 print_spaces (indent, f);
17872 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17873 die->parent->offset.sect_off);
17874 }
17875
17876 print_spaces (indent, f);
17877 fprintf_unfiltered (f, " has children: %s\n",
17878 dwarf_bool_name (die->child != NULL));
17879
17880 print_spaces (indent, f);
17881 fprintf_unfiltered (f, " attributes:\n");
17882
17883 for (i = 0; i < die->num_attrs; ++i)
17884 {
17885 print_spaces (indent, f);
17886 fprintf_unfiltered (f, " %s (%s) ",
17887 dwarf_attr_name (die->attrs[i].name),
17888 dwarf_form_name (die->attrs[i].form));
17889
17890 switch (die->attrs[i].form)
17891 {
17892 case DW_FORM_addr:
17893 case DW_FORM_GNU_addr_index:
17894 fprintf_unfiltered (f, "address: ");
17895 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17896 break;
17897 case DW_FORM_block2:
17898 case DW_FORM_block4:
17899 case DW_FORM_block:
17900 case DW_FORM_block1:
17901 fprintf_unfiltered (f, "block: size %s",
17902 pulongest (DW_BLOCK (&die->attrs[i])->size));
17903 break;
17904 case DW_FORM_exprloc:
17905 fprintf_unfiltered (f, "expression: size %s",
17906 pulongest (DW_BLOCK (&die->attrs[i])->size));
17907 break;
17908 case DW_FORM_ref_addr:
17909 fprintf_unfiltered (f, "ref address: ");
17910 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17911 break;
17912 case DW_FORM_GNU_ref_alt:
17913 fprintf_unfiltered (f, "alt ref address: ");
17914 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17915 break;
17916 case DW_FORM_ref1:
17917 case DW_FORM_ref2:
17918 case DW_FORM_ref4:
17919 case DW_FORM_ref8:
17920 case DW_FORM_ref_udata:
17921 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17922 (long) (DW_UNSND (&die->attrs[i])));
17923 break;
17924 case DW_FORM_data1:
17925 case DW_FORM_data2:
17926 case DW_FORM_data4:
17927 case DW_FORM_data8:
17928 case DW_FORM_udata:
17929 case DW_FORM_sdata:
17930 fprintf_unfiltered (f, "constant: %s",
17931 pulongest (DW_UNSND (&die->attrs[i])));
17932 break;
17933 case DW_FORM_sec_offset:
17934 fprintf_unfiltered (f, "section offset: %s",
17935 pulongest (DW_UNSND (&die->attrs[i])));
17936 break;
17937 case DW_FORM_ref_sig8:
17938 fprintf_unfiltered (f, "signature: %s",
17939 hex_string (DW_SIGNATURE (&die->attrs[i])));
17940 break;
17941 case DW_FORM_string:
17942 case DW_FORM_strp:
17943 case DW_FORM_GNU_str_index:
17944 case DW_FORM_GNU_strp_alt:
17945 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17946 DW_STRING (&die->attrs[i])
17947 ? DW_STRING (&die->attrs[i]) : "",
17948 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17949 break;
17950 case DW_FORM_flag:
17951 if (DW_UNSND (&die->attrs[i]))
17952 fprintf_unfiltered (f, "flag: TRUE");
17953 else
17954 fprintf_unfiltered (f, "flag: FALSE");
17955 break;
17956 case DW_FORM_flag_present:
17957 fprintf_unfiltered (f, "flag: TRUE");
17958 break;
17959 case DW_FORM_indirect:
17960 /* The reader will have reduced the indirect form to
17961 the "base form" so this form should not occur. */
17962 fprintf_unfiltered (f,
17963 "unexpected attribute form: DW_FORM_indirect");
17964 break;
17965 default:
17966 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17967 die->attrs[i].form);
17968 break;
17969 }
17970 fprintf_unfiltered (f, "\n");
17971 }
17972 }
17973
17974 static void
17975 dump_die_for_error (struct die_info *die)
17976 {
17977 dump_die_shallow (gdb_stderr, 0, die);
17978 }
17979
17980 static void
17981 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17982 {
17983 int indent = level * 4;
17984
17985 gdb_assert (die != NULL);
17986
17987 if (level >= max_level)
17988 return;
17989
17990 dump_die_shallow (f, indent, die);
17991
17992 if (die->child != NULL)
17993 {
17994 print_spaces (indent, f);
17995 fprintf_unfiltered (f, " Children:");
17996 if (level + 1 < max_level)
17997 {
17998 fprintf_unfiltered (f, "\n");
17999 dump_die_1 (f, level + 1, max_level, die->child);
18000 }
18001 else
18002 {
18003 fprintf_unfiltered (f,
18004 " [not printed, max nesting level reached]\n");
18005 }
18006 }
18007
18008 if (die->sibling != NULL && level > 0)
18009 {
18010 dump_die_1 (f, level, max_level, die->sibling);
18011 }
18012 }
18013
18014 /* This is called from the pdie macro in gdbinit.in.
18015 It's not static so gcc will keep a copy callable from gdb. */
18016
18017 void
18018 dump_die (struct die_info *die, int max_level)
18019 {
18020 dump_die_1 (gdb_stdlog, 0, max_level, die);
18021 }
18022
18023 static void
18024 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18025 {
18026 void **slot;
18027
18028 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18029 INSERT);
18030
18031 *slot = die;
18032 }
18033
18034 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18035 required kind. */
18036
18037 static sect_offset
18038 dwarf2_get_ref_die_offset (const struct attribute *attr)
18039 {
18040 sect_offset retval = { DW_UNSND (attr) };
18041
18042 if (attr_form_is_ref (attr))
18043 return retval;
18044
18045 retval.sect_off = 0;
18046 complaint (&symfile_complaints,
18047 _("unsupported die ref attribute form: '%s'"),
18048 dwarf_form_name (attr->form));
18049 return retval;
18050 }
18051
18052 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18053 * the value held by the attribute is not constant. */
18054
18055 static LONGEST
18056 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18057 {
18058 if (attr->form == DW_FORM_sdata)
18059 return DW_SND (attr);
18060 else if (attr->form == DW_FORM_udata
18061 || attr->form == DW_FORM_data1
18062 || attr->form == DW_FORM_data2
18063 || attr->form == DW_FORM_data4
18064 || attr->form == DW_FORM_data8)
18065 return DW_UNSND (attr);
18066 else
18067 {
18068 complaint (&symfile_complaints,
18069 _("Attribute value is not a constant (%s)"),
18070 dwarf_form_name (attr->form));
18071 return default_value;
18072 }
18073 }
18074
18075 /* Follow reference or signature attribute ATTR of SRC_DIE.
18076 On entry *REF_CU is the CU of SRC_DIE.
18077 On exit *REF_CU is the CU of the result. */
18078
18079 static struct die_info *
18080 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18081 struct dwarf2_cu **ref_cu)
18082 {
18083 struct die_info *die;
18084
18085 if (attr_form_is_ref (attr))
18086 die = follow_die_ref (src_die, attr, ref_cu);
18087 else if (attr->form == DW_FORM_ref_sig8)
18088 die = follow_die_sig (src_die, attr, ref_cu);
18089 else
18090 {
18091 dump_die_for_error (src_die);
18092 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18093 (*ref_cu)->objfile->name);
18094 }
18095
18096 return die;
18097 }
18098
18099 /* Follow reference OFFSET.
18100 On entry *REF_CU is the CU of the source die referencing OFFSET.
18101 On exit *REF_CU is the CU of the result.
18102 Returns NULL if OFFSET is invalid. */
18103
18104 static struct die_info *
18105 follow_die_offset (sect_offset offset, int offset_in_dwz,
18106 struct dwarf2_cu **ref_cu)
18107 {
18108 struct die_info temp_die;
18109 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18110
18111 gdb_assert (cu->per_cu != NULL);
18112
18113 target_cu = cu;
18114
18115 if (cu->per_cu->is_debug_types)
18116 {
18117 /* .debug_types CUs cannot reference anything outside their CU.
18118 If they need to, they have to reference a signatured type via
18119 DW_FORM_ref_sig8. */
18120 if (! offset_in_cu_p (&cu->header, offset))
18121 return NULL;
18122 }
18123 else if (offset_in_dwz != cu->per_cu->is_dwz
18124 || ! offset_in_cu_p (&cu->header, offset))
18125 {
18126 struct dwarf2_per_cu_data *per_cu;
18127
18128 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18129 cu->objfile);
18130
18131 /* If necessary, add it to the queue and load its DIEs. */
18132 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18133 load_full_comp_unit (per_cu, cu->language);
18134
18135 target_cu = per_cu->cu;
18136 }
18137 else if (cu->dies == NULL)
18138 {
18139 /* We're loading full DIEs during partial symbol reading. */
18140 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18141 load_full_comp_unit (cu->per_cu, language_minimal);
18142 }
18143
18144 *ref_cu = target_cu;
18145 temp_die.offset = offset;
18146 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18147 }
18148
18149 /* Follow reference attribute ATTR of SRC_DIE.
18150 On entry *REF_CU is the CU of SRC_DIE.
18151 On exit *REF_CU is the CU of the result. */
18152
18153 static struct die_info *
18154 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18155 struct dwarf2_cu **ref_cu)
18156 {
18157 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18158 struct dwarf2_cu *cu = *ref_cu;
18159 struct die_info *die;
18160
18161 die = follow_die_offset (offset,
18162 (attr->form == DW_FORM_GNU_ref_alt
18163 || cu->per_cu->is_dwz),
18164 ref_cu);
18165 if (!die)
18166 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18167 "at 0x%x [in module %s]"),
18168 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18169
18170 return die;
18171 }
18172
18173 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18174 Returned value is intended for DW_OP_call*. Returned
18175 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18176
18177 struct dwarf2_locexpr_baton
18178 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18179 struct dwarf2_per_cu_data *per_cu,
18180 CORE_ADDR (*get_frame_pc) (void *baton),
18181 void *baton)
18182 {
18183 struct dwarf2_cu *cu;
18184 struct die_info *die;
18185 struct attribute *attr;
18186 struct dwarf2_locexpr_baton retval;
18187
18188 dw2_setup (per_cu->objfile);
18189
18190 if (per_cu->cu == NULL)
18191 load_cu (per_cu);
18192 cu = per_cu->cu;
18193
18194 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18195 if (!die)
18196 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18197 offset.sect_off, per_cu->objfile->name);
18198
18199 attr = dwarf2_attr (die, DW_AT_location, cu);
18200 if (!attr)
18201 {
18202 /* DWARF: "If there is no such attribute, then there is no effect.".
18203 DATA is ignored if SIZE is 0. */
18204
18205 retval.data = NULL;
18206 retval.size = 0;
18207 }
18208 else if (attr_form_is_section_offset (attr))
18209 {
18210 struct dwarf2_loclist_baton loclist_baton;
18211 CORE_ADDR pc = (*get_frame_pc) (baton);
18212 size_t size;
18213
18214 fill_in_loclist_baton (cu, &loclist_baton, attr);
18215
18216 retval.data = dwarf2_find_location_expression (&loclist_baton,
18217 &size, pc);
18218 retval.size = size;
18219 }
18220 else
18221 {
18222 if (!attr_form_is_block (attr))
18223 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18224 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18225 offset.sect_off, per_cu->objfile->name);
18226
18227 retval.data = DW_BLOCK (attr)->data;
18228 retval.size = DW_BLOCK (attr)->size;
18229 }
18230 retval.per_cu = cu->per_cu;
18231
18232 age_cached_comp_units ();
18233
18234 return retval;
18235 }
18236
18237 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18238 offset. */
18239
18240 struct dwarf2_locexpr_baton
18241 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18242 struct dwarf2_per_cu_data *per_cu,
18243 CORE_ADDR (*get_frame_pc) (void *baton),
18244 void *baton)
18245 {
18246 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18247
18248 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18249 }
18250
18251 /* Write a constant of a given type as target-ordered bytes into
18252 OBSTACK. */
18253
18254 static const gdb_byte *
18255 write_constant_as_bytes (struct obstack *obstack,
18256 enum bfd_endian byte_order,
18257 struct type *type,
18258 ULONGEST value,
18259 LONGEST *len)
18260 {
18261 gdb_byte *result;
18262
18263 *len = TYPE_LENGTH (type);
18264 result = obstack_alloc (obstack, *len);
18265 store_unsigned_integer (result, *len, byte_order, value);
18266
18267 return result;
18268 }
18269
18270 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18271 pointer to the constant bytes and set LEN to the length of the
18272 data. If memory is needed, allocate it on OBSTACK. If the DIE
18273 does not have a DW_AT_const_value, return NULL. */
18274
18275 const gdb_byte *
18276 dwarf2_fetch_constant_bytes (sect_offset offset,
18277 struct dwarf2_per_cu_data *per_cu,
18278 struct obstack *obstack,
18279 LONGEST *len)
18280 {
18281 struct dwarf2_cu *cu;
18282 struct die_info *die;
18283 struct attribute *attr;
18284 const gdb_byte *result = NULL;
18285 struct type *type;
18286 LONGEST value;
18287 enum bfd_endian byte_order;
18288
18289 dw2_setup (per_cu->objfile);
18290
18291 if (per_cu->cu == NULL)
18292 load_cu (per_cu);
18293 cu = per_cu->cu;
18294
18295 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18296 if (!die)
18297 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18298 offset.sect_off, per_cu->objfile->name);
18299
18300
18301 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18302 if (attr == NULL)
18303 return NULL;
18304
18305 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18306 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18307
18308 switch (attr->form)
18309 {
18310 case DW_FORM_addr:
18311 case DW_FORM_GNU_addr_index:
18312 {
18313 gdb_byte *tem;
18314
18315 *len = cu->header.addr_size;
18316 tem = obstack_alloc (obstack, *len);
18317 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18318 result = tem;
18319 }
18320 break;
18321 case DW_FORM_string:
18322 case DW_FORM_strp:
18323 case DW_FORM_GNU_str_index:
18324 case DW_FORM_GNU_strp_alt:
18325 /* DW_STRING is already allocated on the objfile obstack, point
18326 directly to it. */
18327 result = (const gdb_byte *) DW_STRING (attr);
18328 *len = strlen (DW_STRING (attr));
18329 break;
18330 case DW_FORM_block1:
18331 case DW_FORM_block2:
18332 case DW_FORM_block4:
18333 case DW_FORM_block:
18334 case DW_FORM_exprloc:
18335 result = DW_BLOCK (attr)->data;
18336 *len = DW_BLOCK (attr)->size;
18337 break;
18338
18339 /* The DW_AT_const_value attributes are supposed to carry the
18340 symbol's value "represented as it would be on the target
18341 architecture." By the time we get here, it's already been
18342 converted to host endianness, so we just need to sign- or
18343 zero-extend it as appropriate. */
18344 case DW_FORM_data1:
18345 type = die_type (die, cu);
18346 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18347 if (result == NULL)
18348 result = write_constant_as_bytes (obstack, byte_order,
18349 type, value, len);
18350 break;
18351 case DW_FORM_data2:
18352 type = die_type (die, cu);
18353 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18354 if (result == NULL)
18355 result = write_constant_as_bytes (obstack, byte_order,
18356 type, value, len);
18357 break;
18358 case DW_FORM_data4:
18359 type = die_type (die, cu);
18360 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18361 if (result == NULL)
18362 result = write_constant_as_bytes (obstack, byte_order,
18363 type, value, len);
18364 break;
18365 case DW_FORM_data8:
18366 type = die_type (die, cu);
18367 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18368 if (result == NULL)
18369 result = write_constant_as_bytes (obstack, byte_order,
18370 type, value, len);
18371 break;
18372
18373 case DW_FORM_sdata:
18374 type = die_type (die, cu);
18375 result = write_constant_as_bytes (obstack, byte_order,
18376 type, DW_SND (attr), len);
18377 break;
18378
18379 case DW_FORM_udata:
18380 type = die_type (die, cu);
18381 result = write_constant_as_bytes (obstack, byte_order,
18382 type, DW_UNSND (attr), len);
18383 break;
18384
18385 default:
18386 complaint (&symfile_complaints,
18387 _("unsupported const value attribute form: '%s'"),
18388 dwarf_form_name (attr->form));
18389 break;
18390 }
18391
18392 return result;
18393 }
18394
18395 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18396 PER_CU. */
18397
18398 struct type *
18399 dwarf2_get_die_type (cu_offset die_offset,
18400 struct dwarf2_per_cu_data *per_cu)
18401 {
18402 sect_offset die_offset_sect;
18403
18404 dw2_setup (per_cu->objfile);
18405
18406 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18407 return get_die_type_at_offset (die_offset_sect, per_cu);
18408 }
18409
18410 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18411 On entry *REF_CU is the CU of SRC_DIE.
18412 On exit *REF_CU is the CU of the result.
18413 Returns NULL if the referenced DIE isn't found. */
18414
18415 static struct die_info *
18416 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18417 struct dwarf2_cu **ref_cu)
18418 {
18419 struct objfile *objfile = (*ref_cu)->objfile;
18420 struct die_info temp_die;
18421 struct dwarf2_cu *sig_cu;
18422 struct die_info *die;
18423
18424 /* While it might be nice to assert sig_type->type == NULL here,
18425 we can get here for DW_AT_imported_declaration where we need
18426 the DIE not the type. */
18427
18428 /* If necessary, add it to the queue and load its DIEs. */
18429
18430 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18431 read_signatured_type (sig_type);
18432
18433 sig_cu = sig_type->per_cu.cu;
18434 gdb_assert (sig_cu != NULL);
18435 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18436 temp_die.offset = sig_type->type_offset_in_section;
18437 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18438 temp_die.offset.sect_off);
18439 if (die)
18440 {
18441 /* For .gdb_index version 7 keep track of included TUs.
18442 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18443 if (dwarf2_per_objfile->index_table != NULL
18444 && dwarf2_per_objfile->index_table->version <= 7)
18445 {
18446 VEC_safe_push (dwarf2_per_cu_ptr,
18447 (*ref_cu)->per_cu->imported_symtabs,
18448 sig_cu->per_cu);
18449 }
18450
18451 *ref_cu = sig_cu;
18452 return die;
18453 }
18454
18455 return NULL;
18456 }
18457
18458 /* Follow signatured type referenced by ATTR in SRC_DIE.
18459 On entry *REF_CU is the CU of SRC_DIE.
18460 On exit *REF_CU is the CU of the result.
18461 The result is the DIE of the type.
18462 If the referenced type cannot be found an error is thrown. */
18463
18464 static struct die_info *
18465 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
18466 struct dwarf2_cu **ref_cu)
18467 {
18468 ULONGEST signature = DW_SIGNATURE (attr);
18469 struct signatured_type *sig_type;
18470 struct die_info *die;
18471
18472 gdb_assert (attr->form == DW_FORM_ref_sig8);
18473
18474 sig_type = lookup_signatured_type (*ref_cu, signature);
18475 /* sig_type will be NULL if the signatured type is missing from
18476 the debug info. */
18477 if (sig_type == NULL)
18478 {
18479 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18480 " from DIE at 0x%x [in module %s]"),
18481 hex_string (signature), src_die->offset.sect_off,
18482 (*ref_cu)->objfile->name);
18483 }
18484
18485 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18486 if (die == NULL)
18487 {
18488 dump_die_for_error (src_die);
18489 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18490 " from DIE at 0x%x [in module %s]"),
18491 hex_string (signature), src_die->offset.sect_off,
18492 (*ref_cu)->objfile->name);
18493 }
18494
18495 return die;
18496 }
18497
18498 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18499 reading in and processing the type unit if necessary. */
18500
18501 static struct type *
18502 get_signatured_type (struct die_info *die, ULONGEST signature,
18503 struct dwarf2_cu *cu)
18504 {
18505 struct signatured_type *sig_type;
18506 struct dwarf2_cu *type_cu;
18507 struct die_info *type_die;
18508 struct type *type;
18509
18510 sig_type = lookup_signatured_type (cu, signature);
18511 /* sig_type will be NULL if the signatured type is missing from
18512 the debug info. */
18513 if (sig_type == NULL)
18514 {
18515 complaint (&symfile_complaints,
18516 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18517 " from DIE at 0x%x [in module %s]"),
18518 hex_string (signature), die->offset.sect_off,
18519 dwarf2_per_objfile->objfile->name);
18520 return build_error_marker_type (cu, die);
18521 }
18522
18523 /* If we already know the type we're done. */
18524 if (sig_type->type != NULL)
18525 return sig_type->type;
18526
18527 type_cu = cu;
18528 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18529 if (type_die != NULL)
18530 {
18531 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18532 is created. This is important, for example, because for c++ classes
18533 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18534 type = read_type_die (type_die, type_cu);
18535 if (type == NULL)
18536 {
18537 complaint (&symfile_complaints,
18538 _("Dwarf Error: Cannot build signatured type %s"
18539 " referenced from DIE at 0x%x [in module %s]"),
18540 hex_string (signature), die->offset.sect_off,
18541 dwarf2_per_objfile->objfile->name);
18542 type = build_error_marker_type (cu, die);
18543 }
18544 }
18545 else
18546 {
18547 complaint (&symfile_complaints,
18548 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18549 " from DIE at 0x%x [in module %s]"),
18550 hex_string (signature), die->offset.sect_off,
18551 dwarf2_per_objfile->objfile->name);
18552 type = build_error_marker_type (cu, die);
18553 }
18554 sig_type->type = type;
18555
18556 return type;
18557 }
18558
18559 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18560 reading in and processing the type unit if necessary. */
18561
18562 static struct type *
18563 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
18564 struct dwarf2_cu *cu) /* ARI: editCase function */
18565 {
18566 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18567 if (attr_form_is_ref (attr))
18568 {
18569 struct dwarf2_cu *type_cu = cu;
18570 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18571
18572 return read_type_die (type_die, type_cu);
18573 }
18574 else if (attr->form == DW_FORM_ref_sig8)
18575 {
18576 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18577 }
18578 else
18579 {
18580 complaint (&symfile_complaints,
18581 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18582 " at 0x%x [in module %s]"),
18583 dwarf_form_name (attr->form), die->offset.sect_off,
18584 dwarf2_per_objfile->objfile->name);
18585 return build_error_marker_type (cu, die);
18586 }
18587 }
18588
18589 /* Load the DIEs associated with type unit PER_CU into memory. */
18590
18591 static void
18592 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18593 {
18594 struct signatured_type *sig_type;
18595
18596 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18597 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18598
18599 /* We have the per_cu, but we need the signatured_type.
18600 Fortunately this is an easy translation. */
18601 gdb_assert (per_cu->is_debug_types);
18602 sig_type = (struct signatured_type *) per_cu;
18603
18604 gdb_assert (per_cu->cu == NULL);
18605
18606 read_signatured_type (sig_type);
18607
18608 gdb_assert (per_cu->cu != NULL);
18609 }
18610
18611 /* die_reader_func for read_signatured_type.
18612 This is identical to load_full_comp_unit_reader,
18613 but is kept separate for now. */
18614
18615 static void
18616 read_signatured_type_reader (const struct die_reader_specs *reader,
18617 const gdb_byte *info_ptr,
18618 struct die_info *comp_unit_die,
18619 int has_children,
18620 void *data)
18621 {
18622 struct dwarf2_cu *cu = reader->cu;
18623
18624 gdb_assert (cu->die_hash == NULL);
18625 cu->die_hash =
18626 htab_create_alloc_ex (cu->header.length / 12,
18627 die_hash,
18628 die_eq,
18629 NULL,
18630 &cu->comp_unit_obstack,
18631 hashtab_obstack_allocate,
18632 dummy_obstack_deallocate);
18633
18634 if (has_children)
18635 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18636 &info_ptr, comp_unit_die);
18637 cu->dies = comp_unit_die;
18638 /* comp_unit_die is not stored in die_hash, no need. */
18639
18640 /* We try not to read any attributes in this function, because not
18641 all CUs needed for references have been loaded yet, and symbol
18642 table processing isn't initialized. But we have to set the CU language,
18643 or we won't be able to build types correctly.
18644 Similarly, if we do not read the producer, we can not apply
18645 producer-specific interpretation. */
18646 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18647 }
18648
18649 /* Read in a signatured type and build its CU and DIEs.
18650 If the type is a stub for the real type in a DWO file,
18651 read in the real type from the DWO file as well. */
18652
18653 static void
18654 read_signatured_type (struct signatured_type *sig_type)
18655 {
18656 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18657
18658 gdb_assert (per_cu->is_debug_types);
18659 gdb_assert (per_cu->cu == NULL);
18660
18661 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18662 read_signatured_type_reader, NULL);
18663 sig_type->per_cu.tu_read = 1;
18664 }
18665
18666 /* Decode simple location descriptions.
18667 Given a pointer to a dwarf block that defines a location, compute
18668 the location and return the value.
18669
18670 NOTE drow/2003-11-18: This function is called in two situations
18671 now: for the address of static or global variables (partial symbols
18672 only) and for offsets into structures which are expected to be
18673 (more or less) constant. The partial symbol case should go away,
18674 and only the constant case should remain. That will let this
18675 function complain more accurately. A few special modes are allowed
18676 without complaint for global variables (for instance, global
18677 register values and thread-local values).
18678
18679 A location description containing no operations indicates that the
18680 object is optimized out. The return value is 0 for that case.
18681 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18682 callers will only want a very basic result and this can become a
18683 complaint.
18684
18685 Note that stack[0] is unused except as a default error return. */
18686
18687 static CORE_ADDR
18688 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18689 {
18690 struct objfile *objfile = cu->objfile;
18691 size_t i;
18692 size_t size = blk->size;
18693 const gdb_byte *data = blk->data;
18694 CORE_ADDR stack[64];
18695 int stacki;
18696 unsigned int bytes_read, unsnd;
18697 gdb_byte op;
18698
18699 i = 0;
18700 stacki = 0;
18701 stack[stacki] = 0;
18702 stack[++stacki] = 0;
18703
18704 while (i < size)
18705 {
18706 op = data[i++];
18707 switch (op)
18708 {
18709 case DW_OP_lit0:
18710 case DW_OP_lit1:
18711 case DW_OP_lit2:
18712 case DW_OP_lit3:
18713 case DW_OP_lit4:
18714 case DW_OP_lit5:
18715 case DW_OP_lit6:
18716 case DW_OP_lit7:
18717 case DW_OP_lit8:
18718 case DW_OP_lit9:
18719 case DW_OP_lit10:
18720 case DW_OP_lit11:
18721 case DW_OP_lit12:
18722 case DW_OP_lit13:
18723 case DW_OP_lit14:
18724 case DW_OP_lit15:
18725 case DW_OP_lit16:
18726 case DW_OP_lit17:
18727 case DW_OP_lit18:
18728 case DW_OP_lit19:
18729 case DW_OP_lit20:
18730 case DW_OP_lit21:
18731 case DW_OP_lit22:
18732 case DW_OP_lit23:
18733 case DW_OP_lit24:
18734 case DW_OP_lit25:
18735 case DW_OP_lit26:
18736 case DW_OP_lit27:
18737 case DW_OP_lit28:
18738 case DW_OP_lit29:
18739 case DW_OP_lit30:
18740 case DW_OP_lit31:
18741 stack[++stacki] = op - DW_OP_lit0;
18742 break;
18743
18744 case DW_OP_reg0:
18745 case DW_OP_reg1:
18746 case DW_OP_reg2:
18747 case DW_OP_reg3:
18748 case DW_OP_reg4:
18749 case DW_OP_reg5:
18750 case DW_OP_reg6:
18751 case DW_OP_reg7:
18752 case DW_OP_reg8:
18753 case DW_OP_reg9:
18754 case DW_OP_reg10:
18755 case DW_OP_reg11:
18756 case DW_OP_reg12:
18757 case DW_OP_reg13:
18758 case DW_OP_reg14:
18759 case DW_OP_reg15:
18760 case DW_OP_reg16:
18761 case DW_OP_reg17:
18762 case DW_OP_reg18:
18763 case DW_OP_reg19:
18764 case DW_OP_reg20:
18765 case DW_OP_reg21:
18766 case DW_OP_reg22:
18767 case DW_OP_reg23:
18768 case DW_OP_reg24:
18769 case DW_OP_reg25:
18770 case DW_OP_reg26:
18771 case DW_OP_reg27:
18772 case DW_OP_reg28:
18773 case DW_OP_reg29:
18774 case DW_OP_reg30:
18775 case DW_OP_reg31:
18776 stack[++stacki] = op - DW_OP_reg0;
18777 if (i < size)
18778 dwarf2_complex_location_expr_complaint ();
18779 break;
18780
18781 case DW_OP_regx:
18782 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18783 i += bytes_read;
18784 stack[++stacki] = unsnd;
18785 if (i < size)
18786 dwarf2_complex_location_expr_complaint ();
18787 break;
18788
18789 case DW_OP_addr:
18790 stack[++stacki] = read_address (objfile->obfd, &data[i],
18791 cu, &bytes_read);
18792 i += bytes_read;
18793 break;
18794
18795 case DW_OP_const1u:
18796 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18797 i += 1;
18798 break;
18799
18800 case DW_OP_const1s:
18801 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18802 i += 1;
18803 break;
18804
18805 case DW_OP_const2u:
18806 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18807 i += 2;
18808 break;
18809
18810 case DW_OP_const2s:
18811 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18812 i += 2;
18813 break;
18814
18815 case DW_OP_const4u:
18816 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18817 i += 4;
18818 break;
18819
18820 case DW_OP_const4s:
18821 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18822 i += 4;
18823 break;
18824
18825 case DW_OP_const8u:
18826 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18827 i += 8;
18828 break;
18829
18830 case DW_OP_constu:
18831 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18832 &bytes_read);
18833 i += bytes_read;
18834 break;
18835
18836 case DW_OP_consts:
18837 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18838 i += bytes_read;
18839 break;
18840
18841 case DW_OP_dup:
18842 stack[stacki + 1] = stack[stacki];
18843 stacki++;
18844 break;
18845
18846 case DW_OP_plus:
18847 stack[stacki - 1] += stack[stacki];
18848 stacki--;
18849 break;
18850
18851 case DW_OP_plus_uconst:
18852 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18853 &bytes_read);
18854 i += bytes_read;
18855 break;
18856
18857 case DW_OP_minus:
18858 stack[stacki - 1] -= stack[stacki];
18859 stacki--;
18860 break;
18861
18862 case DW_OP_deref:
18863 /* If we're not the last op, then we definitely can't encode
18864 this using GDB's address_class enum. This is valid for partial
18865 global symbols, although the variable's address will be bogus
18866 in the psymtab. */
18867 if (i < size)
18868 dwarf2_complex_location_expr_complaint ();
18869 break;
18870
18871 case DW_OP_GNU_push_tls_address:
18872 /* The top of the stack has the offset from the beginning
18873 of the thread control block at which the variable is located. */
18874 /* Nothing should follow this operator, so the top of stack would
18875 be returned. */
18876 /* This is valid for partial global symbols, but the variable's
18877 address will be bogus in the psymtab. Make it always at least
18878 non-zero to not look as a variable garbage collected by linker
18879 which have DW_OP_addr 0. */
18880 if (i < size)
18881 dwarf2_complex_location_expr_complaint ();
18882 stack[stacki]++;
18883 break;
18884
18885 case DW_OP_GNU_uninit:
18886 break;
18887
18888 case DW_OP_GNU_addr_index:
18889 case DW_OP_GNU_const_index:
18890 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18891 &bytes_read);
18892 i += bytes_read;
18893 break;
18894
18895 default:
18896 {
18897 const char *name = get_DW_OP_name (op);
18898
18899 if (name)
18900 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18901 name);
18902 else
18903 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18904 op);
18905 }
18906
18907 return (stack[stacki]);
18908 }
18909
18910 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18911 outside of the allocated space. Also enforce minimum>0. */
18912 if (stacki >= ARRAY_SIZE (stack) - 1)
18913 {
18914 complaint (&symfile_complaints,
18915 _("location description stack overflow"));
18916 return 0;
18917 }
18918
18919 if (stacki <= 0)
18920 {
18921 complaint (&symfile_complaints,
18922 _("location description stack underflow"));
18923 return 0;
18924 }
18925 }
18926 return (stack[stacki]);
18927 }
18928
18929 /* memory allocation interface */
18930
18931 static struct dwarf_block *
18932 dwarf_alloc_block (struct dwarf2_cu *cu)
18933 {
18934 struct dwarf_block *blk;
18935
18936 blk = (struct dwarf_block *)
18937 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18938 return (blk);
18939 }
18940
18941 static struct die_info *
18942 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18943 {
18944 struct die_info *die;
18945 size_t size = sizeof (struct die_info);
18946
18947 if (num_attrs > 1)
18948 size += (num_attrs - 1) * sizeof (struct attribute);
18949
18950 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18951 memset (die, 0, sizeof (struct die_info));
18952 return (die);
18953 }
18954
18955 \f
18956 /* Macro support. */
18957
18958 /* Return file name relative to the compilation directory of file number I in
18959 *LH's file name table. The result is allocated using xmalloc; the caller is
18960 responsible for freeing it. */
18961
18962 static char *
18963 file_file_name (int file, struct line_header *lh)
18964 {
18965 /* Is the file number a valid index into the line header's file name
18966 table? Remember that file numbers start with one, not zero. */
18967 if (1 <= file && file <= lh->num_file_names)
18968 {
18969 struct file_entry *fe = &lh->file_names[file - 1];
18970
18971 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18972 return xstrdup (fe->name);
18973 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18974 fe->name, NULL);
18975 }
18976 else
18977 {
18978 /* The compiler produced a bogus file number. We can at least
18979 record the macro definitions made in the file, even if we
18980 won't be able to find the file by name. */
18981 char fake_name[80];
18982
18983 xsnprintf (fake_name, sizeof (fake_name),
18984 "<bad macro file number %d>", file);
18985
18986 complaint (&symfile_complaints,
18987 _("bad file number in macro information (%d)"),
18988 file);
18989
18990 return xstrdup (fake_name);
18991 }
18992 }
18993
18994 /* Return the full name of file number I in *LH's file name table.
18995 Use COMP_DIR as the name of the current directory of the
18996 compilation. The result is allocated using xmalloc; the caller is
18997 responsible for freeing it. */
18998 static char *
18999 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19000 {
19001 /* Is the file number a valid index into the line header's file name
19002 table? Remember that file numbers start with one, not zero. */
19003 if (1 <= file && file <= lh->num_file_names)
19004 {
19005 char *relative = file_file_name (file, lh);
19006
19007 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19008 return relative;
19009 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19010 }
19011 else
19012 return file_file_name (file, lh);
19013 }
19014
19015
19016 static struct macro_source_file *
19017 macro_start_file (int file, int line,
19018 struct macro_source_file *current_file,
19019 const char *comp_dir,
19020 struct line_header *lh, struct objfile *objfile)
19021 {
19022 /* File name relative to the compilation directory of this source file. */
19023 char *file_name = file_file_name (file, lh);
19024
19025 if (! current_file)
19026 {
19027 /* Note: We don't create a macro table for this compilation unit
19028 at all until we actually get a filename. */
19029 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19030
19031 /* If we have no current file, then this must be the start_file
19032 directive for the compilation unit's main source file. */
19033 current_file = macro_set_main (macro_table, file_name);
19034 macro_define_special (macro_table);
19035 }
19036 else
19037 current_file = macro_include (current_file, line, file_name);
19038
19039 xfree (file_name);
19040
19041 return current_file;
19042 }
19043
19044
19045 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19046 followed by a null byte. */
19047 static char *
19048 copy_string (const char *buf, int len)
19049 {
19050 char *s = xmalloc (len + 1);
19051
19052 memcpy (s, buf, len);
19053 s[len] = '\0';
19054 return s;
19055 }
19056
19057
19058 static const char *
19059 consume_improper_spaces (const char *p, const char *body)
19060 {
19061 if (*p == ' ')
19062 {
19063 complaint (&symfile_complaints,
19064 _("macro definition contains spaces "
19065 "in formal argument list:\n`%s'"),
19066 body);
19067
19068 while (*p == ' ')
19069 p++;
19070 }
19071
19072 return p;
19073 }
19074
19075
19076 static void
19077 parse_macro_definition (struct macro_source_file *file, int line,
19078 const char *body)
19079 {
19080 const char *p;
19081
19082 /* The body string takes one of two forms. For object-like macro
19083 definitions, it should be:
19084
19085 <macro name> " " <definition>
19086
19087 For function-like macro definitions, it should be:
19088
19089 <macro name> "() " <definition>
19090 or
19091 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19092
19093 Spaces may appear only where explicitly indicated, and in the
19094 <definition>.
19095
19096 The Dwarf 2 spec says that an object-like macro's name is always
19097 followed by a space, but versions of GCC around March 2002 omit
19098 the space when the macro's definition is the empty string.
19099
19100 The Dwarf 2 spec says that there should be no spaces between the
19101 formal arguments in a function-like macro's formal argument list,
19102 but versions of GCC around March 2002 include spaces after the
19103 commas. */
19104
19105
19106 /* Find the extent of the macro name. The macro name is terminated
19107 by either a space or null character (for an object-like macro) or
19108 an opening paren (for a function-like macro). */
19109 for (p = body; *p; p++)
19110 if (*p == ' ' || *p == '(')
19111 break;
19112
19113 if (*p == ' ' || *p == '\0')
19114 {
19115 /* It's an object-like macro. */
19116 int name_len = p - body;
19117 char *name = copy_string (body, name_len);
19118 const char *replacement;
19119
19120 if (*p == ' ')
19121 replacement = body + name_len + 1;
19122 else
19123 {
19124 dwarf2_macro_malformed_definition_complaint (body);
19125 replacement = body + name_len;
19126 }
19127
19128 macro_define_object (file, line, name, replacement);
19129
19130 xfree (name);
19131 }
19132 else if (*p == '(')
19133 {
19134 /* It's a function-like macro. */
19135 char *name = copy_string (body, p - body);
19136 int argc = 0;
19137 int argv_size = 1;
19138 char **argv = xmalloc (argv_size * sizeof (*argv));
19139
19140 p++;
19141
19142 p = consume_improper_spaces (p, body);
19143
19144 /* Parse the formal argument list. */
19145 while (*p && *p != ')')
19146 {
19147 /* Find the extent of the current argument name. */
19148 const char *arg_start = p;
19149
19150 while (*p && *p != ',' && *p != ')' && *p != ' ')
19151 p++;
19152
19153 if (! *p || p == arg_start)
19154 dwarf2_macro_malformed_definition_complaint (body);
19155 else
19156 {
19157 /* Make sure argv has room for the new argument. */
19158 if (argc >= argv_size)
19159 {
19160 argv_size *= 2;
19161 argv = xrealloc (argv, argv_size * sizeof (*argv));
19162 }
19163
19164 argv[argc++] = copy_string (arg_start, p - arg_start);
19165 }
19166
19167 p = consume_improper_spaces (p, body);
19168
19169 /* Consume the comma, if present. */
19170 if (*p == ',')
19171 {
19172 p++;
19173
19174 p = consume_improper_spaces (p, body);
19175 }
19176 }
19177
19178 if (*p == ')')
19179 {
19180 p++;
19181
19182 if (*p == ' ')
19183 /* Perfectly formed definition, no complaints. */
19184 macro_define_function (file, line, name,
19185 argc, (const char **) argv,
19186 p + 1);
19187 else if (*p == '\0')
19188 {
19189 /* Complain, but do define it. */
19190 dwarf2_macro_malformed_definition_complaint (body);
19191 macro_define_function (file, line, name,
19192 argc, (const char **) argv,
19193 p);
19194 }
19195 else
19196 /* Just complain. */
19197 dwarf2_macro_malformed_definition_complaint (body);
19198 }
19199 else
19200 /* Just complain. */
19201 dwarf2_macro_malformed_definition_complaint (body);
19202
19203 xfree (name);
19204 {
19205 int i;
19206
19207 for (i = 0; i < argc; i++)
19208 xfree (argv[i]);
19209 }
19210 xfree (argv);
19211 }
19212 else
19213 dwarf2_macro_malformed_definition_complaint (body);
19214 }
19215
19216 /* Skip some bytes from BYTES according to the form given in FORM.
19217 Returns the new pointer. */
19218
19219 static const gdb_byte *
19220 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19221 enum dwarf_form form,
19222 unsigned int offset_size,
19223 struct dwarf2_section_info *section)
19224 {
19225 unsigned int bytes_read;
19226
19227 switch (form)
19228 {
19229 case DW_FORM_data1:
19230 case DW_FORM_flag:
19231 ++bytes;
19232 break;
19233
19234 case DW_FORM_data2:
19235 bytes += 2;
19236 break;
19237
19238 case DW_FORM_data4:
19239 bytes += 4;
19240 break;
19241
19242 case DW_FORM_data8:
19243 bytes += 8;
19244 break;
19245
19246 case DW_FORM_string:
19247 read_direct_string (abfd, bytes, &bytes_read);
19248 bytes += bytes_read;
19249 break;
19250
19251 case DW_FORM_sec_offset:
19252 case DW_FORM_strp:
19253 case DW_FORM_GNU_strp_alt:
19254 bytes += offset_size;
19255 break;
19256
19257 case DW_FORM_block:
19258 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19259 bytes += bytes_read;
19260 break;
19261
19262 case DW_FORM_block1:
19263 bytes += 1 + read_1_byte (abfd, bytes);
19264 break;
19265 case DW_FORM_block2:
19266 bytes += 2 + read_2_bytes (abfd, bytes);
19267 break;
19268 case DW_FORM_block4:
19269 bytes += 4 + read_4_bytes (abfd, bytes);
19270 break;
19271
19272 case DW_FORM_sdata:
19273 case DW_FORM_udata:
19274 case DW_FORM_GNU_addr_index:
19275 case DW_FORM_GNU_str_index:
19276 bytes = gdb_skip_leb128 (bytes, buffer_end);
19277 if (bytes == NULL)
19278 {
19279 dwarf2_section_buffer_overflow_complaint (section);
19280 return NULL;
19281 }
19282 break;
19283
19284 default:
19285 {
19286 complain:
19287 complaint (&symfile_complaints,
19288 _("invalid form 0x%x in `%s'"),
19289 form,
19290 section->asection->name);
19291 return NULL;
19292 }
19293 }
19294
19295 return bytes;
19296 }
19297
19298 /* A helper for dwarf_decode_macros that handles skipping an unknown
19299 opcode. Returns an updated pointer to the macro data buffer; or,
19300 on error, issues a complaint and returns NULL. */
19301
19302 static const gdb_byte *
19303 skip_unknown_opcode (unsigned int opcode,
19304 const gdb_byte **opcode_definitions,
19305 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19306 bfd *abfd,
19307 unsigned int offset_size,
19308 struct dwarf2_section_info *section)
19309 {
19310 unsigned int bytes_read, i;
19311 unsigned long arg;
19312 const gdb_byte *defn;
19313
19314 if (opcode_definitions[opcode] == NULL)
19315 {
19316 complaint (&symfile_complaints,
19317 _("unrecognized DW_MACFINO opcode 0x%x"),
19318 opcode);
19319 return NULL;
19320 }
19321
19322 defn = opcode_definitions[opcode];
19323 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19324 defn += bytes_read;
19325
19326 for (i = 0; i < arg; ++i)
19327 {
19328 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19329 section);
19330 if (mac_ptr == NULL)
19331 {
19332 /* skip_form_bytes already issued the complaint. */
19333 return NULL;
19334 }
19335 }
19336
19337 return mac_ptr;
19338 }
19339
19340 /* A helper function which parses the header of a macro section.
19341 If the macro section is the extended (for now called "GNU") type,
19342 then this updates *OFFSET_SIZE. Returns a pointer to just after
19343 the header, or issues a complaint and returns NULL on error. */
19344
19345 static const gdb_byte *
19346 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19347 bfd *abfd,
19348 const gdb_byte *mac_ptr,
19349 unsigned int *offset_size,
19350 int section_is_gnu)
19351 {
19352 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19353
19354 if (section_is_gnu)
19355 {
19356 unsigned int version, flags;
19357
19358 version = read_2_bytes (abfd, mac_ptr);
19359 if (version != 4)
19360 {
19361 complaint (&symfile_complaints,
19362 _("unrecognized version `%d' in .debug_macro section"),
19363 version);
19364 return NULL;
19365 }
19366 mac_ptr += 2;
19367
19368 flags = read_1_byte (abfd, mac_ptr);
19369 ++mac_ptr;
19370 *offset_size = (flags & 1) ? 8 : 4;
19371
19372 if ((flags & 2) != 0)
19373 /* We don't need the line table offset. */
19374 mac_ptr += *offset_size;
19375
19376 /* Vendor opcode descriptions. */
19377 if ((flags & 4) != 0)
19378 {
19379 unsigned int i, count;
19380
19381 count = read_1_byte (abfd, mac_ptr);
19382 ++mac_ptr;
19383 for (i = 0; i < count; ++i)
19384 {
19385 unsigned int opcode, bytes_read;
19386 unsigned long arg;
19387
19388 opcode = read_1_byte (abfd, mac_ptr);
19389 ++mac_ptr;
19390 opcode_definitions[opcode] = mac_ptr;
19391 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19392 mac_ptr += bytes_read;
19393 mac_ptr += arg;
19394 }
19395 }
19396 }
19397
19398 return mac_ptr;
19399 }
19400
19401 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19402 including DW_MACRO_GNU_transparent_include. */
19403
19404 static void
19405 dwarf_decode_macro_bytes (bfd *abfd,
19406 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19407 struct macro_source_file *current_file,
19408 struct line_header *lh, const char *comp_dir,
19409 struct dwarf2_section_info *section,
19410 int section_is_gnu, int section_is_dwz,
19411 unsigned int offset_size,
19412 struct objfile *objfile,
19413 htab_t include_hash)
19414 {
19415 enum dwarf_macro_record_type macinfo_type;
19416 int at_commandline;
19417 const gdb_byte *opcode_definitions[256];
19418
19419 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19420 &offset_size, section_is_gnu);
19421 if (mac_ptr == NULL)
19422 {
19423 /* We already issued a complaint. */
19424 return;
19425 }
19426
19427 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19428 GDB is still reading the definitions from command line. First
19429 DW_MACINFO_start_file will need to be ignored as it was already executed
19430 to create CURRENT_FILE for the main source holding also the command line
19431 definitions. On first met DW_MACINFO_start_file this flag is reset to
19432 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19433
19434 at_commandline = 1;
19435
19436 do
19437 {
19438 /* Do we at least have room for a macinfo type byte? */
19439 if (mac_ptr >= mac_end)
19440 {
19441 dwarf2_section_buffer_overflow_complaint (section);
19442 break;
19443 }
19444
19445 macinfo_type = read_1_byte (abfd, mac_ptr);
19446 mac_ptr++;
19447
19448 /* Note that we rely on the fact that the corresponding GNU and
19449 DWARF constants are the same. */
19450 switch (macinfo_type)
19451 {
19452 /* A zero macinfo type indicates the end of the macro
19453 information. */
19454 case 0:
19455 break;
19456
19457 case DW_MACRO_GNU_define:
19458 case DW_MACRO_GNU_undef:
19459 case DW_MACRO_GNU_define_indirect:
19460 case DW_MACRO_GNU_undef_indirect:
19461 case DW_MACRO_GNU_define_indirect_alt:
19462 case DW_MACRO_GNU_undef_indirect_alt:
19463 {
19464 unsigned int bytes_read;
19465 int line;
19466 const char *body;
19467 int is_define;
19468
19469 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19470 mac_ptr += bytes_read;
19471
19472 if (macinfo_type == DW_MACRO_GNU_define
19473 || macinfo_type == DW_MACRO_GNU_undef)
19474 {
19475 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19476 mac_ptr += bytes_read;
19477 }
19478 else
19479 {
19480 LONGEST str_offset;
19481
19482 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19483 mac_ptr += offset_size;
19484
19485 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19486 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19487 || section_is_dwz)
19488 {
19489 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19490
19491 body = read_indirect_string_from_dwz (dwz, str_offset);
19492 }
19493 else
19494 body = read_indirect_string_at_offset (abfd, str_offset);
19495 }
19496
19497 is_define = (macinfo_type == DW_MACRO_GNU_define
19498 || macinfo_type == DW_MACRO_GNU_define_indirect
19499 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19500 if (! current_file)
19501 {
19502 /* DWARF violation as no main source is present. */
19503 complaint (&symfile_complaints,
19504 _("debug info with no main source gives macro %s "
19505 "on line %d: %s"),
19506 is_define ? _("definition") : _("undefinition"),
19507 line, body);
19508 break;
19509 }
19510 if ((line == 0 && !at_commandline)
19511 || (line != 0 && at_commandline))
19512 complaint (&symfile_complaints,
19513 _("debug info gives %s macro %s with %s line %d: %s"),
19514 at_commandline ? _("command-line") : _("in-file"),
19515 is_define ? _("definition") : _("undefinition"),
19516 line == 0 ? _("zero") : _("non-zero"), line, body);
19517
19518 if (is_define)
19519 parse_macro_definition (current_file, line, body);
19520 else
19521 {
19522 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19523 || macinfo_type == DW_MACRO_GNU_undef_indirect
19524 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19525 macro_undef (current_file, line, body);
19526 }
19527 }
19528 break;
19529
19530 case DW_MACRO_GNU_start_file:
19531 {
19532 unsigned int bytes_read;
19533 int line, file;
19534
19535 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19536 mac_ptr += bytes_read;
19537 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19538 mac_ptr += bytes_read;
19539
19540 if ((line == 0 && !at_commandline)
19541 || (line != 0 && at_commandline))
19542 complaint (&symfile_complaints,
19543 _("debug info gives source %d included "
19544 "from %s at %s line %d"),
19545 file, at_commandline ? _("command-line") : _("file"),
19546 line == 0 ? _("zero") : _("non-zero"), line);
19547
19548 if (at_commandline)
19549 {
19550 /* This DW_MACRO_GNU_start_file was executed in the
19551 pass one. */
19552 at_commandline = 0;
19553 }
19554 else
19555 current_file = macro_start_file (file, line,
19556 current_file, comp_dir,
19557 lh, objfile);
19558 }
19559 break;
19560
19561 case DW_MACRO_GNU_end_file:
19562 if (! current_file)
19563 complaint (&symfile_complaints,
19564 _("macro debug info has an unmatched "
19565 "`close_file' directive"));
19566 else
19567 {
19568 current_file = current_file->included_by;
19569 if (! current_file)
19570 {
19571 enum dwarf_macro_record_type next_type;
19572
19573 /* GCC circa March 2002 doesn't produce the zero
19574 type byte marking the end of the compilation
19575 unit. Complain if it's not there, but exit no
19576 matter what. */
19577
19578 /* Do we at least have room for a macinfo type byte? */
19579 if (mac_ptr >= mac_end)
19580 {
19581 dwarf2_section_buffer_overflow_complaint (section);
19582 return;
19583 }
19584
19585 /* We don't increment mac_ptr here, so this is just
19586 a look-ahead. */
19587 next_type = read_1_byte (abfd, mac_ptr);
19588 if (next_type != 0)
19589 complaint (&symfile_complaints,
19590 _("no terminating 0-type entry for "
19591 "macros in `.debug_macinfo' section"));
19592
19593 return;
19594 }
19595 }
19596 break;
19597
19598 case DW_MACRO_GNU_transparent_include:
19599 case DW_MACRO_GNU_transparent_include_alt:
19600 {
19601 LONGEST offset;
19602 void **slot;
19603 bfd *include_bfd = abfd;
19604 struct dwarf2_section_info *include_section = section;
19605 struct dwarf2_section_info alt_section;
19606 const gdb_byte *include_mac_end = mac_end;
19607 int is_dwz = section_is_dwz;
19608 const gdb_byte *new_mac_ptr;
19609
19610 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19611 mac_ptr += offset_size;
19612
19613 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19614 {
19615 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19616
19617 dwarf2_read_section (dwarf2_per_objfile->objfile,
19618 &dwz->macro);
19619
19620 include_bfd = dwz->macro.asection->owner;
19621 include_section = &dwz->macro;
19622 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19623 is_dwz = 1;
19624 }
19625
19626 new_mac_ptr = include_section->buffer + offset;
19627 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19628
19629 if (*slot != NULL)
19630 {
19631 /* This has actually happened; see
19632 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19633 complaint (&symfile_complaints,
19634 _("recursive DW_MACRO_GNU_transparent_include in "
19635 ".debug_macro section"));
19636 }
19637 else
19638 {
19639 *slot = (void *) new_mac_ptr;
19640
19641 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19642 include_mac_end, current_file,
19643 lh, comp_dir,
19644 section, section_is_gnu, is_dwz,
19645 offset_size, objfile, include_hash);
19646
19647 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19648 }
19649 }
19650 break;
19651
19652 case DW_MACINFO_vendor_ext:
19653 if (!section_is_gnu)
19654 {
19655 unsigned int bytes_read;
19656 int constant;
19657
19658 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19659 mac_ptr += bytes_read;
19660 read_direct_string (abfd, mac_ptr, &bytes_read);
19661 mac_ptr += bytes_read;
19662
19663 /* We don't recognize any vendor extensions. */
19664 break;
19665 }
19666 /* FALLTHROUGH */
19667
19668 default:
19669 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19670 mac_ptr, mac_end, abfd, offset_size,
19671 section);
19672 if (mac_ptr == NULL)
19673 return;
19674 break;
19675 }
19676 } while (macinfo_type != 0);
19677 }
19678
19679 static void
19680 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19681 const char *comp_dir, int section_is_gnu)
19682 {
19683 struct objfile *objfile = dwarf2_per_objfile->objfile;
19684 struct line_header *lh = cu->line_header;
19685 bfd *abfd;
19686 const gdb_byte *mac_ptr, *mac_end;
19687 struct macro_source_file *current_file = 0;
19688 enum dwarf_macro_record_type macinfo_type;
19689 unsigned int offset_size = cu->header.offset_size;
19690 const gdb_byte *opcode_definitions[256];
19691 struct cleanup *cleanup;
19692 htab_t include_hash;
19693 void **slot;
19694 struct dwarf2_section_info *section;
19695 const char *section_name;
19696
19697 if (cu->dwo_unit != NULL)
19698 {
19699 if (section_is_gnu)
19700 {
19701 section = &cu->dwo_unit->dwo_file->sections.macro;
19702 section_name = ".debug_macro.dwo";
19703 }
19704 else
19705 {
19706 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19707 section_name = ".debug_macinfo.dwo";
19708 }
19709 }
19710 else
19711 {
19712 if (section_is_gnu)
19713 {
19714 section = &dwarf2_per_objfile->macro;
19715 section_name = ".debug_macro";
19716 }
19717 else
19718 {
19719 section = &dwarf2_per_objfile->macinfo;
19720 section_name = ".debug_macinfo";
19721 }
19722 }
19723
19724 dwarf2_read_section (objfile, section);
19725 if (section->buffer == NULL)
19726 {
19727 complaint (&symfile_complaints, _("missing %s section"), section_name);
19728 return;
19729 }
19730 abfd = section->asection->owner;
19731
19732 /* First pass: Find the name of the base filename.
19733 This filename is needed in order to process all macros whose definition
19734 (or undefinition) comes from the command line. These macros are defined
19735 before the first DW_MACINFO_start_file entry, and yet still need to be
19736 associated to the base file.
19737
19738 To determine the base file name, we scan the macro definitions until we
19739 reach the first DW_MACINFO_start_file entry. We then initialize
19740 CURRENT_FILE accordingly so that any macro definition found before the
19741 first DW_MACINFO_start_file can still be associated to the base file. */
19742
19743 mac_ptr = section->buffer + offset;
19744 mac_end = section->buffer + section->size;
19745
19746 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19747 &offset_size, section_is_gnu);
19748 if (mac_ptr == NULL)
19749 {
19750 /* We already issued a complaint. */
19751 return;
19752 }
19753
19754 do
19755 {
19756 /* Do we at least have room for a macinfo type byte? */
19757 if (mac_ptr >= mac_end)
19758 {
19759 /* Complaint is printed during the second pass as GDB will probably
19760 stop the first pass earlier upon finding
19761 DW_MACINFO_start_file. */
19762 break;
19763 }
19764
19765 macinfo_type = read_1_byte (abfd, mac_ptr);
19766 mac_ptr++;
19767
19768 /* Note that we rely on the fact that the corresponding GNU and
19769 DWARF constants are the same. */
19770 switch (macinfo_type)
19771 {
19772 /* A zero macinfo type indicates the end of the macro
19773 information. */
19774 case 0:
19775 break;
19776
19777 case DW_MACRO_GNU_define:
19778 case DW_MACRO_GNU_undef:
19779 /* Only skip the data by MAC_PTR. */
19780 {
19781 unsigned int bytes_read;
19782
19783 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19784 mac_ptr += bytes_read;
19785 read_direct_string (abfd, mac_ptr, &bytes_read);
19786 mac_ptr += bytes_read;
19787 }
19788 break;
19789
19790 case DW_MACRO_GNU_start_file:
19791 {
19792 unsigned int bytes_read;
19793 int line, file;
19794
19795 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19796 mac_ptr += bytes_read;
19797 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19798 mac_ptr += bytes_read;
19799
19800 current_file = macro_start_file (file, line, current_file,
19801 comp_dir, lh, objfile);
19802 }
19803 break;
19804
19805 case DW_MACRO_GNU_end_file:
19806 /* No data to skip by MAC_PTR. */
19807 break;
19808
19809 case DW_MACRO_GNU_define_indirect:
19810 case DW_MACRO_GNU_undef_indirect:
19811 case DW_MACRO_GNU_define_indirect_alt:
19812 case DW_MACRO_GNU_undef_indirect_alt:
19813 {
19814 unsigned int bytes_read;
19815
19816 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19817 mac_ptr += bytes_read;
19818 mac_ptr += offset_size;
19819 }
19820 break;
19821
19822 case DW_MACRO_GNU_transparent_include:
19823 case DW_MACRO_GNU_transparent_include_alt:
19824 /* Note that, according to the spec, a transparent include
19825 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19826 skip this opcode. */
19827 mac_ptr += offset_size;
19828 break;
19829
19830 case DW_MACINFO_vendor_ext:
19831 /* Only skip the data by MAC_PTR. */
19832 if (!section_is_gnu)
19833 {
19834 unsigned int bytes_read;
19835
19836 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19837 mac_ptr += bytes_read;
19838 read_direct_string (abfd, mac_ptr, &bytes_read);
19839 mac_ptr += bytes_read;
19840 }
19841 /* FALLTHROUGH */
19842
19843 default:
19844 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19845 mac_ptr, mac_end, abfd, offset_size,
19846 section);
19847 if (mac_ptr == NULL)
19848 return;
19849 break;
19850 }
19851 } while (macinfo_type != 0 && current_file == NULL);
19852
19853 /* Second pass: Process all entries.
19854
19855 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19856 command-line macro definitions/undefinitions. This flag is unset when we
19857 reach the first DW_MACINFO_start_file entry. */
19858
19859 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19860 NULL, xcalloc, xfree);
19861 cleanup = make_cleanup_htab_delete (include_hash);
19862 mac_ptr = section->buffer + offset;
19863 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19864 *slot = (void *) mac_ptr;
19865 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19866 current_file, lh, comp_dir, section,
19867 section_is_gnu, 0,
19868 offset_size, objfile, include_hash);
19869 do_cleanups (cleanup);
19870 }
19871
19872 /* Check if the attribute's form is a DW_FORM_block*
19873 if so return true else false. */
19874
19875 static int
19876 attr_form_is_block (const struct attribute *attr)
19877 {
19878 return (attr == NULL ? 0 :
19879 attr->form == DW_FORM_block1
19880 || attr->form == DW_FORM_block2
19881 || attr->form == DW_FORM_block4
19882 || attr->form == DW_FORM_block
19883 || attr->form == DW_FORM_exprloc);
19884 }
19885
19886 /* Return non-zero if ATTR's value is a section offset --- classes
19887 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19888 You may use DW_UNSND (attr) to retrieve such offsets.
19889
19890 Section 7.5.4, "Attribute Encodings", explains that no attribute
19891 may have a value that belongs to more than one of these classes; it
19892 would be ambiguous if we did, because we use the same forms for all
19893 of them. */
19894
19895 static int
19896 attr_form_is_section_offset (const struct attribute *attr)
19897 {
19898 return (attr->form == DW_FORM_data4
19899 || attr->form == DW_FORM_data8
19900 || attr->form == DW_FORM_sec_offset);
19901 }
19902
19903 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19904 zero otherwise. When this function returns true, you can apply
19905 dwarf2_get_attr_constant_value to it.
19906
19907 However, note that for some attributes you must check
19908 attr_form_is_section_offset before using this test. DW_FORM_data4
19909 and DW_FORM_data8 are members of both the constant class, and of
19910 the classes that contain offsets into other debug sections
19911 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19912 that, if an attribute's can be either a constant or one of the
19913 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19914 taken as section offsets, not constants. */
19915
19916 static int
19917 attr_form_is_constant (const struct attribute *attr)
19918 {
19919 switch (attr->form)
19920 {
19921 case DW_FORM_sdata:
19922 case DW_FORM_udata:
19923 case DW_FORM_data1:
19924 case DW_FORM_data2:
19925 case DW_FORM_data4:
19926 case DW_FORM_data8:
19927 return 1;
19928 default:
19929 return 0;
19930 }
19931 }
19932
19933
19934 /* DW_ADDR is always stored already as sect_offset; despite for the forms
19935 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19936
19937 static int
19938 attr_form_is_ref (const struct attribute *attr)
19939 {
19940 switch (attr->form)
19941 {
19942 case DW_FORM_ref_addr:
19943 case DW_FORM_ref1:
19944 case DW_FORM_ref2:
19945 case DW_FORM_ref4:
19946 case DW_FORM_ref8:
19947 case DW_FORM_ref_udata:
19948 case DW_FORM_GNU_ref_alt:
19949 return 1;
19950 default:
19951 return 0;
19952 }
19953 }
19954
19955 /* Return the .debug_loc section to use for CU.
19956 For DWO files use .debug_loc.dwo. */
19957
19958 static struct dwarf2_section_info *
19959 cu_debug_loc_section (struct dwarf2_cu *cu)
19960 {
19961 if (cu->dwo_unit)
19962 return &cu->dwo_unit->dwo_file->sections.loc;
19963 return &dwarf2_per_objfile->loc;
19964 }
19965
19966 /* A helper function that fills in a dwarf2_loclist_baton. */
19967
19968 static void
19969 fill_in_loclist_baton (struct dwarf2_cu *cu,
19970 struct dwarf2_loclist_baton *baton,
19971 const struct attribute *attr)
19972 {
19973 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19974
19975 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19976
19977 baton->per_cu = cu->per_cu;
19978 gdb_assert (baton->per_cu);
19979 /* We don't know how long the location list is, but make sure we
19980 don't run off the edge of the section. */
19981 baton->size = section->size - DW_UNSND (attr);
19982 baton->data = section->buffer + DW_UNSND (attr);
19983 baton->base_address = cu->base_address;
19984 baton->from_dwo = cu->dwo_unit != NULL;
19985 }
19986
19987 static void
19988 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
19989 struct dwarf2_cu *cu, int is_block)
19990 {
19991 struct objfile *objfile = dwarf2_per_objfile->objfile;
19992 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19993
19994 if (attr_form_is_section_offset (attr)
19995 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19996 the section. If so, fall through to the complaint in the
19997 other branch. */
19998 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19999 {
20000 struct dwarf2_loclist_baton *baton;
20001
20002 baton = obstack_alloc (&objfile->objfile_obstack,
20003 sizeof (struct dwarf2_loclist_baton));
20004
20005 fill_in_loclist_baton (cu, baton, attr);
20006
20007 if (cu->base_known == 0)
20008 complaint (&symfile_complaints,
20009 _("Location list used without "
20010 "specifying the CU base address."));
20011
20012 SYMBOL_ACLASS_INDEX (sym) = (is_block
20013 ? dwarf2_loclist_block_index
20014 : dwarf2_loclist_index);
20015 SYMBOL_LOCATION_BATON (sym) = baton;
20016 }
20017 else
20018 {
20019 struct dwarf2_locexpr_baton *baton;
20020
20021 baton = obstack_alloc (&objfile->objfile_obstack,
20022 sizeof (struct dwarf2_locexpr_baton));
20023 baton->per_cu = cu->per_cu;
20024 gdb_assert (baton->per_cu);
20025
20026 if (attr_form_is_block (attr))
20027 {
20028 /* Note that we're just copying the block's data pointer
20029 here, not the actual data. We're still pointing into the
20030 info_buffer for SYM's objfile; right now we never release
20031 that buffer, but when we do clean up properly this may
20032 need to change. */
20033 baton->size = DW_BLOCK (attr)->size;
20034 baton->data = DW_BLOCK (attr)->data;
20035 }
20036 else
20037 {
20038 dwarf2_invalid_attrib_class_complaint ("location description",
20039 SYMBOL_NATURAL_NAME (sym));
20040 baton->size = 0;
20041 }
20042
20043 SYMBOL_ACLASS_INDEX (sym) = (is_block
20044 ? dwarf2_locexpr_block_index
20045 : dwarf2_locexpr_index);
20046 SYMBOL_LOCATION_BATON (sym) = baton;
20047 }
20048 }
20049
20050 /* Return the OBJFILE associated with the compilation unit CU. If CU
20051 came from a separate debuginfo file, then the master objfile is
20052 returned. */
20053
20054 struct objfile *
20055 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20056 {
20057 struct objfile *objfile = per_cu->objfile;
20058
20059 /* Return the master objfile, so that we can report and look up the
20060 correct file containing this variable. */
20061 if (objfile->separate_debug_objfile_backlink)
20062 objfile = objfile->separate_debug_objfile_backlink;
20063
20064 return objfile;
20065 }
20066
20067 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20068 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20069 CU_HEADERP first. */
20070
20071 static const struct comp_unit_head *
20072 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20073 struct dwarf2_per_cu_data *per_cu)
20074 {
20075 const gdb_byte *info_ptr;
20076
20077 if (per_cu->cu)
20078 return &per_cu->cu->header;
20079
20080 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20081
20082 memset (cu_headerp, 0, sizeof (*cu_headerp));
20083 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20084
20085 return cu_headerp;
20086 }
20087
20088 /* Return the address size given in the compilation unit header for CU. */
20089
20090 int
20091 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20092 {
20093 struct comp_unit_head cu_header_local;
20094 const struct comp_unit_head *cu_headerp;
20095
20096 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20097
20098 return cu_headerp->addr_size;
20099 }
20100
20101 /* Return the offset size given in the compilation unit header for CU. */
20102
20103 int
20104 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20105 {
20106 struct comp_unit_head cu_header_local;
20107 const struct comp_unit_head *cu_headerp;
20108
20109 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20110
20111 return cu_headerp->offset_size;
20112 }
20113
20114 /* See its dwarf2loc.h declaration. */
20115
20116 int
20117 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20118 {
20119 struct comp_unit_head cu_header_local;
20120 const struct comp_unit_head *cu_headerp;
20121
20122 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20123
20124 if (cu_headerp->version == 2)
20125 return cu_headerp->addr_size;
20126 else
20127 return cu_headerp->offset_size;
20128 }
20129
20130 /* Return the text offset of the CU. The returned offset comes from
20131 this CU's objfile. If this objfile came from a separate debuginfo
20132 file, then the offset may be different from the corresponding
20133 offset in the parent objfile. */
20134
20135 CORE_ADDR
20136 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20137 {
20138 struct objfile *objfile = per_cu->objfile;
20139
20140 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20141 }
20142
20143 /* Locate the .debug_info compilation unit from CU's objfile which contains
20144 the DIE at OFFSET. Raises an error on failure. */
20145
20146 static struct dwarf2_per_cu_data *
20147 dwarf2_find_containing_comp_unit (sect_offset offset,
20148 unsigned int offset_in_dwz,
20149 struct objfile *objfile)
20150 {
20151 struct dwarf2_per_cu_data *this_cu;
20152 int low, high;
20153 const sect_offset *cu_off;
20154
20155 low = 0;
20156 high = dwarf2_per_objfile->n_comp_units - 1;
20157 while (high > low)
20158 {
20159 struct dwarf2_per_cu_data *mid_cu;
20160 int mid = low + (high - low) / 2;
20161
20162 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20163 cu_off = &mid_cu->offset;
20164 if (mid_cu->is_dwz > offset_in_dwz
20165 || (mid_cu->is_dwz == offset_in_dwz
20166 && cu_off->sect_off >= offset.sect_off))
20167 high = mid;
20168 else
20169 low = mid + 1;
20170 }
20171 gdb_assert (low == high);
20172 this_cu = dwarf2_per_objfile->all_comp_units[low];
20173 cu_off = &this_cu->offset;
20174 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20175 {
20176 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20177 error (_("Dwarf Error: could not find partial DIE containing "
20178 "offset 0x%lx [in module %s]"),
20179 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20180
20181 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20182 <= offset.sect_off);
20183 return dwarf2_per_objfile->all_comp_units[low-1];
20184 }
20185 else
20186 {
20187 this_cu = dwarf2_per_objfile->all_comp_units[low];
20188 if (low == dwarf2_per_objfile->n_comp_units - 1
20189 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20190 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20191 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20192 return this_cu;
20193 }
20194 }
20195
20196 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20197
20198 static void
20199 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20200 {
20201 memset (cu, 0, sizeof (*cu));
20202 per_cu->cu = cu;
20203 cu->per_cu = per_cu;
20204 cu->objfile = per_cu->objfile;
20205 obstack_init (&cu->comp_unit_obstack);
20206 }
20207
20208 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20209
20210 static void
20211 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20212 enum language pretend_language)
20213 {
20214 struct attribute *attr;
20215
20216 /* Set the language we're debugging. */
20217 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20218 if (attr)
20219 set_cu_language (DW_UNSND (attr), cu);
20220 else
20221 {
20222 cu->language = pretend_language;
20223 cu->language_defn = language_def (cu->language);
20224 }
20225
20226 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20227 if (attr)
20228 cu->producer = DW_STRING (attr);
20229 }
20230
20231 /* Release one cached compilation unit, CU. We unlink it from the tree
20232 of compilation units, but we don't remove it from the read_in_chain;
20233 the caller is responsible for that.
20234 NOTE: DATA is a void * because this function is also used as a
20235 cleanup routine. */
20236
20237 static void
20238 free_heap_comp_unit (void *data)
20239 {
20240 struct dwarf2_cu *cu = data;
20241
20242 gdb_assert (cu->per_cu != NULL);
20243 cu->per_cu->cu = NULL;
20244 cu->per_cu = NULL;
20245
20246 obstack_free (&cu->comp_unit_obstack, NULL);
20247
20248 xfree (cu);
20249 }
20250
20251 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20252 when we're finished with it. We can't free the pointer itself, but be
20253 sure to unlink it from the cache. Also release any associated storage. */
20254
20255 static void
20256 free_stack_comp_unit (void *data)
20257 {
20258 struct dwarf2_cu *cu = data;
20259
20260 gdb_assert (cu->per_cu != NULL);
20261 cu->per_cu->cu = NULL;
20262 cu->per_cu = NULL;
20263
20264 obstack_free (&cu->comp_unit_obstack, NULL);
20265 cu->partial_dies = NULL;
20266 }
20267
20268 /* Free all cached compilation units. */
20269
20270 static void
20271 free_cached_comp_units (void *data)
20272 {
20273 struct dwarf2_per_cu_data *per_cu, **last_chain;
20274
20275 per_cu = dwarf2_per_objfile->read_in_chain;
20276 last_chain = &dwarf2_per_objfile->read_in_chain;
20277 while (per_cu != NULL)
20278 {
20279 struct dwarf2_per_cu_data *next_cu;
20280
20281 next_cu = per_cu->cu->read_in_chain;
20282
20283 free_heap_comp_unit (per_cu->cu);
20284 *last_chain = next_cu;
20285
20286 per_cu = next_cu;
20287 }
20288 }
20289
20290 /* Increase the age counter on each cached compilation unit, and free
20291 any that are too old. */
20292
20293 static void
20294 age_cached_comp_units (void)
20295 {
20296 struct dwarf2_per_cu_data *per_cu, **last_chain;
20297
20298 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20299 per_cu = dwarf2_per_objfile->read_in_chain;
20300 while (per_cu != NULL)
20301 {
20302 per_cu->cu->last_used ++;
20303 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20304 dwarf2_mark (per_cu->cu);
20305 per_cu = per_cu->cu->read_in_chain;
20306 }
20307
20308 per_cu = dwarf2_per_objfile->read_in_chain;
20309 last_chain = &dwarf2_per_objfile->read_in_chain;
20310 while (per_cu != NULL)
20311 {
20312 struct dwarf2_per_cu_data *next_cu;
20313
20314 next_cu = per_cu->cu->read_in_chain;
20315
20316 if (!per_cu->cu->mark)
20317 {
20318 free_heap_comp_unit (per_cu->cu);
20319 *last_chain = next_cu;
20320 }
20321 else
20322 last_chain = &per_cu->cu->read_in_chain;
20323
20324 per_cu = next_cu;
20325 }
20326 }
20327
20328 /* Remove a single compilation unit from the cache. */
20329
20330 static void
20331 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20332 {
20333 struct dwarf2_per_cu_data *per_cu, **last_chain;
20334
20335 per_cu = dwarf2_per_objfile->read_in_chain;
20336 last_chain = &dwarf2_per_objfile->read_in_chain;
20337 while (per_cu != NULL)
20338 {
20339 struct dwarf2_per_cu_data *next_cu;
20340
20341 next_cu = per_cu->cu->read_in_chain;
20342
20343 if (per_cu == target_per_cu)
20344 {
20345 free_heap_comp_unit (per_cu->cu);
20346 per_cu->cu = NULL;
20347 *last_chain = next_cu;
20348 break;
20349 }
20350 else
20351 last_chain = &per_cu->cu->read_in_chain;
20352
20353 per_cu = next_cu;
20354 }
20355 }
20356
20357 /* Release all extra memory associated with OBJFILE. */
20358
20359 void
20360 dwarf2_free_objfile (struct objfile *objfile)
20361 {
20362 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20363
20364 if (dwarf2_per_objfile == NULL)
20365 return;
20366
20367 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20368 free_cached_comp_units (NULL);
20369
20370 if (dwarf2_per_objfile->quick_file_names_table)
20371 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20372
20373 /* Everything else should be on the objfile obstack. */
20374 }
20375
20376 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20377 We store these in a hash table separate from the DIEs, and preserve them
20378 when the DIEs are flushed out of cache.
20379
20380 The CU "per_cu" pointer is needed because offset alone is not enough to
20381 uniquely identify the type. A file may have multiple .debug_types sections,
20382 or the type may come from a DWO file. Furthermore, while it's more logical
20383 to use per_cu->section+offset, with Fission the section with the data is in
20384 the DWO file but we don't know that section at the point we need it.
20385 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20386 because we can enter the lookup routine, get_die_type_at_offset, from
20387 outside this file, and thus won't necessarily have PER_CU->cu.
20388 Fortunately, PER_CU is stable for the life of the objfile. */
20389
20390 struct dwarf2_per_cu_offset_and_type
20391 {
20392 const struct dwarf2_per_cu_data *per_cu;
20393 sect_offset offset;
20394 struct type *type;
20395 };
20396
20397 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20398
20399 static hashval_t
20400 per_cu_offset_and_type_hash (const void *item)
20401 {
20402 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20403
20404 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20405 }
20406
20407 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20408
20409 static int
20410 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20411 {
20412 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20413 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20414
20415 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20416 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20417 }
20418
20419 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20420 table if necessary. For convenience, return TYPE.
20421
20422 The DIEs reading must have careful ordering to:
20423 * Not cause infite loops trying to read in DIEs as a prerequisite for
20424 reading current DIE.
20425 * Not trying to dereference contents of still incompletely read in types
20426 while reading in other DIEs.
20427 * Enable referencing still incompletely read in types just by a pointer to
20428 the type without accessing its fields.
20429
20430 Therefore caller should follow these rules:
20431 * Try to fetch any prerequisite types we may need to build this DIE type
20432 before building the type and calling set_die_type.
20433 * After building type call set_die_type for current DIE as soon as
20434 possible before fetching more types to complete the current type.
20435 * Make the type as complete as possible before fetching more types. */
20436
20437 static struct type *
20438 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20439 {
20440 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20441 struct objfile *objfile = cu->objfile;
20442
20443 /* For Ada types, make sure that the gnat-specific data is always
20444 initialized (if not already set). There are a few types where
20445 we should not be doing so, because the type-specific area is
20446 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20447 where the type-specific area is used to store the floatformat).
20448 But this is not a problem, because the gnat-specific information
20449 is actually not needed for these types. */
20450 if (need_gnat_info (cu)
20451 && TYPE_CODE (type) != TYPE_CODE_FUNC
20452 && TYPE_CODE (type) != TYPE_CODE_FLT
20453 && !HAVE_GNAT_AUX_INFO (type))
20454 INIT_GNAT_SPECIFIC (type);
20455
20456 if (dwarf2_per_objfile->die_type_hash == NULL)
20457 {
20458 dwarf2_per_objfile->die_type_hash =
20459 htab_create_alloc_ex (127,
20460 per_cu_offset_and_type_hash,
20461 per_cu_offset_and_type_eq,
20462 NULL,
20463 &objfile->objfile_obstack,
20464 hashtab_obstack_allocate,
20465 dummy_obstack_deallocate);
20466 }
20467
20468 ofs.per_cu = cu->per_cu;
20469 ofs.offset = die->offset;
20470 ofs.type = type;
20471 slot = (struct dwarf2_per_cu_offset_and_type **)
20472 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20473 if (*slot)
20474 complaint (&symfile_complaints,
20475 _("A problem internal to GDB: DIE 0x%x has type already set"),
20476 die->offset.sect_off);
20477 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20478 **slot = ofs;
20479 return type;
20480 }
20481
20482 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20483 or return NULL if the die does not have a saved type. */
20484
20485 static struct type *
20486 get_die_type_at_offset (sect_offset offset,
20487 struct dwarf2_per_cu_data *per_cu)
20488 {
20489 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20490
20491 if (dwarf2_per_objfile->die_type_hash == NULL)
20492 return NULL;
20493
20494 ofs.per_cu = per_cu;
20495 ofs.offset = offset;
20496 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20497 if (slot)
20498 return slot->type;
20499 else
20500 return NULL;
20501 }
20502
20503 /* Look up the type for DIE in CU in die_type_hash,
20504 or return NULL if DIE does not have a saved type. */
20505
20506 static struct type *
20507 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20508 {
20509 return get_die_type_at_offset (die->offset, cu->per_cu);
20510 }
20511
20512 /* Add a dependence relationship from CU to REF_PER_CU. */
20513
20514 static void
20515 dwarf2_add_dependence (struct dwarf2_cu *cu,
20516 struct dwarf2_per_cu_data *ref_per_cu)
20517 {
20518 void **slot;
20519
20520 if (cu->dependencies == NULL)
20521 cu->dependencies
20522 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20523 NULL, &cu->comp_unit_obstack,
20524 hashtab_obstack_allocate,
20525 dummy_obstack_deallocate);
20526
20527 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20528 if (*slot == NULL)
20529 *slot = ref_per_cu;
20530 }
20531
20532 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20533 Set the mark field in every compilation unit in the
20534 cache that we must keep because we are keeping CU. */
20535
20536 static int
20537 dwarf2_mark_helper (void **slot, void *data)
20538 {
20539 struct dwarf2_per_cu_data *per_cu;
20540
20541 per_cu = (struct dwarf2_per_cu_data *) *slot;
20542
20543 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20544 reading of the chain. As such dependencies remain valid it is not much
20545 useful to track and undo them during QUIT cleanups. */
20546 if (per_cu->cu == NULL)
20547 return 1;
20548
20549 if (per_cu->cu->mark)
20550 return 1;
20551 per_cu->cu->mark = 1;
20552
20553 if (per_cu->cu->dependencies != NULL)
20554 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20555
20556 return 1;
20557 }
20558
20559 /* Set the mark field in CU and in every other compilation unit in the
20560 cache that we must keep because we are keeping CU. */
20561
20562 static void
20563 dwarf2_mark (struct dwarf2_cu *cu)
20564 {
20565 if (cu->mark)
20566 return;
20567 cu->mark = 1;
20568 if (cu->dependencies != NULL)
20569 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20570 }
20571
20572 static void
20573 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20574 {
20575 while (per_cu)
20576 {
20577 per_cu->cu->mark = 0;
20578 per_cu = per_cu->cu->read_in_chain;
20579 }
20580 }
20581
20582 /* Trivial hash function for partial_die_info: the hash value of a DIE
20583 is its offset in .debug_info for this objfile. */
20584
20585 static hashval_t
20586 partial_die_hash (const void *item)
20587 {
20588 const struct partial_die_info *part_die = item;
20589
20590 return part_die->offset.sect_off;
20591 }
20592
20593 /* Trivial comparison function for partial_die_info structures: two DIEs
20594 are equal if they have the same offset. */
20595
20596 static int
20597 partial_die_eq (const void *item_lhs, const void *item_rhs)
20598 {
20599 const struct partial_die_info *part_die_lhs = item_lhs;
20600 const struct partial_die_info *part_die_rhs = item_rhs;
20601
20602 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20603 }
20604
20605 static struct cmd_list_element *set_dwarf2_cmdlist;
20606 static struct cmd_list_element *show_dwarf2_cmdlist;
20607
20608 static void
20609 set_dwarf2_cmd (char *args, int from_tty)
20610 {
20611 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20612 }
20613
20614 static void
20615 show_dwarf2_cmd (char *args, int from_tty)
20616 {
20617 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20618 }
20619
20620 /* Free data associated with OBJFILE, if necessary. */
20621
20622 static void
20623 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20624 {
20625 struct dwarf2_per_objfile *data = d;
20626 int ix;
20627
20628 /* Make sure we don't accidentally use dwarf2_per_objfile while
20629 cleaning up. */
20630 dwarf2_per_objfile = NULL;
20631
20632 for (ix = 0; ix < data->n_comp_units; ++ix)
20633 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20634
20635 for (ix = 0; ix < data->n_type_units; ++ix)
20636 VEC_free (dwarf2_per_cu_ptr,
20637 data->all_type_units[ix]->per_cu.imported_symtabs);
20638 xfree (data->all_type_units);
20639
20640 VEC_free (dwarf2_section_info_def, data->types);
20641
20642 if (data->dwo_files)
20643 free_dwo_files (data->dwo_files, objfile);
20644 if (data->dwp_file)
20645 gdb_bfd_unref (data->dwp_file->dbfd);
20646
20647 if (data->dwz_file && data->dwz_file->dwz_bfd)
20648 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20649 }
20650
20651 \f
20652 /* The "save gdb-index" command. */
20653
20654 /* The contents of the hash table we create when building the string
20655 table. */
20656 struct strtab_entry
20657 {
20658 offset_type offset;
20659 const char *str;
20660 };
20661
20662 /* Hash function for a strtab_entry.
20663
20664 Function is used only during write_hash_table so no index format backward
20665 compatibility is needed. */
20666
20667 static hashval_t
20668 hash_strtab_entry (const void *e)
20669 {
20670 const struct strtab_entry *entry = e;
20671 return mapped_index_string_hash (INT_MAX, entry->str);
20672 }
20673
20674 /* Equality function for a strtab_entry. */
20675
20676 static int
20677 eq_strtab_entry (const void *a, const void *b)
20678 {
20679 const struct strtab_entry *ea = a;
20680 const struct strtab_entry *eb = b;
20681 return !strcmp (ea->str, eb->str);
20682 }
20683
20684 /* Create a strtab_entry hash table. */
20685
20686 static htab_t
20687 create_strtab (void)
20688 {
20689 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20690 xfree, xcalloc, xfree);
20691 }
20692
20693 /* Add a string to the constant pool. Return the string's offset in
20694 host order. */
20695
20696 static offset_type
20697 add_string (htab_t table, struct obstack *cpool, const char *str)
20698 {
20699 void **slot;
20700 struct strtab_entry entry;
20701 struct strtab_entry *result;
20702
20703 entry.str = str;
20704 slot = htab_find_slot (table, &entry, INSERT);
20705 if (*slot)
20706 result = *slot;
20707 else
20708 {
20709 result = XNEW (struct strtab_entry);
20710 result->offset = obstack_object_size (cpool);
20711 result->str = str;
20712 obstack_grow_str0 (cpool, str);
20713 *slot = result;
20714 }
20715 return result->offset;
20716 }
20717
20718 /* An entry in the symbol table. */
20719 struct symtab_index_entry
20720 {
20721 /* The name of the symbol. */
20722 const char *name;
20723 /* The offset of the name in the constant pool. */
20724 offset_type index_offset;
20725 /* A sorted vector of the indices of all the CUs that hold an object
20726 of this name. */
20727 VEC (offset_type) *cu_indices;
20728 };
20729
20730 /* The symbol table. This is a power-of-2-sized hash table. */
20731 struct mapped_symtab
20732 {
20733 offset_type n_elements;
20734 offset_type size;
20735 struct symtab_index_entry **data;
20736 };
20737
20738 /* Hash function for a symtab_index_entry. */
20739
20740 static hashval_t
20741 hash_symtab_entry (const void *e)
20742 {
20743 const struct symtab_index_entry *entry = e;
20744 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20745 sizeof (offset_type) * VEC_length (offset_type,
20746 entry->cu_indices),
20747 0);
20748 }
20749
20750 /* Equality function for a symtab_index_entry. */
20751
20752 static int
20753 eq_symtab_entry (const void *a, const void *b)
20754 {
20755 const struct symtab_index_entry *ea = a;
20756 const struct symtab_index_entry *eb = b;
20757 int len = VEC_length (offset_type, ea->cu_indices);
20758 if (len != VEC_length (offset_type, eb->cu_indices))
20759 return 0;
20760 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20761 VEC_address (offset_type, eb->cu_indices),
20762 sizeof (offset_type) * len);
20763 }
20764
20765 /* Destroy a symtab_index_entry. */
20766
20767 static void
20768 delete_symtab_entry (void *p)
20769 {
20770 struct symtab_index_entry *entry = p;
20771 VEC_free (offset_type, entry->cu_indices);
20772 xfree (entry);
20773 }
20774
20775 /* Create a hash table holding symtab_index_entry objects. */
20776
20777 static htab_t
20778 create_symbol_hash_table (void)
20779 {
20780 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20781 delete_symtab_entry, xcalloc, xfree);
20782 }
20783
20784 /* Create a new mapped symtab object. */
20785
20786 static struct mapped_symtab *
20787 create_mapped_symtab (void)
20788 {
20789 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20790 symtab->n_elements = 0;
20791 symtab->size = 1024;
20792 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20793 return symtab;
20794 }
20795
20796 /* Destroy a mapped_symtab. */
20797
20798 static void
20799 cleanup_mapped_symtab (void *p)
20800 {
20801 struct mapped_symtab *symtab = p;
20802 /* The contents of the array are freed when the other hash table is
20803 destroyed. */
20804 xfree (symtab->data);
20805 xfree (symtab);
20806 }
20807
20808 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20809 the slot.
20810
20811 Function is used only during write_hash_table so no index format backward
20812 compatibility is needed. */
20813
20814 static struct symtab_index_entry **
20815 find_slot (struct mapped_symtab *symtab, const char *name)
20816 {
20817 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20818
20819 index = hash & (symtab->size - 1);
20820 step = ((hash * 17) & (symtab->size - 1)) | 1;
20821
20822 for (;;)
20823 {
20824 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20825 return &symtab->data[index];
20826 index = (index + step) & (symtab->size - 1);
20827 }
20828 }
20829
20830 /* Expand SYMTAB's hash table. */
20831
20832 static void
20833 hash_expand (struct mapped_symtab *symtab)
20834 {
20835 offset_type old_size = symtab->size;
20836 offset_type i;
20837 struct symtab_index_entry **old_entries = symtab->data;
20838
20839 symtab->size *= 2;
20840 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20841
20842 for (i = 0; i < old_size; ++i)
20843 {
20844 if (old_entries[i])
20845 {
20846 struct symtab_index_entry **slot = find_slot (symtab,
20847 old_entries[i]->name);
20848 *slot = old_entries[i];
20849 }
20850 }
20851
20852 xfree (old_entries);
20853 }
20854
20855 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20856 CU_INDEX is the index of the CU in which the symbol appears.
20857 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20858
20859 static void
20860 add_index_entry (struct mapped_symtab *symtab, const char *name,
20861 int is_static, gdb_index_symbol_kind kind,
20862 offset_type cu_index)
20863 {
20864 struct symtab_index_entry **slot;
20865 offset_type cu_index_and_attrs;
20866
20867 ++symtab->n_elements;
20868 if (4 * symtab->n_elements / 3 >= symtab->size)
20869 hash_expand (symtab);
20870
20871 slot = find_slot (symtab, name);
20872 if (!*slot)
20873 {
20874 *slot = XNEW (struct symtab_index_entry);
20875 (*slot)->name = name;
20876 /* index_offset is set later. */
20877 (*slot)->cu_indices = NULL;
20878 }
20879
20880 cu_index_and_attrs = 0;
20881 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20882 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20883 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20884
20885 /* We don't want to record an index value twice as we want to avoid the
20886 duplication.
20887 We process all global symbols and then all static symbols
20888 (which would allow us to avoid the duplication by only having to check
20889 the last entry pushed), but a symbol could have multiple kinds in one CU.
20890 To keep things simple we don't worry about the duplication here and
20891 sort and uniqufy the list after we've processed all symbols. */
20892 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20893 }
20894
20895 /* qsort helper routine for uniquify_cu_indices. */
20896
20897 static int
20898 offset_type_compare (const void *ap, const void *bp)
20899 {
20900 offset_type a = *(offset_type *) ap;
20901 offset_type b = *(offset_type *) bp;
20902
20903 return (a > b) - (b > a);
20904 }
20905
20906 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20907
20908 static void
20909 uniquify_cu_indices (struct mapped_symtab *symtab)
20910 {
20911 int i;
20912
20913 for (i = 0; i < symtab->size; ++i)
20914 {
20915 struct symtab_index_entry *entry = symtab->data[i];
20916
20917 if (entry
20918 && entry->cu_indices != NULL)
20919 {
20920 unsigned int next_to_insert, next_to_check;
20921 offset_type last_value;
20922
20923 qsort (VEC_address (offset_type, entry->cu_indices),
20924 VEC_length (offset_type, entry->cu_indices),
20925 sizeof (offset_type), offset_type_compare);
20926
20927 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20928 next_to_insert = 1;
20929 for (next_to_check = 1;
20930 next_to_check < VEC_length (offset_type, entry->cu_indices);
20931 ++next_to_check)
20932 {
20933 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20934 != last_value)
20935 {
20936 last_value = VEC_index (offset_type, entry->cu_indices,
20937 next_to_check);
20938 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20939 last_value);
20940 ++next_to_insert;
20941 }
20942 }
20943 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20944 }
20945 }
20946 }
20947
20948 /* Add a vector of indices to the constant pool. */
20949
20950 static offset_type
20951 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20952 struct symtab_index_entry *entry)
20953 {
20954 void **slot;
20955
20956 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20957 if (!*slot)
20958 {
20959 offset_type len = VEC_length (offset_type, entry->cu_indices);
20960 offset_type val = MAYBE_SWAP (len);
20961 offset_type iter;
20962 int i;
20963
20964 *slot = entry;
20965 entry->index_offset = obstack_object_size (cpool);
20966
20967 obstack_grow (cpool, &val, sizeof (val));
20968 for (i = 0;
20969 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20970 ++i)
20971 {
20972 val = MAYBE_SWAP (iter);
20973 obstack_grow (cpool, &val, sizeof (val));
20974 }
20975 }
20976 else
20977 {
20978 struct symtab_index_entry *old_entry = *slot;
20979 entry->index_offset = old_entry->index_offset;
20980 entry = old_entry;
20981 }
20982 return entry->index_offset;
20983 }
20984
20985 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20986 constant pool entries going into the obstack CPOOL. */
20987
20988 static void
20989 write_hash_table (struct mapped_symtab *symtab,
20990 struct obstack *output, struct obstack *cpool)
20991 {
20992 offset_type i;
20993 htab_t symbol_hash_table;
20994 htab_t str_table;
20995
20996 symbol_hash_table = create_symbol_hash_table ();
20997 str_table = create_strtab ();
20998
20999 /* We add all the index vectors to the constant pool first, to
21000 ensure alignment is ok. */
21001 for (i = 0; i < symtab->size; ++i)
21002 {
21003 if (symtab->data[i])
21004 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21005 }
21006
21007 /* Now write out the hash table. */
21008 for (i = 0; i < symtab->size; ++i)
21009 {
21010 offset_type str_off, vec_off;
21011
21012 if (symtab->data[i])
21013 {
21014 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21015 vec_off = symtab->data[i]->index_offset;
21016 }
21017 else
21018 {
21019 /* While 0 is a valid constant pool index, it is not valid
21020 to have 0 for both offsets. */
21021 str_off = 0;
21022 vec_off = 0;
21023 }
21024
21025 str_off = MAYBE_SWAP (str_off);
21026 vec_off = MAYBE_SWAP (vec_off);
21027
21028 obstack_grow (output, &str_off, sizeof (str_off));
21029 obstack_grow (output, &vec_off, sizeof (vec_off));
21030 }
21031
21032 htab_delete (str_table);
21033 htab_delete (symbol_hash_table);
21034 }
21035
21036 /* Struct to map psymtab to CU index in the index file. */
21037 struct psymtab_cu_index_map
21038 {
21039 struct partial_symtab *psymtab;
21040 unsigned int cu_index;
21041 };
21042
21043 static hashval_t
21044 hash_psymtab_cu_index (const void *item)
21045 {
21046 const struct psymtab_cu_index_map *map = item;
21047
21048 return htab_hash_pointer (map->psymtab);
21049 }
21050
21051 static int
21052 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21053 {
21054 const struct psymtab_cu_index_map *lhs = item_lhs;
21055 const struct psymtab_cu_index_map *rhs = item_rhs;
21056
21057 return lhs->psymtab == rhs->psymtab;
21058 }
21059
21060 /* Helper struct for building the address table. */
21061 struct addrmap_index_data
21062 {
21063 struct objfile *objfile;
21064 struct obstack *addr_obstack;
21065 htab_t cu_index_htab;
21066
21067 /* Non-zero if the previous_* fields are valid.
21068 We can't write an entry until we see the next entry (since it is only then
21069 that we know the end of the entry). */
21070 int previous_valid;
21071 /* Index of the CU in the table of all CUs in the index file. */
21072 unsigned int previous_cu_index;
21073 /* Start address of the CU. */
21074 CORE_ADDR previous_cu_start;
21075 };
21076
21077 /* Write an address entry to OBSTACK. */
21078
21079 static void
21080 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21081 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21082 {
21083 offset_type cu_index_to_write;
21084 gdb_byte addr[8];
21085 CORE_ADDR baseaddr;
21086
21087 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21088
21089 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21090 obstack_grow (obstack, addr, 8);
21091 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21092 obstack_grow (obstack, addr, 8);
21093 cu_index_to_write = MAYBE_SWAP (cu_index);
21094 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21095 }
21096
21097 /* Worker function for traversing an addrmap to build the address table. */
21098
21099 static int
21100 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21101 {
21102 struct addrmap_index_data *data = datap;
21103 struct partial_symtab *pst = obj;
21104
21105 if (data->previous_valid)
21106 add_address_entry (data->objfile, data->addr_obstack,
21107 data->previous_cu_start, start_addr,
21108 data->previous_cu_index);
21109
21110 data->previous_cu_start = start_addr;
21111 if (pst != NULL)
21112 {
21113 struct psymtab_cu_index_map find_map, *map;
21114 find_map.psymtab = pst;
21115 map = htab_find (data->cu_index_htab, &find_map);
21116 gdb_assert (map != NULL);
21117 data->previous_cu_index = map->cu_index;
21118 data->previous_valid = 1;
21119 }
21120 else
21121 data->previous_valid = 0;
21122
21123 return 0;
21124 }
21125
21126 /* Write OBJFILE's address map to OBSTACK.
21127 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21128 in the index file. */
21129
21130 static void
21131 write_address_map (struct objfile *objfile, struct obstack *obstack,
21132 htab_t cu_index_htab)
21133 {
21134 struct addrmap_index_data addrmap_index_data;
21135
21136 /* When writing the address table, we have to cope with the fact that
21137 the addrmap iterator only provides the start of a region; we have to
21138 wait until the next invocation to get the start of the next region. */
21139
21140 addrmap_index_data.objfile = objfile;
21141 addrmap_index_data.addr_obstack = obstack;
21142 addrmap_index_data.cu_index_htab = cu_index_htab;
21143 addrmap_index_data.previous_valid = 0;
21144
21145 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21146 &addrmap_index_data);
21147
21148 /* It's highly unlikely the last entry (end address = 0xff...ff)
21149 is valid, but we should still handle it.
21150 The end address is recorded as the start of the next region, but that
21151 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21152 anyway. */
21153 if (addrmap_index_data.previous_valid)
21154 add_address_entry (objfile, obstack,
21155 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21156 addrmap_index_data.previous_cu_index);
21157 }
21158
21159 /* Return the symbol kind of PSYM. */
21160
21161 static gdb_index_symbol_kind
21162 symbol_kind (struct partial_symbol *psym)
21163 {
21164 domain_enum domain = PSYMBOL_DOMAIN (psym);
21165 enum address_class aclass = PSYMBOL_CLASS (psym);
21166
21167 switch (domain)
21168 {
21169 case VAR_DOMAIN:
21170 switch (aclass)
21171 {
21172 case LOC_BLOCK:
21173 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21174 case LOC_TYPEDEF:
21175 return GDB_INDEX_SYMBOL_KIND_TYPE;
21176 case LOC_COMPUTED:
21177 case LOC_CONST_BYTES:
21178 case LOC_OPTIMIZED_OUT:
21179 case LOC_STATIC:
21180 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21181 case LOC_CONST:
21182 /* Note: It's currently impossible to recognize psyms as enum values
21183 short of reading the type info. For now punt. */
21184 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21185 default:
21186 /* There are other LOC_FOO values that one might want to classify
21187 as variables, but dwarf2read.c doesn't currently use them. */
21188 return GDB_INDEX_SYMBOL_KIND_OTHER;
21189 }
21190 case STRUCT_DOMAIN:
21191 return GDB_INDEX_SYMBOL_KIND_TYPE;
21192 default:
21193 return GDB_INDEX_SYMBOL_KIND_OTHER;
21194 }
21195 }
21196
21197 /* Add a list of partial symbols to SYMTAB. */
21198
21199 static void
21200 write_psymbols (struct mapped_symtab *symtab,
21201 htab_t psyms_seen,
21202 struct partial_symbol **psymp,
21203 int count,
21204 offset_type cu_index,
21205 int is_static)
21206 {
21207 for (; count-- > 0; ++psymp)
21208 {
21209 struct partial_symbol *psym = *psymp;
21210 void **slot;
21211
21212 if (SYMBOL_LANGUAGE (psym) == language_ada)
21213 error (_("Ada is not currently supported by the index"));
21214
21215 /* Only add a given psymbol once. */
21216 slot = htab_find_slot (psyms_seen, psym, INSERT);
21217 if (!*slot)
21218 {
21219 gdb_index_symbol_kind kind = symbol_kind (psym);
21220
21221 *slot = psym;
21222 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21223 is_static, kind, cu_index);
21224 }
21225 }
21226 }
21227
21228 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21229 exception if there is an error. */
21230
21231 static void
21232 write_obstack (FILE *file, struct obstack *obstack)
21233 {
21234 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21235 file)
21236 != obstack_object_size (obstack))
21237 error (_("couldn't data write to file"));
21238 }
21239
21240 /* Unlink a file if the argument is not NULL. */
21241
21242 static void
21243 unlink_if_set (void *p)
21244 {
21245 char **filename = p;
21246 if (*filename)
21247 unlink (*filename);
21248 }
21249
21250 /* A helper struct used when iterating over debug_types. */
21251 struct signatured_type_index_data
21252 {
21253 struct objfile *objfile;
21254 struct mapped_symtab *symtab;
21255 struct obstack *types_list;
21256 htab_t psyms_seen;
21257 int cu_index;
21258 };
21259
21260 /* A helper function that writes a single signatured_type to an
21261 obstack. */
21262
21263 static int
21264 write_one_signatured_type (void **slot, void *d)
21265 {
21266 struct signatured_type_index_data *info = d;
21267 struct signatured_type *entry = (struct signatured_type *) *slot;
21268 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21269 gdb_byte val[8];
21270
21271 write_psymbols (info->symtab,
21272 info->psyms_seen,
21273 info->objfile->global_psymbols.list
21274 + psymtab->globals_offset,
21275 psymtab->n_global_syms, info->cu_index,
21276 0);
21277 write_psymbols (info->symtab,
21278 info->psyms_seen,
21279 info->objfile->static_psymbols.list
21280 + psymtab->statics_offset,
21281 psymtab->n_static_syms, info->cu_index,
21282 1);
21283
21284 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21285 entry->per_cu.offset.sect_off);
21286 obstack_grow (info->types_list, val, 8);
21287 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21288 entry->type_offset_in_tu.cu_off);
21289 obstack_grow (info->types_list, val, 8);
21290 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21291 obstack_grow (info->types_list, val, 8);
21292
21293 ++info->cu_index;
21294
21295 return 1;
21296 }
21297
21298 /* Recurse into all "included" dependencies and write their symbols as
21299 if they appeared in this psymtab. */
21300
21301 static void
21302 recursively_write_psymbols (struct objfile *objfile,
21303 struct partial_symtab *psymtab,
21304 struct mapped_symtab *symtab,
21305 htab_t psyms_seen,
21306 offset_type cu_index)
21307 {
21308 int i;
21309
21310 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21311 if (psymtab->dependencies[i]->user != NULL)
21312 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21313 symtab, psyms_seen, cu_index);
21314
21315 write_psymbols (symtab,
21316 psyms_seen,
21317 objfile->global_psymbols.list + psymtab->globals_offset,
21318 psymtab->n_global_syms, cu_index,
21319 0);
21320 write_psymbols (symtab,
21321 psyms_seen,
21322 objfile->static_psymbols.list + psymtab->statics_offset,
21323 psymtab->n_static_syms, cu_index,
21324 1);
21325 }
21326
21327 /* Create an index file for OBJFILE in the directory DIR. */
21328
21329 static void
21330 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21331 {
21332 struct cleanup *cleanup;
21333 char *filename, *cleanup_filename;
21334 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21335 struct obstack cu_list, types_cu_list;
21336 int i;
21337 FILE *out_file;
21338 struct mapped_symtab *symtab;
21339 offset_type val, size_of_contents, total_len;
21340 struct stat st;
21341 htab_t psyms_seen;
21342 htab_t cu_index_htab;
21343 struct psymtab_cu_index_map *psymtab_cu_index_map;
21344
21345 if (dwarf2_per_objfile->using_index)
21346 error (_("Cannot use an index to create the index"));
21347
21348 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21349 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21350
21351 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21352 return;
21353
21354 if (stat (objfile->name, &st) < 0)
21355 perror_with_name (objfile->name);
21356
21357 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21358 INDEX_SUFFIX, (char *) NULL);
21359 cleanup = make_cleanup (xfree, filename);
21360
21361 out_file = gdb_fopen_cloexec (filename, "wb");
21362 if (!out_file)
21363 error (_("Can't open `%s' for writing"), filename);
21364
21365 cleanup_filename = filename;
21366 make_cleanup (unlink_if_set, &cleanup_filename);
21367
21368 symtab = create_mapped_symtab ();
21369 make_cleanup (cleanup_mapped_symtab, symtab);
21370
21371 obstack_init (&addr_obstack);
21372 make_cleanup_obstack_free (&addr_obstack);
21373
21374 obstack_init (&cu_list);
21375 make_cleanup_obstack_free (&cu_list);
21376
21377 obstack_init (&types_cu_list);
21378 make_cleanup_obstack_free (&types_cu_list);
21379
21380 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21381 NULL, xcalloc, xfree);
21382 make_cleanup_htab_delete (psyms_seen);
21383
21384 /* While we're scanning CU's create a table that maps a psymtab pointer
21385 (which is what addrmap records) to its index (which is what is recorded
21386 in the index file). This will later be needed to write the address
21387 table. */
21388 cu_index_htab = htab_create_alloc (100,
21389 hash_psymtab_cu_index,
21390 eq_psymtab_cu_index,
21391 NULL, xcalloc, xfree);
21392 make_cleanup_htab_delete (cu_index_htab);
21393 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21394 xmalloc (sizeof (struct psymtab_cu_index_map)
21395 * dwarf2_per_objfile->n_comp_units);
21396 make_cleanup (xfree, psymtab_cu_index_map);
21397
21398 /* The CU list is already sorted, so we don't need to do additional
21399 work here. Also, the debug_types entries do not appear in
21400 all_comp_units, but only in their own hash table. */
21401 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21402 {
21403 struct dwarf2_per_cu_data *per_cu
21404 = dwarf2_per_objfile->all_comp_units[i];
21405 struct partial_symtab *psymtab = per_cu->v.psymtab;
21406 gdb_byte val[8];
21407 struct psymtab_cu_index_map *map;
21408 void **slot;
21409
21410 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21411 It may be referenced from a local scope but in such case it does not
21412 need to be present in .gdb_index. */
21413 if (psymtab == NULL)
21414 continue;
21415
21416 if (psymtab->user == NULL)
21417 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21418
21419 map = &psymtab_cu_index_map[i];
21420 map->psymtab = psymtab;
21421 map->cu_index = i;
21422 slot = htab_find_slot (cu_index_htab, map, INSERT);
21423 gdb_assert (slot != NULL);
21424 gdb_assert (*slot == NULL);
21425 *slot = map;
21426
21427 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21428 per_cu->offset.sect_off);
21429 obstack_grow (&cu_list, val, 8);
21430 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21431 obstack_grow (&cu_list, val, 8);
21432 }
21433
21434 /* Dump the address map. */
21435 write_address_map (objfile, &addr_obstack, cu_index_htab);
21436
21437 /* Write out the .debug_type entries, if any. */
21438 if (dwarf2_per_objfile->signatured_types)
21439 {
21440 struct signatured_type_index_data sig_data;
21441
21442 sig_data.objfile = objfile;
21443 sig_data.symtab = symtab;
21444 sig_data.types_list = &types_cu_list;
21445 sig_data.psyms_seen = psyms_seen;
21446 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21447 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21448 write_one_signatured_type, &sig_data);
21449 }
21450
21451 /* Now that we've processed all symbols we can shrink their cu_indices
21452 lists. */
21453 uniquify_cu_indices (symtab);
21454
21455 obstack_init (&constant_pool);
21456 make_cleanup_obstack_free (&constant_pool);
21457 obstack_init (&symtab_obstack);
21458 make_cleanup_obstack_free (&symtab_obstack);
21459 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21460
21461 obstack_init (&contents);
21462 make_cleanup_obstack_free (&contents);
21463 size_of_contents = 6 * sizeof (offset_type);
21464 total_len = size_of_contents;
21465
21466 /* The version number. */
21467 val = MAYBE_SWAP (8);
21468 obstack_grow (&contents, &val, sizeof (val));
21469
21470 /* The offset of the CU list from the start of the file. */
21471 val = MAYBE_SWAP (total_len);
21472 obstack_grow (&contents, &val, sizeof (val));
21473 total_len += obstack_object_size (&cu_list);
21474
21475 /* The offset of the types CU list from the start of the file. */
21476 val = MAYBE_SWAP (total_len);
21477 obstack_grow (&contents, &val, sizeof (val));
21478 total_len += obstack_object_size (&types_cu_list);
21479
21480 /* The offset of the address table from the start of the file. */
21481 val = MAYBE_SWAP (total_len);
21482 obstack_grow (&contents, &val, sizeof (val));
21483 total_len += obstack_object_size (&addr_obstack);
21484
21485 /* The offset of the symbol table from the start of the file. */
21486 val = MAYBE_SWAP (total_len);
21487 obstack_grow (&contents, &val, sizeof (val));
21488 total_len += obstack_object_size (&symtab_obstack);
21489
21490 /* The offset of the constant pool from the start of the file. */
21491 val = MAYBE_SWAP (total_len);
21492 obstack_grow (&contents, &val, sizeof (val));
21493 total_len += obstack_object_size (&constant_pool);
21494
21495 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21496
21497 write_obstack (out_file, &contents);
21498 write_obstack (out_file, &cu_list);
21499 write_obstack (out_file, &types_cu_list);
21500 write_obstack (out_file, &addr_obstack);
21501 write_obstack (out_file, &symtab_obstack);
21502 write_obstack (out_file, &constant_pool);
21503
21504 fclose (out_file);
21505
21506 /* We want to keep the file, so we set cleanup_filename to NULL
21507 here. See unlink_if_set. */
21508 cleanup_filename = NULL;
21509
21510 do_cleanups (cleanup);
21511 }
21512
21513 /* Implementation of the `save gdb-index' command.
21514
21515 Note that the file format used by this command is documented in the
21516 GDB manual. Any changes here must be documented there. */
21517
21518 static void
21519 save_gdb_index_command (char *arg, int from_tty)
21520 {
21521 struct objfile *objfile;
21522
21523 if (!arg || !*arg)
21524 error (_("usage: save gdb-index DIRECTORY"));
21525
21526 ALL_OBJFILES (objfile)
21527 {
21528 struct stat st;
21529
21530 /* If the objfile does not correspond to an actual file, skip it. */
21531 if (stat (objfile->name, &st) < 0)
21532 continue;
21533
21534 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21535 if (dwarf2_per_objfile)
21536 {
21537 volatile struct gdb_exception except;
21538
21539 TRY_CATCH (except, RETURN_MASK_ERROR)
21540 {
21541 write_psymtabs_to_index (objfile, arg);
21542 }
21543 if (except.reason < 0)
21544 exception_fprintf (gdb_stderr, except,
21545 _("Error while writing index for `%s': "),
21546 objfile->name);
21547 }
21548 }
21549 }
21550
21551 \f
21552
21553 int dwarf2_always_disassemble;
21554
21555 static void
21556 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21557 struct cmd_list_element *c, const char *value)
21558 {
21559 fprintf_filtered (file,
21560 _("Whether to always disassemble "
21561 "DWARF expressions is %s.\n"),
21562 value);
21563 }
21564
21565 static void
21566 show_check_physname (struct ui_file *file, int from_tty,
21567 struct cmd_list_element *c, const char *value)
21568 {
21569 fprintf_filtered (file,
21570 _("Whether to check \"physname\" is %s.\n"),
21571 value);
21572 }
21573
21574 void _initialize_dwarf2_read (void);
21575
21576 void
21577 _initialize_dwarf2_read (void)
21578 {
21579 struct cmd_list_element *c;
21580
21581 dwarf2_objfile_data_key
21582 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21583
21584 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21585 Set DWARF 2 specific variables.\n\
21586 Configure DWARF 2 variables such as the cache size"),
21587 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21588 0/*allow-unknown*/, &maintenance_set_cmdlist);
21589
21590 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21591 Show DWARF 2 specific variables\n\
21592 Show DWARF 2 variables such as the cache size"),
21593 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21594 0/*allow-unknown*/, &maintenance_show_cmdlist);
21595
21596 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21597 &dwarf2_max_cache_age, _("\
21598 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21599 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21600 A higher limit means that cached compilation units will be stored\n\
21601 in memory longer, and more total memory will be used. Zero disables\n\
21602 caching, which can slow down startup."),
21603 NULL,
21604 show_dwarf2_max_cache_age,
21605 &set_dwarf2_cmdlist,
21606 &show_dwarf2_cmdlist);
21607
21608 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21609 &dwarf2_always_disassemble, _("\
21610 Set whether `info address' always disassembles DWARF expressions."), _("\
21611 Show whether `info address' always disassembles DWARF expressions."), _("\
21612 When enabled, DWARF expressions are always printed in an assembly-like\n\
21613 syntax. When disabled, expressions will be printed in a more\n\
21614 conversational style, when possible."),
21615 NULL,
21616 show_dwarf2_always_disassemble,
21617 &set_dwarf2_cmdlist,
21618 &show_dwarf2_cmdlist);
21619
21620 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21621 Set debugging of the dwarf2 reader."), _("\
21622 Show debugging of the dwarf2 reader."), _("\
21623 When enabled, debugging messages are printed during dwarf2 reading\n\
21624 and symtab expansion."),
21625 NULL,
21626 NULL,
21627 &setdebuglist, &showdebuglist);
21628
21629 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21630 Set debugging of the dwarf2 DIE reader."), _("\
21631 Show debugging of the dwarf2 DIE reader."), _("\
21632 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21633 The value is the maximum depth to print."),
21634 NULL,
21635 NULL,
21636 &setdebuglist, &showdebuglist);
21637
21638 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21639 Set cross-checking of \"physname\" code against demangler."), _("\
21640 Show cross-checking of \"physname\" code against demangler."), _("\
21641 When enabled, GDB's internal \"physname\" code is checked against\n\
21642 the demangler."),
21643 NULL, show_check_physname,
21644 &setdebuglist, &showdebuglist);
21645
21646 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21647 no_class, &use_deprecated_index_sections, _("\
21648 Set whether to use deprecated gdb_index sections."), _("\
21649 Show whether to use deprecated gdb_index sections."), _("\
21650 When enabled, deprecated .gdb_index sections are used anyway.\n\
21651 Normally they are ignored either because of a missing feature or\n\
21652 performance issue.\n\
21653 Warning: This option must be enabled before gdb reads the file."),
21654 NULL,
21655 NULL,
21656 &setlist, &showlist);
21657
21658 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21659 _("\
21660 Save a gdb-index file.\n\
21661 Usage: save gdb-index DIRECTORY"),
21662 &save_cmdlist);
21663 set_cmd_completer (c, filename_completer);
21664
21665 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21666 &dwarf2_locexpr_funcs);
21667 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21668 &dwarf2_loclist_funcs);
21669
21670 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21671 &dwarf2_block_frame_base_locexpr_funcs);
21672 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21673 &dwarf2_block_frame_base_loclist_funcs);
21674 }
This page took 0.49789 seconds and 4 git commands to generate.