4d5323e9b869c423778d8314e758b4128f2893d4
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs typically share line table entries with a CU, so we maintain a
261 separate table of all line table entries to support the sharing.
262 Note that while there can be way more TUs than CUs, we've already
263 sorted all the TUs into "type unit groups", grouped by their
264 DW_AT_stmt_list value. Therefore the only sharing done here is with a
265 CU and its associated TU group if there is one. */
266 htab_t quick_file_names_table;
267
268 /* Set during partial symbol reading, to prevent queueing of full
269 symbols. */
270 int reading_partial_symbols;
271
272 /* Table mapping type DIEs to their struct type *.
273 This is NULL if not allocated yet.
274 The mapping is done via (CU/TU signature + DIE offset) -> type. */
275 htab_t die_type_hash;
276
277 /* The CUs we recently read. */
278 VEC (dwarf2_per_cu_ptr) *just_read_cus;
279 };
280
281 static struct dwarf2_per_objfile *dwarf2_per_objfile;
282
283 /* Default names of the debugging sections. */
284
285 /* Note that if the debugging section has been compressed, it might
286 have a name like .zdebug_info. */
287
288 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 {
290 { ".debug_info", ".zdebug_info" },
291 { ".debug_abbrev", ".zdebug_abbrev" },
292 { ".debug_line", ".zdebug_line" },
293 { ".debug_loc", ".zdebug_loc" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_ranges", ".zdebug_ranges" },
298 { ".debug_types", ".zdebug_types" },
299 { ".debug_addr", ".zdebug_addr" },
300 { ".debug_frame", ".zdebug_frame" },
301 { ".eh_frame", NULL },
302 { ".gdb_index", ".zgdb_index" },
303 23
304 };
305
306 /* List of DWO/DWP sections. */
307
308 static const struct dwop_section_names
309 {
310 struct dwarf2_section_names abbrev_dwo;
311 struct dwarf2_section_names info_dwo;
312 struct dwarf2_section_names line_dwo;
313 struct dwarf2_section_names loc_dwo;
314 struct dwarf2_section_names macinfo_dwo;
315 struct dwarf2_section_names macro_dwo;
316 struct dwarf2_section_names str_dwo;
317 struct dwarf2_section_names str_offsets_dwo;
318 struct dwarf2_section_names types_dwo;
319 struct dwarf2_section_names cu_index;
320 struct dwarf2_section_names tu_index;
321 }
322 dwop_section_names =
323 {
324 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
325 { ".debug_info.dwo", ".zdebug_info.dwo" },
326 { ".debug_line.dwo", ".zdebug_line.dwo" },
327 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_offset;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 /* Offset to the first byte of this compilation unit header in the
356 .debug_info section, for resolving relative reference dies. */
357 sect_offset offset;
358
359 /* Offset to first die in this cu from the start of the cu.
360 This will be the first byte following the compilation unit header. */
361 cu_offset first_die_offset;
362 };
363
364 /* Type used for delaying computation of method physnames.
365 See comments for compute_delayed_physnames. */
366 struct delayed_method_info
367 {
368 /* The type to which the method is attached, i.e., its parent class. */
369 struct type *type;
370
371 /* The index of the method in the type's function fieldlists. */
372 int fnfield_index;
373
374 /* The index of the method in the fieldlist. */
375 int index;
376
377 /* The name of the DIE. */
378 const char *name;
379
380 /* The DIE associated with this method. */
381 struct die_info *die;
382 };
383
384 typedef struct delayed_method_info delayed_method_info;
385 DEF_VEC_O (delayed_method_info);
386
387 /* Internal state when decoding a particular compilation unit. */
388 struct dwarf2_cu
389 {
390 /* The objfile containing this compilation unit. */
391 struct objfile *objfile;
392
393 /* The header of the compilation unit. */
394 struct comp_unit_head header;
395
396 /* Base address of this compilation unit. */
397 CORE_ADDR base_address;
398
399 /* Non-zero if base_address has been set. */
400 int base_known;
401
402 /* The language we are debugging. */
403 enum language language;
404 const struct language_defn *language_defn;
405
406 const char *producer;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the
414 first local scope, and all other local scopes as nested local
415 scopes, and worked fine. Check to see if we really need to
416 distinguish these in buildsym.c. */
417 struct pending **list_in_scope;
418
419 /* The abbrev table for this CU.
420 Normally this points to the abbrev table in the objfile.
421 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
422 struct abbrev_table *abbrev_table;
423
424 /* Hash table holding all the loaded partial DIEs
425 with partial_die->offset.SECT_OFF as hash. */
426 htab_t partial_dies;
427
428 /* Storage for things with the same lifetime as this read-in compilation
429 unit, including partial DIEs. */
430 struct obstack comp_unit_obstack;
431
432 /* When multiple dwarf2_cu structures are living in memory, this field
433 chains them all together, so that they can be released efficiently.
434 We will probably also want a generation counter so that most-recently-used
435 compilation units are cached... */
436 struct dwarf2_per_cu_data *read_in_chain;
437
438 /* Backchain to our per_cu entry if the tree has been built. */
439 struct dwarf2_per_cu_data *per_cu;
440
441 /* How many compilation units ago was this CU last referenced? */
442 int last_used;
443
444 /* A hash table of DIE cu_offset for following references with
445 die_info->offset.sect_off as hash. */
446 htab_t die_hash;
447
448 /* Full DIEs if read in. */
449 struct die_info *dies;
450
451 /* A set of pointers to dwarf2_per_cu_data objects for compilation
452 units referenced by this one. Only set during full symbol processing;
453 partial symbol tables do not have dependencies. */
454 htab_t dependencies;
455
456 /* Header data from the line table, during full symbol processing. */
457 struct line_header *line_header;
458
459 /* A list of methods which need to have physnames computed
460 after all type information has been read. */
461 VEC (delayed_method_info) *method_list;
462
463 /* To be copied to symtab->call_site_htab. */
464 htab_t call_site_htab;
465
466 /* Non-NULL if this CU came from a DWO file.
467 There is an invariant here that is important to remember:
468 Except for attributes copied from the top level DIE in the "main"
469 (or "stub") file in preparation for reading the DWO file
470 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
471 Either there isn't a DWO file (in which case this is NULL and the point
472 is moot), or there is and either we're not going to read it (in which
473 case this is NULL) or there is and we are reading it (in which case this
474 is non-NULL). */
475 struct dwo_unit *dwo_unit;
476
477 /* The DW_AT_addr_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE. */
480 ULONGEST addr_base;
481
482 /* The DW_AT_ranges_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE.
485 Also note that the value is zero in the non-DWO case so this value can
486 be used without needing to know whether DWO files are in use or not.
487 N.B. This does not apply to DW_AT_ranges appearing in
488 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
489 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
490 DW_AT_ranges_base *would* have to be applied, and we'd have to care
491 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
492 ULONGEST ranges_base;
493
494 /* Mark used when releasing cached dies. */
495 unsigned int mark : 1;
496
497 /* This CU references .debug_loc. See the symtab->locations_valid field.
498 This test is imperfect as there may exist optimized debug code not using
499 any location list and still facing inlining issues if handled as
500 unoptimized code. For a future better test see GCC PR other/32998. */
501 unsigned int has_loclist : 1;
502
503 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
504 if all the producer_is_* fields are valid. This information is cached
505 because profiling CU expansion showed excessive time spent in
506 producer_is_gxx_lt_4_6. */
507 unsigned int checked_producer : 1;
508 unsigned int producer_is_gxx_lt_4_6 : 1;
509 unsigned int producer_is_gcc_lt_4_3 : 1;
510 unsigned int producer_is_icc : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 union
570 {
571 /* The CUs we import using DW_TAG_imported_unit. This is filled in
572 while reading psymtabs, used to compute the psymtab dependencies,
573 and then cleared. Then it is filled in again while reading full
574 symbols, and only deleted when the objfile is destroyed. */
575 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
576
577 /* Type units are grouped by their DW_AT_stmt_list entry so that they
578 can share them. If this is a TU, this points to the containing
579 symtab. */
580 struct type_unit_group *type_unit_group;
581 } s;
582 };
583
584 /* Entry in the signatured_types hash table. */
585
586 struct signatured_type
587 {
588 /* The "per_cu" object of this type.
589 N.B.: This is the first member so that it's easy to convert pointers
590 between them. */
591 struct dwarf2_per_cu_data per_cu;
592
593 /* The type's signature. */
594 ULONGEST signature;
595
596 /* Offset in the TU of the type's DIE, as read from the TU header.
597 If the definition lives in a DWO file, this value is unusable. */
598 cu_offset type_offset_in_tu;
599
600 /* Offset in the section of the type's DIE.
601 If the definition lives in a DWO file, this is the offset in the
602 .debug_types.dwo section.
603 The value is zero until the actual value is known.
604 Zero is otherwise not a valid section offset. */
605 sect_offset type_offset_in_section;
606 };
607
608 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
609 This includes type_unit_group and quick_file_names. */
610
611 struct stmt_list_hash
612 {
613 /* The DWO unit this table is from or NULL if there is none. */
614 struct dwo_unit *dwo_unit;
615
616 /* Offset in .debug_line or .debug_line.dwo. */
617 sect_offset line_offset;
618 };
619
620 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
621 an object of this type. */
622
623 struct type_unit_group
624 {
625 /* dwarf2read.c's main "handle" on the symtab.
626 To simplify things we create an artificial CU that "includes" all the
627 type units using this stmt_list so that the rest of the code still has
628 a "per_cu" handle on the symtab.
629 This PER_CU is recognized by having no section. */
630 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
631 struct dwarf2_per_cu_data per_cu;
632
633 union
634 {
635 /* The TUs that share this DW_AT_stmt_list entry.
636 This is added to while parsing type units to build partial symtabs,
637 and is deleted afterwards and not used again. */
638 VEC (dwarf2_per_cu_ptr) *tus;
639
640 /* When reading the line table in "quick" functions, we need a real TU.
641 Any will do, we know they all share the same DW_AT_stmt_list entry.
642 For simplicity's sake, we pick the first one. */
643 struct dwarf2_per_cu_data *first_tu;
644 } t;
645
646 /* The primary symtab.
647 Type units in a group needn't all be defined in the same source file,
648 so we create an essentially anonymous symtab as the primary symtab. */
649 struct symtab *primary_symtab;
650
651 /* The data used to construct the hash key. */
652 struct stmt_list_hash hash;
653
654 /* The number of symtabs from the line header.
655 The value here must match line_header.num_file_names. */
656 unsigned int num_symtabs;
657
658 /* The symbol tables for this TU (obtained from the files listed in
659 DW_AT_stmt_list).
660 WARNING: The order of entries here must match the order of entries
661 in the line header. After the first TU using this type_unit_group, the
662 line header for the subsequent TUs is recreated from this. This is done
663 because we need to use the same symtabs for each TU using the same
664 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
665 there's no guarantee the line header doesn't have duplicate entries. */
666 struct symtab **symtabs;
667 };
668
669 /* These sections are what may appear in a DWO file. */
670
671 struct dwo_sections
672 {
673 struct dwarf2_section_info abbrev;
674 struct dwarf2_section_info line;
675 struct dwarf2_section_info loc;
676 struct dwarf2_section_info macinfo;
677 struct dwarf2_section_info macro;
678 struct dwarf2_section_info str;
679 struct dwarf2_section_info str_offsets;
680 /* In the case of a virtual DWO file, these two are unused. */
681 struct dwarf2_section_info info;
682 VEC (dwarf2_section_info_def) *types;
683 };
684
685 /* Common bits of DWO CUs/TUs. */
686
687 struct dwo_unit
688 {
689 /* Backlink to the containing struct dwo_file. */
690 struct dwo_file *dwo_file;
691
692 /* The "id" that distinguishes this CU/TU.
693 .debug_info calls this "dwo_id", .debug_types calls this "signature".
694 Since signatures came first, we stick with it for consistency. */
695 ULONGEST signature;
696
697 /* The section this CU/TU lives in, in the DWO file. */
698 struct dwarf2_section_info *info_or_types_section;
699
700 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
701 sect_offset offset;
702 unsigned int length;
703
704 /* For types, offset in the type's DIE of the type defined by this TU. */
705 cu_offset type_offset_in_tu;
706 };
707
708 /* Data for one DWO file.
709 This includes virtual DWO files that have been packaged into a
710 DWP file. */
711
712 struct dwo_file
713 {
714 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
715 For virtual DWO files the name is constructed from the section offsets
716 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
717 from related CU+TUs. */
718 const char *name;
719
720 /* The bfd, when the file is open. Otherwise this is NULL.
721 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
722 bfd *dbfd;
723
724 /* Section info for this file. */
725 struct dwo_sections sections;
726
727 /* Table of CUs in the file.
728 Each element is a struct dwo_unit. */
729 htab_t cus;
730
731 /* Table of TUs in the file.
732 Each element is a struct dwo_unit. */
733 htab_t tus;
734 };
735
736 /* These sections are what may appear in a DWP file. */
737
738 struct dwp_sections
739 {
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
744 by section number. We don't need to record them here. */
745 };
746
747 /* These sections are what may appear in a virtual DWO file. */
748
749 struct virtual_dwo_sections
750 {
751 struct dwarf2_section_info abbrev;
752 struct dwarf2_section_info line;
753 struct dwarf2_section_info loc;
754 struct dwarf2_section_info macinfo;
755 struct dwarf2_section_info macro;
756 struct dwarf2_section_info str_offsets;
757 /* Each DWP hash table entry records one CU or one TU.
758 That is recorded here, and copied to dwo_unit.info_or_types_section. */
759 struct dwarf2_section_info info_or_types;
760 };
761
762 /* Contents of DWP hash tables. */
763
764 struct dwp_hash_table
765 {
766 uint32_t nr_units, nr_slots;
767 const gdb_byte *hash_table, *unit_table, *section_pool;
768 };
769
770 /* Data for one DWP file. */
771
772 struct dwp_file
773 {
774 /* Name of the file. */
775 const char *name;
776
777 /* The bfd, when the file is open. Otherwise this is NULL. */
778 bfd *dbfd;
779
780 /* Section info for this file. */
781 struct dwp_sections sections;
782
783 /* Table of CUs in the file. */
784 const struct dwp_hash_table *cus;
785
786 /* Table of TUs in the file. */
787 const struct dwp_hash_table *tus;
788
789 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
790 htab_t loaded_cutus;
791
792 /* Table to map ELF section numbers to their sections. */
793 unsigned int num_sections;
794 asection **elf_sections;
795 };
796
797 /* This represents a '.dwz' file. */
798
799 struct dwz_file
800 {
801 /* A dwz file can only contain a few sections. */
802 struct dwarf2_section_info abbrev;
803 struct dwarf2_section_info info;
804 struct dwarf2_section_info str;
805 struct dwarf2_section_info line;
806 struct dwarf2_section_info macro;
807 struct dwarf2_section_info gdb_index;
808
809 /* The dwz's BFD. */
810 bfd *dwz_bfd;
811 };
812
813 /* Struct used to pass misc. parameters to read_die_and_children, et
814 al. which are used for both .debug_info and .debug_types dies.
815 All parameters here are unchanging for the life of the call. This
816 struct exists to abstract away the constant parameters of die reading. */
817
818 struct die_reader_specs
819 {
820 /* die_section->asection->owner. */
821 bfd* abfd;
822
823 /* The CU of the DIE we are parsing. */
824 struct dwarf2_cu *cu;
825
826 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
827 struct dwo_file *dwo_file;
828
829 /* The section the die comes from.
830 This is either .debug_info or .debug_types, or the .dwo variants. */
831 struct dwarf2_section_info *die_section;
832
833 /* die_section->buffer. */
834 gdb_byte *buffer;
835
836 /* The end of the buffer. */
837 const gdb_byte *buffer_end;
838 };
839
840 /* Type of function passed to init_cutu_and_read_dies, et.al. */
841 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
842 gdb_byte *info_ptr,
843 struct die_info *comp_unit_die,
844 int has_children,
845 void *data);
846
847 /* The line number information for a compilation unit (found in the
848 .debug_line section) begins with a "statement program header",
849 which contains the following information. */
850 struct line_header
851 {
852 unsigned int total_length;
853 unsigned short version;
854 unsigned int header_length;
855 unsigned char minimum_instruction_length;
856 unsigned char maximum_ops_per_instruction;
857 unsigned char default_is_stmt;
858 int line_base;
859 unsigned char line_range;
860 unsigned char opcode_base;
861
862 /* standard_opcode_lengths[i] is the number of operands for the
863 standard opcode whose value is i. This means that
864 standard_opcode_lengths[0] is unused, and the last meaningful
865 element is standard_opcode_lengths[opcode_base - 1]. */
866 unsigned char *standard_opcode_lengths;
867
868 /* The include_directories table. NOTE! These strings are not
869 allocated with xmalloc; instead, they are pointers into
870 debug_line_buffer. If you try to free them, `free' will get
871 indigestion. */
872 unsigned int num_include_dirs, include_dirs_size;
873 char **include_dirs;
874
875 /* The file_names table. NOTE! These strings are not allocated
876 with xmalloc; instead, they are pointers into debug_line_buffer.
877 Don't try to free them directly. */
878 unsigned int num_file_names, file_names_size;
879 struct file_entry
880 {
881 char *name;
882 unsigned int dir_index;
883 unsigned int mod_time;
884 unsigned int length;
885 int included_p; /* Non-zero if referenced by the Line Number Program. */
886 struct symtab *symtab; /* The associated symbol table, if any. */
887 } *file_names;
888
889 /* The start and end of the statement program following this
890 header. These point into dwarf2_per_objfile->line_buffer. */
891 gdb_byte *statement_program_start, *statement_program_end;
892 };
893
894 /* When we construct a partial symbol table entry we only
895 need this much information. */
896 struct partial_die_info
897 {
898 /* Offset of this DIE. */
899 sect_offset offset;
900
901 /* DWARF-2 tag for this DIE. */
902 ENUM_BITFIELD(dwarf_tag) tag : 16;
903
904 /* Assorted flags describing the data found in this DIE. */
905 unsigned int has_children : 1;
906 unsigned int is_external : 1;
907 unsigned int is_declaration : 1;
908 unsigned int has_type : 1;
909 unsigned int has_specification : 1;
910 unsigned int has_pc_info : 1;
911 unsigned int may_be_inlined : 1;
912
913 /* Flag set if the SCOPE field of this structure has been
914 computed. */
915 unsigned int scope_set : 1;
916
917 /* Flag set if the DIE has a byte_size attribute. */
918 unsigned int has_byte_size : 1;
919
920 /* Flag set if any of the DIE's children are template arguments. */
921 unsigned int has_template_arguments : 1;
922
923 /* Flag set if fixup_partial_die has been called on this die. */
924 unsigned int fixup_called : 1;
925
926 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
927 unsigned int is_dwz : 1;
928
929 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
930 unsigned int spec_is_dwz : 1;
931
932 /* The name of this DIE. Normally the value of DW_AT_name, but
933 sometimes a default name for unnamed DIEs. */
934 char *name;
935
936 /* The linkage name, if present. */
937 const char *linkage_name;
938
939 /* The scope to prepend to our children. This is generally
940 allocated on the comp_unit_obstack, so will disappear
941 when this compilation unit leaves the cache. */
942 char *scope;
943
944 /* Some data associated with the partial DIE. The tag determines
945 which field is live. */
946 union
947 {
948 /* The location description associated with this DIE, if any. */
949 struct dwarf_block *locdesc;
950 /* The offset of an import, for DW_TAG_imported_unit. */
951 sect_offset offset;
952 } d;
953
954 /* If HAS_PC_INFO, the PC range associated with this DIE. */
955 CORE_ADDR lowpc;
956 CORE_ADDR highpc;
957
958 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
959 DW_AT_sibling, if any. */
960 /* NOTE: This member isn't strictly necessary, read_partial_die could
961 return DW_AT_sibling values to its caller load_partial_dies. */
962 gdb_byte *sibling;
963
964 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
965 DW_AT_specification (or DW_AT_abstract_origin or
966 DW_AT_extension). */
967 sect_offset spec_offset;
968
969 /* Pointers to this DIE's parent, first child, and next sibling,
970 if any. */
971 struct partial_die_info *die_parent, *die_child, *die_sibling;
972 };
973
974 /* This data structure holds the information of an abbrev. */
975 struct abbrev_info
976 {
977 unsigned int number; /* number identifying abbrev */
978 enum dwarf_tag tag; /* dwarf tag */
979 unsigned short has_children; /* boolean */
980 unsigned short num_attrs; /* number of attributes */
981 struct attr_abbrev *attrs; /* an array of attribute descriptions */
982 struct abbrev_info *next; /* next in chain */
983 };
984
985 struct attr_abbrev
986 {
987 ENUM_BITFIELD(dwarf_attribute) name : 16;
988 ENUM_BITFIELD(dwarf_form) form : 16;
989 };
990
991 /* Size of abbrev_table.abbrev_hash_table. */
992 #define ABBREV_HASH_SIZE 121
993
994 /* Top level data structure to contain an abbreviation table. */
995
996 struct abbrev_table
997 {
998 /* Where the abbrev table came from.
999 This is used as a sanity check when the table is used. */
1000 sect_offset offset;
1001
1002 /* Storage for the abbrev table. */
1003 struct obstack abbrev_obstack;
1004
1005 /* Hash table of abbrevs.
1006 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1007 It could be statically allocated, but the previous code didn't so we
1008 don't either. */
1009 struct abbrev_info **abbrevs;
1010 };
1011
1012 /* Attributes have a name and a value. */
1013 struct attribute
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 15;
1017
1018 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1019 field should be in u.str (existing only for DW_STRING) but it is kept
1020 here for better struct attribute alignment. */
1021 unsigned int string_is_canonical : 1;
1022
1023 union
1024 {
1025 char *str;
1026 struct dwarf_block *blk;
1027 ULONGEST unsnd;
1028 LONGEST snd;
1029 CORE_ADDR addr;
1030 struct signatured_type *signatured_type;
1031 }
1032 u;
1033 };
1034
1035 /* This data structure holds a complete die structure. */
1036 struct die_info
1037 {
1038 /* DWARF-2 tag for this DIE. */
1039 ENUM_BITFIELD(dwarf_tag) tag : 16;
1040
1041 /* Number of attributes */
1042 unsigned char num_attrs;
1043
1044 /* True if we're presently building the full type name for the
1045 type derived from this DIE. */
1046 unsigned char building_fullname : 1;
1047
1048 /* Abbrev number */
1049 unsigned int abbrev;
1050
1051 /* Offset in .debug_info or .debug_types section. */
1052 sect_offset offset;
1053
1054 /* The dies in a compilation unit form an n-ary tree. PARENT
1055 points to this die's parent; CHILD points to the first child of
1056 this node; and all the children of a given node are chained
1057 together via their SIBLING fields. */
1058 struct die_info *child; /* Its first child, if any. */
1059 struct die_info *sibling; /* Its next sibling, if any. */
1060 struct die_info *parent; /* Its parent, if any. */
1061
1062 /* An array of attributes, with NUM_ATTRS elements. There may be
1063 zero, but it's not common and zero-sized arrays are not
1064 sufficiently portable C. */
1065 struct attribute attrs[1];
1066 };
1067
1068 /* Get at parts of an attribute structure. */
1069
1070 #define DW_STRING(attr) ((attr)->u.str)
1071 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1072 #define DW_UNSND(attr) ((attr)->u.unsnd)
1073 #define DW_BLOCK(attr) ((attr)->u.blk)
1074 #define DW_SND(attr) ((attr)->u.snd)
1075 #define DW_ADDR(attr) ((attr)->u.addr)
1076 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1077
1078 /* Blocks are a bunch of untyped bytes. */
1079 struct dwarf_block
1080 {
1081 size_t size;
1082
1083 /* Valid only if SIZE is not zero. */
1084 gdb_byte *data;
1085 };
1086
1087 #ifndef ATTR_ALLOC_CHUNK
1088 #define ATTR_ALLOC_CHUNK 4
1089 #endif
1090
1091 /* Allocate fields for structs, unions and enums in this size. */
1092 #ifndef DW_FIELD_ALLOC_CHUNK
1093 #define DW_FIELD_ALLOC_CHUNK 4
1094 #endif
1095
1096 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1097 but this would require a corresponding change in unpack_field_as_long
1098 and friends. */
1099 static int bits_per_byte = 8;
1100
1101 /* The routines that read and process dies for a C struct or C++ class
1102 pass lists of data member fields and lists of member function fields
1103 in an instance of a field_info structure, as defined below. */
1104 struct field_info
1105 {
1106 /* List of data member and baseclasses fields. */
1107 struct nextfield
1108 {
1109 struct nextfield *next;
1110 int accessibility;
1111 int virtuality;
1112 struct field field;
1113 }
1114 *fields, *baseclasses;
1115
1116 /* Number of fields (including baseclasses). */
1117 int nfields;
1118
1119 /* Number of baseclasses. */
1120 int nbaseclasses;
1121
1122 /* Set if the accesibility of one of the fields is not public. */
1123 int non_public_fields;
1124
1125 /* Member function fields array, entries are allocated in the order they
1126 are encountered in the object file. */
1127 struct nextfnfield
1128 {
1129 struct nextfnfield *next;
1130 struct fn_field fnfield;
1131 }
1132 *fnfields;
1133
1134 /* Member function fieldlist array, contains name of possibly overloaded
1135 member function, number of overloaded member functions and a pointer
1136 to the head of the member function field chain. */
1137 struct fnfieldlist
1138 {
1139 char *name;
1140 int length;
1141 struct nextfnfield *head;
1142 }
1143 *fnfieldlists;
1144
1145 /* Number of entries in the fnfieldlists array. */
1146 int nfnfields;
1147
1148 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1149 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1150 struct typedef_field_list
1151 {
1152 struct typedef_field field;
1153 struct typedef_field_list *next;
1154 }
1155 *typedef_field_list;
1156 unsigned typedef_field_list_count;
1157 };
1158
1159 /* One item on the queue of compilation units to read in full symbols
1160 for. */
1161 struct dwarf2_queue_item
1162 {
1163 struct dwarf2_per_cu_data *per_cu;
1164 enum language pretend_language;
1165 struct dwarf2_queue_item *next;
1166 };
1167
1168 /* The current queue. */
1169 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1170
1171 /* Loaded secondary compilation units are kept in memory until they
1172 have not been referenced for the processing of this many
1173 compilation units. Set this to zero to disable caching. Cache
1174 sizes of up to at least twenty will improve startup time for
1175 typical inter-CU-reference binaries, at an obvious memory cost. */
1176 static int dwarf2_max_cache_age = 5;
1177 static void
1178 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1179 struct cmd_list_element *c, const char *value)
1180 {
1181 fprintf_filtered (file, _("The upper bound on the age of cached "
1182 "dwarf2 compilation units is %s.\n"),
1183 value);
1184 }
1185
1186
1187 /* Various complaints about symbol reading that don't abort the process. */
1188
1189 static void
1190 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1191 {
1192 complaint (&symfile_complaints,
1193 _("statement list doesn't fit in .debug_line section"));
1194 }
1195
1196 static void
1197 dwarf2_debug_line_missing_file_complaint (void)
1198 {
1199 complaint (&symfile_complaints,
1200 _(".debug_line section has line data without a file"));
1201 }
1202
1203 static void
1204 dwarf2_debug_line_missing_end_sequence_complaint (void)
1205 {
1206 complaint (&symfile_complaints,
1207 _(".debug_line section has line "
1208 "program sequence without an end"));
1209 }
1210
1211 static void
1212 dwarf2_complex_location_expr_complaint (void)
1213 {
1214 complaint (&symfile_complaints, _("location expression too complex"));
1215 }
1216
1217 static void
1218 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1219 int arg3)
1220 {
1221 complaint (&symfile_complaints,
1222 _("const value length mismatch for '%s', got %d, expected %d"),
1223 arg1, arg2, arg3);
1224 }
1225
1226 static void
1227 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1228 {
1229 complaint (&symfile_complaints,
1230 _("debug info runs off end of %s section"
1231 " [in module %s]"),
1232 section->asection->name,
1233 bfd_get_filename (section->asection->owner));
1234 }
1235
1236 static void
1237 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1238 {
1239 complaint (&symfile_complaints,
1240 _("macro debug info contains a "
1241 "malformed macro definition:\n`%s'"),
1242 arg1);
1243 }
1244
1245 static void
1246 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1247 {
1248 complaint (&symfile_complaints,
1249 _("invalid attribute class or form for '%s' in '%s'"),
1250 arg1, arg2);
1251 }
1252
1253 /* local function prototypes */
1254
1255 static void dwarf2_locate_sections (bfd *, asection *, void *);
1256
1257 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1258 struct objfile *);
1259
1260 static void dwarf2_find_base_address (struct die_info *die,
1261 struct dwarf2_cu *cu);
1262
1263 static void dwarf2_build_psymtabs_hard (struct objfile *);
1264
1265 static void scan_partial_symbols (struct partial_die_info *,
1266 CORE_ADDR *, CORE_ADDR *,
1267 int, struct dwarf2_cu *);
1268
1269 static void add_partial_symbol (struct partial_die_info *,
1270 struct dwarf2_cu *);
1271
1272 static void add_partial_namespace (struct partial_die_info *pdi,
1273 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1274 int need_pc, struct dwarf2_cu *cu);
1275
1276 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1277 CORE_ADDR *highpc, int need_pc,
1278 struct dwarf2_cu *cu);
1279
1280 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1281 struct dwarf2_cu *cu);
1282
1283 static void add_partial_subprogram (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void dwarf2_psymtab_to_symtab (struct objfile *,
1288 struct partial_symtab *);
1289
1290 static void psymtab_to_symtab_1 (struct partial_symtab *);
1291
1292 static struct abbrev_info *abbrev_table_lookup_abbrev
1293 (const struct abbrev_table *, unsigned int);
1294
1295 static struct abbrev_table *abbrev_table_read_table
1296 (struct dwarf2_section_info *, sect_offset);
1297
1298 static void abbrev_table_free (struct abbrev_table *);
1299
1300 static void abbrev_table_free_cleanup (void *);
1301
1302 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1303 struct dwarf2_section_info *);
1304
1305 static void dwarf2_free_abbrev_table (void *);
1306
1307 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1308
1309 static struct partial_die_info *load_partial_dies
1310 (const struct die_reader_specs *, gdb_byte *, int);
1311
1312 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1313 struct partial_die_info *,
1314 struct abbrev_info *,
1315 unsigned int,
1316 gdb_byte *);
1317
1318 static struct partial_die_info *find_partial_die (sect_offset, int,
1319 struct dwarf2_cu *);
1320
1321 static void fixup_partial_die (struct partial_die_info *,
1322 struct dwarf2_cu *);
1323
1324 static gdb_byte *read_attribute (const struct die_reader_specs *,
1325 struct attribute *, struct attr_abbrev *,
1326 gdb_byte *);
1327
1328 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1329
1330 static int read_1_signed_byte (bfd *, const gdb_byte *);
1331
1332 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1333
1334 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1335
1336 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1337
1338 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1339 unsigned int *);
1340
1341 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1342
1343 static LONGEST read_checked_initial_length_and_offset
1344 (bfd *, gdb_byte *, const struct comp_unit_head *,
1345 unsigned int *, unsigned int *);
1346
1347 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1348 unsigned int *);
1349
1350 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1351
1352 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1353 sect_offset);
1354
1355 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1356
1357 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1358
1359 static char *read_indirect_string (bfd *, gdb_byte *,
1360 const struct comp_unit_head *,
1361 unsigned int *);
1362
1363 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1364
1365 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1366
1367 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1368
1369 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1370 unsigned int *);
1371
1372 static char *read_str_index (const struct die_reader_specs *reader,
1373 struct dwarf2_cu *cu, ULONGEST str_index);
1374
1375 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1376
1377 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1378 struct dwarf2_cu *);
1379
1380 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1381 unsigned int);
1382
1383 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1384 struct dwarf2_cu *cu);
1385
1386 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1387
1388 static struct die_info *die_specification (struct die_info *die,
1389 struct dwarf2_cu **);
1390
1391 static void free_line_header (struct line_header *lh);
1392
1393 static void add_file_name (struct line_header *, char *, unsigned int,
1394 unsigned int, unsigned int);
1395
1396 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1397 struct dwarf2_cu *cu);
1398
1399 static void dwarf_decode_lines (struct line_header *, const char *,
1400 struct dwarf2_cu *, struct partial_symtab *,
1401 int);
1402
1403 static void dwarf2_start_subfile (char *, const char *, const char *);
1404
1405 static void dwarf2_start_symtab (struct dwarf2_cu *,
1406 char *, char *, CORE_ADDR);
1407
1408 static struct symbol *new_symbol (struct die_info *, struct type *,
1409 struct dwarf2_cu *);
1410
1411 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1412 struct dwarf2_cu *, struct symbol *);
1413
1414 static void dwarf2_const_value (struct attribute *, struct symbol *,
1415 struct dwarf2_cu *);
1416
1417 static void dwarf2_const_value_attr (struct attribute *attr,
1418 struct type *type,
1419 const char *name,
1420 struct obstack *obstack,
1421 struct dwarf2_cu *cu, LONGEST *value,
1422 gdb_byte **bytes,
1423 struct dwarf2_locexpr_baton **baton);
1424
1425 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1426
1427 static int need_gnat_info (struct dwarf2_cu *);
1428
1429 static struct type *die_descriptive_type (struct die_info *,
1430 struct dwarf2_cu *);
1431
1432 static void set_descriptive_type (struct type *, struct die_info *,
1433 struct dwarf2_cu *);
1434
1435 static struct type *die_containing_type (struct die_info *,
1436 struct dwarf2_cu *);
1437
1438 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1439 struct dwarf2_cu *);
1440
1441 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1442
1443 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1444
1445 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1446
1447 static char *typename_concat (struct obstack *obs, const char *prefix,
1448 const char *suffix, int physname,
1449 struct dwarf2_cu *cu);
1450
1451 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1452
1453 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1454
1455 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1456
1457 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1458
1459 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1460
1461 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1462 struct dwarf2_cu *, struct partial_symtab *);
1463
1464 static int dwarf2_get_pc_bounds (struct die_info *,
1465 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1466 struct partial_symtab *);
1467
1468 static void get_scope_pc_bounds (struct die_info *,
1469 CORE_ADDR *, CORE_ADDR *,
1470 struct dwarf2_cu *);
1471
1472 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1473 CORE_ADDR, struct dwarf2_cu *);
1474
1475 static void dwarf2_add_field (struct field_info *, struct die_info *,
1476 struct dwarf2_cu *);
1477
1478 static void dwarf2_attach_fields_to_type (struct field_info *,
1479 struct type *, struct dwarf2_cu *);
1480
1481 static void dwarf2_add_member_fn (struct field_info *,
1482 struct die_info *, struct type *,
1483 struct dwarf2_cu *);
1484
1485 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1486 struct type *,
1487 struct dwarf2_cu *);
1488
1489 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1490
1491 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1492
1493 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1494
1495 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1496
1497 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1498
1499 static struct type *read_module_type (struct die_info *die,
1500 struct dwarf2_cu *cu);
1501
1502 static const char *namespace_name (struct die_info *die,
1503 int *is_anonymous, struct dwarf2_cu *);
1504
1505 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1506
1507 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1508
1509 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1510 struct dwarf2_cu *);
1511
1512 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1513 gdb_byte *info_ptr,
1514 gdb_byte **new_info_ptr,
1515 struct die_info *parent);
1516
1517 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1518 gdb_byte *info_ptr,
1519 gdb_byte **new_info_ptr,
1520 struct die_info *parent);
1521
1522 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1523 struct die_info **, gdb_byte *, int *, int);
1524
1525 static gdb_byte *read_full_die (const struct die_reader_specs *,
1526 struct die_info **, gdb_byte *, int *);
1527
1528 static void process_die (struct die_info *, struct dwarf2_cu *);
1529
1530 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1531 struct obstack *);
1532
1533 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1534
1535 static const char *dwarf2_full_name (char *name,
1536 struct die_info *die,
1537 struct dwarf2_cu *cu);
1538
1539 static struct die_info *dwarf2_extension (struct die_info *die,
1540 struct dwarf2_cu **);
1541
1542 static const char *dwarf_tag_name (unsigned int);
1543
1544 static const char *dwarf_attr_name (unsigned int);
1545
1546 static const char *dwarf_form_name (unsigned int);
1547
1548 static char *dwarf_bool_name (unsigned int);
1549
1550 static const char *dwarf_type_encoding_name (unsigned int);
1551
1552 static struct die_info *sibling_die (struct die_info *);
1553
1554 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1555
1556 static void dump_die_for_error (struct die_info *);
1557
1558 static void dump_die_1 (struct ui_file *, int level, int max_level,
1559 struct die_info *);
1560
1561 /*static*/ void dump_die (struct die_info *, int max_level);
1562
1563 static void store_in_ref_table (struct die_info *,
1564 struct dwarf2_cu *);
1565
1566 static int is_ref_attr (struct attribute *);
1567
1568 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1569
1570 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1571
1572 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1573 struct attribute *,
1574 struct dwarf2_cu **);
1575
1576 static struct die_info *follow_die_ref (struct die_info *,
1577 struct attribute *,
1578 struct dwarf2_cu **);
1579
1580 static struct die_info *follow_die_sig (struct die_info *,
1581 struct attribute *,
1582 struct dwarf2_cu **);
1583
1584 static struct signatured_type *lookup_signatured_type_at_offset
1585 (struct objfile *objfile,
1586 struct dwarf2_section_info *section, sect_offset offset);
1587
1588 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1589
1590 static void read_signatured_type (struct signatured_type *);
1591
1592 static struct type_unit_group *get_type_unit_group
1593 (struct dwarf2_cu *, struct attribute *);
1594
1595 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1596
1597 /* memory allocation interface */
1598
1599 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1600
1601 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1602
1603 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1604 char *, int);
1605
1606 static int attr_form_is_block (struct attribute *);
1607
1608 static int attr_form_is_section_offset (struct attribute *);
1609
1610 static int attr_form_is_constant (struct attribute *);
1611
1612 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1613 struct dwarf2_loclist_baton *baton,
1614 struct attribute *attr);
1615
1616 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1617 struct symbol *sym,
1618 struct dwarf2_cu *cu);
1619
1620 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1621 gdb_byte *info_ptr,
1622 struct abbrev_info *abbrev);
1623
1624 static void free_stack_comp_unit (void *);
1625
1626 static hashval_t partial_die_hash (const void *item);
1627
1628 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1629
1630 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1631 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1632
1633 static void init_one_comp_unit (struct dwarf2_cu *cu,
1634 struct dwarf2_per_cu_data *per_cu);
1635
1636 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1637 struct die_info *comp_unit_die,
1638 enum language pretend_language);
1639
1640 static void free_heap_comp_unit (void *);
1641
1642 static void free_cached_comp_units (void *);
1643
1644 static void age_cached_comp_units (void);
1645
1646 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1647
1648 static struct type *set_die_type (struct die_info *, struct type *,
1649 struct dwarf2_cu *);
1650
1651 static void create_all_comp_units (struct objfile *);
1652
1653 static int create_all_type_units (struct objfile *);
1654
1655 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1656 enum language);
1657
1658 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1659 enum language);
1660
1661 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1662 enum language);
1663
1664 static void dwarf2_add_dependence (struct dwarf2_cu *,
1665 struct dwarf2_per_cu_data *);
1666
1667 static void dwarf2_mark (struct dwarf2_cu *);
1668
1669 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1670
1671 static struct type *get_die_type_at_offset (sect_offset,
1672 struct dwarf2_per_cu_data *per_cu);
1673
1674 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1675
1676 static void dwarf2_release_queue (void *dummy);
1677
1678 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1679 enum language pretend_language);
1680
1681 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1682 struct dwarf2_per_cu_data *per_cu,
1683 enum language pretend_language);
1684
1685 static void process_queue (void);
1686
1687 static void find_file_and_directory (struct die_info *die,
1688 struct dwarf2_cu *cu,
1689 char **name, char **comp_dir);
1690
1691 static char *file_full_name (int file, struct line_header *lh,
1692 const char *comp_dir);
1693
1694 static gdb_byte *read_and_check_comp_unit_head
1695 (struct comp_unit_head *header,
1696 struct dwarf2_section_info *section,
1697 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1698 int is_debug_types_section);
1699
1700 static void init_cutu_and_read_dies
1701 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1702 int use_existing_cu, int keep,
1703 die_reader_func_ftype *die_reader_func, void *data);
1704
1705 static void init_cutu_and_read_dies_simple
1706 (struct dwarf2_per_cu_data *this_cu,
1707 die_reader_func_ftype *die_reader_func, void *data);
1708
1709 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1710
1711 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1712
1713 static struct dwo_unit *lookup_dwo_comp_unit
1714 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1715
1716 static struct dwo_unit *lookup_dwo_type_unit
1717 (struct signatured_type *, const char *, const char *);
1718
1719 static void free_dwo_file_cleanup (void *);
1720
1721 static void process_cu_includes (void);
1722
1723 static void check_producer (struct dwarf2_cu *cu);
1724
1725 #if WORDS_BIGENDIAN
1726
1727 /* Convert VALUE between big- and little-endian. */
1728 static offset_type
1729 byte_swap (offset_type value)
1730 {
1731 offset_type result;
1732
1733 result = (value & 0xff) << 24;
1734 result |= (value & 0xff00) << 8;
1735 result |= (value & 0xff0000) >> 8;
1736 result |= (value & 0xff000000) >> 24;
1737 return result;
1738 }
1739
1740 #define MAYBE_SWAP(V) byte_swap (V)
1741
1742 #else
1743 #define MAYBE_SWAP(V) (V)
1744 #endif /* WORDS_BIGENDIAN */
1745
1746 /* The suffix for an index file. */
1747 #define INDEX_SUFFIX ".gdb-index"
1748
1749 static const char *dwarf2_physname (char *name, struct die_info *die,
1750 struct dwarf2_cu *cu);
1751
1752 /* Try to locate the sections we need for DWARF 2 debugging
1753 information and return true if we have enough to do something.
1754 NAMES points to the dwarf2 section names, or is NULL if the standard
1755 ELF names are used. */
1756
1757 int
1758 dwarf2_has_info (struct objfile *objfile,
1759 const struct dwarf2_debug_sections *names)
1760 {
1761 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1762 if (!dwarf2_per_objfile)
1763 {
1764 /* Initialize per-objfile state. */
1765 struct dwarf2_per_objfile *data
1766 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1767
1768 memset (data, 0, sizeof (*data));
1769 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1770 dwarf2_per_objfile = data;
1771
1772 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1773 (void *) names);
1774 dwarf2_per_objfile->objfile = objfile;
1775 }
1776 return (dwarf2_per_objfile->info.asection != NULL
1777 && dwarf2_per_objfile->abbrev.asection != NULL);
1778 }
1779
1780 /* When loading sections, we look either for uncompressed section or for
1781 compressed section names. */
1782
1783 static int
1784 section_is_p (const char *section_name,
1785 const struct dwarf2_section_names *names)
1786 {
1787 if (names->normal != NULL
1788 && strcmp (section_name, names->normal) == 0)
1789 return 1;
1790 if (names->compressed != NULL
1791 && strcmp (section_name, names->compressed) == 0)
1792 return 1;
1793 return 0;
1794 }
1795
1796 /* This function is mapped across the sections and remembers the
1797 offset and size of each of the debugging sections we are interested
1798 in. */
1799
1800 static void
1801 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1802 {
1803 const struct dwarf2_debug_sections *names;
1804 flagword aflag = bfd_get_section_flags (abfd, sectp);
1805
1806 if (vnames == NULL)
1807 names = &dwarf2_elf_names;
1808 else
1809 names = (const struct dwarf2_debug_sections *) vnames;
1810
1811 if ((aflag & SEC_HAS_CONTENTS) == 0)
1812 {
1813 }
1814 else if (section_is_p (sectp->name, &names->info))
1815 {
1816 dwarf2_per_objfile->info.asection = sectp;
1817 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1818 }
1819 else if (section_is_p (sectp->name, &names->abbrev))
1820 {
1821 dwarf2_per_objfile->abbrev.asection = sectp;
1822 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1823 }
1824 else if (section_is_p (sectp->name, &names->line))
1825 {
1826 dwarf2_per_objfile->line.asection = sectp;
1827 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1828 }
1829 else if (section_is_p (sectp->name, &names->loc))
1830 {
1831 dwarf2_per_objfile->loc.asection = sectp;
1832 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1833 }
1834 else if (section_is_p (sectp->name, &names->macinfo))
1835 {
1836 dwarf2_per_objfile->macinfo.asection = sectp;
1837 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1838 }
1839 else if (section_is_p (sectp->name, &names->macro))
1840 {
1841 dwarf2_per_objfile->macro.asection = sectp;
1842 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1843 }
1844 else if (section_is_p (sectp->name, &names->str))
1845 {
1846 dwarf2_per_objfile->str.asection = sectp;
1847 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1848 }
1849 else if (section_is_p (sectp->name, &names->addr))
1850 {
1851 dwarf2_per_objfile->addr.asection = sectp;
1852 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1853 }
1854 else if (section_is_p (sectp->name, &names->frame))
1855 {
1856 dwarf2_per_objfile->frame.asection = sectp;
1857 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1858 }
1859 else if (section_is_p (sectp->name, &names->eh_frame))
1860 {
1861 dwarf2_per_objfile->eh_frame.asection = sectp;
1862 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1863 }
1864 else if (section_is_p (sectp->name, &names->ranges))
1865 {
1866 dwarf2_per_objfile->ranges.asection = sectp;
1867 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1868 }
1869 else if (section_is_p (sectp->name, &names->types))
1870 {
1871 struct dwarf2_section_info type_section;
1872
1873 memset (&type_section, 0, sizeof (type_section));
1874 type_section.asection = sectp;
1875 type_section.size = bfd_get_section_size (sectp);
1876
1877 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1878 &type_section);
1879 }
1880 else if (section_is_p (sectp->name, &names->gdb_index))
1881 {
1882 dwarf2_per_objfile->gdb_index.asection = sectp;
1883 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1884 }
1885
1886 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1887 && bfd_section_vma (abfd, sectp) == 0)
1888 dwarf2_per_objfile->has_section_at_zero = 1;
1889 }
1890
1891 /* A helper function that decides whether a section is empty,
1892 or not present. */
1893
1894 static int
1895 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1896 {
1897 return info->asection == NULL || info->size == 0;
1898 }
1899
1900 /* Read the contents of the section INFO.
1901 OBJFILE is the main object file, but not necessarily the file where
1902 the section comes from. E.g., for DWO files INFO->asection->owner
1903 is the bfd of the DWO file.
1904 If the section is compressed, uncompress it before returning. */
1905
1906 static void
1907 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1908 {
1909 asection *sectp = info->asection;
1910 bfd *abfd;
1911 gdb_byte *buf, *retbuf;
1912 unsigned char header[4];
1913
1914 if (info->readin)
1915 return;
1916 info->buffer = NULL;
1917 info->readin = 1;
1918
1919 if (dwarf2_section_empty_p (info))
1920 return;
1921
1922 abfd = sectp->owner;
1923
1924 /* If the section has relocations, we must read it ourselves.
1925 Otherwise we attach it to the BFD. */
1926 if ((sectp->flags & SEC_RELOC) == 0)
1927 {
1928 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1929
1930 /* We have to cast away const here for historical reasons.
1931 Fixing dwarf2read to be const-correct would be quite nice. */
1932 info->buffer = (gdb_byte *) bytes;
1933 return;
1934 }
1935
1936 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1937 info->buffer = buf;
1938
1939 /* When debugging .o files, we may need to apply relocations; see
1940 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1941 We never compress sections in .o files, so we only need to
1942 try this when the section is not compressed. */
1943 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1944 if (retbuf != NULL)
1945 {
1946 info->buffer = retbuf;
1947 return;
1948 }
1949
1950 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1951 || bfd_bread (buf, info->size, abfd) != info->size)
1952 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1953 bfd_get_filename (abfd));
1954 }
1955
1956 /* A helper function that returns the size of a section in a safe way.
1957 If you are positive that the section has been read before using the
1958 size, then it is safe to refer to the dwarf2_section_info object's
1959 "size" field directly. In other cases, you must call this
1960 function, because for compressed sections the size field is not set
1961 correctly until the section has been read. */
1962
1963 static bfd_size_type
1964 dwarf2_section_size (struct objfile *objfile,
1965 struct dwarf2_section_info *info)
1966 {
1967 if (!info->readin)
1968 dwarf2_read_section (objfile, info);
1969 return info->size;
1970 }
1971
1972 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1973 SECTION_NAME. */
1974
1975 void
1976 dwarf2_get_section_info (struct objfile *objfile,
1977 enum dwarf2_section_enum sect,
1978 asection **sectp, gdb_byte **bufp,
1979 bfd_size_type *sizep)
1980 {
1981 struct dwarf2_per_objfile *data
1982 = objfile_data (objfile, dwarf2_objfile_data_key);
1983 struct dwarf2_section_info *info;
1984
1985 /* We may see an objfile without any DWARF, in which case we just
1986 return nothing. */
1987 if (data == NULL)
1988 {
1989 *sectp = NULL;
1990 *bufp = NULL;
1991 *sizep = 0;
1992 return;
1993 }
1994 switch (sect)
1995 {
1996 case DWARF2_DEBUG_FRAME:
1997 info = &data->frame;
1998 break;
1999 case DWARF2_EH_FRAME:
2000 info = &data->eh_frame;
2001 break;
2002 default:
2003 gdb_assert_not_reached ("unexpected section");
2004 }
2005
2006 dwarf2_read_section (objfile, info);
2007
2008 *sectp = info->asection;
2009 *bufp = info->buffer;
2010 *sizep = info->size;
2011 }
2012
2013 /* A helper function to find the sections for a .dwz file. */
2014
2015 static void
2016 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2017 {
2018 struct dwz_file *dwz_file = arg;
2019
2020 /* Note that we only support the standard ELF names, because .dwz
2021 is ELF-only (at the time of writing). */
2022 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2023 {
2024 dwz_file->abbrev.asection = sectp;
2025 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2026 }
2027 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2028 {
2029 dwz_file->info.asection = sectp;
2030 dwz_file->info.size = bfd_get_section_size (sectp);
2031 }
2032 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2033 {
2034 dwz_file->str.asection = sectp;
2035 dwz_file->str.size = bfd_get_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2038 {
2039 dwz_file->line.asection = sectp;
2040 dwz_file->line.size = bfd_get_section_size (sectp);
2041 }
2042 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2043 {
2044 dwz_file->macro.asection = sectp;
2045 dwz_file->macro.size = bfd_get_section_size (sectp);
2046 }
2047 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2048 {
2049 dwz_file->gdb_index.asection = sectp;
2050 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2051 }
2052 }
2053
2054 /* Open the separate '.dwz' debug file, if needed. Error if the file
2055 cannot be found. */
2056
2057 static struct dwz_file *
2058 dwarf2_get_dwz_file (void)
2059 {
2060 bfd *abfd, *dwz_bfd;
2061 asection *section;
2062 gdb_byte *data;
2063 struct cleanup *cleanup;
2064 const char *filename;
2065 struct dwz_file *result;
2066
2067 if (dwarf2_per_objfile->dwz_file != NULL)
2068 return dwarf2_per_objfile->dwz_file;
2069
2070 abfd = dwarf2_per_objfile->objfile->obfd;
2071 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2072 if (section == NULL)
2073 error (_("could not find '.gnu_debugaltlink' section"));
2074 if (!bfd_malloc_and_get_section (abfd, section, &data))
2075 error (_("could not read '.gnu_debugaltlink' section: %s"),
2076 bfd_errmsg (bfd_get_error ()));
2077 cleanup = make_cleanup (xfree, data);
2078
2079 filename = data;
2080 if (!IS_ABSOLUTE_PATH (filename))
2081 {
2082 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2083 char *rel;
2084
2085 make_cleanup (xfree, abs);
2086 abs = ldirname (abs);
2087 make_cleanup (xfree, abs);
2088
2089 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2090 make_cleanup (xfree, rel);
2091 filename = rel;
2092 }
2093
2094 /* The format is just a NUL-terminated file name, followed by the
2095 build-id. For now, though, we ignore the build-id. */
2096 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2097 if (dwz_bfd == NULL)
2098 error (_("could not read '%s': %s"), filename,
2099 bfd_errmsg (bfd_get_error ()));
2100
2101 if (!bfd_check_format (dwz_bfd, bfd_object))
2102 {
2103 gdb_bfd_unref (dwz_bfd);
2104 error (_("file '%s' was not usable: %s"), filename,
2105 bfd_errmsg (bfd_get_error ()));
2106 }
2107
2108 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2109 struct dwz_file);
2110 result->dwz_bfd = dwz_bfd;
2111
2112 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2113
2114 do_cleanups (cleanup);
2115
2116 dwarf2_per_objfile->dwz_file = result;
2117 return result;
2118 }
2119 \f
2120 /* DWARF quick_symbols_functions support. */
2121
2122 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2123 unique line tables, so we maintain a separate table of all .debug_line
2124 derived entries to support the sharing.
2125 All the quick functions need is the list of file names. We discard the
2126 line_header when we're done and don't need to record it here. */
2127 struct quick_file_names
2128 {
2129 /* The data used to construct the hash key. */
2130 struct stmt_list_hash hash;
2131
2132 /* The number of entries in file_names, real_names. */
2133 unsigned int num_file_names;
2134
2135 /* The file names from the line table, after being run through
2136 file_full_name. */
2137 const char **file_names;
2138
2139 /* The file names from the line table after being run through
2140 gdb_realpath. These are computed lazily. */
2141 const char **real_names;
2142 };
2143
2144 /* When using the index (and thus not using psymtabs), each CU has an
2145 object of this type. This is used to hold information needed by
2146 the various "quick" methods. */
2147 struct dwarf2_per_cu_quick_data
2148 {
2149 /* The file table. This can be NULL if there was no file table
2150 or it's currently not read in.
2151 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2152 struct quick_file_names *file_names;
2153
2154 /* The corresponding symbol table. This is NULL if symbols for this
2155 CU have not yet been read. */
2156 struct symtab *symtab;
2157
2158 /* A temporary mark bit used when iterating over all CUs in
2159 expand_symtabs_matching. */
2160 unsigned int mark : 1;
2161
2162 /* True if we've tried to read the file table and found there isn't one.
2163 There will be no point in trying to read it again next time. */
2164 unsigned int no_file_data : 1;
2165 };
2166
2167 /* Utility hash function for a stmt_list_hash. */
2168
2169 static hashval_t
2170 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2171 {
2172 hashval_t v = 0;
2173
2174 if (stmt_list_hash->dwo_unit != NULL)
2175 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2176 v += stmt_list_hash->line_offset.sect_off;
2177 return v;
2178 }
2179
2180 /* Utility equality function for a stmt_list_hash. */
2181
2182 static int
2183 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2184 const struct stmt_list_hash *rhs)
2185 {
2186 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2187 return 0;
2188 if (lhs->dwo_unit != NULL
2189 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2190 return 0;
2191
2192 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2193 }
2194
2195 /* Hash function for a quick_file_names. */
2196
2197 static hashval_t
2198 hash_file_name_entry (const void *e)
2199 {
2200 const struct quick_file_names *file_data = e;
2201
2202 return hash_stmt_list_entry (&file_data->hash);
2203 }
2204
2205 /* Equality function for a quick_file_names. */
2206
2207 static int
2208 eq_file_name_entry (const void *a, const void *b)
2209 {
2210 const struct quick_file_names *ea = a;
2211 const struct quick_file_names *eb = b;
2212
2213 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2214 }
2215
2216 /* Delete function for a quick_file_names. */
2217
2218 static void
2219 delete_file_name_entry (void *e)
2220 {
2221 struct quick_file_names *file_data = e;
2222 int i;
2223
2224 for (i = 0; i < file_data->num_file_names; ++i)
2225 {
2226 xfree ((void*) file_data->file_names[i]);
2227 if (file_data->real_names)
2228 xfree ((void*) file_data->real_names[i]);
2229 }
2230
2231 /* The space for the struct itself lives on objfile_obstack,
2232 so we don't free it here. */
2233 }
2234
2235 /* Create a quick_file_names hash table. */
2236
2237 static htab_t
2238 create_quick_file_names_table (unsigned int nr_initial_entries)
2239 {
2240 return htab_create_alloc (nr_initial_entries,
2241 hash_file_name_entry, eq_file_name_entry,
2242 delete_file_name_entry, xcalloc, xfree);
2243 }
2244
2245 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2246 have to be created afterwards. You should call age_cached_comp_units after
2247 processing PER_CU->CU. dw2_setup must have been already called. */
2248
2249 static void
2250 load_cu (struct dwarf2_per_cu_data *per_cu)
2251 {
2252 if (per_cu->is_debug_types)
2253 load_full_type_unit (per_cu);
2254 else
2255 load_full_comp_unit (per_cu, language_minimal);
2256
2257 gdb_assert (per_cu->cu != NULL);
2258
2259 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2260 }
2261
2262 /* Read in the symbols for PER_CU. */
2263
2264 static void
2265 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2266 {
2267 struct cleanup *back_to;
2268
2269 /* Skip type_unit_groups, reading the type units they contain
2270 is handled elsewhere. */
2271 if (IS_TYPE_UNIT_GROUP (per_cu))
2272 return;
2273
2274 back_to = make_cleanup (dwarf2_release_queue, NULL);
2275
2276 if (dwarf2_per_objfile->using_index
2277 ? per_cu->v.quick->symtab == NULL
2278 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2279 {
2280 queue_comp_unit (per_cu, language_minimal);
2281 load_cu (per_cu);
2282 }
2283
2284 process_queue ();
2285
2286 /* Age the cache, releasing compilation units that have not
2287 been used recently. */
2288 age_cached_comp_units ();
2289
2290 do_cleanups (back_to);
2291 }
2292
2293 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2294 the objfile from which this CU came. Returns the resulting symbol
2295 table. */
2296
2297 static struct symtab *
2298 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 gdb_assert (dwarf2_per_objfile->using_index);
2301 if (!per_cu->v.quick->symtab)
2302 {
2303 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2304 increment_reading_symtab ();
2305 dw2_do_instantiate_symtab (per_cu);
2306 process_cu_includes ();
2307 do_cleanups (back_to);
2308 }
2309 return per_cu->v.quick->symtab;
2310 }
2311
2312 /* Return the CU given its index.
2313
2314 This is intended for loops like:
2315
2316 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2317 + dwarf2_per_objfile->n_type_units); ++i)
2318 {
2319 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2320
2321 ...;
2322 }
2323 */
2324
2325 static struct dwarf2_per_cu_data *
2326 dw2_get_cu (int index)
2327 {
2328 if (index >= dwarf2_per_objfile->n_comp_units)
2329 {
2330 index -= dwarf2_per_objfile->n_comp_units;
2331 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2332 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2333 }
2334
2335 return dwarf2_per_objfile->all_comp_units[index];
2336 }
2337
2338 /* Return the primary CU given its index.
2339 The difference between this function and dw2_get_cu is in the handling
2340 of type units (TUs). Here we return the type_unit_group object.
2341
2342 This is intended for loops like:
2343
2344 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2345 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2346 {
2347 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2348
2349 ...;
2350 }
2351 */
2352
2353 static struct dwarf2_per_cu_data *
2354 dw2_get_primary_cu (int index)
2355 {
2356 if (index >= dwarf2_per_objfile->n_comp_units)
2357 {
2358 index -= dwarf2_per_objfile->n_comp_units;
2359 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2360 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2361 }
2362
2363 return dwarf2_per_objfile->all_comp_units[index];
2364 }
2365
2366 /* A helper for create_cus_from_index that handles a given list of
2367 CUs. */
2368
2369 static void
2370 create_cus_from_index_list (struct objfile *objfile,
2371 const gdb_byte *cu_list, offset_type n_elements,
2372 struct dwarf2_section_info *section,
2373 int is_dwz,
2374 int base_offset)
2375 {
2376 offset_type i;
2377
2378 for (i = 0; i < n_elements; i += 2)
2379 {
2380 struct dwarf2_per_cu_data *the_cu;
2381 ULONGEST offset, length;
2382
2383 gdb_static_assert (sizeof (ULONGEST) >= 8);
2384 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2385 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2386 cu_list += 2 * 8;
2387
2388 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2389 struct dwarf2_per_cu_data);
2390 the_cu->offset.sect_off = offset;
2391 the_cu->length = length;
2392 the_cu->objfile = objfile;
2393 the_cu->info_or_types_section = section;
2394 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2395 struct dwarf2_per_cu_quick_data);
2396 the_cu->is_dwz = is_dwz;
2397 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2398 }
2399 }
2400
2401 /* Read the CU list from the mapped index, and use it to create all
2402 the CU objects for this objfile. */
2403
2404 static void
2405 create_cus_from_index (struct objfile *objfile,
2406 const gdb_byte *cu_list, offset_type cu_list_elements,
2407 const gdb_byte *dwz_list, offset_type dwz_elements)
2408 {
2409 struct dwz_file *dwz;
2410
2411 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2412 dwarf2_per_objfile->all_comp_units
2413 = obstack_alloc (&objfile->objfile_obstack,
2414 dwarf2_per_objfile->n_comp_units
2415 * sizeof (struct dwarf2_per_cu_data *));
2416
2417 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2418 &dwarf2_per_objfile->info, 0, 0);
2419
2420 if (dwz_elements == 0)
2421 return;
2422
2423 dwz = dwarf2_get_dwz_file ();
2424 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2425 cu_list_elements / 2);
2426 }
2427
2428 /* Create the signatured type hash table from the index. */
2429
2430 static void
2431 create_signatured_type_table_from_index (struct objfile *objfile,
2432 struct dwarf2_section_info *section,
2433 const gdb_byte *bytes,
2434 offset_type elements)
2435 {
2436 offset_type i;
2437 htab_t sig_types_hash;
2438
2439 dwarf2_per_objfile->n_type_units = elements / 3;
2440 dwarf2_per_objfile->all_type_units
2441 = obstack_alloc (&objfile->objfile_obstack,
2442 dwarf2_per_objfile->n_type_units
2443 * sizeof (struct signatured_type *));
2444
2445 sig_types_hash = allocate_signatured_type_table (objfile);
2446
2447 for (i = 0; i < elements; i += 3)
2448 {
2449 struct signatured_type *sig_type;
2450 ULONGEST offset, type_offset_in_tu, signature;
2451 void **slot;
2452
2453 gdb_static_assert (sizeof (ULONGEST) >= 8);
2454 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2455 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2456 BFD_ENDIAN_LITTLE);
2457 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2458 bytes += 3 * 8;
2459
2460 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2461 struct signatured_type);
2462 sig_type->signature = signature;
2463 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2464 sig_type->per_cu.is_debug_types = 1;
2465 sig_type->per_cu.info_or_types_section = section;
2466 sig_type->per_cu.offset.sect_off = offset;
2467 sig_type->per_cu.objfile = objfile;
2468 sig_type->per_cu.v.quick
2469 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2470 struct dwarf2_per_cu_quick_data);
2471
2472 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2473 *slot = sig_type;
2474
2475 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2476 }
2477
2478 dwarf2_per_objfile->signatured_types = sig_types_hash;
2479 }
2480
2481 /* Read the address map data from the mapped index, and use it to
2482 populate the objfile's psymtabs_addrmap. */
2483
2484 static void
2485 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2486 {
2487 const gdb_byte *iter, *end;
2488 struct obstack temp_obstack;
2489 struct addrmap *mutable_map;
2490 struct cleanup *cleanup;
2491 CORE_ADDR baseaddr;
2492
2493 obstack_init (&temp_obstack);
2494 cleanup = make_cleanup_obstack_free (&temp_obstack);
2495 mutable_map = addrmap_create_mutable (&temp_obstack);
2496
2497 iter = index->address_table;
2498 end = iter + index->address_table_size;
2499
2500 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2501
2502 while (iter < end)
2503 {
2504 ULONGEST hi, lo, cu_index;
2505 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2506 iter += 8;
2507 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2508 iter += 8;
2509 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2510 iter += 4;
2511
2512 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2513 dw2_get_cu (cu_index));
2514 }
2515
2516 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2517 &objfile->objfile_obstack);
2518 do_cleanups (cleanup);
2519 }
2520
2521 /* The hash function for strings in the mapped index. This is the same as
2522 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2523 implementation. This is necessary because the hash function is tied to the
2524 format of the mapped index file. The hash values do not have to match with
2525 SYMBOL_HASH_NEXT.
2526
2527 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2528
2529 static hashval_t
2530 mapped_index_string_hash (int index_version, const void *p)
2531 {
2532 const unsigned char *str = (const unsigned char *) p;
2533 hashval_t r = 0;
2534 unsigned char c;
2535
2536 while ((c = *str++) != 0)
2537 {
2538 if (index_version >= 5)
2539 c = tolower (c);
2540 r = r * 67 + c - 113;
2541 }
2542
2543 return r;
2544 }
2545
2546 /* Find a slot in the mapped index INDEX for the object named NAME.
2547 If NAME is found, set *VEC_OUT to point to the CU vector in the
2548 constant pool and return 1. If NAME cannot be found, return 0. */
2549
2550 static int
2551 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2552 offset_type **vec_out)
2553 {
2554 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2555 offset_type hash;
2556 offset_type slot, step;
2557 int (*cmp) (const char *, const char *);
2558
2559 if (current_language->la_language == language_cplus
2560 || current_language->la_language == language_java
2561 || current_language->la_language == language_fortran)
2562 {
2563 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2564 not contain any. */
2565 const char *paren = strchr (name, '(');
2566
2567 if (paren)
2568 {
2569 char *dup;
2570
2571 dup = xmalloc (paren - name + 1);
2572 memcpy (dup, name, paren - name);
2573 dup[paren - name] = 0;
2574
2575 make_cleanup (xfree, dup);
2576 name = dup;
2577 }
2578 }
2579
2580 /* Index version 4 did not support case insensitive searches. But the
2581 indices for case insensitive languages are built in lowercase, therefore
2582 simulate our NAME being searched is also lowercased. */
2583 hash = mapped_index_string_hash ((index->version == 4
2584 && case_sensitivity == case_sensitive_off
2585 ? 5 : index->version),
2586 name);
2587
2588 slot = hash & (index->symbol_table_slots - 1);
2589 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2590 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2591
2592 for (;;)
2593 {
2594 /* Convert a slot number to an offset into the table. */
2595 offset_type i = 2 * slot;
2596 const char *str;
2597 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2598 {
2599 do_cleanups (back_to);
2600 return 0;
2601 }
2602
2603 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2604 if (!cmp (name, str))
2605 {
2606 *vec_out = (offset_type *) (index->constant_pool
2607 + MAYBE_SWAP (index->symbol_table[i + 1]));
2608 do_cleanups (back_to);
2609 return 1;
2610 }
2611
2612 slot = (slot + step) & (index->symbol_table_slots - 1);
2613 }
2614 }
2615
2616 /* A helper function that reads the .gdb_index from SECTION and fills
2617 in MAP. FILENAME is the name of the file containing the section;
2618 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2619 ok to use deprecated sections.
2620
2621 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2622 out parameters that are filled in with information about the CU and
2623 TU lists in the section.
2624
2625 Returns 1 if all went well, 0 otherwise. */
2626
2627 static int
2628 read_index_from_section (struct objfile *objfile,
2629 const char *filename,
2630 int deprecated_ok,
2631 struct dwarf2_section_info *section,
2632 struct mapped_index *map,
2633 const gdb_byte **cu_list,
2634 offset_type *cu_list_elements,
2635 const gdb_byte **types_list,
2636 offset_type *types_list_elements)
2637 {
2638 char *addr;
2639 offset_type version;
2640 offset_type *metadata;
2641 int i;
2642
2643 if (dwarf2_section_empty_p (section))
2644 return 0;
2645
2646 /* Older elfutils strip versions could keep the section in the main
2647 executable while splitting it for the separate debug info file. */
2648 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2649 return 0;
2650
2651 dwarf2_read_section (objfile, section);
2652
2653 addr = section->buffer;
2654 /* Version check. */
2655 version = MAYBE_SWAP (*(offset_type *) addr);
2656 /* Versions earlier than 3 emitted every copy of a psymbol. This
2657 causes the index to behave very poorly for certain requests. Version 3
2658 contained incomplete addrmap. So, it seems better to just ignore such
2659 indices. */
2660 if (version < 4)
2661 {
2662 static int warning_printed = 0;
2663 if (!warning_printed)
2664 {
2665 warning (_("Skipping obsolete .gdb_index section in %s."),
2666 filename);
2667 warning_printed = 1;
2668 }
2669 return 0;
2670 }
2671 /* Index version 4 uses a different hash function than index version
2672 5 and later.
2673
2674 Versions earlier than 6 did not emit psymbols for inlined
2675 functions. Using these files will cause GDB not to be able to
2676 set breakpoints on inlined functions by name, so we ignore these
2677 indices unless the user has done
2678 "set use-deprecated-index-sections on". */
2679 if (version < 6 && !deprecated_ok)
2680 {
2681 static int warning_printed = 0;
2682 if (!warning_printed)
2683 {
2684 warning (_("\
2685 Skipping deprecated .gdb_index section in %s.\n\
2686 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2687 to use the section anyway."),
2688 filename);
2689 warning_printed = 1;
2690 }
2691 return 0;
2692 }
2693 /* Indexes with higher version than the one supported by GDB may be no
2694 longer backward compatible. */
2695 if (version > 7)
2696 return 0;
2697
2698 map->version = version;
2699 map->total_size = section->size;
2700
2701 metadata = (offset_type *) (addr + sizeof (offset_type));
2702
2703 i = 0;
2704 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2705 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2706 / 8);
2707 ++i;
2708
2709 *types_list = addr + MAYBE_SWAP (metadata[i]);
2710 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2711 - MAYBE_SWAP (metadata[i]))
2712 / 8);
2713 ++i;
2714
2715 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2716 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2717 - MAYBE_SWAP (metadata[i]));
2718 ++i;
2719
2720 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2721 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2722 - MAYBE_SWAP (metadata[i]))
2723 / (2 * sizeof (offset_type)));
2724 ++i;
2725
2726 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2727
2728 return 1;
2729 }
2730
2731
2732 /* Read the index file. If everything went ok, initialize the "quick"
2733 elements of all the CUs and return 1. Otherwise, return 0. */
2734
2735 static int
2736 dwarf2_read_index (struct objfile *objfile)
2737 {
2738 struct mapped_index local_map, *map;
2739 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2740 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2741
2742 if (!read_index_from_section (objfile, objfile->name,
2743 use_deprecated_index_sections,
2744 &dwarf2_per_objfile->gdb_index, &local_map,
2745 &cu_list, &cu_list_elements,
2746 &types_list, &types_list_elements))
2747 return 0;
2748
2749 /* Don't use the index if it's empty. */
2750 if (local_map.symbol_table_slots == 0)
2751 return 0;
2752
2753 /* If there is a .dwz file, read it so we can get its CU list as
2754 well. */
2755 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2756 {
2757 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2758 struct mapped_index dwz_map;
2759 const gdb_byte *dwz_types_ignore;
2760 offset_type dwz_types_elements_ignore;
2761
2762 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2763 1,
2764 &dwz->gdb_index, &dwz_map,
2765 &dwz_list, &dwz_list_elements,
2766 &dwz_types_ignore,
2767 &dwz_types_elements_ignore))
2768 {
2769 warning (_("could not read '.gdb_index' section from %s; skipping"),
2770 bfd_get_filename (dwz->dwz_bfd));
2771 return 0;
2772 }
2773 }
2774
2775 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2776 dwz_list_elements);
2777
2778 if (types_list_elements)
2779 {
2780 struct dwarf2_section_info *section;
2781
2782 /* We can only handle a single .debug_types when we have an
2783 index. */
2784 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2785 return 0;
2786
2787 section = VEC_index (dwarf2_section_info_def,
2788 dwarf2_per_objfile->types, 0);
2789
2790 create_signatured_type_table_from_index (objfile, section, types_list,
2791 types_list_elements);
2792 }
2793
2794 create_addrmap_from_index (objfile, &local_map);
2795
2796 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2797 *map = local_map;
2798
2799 dwarf2_per_objfile->index_table = map;
2800 dwarf2_per_objfile->using_index = 1;
2801 dwarf2_per_objfile->quick_file_names_table =
2802 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2803
2804 return 1;
2805 }
2806
2807 /* A helper for the "quick" functions which sets the global
2808 dwarf2_per_objfile according to OBJFILE. */
2809
2810 static void
2811 dw2_setup (struct objfile *objfile)
2812 {
2813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2814 gdb_assert (dwarf2_per_objfile);
2815 }
2816
2817 /* Reader function for dw2_build_type_unit_groups. */
2818
2819 static void
2820 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2821 gdb_byte *info_ptr,
2822 struct die_info *type_unit_die,
2823 int has_children,
2824 void *data)
2825 {
2826 struct dwarf2_cu *cu = reader->cu;
2827 struct attribute *attr;
2828 struct type_unit_group *tu_group;
2829
2830 gdb_assert (data == NULL);
2831
2832 if (! has_children)
2833 return;
2834
2835 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2836 /* Call this for its side-effect of creating the associated
2837 struct type_unit_group if it doesn't already exist. */
2838 tu_group = get_type_unit_group (cu, attr);
2839 }
2840
2841 /* Build dwarf2_per_objfile->type_unit_groups.
2842 This function may be called multiple times. */
2843
2844 static void
2845 dw2_build_type_unit_groups (void)
2846 {
2847 if (dwarf2_per_objfile->type_unit_groups == NULL)
2848 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2849 }
2850
2851 /* die_reader_func for dw2_get_file_names. */
2852
2853 static void
2854 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2855 gdb_byte *info_ptr,
2856 struct die_info *comp_unit_die,
2857 int has_children,
2858 void *data)
2859 {
2860 struct dwarf2_cu *cu = reader->cu;
2861 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2862 struct objfile *objfile = dwarf2_per_objfile->objfile;
2863 struct dwarf2_per_cu_data *lh_cu;
2864 struct line_header *lh;
2865 struct attribute *attr;
2866 int i;
2867 char *name, *comp_dir;
2868 void **slot;
2869 struct quick_file_names *qfn;
2870 unsigned int line_offset;
2871
2872 /* Our callers never want to match partial units -- instead they
2873 will match the enclosing full CU. */
2874 if (comp_unit_die->tag == DW_TAG_partial_unit)
2875 {
2876 this_cu->v.quick->no_file_data = 1;
2877 return;
2878 }
2879
2880 /* If we're reading the line header for TUs, store it in the "per_cu"
2881 for tu_group. */
2882 if (this_cu->is_debug_types)
2883 {
2884 struct type_unit_group *tu_group = data;
2885
2886 gdb_assert (tu_group != NULL);
2887 lh_cu = &tu_group->per_cu;
2888 }
2889 else
2890 lh_cu = this_cu;
2891
2892 lh = NULL;
2893 slot = NULL;
2894 line_offset = 0;
2895
2896 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2897 if (attr)
2898 {
2899 struct quick_file_names find_entry;
2900
2901 line_offset = DW_UNSND (attr);
2902
2903 /* We may have already read in this line header (TU line header sharing).
2904 If we have we're done. */
2905 find_entry.hash.dwo_unit = cu->dwo_unit;
2906 find_entry.hash.line_offset.sect_off = line_offset;
2907 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2908 &find_entry, INSERT);
2909 if (*slot != NULL)
2910 {
2911 lh_cu->v.quick->file_names = *slot;
2912 return;
2913 }
2914
2915 lh = dwarf_decode_line_header (line_offset, cu);
2916 }
2917 if (lh == NULL)
2918 {
2919 lh_cu->v.quick->no_file_data = 1;
2920 return;
2921 }
2922
2923 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2924 qfn->hash.dwo_unit = cu->dwo_unit;
2925 qfn->hash.line_offset.sect_off = line_offset;
2926 gdb_assert (slot != NULL);
2927 *slot = qfn;
2928
2929 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2930
2931 qfn->num_file_names = lh->num_file_names;
2932 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2933 lh->num_file_names * sizeof (char *));
2934 for (i = 0; i < lh->num_file_names; ++i)
2935 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2936 qfn->real_names = NULL;
2937
2938 free_line_header (lh);
2939
2940 lh_cu->v.quick->file_names = qfn;
2941 }
2942
2943 /* A helper for the "quick" functions which attempts to read the line
2944 table for THIS_CU. */
2945
2946 static struct quick_file_names *
2947 dw2_get_file_names (struct objfile *objfile,
2948 struct dwarf2_per_cu_data *this_cu)
2949 {
2950 /* For TUs this should only be called on the parent group. */
2951 if (this_cu->is_debug_types)
2952 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2953
2954 if (this_cu->v.quick->file_names != NULL)
2955 return this_cu->v.quick->file_names;
2956 /* If we know there is no line data, no point in looking again. */
2957 if (this_cu->v.quick->no_file_data)
2958 return NULL;
2959
2960 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2961 in the stub for CUs, there's is no need to lookup the DWO file.
2962 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2963 DWO file. */
2964 if (this_cu->is_debug_types)
2965 {
2966 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2967
2968 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2969 dw2_get_file_names_reader, tu_group);
2970 }
2971 else
2972 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2973
2974 if (this_cu->v.quick->no_file_data)
2975 return NULL;
2976 return this_cu->v.quick->file_names;
2977 }
2978
2979 /* A helper for the "quick" functions which computes and caches the
2980 real path for a given file name from the line table. */
2981
2982 static const char *
2983 dw2_get_real_path (struct objfile *objfile,
2984 struct quick_file_names *qfn, int index)
2985 {
2986 if (qfn->real_names == NULL)
2987 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2988 qfn->num_file_names, sizeof (char *));
2989
2990 if (qfn->real_names[index] == NULL)
2991 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2992
2993 return qfn->real_names[index];
2994 }
2995
2996 static struct symtab *
2997 dw2_find_last_source_symtab (struct objfile *objfile)
2998 {
2999 int index;
3000
3001 dw2_setup (objfile);
3002 index = dwarf2_per_objfile->n_comp_units - 1;
3003 return dw2_instantiate_symtab (dw2_get_cu (index));
3004 }
3005
3006 /* Traversal function for dw2_forget_cached_source_info. */
3007
3008 static int
3009 dw2_free_cached_file_names (void **slot, void *info)
3010 {
3011 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3012
3013 if (file_data->real_names)
3014 {
3015 int i;
3016
3017 for (i = 0; i < file_data->num_file_names; ++i)
3018 {
3019 xfree ((void*) file_data->real_names[i]);
3020 file_data->real_names[i] = NULL;
3021 }
3022 }
3023
3024 return 1;
3025 }
3026
3027 static void
3028 dw2_forget_cached_source_info (struct objfile *objfile)
3029 {
3030 dw2_setup (objfile);
3031
3032 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3033 dw2_free_cached_file_names, NULL);
3034 }
3035
3036 /* Helper function for dw2_map_symtabs_matching_filename that expands
3037 the symtabs and calls the iterator. */
3038
3039 static int
3040 dw2_map_expand_apply (struct objfile *objfile,
3041 struct dwarf2_per_cu_data *per_cu,
3042 const char *name,
3043 const char *full_path, const char *real_path,
3044 int (*callback) (struct symtab *, void *),
3045 void *data)
3046 {
3047 struct symtab *last_made = objfile->symtabs;
3048
3049 /* Don't visit already-expanded CUs. */
3050 if (per_cu->v.quick->symtab)
3051 return 0;
3052
3053 /* This may expand more than one symtab, and we want to iterate over
3054 all of them. */
3055 dw2_instantiate_symtab (per_cu);
3056
3057 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3058 objfile->symtabs, last_made);
3059 }
3060
3061 /* Implementation of the map_symtabs_matching_filename method. */
3062
3063 static int
3064 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3065 const char *full_path, const char *real_path,
3066 int (*callback) (struct symtab *, void *),
3067 void *data)
3068 {
3069 int i;
3070 const char *name_basename = lbasename (name);
3071 int name_len = strlen (name);
3072 int is_abs = IS_ABSOLUTE_PATH (name);
3073
3074 dw2_setup (objfile);
3075
3076 dw2_build_type_unit_groups ();
3077
3078 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3079 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3080 {
3081 int j;
3082 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3083 struct quick_file_names *file_data;
3084
3085 /* We only need to look at symtabs not already expanded. */
3086 if (per_cu->v.quick->symtab)
3087 continue;
3088
3089 file_data = dw2_get_file_names (objfile, per_cu);
3090 if (file_data == NULL)
3091 continue;
3092
3093 for (j = 0; j < file_data->num_file_names; ++j)
3094 {
3095 const char *this_name = file_data->file_names[j];
3096
3097 if (FILENAME_CMP (name, this_name) == 0
3098 || (!is_abs && compare_filenames_for_search (this_name,
3099 name, name_len)))
3100 {
3101 if (dw2_map_expand_apply (objfile, per_cu,
3102 name, full_path, real_path,
3103 callback, data))
3104 return 1;
3105 }
3106
3107 /* Before we invoke realpath, which can get expensive when many
3108 files are involved, do a quick comparison of the basenames. */
3109 if (! basenames_may_differ
3110 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3111 continue;
3112
3113 if (full_path != NULL)
3114 {
3115 const char *this_real_name = dw2_get_real_path (objfile,
3116 file_data, j);
3117
3118 if (this_real_name != NULL
3119 && (FILENAME_CMP (full_path, this_real_name) == 0
3120 || (!is_abs
3121 && compare_filenames_for_search (this_real_name,
3122 name, name_len))))
3123 {
3124 if (dw2_map_expand_apply (objfile, per_cu,
3125 name, full_path, real_path,
3126 callback, data))
3127 return 1;
3128 }
3129 }
3130
3131 if (real_path != NULL)
3132 {
3133 const char *this_real_name = dw2_get_real_path (objfile,
3134 file_data, j);
3135
3136 if (this_real_name != NULL
3137 && (FILENAME_CMP (real_path, this_real_name) == 0
3138 || (!is_abs
3139 && compare_filenames_for_search (this_real_name,
3140 name, name_len))))
3141 {
3142 if (dw2_map_expand_apply (objfile, per_cu,
3143 name, full_path, real_path,
3144 callback, data))
3145 return 1;
3146 }
3147 }
3148 }
3149 }
3150
3151 return 0;
3152 }
3153
3154 static struct symtab *
3155 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3156 const char *name, domain_enum domain)
3157 {
3158 /* We do all the work in the pre_expand_symtabs_matching hook
3159 instead. */
3160 return NULL;
3161 }
3162
3163 /* A helper function that expands all symtabs that hold an object
3164 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3165 symbols in block BLOCK_KIND. */
3166
3167 static void
3168 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3169 int want_specific_block,
3170 enum block_enum block_kind,
3171 const char *name, domain_enum domain)
3172 {
3173 struct mapped_index *index;
3174
3175 dw2_setup (objfile);
3176
3177 index = dwarf2_per_objfile->index_table;
3178
3179 /* index_table is NULL if OBJF_READNOW. */
3180 if (index)
3181 {
3182 offset_type *vec;
3183
3184 if (find_slot_in_mapped_hash (index, name, &vec))
3185 {
3186 offset_type i, len = MAYBE_SWAP (*vec);
3187 for (i = 0; i < len; ++i)
3188 {
3189 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3190 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3191 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3192 int want_static = block_kind != GLOBAL_BLOCK;
3193 /* This value is only valid for index versions >= 7. */
3194 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3195 gdb_index_symbol_kind symbol_kind =
3196 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3197 /* Only check the symbol attributes if they're present.
3198 Indices prior to version 7 don't record them,
3199 and indices >= 7 may elide them for certain symbols
3200 (gold does this). */
3201 int attrs_valid =
3202 (index->version >= 7
3203 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3204
3205 if (attrs_valid
3206 && want_specific_block
3207 && want_static != is_static)
3208 continue;
3209
3210 /* Only check the symbol's kind if it has one. */
3211 if (attrs_valid)
3212 {
3213 switch (domain)
3214 {
3215 case VAR_DOMAIN:
3216 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3217 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3218 /* Some types are also in VAR_DOMAIN. */
3219 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3220 continue;
3221 break;
3222 case STRUCT_DOMAIN:
3223 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3224 continue;
3225 break;
3226 case LABEL_DOMAIN:
3227 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3228 continue;
3229 break;
3230 default:
3231 break;
3232 }
3233 }
3234
3235 dw2_instantiate_symtab (per_cu);
3236 }
3237 }
3238 }
3239 }
3240
3241 static void
3242 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3243 enum block_enum block_kind, const char *name,
3244 domain_enum domain)
3245 {
3246 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3247 }
3248
3249 static void
3250 dw2_print_stats (struct objfile *objfile)
3251 {
3252 int i, count;
3253
3254 dw2_setup (objfile);
3255 count = 0;
3256 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3257 + dwarf2_per_objfile->n_type_units); ++i)
3258 {
3259 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3260
3261 if (!per_cu->v.quick->symtab)
3262 ++count;
3263 }
3264 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3265 }
3266
3267 static void
3268 dw2_dump (struct objfile *objfile)
3269 {
3270 /* Nothing worth printing. */
3271 }
3272
3273 static void
3274 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3275 struct section_offsets *delta)
3276 {
3277 /* There's nothing to relocate here. */
3278 }
3279
3280 static void
3281 dw2_expand_symtabs_for_function (struct objfile *objfile,
3282 const char *func_name)
3283 {
3284 /* Note: It doesn't matter what we pass for block_kind here. */
3285 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3286 VAR_DOMAIN);
3287 }
3288
3289 static void
3290 dw2_expand_all_symtabs (struct objfile *objfile)
3291 {
3292 int i;
3293
3294 dw2_setup (objfile);
3295
3296 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3297 + dwarf2_per_objfile->n_type_units); ++i)
3298 {
3299 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3300
3301 dw2_instantiate_symtab (per_cu);
3302 }
3303 }
3304
3305 static void
3306 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3307 const char *filename)
3308 {
3309 int i;
3310
3311 dw2_setup (objfile);
3312
3313 /* We don't need to consider type units here.
3314 This is only called for examining code, e.g. expand_line_sal.
3315 There can be an order of magnitude (or more) more type units
3316 than comp units, and we avoid them if we can. */
3317
3318 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3319 {
3320 int j;
3321 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3322 struct quick_file_names *file_data;
3323
3324 /* We only need to look at symtabs not already expanded. */
3325 if (per_cu->v.quick->symtab)
3326 continue;
3327
3328 file_data = dw2_get_file_names (objfile, per_cu);
3329 if (file_data == NULL)
3330 continue;
3331
3332 for (j = 0; j < file_data->num_file_names; ++j)
3333 {
3334 const char *this_name = file_data->file_names[j];
3335 if (FILENAME_CMP (this_name, filename) == 0)
3336 {
3337 dw2_instantiate_symtab (per_cu);
3338 break;
3339 }
3340 }
3341 }
3342 }
3343
3344 /* A helper function for dw2_find_symbol_file that finds the primary
3345 file name for a given CU. This is a die_reader_func. */
3346
3347 static void
3348 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3349 gdb_byte *info_ptr,
3350 struct die_info *comp_unit_die,
3351 int has_children,
3352 void *data)
3353 {
3354 const char **result_ptr = data;
3355 struct dwarf2_cu *cu = reader->cu;
3356 struct attribute *attr;
3357
3358 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3359 if (attr == NULL)
3360 *result_ptr = NULL;
3361 else
3362 *result_ptr = DW_STRING (attr);
3363 }
3364
3365 static const char *
3366 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3367 {
3368 struct dwarf2_per_cu_data *per_cu;
3369 offset_type *vec;
3370 const char *filename;
3371
3372 dw2_setup (objfile);
3373
3374 /* index_table is NULL if OBJF_READNOW. */
3375 if (!dwarf2_per_objfile->index_table)
3376 {
3377 struct symtab *s;
3378
3379 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3380 {
3381 struct blockvector *bv = BLOCKVECTOR (s);
3382 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3383 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3384
3385 if (sym)
3386 return SYMBOL_SYMTAB (sym)->filename;
3387 }
3388 return NULL;
3389 }
3390
3391 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3392 name, &vec))
3393 return NULL;
3394
3395 /* Note that this just looks at the very first one named NAME -- but
3396 actually we are looking for a function. find_main_filename
3397 should be rewritten so that it doesn't require a custom hook. It
3398 could just use the ordinary symbol tables. */
3399 /* vec[0] is the length, which must always be >0. */
3400 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3401
3402 if (per_cu->v.quick->symtab != NULL)
3403 return per_cu->v.quick->symtab->filename;
3404
3405 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3406 dw2_get_primary_filename_reader, &filename);
3407
3408 return filename;
3409 }
3410
3411 static void
3412 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3413 struct objfile *objfile, int global,
3414 int (*callback) (struct block *,
3415 struct symbol *, void *),
3416 void *data, symbol_compare_ftype *match,
3417 symbol_compare_ftype *ordered_compare)
3418 {
3419 /* Currently unimplemented; used for Ada. The function can be called if the
3420 current language is Ada for a non-Ada objfile using GNU index. As Ada
3421 does not look for non-Ada symbols this function should just return. */
3422 }
3423
3424 static void
3425 dw2_expand_symtabs_matching
3426 (struct objfile *objfile,
3427 int (*file_matcher) (const char *, void *),
3428 int (*name_matcher) (const char *, void *),
3429 enum search_domain kind,
3430 void *data)
3431 {
3432 int i;
3433 offset_type iter;
3434 struct mapped_index *index;
3435
3436 dw2_setup (objfile);
3437
3438 /* index_table is NULL if OBJF_READNOW. */
3439 if (!dwarf2_per_objfile->index_table)
3440 return;
3441 index = dwarf2_per_objfile->index_table;
3442
3443 if (file_matcher != NULL)
3444 {
3445 struct cleanup *cleanup;
3446 htab_t visited_found, visited_not_found;
3447
3448 dw2_build_type_unit_groups ();
3449
3450 visited_found = htab_create_alloc (10,
3451 htab_hash_pointer, htab_eq_pointer,
3452 NULL, xcalloc, xfree);
3453 cleanup = make_cleanup_htab_delete (visited_found);
3454 visited_not_found = htab_create_alloc (10,
3455 htab_hash_pointer, htab_eq_pointer,
3456 NULL, xcalloc, xfree);
3457 make_cleanup_htab_delete (visited_not_found);
3458
3459 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3460 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3461 {
3462 int j;
3463 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3464 struct quick_file_names *file_data;
3465 void **slot;
3466
3467 per_cu->v.quick->mark = 0;
3468
3469 /* We only need to look at symtabs not already expanded. */
3470 if (per_cu->v.quick->symtab)
3471 continue;
3472
3473 file_data = dw2_get_file_names (objfile, per_cu);
3474 if (file_data == NULL)
3475 continue;
3476
3477 if (htab_find (visited_not_found, file_data) != NULL)
3478 continue;
3479 else if (htab_find (visited_found, file_data) != NULL)
3480 {
3481 per_cu->v.quick->mark = 1;
3482 continue;
3483 }
3484
3485 for (j = 0; j < file_data->num_file_names; ++j)
3486 {
3487 if (file_matcher (file_data->file_names[j], data))
3488 {
3489 per_cu->v.quick->mark = 1;
3490 break;
3491 }
3492 }
3493
3494 slot = htab_find_slot (per_cu->v.quick->mark
3495 ? visited_found
3496 : visited_not_found,
3497 file_data, INSERT);
3498 *slot = file_data;
3499 }
3500
3501 do_cleanups (cleanup);
3502 }
3503
3504 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3505 {
3506 offset_type idx = 2 * iter;
3507 const char *name;
3508 offset_type *vec, vec_len, vec_idx;
3509
3510 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3511 continue;
3512
3513 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3514
3515 if (! (*name_matcher) (name, data))
3516 continue;
3517
3518 /* The name was matched, now expand corresponding CUs that were
3519 marked. */
3520 vec = (offset_type *) (index->constant_pool
3521 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3522 vec_len = MAYBE_SWAP (vec[0]);
3523 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3524 {
3525 struct dwarf2_per_cu_data *per_cu;
3526 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3527 gdb_index_symbol_kind symbol_kind =
3528 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3529 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3530
3531 /* Don't crash on bad data. */
3532 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3533 + dwarf2_per_objfile->n_type_units))
3534 continue;
3535
3536 /* Only check the symbol's kind if it has one.
3537 Indices prior to version 7 don't record it. */
3538 if (index->version >= 7)
3539 {
3540 switch (kind)
3541 {
3542 case VARIABLES_DOMAIN:
3543 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3544 continue;
3545 break;
3546 case FUNCTIONS_DOMAIN:
3547 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3548 continue;
3549 break;
3550 case TYPES_DOMAIN:
3551 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3552 continue;
3553 break;
3554 default:
3555 break;
3556 }
3557 }
3558
3559 per_cu = dw2_get_cu (cu_index);
3560 if (file_matcher == NULL || per_cu->v.quick->mark)
3561 dw2_instantiate_symtab (per_cu);
3562 }
3563 }
3564 }
3565
3566 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3567 symtab. */
3568
3569 static struct symtab *
3570 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3571 {
3572 int i;
3573
3574 if (BLOCKVECTOR (symtab) != NULL
3575 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3576 return symtab;
3577
3578 if (symtab->includes == NULL)
3579 return NULL;
3580
3581 for (i = 0; symtab->includes[i]; ++i)
3582 {
3583 struct symtab *s = symtab->includes[i];
3584
3585 s = recursively_find_pc_sect_symtab (s, pc);
3586 if (s != NULL)
3587 return s;
3588 }
3589
3590 return NULL;
3591 }
3592
3593 static struct symtab *
3594 dw2_find_pc_sect_symtab (struct objfile *objfile,
3595 struct minimal_symbol *msymbol,
3596 CORE_ADDR pc,
3597 struct obj_section *section,
3598 int warn_if_readin)
3599 {
3600 struct dwarf2_per_cu_data *data;
3601 struct symtab *result;
3602
3603 dw2_setup (objfile);
3604
3605 if (!objfile->psymtabs_addrmap)
3606 return NULL;
3607
3608 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3609 if (!data)
3610 return NULL;
3611
3612 if (warn_if_readin && data->v.quick->symtab)
3613 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3614 paddress (get_objfile_arch (objfile), pc));
3615
3616 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3617 gdb_assert (result != NULL);
3618 return result;
3619 }
3620
3621 static void
3622 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3623 void *data, int need_fullname)
3624 {
3625 int i;
3626 struct cleanup *cleanup;
3627 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3628 NULL, xcalloc, xfree);
3629
3630 cleanup = make_cleanup_htab_delete (visited);
3631 dw2_setup (objfile);
3632
3633 dw2_build_type_unit_groups ();
3634
3635 /* We can ignore file names coming from already-expanded CUs. */
3636 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3637 + dwarf2_per_objfile->n_type_units); ++i)
3638 {
3639 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3640
3641 if (per_cu->v.quick->symtab)
3642 {
3643 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3644 INSERT);
3645
3646 *slot = per_cu->v.quick->file_names;
3647 }
3648 }
3649
3650 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3651 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3652 {
3653 int j;
3654 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3655 struct quick_file_names *file_data;
3656 void **slot;
3657
3658 /* We only need to look at symtabs not already expanded. */
3659 if (per_cu->v.quick->symtab)
3660 continue;
3661
3662 file_data = dw2_get_file_names (objfile, per_cu);
3663 if (file_data == NULL)
3664 continue;
3665
3666 slot = htab_find_slot (visited, file_data, INSERT);
3667 if (*slot)
3668 {
3669 /* Already visited. */
3670 continue;
3671 }
3672 *slot = file_data;
3673
3674 for (j = 0; j < file_data->num_file_names; ++j)
3675 {
3676 const char *this_real_name;
3677
3678 if (need_fullname)
3679 this_real_name = dw2_get_real_path (objfile, file_data, j);
3680 else
3681 this_real_name = NULL;
3682 (*fun) (file_data->file_names[j], this_real_name, data);
3683 }
3684 }
3685
3686 do_cleanups (cleanup);
3687 }
3688
3689 static int
3690 dw2_has_symbols (struct objfile *objfile)
3691 {
3692 return 1;
3693 }
3694
3695 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3696 {
3697 dw2_has_symbols,
3698 dw2_find_last_source_symtab,
3699 dw2_forget_cached_source_info,
3700 dw2_map_symtabs_matching_filename,
3701 dw2_lookup_symbol,
3702 dw2_pre_expand_symtabs_matching,
3703 dw2_print_stats,
3704 dw2_dump,
3705 dw2_relocate,
3706 dw2_expand_symtabs_for_function,
3707 dw2_expand_all_symtabs,
3708 dw2_expand_symtabs_with_filename,
3709 dw2_find_symbol_file,
3710 dw2_map_matching_symbols,
3711 dw2_expand_symtabs_matching,
3712 dw2_find_pc_sect_symtab,
3713 dw2_map_symbol_filenames
3714 };
3715
3716 /* Initialize for reading DWARF for this objfile. Return 0 if this
3717 file will use psymtabs, or 1 if using the GNU index. */
3718
3719 int
3720 dwarf2_initialize_objfile (struct objfile *objfile)
3721 {
3722 /* If we're about to read full symbols, don't bother with the
3723 indices. In this case we also don't care if some other debug
3724 format is making psymtabs, because they are all about to be
3725 expanded anyway. */
3726 if ((objfile->flags & OBJF_READNOW))
3727 {
3728 int i;
3729
3730 dwarf2_per_objfile->using_index = 1;
3731 create_all_comp_units (objfile);
3732 create_all_type_units (objfile);
3733 dwarf2_per_objfile->quick_file_names_table =
3734 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3735
3736 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3737 + dwarf2_per_objfile->n_type_units); ++i)
3738 {
3739 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3740
3741 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3742 struct dwarf2_per_cu_quick_data);
3743 }
3744
3745 /* Return 1 so that gdb sees the "quick" functions. However,
3746 these functions will be no-ops because we will have expanded
3747 all symtabs. */
3748 return 1;
3749 }
3750
3751 if (dwarf2_read_index (objfile))
3752 return 1;
3753
3754 return 0;
3755 }
3756
3757 \f
3758
3759 /* Build a partial symbol table. */
3760
3761 void
3762 dwarf2_build_psymtabs (struct objfile *objfile)
3763 {
3764 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3765 {
3766 init_psymbol_list (objfile, 1024);
3767 }
3768
3769 dwarf2_build_psymtabs_hard (objfile);
3770 }
3771
3772 /* Return the total length of the CU described by HEADER. */
3773
3774 static unsigned int
3775 get_cu_length (const struct comp_unit_head *header)
3776 {
3777 return header->initial_length_size + header->length;
3778 }
3779
3780 /* Return TRUE if OFFSET is within CU_HEADER. */
3781
3782 static inline int
3783 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3784 {
3785 sect_offset bottom = { cu_header->offset.sect_off };
3786 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3787
3788 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3789 }
3790
3791 /* Find the base address of the compilation unit for range lists and
3792 location lists. It will normally be specified by DW_AT_low_pc.
3793 In DWARF-3 draft 4, the base address could be overridden by
3794 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3795 compilation units with discontinuous ranges. */
3796
3797 static void
3798 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3799 {
3800 struct attribute *attr;
3801
3802 cu->base_known = 0;
3803 cu->base_address = 0;
3804
3805 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3806 if (attr)
3807 {
3808 cu->base_address = DW_ADDR (attr);
3809 cu->base_known = 1;
3810 }
3811 else
3812 {
3813 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3814 if (attr)
3815 {
3816 cu->base_address = DW_ADDR (attr);
3817 cu->base_known = 1;
3818 }
3819 }
3820 }
3821
3822 /* Read in the comp unit header information from the debug_info at info_ptr.
3823 NOTE: This leaves members offset, first_die_offset to be filled in
3824 by the caller. */
3825
3826 static gdb_byte *
3827 read_comp_unit_head (struct comp_unit_head *cu_header,
3828 gdb_byte *info_ptr, bfd *abfd)
3829 {
3830 int signed_addr;
3831 unsigned int bytes_read;
3832
3833 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3834 cu_header->initial_length_size = bytes_read;
3835 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3836 info_ptr += bytes_read;
3837 cu_header->version = read_2_bytes (abfd, info_ptr);
3838 info_ptr += 2;
3839 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3840 &bytes_read);
3841 info_ptr += bytes_read;
3842 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3843 info_ptr += 1;
3844 signed_addr = bfd_get_sign_extend_vma (abfd);
3845 if (signed_addr < 0)
3846 internal_error (__FILE__, __LINE__,
3847 _("read_comp_unit_head: dwarf from non elf file"));
3848 cu_header->signed_addr_p = signed_addr;
3849
3850 return info_ptr;
3851 }
3852
3853 /* Helper function that returns the proper abbrev section for
3854 THIS_CU. */
3855
3856 static struct dwarf2_section_info *
3857 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3858 {
3859 struct dwarf2_section_info *abbrev;
3860
3861 if (this_cu->is_dwz)
3862 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3863 else
3864 abbrev = &dwarf2_per_objfile->abbrev;
3865
3866 return abbrev;
3867 }
3868
3869 /* Subroutine of read_and_check_comp_unit_head and
3870 read_and_check_type_unit_head to simplify them.
3871 Perform various error checking on the header. */
3872
3873 static void
3874 error_check_comp_unit_head (struct comp_unit_head *header,
3875 struct dwarf2_section_info *section,
3876 struct dwarf2_section_info *abbrev_section)
3877 {
3878 bfd *abfd = section->asection->owner;
3879 const char *filename = bfd_get_filename (abfd);
3880
3881 if (header->version != 2 && header->version != 3 && header->version != 4)
3882 error (_("Dwarf Error: wrong version in compilation unit header "
3883 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3884 filename);
3885
3886 if (header->abbrev_offset.sect_off
3887 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3888 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3889 "(offset 0x%lx + 6) [in module %s]"),
3890 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3891 filename);
3892
3893 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3894 avoid potential 32-bit overflow. */
3895 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3896 > section->size)
3897 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3898 "(offset 0x%lx + 0) [in module %s]"),
3899 (long) header->length, (long) header->offset.sect_off,
3900 filename);
3901 }
3902
3903 /* Read in a CU/TU header and perform some basic error checking.
3904 The contents of the header are stored in HEADER.
3905 The result is a pointer to the start of the first DIE. */
3906
3907 static gdb_byte *
3908 read_and_check_comp_unit_head (struct comp_unit_head *header,
3909 struct dwarf2_section_info *section,
3910 struct dwarf2_section_info *abbrev_section,
3911 gdb_byte *info_ptr,
3912 int is_debug_types_section)
3913 {
3914 gdb_byte *beg_of_comp_unit = info_ptr;
3915 bfd *abfd = section->asection->owner;
3916
3917 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3918
3919 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3920
3921 /* If we're reading a type unit, skip over the signature and
3922 type_offset fields. */
3923 if (is_debug_types_section)
3924 info_ptr += 8 /*signature*/ + header->offset_size;
3925
3926 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3927
3928 error_check_comp_unit_head (header, section, abbrev_section);
3929
3930 return info_ptr;
3931 }
3932
3933 /* Read in the types comp unit header information from .debug_types entry at
3934 types_ptr. The result is a pointer to one past the end of the header. */
3935
3936 static gdb_byte *
3937 read_and_check_type_unit_head (struct comp_unit_head *header,
3938 struct dwarf2_section_info *section,
3939 struct dwarf2_section_info *abbrev_section,
3940 gdb_byte *info_ptr,
3941 ULONGEST *signature,
3942 cu_offset *type_offset_in_tu)
3943 {
3944 gdb_byte *beg_of_comp_unit = info_ptr;
3945 bfd *abfd = section->asection->owner;
3946
3947 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3948
3949 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3950
3951 /* If we're reading a type unit, skip over the signature and
3952 type_offset fields. */
3953 if (signature != NULL)
3954 *signature = read_8_bytes (abfd, info_ptr);
3955 info_ptr += 8;
3956 if (type_offset_in_tu != NULL)
3957 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3958 header->offset_size);
3959 info_ptr += header->offset_size;
3960
3961 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3962
3963 error_check_comp_unit_head (header, section, abbrev_section);
3964
3965 return info_ptr;
3966 }
3967
3968 /* Fetch the abbreviation table offset from a comp or type unit header. */
3969
3970 static sect_offset
3971 read_abbrev_offset (struct dwarf2_section_info *section,
3972 sect_offset offset)
3973 {
3974 bfd *abfd = section->asection->owner;
3975 gdb_byte *info_ptr;
3976 unsigned int length, initial_length_size, offset_size;
3977 sect_offset abbrev_offset;
3978
3979 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3980 info_ptr = section->buffer + offset.sect_off;
3981 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3982 offset_size = initial_length_size == 4 ? 4 : 8;
3983 info_ptr += initial_length_size + 2 /*version*/;
3984 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3985 return abbrev_offset;
3986 }
3987
3988 /* Allocate a new partial symtab for file named NAME and mark this new
3989 partial symtab as being an include of PST. */
3990
3991 static void
3992 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3993 struct objfile *objfile)
3994 {
3995 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3996
3997 subpst->section_offsets = pst->section_offsets;
3998 subpst->textlow = 0;
3999 subpst->texthigh = 0;
4000
4001 subpst->dependencies = (struct partial_symtab **)
4002 obstack_alloc (&objfile->objfile_obstack,
4003 sizeof (struct partial_symtab *));
4004 subpst->dependencies[0] = pst;
4005 subpst->number_of_dependencies = 1;
4006
4007 subpst->globals_offset = 0;
4008 subpst->n_global_syms = 0;
4009 subpst->statics_offset = 0;
4010 subpst->n_static_syms = 0;
4011 subpst->symtab = NULL;
4012 subpst->read_symtab = pst->read_symtab;
4013 subpst->readin = 0;
4014
4015 /* No private part is necessary for include psymtabs. This property
4016 can be used to differentiate between such include psymtabs and
4017 the regular ones. */
4018 subpst->read_symtab_private = NULL;
4019 }
4020
4021 /* Read the Line Number Program data and extract the list of files
4022 included by the source file represented by PST. Build an include
4023 partial symtab for each of these included files. */
4024
4025 static void
4026 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4027 struct die_info *die,
4028 struct partial_symtab *pst)
4029 {
4030 struct line_header *lh = NULL;
4031 struct attribute *attr;
4032
4033 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4034 if (attr)
4035 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4036 if (lh == NULL)
4037 return; /* No linetable, so no includes. */
4038
4039 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4040 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4041
4042 free_line_header (lh);
4043 }
4044
4045 static hashval_t
4046 hash_signatured_type (const void *item)
4047 {
4048 const struct signatured_type *sig_type = item;
4049
4050 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4051 return sig_type->signature;
4052 }
4053
4054 static int
4055 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4056 {
4057 const struct signatured_type *lhs = item_lhs;
4058 const struct signatured_type *rhs = item_rhs;
4059
4060 return lhs->signature == rhs->signature;
4061 }
4062
4063 /* Allocate a hash table for signatured types. */
4064
4065 static htab_t
4066 allocate_signatured_type_table (struct objfile *objfile)
4067 {
4068 return htab_create_alloc_ex (41,
4069 hash_signatured_type,
4070 eq_signatured_type,
4071 NULL,
4072 &objfile->objfile_obstack,
4073 hashtab_obstack_allocate,
4074 dummy_obstack_deallocate);
4075 }
4076
4077 /* A helper function to add a signatured type CU to a table. */
4078
4079 static int
4080 add_signatured_type_cu_to_table (void **slot, void *datum)
4081 {
4082 struct signatured_type *sigt = *slot;
4083 struct signatured_type ***datap = datum;
4084
4085 **datap = sigt;
4086 ++*datap;
4087
4088 return 1;
4089 }
4090
4091 /* Create the hash table of all entries in the .debug_types section.
4092 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4093 NULL otherwise.
4094 Note: This function processes DWO files only, not DWP files.
4095 The result is a pointer to the hash table or NULL if there are
4096 no types. */
4097
4098 static htab_t
4099 create_debug_types_hash_table (struct dwo_file *dwo_file,
4100 VEC (dwarf2_section_info_def) *types)
4101 {
4102 struct objfile *objfile = dwarf2_per_objfile->objfile;
4103 htab_t types_htab = NULL;
4104 int ix;
4105 struct dwarf2_section_info *section;
4106 struct dwarf2_section_info *abbrev_section;
4107
4108 if (VEC_empty (dwarf2_section_info_def, types))
4109 return NULL;
4110
4111 abbrev_section = (dwo_file != NULL
4112 ? &dwo_file->sections.abbrev
4113 : &dwarf2_per_objfile->abbrev);
4114
4115 if (dwarf2_read_debug)
4116 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4117 dwo_file ? ".dwo" : "",
4118 bfd_get_filename (abbrev_section->asection->owner));
4119
4120 for (ix = 0;
4121 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4122 ++ix)
4123 {
4124 bfd *abfd;
4125 gdb_byte *info_ptr, *end_ptr;
4126 struct dwarf2_section_info *abbrev_section;
4127
4128 dwarf2_read_section (objfile, section);
4129 info_ptr = section->buffer;
4130
4131 if (info_ptr == NULL)
4132 continue;
4133
4134 /* We can't set abfd until now because the section may be empty or
4135 not present, in which case section->asection will be NULL. */
4136 abfd = section->asection->owner;
4137
4138 if (dwo_file)
4139 abbrev_section = &dwo_file->sections.abbrev;
4140 else
4141 abbrev_section = &dwarf2_per_objfile->abbrev;
4142
4143 if (types_htab == NULL)
4144 {
4145 if (dwo_file)
4146 types_htab = allocate_dwo_unit_table (objfile);
4147 else
4148 types_htab = allocate_signatured_type_table (objfile);
4149 }
4150
4151 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4152 because we don't need to read any dies: the signature is in the
4153 header. */
4154
4155 end_ptr = info_ptr + section->size;
4156 while (info_ptr < end_ptr)
4157 {
4158 sect_offset offset;
4159 cu_offset type_offset_in_tu;
4160 ULONGEST signature;
4161 struct signatured_type *sig_type;
4162 struct dwo_unit *dwo_tu;
4163 void **slot;
4164 gdb_byte *ptr = info_ptr;
4165 struct comp_unit_head header;
4166 unsigned int length;
4167
4168 offset.sect_off = ptr - section->buffer;
4169
4170 /* We need to read the type's signature in order to build the hash
4171 table, but we don't need anything else just yet. */
4172
4173 ptr = read_and_check_type_unit_head (&header, section,
4174 abbrev_section, ptr,
4175 &signature, &type_offset_in_tu);
4176
4177 length = get_cu_length (&header);
4178
4179 /* Skip dummy type units. */
4180 if (ptr >= info_ptr + length
4181 || peek_abbrev_code (abfd, ptr) == 0)
4182 {
4183 info_ptr += length;
4184 continue;
4185 }
4186
4187 if (dwo_file)
4188 {
4189 sig_type = NULL;
4190 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4191 struct dwo_unit);
4192 dwo_tu->dwo_file = dwo_file;
4193 dwo_tu->signature = signature;
4194 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4195 dwo_tu->info_or_types_section = section;
4196 dwo_tu->offset = offset;
4197 dwo_tu->length = length;
4198 }
4199 else
4200 {
4201 /* N.B.: type_offset is not usable if this type uses a DWO file.
4202 The real type_offset is in the DWO file. */
4203 dwo_tu = NULL;
4204 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4205 struct signatured_type);
4206 sig_type->signature = signature;
4207 sig_type->type_offset_in_tu = type_offset_in_tu;
4208 sig_type->per_cu.objfile = objfile;
4209 sig_type->per_cu.is_debug_types = 1;
4210 sig_type->per_cu.info_or_types_section = section;
4211 sig_type->per_cu.offset = offset;
4212 sig_type->per_cu.length = length;
4213 }
4214
4215 slot = htab_find_slot (types_htab,
4216 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4217 INSERT);
4218 gdb_assert (slot != NULL);
4219 if (*slot != NULL)
4220 {
4221 sect_offset dup_offset;
4222
4223 if (dwo_file)
4224 {
4225 const struct dwo_unit *dup_tu = *slot;
4226
4227 dup_offset = dup_tu->offset;
4228 }
4229 else
4230 {
4231 const struct signatured_type *dup_tu = *slot;
4232
4233 dup_offset = dup_tu->per_cu.offset;
4234 }
4235
4236 complaint (&symfile_complaints,
4237 _("debug type entry at offset 0x%x is duplicate to the "
4238 "entry at offset 0x%x, signature 0x%s"),
4239 offset.sect_off, dup_offset.sect_off,
4240 phex (signature, sizeof (signature)));
4241 }
4242 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4243
4244 if (dwarf2_read_debug)
4245 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4246 offset.sect_off,
4247 phex (signature, sizeof (signature)));
4248
4249 info_ptr += length;
4250 }
4251 }
4252
4253 return types_htab;
4254 }
4255
4256 /* Create the hash table of all entries in the .debug_types section,
4257 and initialize all_type_units.
4258 The result is zero if there is an error (e.g. missing .debug_types section),
4259 otherwise non-zero. */
4260
4261 static int
4262 create_all_type_units (struct objfile *objfile)
4263 {
4264 htab_t types_htab;
4265 struct signatured_type **iter;
4266
4267 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4268 if (types_htab == NULL)
4269 {
4270 dwarf2_per_objfile->signatured_types = NULL;
4271 return 0;
4272 }
4273
4274 dwarf2_per_objfile->signatured_types = types_htab;
4275
4276 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4277 dwarf2_per_objfile->all_type_units
4278 = obstack_alloc (&objfile->objfile_obstack,
4279 dwarf2_per_objfile->n_type_units
4280 * sizeof (struct signatured_type *));
4281 iter = &dwarf2_per_objfile->all_type_units[0];
4282 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4283 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4284 == dwarf2_per_objfile->n_type_units);
4285
4286 return 1;
4287 }
4288
4289 /* Lookup a signature based type for DW_FORM_ref_sig8.
4290 Returns NULL if signature SIG is not present in the table. */
4291
4292 static struct signatured_type *
4293 lookup_signatured_type (ULONGEST sig)
4294 {
4295 struct signatured_type find_entry, *entry;
4296
4297 if (dwarf2_per_objfile->signatured_types == NULL)
4298 {
4299 complaint (&symfile_complaints,
4300 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4301 return NULL;
4302 }
4303
4304 find_entry.signature = sig;
4305 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4306 return entry;
4307 }
4308 \f
4309 /* Low level DIE reading support. */
4310
4311 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4312
4313 static void
4314 init_cu_die_reader (struct die_reader_specs *reader,
4315 struct dwarf2_cu *cu,
4316 struct dwarf2_section_info *section,
4317 struct dwo_file *dwo_file)
4318 {
4319 gdb_assert (section->readin && section->buffer != NULL);
4320 reader->abfd = section->asection->owner;
4321 reader->cu = cu;
4322 reader->dwo_file = dwo_file;
4323 reader->die_section = section;
4324 reader->buffer = section->buffer;
4325 reader->buffer_end = section->buffer + section->size;
4326 }
4327
4328 /* Initialize a CU (or TU) and read its DIEs.
4329 If the CU defers to a DWO file, read the DWO file as well.
4330
4331 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4332 Otherwise the table specified in the comp unit header is read in and used.
4333 This is an optimization for when we already have the abbrev table.
4334
4335 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4336 Otherwise, a new CU is allocated with xmalloc.
4337
4338 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4339 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4340
4341 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4342 linker) then DIE_READER_FUNC will not get called. */
4343
4344 static void
4345 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4346 struct abbrev_table *abbrev_table,
4347 int use_existing_cu, int keep,
4348 die_reader_func_ftype *die_reader_func,
4349 void *data)
4350 {
4351 struct objfile *objfile = dwarf2_per_objfile->objfile;
4352 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4353 bfd *abfd = section->asection->owner;
4354 struct dwarf2_cu *cu;
4355 gdb_byte *begin_info_ptr, *info_ptr;
4356 struct die_reader_specs reader;
4357 struct die_info *comp_unit_die;
4358 int has_children;
4359 struct attribute *attr;
4360 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4361 struct signatured_type *sig_type = NULL;
4362 struct dwarf2_section_info *abbrev_section;
4363 /* Non-zero if CU currently points to a DWO file and we need to
4364 reread it. When this happens we need to reread the skeleton die
4365 before we can reread the DWO file. */
4366 int rereading_dwo_cu = 0;
4367
4368 if (dwarf2_die_debug)
4369 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4370 this_cu->is_debug_types ? "type" : "comp",
4371 this_cu->offset.sect_off);
4372
4373 if (use_existing_cu)
4374 gdb_assert (keep);
4375
4376 cleanups = make_cleanup (null_cleanup, NULL);
4377
4378 /* This is cheap if the section is already read in. */
4379 dwarf2_read_section (objfile, section);
4380
4381 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4382
4383 abbrev_section = get_abbrev_section_for_cu (this_cu);
4384
4385 if (use_existing_cu && this_cu->cu != NULL)
4386 {
4387 cu = this_cu->cu;
4388
4389 /* If this CU is from a DWO file we need to start over, we need to
4390 refetch the attributes from the skeleton CU.
4391 This could be optimized by retrieving those attributes from when we
4392 were here the first time: the previous comp_unit_die was stored in
4393 comp_unit_obstack. But there's no data yet that we need this
4394 optimization. */
4395 if (cu->dwo_unit != NULL)
4396 rereading_dwo_cu = 1;
4397 }
4398 else
4399 {
4400 /* If !use_existing_cu, this_cu->cu must be NULL. */
4401 gdb_assert (this_cu->cu == NULL);
4402
4403 cu = xmalloc (sizeof (*cu));
4404 init_one_comp_unit (cu, this_cu);
4405
4406 /* If an error occurs while loading, release our storage. */
4407 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4408 }
4409
4410 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4411 {
4412 /* We already have the header, there's no need to read it in again. */
4413 info_ptr += cu->header.first_die_offset.cu_off;
4414 }
4415 else
4416 {
4417 if (this_cu->is_debug_types)
4418 {
4419 ULONGEST signature;
4420 cu_offset type_offset_in_tu;
4421
4422 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4423 abbrev_section, info_ptr,
4424 &signature,
4425 &type_offset_in_tu);
4426
4427 /* Since per_cu is the first member of struct signatured_type,
4428 we can go from a pointer to one to a pointer to the other. */
4429 sig_type = (struct signatured_type *) this_cu;
4430 gdb_assert (sig_type->signature == signature);
4431 gdb_assert (sig_type->type_offset_in_tu.cu_off
4432 == type_offset_in_tu.cu_off);
4433 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4434
4435 /* LENGTH has not been set yet for type units if we're
4436 using .gdb_index. */
4437 this_cu->length = get_cu_length (&cu->header);
4438
4439 /* Establish the type offset that can be used to lookup the type. */
4440 sig_type->type_offset_in_section.sect_off =
4441 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4442 }
4443 else
4444 {
4445 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4446 abbrev_section,
4447 info_ptr, 0);
4448
4449 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4450 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4451 }
4452 }
4453
4454 /* Skip dummy compilation units. */
4455 if (info_ptr >= begin_info_ptr + this_cu->length
4456 || peek_abbrev_code (abfd, info_ptr) == 0)
4457 {
4458 do_cleanups (cleanups);
4459 return;
4460 }
4461
4462 /* If we don't have them yet, read the abbrevs for this compilation unit.
4463 And if we need to read them now, make sure they're freed when we're
4464 done. Note that it's important that if the CU had an abbrev table
4465 on entry we don't free it when we're done: Somewhere up the call stack
4466 it may be in use. */
4467 if (abbrev_table != NULL)
4468 {
4469 gdb_assert (cu->abbrev_table == NULL);
4470 gdb_assert (cu->header.abbrev_offset.sect_off
4471 == abbrev_table->offset.sect_off);
4472 cu->abbrev_table = abbrev_table;
4473 }
4474 else if (cu->abbrev_table == NULL)
4475 {
4476 dwarf2_read_abbrevs (cu, abbrev_section);
4477 make_cleanup (dwarf2_free_abbrev_table, cu);
4478 }
4479 else if (rereading_dwo_cu)
4480 {
4481 dwarf2_free_abbrev_table (cu);
4482 dwarf2_read_abbrevs (cu, abbrev_section);
4483 }
4484
4485 /* Read the top level CU/TU die. */
4486 init_cu_die_reader (&reader, cu, section, NULL);
4487 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4488
4489 /* If we have a DWO stub, process it and then read in the DWO file.
4490 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4491 a DWO CU, that this test will fail. */
4492 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4493 if (attr)
4494 {
4495 char *dwo_name = DW_STRING (attr);
4496 const char *comp_dir_string;
4497 struct dwo_unit *dwo_unit;
4498 ULONGEST signature; /* Or dwo_id. */
4499 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4500 int i,num_extra_attrs;
4501 struct dwarf2_section_info *dwo_abbrev_section;
4502
4503 if (has_children)
4504 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4505 " has children (offset 0x%x) [in module %s]"),
4506 this_cu->offset.sect_off, bfd_get_filename (abfd));
4507
4508 /* These attributes aren't processed until later:
4509 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4510 However, the attribute is found in the stub which we won't have later.
4511 In order to not impose this complication on the rest of the code,
4512 we read them here and copy them to the DWO CU/TU die. */
4513
4514 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4515 DWO file. */
4516 stmt_list = NULL;
4517 if (! this_cu->is_debug_types)
4518 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4519 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4520 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4521 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4522 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4523
4524 /* There should be a DW_AT_addr_base attribute here (if needed).
4525 We need the value before we can process DW_FORM_GNU_addr_index. */
4526 cu->addr_base = 0;
4527 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4528 if (attr)
4529 cu->addr_base = DW_UNSND (attr);
4530
4531 /* There should be a DW_AT_ranges_base attribute here (if needed).
4532 We need the value before we can process DW_AT_ranges. */
4533 cu->ranges_base = 0;
4534 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4535 if (attr)
4536 cu->ranges_base = DW_UNSND (attr);
4537
4538 if (this_cu->is_debug_types)
4539 {
4540 gdb_assert (sig_type != NULL);
4541 signature = sig_type->signature;
4542 }
4543 else
4544 {
4545 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4546 if (! attr)
4547 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4548 dwo_name);
4549 signature = DW_UNSND (attr);
4550 }
4551
4552 /* We may need the comp_dir in order to find the DWO file. */
4553 comp_dir_string = NULL;
4554 if (comp_dir)
4555 comp_dir_string = DW_STRING (comp_dir);
4556
4557 if (this_cu->is_debug_types)
4558 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4559 else
4560 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4561 signature);
4562
4563 if (dwo_unit == NULL)
4564 {
4565 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4566 " with ID %s [in module %s]"),
4567 this_cu->offset.sect_off,
4568 phex (signature, sizeof (signature)),
4569 objfile->name);
4570 }
4571
4572 /* Set up for reading the DWO CU/TU. */
4573 cu->dwo_unit = dwo_unit;
4574 section = dwo_unit->info_or_types_section;
4575 dwarf2_read_section (objfile, section);
4576 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4577 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4578 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4579
4580 if (this_cu->is_debug_types)
4581 {
4582 ULONGEST signature;
4583 cu_offset type_offset_in_tu;
4584
4585 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4586 dwo_abbrev_section,
4587 info_ptr,
4588 &signature,
4589 &type_offset_in_tu);
4590 gdb_assert (sig_type->signature == signature);
4591 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4592 /* For DWOs coming from DWP files, we don't know the CU length
4593 nor the type's offset in the TU until now. */
4594 dwo_unit->length = get_cu_length (&cu->header);
4595 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4596
4597 /* Establish the type offset that can be used to lookup the type.
4598 For DWO files, we don't know it until now. */
4599 sig_type->type_offset_in_section.sect_off =
4600 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4601 }
4602 else
4603 {
4604 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4605 dwo_abbrev_section,
4606 info_ptr, 0);
4607 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4608 /* For DWOs coming from DWP files, we don't know the CU length
4609 until now. */
4610 dwo_unit->length = get_cu_length (&cu->header);
4611 }
4612
4613 /* Discard the original CU's abbrev table, and read the DWO's. */
4614 if (abbrev_table == NULL)
4615 {
4616 dwarf2_free_abbrev_table (cu);
4617 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4618 }
4619 else
4620 {
4621 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4622 make_cleanup (dwarf2_free_abbrev_table, cu);
4623 }
4624
4625 /* Read in the die, but leave space to copy over the attributes
4626 from the stub. This has the benefit of simplifying the rest of
4627 the code - all the real work is done here. */
4628 num_extra_attrs = ((stmt_list != NULL)
4629 + (low_pc != NULL)
4630 + (high_pc != NULL)
4631 + (ranges != NULL)
4632 + (comp_dir != NULL));
4633 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4634 &has_children, num_extra_attrs);
4635
4636 /* Copy over the attributes from the stub to the DWO die. */
4637 i = comp_unit_die->num_attrs;
4638 if (stmt_list != NULL)
4639 comp_unit_die->attrs[i++] = *stmt_list;
4640 if (low_pc != NULL)
4641 comp_unit_die->attrs[i++] = *low_pc;
4642 if (high_pc != NULL)
4643 comp_unit_die->attrs[i++] = *high_pc;
4644 if (ranges != NULL)
4645 comp_unit_die->attrs[i++] = *ranges;
4646 if (comp_dir != NULL)
4647 comp_unit_die->attrs[i++] = *comp_dir;
4648 comp_unit_die->num_attrs += num_extra_attrs;
4649
4650 /* Skip dummy compilation units. */
4651 if (info_ptr >= begin_info_ptr + dwo_unit->length
4652 || peek_abbrev_code (abfd, info_ptr) == 0)
4653 {
4654 do_cleanups (cleanups);
4655 return;
4656 }
4657 }
4658
4659 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4660
4661 if (free_cu_cleanup != NULL)
4662 {
4663 if (keep)
4664 {
4665 /* We've successfully allocated this compilation unit. Let our
4666 caller clean it up when finished with it. */
4667 discard_cleanups (free_cu_cleanup);
4668
4669 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4670 So we have to manually free the abbrev table. */
4671 dwarf2_free_abbrev_table (cu);
4672
4673 /* Link this CU into read_in_chain. */
4674 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4675 dwarf2_per_objfile->read_in_chain = this_cu;
4676 }
4677 else
4678 do_cleanups (free_cu_cleanup);
4679 }
4680
4681 do_cleanups (cleanups);
4682 }
4683
4684 /* Read CU/TU THIS_CU in section SECTION,
4685 but do not follow DW_AT_GNU_dwo_name if present.
4686 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4687 to have already done the lookup to find the DWO/DWP file).
4688
4689 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4690 THIS_CU->is_debug_types, but nothing else.
4691
4692 We fill in THIS_CU->length.
4693
4694 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4695 linker) then DIE_READER_FUNC will not get called.
4696
4697 THIS_CU->cu is always freed when done.
4698 This is done in order to not leave THIS_CU->cu in a state where we have
4699 to care whether it refers to the "main" CU or the DWO CU. */
4700
4701 static void
4702 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4703 struct dwarf2_section_info *abbrev_section,
4704 struct dwo_file *dwo_file,
4705 die_reader_func_ftype *die_reader_func,
4706 void *data)
4707 {
4708 struct objfile *objfile = dwarf2_per_objfile->objfile;
4709 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4710 bfd *abfd = section->asection->owner;
4711 struct dwarf2_cu cu;
4712 gdb_byte *begin_info_ptr, *info_ptr;
4713 struct die_reader_specs reader;
4714 struct cleanup *cleanups;
4715 struct die_info *comp_unit_die;
4716 int has_children;
4717
4718 if (dwarf2_die_debug)
4719 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4720 this_cu->is_debug_types ? "type" : "comp",
4721 this_cu->offset.sect_off);
4722
4723 gdb_assert (this_cu->cu == NULL);
4724
4725 /* This is cheap if the section is already read in. */
4726 dwarf2_read_section (objfile, section);
4727
4728 init_one_comp_unit (&cu, this_cu);
4729
4730 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4731
4732 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4733 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4734 abbrev_section, info_ptr,
4735 this_cu->is_debug_types);
4736
4737 this_cu->length = get_cu_length (&cu.header);
4738
4739 /* Skip dummy compilation units. */
4740 if (info_ptr >= begin_info_ptr + this_cu->length
4741 || peek_abbrev_code (abfd, info_ptr) == 0)
4742 {
4743 do_cleanups (cleanups);
4744 return;
4745 }
4746
4747 dwarf2_read_abbrevs (&cu, abbrev_section);
4748 make_cleanup (dwarf2_free_abbrev_table, &cu);
4749
4750 init_cu_die_reader (&reader, &cu, section, dwo_file);
4751 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4752
4753 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4754
4755 do_cleanups (cleanups);
4756 }
4757
4758 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4759 does not lookup the specified DWO file.
4760 This cannot be used to read DWO files.
4761
4762 THIS_CU->cu is always freed when done.
4763 This is done in order to not leave THIS_CU->cu in a state where we have
4764 to care whether it refers to the "main" CU or the DWO CU.
4765 We can revisit this if the data shows there's a performance issue. */
4766
4767 static void
4768 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4769 die_reader_func_ftype *die_reader_func,
4770 void *data)
4771 {
4772 init_cutu_and_read_dies_no_follow (this_cu,
4773 get_abbrev_section_for_cu (this_cu),
4774 NULL,
4775 die_reader_func, data);
4776 }
4777
4778 /* Create a psymtab named NAME and assign it to PER_CU.
4779
4780 The caller must fill in the following details:
4781 dirname, textlow, texthigh. */
4782
4783 static struct partial_symtab *
4784 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4785 {
4786 struct objfile *objfile = per_cu->objfile;
4787 struct partial_symtab *pst;
4788
4789 pst = start_psymtab_common (objfile, objfile->section_offsets,
4790 name, 0,
4791 objfile->global_psymbols.next,
4792 objfile->static_psymbols.next);
4793
4794 pst->psymtabs_addrmap_supported = 1;
4795
4796 /* This is the glue that links PST into GDB's symbol API. */
4797 pst->read_symtab_private = per_cu;
4798 pst->read_symtab = dwarf2_psymtab_to_symtab;
4799 per_cu->v.psymtab = pst;
4800
4801 return pst;
4802 }
4803
4804 /* die_reader_func for process_psymtab_comp_unit. */
4805
4806 static void
4807 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4808 gdb_byte *info_ptr,
4809 struct die_info *comp_unit_die,
4810 int has_children,
4811 void *data)
4812 {
4813 struct dwarf2_cu *cu = reader->cu;
4814 struct objfile *objfile = cu->objfile;
4815 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4816 struct attribute *attr;
4817 CORE_ADDR baseaddr;
4818 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4819 struct partial_symtab *pst;
4820 int has_pc_info;
4821 const char *filename;
4822 int *want_partial_unit_ptr = data;
4823
4824 if (comp_unit_die->tag == DW_TAG_partial_unit
4825 && (want_partial_unit_ptr == NULL
4826 || !*want_partial_unit_ptr))
4827 return;
4828
4829 gdb_assert (! per_cu->is_debug_types);
4830
4831 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4832
4833 cu->list_in_scope = &file_symbols;
4834
4835 /* Allocate a new partial symbol table structure. */
4836 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4837 if (attr == NULL || !DW_STRING (attr))
4838 filename = "";
4839 else
4840 filename = DW_STRING (attr);
4841
4842 pst = create_partial_symtab (per_cu, filename);
4843
4844 /* This must be done before calling dwarf2_build_include_psymtabs. */
4845 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4846 if (attr != NULL)
4847 pst->dirname = DW_STRING (attr);
4848
4849 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4850
4851 dwarf2_find_base_address (comp_unit_die, cu);
4852
4853 /* Possibly set the default values of LOWPC and HIGHPC from
4854 `DW_AT_ranges'. */
4855 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4856 &best_highpc, cu, pst);
4857 if (has_pc_info == 1 && best_lowpc < best_highpc)
4858 /* Store the contiguous range if it is not empty; it can be empty for
4859 CUs with no code. */
4860 addrmap_set_empty (objfile->psymtabs_addrmap,
4861 best_lowpc + baseaddr,
4862 best_highpc + baseaddr - 1, pst);
4863
4864 /* Check if comp unit has_children.
4865 If so, read the rest of the partial symbols from this comp unit.
4866 If not, there's no more debug_info for this comp unit. */
4867 if (has_children)
4868 {
4869 struct partial_die_info *first_die;
4870 CORE_ADDR lowpc, highpc;
4871
4872 lowpc = ((CORE_ADDR) -1);
4873 highpc = ((CORE_ADDR) 0);
4874
4875 first_die = load_partial_dies (reader, info_ptr, 1);
4876
4877 scan_partial_symbols (first_die, &lowpc, &highpc,
4878 ! has_pc_info, cu);
4879
4880 /* If we didn't find a lowpc, set it to highpc to avoid
4881 complaints from `maint check'. */
4882 if (lowpc == ((CORE_ADDR) -1))
4883 lowpc = highpc;
4884
4885 /* If the compilation unit didn't have an explicit address range,
4886 then use the information extracted from its child dies. */
4887 if (! has_pc_info)
4888 {
4889 best_lowpc = lowpc;
4890 best_highpc = highpc;
4891 }
4892 }
4893 pst->textlow = best_lowpc + baseaddr;
4894 pst->texthigh = best_highpc + baseaddr;
4895
4896 pst->n_global_syms = objfile->global_psymbols.next -
4897 (objfile->global_psymbols.list + pst->globals_offset);
4898 pst->n_static_syms = objfile->static_psymbols.next -
4899 (objfile->static_psymbols.list + pst->statics_offset);
4900 sort_pst_symbols (objfile, pst);
4901
4902 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4903 {
4904 int i;
4905 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4906 struct dwarf2_per_cu_data *iter;
4907
4908 /* Fill in 'dependencies' here; we fill in 'users' in a
4909 post-pass. */
4910 pst->number_of_dependencies = len;
4911 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4912 len * sizeof (struct symtab *));
4913 for (i = 0;
4914 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4915 i, iter);
4916 ++i)
4917 pst->dependencies[i] = iter->v.psymtab;
4918
4919 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4920 }
4921
4922 /* Get the list of files included in the current compilation unit,
4923 and build a psymtab for each of them. */
4924 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4925
4926 if (dwarf2_read_debug)
4927 {
4928 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4929
4930 fprintf_unfiltered (gdb_stdlog,
4931 "Psymtab for %s unit @0x%x: %s - %s"
4932 ", %d global, %d static syms\n",
4933 per_cu->is_debug_types ? "type" : "comp",
4934 per_cu->offset.sect_off,
4935 paddress (gdbarch, pst->textlow),
4936 paddress (gdbarch, pst->texthigh),
4937 pst->n_global_syms, pst->n_static_syms);
4938 }
4939 }
4940
4941 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4942 Process compilation unit THIS_CU for a psymtab. */
4943
4944 static void
4945 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4946 int want_partial_unit)
4947 {
4948 /* If this compilation unit was already read in, free the
4949 cached copy in order to read it in again. This is
4950 necessary because we skipped some symbols when we first
4951 read in the compilation unit (see load_partial_dies).
4952 This problem could be avoided, but the benefit is unclear. */
4953 if (this_cu->cu != NULL)
4954 free_one_cached_comp_unit (this_cu);
4955
4956 gdb_assert (! this_cu->is_debug_types);
4957 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4958 process_psymtab_comp_unit_reader,
4959 &want_partial_unit);
4960
4961 /* Age out any secondary CUs. */
4962 age_cached_comp_units ();
4963 }
4964
4965 static hashval_t
4966 hash_type_unit_group (const void *item)
4967 {
4968 const struct type_unit_group *tu_group = item;
4969
4970 return hash_stmt_list_entry (&tu_group->hash);
4971 }
4972
4973 static int
4974 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4975 {
4976 const struct type_unit_group *lhs = item_lhs;
4977 const struct type_unit_group *rhs = item_rhs;
4978
4979 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4980 }
4981
4982 /* Allocate a hash table for type unit groups. */
4983
4984 static htab_t
4985 allocate_type_unit_groups_table (void)
4986 {
4987 return htab_create_alloc_ex (3,
4988 hash_type_unit_group,
4989 eq_type_unit_group,
4990 NULL,
4991 &dwarf2_per_objfile->objfile->objfile_obstack,
4992 hashtab_obstack_allocate,
4993 dummy_obstack_deallocate);
4994 }
4995
4996 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4997 partial symtabs. We combine several TUs per psymtab to not let the size
4998 of any one psymtab grow too big. */
4999 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5000 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5001
5002 /* Helper routine for get_type_unit_group.
5003 Create the type_unit_group object used to hold one or more TUs. */
5004
5005 static struct type_unit_group *
5006 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5007 {
5008 struct objfile *objfile = dwarf2_per_objfile->objfile;
5009 struct dwarf2_per_cu_data *per_cu;
5010 struct type_unit_group *tu_group;
5011
5012 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5013 struct type_unit_group);
5014 per_cu = &tu_group->per_cu;
5015 per_cu->objfile = objfile;
5016 per_cu->is_debug_types = 1;
5017 per_cu->s.type_unit_group = tu_group;
5018
5019 if (dwarf2_per_objfile->using_index)
5020 {
5021 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5022 struct dwarf2_per_cu_quick_data);
5023 tu_group->t.first_tu = cu->per_cu;
5024 }
5025 else
5026 {
5027 unsigned int line_offset = line_offset_struct.sect_off;
5028 struct partial_symtab *pst;
5029 char *name;
5030
5031 /* Give the symtab a useful name for debug purposes. */
5032 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5033 name = xstrprintf ("<type_units_%d>",
5034 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5035 else
5036 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5037
5038 pst = create_partial_symtab (per_cu, name);
5039 pst->anonymous = 1;
5040
5041 xfree (name);
5042 }
5043
5044 tu_group->hash.dwo_unit = cu->dwo_unit;
5045 tu_group->hash.line_offset = line_offset_struct;
5046
5047 return tu_group;
5048 }
5049
5050 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5051 STMT_LIST is a DW_AT_stmt_list attribute. */
5052
5053 static struct type_unit_group *
5054 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5055 {
5056 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5057 struct type_unit_group *tu_group;
5058 void **slot;
5059 unsigned int line_offset;
5060 struct type_unit_group type_unit_group_for_lookup;
5061
5062 if (dwarf2_per_objfile->type_unit_groups == NULL)
5063 {
5064 dwarf2_per_objfile->type_unit_groups =
5065 allocate_type_unit_groups_table ();
5066 }
5067
5068 /* Do we need to create a new group, or can we use an existing one? */
5069
5070 if (stmt_list)
5071 {
5072 line_offset = DW_UNSND (stmt_list);
5073 ++tu_stats->nr_symtab_sharers;
5074 }
5075 else
5076 {
5077 /* Ugh, no stmt_list. Rare, but we have to handle it.
5078 We can do various things here like create one group per TU or
5079 spread them over multiple groups to split up the expansion work.
5080 To avoid worst case scenarios (too many groups or too large groups)
5081 we, umm, group them in bunches. */
5082 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5083 | (tu_stats->nr_stmt_less_type_units
5084 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5085 ++tu_stats->nr_stmt_less_type_units;
5086 }
5087
5088 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5089 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5090 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5091 &type_unit_group_for_lookup, INSERT);
5092 if (*slot != NULL)
5093 {
5094 tu_group = *slot;
5095 gdb_assert (tu_group != NULL);
5096 }
5097 else
5098 {
5099 sect_offset line_offset_struct;
5100
5101 line_offset_struct.sect_off = line_offset;
5102 tu_group = create_type_unit_group (cu, line_offset_struct);
5103 *slot = tu_group;
5104 ++tu_stats->nr_symtabs;
5105 }
5106
5107 return tu_group;
5108 }
5109
5110 /* Struct used to sort TUs by their abbreviation table offset. */
5111
5112 struct tu_abbrev_offset
5113 {
5114 struct signatured_type *sig_type;
5115 sect_offset abbrev_offset;
5116 };
5117
5118 /* Helper routine for build_type_unit_groups, passed to qsort. */
5119
5120 static int
5121 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5122 {
5123 const struct tu_abbrev_offset * const *a = ap;
5124 const struct tu_abbrev_offset * const *b = bp;
5125 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5126 unsigned int boff = (*b)->abbrev_offset.sect_off;
5127
5128 return (aoff > boff) - (aoff < boff);
5129 }
5130
5131 /* A helper function to add a type_unit_group to a table. */
5132
5133 static int
5134 add_type_unit_group_to_table (void **slot, void *datum)
5135 {
5136 struct type_unit_group *tu_group = *slot;
5137 struct type_unit_group ***datap = datum;
5138
5139 **datap = tu_group;
5140 ++*datap;
5141
5142 return 1;
5143 }
5144
5145 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5146 each one passing FUNC,DATA.
5147
5148 The efficiency is because we sort TUs by the abbrev table they use and
5149 only read each abbrev table once. In one program there are 200K TUs
5150 sharing 8K abbrev tables.
5151
5152 The main purpose of this function is to support building the
5153 dwarf2_per_objfile->type_unit_groups table.
5154 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5155 can collapse the search space by grouping them by stmt_list.
5156 The savings can be significant, in the same program from above the 200K TUs
5157 share 8K stmt_list tables.
5158
5159 FUNC is expected to call get_type_unit_group, which will create the
5160 struct type_unit_group if necessary and add it to
5161 dwarf2_per_objfile->type_unit_groups. */
5162
5163 static void
5164 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5165 {
5166 struct objfile *objfile = dwarf2_per_objfile->objfile;
5167 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5168 struct cleanup *cleanups;
5169 struct abbrev_table *abbrev_table;
5170 sect_offset abbrev_offset;
5171 struct tu_abbrev_offset *sorted_by_abbrev;
5172 struct type_unit_group **iter;
5173 int i;
5174
5175 /* It's up to the caller to not call us multiple times. */
5176 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5177
5178 if (dwarf2_per_objfile->n_type_units == 0)
5179 return;
5180
5181 /* TUs typically share abbrev tables, and there can be way more TUs than
5182 abbrev tables. Sort by abbrev table to reduce the number of times we
5183 read each abbrev table in.
5184 Alternatives are to punt or to maintain a cache of abbrev tables.
5185 This is simpler and efficient enough for now.
5186
5187 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5188 symtab to use). Typically TUs with the same abbrev offset have the same
5189 stmt_list value too so in practice this should work well.
5190
5191 The basic algorithm here is:
5192
5193 sort TUs by abbrev table
5194 for each TU with same abbrev table:
5195 read abbrev table if first user
5196 read TU top level DIE
5197 [IWBN if DWO skeletons had DW_AT_stmt_list]
5198 call FUNC */
5199
5200 if (dwarf2_read_debug)
5201 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5202
5203 /* Sort in a separate table to maintain the order of all_type_units
5204 for .gdb_index: TU indices directly index all_type_units. */
5205 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5206 dwarf2_per_objfile->n_type_units);
5207 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5208 {
5209 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5210
5211 sorted_by_abbrev[i].sig_type = sig_type;
5212 sorted_by_abbrev[i].abbrev_offset =
5213 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5214 sig_type->per_cu.offset);
5215 }
5216 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5217 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5218 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5219
5220 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5221 called any number of times, so we don't reset tu_stats here. */
5222
5223 abbrev_offset.sect_off = ~(unsigned) 0;
5224 abbrev_table = NULL;
5225 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5226
5227 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5228 {
5229 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5230
5231 /* Switch to the next abbrev table if necessary. */
5232 if (abbrev_table == NULL
5233 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5234 {
5235 if (abbrev_table != NULL)
5236 {
5237 abbrev_table_free (abbrev_table);
5238 /* Reset to NULL in case abbrev_table_read_table throws
5239 an error: abbrev_table_free_cleanup will get called. */
5240 abbrev_table = NULL;
5241 }
5242 abbrev_offset = tu->abbrev_offset;
5243 abbrev_table =
5244 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5245 abbrev_offset);
5246 ++tu_stats->nr_uniq_abbrev_tables;
5247 }
5248
5249 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5250 func, data);
5251 }
5252
5253 /* Create a vector of pointers to primary type units to make it easy to
5254 iterate over them and CUs. See dw2_get_primary_cu. */
5255 dwarf2_per_objfile->n_type_unit_groups =
5256 htab_elements (dwarf2_per_objfile->type_unit_groups);
5257 dwarf2_per_objfile->all_type_unit_groups =
5258 obstack_alloc (&objfile->objfile_obstack,
5259 dwarf2_per_objfile->n_type_unit_groups
5260 * sizeof (struct type_unit_group *));
5261 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5262 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5263 add_type_unit_group_to_table, &iter);
5264 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5265 == dwarf2_per_objfile->n_type_unit_groups);
5266
5267 do_cleanups (cleanups);
5268
5269 if (dwarf2_read_debug)
5270 {
5271 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5272 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5273 dwarf2_per_objfile->n_type_units);
5274 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5275 tu_stats->nr_uniq_abbrev_tables);
5276 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5277 tu_stats->nr_symtabs);
5278 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5279 tu_stats->nr_symtab_sharers);
5280 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5281 tu_stats->nr_stmt_less_type_units);
5282 }
5283 }
5284
5285 /* Reader function for build_type_psymtabs. */
5286
5287 static void
5288 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5289 gdb_byte *info_ptr,
5290 struct die_info *type_unit_die,
5291 int has_children,
5292 void *data)
5293 {
5294 struct objfile *objfile = dwarf2_per_objfile->objfile;
5295 struct dwarf2_cu *cu = reader->cu;
5296 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5297 struct type_unit_group *tu_group;
5298 struct attribute *attr;
5299 struct partial_die_info *first_die;
5300 CORE_ADDR lowpc, highpc;
5301 struct partial_symtab *pst;
5302
5303 gdb_assert (data == NULL);
5304
5305 if (! has_children)
5306 return;
5307
5308 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5309 tu_group = get_type_unit_group (cu, attr);
5310
5311 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5312
5313 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5314 cu->list_in_scope = &file_symbols;
5315 pst = create_partial_symtab (per_cu, "");
5316 pst->anonymous = 1;
5317
5318 first_die = load_partial_dies (reader, info_ptr, 1);
5319
5320 lowpc = (CORE_ADDR) -1;
5321 highpc = (CORE_ADDR) 0;
5322 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5323
5324 pst->n_global_syms = objfile->global_psymbols.next -
5325 (objfile->global_psymbols.list + pst->globals_offset);
5326 pst->n_static_syms = objfile->static_psymbols.next -
5327 (objfile->static_psymbols.list + pst->statics_offset);
5328 sort_pst_symbols (objfile, pst);
5329 }
5330
5331 /* Traversal function for build_type_psymtabs. */
5332
5333 static int
5334 build_type_psymtab_dependencies (void **slot, void *info)
5335 {
5336 struct objfile *objfile = dwarf2_per_objfile->objfile;
5337 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5338 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5339 struct partial_symtab *pst = per_cu->v.psymtab;
5340 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5341 struct dwarf2_per_cu_data *iter;
5342 int i;
5343
5344 gdb_assert (len > 0);
5345
5346 pst->number_of_dependencies = len;
5347 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5348 len * sizeof (struct psymtab *));
5349 for (i = 0;
5350 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5351 ++i)
5352 {
5353 pst->dependencies[i] = iter->v.psymtab;
5354 iter->s.type_unit_group = tu_group;
5355 }
5356
5357 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5358
5359 return 1;
5360 }
5361
5362 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5363 Build partial symbol tables for the .debug_types comp-units. */
5364
5365 static void
5366 build_type_psymtabs (struct objfile *objfile)
5367 {
5368 if (! create_all_type_units (objfile))
5369 return;
5370
5371 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5372
5373 /* Now that all TUs have been processed we can fill in the dependencies. */
5374 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5375 build_type_psymtab_dependencies, NULL);
5376 }
5377
5378 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5379
5380 static void
5381 psymtabs_addrmap_cleanup (void *o)
5382 {
5383 struct objfile *objfile = o;
5384
5385 objfile->psymtabs_addrmap = NULL;
5386 }
5387
5388 /* Compute the 'user' field for each psymtab in OBJFILE. */
5389
5390 static void
5391 set_partial_user (struct objfile *objfile)
5392 {
5393 int i;
5394
5395 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5396 {
5397 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5398 struct partial_symtab *pst = per_cu->v.psymtab;
5399 int j;
5400
5401 if (pst == NULL)
5402 continue;
5403
5404 for (j = 0; j < pst->number_of_dependencies; ++j)
5405 {
5406 /* Set the 'user' field only if it is not already set. */
5407 if (pst->dependencies[j]->user == NULL)
5408 pst->dependencies[j]->user = pst;
5409 }
5410 }
5411 }
5412
5413 /* Build the partial symbol table by doing a quick pass through the
5414 .debug_info and .debug_abbrev sections. */
5415
5416 static void
5417 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5418 {
5419 struct cleanup *back_to, *addrmap_cleanup;
5420 struct obstack temp_obstack;
5421 int i;
5422
5423 if (dwarf2_read_debug)
5424 {
5425 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5426 objfile->name);
5427 }
5428
5429 dwarf2_per_objfile->reading_partial_symbols = 1;
5430
5431 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5432
5433 /* Any cached compilation units will be linked by the per-objfile
5434 read_in_chain. Make sure to free them when we're done. */
5435 back_to = make_cleanup (free_cached_comp_units, NULL);
5436
5437 build_type_psymtabs (objfile);
5438
5439 create_all_comp_units (objfile);
5440
5441 /* Create a temporary address map on a temporary obstack. We later
5442 copy this to the final obstack. */
5443 obstack_init (&temp_obstack);
5444 make_cleanup_obstack_free (&temp_obstack);
5445 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5446 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5447
5448 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5449 {
5450 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5451
5452 process_psymtab_comp_unit (per_cu, 0);
5453 }
5454
5455 set_partial_user (objfile);
5456
5457 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5458 &objfile->objfile_obstack);
5459 discard_cleanups (addrmap_cleanup);
5460
5461 do_cleanups (back_to);
5462
5463 if (dwarf2_read_debug)
5464 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5465 objfile->name);
5466 }
5467
5468 /* die_reader_func for load_partial_comp_unit. */
5469
5470 static void
5471 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5472 gdb_byte *info_ptr,
5473 struct die_info *comp_unit_die,
5474 int has_children,
5475 void *data)
5476 {
5477 struct dwarf2_cu *cu = reader->cu;
5478
5479 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5480
5481 /* Check if comp unit has_children.
5482 If so, read the rest of the partial symbols from this comp unit.
5483 If not, there's no more debug_info for this comp unit. */
5484 if (has_children)
5485 load_partial_dies (reader, info_ptr, 0);
5486 }
5487
5488 /* Load the partial DIEs for a secondary CU into memory.
5489 This is also used when rereading a primary CU with load_all_dies. */
5490
5491 static void
5492 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5493 {
5494 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5495 load_partial_comp_unit_reader, NULL);
5496 }
5497
5498 static void
5499 read_comp_units_from_section (struct objfile *objfile,
5500 struct dwarf2_section_info *section,
5501 unsigned int is_dwz,
5502 int *n_allocated,
5503 int *n_comp_units,
5504 struct dwarf2_per_cu_data ***all_comp_units)
5505 {
5506 gdb_byte *info_ptr;
5507 bfd *abfd = section->asection->owner;
5508
5509 dwarf2_read_section (objfile, section);
5510
5511 info_ptr = section->buffer;
5512
5513 while (info_ptr < section->buffer + section->size)
5514 {
5515 unsigned int length, initial_length_size;
5516 struct dwarf2_per_cu_data *this_cu;
5517 sect_offset offset;
5518
5519 offset.sect_off = info_ptr - section->buffer;
5520
5521 /* Read just enough information to find out where the next
5522 compilation unit is. */
5523 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5524
5525 /* Save the compilation unit for later lookup. */
5526 this_cu = obstack_alloc (&objfile->objfile_obstack,
5527 sizeof (struct dwarf2_per_cu_data));
5528 memset (this_cu, 0, sizeof (*this_cu));
5529 this_cu->offset = offset;
5530 this_cu->length = length + initial_length_size;
5531 this_cu->is_dwz = is_dwz;
5532 this_cu->objfile = objfile;
5533 this_cu->info_or_types_section = section;
5534
5535 if (*n_comp_units == *n_allocated)
5536 {
5537 *n_allocated *= 2;
5538 *all_comp_units = xrealloc (*all_comp_units,
5539 *n_allocated
5540 * sizeof (struct dwarf2_per_cu_data *));
5541 }
5542 (*all_comp_units)[*n_comp_units] = this_cu;
5543 ++*n_comp_units;
5544
5545 info_ptr = info_ptr + this_cu->length;
5546 }
5547 }
5548
5549 /* Create a list of all compilation units in OBJFILE.
5550 This is only done for -readnow and building partial symtabs. */
5551
5552 static void
5553 create_all_comp_units (struct objfile *objfile)
5554 {
5555 int n_allocated;
5556 int n_comp_units;
5557 struct dwarf2_per_cu_data **all_comp_units;
5558
5559 n_comp_units = 0;
5560 n_allocated = 10;
5561 all_comp_units = xmalloc (n_allocated
5562 * sizeof (struct dwarf2_per_cu_data *));
5563
5564 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5565 &n_allocated, &n_comp_units, &all_comp_units);
5566
5567 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5568 {
5569 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5570
5571 read_comp_units_from_section (objfile, &dwz->info, 1,
5572 &n_allocated, &n_comp_units,
5573 &all_comp_units);
5574 }
5575
5576 dwarf2_per_objfile->all_comp_units
5577 = obstack_alloc (&objfile->objfile_obstack,
5578 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5579 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5580 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5581 xfree (all_comp_units);
5582 dwarf2_per_objfile->n_comp_units = n_comp_units;
5583 }
5584
5585 /* Process all loaded DIEs for compilation unit CU, starting at
5586 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5587 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5588 DW_AT_ranges). If NEED_PC is set, then this function will set
5589 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5590 and record the covered ranges in the addrmap. */
5591
5592 static void
5593 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5594 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5595 {
5596 struct partial_die_info *pdi;
5597
5598 /* Now, march along the PDI's, descending into ones which have
5599 interesting children but skipping the children of the other ones,
5600 until we reach the end of the compilation unit. */
5601
5602 pdi = first_die;
5603
5604 while (pdi != NULL)
5605 {
5606 fixup_partial_die (pdi, cu);
5607
5608 /* Anonymous namespaces or modules have no name but have interesting
5609 children, so we need to look at them. Ditto for anonymous
5610 enums. */
5611
5612 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5613 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5614 || pdi->tag == DW_TAG_imported_unit)
5615 {
5616 switch (pdi->tag)
5617 {
5618 case DW_TAG_subprogram:
5619 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5620 break;
5621 case DW_TAG_constant:
5622 case DW_TAG_variable:
5623 case DW_TAG_typedef:
5624 case DW_TAG_union_type:
5625 if (!pdi->is_declaration)
5626 {
5627 add_partial_symbol (pdi, cu);
5628 }
5629 break;
5630 case DW_TAG_class_type:
5631 case DW_TAG_interface_type:
5632 case DW_TAG_structure_type:
5633 if (!pdi->is_declaration)
5634 {
5635 add_partial_symbol (pdi, cu);
5636 }
5637 break;
5638 case DW_TAG_enumeration_type:
5639 if (!pdi->is_declaration)
5640 add_partial_enumeration (pdi, cu);
5641 break;
5642 case DW_TAG_base_type:
5643 case DW_TAG_subrange_type:
5644 /* File scope base type definitions are added to the partial
5645 symbol table. */
5646 add_partial_symbol (pdi, cu);
5647 break;
5648 case DW_TAG_namespace:
5649 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5650 break;
5651 case DW_TAG_module:
5652 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5653 break;
5654 case DW_TAG_imported_unit:
5655 {
5656 struct dwarf2_per_cu_data *per_cu;
5657
5658 /* For now we don't handle imported units in type units. */
5659 if (cu->per_cu->is_debug_types)
5660 {
5661 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5662 " supported in type units [in module %s]"),
5663 cu->objfile->name);
5664 }
5665
5666 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5667 pdi->is_dwz,
5668 cu->objfile);
5669
5670 /* Go read the partial unit, if needed. */
5671 if (per_cu->v.psymtab == NULL)
5672 process_psymtab_comp_unit (per_cu, 1);
5673
5674 VEC_safe_push (dwarf2_per_cu_ptr,
5675 cu->per_cu->s.imported_symtabs, per_cu);
5676 }
5677 break;
5678 default:
5679 break;
5680 }
5681 }
5682
5683 /* If the die has a sibling, skip to the sibling. */
5684
5685 pdi = pdi->die_sibling;
5686 }
5687 }
5688
5689 /* Functions used to compute the fully scoped name of a partial DIE.
5690
5691 Normally, this is simple. For C++, the parent DIE's fully scoped
5692 name is concatenated with "::" and the partial DIE's name. For
5693 Java, the same thing occurs except that "." is used instead of "::".
5694 Enumerators are an exception; they use the scope of their parent
5695 enumeration type, i.e. the name of the enumeration type is not
5696 prepended to the enumerator.
5697
5698 There are two complexities. One is DW_AT_specification; in this
5699 case "parent" means the parent of the target of the specification,
5700 instead of the direct parent of the DIE. The other is compilers
5701 which do not emit DW_TAG_namespace; in this case we try to guess
5702 the fully qualified name of structure types from their members'
5703 linkage names. This must be done using the DIE's children rather
5704 than the children of any DW_AT_specification target. We only need
5705 to do this for structures at the top level, i.e. if the target of
5706 any DW_AT_specification (if any; otherwise the DIE itself) does not
5707 have a parent. */
5708
5709 /* Compute the scope prefix associated with PDI's parent, in
5710 compilation unit CU. The result will be allocated on CU's
5711 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5712 field. NULL is returned if no prefix is necessary. */
5713 static char *
5714 partial_die_parent_scope (struct partial_die_info *pdi,
5715 struct dwarf2_cu *cu)
5716 {
5717 char *grandparent_scope;
5718 struct partial_die_info *parent, *real_pdi;
5719
5720 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5721 then this means the parent of the specification DIE. */
5722
5723 real_pdi = pdi;
5724 while (real_pdi->has_specification)
5725 real_pdi = find_partial_die (real_pdi->spec_offset,
5726 real_pdi->spec_is_dwz, cu);
5727
5728 parent = real_pdi->die_parent;
5729 if (parent == NULL)
5730 return NULL;
5731
5732 if (parent->scope_set)
5733 return parent->scope;
5734
5735 fixup_partial_die (parent, cu);
5736
5737 grandparent_scope = partial_die_parent_scope (parent, cu);
5738
5739 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5740 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5741 Work around this problem here. */
5742 if (cu->language == language_cplus
5743 && parent->tag == DW_TAG_namespace
5744 && strcmp (parent->name, "::") == 0
5745 && grandparent_scope == NULL)
5746 {
5747 parent->scope = NULL;
5748 parent->scope_set = 1;
5749 return NULL;
5750 }
5751
5752 if (pdi->tag == DW_TAG_enumerator)
5753 /* Enumerators should not get the name of the enumeration as a prefix. */
5754 parent->scope = grandparent_scope;
5755 else if (parent->tag == DW_TAG_namespace
5756 || parent->tag == DW_TAG_module
5757 || parent->tag == DW_TAG_structure_type
5758 || parent->tag == DW_TAG_class_type
5759 || parent->tag == DW_TAG_interface_type
5760 || parent->tag == DW_TAG_union_type
5761 || parent->tag == DW_TAG_enumeration_type)
5762 {
5763 if (grandparent_scope == NULL)
5764 parent->scope = parent->name;
5765 else
5766 parent->scope = typename_concat (&cu->comp_unit_obstack,
5767 grandparent_scope,
5768 parent->name, 0, cu);
5769 }
5770 else
5771 {
5772 /* FIXME drow/2004-04-01: What should we be doing with
5773 function-local names? For partial symbols, we should probably be
5774 ignoring them. */
5775 complaint (&symfile_complaints,
5776 _("unhandled containing DIE tag %d for DIE at %d"),
5777 parent->tag, pdi->offset.sect_off);
5778 parent->scope = grandparent_scope;
5779 }
5780
5781 parent->scope_set = 1;
5782 return parent->scope;
5783 }
5784
5785 /* Return the fully scoped name associated with PDI, from compilation unit
5786 CU. The result will be allocated with malloc. */
5787
5788 static char *
5789 partial_die_full_name (struct partial_die_info *pdi,
5790 struct dwarf2_cu *cu)
5791 {
5792 char *parent_scope;
5793
5794 /* If this is a template instantiation, we can not work out the
5795 template arguments from partial DIEs. So, unfortunately, we have
5796 to go through the full DIEs. At least any work we do building
5797 types here will be reused if full symbols are loaded later. */
5798 if (pdi->has_template_arguments)
5799 {
5800 fixup_partial_die (pdi, cu);
5801
5802 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5803 {
5804 struct die_info *die;
5805 struct attribute attr;
5806 struct dwarf2_cu *ref_cu = cu;
5807
5808 /* DW_FORM_ref_addr is using section offset. */
5809 attr.name = 0;
5810 attr.form = DW_FORM_ref_addr;
5811 attr.u.unsnd = pdi->offset.sect_off;
5812 die = follow_die_ref (NULL, &attr, &ref_cu);
5813
5814 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5815 }
5816 }
5817
5818 parent_scope = partial_die_parent_scope (pdi, cu);
5819 if (parent_scope == NULL)
5820 return NULL;
5821 else
5822 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5823 }
5824
5825 static void
5826 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5827 {
5828 struct objfile *objfile = cu->objfile;
5829 CORE_ADDR addr = 0;
5830 char *actual_name = NULL;
5831 CORE_ADDR baseaddr;
5832 int built_actual_name = 0;
5833
5834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5835
5836 actual_name = partial_die_full_name (pdi, cu);
5837 if (actual_name)
5838 built_actual_name = 1;
5839
5840 if (actual_name == NULL)
5841 actual_name = pdi->name;
5842
5843 switch (pdi->tag)
5844 {
5845 case DW_TAG_subprogram:
5846 if (pdi->is_external || cu->language == language_ada)
5847 {
5848 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5849 of the global scope. But in Ada, we want to be able to access
5850 nested procedures globally. So all Ada subprograms are stored
5851 in the global scope. */
5852 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5853 mst_text, objfile); */
5854 add_psymbol_to_list (actual_name, strlen (actual_name),
5855 built_actual_name,
5856 VAR_DOMAIN, LOC_BLOCK,
5857 &objfile->global_psymbols,
5858 0, pdi->lowpc + baseaddr,
5859 cu->language, objfile);
5860 }
5861 else
5862 {
5863 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5864 mst_file_text, objfile); */
5865 add_psymbol_to_list (actual_name, strlen (actual_name),
5866 built_actual_name,
5867 VAR_DOMAIN, LOC_BLOCK,
5868 &objfile->static_psymbols,
5869 0, pdi->lowpc + baseaddr,
5870 cu->language, objfile);
5871 }
5872 break;
5873 case DW_TAG_constant:
5874 {
5875 struct psymbol_allocation_list *list;
5876
5877 if (pdi->is_external)
5878 list = &objfile->global_psymbols;
5879 else
5880 list = &objfile->static_psymbols;
5881 add_psymbol_to_list (actual_name, strlen (actual_name),
5882 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5883 list, 0, 0, cu->language, objfile);
5884 }
5885 break;
5886 case DW_TAG_variable:
5887 if (pdi->d.locdesc)
5888 addr = decode_locdesc (pdi->d.locdesc, cu);
5889
5890 if (pdi->d.locdesc
5891 && addr == 0
5892 && !dwarf2_per_objfile->has_section_at_zero)
5893 {
5894 /* A global or static variable may also have been stripped
5895 out by the linker if unused, in which case its address
5896 will be nullified; do not add such variables into partial
5897 symbol table then. */
5898 }
5899 else if (pdi->is_external)
5900 {
5901 /* Global Variable.
5902 Don't enter into the minimal symbol tables as there is
5903 a minimal symbol table entry from the ELF symbols already.
5904 Enter into partial symbol table if it has a location
5905 descriptor or a type.
5906 If the location descriptor is missing, new_symbol will create
5907 a LOC_UNRESOLVED symbol, the address of the variable will then
5908 be determined from the minimal symbol table whenever the variable
5909 is referenced.
5910 The address for the partial symbol table entry is not
5911 used by GDB, but it comes in handy for debugging partial symbol
5912 table building. */
5913
5914 if (pdi->d.locdesc || pdi->has_type)
5915 add_psymbol_to_list (actual_name, strlen (actual_name),
5916 built_actual_name,
5917 VAR_DOMAIN, LOC_STATIC,
5918 &objfile->global_psymbols,
5919 0, addr + baseaddr,
5920 cu->language, objfile);
5921 }
5922 else
5923 {
5924 /* Static Variable. Skip symbols without location descriptors. */
5925 if (pdi->d.locdesc == NULL)
5926 {
5927 if (built_actual_name)
5928 xfree (actual_name);
5929 return;
5930 }
5931 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5932 mst_file_data, objfile); */
5933 add_psymbol_to_list (actual_name, strlen (actual_name),
5934 built_actual_name,
5935 VAR_DOMAIN, LOC_STATIC,
5936 &objfile->static_psymbols,
5937 0, addr + baseaddr,
5938 cu->language, objfile);
5939 }
5940 break;
5941 case DW_TAG_typedef:
5942 case DW_TAG_base_type:
5943 case DW_TAG_subrange_type:
5944 add_psymbol_to_list (actual_name, strlen (actual_name),
5945 built_actual_name,
5946 VAR_DOMAIN, LOC_TYPEDEF,
5947 &objfile->static_psymbols,
5948 0, (CORE_ADDR) 0, cu->language, objfile);
5949 break;
5950 case DW_TAG_namespace:
5951 add_psymbol_to_list (actual_name, strlen (actual_name),
5952 built_actual_name,
5953 VAR_DOMAIN, LOC_TYPEDEF,
5954 &objfile->global_psymbols,
5955 0, (CORE_ADDR) 0, cu->language, objfile);
5956 break;
5957 case DW_TAG_class_type:
5958 case DW_TAG_interface_type:
5959 case DW_TAG_structure_type:
5960 case DW_TAG_union_type:
5961 case DW_TAG_enumeration_type:
5962 /* Skip external references. The DWARF standard says in the section
5963 about "Structure, Union, and Class Type Entries": "An incomplete
5964 structure, union or class type is represented by a structure,
5965 union or class entry that does not have a byte size attribute
5966 and that has a DW_AT_declaration attribute." */
5967 if (!pdi->has_byte_size && pdi->is_declaration)
5968 {
5969 if (built_actual_name)
5970 xfree (actual_name);
5971 return;
5972 }
5973
5974 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5975 static vs. global. */
5976 add_psymbol_to_list (actual_name, strlen (actual_name),
5977 built_actual_name,
5978 STRUCT_DOMAIN, LOC_TYPEDEF,
5979 (cu->language == language_cplus
5980 || cu->language == language_java)
5981 ? &objfile->global_psymbols
5982 : &objfile->static_psymbols,
5983 0, (CORE_ADDR) 0, cu->language, objfile);
5984
5985 break;
5986 case DW_TAG_enumerator:
5987 add_psymbol_to_list (actual_name, strlen (actual_name),
5988 built_actual_name,
5989 VAR_DOMAIN, LOC_CONST,
5990 (cu->language == language_cplus
5991 || cu->language == language_java)
5992 ? &objfile->global_psymbols
5993 : &objfile->static_psymbols,
5994 0, (CORE_ADDR) 0, cu->language, objfile);
5995 break;
5996 default:
5997 break;
5998 }
5999
6000 if (built_actual_name)
6001 xfree (actual_name);
6002 }
6003
6004 /* Read a partial die corresponding to a namespace; also, add a symbol
6005 corresponding to that namespace to the symbol table. NAMESPACE is
6006 the name of the enclosing namespace. */
6007
6008 static void
6009 add_partial_namespace (struct partial_die_info *pdi,
6010 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6011 int need_pc, struct dwarf2_cu *cu)
6012 {
6013 /* Add a symbol for the namespace. */
6014
6015 add_partial_symbol (pdi, cu);
6016
6017 /* Now scan partial symbols in that namespace. */
6018
6019 if (pdi->has_children)
6020 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6021 }
6022
6023 /* Read a partial die corresponding to a Fortran module. */
6024
6025 static void
6026 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6027 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6028 {
6029 /* Now scan partial symbols in that module. */
6030
6031 if (pdi->has_children)
6032 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6033 }
6034
6035 /* Read a partial die corresponding to a subprogram and create a partial
6036 symbol for that subprogram. When the CU language allows it, this
6037 routine also defines a partial symbol for each nested subprogram
6038 that this subprogram contains.
6039
6040 DIE my also be a lexical block, in which case we simply search
6041 recursively for suprograms defined inside that lexical block.
6042 Again, this is only performed when the CU language allows this
6043 type of definitions. */
6044
6045 static void
6046 add_partial_subprogram (struct partial_die_info *pdi,
6047 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6048 int need_pc, struct dwarf2_cu *cu)
6049 {
6050 if (pdi->tag == DW_TAG_subprogram)
6051 {
6052 if (pdi->has_pc_info)
6053 {
6054 if (pdi->lowpc < *lowpc)
6055 *lowpc = pdi->lowpc;
6056 if (pdi->highpc > *highpc)
6057 *highpc = pdi->highpc;
6058 if (need_pc)
6059 {
6060 CORE_ADDR baseaddr;
6061 struct objfile *objfile = cu->objfile;
6062
6063 baseaddr = ANOFFSET (objfile->section_offsets,
6064 SECT_OFF_TEXT (objfile));
6065 addrmap_set_empty (objfile->psymtabs_addrmap,
6066 pdi->lowpc + baseaddr,
6067 pdi->highpc - 1 + baseaddr,
6068 cu->per_cu->v.psymtab);
6069 }
6070 }
6071
6072 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6073 {
6074 if (!pdi->is_declaration)
6075 /* Ignore subprogram DIEs that do not have a name, they are
6076 illegal. Do not emit a complaint at this point, we will
6077 do so when we convert this psymtab into a symtab. */
6078 if (pdi->name)
6079 add_partial_symbol (pdi, cu);
6080 }
6081 }
6082
6083 if (! pdi->has_children)
6084 return;
6085
6086 if (cu->language == language_ada)
6087 {
6088 pdi = pdi->die_child;
6089 while (pdi != NULL)
6090 {
6091 fixup_partial_die (pdi, cu);
6092 if (pdi->tag == DW_TAG_subprogram
6093 || pdi->tag == DW_TAG_lexical_block)
6094 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6095 pdi = pdi->die_sibling;
6096 }
6097 }
6098 }
6099
6100 /* Read a partial die corresponding to an enumeration type. */
6101
6102 static void
6103 add_partial_enumeration (struct partial_die_info *enum_pdi,
6104 struct dwarf2_cu *cu)
6105 {
6106 struct partial_die_info *pdi;
6107
6108 if (enum_pdi->name != NULL)
6109 add_partial_symbol (enum_pdi, cu);
6110
6111 pdi = enum_pdi->die_child;
6112 while (pdi)
6113 {
6114 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6115 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6116 else
6117 add_partial_symbol (pdi, cu);
6118 pdi = pdi->die_sibling;
6119 }
6120 }
6121
6122 /* Return the initial uleb128 in the die at INFO_PTR. */
6123
6124 static unsigned int
6125 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6126 {
6127 unsigned int bytes_read;
6128
6129 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6130 }
6131
6132 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6133 Return the corresponding abbrev, or NULL if the number is zero (indicating
6134 an empty DIE). In either case *BYTES_READ will be set to the length of
6135 the initial number. */
6136
6137 static struct abbrev_info *
6138 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6139 struct dwarf2_cu *cu)
6140 {
6141 bfd *abfd = cu->objfile->obfd;
6142 unsigned int abbrev_number;
6143 struct abbrev_info *abbrev;
6144
6145 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6146
6147 if (abbrev_number == 0)
6148 return NULL;
6149
6150 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6151 if (!abbrev)
6152 {
6153 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6154 abbrev_number, bfd_get_filename (abfd));
6155 }
6156
6157 return abbrev;
6158 }
6159
6160 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6161 Returns a pointer to the end of a series of DIEs, terminated by an empty
6162 DIE. Any children of the skipped DIEs will also be skipped. */
6163
6164 static gdb_byte *
6165 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6166 {
6167 struct dwarf2_cu *cu = reader->cu;
6168 struct abbrev_info *abbrev;
6169 unsigned int bytes_read;
6170
6171 while (1)
6172 {
6173 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6174 if (abbrev == NULL)
6175 return info_ptr + bytes_read;
6176 else
6177 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6178 }
6179 }
6180
6181 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6182 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6183 abbrev corresponding to that skipped uleb128 should be passed in
6184 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6185 children. */
6186
6187 static gdb_byte *
6188 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6189 struct abbrev_info *abbrev)
6190 {
6191 unsigned int bytes_read;
6192 struct attribute attr;
6193 bfd *abfd = reader->abfd;
6194 struct dwarf2_cu *cu = reader->cu;
6195 gdb_byte *buffer = reader->buffer;
6196 const gdb_byte *buffer_end = reader->buffer_end;
6197 gdb_byte *start_info_ptr = info_ptr;
6198 unsigned int form, i;
6199
6200 for (i = 0; i < abbrev->num_attrs; i++)
6201 {
6202 /* The only abbrev we care about is DW_AT_sibling. */
6203 if (abbrev->attrs[i].name == DW_AT_sibling)
6204 {
6205 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6206 if (attr.form == DW_FORM_ref_addr)
6207 complaint (&symfile_complaints,
6208 _("ignoring absolute DW_AT_sibling"));
6209 else
6210 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6211 }
6212
6213 /* If it isn't DW_AT_sibling, skip this attribute. */
6214 form = abbrev->attrs[i].form;
6215 skip_attribute:
6216 switch (form)
6217 {
6218 case DW_FORM_ref_addr:
6219 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6220 and later it is offset sized. */
6221 if (cu->header.version == 2)
6222 info_ptr += cu->header.addr_size;
6223 else
6224 info_ptr += cu->header.offset_size;
6225 break;
6226 case DW_FORM_GNU_ref_alt:
6227 info_ptr += cu->header.offset_size;
6228 break;
6229 case DW_FORM_addr:
6230 info_ptr += cu->header.addr_size;
6231 break;
6232 case DW_FORM_data1:
6233 case DW_FORM_ref1:
6234 case DW_FORM_flag:
6235 info_ptr += 1;
6236 break;
6237 case DW_FORM_flag_present:
6238 break;
6239 case DW_FORM_data2:
6240 case DW_FORM_ref2:
6241 info_ptr += 2;
6242 break;
6243 case DW_FORM_data4:
6244 case DW_FORM_ref4:
6245 info_ptr += 4;
6246 break;
6247 case DW_FORM_data8:
6248 case DW_FORM_ref8:
6249 case DW_FORM_ref_sig8:
6250 info_ptr += 8;
6251 break;
6252 case DW_FORM_string:
6253 read_direct_string (abfd, info_ptr, &bytes_read);
6254 info_ptr += bytes_read;
6255 break;
6256 case DW_FORM_sec_offset:
6257 case DW_FORM_strp:
6258 case DW_FORM_GNU_strp_alt:
6259 info_ptr += cu->header.offset_size;
6260 break;
6261 case DW_FORM_exprloc:
6262 case DW_FORM_block:
6263 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6264 info_ptr += bytes_read;
6265 break;
6266 case DW_FORM_block1:
6267 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6268 break;
6269 case DW_FORM_block2:
6270 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6271 break;
6272 case DW_FORM_block4:
6273 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6274 break;
6275 case DW_FORM_sdata:
6276 case DW_FORM_udata:
6277 case DW_FORM_ref_udata:
6278 case DW_FORM_GNU_addr_index:
6279 case DW_FORM_GNU_str_index:
6280 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6281 break;
6282 case DW_FORM_indirect:
6283 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6284 info_ptr += bytes_read;
6285 /* We need to continue parsing from here, so just go back to
6286 the top. */
6287 goto skip_attribute;
6288
6289 default:
6290 error (_("Dwarf Error: Cannot handle %s "
6291 "in DWARF reader [in module %s]"),
6292 dwarf_form_name (form),
6293 bfd_get_filename (abfd));
6294 }
6295 }
6296
6297 if (abbrev->has_children)
6298 return skip_children (reader, info_ptr);
6299 else
6300 return info_ptr;
6301 }
6302
6303 /* Locate ORIG_PDI's sibling.
6304 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6305
6306 static gdb_byte *
6307 locate_pdi_sibling (const struct die_reader_specs *reader,
6308 struct partial_die_info *orig_pdi,
6309 gdb_byte *info_ptr)
6310 {
6311 /* Do we know the sibling already? */
6312
6313 if (orig_pdi->sibling)
6314 return orig_pdi->sibling;
6315
6316 /* Are there any children to deal with? */
6317
6318 if (!orig_pdi->has_children)
6319 return info_ptr;
6320
6321 /* Skip the children the long way. */
6322
6323 return skip_children (reader, info_ptr);
6324 }
6325
6326 /* Expand this partial symbol table into a full symbol table. */
6327
6328 static void
6329 dwarf2_psymtab_to_symtab (struct objfile *objfile, struct partial_symtab *pst)
6330 {
6331 if (pst != NULL)
6332 {
6333 if (pst->readin)
6334 {
6335 warning (_("bug: psymtab for %s is already read in."),
6336 pst->filename);
6337 }
6338 else
6339 {
6340 if (info_verbose)
6341 {
6342 printf_filtered (_("Reading in symbols for %s..."),
6343 pst->filename);
6344 gdb_flush (gdb_stdout);
6345 }
6346
6347 /* Restore our global data. */
6348 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6349
6350 /* If this psymtab is constructed from a debug-only objfile, the
6351 has_section_at_zero flag will not necessarily be correct. We
6352 can get the correct value for this flag by looking at the data
6353 associated with the (presumably stripped) associated objfile. */
6354 if (objfile->separate_debug_objfile_backlink)
6355 {
6356 struct dwarf2_per_objfile *dpo_backlink
6357 = objfile_data (objfile->separate_debug_objfile_backlink,
6358 dwarf2_objfile_data_key);
6359
6360 dwarf2_per_objfile->has_section_at_zero
6361 = dpo_backlink->has_section_at_zero;
6362 }
6363
6364 dwarf2_per_objfile->reading_partial_symbols = 0;
6365
6366 psymtab_to_symtab_1 (pst);
6367
6368 /* Finish up the debug error message. */
6369 if (info_verbose)
6370 printf_filtered (_("done.\n"));
6371 }
6372 }
6373
6374 process_cu_includes ();
6375 }
6376 \f
6377 /* Reading in full CUs. */
6378
6379 /* Add PER_CU to the queue. */
6380
6381 static void
6382 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6383 enum language pretend_language)
6384 {
6385 struct dwarf2_queue_item *item;
6386
6387 per_cu->queued = 1;
6388 item = xmalloc (sizeof (*item));
6389 item->per_cu = per_cu;
6390 item->pretend_language = pretend_language;
6391 item->next = NULL;
6392
6393 if (dwarf2_queue == NULL)
6394 dwarf2_queue = item;
6395 else
6396 dwarf2_queue_tail->next = item;
6397
6398 dwarf2_queue_tail = item;
6399 }
6400
6401 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6402 unit and add it to our queue.
6403 The result is non-zero if PER_CU was queued, otherwise the result is zero
6404 meaning either PER_CU is already queued or it is already loaded. */
6405
6406 static int
6407 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6408 struct dwarf2_per_cu_data *per_cu,
6409 enum language pretend_language)
6410 {
6411 /* We may arrive here during partial symbol reading, if we need full
6412 DIEs to process an unusual case (e.g. template arguments). Do
6413 not queue PER_CU, just tell our caller to load its DIEs. */
6414 if (dwarf2_per_objfile->reading_partial_symbols)
6415 {
6416 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6417 return 1;
6418 return 0;
6419 }
6420
6421 /* Mark the dependence relation so that we don't flush PER_CU
6422 too early. */
6423 dwarf2_add_dependence (this_cu, per_cu);
6424
6425 /* If it's already on the queue, we have nothing to do. */
6426 if (per_cu->queued)
6427 return 0;
6428
6429 /* If the compilation unit is already loaded, just mark it as
6430 used. */
6431 if (per_cu->cu != NULL)
6432 {
6433 per_cu->cu->last_used = 0;
6434 return 0;
6435 }
6436
6437 /* Add it to the queue. */
6438 queue_comp_unit (per_cu, pretend_language);
6439
6440 return 1;
6441 }
6442
6443 /* Process the queue. */
6444
6445 static void
6446 process_queue (void)
6447 {
6448 struct dwarf2_queue_item *item, *next_item;
6449
6450 if (dwarf2_read_debug)
6451 {
6452 fprintf_unfiltered (gdb_stdlog,
6453 "Expanding one or more symtabs of objfile %s ...\n",
6454 dwarf2_per_objfile->objfile->name);
6455 }
6456
6457 /* The queue starts out with one item, but following a DIE reference
6458 may load a new CU, adding it to the end of the queue. */
6459 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6460 {
6461 if (dwarf2_per_objfile->using_index
6462 ? !item->per_cu->v.quick->symtab
6463 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6464 {
6465 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6466
6467 if (dwarf2_read_debug)
6468 {
6469 fprintf_unfiltered (gdb_stdlog,
6470 "Expanding symtab of %s at offset 0x%x\n",
6471 per_cu->is_debug_types ? "TU" : "CU",
6472 per_cu->offset.sect_off);
6473 }
6474
6475 if (per_cu->is_debug_types)
6476 process_full_type_unit (per_cu, item->pretend_language);
6477 else
6478 process_full_comp_unit (per_cu, item->pretend_language);
6479
6480 if (dwarf2_read_debug)
6481 {
6482 fprintf_unfiltered (gdb_stdlog,
6483 "Done expanding %s at offset 0x%x\n",
6484 per_cu->is_debug_types ? "TU" : "CU",
6485 per_cu->offset.sect_off);
6486 }
6487 }
6488
6489 item->per_cu->queued = 0;
6490 next_item = item->next;
6491 xfree (item);
6492 }
6493
6494 dwarf2_queue_tail = NULL;
6495
6496 if (dwarf2_read_debug)
6497 {
6498 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6499 dwarf2_per_objfile->objfile->name);
6500 }
6501 }
6502
6503 /* Free all allocated queue entries. This function only releases anything if
6504 an error was thrown; if the queue was processed then it would have been
6505 freed as we went along. */
6506
6507 static void
6508 dwarf2_release_queue (void *dummy)
6509 {
6510 struct dwarf2_queue_item *item, *last;
6511
6512 item = dwarf2_queue;
6513 while (item)
6514 {
6515 /* Anything still marked queued is likely to be in an
6516 inconsistent state, so discard it. */
6517 if (item->per_cu->queued)
6518 {
6519 if (item->per_cu->cu != NULL)
6520 free_one_cached_comp_unit (item->per_cu);
6521 item->per_cu->queued = 0;
6522 }
6523
6524 last = item;
6525 item = item->next;
6526 xfree (last);
6527 }
6528
6529 dwarf2_queue = dwarf2_queue_tail = NULL;
6530 }
6531
6532 /* Read in full symbols for PST, and anything it depends on. */
6533
6534 static void
6535 psymtab_to_symtab_1 (struct partial_symtab *pst)
6536 {
6537 struct dwarf2_per_cu_data *per_cu;
6538 int i;
6539
6540 if (pst->readin)
6541 return;
6542
6543 for (i = 0; i < pst->number_of_dependencies; i++)
6544 if (!pst->dependencies[i]->readin
6545 && pst->dependencies[i]->user == NULL)
6546 {
6547 /* Inform about additional files that need to be read in. */
6548 if (info_verbose)
6549 {
6550 /* FIXME: i18n: Need to make this a single string. */
6551 fputs_filtered (" ", gdb_stdout);
6552 wrap_here ("");
6553 fputs_filtered ("and ", gdb_stdout);
6554 wrap_here ("");
6555 printf_filtered ("%s...", pst->dependencies[i]->filename);
6556 wrap_here (""); /* Flush output. */
6557 gdb_flush (gdb_stdout);
6558 }
6559 psymtab_to_symtab_1 (pst->dependencies[i]);
6560 }
6561
6562 per_cu = pst->read_symtab_private;
6563
6564 if (per_cu == NULL)
6565 {
6566 /* It's an include file, no symbols to read for it.
6567 Everything is in the parent symtab. */
6568 pst->readin = 1;
6569 return;
6570 }
6571
6572 dw2_do_instantiate_symtab (per_cu);
6573 }
6574
6575 /* Trivial hash function for die_info: the hash value of a DIE
6576 is its offset in .debug_info for this objfile. */
6577
6578 static hashval_t
6579 die_hash (const void *item)
6580 {
6581 const struct die_info *die = item;
6582
6583 return die->offset.sect_off;
6584 }
6585
6586 /* Trivial comparison function for die_info structures: two DIEs
6587 are equal if they have the same offset. */
6588
6589 static int
6590 die_eq (const void *item_lhs, const void *item_rhs)
6591 {
6592 const struct die_info *die_lhs = item_lhs;
6593 const struct die_info *die_rhs = item_rhs;
6594
6595 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6596 }
6597
6598 /* die_reader_func for load_full_comp_unit.
6599 This is identical to read_signatured_type_reader,
6600 but is kept separate for now. */
6601
6602 static void
6603 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6604 gdb_byte *info_ptr,
6605 struct die_info *comp_unit_die,
6606 int has_children,
6607 void *data)
6608 {
6609 struct dwarf2_cu *cu = reader->cu;
6610 enum language *language_ptr = data;
6611
6612 gdb_assert (cu->die_hash == NULL);
6613 cu->die_hash =
6614 htab_create_alloc_ex (cu->header.length / 12,
6615 die_hash,
6616 die_eq,
6617 NULL,
6618 &cu->comp_unit_obstack,
6619 hashtab_obstack_allocate,
6620 dummy_obstack_deallocate);
6621
6622 if (has_children)
6623 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6624 &info_ptr, comp_unit_die);
6625 cu->dies = comp_unit_die;
6626 /* comp_unit_die is not stored in die_hash, no need. */
6627
6628 /* We try not to read any attributes in this function, because not
6629 all CUs needed for references have been loaded yet, and symbol
6630 table processing isn't initialized. But we have to set the CU language,
6631 or we won't be able to build types correctly.
6632 Similarly, if we do not read the producer, we can not apply
6633 producer-specific interpretation. */
6634 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6635 }
6636
6637 /* Load the DIEs associated with PER_CU into memory. */
6638
6639 static void
6640 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6641 enum language pretend_language)
6642 {
6643 gdb_assert (! this_cu->is_debug_types);
6644
6645 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6646 load_full_comp_unit_reader, &pretend_language);
6647 }
6648
6649 /* Add a DIE to the delayed physname list. */
6650
6651 static void
6652 add_to_method_list (struct type *type, int fnfield_index, int index,
6653 const char *name, struct die_info *die,
6654 struct dwarf2_cu *cu)
6655 {
6656 struct delayed_method_info mi;
6657 mi.type = type;
6658 mi.fnfield_index = fnfield_index;
6659 mi.index = index;
6660 mi.name = name;
6661 mi.die = die;
6662 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6663 }
6664
6665 /* A cleanup for freeing the delayed method list. */
6666
6667 static void
6668 free_delayed_list (void *ptr)
6669 {
6670 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6671 if (cu->method_list != NULL)
6672 {
6673 VEC_free (delayed_method_info, cu->method_list);
6674 cu->method_list = NULL;
6675 }
6676 }
6677
6678 /* Compute the physnames of any methods on the CU's method list.
6679
6680 The computation of method physnames is delayed in order to avoid the
6681 (bad) condition that one of the method's formal parameters is of an as yet
6682 incomplete type. */
6683
6684 static void
6685 compute_delayed_physnames (struct dwarf2_cu *cu)
6686 {
6687 int i;
6688 struct delayed_method_info *mi;
6689 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6690 {
6691 const char *physname;
6692 struct fn_fieldlist *fn_flp
6693 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6694 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6695 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6696 }
6697 }
6698
6699 /* Go objects should be embedded in a DW_TAG_module DIE,
6700 and it's not clear if/how imported objects will appear.
6701 To keep Go support simple until that's worked out,
6702 go back through what we've read and create something usable.
6703 We could do this while processing each DIE, and feels kinda cleaner,
6704 but that way is more invasive.
6705 This is to, for example, allow the user to type "p var" or "b main"
6706 without having to specify the package name, and allow lookups
6707 of module.object to work in contexts that use the expression
6708 parser. */
6709
6710 static void
6711 fixup_go_packaging (struct dwarf2_cu *cu)
6712 {
6713 char *package_name = NULL;
6714 struct pending *list;
6715 int i;
6716
6717 for (list = global_symbols; list != NULL; list = list->next)
6718 {
6719 for (i = 0; i < list->nsyms; ++i)
6720 {
6721 struct symbol *sym = list->symbol[i];
6722
6723 if (SYMBOL_LANGUAGE (sym) == language_go
6724 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6725 {
6726 char *this_package_name = go_symbol_package_name (sym);
6727
6728 if (this_package_name == NULL)
6729 continue;
6730 if (package_name == NULL)
6731 package_name = this_package_name;
6732 else
6733 {
6734 if (strcmp (package_name, this_package_name) != 0)
6735 complaint (&symfile_complaints,
6736 _("Symtab %s has objects from two different Go packages: %s and %s"),
6737 (SYMBOL_SYMTAB (sym)
6738 && SYMBOL_SYMTAB (sym)->filename
6739 ? SYMBOL_SYMTAB (sym)->filename
6740 : cu->objfile->name),
6741 this_package_name, package_name);
6742 xfree (this_package_name);
6743 }
6744 }
6745 }
6746 }
6747
6748 if (package_name != NULL)
6749 {
6750 struct objfile *objfile = cu->objfile;
6751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6752 package_name, objfile);
6753 struct symbol *sym;
6754
6755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6756
6757 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6758 SYMBOL_SET_LANGUAGE (sym, language_go);
6759 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6760 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6761 e.g., "main" finds the "main" module and not C's main(). */
6762 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6763 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6764 SYMBOL_TYPE (sym) = type;
6765
6766 add_symbol_to_list (sym, &global_symbols);
6767
6768 xfree (package_name);
6769 }
6770 }
6771
6772 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6773
6774 /* Return the symtab for PER_CU. This works properly regardless of
6775 whether we're using the index or psymtabs. */
6776
6777 static struct symtab *
6778 get_symtab (struct dwarf2_per_cu_data *per_cu)
6779 {
6780 return (dwarf2_per_objfile->using_index
6781 ? per_cu->v.quick->symtab
6782 : per_cu->v.psymtab->symtab);
6783 }
6784
6785 /* A helper function for computing the list of all symbol tables
6786 included by PER_CU. */
6787
6788 static void
6789 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6790 htab_t all_children,
6791 struct dwarf2_per_cu_data *per_cu)
6792 {
6793 void **slot;
6794 int ix;
6795 struct dwarf2_per_cu_data *iter;
6796
6797 slot = htab_find_slot (all_children, per_cu, INSERT);
6798 if (*slot != NULL)
6799 {
6800 /* This inclusion and its children have been processed. */
6801 return;
6802 }
6803
6804 *slot = per_cu;
6805 /* Only add a CU if it has a symbol table. */
6806 if (get_symtab (per_cu) != NULL)
6807 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6808
6809 for (ix = 0;
6810 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6811 ++ix)
6812 recursively_compute_inclusions (result, all_children, iter);
6813 }
6814
6815 /* Compute the symtab 'includes' fields for the symtab related to
6816 PER_CU. */
6817
6818 static void
6819 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6820 {
6821 gdb_assert (! per_cu->is_debug_types);
6822
6823 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6824 {
6825 int ix, len;
6826 struct dwarf2_per_cu_data *iter;
6827 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6828 htab_t all_children;
6829 struct symtab *symtab = get_symtab (per_cu);
6830
6831 /* If we don't have a symtab, we can just skip this case. */
6832 if (symtab == NULL)
6833 return;
6834
6835 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6836 NULL, xcalloc, xfree);
6837
6838 for (ix = 0;
6839 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6840 ix, iter);
6841 ++ix)
6842 recursively_compute_inclusions (&result_children, all_children, iter);
6843
6844 /* Now we have a transitive closure of all the included CUs, so
6845 we can convert it to a list of symtabs. */
6846 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6847 symtab->includes
6848 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6849 (len + 1) * sizeof (struct symtab *));
6850 for (ix = 0;
6851 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6852 ++ix)
6853 symtab->includes[ix] = get_symtab (iter);
6854 symtab->includes[len] = NULL;
6855
6856 VEC_free (dwarf2_per_cu_ptr, result_children);
6857 htab_delete (all_children);
6858 }
6859 }
6860
6861 /* Compute the 'includes' field for the symtabs of all the CUs we just
6862 read. */
6863
6864 static void
6865 process_cu_includes (void)
6866 {
6867 int ix;
6868 struct dwarf2_per_cu_data *iter;
6869
6870 for (ix = 0;
6871 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6872 ix, iter);
6873 ++ix)
6874 {
6875 if (! iter->is_debug_types)
6876 compute_symtab_includes (iter);
6877 }
6878
6879 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6880 }
6881
6882 /* Generate full symbol information for PER_CU, whose DIEs have
6883 already been loaded into memory. */
6884
6885 static void
6886 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6887 enum language pretend_language)
6888 {
6889 struct dwarf2_cu *cu = per_cu->cu;
6890 struct objfile *objfile = per_cu->objfile;
6891 CORE_ADDR lowpc, highpc;
6892 struct symtab *symtab;
6893 struct cleanup *back_to, *delayed_list_cleanup;
6894 CORE_ADDR baseaddr;
6895 struct block *static_block;
6896
6897 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6898
6899 buildsym_init ();
6900 back_to = make_cleanup (really_free_pendings, NULL);
6901 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6902
6903 cu->list_in_scope = &file_symbols;
6904
6905 cu->language = pretend_language;
6906 cu->language_defn = language_def (cu->language);
6907
6908 /* Do line number decoding in read_file_scope () */
6909 process_die (cu->dies, cu);
6910
6911 /* For now fudge the Go package. */
6912 if (cu->language == language_go)
6913 fixup_go_packaging (cu);
6914
6915 /* Now that we have processed all the DIEs in the CU, all the types
6916 should be complete, and it should now be safe to compute all of the
6917 physnames. */
6918 compute_delayed_physnames (cu);
6919 do_cleanups (delayed_list_cleanup);
6920
6921 /* Some compilers don't define a DW_AT_high_pc attribute for the
6922 compilation unit. If the DW_AT_high_pc is missing, synthesize
6923 it, by scanning the DIE's below the compilation unit. */
6924 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6925
6926 static_block
6927 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6928 per_cu->s.imported_symtabs != NULL);
6929
6930 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6931 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6932 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6933 addrmap to help ensure it has an accurate map of pc values belonging to
6934 this comp unit. */
6935 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6936
6937 symtab = end_symtab_from_static_block (static_block, objfile,
6938 SECT_OFF_TEXT (objfile), 0);
6939
6940 if (symtab != NULL)
6941 {
6942 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6943
6944 /* Set symtab language to language from DW_AT_language. If the
6945 compilation is from a C file generated by language preprocessors, do
6946 not set the language if it was already deduced by start_subfile. */
6947 if (!(cu->language == language_c && symtab->language != language_c))
6948 symtab->language = cu->language;
6949
6950 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6951 produce DW_AT_location with location lists but it can be possibly
6952 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6953 there were bugs in prologue debug info, fixed later in GCC-4.5
6954 by "unwind info for epilogues" patch (which is not directly related).
6955
6956 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6957 needed, it would be wrong due to missing DW_AT_producer there.
6958
6959 Still one can confuse GDB by using non-standard GCC compilation
6960 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6961 */
6962 if (cu->has_loclist && gcc_4_minor >= 5)
6963 symtab->locations_valid = 1;
6964
6965 if (gcc_4_minor >= 5)
6966 symtab->epilogue_unwind_valid = 1;
6967
6968 symtab->call_site_htab = cu->call_site_htab;
6969 }
6970
6971 if (dwarf2_per_objfile->using_index)
6972 per_cu->v.quick->symtab = symtab;
6973 else
6974 {
6975 struct partial_symtab *pst = per_cu->v.psymtab;
6976 pst->symtab = symtab;
6977 pst->readin = 1;
6978 }
6979
6980 /* Push it for inclusion processing later. */
6981 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6982
6983 do_cleanups (back_to);
6984 }
6985
6986 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6987 already been loaded into memory. */
6988
6989 static void
6990 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6991 enum language pretend_language)
6992 {
6993 struct dwarf2_cu *cu = per_cu->cu;
6994 struct objfile *objfile = per_cu->objfile;
6995 struct symtab *symtab;
6996 struct cleanup *back_to, *delayed_list_cleanup;
6997
6998 buildsym_init ();
6999 back_to = make_cleanup (really_free_pendings, NULL);
7000 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7001
7002 cu->list_in_scope = &file_symbols;
7003
7004 cu->language = pretend_language;
7005 cu->language_defn = language_def (cu->language);
7006
7007 /* The symbol tables are set up in read_type_unit_scope. */
7008 process_die (cu->dies, cu);
7009
7010 /* For now fudge the Go package. */
7011 if (cu->language == language_go)
7012 fixup_go_packaging (cu);
7013
7014 /* Now that we have processed all the DIEs in the CU, all the types
7015 should be complete, and it should now be safe to compute all of the
7016 physnames. */
7017 compute_delayed_physnames (cu);
7018 do_cleanups (delayed_list_cleanup);
7019
7020 /* TUs share symbol tables.
7021 If this is the first TU to use this symtab, complete the construction
7022 of it with end_expandable_symtab. Otherwise, complete the addition of
7023 this TU's symbols to the existing symtab. */
7024 if (per_cu->s.type_unit_group->primary_symtab == NULL)
7025 {
7026 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7027 per_cu->s.type_unit_group->primary_symtab = symtab;
7028
7029 if (symtab != NULL)
7030 {
7031 /* Set symtab language to language from DW_AT_language. If the
7032 compilation is from a C file generated by language preprocessors,
7033 do not set the language if it was already deduced by
7034 start_subfile. */
7035 if (!(cu->language == language_c && symtab->language != language_c))
7036 symtab->language = cu->language;
7037 }
7038 }
7039 else
7040 {
7041 augment_type_symtab (objfile,
7042 per_cu->s.type_unit_group->primary_symtab);
7043 symtab = per_cu->s.type_unit_group->primary_symtab;
7044 }
7045
7046 if (dwarf2_per_objfile->using_index)
7047 per_cu->v.quick->symtab = symtab;
7048 else
7049 {
7050 struct partial_symtab *pst = per_cu->v.psymtab;
7051 pst->symtab = symtab;
7052 pst->readin = 1;
7053 }
7054
7055 do_cleanups (back_to);
7056 }
7057
7058 /* Process an imported unit DIE. */
7059
7060 static void
7061 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7062 {
7063 struct attribute *attr;
7064
7065 /* For now we don't handle imported units in type units. */
7066 if (cu->per_cu->is_debug_types)
7067 {
7068 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7069 " supported in type units [in module %s]"),
7070 cu->objfile->name);
7071 }
7072
7073 attr = dwarf2_attr (die, DW_AT_import, cu);
7074 if (attr != NULL)
7075 {
7076 struct dwarf2_per_cu_data *per_cu;
7077 struct symtab *imported_symtab;
7078 sect_offset offset;
7079 int is_dwz;
7080
7081 offset = dwarf2_get_ref_die_offset (attr);
7082 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7083 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7084
7085 /* Queue the unit, if needed. */
7086 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7087 load_full_comp_unit (per_cu, cu->language);
7088
7089 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7090 per_cu);
7091 }
7092 }
7093
7094 /* Process a die and its children. */
7095
7096 static void
7097 process_die (struct die_info *die, struct dwarf2_cu *cu)
7098 {
7099 switch (die->tag)
7100 {
7101 case DW_TAG_padding:
7102 break;
7103 case DW_TAG_compile_unit:
7104 case DW_TAG_partial_unit:
7105 read_file_scope (die, cu);
7106 break;
7107 case DW_TAG_type_unit:
7108 read_type_unit_scope (die, cu);
7109 break;
7110 case DW_TAG_subprogram:
7111 case DW_TAG_inlined_subroutine:
7112 read_func_scope (die, cu);
7113 break;
7114 case DW_TAG_lexical_block:
7115 case DW_TAG_try_block:
7116 case DW_TAG_catch_block:
7117 read_lexical_block_scope (die, cu);
7118 break;
7119 case DW_TAG_GNU_call_site:
7120 read_call_site_scope (die, cu);
7121 break;
7122 case DW_TAG_class_type:
7123 case DW_TAG_interface_type:
7124 case DW_TAG_structure_type:
7125 case DW_TAG_union_type:
7126 process_structure_scope (die, cu);
7127 break;
7128 case DW_TAG_enumeration_type:
7129 process_enumeration_scope (die, cu);
7130 break;
7131
7132 /* These dies have a type, but processing them does not create
7133 a symbol or recurse to process the children. Therefore we can
7134 read them on-demand through read_type_die. */
7135 case DW_TAG_subroutine_type:
7136 case DW_TAG_set_type:
7137 case DW_TAG_array_type:
7138 case DW_TAG_pointer_type:
7139 case DW_TAG_ptr_to_member_type:
7140 case DW_TAG_reference_type:
7141 case DW_TAG_string_type:
7142 break;
7143
7144 case DW_TAG_base_type:
7145 case DW_TAG_subrange_type:
7146 case DW_TAG_typedef:
7147 /* Add a typedef symbol for the type definition, if it has a
7148 DW_AT_name. */
7149 new_symbol (die, read_type_die (die, cu), cu);
7150 break;
7151 case DW_TAG_common_block:
7152 read_common_block (die, cu);
7153 break;
7154 case DW_TAG_common_inclusion:
7155 break;
7156 case DW_TAG_namespace:
7157 processing_has_namespace_info = 1;
7158 read_namespace (die, cu);
7159 break;
7160 case DW_TAG_module:
7161 processing_has_namespace_info = 1;
7162 read_module (die, cu);
7163 break;
7164 case DW_TAG_imported_declaration:
7165 case DW_TAG_imported_module:
7166 processing_has_namespace_info = 1;
7167 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7168 || cu->language != language_fortran))
7169 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7170 dwarf_tag_name (die->tag));
7171 read_import_statement (die, cu);
7172 break;
7173
7174 case DW_TAG_imported_unit:
7175 process_imported_unit_die (die, cu);
7176 break;
7177
7178 default:
7179 new_symbol (die, NULL, cu);
7180 break;
7181 }
7182 }
7183
7184 /* A helper function for dwarf2_compute_name which determines whether DIE
7185 needs to have the name of the scope prepended to the name listed in the
7186 die. */
7187
7188 static int
7189 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7190 {
7191 struct attribute *attr;
7192
7193 switch (die->tag)
7194 {
7195 case DW_TAG_namespace:
7196 case DW_TAG_typedef:
7197 case DW_TAG_class_type:
7198 case DW_TAG_interface_type:
7199 case DW_TAG_structure_type:
7200 case DW_TAG_union_type:
7201 case DW_TAG_enumeration_type:
7202 case DW_TAG_enumerator:
7203 case DW_TAG_subprogram:
7204 case DW_TAG_member:
7205 return 1;
7206
7207 case DW_TAG_variable:
7208 case DW_TAG_constant:
7209 /* We only need to prefix "globally" visible variables. These include
7210 any variable marked with DW_AT_external or any variable that
7211 lives in a namespace. [Variables in anonymous namespaces
7212 require prefixing, but they are not DW_AT_external.] */
7213
7214 if (dwarf2_attr (die, DW_AT_specification, cu))
7215 {
7216 struct dwarf2_cu *spec_cu = cu;
7217
7218 return die_needs_namespace (die_specification (die, &spec_cu),
7219 spec_cu);
7220 }
7221
7222 attr = dwarf2_attr (die, DW_AT_external, cu);
7223 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7224 && die->parent->tag != DW_TAG_module)
7225 return 0;
7226 /* A variable in a lexical block of some kind does not need a
7227 namespace, even though in C++ such variables may be external
7228 and have a mangled name. */
7229 if (die->parent->tag == DW_TAG_lexical_block
7230 || die->parent->tag == DW_TAG_try_block
7231 || die->parent->tag == DW_TAG_catch_block
7232 || die->parent->tag == DW_TAG_subprogram)
7233 return 0;
7234 return 1;
7235
7236 default:
7237 return 0;
7238 }
7239 }
7240
7241 /* Retrieve the last character from a mem_file. */
7242
7243 static void
7244 do_ui_file_peek_last (void *object, const char *buffer, long length)
7245 {
7246 char *last_char_p = (char *) object;
7247
7248 if (length > 0)
7249 *last_char_p = buffer[length - 1];
7250 }
7251
7252 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7253 compute the physname for the object, which include a method's:
7254 - formal parameters (C++/Java),
7255 - receiver type (Go),
7256 - return type (Java).
7257
7258 The term "physname" is a bit confusing.
7259 For C++, for example, it is the demangled name.
7260 For Go, for example, it's the mangled name.
7261
7262 For Ada, return the DIE's linkage name rather than the fully qualified
7263 name. PHYSNAME is ignored..
7264
7265 The result is allocated on the objfile_obstack and canonicalized. */
7266
7267 static const char *
7268 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7269 int physname)
7270 {
7271 struct objfile *objfile = cu->objfile;
7272
7273 if (name == NULL)
7274 name = dwarf2_name (die, cu);
7275
7276 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7277 compute it by typename_concat inside GDB. */
7278 if (cu->language == language_ada
7279 || (cu->language == language_fortran && physname))
7280 {
7281 /* For Ada unit, we prefer the linkage name over the name, as
7282 the former contains the exported name, which the user expects
7283 to be able to reference. Ideally, we want the user to be able
7284 to reference this entity using either natural or linkage name,
7285 but we haven't started looking at this enhancement yet. */
7286 struct attribute *attr;
7287
7288 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7289 if (attr == NULL)
7290 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7291 if (attr && DW_STRING (attr))
7292 return DW_STRING (attr);
7293 }
7294
7295 /* These are the only languages we know how to qualify names in. */
7296 if (name != NULL
7297 && (cu->language == language_cplus || cu->language == language_java
7298 || cu->language == language_fortran))
7299 {
7300 if (die_needs_namespace (die, cu))
7301 {
7302 long length;
7303 const char *prefix;
7304 struct ui_file *buf;
7305
7306 prefix = determine_prefix (die, cu);
7307 buf = mem_fileopen ();
7308 if (*prefix != '\0')
7309 {
7310 char *prefixed_name = typename_concat (NULL, prefix, name,
7311 physname, cu);
7312
7313 fputs_unfiltered (prefixed_name, buf);
7314 xfree (prefixed_name);
7315 }
7316 else
7317 fputs_unfiltered (name, buf);
7318
7319 /* Template parameters may be specified in the DIE's DW_AT_name, or
7320 as children with DW_TAG_template_type_param or
7321 DW_TAG_value_type_param. If the latter, add them to the name
7322 here. If the name already has template parameters, then
7323 skip this step; some versions of GCC emit both, and
7324 it is more efficient to use the pre-computed name.
7325
7326 Something to keep in mind about this process: it is very
7327 unlikely, or in some cases downright impossible, to produce
7328 something that will match the mangled name of a function.
7329 If the definition of the function has the same debug info,
7330 we should be able to match up with it anyway. But fallbacks
7331 using the minimal symbol, for instance to find a method
7332 implemented in a stripped copy of libstdc++, will not work.
7333 If we do not have debug info for the definition, we will have to
7334 match them up some other way.
7335
7336 When we do name matching there is a related problem with function
7337 templates; two instantiated function templates are allowed to
7338 differ only by their return types, which we do not add here. */
7339
7340 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7341 {
7342 struct attribute *attr;
7343 struct die_info *child;
7344 int first = 1;
7345
7346 die->building_fullname = 1;
7347
7348 for (child = die->child; child != NULL; child = child->sibling)
7349 {
7350 struct type *type;
7351 LONGEST value;
7352 gdb_byte *bytes;
7353 struct dwarf2_locexpr_baton *baton;
7354 struct value *v;
7355
7356 if (child->tag != DW_TAG_template_type_param
7357 && child->tag != DW_TAG_template_value_param)
7358 continue;
7359
7360 if (first)
7361 {
7362 fputs_unfiltered ("<", buf);
7363 first = 0;
7364 }
7365 else
7366 fputs_unfiltered (", ", buf);
7367
7368 attr = dwarf2_attr (child, DW_AT_type, cu);
7369 if (attr == NULL)
7370 {
7371 complaint (&symfile_complaints,
7372 _("template parameter missing DW_AT_type"));
7373 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7374 continue;
7375 }
7376 type = die_type (child, cu);
7377
7378 if (child->tag == DW_TAG_template_type_param)
7379 {
7380 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7381 continue;
7382 }
7383
7384 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7385 if (attr == NULL)
7386 {
7387 complaint (&symfile_complaints,
7388 _("template parameter missing "
7389 "DW_AT_const_value"));
7390 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7391 continue;
7392 }
7393
7394 dwarf2_const_value_attr (attr, type, name,
7395 &cu->comp_unit_obstack, cu,
7396 &value, &bytes, &baton);
7397
7398 if (TYPE_NOSIGN (type))
7399 /* GDB prints characters as NUMBER 'CHAR'. If that's
7400 changed, this can use value_print instead. */
7401 c_printchar (value, type, buf);
7402 else
7403 {
7404 struct value_print_options opts;
7405
7406 if (baton != NULL)
7407 v = dwarf2_evaluate_loc_desc (type, NULL,
7408 baton->data,
7409 baton->size,
7410 baton->per_cu);
7411 else if (bytes != NULL)
7412 {
7413 v = allocate_value (type);
7414 memcpy (value_contents_writeable (v), bytes,
7415 TYPE_LENGTH (type));
7416 }
7417 else
7418 v = value_from_longest (type, value);
7419
7420 /* Specify decimal so that we do not depend on
7421 the radix. */
7422 get_formatted_print_options (&opts, 'd');
7423 opts.raw = 1;
7424 value_print (v, buf, &opts);
7425 release_value (v);
7426 value_free (v);
7427 }
7428 }
7429
7430 die->building_fullname = 0;
7431
7432 if (!first)
7433 {
7434 /* Close the argument list, with a space if necessary
7435 (nested templates). */
7436 char last_char = '\0';
7437 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7438 if (last_char == '>')
7439 fputs_unfiltered (" >", buf);
7440 else
7441 fputs_unfiltered (">", buf);
7442 }
7443 }
7444
7445 /* For Java and C++ methods, append formal parameter type
7446 information, if PHYSNAME. */
7447
7448 if (physname && die->tag == DW_TAG_subprogram
7449 && (cu->language == language_cplus
7450 || cu->language == language_java))
7451 {
7452 struct type *type = read_type_die (die, cu);
7453
7454 c_type_print_args (type, buf, 1, cu->language,
7455 &type_print_raw_options);
7456
7457 if (cu->language == language_java)
7458 {
7459 /* For java, we must append the return type to method
7460 names. */
7461 if (die->tag == DW_TAG_subprogram)
7462 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7463 0, 0, &type_print_raw_options);
7464 }
7465 else if (cu->language == language_cplus)
7466 {
7467 /* Assume that an artificial first parameter is
7468 "this", but do not crash if it is not. RealView
7469 marks unnamed (and thus unused) parameters as
7470 artificial; there is no way to differentiate
7471 the two cases. */
7472 if (TYPE_NFIELDS (type) > 0
7473 && TYPE_FIELD_ARTIFICIAL (type, 0)
7474 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7475 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7476 0))))
7477 fputs_unfiltered (" const", buf);
7478 }
7479 }
7480
7481 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7482 &length);
7483 ui_file_delete (buf);
7484
7485 if (cu->language == language_cplus)
7486 {
7487 char *cname
7488 = dwarf2_canonicalize_name (name, cu,
7489 &objfile->objfile_obstack);
7490
7491 if (cname != NULL)
7492 name = cname;
7493 }
7494 }
7495 }
7496
7497 return name;
7498 }
7499
7500 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7501 If scope qualifiers are appropriate they will be added. The result
7502 will be allocated on the objfile_obstack, or NULL if the DIE does
7503 not have a name. NAME may either be from a previous call to
7504 dwarf2_name or NULL.
7505
7506 The output string will be canonicalized (if C++/Java). */
7507
7508 static const char *
7509 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7510 {
7511 return dwarf2_compute_name (name, die, cu, 0);
7512 }
7513
7514 /* Construct a physname for the given DIE in CU. NAME may either be
7515 from a previous call to dwarf2_name or NULL. The result will be
7516 allocated on the objfile_objstack or NULL if the DIE does not have a
7517 name.
7518
7519 The output string will be canonicalized (if C++/Java). */
7520
7521 static const char *
7522 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7523 {
7524 struct objfile *objfile = cu->objfile;
7525 struct attribute *attr;
7526 const char *retval, *mangled = NULL, *canon = NULL;
7527 struct cleanup *back_to;
7528 int need_copy = 1;
7529
7530 /* In this case dwarf2_compute_name is just a shortcut not building anything
7531 on its own. */
7532 if (!die_needs_namespace (die, cu))
7533 return dwarf2_compute_name (name, die, cu, 1);
7534
7535 back_to = make_cleanup (null_cleanup, NULL);
7536
7537 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7538 if (!attr)
7539 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7540
7541 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7542 has computed. */
7543 if (attr && DW_STRING (attr))
7544 {
7545 char *demangled;
7546
7547 mangled = DW_STRING (attr);
7548
7549 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7550 type. It is easier for GDB users to search for such functions as
7551 `name(params)' than `long name(params)'. In such case the minimal
7552 symbol names do not match the full symbol names but for template
7553 functions there is never a need to look up their definition from their
7554 declaration so the only disadvantage remains the minimal symbol
7555 variant `long name(params)' does not have the proper inferior type.
7556 */
7557
7558 if (cu->language == language_go)
7559 {
7560 /* This is a lie, but we already lie to the caller new_symbol_full.
7561 new_symbol_full assumes we return the mangled name.
7562 This just undoes that lie until things are cleaned up. */
7563 demangled = NULL;
7564 }
7565 else
7566 {
7567 demangled = cplus_demangle (mangled,
7568 (DMGL_PARAMS | DMGL_ANSI
7569 | (cu->language == language_java
7570 ? DMGL_JAVA | DMGL_RET_POSTFIX
7571 : DMGL_RET_DROP)));
7572 }
7573 if (demangled)
7574 {
7575 make_cleanup (xfree, demangled);
7576 canon = demangled;
7577 }
7578 else
7579 {
7580 canon = mangled;
7581 need_copy = 0;
7582 }
7583 }
7584
7585 if (canon == NULL || check_physname)
7586 {
7587 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7588
7589 if (canon != NULL && strcmp (physname, canon) != 0)
7590 {
7591 /* It may not mean a bug in GDB. The compiler could also
7592 compute DW_AT_linkage_name incorrectly. But in such case
7593 GDB would need to be bug-to-bug compatible. */
7594
7595 complaint (&symfile_complaints,
7596 _("Computed physname <%s> does not match demangled <%s> "
7597 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7598 physname, canon, mangled, die->offset.sect_off, objfile->name);
7599
7600 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7601 is available here - over computed PHYSNAME. It is safer
7602 against both buggy GDB and buggy compilers. */
7603
7604 retval = canon;
7605 }
7606 else
7607 {
7608 retval = physname;
7609 need_copy = 0;
7610 }
7611 }
7612 else
7613 retval = canon;
7614
7615 if (need_copy)
7616 retval = obsavestring (retval, strlen (retval),
7617 &objfile->objfile_obstack);
7618
7619 do_cleanups (back_to);
7620 return retval;
7621 }
7622
7623 /* Read the import statement specified by the given die and record it. */
7624
7625 static void
7626 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7627 {
7628 struct objfile *objfile = cu->objfile;
7629 struct attribute *import_attr;
7630 struct die_info *imported_die, *child_die;
7631 struct dwarf2_cu *imported_cu;
7632 const char *imported_name;
7633 const char *imported_name_prefix;
7634 const char *canonical_name;
7635 const char *import_alias;
7636 const char *imported_declaration = NULL;
7637 const char *import_prefix;
7638 VEC (const_char_ptr) *excludes = NULL;
7639 struct cleanup *cleanups;
7640
7641 char *temp;
7642
7643 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7644 if (import_attr == NULL)
7645 {
7646 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7647 dwarf_tag_name (die->tag));
7648 return;
7649 }
7650
7651 imported_cu = cu;
7652 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7653 imported_name = dwarf2_name (imported_die, imported_cu);
7654 if (imported_name == NULL)
7655 {
7656 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7657
7658 The import in the following code:
7659 namespace A
7660 {
7661 typedef int B;
7662 }
7663
7664 int main ()
7665 {
7666 using A::B;
7667 B b;
7668 return b;
7669 }
7670
7671 ...
7672 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7673 <52> DW_AT_decl_file : 1
7674 <53> DW_AT_decl_line : 6
7675 <54> DW_AT_import : <0x75>
7676 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7677 <59> DW_AT_name : B
7678 <5b> DW_AT_decl_file : 1
7679 <5c> DW_AT_decl_line : 2
7680 <5d> DW_AT_type : <0x6e>
7681 ...
7682 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7683 <76> DW_AT_byte_size : 4
7684 <77> DW_AT_encoding : 5 (signed)
7685
7686 imports the wrong die ( 0x75 instead of 0x58 ).
7687 This case will be ignored until the gcc bug is fixed. */
7688 return;
7689 }
7690
7691 /* Figure out the local name after import. */
7692 import_alias = dwarf2_name (die, cu);
7693
7694 /* Figure out where the statement is being imported to. */
7695 import_prefix = determine_prefix (die, cu);
7696
7697 /* Figure out what the scope of the imported die is and prepend it
7698 to the name of the imported die. */
7699 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7700
7701 if (imported_die->tag != DW_TAG_namespace
7702 && imported_die->tag != DW_TAG_module)
7703 {
7704 imported_declaration = imported_name;
7705 canonical_name = imported_name_prefix;
7706 }
7707 else if (strlen (imported_name_prefix) > 0)
7708 {
7709 temp = alloca (strlen (imported_name_prefix)
7710 + 2 + strlen (imported_name) + 1);
7711 strcpy (temp, imported_name_prefix);
7712 strcat (temp, "::");
7713 strcat (temp, imported_name);
7714 canonical_name = temp;
7715 }
7716 else
7717 canonical_name = imported_name;
7718
7719 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7720
7721 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7722 for (child_die = die->child; child_die && child_die->tag;
7723 child_die = sibling_die (child_die))
7724 {
7725 /* DWARF-4: A Fortran use statement with a “rename list” may be
7726 represented by an imported module entry with an import attribute
7727 referring to the module and owned entries corresponding to those
7728 entities that are renamed as part of being imported. */
7729
7730 if (child_die->tag != DW_TAG_imported_declaration)
7731 {
7732 complaint (&symfile_complaints,
7733 _("child DW_TAG_imported_declaration expected "
7734 "- DIE at 0x%x [in module %s]"),
7735 child_die->offset.sect_off, objfile->name);
7736 continue;
7737 }
7738
7739 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7740 if (import_attr == NULL)
7741 {
7742 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7743 dwarf_tag_name (child_die->tag));
7744 continue;
7745 }
7746
7747 imported_cu = cu;
7748 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7749 &imported_cu);
7750 imported_name = dwarf2_name (imported_die, imported_cu);
7751 if (imported_name == NULL)
7752 {
7753 complaint (&symfile_complaints,
7754 _("child DW_TAG_imported_declaration has unknown "
7755 "imported name - DIE at 0x%x [in module %s]"),
7756 child_die->offset.sect_off, objfile->name);
7757 continue;
7758 }
7759
7760 VEC_safe_push (const_char_ptr, excludes, imported_name);
7761
7762 process_die (child_die, cu);
7763 }
7764
7765 cp_add_using_directive (import_prefix,
7766 canonical_name,
7767 import_alias,
7768 imported_declaration,
7769 excludes,
7770 &objfile->objfile_obstack);
7771
7772 do_cleanups (cleanups);
7773 }
7774
7775 /* Cleanup function for handle_DW_AT_stmt_list. */
7776
7777 static void
7778 free_cu_line_header (void *arg)
7779 {
7780 struct dwarf2_cu *cu = arg;
7781
7782 free_line_header (cu->line_header);
7783 cu->line_header = NULL;
7784 }
7785
7786 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7787 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7788 this, it was first present in GCC release 4.3.0. */
7789
7790 static int
7791 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7792 {
7793 if (!cu->checked_producer)
7794 check_producer (cu);
7795
7796 return cu->producer_is_gcc_lt_4_3;
7797 }
7798
7799 static void
7800 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7801 char **name, char **comp_dir)
7802 {
7803 struct attribute *attr;
7804
7805 *name = NULL;
7806 *comp_dir = NULL;
7807
7808 /* Find the filename. Do not use dwarf2_name here, since the filename
7809 is not a source language identifier. */
7810 attr = dwarf2_attr (die, DW_AT_name, cu);
7811 if (attr)
7812 {
7813 *name = DW_STRING (attr);
7814 }
7815
7816 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7817 if (attr)
7818 *comp_dir = DW_STRING (attr);
7819 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7820 && IS_ABSOLUTE_PATH (*name))
7821 {
7822 *comp_dir = ldirname (*name);
7823 if (*comp_dir != NULL)
7824 make_cleanup (xfree, *comp_dir);
7825 }
7826 if (*comp_dir != NULL)
7827 {
7828 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7829 directory, get rid of it. */
7830 char *cp = strchr (*comp_dir, ':');
7831
7832 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7833 *comp_dir = cp + 1;
7834 }
7835
7836 if (*name == NULL)
7837 *name = "<unknown>";
7838 }
7839
7840 /* Handle DW_AT_stmt_list for a compilation unit.
7841 DIE is the DW_TAG_compile_unit die for CU.
7842 COMP_DIR is the compilation directory.
7843 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7844
7845 static void
7846 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7847 const char *comp_dir)
7848 {
7849 struct attribute *attr;
7850
7851 gdb_assert (! cu->per_cu->is_debug_types);
7852
7853 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7854 if (attr)
7855 {
7856 unsigned int line_offset = DW_UNSND (attr);
7857 struct line_header *line_header
7858 = dwarf_decode_line_header (line_offset, cu);
7859
7860 if (line_header)
7861 {
7862 cu->line_header = line_header;
7863 make_cleanup (free_cu_line_header, cu);
7864 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7865 }
7866 }
7867 }
7868
7869 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7870
7871 static void
7872 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7873 {
7874 struct objfile *objfile = dwarf2_per_objfile->objfile;
7875 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7876 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7877 CORE_ADDR highpc = ((CORE_ADDR) 0);
7878 struct attribute *attr;
7879 char *name = NULL;
7880 char *comp_dir = NULL;
7881 struct die_info *child_die;
7882 bfd *abfd = objfile->obfd;
7883 CORE_ADDR baseaddr;
7884
7885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7886
7887 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7888
7889 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7890 from finish_block. */
7891 if (lowpc == ((CORE_ADDR) -1))
7892 lowpc = highpc;
7893 lowpc += baseaddr;
7894 highpc += baseaddr;
7895
7896 find_file_and_directory (die, cu, &name, &comp_dir);
7897
7898 prepare_one_comp_unit (cu, die, cu->language);
7899
7900 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7901 standardised yet. As a workaround for the language detection we fall
7902 back to the DW_AT_producer string. */
7903 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7904 cu->language = language_opencl;
7905
7906 /* Similar hack for Go. */
7907 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7908 set_cu_language (DW_LANG_Go, cu);
7909
7910 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7911
7912 /* Decode line number information if present. We do this before
7913 processing child DIEs, so that the line header table is available
7914 for DW_AT_decl_file. */
7915 handle_DW_AT_stmt_list (die, cu, comp_dir);
7916
7917 /* Process all dies in compilation unit. */
7918 if (die->child != NULL)
7919 {
7920 child_die = die->child;
7921 while (child_die && child_die->tag)
7922 {
7923 process_die (child_die, cu);
7924 child_die = sibling_die (child_die);
7925 }
7926 }
7927
7928 /* Decode macro information, if present. Dwarf 2 macro information
7929 refers to information in the line number info statement program
7930 header, so we can only read it if we've read the header
7931 successfully. */
7932 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7933 if (attr && cu->line_header)
7934 {
7935 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7936 complaint (&symfile_complaints,
7937 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7938
7939 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7940 }
7941 else
7942 {
7943 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7944 if (attr && cu->line_header)
7945 {
7946 unsigned int macro_offset = DW_UNSND (attr);
7947
7948 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7949 }
7950 }
7951
7952 do_cleanups (back_to);
7953 }
7954
7955 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7956 Create the set of symtabs used by this TU, or if this TU is sharing
7957 symtabs with another TU and the symtabs have already been created
7958 then restore those symtabs in the line header.
7959 We don't need the pc/line-number mapping for type units. */
7960
7961 static void
7962 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7963 {
7964 struct objfile *objfile = dwarf2_per_objfile->objfile;
7965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7966 struct type_unit_group *tu_group;
7967 int first_time;
7968 struct line_header *lh;
7969 struct attribute *attr;
7970 unsigned int i, line_offset;
7971
7972 gdb_assert (per_cu->is_debug_types);
7973
7974 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7975
7976 /* If we're using .gdb_index (includes -readnow) then
7977 per_cu->s.type_unit_group may not have been set up yet. */
7978 if (per_cu->s.type_unit_group == NULL)
7979 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7980 tu_group = per_cu->s.type_unit_group;
7981
7982 /* If we've already processed this stmt_list there's no real need to
7983 do it again, we could fake it and just recreate the part we need
7984 (file name,index -> symtab mapping). If data shows this optimization
7985 is useful we can do it then. */
7986 first_time = tu_group->primary_symtab == NULL;
7987
7988 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7989 debug info. */
7990 lh = NULL;
7991 if (attr != NULL)
7992 {
7993 line_offset = DW_UNSND (attr);
7994 lh = dwarf_decode_line_header (line_offset, cu);
7995 }
7996 if (lh == NULL)
7997 {
7998 if (first_time)
7999 dwarf2_start_symtab (cu, "", NULL, 0);
8000 else
8001 {
8002 gdb_assert (tu_group->symtabs == NULL);
8003 restart_symtab (0);
8004 }
8005 /* Note: The primary symtab will get allocated at the end. */
8006 return;
8007 }
8008
8009 cu->line_header = lh;
8010 make_cleanup (free_cu_line_header, cu);
8011
8012 if (first_time)
8013 {
8014 dwarf2_start_symtab (cu, "", NULL, 0);
8015
8016 tu_group->num_symtabs = lh->num_file_names;
8017 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8018
8019 for (i = 0; i < lh->num_file_names; ++i)
8020 {
8021 char *dir = NULL;
8022 struct file_entry *fe = &lh->file_names[i];
8023
8024 if (fe->dir_index)
8025 dir = lh->include_dirs[fe->dir_index - 1];
8026 dwarf2_start_subfile (fe->name, dir, NULL);
8027
8028 /* Note: We don't have to watch for the main subfile here, type units
8029 don't have DW_AT_name. */
8030
8031 if (current_subfile->symtab == NULL)
8032 {
8033 /* NOTE: start_subfile will recognize when it's been passed
8034 a file it has already seen. So we can't assume there's a
8035 simple mapping from lh->file_names to subfiles,
8036 lh->file_names may contain dups. */
8037 current_subfile->symtab = allocate_symtab (current_subfile->name,
8038 objfile);
8039 }
8040
8041 fe->symtab = current_subfile->symtab;
8042 tu_group->symtabs[i] = fe->symtab;
8043 }
8044 }
8045 else
8046 {
8047 restart_symtab (0);
8048
8049 for (i = 0; i < lh->num_file_names; ++i)
8050 {
8051 struct file_entry *fe = &lh->file_names[i];
8052
8053 fe->symtab = tu_group->symtabs[i];
8054 }
8055 }
8056
8057 /* The main symtab is allocated last. Type units don't have DW_AT_name
8058 so they don't have a "real" (so to speak) symtab anyway.
8059 There is later code that will assign the main symtab to all symbols
8060 that don't have one. We need to handle the case of a symbol with a
8061 missing symtab (DW_AT_decl_file) anyway. */
8062 }
8063
8064 /* Process DW_TAG_type_unit.
8065 For TUs we want to skip the first top level sibling if it's not the
8066 actual type being defined by this TU. In this case the first top
8067 level sibling is there to provide context only. */
8068
8069 static void
8070 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8071 {
8072 struct die_info *child_die;
8073
8074 prepare_one_comp_unit (cu, die, language_minimal);
8075
8076 /* Initialize (or reinitialize) the machinery for building symtabs.
8077 We do this before processing child DIEs, so that the line header table
8078 is available for DW_AT_decl_file. */
8079 setup_type_unit_groups (die, cu);
8080
8081 if (die->child != NULL)
8082 {
8083 child_die = die->child;
8084 while (child_die && child_die->tag)
8085 {
8086 process_die (child_die, cu);
8087 child_die = sibling_die (child_die);
8088 }
8089 }
8090 }
8091 \f
8092 /* DWO/DWP files.
8093
8094 http://gcc.gnu.org/wiki/DebugFission
8095 http://gcc.gnu.org/wiki/DebugFissionDWP
8096
8097 To simplify handling of both DWO files ("object" files with the DWARF info)
8098 and DWP files (a file with the DWOs packaged up into one file), we treat
8099 DWP files as having a collection of virtual DWO files. */
8100
8101 static hashval_t
8102 hash_dwo_file (const void *item)
8103 {
8104 const struct dwo_file *dwo_file = item;
8105
8106 return htab_hash_string (dwo_file->name);
8107 }
8108
8109 static int
8110 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8111 {
8112 const struct dwo_file *lhs = item_lhs;
8113 const struct dwo_file *rhs = item_rhs;
8114
8115 return strcmp (lhs->name, rhs->name) == 0;
8116 }
8117
8118 /* Allocate a hash table for DWO files. */
8119
8120 static htab_t
8121 allocate_dwo_file_hash_table (void)
8122 {
8123 struct objfile *objfile = dwarf2_per_objfile->objfile;
8124
8125 return htab_create_alloc_ex (41,
8126 hash_dwo_file,
8127 eq_dwo_file,
8128 NULL,
8129 &objfile->objfile_obstack,
8130 hashtab_obstack_allocate,
8131 dummy_obstack_deallocate);
8132 }
8133
8134 /* Lookup DWO file DWO_NAME. */
8135
8136 static void **
8137 lookup_dwo_file_slot (const char *dwo_name)
8138 {
8139 struct dwo_file find_entry;
8140 void **slot;
8141
8142 if (dwarf2_per_objfile->dwo_files == NULL)
8143 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8144
8145 memset (&find_entry, 0, sizeof (find_entry));
8146 find_entry.name = dwo_name;
8147 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8148
8149 return slot;
8150 }
8151
8152 static hashval_t
8153 hash_dwo_unit (const void *item)
8154 {
8155 const struct dwo_unit *dwo_unit = item;
8156
8157 /* This drops the top 32 bits of the id, but is ok for a hash. */
8158 return dwo_unit->signature;
8159 }
8160
8161 static int
8162 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8163 {
8164 const struct dwo_unit *lhs = item_lhs;
8165 const struct dwo_unit *rhs = item_rhs;
8166
8167 /* The signature is assumed to be unique within the DWO file.
8168 So while object file CU dwo_id's always have the value zero,
8169 that's OK, assuming each object file DWO file has only one CU,
8170 and that's the rule for now. */
8171 return lhs->signature == rhs->signature;
8172 }
8173
8174 /* Allocate a hash table for DWO CUs,TUs.
8175 There is one of these tables for each of CUs,TUs for each DWO file. */
8176
8177 static htab_t
8178 allocate_dwo_unit_table (struct objfile *objfile)
8179 {
8180 /* Start out with a pretty small number.
8181 Generally DWO files contain only one CU and maybe some TUs. */
8182 return htab_create_alloc_ex (3,
8183 hash_dwo_unit,
8184 eq_dwo_unit,
8185 NULL,
8186 &objfile->objfile_obstack,
8187 hashtab_obstack_allocate,
8188 dummy_obstack_deallocate);
8189 }
8190
8191 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8192
8193 struct create_dwo_info_table_data
8194 {
8195 struct dwo_file *dwo_file;
8196 htab_t cu_htab;
8197 };
8198
8199 /* die_reader_func for create_dwo_debug_info_hash_table. */
8200
8201 static void
8202 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8203 gdb_byte *info_ptr,
8204 struct die_info *comp_unit_die,
8205 int has_children,
8206 void *datap)
8207 {
8208 struct dwarf2_cu *cu = reader->cu;
8209 struct objfile *objfile = dwarf2_per_objfile->objfile;
8210 sect_offset offset = cu->per_cu->offset;
8211 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8212 struct create_dwo_info_table_data *data = datap;
8213 struct dwo_file *dwo_file = data->dwo_file;
8214 htab_t cu_htab = data->cu_htab;
8215 void **slot;
8216 struct attribute *attr;
8217 struct dwo_unit *dwo_unit;
8218
8219 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8220 if (attr == NULL)
8221 {
8222 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8223 " its dwo_id [in module %s]"),
8224 offset.sect_off, dwo_file->name);
8225 return;
8226 }
8227
8228 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8229 dwo_unit->dwo_file = dwo_file;
8230 dwo_unit->signature = DW_UNSND (attr);
8231 dwo_unit->info_or_types_section = section;
8232 dwo_unit->offset = offset;
8233 dwo_unit->length = cu->per_cu->length;
8234
8235 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8236 gdb_assert (slot != NULL);
8237 if (*slot != NULL)
8238 {
8239 const struct dwo_unit *dup_dwo_unit = *slot;
8240
8241 complaint (&symfile_complaints,
8242 _("debug entry at offset 0x%x is duplicate to the entry at"
8243 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8244 offset.sect_off, dup_dwo_unit->offset.sect_off,
8245 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8246 dwo_file->name);
8247 }
8248 else
8249 *slot = dwo_unit;
8250
8251 if (dwarf2_read_debug)
8252 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8253 offset.sect_off,
8254 phex (dwo_unit->signature,
8255 sizeof (dwo_unit->signature)));
8256 }
8257
8258 /* Create a hash table to map DWO IDs to their CU entry in
8259 .debug_info.dwo in DWO_FILE.
8260 Note: This function processes DWO files only, not DWP files. */
8261
8262 static htab_t
8263 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8264 {
8265 struct objfile *objfile = dwarf2_per_objfile->objfile;
8266 struct dwarf2_section_info *section = &dwo_file->sections.info;
8267 bfd *abfd;
8268 htab_t cu_htab;
8269 gdb_byte *info_ptr, *end_ptr;
8270 struct create_dwo_info_table_data create_dwo_info_table_data;
8271
8272 dwarf2_read_section (objfile, section);
8273 info_ptr = section->buffer;
8274
8275 if (info_ptr == NULL)
8276 return NULL;
8277
8278 /* We can't set abfd until now because the section may be empty or
8279 not present, in which case section->asection will be NULL. */
8280 abfd = section->asection->owner;
8281
8282 if (dwarf2_read_debug)
8283 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8284 bfd_get_filename (abfd));
8285
8286 cu_htab = allocate_dwo_unit_table (objfile);
8287
8288 create_dwo_info_table_data.dwo_file = dwo_file;
8289 create_dwo_info_table_data.cu_htab = cu_htab;
8290
8291 end_ptr = info_ptr + section->size;
8292 while (info_ptr < end_ptr)
8293 {
8294 struct dwarf2_per_cu_data per_cu;
8295
8296 memset (&per_cu, 0, sizeof (per_cu));
8297 per_cu.objfile = objfile;
8298 per_cu.is_debug_types = 0;
8299 per_cu.offset.sect_off = info_ptr - section->buffer;
8300 per_cu.info_or_types_section = section;
8301
8302 init_cutu_and_read_dies_no_follow (&per_cu,
8303 &dwo_file->sections.abbrev,
8304 dwo_file,
8305 create_dwo_debug_info_hash_table_reader,
8306 &create_dwo_info_table_data);
8307
8308 info_ptr += per_cu.length;
8309 }
8310
8311 return cu_htab;
8312 }
8313
8314 /* DWP file .debug_{cu,tu}_index section format:
8315 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8316
8317 Both index sections have the same format, and serve to map a 64-bit
8318 signature to a set of section numbers. Each section begins with a header,
8319 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8320 indexes, and a pool of 32-bit section numbers. The index sections will be
8321 aligned at 8-byte boundaries in the file.
8322
8323 The index section header contains two unsigned 32-bit values (using the
8324 byte order of the application binary):
8325
8326 N, the number of compilation units or type units in the index
8327 M, the number of slots in the hash table
8328
8329 (We assume that N and M will not exceed 2^32 - 1.)
8330
8331 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8332
8333 The hash table begins at offset 8 in the section, and consists of an array
8334 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8335 order of the application binary). Unused slots in the hash table are 0.
8336 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8337
8338 The parallel table begins immediately after the hash table
8339 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8340 array of 32-bit indexes (using the byte order of the application binary),
8341 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8342 table contains a 32-bit index into the pool of section numbers. For unused
8343 hash table slots, the corresponding entry in the parallel table will be 0.
8344
8345 Given a 64-bit compilation unit signature or a type signature S, an entry
8346 in the hash table is located as follows:
8347
8348 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8349 the low-order k bits all set to 1.
8350
8351 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8352
8353 3) If the hash table entry at index H matches the signature, use that
8354 entry. If the hash table entry at index H is unused (all zeroes),
8355 terminate the search: the signature is not present in the table.
8356
8357 4) Let H = (H + H') modulo M. Repeat at Step 3.
8358
8359 Because M > N and H' and M are relatively prime, the search is guaranteed
8360 to stop at an unused slot or find the match.
8361
8362 The pool of section numbers begins immediately following the hash table
8363 (at offset 8 + 12 * M from the beginning of the section). The pool of
8364 section numbers consists of an array of 32-bit words (using the byte order
8365 of the application binary). Each item in the array is indexed starting
8366 from 0. The hash table entry provides the index of the first section
8367 number in the set. Additional section numbers in the set follow, and the
8368 set is terminated by a 0 entry (section number 0 is not used in ELF).
8369
8370 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8371 section must be the first entry in the set, and the .debug_abbrev.dwo must
8372 be the second entry. Other members of the set may follow in any order. */
8373
8374 /* Create a hash table to map DWO IDs to their CU/TU entry in
8375 .debug_{info,types}.dwo in DWP_FILE.
8376 Returns NULL if there isn't one.
8377 Note: This function processes DWP files only, not DWO files. */
8378
8379 static struct dwp_hash_table *
8380 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8381 {
8382 struct objfile *objfile = dwarf2_per_objfile->objfile;
8383 bfd *dbfd = dwp_file->dbfd;
8384 char *index_ptr, *index_end;
8385 struct dwarf2_section_info *index;
8386 uint32_t version, nr_units, nr_slots;
8387 struct dwp_hash_table *htab;
8388
8389 if (is_debug_types)
8390 index = &dwp_file->sections.tu_index;
8391 else
8392 index = &dwp_file->sections.cu_index;
8393
8394 if (dwarf2_section_empty_p (index))
8395 return NULL;
8396 dwarf2_read_section (objfile, index);
8397
8398 index_ptr = index->buffer;
8399 index_end = index_ptr + index->size;
8400
8401 version = read_4_bytes (dbfd, index_ptr);
8402 index_ptr += 8; /* Skip the unused word. */
8403 nr_units = read_4_bytes (dbfd, index_ptr);
8404 index_ptr += 4;
8405 nr_slots = read_4_bytes (dbfd, index_ptr);
8406 index_ptr += 4;
8407
8408 if (version != 1)
8409 {
8410 error (_("Dwarf Error: unsupported DWP file version (%u)"
8411 " [in module %s]"),
8412 version, dwp_file->name);
8413 }
8414 if (nr_slots != (nr_slots & -nr_slots))
8415 {
8416 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8417 " is not power of 2 [in module %s]"),
8418 nr_slots, dwp_file->name);
8419 }
8420
8421 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8422 htab->nr_units = nr_units;
8423 htab->nr_slots = nr_slots;
8424 htab->hash_table = index_ptr;
8425 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8426 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8427
8428 return htab;
8429 }
8430
8431 /* Update SECTIONS with the data from SECTP.
8432
8433 This function is like the other "locate" section routines that are
8434 passed to bfd_map_over_sections, but in this context the sections to
8435 read comes from the DWP hash table, not the full ELF section table.
8436
8437 The result is non-zero for success, or zero if an error was found. */
8438
8439 static int
8440 locate_virtual_dwo_sections (asection *sectp,
8441 struct virtual_dwo_sections *sections)
8442 {
8443 const struct dwop_section_names *names = &dwop_section_names;
8444
8445 if (section_is_p (sectp->name, &names->abbrev_dwo))
8446 {
8447 /* There can be only one. */
8448 if (sections->abbrev.asection != NULL)
8449 return 0;
8450 sections->abbrev.asection = sectp;
8451 sections->abbrev.size = bfd_get_section_size (sectp);
8452 }
8453 else if (section_is_p (sectp->name, &names->info_dwo)
8454 || section_is_p (sectp->name, &names->types_dwo))
8455 {
8456 /* There can be only one. */
8457 if (sections->info_or_types.asection != NULL)
8458 return 0;
8459 sections->info_or_types.asection = sectp;
8460 sections->info_or_types.size = bfd_get_section_size (sectp);
8461 }
8462 else if (section_is_p (sectp->name, &names->line_dwo))
8463 {
8464 /* There can be only one. */
8465 if (sections->line.asection != NULL)
8466 return 0;
8467 sections->line.asection = sectp;
8468 sections->line.size = bfd_get_section_size (sectp);
8469 }
8470 else if (section_is_p (sectp->name, &names->loc_dwo))
8471 {
8472 /* There can be only one. */
8473 if (sections->loc.asection != NULL)
8474 return 0;
8475 sections->loc.asection = sectp;
8476 sections->loc.size = bfd_get_section_size (sectp);
8477 }
8478 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8479 {
8480 /* There can be only one. */
8481 if (sections->macinfo.asection != NULL)
8482 return 0;
8483 sections->macinfo.asection = sectp;
8484 sections->macinfo.size = bfd_get_section_size (sectp);
8485 }
8486 else if (section_is_p (sectp->name, &names->macro_dwo))
8487 {
8488 /* There can be only one. */
8489 if (sections->macro.asection != NULL)
8490 return 0;
8491 sections->macro.asection = sectp;
8492 sections->macro.size = bfd_get_section_size (sectp);
8493 }
8494 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8495 {
8496 /* There can be only one. */
8497 if (sections->str_offsets.asection != NULL)
8498 return 0;
8499 sections->str_offsets.asection = sectp;
8500 sections->str_offsets.size = bfd_get_section_size (sectp);
8501 }
8502 else
8503 {
8504 /* No other kind of section is valid. */
8505 return 0;
8506 }
8507
8508 return 1;
8509 }
8510
8511 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8512 HTAB is the hash table from the DWP file.
8513 SECTION_INDEX is the index of the DWO in HTAB. */
8514
8515 static struct dwo_unit *
8516 create_dwo_in_dwp (struct dwp_file *dwp_file,
8517 const struct dwp_hash_table *htab,
8518 uint32_t section_index,
8519 ULONGEST signature, int is_debug_types)
8520 {
8521 struct objfile *objfile = dwarf2_per_objfile->objfile;
8522 bfd *dbfd = dwp_file->dbfd;
8523 const char *kind = is_debug_types ? "TU" : "CU";
8524 struct dwo_file *dwo_file;
8525 struct dwo_unit *dwo_unit;
8526 struct virtual_dwo_sections sections;
8527 void **dwo_file_slot;
8528 char *virtual_dwo_name;
8529 struct dwarf2_section_info *cutu;
8530 struct cleanup *cleanups;
8531 int i;
8532
8533 if (dwarf2_read_debug)
8534 {
8535 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8536 kind,
8537 section_index, phex (signature, sizeof (signature)),
8538 dwp_file->name);
8539 }
8540
8541 /* Fetch the sections of this DWO.
8542 Put a limit on the number of sections we look for so that bad data
8543 doesn't cause us to loop forever. */
8544
8545 #define MAX_NR_DWO_SECTIONS \
8546 (1 /* .debug_info or .debug_types */ \
8547 + 1 /* .debug_abbrev */ \
8548 + 1 /* .debug_line */ \
8549 + 1 /* .debug_loc */ \
8550 + 1 /* .debug_str_offsets */ \
8551 + 1 /* .debug_macro */ \
8552 + 1 /* .debug_macinfo */ \
8553 + 1 /* trailing zero */)
8554
8555 memset (&sections, 0, sizeof (sections));
8556 cleanups = make_cleanup (null_cleanup, 0);
8557
8558 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8559 {
8560 asection *sectp;
8561 uint32_t section_nr =
8562 read_4_bytes (dbfd,
8563 htab->section_pool
8564 + (section_index + i) * sizeof (uint32_t));
8565
8566 if (section_nr == 0)
8567 break;
8568 if (section_nr >= dwp_file->num_sections)
8569 {
8570 error (_("Dwarf Error: bad DWP hash table, section number too large"
8571 " [in module %s]"),
8572 dwp_file->name);
8573 }
8574
8575 sectp = dwp_file->elf_sections[section_nr];
8576 if (! locate_virtual_dwo_sections (sectp, &sections))
8577 {
8578 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8579 " [in module %s]"),
8580 dwp_file->name);
8581 }
8582 }
8583
8584 if (i < 2
8585 || sections.info_or_types.asection == NULL
8586 || sections.abbrev.asection == NULL)
8587 {
8588 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8589 " [in module %s]"),
8590 dwp_file->name);
8591 }
8592 if (i == MAX_NR_DWO_SECTIONS)
8593 {
8594 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8595 " [in module %s]"),
8596 dwp_file->name);
8597 }
8598
8599 /* It's easier for the rest of the code if we fake a struct dwo_file and
8600 have dwo_unit "live" in that. At least for now.
8601
8602 The DWP file can be made up of a random collection of CUs and TUs.
8603 However, for each CU + set of TUs that came from the same original DWO
8604 file, we want to combine them back into a virtual DWO file to save space
8605 (fewer struct dwo_file objects to allocated). Remember that for really
8606 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8607
8608 virtual_dwo_name =
8609 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8610 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8611 sections.line.asection ? sections.line.asection->id : 0,
8612 sections.loc.asection ? sections.loc.asection->id : 0,
8613 (sections.str_offsets.asection
8614 ? sections.str_offsets.asection->id
8615 : 0));
8616 make_cleanup (xfree, virtual_dwo_name);
8617 /* Can we use an existing virtual DWO file? */
8618 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8619 /* Create one if necessary. */
8620 if (*dwo_file_slot == NULL)
8621 {
8622 if (dwarf2_read_debug)
8623 {
8624 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8625 virtual_dwo_name);
8626 }
8627 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8628 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8629 virtual_dwo_name,
8630 strlen (virtual_dwo_name));
8631 dwo_file->sections.abbrev = sections.abbrev;
8632 dwo_file->sections.line = sections.line;
8633 dwo_file->sections.loc = sections.loc;
8634 dwo_file->sections.macinfo = sections.macinfo;
8635 dwo_file->sections.macro = sections.macro;
8636 dwo_file->sections.str_offsets = sections.str_offsets;
8637 /* The "str" section is global to the entire DWP file. */
8638 dwo_file->sections.str = dwp_file->sections.str;
8639 /* The info or types section is assigned later to dwo_unit,
8640 there's no need to record it in dwo_file.
8641 Also, we can't simply record type sections in dwo_file because
8642 we record a pointer into the vector in dwo_unit. As we collect more
8643 types we'll grow the vector and eventually have to reallocate space
8644 for it, invalidating all the pointers into the current copy. */
8645 *dwo_file_slot = dwo_file;
8646 }
8647 else
8648 {
8649 if (dwarf2_read_debug)
8650 {
8651 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8652 virtual_dwo_name);
8653 }
8654 dwo_file = *dwo_file_slot;
8655 }
8656 do_cleanups (cleanups);
8657
8658 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8659 dwo_unit->dwo_file = dwo_file;
8660 dwo_unit->signature = signature;
8661 dwo_unit->info_or_types_section =
8662 obstack_alloc (&objfile->objfile_obstack,
8663 sizeof (struct dwarf2_section_info));
8664 *dwo_unit->info_or_types_section = sections.info_or_types;
8665 /* offset, length, type_offset_in_tu are set later. */
8666
8667 return dwo_unit;
8668 }
8669
8670 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8671
8672 static struct dwo_unit *
8673 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8674 const struct dwp_hash_table *htab,
8675 ULONGEST signature, int is_debug_types)
8676 {
8677 bfd *dbfd = dwp_file->dbfd;
8678 uint32_t mask = htab->nr_slots - 1;
8679 uint32_t hash = signature & mask;
8680 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8681 unsigned int i;
8682 void **slot;
8683 struct dwo_unit find_dwo_cu, *dwo_cu;
8684
8685 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8686 find_dwo_cu.signature = signature;
8687 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8688
8689 if (*slot != NULL)
8690 return *slot;
8691
8692 /* Use a for loop so that we don't loop forever on bad debug info. */
8693 for (i = 0; i < htab->nr_slots; ++i)
8694 {
8695 ULONGEST signature_in_table;
8696
8697 signature_in_table =
8698 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8699 if (signature_in_table == signature)
8700 {
8701 uint32_t section_index =
8702 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8703
8704 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8705 signature, is_debug_types);
8706 return *slot;
8707 }
8708 if (signature_in_table == 0)
8709 return NULL;
8710 hash = (hash + hash2) & mask;
8711 }
8712
8713 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8714 " [in module %s]"),
8715 dwp_file->name);
8716 }
8717
8718 /* Subroutine of open_dwop_file to simplify it.
8719 Open the file specified by FILE_NAME and hand it off to BFD for
8720 preliminary analysis. Return a newly initialized bfd *, which
8721 includes a canonicalized copy of FILE_NAME.
8722 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8723 In case of trouble, return NULL.
8724 NOTE: This function is derived from symfile_bfd_open. */
8725
8726 static bfd *
8727 try_open_dwop_file (const char *file_name, int is_dwp)
8728 {
8729 bfd *sym_bfd;
8730 int desc, flags;
8731 char *absolute_name;
8732
8733 flags = OPF_TRY_CWD_FIRST;
8734 if (is_dwp)
8735 flags |= OPF_SEARCH_IN_PATH;
8736 desc = openp (debug_file_directory, flags, file_name,
8737 O_RDONLY | O_BINARY, &absolute_name);
8738 if (desc < 0)
8739 return NULL;
8740
8741 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8742 if (!sym_bfd)
8743 {
8744 xfree (absolute_name);
8745 return NULL;
8746 }
8747 xfree (absolute_name);
8748 bfd_set_cacheable (sym_bfd, 1);
8749
8750 if (!bfd_check_format (sym_bfd, bfd_object))
8751 {
8752 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8753 return NULL;
8754 }
8755
8756 return sym_bfd;
8757 }
8758
8759 /* Try to open DWO/DWP file FILE_NAME.
8760 COMP_DIR is the DW_AT_comp_dir attribute.
8761 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8762 The result is the bfd handle of the file.
8763 If there is a problem finding or opening the file, return NULL.
8764 Upon success, the canonicalized path of the file is stored in the bfd,
8765 same as symfile_bfd_open. */
8766
8767 static bfd *
8768 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8769 {
8770 bfd *abfd;
8771
8772 if (IS_ABSOLUTE_PATH (file_name))
8773 return try_open_dwop_file (file_name, is_dwp);
8774
8775 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8776
8777 if (comp_dir != NULL)
8778 {
8779 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8780
8781 /* NOTE: If comp_dir is a relative path, this will also try the
8782 search path, which seems useful. */
8783 abfd = try_open_dwop_file (path_to_try, is_dwp);
8784 xfree (path_to_try);
8785 if (abfd != NULL)
8786 return abfd;
8787 }
8788
8789 /* That didn't work, try debug-file-directory, which, despite its name,
8790 is a list of paths. */
8791
8792 if (*debug_file_directory == '\0')
8793 return NULL;
8794
8795 return try_open_dwop_file (file_name, is_dwp);
8796 }
8797
8798 /* This function is mapped across the sections and remembers the offset and
8799 size of each of the DWO debugging sections we are interested in. */
8800
8801 static void
8802 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8803 {
8804 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8805 const struct dwop_section_names *names = &dwop_section_names;
8806
8807 if (section_is_p (sectp->name, &names->abbrev_dwo))
8808 {
8809 dwo_sections->abbrev.asection = sectp;
8810 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8811 }
8812 else if (section_is_p (sectp->name, &names->info_dwo))
8813 {
8814 dwo_sections->info.asection = sectp;
8815 dwo_sections->info.size = bfd_get_section_size (sectp);
8816 }
8817 else if (section_is_p (sectp->name, &names->line_dwo))
8818 {
8819 dwo_sections->line.asection = sectp;
8820 dwo_sections->line.size = bfd_get_section_size (sectp);
8821 }
8822 else if (section_is_p (sectp->name, &names->loc_dwo))
8823 {
8824 dwo_sections->loc.asection = sectp;
8825 dwo_sections->loc.size = bfd_get_section_size (sectp);
8826 }
8827 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8828 {
8829 dwo_sections->macinfo.asection = sectp;
8830 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8831 }
8832 else if (section_is_p (sectp->name, &names->macro_dwo))
8833 {
8834 dwo_sections->macro.asection = sectp;
8835 dwo_sections->macro.size = bfd_get_section_size (sectp);
8836 }
8837 else if (section_is_p (sectp->name, &names->str_dwo))
8838 {
8839 dwo_sections->str.asection = sectp;
8840 dwo_sections->str.size = bfd_get_section_size (sectp);
8841 }
8842 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8843 {
8844 dwo_sections->str_offsets.asection = sectp;
8845 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8846 }
8847 else if (section_is_p (sectp->name, &names->types_dwo))
8848 {
8849 struct dwarf2_section_info type_section;
8850
8851 memset (&type_section, 0, sizeof (type_section));
8852 type_section.asection = sectp;
8853 type_section.size = bfd_get_section_size (sectp);
8854 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8855 &type_section);
8856 }
8857 }
8858
8859 /* Initialize the use of the DWO file specified by DWO_NAME.
8860 The result is NULL if DWO_NAME can't be found. */
8861
8862 static struct dwo_file *
8863 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8864 {
8865 struct objfile *objfile = dwarf2_per_objfile->objfile;
8866 struct dwo_file *dwo_file;
8867 bfd *dbfd;
8868 struct cleanup *cleanups;
8869
8870 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8871 if (dbfd == NULL)
8872 {
8873 if (dwarf2_read_debug)
8874 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8875 return NULL;
8876 }
8877 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8878 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8879 dwo_name, strlen (dwo_name));
8880 dwo_file->dbfd = dbfd;
8881
8882 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8883
8884 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8885
8886 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8887
8888 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8889 dwo_file->sections.types);
8890
8891 discard_cleanups (cleanups);
8892
8893 if (dwarf2_read_debug)
8894 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8895
8896 return dwo_file;
8897 }
8898
8899 /* This function is mapped across the sections and remembers the offset and
8900 size of each of the DWP debugging sections we are interested in. */
8901
8902 static void
8903 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8904 {
8905 struct dwp_file *dwp_file = dwp_file_ptr;
8906 const struct dwop_section_names *names = &dwop_section_names;
8907 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8908
8909 /* Record the ELF section number for later lookup: this is what the
8910 .debug_cu_index,.debug_tu_index tables use. */
8911 gdb_assert (elf_section_nr < dwp_file->num_sections);
8912 dwp_file->elf_sections[elf_section_nr] = sectp;
8913
8914 /* Look for specific sections that we need. */
8915 if (section_is_p (sectp->name, &names->str_dwo))
8916 {
8917 dwp_file->sections.str.asection = sectp;
8918 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8919 }
8920 else if (section_is_p (sectp->name, &names->cu_index))
8921 {
8922 dwp_file->sections.cu_index.asection = sectp;
8923 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8924 }
8925 else if (section_is_p (sectp->name, &names->tu_index))
8926 {
8927 dwp_file->sections.tu_index.asection = sectp;
8928 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8929 }
8930 }
8931
8932 /* Hash function for dwp_file loaded CUs/TUs. */
8933
8934 static hashval_t
8935 hash_dwp_loaded_cutus (const void *item)
8936 {
8937 const struct dwo_unit *dwo_unit = item;
8938
8939 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8940 return dwo_unit->signature;
8941 }
8942
8943 /* Equality function for dwp_file loaded CUs/TUs. */
8944
8945 static int
8946 eq_dwp_loaded_cutus (const void *a, const void *b)
8947 {
8948 const struct dwo_unit *dua = a;
8949 const struct dwo_unit *dub = b;
8950
8951 return dua->signature == dub->signature;
8952 }
8953
8954 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
8955
8956 static htab_t
8957 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8958 {
8959 return htab_create_alloc_ex (3,
8960 hash_dwp_loaded_cutus,
8961 eq_dwp_loaded_cutus,
8962 NULL,
8963 &objfile->objfile_obstack,
8964 hashtab_obstack_allocate,
8965 dummy_obstack_deallocate);
8966 }
8967
8968 /* Initialize the use of the DWP file for the current objfile.
8969 By convention the name of the DWP file is ${objfile}.dwp.
8970 The result is NULL if it can't be found. */
8971
8972 static struct dwp_file *
8973 open_and_init_dwp_file (const char *comp_dir)
8974 {
8975 struct objfile *objfile = dwarf2_per_objfile->objfile;
8976 struct dwp_file *dwp_file;
8977 char *dwp_name;
8978 bfd *dbfd;
8979 struct cleanup *cleanups;
8980
8981 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
8982 cleanups = make_cleanup (xfree, dwp_name);
8983
8984 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8985 if (dbfd == NULL)
8986 {
8987 if (dwarf2_read_debug)
8988 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8989 do_cleanups (cleanups);
8990 return NULL;
8991 }
8992 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8993 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8994 dwp_name, strlen (dwp_name));
8995 dwp_file->dbfd = dbfd;
8996 do_cleanups (cleanups);
8997
8998 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
8999
9000 /* +1: section 0 is unused */
9001 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9002 dwp_file->elf_sections =
9003 OBSTACK_CALLOC (&objfile->objfile_obstack,
9004 dwp_file->num_sections, asection *);
9005
9006 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9007
9008 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9009
9010 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9011
9012 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9013
9014 discard_cleanups (cleanups);
9015
9016 if (dwarf2_read_debug)
9017 {
9018 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9019 fprintf_unfiltered (gdb_stdlog,
9020 " %u CUs, %u TUs\n",
9021 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9022 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9023 }
9024
9025 return dwp_file;
9026 }
9027
9028 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9029 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9030 or in the DWP file for the objfile, referenced by THIS_UNIT.
9031 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9032 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9033
9034 This is called, for example, when wanting to read a variable with a
9035 complex location. Therefore we don't want to do file i/o for every call.
9036 Therefore we don't want to look for a DWO file on every call.
9037 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9038 then we check if we've already seen DWO_NAME, and only THEN do we check
9039 for a DWO file.
9040
9041 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9042 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9043
9044 static struct dwo_unit *
9045 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9046 const char *dwo_name, const char *comp_dir,
9047 ULONGEST signature, int is_debug_types)
9048 {
9049 struct objfile *objfile = dwarf2_per_objfile->objfile;
9050 const char *kind = is_debug_types ? "TU" : "CU";
9051 void **dwo_file_slot;
9052 struct dwo_file *dwo_file;
9053 struct dwp_file *dwp_file;
9054
9055 /* Have we already read SIGNATURE from a DWP file? */
9056
9057 if (! dwarf2_per_objfile->dwp_checked)
9058 {
9059 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9060 dwarf2_per_objfile->dwp_checked = 1;
9061 }
9062 dwp_file = dwarf2_per_objfile->dwp_file;
9063
9064 if (dwp_file != NULL)
9065 {
9066 const struct dwp_hash_table *dwp_htab =
9067 is_debug_types ? dwp_file->tus : dwp_file->cus;
9068
9069 if (dwp_htab != NULL)
9070 {
9071 struct dwo_unit *dwo_cutu =
9072 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9073
9074 if (dwo_cutu != NULL)
9075 {
9076 if (dwarf2_read_debug)
9077 {
9078 fprintf_unfiltered (gdb_stdlog,
9079 "Virtual DWO %s %s found: @%s\n",
9080 kind, hex_string (signature),
9081 host_address_to_string (dwo_cutu));
9082 }
9083 return dwo_cutu;
9084 }
9085 }
9086 }
9087
9088 /* Have we already seen DWO_NAME? */
9089
9090 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9091 if (*dwo_file_slot == NULL)
9092 {
9093 /* Read in the file and build a table of the DWOs it contains. */
9094 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9095 }
9096 /* NOTE: This will be NULL if unable to open the file. */
9097 dwo_file = *dwo_file_slot;
9098
9099 if (dwo_file != NULL)
9100 {
9101 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9102
9103 if (htab != NULL)
9104 {
9105 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9106
9107 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9108 find_dwo_cutu.signature = signature;
9109 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9110
9111 if (dwo_cutu != NULL)
9112 {
9113 if (dwarf2_read_debug)
9114 {
9115 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9116 kind, dwo_name, hex_string (signature),
9117 host_address_to_string (dwo_cutu));
9118 }
9119 return dwo_cutu;
9120 }
9121 }
9122 }
9123
9124 /* We didn't find it. This could mean a dwo_id mismatch, or
9125 someone deleted the DWO/DWP file, or the search path isn't set up
9126 correctly to find the file. */
9127
9128 if (dwarf2_read_debug)
9129 {
9130 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9131 kind, dwo_name, hex_string (signature));
9132 }
9133
9134 complaint (&symfile_complaints,
9135 _("Could not find DWO CU referenced by CU at offset 0x%x"
9136 " [in module %s]"),
9137 this_unit->offset.sect_off, objfile->name);
9138 return NULL;
9139 }
9140
9141 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9142 See lookup_dwo_cutu_unit for details. */
9143
9144 static struct dwo_unit *
9145 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9146 const char *dwo_name, const char *comp_dir,
9147 ULONGEST signature)
9148 {
9149 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9150 }
9151
9152 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9153 See lookup_dwo_cutu_unit for details. */
9154
9155 static struct dwo_unit *
9156 lookup_dwo_type_unit (struct signatured_type *this_tu,
9157 const char *dwo_name, const char *comp_dir)
9158 {
9159 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9160 }
9161
9162 /* Free all resources associated with DWO_FILE.
9163 Close the DWO file and munmap the sections.
9164 All memory should be on the objfile obstack. */
9165
9166 static void
9167 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9168 {
9169 int ix;
9170 struct dwarf2_section_info *section;
9171
9172 gdb_assert (dwo_file->dbfd != objfile->obfd);
9173 gdb_bfd_unref (dwo_file->dbfd);
9174
9175 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9176 }
9177
9178 /* Wrapper for free_dwo_file for use in cleanups. */
9179
9180 static void
9181 free_dwo_file_cleanup (void *arg)
9182 {
9183 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9184 struct objfile *objfile = dwarf2_per_objfile->objfile;
9185
9186 free_dwo_file (dwo_file, objfile);
9187 }
9188
9189 /* Traversal function for free_dwo_files. */
9190
9191 static int
9192 free_dwo_file_from_slot (void **slot, void *info)
9193 {
9194 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9195 struct objfile *objfile = (struct objfile *) info;
9196
9197 free_dwo_file (dwo_file, objfile);
9198
9199 return 1;
9200 }
9201
9202 /* Free all resources associated with DWO_FILES. */
9203
9204 static void
9205 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9206 {
9207 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9208 }
9209 \f
9210 /* Read in various DIEs. */
9211
9212 /* qsort helper for inherit_abstract_dies. */
9213
9214 static int
9215 unsigned_int_compar (const void *ap, const void *bp)
9216 {
9217 unsigned int a = *(unsigned int *) ap;
9218 unsigned int b = *(unsigned int *) bp;
9219
9220 return (a > b) - (b > a);
9221 }
9222
9223 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9224 Inherit only the children of the DW_AT_abstract_origin DIE not being
9225 already referenced by DW_AT_abstract_origin from the children of the
9226 current DIE. */
9227
9228 static void
9229 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9230 {
9231 struct die_info *child_die;
9232 unsigned die_children_count;
9233 /* CU offsets which were referenced by children of the current DIE. */
9234 sect_offset *offsets;
9235 sect_offset *offsets_end, *offsetp;
9236 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9237 struct die_info *origin_die;
9238 /* Iterator of the ORIGIN_DIE children. */
9239 struct die_info *origin_child_die;
9240 struct cleanup *cleanups;
9241 struct attribute *attr;
9242 struct dwarf2_cu *origin_cu;
9243 struct pending **origin_previous_list_in_scope;
9244
9245 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9246 if (!attr)
9247 return;
9248
9249 /* Note that following die references may follow to a die in a
9250 different cu. */
9251
9252 origin_cu = cu;
9253 origin_die = follow_die_ref (die, attr, &origin_cu);
9254
9255 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9256 symbols in. */
9257 origin_previous_list_in_scope = origin_cu->list_in_scope;
9258 origin_cu->list_in_scope = cu->list_in_scope;
9259
9260 if (die->tag != origin_die->tag
9261 && !(die->tag == DW_TAG_inlined_subroutine
9262 && origin_die->tag == DW_TAG_subprogram))
9263 complaint (&symfile_complaints,
9264 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9265 die->offset.sect_off, origin_die->offset.sect_off);
9266
9267 child_die = die->child;
9268 die_children_count = 0;
9269 while (child_die && child_die->tag)
9270 {
9271 child_die = sibling_die (child_die);
9272 die_children_count++;
9273 }
9274 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9275 cleanups = make_cleanup (xfree, offsets);
9276
9277 offsets_end = offsets;
9278 child_die = die->child;
9279 while (child_die && child_die->tag)
9280 {
9281 /* For each CHILD_DIE, find the corresponding child of
9282 ORIGIN_DIE. If there is more than one layer of
9283 DW_AT_abstract_origin, follow them all; there shouldn't be,
9284 but GCC versions at least through 4.4 generate this (GCC PR
9285 40573). */
9286 struct die_info *child_origin_die = child_die;
9287 struct dwarf2_cu *child_origin_cu = cu;
9288
9289 while (1)
9290 {
9291 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9292 child_origin_cu);
9293 if (attr == NULL)
9294 break;
9295 child_origin_die = follow_die_ref (child_origin_die, attr,
9296 &child_origin_cu);
9297 }
9298
9299 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9300 counterpart may exist. */
9301 if (child_origin_die != child_die)
9302 {
9303 if (child_die->tag != child_origin_die->tag
9304 && !(child_die->tag == DW_TAG_inlined_subroutine
9305 && child_origin_die->tag == DW_TAG_subprogram))
9306 complaint (&symfile_complaints,
9307 _("Child DIE 0x%x and its abstract origin 0x%x have "
9308 "different tags"), child_die->offset.sect_off,
9309 child_origin_die->offset.sect_off);
9310 if (child_origin_die->parent != origin_die)
9311 complaint (&symfile_complaints,
9312 _("Child DIE 0x%x and its abstract origin 0x%x have "
9313 "different parents"), child_die->offset.sect_off,
9314 child_origin_die->offset.sect_off);
9315 else
9316 *offsets_end++ = child_origin_die->offset;
9317 }
9318 child_die = sibling_die (child_die);
9319 }
9320 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9321 unsigned_int_compar);
9322 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9323 if (offsetp[-1].sect_off == offsetp->sect_off)
9324 complaint (&symfile_complaints,
9325 _("Multiple children of DIE 0x%x refer "
9326 "to DIE 0x%x as their abstract origin"),
9327 die->offset.sect_off, offsetp->sect_off);
9328
9329 offsetp = offsets;
9330 origin_child_die = origin_die->child;
9331 while (origin_child_die && origin_child_die->tag)
9332 {
9333 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9334 while (offsetp < offsets_end
9335 && offsetp->sect_off < origin_child_die->offset.sect_off)
9336 offsetp++;
9337 if (offsetp >= offsets_end
9338 || offsetp->sect_off > origin_child_die->offset.sect_off)
9339 {
9340 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9341 process_die (origin_child_die, origin_cu);
9342 }
9343 origin_child_die = sibling_die (origin_child_die);
9344 }
9345 origin_cu->list_in_scope = origin_previous_list_in_scope;
9346
9347 do_cleanups (cleanups);
9348 }
9349
9350 static void
9351 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9352 {
9353 struct objfile *objfile = cu->objfile;
9354 struct context_stack *new;
9355 CORE_ADDR lowpc;
9356 CORE_ADDR highpc;
9357 struct die_info *child_die;
9358 struct attribute *attr, *call_line, *call_file;
9359 char *name;
9360 CORE_ADDR baseaddr;
9361 struct block *block;
9362 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9363 VEC (symbolp) *template_args = NULL;
9364 struct template_symbol *templ_func = NULL;
9365
9366 if (inlined_func)
9367 {
9368 /* If we do not have call site information, we can't show the
9369 caller of this inlined function. That's too confusing, so
9370 only use the scope for local variables. */
9371 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9372 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9373 if (call_line == NULL || call_file == NULL)
9374 {
9375 read_lexical_block_scope (die, cu);
9376 return;
9377 }
9378 }
9379
9380 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9381
9382 name = dwarf2_name (die, cu);
9383
9384 /* Ignore functions with missing or empty names. These are actually
9385 illegal according to the DWARF standard. */
9386 if (name == NULL)
9387 {
9388 complaint (&symfile_complaints,
9389 _("missing name for subprogram DIE at %d"),
9390 die->offset.sect_off);
9391 return;
9392 }
9393
9394 /* Ignore functions with missing or invalid low and high pc attributes. */
9395 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9396 {
9397 attr = dwarf2_attr (die, DW_AT_external, cu);
9398 if (!attr || !DW_UNSND (attr))
9399 complaint (&symfile_complaints,
9400 _("cannot get low and high bounds "
9401 "for subprogram DIE at %d"),
9402 die->offset.sect_off);
9403 return;
9404 }
9405
9406 lowpc += baseaddr;
9407 highpc += baseaddr;
9408
9409 /* If we have any template arguments, then we must allocate a
9410 different sort of symbol. */
9411 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9412 {
9413 if (child_die->tag == DW_TAG_template_type_param
9414 || child_die->tag == DW_TAG_template_value_param)
9415 {
9416 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9417 struct template_symbol);
9418 templ_func->base.is_cplus_template_function = 1;
9419 break;
9420 }
9421 }
9422
9423 new = push_context (0, lowpc);
9424 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9425 (struct symbol *) templ_func);
9426
9427 /* If there is a location expression for DW_AT_frame_base, record
9428 it. */
9429 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9430 if (attr)
9431 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9432 expression is being recorded directly in the function's symbol
9433 and not in a separate frame-base object. I guess this hack is
9434 to avoid adding some sort of frame-base adjunct/annex to the
9435 function's symbol :-(. The problem with doing this is that it
9436 results in a function symbol with a location expression that
9437 has nothing to do with the location of the function, ouch! The
9438 relationship should be: a function's symbol has-a frame base; a
9439 frame-base has-a location expression. */
9440 dwarf2_symbol_mark_computed (attr, new->name, cu);
9441
9442 cu->list_in_scope = &local_symbols;
9443
9444 if (die->child != NULL)
9445 {
9446 child_die = die->child;
9447 while (child_die && child_die->tag)
9448 {
9449 if (child_die->tag == DW_TAG_template_type_param
9450 || child_die->tag == DW_TAG_template_value_param)
9451 {
9452 struct symbol *arg = new_symbol (child_die, NULL, cu);
9453
9454 if (arg != NULL)
9455 VEC_safe_push (symbolp, template_args, arg);
9456 }
9457 else
9458 process_die (child_die, cu);
9459 child_die = sibling_die (child_die);
9460 }
9461 }
9462
9463 inherit_abstract_dies (die, cu);
9464
9465 /* If we have a DW_AT_specification, we might need to import using
9466 directives from the context of the specification DIE. See the
9467 comment in determine_prefix. */
9468 if (cu->language == language_cplus
9469 && dwarf2_attr (die, DW_AT_specification, cu))
9470 {
9471 struct dwarf2_cu *spec_cu = cu;
9472 struct die_info *spec_die = die_specification (die, &spec_cu);
9473
9474 while (spec_die)
9475 {
9476 child_die = spec_die->child;
9477 while (child_die && child_die->tag)
9478 {
9479 if (child_die->tag == DW_TAG_imported_module)
9480 process_die (child_die, spec_cu);
9481 child_die = sibling_die (child_die);
9482 }
9483
9484 /* In some cases, GCC generates specification DIEs that
9485 themselves contain DW_AT_specification attributes. */
9486 spec_die = die_specification (spec_die, &spec_cu);
9487 }
9488 }
9489
9490 new = pop_context ();
9491 /* Make a block for the local symbols within. */
9492 block = finish_block (new->name, &local_symbols, new->old_blocks,
9493 lowpc, highpc, objfile);
9494
9495 /* For C++, set the block's scope. */
9496 if (cu->language == language_cplus || cu->language == language_fortran)
9497 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9498 determine_prefix (die, cu),
9499 processing_has_namespace_info);
9500
9501 /* If we have address ranges, record them. */
9502 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9503
9504 /* Attach template arguments to function. */
9505 if (! VEC_empty (symbolp, template_args))
9506 {
9507 gdb_assert (templ_func != NULL);
9508
9509 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9510 templ_func->template_arguments
9511 = obstack_alloc (&objfile->objfile_obstack,
9512 (templ_func->n_template_arguments
9513 * sizeof (struct symbol *)));
9514 memcpy (templ_func->template_arguments,
9515 VEC_address (symbolp, template_args),
9516 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9517 VEC_free (symbolp, template_args);
9518 }
9519
9520 /* In C++, we can have functions nested inside functions (e.g., when
9521 a function declares a class that has methods). This means that
9522 when we finish processing a function scope, we may need to go
9523 back to building a containing block's symbol lists. */
9524 local_symbols = new->locals;
9525 using_directives = new->using_directives;
9526
9527 /* If we've finished processing a top-level function, subsequent
9528 symbols go in the file symbol list. */
9529 if (outermost_context_p ())
9530 cu->list_in_scope = &file_symbols;
9531 }
9532
9533 /* Process all the DIES contained within a lexical block scope. Start
9534 a new scope, process the dies, and then close the scope. */
9535
9536 static void
9537 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9538 {
9539 struct objfile *objfile = cu->objfile;
9540 struct context_stack *new;
9541 CORE_ADDR lowpc, highpc;
9542 struct die_info *child_die;
9543 CORE_ADDR baseaddr;
9544
9545 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9546
9547 /* Ignore blocks with missing or invalid low and high pc attributes. */
9548 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9549 as multiple lexical blocks? Handling children in a sane way would
9550 be nasty. Might be easier to properly extend generic blocks to
9551 describe ranges. */
9552 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9553 return;
9554 lowpc += baseaddr;
9555 highpc += baseaddr;
9556
9557 push_context (0, lowpc);
9558 if (die->child != NULL)
9559 {
9560 child_die = die->child;
9561 while (child_die && child_die->tag)
9562 {
9563 process_die (child_die, cu);
9564 child_die = sibling_die (child_die);
9565 }
9566 }
9567 new = pop_context ();
9568
9569 if (local_symbols != NULL || using_directives != NULL)
9570 {
9571 struct block *block
9572 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9573 highpc, objfile);
9574
9575 /* Note that recording ranges after traversing children, as we
9576 do here, means that recording a parent's ranges entails
9577 walking across all its children's ranges as they appear in
9578 the address map, which is quadratic behavior.
9579
9580 It would be nicer to record the parent's ranges before
9581 traversing its children, simply overriding whatever you find
9582 there. But since we don't even decide whether to create a
9583 block until after we've traversed its children, that's hard
9584 to do. */
9585 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9586 }
9587 local_symbols = new->locals;
9588 using_directives = new->using_directives;
9589 }
9590
9591 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9592
9593 static void
9594 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9595 {
9596 struct objfile *objfile = cu->objfile;
9597 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9598 CORE_ADDR pc, baseaddr;
9599 struct attribute *attr;
9600 struct call_site *call_site, call_site_local;
9601 void **slot;
9602 int nparams;
9603 struct die_info *child_die;
9604
9605 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9606
9607 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9608 if (!attr)
9609 {
9610 complaint (&symfile_complaints,
9611 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9612 "DIE 0x%x [in module %s]"),
9613 die->offset.sect_off, objfile->name);
9614 return;
9615 }
9616 pc = DW_ADDR (attr) + baseaddr;
9617
9618 if (cu->call_site_htab == NULL)
9619 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9620 NULL, &objfile->objfile_obstack,
9621 hashtab_obstack_allocate, NULL);
9622 call_site_local.pc = pc;
9623 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9624 if (*slot != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9628 "DIE 0x%x [in module %s]"),
9629 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9630 return;
9631 }
9632
9633 /* Count parameters at the caller. */
9634
9635 nparams = 0;
9636 for (child_die = die->child; child_die && child_die->tag;
9637 child_die = sibling_die (child_die))
9638 {
9639 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9640 {
9641 complaint (&symfile_complaints,
9642 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9643 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9644 child_die->tag, child_die->offset.sect_off, objfile->name);
9645 continue;
9646 }
9647
9648 nparams++;
9649 }
9650
9651 call_site = obstack_alloc (&objfile->objfile_obstack,
9652 (sizeof (*call_site)
9653 + (sizeof (*call_site->parameter)
9654 * (nparams - 1))));
9655 *slot = call_site;
9656 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9657 call_site->pc = pc;
9658
9659 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9660 {
9661 struct die_info *func_die;
9662
9663 /* Skip also over DW_TAG_inlined_subroutine. */
9664 for (func_die = die->parent;
9665 func_die && func_die->tag != DW_TAG_subprogram
9666 && func_die->tag != DW_TAG_subroutine_type;
9667 func_die = func_die->parent);
9668
9669 /* DW_AT_GNU_all_call_sites is a superset
9670 of DW_AT_GNU_all_tail_call_sites. */
9671 if (func_die
9672 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9673 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9674 {
9675 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9676 not complete. But keep CALL_SITE for look ups via call_site_htab,
9677 both the initial caller containing the real return address PC and
9678 the final callee containing the current PC of a chain of tail
9679 calls do not need to have the tail call list complete. But any
9680 function candidate for a virtual tail call frame searched via
9681 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9682 determined unambiguously. */
9683 }
9684 else
9685 {
9686 struct type *func_type = NULL;
9687
9688 if (func_die)
9689 func_type = get_die_type (func_die, cu);
9690 if (func_type != NULL)
9691 {
9692 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9693
9694 /* Enlist this call site to the function. */
9695 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9696 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9697 }
9698 else
9699 complaint (&symfile_complaints,
9700 _("Cannot find function owning DW_TAG_GNU_call_site "
9701 "DIE 0x%x [in module %s]"),
9702 die->offset.sect_off, objfile->name);
9703 }
9704 }
9705
9706 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9707 if (attr == NULL)
9708 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9709 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9710 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9711 /* Keep NULL DWARF_BLOCK. */;
9712 else if (attr_form_is_block (attr))
9713 {
9714 struct dwarf2_locexpr_baton *dlbaton;
9715
9716 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9717 dlbaton->data = DW_BLOCK (attr)->data;
9718 dlbaton->size = DW_BLOCK (attr)->size;
9719 dlbaton->per_cu = cu->per_cu;
9720
9721 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9722 }
9723 else if (is_ref_attr (attr))
9724 {
9725 struct dwarf2_cu *target_cu = cu;
9726 struct die_info *target_die;
9727
9728 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9729 gdb_assert (target_cu->objfile == objfile);
9730 if (die_is_declaration (target_die, target_cu))
9731 {
9732 const char *target_physname;
9733
9734 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9735 if (target_physname == NULL)
9736 complaint (&symfile_complaints,
9737 _("DW_AT_GNU_call_site_target target DIE has invalid "
9738 "physname, for referencing DIE 0x%x [in module %s]"),
9739 die->offset.sect_off, objfile->name);
9740 else
9741 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9742 }
9743 else
9744 {
9745 CORE_ADDR lowpc;
9746
9747 /* DW_AT_entry_pc should be preferred. */
9748 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9749 complaint (&symfile_complaints,
9750 _("DW_AT_GNU_call_site_target target DIE has invalid "
9751 "low pc, for referencing DIE 0x%x [in module %s]"),
9752 die->offset.sect_off, objfile->name);
9753 else
9754 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9755 }
9756 }
9757 else
9758 complaint (&symfile_complaints,
9759 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9760 "block nor reference, for DIE 0x%x [in module %s]"),
9761 die->offset.sect_off, objfile->name);
9762
9763 call_site->per_cu = cu->per_cu;
9764
9765 for (child_die = die->child;
9766 child_die && child_die->tag;
9767 child_die = sibling_die (child_die))
9768 {
9769 struct call_site_parameter *parameter;
9770 struct attribute *loc, *origin;
9771
9772 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9773 {
9774 /* Already printed the complaint above. */
9775 continue;
9776 }
9777
9778 gdb_assert (call_site->parameter_count < nparams);
9779 parameter = &call_site->parameter[call_site->parameter_count];
9780
9781 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9782 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9783 register is contained in DW_AT_GNU_call_site_value. */
9784
9785 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9786 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9787 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9788 {
9789 sect_offset offset;
9790
9791 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9792 offset = dwarf2_get_ref_die_offset (origin);
9793 if (!offset_in_cu_p (&cu->header, offset))
9794 {
9795 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9796 binding can be done only inside one CU. Such referenced DIE
9797 therefore cannot be even moved to DW_TAG_partial_unit. */
9798 complaint (&symfile_complaints,
9799 _("DW_AT_abstract_origin offset is not in CU for "
9800 "DW_TAG_GNU_call_site child DIE 0x%x "
9801 "[in module %s]"),
9802 child_die->offset.sect_off, objfile->name);
9803 continue;
9804 }
9805 parameter->u.param_offset.cu_off = (offset.sect_off
9806 - cu->header.offset.sect_off);
9807 }
9808 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9809 {
9810 complaint (&symfile_complaints,
9811 _("No DW_FORM_block* DW_AT_location for "
9812 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9813 child_die->offset.sect_off, objfile->name);
9814 continue;
9815 }
9816 else
9817 {
9818 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9819 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9820 if (parameter->u.dwarf_reg != -1)
9821 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9822 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9823 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9824 &parameter->u.fb_offset))
9825 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9826 else
9827 {
9828 complaint (&symfile_complaints,
9829 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9830 "for DW_FORM_block* DW_AT_location is supported for "
9831 "DW_TAG_GNU_call_site child DIE 0x%x "
9832 "[in module %s]"),
9833 child_die->offset.sect_off, objfile->name);
9834 continue;
9835 }
9836 }
9837
9838 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9839 if (!attr_form_is_block (attr))
9840 {
9841 complaint (&symfile_complaints,
9842 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9843 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9844 child_die->offset.sect_off, objfile->name);
9845 continue;
9846 }
9847 parameter->value = DW_BLOCK (attr)->data;
9848 parameter->value_size = DW_BLOCK (attr)->size;
9849
9850 /* Parameters are not pre-cleared by memset above. */
9851 parameter->data_value = NULL;
9852 parameter->data_value_size = 0;
9853 call_site->parameter_count++;
9854
9855 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9856 if (attr)
9857 {
9858 if (!attr_form_is_block (attr))
9859 complaint (&symfile_complaints,
9860 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9861 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9862 child_die->offset.sect_off, objfile->name);
9863 else
9864 {
9865 parameter->data_value = DW_BLOCK (attr)->data;
9866 parameter->data_value_size = DW_BLOCK (attr)->size;
9867 }
9868 }
9869 }
9870 }
9871
9872 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9873 Return 1 if the attributes are present and valid, otherwise, return 0.
9874 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9875
9876 static int
9877 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9878 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9879 struct partial_symtab *ranges_pst)
9880 {
9881 struct objfile *objfile = cu->objfile;
9882 struct comp_unit_head *cu_header = &cu->header;
9883 bfd *obfd = objfile->obfd;
9884 unsigned int addr_size = cu_header->addr_size;
9885 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9886 /* Base address selection entry. */
9887 CORE_ADDR base;
9888 int found_base;
9889 unsigned int dummy;
9890 gdb_byte *buffer;
9891 CORE_ADDR marker;
9892 int low_set;
9893 CORE_ADDR low = 0;
9894 CORE_ADDR high = 0;
9895 CORE_ADDR baseaddr;
9896
9897 found_base = cu->base_known;
9898 base = cu->base_address;
9899
9900 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9901 if (offset >= dwarf2_per_objfile->ranges.size)
9902 {
9903 complaint (&symfile_complaints,
9904 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9905 offset);
9906 return 0;
9907 }
9908 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9909
9910 /* Read in the largest possible address. */
9911 marker = read_address (obfd, buffer, cu, &dummy);
9912 if ((marker & mask) == mask)
9913 {
9914 /* If we found the largest possible address, then
9915 read the base address. */
9916 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9917 buffer += 2 * addr_size;
9918 offset += 2 * addr_size;
9919 found_base = 1;
9920 }
9921
9922 low_set = 0;
9923
9924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9925
9926 while (1)
9927 {
9928 CORE_ADDR range_beginning, range_end;
9929
9930 range_beginning = read_address (obfd, buffer, cu, &dummy);
9931 buffer += addr_size;
9932 range_end = read_address (obfd, buffer, cu, &dummy);
9933 buffer += addr_size;
9934 offset += 2 * addr_size;
9935
9936 /* An end of list marker is a pair of zero addresses. */
9937 if (range_beginning == 0 && range_end == 0)
9938 /* Found the end of list entry. */
9939 break;
9940
9941 /* Each base address selection entry is a pair of 2 values.
9942 The first is the largest possible address, the second is
9943 the base address. Check for a base address here. */
9944 if ((range_beginning & mask) == mask)
9945 {
9946 /* If we found the largest possible address, then
9947 read the base address. */
9948 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9949 found_base = 1;
9950 continue;
9951 }
9952
9953 if (!found_base)
9954 {
9955 /* We have no valid base address for the ranges
9956 data. */
9957 complaint (&symfile_complaints,
9958 _("Invalid .debug_ranges data (no base address)"));
9959 return 0;
9960 }
9961
9962 if (range_beginning > range_end)
9963 {
9964 /* Inverted range entries are invalid. */
9965 complaint (&symfile_complaints,
9966 _("Invalid .debug_ranges data (inverted range)"));
9967 return 0;
9968 }
9969
9970 /* Empty range entries have no effect. */
9971 if (range_beginning == range_end)
9972 continue;
9973
9974 range_beginning += base;
9975 range_end += base;
9976
9977 /* A not-uncommon case of bad debug info.
9978 Don't pollute the addrmap with bad data. */
9979 if (range_beginning + baseaddr == 0
9980 && !dwarf2_per_objfile->has_section_at_zero)
9981 {
9982 complaint (&symfile_complaints,
9983 _(".debug_ranges entry has start address of zero"
9984 " [in module %s]"), objfile->name);
9985 continue;
9986 }
9987
9988 if (ranges_pst != NULL)
9989 addrmap_set_empty (objfile->psymtabs_addrmap,
9990 range_beginning + baseaddr,
9991 range_end - 1 + baseaddr,
9992 ranges_pst);
9993
9994 /* FIXME: This is recording everything as a low-high
9995 segment of consecutive addresses. We should have a
9996 data structure for discontiguous block ranges
9997 instead. */
9998 if (! low_set)
9999 {
10000 low = range_beginning;
10001 high = range_end;
10002 low_set = 1;
10003 }
10004 else
10005 {
10006 if (range_beginning < low)
10007 low = range_beginning;
10008 if (range_end > high)
10009 high = range_end;
10010 }
10011 }
10012
10013 if (! low_set)
10014 /* If the first entry is an end-of-list marker, the range
10015 describes an empty scope, i.e. no instructions. */
10016 return 0;
10017
10018 if (low_return)
10019 *low_return = low;
10020 if (high_return)
10021 *high_return = high;
10022 return 1;
10023 }
10024
10025 /* Get low and high pc attributes from a die. Return 1 if the attributes
10026 are present and valid, otherwise, return 0. Return -1 if the range is
10027 discontinuous, i.e. derived from DW_AT_ranges information. */
10028
10029 static int
10030 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10031 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10032 struct partial_symtab *pst)
10033 {
10034 struct attribute *attr;
10035 struct attribute *attr_high;
10036 CORE_ADDR low = 0;
10037 CORE_ADDR high = 0;
10038 int ret = 0;
10039
10040 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10041 if (attr_high)
10042 {
10043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10044 if (attr)
10045 {
10046 low = DW_ADDR (attr);
10047 if (attr_high->form == DW_FORM_addr
10048 || attr_high->form == DW_FORM_GNU_addr_index)
10049 high = DW_ADDR (attr_high);
10050 else
10051 high = low + DW_UNSND (attr_high);
10052 }
10053 else
10054 /* Found high w/o low attribute. */
10055 return 0;
10056
10057 /* Found consecutive range of addresses. */
10058 ret = 1;
10059 }
10060 else
10061 {
10062 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10063 if (attr != NULL)
10064 {
10065 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10066 We take advantage of the fact that DW_AT_ranges does not appear
10067 in DW_TAG_compile_unit of DWO files. */
10068 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10069 unsigned int ranges_offset = (DW_UNSND (attr)
10070 + (need_ranges_base
10071 ? cu->ranges_base
10072 : 0));
10073
10074 /* Value of the DW_AT_ranges attribute is the offset in the
10075 .debug_ranges section. */
10076 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10077 return 0;
10078 /* Found discontinuous range of addresses. */
10079 ret = -1;
10080 }
10081 }
10082
10083 /* read_partial_die has also the strict LOW < HIGH requirement. */
10084 if (high <= low)
10085 return 0;
10086
10087 /* When using the GNU linker, .gnu.linkonce. sections are used to
10088 eliminate duplicate copies of functions and vtables and such.
10089 The linker will arbitrarily choose one and discard the others.
10090 The AT_*_pc values for such functions refer to local labels in
10091 these sections. If the section from that file was discarded, the
10092 labels are not in the output, so the relocs get a value of 0.
10093 If this is a discarded function, mark the pc bounds as invalid,
10094 so that GDB will ignore it. */
10095 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10096 return 0;
10097
10098 *lowpc = low;
10099 if (highpc)
10100 *highpc = high;
10101 return ret;
10102 }
10103
10104 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10105 its low and high PC addresses. Do nothing if these addresses could not
10106 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10107 and HIGHPC to the high address if greater than HIGHPC. */
10108
10109 static void
10110 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10111 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10112 struct dwarf2_cu *cu)
10113 {
10114 CORE_ADDR low, high;
10115 struct die_info *child = die->child;
10116
10117 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10118 {
10119 *lowpc = min (*lowpc, low);
10120 *highpc = max (*highpc, high);
10121 }
10122
10123 /* If the language does not allow nested subprograms (either inside
10124 subprograms or lexical blocks), we're done. */
10125 if (cu->language != language_ada)
10126 return;
10127
10128 /* Check all the children of the given DIE. If it contains nested
10129 subprograms, then check their pc bounds. Likewise, we need to
10130 check lexical blocks as well, as they may also contain subprogram
10131 definitions. */
10132 while (child && child->tag)
10133 {
10134 if (child->tag == DW_TAG_subprogram
10135 || child->tag == DW_TAG_lexical_block)
10136 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10137 child = sibling_die (child);
10138 }
10139 }
10140
10141 /* Get the low and high pc's represented by the scope DIE, and store
10142 them in *LOWPC and *HIGHPC. If the correct values can't be
10143 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10144
10145 static void
10146 get_scope_pc_bounds (struct die_info *die,
10147 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10148 struct dwarf2_cu *cu)
10149 {
10150 CORE_ADDR best_low = (CORE_ADDR) -1;
10151 CORE_ADDR best_high = (CORE_ADDR) 0;
10152 CORE_ADDR current_low, current_high;
10153
10154 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10155 {
10156 best_low = current_low;
10157 best_high = current_high;
10158 }
10159 else
10160 {
10161 struct die_info *child = die->child;
10162
10163 while (child && child->tag)
10164 {
10165 switch (child->tag) {
10166 case DW_TAG_subprogram:
10167 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10168 break;
10169 case DW_TAG_namespace:
10170 case DW_TAG_module:
10171 /* FIXME: carlton/2004-01-16: Should we do this for
10172 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10173 that current GCC's always emit the DIEs corresponding
10174 to definitions of methods of classes as children of a
10175 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10176 the DIEs giving the declarations, which could be
10177 anywhere). But I don't see any reason why the
10178 standards says that they have to be there. */
10179 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10180
10181 if (current_low != ((CORE_ADDR) -1))
10182 {
10183 best_low = min (best_low, current_low);
10184 best_high = max (best_high, current_high);
10185 }
10186 break;
10187 default:
10188 /* Ignore. */
10189 break;
10190 }
10191
10192 child = sibling_die (child);
10193 }
10194 }
10195
10196 *lowpc = best_low;
10197 *highpc = best_high;
10198 }
10199
10200 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10201 in DIE. */
10202
10203 static void
10204 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10205 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10206 {
10207 struct objfile *objfile = cu->objfile;
10208 struct attribute *attr;
10209 struct attribute *attr_high;
10210
10211 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10212 if (attr_high)
10213 {
10214 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10215 if (attr)
10216 {
10217 CORE_ADDR low = DW_ADDR (attr);
10218 CORE_ADDR high;
10219 if (attr_high->form == DW_FORM_addr
10220 || attr_high->form == DW_FORM_GNU_addr_index)
10221 high = DW_ADDR (attr_high);
10222 else
10223 high = low + DW_UNSND (attr_high);
10224
10225 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10226 }
10227 }
10228
10229 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10230 if (attr)
10231 {
10232 bfd *obfd = objfile->obfd;
10233 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10234 We take advantage of the fact that DW_AT_ranges does not appear
10235 in DW_TAG_compile_unit of DWO files. */
10236 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10237
10238 /* The value of the DW_AT_ranges attribute is the offset of the
10239 address range list in the .debug_ranges section. */
10240 unsigned long offset = (DW_UNSND (attr)
10241 + (need_ranges_base ? cu->ranges_base : 0));
10242 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10243
10244 /* For some target architectures, but not others, the
10245 read_address function sign-extends the addresses it returns.
10246 To recognize base address selection entries, we need a
10247 mask. */
10248 unsigned int addr_size = cu->header.addr_size;
10249 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10250
10251 /* The base address, to which the next pair is relative. Note
10252 that this 'base' is a DWARF concept: most entries in a range
10253 list are relative, to reduce the number of relocs against the
10254 debugging information. This is separate from this function's
10255 'baseaddr' argument, which GDB uses to relocate debugging
10256 information from a shared library based on the address at
10257 which the library was loaded. */
10258 CORE_ADDR base = cu->base_address;
10259 int base_known = cu->base_known;
10260
10261 gdb_assert (dwarf2_per_objfile->ranges.readin);
10262 if (offset >= dwarf2_per_objfile->ranges.size)
10263 {
10264 complaint (&symfile_complaints,
10265 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10266 offset);
10267 return;
10268 }
10269
10270 for (;;)
10271 {
10272 unsigned int bytes_read;
10273 CORE_ADDR start, end;
10274
10275 start = read_address (obfd, buffer, cu, &bytes_read);
10276 buffer += bytes_read;
10277 end = read_address (obfd, buffer, cu, &bytes_read);
10278 buffer += bytes_read;
10279
10280 /* Did we find the end of the range list? */
10281 if (start == 0 && end == 0)
10282 break;
10283
10284 /* Did we find a base address selection entry? */
10285 else if ((start & base_select_mask) == base_select_mask)
10286 {
10287 base = end;
10288 base_known = 1;
10289 }
10290
10291 /* We found an ordinary address range. */
10292 else
10293 {
10294 if (!base_known)
10295 {
10296 complaint (&symfile_complaints,
10297 _("Invalid .debug_ranges data "
10298 "(no base address)"));
10299 return;
10300 }
10301
10302 if (start > end)
10303 {
10304 /* Inverted range entries are invalid. */
10305 complaint (&symfile_complaints,
10306 _("Invalid .debug_ranges data "
10307 "(inverted range)"));
10308 return;
10309 }
10310
10311 /* Empty range entries have no effect. */
10312 if (start == end)
10313 continue;
10314
10315 start += base + baseaddr;
10316 end += base + baseaddr;
10317
10318 /* A not-uncommon case of bad debug info.
10319 Don't pollute the addrmap with bad data. */
10320 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10321 {
10322 complaint (&symfile_complaints,
10323 _(".debug_ranges entry has start address of zero"
10324 " [in module %s]"), objfile->name);
10325 continue;
10326 }
10327
10328 record_block_range (block, start, end - 1);
10329 }
10330 }
10331 }
10332 }
10333
10334 /* Check whether the producer field indicates either of GCC < 4.6, or the
10335 Intel C/C++ compiler, and cache the result in CU. */
10336
10337 static void
10338 check_producer (struct dwarf2_cu *cu)
10339 {
10340 const char *cs;
10341 int major, minor, release;
10342
10343 if (cu->producer == NULL)
10344 {
10345 /* For unknown compilers expect their behavior is DWARF version
10346 compliant.
10347
10348 GCC started to support .debug_types sections by -gdwarf-4 since
10349 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10350 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10351 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10352 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10353 }
10354 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10355 {
10356 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10357
10358 cs = &cu->producer[strlen ("GNU ")];
10359 while (*cs && !isdigit (*cs))
10360 cs++;
10361 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10362 {
10363 /* Not recognized as GCC. */
10364 }
10365 else
10366 {
10367 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10368 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10369 }
10370 }
10371 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10372 cu->producer_is_icc = 1;
10373 else
10374 {
10375 /* For other non-GCC compilers, expect their behavior is DWARF version
10376 compliant. */
10377 }
10378
10379 cu->checked_producer = 1;
10380 }
10381
10382 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10383 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10384 during 4.6.0 experimental. */
10385
10386 static int
10387 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10388 {
10389 if (!cu->checked_producer)
10390 check_producer (cu);
10391
10392 return cu->producer_is_gxx_lt_4_6;
10393 }
10394
10395 /* Return the default accessibility type if it is not overriden by
10396 DW_AT_accessibility. */
10397
10398 static enum dwarf_access_attribute
10399 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10400 {
10401 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10402 {
10403 /* The default DWARF 2 accessibility for members is public, the default
10404 accessibility for inheritance is private. */
10405
10406 if (die->tag != DW_TAG_inheritance)
10407 return DW_ACCESS_public;
10408 else
10409 return DW_ACCESS_private;
10410 }
10411 else
10412 {
10413 /* DWARF 3+ defines the default accessibility a different way. The same
10414 rules apply now for DW_TAG_inheritance as for the members and it only
10415 depends on the container kind. */
10416
10417 if (die->parent->tag == DW_TAG_class_type)
10418 return DW_ACCESS_private;
10419 else
10420 return DW_ACCESS_public;
10421 }
10422 }
10423
10424 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10425 offset. If the attribute was not found return 0, otherwise return
10426 1. If it was found but could not properly be handled, set *OFFSET
10427 to 0. */
10428
10429 static int
10430 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10431 LONGEST *offset)
10432 {
10433 struct attribute *attr;
10434
10435 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10436 if (attr != NULL)
10437 {
10438 *offset = 0;
10439
10440 /* Note that we do not check for a section offset first here.
10441 This is because DW_AT_data_member_location is new in DWARF 4,
10442 so if we see it, we can assume that a constant form is really
10443 a constant and not a section offset. */
10444 if (attr_form_is_constant (attr))
10445 *offset = dwarf2_get_attr_constant_value (attr, 0);
10446 else if (attr_form_is_section_offset (attr))
10447 dwarf2_complex_location_expr_complaint ();
10448 else if (attr_form_is_block (attr))
10449 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10450 else
10451 dwarf2_complex_location_expr_complaint ();
10452
10453 return 1;
10454 }
10455
10456 return 0;
10457 }
10458
10459 /* Add an aggregate field to the field list. */
10460
10461 static void
10462 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10463 struct dwarf2_cu *cu)
10464 {
10465 struct objfile *objfile = cu->objfile;
10466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10467 struct nextfield *new_field;
10468 struct attribute *attr;
10469 struct field *fp;
10470 char *fieldname = "";
10471
10472 /* Allocate a new field list entry and link it in. */
10473 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10474 make_cleanup (xfree, new_field);
10475 memset (new_field, 0, sizeof (struct nextfield));
10476
10477 if (die->tag == DW_TAG_inheritance)
10478 {
10479 new_field->next = fip->baseclasses;
10480 fip->baseclasses = new_field;
10481 }
10482 else
10483 {
10484 new_field->next = fip->fields;
10485 fip->fields = new_field;
10486 }
10487 fip->nfields++;
10488
10489 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10490 if (attr)
10491 new_field->accessibility = DW_UNSND (attr);
10492 else
10493 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10494 if (new_field->accessibility != DW_ACCESS_public)
10495 fip->non_public_fields = 1;
10496
10497 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10498 if (attr)
10499 new_field->virtuality = DW_UNSND (attr);
10500 else
10501 new_field->virtuality = DW_VIRTUALITY_none;
10502
10503 fp = &new_field->field;
10504
10505 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10506 {
10507 LONGEST offset;
10508
10509 /* Data member other than a C++ static data member. */
10510
10511 /* Get type of field. */
10512 fp->type = die_type (die, cu);
10513
10514 SET_FIELD_BITPOS (*fp, 0);
10515
10516 /* Get bit size of field (zero if none). */
10517 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10518 if (attr)
10519 {
10520 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10521 }
10522 else
10523 {
10524 FIELD_BITSIZE (*fp) = 0;
10525 }
10526
10527 /* Get bit offset of field. */
10528 if (handle_data_member_location (die, cu, &offset))
10529 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10530 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10531 if (attr)
10532 {
10533 if (gdbarch_bits_big_endian (gdbarch))
10534 {
10535 /* For big endian bits, the DW_AT_bit_offset gives the
10536 additional bit offset from the MSB of the containing
10537 anonymous object to the MSB of the field. We don't
10538 have to do anything special since we don't need to
10539 know the size of the anonymous object. */
10540 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10541 }
10542 else
10543 {
10544 /* For little endian bits, compute the bit offset to the
10545 MSB of the anonymous object, subtract off the number of
10546 bits from the MSB of the field to the MSB of the
10547 object, and then subtract off the number of bits of
10548 the field itself. The result is the bit offset of
10549 the LSB of the field. */
10550 int anonymous_size;
10551 int bit_offset = DW_UNSND (attr);
10552
10553 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10554 if (attr)
10555 {
10556 /* The size of the anonymous object containing
10557 the bit field is explicit, so use the
10558 indicated size (in bytes). */
10559 anonymous_size = DW_UNSND (attr);
10560 }
10561 else
10562 {
10563 /* The size of the anonymous object containing
10564 the bit field must be inferred from the type
10565 attribute of the data member containing the
10566 bit field. */
10567 anonymous_size = TYPE_LENGTH (fp->type);
10568 }
10569 SET_FIELD_BITPOS (*fp,
10570 (FIELD_BITPOS (*fp)
10571 + anonymous_size * bits_per_byte
10572 - bit_offset - FIELD_BITSIZE (*fp)));
10573 }
10574 }
10575
10576 /* Get name of field. */
10577 fieldname = dwarf2_name (die, cu);
10578 if (fieldname == NULL)
10579 fieldname = "";
10580
10581 /* The name is already allocated along with this objfile, so we don't
10582 need to duplicate it for the type. */
10583 fp->name = fieldname;
10584
10585 /* Change accessibility for artificial fields (e.g. virtual table
10586 pointer or virtual base class pointer) to private. */
10587 if (dwarf2_attr (die, DW_AT_artificial, cu))
10588 {
10589 FIELD_ARTIFICIAL (*fp) = 1;
10590 new_field->accessibility = DW_ACCESS_private;
10591 fip->non_public_fields = 1;
10592 }
10593 }
10594 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10595 {
10596 /* C++ static member. */
10597
10598 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10599 is a declaration, but all versions of G++ as of this writing
10600 (so through at least 3.2.1) incorrectly generate
10601 DW_TAG_variable tags. */
10602
10603 const char *physname;
10604
10605 /* Get name of field. */
10606 fieldname = dwarf2_name (die, cu);
10607 if (fieldname == NULL)
10608 return;
10609
10610 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10611 if (attr
10612 /* Only create a symbol if this is an external value.
10613 new_symbol checks this and puts the value in the global symbol
10614 table, which we want. If it is not external, new_symbol
10615 will try to put the value in cu->list_in_scope which is wrong. */
10616 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10617 {
10618 /* A static const member, not much different than an enum as far as
10619 we're concerned, except that we can support more types. */
10620 new_symbol (die, NULL, cu);
10621 }
10622
10623 /* Get physical name. */
10624 physname = dwarf2_physname (fieldname, die, cu);
10625
10626 /* The name is already allocated along with this objfile, so we don't
10627 need to duplicate it for the type. */
10628 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10629 FIELD_TYPE (*fp) = die_type (die, cu);
10630 FIELD_NAME (*fp) = fieldname;
10631 }
10632 else if (die->tag == DW_TAG_inheritance)
10633 {
10634 LONGEST offset;
10635
10636 /* C++ base class field. */
10637 if (handle_data_member_location (die, cu, &offset))
10638 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10639 FIELD_BITSIZE (*fp) = 0;
10640 FIELD_TYPE (*fp) = die_type (die, cu);
10641 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10642 fip->nbaseclasses++;
10643 }
10644 }
10645
10646 /* Add a typedef defined in the scope of the FIP's class. */
10647
10648 static void
10649 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10650 struct dwarf2_cu *cu)
10651 {
10652 struct objfile *objfile = cu->objfile;
10653 struct typedef_field_list *new_field;
10654 struct attribute *attr;
10655 struct typedef_field *fp;
10656 char *fieldname = "";
10657
10658 /* Allocate a new field list entry and link it in. */
10659 new_field = xzalloc (sizeof (*new_field));
10660 make_cleanup (xfree, new_field);
10661
10662 gdb_assert (die->tag == DW_TAG_typedef);
10663
10664 fp = &new_field->field;
10665
10666 /* Get name of field. */
10667 fp->name = dwarf2_name (die, cu);
10668 if (fp->name == NULL)
10669 return;
10670
10671 fp->type = read_type_die (die, cu);
10672
10673 new_field->next = fip->typedef_field_list;
10674 fip->typedef_field_list = new_field;
10675 fip->typedef_field_list_count++;
10676 }
10677
10678 /* Create the vector of fields, and attach it to the type. */
10679
10680 static void
10681 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10682 struct dwarf2_cu *cu)
10683 {
10684 int nfields = fip->nfields;
10685
10686 /* Record the field count, allocate space for the array of fields,
10687 and create blank accessibility bitfields if necessary. */
10688 TYPE_NFIELDS (type) = nfields;
10689 TYPE_FIELDS (type) = (struct field *)
10690 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10691 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10692
10693 if (fip->non_public_fields && cu->language != language_ada)
10694 {
10695 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10696
10697 TYPE_FIELD_PRIVATE_BITS (type) =
10698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10699 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10700
10701 TYPE_FIELD_PROTECTED_BITS (type) =
10702 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10703 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10704
10705 TYPE_FIELD_IGNORE_BITS (type) =
10706 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10707 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10708 }
10709
10710 /* If the type has baseclasses, allocate and clear a bit vector for
10711 TYPE_FIELD_VIRTUAL_BITS. */
10712 if (fip->nbaseclasses && cu->language != language_ada)
10713 {
10714 int num_bytes = B_BYTES (fip->nbaseclasses);
10715 unsigned char *pointer;
10716
10717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10718 pointer = TYPE_ALLOC (type, num_bytes);
10719 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10720 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10721 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10722 }
10723
10724 /* Copy the saved-up fields into the field vector. Start from the head of
10725 the list, adding to the tail of the field array, so that they end up in
10726 the same order in the array in which they were added to the list. */
10727 while (nfields-- > 0)
10728 {
10729 struct nextfield *fieldp;
10730
10731 if (fip->fields)
10732 {
10733 fieldp = fip->fields;
10734 fip->fields = fieldp->next;
10735 }
10736 else
10737 {
10738 fieldp = fip->baseclasses;
10739 fip->baseclasses = fieldp->next;
10740 }
10741
10742 TYPE_FIELD (type, nfields) = fieldp->field;
10743 switch (fieldp->accessibility)
10744 {
10745 case DW_ACCESS_private:
10746 if (cu->language != language_ada)
10747 SET_TYPE_FIELD_PRIVATE (type, nfields);
10748 break;
10749
10750 case DW_ACCESS_protected:
10751 if (cu->language != language_ada)
10752 SET_TYPE_FIELD_PROTECTED (type, nfields);
10753 break;
10754
10755 case DW_ACCESS_public:
10756 break;
10757
10758 default:
10759 /* Unknown accessibility. Complain and treat it as public. */
10760 {
10761 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10762 fieldp->accessibility);
10763 }
10764 break;
10765 }
10766 if (nfields < fip->nbaseclasses)
10767 {
10768 switch (fieldp->virtuality)
10769 {
10770 case DW_VIRTUALITY_virtual:
10771 case DW_VIRTUALITY_pure_virtual:
10772 if (cu->language == language_ada)
10773 error (_("unexpected virtuality in component of Ada type"));
10774 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10775 break;
10776 }
10777 }
10778 }
10779 }
10780
10781 /* Return true if this member function is a constructor, false
10782 otherwise. */
10783
10784 static int
10785 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10786 {
10787 const char *fieldname;
10788 const char *typename;
10789 int len;
10790
10791 if (die->parent == NULL)
10792 return 0;
10793
10794 if (die->parent->tag != DW_TAG_structure_type
10795 && die->parent->tag != DW_TAG_union_type
10796 && die->parent->tag != DW_TAG_class_type)
10797 return 0;
10798
10799 fieldname = dwarf2_name (die, cu);
10800 typename = dwarf2_name (die->parent, cu);
10801 if (fieldname == NULL || typename == NULL)
10802 return 0;
10803
10804 len = strlen (fieldname);
10805 return (strncmp (fieldname, typename, len) == 0
10806 && (typename[len] == '\0' || typename[len] == '<'));
10807 }
10808
10809 /* Add a member function to the proper fieldlist. */
10810
10811 static void
10812 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10813 struct type *type, struct dwarf2_cu *cu)
10814 {
10815 struct objfile *objfile = cu->objfile;
10816 struct attribute *attr;
10817 struct fnfieldlist *flp;
10818 int i;
10819 struct fn_field *fnp;
10820 char *fieldname;
10821 struct nextfnfield *new_fnfield;
10822 struct type *this_type;
10823 enum dwarf_access_attribute accessibility;
10824
10825 if (cu->language == language_ada)
10826 error (_("unexpected member function in Ada type"));
10827
10828 /* Get name of member function. */
10829 fieldname = dwarf2_name (die, cu);
10830 if (fieldname == NULL)
10831 return;
10832
10833 /* Look up member function name in fieldlist. */
10834 for (i = 0; i < fip->nfnfields; i++)
10835 {
10836 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10837 break;
10838 }
10839
10840 /* Create new list element if necessary. */
10841 if (i < fip->nfnfields)
10842 flp = &fip->fnfieldlists[i];
10843 else
10844 {
10845 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10846 {
10847 fip->fnfieldlists = (struct fnfieldlist *)
10848 xrealloc (fip->fnfieldlists,
10849 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10850 * sizeof (struct fnfieldlist));
10851 if (fip->nfnfields == 0)
10852 make_cleanup (free_current_contents, &fip->fnfieldlists);
10853 }
10854 flp = &fip->fnfieldlists[fip->nfnfields];
10855 flp->name = fieldname;
10856 flp->length = 0;
10857 flp->head = NULL;
10858 i = fip->nfnfields++;
10859 }
10860
10861 /* Create a new member function field and chain it to the field list
10862 entry. */
10863 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10864 make_cleanup (xfree, new_fnfield);
10865 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10866 new_fnfield->next = flp->head;
10867 flp->head = new_fnfield;
10868 flp->length++;
10869
10870 /* Fill in the member function field info. */
10871 fnp = &new_fnfield->fnfield;
10872
10873 /* Delay processing of the physname until later. */
10874 if (cu->language == language_cplus || cu->language == language_java)
10875 {
10876 add_to_method_list (type, i, flp->length - 1, fieldname,
10877 die, cu);
10878 }
10879 else
10880 {
10881 const char *physname = dwarf2_physname (fieldname, die, cu);
10882 fnp->physname = physname ? physname : "";
10883 }
10884
10885 fnp->type = alloc_type (objfile);
10886 this_type = read_type_die (die, cu);
10887 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10888 {
10889 int nparams = TYPE_NFIELDS (this_type);
10890
10891 /* TYPE is the domain of this method, and THIS_TYPE is the type
10892 of the method itself (TYPE_CODE_METHOD). */
10893 smash_to_method_type (fnp->type, type,
10894 TYPE_TARGET_TYPE (this_type),
10895 TYPE_FIELDS (this_type),
10896 TYPE_NFIELDS (this_type),
10897 TYPE_VARARGS (this_type));
10898
10899 /* Handle static member functions.
10900 Dwarf2 has no clean way to discern C++ static and non-static
10901 member functions. G++ helps GDB by marking the first
10902 parameter for non-static member functions (which is the this
10903 pointer) as artificial. We obtain this information from
10904 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10905 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10906 fnp->voffset = VOFFSET_STATIC;
10907 }
10908 else
10909 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10910 dwarf2_full_name (fieldname, die, cu));
10911
10912 /* Get fcontext from DW_AT_containing_type if present. */
10913 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10914 fnp->fcontext = die_containing_type (die, cu);
10915
10916 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10917 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10918
10919 /* Get accessibility. */
10920 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10921 if (attr)
10922 accessibility = DW_UNSND (attr);
10923 else
10924 accessibility = dwarf2_default_access_attribute (die, cu);
10925 switch (accessibility)
10926 {
10927 case DW_ACCESS_private:
10928 fnp->is_private = 1;
10929 break;
10930 case DW_ACCESS_protected:
10931 fnp->is_protected = 1;
10932 break;
10933 }
10934
10935 /* Check for artificial methods. */
10936 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10937 if (attr && DW_UNSND (attr) != 0)
10938 fnp->is_artificial = 1;
10939
10940 fnp->is_constructor = dwarf2_is_constructor (die, cu);
10941
10942 /* Get index in virtual function table if it is a virtual member
10943 function. For older versions of GCC, this is an offset in the
10944 appropriate virtual table, as specified by DW_AT_containing_type.
10945 For everyone else, it is an expression to be evaluated relative
10946 to the object address. */
10947
10948 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10949 if (attr)
10950 {
10951 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10952 {
10953 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10954 {
10955 /* Old-style GCC. */
10956 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10957 }
10958 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10959 || (DW_BLOCK (attr)->size > 1
10960 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10961 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10962 {
10963 struct dwarf_block blk;
10964 int offset;
10965
10966 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10967 ? 1 : 2);
10968 blk.size = DW_BLOCK (attr)->size - offset;
10969 blk.data = DW_BLOCK (attr)->data + offset;
10970 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10971 if ((fnp->voffset % cu->header.addr_size) != 0)
10972 dwarf2_complex_location_expr_complaint ();
10973 else
10974 fnp->voffset /= cu->header.addr_size;
10975 fnp->voffset += 2;
10976 }
10977 else
10978 dwarf2_complex_location_expr_complaint ();
10979
10980 if (!fnp->fcontext)
10981 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10982 }
10983 else if (attr_form_is_section_offset (attr))
10984 {
10985 dwarf2_complex_location_expr_complaint ();
10986 }
10987 else
10988 {
10989 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10990 fieldname);
10991 }
10992 }
10993 else
10994 {
10995 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10996 if (attr && DW_UNSND (attr))
10997 {
10998 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10999 complaint (&symfile_complaints,
11000 _("Member function \"%s\" (offset %d) is virtual "
11001 "but the vtable offset is not specified"),
11002 fieldname, die->offset.sect_off);
11003 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11004 TYPE_CPLUS_DYNAMIC (type) = 1;
11005 }
11006 }
11007 }
11008
11009 /* Create the vector of member function fields, and attach it to the type. */
11010
11011 static void
11012 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11013 struct dwarf2_cu *cu)
11014 {
11015 struct fnfieldlist *flp;
11016 int i;
11017
11018 if (cu->language == language_ada)
11019 error (_("unexpected member functions in Ada type"));
11020
11021 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11022 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11023 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11024
11025 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11026 {
11027 struct nextfnfield *nfp = flp->head;
11028 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11029 int k;
11030
11031 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11032 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11033 fn_flp->fn_fields = (struct fn_field *)
11034 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11035 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11036 fn_flp->fn_fields[k] = nfp->fnfield;
11037 }
11038
11039 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11040 }
11041
11042 /* Returns non-zero if NAME is the name of a vtable member in CU's
11043 language, zero otherwise. */
11044 static int
11045 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11046 {
11047 static const char vptr[] = "_vptr";
11048 static const char vtable[] = "vtable";
11049
11050 /* Look for the C++ and Java forms of the vtable. */
11051 if ((cu->language == language_java
11052 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11053 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11054 && is_cplus_marker (name[sizeof (vptr) - 1])))
11055 return 1;
11056
11057 return 0;
11058 }
11059
11060 /* GCC outputs unnamed structures that are really pointers to member
11061 functions, with the ABI-specified layout. If TYPE describes
11062 such a structure, smash it into a member function type.
11063
11064 GCC shouldn't do this; it should just output pointer to member DIEs.
11065 This is GCC PR debug/28767. */
11066
11067 static void
11068 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11069 {
11070 struct type *pfn_type, *domain_type, *new_type;
11071
11072 /* Check for a structure with no name and two children. */
11073 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11074 return;
11075
11076 /* Check for __pfn and __delta members. */
11077 if (TYPE_FIELD_NAME (type, 0) == NULL
11078 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11079 || TYPE_FIELD_NAME (type, 1) == NULL
11080 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11081 return;
11082
11083 /* Find the type of the method. */
11084 pfn_type = TYPE_FIELD_TYPE (type, 0);
11085 if (pfn_type == NULL
11086 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11087 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11088 return;
11089
11090 /* Look for the "this" argument. */
11091 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11092 if (TYPE_NFIELDS (pfn_type) == 0
11093 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11094 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11095 return;
11096
11097 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11098 new_type = alloc_type (objfile);
11099 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11100 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11101 TYPE_VARARGS (pfn_type));
11102 smash_to_methodptr_type (type, new_type);
11103 }
11104
11105 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11106 (icc). */
11107
11108 static int
11109 producer_is_icc (struct dwarf2_cu *cu)
11110 {
11111 if (!cu->checked_producer)
11112 check_producer (cu);
11113
11114 return cu->producer_is_icc;
11115 }
11116
11117 /* Called when we find the DIE that starts a structure or union scope
11118 (definition) to create a type for the structure or union. Fill in
11119 the type's name and general properties; the members will not be
11120 processed until process_structure_type.
11121
11122 NOTE: we need to call these functions regardless of whether or not the
11123 DIE has a DW_AT_name attribute, since it might be an anonymous
11124 structure or union. This gets the type entered into our set of
11125 user defined types.
11126
11127 However, if the structure is incomplete (an opaque struct/union)
11128 then suppress creating a symbol table entry for it since gdb only
11129 wants to find the one with the complete definition. Note that if
11130 it is complete, we just call new_symbol, which does it's own
11131 checking about whether the struct/union is anonymous or not (and
11132 suppresses creating a symbol table entry itself). */
11133
11134 static struct type *
11135 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11136 {
11137 struct objfile *objfile = cu->objfile;
11138 struct type *type;
11139 struct attribute *attr;
11140 char *name;
11141
11142 /* If the definition of this type lives in .debug_types, read that type.
11143 Don't follow DW_AT_specification though, that will take us back up
11144 the chain and we want to go down. */
11145 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11146 if (attr)
11147 {
11148 struct dwarf2_cu *type_cu = cu;
11149 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11150
11151 /* We could just recurse on read_structure_type, but we need to call
11152 get_die_type to ensure only one type for this DIE is created.
11153 This is important, for example, because for c++ classes we need
11154 TYPE_NAME set which is only done by new_symbol. Blech. */
11155 type = read_type_die (type_die, type_cu);
11156
11157 /* TYPE_CU may not be the same as CU.
11158 Ensure TYPE is recorded in CU's type_hash table. */
11159 return set_die_type (die, type, cu);
11160 }
11161
11162 type = alloc_type (objfile);
11163 INIT_CPLUS_SPECIFIC (type);
11164
11165 name = dwarf2_name (die, cu);
11166 if (name != NULL)
11167 {
11168 if (cu->language == language_cplus
11169 || cu->language == language_java)
11170 {
11171 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11172
11173 /* dwarf2_full_name might have already finished building the DIE's
11174 type. If so, there is no need to continue. */
11175 if (get_die_type (die, cu) != NULL)
11176 return get_die_type (die, cu);
11177
11178 TYPE_TAG_NAME (type) = full_name;
11179 if (die->tag == DW_TAG_structure_type
11180 || die->tag == DW_TAG_class_type)
11181 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11182 }
11183 else
11184 {
11185 /* The name is already allocated along with this objfile, so
11186 we don't need to duplicate it for the type. */
11187 TYPE_TAG_NAME (type) = (char *) name;
11188 if (die->tag == DW_TAG_class_type)
11189 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11190 }
11191 }
11192
11193 if (die->tag == DW_TAG_structure_type)
11194 {
11195 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11196 }
11197 else if (die->tag == DW_TAG_union_type)
11198 {
11199 TYPE_CODE (type) = TYPE_CODE_UNION;
11200 }
11201 else
11202 {
11203 TYPE_CODE (type) = TYPE_CODE_CLASS;
11204 }
11205
11206 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11207 TYPE_DECLARED_CLASS (type) = 1;
11208
11209 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11210 if (attr)
11211 {
11212 TYPE_LENGTH (type) = DW_UNSND (attr);
11213 }
11214 else
11215 {
11216 TYPE_LENGTH (type) = 0;
11217 }
11218
11219 if (producer_is_icc (cu))
11220 {
11221 /* ICC does not output the required DW_AT_declaration
11222 on incomplete types, but gives them a size of zero. */
11223 }
11224 else
11225 TYPE_STUB_SUPPORTED (type) = 1;
11226
11227 if (die_is_declaration (die, cu))
11228 TYPE_STUB (type) = 1;
11229 else if (attr == NULL && die->child == NULL
11230 && producer_is_realview (cu->producer))
11231 /* RealView does not output the required DW_AT_declaration
11232 on incomplete types. */
11233 TYPE_STUB (type) = 1;
11234
11235 /* We need to add the type field to the die immediately so we don't
11236 infinitely recurse when dealing with pointers to the structure
11237 type within the structure itself. */
11238 set_die_type (die, type, cu);
11239
11240 /* set_die_type should be already done. */
11241 set_descriptive_type (type, die, cu);
11242
11243 return type;
11244 }
11245
11246 /* Finish creating a structure or union type, including filling in
11247 its members and creating a symbol for it. */
11248
11249 static void
11250 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11251 {
11252 struct objfile *objfile = cu->objfile;
11253 struct die_info *child_die = die->child;
11254 struct type *type;
11255
11256 type = get_die_type (die, cu);
11257 if (type == NULL)
11258 type = read_structure_type (die, cu);
11259
11260 if (die->child != NULL && ! die_is_declaration (die, cu))
11261 {
11262 struct field_info fi;
11263 struct die_info *child_die;
11264 VEC (symbolp) *template_args = NULL;
11265 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11266
11267 memset (&fi, 0, sizeof (struct field_info));
11268
11269 child_die = die->child;
11270
11271 while (child_die && child_die->tag)
11272 {
11273 if (child_die->tag == DW_TAG_member
11274 || child_die->tag == DW_TAG_variable)
11275 {
11276 /* NOTE: carlton/2002-11-05: A C++ static data member
11277 should be a DW_TAG_member that is a declaration, but
11278 all versions of G++ as of this writing (so through at
11279 least 3.2.1) incorrectly generate DW_TAG_variable
11280 tags for them instead. */
11281 dwarf2_add_field (&fi, child_die, cu);
11282 }
11283 else if (child_die->tag == DW_TAG_subprogram)
11284 {
11285 /* C++ member function. */
11286 dwarf2_add_member_fn (&fi, child_die, type, cu);
11287 }
11288 else if (child_die->tag == DW_TAG_inheritance)
11289 {
11290 /* C++ base class field. */
11291 dwarf2_add_field (&fi, child_die, cu);
11292 }
11293 else if (child_die->tag == DW_TAG_typedef)
11294 dwarf2_add_typedef (&fi, child_die, cu);
11295 else if (child_die->tag == DW_TAG_template_type_param
11296 || child_die->tag == DW_TAG_template_value_param)
11297 {
11298 struct symbol *arg = new_symbol (child_die, NULL, cu);
11299
11300 if (arg != NULL)
11301 VEC_safe_push (symbolp, template_args, arg);
11302 }
11303
11304 child_die = sibling_die (child_die);
11305 }
11306
11307 /* Attach template arguments to type. */
11308 if (! VEC_empty (symbolp, template_args))
11309 {
11310 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11311 TYPE_N_TEMPLATE_ARGUMENTS (type)
11312 = VEC_length (symbolp, template_args);
11313 TYPE_TEMPLATE_ARGUMENTS (type)
11314 = obstack_alloc (&objfile->objfile_obstack,
11315 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11316 * sizeof (struct symbol *)));
11317 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11318 VEC_address (symbolp, template_args),
11319 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11320 * sizeof (struct symbol *)));
11321 VEC_free (symbolp, template_args);
11322 }
11323
11324 /* Attach fields and member functions to the type. */
11325 if (fi.nfields)
11326 dwarf2_attach_fields_to_type (&fi, type, cu);
11327 if (fi.nfnfields)
11328 {
11329 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11330
11331 /* Get the type which refers to the base class (possibly this
11332 class itself) which contains the vtable pointer for the current
11333 class from the DW_AT_containing_type attribute. This use of
11334 DW_AT_containing_type is a GNU extension. */
11335
11336 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11337 {
11338 struct type *t = die_containing_type (die, cu);
11339
11340 TYPE_VPTR_BASETYPE (type) = t;
11341 if (type == t)
11342 {
11343 int i;
11344
11345 /* Our own class provides vtbl ptr. */
11346 for (i = TYPE_NFIELDS (t) - 1;
11347 i >= TYPE_N_BASECLASSES (t);
11348 --i)
11349 {
11350 const char *fieldname = TYPE_FIELD_NAME (t, i);
11351
11352 if (is_vtable_name (fieldname, cu))
11353 {
11354 TYPE_VPTR_FIELDNO (type) = i;
11355 break;
11356 }
11357 }
11358
11359 /* Complain if virtual function table field not found. */
11360 if (i < TYPE_N_BASECLASSES (t))
11361 complaint (&symfile_complaints,
11362 _("virtual function table pointer "
11363 "not found when defining class '%s'"),
11364 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11365 "");
11366 }
11367 else
11368 {
11369 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11370 }
11371 }
11372 else if (cu->producer
11373 && strncmp (cu->producer,
11374 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11375 {
11376 /* The IBM XLC compiler does not provide direct indication
11377 of the containing type, but the vtable pointer is
11378 always named __vfp. */
11379
11380 int i;
11381
11382 for (i = TYPE_NFIELDS (type) - 1;
11383 i >= TYPE_N_BASECLASSES (type);
11384 --i)
11385 {
11386 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11387 {
11388 TYPE_VPTR_FIELDNO (type) = i;
11389 TYPE_VPTR_BASETYPE (type) = type;
11390 break;
11391 }
11392 }
11393 }
11394 }
11395
11396 /* Copy fi.typedef_field_list linked list elements content into the
11397 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11398 if (fi.typedef_field_list)
11399 {
11400 int i = fi.typedef_field_list_count;
11401
11402 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11403 TYPE_TYPEDEF_FIELD_ARRAY (type)
11404 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11405 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11406
11407 /* Reverse the list order to keep the debug info elements order. */
11408 while (--i >= 0)
11409 {
11410 struct typedef_field *dest, *src;
11411
11412 dest = &TYPE_TYPEDEF_FIELD (type, i);
11413 src = &fi.typedef_field_list->field;
11414 fi.typedef_field_list = fi.typedef_field_list->next;
11415 *dest = *src;
11416 }
11417 }
11418
11419 do_cleanups (back_to);
11420
11421 if (HAVE_CPLUS_STRUCT (type))
11422 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11423 }
11424
11425 quirk_gcc_member_function_pointer (type, objfile);
11426
11427 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11428 snapshots) has been known to create a die giving a declaration
11429 for a class that has, as a child, a die giving a definition for a
11430 nested class. So we have to process our children even if the
11431 current die is a declaration. Normally, of course, a declaration
11432 won't have any children at all. */
11433
11434 while (child_die != NULL && child_die->tag)
11435 {
11436 if (child_die->tag == DW_TAG_member
11437 || child_die->tag == DW_TAG_variable
11438 || child_die->tag == DW_TAG_inheritance
11439 || child_die->tag == DW_TAG_template_value_param
11440 || child_die->tag == DW_TAG_template_type_param)
11441 {
11442 /* Do nothing. */
11443 }
11444 else
11445 process_die (child_die, cu);
11446
11447 child_die = sibling_die (child_die);
11448 }
11449
11450 /* Do not consider external references. According to the DWARF standard,
11451 these DIEs are identified by the fact that they have no byte_size
11452 attribute, and a declaration attribute. */
11453 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11454 || !die_is_declaration (die, cu))
11455 new_symbol (die, type, cu);
11456 }
11457
11458 /* Given a DW_AT_enumeration_type die, set its type. We do not
11459 complete the type's fields yet, or create any symbols. */
11460
11461 static struct type *
11462 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11463 {
11464 struct objfile *objfile = cu->objfile;
11465 struct type *type;
11466 struct attribute *attr;
11467 const char *name;
11468
11469 /* If the definition of this type lives in .debug_types, read that type.
11470 Don't follow DW_AT_specification though, that will take us back up
11471 the chain and we want to go down. */
11472 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11473 if (attr)
11474 {
11475 struct dwarf2_cu *type_cu = cu;
11476 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11477
11478 type = read_type_die (type_die, type_cu);
11479
11480 /* TYPE_CU may not be the same as CU.
11481 Ensure TYPE is recorded in CU's type_hash table. */
11482 return set_die_type (die, type, cu);
11483 }
11484
11485 type = alloc_type (objfile);
11486
11487 TYPE_CODE (type) = TYPE_CODE_ENUM;
11488 name = dwarf2_full_name (NULL, die, cu);
11489 if (name != NULL)
11490 TYPE_TAG_NAME (type) = (char *) name;
11491
11492 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11493 if (attr)
11494 {
11495 TYPE_LENGTH (type) = DW_UNSND (attr);
11496 }
11497 else
11498 {
11499 TYPE_LENGTH (type) = 0;
11500 }
11501
11502 /* The enumeration DIE can be incomplete. In Ada, any type can be
11503 declared as private in the package spec, and then defined only
11504 inside the package body. Such types are known as Taft Amendment
11505 Types. When another package uses such a type, an incomplete DIE
11506 may be generated by the compiler. */
11507 if (die_is_declaration (die, cu))
11508 TYPE_STUB (type) = 1;
11509
11510 return set_die_type (die, type, cu);
11511 }
11512
11513 /* Given a pointer to a die which begins an enumeration, process all
11514 the dies that define the members of the enumeration, and create the
11515 symbol for the enumeration type.
11516
11517 NOTE: We reverse the order of the element list. */
11518
11519 static void
11520 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11521 {
11522 struct type *this_type;
11523
11524 this_type = get_die_type (die, cu);
11525 if (this_type == NULL)
11526 this_type = read_enumeration_type (die, cu);
11527
11528 if (die->child != NULL)
11529 {
11530 struct die_info *child_die;
11531 struct symbol *sym;
11532 struct field *fields = NULL;
11533 int num_fields = 0;
11534 int unsigned_enum = 1;
11535 char *name;
11536 int flag_enum = 1;
11537 ULONGEST mask = 0;
11538
11539 child_die = die->child;
11540 while (child_die && child_die->tag)
11541 {
11542 if (child_die->tag != DW_TAG_enumerator)
11543 {
11544 process_die (child_die, cu);
11545 }
11546 else
11547 {
11548 name = dwarf2_name (child_die, cu);
11549 if (name)
11550 {
11551 sym = new_symbol (child_die, this_type, cu);
11552 if (SYMBOL_VALUE (sym) < 0)
11553 {
11554 unsigned_enum = 0;
11555 flag_enum = 0;
11556 }
11557 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11558 flag_enum = 0;
11559 else
11560 mask |= SYMBOL_VALUE (sym);
11561
11562 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11563 {
11564 fields = (struct field *)
11565 xrealloc (fields,
11566 (num_fields + DW_FIELD_ALLOC_CHUNK)
11567 * sizeof (struct field));
11568 }
11569
11570 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11571 FIELD_TYPE (fields[num_fields]) = NULL;
11572 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11573 FIELD_BITSIZE (fields[num_fields]) = 0;
11574
11575 num_fields++;
11576 }
11577 }
11578
11579 child_die = sibling_die (child_die);
11580 }
11581
11582 if (num_fields)
11583 {
11584 TYPE_NFIELDS (this_type) = num_fields;
11585 TYPE_FIELDS (this_type) = (struct field *)
11586 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11587 memcpy (TYPE_FIELDS (this_type), fields,
11588 sizeof (struct field) * num_fields);
11589 xfree (fields);
11590 }
11591 if (unsigned_enum)
11592 TYPE_UNSIGNED (this_type) = 1;
11593 if (flag_enum)
11594 TYPE_FLAG_ENUM (this_type) = 1;
11595 }
11596
11597 /* If we are reading an enum from a .debug_types unit, and the enum
11598 is a declaration, and the enum is not the signatured type in the
11599 unit, then we do not want to add a symbol for it. Adding a
11600 symbol would in some cases obscure the true definition of the
11601 enum, giving users an incomplete type when the definition is
11602 actually available. Note that we do not want to do this for all
11603 enums which are just declarations, because C++0x allows forward
11604 enum declarations. */
11605 if (cu->per_cu->is_debug_types
11606 && die_is_declaration (die, cu))
11607 {
11608 struct signatured_type *sig_type;
11609
11610 sig_type
11611 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11612 cu->per_cu->info_or_types_section,
11613 cu->per_cu->offset);
11614 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11615 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11616 return;
11617 }
11618
11619 new_symbol (die, this_type, cu);
11620 }
11621
11622 /* Extract all information from a DW_TAG_array_type DIE and put it in
11623 the DIE's type field. For now, this only handles one dimensional
11624 arrays. */
11625
11626 static struct type *
11627 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11628 {
11629 struct objfile *objfile = cu->objfile;
11630 struct die_info *child_die;
11631 struct type *type;
11632 struct type *element_type, *range_type, *index_type;
11633 struct type **range_types = NULL;
11634 struct attribute *attr;
11635 int ndim = 0;
11636 struct cleanup *back_to;
11637 char *name;
11638
11639 element_type = die_type (die, cu);
11640
11641 /* The die_type call above may have already set the type for this DIE. */
11642 type = get_die_type (die, cu);
11643 if (type)
11644 return type;
11645
11646 /* Irix 6.2 native cc creates array types without children for
11647 arrays with unspecified length. */
11648 if (die->child == NULL)
11649 {
11650 index_type = objfile_type (objfile)->builtin_int;
11651 range_type = create_range_type (NULL, index_type, 0, -1);
11652 type = create_array_type (NULL, element_type, range_type);
11653 return set_die_type (die, type, cu);
11654 }
11655
11656 back_to = make_cleanup (null_cleanup, NULL);
11657 child_die = die->child;
11658 while (child_die && child_die->tag)
11659 {
11660 if (child_die->tag == DW_TAG_subrange_type)
11661 {
11662 struct type *child_type = read_type_die (child_die, cu);
11663
11664 if (child_type != NULL)
11665 {
11666 /* The range type was succesfully read. Save it for the
11667 array type creation. */
11668 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11669 {
11670 range_types = (struct type **)
11671 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11672 * sizeof (struct type *));
11673 if (ndim == 0)
11674 make_cleanup (free_current_contents, &range_types);
11675 }
11676 range_types[ndim++] = child_type;
11677 }
11678 }
11679 child_die = sibling_die (child_die);
11680 }
11681
11682 /* Dwarf2 dimensions are output from left to right, create the
11683 necessary array types in backwards order. */
11684
11685 type = element_type;
11686
11687 if (read_array_order (die, cu) == DW_ORD_col_major)
11688 {
11689 int i = 0;
11690
11691 while (i < ndim)
11692 type = create_array_type (NULL, type, range_types[i++]);
11693 }
11694 else
11695 {
11696 while (ndim-- > 0)
11697 type = create_array_type (NULL, type, range_types[ndim]);
11698 }
11699
11700 /* Understand Dwarf2 support for vector types (like they occur on
11701 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11702 array type. This is not part of the Dwarf2/3 standard yet, but a
11703 custom vendor extension. The main difference between a regular
11704 array and the vector variant is that vectors are passed by value
11705 to functions. */
11706 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11707 if (attr)
11708 make_vector_type (type);
11709
11710 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11711 implementation may choose to implement triple vectors using this
11712 attribute. */
11713 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11714 if (attr)
11715 {
11716 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11717 TYPE_LENGTH (type) = DW_UNSND (attr);
11718 else
11719 complaint (&symfile_complaints,
11720 _("DW_AT_byte_size for array type smaller "
11721 "than the total size of elements"));
11722 }
11723
11724 name = dwarf2_name (die, cu);
11725 if (name)
11726 TYPE_NAME (type) = name;
11727
11728 /* Install the type in the die. */
11729 set_die_type (die, type, cu);
11730
11731 /* set_die_type should be already done. */
11732 set_descriptive_type (type, die, cu);
11733
11734 do_cleanups (back_to);
11735
11736 return type;
11737 }
11738
11739 static enum dwarf_array_dim_ordering
11740 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11741 {
11742 struct attribute *attr;
11743
11744 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11745
11746 if (attr) return DW_SND (attr);
11747
11748 /* GNU F77 is a special case, as at 08/2004 array type info is the
11749 opposite order to the dwarf2 specification, but data is still
11750 laid out as per normal fortran.
11751
11752 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11753 version checking. */
11754
11755 if (cu->language == language_fortran
11756 && cu->producer && strstr (cu->producer, "GNU F77"))
11757 {
11758 return DW_ORD_row_major;
11759 }
11760
11761 switch (cu->language_defn->la_array_ordering)
11762 {
11763 case array_column_major:
11764 return DW_ORD_col_major;
11765 case array_row_major:
11766 default:
11767 return DW_ORD_row_major;
11768 };
11769 }
11770
11771 /* Extract all information from a DW_TAG_set_type DIE and put it in
11772 the DIE's type field. */
11773
11774 static struct type *
11775 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11776 {
11777 struct type *domain_type, *set_type;
11778 struct attribute *attr;
11779
11780 domain_type = die_type (die, cu);
11781
11782 /* The die_type call above may have already set the type for this DIE. */
11783 set_type = get_die_type (die, cu);
11784 if (set_type)
11785 return set_type;
11786
11787 set_type = create_set_type (NULL, domain_type);
11788
11789 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11790 if (attr)
11791 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11792
11793 return set_die_type (die, set_type, cu);
11794 }
11795
11796 /* A helper for read_common_block that creates a locexpr baton.
11797 SYM is the symbol which we are marking as computed.
11798 COMMON_DIE is the DIE for the common block.
11799 COMMON_LOC is the location expression attribute for the common
11800 block itself.
11801 MEMBER_LOC is the location expression attribute for the particular
11802 member of the common block that we are processing.
11803 CU is the CU from which the above come. */
11804
11805 static void
11806 mark_common_block_symbol_computed (struct symbol *sym,
11807 struct die_info *common_die,
11808 struct attribute *common_loc,
11809 struct attribute *member_loc,
11810 struct dwarf2_cu *cu)
11811 {
11812 struct objfile *objfile = dwarf2_per_objfile->objfile;
11813 struct dwarf2_locexpr_baton *baton;
11814 gdb_byte *ptr;
11815 unsigned int cu_off;
11816 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11817 LONGEST offset = 0;
11818
11819 gdb_assert (common_loc && member_loc);
11820 gdb_assert (attr_form_is_block (common_loc));
11821 gdb_assert (attr_form_is_block (member_loc)
11822 || attr_form_is_constant (member_loc));
11823
11824 baton = obstack_alloc (&objfile->objfile_obstack,
11825 sizeof (struct dwarf2_locexpr_baton));
11826 baton->per_cu = cu->per_cu;
11827 gdb_assert (baton->per_cu);
11828
11829 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11830
11831 if (attr_form_is_constant (member_loc))
11832 {
11833 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11834 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11835 }
11836 else
11837 baton->size += DW_BLOCK (member_loc)->size;
11838
11839 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11840 baton->data = ptr;
11841
11842 *ptr++ = DW_OP_call4;
11843 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11844 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11845 ptr += 4;
11846
11847 if (attr_form_is_constant (member_loc))
11848 {
11849 *ptr++ = DW_OP_addr;
11850 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11851 ptr += cu->header.addr_size;
11852 }
11853 else
11854 {
11855 /* We have to copy the data here, because DW_OP_call4 will only
11856 use a DW_AT_location attribute. */
11857 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11858 ptr += DW_BLOCK (member_loc)->size;
11859 }
11860
11861 *ptr++ = DW_OP_plus;
11862 gdb_assert (ptr - baton->data == baton->size);
11863
11864 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11865 SYMBOL_LOCATION_BATON (sym) = baton;
11866 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11867 }
11868
11869 /* Create appropriate locally-scoped variables for all the
11870 DW_TAG_common_block entries. Also create a struct common_block
11871 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11872 is used to sepate the common blocks name namespace from regular
11873 variable names. */
11874
11875 static void
11876 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11877 {
11878 struct attribute *attr;
11879
11880 attr = dwarf2_attr (die, DW_AT_location, cu);
11881 if (attr)
11882 {
11883 /* Support the .debug_loc offsets. */
11884 if (attr_form_is_block (attr))
11885 {
11886 /* Ok. */
11887 }
11888 else if (attr_form_is_section_offset (attr))
11889 {
11890 dwarf2_complex_location_expr_complaint ();
11891 attr = NULL;
11892 }
11893 else
11894 {
11895 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11896 "common block member");
11897 attr = NULL;
11898 }
11899 }
11900
11901 if (die->child != NULL)
11902 {
11903 struct objfile *objfile = cu->objfile;
11904 struct die_info *child_die;
11905 size_t n_entries = 0, size;
11906 struct common_block *common_block;
11907 struct symbol *sym;
11908
11909 for (child_die = die->child;
11910 child_die && child_die->tag;
11911 child_die = sibling_die (child_die))
11912 ++n_entries;
11913
11914 size = (sizeof (struct common_block)
11915 + (n_entries - 1) * sizeof (struct symbol *));
11916 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11917 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11918 common_block->n_entries = 0;
11919
11920 for (child_die = die->child;
11921 child_die && child_die->tag;
11922 child_die = sibling_die (child_die))
11923 {
11924 /* Create the symbol in the DW_TAG_common_block block in the current
11925 symbol scope. */
11926 sym = new_symbol (child_die, NULL, cu);
11927 if (sym != NULL)
11928 {
11929 struct attribute *member_loc;
11930
11931 common_block->contents[common_block->n_entries++] = sym;
11932
11933 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11934 cu);
11935 if (member_loc)
11936 {
11937 /* GDB has handled this for a long time, but it is
11938 not specified by DWARF. It seems to have been
11939 emitted by gfortran at least as recently as:
11940 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11941 complaint (&symfile_complaints,
11942 _("Variable in common block has "
11943 "DW_AT_data_member_location "
11944 "- DIE at 0x%x [in module %s]"),
11945 child_die->offset.sect_off, cu->objfile->name);
11946
11947 if (attr_form_is_section_offset (member_loc))
11948 dwarf2_complex_location_expr_complaint ();
11949 else if (attr_form_is_constant (member_loc)
11950 || attr_form_is_block (member_loc))
11951 {
11952 if (attr)
11953 mark_common_block_symbol_computed (sym, die, attr,
11954 member_loc, cu);
11955 }
11956 else
11957 dwarf2_complex_location_expr_complaint ();
11958 }
11959 }
11960 }
11961
11962 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11963 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
11964 }
11965 }
11966
11967 /* Create a type for a C++ namespace. */
11968
11969 static struct type *
11970 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11971 {
11972 struct objfile *objfile = cu->objfile;
11973 const char *previous_prefix, *name;
11974 int is_anonymous;
11975 struct type *type;
11976
11977 /* For extensions, reuse the type of the original namespace. */
11978 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11979 {
11980 struct die_info *ext_die;
11981 struct dwarf2_cu *ext_cu = cu;
11982
11983 ext_die = dwarf2_extension (die, &ext_cu);
11984 type = read_type_die (ext_die, ext_cu);
11985
11986 /* EXT_CU may not be the same as CU.
11987 Ensure TYPE is recorded in CU's type_hash table. */
11988 return set_die_type (die, type, cu);
11989 }
11990
11991 name = namespace_name (die, &is_anonymous, cu);
11992
11993 /* Now build the name of the current namespace. */
11994
11995 previous_prefix = determine_prefix (die, cu);
11996 if (previous_prefix[0] != '\0')
11997 name = typename_concat (&objfile->objfile_obstack,
11998 previous_prefix, name, 0, cu);
11999
12000 /* Create the type. */
12001 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12002 objfile);
12003 TYPE_NAME (type) = (char *) name;
12004 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12005
12006 return set_die_type (die, type, cu);
12007 }
12008
12009 /* Read a C++ namespace. */
12010
12011 static void
12012 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12013 {
12014 struct objfile *objfile = cu->objfile;
12015 int is_anonymous;
12016
12017 /* Add a symbol associated to this if we haven't seen the namespace
12018 before. Also, add a using directive if it's an anonymous
12019 namespace. */
12020
12021 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12022 {
12023 struct type *type;
12024
12025 type = read_type_die (die, cu);
12026 new_symbol (die, type, cu);
12027
12028 namespace_name (die, &is_anonymous, cu);
12029 if (is_anonymous)
12030 {
12031 const char *previous_prefix = determine_prefix (die, cu);
12032
12033 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12034 NULL, NULL, &objfile->objfile_obstack);
12035 }
12036 }
12037
12038 if (die->child != NULL)
12039 {
12040 struct die_info *child_die = die->child;
12041
12042 while (child_die && child_die->tag)
12043 {
12044 process_die (child_die, cu);
12045 child_die = sibling_die (child_die);
12046 }
12047 }
12048 }
12049
12050 /* Read a Fortran module as type. This DIE can be only a declaration used for
12051 imported module. Still we need that type as local Fortran "use ... only"
12052 declaration imports depend on the created type in determine_prefix. */
12053
12054 static struct type *
12055 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12056 {
12057 struct objfile *objfile = cu->objfile;
12058 char *module_name;
12059 struct type *type;
12060
12061 module_name = dwarf2_name (die, cu);
12062 if (!module_name)
12063 complaint (&symfile_complaints,
12064 _("DW_TAG_module has no name, offset 0x%x"),
12065 die->offset.sect_off);
12066 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12067
12068 /* determine_prefix uses TYPE_TAG_NAME. */
12069 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12070
12071 return set_die_type (die, type, cu);
12072 }
12073
12074 /* Read a Fortran module. */
12075
12076 static void
12077 read_module (struct die_info *die, struct dwarf2_cu *cu)
12078 {
12079 struct die_info *child_die = die->child;
12080
12081 while (child_die && child_die->tag)
12082 {
12083 process_die (child_die, cu);
12084 child_die = sibling_die (child_die);
12085 }
12086 }
12087
12088 /* Return the name of the namespace represented by DIE. Set
12089 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12090 namespace. */
12091
12092 static const char *
12093 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12094 {
12095 struct die_info *current_die;
12096 const char *name = NULL;
12097
12098 /* Loop through the extensions until we find a name. */
12099
12100 for (current_die = die;
12101 current_die != NULL;
12102 current_die = dwarf2_extension (die, &cu))
12103 {
12104 name = dwarf2_name (current_die, cu);
12105 if (name != NULL)
12106 break;
12107 }
12108
12109 /* Is it an anonymous namespace? */
12110
12111 *is_anonymous = (name == NULL);
12112 if (*is_anonymous)
12113 name = CP_ANONYMOUS_NAMESPACE_STR;
12114
12115 return name;
12116 }
12117
12118 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12119 the user defined type vector. */
12120
12121 static struct type *
12122 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12123 {
12124 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12125 struct comp_unit_head *cu_header = &cu->header;
12126 struct type *type;
12127 struct attribute *attr_byte_size;
12128 struct attribute *attr_address_class;
12129 int byte_size, addr_class;
12130 struct type *target_type;
12131
12132 target_type = die_type (die, cu);
12133
12134 /* The die_type call above may have already set the type for this DIE. */
12135 type = get_die_type (die, cu);
12136 if (type)
12137 return type;
12138
12139 type = lookup_pointer_type (target_type);
12140
12141 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12142 if (attr_byte_size)
12143 byte_size = DW_UNSND (attr_byte_size);
12144 else
12145 byte_size = cu_header->addr_size;
12146
12147 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12148 if (attr_address_class)
12149 addr_class = DW_UNSND (attr_address_class);
12150 else
12151 addr_class = DW_ADDR_none;
12152
12153 /* If the pointer size or address class is different than the
12154 default, create a type variant marked as such and set the
12155 length accordingly. */
12156 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12157 {
12158 if (gdbarch_address_class_type_flags_p (gdbarch))
12159 {
12160 int type_flags;
12161
12162 type_flags = gdbarch_address_class_type_flags
12163 (gdbarch, byte_size, addr_class);
12164 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12165 == 0);
12166 type = make_type_with_address_space (type, type_flags);
12167 }
12168 else if (TYPE_LENGTH (type) != byte_size)
12169 {
12170 complaint (&symfile_complaints,
12171 _("invalid pointer size %d"), byte_size);
12172 }
12173 else
12174 {
12175 /* Should we also complain about unhandled address classes? */
12176 }
12177 }
12178
12179 TYPE_LENGTH (type) = byte_size;
12180 return set_die_type (die, type, cu);
12181 }
12182
12183 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12184 the user defined type vector. */
12185
12186 static struct type *
12187 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12188 {
12189 struct type *type;
12190 struct type *to_type;
12191 struct type *domain;
12192
12193 to_type = die_type (die, cu);
12194 domain = die_containing_type (die, cu);
12195
12196 /* The calls above may have already set the type for this DIE. */
12197 type = get_die_type (die, cu);
12198 if (type)
12199 return type;
12200
12201 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12202 type = lookup_methodptr_type (to_type);
12203 else
12204 type = lookup_memberptr_type (to_type, domain);
12205
12206 return set_die_type (die, type, cu);
12207 }
12208
12209 /* Extract all information from a DW_TAG_reference_type DIE and add to
12210 the user defined type vector. */
12211
12212 static struct type *
12213 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12214 {
12215 struct comp_unit_head *cu_header = &cu->header;
12216 struct type *type, *target_type;
12217 struct attribute *attr;
12218
12219 target_type = die_type (die, cu);
12220
12221 /* The die_type call above may have already set the type for this DIE. */
12222 type = get_die_type (die, cu);
12223 if (type)
12224 return type;
12225
12226 type = lookup_reference_type (target_type);
12227 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12228 if (attr)
12229 {
12230 TYPE_LENGTH (type) = DW_UNSND (attr);
12231 }
12232 else
12233 {
12234 TYPE_LENGTH (type) = cu_header->addr_size;
12235 }
12236 return set_die_type (die, type, cu);
12237 }
12238
12239 static struct type *
12240 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12241 {
12242 struct type *base_type, *cv_type;
12243
12244 base_type = die_type (die, cu);
12245
12246 /* The die_type call above may have already set the type for this DIE. */
12247 cv_type = get_die_type (die, cu);
12248 if (cv_type)
12249 return cv_type;
12250
12251 /* In case the const qualifier is applied to an array type, the element type
12252 is so qualified, not the array type (section 6.7.3 of C99). */
12253 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12254 {
12255 struct type *el_type, *inner_array;
12256
12257 base_type = copy_type (base_type);
12258 inner_array = base_type;
12259
12260 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12261 {
12262 TYPE_TARGET_TYPE (inner_array) =
12263 copy_type (TYPE_TARGET_TYPE (inner_array));
12264 inner_array = TYPE_TARGET_TYPE (inner_array);
12265 }
12266
12267 el_type = TYPE_TARGET_TYPE (inner_array);
12268 TYPE_TARGET_TYPE (inner_array) =
12269 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12270
12271 return set_die_type (die, base_type, cu);
12272 }
12273
12274 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12275 return set_die_type (die, cv_type, cu);
12276 }
12277
12278 static struct type *
12279 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12280 {
12281 struct type *base_type, *cv_type;
12282
12283 base_type = die_type (die, cu);
12284
12285 /* The die_type call above may have already set the type for this DIE. */
12286 cv_type = get_die_type (die, cu);
12287 if (cv_type)
12288 return cv_type;
12289
12290 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12291 return set_die_type (die, cv_type, cu);
12292 }
12293
12294 /* Extract all information from a DW_TAG_string_type DIE and add to
12295 the user defined type vector. It isn't really a user defined type,
12296 but it behaves like one, with other DIE's using an AT_user_def_type
12297 attribute to reference it. */
12298
12299 static struct type *
12300 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12301 {
12302 struct objfile *objfile = cu->objfile;
12303 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12304 struct type *type, *range_type, *index_type, *char_type;
12305 struct attribute *attr;
12306 unsigned int length;
12307
12308 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12309 if (attr)
12310 {
12311 length = DW_UNSND (attr);
12312 }
12313 else
12314 {
12315 /* Check for the DW_AT_byte_size attribute. */
12316 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12317 if (attr)
12318 {
12319 length = DW_UNSND (attr);
12320 }
12321 else
12322 {
12323 length = 1;
12324 }
12325 }
12326
12327 index_type = objfile_type (objfile)->builtin_int;
12328 range_type = create_range_type (NULL, index_type, 1, length);
12329 char_type = language_string_char_type (cu->language_defn, gdbarch);
12330 type = create_string_type (NULL, char_type, range_type);
12331
12332 return set_die_type (die, type, cu);
12333 }
12334
12335 /* Handle DIES due to C code like:
12336
12337 struct foo
12338 {
12339 int (*funcp)(int a, long l);
12340 int b;
12341 };
12342
12343 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12344
12345 static struct type *
12346 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12347 {
12348 struct objfile *objfile = cu->objfile;
12349 struct type *type; /* Type that this function returns. */
12350 struct type *ftype; /* Function that returns above type. */
12351 struct attribute *attr;
12352
12353 type = die_type (die, cu);
12354
12355 /* The die_type call above may have already set the type for this DIE. */
12356 ftype = get_die_type (die, cu);
12357 if (ftype)
12358 return ftype;
12359
12360 ftype = lookup_function_type (type);
12361
12362 /* All functions in C++, Pascal and Java have prototypes. */
12363 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12364 if ((attr && (DW_UNSND (attr) != 0))
12365 || cu->language == language_cplus
12366 || cu->language == language_java
12367 || cu->language == language_pascal)
12368 TYPE_PROTOTYPED (ftype) = 1;
12369 else if (producer_is_realview (cu->producer))
12370 /* RealView does not emit DW_AT_prototyped. We can not
12371 distinguish prototyped and unprototyped functions; default to
12372 prototyped, since that is more common in modern code (and
12373 RealView warns about unprototyped functions). */
12374 TYPE_PROTOTYPED (ftype) = 1;
12375
12376 /* Store the calling convention in the type if it's available in
12377 the subroutine die. Otherwise set the calling convention to
12378 the default value DW_CC_normal. */
12379 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12380 if (attr)
12381 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12382 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12383 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12384 else
12385 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12386
12387 /* We need to add the subroutine type to the die immediately so
12388 we don't infinitely recurse when dealing with parameters
12389 declared as the same subroutine type. */
12390 set_die_type (die, ftype, cu);
12391
12392 if (die->child != NULL)
12393 {
12394 struct type *void_type = objfile_type (objfile)->builtin_void;
12395 struct die_info *child_die;
12396 int nparams, iparams;
12397
12398 /* Count the number of parameters.
12399 FIXME: GDB currently ignores vararg functions, but knows about
12400 vararg member functions. */
12401 nparams = 0;
12402 child_die = die->child;
12403 while (child_die && child_die->tag)
12404 {
12405 if (child_die->tag == DW_TAG_formal_parameter)
12406 nparams++;
12407 else if (child_die->tag == DW_TAG_unspecified_parameters)
12408 TYPE_VARARGS (ftype) = 1;
12409 child_die = sibling_die (child_die);
12410 }
12411
12412 /* Allocate storage for parameters and fill them in. */
12413 TYPE_NFIELDS (ftype) = nparams;
12414 TYPE_FIELDS (ftype) = (struct field *)
12415 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12416
12417 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12418 even if we error out during the parameters reading below. */
12419 for (iparams = 0; iparams < nparams; iparams++)
12420 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12421
12422 iparams = 0;
12423 child_die = die->child;
12424 while (child_die && child_die->tag)
12425 {
12426 if (child_die->tag == DW_TAG_formal_parameter)
12427 {
12428 struct type *arg_type;
12429
12430 /* DWARF version 2 has no clean way to discern C++
12431 static and non-static member functions. G++ helps
12432 GDB by marking the first parameter for non-static
12433 member functions (which is the this pointer) as
12434 artificial. We pass this information to
12435 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12436
12437 DWARF version 3 added DW_AT_object_pointer, which GCC
12438 4.5 does not yet generate. */
12439 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12440 if (attr)
12441 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12442 else
12443 {
12444 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12445
12446 /* GCC/43521: In java, the formal parameter
12447 "this" is sometimes not marked with DW_AT_artificial. */
12448 if (cu->language == language_java)
12449 {
12450 const char *name = dwarf2_name (child_die, cu);
12451
12452 if (name && !strcmp (name, "this"))
12453 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12454 }
12455 }
12456 arg_type = die_type (child_die, cu);
12457
12458 /* RealView does not mark THIS as const, which the testsuite
12459 expects. GCC marks THIS as const in method definitions,
12460 but not in the class specifications (GCC PR 43053). */
12461 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12462 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12463 {
12464 int is_this = 0;
12465 struct dwarf2_cu *arg_cu = cu;
12466 const char *name = dwarf2_name (child_die, cu);
12467
12468 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12469 if (attr)
12470 {
12471 /* If the compiler emits this, use it. */
12472 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12473 is_this = 1;
12474 }
12475 else if (name && strcmp (name, "this") == 0)
12476 /* Function definitions will have the argument names. */
12477 is_this = 1;
12478 else if (name == NULL && iparams == 0)
12479 /* Declarations may not have the names, so like
12480 elsewhere in GDB, assume an artificial first
12481 argument is "this". */
12482 is_this = 1;
12483
12484 if (is_this)
12485 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12486 arg_type, 0);
12487 }
12488
12489 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12490 iparams++;
12491 }
12492 child_die = sibling_die (child_die);
12493 }
12494 }
12495
12496 return ftype;
12497 }
12498
12499 static struct type *
12500 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12501 {
12502 struct objfile *objfile = cu->objfile;
12503 const char *name = NULL;
12504 struct type *this_type, *target_type;
12505
12506 name = dwarf2_full_name (NULL, die, cu);
12507 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12508 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12509 TYPE_NAME (this_type) = (char *) name;
12510 set_die_type (die, this_type, cu);
12511 target_type = die_type (die, cu);
12512 if (target_type != this_type)
12513 TYPE_TARGET_TYPE (this_type) = target_type;
12514 else
12515 {
12516 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12517 spec and cause infinite loops in GDB. */
12518 complaint (&symfile_complaints,
12519 _("Self-referential DW_TAG_typedef "
12520 "- DIE at 0x%x [in module %s]"),
12521 die->offset.sect_off, objfile->name);
12522 TYPE_TARGET_TYPE (this_type) = NULL;
12523 }
12524 return this_type;
12525 }
12526
12527 /* Find a representation of a given base type and install
12528 it in the TYPE field of the die. */
12529
12530 static struct type *
12531 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12532 {
12533 struct objfile *objfile = cu->objfile;
12534 struct type *type;
12535 struct attribute *attr;
12536 int encoding = 0, size = 0;
12537 char *name;
12538 enum type_code code = TYPE_CODE_INT;
12539 int type_flags = 0;
12540 struct type *target_type = NULL;
12541
12542 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12543 if (attr)
12544 {
12545 encoding = DW_UNSND (attr);
12546 }
12547 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12548 if (attr)
12549 {
12550 size = DW_UNSND (attr);
12551 }
12552 name = dwarf2_name (die, cu);
12553 if (!name)
12554 {
12555 complaint (&symfile_complaints,
12556 _("DW_AT_name missing from DW_TAG_base_type"));
12557 }
12558
12559 switch (encoding)
12560 {
12561 case DW_ATE_address:
12562 /* Turn DW_ATE_address into a void * pointer. */
12563 code = TYPE_CODE_PTR;
12564 type_flags |= TYPE_FLAG_UNSIGNED;
12565 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12566 break;
12567 case DW_ATE_boolean:
12568 code = TYPE_CODE_BOOL;
12569 type_flags |= TYPE_FLAG_UNSIGNED;
12570 break;
12571 case DW_ATE_complex_float:
12572 code = TYPE_CODE_COMPLEX;
12573 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12574 break;
12575 case DW_ATE_decimal_float:
12576 code = TYPE_CODE_DECFLOAT;
12577 break;
12578 case DW_ATE_float:
12579 code = TYPE_CODE_FLT;
12580 break;
12581 case DW_ATE_signed:
12582 break;
12583 case DW_ATE_unsigned:
12584 type_flags |= TYPE_FLAG_UNSIGNED;
12585 if (cu->language == language_fortran
12586 && name
12587 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12588 code = TYPE_CODE_CHAR;
12589 break;
12590 case DW_ATE_signed_char:
12591 if (cu->language == language_ada || cu->language == language_m2
12592 || cu->language == language_pascal
12593 || cu->language == language_fortran)
12594 code = TYPE_CODE_CHAR;
12595 break;
12596 case DW_ATE_unsigned_char:
12597 if (cu->language == language_ada || cu->language == language_m2
12598 || cu->language == language_pascal
12599 || cu->language == language_fortran)
12600 code = TYPE_CODE_CHAR;
12601 type_flags |= TYPE_FLAG_UNSIGNED;
12602 break;
12603 case DW_ATE_UTF:
12604 /* We just treat this as an integer and then recognize the
12605 type by name elsewhere. */
12606 break;
12607
12608 default:
12609 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12610 dwarf_type_encoding_name (encoding));
12611 break;
12612 }
12613
12614 type = init_type (code, size, type_flags, NULL, objfile);
12615 TYPE_NAME (type) = name;
12616 TYPE_TARGET_TYPE (type) = target_type;
12617
12618 if (name && strcmp (name, "char") == 0)
12619 TYPE_NOSIGN (type) = 1;
12620
12621 return set_die_type (die, type, cu);
12622 }
12623
12624 /* Read the given DW_AT_subrange DIE. */
12625
12626 static struct type *
12627 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12628 {
12629 struct type *base_type;
12630 struct type *range_type;
12631 struct attribute *attr;
12632 LONGEST low, high;
12633 int low_default_is_valid;
12634 char *name;
12635 LONGEST negative_mask;
12636
12637 base_type = die_type (die, cu);
12638 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12639 check_typedef (base_type);
12640
12641 /* The die_type call above may have already set the type for this DIE. */
12642 range_type = get_die_type (die, cu);
12643 if (range_type)
12644 return range_type;
12645
12646 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12647 omitting DW_AT_lower_bound. */
12648 switch (cu->language)
12649 {
12650 case language_c:
12651 case language_cplus:
12652 low = 0;
12653 low_default_is_valid = 1;
12654 break;
12655 case language_fortran:
12656 low = 1;
12657 low_default_is_valid = 1;
12658 break;
12659 case language_d:
12660 case language_java:
12661 case language_objc:
12662 low = 0;
12663 low_default_is_valid = (cu->header.version >= 4);
12664 break;
12665 case language_ada:
12666 case language_m2:
12667 case language_pascal:
12668 low = 1;
12669 low_default_is_valid = (cu->header.version >= 4);
12670 break;
12671 default:
12672 low = 0;
12673 low_default_is_valid = 0;
12674 break;
12675 }
12676
12677 /* FIXME: For variable sized arrays either of these could be
12678 a variable rather than a constant value. We'll allow it,
12679 but we don't know how to handle it. */
12680 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12681 if (attr)
12682 low = dwarf2_get_attr_constant_value (attr, low);
12683 else if (!low_default_is_valid)
12684 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12685 "- DIE at 0x%x [in module %s]"),
12686 die->offset.sect_off, cu->objfile->name);
12687
12688 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12689 if (attr)
12690 {
12691 if (attr_form_is_block (attr) || is_ref_attr (attr))
12692 {
12693 /* GCC encodes arrays with unspecified or dynamic length
12694 with a DW_FORM_block1 attribute or a reference attribute.
12695 FIXME: GDB does not yet know how to handle dynamic
12696 arrays properly, treat them as arrays with unspecified
12697 length for now.
12698
12699 FIXME: jimb/2003-09-22: GDB does not really know
12700 how to handle arrays of unspecified length
12701 either; we just represent them as zero-length
12702 arrays. Choose an appropriate upper bound given
12703 the lower bound we've computed above. */
12704 high = low - 1;
12705 }
12706 else
12707 high = dwarf2_get_attr_constant_value (attr, 1);
12708 }
12709 else
12710 {
12711 attr = dwarf2_attr (die, DW_AT_count, cu);
12712 if (attr)
12713 {
12714 int count = dwarf2_get_attr_constant_value (attr, 1);
12715 high = low + count - 1;
12716 }
12717 else
12718 {
12719 /* Unspecified array length. */
12720 high = low - 1;
12721 }
12722 }
12723
12724 /* Dwarf-2 specifications explicitly allows to create subrange types
12725 without specifying a base type.
12726 In that case, the base type must be set to the type of
12727 the lower bound, upper bound or count, in that order, if any of these
12728 three attributes references an object that has a type.
12729 If no base type is found, the Dwarf-2 specifications say that
12730 a signed integer type of size equal to the size of an address should
12731 be used.
12732 For the following C code: `extern char gdb_int [];'
12733 GCC produces an empty range DIE.
12734 FIXME: muller/2010-05-28: Possible references to object for low bound,
12735 high bound or count are not yet handled by this code. */
12736 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12737 {
12738 struct objfile *objfile = cu->objfile;
12739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12740 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12741 struct type *int_type = objfile_type (objfile)->builtin_int;
12742
12743 /* Test "int", "long int", and "long long int" objfile types,
12744 and select the first one having a size above or equal to the
12745 architecture address size. */
12746 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12747 base_type = int_type;
12748 else
12749 {
12750 int_type = objfile_type (objfile)->builtin_long;
12751 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12752 base_type = int_type;
12753 else
12754 {
12755 int_type = objfile_type (objfile)->builtin_long_long;
12756 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12757 base_type = int_type;
12758 }
12759 }
12760 }
12761
12762 negative_mask =
12763 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12764 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12765 low |= negative_mask;
12766 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12767 high |= negative_mask;
12768
12769 range_type = create_range_type (NULL, base_type, low, high);
12770
12771 /* Mark arrays with dynamic length at least as an array of unspecified
12772 length. GDB could check the boundary but before it gets implemented at
12773 least allow accessing the array elements. */
12774 if (attr && attr_form_is_block (attr))
12775 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12776
12777 /* Ada expects an empty array on no boundary attributes. */
12778 if (attr == NULL && cu->language != language_ada)
12779 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12780
12781 name = dwarf2_name (die, cu);
12782 if (name)
12783 TYPE_NAME (range_type) = name;
12784
12785 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12786 if (attr)
12787 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12788
12789 set_die_type (die, range_type, cu);
12790
12791 /* set_die_type should be already done. */
12792 set_descriptive_type (range_type, die, cu);
12793
12794 return range_type;
12795 }
12796
12797 static struct type *
12798 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12799 {
12800 struct type *type;
12801
12802 /* For now, we only support the C meaning of an unspecified type: void. */
12803
12804 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12805 TYPE_NAME (type) = dwarf2_name (die, cu);
12806
12807 return set_die_type (die, type, cu);
12808 }
12809
12810 /* Read a single die and all its descendents. Set the die's sibling
12811 field to NULL; set other fields in the die correctly, and set all
12812 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12813 location of the info_ptr after reading all of those dies. PARENT
12814 is the parent of the die in question. */
12815
12816 static struct die_info *
12817 read_die_and_children (const struct die_reader_specs *reader,
12818 gdb_byte *info_ptr,
12819 gdb_byte **new_info_ptr,
12820 struct die_info *parent)
12821 {
12822 struct die_info *die;
12823 gdb_byte *cur_ptr;
12824 int has_children;
12825
12826 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12827 if (die == NULL)
12828 {
12829 *new_info_ptr = cur_ptr;
12830 return NULL;
12831 }
12832 store_in_ref_table (die, reader->cu);
12833
12834 if (has_children)
12835 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12836 else
12837 {
12838 die->child = NULL;
12839 *new_info_ptr = cur_ptr;
12840 }
12841
12842 die->sibling = NULL;
12843 die->parent = parent;
12844 return die;
12845 }
12846
12847 /* Read a die, all of its descendents, and all of its siblings; set
12848 all of the fields of all of the dies correctly. Arguments are as
12849 in read_die_and_children. */
12850
12851 static struct die_info *
12852 read_die_and_siblings (const struct die_reader_specs *reader,
12853 gdb_byte *info_ptr,
12854 gdb_byte **new_info_ptr,
12855 struct die_info *parent)
12856 {
12857 struct die_info *first_die, *last_sibling;
12858 gdb_byte *cur_ptr;
12859
12860 cur_ptr = info_ptr;
12861 first_die = last_sibling = NULL;
12862
12863 while (1)
12864 {
12865 struct die_info *die
12866 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12867
12868 if (die == NULL)
12869 {
12870 *new_info_ptr = cur_ptr;
12871 return first_die;
12872 }
12873
12874 if (!first_die)
12875 first_die = die;
12876 else
12877 last_sibling->sibling = die;
12878
12879 last_sibling = die;
12880 }
12881 }
12882
12883 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12884 attributes.
12885 The caller is responsible for filling in the extra attributes
12886 and updating (*DIEP)->num_attrs.
12887 Set DIEP to point to a newly allocated die with its information,
12888 except for its child, sibling, and parent fields.
12889 Set HAS_CHILDREN to tell whether the die has children or not. */
12890
12891 static gdb_byte *
12892 read_full_die_1 (const struct die_reader_specs *reader,
12893 struct die_info **diep, gdb_byte *info_ptr,
12894 int *has_children, int num_extra_attrs)
12895 {
12896 unsigned int abbrev_number, bytes_read, i;
12897 sect_offset offset;
12898 struct abbrev_info *abbrev;
12899 struct die_info *die;
12900 struct dwarf2_cu *cu = reader->cu;
12901 bfd *abfd = reader->abfd;
12902
12903 offset.sect_off = info_ptr - reader->buffer;
12904 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12905 info_ptr += bytes_read;
12906 if (!abbrev_number)
12907 {
12908 *diep = NULL;
12909 *has_children = 0;
12910 return info_ptr;
12911 }
12912
12913 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12914 if (!abbrev)
12915 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12916 abbrev_number,
12917 bfd_get_filename (abfd));
12918
12919 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12920 die->offset = offset;
12921 die->tag = abbrev->tag;
12922 die->abbrev = abbrev_number;
12923
12924 /* Make the result usable.
12925 The caller needs to update num_attrs after adding the extra
12926 attributes. */
12927 die->num_attrs = abbrev->num_attrs;
12928
12929 for (i = 0; i < abbrev->num_attrs; ++i)
12930 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12931 info_ptr);
12932
12933 *diep = die;
12934 *has_children = abbrev->has_children;
12935 return info_ptr;
12936 }
12937
12938 /* Read a die and all its attributes.
12939 Set DIEP to point to a newly allocated die with its information,
12940 except for its child, sibling, and parent fields.
12941 Set HAS_CHILDREN to tell whether the die has children or not. */
12942
12943 static gdb_byte *
12944 read_full_die (const struct die_reader_specs *reader,
12945 struct die_info **diep, gdb_byte *info_ptr,
12946 int *has_children)
12947 {
12948 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12949 }
12950 \f
12951 /* Abbreviation tables.
12952
12953 In DWARF version 2, the description of the debugging information is
12954 stored in a separate .debug_abbrev section. Before we read any
12955 dies from a section we read in all abbreviations and install them
12956 in a hash table. */
12957
12958 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12959
12960 static struct abbrev_info *
12961 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12962 {
12963 struct abbrev_info *abbrev;
12964
12965 abbrev = (struct abbrev_info *)
12966 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12967 memset (abbrev, 0, sizeof (struct abbrev_info));
12968 return abbrev;
12969 }
12970
12971 /* Add an abbreviation to the table. */
12972
12973 static void
12974 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12975 unsigned int abbrev_number,
12976 struct abbrev_info *abbrev)
12977 {
12978 unsigned int hash_number;
12979
12980 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12981 abbrev->next = abbrev_table->abbrevs[hash_number];
12982 abbrev_table->abbrevs[hash_number] = abbrev;
12983 }
12984
12985 /* Look up an abbrev in the table.
12986 Returns NULL if the abbrev is not found. */
12987
12988 static struct abbrev_info *
12989 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12990 unsigned int abbrev_number)
12991 {
12992 unsigned int hash_number;
12993 struct abbrev_info *abbrev;
12994
12995 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12996 abbrev = abbrev_table->abbrevs[hash_number];
12997
12998 while (abbrev)
12999 {
13000 if (abbrev->number == abbrev_number)
13001 return abbrev;
13002 abbrev = abbrev->next;
13003 }
13004 return NULL;
13005 }
13006
13007 /* Read in an abbrev table. */
13008
13009 static struct abbrev_table *
13010 abbrev_table_read_table (struct dwarf2_section_info *section,
13011 sect_offset offset)
13012 {
13013 struct objfile *objfile = dwarf2_per_objfile->objfile;
13014 bfd *abfd = section->asection->owner;
13015 struct abbrev_table *abbrev_table;
13016 gdb_byte *abbrev_ptr;
13017 struct abbrev_info *cur_abbrev;
13018 unsigned int abbrev_number, bytes_read, abbrev_name;
13019 unsigned int abbrev_form;
13020 struct attr_abbrev *cur_attrs;
13021 unsigned int allocated_attrs;
13022
13023 abbrev_table = XMALLOC (struct abbrev_table);
13024 abbrev_table->offset = offset;
13025 obstack_init (&abbrev_table->abbrev_obstack);
13026 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13027 (ABBREV_HASH_SIZE
13028 * sizeof (struct abbrev_info *)));
13029 memset (abbrev_table->abbrevs, 0,
13030 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13031
13032 dwarf2_read_section (objfile, section);
13033 abbrev_ptr = section->buffer + offset.sect_off;
13034 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13035 abbrev_ptr += bytes_read;
13036
13037 allocated_attrs = ATTR_ALLOC_CHUNK;
13038 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13039
13040 /* Loop until we reach an abbrev number of 0. */
13041 while (abbrev_number)
13042 {
13043 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13044
13045 /* read in abbrev header */
13046 cur_abbrev->number = abbrev_number;
13047 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13048 abbrev_ptr += bytes_read;
13049 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13050 abbrev_ptr += 1;
13051
13052 /* now read in declarations */
13053 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13054 abbrev_ptr += bytes_read;
13055 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13056 abbrev_ptr += bytes_read;
13057 while (abbrev_name)
13058 {
13059 if (cur_abbrev->num_attrs == allocated_attrs)
13060 {
13061 allocated_attrs += ATTR_ALLOC_CHUNK;
13062 cur_attrs
13063 = xrealloc (cur_attrs, (allocated_attrs
13064 * sizeof (struct attr_abbrev)));
13065 }
13066
13067 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13068 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13069 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13070 abbrev_ptr += bytes_read;
13071 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13072 abbrev_ptr += bytes_read;
13073 }
13074
13075 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13076 (cur_abbrev->num_attrs
13077 * sizeof (struct attr_abbrev)));
13078 memcpy (cur_abbrev->attrs, cur_attrs,
13079 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13080
13081 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13082
13083 /* Get next abbreviation.
13084 Under Irix6 the abbreviations for a compilation unit are not
13085 always properly terminated with an abbrev number of 0.
13086 Exit loop if we encounter an abbreviation which we have
13087 already read (which means we are about to read the abbreviations
13088 for the next compile unit) or if the end of the abbreviation
13089 table is reached. */
13090 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13091 break;
13092 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13093 abbrev_ptr += bytes_read;
13094 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13095 break;
13096 }
13097
13098 xfree (cur_attrs);
13099 return abbrev_table;
13100 }
13101
13102 /* Free the resources held by ABBREV_TABLE. */
13103
13104 static void
13105 abbrev_table_free (struct abbrev_table *abbrev_table)
13106 {
13107 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13108 xfree (abbrev_table);
13109 }
13110
13111 /* Same as abbrev_table_free but as a cleanup.
13112 We pass in a pointer to the pointer to the table so that we can
13113 set the pointer to NULL when we're done. It also simplifies
13114 build_type_unit_groups. */
13115
13116 static void
13117 abbrev_table_free_cleanup (void *table_ptr)
13118 {
13119 struct abbrev_table **abbrev_table_ptr = table_ptr;
13120
13121 if (*abbrev_table_ptr != NULL)
13122 abbrev_table_free (*abbrev_table_ptr);
13123 *abbrev_table_ptr = NULL;
13124 }
13125
13126 /* Read the abbrev table for CU from ABBREV_SECTION. */
13127
13128 static void
13129 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13130 struct dwarf2_section_info *abbrev_section)
13131 {
13132 cu->abbrev_table =
13133 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13134 }
13135
13136 /* Release the memory used by the abbrev table for a compilation unit. */
13137
13138 static void
13139 dwarf2_free_abbrev_table (void *ptr_to_cu)
13140 {
13141 struct dwarf2_cu *cu = ptr_to_cu;
13142
13143 abbrev_table_free (cu->abbrev_table);
13144 /* Set this to NULL so that we SEGV if we try to read it later,
13145 and also because free_comp_unit verifies this is NULL. */
13146 cu->abbrev_table = NULL;
13147 }
13148 \f
13149 /* Returns nonzero if TAG represents a type that we might generate a partial
13150 symbol for. */
13151
13152 static int
13153 is_type_tag_for_partial (int tag)
13154 {
13155 switch (tag)
13156 {
13157 #if 0
13158 /* Some types that would be reasonable to generate partial symbols for,
13159 that we don't at present. */
13160 case DW_TAG_array_type:
13161 case DW_TAG_file_type:
13162 case DW_TAG_ptr_to_member_type:
13163 case DW_TAG_set_type:
13164 case DW_TAG_string_type:
13165 case DW_TAG_subroutine_type:
13166 #endif
13167 case DW_TAG_base_type:
13168 case DW_TAG_class_type:
13169 case DW_TAG_interface_type:
13170 case DW_TAG_enumeration_type:
13171 case DW_TAG_structure_type:
13172 case DW_TAG_subrange_type:
13173 case DW_TAG_typedef:
13174 case DW_TAG_union_type:
13175 return 1;
13176 default:
13177 return 0;
13178 }
13179 }
13180
13181 /* Load all DIEs that are interesting for partial symbols into memory. */
13182
13183 static struct partial_die_info *
13184 load_partial_dies (const struct die_reader_specs *reader,
13185 gdb_byte *info_ptr, int building_psymtab)
13186 {
13187 struct dwarf2_cu *cu = reader->cu;
13188 struct objfile *objfile = cu->objfile;
13189 struct partial_die_info *part_die;
13190 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13191 struct abbrev_info *abbrev;
13192 unsigned int bytes_read;
13193 unsigned int load_all = 0;
13194 int nesting_level = 1;
13195
13196 parent_die = NULL;
13197 last_die = NULL;
13198
13199 gdb_assert (cu->per_cu != NULL);
13200 if (cu->per_cu->load_all_dies)
13201 load_all = 1;
13202
13203 cu->partial_dies
13204 = htab_create_alloc_ex (cu->header.length / 12,
13205 partial_die_hash,
13206 partial_die_eq,
13207 NULL,
13208 &cu->comp_unit_obstack,
13209 hashtab_obstack_allocate,
13210 dummy_obstack_deallocate);
13211
13212 part_die = obstack_alloc (&cu->comp_unit_obstack,
13213 sizeof (struct partial_die_info));
13214
13215 while (1)
13216 {
13217 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13218
13219 /* A NULL abbrev means the end of a series of children. */
13220 if (abbrev == NULL)
13221 {
13222 if (--nesting_level == 0)
13223 {
13224 /* PART_DIE was probably the last thing allocated on the
13225 comp_unit_obstack, so we could call obstack_free
13226 here. We don't do that because the waste is small,
13227 and will be cleaned up when we're done with this
13228 compilation unit. This way, we're also more robust
13229 against other users of the comp_unit_obstack. */
13230 return first_die;
13231 }
13232 info_ptr += bytes_read;
13233 last_die = parent_die;
13234 parent_die = parent_die->die_parent;
13235 continue;
13236 }
13237
13238 /* Check for template arguments. We never save these; if
13239 they're seen, we just mark the parent, and go on our way. */
13240 if (parent_die != NULL
13241 && cu->language == language_cplus
13242 && (abbrev->tag == DW_TAG_template_type_param
13243 || abbrev->tag == DW_TAG_template_value_param))
13244 {
13245 parent_die->has_template_arguments = 1;
13246
13247 if (!load_all)
13248 {
13249 /* We don't need a partial DIE for the template argument. */
13250 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13251 continue;
13252 }
13253 }
13254
13255 /* We only recurse into c++ subprograms looking for template arguments.
13256 Skip their other children. */
13257 if (!load_all
13258 && cu->language == language_cplus
13259 && parent_die != NULL
13260 && parent_die->tag == DW_TAG_subprogram)
13261 {
13262 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13263 continue;
13264 }
13265
13266 /* Check whether this DIE is interesting enough to save. Normally
13267 we would not be interested in members here, but there may be
13268 later variables referencing them via DW_AT_specification (for
13269 static members). */
13270 if (!load_all
13271 && !is_type_tag_for_partial (abbrev->tag)
13272 && abbrev->tag != DW_TAG_constant
13273 && abbrev->tag != DW_TAG_enumerator
13274 && abbrev->tag != DW_TAG_subprogram
13275 && abbrev->tag != DW_TAG_lexical_block
13276 && abbrev->tag != DW_TAG_variable
13277 && abbrev->tag != DW_TAG_namespace
13278 && abbrev->tag != DW_TAG_module
13279 && abbrev->tag != DW_TAG_member
13280 && abbrev->tag != DW_TAG_imported_unit)
13281 {
13282 /* Otherwise we skip to the next sibling, if any. */
13283 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13284 continue;
13285 }
13286
13287 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13288 info_ptr);
13289
13290 /* This two-pass algorithm for processing partial symbols has a
13291 high cost in cache pressure. Thus, handle some simple cases
13292 here which cover the majority of C partial symbols. DIEs
13293 which neither have specification tags in them, nor could have
13294 specification tags elsewhere pointing at them, can simply be
13295 processed and discarded.
13296
13297 This segment is also optional; scan_partial_symbols and
13298 add_partial_symbol will handle these DIEs if we chain
13299 them in normally. When compilers which do not emit large
13300 quantities of duplicate debug information are more common,
13301 this code can probably be removed. */
13302
13303 /* Any complete simple types at the top level (pretty much all
13304 of them, for a language without namespaces), can be processed
13305 directly. */
13306 if (parent_die == NULL
13307 && part_die->has_specification == 0
13308 && part_die->is_declaration == 0
13309 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13310 || part_die->tag == DW_TAG_base_type
13311 || part_die->tag == DW_TAG_subrange_type))
13312 {
13313 if (building_psymtab && part_die->name != NULL)
13314 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13315 VAR_DOMAIN, LOC_TYPEDEF,
13316 &objfile->static_psymbols,
13317 0, (CORE_ADDR) 0, cu->language, objfile);
13318 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13319 continue;
13320 }
13321
13322 /* The exception for DW_TAG_typedef with has_children above is
13323 a workaround of GCC PR debug/47510. In the case of this complaint
13324 type_name_no_tag_or_error will error on such types later.
13325
13326 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13327 it could not find the child DIEs referenced later, this is checked
13328 above. In correct DWARF DW_TAG_typedef should have no children. */
13329
13330 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13331 complaint (&symfile_complaints,
13332 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13333 "- DIE at 0x%x [in module %s]"),
13334 part_die->offset.sect_off, objfile->name);
13335
13336 /* If we're at the second level, and we're an enumerator, and
13337 our parent has no specification (meaning possibly lives in a
13338 namespace elsewhere), then we can add the partial symbol now
13339 instead of queueing it. */
13340 if (part_die->tag == DW_TAG_enumerator
13341 && parent_die != NULL
13342 && parent_die->die_parent == NULL
13343 && parent_die->tag == DW_TAG_enumeration_type
13344 && parent_die->has_specification == 0)
13345 {
13346 if (part_die->name == NULL)
13347 complaint (&symfile_complaints,
13348 _("malformed enumerator DIE ignored"));
13349 else if (building_psymtab)
13350 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13351 VAR_DOMAIN, LOC_CONST,
13352 (cu->language == language_cplus
13353 || cu->language == language_java)
13354 ? &objfile->global_psymbols
13355 : &objfile->static_psymbols,
13356 0, (CORE_ADDR) 0, cu->language, objfile);
13357
13358 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13359 continue;
13360 }
13361
13362 /* We'll save this DIE so link it in. */
13363 part_die->die_parent = parent_die;
13364 part_die->die_sibling = NULL;
13365 part_die->die_child = NULL;
13366
13367 if (last_die && last_die == parent_die)
13368 last_die->die_child = part_die;
13369 else if (last_die)
13370 last_die->die_sibling = part_die;
13371
13372 last_die = part_die;
13373
13374 if (first_die == NULL)
13375 first_die = part_die;
13376
13377 /* Maybe add the DIE to the hash table. Not all DIEs that we
13378 find interesting need to be in the hash table, because we
13379 also have the parent/sibling/child chains; only those that we
13380 might refer to by offset later during partial symbol reading.
13381
13382 For now this means things that might have be the target of a
13383 DW_AT_specification, DW_AT_abstract_origin, or
13384 DW_AT_extension. DW_AT_extension will refer only to
13385 namespaces; DW_AT_abstract_origin refers to functions (and
13386 many things under the function DIE, but we do not recurse
13387 into function DIEs during partial symbol reading) and
13388 possibly variables as well; DW_AT_specification refers to
13389 declarations. Declarations ought to have the DW_AT_declaration
13390 flag. It happens that GCC forgets to put it in sometimes, but
13391 only for functions, not for types.
13392
13393 Adding more things than necessary to the hash table is harmless
13394 except for the performance cost. Adding too few will result in
13395 wasted time in find_partial_die, when we reread the compilation
13396 unit with load_all_dies set. */
13397
13398 if (load_all
13399 || abbrev->tag == DW_TAG_constant
13400 || abbrev->tag == DW_TAG_subprogram
13401 || abbrev->tag == DW_TAG_variable
13402 || abbrev->tag == DW_TAG_namespace
13403 || part_die->is_declaration)
13404 {
13405 void **slot;
13406
13407 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13408 part_die->offset.sect_off, INSERT);
13409 *slot = part_die;
13410 }
13411
13412 part_die = obstack_alloc (&cu->comp_unit_obstack,
13413 sizeof (struct partial_die_info));
13414
13415 /* For some DIEs we want to follow their children (if any). For C
13416 we have no reason to follow the children of structures; for other
13417 languages we have to, so that we can get at method physnames
13418 to infer fully qualified class names, for DW_AT_specification,
13419 and for C++ template arguments. For C++, we also look one level
13420 inside functions to find template arguments (if the name of the
13421 function does not already contain the template arguments).
13422
13423 For Ada, we need to scan the children of subprograms and lexical
13424 blocks as well because Ada allows the definition of nested
13425 entities that could be interesting for the debugger, such as
13426 nested subprograms for instance. */
13427 if (last_die->has_children
13428 && (load_all
13429 || last_die->tag == DW_TAG_namespace
13430 || last_die->tag == DW_TAG_module
13431 || last_die->tag == DW_TAG_enumeration_type
13432 || (cu->language == language_cplus
13433 && last_die->tag == DW_TAG_subprogram
13434 && (last_die->name == NULL
13435 || strchr (last_die->name, '<') == NULL))
13436 || (cu->language != language_c
13437 && (last_die->tag == DW_TAG_class_type
13438 || last_die->tag == DW_TAG_interface_type
13439 || last_die->tag == DW_TAG_structure_type
13440 || last_die->tag == DW_TAG_union_type))
13441 || (cu->language == language_ada
13442 && (last_die->tag == DW_TAG_subprogram
13443 || last_die->tag == DW_TAG_lexical_block))))
13444 {
13445 nesting_level++;
13446 parent_die = last_die;
13447 continue;
13448 }
13449
13450 /* Otherwise we skip to the next sibling, if any. */
13451 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13452
13453 /* Back to the top, do it again. */
13454 }
13455 }
13456
13457 /* Read a minimal amount of information into the minimal die structure. */
13458
13459 static gdb_byte *
13460 read_partial_die (const struct die_reader_specs *reader,
13461 struct partial_die_info *part_die,
13462 struct abbrev_info *abbrev, unsigned int abbrev_len,
13463 gdb_byte *info_ptr)
13464 {
13465 struct dwarf2_cu *cu = reader->cu;
13466 struct objfile *objfile = cu->objfile;
13467 gdb_byte *buffer = reader->buffer;
13468 unsigned int i;
13469 struct attribute attr;
13470 int has_low_pc_attr = 0;
13471 int has_high_pc_attr = 0;
13472 int high_pc_relative = 0;
13473
13474 memset (part_die, 0, sizeof (struct partial_die_info));
13475
13476 part_die->offset.sect_off = info_ptr - buffer;
13477
13478 info_ptr += abbrev_len;
13479
13480 if (abbrev == NULL)
13481 return info_ptr;
13482
13483 part_die->tag = abbrev->tag;
13484 part_die->has_children = abbrev->has_children;
13485
13486 for (i = 0; i < abbrev->num_attrs; ++i)
13487 {
13488 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13489
13490 /* Store the data if it is of an attribute we want to keep in a
13491 partial symbol table. */
13492 switch (attr.name)
13493 {
13494 case DW_AT_name:
13495 switch (part_die->tag)
13496 {
13497 case DW_TAG_compile_unit:
13498 case DW_TAG_partial_unit:
13499 case DW_TAG_type_unit:
13500 /* Compilation units have a DW_AT_name that is a filename, not
13501 a source language identifier. */
13502 case DW_TAG_enumeration_type:
13503 case DW_TAG_enumerator:
13504 /* These tags always have simple identifiers already; no need
13505 to canonicalize them. */
13506 part_die->name = DW_STRING (&attr);
13507 break;
13508 default:
13509 part_die->name
13510 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13511 &objfile->objfile_obstack);
13512 break;
13513 }
13514 break;
13515 case DW_AT_linkage_name:
13516 case DW_AT_MIPS_linkage_name:
13517 /* Note that both forms of linkage name might appear. We
13518 assume they will be the same, and we only store the last
13519 one we see. */
13520 if (cu->language == language_ada)
13521 part_die->name = DW_STRING (&attr);
13522 part_die->linkage_name = DW_STRING (&attr);
13523 break;
13524 case DW_AT_low_pc:
13525 has_low_pc_attr = 1;
13526 part_die->lowpc = DW_ADDR (&attr);
13527 break;
13528 case DW_AT_high_pc:
13529 has_high_pc_attr = 1;
13530 if (attr.form == DW_FORM_addr
13531 || attr.form == DW_FORM_GNU_addr_index)
13532 part_die->highpc = DW_ADDR (&attr);
13533 else
13534 {
13535 high_pc_relative = 1;
13536 part_die->highpc = DW_UNSND (&attr);
13537 }
13538 break;
13539 case DW_AT_location:
13540 /* Support the .debug_loc offsets. */
13541 if (attr_form_is_block (&attr))
13542 {
13543 part_die->d.locdesc = DW_BLOCK (&attr);
13544 }
13545 else if (attr_form_is_section_offset (&attr))
13546 {
13547 dwarf2_complex_location_expr_complaint ();
13548 }
13549 else
13550 {
13551 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13552 "partial symbol information");
13553 }
13554 break;
13555 case DW_AT_external:
13556 part_die->is_external = DW_UNSND (&attr);
13557 break;
13558 case DW_AT_declaration:
13559 part_die->is_declaration = DW_UNSND (&attr);
13560 break;
13561 case DW_AT_type:
13562 part_die->has_type = 1;
13563 break;
13564 case DW_AT_abstract_origin:
13565 case DW_AT_specification:
13566 case DW_AT_extension:
13567 part_die->has_specification = 1;
13568 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13569 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13570 || cu->per_cu->is_dwz);
13571 break;
13572 case DW_AT_sibling:
13573 /* Ignore absolute siblings, they might point outside of
13574 the current compile unit. */
13575 if (attr.form == DW_FORM_ref_addr)
13576 complaint (&symfile_complaints,
13577 _("ignoring absolute DW_AT_sibling"));
13578 else
13579 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13580 break;
13581 case DW_AT_byte_size:
13582 part_die->has_byte_size = 1;
13583 break;
13584 case DW_AT_calling_convention:
13585 /* DWARF doesn't provide a way to identify a program's source-level
13586 entry point. DW_AT_calling_convention attributes are only meant
13587 to describe functions' calling conventions.
13588
13589 However, because it's a necessary piece of information in
13590 Fortran, and because DW_CC_program is the only piece of debugging
13591 information whose definition refers to a 'main program' at all,
13592 several compilers have begun marking Fortran main programs with
13593 DW_CC_program --- even when those functions use the standard
13594 calling conventions.
13595
13596 So until DWARF specifies a way to provide this information and
13597 compilers pick up the new representation, we'll support this
13598 practice. */
13599 if (DW_UNSND (&attr) == DW_CC_program
13600 && cu->language == language_fortran)
13601 {
13602 set_main_name (part_die->name);
13603
13604 /* As this DIE has a static linkage the name would be difficult
13605 to look up later. */
13606 language_of_main = language_fortran;
13607 }
13608 break;
13609 case DW_AT_inline:
13610 if (DW_UNSND (&attr) == DW_INL_inlined
13611 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13612 part_die->may_be_inlined = 1;
13613 break;
13614
13615 case DW_AT_import:
13616 if (part_die->tag == DW_TAG_imported_unit)
13617 {
13618 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13619 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13620 || cu->per_cu->is_dwz);
13621 }
13622 break;
13623
13624 default:
13625 break;
13626 }
13627 }
13628
13629 if (high_pc_relative)
13630 part_die->highpc += part_die->lowpc;
13631
13632 if (has_low_pc_attr && has_high_pc_attr)
13633 {
13634 /* When using the GNU linker, .gnu.linkonce. sections are used to
13635 eliminate duplicate copies of functions and vtables and such.
13636 The linker will arbitrarily choose one and discard the others.
13637 The AT_*_pc values for such functions refer to local labels in
13638 these sections. If the section from that file was discarded, the
13639 labels are not in the output, so the relocs get a value of 0.
13640 If this is a discarded function, mark the pc bounds as invalid,
13641 so that GDB will ignore it. */
13642 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13643 {
13644 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13645
13646 complaint (&symfile_complaints,
13647 _("DW_AT_low_pc %s is zero "
13648 "for DIE at 0x%x [in module %s]"),
13649 paddress (gdbarch, part_die->lowpc),
13650 part_die->offset.sect_off, objfile->name);
13651 }
13652 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13653 else if (part_die->lowpc >= part_die->highpc)
13654 {
13655 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13656
13657 complaint (&symfile_complaints,
13658 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13659 "for DIE at 0x%x [in module %s]"),
13660 paddress (gdbarch, part_die->lowpc),
13661 paddress (gdbarch, part_die->highpc),
13662 part_die->offset.sect_off, objfile->name);
13663 }
13664 else
13665 part_die->has_pc_info = 1;
13666 }
13667
13668 return info_ptr;
13669 }
13670
13671 /* Find a cached partial DIE at OFFSET in CU. */
13672
13673 static struct partial_die_info *
13674 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13675 {
13676 struct partial_die_info *lookup_die = NULL;
13677 struct partial_die_info part_die;
13678
13679 part_die.offset = offset;
13680 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13681 offset.sect_off);
13682
13683 return lookup_die;
13684 }
13685
13686 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13687 except in the case of .debug_types DIEs which do not reference
13688 outside their CU (they do however referencing other types via
13689 DW_FORM_ref_sig8). */
13690
13691 static struct partial_die_info *
13692 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13693 {
13694 struct objfile *objfile = cu->objfile;
13695 struct dwarf2_per_cu_data *per_cu = NULL;
13696 struct partial_die_info *pd = NULL;
13697
13698 if (offset_in_dwz == cu->per_cu->is_dwz
13699 && offset_in_cu_p (&cu->header, offset))
13700 {
13701 pd = find_partial_die_in_comp_unit (offset, cu);
13702 if (pd != NULL)
13703 return pd;
13704 /* We missed recording what we needed.
13705 Load all dies and try again. */
13706 per_cu = cu->per_cu;
13707 }
13708 else
13709 {
13710 /* TUs don't reference other CUs/TUs (except via type signatures). */
13711 if (cu->per_cu->is_debug_types)
13712 {
13713 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13714 " external reference to offset 0x%lx [in module %s].\n"),
13715 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13716 bfd_get_filename (objfile->obfd));
13717 }
13718 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13719 objfile);
13720
13721 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13722 load_partial_comp_unit (per_cu);
13723
13724 per_cu->cu->last_used = 0;
13725 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13726 }
13727
13728 /* If we didn't find it, and not all dies have been loaded,
13729 load them all and try again. */
13730
13731 if (pd == NULL && per_cu->load_all_dies == 0)
13732 {
13733 per_cu->load_all_dies = 1;
13734
13735 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13736 THIS_CU->cu may already be in use. So we can't just free it and
13737 replace its DIEs with the ones we read in. Instead, we leave those
13738 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13739 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13740 set. */
13741 load_partial_comp_unit (per_cu);
13742
13743 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13744 }
13745
13746 if (pd == NULL)
13747 internal_error (__FILE__, __LINE__,
13748 _("could not find partial DIE 0x%x "
13749 "in cache [from module %s]\n"),
13750 offset.sect_off, bfd_get_filename (objfile->obfd));
13751 return pd;
13752 }
13753
13754 /* See if we can figure out if the class lives in a namespace. We do
13755 this by looking for a member function; its demangled name will
13756 contain namespace info, if there is any. */
13757
13758 static void
13759 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13760 struct dwarf2_cu *cu)
13761 {
13762 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13763 what template types look like, because the demangler
13764 frequently doesn't give the same name as the debug info. We
13765 could fix this by only using the demangled name to get the
13766 prefix (but see comment in read_structure_type). */
13767
13768 struct partial_die_info *real_pdi;
13769 struct partial_die_info *child_pdi;
13770
13771 /* If this DIE (this DIE's specification, if any) has a parent, then
13772 we should not do this. We'll prepend the parent's fully qualified
13773 name when we create the partial symbol. */
13774
13775 real_pdi = struct_pdi;
13776 while (real_pdi->has_specification)
13777 real_pdi = find_partial_die (real_pdi->spec_offset,
13778 real_pdi->spec_is_dwz, cu);
13779
13780 if (real_pdi->die_parent != NULL)
13781 return;
13782
13783 for (child_pdi = struct_pdi->die_child;
13784 child_pdi != NULL;
13785 child_pdi = child_pdi->die_sibling)
13786 {
13787 if (child_pdi->tag == DW_TAG_subprogram
13788 && child_pdi->linkage_name != NULL)
13789 {
13790 char *actual_class_name
13791 = language_class_name_from_physname (cu->language_defn,
13792 child_pdi->linkage_name);
13793 if (actual_class_name != NULL)
13794 {
13795 struct_pdi->name
13796 = obsavestring (actual_class_name,
13797 strlen (actual_class_name),
13798 &cu->objfile->objfile_obstack);
13799 xfree (actual_class_name);
13800 }
13801 break;
13802 }
13803 }
13804 }
13805
13806 /* Adjust PART_DIE before generating a symbol for it. This function
13807 may set the is_external flag or change the DIE's name. */
13808
13809 static void
13810 fixup_partial_die (struct partial_die_info *part_die,
13811 struct dwarf2_cu *cu)
13812 {
13813 /* Once we've fixed up a die, there's no point in doing so again.
13814 This also avoids a memory leak if we were to call
13815 guess_partial_die_structure_name multiple times. */
13816 if (part_die->fixup_called)
13817 return;
13818
13819 /* If we found a reference attribute and the DIE has no name, try
13820 to find a name in the referred to DIE. */
13821
13822 if (part_die->name == NULL && part_die->has_specification)
13823 {
13824 struct partial_die_info *spec_die;
13825
13826 spec_die = find_partial_die (part_die->spec_offset,
13827 part_die->spec_is_dwz, cu);
13828
13829 fixup_partial_die (spec_die, cu);
13830
13831 if (spec_die->name)
13832 {
13833 part_die->name = spec_die->name;
13834
13835 /* Copy DW_AT_external attribute if it is set. */
13836 if (spec_die->is_external)
13837 part_die->is_external = spec_die->is_external;
13838 }
13839 }
13840
13841 /* Set default names for some unnamed DIEs. */
13842
13843 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13844 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13845
13846 /* If there is no parent die to provide a namespace, and there are
13847 children, see if we can determine the namespace from their linkage
13848 name. */
13849 if (cu->language == language_cplus
13850 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13851 && part_die->die_parent == NULL
13852 && part_die->has_children
13853 && (part_die->tag == DW_TAG_class_type
13854 || part_die->tag == DW_TAG_structure_type
13855 || part_die->tag == DW_TAG_union_type))
13856 guess_partial_die_structure_name (part_die, cu);
13857
13858 /* GCC might emit a nameless struct or union that has a linkage
13859 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13860 if (part_die->name == NULL
13861 && (part_die->tag == DW_TAG_class_type
13862 || part_die->tag == DW_TAG_interface_type
13863 || part_die->tag == DW_TAG_structure_type
13864 || part_die->tag == DW_TAG_union_type)
13865 && part_die->linkage_name != NULL)
13866 {
13867 char *demangled;
13868
13869 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13870 if (demangled)
13871 {
13872 const char *base;
13873
13874 /* Strip any leading namespaces/classes, keep only the base name.
13875 DW_AT_name for named DIEs does not contain the prefixes. */
13876 base = strrchr (demangled, ':');
13877 if (base && base > demangled && base[-1] == ':')
13878 base++;
13879 else
13880 base = demangled;
13881
13882 part_die->name = obsavestring (base, strlen (base),
13883 &cu->objfile->objfile_obstack);
13884 xfree (demangled);
13885 }
13886 }
13887
13888 part_die->fixup_called = 1;
13889 }
13890
13891 /* Read an attribute value described by an attribute form. */
13892
13893 static gdb_byte *
13894 read_attribute_value (const struct die_reader_specs *reader,
13895 struct attribute *attr, unsigned form,
13896 gdb_byte *info_ptr)
13897 {
13898 struct dwarf2_cu *cu = reader->cu;
13899 bfd *abfd = reader->abfd;
13900 struct comp_unit_head *cu_header = &cu->header;
13901 unsigned int bytes_read;
13902 struct dwarf_block *blk;
13903
13904 attr->form = form;
13905 switch (form)
13906 {
13907 case DW_FORM_ref_addr:
13908 if (cu->header.version == 2)
13909 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13910 else
13911 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13912 &cu->header, &bytes_read);
13913 info_ptr += bytes_read;
13914 break;
13915 case DW_FORM_GNU_ref_alt:
13916 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13917 info_ptr += bytes_read;
13918 break;
13919 case DW_FORM_addr:
13920 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13921 info_ptr += bytes_read;
13922 break;
13923 case DW_FORM_block2:
13924 blk = dwarf_alloc_block (cu);
13925 blk->size = read_2_bytes (abfd, info_ptr);
13926 info_ptr += 2;
13927 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13928 info_ptr += blk->size;
13929 DW_BLOCK (attr) = blk;
13930 break;
13931 case DW_FORM_block4:
13932 blk = dwarf_alloc_block (cu);
13933 blk->size = read_4_bytes (abfd, info_ptr);
13934 info_ptr += 4;
13935 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13936 info_ptr += blk->size;
13937 DW_BLOCK (attr) = blk;
13938 break;
13939 case DW_FORM_data2:
13940 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13941 info_ptr += 2;
13942 break;
13943 case DW_FORM_data4:
13944 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13945 info_ptr += 4;
13946 break;
13947 case DW_FORM_data8:
13948 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13949 info_ptr += 8;
13950 break;
13951 case DW_FORM_sec_offset:
13952 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13953 info_ptr += bytes_read;
13954 break;
13955 case DW_FORM_string:
13956 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13957 DW_STRING_IS_CANONICAL (attr) = 0;
13958 info_ptr += bytes_read;
13959 break;
13960 case DW_FORM_strp:
13961 if (!cu->per_cu->is_dwz)
13962 {
13963 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13964 &bytes_read);
13965 DW_STRING_IS_CANONICAL (attr) = 0;
13966 info_ptr += bytes_read;
13967 break;
13968 }
13969 /* FALLTHROUGH */
13970 case DW_FORM_GNU_strp_alt:
13971 {
13972 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13973 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13974 &bytes_read);
13975
13976 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13977 DW_STRING_IS_CANONICAL (attr) = 0;
13978 info_ptr += bytes_read;
13979 }
13980 break;
13981 case DW_FORM_exprloc:
13982 case DW_FORM_block:
13983 blk = dwarf_alloc_block (cu);
13984 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13985 info_ptr += bytes_read;
13986 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13987 info_ptr += blk->size;
13988 DW_BLOCK (attr) = blk;
13989 break;
13990 case DW_FORM_block1:
13991 blk = dwarf_alloc_block (cu);
13992 blk->size = read_1_byte (abfd, info_ptr);
13993 info_ptr += 1;
13994 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13995 info_ptr += blk->size;
13996 DW_BLOCK (attr) = blk;
13997 break;
13998 case DW_FORM_data1:
13999 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14000 info_ptr += 1;
14001 break;
14002 case DW_FORM_flag:
14003 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14004 info_ptr += 1;
14005 break;
14006 case DW_FORM_flag_present:
14007 DW_UNSND (attr) = 1;
14008 break;
14009 case DW_FORM_sdata:
14010 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14011 info_ptr += bytes_read;
14012 break;
14013 case DW_FORM_udata:
14014 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14015 info_ptr += bytes_read;
14016 break;
14017 case DW_FORM_ref1:
14018 DW_UNSND (attr) = (cu->header.offset.sect_off
14019 + read_1_byte (abfd, info_ptr));
14020 info_ptr += 1;
14021 break;
14022 case DW_FORM_ref2:
14023 DW_UNSND (attr) = (cu->header.offset.sect_off
14024 + read_2_bytes (abfd, info_ptr));
14025 info_ptr += 2;
14026 break;
14027 case DW_FORM_ref4:
14028 DW_UNSND (attr) = (cu->header.offset.sect_off
14029 + read_4_bytes (abfd, info_ptr));
14030 info_ptr += 4;
14031 break;
14032 case DW_FORM_ref8:
14033 DW_UNSND (attr) = (cu->header.offset.sect_off
14034 + read_8_bytes (abfd, info_ptr));
14035 info_ptr += 8;
14036 break;
14037 case DW_FORM_ref_sig8:
14038 /* Convert the signature to something we can record in DW_UNSND
14039 for later lookup.
14040 NOTE: This is NULL if the type wasn't found. */
14041 DW_SIGNATURED_TYPE (attr) =
14042 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14043 info_ptr += 8;
14044 break;
14045 case DW_FORM_ref_udata:
14046 DW_UNSND (attr) = (cu->header.offset.sect_off
14047 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14048 info_ptr += bytes_read;
14049 break;
14050 case DW_FORM_indirect:
14051 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14052 info_ptr += bytes_read;
14053 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14054 break;
14055 case DW_FORM_GNU_addr_index:
14056 if (reader->dwo_file == NULL)
14057 {
14058 /* For now flag a hard error.
14059 Later we can turn this into a complaint. */
14060 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14061 dwarf_form_name (form),
14062 bfd_get_filename (abfd));
14063 }
14064 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14065 info_ptr += bytes_read;
14066 break;
14067 case DW_FORM_GNU_str_index:
14068 if (reader->dwo_file == NULL)
14069 {
14070 /* For now flag a hard error.
14071 Later we can turn this into a complaint if warranted. */
14072 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14073 dwarf_form_name (form),
14074 bfd_get_filename (abfd));
14075 }
14076 {
14077 ULONGEST str_index =
14078 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14079
14080 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14081 DW_STRING_IS_CANONICAL (attr) = 0;
14082 info_ptr += bytes_read;
14083 }
14084 break;
14085 default:
14086 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14087 dwarf_form_name (form),
14088 bfd_get_filename (abfd));
14089 }
14090
14091 /* Super hack. */
14092 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14093 attr->form = DW_FORM_GNU_ref_alt;
14094
14095 /* We have seen instances where the compiler tried to emit a byte
14096 size attribute of -1 which ended up being encoded as an unsigned
14097 0xffffffff. Although 0xffffffff is technically a valid size value,
14098 an object of this size seems pretty unlikely so we can relatively
14099 safely treat these cases as if the size attribute was invalid and
14100 treat them as zero by default. */
14101 if (attr->name == DW_AT_byte_size
14102 && form == DW_FORM_data4
14103 && DW_UNSND (attr) >= 0xffffffff)
14104 {
14105 complaint
14106 (&symfile_complaints,
14107 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14108 hex_string (DW_UNSND (attr)));
14109 DW_UNSND (attr) = 0;
14110 }
14111
14112 return info_ptr;
14113 }
14114
14115 /* Read an attribute described by an abbreviated attribute. */
14116
14117 static gdb_byte *
14118 read_attribute (const struct die_reader_specs *reader,
14119 struct attribute *attr, struct attr_abbrev *abbrev,
14120 gdb_byte *info_ptr)
14121 {
14122 attr->name = abbrev->name;
14123 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14124 }
14125
14126 /* Read dwarf information from a buffer. */
14127
14128 static unsigned int
14129 read_1_byte (bfd *abfd, const gdb_byte *buf)
14130 {
14131 return bfd_get_8 (abfd, buf);
14132 }
14133
14134 static int
14135 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14136 {
14137 return bfd_get_signed_8 (abfd, buf);
14138 }
14139
14140 static unsigned int
14141 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14142 {
14143 return bfd_get_16 (abfd, buf);
14144 }
14145
14146 static int
14147 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14148 {
14149 return bfd_get_signed_16 (abfd, buf);
14150 }
14151
14152 static unsigned int
14153 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14154 {
14155 return bfd_get_32 (abfd, buf);
14156 }
14157
14158 static int
14159 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14160 {
14161 return bfd_get_signed_32 (abfd, buf);
14162 }
14163
14164 static ULONGEST
14165 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14166 {
14167 return bfd_get_64 (abfd, buf);
14168 }
14169
14170 static CORE_ADDR
14171 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14172 unsigned int *bytes_read)
14173 {
14174 struct comp_unit_head *cu_header = &cu->header;
14175 CORE_ADDR retval = 0;
14176
14177 if (cu_header->signed_addr_p)
14178 {
14179 switch (cu_header->addr_size)
14180 {
14181 case 2:
14182 retval = bfd_get_signed_16 (abfd, buf);
14183 break;
14184 case 4:
14185 retval = bfd_get_signed_32 (abfd, buf);
14186 break;
14187 case 8:
14188 retval = bfd_get_signed_64 (abfd, buf);
14189 break;
14190 default:
14191 internal_error (__FILE__, __LINE__,
14192 _("read_address: bad switch, signed [in module %s]"),
14193 bfd_get_filename (abfd));
14194 }
14195 }
14196 else
14197 {
14198 switch (cu_header->addr_size)
14199 {
14200 case 2:
14201 retval = bfd_get_16 (abfd, buf);
14202 break;
14203 case 4:
14204 retval = bfd_get_32 (abfd, buf);
14205 break;
14206 case 8:
14207 retval = bfd_get_64 (abfd, buf);
14208 break;
14209 default:
14210 internal_error (__FILE__, __LINE__,
14211 _("read_address: bad switch, "
14212 "unsigned [in module %s]"),
14213 bfd_get_filename (abfd));
14214 }
14215 }
14216
14217 *bytes_read = cu_header->addr_size;
14218 return retval;
14219 }
14220
14221 /* Read the initial length from a section. The (draft) DWARF 3
14222 specification allows the initial length to take up either 4 bytes
14223 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14224 bytes describe the length and all offsets will be 8 bytes in length
14225 instead of 4.
14226
14227 An older, non-standard 64-bit format is also handled by this
14228 function. The older format in question stores the initial length
14229 as an 8-byte quantity without an escape value. Lengths greater
14230 than 2^32 aren't very common which means that the initial 4 bytes
14231 is almost always zero. Since a length value of zero doesn't make
14232 sense for the 32-bit format, this initial zero can be considered to
14233 be an escape value which indicates the presence of the older 64-bit
14234 format. As written, the code can't detect (old format) lengths
14235 greater than 4GB. If it becomes necessary to handle lengths
14236 somewhat larger than 4GB, we could allow other small values (such
14237 as the non-sensical values of 1, 2, and 3) to also be used as
14238 escape values indicating the presence of the old format.
14239
14240 The value returned via bytes_read should be used to increment the
14241 relevant pointer after calling read_initial_length().
14242
14243 [ Note: read_initial_length() and read_offset() are based on the
14244 document entitled "DWARF Debugging Information Format", revision
14245 3, draft 8, dated November 19, 2001. This document was obtained
14246 from:
14247
14248 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14249
14250 This document is only a draft and is subject to change. (So beware.)
14251
14252 Details regarding the older, non-standard 64-bit format were
14253 determined empirically by examining 64-bit ELF files produced by
14254 the SGI toolchain on an IRIX 6.5 machine.
14255
14256 - Kevin, July 16, 2002
14257 ] */
14258
14259 static LONGEST
14260 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14261 {
14262 LONGEST length = bfd_get_32 (abfd, buf);
14263
14264 if (length == 0xffffffff)
14265 {
14266 length = bfd_get_64 (abfd, buf + 4);
14267 *bytes_read = 12;
14268 }
14269 else if (length == 0)
14270 {
14271 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14272 length = bfd_get_64 (abfd, buf);
14273 *bytes_read = 8;
14274 }
14275 else
14276 {
14277 *bytes_read = 4;
14278 }
14279
14280 return length;
14281 }
14282
14283 /* Cover function for read_initial_length.
14284 Returns the length of the object at BUF, and stores the size of the
14285 initial length in *BYTES_READ and stores the size that offsets will be in
14286 *OFFSET_SIZE.
14287 If the initial length size is not equivalent to that specified in
14288 CU_HEADER then issue a complaint.
14289 This is useful when reading non-comp-unit headers. */
14290
14291 static LONGEST
14292 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14293 const struct comp_unit_head *cu_header,
14294 unsigned int *bytes_read,
14295 unsigned int *offset_size)
14296 {
14297 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14298
14299 gdb_assert (cu_header->initial_length_size == 4
14300 || cu_header->initial_length_size == 8
14301 || cu_header->initial_length_size == 12);
14302
14303 if (cu_header->initial_length_size != *bytes_read)
14304 complaint (&symfile_complaints,
14305 _("intermixed 32-bit and 64-bit DWARF sections"));
14306
14307 *offset_size = (*bytes_read == 4) ? 4 : 8;
14308 return length;
14309 }
14310
14311 /* Read an offset from the data stream. The size of the offset is
14312 given by cu_header->offset_size. */
14313
14314 static LONGEST
14315 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14316 unsigned int *bytes_read)
14317 {
14318 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14319
14320 *bytes_read = cu_header->offset_size;
14321 return offset;
14322 }
14323
14324 /* Read an offset from the data stream. */
14325
14326 static LONGEST
14327 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14328 {
14329 LONGEST retval = 0;
14330
14331 switch (offset_size)
14332 {
14333 case 4:
14334 retval = bfd_get_32 (abfd, buf);
14335 break;
14336 case 8:
14337 retval = bfd_get_64 (abfd, buf);
14338 break;
14339 default:
14340 internal_error (__FILE__, __LINE__,
14341 _("read_offset_1: bad switch [in module %s]"),
14342 bfd_get_filename (abfd));
14343 }
14344
14345 return retval;
14346 }
14347
14348 static gdb_byte *
14349 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14350 {
14351 /* If the size of a host char is 8 bits, we can return a pointer
14352 to the buffer, otherwise we have to copy the data to a buffer
14353 allocated on the temporary obstack. */
14354 gdb_assert (HOST_CHAR_BIT == 8);
14355 return buf;
14356 }
14357
14358 static char *
14359 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14360 {
14361 /* If the size of a host char is 8 bits, we can return a pointer
14362 to the string, otherwise we have to copy the string to a buffer
14363 allocated on the temporary obstack. */
14364 gdb_assert (HOST_CHAR_BIT == 8);
14365 if (*buf == '\0')
14366 {
14367 *bytes_read_ptr = 1;
14368 return NULL;
14369 }
14370 *bytes_read_ptr = strlen ((char *) buf) + 1;
14371 return (char *) buf;
14372 }
14373
14374 static char *
14375 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14376 {
14377 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14378 if (dwarf2_per_objfile->str.buffer == NULL)
14379 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14380 bfd_get_filename (abfd));
14381 if (str_offset >= dwarf2_per_objfile->str.size)
14382 error (_("DW_FORM_strp pointing outside of "
14383 ".debug_str section [in module %s]"),
14384 bfd_get_filename (abfd));
14385 gdb_assert (HOST_CHAR_BIT == 8);
14386 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14387 return NULL;
14388 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14389 }
14390
14391 /* Read a string at offset STR_OFFSET in the .debug_str section from
14392 the .dwz file DWZ. Throw an error if the offset is too large. If
14393 the string consists of a single NUL byte, return NULL; otherwise
14394 return a pointer to the string. */
14395
14396 static char *
14397 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14398 {
14399 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14400
14401 if (dwz->str.buffer == NULL)
14402 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14403 "section [in module %s]"),
14404 bfd_get_filename (dwz->dwz_bfd));
14405 if (str_offset >= dwz->str.size)
14406 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14407 ".debug_str section [in module %s]"),
14408 bfd_get_filename (dwz->dwz_bfd));
14409 gdb_assert (HOST_CHAR_BIT == 8);
14410 if (dwz->str.buffer[str_offset] == '\0')
14411 return NULL;
14412 return (char *) (dwz->str.buffer + str_offset);
14413 }
14414
14415 static char *
14416 read_indirect_string (bfd *abfd, gdb_byte *buf,
14417 const struct comp_unit_head *cu_header,
14418 unsigned int *bytes_read_ptr)
14419 {
14420 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14421
14422 return read_indirect_string_at_offset (abfd, str_offset);
14423 }
14424
14425 static ULONGEST
14426 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14427 {
14428 ULONGEST result;
14429 unsigned int num_read;
14430 int i, shift;
14431 unsigned char byte;
14432
14433 result = 0;
14434 shift = 0;
14435 num_read = 0;
14436 i = 0;
14437 while (1)
14438 {
14439 byte = bfd_get_8 (abfd, buf);
14440 buf++;
14441 num_read++;
14442 result |= ((ULONGEST) (byte & 127) << shift);
14443 if ((byte & 128) == 0)
14444 {
14445 break;
14446 }
14447 shift += 7;
14448 }
14449 *bytes_read_ptr = num_read;
14450 return result;
14451 }
14452
14453 static LONGEST
14454 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14455 {
14456 LONGEST result;
14457 int i, shift, num_read;
14458 unsigned char byte;
14459
14460 result = 0;
14461 shift = 0;
14462 num_read = 0;
14463 i = 0;
14464 while (1)
14465 {
14466 byte = bfd_get_8 (abfd, buf);
14467 buf++;
14468 num_read++;
14469 result |= ((LONGEST) (byte & 127) << shift);
14470 shift += 7;
14471 if ((byte & 128) == 0)
14472 {
14473 break;
14474 }
14475 }
14476 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14477 result |= -(((LONGEST) 1) << shift);
14478 *bytes_read_ptr = num_read;
14479 return result;
14480 }
14481
14482 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14483 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14484 ADDR_SIZE is the size of addresses from the CU header. */
14485
14486 static CORE_ADDR
14487 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14488 {
14489 struct objfile *objfile = dwarf2_per_objfile->objfile;
14490 bfd *abfd = objfile->obfd;
14491 const gdb_byte *info_ptr;
14492
14493 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14494 if (dwarf2_per_objfile->addr.buffer == NULL)
14495 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14496 objfile->name);
14497 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14498 error (_("DW_FORM_addr_index pointing outside of "
14499 ".debug_addr section [in module %s]"),
14500 objfile->name);
14501 info_ptr = (dwarf2_per_objfile->addr.buffer
14502 + addr_base + addr_index * addr_size);
14503 if (addr_size == 4)
14504 return bfd_get_32 (abfd, info_ptr);
14505 else
14506 return bfd_get_64 (abfd, info_ptr);
14507 }
14508
14509 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14510
14511 static CORE_ADDR
14512 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14513 {
14514 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14515 }
14516
14517 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14518
14519 static CORE_ADDR
14520 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14521 unsigned int *bytes_read)
14522 {
14523 bfd *abfd = cu->objfile->obfd;
14524 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14525
14526 return read_addr_index (cu, addr_index);
14527 }
14528
14529 /* Data structure to pass results from dwarf2_read_addr_index_reader
14530 back to dwarf2_read_addr_index. */
14531
14532 struct dwarf2_read_addr_index_data
14533 {
14534 ULONGEST addr_base;
14535 int addr_size;
14536 };
14537
14538 /* die_reader_func for dwarf2_read_addr_index. */
14539
14540 static void
14541 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14542 gdb_byte *info_ptr,
14543 struct die_info *comp_unit_die,
14544 int has_children,
14545 void *data)
14546 {
14547 struct dwarf2_cu *cu = reader->cu;
14548 struct dwarf2_read_addr_index_data *aidata =
14549 (struct dwarf2_read_addr_index_data *) data;
14550
14551 aidata->addr_base = cu->addr_base;
14552 aidata->addr_size = cu->header.addr_size;
14553 }
14554
14555 /* Given an index in .debug_addr, fetch the value.
14556 NOTE: This can be called during dwarf expression evaluation,
14557 long after the debug information has been read, and thus per_cu->cu
14558 may no longer exist. */
14559
14560 CORE_ADDR
14561 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14562 unsigned int addr_index)
14563 {
14564 struct objfile *objfile = per_cu->objfile;
14565 struct dwarf2_cu *cu = per_cu->cu;
14566 ULONGEST addr_base;
14567 int addr_size;
14568
14569 /* This is intended to be called from outside this file. */
14570 dw2_setup (objfile);
14571
14572 /* We need addr_base and addr_size.
14573 If we don't have PER_CU->cu, we have to get it.
14574 Nasty, but the alternative is storing the needed info in PER_CU,
14575 which at this point doesn't seem justified: it's not clear how frequently
14576 it would get used and it would increase the size of every PER_CU.
14577 Entry points like dwarf2_per_cu_addr_size do a similar thing
14578 so we're not in uncharted territory here.
14579 Alas we need to be a bit more complicated as addr_base is contained
14580 in the DIE.
14581
14582 We don't need to read the entire CU(/TU).
14583 We just need the header and top level die.
14584
14585 IWBN to use the aging mechanism to let us lazily later discard the CU.
14586 For now we skip this optimization. */
14587
14588 if (cu != NULL)
14589 {
14590 addr_base = cu->addr_base;
14591 addr_size = cu->header.addr_size;
14592 }
14593 else
14594 {
14595 struct dwarf2_read_addr_index_data aidata;
14596
14597 /* Note: We can't use init_cutu_and_read_dies_simple here,
14598 we need addr_base. */
14599 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14600 dwarf2_read_addr_index_reader, &aidata);
14601 addr_base = aidata.addr_base;
14602 addr_size = aidata.addr_size;
14603 }
14604
14605 return read_addr_index_1 (addr_index, addr_base, addr_size);
14606 }
14607
14608 /* Given a DW_AT_str_index, fetch the string. */
14609
14610 static char *
14611 read_str_index (const struct die_reader_specs *reader,
14612 struct dwarf2_cu *cu, ULONGEST str_index)
14613 {
14614 struct objfile *objfile = dwarf2_per_objfile->objfile;
14615 const char *dwo_name = objfile->name;
14616 bfd *abfd = objfile->obfd;
14617 struct dwo_sections *sections = &reader->dwo_file->sections;
14618 gdb_byte *info_ptr;
14619 ULONGEST str_offset;
14620
14621 dwarf2_read_section (objfile, &sections->str);
14622 dwarf2_read_section (objfile, &sections->str_offsets);
14623 if (sections->str.buffer == NULL)
14624 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14625 " in CU at offset 0x%lx [in module %s]"),
14626 (long) cu->header.offset.sect_off, dwo_name);
14627 if (sections->str_offsets.buffer == NULL)
14628 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14629 " in CU at offset 0x%lx [in module %s]"),
14630 (long) cu->header.offset.sect_off, dwo_name);
14631 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14632 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14633 " section in CU at offset 0x%lx [in module %s]"),
14634 (long) cu->header.offset.sect_off, dwo_name);
14635 info_ptr = (sections->str_offsets.buffer
14636 + str_index * cu->header.offset_size);
14637 if (cu->header.offset_size == 4)
14638 str_offset = bfd_get_32 (abfd, info_ptr);
14639 else
14640 str_offset = bfd_get_64 (abfd, info_ptr);
14641 if (str_offset >= sections->str.size)
14642 error (_("Offset from DW_FORM_str_index pointing outside of"
14643 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14644 (long) cu->header.offset.sect_off, dwo_name);
14645 return (char *) (sections->str.buffer + str_offset);
14646 }
14647
14648 /* Return the length of an LEB128 number in BUF. */
14649
14650 static int
14651 leb128_size (const gdb_byte *buf)
14652 {
14653 const gdb_byte *begin = buf;
14654 gdb_byte byte;
14655
14656 while (1)
14657 {
14658 byte = *buf++;
14659 if ((byte & 128) == 0)
14660 return buf - begin;
14661 }
14662 }
14663
14664 static void
14665 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14666 {
14667 switch (lang)
14668 {
14669 case DW_LANG_C89:
14670 case DW_LANG_C99:
14671 case DW_LANG_C:
14672 cu->language = language_c;
14673 break;
14674 case DW_LANG_C_plus_plus:
14675 cu->language = language_cplus;
14676 break;
14677 case DW_LANG_D:
14678 cu->language = language_d;
14679 break;
14680 case DW_LANG_Fortran77:
14681 case DW_LANG_Fortran90:
14682 case DW_LANG_Fortran95:
14683 cu->language = language_fortran;
14684 break;
14685 case DW_LANG_Go:
14686 cu->language = language_go;
14687 break;
14688 case DW_LANG_Mips_Assembler:
14689 cu->language = language_asm;
14690 break;
14691 case DW_LANG_Java:
14692 cu->language = language_java;
14693 break;
14694 case DW_LANG_Ada83:
14695 case DW_LANG_Ada95:
14696 cu->language = language_ada;
14697 break;
14698 case DW_LANG_Modula2:
14699 cu->language = language_m2;
14700 break;
14701 case DW_LANG_Pascal83:
14702 cu->language = language_pascal;
14703 break;
14704 case DW_LANG_ObjC:
14705 cu->language = language_objc;
14706 break;
14707 case DW_LANG_Cobol74:
14708 case DW_LANG_Cobol85:
14709 default:
14710 cu->language = language_minimal;
14711 break;
14712 }
14713 cu->language_defn = language_def (cu->language);
14714 }
14715
14716 /* Return the named attribute or NULL if not there. */
14717
14718 static struct attribute *
14719 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14720 {
14721 for (;;)
14722 {
14723 unsigned int i;
14724 struct attribute *spec = NULL;
14725
14726 for (i = 0; i < die->num_attrs; ++i)
14727 {
14728 if (die->attrs[i].name == name)
14729 return &die->attrs[i];
14730 if (die->attrs[i].name == DW_AT_specification
14731 || die->attrs[i].name == DW_AT_abstract_origin)
14732 spec = &die->attrs[i];
14733 }
14734
14735 if (!spec)
14736 break;
14737
14738 die = follow_die_ref (die, spec, &cu);
14739 }
14740
14741 return NULL;
14742 }
14743
14744 /* Return the named attribute or NULL if not there,
14745 but do not follow DW_AT_specification, etc.
14746 This is for use in contexts where we're reading .debug_types dies.
14747 Following DW_AT_specification, DW_AT_abstract_origin will take us
14748 back up the chain, and we want to go down. */
14749
14750 static struct attribute *
14751 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14752 {
14753 unsigned int i;
14754
14755 for (i = 0; i < die->num_attrs; ++i)
14756 if (die->attrs[i].name == name)
14757 return &die->attrs[i];
14758
14759 return NULL;
14760 }
14761
14762 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14763 and holds a non-zero value. This function should only be used for
14764 DW_FORM_flag or DW_FORM_flag_present attributes. */
14765
14766 static int
14767 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14768 {
14769 struct attribute *attr = dwarf2_attr (die, name, cu);
14770
14771 return (attr && DW_UNSND (attr));
14772 }
14773
14774 static int
14775 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14776 {
14777 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14778 which value is non-zero. However, we have to be careful with
14779 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14780 (via dwarf2_flag_true_p) follows this attribute. So we may
14781 end up accidently finding a declaration attribute that belongs
14782 to a different DIE referenced by the specification attribute,
14783 even though the given DIE does not have a declaration attribute. */
14784 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14785 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14786 }
14787
14788 /* Return the die giving the specification for DIE, if there is
14789 one. *SPEC_CU is the CU containing DIE on input, and the CU
14790 containing the return value on output. If there is no
14791 specification, but there is an abstract origin, that is
14792 returned. */
14793
14794 static struct die_info *
14795 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14796 {
14797 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14798 *spec_cu);
14799
14800 if (spec_attr == NULL)
14801 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14802
14803 if (spec_attr == NULL)
14804 return NULL;
14805 else
14806 return follow_die_ref (die, spec_attr, spec_cu);
14807 }
14808
14809 /* Free the line_header structure *LH, and any arrays and strings it
14810 refers to.
14811 NOTE: This is also used as a "cleanup" function. */
14812
14813 static void
14814 free_line_header (struct line_header *lh)
14815 {
14816 if (lh->standard_opcode_lengths)
14817 xfree (lh->standard_opcode_lengths);
14818
14819 /* Remember that all the lh->file_names[i].name pointers are
14820 pointers into debug_line_buffer, and don't need to be freed. */
14821 if (lh->file_names)
14822 xfree (lh->file_names);
14823
14824 /* Similarly for the include directory names. */
14825 if (lh->include_dirs)
14826 xfree (lh->include_dirs);
14827
14828 xfree (lh);
14829 }
14830
14831 /* Add an entry to LH's include directory table. */
14832
14833 static void
14834 add_include_dir (struct line_header *lh, char *include_dir)
14835 {
14836 /* Grow the array if necessary. */
14837 if (lh->include_dirs_size == 0)
14838 {
14839 lh->include_dirs_size = 1; /* for testing */
14840 lh->include_dirs = xmalloc (lh->include_dirs_size
14841 * sizeof (*lh->include_dirs));
14842 }
14843 else if (lh->num_include_dirs >= lh->include_dirs_size)
14844 {
14845 lh->include_dirs_size *= 2;
14846 lh->include_dirs = xrealloc (lh->include_dirs,
14847 (lh->include_dirs_size
14848 * sizeof (*lh->include_dirs)));
14849 }
14850
14851 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14852 }
14853
14854 /* Add an entry to LH's file name table. */
14855
14856 static void
14857 add_file_name (struct line_header *lh,
14858 char *name,
14859 unsigned int dir_index,
14860 unsigned int mod_time,
14861 unsigned int length)
14862 {
14863 struct file_entry *fe;
14864
14865 /* Grow the array if necessary. */
14866 if (lh->file_names_size == 0)
14867 {
14868 lh->file_names_size = 1; /* for testing */
14869 lh->file_names = xmalloc (lh->file_names_size
14870 * sizeof (*lh->file_names));
14871 }
14872 else if (lh->num_file_names >= lh->file_names_size)
14873 {
14874 lh->file_names_size *= 2;
14875 lh->file_names = xrealloc (lh->file_names,
14876 (lh->file_names_size
14877 * sizeof (*lh->file_names)));
14878 }
14879
14880 fe = &lh->file_names[lh->num_file_names++];
14881 fe->name = name;
14882 fe->dir_index = dir_index;
14883 fe->mod_time = mod_time;
14884 fe->length = length;
14885 fe->included_p = 0;
14886 fe->symtab = NULL;
14887 }
14888
14889 /* A convenience function to find the proper .debug_line section for a
14890 CU. */
14891
14892 static struct dwarf2_section_info *
14893 get_debug_line_section (struct dwarf2_cu *cu)
14894 {
14895 struct dwarf2_section_info *section;
14896
14897 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14898 DWO file. */
14899 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14900 section = &cu->dwo_unit->dwo_file->sections.line;
14901 else if (cu->per_cu->is_dwz)
14902 {
14903 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14904
14905 section = &dwz->line;
14906 }
14907 else
14908 section = &dwarf2_per_objfile->line;
14909
14910 return section;
14911 }
14912
14913 /* Read the statement program header starting at OFFSET in
14914 .debug_line, or .debug_line.dwo. Return a pointer
14915 to a struct line_header, allocated using xmalloc.
14916
14917 NOTE: the strings in the include directory and file name tables of
14918 the returned object point into the dwarf line section buffer,
14919 and must not be freed. */
14920
14921 static struct line_header *
14922 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14923 {
14924 struct cleanup *back_to;
14925 struct line_header *lh;
14926 gdb_byte *line_ptr;
14927 unsigned int bytes_read, offset_size;
14928 int i;
14929 char *cur_dir, *cur_file;
14930 struct dwarf2_section_info *section;
14931 bfd *abfd;
14932
14933 section = get_debug_line_section (cu);
14934 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14935 if (section->buffer == NULL)
14936 {
14937 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14938 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14939 else
14940 complaint (&symfile_complaints, _("missing .debug_line section"));
14941 return 0;
14942 }
14943
14944 /* We can't do this until we know the section is non-empty.
14945 Only then do we know we have such a section. */
14946 abfd = section->asection->owner;
14947
14948 /* Make sure that at least there's room for the total_length field.
14949 That could be 12 bytes long, but we're just going to fudge that. */
14950 if (offset + 4 >= section->size)
14951 {
14952 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14953 return 0;
14954 }
14955
14956 lh = xmalloc (sizeof (*lh));
14957 memset (lh, 0, sizeof (*lh));
14958 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14959 (void *) lh);
14960
14961 line_ptr = section->buffer + offset;
14962
14963 /* Read in the header. */
14964 lh->total_length =
14965 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14966 &bytes_read, &offset_size);
14967 line_ptr += bytes_read;
14968 if (line_ptr + lh->total_length > (section->buffer + section->size))
14969 {
14970 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14971 return 0;
14972 }
14973 lh->statement_program_end = line_ptr + lh->total_length;
14974 lh->version = read_2_bytes (abfd, line_ptr);
14975 line_ptr += 2;
14976 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14977 line_ptr += offset_size;
14978 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14979 line_ptr += 1;
14980 if (lh->version >= 4)
14981 {
14982 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14983 line_ptr += 1;
14984 }
14985 else
14986 lh->maximum_ops_per_instruction = 1;
14987
14988 if (lh->maximum_ops_per_instruction == 0)
14989 {
14990 lh->maximum_ops_per_instruction = 1;
14991 complaint (&symfile_complaints,
14992 _("invalid maximum_ops_per_instruction "
14993 "in `.debug_line' section"));
14994 }
14995
14996 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14997 line_ptr += 1;
14998 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14999 line_ptr += 1;
15000 lh->line_range = read_1_byte (abfd, line_ptr);
15001 line_ptr += 1;
15002 lh->opcode_base = read_1_byte (abfd, line_ptr);
15003 line_ptr += 1;
15004 lh->standard_opcode_lengths
15005 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15006
15007 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15008 for (i = 1; i < lh->opcode_base; ++i)
15009 {
15010 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15011 line_ptr += 1;
15012 }
15013
15014 /* Read directory table. */
15015 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15016 {
15017 line_ptr += bytes_read;
15018 add_include_dir (lh, cur_dir);
15019 }
15020 line_ptr += bytes_read;
15021
15022 /* Read file name table. */
15023 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15024 {
15025 unsigned int dir_index, mod_time, length;
15026
15027 line_ptr += bytes_read;
15028 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15029 line_ptr += bytes_read;
15030 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15031 line_ptr += bytes_read;
15032 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15033 line_ptr += bytes_read;
15034
15035 add_file_name (lh, cur_file, dir_index, mod_time, length);
15036 }
15037 line_ptr += bytes_read;
15038 lh->statement_program_start = line_ptr;
15039
15040 if (line_ptr > (section->buffer + section->size))
15041 complaint (&symfile_complaints,
15042 _("line number info header doesn't "
15043 "fit in `.debug_line' section"));
15044
15045 discard_cleanups (back_to);
15046 return lh;
15047 }
15048
15049 /* Subroutine of dwarf_decode_lines to simplify it.
15050 Return the file name of the psymtab for included file FILE_INDEX
15051 in line header LH of PST.
15052 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15053 If space for the result is malloc'd, it will be freed by a cleanup.
15054 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15055
15056 static char *
15057 psymtab_include_file_name (const struct line_header *lh, int file_index,
15058 const struct partial_symtab *pst,
15059 const char *comp_dir)
15060 {
15061 const struct file_entry fe = lh->file_names [file_index];
15062 char *include_name = fe.name;
15063 char *include_name_to_compare = include_name;
15064 char *dir_name = NULL;
15065 const char *pst_filename;
15066 char *copied_name = NULL;
15067 int file_is_pst;
15068
15069 if (fe.dir_index)
15070 dir_name = lh->include_dirs[fe.dir_index - 1];
15071
15072 if (!IS_ABSOLUTE_PATH (include_name)
15073 && (dir_name != NULL || comp_dir != NULL))
15074 {
15075 /* Avoid creating a duplicate psymtab for PST.
15076 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15077 Before we do the comparison, however, we need to account
15078 for DIR_NAME and COMP_DIR.
15079 First prepend dir_name (if non-NULL). If we still don't
15080 have an absolute path prepend comp_dir (if non-NULL).
15081 However, the directory we record in the include-file's
15082 psymtab does not contain COMP_DIR (to match the
15083 corresponding symtab(s)).
15084
15085 Example:
15086
15087 bash$ cd /tmp
15088 bash$ gcc -g ./hello.c
15089 include_name = "hello.c"
15090 dir_name = "."
15091 DW_AT_comp_dir = comp_dir = "/tmp"
15092 DW_AT_name = "./hello.c" */
15093
15094 if (dir_name != NULL)
15095 {
15096 include_name = concat (dir_name, SLASH_STRING,
15097 include_name, (char *)NULL);
15098 include_name_to_compare = include_name;
15099 make_cleanup (xfree, include_name);
15100 }
15101 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15102 {
15103 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15104 include_name, (char *)NULL);
15105 }
15106 }
15107
15108 pst_filename = pst->filename;
15109 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15110 {
15111 copied_name = concat (pst->dirname, SLASH_STRING,
15112 pst_filename, (char *)NULL);
15113 pst_filename = copied_name;
15114 }
15115
15116 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15117
15118 if (include_name_to_compare != include_name)
15119 xfree (include_name_to_compare);
15120 if (copied_name != NULL)
15121 xfree (copied_name);
15122
15123 if (file_is_pst)
15124 return NULL;
15125 return include_name;
15126 }
15127
15128 /* Ignore this record_line request. */
15129
15130 static void
15131 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15132 {
15133 return;
15134 }
15135
15136 /* Subroutine of dwarf_decode_lines to simplify it.
15137 Process the line number information in LH. */
15138
15139 static void
15140 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15141 struct dwarf2_cu *cu, struct partial_symtab *pst)
15142 {
15143 gdb_byte *line_ptr, *extended_end;
15144 gdb_byte *line_end;
15145 unsigned int bytes_read, extended_len;
15146 unsigned char op_code, extended_op, adj_opcode;
15147 CORE_ADDR baseaddr;
15148 struct objfile *objfile = cu->objfile;
15149 bfd *abfd = objfile->obfd;
15150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15151 const int decode_for_pst_p = (pst != NULL);
15152 struct subfile *last_subfile = NULL;
15153 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15154 = record_line;
15155
15156 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15157
15158 line_ptr = lh->statement_program_start;
15159 line_end = lh->statement_program_end;
15160
15161 /* Read the statement sequences until there's nothing left. */
15162 while (line_ptr < line_end)
15163 {
15164 /* state machine registers */
15165 CORE_ADDR address = 0;
15166 unsigned int file = 1;
15167 unsigned int line = 1;
15168 unsigned int column = 0;
15169 int is_stmt = lh->default_is_stmt;
15170 int basic_block = 0;
15171 int end_sequence = 0;
15172 CORE_ADDR addr;
15173 unsigned char op_index = 0;
15174
15175 if (!decode_for_pst_p && lh->num_file_names >= file)
15176 {
15177 /* Start a subfile for the current file of the state machine. */
15178 /* lh->include_dirs and lh->file_names are 0-based, but the
15179 directory and file name numbers in the statement program
15180 are 1-based. */
15181 struct file_entry *fe = &lh->file_names[file - 1];
15182 char *dir = NULL;
15183
15184 if (fe->dir_index)
15185 dir = lh->include_dirs[fe->dir_index - 1];
15186
15187 dwarf2_start_subfile (fe->name, dir, comp_dir);
15188 }
15189
15190 /* Decode the table. */
15191 while (!end_sequence)
15192 {
15193 op_code = read_1_byte (abfd, line_ptr);
15194 line_ptr += 1;
15195 if (line_ptr > line_end)
15196 {
15197 dwarf2_debug_line_missing_end_sequence_complaint ();
15198 break;
15199 }
15200
15201 if (op_code >= lh->opcode_base)
15202 {
15203 /* Special operand. */
15204 adj_opcode = op_code - lh->opcode_base;
15205 address += (((op_index + (adj_opcode / lh->line_range))
15206 / lh->maximum_ops_per_instruction)
15207 * lh->minimum_instruction_length);
15208 op_index = ((op_index + (adj_opcode / lh->line_range))
15209 % lh->maximum_ops_per_instruction);
15210 line += lh->line_base + (adj_opcode % lh->line_range);
15211 if (lh->num_file_names < file || file == 0)
15212 dwarf2_debug_line_missing_file_complaint ();
15213 /* For now we ignore lines not starting on an
15214 instruction boundary. */
15215 else if (op_index == 0)
15216 {
15217 lh->file_names[file - 1].included_p = 1;
15218 if (!decode_for_pst_p && is_stmt)
15219 {
15220 if (last_subfile != current_subfile)
15221 {
15222 addr = gdbarch_addr_bits_remove (gdbarch, address);
15223 if (last_subfile)
15224 (*p_record_line) (last_subfile, 0, addr);
15225 last_subfile = current_subfile;
15226 }
15227 /* Append row to matrix using current values. */
15228 addr = gdbarch_addr_bits_remove (gdbarch, address);
15229 (*p_record_line) (current_subfile, line, addr);
15230 }
15231 }
15232 basic_block = 0;
15233 }
15234 else switch (op_code)
15235 {
15236 case DW_LNS_extended_op:
15237 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15238 &bytes_read);
15239 line_ptr += bytes_read;
15240 extended_end = line_ptr + extended_len;
15241 extended_op = read_1_byte (abfd, line_ptr);
15242 line_ptr += 1;
15243 switch (extended_op)
15244 {
15245 case DW_LNE_end_sequence:
15246 p_record_line = record_line;
15247 end_sequence = 1;
15248 break;
15249 case DW_LNE_set_address:
15250 address = read_address (abfd, line_ptr, cu, &bytes_read);
15251
15252 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15253 {
15254 /* This line table is for a function which has been
15255 GCd by the linker. Ignore it. PR gdb/12528 */
15256
15257 long line_offset
15258 = line_ptr - get_debug_line_section (cu)->buffer;
15259
15260 complaint (&symfile_complaints,
15261 _(".debug_line address at offset 0x%lx is 0 "
15262 "[in module %s]"),
15263 line_offset, objfile->name);
15264 p_record_line = noop_record_line;
15265 }
15266
15267 op_index = 0;
15268 line_ptr += bytes_read;
15269 address += baseaddr;
15270 break;
15271 case DW_LNE_define_file:
15272 {
15273 char *cur_file;
15274 unsigned int dir_index, mod_time, length;
15275
15276 cur_file = read_direct_string (abfd, line_ptr,
15277 &bytes_read);
15278 line_ptr += bytes_read;
15279 dir_index =
15280 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15281 line_ptr += bytes_read;
15282 mod_time =
15283 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15284 line_ptr += bytes_read;
15285 length =
15286 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15287 line_ptr += bytes_read;
15288 add_file_name (lh, cur_file, dir_index, mod_time, length);
15289 }
15290 break;
15291 case DW_LNE_set_discriminator:
15292 /* The discriminator is not interesting to the debugger;
15293 just ignore it. */
15294 line_ptr = extended_end;
15295 break;
15296 default:
15297 complaint (&symfile_complaints,
15298 _("mangled .debug_line section"));
15299 return;
15300 }
15301 /* Make sure that we parsed the extended op correctly. If e.g.
15302 we expected a different address size than the producer used,
15303 we may have read the wrong number of bytes. */
15304 if (line_ptr != extended_end)
15305 {
15306 complaint (&symfile_complaints,
15307 _("mangled .debug_line section"));
15308 return;
15309 }
15310 break;
15311 case DW_LNS_copy:
15312 if (lh->num_file_names < file || file == 0)
15313 dwarf2_debug_line_missing_file_complaint ();
15314 else
15315 {
15316 lh->file_names[file - 1].included_p = 1;
15317 if (!decode_for_pst_p && is_stmt)
15318 {
15319 if (last_subfile != current_subfile)
15320 {
15321 addr = gdbarch_addr_bits_remove (gdbarch, address);
15322 if (last_subfile)
15323 (*p_record_line) (last_subfile, 0, addr);
15324 last_subfile = current_subfile;
15325 }
15326 addr = gdbarch_addr_bits_remove (gdbarch, address);
15327 (*p_record_line) (current_subfile, line, addr);
15328 }
15329 }
15330 basic_block = 0;
15331 break;
15332 case DW_LNS_advance_pc:
15333 {
15334 CORE_ADDR adjust
15335 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15336
15337 address += (((op_index + adjust)
15338 / lh->maximum_ops_per_instruction)
15339 * lh->minimum_instruction_length);
15340 op_index = ((op_index + adjust)
15341 % lh->maximum_ops_per_instruction);
15342 line_ptr += bytes_read;
15343 }
15344 break;
15345 case DW_LNS_advance_line:
15346 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15347 line_ptr += bytes_read;
15348 break;
15349 case DW_LNS_set_file:
15350 {
15351 /* The arrays lh->include_dirs and lh->file_names are
15352 0-based, but the directory and file name numbers in
15353 the statement program are 1-based. */
15354 struct file_entry *fe;
15355 char *dir = NULL;
15356
15357 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15358 line_ptr += bytes_read;
15359 if (lh->num_file_names < file || file == 0)
15360 dwarf2_debug_line_missing_file_complaint ();
15361 else
15362 {
15363 fe = &lh->file_names[file - 1];
15364 if (fe->dir_index)
15365 dir = lh->include_dirs[fe->dir_index - 1];
15366 if (!decode_for_pst_p)
15367 {
15368 last_subfile = current_subfile;
15369 dwarf2_start_subfile (fe->name, dir, comp_dir);
15370 }
15371 }
15372 }
15373 break;
15374 case DW_LNS_set_column:
15375 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15376 line_ptr += bytes_read;
15377 break;
15378 case DW_LNS_negate_stmt:
15379 is_stmt = (!is_stmt);
15380 break;
15381 case DW_LNS_set_basic_block:
15382 basic_block = 1;
15383 break;
15384 /* Add to the address register of the state machine the
15385 address increment value corresponding to special opcode
15386 255. I.e., this value is scaled by the minimum
15387 instruction length since special opcode 255 would have
15388 scaled the increment. */
15389 case DW_LNS_const_add_pc:
15390 {
15391 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15392
15393 address += (((op_index + adjust)
15394 / lh->maximum_ops_per_instruction)
15395 * lh->minimum_instruction_length);
15396 op_index = ((op_index + adjust)
15397 % lh->maximum_ops_per_instruction);
15398 }
15399 break;
15400 case DW_LNS_fixed_advance_pc:
15401 address += read_2_bytes (abfd, line_ptr);
15402 op_index = 0;
15403 line_ptr += 2;
15404 break;
15405 default:
15406 {
15407 /* Unknown standard opcode, ignore it. */
15408 int i;
15409
15410 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15411 {
15412 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15413 line_ptr += bytes_read;
15414 }
15415 }
15416 }
15417 }
15418 if (lh->num_file_names < file || file == 0)
15419 dwarf2_debug_line_missing_file_complaint ();
15420 else
15421 {
15422 lh->file_names[file - 1].included_p = 1;
15423 if (!decode_for_pst_p)
15424 {
15425 addr = gdbarch_addr_bits_remove (gdbarch, address);
15426 (*p_record_line) (current_subfile, 0, addr);
15427 }
15428 }
15429 }
15430 }
15431
15432 /* Decode the Line Number Program (LNP) for the given line_header
15433 structure and CU. The actual information extracted and the type
15434 of structures created from the LNP depends on the value of PST.
15435
15436 1. If PST is NULL, then this procedure uses the data from the program
15437 to create all necessary symbol tables, and their linetables.
15438
15439 2. If PST is not NULL, this procedure reads the program to determine
15440 the list of files included by the unit represented by PST, and
15441 builds all the associated partial symbol tables.
15442
15443 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15444 It is used for relative paths in the line table.
15445 NOTE: When processing partial symtabs (pst != NULL),
15446 comp_dir == pst->dirname.
15447
15448 NOTE: It is important that psymtabs have the same file name (via strcmp)
15449 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15450 symtab we don't use it in the name of the psymtabs we create.
15451 E.g. expand_line_sal requires this when finding psymtabs to expand.
15452 A good testcase for this is mb-inline.exp. */
15453
15454 static void
15455 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15456 struct dwarf2_cu *cu, struct partial_symtab *pst,
15457 int want_line_info)
15458 {
15459 struct objfile *objfile = cu->objfile;
15460 const int decode_for_pst_p = (pst != NULL);
15461 struct subfile *first_subfile = current_subfile;
15462
15463 if (want_line_info)
15464 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15465
15466 if (decode_for_pst_p)
15467 {
15468 int file_index;
15469
15470 /* Now that we're done scanning the Line Header Program, we can
15471 create the psymtab of each included file. */
15472 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15473 if (lh->file_names[file_index].included_p == 1)
15474 {
15475 char *include_name =
15476 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15477 if (include_name != NULL)
15478 dwarf2_create_include_psymtab (include_name, pst, objfile);
15479 }
15480 }
15481 else
15482 {
15483 /* Make sure a symtab is created for every file, even files
15484 which contain only variables (i.e. no code with associated
15485 line numbers). */
15486 int i;
15487
15488 for (i = 0; i < lh->num_file_names; i++)
15489 {
15490 char *dir = NULL;
15491 struct file_entry *fe;
15492
15493 fe = &lh->file_names[i];
15494 if (fe->dir_index)
15495 dir = lh->include_dirs[fe->dir_index - 1];
15496 dwarf2_start_subfile (fe->name, dir, comp_dir);
15497
15498 /* Skip the main file; we don't need it, and it must be
15499 allocated last, so that it will show up before the
15500 non-primary symtabs in the objfile's symtab list. */
15501 if (current_subfile == first_subfile)
15502 continue;
15503
15504 if (current_subfile->symtab == NULL)
15505 current_subfile->symtab = allocate_symtab (current_subfile->name,
15506 objfile);
15507 fe->symtab = current_subfile->symtab;
15508 }
15509 }
15510 }
15511
15512 /* Start a subfile for DWARF. FILENAME is the name of the file and
15513 DIRNAME the name of the source directory which contains FILENAME
15514 or NULL if not known. COMP_DIR is the compilation directory for the
15515 linetable's compilation unit or NULL if not known.
15516 This routine tries to keep line numbers from identical absolute and
15517 relative file names in a common subfile.
15518
15519 Using the `list' example from the GDB testsuite, which resides in
15520 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15521 of /srcdir/list0.c yields the following debugging information for list0.c:
15522
15523 DW_AT_name: /srcdir/list0.c
15524 DW_AT_comp_dir: /compdir
15525 files.files[0].name: list0.h
15526 files.files[0].dir: /srcdir
15527 files.files[1].name: list0.c
15528 files.files[1].dir: /srcdir
15529
15530 The line number information for list0.c has to end up in a single
15531 subfile, so that `break /srcdir/list0.c:1' works as expected.
15532 start_subfile will ensure that this happens provided that we pass the
15533 concatenation of files.files[1].dir and files.files[1].name as the
15534 subfile's name. */
15535
15536 static void
15537 dwarf2_start_subfile (char *filename, const char *dirname,
15538 const char *comp_dir)
15539 {
15540 char *fullname;
15541
15542 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15543 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15544 second argument to start_subfile. To be consistent, we do the
15545 same here. In order not to lose the line information directory,
15546 we concatenate it to the filename when it makes sense.
15547 Note that the Dwarf3 standard says (speaking of filenames in line
15548 information): ``The directory index is ignored for file names
15549 that represent full path names''. Thus ignoring dirname in the
15550 `else' branch below isn't an issue. */
15551
15552 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15553 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15554 else
15555 fullname = filename;
15556
15557 start_subfile (fullname, comp_dir);
15558
15559 if (fullname != filename)
15560 xfree (fullname);
15561 }
15562
15563 /* Start a symtab for DWARF.
15564 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15565
15566 static void
15567 dwarf2_start_symtab (struct dwarf2_cu *cu,
15568 char *name, char *comp_dir, CORE_ADDR low_pc)
15569 {
15570 start_symtab (name, comp_dir, low_pc);
15571 record_debugformat ("DWARF 2");
15572 record_producer (cu->producer);
15573
15574 /* We assume that we're processing GCC output. */
15575 processing_gcc_compilation = 2;
15576
15577 processing_has_namespace_info = 0;
15578 }
15579
15580 static void
15581 var_decode_location (struct attribute *attr, struct symbol *sym,
15582 struct dwarf2_cu *cu)
15583 {
15584 struct objfile *objfile = cu->objfile;
15585 struct comp_unit_head *cu_header = &cu->header;
15586
15587 /* NOTE drow/2003-01-30: There used to be a comment and some special
15588 code here to turn a symbol with DW_AT_external and a
15589 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15590 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15591 with some versions of binutils) where shared libraries could have
15592 relocations against symbols in their debug information - the
15593 minimal symbol would have the right address, but the debug info
15594 would not. It's no longer necessary, because we will explicitly
15595 apply relocations when we read in the debug information now. */
15596
15597 /* A DW_AT_location attribute with no contents indicates that a
15598 variable has been optimized away. */
15599 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15600 {
15601 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15602 return;
15603 }
15604
15605 /* Handle one degenerate form of location expression specially, to
15606 preserve GDB's previous behavior when section offsets are
15607 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15608 then mark this symbol as LOC_STATIC. */
15609
15610 if (attr_form_is_block (attr)
15611 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15612 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15613 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15614 && (DW_BLOCK (attr)->size
15615 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15616 {
15617 unsigned int dummy;
15618
15619 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15620 SYMBOL_VALUE_ADDRESS (sym) =
15621 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15622 else
15623 SYMBOL_VALUE_ADDRESS (sym) =
15624 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15625 SYMBOL_CLASS (sym) = LOC_STATIC;
15626 fixup_symbol_section (sym, objfile);
15627 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15628 SYMBOL_SECTION (sym));
15629 return;
15630 }
15631
15632 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15633 expression evaluator, and use LOC_COMPUTED only when necessary
15634 (i.e. when the value of a register or memory location is
15635 referenced, or a thread-local block, etc.). Then again, it might
15636 not be worthwhile. I'm assuming that it isn't unless performance
15637 or memory numbers show me otherwise. */
15638
15639 dwarf2_symbol_mark_computed (attr, sym, cu);
15640 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15641
15642 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15643 cu->has_loclist = 1;
15644 }
15645
15646 /* Given a pointer to a DWARF information entry, figure out if we need
15647 to make a symbol table entry for it, and if so, create a new entry
15648 and return a pointer to it.
15649 If TYPE is NULL, determine symbol type from the die, otherwise
15650 used the passed type.
15651 If SPACE is not NULL, use it to hold the new symbol. If it is
15652 NULL, allocate a new symbol on the objfile's obstack. */
15653
15654 static struct symbol *
15655 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15656 struct symbol *space)
15657 {
15658 struct objfile *objfile = cu->objfile;
15659 struct symbol *sym = NULL;
15660 char *name;
15661 struct attribute *attr = NULL;
15662 struct attribute *attr2 = NULL;
15663 CORE_ADDR baseaddr;
15664 struct pending **list_to_add = NULL;
15665
15666 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15667
15668 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15669
15670 name = dwarf2_name (die, cu);
15671 if (name)
15672 {
15673 const char *linkagename;
15674 int suppress_add = 0;
15675
15676 if (space)
15677 sym = space;
15678 else
15679 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15680 OBJSTAT (objfile, n_syms++);
15681
15682 /* Cache this symbol's name and the name's demangled form (if any). */
15683 SYMBOL_SET_LANGUAGE (sym, cu->language);
15684 linkagename = dwarf2_physname (name, die, cu);
15685 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15686
15687 /* Fortran does not have mangling standard and the mangling does differ
15688 between gfortran, iFort etc. */
15689 if (cu->language == language_fortran
15690 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15691 symbol_set_demangled_name (&(sym->ginfo),
15692 (char *) dwarf2_full_name (name, die, cu),
15693 NULL);
15694
15695 /* Default assumptions.
15696 Use the passed type or decode it from the die. */
15697 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15698 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15699 if (type != NULL)
15700 SYMBOL_TYPE (sym) = type;
15701 else
15702 SYMBOL_TYPE (sym) = die_type (die, cu);
15703 attr = dwarf2_attr (die,
15704 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15705 cu);
15706 if (attr)
15707 {
15708 SYMBOL_LINE (sym) = DW_UNSND (attr);
15709 }
15710
15711 attr = dwarf2_attr (die,
15712 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15713 cu);
15714 if (attr)
15715 {
15716 int file_index = DW_UNSND (attr);
15717
15718 if (cu->line_header == NULL
15719 || file_index > cu->line_header->num_file_names)
15720 complaint (&symfile_complaints,
15721 _("file index out of range"));
15722 else if (file_index > 0)
15723 {
15724 struct file_entry *fe;
15725
15726 fe = &cu->line_header->file_names[file_index - 1];
15727 SYMBOL_SYMTAB (sym) = fe->symtab;
15728 }
15729 }
15730
15731 switch (die->tag)
15732 {
15733 case DW_TAG_label:
15734 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15735 if (attr)
15736 {
15737 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15738 }
15739 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15740 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15741 SYMBOL_CLASS (sym) = LOC_LABEL;
15742 add_symbol_to_list (sym, cu->list_in_scope);
15743 break;
15744 case DW_TAG_subprogram:
15745 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15746 finish_block. */
15747 SYMBOL_CLASS (sym) = LOC_BLOCK;
15748 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15749 if ((attr2 && (DW_UNSND (attr2) != 0))
15750 || cu->language == language_ada)
15751 {
15752 /* Subprograms marked external are stored as a global symbol.
15753 Ada subprograms, whether marked external or not, are always
15754 stored as a global symbol, because we want to be able to
15755 access them globally. For instance, we want to be able
15756 to break on a nested subprogram without having to
15757 specify the context. */
15758 list_to_add = &global_symbols;
15759 }
15760 else
15761 {
15762 list_to_add = cu->list_in_scope;
15763 }
15764 break;
15765 case DW_TAG_inlined_subroutine:
15766 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15767 finish_block. */
15768 SYMBOL_CLASS (sym) = LOC_BLOCK;
15769 SYMBOL_INLINED (sym) = 1;
15770 list_to_add = cu->list_in_scope;
15771 break;
15772 case DW_TAG_template_value_param:
15773 suppress_add = 1;
15774 /* Fall through. */
15775 case DW_TAG_constant:
15776 case DW_TAG_variable:
15777 case DW_TAG_member:
15778 /* Compilation with minimal debug info may result in
15779 variables with missing type entries. Change the
15780 misleading `void' type to something sensible. */
15781 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15782 SYMBOL_TYPE (sym)
15783 = objfile_type (objfile)->nodebug_data_symbol;
15784
15785 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15786 /* In the case of DW_TAG_member, we should only be called for
15787 static const members. */
15788 if (die->tag == DW_TAG_member)
15789 {
15790 /* dwarf2_add_field uses die_is_declaration,
15791 so we do the same. */
15792 gdb_assert (die_is_declaration (die, cu));
15793 gdb_assert (attr);
15794 }
15795 if (attr)
15796 {
15797 dwarf2_const_value (attr, sym, cu);
15798 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15799 if (!suppress_add)
15800 {
15801 if (attr2 && (DW_UNSND (attr2) != 0))
15802 list_to_add = &global_symbols;
15803 else
15804 list_to_add = cu->list_in_scope;
15805 }
15806 break;
15807 }
15808 attr = dwarf2_attr (die, DW_AT_location, cu);
15809 if (attr)
15810 {
15811 var_decode_location (attr, sym, cu);
15812 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15813
15814 /* Fortran explicitly imports any global symbols to the local
15815 scope by DW_TAG_common_block. */
15816 if (cu->language == language_fortran && die->parent
15817 && die->parent->tag == DW_TAG_common_block)
15818 attr2 = NULL;
15819
15820 if (SYMBOL_CLASS (sym) == LOC_STATIC
15821 && SYMBOL_VALUE_ADDRESS (sym) == 0
15822 && !dwarf2_per_objfile->has_section_at_zero)
15823 {
15824 /* When a static variable is eliminated by the linker,
15825 the corresponding debug information is not stripped
15826 out, but the variable address is set to null;
15827 do not add such variables into symbol table. */
15828 }
15829 else if (attr2 && (DW_UNSND (attr2) != 0))
15830 {
15831 /* Workaround gfortran PR debug/40040 - it uses
15832 DW_AT_location for variables in -fPIC libraries which may
15833 get overriden by other libraries/executable and get
15834 a different address. Resolve it by the minimal symbol
15835 which may come from inferior's executable using copy
15836 relocation. Make this workaround only for gfortran as for
15837 other compilers GDB cannot guess the minimal symbol
15838 Fortran mangling kind. */
15839 if (cu->language == language_fortran && die->parent
15840 && die->parent->tag == DW_TAG_module
15841 && cu->producer
15842 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15843 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15844
15845 /* A variable with DW_AT_external is never static,
15846 but it may be block-scoped. */
15847 list_to_add = (cu->list_in_scope == &file_symbols
15848 ? &global_symbols : cu->list_in_scope);
15849 }
15850 else
15851 list_to_add = cu->list_in_scope;
15852 }
15853 else
15854 {
15855 /* We do not know the address of this symbol.
15856 If it is an external symbol and we have type information
15857 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15858 The address of the variable will then be determined from
15859 the minimal symbol table whenever the variable is
15860 referenced. */
15861 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15862
15863 /* Fortran explicitly imports any global symbols to the local
15864 scope by DW_TAG_common_block. */
15865 if (cu->language == language_fortran && die->parent
15866 && die->parent->tag == DW_TAG_common_block)
15867 {
15868 /* SYMBOL_CLASS doesn't matter here because
15869 read_common_block is going to reset it. */
15870 if (!suppress_add)
15871 list_to_add = cu->list_in_scope;
15872 }
15873 else if (attr2 && (DW_UNSND (attr2) != 0)
15874 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15875 {
15876 /* A variable with DW_AT_external is never static, but it
15877 may be block-scoped. */
15878 list_to_add = (cu->list_in_scope == &file_symbols
15879 ? &global_symbols : cu->list_in_scope);
15880
15881 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15882 }
15883 else if (!die_is_declaration (die, cu))
15884 {
15885 /* Use the default LOC_OPTIMIZED_OUT class. */
15886 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15887 if (!suppress_add)
15888 list_to_add = cu->list_in_scope;
15889 }
15890 }
15891 break;
15892 case DW_TAG_formal_parameter:
15893 /* If we are inside a function, mark this as an argument. If
15894 not, we might be looking at an argument to an inlined function
15895 when we do not have enough information to show inlined frames;
15896 pretend it's a local variable in that case so that the user can
15897 still see it. */
15898 if (context_stack_depth > 0
15899 && context_stack[context_stack_depth - 1].name != NULL)
15900 SYMBOL_IS_ARGUMENT (sym) = 1;
15901 attr = dwarf2_attr (die, DW_AT_location, cu);
15902 if (attr)
15903 {
15904 var_decode_location (attr, sym, cu);
15905 }
15906 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15907 if (attr)
15908 {
15909 dwarf2_const_value (attr, sym, cu);
15910 }
15911
15912 list_to_add = cu->list_in_scope;
15913 break;
15914 case DW_TAG_unspecified_parameters:
15915 /* From varargs functions; gdb doesn't seem to have any
15916 interest in this information, so just ignore it for now.
15917 (FIXME?) */
15918 break;
15919 case DW_TAG_template_type_param:
15920 suppress_add = 1;
15921 /* Fall through. */
15922 case DW_TAG_class_type:
15923 case DW_TAG_interface_type:
15924 case DW_TAG_structure_type:
15925 case DW_TAG_union_type:
15926 case DW_TAG_set_type:
15927 case DW_TAG_enumeration_type:
15928 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15929 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15930
15931 {
15932 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15933 really ever be static objects: otherwise, if you try
15934 to, say, break of a class's method and you're in a file
15935 which doesn't mention that class, it won't work unless
15936 the check for all static symbols in lookup_symbol_aux
15937 saves you. See the OtherFileClass tests in
15938 gdb.c++/namespace.exp. */
15939
15940 if (!suppress_add)
15941 {
15942 list_to_add = (cu->list_in_scope == &file_symbols
15943 && (cu->language == language_cplus
15944 || cu->language == language_java)
15945 ? &global_symbols : cu->list_in_scope);
15946
15947 /* The semantics of C++ state that "struct foo {
15948 ... }" also defines a typedef for "foo". A Java
15949 class declaration also defines a typedef for the
15950 class. */
15951 if (cu->language == language_cplus
15952 || cu->language == language_java
15953 || cu->language == language_ada)
15954 {
15955 /* The symbol's name is already allocated along
15956 with this objfile, so we don't need to
15957 duplicate it for the type. */
15958 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15959 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15960 }
15961 }
15962 }
15963 break;
15964 case DW_TAG_typedef:
15965 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15966 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15967 list_to_add = cu->list_in_scope;
15968 break;
15969 case DW_TAG_base_type:
15970 case DW_TAG_subrange_type:
15971 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15972 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15973 list_to_add = cu->list_in_scope;
15974 break;
15975 case DW_TAG_enumerator:
15976 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15977 if (attr)
15978 {
15979 dwarf2_const_value (attr, sym, cu);
15980 }
15981 {
15982 /* NOTE: carlton/2003-11-10: See comment above in the
15983 DW_TAG_class_type, etc. block. */
15984
15985 list_to_add = (cu->list_in_scope == &file_symbols
15986 && (cu->language == language_cplus
15987 || cu->language == language_java)
15988 ? &global_symbols : cu->list_in_scope);
15989 }
15990 break;
15991 case DW_TAG_namespace:
15992 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15993 list_to_add = &global_symbols;
15994 break;
15995 case DW_TAG_common_block:
15996 SYMBOL_CLASS (sym) = LOC_STATIC;
15997 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15998 add_symbol_to_list (sym, cu->list_in_scope);
15999 break;
16000 default:
16001 /* Not a tag we recognize. Hopefully we aren't processing
16002 trash data, but since we must specifically ignore things
16003 we don't recognize, there is nothing else we should do at
16004 this point. */
16005 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16006 dwarf_tag_name (die->tag));
16007 break;
16008 }
16009
16010 if (suppress_add)
16011 {
16012 sym->hash_next = objfile->template_symbols;
16013 objfile->template_symbols = sym;
16014 list_to_add = NULL;
16015 }
16016
16017 if (list_to_add != NULL)
16018 add_symbol_to_list (sym, list_to_add);
16019
16020 /* For the benefit of old versions of GCC, check for anonymous
16021 namespaces based on the demangled name. */
16022 if (!processing_has_namespace_info
16023 && cu->language == language_cplus)
16024 cp_scan_for_anonymous_namespaces (sym, objfile);
16025 }
16026 return (sym);
16027 }
16028
16029 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16030
16031 static struct symbol *
16032 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16033 {
16034 return new_symbol_full (die, type, cu, NULL);
16035 }
16036
16037 /* Given an attr with a DW_FORM_dataN value in host byte order,
16038 zero-extend it as appropriate for the symbol's type. The DWARF
16039 standard (v4) is not entirely clear about the meaning of using
16040 DW_FORM_dataN for a constant with a signed type, where the type is
16041 wider than the data. The conclusion of a discussion on the DWARF
16042 list was that this is unspecified. We choose to always zero-extend
16043 because that is the interpretation long in use by GCC. */
16044
16045 static gdb_byte *
16046 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16047 const char *name, struct obstack *obstack,
16048 struct dwarf2_cu *cu, LONGEST *value, int bits)
16049 {
16050 struct objfile *objfile = cu->objfile;
16051 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16052 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16053 LONGEST l = DW_UNSND (attr);
16054
16055 if (bits < sizeof (*value) * 8)
16056 {
16057 l &= ((LONGEST) 1 << bits) - 1;
16058 *value = l;
16059 }
16060 else if (bits == sizeof (*value) * 8)
16061 *value = l;
16062 else
16063 {
16064 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16065 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16066 return bytes;
16067 }
16068
16069 return NULL;
16070 }
16071
16072 /* Read a constant value from an attribute. Either set *VALUE, or if
16073 the value does not fit in *VALUE, set *BYTES - either already
16074 allocated on the objfile obstack, or newly allocated on OBSTACK,
16075 or, set *BATON, if we translated the constant to a location
16076 expression. */
16077
16078 static void
16079 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16080 const char *name, struct obstack *obstack,
16081 struct dwarf2_cu *cu,
16082 LONGEST *value, gdb_byte **bytes,
16083 struct dwarf2_locexpr_baton **baton)
16084 {
16085 struct objfile *objfile = cu->objfile;
16086 struct comp_unit_head *cu_header = &cu->header;
16087 struct dwarf_block *blk;
16088 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16089 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16090
16091 *value = 0;
16092 *bytes = NULL;
16093 *baton = NULL;
16094
16095 switch (attr->form)
16096 {
16097 case DW_FORM_addr:
16098 case DW_FORM_GNU_addr_index:
16099 {
16100 gdb_byte *data;
16101
16102 if (TYPE_LENGTH (type) != cu_header->addr_size)
16103 dwarf2_const_value_length_mismatch_complaint (name,
16104 cu_header->addr_size,
16105 TYPE_LENGTH (type));
16106 /* Symbols of this form are reasonably rare, so we just
16107 piggyback on the existing location code rather than writing
16108 a new implementation of symbol_computed_ops. */
16109 *baton = obstack_alloc (&objfile->objfile_obstack,
16110 sizeof (struct dwarf2_locexpr_baton));
16111 (*baton)->per_cu = cu->per_cu;
16112 gdb_assert ((*baton)->per_cu);
16113
16114 (*baton)->size = 2 + cu_header->addr_size;
16115 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16116 (*baton)->data = data;
16117
16118 data[0] = DW_OP_addr;
16119 store_unsigned_integer (&data[1], cu_header->addr_size,
16120 byte_order, DW_ADDR (attr));
16121 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16122 }
16123 break;
16124 case DW_FORM_string:
16125 case DW_FORM_strp:
16126 case DW_FORM_GNU_str_index:
16127 case DW_FORM_GNU_strp_alt:
16128 /* DW_STRING is already allocated on the objfile obstack, point
16129 directly to it. */
16130 *bytes = (gdb_byte *) DW_STRING (attr);
16131 break;
16132 case DW_FORM_block1:
16133 case DW_FORM_block2:
16134 case DW_FORM_block4:
16135 case DW_FORM_block:
16136 case DW_FORM_exprloc:
16137 blk = DW_BLOCK (attr);
16138 if (TYPE_LENGTH (type) != blk->size)
16139 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16140 TYPE_LENGTH (type));
16141 *bytes = blk->data;
16142 break;
16143
16144 /* The DW_AT_const_value attributes are supposed to carry the
16145 symbol's value "represented as it would be on the target
16146 architecture." By the time we get here, it's already been
16147 converted to host endianness, so we just need to sign- or
16148 zero-extend it as appropriate. */
16149 case DW_FORM_data1:
16150 *bytes = dwarf2_const_value_data (attr, type, name,
16151 obstack, cu, value, 8);
16152 break;
16153 case DW_FORM_data2:
16154 *bytes = dwarf2_const_value_data (attr, type, name,
16155 obstack, cu, value, 16);
16156 break;
16157 case DW_FORM_data4:
16158 *bytes = dwarf2_const_value_data (attr, type, name,
16159 obstack, cu, value, 32);
16160 break;
16161 case DW_FORM_data8:
16162 *bytes = dwarf2_const_value_data (attr, type, name,
16163 obstack, cu, value, 64);
16164 break;
16165
16166 case DW_FORM_sdata:
16167 *value = DW_SND (attr);
16168 break;
16169
16170 case DW_FORM_udata:
16171 *value = DW_UNSND (attr);
16172 break;
16173
16174 default:
16175 complaint (&symfile_complaints,
16176 _("unsupported const value attribute form: '%s'"),
16177 dwarf_form_name (attr->form));
16178 *value = 0;
16179 break;
16180 }
16181 }
16182
16183
16184 /* Copy constant value from an attribute to a symbol. */
16185
16186 static void
16187 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16188 struct dwarf2_cu *cu)
16189 {
16190 struct objfile *objfile = cu->objfile;
16191 struct comp_unit_head *cu_header = &cu->header;
16192 LONGEST value;
16193 gdb_byte *bytes;
16194 struct dwarf2_locexpr_baton *baton;
16195
16196 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16197 SYMBOL_PRINT_NAME (sym),
16198 &objfile->objfile_obstack, cu,
16199 &value, &bytes, &baton);
16200
16201 if (baton != NULL)
16202 {
16203 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16204 SYMBOL_LOCATION_BATON (sym) = baton;
16205 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16206 }
16207 else if (bytes != NULL)
16208 {
16209 SYMBOL_VALUE_BYTES (sym) = bytes;
16210 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16211 }
16212 else
16213 {
16214 SYMBOL_VALUE (sym) = value;
16215 SYMBOL_CLASS (sym) = LOC_CONST;
16216 }
16217 }
16218
16219 /* Return the type of the die in question using its DW_AT_type attribute. */
16220
16221 static struct type *
16222 die_type (struct die_info *die, struct dwarf2_cu *cu)
16223 {
16224 struct attribute *type_attr;
16225
16226 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16227 if (!type_attr)
16228 {
16229 /* A missing DW_AT_type represents a void type. */
16230 return objfile_type (cu->objfile)->builtin_void;
16231 }
16232
16233 return lookup_die_type (die, type_attr, cu);
16234 }
16235
16236 /* True iff CU's producer generates GNAT Ada auxiliary information
16237 that allows to find parallel types through that information instead
16238 of having to do expensive parallel lookups by type name. */
16239
16240 static int
16241 need_gnat_info (struct dwarf2_cu *cu)
16242 {
16243 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16244 of GNAT produces this auxiliary information, without any indication
16245 that it is produced. Part of enhancing the FSF version of GNAT
16246 to produce that information will be to put in place an indicator
16247 that we can use in order to determine whether the descriptive type
16248 info is available or not. One suggestion that has been made is
16249 to use a new attribute, attached to the CU die. For now, assume
16250 that the descriptive type info is not available. */
16251 return 0;
16252 }
16253
16254 /* Return the auxiliary type of the die in question using its
16255 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16256 attribute is not present. */
16257
16258 static struct type *
16259 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16260 {
16261 struct attribute *type_attr;
16262
16263 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16264 if (!type_attr)
16265 return NULL;
16266
16267 return lookup_die_type (die, type_attr, cu);
16268 }
16269
16270 /* If DIE has a descriptive_type attribute, then set the TYPE's
16271 descriptive type accordingly. */
16272
16273 static void
16274 set_descriptive_type (struct type *type, struct die_info *die,
16275 struct dwarf2_cu *cu)
16276 {
16277 struct type *descriptive_type = die_descriptive_type (die, cu);
16278
16279 if (descriptive_type)
16280 {
16281 ALLOCATE_GNAT_AUX_TYPE (type);
16282 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16283 }
16284 }
16285
16286 /* Return the containing type of the die in question using its
16287 DW_AT_containing_type attribute. */
16288
16289 static struct type *
16290 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16291 {
16292 struct attribute *type_attr;
16293
16294 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16295 if (!type_attr)
16296 error (_("Dwarf Error: Problem turning containing type into gdb type "
16297 "[in module %s]"), cu->objfile->name);
16298
16299 return lookup_die_type (die, type_attr, cu);
16300 }
16301
16302 /* Look up the type of DIE in CU using its type attribute ATTR.
16303 If there is no type substitute an error marker. */
16304
16305 static struct type *
16306 lookup_die_type (struct die_info *die, struct attribute *attr,
16307 struct dwarf2_cu *cu)
16308 {
16309 struct objfile *objfile = cu->objfile;
16310 struct type *this_type;
16311
16312 /* First see if we have it cached. */
16313
16314 if (attr->form == DW_FORM_GNU_ref_alt)
16315 {
16316 struct dwarf2_per_cu_data *per_cu;
16317 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16318
16319 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16320 this_type = get_die_type_at_offset (offset, per_cu);
16321 }
16322 else if (is_ref_attr (attr))
16323 {
16324 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16325
16326 this_type = get_die_type_at_offset (offset, cu->per_cu);
16327 }
16328 else if (attr->form == DW_FORM_ref_sig8)
16329 {
16330 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16331
16332 /* sig_type will be NULL if the signatured type is missing from
16333 the debug info. */
16334 if (sig_type == NULL)
16335 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16336 "at 0x%x [in module %s]"),
16337 die->offset.sect_off, objfile->name);
16338
16339 gdb_assert (sig_type->per_cu.is_debug_types);
16340 /* If we haven't filled in type_offset_in_section yet, then we
16341 haven't read the type in yet. */
16342 this_type = NULL;
16343 if (sig_type->type_offset_in_section.sect_off != 0)
16344 {
16345 this_type =
16346 get_die_type_at_offset (sig_type->type_offset_in_section,
16347 &sig_type->per_cu);
16348 }
16349 }
16350 else
16351 {
16352 dump_die_for_error (die);
16353 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16354 dwarf_attr_name (attr->name), objfile->name);
16355 }
16356
16357 /* If not cached we need to read it in. */
16358
16359 if (this_type == NULL)
16360 {
16361 struct die_info *type_die;
16362 struct dwarf2_cu *type_cu = cu;
16363
16364 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16365 /* If we found the type now, it's probably because the type came
16366 from an inter-CU reference and the type's CU got expanded before
16367 ours. */
16368 this_type = get_die_type (type_die, type_cu);
16369 if (this_type == NULL)
16370 this_type = read_type_die_1 (type_die, type_cu);
16371 }
16372
16373 /* If we still don't have a type use an error marker. */
16374
16375 if (this_type == NULL)
16376 {
16377 char *message, *saved;
16378
16379 /* read_type_die already issued a complaint. */
16380 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16381 objfile->name,
16382 cu->header.offset.sect_off,
16383 die->offset.sect_off);
16384 saved = obstack_copy0 (&objfile->objfile_obstack,
16385 message, strlen (message));
16386 xfree (message);
16387
16388 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16389 }
16390
16391 return this_type;
16392 }
16393
16394 /* Return the type in DIE, CU.
16395 Returns NULL for invalid types.
16396
16397 This first does a lookup in the appropriate type_hash table,
16398 and only reads the die in if necessary.
16399
16400 NOTE: This can be called when reading in partial or full symbols. */
16401
16402 static struct type *
16403 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16404 {
16405 struct type *this_type;
16406
16407 this_type = get_die_type (die, cu);
16408 if (this_type)
16409 return this_type;
16410
16411 return read_type_die_1 (die, cu);
16412 }
16413
16414 /* Read the type in DIE, CU.
16415 Returns NULL for invalid types. */
16416
16417 static struct type *
16418 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16419 {
16420 struct type *this_type = NULL;
16421
16422 switch (die->tag)
16423 {
16424 case DW_TAG_class_type:
16425 case DW_TAG_interface_type:
16426 case DW_TAG_structure_type:
16427 case DW_TAG_union_type:
16428 this_type = read_structure_type (die, cu);
16429 break;
16430 case DW_TAG_enumeration_type:
16431 this_type = read_enumeration_type (die, cu);
16432 break;
16433 case DW_TAG_subprogram:
16434 case DW_TAG_subroutine_type:
16435 case DW_TAG_inlined_subroutine:
16436 this_type = read_subroutine_type (die, cu);
16437 break;
16438 case DW_TAG_array_type:
16439 this_type = read_array_type (die, cu);
16440 break;
16441 case DW_TAG_set_type:
16442 this_type = read_set_type (die, cu);
16443 break;
16444 case DW_TAG_pointer_type:
16445 this_type = read_tag_pointer_type (die, cu);
16446 break;
16447 case DW_TAG_ptr_to_member_type:
16448 this_type = read_tag_ptr_to_member_type (die, cu);
16449 break;
16450 case DW_TAG_reference_type:
16451 this_type = read_tag_reference_type (die, cu);
16452 break;
16453 case DW_TAG_const_type:
16454 this_type = read_tag_const_type (die, cu);
16455 break;
16456 case DW_TAG_volatile_type:
16457 this_type = read_tag_volatile_type (die, cu);
16458 break;
16459 case DW_TAG_string_type:
16460 this_type = read_tag_string_type (die, cu);
16461 break;
16462 case DW_TAG_typedef:
16463 this_type = read_typedef (die, cu);
16464 break;
16465 case DW_TAG_subrange_type:
16466 this_type = read_subrange_type (die, cu);
16467 break;
16468 case DW_TAG_base_type:
16469 this_type = read_base_type (die, cu);
16470 break;
16471 case DW_TAG_unspecified_type:
16472 this_type = read_unspecified_type (die, cu);
16473 break;
16474 case DW_TAG_namespace:
16475 this_type = read_namespace_type (die, cu);
16476 break;
16477 case DW_TAG_module:
16478 this_type = read_module_type (die, cu);
16479 break;
16480 default:
16481 complaint (&symfile_complaints,
16482 _("unexpected tag in read_type_die: '%s'"),
16483 dwarf_tag_name (die->tag));
16484 break;
16485 }
16486
16487 return this_type;
16488 }
16489
16490 /* See if we can figure out if the class lives in a namespace. We do
16491 this by looking for a member function; its demangled name will
16492 contain namespace info, if there is any.
16493 Return the computed name or NULL.
16494 Space for the result is allocated on the objfile's obstack.
16495 This is the full-die version of guess_partial_die_structure_name.
16496 In this case we know DIE has no useful parent. */
16497
16498 static char *
16499 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16500 {
16501 struct die_info *spec_die;
16502 struct dwarf2_cu *spec_cu;
16503 struct die_info *child;
16504
16505 spec_cu = cu;
16506 spec_die = die_specification (die, &spec_cu);
16507 if (spec_die != NULL)
16508 {
16509 die = spec_die;
16510 cu = spec_cu;
16511 }
16512
16513 for (child = die->child;
16514 child != NULL;
16515 child = child->sibling)
16516 {
16517 if (child->tag == DW_TAG_subprogram)
16518 {
16519 struct attribute *attr;
16520
16521 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16522 if (attr == NULL)
16523 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16524 if (attr != NULL)
16525 {
16526 char *actual_name
16527 = language_class_name_from_physname (cu->language_defn,
16528 DW_STRING (attr));
16529 char *name = NULL;
16530
16531 if (actual_name != NULL)
16532 {
16533 char *die_name = dwarf2_name (die, cu);
16534
16535 if (die_name != NULL
16536 && strcmp (die_name, actual_name) != 0)
16537 {
16538 /* Strip off the class name from the full name.
16539 We want the prefix. */
16540 int die_name_len = strlen (die_name);
16541 int actual_name_len = strlen (actual_name);
16542
16543 /* Test for '::' as a sanity check. */
16544 if (actual_name_len > die_name_len + 2
16545 && actual_name[actual_name_len
16546 - die_name_len - 1] == ':')
16547 name =
16548 obsavestring (actual_name,
16549 actual_name_len - die_name_len - 2,
16550 &cu->objfile->objfile_obstack);
16551 }
16552 }
16553 xfree (actual_name);
16554 return name;
16555 }
16556 }
16557 }
16558
16559 return NULL;
16560 }
16561
16562 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16563 prefix part in such case. See
16564 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16565
16566 static char *
16567 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16568 {
16569 struct attribute *attr;
16570 char *base;
16571
16572 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16573 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16574 return NULL;
16575
16576 attr = dwarf2_attr (die, DW_AT_name, cu);
16577 if (attr != NULL && DW_STRING (attr) != NULL)
16578 return NULL;
16579
16580 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16581 if (attr == NULL)
16582 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16583 if (attr == NULL || DW_STRING (attr) == NULL)
16584 return NULL;
16585
16586 /* dwarf2_name had to be already called. */
16587 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16588
16589 /* Strip the base name, keep any leading namespaces/classes. */
16590 base = strrchr (DW_STRING (attr), ':');
16591 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16592 return "";
16593
16594 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16595 &cu->objfile->objfile_obstack);
16596 }
16597
16598 /* Return the name of the namespace/class that DIE is defined within,
16599 or "" if we can't tell. The caller should not xfree the result.
16600
16601 For example, if we're within the method foo() in the following
16602 code:
16603
16604 namespace N {
16605 class C {
16606 void foo () {
16607 }
16608 };
16609 }
16610
16611 then determine_prefix on foo's die will return "N::C". */
16612
16613 static const char *
16614 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16615 {
16616 struct die_info *parent, *spec_die;
16617 struct dwarf2_cu *spec_cu;
16618 struct type *parent_type;
16619 char *retval;
16620
16621 if (cu->language != language_cplus && cu->language != language_java
16622 && cu->language != language_fortran)
16623 return "";
16624
16625 retval = anonymous_struct_prefix (die, cu);
16626 if (retval)
16627 return retval;
16628
16629 /* We have to be careful in the presence of DW_AT_specification.
16630 For example, with GCC 3.4, given the code
16631
16632 namespace N {
16633 void foo() {
16634 // Definition of N::foo.
16635 }
16636 }
16637
16638 then we'll have a tree of DIEs like this:
16639
16640 1: DW_TAG_compile_unit
16641 2: DW_TAG_namespace // N
16642 3: DW_TAG_subprogram // declaration of N::foo
16643 4: DW_TAG_subprogram // definition of N::foo
16644 DW_AT_specification // refers to die #3
16645
16646 Thus, when processing die #4, we have to pretend that we're in
16647 the context of its DW_AT_specification, namely the contex of die
16648 #3. */
16649 spec_cu = cu;
16650 spec_die = die_specification (die, &spec_cu);
16651 if (spec_die == NULL)
16652 parent = die->parent;
16653 else
16654 {
16655 parent = spec_die->parent;
16656 cu = spec_cu;
16657 }
16658
16659 if (parent == NULL)
16660 return "";
16661 else if (parent->building_fullname)
16662 {
16663 const char *name;
16664 const char *parent_name;
16665
16666 /* It has been seen on RealView 2.2 built binaries,
16667 DW_TAG_template_type_param types actually _defined_ as
16668 children of the parent class:
16669
16670 enum E {};
16671 template class <class Enum> Class{};
16672 Class<enum E> class_e;
16673
16674 1: DW_TAG_class_type (Class)
16675 2: DW_TAG_enumeration_type (E)
16676 3: DW_TAG_enumerator (enum1:0)
16677 3: DW_TAG_enumerator (enum2:1)
16678 ...
16679 2: DW_TAG_template_type_param
16680 DW_AT_type DW_FORM_ref_udata (E)
16681
16682 Besides being broken debug info, it can put GDB into an
16683 infinite loop. Consider:
16684
16685 When we're building the full name for Class<E>, we'll start
16686 at Class, and go look over its template type parameters,
16687 finding E. We'll then try to build the full name of E, and
16688 reach here. We're now trying to build the full name of E,
16689 and look over the parent DIE for containing scope. In the
16690 broken case, if we followed the parent DIE of E, we'd again
16691 find Class, and once again go look at its template type
16692 arguments, etc., etc. Simply don't consider such parent die
16693 as source-level parent of this die (it can't be, the language
16694 doesn't allow it), and break the loop here. */
16695 name = dwarf2_name (die, cu);
16696 parent_name = dwarf2_name (parent, cu);
16697 complaint (&symfile_complaints,
16698 _("template param type '%s' defined within parent '%s'"),
16699 name ? name : "<unknown>",
16700 parent_name ? parent_name : "<unknown>");
16701 return "";
16702 }
16703 else
16704 switch (parent->tag)
16705 {
16706 case DW_TAG_namespace:
16707 parent_type = read_type_die (parent, cu);
16708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16710 Work around this problem here. */
16711 if (cu->language == language_cplus
16712 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16713 return "";
16714 /* We give a name to even anonymous namespaces. */
16715 return TYPE_TAG_NAME (parent_type);
16716 case DW_TAG_class_type:
16717 case DW_TAG_interface_type:
16718 case DW_TAG_structure_type:
16719 case DW_TAG_union_type:
16720 case DW_TAG_module:
16721 parent_type = read_type_die (parent, cu);
16722 if (TYPE_TAG_NAME (parent_type) != NULL)
16723 return TYPE_TAG_NAME (parent_type);
16724 else
16725 /* An anonymous structure is only allowed non-static data
16726 members; no typedefs, no member functions, et cetera.
16727 So it does not need a prefix. */
16728 return "";
16729 case DW_TAG_compile_unit:
16730 case DW_TAG_partial_unit:
16731 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16732 if (cu->language == language_cplus
16733 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16734 && die->child != NULL
16735 && (die->tag == DW_TAG_class_type
16736 || die->tag == DW_TAG_structure_type
16737 || die->tag == DW_TAG_union_type))
16738 {
16739 char *name = guess_full_die_structure_name (die, cu);
16740 if (name != NULL)
16741 return name;
16742 }
16743 return "";
16744 default:
16745 return determine_prefix (parent, cu);
16746 }
16747 }
16748
16749 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16750 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16751 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16752 an obconcat, otherwise allocate storage for the result. The CU argument is
16753 used to determine the language and hence, the appropriate separator. */
16754
16755 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16756
16757 static char *
16758 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16759 int physname, struct dwarf2_cu *cu)
16760 {
16761 const char *lead = "";
16762 const char *sep;
16763
16764 if (suffix == NULL || suffix[0] == '\0'
16765 || prefix == NULL || prefix[0] == '\0')
16766 sep = "";
16767 else if (cu->language == language_java)
16768 sep = ".";
16769 else if (cu->language == language_fortran && physname)
16770 {
16771 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16772 DW_AT_MIPS_linkage_name is preferred and used instead. */
16773
16774 lead = "__";
16775 sep = "_MOD_";
16776 }
16777 else
16778 sep = "::";
16779
16780 if (prefix == NULL)
16781 prefix = "";
16782 if (suffix == NULL)
16783 suffix = "";
16784
16785 if (obs == NULL)
16786 {
16787 char *retval
16788 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16789
16790 strcpy (retval, lead);
16791 strcat (retval, prefix);
16792 strcat (retval, sep);
16793 strcat (retval, suffix);
16794 return retval;
16795 }
16796 else
16797 {
16798 /* We have an obstack. */
16799 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16800 }
16801 }
16802
16803 /* Return sibling of die, NULL if no sibling. */
16804
16805 static struct die_info *
16806 sibling_die (struct die_info *die)
16807 {
16808 return die->sibling;
16809 }
16810
16811 /* Get name of a die, return NULL if not found. */
16812
16813 static char *
16814 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16815 struct obstack *obstack)
16816 {
16817 if (name && cu->language == language_cplus)
16818 {
16819 char *canon_name = cp_canonicalize_string (name);
16820
16821 if (canon_name != NULL)
16822 {
16823 if (strcmp (canon_name, name) != 0)
16824 name = obsavestring (canon_name, strlen (canon_name),
16825 obstack);
16826 xfree (canon_name);
16827 }
16828 }
16829
16830 return name;
16831 }
16832
16833 /* Get name of a die, return NULL if not found. */
16834
16835 static char *
16836 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16837 {
16838 struct attribute *attr;
16839
16840 attr = dwarf2_attr (die, DW_AT_name, cu);
16841 if ((!attr || !DW_STRING (attr))
16842 && die->tag != DW_TAG_class_type
16843 && die->tag != DW_TAG_interface_type
16844 && die->tag != DW_TAG_structure_type
16845 && die->tag != DW_TAG_union_type)
16846 return NULL;
16847
16848 switch (die->tag)
16849 {
16850 case DW_TAG_compile_unit:
16851 case DW_TAG_partial_unit:
16852 /* Compilation units have a DW_AT_name that is a filename, not
16853 a source language identifier. */
16854 case DW_TAG_enumeration_type:
16855 case DW_TAG_enumerator:
16856 /* These tags always have simple identifiers already; no need
16857 to canonicalize them. */
16858 return DW_STRING (attr);
16859
16860 case DW_TAG_subprogram:
16861 /* Java constructors will all be named "<init>", so return
16862 the class name when we see this special case. */
16863 if (cu->language == language_java
16864 && DW_STRING (attr) != NULL
16865 && strcmp (DW_STRING (attr), "<init>") == 0)
16866 {
16867 struct dwarf2_cu *spec_cu = cu;
16868 struct die_info *spec_die;
16869
16870 /* GCJ will output '<init>' for Java constructor names.
16871 For this special case, return the name of the parent class. */
16872
16873 /* GCJ may output suprogram DIEs with AT_specification set.
16874 If so, use the name of the specified DIE. */
16875 spec_die = die_specification (die, &spec_cu);
16876 if (spec_die != NULL)
16877 return dwarf2_name (spec_die, spec_cu);
16878
16879 do
16880 {
16881 die = die->parent;
16882 if (die->tag == DW_TAG_class_type)
16883 return dwarf2_name (die, cu);
16884 }
16885 while (die->tag != DW_TAG_compile_unit
16886 && die->tag != DW_TAG_partial_unit);
16887 }
16888 break;
16889
16890 case DW_TAG_class_type:
16891 case DW_TAG_interface_type:
16892 case DW_TAG_structure_type:
16893 case DW_TAG_union_type:
16894 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16895 structures or unions. These were of the form "._%d" in GCC 4.1,
16896 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16897 and GCC 4.4. We work around this problem by ignoring these. */
16898 if (attr && DW_STRING (attr)
16899 && (strncmp (DW_STRING (attr), "._", 2) == 0
16900 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16901 return NULL;
16902
16903 /* GCC might emit a nameless typedef that has a linkage name. See
16904 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16905 if (!attr || DW_STRING (attr) == NULL)
16906 {
16907 char *demangled = NULL;
16908
16909 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16910 if (attr == NULL)
16911 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16912
16913 if (attr == NULL || DW_STRING (attr) == NULL)
16914 return NULL;
16915
16916 /* Avoid demangling DW_STRING (attr) the second time on a second
16917 call for the same DIE. */
16918 if (!DW_STRING_IS_CANONICAL (attr))
16919 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16920
16921 if (demangled)
16922 {
16923 char *base;
16924
16925 /* FIXME: we already did this for the partial symbol... */
16926 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16927 &cu->objfile->objfile_obstack);
16928 DW_STRING_IS_CANONICAL (attr) = 1;
16929 xfree (demangled);
16930
16931 /* Strip any leading namespaces/classes, keep only the base name.
16932 DW_AT_name for named DIEs does not contain the prefixes. */
16933 base = strrchr (DW_STRING (attr), ':');
16934 if (base && base > DW_STRING (attr) && base[-1] == ':')
16935 return &base[1];
16936 else
16937 return DW_STRING (attr);
16938 }
16939 }
16940 break;
16941
16942 default:
16943 break;
16944 }
16945
16946 if (!DW_STRING_IS_CANONICAL (attr))
16947 {
16948 DW_STRING (attr)
16949 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16950 &cu->objfile->objfile_obstack);
16951 DW_STRING_IS_CANONICAL (attr) = 1;
16952 }
16953 return DW_STRING (attr);
16954 }
16955
16956 /* Return the die that this die in an extension of, or NULL if there
16957 is none. *EXT_CU is the CU containing DIE on input, and the CU
16958 containing the return value on output. */
16959
16960 static struct die_info *
16961 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16962 {
16963 struct attribute *attr;
16964
16965 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16966 if (attr == NULL)
16967 return NULL;
16968
16969 return follow_die_ref (die, attr, ext_cu);
16970 }
16971
16972 /* Convert a DIE tag into its string name. */
16973
16974 static const char *
16975 dwarf_tag_name (unsigned tag)
16976 {
16977 const char *name = get_DW_TAG_name (tag);
16978
16979 if (name == NULL)
16980 return "DW_TAG_<unknown>";
16981
16982 return name;
16983 }
16984
16985 /* Convert a DWARF attribute code into its string name. */
16986
16987 static const char *
16988 dwarf_attr_name (unsigned attr)
16989 {
16990 const char *name;
16991
16992 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16993 if (attr == DW_AT_MIPS_fde)
16994 return "DW_AT_MIPS_fde";
16995 #else
16996 if (attr == DW_AT_HP_block_index)
16997 return "DW_AT_HP_block_index";
16998 #endif
16999
17000 name = get_DW_AT_name (attr);
17001
17002 if (name == NULL)
17003 return "DW_AT_<unknown>";
17004
17005 return name;
17006 }
17007
17008 /* Convert a DWARF value form code into its string name. */
17009
17010 static const char *
17011 dwarf_form_name (unsigned form)
17012 {
17013 const char *name = get_DW_FORM_name (form);
17014
17015 if (name == NULL)
17016 return "DW_FORM_<unknown>";
17017
17018 return name;
17019 }
17020
17021 static char *
17022 dwarf_bool_name (unsigned mybool)
17023 {
17024 if (mybool)
17025 return "TRUE";
17026 else
17027 return "FALSE";
17028 }
17029
17030 /* Convert a DWARF type code into its string name. */
17031
17032 static const char *
17033 dwarf_type_encoding_name (unsigned enc)
17034 {
17035 const char *name = get_DW_ATE_name (enc);
17036
17037 if (name == NULL)
17038 return "DW_ATE_<unknown>";
17039
17040 return name;
17041 }
17042
17043 static void
17044 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17045 {
17046 unsigned int i;
17047
17048 print_spaces (indent, f);
17049 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17050 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17051
17052 if (die->parent != NULL)
17053 {
17054 print_spaces (indent, f);
17055 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17056 die->parent->offset.sect_off);
17057 }
17058
17059 print_spaces (indent, f);
17060 fprintf_unfiltered (f, " has children: %s\n",
17061 dwarf_bool_name (die->child != NULL));
17062
17063 print_spaces (indent, f);
17064 fprintf_unfiltered (f, " attributes:\n");
17065
17066 for (i = 0; i < die->num_attrs; ++i)
17067 {
17068 print_spaces (indent, f);
17069 fprintf_unfiltered (f, " %s (%s) ",
17070 dwarf_attr_name (die->attrs[i].name),
17071 dwarf_form_name (die->attrs[i].form));
17072
17073 switch (die->attrs[i].form)
17074 {
17075 case DW_FORM_addr:
17076 case DW_FORM_GNU_addr_index:
17077 fprintf_unfiltered (f, "address: ");
17078 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17079 break;
17080 case DW_FORM_block2:
17081 case DW_FORM_block4:
17082 case DW_FORM_block:
17083 case DW_FORM_block1:
17084 fprintf_unfiltered (f, "block: size %s",
17085 pulongest (DW_BLOCK (&die->attrs[i])->size));
17086 break;
17087 case DW_FORM_exprloc:
17088 fprintf_unfiltered (f, "expression: size %s",
17089 pulongest (DW_BLOCK (&die->attrs[i])->size));
17090 break;
17091 case DW_FORM_ref_addr:
17092 fprintf_unfiltered (f, "ref address: ");
17093 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17094 break;
17095 case DW_FORM_GNU_ref_alt:
17096 fprintf_unfiltered (f, "alt ref address: ");
17097 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17098 break;
17099 case DW_FORM_ref1:
17100 case DW_FORM_ref2:
17101 case DW_FORM_ref4:
17102 case DW_FORM_ref8:
17103 case DW_FORM_ref_udata:
17104 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17105 (long) (DW_UNSND (&die->attrs[i])));
17106 break;
17107 case DW_FORM_data1:
17108 case DW_FORM_data2:
17109 case DW_FORM_data4:
17110 case DW_FORM_data8:
17111 case DW_FORM_udata:
17112 case DW_FORM_sdata:
17113 fprintf_unfiltered (f, "constant: %s",
17114 pulongest (DW_UNSND (&die->attrs[i])));
17115 break;
17116 case DW_FORM_sec_offset:
17117 fprintf_unfiltered (f, "section offset: %s",
17118 pulongest (DW_UNSND (&die->attrs[i])));
17119 break;
17120 case DW_FORM_ref_sig8:
17121 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17122 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17123 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17124 else
17125 fprintf_unfiltered (f, "signatured type, offset: unknown");
17126 break;
17127 case DW_FORM_string:
17128 case DW_FORM_strp:
17129 case DW_FORM_GNU_str_index:
17130 case DW_FORM_GNU_strp_alt:
17131 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17132 DW_STRING (&die->attrs[i])
17133 ? DW_STRING (&die->attrs[i]) : "",
17134 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17135 break;
17136 case DW_FORM_flag:
17137 if (DW_UNSND (&die->attrs[i]))
17138 fprintf_unfiltered (f, "flag: TRUE");
17139 else
17140 fprintf_unfiltered (f, "flag: FALSE");
17141 break;
17142 case DW_FORM_flag_present:
17143 fprintf_unfiltered (f, "flag: TRUE");
17144 break;
17145 case DW_FORM_indirect:
17146 /* The reader will have reduced the indirect form to
17147 the "base form" so this form should not occur. */
17148 fprintf_unfiltered (f,
17149 "unexpected attribute form: DW_FORM_indirect");
17150 break;
17151 default:
17152 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17153 die->attrs[i].form);
17154 break;
17155 }
17156 fprintf_unfiltered (f, "\n");
17157 }
17158 }
17159
17160 static void
17161 dump_die_for_error (struct die_info *die)
17162 {
17163 dump_die_shallow (gdb_stderr, 0, die);
17164 }
17165
17166 static void
17167 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17168 {
17169 int indent = level * 4;
17170
17171 gdb_assert (die != NULL);
17172
17173 if (level >= max_level)
17174 return;
17175
17176 dump_die_shallow (f, indent, die);
17177
17178 if (die->child != NULL)
17179 {
17180 print_spaces (indent, f);
17181 fprintf_unfiltered (f, " Children:");
17182 if (level + 1 < max_level)
17183 {
17184 fprintf_unfiltered (f, "\n");
17185 dump_die_1 (f, level + 1, max_level, die->child);
17186 }
17187 else
17188 {
17189 fprintf_unfiltered (f,
17190 " [not printed, max nesting level reached]\n");
17191 }
17192 }
17193
17194 if (die->sibling != NULL && level > 0)
17195 {
17196 dump_die_1 (f, level, max_level, die->sibling);
17197 }
17198 }
17199
17200 /* This is called from the pdie macro in gdbinit.in.
17201 It's not static so gcc will keep a copy callable from gdb. */
17202
17203 void
17204 dump_die (struct die_info *die, int max_level)
17205 {
17206 dump_die_1 (gdb_stdlog, 0, max_level, die);
17207 }
17208
17209 static void
17210 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17211 {
17212 void **slot;
17213
17214 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17215 INSERT);
17216
17217 *slot = die;
17218 }
17219
17220 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17221 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17222
17223 static int
17224 is_ref_attr (struct attribute *attr)
17225 {
17226 switch (attr->form)
17227 {
17228 case DW_FORM_ref_addr:
17229 case DW_FORM_ref1:
17230 case DW_FORM_ref2:
17231 case DW_FORM_ref4:
17232 case DW_FORM_ref8:
17233 case DW_FORM_ref_udata:
17234 case DW_FORM_GNU_ref_alt:
17235 return 1;
17236 default:
17237 return 0;
17238 }
17239 }
17240
17241 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17242 required kind. */
17243
17244 static sect_offset
17245 dwarf2_get_ref_die_offset (struct attribute *attr)
17246 {
17247 sect_offset retval = { DW_UNSND (attr) };
17248
17249 if (is_ref_attr (attr))
17250 return retval;
17251
17252 retval.sect_off = 0;
17253 complaint (&symfile_complaints,
17254 _("unsupported die ref attribute form: '%s'"),
17255 dwarf_form_name (attr->form));
17256 return retval;
17257 }
17258
17259 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17260 * the value held by the attribute is not constant. */
17261
17262 static LONGEST
17263 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17264 {
17265 if (attr->form == DW_FORM_sdata)
17266 return DW_SND (attr);
17267 else if (attr->form == DW_FORM_udata
17268 || attr->form == DW_FORM_data1
17269 || attr->form == DW_FORM_data2
17270 || attr->form == DW_FORM_data4
17271 || attr->form == DW_FORM_data8)
17272 return DW_UNSND (attr);
17273 else
17274 {
17275 complaint (&symfile_complaints,
17276 _("Attribute value is not a constant (%s)"),
17277 dwarf_form_name (attr->form));
17278 return default_value;
17279 }
17280 }
17281
17282 /* Follow reference or signature attribute ATTR of SRC_DIE.
17283 On entry *REF_CU is the CU of SRC_DIE.
17284 On exit *REF_CU is the CU of the result. */
17285
17286 static struct die_info *
17287 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17288 struct dwarf2_cu **ref_cu)
17289 {
17290 struct die_info *die;
17291
17292 if (is_ref_attr (attr))
17293 die = follow_die_ref (src_die, attr, ref_cu);
17294 else if (attr->form == DW_FORM_ref_sig8)
17295 die = follow_die_sig (src_die, attr, ref_cu);
17296 else
17297 {
17298 dump_die_for_error (src_die);
17299 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17300 (*ref_cu)->objfile->name);
17301 }
17302
17303 return die;
17304 }
17305
17306 /* Follow reference OFFSET.
17307 On entry *REF_CU is the CU of the source die referencing OFFSET.
17308 On exit *REF_CU is the CU of the result.
17309 Returns NULL if OFFSET is invalid. */
17310
17311 static struct die_info *
17312 follow_die_offset (sect_offset offset, int offset_in_dwz,
17313 struct dwarf2_cu **ref_cu)
17314 {
17315 struct die_info temp_die;
17316 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17317
17318 gdb_assert (cu->per_cu != NULL);
17319
17320 target_cu = cu;
17321
17322 if (cu->per_cu->is_debug_types)
17323 {
17324 /* .debug_types CUs cannot reference anything outside their CU.
17325 If they need to, they have to reference a signatured type via
17326 DW_FORM_ref_sig8. */
17327 if (! offset_in_cu_p (&cu->header, offset))
17328 return NULL;
17329 }
17330 else if (offset_in_dwz != cu->per_cu->is_dwz
17331 || ! offset_in_cu_p (&cu->header, offset))
17332 {
17333 struct dwarf2_per_cu_data *per_cu;
17334
17335 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17336 cu->objfile);
17337
17338 /* If necessary, add it to the queue and load its DIEs. */
17339 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17340 load_full_comp_unit (per_cu, cu->language);
17341
17342 target_cu = per_cu->cu;
17343 }
17344 else if (cu->dies == NULL)
17345 {
17346 /* We're loading full DIEs during partial symbol reading. */
17347 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17348 load_full_comp_unit (cu->per_cu, language_minimal);
17349 }
17350
17351 *ref_cu = target_cu;
17352 temp_die.offset = offset;
17353 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17354 }
17355
17356 /* Follow reference attribute ATTR of SRC_DIE.
17357 On entry *REF_CU is the CU of SRC_DIE.
17358 On exit *REF_CU is the CU of the result. */
17359
17360 static struct die_info *
17361 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17362 struct dwarf2_cu **ref_cu)
17363 {
17364 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17365 struct dwarf2_cu *cu = *ref_cu;
17366 struct die_info *die;
17367
17368 die = follow_die_offset (offset,
17369 (attr->form == DW_FORM_GNU_ref_alt
17370 || cu->per_cu->is_dwz),
17371 ref_cu);
17372 if (!die)
17373 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17374 "at 0x%x [in module %s]"),
17375 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17376
17377 return die;
17378 }
17379
17380 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17381 Returned value is intended for DW_OP_call*. Returned
17382 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17383
17384 struct dwarf2_locexpr_baton
17385 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17386 struct dwarf2_per_cu_data *per_cu,
17387 CORE_ADDR (*get_frame_pc) (void *baton),
17388 void *baton)
17389 {
17390 struct dwarf2_cu *cu;
17391 struct die_info *die;
17392 struct attribute *attr;
17393 struct dwarf2_locexpr_baton retval;
17394
17395 dw2_setup (per_cu->objfile);
17396
17397 if (per_cu->cu == NULL)
17398 load_cu (per_cu);
17399 cu = per_cu->cu;
17400
17401 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17402 if (!die)
17403 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17404 offset.sect_off, per_cu->objfile->name);
17405
17406 attr = dwarf2_attr (die, DW_AT_location, cu);
17407 if (!attr)
17408 {
17409 /* DWARF: "If there is no such attribute, then there is no effect.".
17410 DATA is ignored if SIZE is 0. */
17411
17412 retval.data = NULL;
17413 retval.size = 0;
17414 }
17415 else if (attr_form_is_section_offset (attr))
17416 {
17417 struct dwarf2_loclist_baton loclist_baton;
17418 CORE_ADDR pc = (*get_frame_pc) (baton);
17419 size_t size;
17420
17421 fill_in_loclist_baton (cu, &loclist_baton, attr);
17422
17423 retval.data = dwarf2_find_location_expression (&loclist_baton,
17424 &size, pc);
17425 retval.size = size;
17426 }
17427 else
17428 {
17429 if (!attr_form_is_block (attr))
17430 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17431 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17432 offset.sect_off, per_cu->objfile->name);
17433
17434 retval.data = DW_BLOCK (attr)->data;
17435 retval.size = DW_BLOCK (attr)->size;
17436 }
17437 retval.per_cu = cu->per_cu;
17438
17439 age_cached_comp_units ();
17440
17441 return retval;
17442 }
17443
17444 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17445 offset. */
17446
17447 struct dwarf2_locexpr_baton
17448 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17449 struct dwarf2_per_cu_data *per_cu,
17450 CORE_ADDR (*get_frame_pc) (void *baton),
17451 void *baton)
17452 {
17453 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17454
17455 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17456 }
17457
17458 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17459 PER_CU. */
17460
17461 struct type *
17462 dwarf2_get_die_type (cu_offset die_offset,
17463 struct dwarf2_per_cu_data *per_cu)
17464 {
17465 sect_offset die_offset_sect;
17466
17467 dw2_setup (per_cu->objfile);
17468
17469 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17470 return get_die_type_at_offset (die_offset_sect, per_cu);
17471 }
17472
17473 /* Follow the signature attribute ATTR in SRC_DIE.
17474 On entry *REF_CU is the CU of SRC_DIE.
17475 On exit *REF_CU is the CU of the result. */
17476
17477 static struct die_info *
17478 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17479 struct dwarf2_cu **ref_cu)
17480 {
17481 struct objfile *objfile = (*ref_cu)->objfile;
17482 struct die_info temp_die;
17483 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17484 struct dwarf2_cu *sig_cu;
17485 struct die_info *die;
17486
17487 /* sig_type will be NULL if the signatured type is missing from
17488 the debug info. */
17489 if (sig_type == NULL)
17490 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17491 "at 0x%x [in module %s]"),
17492 src_die->offset.sect_off, objfile->name);
17493
17494 /* If necessary, add it to the queue and load its DIEs. */
17495
17496 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17497 read_signatured_type (sig_type);
17498
17499 gdb_assert (sig_type->per_cu.cu != NULL);
17500
17501 sig_cu = sig_type->per_cu.cu;
17502 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17503 temp_die.offset = sig_type->type_offset_in_section;
17504 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17505 temp_die.offset.sect_off);
17506 if (die)
17507 {
17508 *ref_cu = sig_cu;
17509 return die;
17510 }
17511
17512 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17513 "from DIE at 0x%x [in module %s]"),
17514 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17515 }
17516
17517 /* Given an offset of a signatured type, return its signatured_type. */
17518
17519 static struct signatured_type *
17520 lookup_signatured_type_at_offset (struct objfile *objfile,
17521 struct dwarf2_section_info *section,
17522 sect_offset offset)
17523 {
17524 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17525 unsigned int length, initial_length_size;
17526 unsigned int sig_offset;
17527 struct signatured_type find_entry, *sig_type;
17528
17529 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17530 sig_offset = (initial_length_size
17531 + 2 /*version*/
17532 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17533 + 1 /*address_size*/);
17534 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17535 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17536
17537 /* This is only used to lookup previously recorded types.
17538 If we didn't find it, it's our bug. */
17539 gdb_assert (sig_type != NULL);
17540 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17541
17542 return sig_type;
17543 }
17544
17545 /* Load the DIEs associated with type unit PER_CU into memory. */
17546
17547 static void
17548 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17549 {
17550 struct signatured_type *sig_type;
17551
17552 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17553 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17554
17555 /* We have the per_cu, but we need the signatured_type.
17556 Fortunately this is an easy translation. */
17557 gdb_assert (per_cu->is_debug_types);
17558 sig_type = (struct signatured_type *) per_cu;
17559
17560 gdb_assert (per_cu->cu == NULL);
17561
17562 read_signatured_type (sig_type);
17563
17564 gdb_assert (per_cu->cu != NULL);
17565 }
17566
17567 /* die_reader_func for read_signatured_type.
17568 This is identical to load_full_comp_unit_reader,
17569 but is kept separate for now. */
17570
17571 static void
17572 read_signatured_type_reader (const struct die_reader_specs *reader,
17573 gdb_byte *info_ptr,
17574 struct die_info *comp_unit_die,
17575 int has_children,
17576 void *data)
17577 {
17578 struct dwarf2_cu *cu = reader->cu;
17579
17580 gdb_assert (cu->die_hash == NULL);
17581 cu->die_hash =
17582 htab_create_alloc_ex (cu->header.length / 12,
17583 die_hash,
17584 die_eq,
17585 NULL,
17586 &cu->comp_unit_obstack,
17587 hashtab_obstack_allocate,
17588 dummy_obstack_deallocate);
17589
17590 if (has_children)
17591 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17592 &info_ptr, comp_unit_die);
17593 cu->dies = comp_unit_die;
17594 /* comp_unit_die is not stored in die_hash, no need. */
17595
17596 /* We try not to read any attributes in this function, because not
17597 all CUs needed for references have been loaded yet, and symbol
17598 table processing isn't initialized. But we have to set the CU language,
17599 or we won't be able to build types correctly.
17600 Similarly, if we do not read the producer, we can not apply
17601 producer-specific interpretation. */
17602 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17603 }
17604
17605 /* Read in a signatured type and build its CU and DIEs.
17606 If the type is a stub for the real type in a DWO file,
17607 read in the real type from the DWO file as well. */
17608
17609 static void
17610 read_signatured_type (struct signatured_type *sig_type)
17611 {
17612 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17613
17614 gdb_assert (per_cu->is_debug_types);
17615 gdb_assert (per_cu->cu == NULL);
17616
17617 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17618 read_signatured_type_reader, NULL);
17619 }
17620
17621 /* Decode simple location descriptions.
17622 Given a pointer to a dwarf block that defines a location, compute
17623 the location and return the value.
17624
17625 NOTE drow/2003-11-18: This function is called in two situations
17626 now: for the address of static or global variables (partial symbols
17627 only) and for offsets into structures which are expected to be
17628 (more or less) constant. The partial symbol case should go away,
17629 and only the constant case should remain. That will let this
17630 function complain more accurately. A few special modes are allowed
17631 without complaint for global variables (for instance, global
17632 register values and thread-local values).
17633
17634 A location description containing no operations indicates that the
17635 object is optimized out. The return value is 0 for that case.
17636 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17637 callers will only want a very basic result and this can become a
17638 complaint.
17639
17640 Note that stack[0] is unused except as a default error return. */
17641
17642 static CORE_ADDR
17643 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17644 {
17645 struct objfile *objfile = cu->objfile;
17646 size_t i;
17647 size_t size = blk->size;
17648 gdb_byte *data = blk->data;
17649 CORE_ADDR stack[64];
17650 int stacki;
17651 unsigned int bytes_read, unsnd;
17652 gdb_byte op;
17653
17654 i = 0;
17655 stacki = 0;
17656 stack[stacki] = 0;
17657 stack[++stacki] = 0;
17658
17659 while (i < size)
17660 {
17661 op = data[i++];
17662 switch (op)
17663 {
17664 case DW_OP_lit0:
17665 case DW_OP_lit1:
17666 case DW_OP_lit2:
17667 case DW_OP_lit3:
17668 case DW_OP_lit4:
17669 case DW_OP_lit5:
17670 case DW_OP_lit6:
17671 case DW_OP_lit7:
17672 case DW_OP_lit8:
17673 case DW_OP_lit9:
17674 case DW_OP_lit10:
17675 case DW_OP_lit11:
17676 case DW_OP_lit12:
17677 case DW_OP_lit13:
17678 case DW_OP_lit14:
17679 case DW_OP_lit15:
17680 case DW_OP_lit16:
17681 case DW_OP_lit17:
17682 case DW_OP_lit18:
17683 case DW_OP_lit19:
17684 case DW_OP_lit20:
17685 case DW_OP_lit21:
17686 case DW_OP_lit22:
17687 case DW_OP_lit23:
17688 case DW_OP_lit24:
17689 case DW_OP_lit25:
17690 case DW_OP_lit26:
17691 case DW_OP_lit27:
17692 case DW_OP_lit28:
17693 case DW_OP_lit29:
17694 case DW_OP_lit30:
17695 case DW_OP_lit31:
17696 stack[++stacki] = op - DW_OP_lit0;
17697 break;
17698
17699 case DW_OP_reg0:
17700 case DW_OP_reg1:
17701 case DW_OP_reg2:
17702 case DW_OP_reg3:
17703 case DW_OP_reg4:
17704 case DW_OP_reg5:
17705 case DW_OP_reg6:
17706 case DW_OP_reg7:
17707 case DW_OP_reg8:
17708 case DW_OP_reg9:
17709 case DW_OP_reg10:
17710 case DW_OP_reg11:
17711 case DW_OP_reg12:
17712 case DW_OP_reg13:
17713 case DW_OP_reg14:
17714 case DW_OP_reg15:
17715 case DW_OP_reg16:
17716 case DW_OP_reg17:
17717 case DW_OP_reg18:
17718 case DW_OP_reg19:
17719 case DW_OP_reg20:
17720 case DW_OP_reg21:
17721 case DW_OP_reg22:
17722 case DW_OP_reg23:
17723 case DW_OP_reg24:
17724 case DW_OP_reg25:
17725 case DW_OP_reg26:
17726 case DW_OP_reg27:
17727 case DW_OP_reg28:
17728 case DW_OP_reg29:
17729 case DW_OP_reg30:
17730 case DW_OP_reg31:
17731 stack[++stacki] = op - DW_OP_reg0;
17732 if (i < size)
17733 dwarf2_complex_location_expr_complaint ();
17734 break;
17735
17736 case DW_OP_regx:
17737 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17738 i += bytes_read;
17739 stack[++stacki] = unsnd;
17740 if (i < size)
17741 dwarf2_complex_location_expr_complaint ();
17742 break;
17743
17744 case DW_OP_addr:
17745 stack[++stacki] = read_address (objfile->obfd, &data[i],
17746 cu, &bytes_read);
17747 i += bytes_read;
17748 break;
17749
17750 case DW_OP_const1u:
17751 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17752 i += 1;
17753 break;
17754
17755 case DW_OP_const1s:
17756 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17757 i += 1;
17758 break;
17759
17760 case DW_OP_const2u:
17761 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17762 i += 2;
17763 break;
17764
17765 case DW_OP_const2s:
17766 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17767 i += 2;
17768 break;
17769
17770 case DW_OP_const4u:
17771 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17772 i += 4;
17773 break;
17774
17775 case DW_OP_const4s:
17776 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17777 i += 4;
17778 break;
17779
17780 case DW_OP_const8u:
17781 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17782 i += 8;
17783 break;
17784
17785 case DW_OP_constu:
17786 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17787 &bytes_read);
17788 i += bytes_read;
17789 break;
17790
17791 case DW_OP_consts:
17792 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17793 i += bytes_read;
17794 break;
17795
17796 case DW_OP_dup:
17797 stack[stacki + 1] = stack[stacki];
17798 stacki++;
17799 break;
17800
17801 case DW_OP_plus:
17802 stack[stacki - 1] += stack[stacki];
17803 stacki--;
17804 break;
17805
17806 case DW_OP_plus_uconst:
17807 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17808 &bytes_read);
17809 i += bytes_read;
17810 break;
17811
17812 case DW_OP_minus:
17813 stack[stacki - 1] -= stack[stacki];
17814 stacki--;
17815 break;
17816
17817 case DW_OP_deref:
17818 /* If we're not the last op, then we definitely can't encode
17819 this using GDB's address_class enum. This is valid for partial
17820 global symbols, although the variable's address will be bogus
17821 in the psymtab. */
17822 if (i < size)
17823 dwarf2_complex_location_expr_complaint ();
17824 break;
17825
17826 case DW_OP_GNU_push_tls_address:
17827 /* The top of the stack has the offset from the beginning
17828 of the thread control block at which the variable is located. */
17829 /* Nothing should follow this operator, so the top of stack would
17830 be returned. */
17831 /* This is valid for partial global symbols, but the variable's
17832 address will be bogus in the psymtab. Make it always at least
17833 non-zero to not look as a variable garbage collected by linker
17834 which have DW_OP_addr 0. */
17835 if (i < size)
17836 dwarf2_complex_location_expr_complaint ();
17837 stack[stacki]++;
17838 break;
17839
17840 case DW_OP_GNU_uninit:
17841 break;
17842
17843 case DW_OP_GNU_addr_index:
17844 case DW_OP_GNU_const_index:
17845 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17846 &bytes_read);
17847 i += bytes_read;
17848 break;
17849
17850 default:
17851 {
17852 const char *name = get_DW_OP_name (op);
17853
17854 if (name)
17855 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17856 name);
17857 else
17858 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17859 op);
17860 }
17861
17862 return (stack[stacki]);
17863 }
17864
17865 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17866 outside of the allocated space. Also enforce minimum>0. */
17867 if (stacki >= ARRAY_SIZE (stack) - 1)
17868 {
17869 complaint (&symfile_complaints,
17870 _("location description stack overflow"));
17871 return 0;
17872 }
17873
17874 if (stacki <= 0)
17875 {
17876 complaint (&symfile_complaints,
17877 _("location description stack underflow"));
17878 return 0;
17879 }
17880 }
17881 return (stack[stacki]);
17882 }
17883
17884 /* memory allocation interface */
17885
17886 static struct dwarf_block *
17887 dwarf_alloc_block (struct dwarf2_cu *cu)
17888 {
17889 struct dwarf_block *blk;
17890
17891 blk = (struct dwarf_block *)
17892 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17893 return (blk);
17894 }
17895
17896 static struct die_info *
17897 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17898 {
17899 struct die_info *die;
17900 size_t size = sizeof (struct die_info);
17901
17902 if (num_attrs > 1)
17903 size += (num_attrs - 1) * sizeof (struct attribute);
17904
17905 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17906 memset (die, 0, sizeof (struct die_info));
17907 return (die);
17908 }
17909
17910 \f
17911 /* Macro support. */
17912
17913 /* Return the full name of file number I in *LH's file name table.
17914 Use COMP_DIR as the name of the current directory of the
17915 compilation. The result is allocated using xmalloc; the caller is
17916 responsible for freeing it. */
17917 static char *
17918 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17919 {
17920 /* Is the file number a valid index into the line header's file name
17921 table? Remember that file numbers start with one, not zero. */
17922 if (1 <= file && file <= lh->num_file_names)
17923 {
17924 struct file_entry *fe = &lh->file_names[file - 1];
17925
17926 if (IS_ABSOLUTE_PATH (fe->name))
17927 return xstrdup (fe->name);
17928 else
17929 {
17930 const char *dir;
17931 int dir_len;
17932 char *full_name;
17933
17934 if (fe->dir_index)
17935 dir = lh->include_dirs[fe->dir_index - 1];
17936 else
17937 dir = comp_dir;
17938
17939 if (dir)
17940 {
17941 dir_len = strlen (dir);
17942 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17943 strcpy (full_name, dir);
17944 full_name[dir_len] = '/';
17945 strcpy (full_name + dir_len + 1, fe->name);
17946 return full_name;
17947 }
17948 else
17949 return xstrdup (fe->name);
17950 }
17951 }
17952 else
17953 {
17954 /* The compiler produced a bogus file number. We can at least
17955 record the macro definitions made in the file, even if we
17956 won't be able to find the file by name. */
17957 char fake_name[80];
17958
17959 xsnprintf (fake_name, sizeof (fake_name),
17960 "<bad macro file number %d>", file);
17961
17962 complaint (&symfile_complaints,
17963 _("bad file number in macro information (%d)"),
17964 file);
17965
17966 return xstrdup (fake_name);
17967 }
17968 }
17969
17970
17971 static struct macro_source_file *
17972 macro_start_file (int file, int line,
17973 struct macro_source_file *current_file,
17974 const char *comp_dir,
17975 struct line_header *lh, struct objfile *objfile)
17976 {
17977 /* The full name of this source file. */
17978 char *full_name = file_full_name (file, lh, comp_dir);
17979
17980 /* We don't create a macro table for this compilation unit
17981 at all until we actually get a filename. */
17982 if (! pending_macros)
17983 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17984 objfile->per_bfd->macro_cache);
17985
17986 if (! current_file)
17987 {
17988 /* If we have no current file, then this must be the start_file
17989 directive for the compilation unit's main source file. */
17990 current_file = macro_set_main (pending_macros, full_name);
17991 macro_define_special (pending_macros);
17992 }
17993 else
17994 current_file = macro_include (current_file, line, full_name);
17995
17996 xfree (full_name);
17997
17998 return current_file;
17999 }
18000
18001
18002 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18003 followed by a null byte. */
18004 static char *
18005 copy_string (const char *buf, int len)
18006 {
18007 char *s = xmalloc (len + 1);
18008
18009 memcpy (s, buf, len);
18010 s[len] = '\0';
18011 return s;
18012 }
18013
18014
18015 static const char *
18016 consume_improper_spaces (const char *p, const char *body)
18017 {
18018 if (*p == ' ')
18019 {
18020 complaint (&symfile_complaints,
18021 _("macro definition contains spaces "
18022 "in formal argument list:\n`%s'"),
18023 body);
18024
18025 while (*p == ' ')
18026 p++;
18027 }
18028
18029 return p;
18030 }
18031
18032
18033 static void
18034 parse_macro_definition (struct macro_source_file *file, int line,
18035 const char *body)
18036 {
18037 const char *p;
18038
18039 /* The body string takes one of two forms. For object-like macro
18040 definitions, it should be:
18041
18042 <macro name> " " <definition>
18043
18044 For function-like macro definitions, it should be:
18045
18046 <macro name> "() " <definition>
18047 or
18048 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18049
18050 Spaces may appear only where explicitly indicated, and in the
18051 <definition>.
18052
18053 The Dwarf 2 spec says that an object-like macro's name is always
18054 followed by a space, but versions of GCC around March 2002 omit
18055 the space when the macro's definition is the empty string.
18056
18057 The Dwarf 2 spec says that there should be no spaces between the
18058 formal arguments in a function-like macro's formal argument list,
18059 but versions of GCC around March 2002 include spaces after the
18060 commas. */
18061
18062
18063 /* Find the extent of the macro name. The macro name is terminated
18064 by either a space or null character (for an object-like macro) or
18065 an opening paren (for a function-like macro). */
18066 for (p = body; *p; p++)
18067 if (*p == ' ' || *p == '(')
18068 break;
18069
18070 if (*p == ' ' || *p == '\0')
18071 {
18072 /* It's an object-like macro. */
18073 int name_len = p - body;
18074 char *name = copy_string (body, name_len);
18075 const char *replacement;
18076
18077 if (*p == ' ')
18078 replacement = body + name_len + 1;
18079 else
18080 {
18081 dwarf2_macro_malformed_definition_complaint (body);
18082 replacement = body + name_len;
18083 }
18084
18085 macro_define_object (file, line, name, replacement);
18086
18087 xfree (name);
18088 }
18089 else if (*p == '(')
18090 {
18091 /* It's a function-like macro. */
18092 char *name = copy_string (body, p - body);
18093 int argc = 0;
18094 int argv_size = 1;
18095 char **argv = xmalloc (argv_size * sizeof (*argv));
18096
18097 p++;
18098
18099 p = consume_improper_spaces (p, body);
18100
18101 /* Parse the formal argument list. */
18102 while (*p && *p != ')')
18103 {
18104 /* Find the extent of the current argument name. */
18105 const char *arg_start = p;
18106
18107 while (*p && *p != ',' && *p != ')' && *p != ' ')
18108 p++;
18109
18110 if (! *p || p == arg_start)
18111 dwarf2_macro_malformed_definition_complaint (body);
18112 else
18113 {
18114 /* Make sure argv has room for the new argument. */
18115 if (argc >= argv_size)
18116 {
18117 argv_size *= 2;
18118 argv = xrealloc (argv, argv_size * sizeof (*argv));
18119 }
18120
18121 argv[argc++] = copy_string (arg_start, p - arg_start);
18122 }
18123
18124 p = consume_improper_spaces (p, body);
18125
18126 /* Consume the comma, if present. */
18127 if (*p == ',')
18128 {
18129 p++;
18130
18131 p = consume_improper_spaces (p, body);
18132 }
18133 }
18134
18135 if (*p == ')')
18136 {
18137 p++;
18138
18139 if (*p == ' ')
18140 /* Perfectly formed definition, no complaints. */
18141 macro_define_function (file, line, name,
18142 argc, (const char **) argv,
18143 p + 1);
18144 else if (*p == '\0')
18145 {
18146 /* Complain, but do define it. */
18147 dwarf2_macro_malformed_definition_complaint (body);
18148 macro_define_function (file, line, name,
18149 argc, (const char **) argv,
18150 p);
18151 }
18152 else
18153 /* Just complain. */
18154 dwarf2_macro_malformed_definition_complaint (body);
18155 }
18156 else
18157 /* Just complain. */
18158 dwarf2_macro_malformed_definition_complaint (body);
18159
18160 xfree (name);
18161 {
18162 int i;
18163
18164 for (i = 0; i < argc; i++)
18165 xfree (argv[i]);
18166 }
18167 xfree (argv);
18168 }
18169 else
18170 dwarf2_macro_malformed_definition_complaint (body);
18171 }
18172
18173 /* Skip some bytes from BYTES according to the form given in FORM.
18174 Returns the new pointer. */
18175
18176 static gdb_byte *
18177 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18178 enum dwarf_form form,
18179 unsigned int offset_size,
18180 struct dwarf2_section_info *section)
18181 {
18182 unsigned int bytes_read;
18183
18184 switch (form)
18185 {
18186 case DW_FORM_data1:
18187 case DW_FORM_flag:
18188 ++bytes;
18189 break;
18190
18191 case DW_FORM_data2:
18192 bytes += 2;
18193 break;
18194
18195 case DW_FORM_data4:
18196 bytes += 4;
18197 break;
18198
18199 case DW_FORM_data8:
18200 bytes += 8;
18201 break;
18202
18203 case DW_FORM_string:
18204 read_direct_string (abfd, bytes, &bytes_read);
18205 bytes += bytes_read;
18206 break;
18207
18208 case DW_FORM_sec_offset:
18209 case DW_FORM_strp:
18210 case DW_FORM_GNU_strp_alt:
18211 bytes += offset_size;
18212 break;
18213
18214 case DW_FORM_block:
18215 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18216 bytes += bytes_read;
18217 break;
18218
18219 case DW_FORM_block1:
18220 bytes += 1 + read_1_byte (abfd, bytes);
18221 break;
18222 case DW_FORM_block2:
18223 bytes += 2 + read_2_bytes (abfd, bytes);
18224 break;
18225 case DW_FORM_block4:
18226 bytes += 4 + read_4_bytes (abfd, bytes);
18227 break;
18228
18229 case DW_FORM_sdata:
18230 case DW_FORM_udata:
18231 case DW_FORM_GNU_addr_index:
18232 case DW_FORM_GNU_str_index:
18233 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18234 if (bytes == NULL)
18235 {
18236 dwarf2_section_buffer_overflow_complaint (section);
18237 return NULL;
18238 }
18239 break;
18240
18241 default:
18242 {
18243 complain:
18244 complaint (&symfile_complaints,
18245 _("invalid form 0x%x in `%s'"),
18246 form,
18247 section->asection->name);
18248 return NULL;
18249 }
18250 }
18251
18252 return bytes;
18253 }
18254
18255 /* A helper for dwarf_decode_macros that handles skipping an unknown
18256 opcode. Returns an updated pointer to the macro data buffer; or,
18257 on error, issues a complaint and returns NULL. */
18258
18259 static gdb_byte *
18260 skip_unknown_opcode (unsigned int opcode,
18261 gdb_byte **opcode_definitions,
18262 gdb_byte *mac_ptr, gdb_byte *mac_end,
18263 bfd *abfd,
18264 unsigned int offset_size,
18265 struct dwarf2_section_info *section)
18266 {
18267 unsigned int bytes_read, i;
18268 unsigned long arg;
18269 gdb_byte *defn;
18270
18271 if (opcode_definitions[opcode] == NULL)
18272 {
18273 complaint (&symfile_complaints,
18274 _("unrecognized DW_MACFINO opcode 0x%x"),
18275 opcode);
18276 return NULL;
18277 }
18278
18279 defn = opcode_definitions[opcode];
18280 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18281 defn += bytes_read;
18282
18283 for (i = 0; i < arg; ++i)
18284 {
18285 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18286 section);
18287 if (mac_ptr == NULL)
18288 {
18289 /* skip_form_bytes already issued the complaint. */
18290 return NULL;
18291 }
18292 }
18293
18294 return mac_ptr;
18295 }
18296
18297 /* A helper function which parses the header of a macro section.
18298 If the macro section is the extended (for now called "GNU") type,
18299 then this updates *OFFSET_SIZE. Returns a pointer to just after
18300 the header, or issues a complaint and returns NULL on error. */
18301
18302 static gdb_byte *
18303 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18304 bfd *abfd,
18305 gdb_byte *mac_ptr,
18306 unsigned int *offset_size,
18307 int section_is_gnu)
18308 {
18309 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18310
18311 if (section_is_gnu)
18312 {
18313 unsigned int version, flags;
18314
18315 version = read_2_bytes (abfd, mac_ptr);
18316 if (version != 4)
18317 {
18318 complaint (&symfile_complaints,
18319 _("unrecognized version `%d' in .debug_macro section"),
18320 version);
18321 return NULL;
18322 }
18323 mac_ptr += 2;
18324
18325 flags = read_1_byte (abfd, mac_ptr);
18326 ++mac_ptr;
18327 *offset_size = (flags & 1) ? 8 : 4;
18328
18329 if ((flags & 2) != 0)
18330 /* We don't need the line table offset. */
18331 mac_ptr += *offset_size;
18332
18333 /* Vendor opcode descriptions. */
18334 if ((flags & 4) != 0)
18335 {
18336 unsigned int i, count;
18337
18338 count = read_1_byte (abfd, mac_ptr);
18339 ++mac_ptr;
18340 for (i = 0; i < count; ++i)
18341 {
18342 unsigned int opcode, bytes_read;
18343 unsigned long arg;
18344
18345 opcode = read_1_byte (abfd, mac_ptr);
18346 ++mac_ptr;
18347 opcode_definitions[opcode] = mac_ptr;
18348 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18349 mac_ptr += bytes_read;
18350 mac_ptr += arg;
18351 }
18352 }
18353 }
18354
18355 return mac_ptr;
18356 }
18357
18358 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18359 including DW_MACRO_GNU_transparent_include. */
18360
18361 static void
18362 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18363 struct macro_source_file *current_file,
18364 struct line_header *lh, char *comp_dir,
18365 struct dwarf2_section_info *section,
18366 int section_is_gnu, int section_is_dwz,
18367 unsigned int offset_size,
18368 struct objfile *objfile,
18369 htab_t include_hash)
18370 {
18371 enum dwarf_macro_record_type macinfo_type;
18372 int at_commandline;
18373 gdb_byte *opcode_definitions[256];
18374
18375 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18376 &offset_size, section_is_gnu);
18377 if (mac_ptr == NULL)
18378 {
18379 /* We already issued a complaint. */
18380 return;
18381 }
18382
18383 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18384 GDB is still reading the definitions from command line. First
18385 DW_MACINFO_start_file will need to be ignored as it was already executed
18386 to create CURRENT_FILE for the main source holding also the command line
18387 definitions. On first met DW_MACINFO_start_file this flag is reset to
18388 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18389
18390 at_commandline = 1;
18391
18392 do
18393 {
18394 /* Do we at least have room for a macinfo type byte? */
18395 if (mac_ptr >= mac_end)
18396 {
18397 dwarf2_section_buffer_overflow_complaint (section);
18398 break;
18399 }
18400
18401 macinfo_type = read_1_byte (abfd, mac_ptr);
18402 mac_ptr++;
18403
18404 /* Note that we rely on the fact that the corresponding GNU and
18405 DWARF constants are the same. */
18406 switch (macinfo_type)
18407 {
18408 /* A zero macinfo type indicates the end of the macro
18409 information. */
18410 case 0:
18411 break;
18412
18413 case DW_MACRO_GNU_define:
18414 case DW_MACRO_GNU_undef:
18415 case DW_MACRO_GNU_define_indirect:
18416 case DW_MACRO_GNU_undef_indirect:
18417 case DW_MACRO_GNU_define_indirect_alt:
18418 case DW_MACRO_GNU_undef_indirect_alt:
18419 {
18420 unsigned int bytes_read;
18421 int line;
18422 char *body;
18423 int is_define;
18424
18425 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18426 mac_ptr += bytes_read;
18427
18428 if (macinfo_type == DW_MACRO_GNU_define
18429 || macinfo_type == DW_MACRO_GNU_undef)
18430 {
18431 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18432 mac_ptr += bytes_read;
18433 }
18434 else
18435 {
18436 LONGEST str_offset;
18437
18438 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18439 mac_ptr += offset_size;
18440
18441 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18442 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18443 || section_is_dwz)
18444 {
18445 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18446
18447 body = read_indirect_string_from_dwz (dwz, str_offset);
18448 }
18449 else
18450 body = read_indirect_string_at_offset (abfd, str_offset);
18451 }
18452
18453 is_define = (macinfo_type == DW_MACRO_GNU_define
18454 || macinfo_type == DW_MACRO_GNU_define_indirect
18455 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18456 if (! current_file)
18457 {
18458 /* DWARF violation as no main source is present. */
18459 complaint (&symfile_complaints,
18460 _("debug info with no main source gives macro %s "
18461 "on line %d: %s"),
18462 is_define ? _("definition") : _("undefinition"),
18463 line, body);
18464 break;
18465 }
18466 if ((line == 0 && !at_commandline)
18467 || (line != 0 && at_commandline))
18468 complaint (&symfile_complaints,
18469 _("debug info gives %s macro %s with %s line %d: %s"),
18470 at_commandline ? _("command-line") : _("in-file"),
18471 is_define ? _("definition") : _("undefinition"),
18472 line == 0 ? _("zero") : _("non-zero"), line, body);
18473
18474 if (is_define)
18475 parse_macro_definition (current_file, line, body);
18476 else
18477 {
18478 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18479 || macinfo_type == DW_MACRO_GNU_undef_indirect
18480 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18481 macro_undef (current_file, line, body);
18482 }
18483 }
18484 break;
18485
18486 case DW_MACRO_GNU_start_file:
18487 {
18488 unsigned int bytes_read;
18489 int line, file;
18490
18491 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18492 mac_ptr += bytes_read;
18493 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18494 mac_ptr += bytes_read;
18495
18496 if ((line == 0 && !at_commandline)
18497 || (line != 0 && at_commandline))
18498 complaint (&symfile_complaints,
18499 _("debug info gives source %d included "
18500 "from %s at %s line %d"),
18501 file, at_commandline ? _("command-line") : _("file"),
18502 line == 0 ? _("zero") : _("non-zero"), line);
18503
18504 if (at_commandline)
18505 {
18506 /* This DW_MACRO_GNU_start_file was executed in the
18507 pass one. */
18508 at_commandline = 0;
18509 }
18510 else
18511 current_file = macro_start_file (file, line,
18512 current_file, comp_dir,
18513 lh, objfile);
18514 }
18515 break;
18516
18517 case DW_MACRO_GNU_end_file:
18518 if (! current_file)
18519 complaint (&symfile_complaints,
18520 _("macro debug info has an unmatched "
18521 "`close_file' directive"));
18522 else
18523 {
18524 current_file = current_file->included_by;
18525 if (! current_file)
18526 {
18527 enum dwarf_macro_record_type next_type;
18528
18529 /* GCC circa March 2002 doesn't produce the zero
18530 type byte marking the end of the compilation
18531 unit. Complain if it's not there, but exit no
18532 matter what. */
18533
18534 /* Do we at least have room for a macinfo type byte? */
18535 if (mac_ptr >= mac_end)
18536 {
18537 dwarf2_section_buffer_overflow_complaint (section);
18538 return;
18539 }
18540
18541 /* We don't increment mac_ptr here, so this is just
18542 a look-ahead. */
18543 next_type = read_1_byte (abfd, mac_ptr);
18544 if (next_type != 0)
18545 complaint (&symfile_complaints,
18546 _("no terminating 0-type entry for "
18547 "macros in `.debug_macinfo' section"));
18548
18549 return;
18550 }
18551 }
18552 break;
18553
18554 case DW_MACRO_GNU_transparent_include:
18555 case DW_MACRO_GNU_transparent_include_alt:
18556 {
18557 LONGEST offset;
18558 void **slot;
18559 bfd *include_bfd = abfd;
18560 struct dwarf2_section_info *include_section = section;
18561 struct dwarf2_section_info alt_section;
18562 gdb_byte *include_mac_end = mac_end;
18563 int is_dwz = section_is_dwz;
18564 gdb_byte *new_mac_ptr;
18565
18566 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18567 mac_ptr += offset_size;
18568
18569 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18570 {
18571 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18572
18573 dwarf2_read_section (dwarf2_per_objfile->objfile,
18574 &dwz->macro);
18575
18576 include_bfd = dwz->macro.asection->owner;
18577 include_section = &dwz->macro;
18578 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18579 is_dwz = 1;
18580 }
18581
18582 new_mac_ptr = include_section->buffer + offset;
18583 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18584
18585 if (*slot != NULL)
18586 {
18587 /* This has actually happened; see
18588 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18589 complaint (&symfile_complaints,
18590 _("recursive DW_MACRO_GNU_transparent_include in "
18591 ".debug_macro section"));
18592 }
18593 else
18594 {
18595 *slot = new_mac_ptr;
18596
18597 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18598 include_mac_end, current_file,
18599 lh, comp_dir,
18600 section, section_is_gnu, is_dwz,
18601 offset_size, objfile, include_hash);
18602
18603 htab_remove_elt (include_hash, new_mac_ptr);
18604 }
18605 }
18606 break;
18607
18608 case DW_MACINFO_vendor_ext:
18609 if (!section_is_gnu)
18610 {
18611 unsigned int bytes_read;
18612 int constant;
18613
18614 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18615 mac_ptr += bytes_read;
18616 read_direct_string (abfd, mac_ptr, &bytes_read);
18617 mac_ptr += bytes_read;
18618
18619 /* We don't recognize any vendor extensions. */
18620 break;
18621 }
18622 /* FALLTHROUGH */
18623
18624 default:
18625 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18626 mac_ptr, mac_end, abfd, offset_size,
18627 section);
18628 if (mac_ptr == NULL)
18629 return;
18630 break;
18631 }
18632 } while (macinfo_type != 0);
18633 }
18634
18635 static void
18636 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18637 char *comp_dir, int section_is_gnu)
18638 {
18639 struct objfile *objfile = dwarf2_per_objfile->objfile;
18640 struct line_header *lh = cu->line_header;
18641 bfd *abfd;
18642 gdb_byte *mac_ptr, *mac_end;
18643 struct macro_source_file *current_file = 0;
18644 enum dwarf_macro_record_type macinfo_type;
18645 unsigned int offset_size = cu->header.offset_size;
18646 gdb_byte *opcode_definitions[256];
18647 struct cleanup *cleanup;
18648 htab_t include_hash;
18649 void **slot;
18650 struct dwarf2_section_info *section;
18651 const char *section_name;
18652
18653 if (cu->dwo_unit != NULL)
18654 {
18655 if (section_is_gnu)
18656 {
18657 section = &cu->dwo_unit->dwo_file->sections.macro;
18658 section_name = ".debug_macro.dwo";
18659 }
18660 else
18661 {
18662 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18663 section_name = ".debug_macinfo.dwo";
18664 }
18665 }
18666 else
18667 {
18668 if (section_is_gnu)
18669 {
18670 section = &dwarf2_per_objfile->macro;
18671 section_name = ".debug_macro";
18672 }
18673 else
18674 {
18675 section = &dwarf2_per_objfile->macinfo;
18676 section_name = ".debug_macinfo";
18677 }
18678 }
18679
18680 dwarf2_read_section (objfile, section);
18681 if (section->buffer == NULL)
18682 {
18683 complaint (&symfile_complaints, _("missing %s section"), section_name);
18684 return;
18685 }
18686 abfd = section->asection->owner;
18687
18688 /* First pass: Find the name of the base filename.
18689 This filename is needed in order to process all macros whose definition
18690 (or undefinition) comes from the command line. These macros are defined
18691 before the first DW_MACINFO_start_file entry, and yet still need to be
18692 associated to the base file.
18693
18694 To determine the base file name, we scan the macro definitions until we
18695 reach the first DW_MACINFO_start_file entry. We then initialize
18696 CURRENT_FILE accordingly so that any macro definition found before the
18697 first DW_MACINFO_start_file can still be associated to the base file. */
18698
18699 mac_ptr = section->buffer + offset;
18700 mac_end = section->buffer + section->size;
18701
18702 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18703 &offset_size, section_is_gnu);
18704 if (mac_ptr == NULL)
18705 {
18706 /* We already issued a complaint. */
18707 return;
18708 }
18709
18710 do
18711 {
18712 /* Do we at least have room for a macinfo type byte? */
18713 if (mac_ptr >= mac_end)
18714 {
18715 /* Complaint is printed during the second pass as GDB will probably
18716 stop the first pass earlier upon finding
18717 DW_MACINFO_start_file. */
18718 break;
18719 }
18720
18721 macinfo_type = read_1_byte (abfd, mac_ptr);
18722 mac_ptr++;
18723
18724 /* Note that we rely on the fact that the corresponding GNU and
18725 DWARF constants are the same. */
18726 switch (macinfo_type)
18727 {
18728 /* A zero macinfo type indicates the end of the macro
18729 information. */
18730 case 0:
18731 break;
18732
18733 case DW_MACRO_GNU_define:
18734 case DW_MACRO_GNU_undef:
18735 /* Only skip the data by MAC_PTR. */
18736 {
18737 unsigned int bytes_read;
18738
18739 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18740 mac_ptr += bytes_read;
18741 read_direct_string (abfd, mac_ptr, &bytes_read);
18742 mac_ptr += bytes_read;
18743 }
18744 break;
18745
18746 case DW_MACRO_GNU_start_file:
18747 {
18748 unsigned int bytes_read;
18749 int line, file;
18750
18751 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18752 mac_ptr += bytes_read;
18753 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18754 mac_ptr += bytes_read;
18755
18756 current_file = macro_start_file (file, line, current_file,
18757 comp_dir, lh, objfile);
18758 }
18759 break;
18760
18761 case DW_MACRO_GNU_end_file:
18762 /* No data to skip by MAC_PTR. */
18763 break;
18764
18765 case DW_MACRO_GNU_define_indirect:
18766 case DW_MACRO_GNU_undef_indirect:
18767 case DW_MACRO_GNU_define_indirect_alt:
18768 case DW_MACRO_GNU_undef_indirect_alt:
18769 {
18770 unsigned int bytes_read;
18771
18772 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18773 mac_ptr += bytes_read;
18774 mac_ptr += offset_size;
18775 }
18776 break;
18777
18778 case DW_MACRO_GNU_transparent_include:
18779 case DW_MACRO_GNU_transparent_include_alt:
18780 /* Note that, according to the spec, a transparent include
18781 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18782 skip this opcode. */
18783 mac_ptr += offset_size;
18784 break;
18785
18786 case DW_MACINFO_vendor_ext:
18787 /* Only skip the data by MAC_PTR. */
18788 if (!section_is_gnu)
18789 {
18790 unsigned int bytes_read;
18791
18792 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18793 mac_ptr += bytes_read;
18794 read_direct_string (abfd, mac_ptr, &bytes_read);
18795 mac_ptr += bytes_read;
18796 }
18797 /* FALLTHROUGH */
18798
18799 default:
18800 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18801 mac_ptr, mac_end, abfd, offset_size,
18802 section);
18803 if (mac_ptr == NULL)
18804 return;
18805 break;
18806 }
18807 } while (macinfo_type != 0 && current_file == NULL);
18808
18809 /* Second pass: Process all entries.
18810
18811 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18812 command-line macro definitions/undefinitions. This flag is unset when we
18813 reach the first DW_MACINFO_start_file entry. */
18814
18815 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18816 NULL, xcalloc, xfree);
18817 cleanup = make_cleanup_htab_delete (include_hash);
18818 mac_ptr = section->buffer + offset;
18819 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18820 *slot = mac_ptr;
18821 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18822 current_file, lh, comp_dir, section,
18823 section_is_gnu, 0,
18824 offset_size, objfile, include_hash);
18825 do_cleanups (cleanup);
18826 }
18827
18828 /* Check if the attribute's form is a DW_FORM_block*
18829 if so return true else false. */
18830
18831 static int
18832 attr_form_is_block (struct attribute *attr)
18833 {
18834 return (attr == NULL ? 0 :
18835 attr->form == DW_FORM_block1
18836 || attr->form == DW_FORM_block2
18837 || attr->form == DW_FORM_block4
18838 || attr->form == DW_FORM_block
18839 || attr->form == DW_FORM_exprloc);
18840 }
18841
18842 /* Return non-zero if ATTR's value is a section offset --- classes
18843 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18844 You may use DW_UNSND (attr) to retrieve such offsets.
18845
18846 Section 7.5.4, "Attribute Encodings", explains that no attribute
18847 may have a value that belongs to more than one of these classes; it
18848 would be ambiguous if we did, because we use the same forms for all
18849 of them. */
18850
18851 static int
18852 attr_form_is_section_offset (struct attribute *attr)
18853 {
18854 return (attr->form == DW_FORM_data4
18855 || attr->form == DW_FORM_data8
18856 || attr->form == DW_FORM_sec_offset);
18857 }
18858
18859 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18860 zero otherwise. When this function returns true, you can apply
18861 dwarf2_get_attr_constant_value to it.
18862
18863 However, note that for some attributes you must check
18864 attr_form_is_section_offset before using this test. DW_FORM_data4
18865 and DW_FORM_data8 are members of both the constant class, and of
18866 the classes that contain offsets into other debug sections
18867 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18868 that, if an attribute's can be either a constant or one of the
18869 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18870 taken as section offsets, not constants. */
18871
18872 static int
18873 attr_form_is_constant (struct attribute *attr)
18874 {
18875 switch (attr->form)
18876 {
18877 case DW_FORM_sdata:
18878 case DW_FORM_udata:
18879 case DW_FORM_data1:
18880 case DW_FORM_data2:
18881 case DW_FORM_data4:
18882 case DW_FORM_data8:
18883 return 1;
18884 default:
18885 return 0;
18886 }
18887 }
18888
18889 /* Return the .debug_loc section to use for CU.
18890 For DWO files use .debug_loc.dwo. */
18891
18892 static struct dwarf2_section_info *
18893 cu_debug_loc_section (struct dwarf2_cu *cu)
18894 {
18895 if (cu->dwo_unit)
18896 return &cu->dwo_unit->dwo_file->sections.loc;
18897 return &dwarf2_per_objfile->loc;
18898 }
18899
18900 /* A helper function that fills in a dwarf2_loclist_baton. */
18901
18902 static void
18903 fill_in_loclist_baton (struct dwarf2_cu *cu,
18904 struct dwarf2_loclist_baton *baton,
18905 struct attribute *attr)
18906 {
18907 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18908
18909 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18910
18911 baton->per_cu = cu->per_cu;
18912 gdb_assert (baton->per_cu);
18913 /* We don't know how long the location list is, but make sure we
18914 don't run off the edge of the section. */
18915 baton->size = section->size - DW_UNSND (attr);
18916 baton->data = section->buffer + DW_UNSND (attr);
18917 baton->base_address = cu->base_address;
18918 baton->from_dwo = cu->dwo_unit != NULL;
18919 }
18920
18921 static void
18922 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18923 struct dwarf2_cu *cu)
18924 {
18925 struct objfile *objfile = dwarf2_per_objfile->objfile;
18926 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18927
18928 if (attr_form_is_section_offset (attr)
18929 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18930 the section. If so, fall through to the complaint in the
18931 other branch. */
18932 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18933 {
18934 struct dwarf2_loclist_baton *baton;
18935
18936 baton = obstack_alloc (&objfile->objfile_obstack,
18937 sizeof (struct dwarf2_loclist_baton));
18938
18939 fill_in_loclist_baton (cu, baton, attr);
18940
18941 if (cu->base_known == 0)
18942 complaint (&symfile_complaints,
18943 _("Location list used without "
18944 "specifying the CU base address."));
18945
18946 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18947 SYMBOL_LOCATION_BATON (sym) = baton;
18948 }
18949 else
18950 {
18951 struct dwarf2_locexpr_baton *baton;
18952
18953 baton = obstack_alloc (&objfile->objfile_obstack,
18954 sizeof (struct dwarf2_locexpr_baton));
18955 baton->per_cu = cu->per_cu;
18956 gdb_assert (baton->per_cu);
18957
18958 if (attr_form_is_block (attr))
18959 {
18960 /* Note that we're just copying the block's data pointer
18961 here, not the actual data. We're still pointing into the
18962 info_buffer for SYM's objfile; right now we never release
18963 that buffer, but when we do clean up properly this may
18964 need to change. */
18965 baton->size = DW_BLOCK (attr)->size;
18966 baton->data = DW_BLOCK (attr)->data;
18967 }
18968 else
18969 {
18970 dwarf2_invalid_attrib_class_complaint ("location description",
18971 SYMBOL_NATURAL_NAME (sym));
18972 baton->size = 0;
18973 }
18974
18975 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18976 SYMBOL_LOCATION_BATON (sym) = baton;
18977 }
18978 }
18979
18980 /* Return the OBJFILE associated with the compilation unit CU. If CU
18981 came from a separate debuginfo file, then the master objfile is
18982 returned. */
18983
18984 struct objfile *
18985 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18986 {
18987 struct objfile *objfile = per_cu->objfile;
18988
18989 /* Return the master objfile, so that we can report and look up the
18990 correct file containing this variable. */
18991 if (objfile->separate_debug_objfile_backlink)
18992 objfile = objfile->separate_debug_objfile_backlink;
18993
18994 return objfile;
18995 }
18996
18997 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18998 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18999 CU_HEADERP first. */
19000
19001 static const struct comp_unit_head *
19002 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19003 struct dwarf2_per_cu_data *per_cu)
19004 {
19005 gdb_byte *info_ptr;
19006
19007 if (per_cu->cu)
19008 return &per_cu->cu->header;
19009
19010 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19011
19012 memset (cu_headerp, 0, sizeof (*cu_headerp));
19013 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19014
19015 return cu_headerp;
19016 }
19017
19018 /* Return the address size given in the compilation unit header for CU. */
19019
19020 int
19021 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19022 {
19023 struct comp_unit_head cu_header_local;
19024 const struct comp_unit_head *cu_headerp;
19025
19026 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19027
19028 return cu_headerp->addr_size;
19029 }
19030
19031 /* Return the offset size given in the compilation unit header for CU. */
19032
19033 int
19034 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19035 {
19036 struct comp_unit_head cu_header_local;
19037 const struct comp_unit_head *cu_headerp;
19038
19039 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19040
19041 return cu_headerp->offset_size;
19042 }
19043
19044 /* See its dwarf2loc.h declaration. */
19045
19046 int
19047 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19048 {
19049 struct comp_unit_head cu_header_local;
19050 const struct comp_unit_head *cu_headerp;
19051
19052 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19053
19054 if (cu_headerp->version == 2)
19055 return cu_headerp->addr_size;
19056 else
19057 return cu_headerp->offset_size;
19058 }
19059
19060 /* Return the text offset of the CU. The returned offset comes from
19061 this CU's objfile. If this objfile came from a separate debuginfo
19062 file, then the offset may be different from the corresponding
19063 offset in the parent objfile. */
19064
19065 CORE_ADDR
19066 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19067 {
19068 struct objfile *objfile = per_cu->objfile;
19069
19070 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19071 }
19072
19073 /* Locate the .debug_info compilation unit from CU's objfile which contains
19074 the DIE at OFFSET. Raises an error on failure. */
19075
19076 static struct dwarf2_per_cu_data *
19077 dwarf2_find_containing_comp_unit (sect_offset offset,
19078 unsigned int offset_in_dwz,
19079 struct objfile *objfile)
19080 {
19081 struct dwarf2_per_cu_data *this_cu;
19082 int low, high;
19083 const sect_offset *cu_off;
19084
19085 low = 0;
19086 high = dwarf2_per_objfile->n_comp_units - 1;
19087 while (high > low)
19088 {
19089 struct dwarf2_per_cu_data *mid_cu;
19090 int mid = low + (high - low) / 2;
19091
19092 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19093 cu_off = &mid_cu->offset;
19094 if (mid_cu->is_dwz > offset_in_dwz
19095 || (mid_cu->is_dwz == offset_in_dwz
19096 && cu_off->sect_off >= offset.sect_off))
19097 high = mid;
19098 else
19099 low = mid + 1;
19100 }
19101 gdb_assert (low == high);
19102 this_cu = dwarf2_per_objfile->all_comp_units[low];
19103 cu_off = &this_cu->offset;
19104 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19105 {
19106 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19107 error (_("Dwarf Error: could not find partial DIE containing "
19108 "offset 0x%lx [in module %s]"),
19109 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19110
19111 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19112 <= offset.sect_off);
19113 return dwarf2_per_objfile->all_comp_units[low-1];
19114 }
19115 else
19116 {
19117 this_cu = dwarf2_per_objfile->all_comp_units[low];
19118 if (low == dwarf2_per_objfile->n_comp_units - 1
19119 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19120 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19121 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19122 return this_cu;
19123 }
19124 }
19125
19126 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19127
19128 static void
19129 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19130 {
19131 memset (cu, 0, sizeof (*cu));
19132 per_cu->cu = cu;
19133 cu->per_cu = per_cu;
19134 cu->objfile = per_cu->objfile;
19135 obstack_init (&cu->comp_unit_obstack);
19136 }
19137
19138 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19139
19140 static void
19141 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19142 enum language pretend_language)
19143 {
19144 struct attribute *attr;
19145
19146 /* Set the language we're debugging. */
19147 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19148 if (attr)
19149 set_cu_language (DW_UNSND (attr), cu);
19150 else
19151 {
19152 cu->language = pretend_language;
19153 cu->language_defn = language_def (cu->language);
19154 }
19155
19156 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19157 if (attr)
19158 cu->producer = DW_STRING (attr);
19159 }
19160
19161 /* Release one cached compilation unit, CU. We unlink it from the tree
19162 of compilation units, but we don't remove it from the read_in_chain;
19163 the caller is responsible for that.
19164 NOTE: DATA is a void * because this function is also used as a
19165 cleanup routine. */
19166
19167 static void
19168 free_heap_comp_unit (void *data)
19169 {
19170 struct dwarf2_cu *cu = data;
19171
19172 gdb_assert (cu->per_cu != NULL);
19173 cu->per_cu->cu = NULL;
19174 cu->per_cu = NULL;
19175
19176 obstack_free (&cu->comp_unit_obstack, NULL);
19177
19178 xfree (cu);
19179 }
19180
19181 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19182 when we're finished with it. We can't free the pointer itself, but be
19183 sure to unlink it from the cache. Also release any associated storage. */
19184
19185 static void
19186 free_stack_comp_unit (void *data)
19187 {
19188 struct dwarf2_cu *cu = data;
19189
19190 gdb_assert (cu->per_cu != NULL);
19191 cu->per_cu->cu = NULL;
19192 cu->per_cu = NULL;
19193
19194 obstack_free (&cu->comp_unit_obstack, NULL);
19195 cu->partial_dies = NULL;
19196 }
19197
19198 /* Free all cached compilation units. */
19199
19200 static void
19201 free_cached_comp_units (void *data)
19202 {
19203 struct dwarf2_per_cu_data *per_cu, **last_chain;
19204
19205 per_cu = dwarf2_per_objfile->read_in_chain;
19206 last_chain = &dwarf2_per_objfile->read_in_chain;
19207 while (per_cu != NULL)
19208 {
19209 struct dwarf2_per_cu_data *next_cu;
19210
19211 next_cu = per_cu->cu->read_in_chain;
19212
19213 free_heap_comp_unit (per_cu->cu);
19214 *last_chain = next_cu;
19215
19216 per_cu = next_cu;
19217 }
19218 }
19219
19220 /* Increase the age counter on each cached compilation unit, and free
19221 any that are too old. */
19222
19223 static void
19224 age_cached_comp_units (void)
19225 {
19226 struct dwarf2_per_cu_data *per_cu, **last_chain;
19227
19228 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19229 per_cu = dwarf2_per_objfile->read_in_chain;
19230 while (per_cu != NULL)
19231 {
19232 per_cu->cu->last_used ++;
19233 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19234 dwarf2_mark (per_cu->cu);
19235 per_cu = per_cu->cu->read_in_chain;
19236 }
19237
19238 per_cu = dwarf2_per_objfile->read_in_chain;
19239 last_chain = &dwarf2_per_objfile->read_in_chain;
19240 while (per_cu != NULL)
19241 {
19242 struct dwarf2_per_cu_data *next_cu;
19243
19244 next_cu = per_cu->cu->read_in_chain;
19245
19246 if (!per_cu->cu->mark)
19247 {
19248 free_heap_comp_unit (per_cu->cu);
19249 *last_chain = next_cu;
19250 }
19251 else
19252 last_chain = &per_cu->cu->read_in_chain;
19253
19254 per_cu = next_cu;
19255 }
19256 }
19257
19258 /* Remove a single compilation unit from the cache. */
19259
19260 static void
19261 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19262 {
19263 struct dwarf2_per_cu_data *per_cu, **last_chain;
19264
19265 per_cu = dwarf2_per_objfile->read_in_chain;
19266 last_chain = &dwarf2_per_objfile->read_in_chain;
19267 while (per_cu != NULL)
19268 {
19269 struct dwarf2_per_cu_data *next_cu;
19270
19271 next_cu = per_cu->cu->read_in_chain;
19272
19273 if (per_cu == target_per_cu)
19274 {
19275 free_heap_comp_unit (per_cu->cu);
19276 per_cu->cu = NULL;
19277 *last_chain = next_cu;
19278 break;
19279 }
19280 else
19281 last_chain = &per_cu->cu->read_in_chain;
19282
19283 per_cu = next_cu;
19284 }
19285 }
19286
19287 /* Release all extra memory associated with OBJFILE. */
19288
19289 void
19290 dwarf2_free_objfile (struct objfile *objfile)
19291 {
19292 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19293
19294 if (dwarf2_per_objfile == NULL)
19295 return;
19296
19297 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19298 free_cached_comp_units (NULL);
19299
19300 if (dwarf2_per_objfile->quick_file_names_table)
19301 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19302
19303 /* Everything else should be on the objfile obstack. */
19304 }
19305
19306 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19307 We store these in a hash table separate from the DIEs, and preserve them
19308 when the DIEs are flushed out of cache.
19309
19310 The CU "per_cu" pointer is needed because offset alone is not enough to
19311 uniquely identify the type. A file may have multiple .debug_types sections,
19312 or the type may come from a DWO file. We have to use something in
19313 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19314 routine, get_die_type_at_offset, from outside this file, and thus won't
19315 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19316 of the objfile. */
19317
19318 struct dwarf2_per_cu_offset_and_type
19319 {
19320 const struct dwarf2_per_cu_data *per_cu;
19321 sect_offset offset;
19322 struct type *type;
19323 };
19324
19325 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19326
19327 static hashval_t
19328 per_cu_offset_and_type_hash (const void *item)
19329 {
19330 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19331
19332 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19333 }
19334
19335 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19336
19337 static int
19338 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19339 {
19340 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19341 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19342
19343 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19344 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19345 }
19346
19347 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19348 table if necessary. For convenience, return TYPE.
19349
19350 The DIEs reading must have careful ordering to:
19351 * Not cause infite loops trying to read in DIEs as a prerequisite for
19352 reading current DIE.
19353 * Not trying to dereference contents of still incompletely read in types
19354 while reading in other DIEs.
19355 * Enable referencing still incompletely read in types just by a pointer to
19356 the type without accessing its fields.
19357
19358 Therefore caller should follow these rules:
19359 * Try to fetch any prerequisite types we may need to build this DIE type
19360 before building the type and calling set_die_type.
19361 * After building type call set_die_type for current DIE as soon as
19362 possible before fetching more types to complete the current type.
19363 * Make the type as complete as possible before fetching more types. */
19364
19365 static struct type *
19366 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19367 {
19368 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19369 struct objfile *objfile = cu->objfile;
19370
19371 /* For Ada types, make sure that the gnat-specific data is always
19372 initialized (if not already set). There are a few types where
19373 we should not be doing so, because the type-specific area is
19374 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19375 where the type-specific area is used to store the floatformat).
19376 But this is not a problem, because the gnat-specific information
19377 is actually not needed for these types. */
19378 if (need_gnat_info (cu)
19379 && TYPE_CODE (type) != TYPE_CODE_FUNC
19380 && TYPE_CODE (type) != TYPE_CODE_FLT
19381 && !HAVE_GNAT_AUX_INFO (type))
19382 INIT_GNAT_SPECIFIC (type);
19383
19384 if (dwarf2_per_objfile->die_type_hash == NULL)
19385 {
19386 dwarf2_per_objfile->die_type_hash =
19387 htab_create_alloc_ex (127,
19388 per_cu_offset_and_type_hash,
19389 per_cu_offset_and_type_eq,
19390 NULL,
19391 &objfile->objfile_obstack,
19392 hashtab_obstack_allocate,
19393 dummy_obstack_deallocate);
19394 }
19395
19396 ofs.per_cu = cu->per_cu;
19397 ofs.offset = die->offset;
19398 ofs.type = type;
19399 slot = (struct dwarf2_per_cu_offset_and_type **)
19400 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19401 if (*slot)
19402 complaint (&symfile_complaints,
19403 _("A problem internal to GDB: DIE 0x%x has type already set"),
19404 die->offset.sect_off);
19405 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19406 **slot = ofs;
19407 return type;
19408 }
19409
19410 /* Look up the type for the die at OFFSET in the appropriate type_hash
19411 table, or return NULL if the die does not have a saved type. */
19412
19413 static struct type *
19414 get_die_type_at_offset (sect_offset offset,
19415 struct dwarf2_per_cu_data *per_cu)
19416 {
19417 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19418
19419 if (dwarf2_per_objfile->die_type_hash == NULL)
19420 return NULL;
19421
19422 ofs.per_cu = per_cu;
19423 ofs.offset = offset;
19424 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19425 if (slot)
19426 return slot->type;
19427 else
19428 return NULL;
19429 }
19430
19431 /* Look up the type for DIE in the appropriate type_hash table,
19432 or return NULL if DIE does not have a saved type. */
19433
19434 static struct type *
19435 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19436 {
19437 return get_die_type_at_offset (die->offset, cu->per_cu);
19438 }
19439
19440 /* Add a dependence relationship from CU to REF_PER_CU. */
19441
19442 static void
19443 dwarf2_add_dependence (struct dwarf2_cu *cu,
19444 struct dwarf2_per_cu_data *ref_per_cu)
19445 {
19446 void **slot;
19447
19448 if (cu->dependencies == NULL)
19449 cu->dependencies
19450 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19451 NULL, &cu->comp_unit_obstack,
19452 hashtab_obstack_allocate,
19453 dummy_obstack_deallocate);
19454
19455 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19456 if (*slot == NULL)
19457 *slot = ref_per_cu;
19458 }
19459
19460 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19461 Set the mark field in every compilation unit in the
19462 cache that we must keep because we are keeping CU. */
19463
19464 static int
19465 dwarf2_mark_helper (void **slot, void *data)
19466 {
19467 struct dwarf2_per_cu_data *per_cu;
19468
19469 per_cu = (struct dwarf2_per_cu_data *) *slot;
19470
19471 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19472 reading of the chain. As such dependencies remain valid it is not much
19473 useful to track and undo them during QUIT cleanups. */
19474 if (per_cu->cu == NULL)
19475 return 1;
19476
19477 if (per_cu->cu->mark)
19478 return 1;
19479 per_cu->cu->mark = 1;
19480
19481 if (per_cu->cu->dependencies != NULL)
19482 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19483
19484 return 1;
19485 }
19486
19487 /* Set the mark field in CU and in every other compilation unit in the
19488 cache that we must keep because we are keeping CU. */
19489
19490 static void
19491 dwarf2_mark (struct dwarf2_cu *cu)
19492 {
19493 if (cu->mark)
19494 return;
19495 cu->mark = 1;
19496 if (cu->dependencies != NULL)
19497 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19498 }
19499
19500 static void
19501 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19502 {
19503 while (per_cu)
19504 {
19505 per_cu->cu->mark = 0;
19506 per_cu = per_cu->cu->read_in_chain;
19507 }
19508 }
19509
19510 /* Trivial hash function for partial_die_info: the hash value of a DIE
19511 is its offset in .debug_info for this objfile. */
19512
19513 static hashval_t
19514 partial_die_hash (const void *item)
19515 {
19516 const struct partial_die_info *part_die = item;
19517
19518 return part_die->offset.sect_off;
19519 }
19520
19521 /* Trivial comparison function for partial_die_info structures: two DIEs
19522 are equal if they have the same offset. */
19523
19524 static int
19525 partial_die_eq (const void *item_lhs, const void *item_rhs)
19526 {
19527 const struct partial_die_info *part_die_lhs = item_lhs;
19528 const struct partial_die_info *part_die_rhs = item_rhs;
19529
19530 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19531 }
19532
19533 static struct cmd_list_element *set_dwarf2_cmdlist;
19534 static struct cmd_list_element *show_dwarf2_cmdlist;
19535
19536 static void
19537 set_dwarf2_cmd (char *args, int from_tty)
19538 {
19539 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19540 }
19541
19542 static void
19543 show_dwarf2_cmd (char *args, int from_tty)
19544 {
19545 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19546 }
19547
19548 /* Free data associated with OBJFILE, if necessary. */
19549
19550 static void
19551 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19552 {
19553 struct dwarf2_per_objfile *data = d;
19554 int ix;
19555
19556 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19557 VEC_free (dwarf2_per_cu_ptr,
19558 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
19559
19560 VEC_free (dwarf2_section_info_def, data->types);
19561
19562 if (data->dwo_files)
19563 free_dwo_files (data->dwo_files, objfile);
19564
19565 if (data->dwz_file && data->dwz_file->dwz_bfd)
19566 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19567 }
19568
19569 \f
19570 /* The "save gdb-index" command. */
19571
19572 /* The contents of the hash table we create when building the string
19573 table. */
19574 struct strtab_entry
19575 {
19576 offset_type offset;
19577 const char *str;
19578 };
19579
19580 /* Hash function for a strtab_entry.
19581
19582 Function is used only during write_hash_table so no index format backward
19583 compatibility is needed. */
19584
19585 static hashval_t
19586 hash_strtab_entry (const void *e)
19587 {
19588 const struct strtab_entry *entry = e;
19589 return mapped_index_string_hash (INT_MAX, entry->str);
19590 }
19591
19592 /* Equality function for a strtab_entry. */
19593
19594 static int
19595 eq_strtab_entry (const void *a, const void *b)
19596 {
19597 const struct strtab_entry *ea = a;
19598 const struct strtab_entry *eb = b;
19599 return !strcmp (ea->str, eb->str);
19600 }
19601
19602 /* Create a strtab_entry hash table. */
19603
19604 static htab_t
19605 create_strtab (void)
19606 {
19607 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19608 xfree, xcalloc, xfree);
19609 }
19610
19611 /* Add a string to the constant pool. Return the string's offset in
19612 host order. */
19613
19614 static offset_type
19615 add_string (htab_t table, struct obstack *cpool, const char *str)
19616 {
19617 void **slot;
19618 struct strtab_entry entry;
19619 struct strtab_entry *result;
19620
19621 entry.str = str;
19622 slot = htab_find_slot (table, &entry, INSERT);
19623 if (*slot)
19624 result = *slot;
19625 else
19626 {
19627 result = XNEW (struct strtab_entry);
19628 result->offset = obstack_object_size (cpool);
19629 result->str = str;
19630 obstack_grow_str0 (cpool, str);
19631 *slot = result;
19632 }
19633 return result->offset;
19634 }
19635
19636 /* An entry in the symbol table. */
19637 struct symtab_index_entry
19638 {
19639 /* The name of the symbol. */
19640 const char *name;
19641 /* The offset of the name in the constant pool. */
19642 offset_type index_offset;
19643 /* A sorted vector of the indices of all the CUs that hold an object
19644 of this name. */
19645 VEC (offset_type) *cu_indices;
19646 };
19647
19648 /* The symbol table. This is a power-of-2-sized hash table. */
19649 struct mapped_symtab
19650 {
19651 offset_type n_elements;
19652 offset_type size;
19653 struct symtab_index_entry **data;
19654 };
19655
19656 /* Hash function for a symtab_index_entry. */
19657
19658 static hashval_t
19659 hash_symtab_entry (const void *e)
19660 {
19661 const struct symtab_index_entry *entry = e;
19662 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19663 sizeof (offset_type) * VEC_length (offset_type,
19664 entry->cu_indices),
19665 0);
19666 }
19667
19668 /* Equality function for a symtab_index_entry. */
19669
19670 static int
19671 eq_symtab_entry (const void *a, const void *b)
19672 {
19673 const struct symtab_index_entry *ea = a;
19674 const struct symtab_index_entry *eb = b;
19675 int len = VEC_length (offset_type, ea->cu_indices);
19676 if (len != VEC_length (offset_type, eb->cu_indices))
19677 return 0;
19678 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19679 VEC_address (offset_type, eb->cu_indices),
19680 sizeof (offset_type) * len);
19681 }
19682
19683 /* Destroy a symtab_index_entry. */
19684
19685 static void
19686 delete_symtab_entry (void *p)
19687 {
19688 struct symtab_index_entry *entry = p;
19689 VEC_free (offset_type, entry->cu_indices);
19690 xfree (entry);
19691 }
19692
19693 /* Create a hash table holding symtab_index_entry objects. */
19694
19695 static htab_t
19696 create_symbol_hash_table (void)
19697 {
19698 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19699 delete_symtab_entry, xcalloc, xfree);
19700 }
19701
19702 /* Create a new mapped symtab object. */
19703
19704 static struct mapped_symtab *
19705 create_mapped_symtab (void)
19706 {
19707 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19708 symtab->n_elements = 0;
19709 symtab->size = 1024;
19710 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19711 return symtab;
19712 }
19713
19714 /* Destroy a mapped_symtab. */
19715
19716 static void
19717 cleanup_mapped_symtab (void *p)
19718 {
19719 struct mapped_symtab *symtab = p;
19720 /* The contents of the array are freed when the other hash table is
19721 destroyed. */
19722 xfree (symtab->data);
19723 xfree (symtab);
19724 }
19725
19726 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19727 the slot.
19728
19729 Function is used only during write_hash_table so no index format backward
19730 compatibility is needed. */
19731
19732 static struct symtab_index_entry **
19733 find_slot (struct mapped_symtab *symtab, const char *name)
19734 {
19735 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19736
19737 index = hash & (symtab->size - 1);
19738 step = ((hash * 17) & (symtab->size - 1)) | 1;
19739
19740 for (;;)
19741 {
19742 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19743 return &symtab->data[index];
19744 index = (index + step) & (symtab->size - 1);
19745 }
19746 }
19747
19748 /* Expand SYMTAB's hash table. */
19749
19750 static void
19751 hash_expand (struct mapped_symtab *symtab)
19752 {
19753 offset_type old_size = symtab->size;
19754 offset_type i;
19755 struct symtab_index_entry **old_entries = symtab->data;
19756
19757 symtab->size *= 2;
19758 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19759
19760 for (i = 0; i < old_size; ++i)
19761 {
19762 if (old_entries[i])
19763 {
19764 struct symtab_index_entry **slot = find_slot (symtab,
19765 old_entries[i]->name);
19766 *slot = old_entries[i];
19767 }
19768 }
19769
19770 xfree (old_entries);
19771 }
19772
19773 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19774 CU_INDEX is the index of the CU in which the symbol appears.
19775 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19776
19777 static void
19778 add_index_entry (struct mapped_symtab *symtab, const char *name,
19779 int is_static, gdb_index_symbol_kind kind,
19780 offset_type cu_index)
19781 {
19782 struct symtab_index_entry **slot;
19783 offset_type cu_index_and_attrs;
19784
19785 ++symtab->n_elements;
19786 if (4 * symtab->n_elements / 3 >= symtab->size)
19787 hash_expand (symtab);
19788
19789 slot = find_slot (symtab, name);
19790 if (!*slot)
19791 {
19792 *slot = XNEW (struct symtab_index_entry);
19793 (*slot)->name = name;
19794 /* index_offset is set later. */
19795 (*slot)->cu_indices = NULL;
19796 }
19797
19798 cu_index_and_attrs = 0;
19799 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19800 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19801 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19802
19803 /* We don't want to record an index value twice as we want to avoid the
19804 duplication.
19805 We process all global symbols and then all static symbols
19806 (which would allow us to avoid the duplication by only having to check
19807 the last entry pushed), but a symbol could have multiple kinds in one CU.
19808 To keep things simple we don't worry about the duplication here and
19809 sort and uniqufy the list after we've processed all symbols. */
19810 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19811 }
19812
19813 /* qsort helper routine for uniquify_cu_indices. */
19814
19815 static int
19816 offset_type_compare (const void *ap, const void *bp)
19817 {
19818 offset_type a = *(offset_type *) ap;
19819 offset_type b = *(offset_type *) bp;
19820
19821 return (a > b) - (b > a);
19822 }
19823
19824 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19825
19826 static void
19827 uniquify_cu_indices (struct mapped_symtab *symtab)
19828 {
19829 int i;
19830
19831 for (i = 0; i < symtab->size; ++i)
19832 {
19833 struct symtab_index_entry *entry = symtab->data[i];
19834
19835 if (entry
19836 && entry->cu_indices != NULL)
19837 {
19838 unsigned int next_to_insert, next_to_check;
19839 offset_type last_value;
19840
19841 qsort (VEC_address (offset_type, entry->cu_indices),
19842 VEC_length (offset_type, entry->cu_indices),
19843 sizeof (offset_type), offset_type_compare);
19844
19845 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19846 next_to_insert = 1;
19847 for (next_to_check = 1;
19848 next_to_check < VEC_length (offset_type, entry->cu_indices);
19849 ++next_to_check)
19850 {
19851 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19852 != last_value)
19853 {
19854 last_value = VEC_index (offset_type, entry->cu_indices,
19855 next_to_check);
19856 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19857 last_value);
19858 ++next_to_insert;
19859 }
19860 }
19861 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19862 }
19863 }
19864 }
19865
19866 /* Add a vector of indices to the constant pool. */
19867
19868 static offset_type
19869 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19870 struct symtab_index_entry *entry)
19871 {
19872 void **slot;
19873
19874 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19875 if (!*slot)
19876 {
19877 offset_type len = VEC_length (offset_type, entry->cu_indices);
19878 offset_type val = MAYBE_SWAP (len);
19879 offset_type iter;
19880 int i;
19881
19882 *slot = entry;
19883 entry->index_offset = obstack_object_size (cpool);
19884
19885 obstack_grow (cpool, &val, sizeof (val));
19886 for (i = 0;
19887 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19888 ++i)
19889 {
19890 val = MAYBE_SWAP (iter);
19891 obstack_grow (cpool, &val, sizeof (val));
19892 }
19893 }
19894 else
19895 {
19896 struct symtab_index_entry *old_entry = *slot;
19897 entry->index_offset = old_entry->index_offset;
19898 entry = old_entry;
19899 }
19900 return entry->index_offset;
19901 }
19902
19903 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19904 constant pool entries going into the obstack CPOOL. */
19905
19906 static void
19907 write_hash_table (struct mapped_symtab *symtab,
19908 struct obstack *output, struct obstack *cpool)
19909 {
19910 offset_type i;
19911 htab_t symbol_hash_table;
19912 htab_t str_table;
19913
19914 symbol_hash_table = create_symbol_hash_table ();
19915 str_table = create_strtab ();
19916
19917 /* We add all the index vectors to the constant pool first, to
19918 ensure alignment is ok. */
19919 for (i = 0; i < symtab->size; ++i)
19920 {
19921 if (symtab->data[i])
19922 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19923 }
19924
19925 /* Now write out the hash table. */
19926 for (i = 0; i < symtab->size; ++i)
19927 {
19928 offset_type str_off, vec_off;
19929
19930 if (symtab->data[i])
19931 {
19932 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19933 vec_off = symtab->data[i]->index_offset;
19934 }
19935 else
19936 {
19937 /* While 0 is a valid constant pool index, it is not valid
19938 to have 0 for both offsets. */
19939 str_off = 0;
19940 vec_off = 0;
19941 }
19942
19943 str_off = MAYBE_SWAP (str_off);
19944 vec_off = MAYBE_SWAP (vec_off);
19945
19946 obstack_grow (output, &str_off, sizeof (str_off));
19947 obstack_grow (output, &vec_off, sizeof (vec_off));
19948 }
19949
19950 htab_delete (str_table);
19951 htab_delete (symbol_hash_table);
19952 }
19953
19954 /* Struct to map psymtab to CU index in the index file. */
19955 struct psymtab_cu_index_map
19956 {
19957 struct partial_symtab *psymtab;
19958 unsigned int cu_index;
19959 };
19960
19961 static hashval_t
19962 hash_psymtab_cu_index (const void *item)
19963 {
19964 const struct psymtab_cu_index_map *map = item;
19965
19966 return htab_hash_pointer (map->psymtab);
19967 }
19968
19969 static int
19970 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19971 {
19972 const struct psymtab_cu_index_map *lhs = item_lhs;
19973 const struct psymtab_cu_index_map *rhs = item_rhs;
19974
19975 return lhs->psymtab == rhs->psymtab;
19976 }
19977
19978 /* Helper struct for building the address table. */
19979 struct addrmap_index_data
19980 {
19981 struct objfile *objfile;
19982 struct obstack *addr_obstack;
19983 htab_t cu_index_htab;
19984
19985 /* Non-zero if the previous_* fields are valid.
19986 We can't write an entry until we see the next entry (since it is only then
19987 that we know the end of the entry). */
19988 int previous_valid;
19989 /* Index of the CU in the table of all CUs in the index file. */
19990 unsigned int previous_cu_index;
19991 /* Start address of the CU. */
19992 CORE_ADDR previous_cu_start;
19993 };
19994
19995 /* Write an address entry to OBSTACK. */
19996
19997 static void
19998 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19999 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20000 {
20001 offset_type cu_index_to_write;
20002 char addr[8];
20003 CORE_ADDR baseaddr;
20004
20005 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20006
20007 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20008 obstack_grow (obstack, addr, 8);
20009 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20010 obstack_grow (obstack, addr, 8);
20011 cu_index_to_write = MAYBE_SWAP (cu_index);
20012 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20013 }
20014
20015 /* Worker function for traversing an addrmap to build the address table. */
20016
20017 static int
20018 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20019 {
20020 struct addrmap_index_data *data = datap;
20021 struct partial_symtab *pst = obj;
20022
20023 if (data->previous_valid)
20024 add_address_entry (data->objfile, data->addr_obstack,
20025 data->previous_cu_start, start_addr,
20026 data->previous_cu_index);
20027
20028 data->previous_cu_start = start_addr;
20029 if (pst != NULL)
20030 {
20031 struct psymtab_cu_index_map find_map, *map;
20032 find_map.psymtab = pst;
20033 map = htab_find (data->cu_index_htab, &find_map);
20034 gdb_assert (map != NULL);
20035 data->previous_cu_index = map->cu_index;
20036 data->previous_valid = 1;
20037 }
20038 else
20039 data->previous_valid = 0;
20040
20041 return 0;
20042 }
20043
20044 /* Write OBJFILE's address map to OBSTACK.
20045 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20046 in the index file. */
20047
20048 static void
20049 write_address_map (struct objfile *objfile, struct obstack *obstack,
20050 htab_t cu_index_htab)
20051 {
20052 struct addrmap_index_data addrmap_index_data;
20053
20054 /* When writing the address table, we have to cope with the fact that
20055 the addrmap iterator only provides the start of a region; we have to
20056 wait until the next invocation to get the start of the next region. */
20057
20058 addrmap_index_data.objfile = objfile;
20059 addrmap_index_data.addr_obstack = obstack;
20060 addrmap_index_data.cu_index_htab = cu_index_htab;
20061 addrmap_index_data.previous_valid = 0;
20062
20063 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20064 &addrmap_index_data);
20065
20066 /* It's highly unlikely the last entry (end address = 0xff...ff)
20067 is valid, but we should still handle it.
20068 The end address is recorded as the start of the next region, but that
20069 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20070 anyway. */
20071 if (addrmap_index_data.previous_valid)
20072 add_address_entry (objfile, obstack,
20073 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20074 addrmap_index_data.previous_cu_index);
20075 }
20076
20077 /* Return the symbol kind of PSYM. */
20078
20079 static gdb_index_symbol_kind
20080 symbol_kind (struct partial_symbol *psym)
20081 {
20082 domain_enum domain = PSYMBOL_DOMAIN (psym);
20083 enum address_class aclass = PSYMBOL_CLASS (psym);
20084
20085 switch (domain)
20086 {
20087 case VAR_DOMAIN:
20088 switch (aclass)
20089 {
20090 case LOC_BLOCK:
20091 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20092 case LOC_TYPEDEF:
20093 return GDB_INDEX_SYMBOL_KIND_TYPE;
20094 case LOC_COMPUTED:
20095 case LOC_CONST_BYTES:
20096 case LOC_OPTIMIZED_OUT:
20097 case LOC_STATIC:
20098 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20099 case LOC_CONST:
20100 /* Note: It's currently impossible to recognize psyms as enum values
20101 short of reading the type info. For now punt. */
20102 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20103 default:
20104 /* There are other LOC_FOO values that one might want to classify
20105 as variables, but dwarf2read.c doesn't currently use them. */
20106 return GDB_INDEX_SYMBOL_KIND_OTHER;
20107 }
20108 case STRUCT_DOMAIN:
20109 return GDB_INDEX_SYMBOL_KIND_TYPE;
20110 default:
20111 return GDB_INDEX_SYMBOL_KIND_OTHER;
20112 }
20113 }
20114
20115 /* Add a list of partial symbols to SYMTAB. */
20116
20117 static void
20118 write_psymbols (struct mapped_symtab *symtab,
20119 htab_t psyms_seen,
20120 struct partial_symbol **psymp,
20121 int count,
20122 offset_type cu_index,
20123 int is_static)
20124 {
20125 for (; count-- > 0; ++psymp)
20126 {
20127 struct partial_symbol *psym = *psymp;
20128 void **slot;
20129
20130 if (SYMBOL_LANGUAGE (psym) == language_ada)
20131 error (_("Ada is not currently supported by the index"));
20132
20133 /* Only add a given psymbol once. */
20134 slot = htab_find_slot (psyms_seen, psym, INSERT);
20135 if (!*slot)
20136 {
20137 gdb_index_symbol_kind kind = symbol_kind (psym);
20138
20139 *slot = psym;
20140 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20141 is_static, kind, cu_index);
20142 }
20143 }
20144 }
20145
20146 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20147 exception if there is an error. */
20148
20149 static void
20150 write_obstack (FILE *file, struct obstack *obstack)
20151 {
20152 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20153 file)
20154 != obstack_object_size (obstack))
20155 error (_("couldn't data write to file"));
20156 }
20157
20158 /* Unlink a file if the argument is not NULL. */
20159
20160 static void
20161 unlink_if_set (void *p)
20162 {
20163 char **filename = p;
20164 if (*filename)
20165 unlink (*filename);
20166 }
20167
20168 /* A helper struct used when iterating over debug_types. */
20169 struct signatured_type_index_data
20170 {
20171 struct objfile *objfile;
20172 struct mapped_symtab *symtab;
20173 struct obstack *types_list;
20174 htab_t psyms_seen;
20175 int cu_index;
20176 };
20177
20178 /* A helper function that writes a single signatured_type to an
20179 obstack. */
20180
20181 static int
20182 write_one_signatured_type (void **slot, void *d)
20183 {
20184 struct signatured_type_index_data *info = d;
20185 struct signatured_type *entry = (struct signatured_type *) *slot;
20186 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20187 struct partial_symtab *psymtab = per_cu->v.psymtab;
20188 gdb_byte val[8];
20189
20190 write_psymbols (info->symtab,
20191 info->psyms_seen,
20192 info->objfile->global_psymbols.list
20193 + psymtab->globals_offset,
20194 psymtab->n_global_syms, info->cu_index,
20195 0);
20196 write_psymbols (info->symtab,
20197 info->psyms_seen,
20198 info->objfile->static_psymbols.list
20199 + psymtab->statics_offset,
20200 psymtab->n_static_syms, info->cu_index,
20201 1);
20202
20203 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20204 entry->per_cu.offset.sect_off);
20205 obstack_grow (info->types_list, val, 8);
20206 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20207 entry->type_offset_in_tu.cu_off);
20208 obstack_grow (info->types_list, val, 8);
20209 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20210 obstack_grow (info->types_list, val, 8);
20211
20212 ++info->cu_index;
20213
20214 return 1;
20215 }
20216
20217 /* Recurse into all "included" dependencies and write their symbols as
20218 if they appeared in this psymtab. */
20219
20220 static void
20221 recursively_write_psymbols (struct objfile *objfile,
20222 struct partial_symtab *psymtab,
20223 struct mapped_symtab *symtab,
20224 htab_t psyms_seen,
20225 offset_type cu_index)
20226 {
20227 int i;
20228
20229 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20230 if (psymtab->dependencies[i]->user != NULL)
20231 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20232 symtab, psyms_seen, cu_index);
20233
20234 write_psymbols (symtab,
20235 psyms_seen,
20236 objfile->global_psymbols.list + psymtab->globals_offset,
20237 psymtab->n_global_syms, cu_index,
20238 0);
20239 write_psymbols (symtab,
20240 psyms_seen,
20241 objfile->static_psymbols.list + psymtab->statics_offset,
20242 psymtab->n_static_syms, cu_index,
20243 1);
20244 }
20245
20246 /* Create an index file for OBJFILE in the directory DIR. */
20247
20248 static void
20249 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20250 {
20251 struct cleanup *cleanup;
20252 char *filename, *cleanup_filename;
20253 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20254 struct obstack cu_list, types_cu_list;
20255 int i;
20256 FILE *out_file;
20257 struct mapped_symtab *symtab;
20258 offset_type val, size_of_contents, total_len;
20259 struct stat st;
20260 htab_t psyms_seen;
20261 htab_t cu_index_htab;
20262 struct psymtab_cu_index_map *psymtab_cu_index_map;
20263
20264 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20265 return;
20266
20267 if (dwarf2_per_objfile->using_index)
20268 error (_("Cannot use an index to create the index"));
20269
20270 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20271 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20272
20273 if (stat (objfile->name, &st) < 0)
20274 perror_with_name (objfile->name);
20275
20276 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20277 INDEX_SUFFIX, (char *) NULL);
20278 cleanup = make_cleanup (xfree, filename);
20279
20280 out_file = fopen (filename, "wb");
20281 if (!out_file)
20282 error (_("Can't open `%s' for writing"), filename);
20283
20284 cleanup_filename = filename;
20285 make_cleanup (unlink_if_set, &cleanup_filename);
20286
20287 symtab = create_mapped_symtab ();
20288 make_cleanup (cleanup_mapped_symtab, symtab);
20289
20290 obstack_init (&addr_obstack);
20291 make_cleanup_obstack_free (&addr_obstack);
20292
20293 obstack_init (&cu_list);
20294 make_cleanup_obstack_free (&cu_list);
20295
20296 obstack_init (&types_cu_list);
20297 make_cleanup_obstack_free (&types_cu_list);
20298
20299 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20300 NULL, xcalloc, xfree);
20301 make_cleanup_htab_delete (psyms_seen);
20302
20303 /* While we're scanning CU's create a table that maps a psymtab pointer
20304 (which is what addrmap records) to its index (which is what is recorded
20305 in the index file). This will later be needed to write the address
20306 table. */
20307 cu_index_htab = htab_create_alloc (100,
20308 hash_psymtab_cu_index,
20309 eq_psymtab_cu_index,
20310 NULL, xcalloc, xfree);
20311 make_cleanup_htab_delete (cu_index_htab);
20312 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20313 xmalloc (sizeof (struct psymtab_cu_index_map)
20314 * dwarf2_per_objfile->n_comp_units);
20315 make_cleanup (xfree, psymtab_cu_index_map);
20316
20317 /* The CU list is already sorted, so we don't need to do additional
20318 work here. Also, the debug_types entries do not appear in
20319 all_comp_units, but only in their own hash table. */
20320 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20321 {
20322 struct dwarf2_per_cu_data *per_cu
20323 = dwarf2_per_objfile->all_comp_units[i];
20324 struct partial_symtab *psymtab = per_cu->v.psymtab;
20325 gdb_byte val[8];
20326 struct psymtab_cu_index_map *map;
20327 void **slot;
20328
20329 if (psymtab->user == NULL)
20330 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20331
20332 map = &psymtab_cu_index_map[i];
20333 map->psymtab = psymtab;
20334 map->cu_index = i;
20335 slot = htab_find_slot (cu_index_htab, map, INSERT);
20336 gdb_assert (slot != NULL);
20337 gdb_assert (*slot == NULL);
20338 *slot = map;
20339
20340 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20341 per_cu->offset.sect_off);
20342 obstack_grow (&cu_list, val, 8);
20343 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20344 obstack_grow (&cu_list, val, 8);
20345 }
20346
20347 /* Dump the address map. */
20348 write_address_map (objfile, &addr_obstack, cu_index_htab);
20349
20350 /* Write out the .debug_type entries, if any. */
20351 if (dwarf2_per_objfile->signatured_types)
20352 {
20353 struct signatured_type_index_data sig_data;
20354
20355 sig_data.objfile = objfile;
20356 sig_data.symtab = symtab;
20357 sig_data.types_list = &types_cu_list;
20358 sig_data.psyms_seen = psyms_seen;
20359 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20360 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20361 write_one_signatured_type, &sig_data);
20362 }
20363
20364 /* Now that we've processed all symbols we can shrink their cu_indices
20365 lists. */
20366 uniquify_cu_indices (symtab);
20367
20368 obstack_init (&constant_pool);
20369 make_cleanup_obstack_free (&constant_pool);
20370 obstack_init (&symtab_obstack);
20371 make_cleanup_obstack_free (&symtab_obstack);
20372 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20373
20374 obstack_init (&contents);
20375 make_cleanup_obstack_free (&contents);
20376 size_of_contents = 6 * sizeof (offset_type);
20377 total_len = size_of_contents;
20378
20379 /* The version number. */
20380 val = MAYBE_SWAP (7);
20381 obstack_grow (&contents, &val, sizeof (val));
20382
20383 /* The offset of the CU list from the start of the file. */
20384 val = MAYBE_SWAP (total_len);
20385 obstack_grow (&contents, &val, sizeof (val));
20386 total_len += obstack_object_size (&cu_list);
20387
20388 /* The offset of the types CU list from the start of the file. */
20389 val = MAYBE_SWAP (total_len);
20390 obstack_grow (&contents, &val, sizeof (val));
20391 total_len += obstack_object_size (&types_cu_list);
20392
20393 /* The offset of the address table from the start of the file. */
20394 val = MAYBE_SWAP (total_len);
20395 obstack_grow (&contents, &val, sizeof (val));
20396 total_len += obstack_object_size (&addr_obstack);
20397
20398 /* The offset of the symbol table from the start of the file. */
20399 val = MAYBE_SWAP (total_len);
20400 obstack_grow (&contents, &val, sizeof (val));
20401 total_len += obstack_object_size (&symtab_obstack);
20402
20403 /* The offset of the constant pool from the start of the file. */
20404 val = MAYBE_SWAP (total_len);
20405 obstack_grow (&contents, &val, sizeof (val));
20406 total_len += obstack_object_size (&constant_pool);
20407
20408 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20409
20410 write_obstack (out_file, &contents);
20411 write_obstack (out_file, &cu_list);
20412 write_obstack (out_file, &types_cu_list);
20413 write_obstack (out_file, &addr_obstack);
20414 write_obstack (out_file, &symtab_obstack);
20415 write_obstack (out_file, &constant_pool);
20416
20417 fclose (out_file);
20418
20419 /* We want to keep the file, so we set cleanup_filename to NULL
20420 here. See unlink_if_set. */
20421 cleanup_filename = NULL;
20422
20423 do_cleanups (cleanup);
20424 }
20425
20426 /* Implementation of the `save gdb-index' command.
20427
20428 Note that the file format used by this command is documented in the
20429 GDB manual. Any changes here must be documented there. */
20430
20431 static void
20432 save_gdb_index_command (char *arg, int from_tty)
20433 {
20434 struct objfile *objfile;
20435
20436 if (!arg || !*arg)
20437 error (_("usage: save gdb-index DIRECTORY"));
20438
20439 ALL_OBJFILES (objfile)
20440 {
20441 struct stat st;
20442
20443 /* If the objfile does not correspond to an actual file, skip it. */
20444 if (stat (objfile->name, &st) < 0)
20445 continue;
20446
20447 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20448 if (dwarf2_per_objfile)
20449 {
20450 volatile struct gdb_exception except;
20451
20452 TRY_CATCH (except, RETURN_MASK_ERROR)
20453 {
20454 write_psymtabs_to_index (objfile, arg);
20455 }
20456 if (except.reason < 0)
20457 exception_fprintf (gdb_stderr, except,
20458 _("Error while writing index for `%s': "),
20459 objfile->name);
20460 }
20461 }
20462 }
20463
20464 \f
20465
20466 int dwarf2_always_disassemble;
20467
20468 static void
20469 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20470 struct cmd_list_element *c, const char *value)
20471 {
20472 fprintf_filtered (file,
20473 _("Whether to always disassemble "
20474 "DWARF expressions is %s.\n"),
20475 value);
20476 }
20477
20478 static void
20479 show_check_physname (struct ui_file *file, int from_tty,
20480 struct cmd_list_element *c, const char *value)
20481 {
20482 fprintf_filtered (file,
20483 _("Whether to check \"physname\" is %s.\n"),
20484 value);
20485 }
20486
20487 void _initialize_dwarf2_read (void);
20488
20489 void
20490 _initialize_dwarf2_read (void)
20491 {
20492 struct cmd_list_element *c;
20493
20494 dwarf2_objfile_data_key
20495 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20496
20497 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20498 Set DWARF 2 specific variables.\n\
20499 Configure DWARF 2 variables such as the cache size"),
20500 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20501 0/*allow-unknown*/, &maintenance_set_cmdlist);
20502
20503 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20504 Show DWARF 2 specific variables\n\
20505 Show DWARF 2 variables such as the cache size"),
20506 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20507 0/*allow-unknown*/, &maintenance_show_cmdlist);
20508
20509 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20510 &dwarf2_max_cache_age, _("\
20511 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20512 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20513 A higher limit means that cached compilation units will be stored\n\
20514 in memory longer, and more total memory will be used. Zero disables\n\
20515 caching, which can slow down startup."),
20516 NULL,
20517 show_dwarf2_max_cache_age,
20518 &set_dwarf2_cmdlist,
20519 &show_dwarf2_cmdlist);
20520
20521 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20522 &dwarf2_always_disassemble, _("\
20523 Set whether `info address' always disassembles DWARF expressions."), _("\
20524 Show whether `info address' always disassembles DWARF expressions."), _("\
20525 When enabled, DWARF expressions are always printed in an assembly-like\n\
20526 syntax. When disabled, expressions will be printed in a more\n\
20527 conversational style, when possible."),
20528 NULL,
20529 show_dwarf2_always_disassemble,
20530 &set_dwarf2_cmdlist,
20531 &show_dwarf2_cmdlist);
20532
20533 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20534 Set debugging of the dwarf2 reader."), _("\
20535 Show debugging of the dwarf2 reader."), _("\
20536 When enabled, debugging messages are printed during dwarf2 reading\n\
20537 and symtab expansion."),
20538 NULL,
20539 NULL,
20540 &setdebuglist, &showdebuglist);
20541
20542 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20543 Set debugging of the dwarf2 DIE reader."), _("\
20544 Show debugging of the dwarf2 DIE reader."), _("\
20545 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20546 The value is the maximum depth to print."),
20547 NULL,
20548 NULL,
20549 &setdebuglist, &showdebuglist);
20550
20551 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20552 Set cross-checking of \"physname\" code against demangler."), _("\
20553 Show cross-checking of \"physname\" code against demangler."), _("\
20554 When enabled, GDB's internal \"physname\" code is checked against\n\
20555 the demangler."),
20556 NULL, show_check_physname,
20557 &setdebuglist, &showdebuglist);
20558
20559 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20560 no_class, &use_deprecated_index_sections, _("\
20561 Set whether to use deprecated gdb_index sections."), _("\
20562 Show whether to use deprecated gdb_index sections."), _("\
20563 When enabled, deprecated .gdb_index sections are used anyway.\n\
20564 Normally they are ignored either because of a missing feature or\n\
20565 performance issue.\n\
20566 Warning: This option must be enabled before gdb reads the file."),
20567 NULL,
20568 NULL,
20569 &setlist, &showlist);
20570
20571 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20572 _("\
20573 Save a gdb-index file.\n\
20574 Usage: save gdb-index DIRECTORY"),
20575 &save_cmdlist);
20576 set_cmd_completer (c, filename_completer);
20577 }
This page took 0.490758 seconds and 4 git commands to generate.