* Makefile.in (WARN_CFLAGS): Get it from configure.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The hash table. */
158 const offset_type *index_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type index_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index. */
208 unsigned char using_index;
209
210 /* The mapped index. */
211 struct mapped_index *index_table;
212
213 /* Set during partial symbol reading, to prevent queueing of full
214 symbols. */
215 int reading_partial_symbols;
216
217 /* Table mapping type .debug_info DIE offsets to types.
218 This is NULL if not allocated yet.
219 It (currently) makes sense to allocate debug_types_type_hash lazily.
220 To keep things simple we allocate both lazily. */
221 htab_t debug_info_type_hash;
222
223 /* Table mapping type .debug_types DIE offsets to types.
224 This is NULL if not allocated yet. */
225 htab_t debug_types_type_hash;
226 };
227
228 static struct dwarf2_per_objfile *dwarf2_per_objfile;
229
230 /* names of the debugging sections */
231
232 /* Note that if the debugging section has been compressed, it might
233 have a name like .zdebug_info. */
234
235 #define INFO_SECTION "debug_info"
236 #define ABBREV_SECTION "debug_abbrev"
237 #define LINE_SECTION "debug_line"
238 #define LOC_SECTION "debug_loc"
239 #define MACINFO_SECTION "debug_macinfo"
240 #define STR_SECTION "debug_str"
241 #define RANGES_SECTION "debug_ranges"
242 #define TYPES_SECTION "debug_types"
243 #define FRAME_SECTION "debug_frame"
244 #define EH_FRAME_SECTION "eh_frame"
245 #define GDB_INDEX_SECTION "gdb_index"
246
247 /* local data types */
248
249 /* We hold several abbreviation tables in memory at the same time. */
250 #ifndef ABBREV_HASH_SIZE
251 #define ABBREV_HASH_SIZE 121
252 #endif
253
254 /* The data in a compilation unit header, after target2host
255 translation, looks like this. */
256 struct comp_unit_head
257 {
258 unsigned int length;
259 short version;
260 unsigned char addr_size;
261 unsigned char signed_addr_p;
262 unsigned int abbrev_offset;
263
264 /* Size of file offsets; either 4 or 8. */
265 unsigned int offset_size;
266
267 /* Size of the length field; either 4 or 12. */
268 unsigned int initial_length_size;
269
270 /* Offset to the first byte of this compilation unit header in the
271 .debug_info section, for resolving relative reference dies. */
272 unsigned int offset;
273
274 /* Offset to first die in this cu from the start of the cu.
275 This will be the first byte following the compilation unit header. */
276 unsigned int first_die_offset;
277 };
278
279 /* Type used for delaying computation of method physnames.
280 See comments for compute_delayed_physnames. */
281 struct delayed_method_info
282 {
283 /* The type to which the method is attached, i.e., its parent class. */
284 struct type *type;
285
286 /* The index of the method in the type's function fieldlists. */
287 int fnfield_index;
288
289 /* The index of the method in the fieldlist. */
290 int index;
291
292 /* The name of the DIE. */
293 const char *name;
294
295 /* The DIE associated with this method. */
296 struct die_info *die;
297 };
298
299 typedef struct delayed_method_info delayed_method_info;
300 DEF_VEC_O (delayed_method_info);
301
302 /* Internal state when decoding a particular compilation unit. */
303 struct dwarf2_cu
304 {
305 /* The objfile containing this compilation unit. */
306 struct objfile *objfile;
307
308 /* The header of the compilation unit. */
309 struct comp_unit_head header;
310
311 /* Base address of this compilation unit. */
312 CORE_ADDR base_address;
313
314 /* Non-zero if base_address has been set. */
315 int base_known;
316
317 struct function_range *first_fn, *last_fn, *cached_fn;
318
319 /* The language we are debugging. */
320 enum language language;
321 const struct language_defn *language_defn;
322
323 const char *producer;
324
325 /* The generic symbol table building routines have separate lists for
326 file scope symbols and all all other scopes (local scopes). So
327 we need to select the right one to pass to add_symbol_to_list().
328 We do it by keeping a pointer to the correct list in list_in_scope.
329
330 FIXME: The original dwarf code just treated the file scope as the
331 first local scope, and all other local scopes as nested local
332 scopes, and worked fine. Check to see if we really need to
333 distinguish these in buildsym.c. */
334 struct pending **list_in_scope;
335
336 /* DWARF abbreviation table associated with this compilation unit. */
337 struct abbrev_info **dwarf2_abbrevs;
338
339 /* Storage for the abbrev table. */
340 struct obstack abbrev_obstack;
341
342 /* Hash table holding all the loaded partial DIEs. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of die offsets for following references. */
362 htab_t die_hash;
363
364 /* Full DIEs if read in. */
365 struct die_info *dies;
366
367 /* A set of pointers to dwarf2_per_cu_data objects for compilation
368 units referenced by this one. Only set during full symbol processing;
369 partial symbol tables do not have dependencies. */
370 htab_t dependencies;
371
372 /* Header data from the line table, during full symbol processing. */
373 struct line_header *line_header;
374
375 /* A list of methods which need to have physnames computed
376 after all type information has been read. */
377 VEC (delayed_method_info) *method_list;
378
379 /* Mark used when releasing cached dies. */
380 unsigned int mark : 1;
381
382 /* This flag will be set if this compilation unit might include
383 inter-compilation-unit references. */
384 unsigned int has_form_ref_addr : 1;
385
386 /* This flag will be set if this compilation unit includes any
387 DW_TAG_namespace DIEs. If we know that there are explicit
388 DIEs for namespaces, we don't need to try to infer them
389 from mangled names. */
390 unsigned int has_namespace_info : 1;
391 };
392
393 /* When using the index (and thus not using psymtabs), each CU has an
394 object of this type. This is used to hold information needed by
395 the various "quick" methods. */
396 struct dwarf2_per_cu_quick_data
397 {
398 /* The line table. This can be NULL if there was no line table. */
399 struct line_header *lines;
400
401 /* The file names from the line table. */
402 const char **file_names;
403 /* The file names from the line table after being run through
404 gdb_realpath. */
405 const char **full_names;
406
407 /* The corresponding symbol table. This is NULL if symbols for this
408 CU have not yet been read. */
409 struct symtab *symtab;
410
411 /* A temporary mark bit used when iterating over all CUs in
412 expand_symtabs_matching. */
413 unsigned int mark : 1;
414
415 /* True if we've tried to read the line table. */
416 unsigned int read_lines : 1;
417 };
418
419 /* Persistent data held for a compilation unit, even when not
420 processing it. We put a pointer to this structure in the
421 read_symtab_private field of the psymtab. If we encounter
422 inter-compilation-unit references, we also maintain a sorted
423 list of all compilation units. */
424
425 struct dwarf2_per_cu_data
426 {
427 /* The start offset and length of this compilation unit. 2**29-1
428 bytes should suffice to store the length of any compilation unit
429 - if it doesn't, GDB will fall over anyway.
430 NOTE: Unlike comp_unit_head.length, this length includes
431 initial_length_size. */
432 unsigned int offset;
433 unsigned int length : 29;
434
435 /* Flag indicating this compilation unit will be read in before
436 any of the current compilation units are processed. */
437 unsigned int queued : 1;
438
439 /* This flag will be set if we need to load absolutely all DIEs
440 for this compilation unit, instead of just the ones we think
441 are interesting. It gets set if we look for a DIE in the
442 hash table and don't find it. */
443 unsigned int load_all_dies : 1;
444
445 /* Non-zero if this CU is from .debug_types.
446 Otherwise it's from .debug_info. */
447 unsigned int from_debug_types : 1;
448
449 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
450 of the CU cache it gets reset to NULL again. */
451 struct dwarf2_cu *cu;
452
453 /* The corresponding objfile. */
454 struct objfile *objfile;
455
456 /* When using partial symbol tables, the 'psymtab' field is active.
457 Otherwise the 'quick' field is active. */
458 union
459 {
460 /* The partial symbol table associated with this compilation unit,
461 or NULL for partial units (which do not have an associated
462 symtab). */
463 struct partial_symtab *psymtab;
464
465 /* Data needed by the "quick" functions. */
466 struct dwarf2_per_cu_quick_data *quick;
467 } v;
468 };
469
470 /* Entry in the signatured_types hash table. */
471
472 struct signatured_type
473 {
474 ULONGEST signature;
475
476 /* Offset in .debug_types of the TU (type_unit) for this type. */
477 unsigned int offset;
478
479 /* Offset in .debug_types of the type defined by this TU. */
480 unsigned int type_offset;
481
482 /* The CU(/TU) of this type. */
483 struct dwarf2_per_cu_data per_cu;
484 };
485
486 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
487 which are used for both .debug_info and .debug_types dies.
488 All parameters here are unchanging for the life of the call.
489 This struct exists to abstract away the constant parameters of
490 die reading. */
491
492 struct die_reader_specs
493 {
494 /* The bfd of this objfile. */
495 bfd* abfd;
496
497 /* The CU of the DIE we are parsing. */
498 struct dwarf2_cu *cu;
499
500 /* Pointer to start of section buffer.
501 This is either the start of .debug_info or .debug_types. */
502 const gdb_byte *buffer;
503 };
504
505 /* The line number information for a compilation unit (found in the
506 .debug_line section) begins with a "statement program header",
507 which contains the following information. */
508 struct line_header
509 {
510 unsigned int total_length;
511 unsigned short version;
512 unsigned int header_length;
513 unsigned char minimum_instruction_length;
514 unsigned char maximum_ops_per_instruction;
515 unsigned char default_is_stmt;
516 int line_base;
517 unsigned char line_range;
518 unsigned char opcode_base;
519
520 /* standard_opcode_lengths[i] is the number of operands for the
521 standard opcode whose value is i. This means that
522 standard_opcode_lengths[0] is unused, and the last meaningful
523 element is standard_opcode_lengths[opcode_base - 1]. */
524 unsigned char *standard_opcode_lengths;
525
526 /* The include_directories table. NOTE! These strings are not
527 allocated with xmalloc; instead, they are pointers into
528 debug_line_buffer. If you try to free them, `free' will get
529 indigestion. */
530 unsigned int num_include_dirs, include_dirs_size;
531 char **include_dirs;
532
533 /* The file_names table. NOTE! These strings are not allocated
534 with xmalloc; instead, they are pointers into debug_line_buffer.
535 Don't try to free them directly. */
536 unsigned int num_file_names, file_names_size;
537 struct file_entry
538 {
539 char *name;
540 unsigned int dir_index;
541 unsigned int mod_time;
542 unsigned int length;
543 int included_p; /* Non-zero if referenced by the Line Number Program. */
544 struct symtab *symtab; /* The associated symbol table, if any. */
545 } *file_names;
546
547 /* The start and end of the statement program following this
548 header. These point into dwarf2_per_objfile->line_buffer. */
549 gdb_byte *statement_program_start, *statement_program_end;
550 };
551
552 /* When we construct a partial symbol table entry we only
553 need this much information. */
554 struct partial_die_info
555 {
556 /* Offset of this DIE. */
557 unsigned int offset;
558
559 /* DWARF-2 tag for this DIE. */
560 ENUM_BITFIELD(dwarf_tag) tag : 16;
561
562 /* Assorted flags describing the data found in this DIE. */
563 unsigned int has_children : 1;
564 unsigned int is_external : 1;
565 unsigned int is_declaration : 1;
566 unsigned int has_type : 1;
567 unsigned int has_specification : 1;
568 unsigned int has_pc_info : 1;
569
570 /* Flag set if the SCOPE field of this structure has been
571 computed. */
572 unsigned int scope_set : 1;
573
574 /* Flag set if the DIE has a byte_size attribute. */
575 unsigned int has_byte_size : 1;
576
577 /* Flag set if any of the DIE's children are template arguments. */
578 unsigned int has_template_arguments : 1;
579
580 /* The name of this DIE. Normally the value of DW_AT_name, but
581 sometimes a default name for unnamed DIEs. */
582 char *name;
583
584 /* The scope to prepend to our children. This is generally
585 allocated on the comp_unit_obstack, so will disappear
586 when this compilation unit leaves the cache. */
587 char *scope;
588
589 /* The location description associated with this DIE, if any. */
590 struct dwarf_block *locdesc;
591
592 /* If HAS_PC_INFO, the PC range associated with this DIE. */
593 CORE_ADDR lowpc;
594 CORE_ADDR highpc;
595
596 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
597 DW_AT_sibling, if any. */
598 gdb_byte *sibling;
599
600 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
601 DW_AT_specification (or DW_AT_abstract_origin or
602 DW_AT_extension). */
603 unsigned int spec_offset;
604
605 /* Pointers to this DIE's parent, first child, and next sibling,
606 if any. */
607 struct partial_die_info *die_parent, *die_child, *die_sibling;
608 };
609
610 /* This data structure holds the information of an abbrev. */
611 struct abbrev_info
612 {
613 unsigned int number; /* number identifying abbrev */
614 enum dwarf_tag tag; /* dwarf tag */
615 unsigned short has_children; /* boolean */
616 unsigned short num_attrs; /* number of attributes */
617 struct attr_abbrev *attrs; /* an array of attribute descriptions */
618 struct abbrev_info *next; /* next in chain */
619 };
620
621 struct attr_abbrev
622 {
623 ENUM_BITFIELD(dwarf_attribute) name : 16;
624 ENUM_BITFIELD(dwarf_form) form : 16;
625 };
626
627 /* Attributes have a name and a value */
628 struct attribute
629 {
630 ENUM_BITFIELD(dwarf_attribute) name : 16;
631 ENUM_BITFIELD(dwarf_form) form : 15;
632
633 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
634 field should be in u.str (existing only for DW_STRING) but it is kept
635 here for better struct attribute alignment. */
636 unsigned int string_is_canonical : 1;
637
638 union
639 {
640 char *str;
641 struct dwarf_block *blk;
642 ULONGEST unsnd;
643 LONGEST snd;
644 CORE_ADDR addr;
645 struct signatured_type *signatured_type;
646 }
647 u;
648 };
649
650 /* This data structure holds a complete die structure. */
651 struct die_info
652 {
653 /* DWARF-2 tag for this DIE. */
654 ENUM_BITFIELD(dwarf_tag) tag : 16;
655
656 /* Number of attributes */
657 unsigned char num_attrs;
658
659 /* True if we're presently building the full type name for the
660 type derived from this DIE. */
661 unsigned char building_fullname : 1;
662
663 /* Abbrev number */
664 unsigned int abbrev;
665
666 /* Offset in .debug_info or .debug_types section. */
667 unsigned int offset;
668
669 /* The dies in a compilation unit form an n-ary tree. PARENT
670 points to this die's parent; CHILD points to the first child of
671 this node; and all the children of a given node are chained
672 together via their SIBLING fields, terminated by a die whose
673 tag is zero. */
674 struct die_info *child; /* Its first child, if any. */
675 struct die_info *sibling; /* Its next sibling, if any. */
676 struct die_info *parent; /* Its parent, if any. */
677
678 /* An array of attributes, with NUM_ATTRS elements. There may be
679 zero, but it's not common and zero-sized arrays are not
680 sufficiently portable C. */
681 struct attribute attrs[1];
682 };
683
684 struct function_range
685 {
686 const char *name;
687 CORE_ADDR lowpc, highpc;
688 int seen_line;
689 struct function_range *next;
690 };
691
692 /* Get at parts of an attribute structure */
693
694 #define DW_STRING(attr) ((attr)->u.str)
695 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
696 #define DW_UNSND(attr) ((attr)->u.unsnd)
697 #define DW_BLOCK(attr) ((attr)->u.blk)
698 #define DW_SND(attr) ((attr)->u.snd)
699 #define DW_ADDR(attr) ((attr)->u.addr)
700 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
701
702 /* Blocks are a bunch of untyped bytes. */
703 struct dwarf_block
704 {
705 unsigned int size;
706 gdb_byte *data;
707 };
708
709 #ifndef ATTR_ALLOC_CHUNK
710 #define ATTR_ALLOC_CHUNK 4
711 #endif
712
713 /* Allocate fields for structs, unions and enums in this size. */
714 #ifndef DW_FIELD_ALLOC_CHUNK
715 #define DW_FIELD_ALLOC_CHUNK 4
716 #endif
717
718 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
719 but this would require a corresponding change in unpack_field_as_long
720 and friends. */
721 static int bits_per_byte = 8;
722
723 /* The routines that read and process dies for a C struct or C++ class
724 pass lists of data member fields and lists of member function fields
725 in an instance of a field_info structure, as defined below. */
726 struct field_info
727 {
728 /* List of data member and baseclasses fields. */
729 struct nextfield
730 {
731 struct nextfield *next;
732 int accessibility;
733 int virtuality;
734 struct field field;
735 }
736 *fields, *baseclasses;
737
738 /* Number of fields (including baseclasses). */
739 int nfields;
740
741 /* Number of baseclasses. */
742 int nbaseclasses;
743
744 /* Set if the accesibility of one of the fields is not public. */
745 int non_public_fields;
746
747 /* Member function fields array, entries are allocated in the order they
748 are encountered in the object file. */
749 struct nextfnfield
750 {
751 struct nextfnfield *next;
752 struct fn_field fnfield;
753 }
754 *fnfields;
755
756 /* Member function fieldlist array, contains name of possibly overloaded
757 member function, number of overloaded member functions and a pointer
758 to the head of the member function field chain. */
759 struct fnfieldlist
760 {
761 char *name;
762 int length;
763 struct nextfnfield *head;
764 }
765 *fnfieldlists;
766
767 /* Number of entries in the fnfieldlists array. */
768 int nfnfields;
769
770 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
771 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
772 struct typedef_field_list
773 {
774 struct typedef_field field;
775 struct typedef_field_list *next;
776 }
777 *typedef_field_list;
778 unsigned typedef_field_list_count;
779 };
780
781 /* One item on the queue of compilation units to read in full symbols
782 for. */
783 struct dwarf2_queue_item
784 {
785 struct dwarf2_per_cu_data *per_cu;
786 struct dwarf2_queue_item *next;
787 };
788
789 /* The current queue. */
790 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
791
792 /* Loaded secondary compilation units are kept in memory until they
793 have not been referenced for the processing of this many
794 compilation units. Set this to zero to disable caching. Cache
795 sizes of up to at least twenty will improve startup time for
796 typical inter-CU-reference binaries, at an obvious memory cost. */
797 static int dwarf2_max_cache_age = 5;
798 static void
799 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
800 struct cmd_list_element *c, const char *value)
801 {
802 fprintf_filtered (file, _("\
803 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
804 value);
805 }
806
807
808 /* Various complaints about symbol reading that don't abort the process */
809
810 static void
811 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
812 {
813 complaint (&symfile_complaints,
814 _("statement list doesn't fit in .debug_line section"));
815 }
816
817 static void
818 dwarf2_debug_line_missing_file_complaint (void)
819 {
820 complaint (&symfile_complaints,
821 _(".debug_line section has line data without a file"));
822 }
823
824 static void
825 dwarf2_debug_line_missing_end_sequence_complaint (void)
826 {
827 complaint (&symfile_complaints,
828 _(".debug_line section has line program sequence without an end"));
829 }
830
831 static void
832 dwarf2_complex_location_expr_complaint (void)
833 {
834 complaint (&symfile_complaints, _("location expression too complex"));
835 }
836
837 static void
838 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
839 int arg3)
840 {
841 complaint (&symfile_complaints,
842 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
843 arg2, arg3);
844 }
845
846 static void
847 dwarf2_macros_too_long_complaint (void)
848 {
849 complaint (&symfile_complaints,
850 _("macro info runs off end of `.debug_macinfo' section"));
851 }
852
853 static void
854 dwarf2_macro_malformed_definition_complaint (const char *arg1)
855 {
856 complaint (&symfile_complaints,
857 _("macro debug info contains a malformed macro definition:\n`%s'"),
858 arg1);
859 }
860
861 static void
862 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
863 {
864 complaint (&symfile_complaints,
865 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
866 }
867
868 /* local function prototypes */
869
870 static void dwarf2_locate_sections (bfd *, asection *, void *);
871
872 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
873 struct objfile *);
874
875 static void dwarf2_build_psymtabs_hard (struct objfile *);
876
877 static void scan_partial_symbols (struct partial_die_info *,
878 CORE_ADDR *, CORE_ADDR *,
879 int, struct dwarf2_cu *);
880
881 static void add_partial_symbol (struct partial_die_info *,
882 struct dwarf2_cu *);
883
884 static void add_partial_namespace (struct partial_die_info *pdi,
885 CORE_ADDR *lowpc, CORE_ADDR *highpc,
886 int need_pc, struct dwarf2_cu *cu);
887
888 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
889 CORE_ADDR *highpc, int need_pc,
890 struct dwarf2_cu *cu);
891
892 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
893 struct dwarf2_cu *cu);
894
895 static void add_partial_subprogram (struct partial_die_info *pdi,
896 CORE_ADDR *lowpc, CORE_ADDR *highpc,
897 int need_pc, struct dwarf2_cu *cu);
898
899 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
900 gdb_byte *buffer, gdb_byte *info_ptr,
901 bfd *abfd, struct dwarf2_cu *cu);
902
903 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
904
905 static void psymtab_to_symtab_1 (struct partial_symtab *);
906
907 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
908
909 static void dwarf2_free_abbrev_table (void *);
910
911 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
912 struct dwarf2_cu *);
913
914 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
915 struct dwarf2_cu *);
916
917 static struct partial_die_info *load_partial_dies (bfd *,
918 gdb_byte *, gdb_byte *,
919 int, struct dwarf2_cu *);
920
921 static gdb_byte *read_partial_die (struct partial_die_info *,
922 struct abbrev_info *abbrev,
923 unsigned int, bfd *,
924 gdb_byte *, gdb_byte *,
925 struct dwarf2_cu *);
926
927 static struct partial_die_info *find_partial_die (unsigned int,
928 struct dwarf2_cu *);
929
930 static void fixup_partial_die (struct partial_die_info *,
931 struct dwarf2_cu *);
932
933 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
934 bfd *, gdb_byte *, struct dwarf2_cu *);
935
936 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
937 bfd *, gdb_byte *, struct dwarf2_cu *);
938
939 static unsigned int read_1_byte (bfd *, gdb_byte *);
940
941 static int read_1_signed_byte (bfd *, gdb_byte *);
942
943 static unsigned int read_2_bytes (bfd *, gdb_byte *);
944
945 static unsigned int read_4_bytes (bfd *, gdb_byte *);
946
947 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
948
949 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
950 unsigned int *);
951
952 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
953
954 static LONGEST read_checked_initial_length_and_offset
955 (bfd *, gdb_byte *, const struct comp_unit_head *,
956 unsigned int *, unsigned int *);
957
958 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
959 unsigned int *);
960
961 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
962
963 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
964
965 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
966
967 static char *read_indirect_string (bfd *, gdb_byte *,
968 const struct comp_unit_head *,
969 unsigned int *);
970
971 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
972
973 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
974
975 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
976
977 static void set_cu_language (unsigned int, struct dwarf2_cu *);
978
979 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
980 struct dwarf2_cu *);
981
982 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
983 unsigned int,
984 struct dwarf2_cu *);
985
986 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
987 struct dwarf2_cu *cu);
988
989 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
990
991 static struct die_info *die_specification (struct die_info *die,
992 struct dwarf2_cu **);
993
994 static void free_line_header (struct line_header *lh);
995
996 static void add_file_name (struct line_header *, char *, unsigned int,
997 unsigned int, unsigned int);
998
999 static struct line_header *(dwarf_decode_line_header
1000 (unsigned int offset,
1001 bfd *abfd, struct dwarf2_cu *cu));
1002
1003 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
1004 struct dwarf2_cu *, struct partial_symtab *);
1005
1006 static void dwarf2_start_subfile (char *, char *, char *);
1007
1008 static struct symbol *new_symbol (struct die_info *, struct type *,
1009 struct dwarf2_cu *);
1010
1011 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1012 struct dwarf2_cu *, struct symbol *);
1013
1014 static void dwarf2_const_value (struct attribute *, struct symbol *,
1015 struct dwarf2_cu *);
1016
1017 static void dwarf2_const_value_attr (struct attribute *attr,
1018 struct type *type,
1019 const char *name,
1020 struct obstack *obstack,
1021 struct dwarf2_cu *cu, long *value,
1022 gdb_byte **bytes,
1023 struct dwarf2_locexpr_baton **baton);
1024
1025 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1026
1027 static int need_gnat_info (struct dwarf2_cu *);
1028
1029 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
1030
1031 static void set_descriptive_type (struct type *, struct die_info *,
1032 struct dwarf2_cu *);
1033
1034 static struct type *die_containing_type (struct die_info *,
1035 struct dwarf2_cu *);
1036
1037 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1038 struct dwarf2_cu *);
1039
1040 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1041
1042 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1043
1044 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1045
1046 static char *typename_concat (struct obstack *obs, const char *prefix,
1047 const char *suffix, int physname,
1048 struct dwarf2_cu *cu);
1049
1050 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1051
1052 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1053
1054 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1055
1056 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1057
1058 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *, struct partial_symtab *);
1060
1061 static int dwarf2_get_pc_bounds (struct die_info *,
1062 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1063 struct partial_symtab *);
1064
1065 static void get_scope_pc_bounds (struct die_info *,
1066 CORE_ADDR *, CORE_ADDR *,
1067 struct dwarf2_cu *);
1068
1069 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1070 CORE_ADDR, struct dwarf2_cu *);
1071
1072 static void dwarf2_add_field (struct field_info *, struct die_info *,
1073 struct dwarf2_cu *);
1074
1075 static void dwarf2_attach_fields_to_type (struct field_info *,
1076 struct type *, struct dwarf2_cu *);
1077
1078 static void dwarf2_add_member_fn (struct field_info *,
1079 struct die_info *, struct type *,
1080 struct dwarf2_cu *);
1081
1082 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1083 struct type *, struct dwarf2_cu *);
1084
1085 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1086
1087 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1088
1089 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1090
1091 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1092
1093 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1094
1095 static struct type *read_module_type (struct die_info *die,
1096 struct dwarf2_cu *cu);
1097
1098 static const char *namespace_name (struct die_info *die,
1099 int *is_anonymous, struct dwarf2_cu *);
1100
1101 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1102
1103 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1104
1105 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1106 struct dwarf2_cu *);
1107
1108 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1109
1110 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1111 gdb_byte *info_ptr,
1112 gdb_byte **new_info_ptr,
1113 struct die_info *parent);
1114
1115 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1116 gdb_byte *info_ptr,
1117 gdb_byte **new_info_ptr,
1118 struct die_info *parent);
1119
1120 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1121 gdb_byte *info_ptr,
1122 gdb_byte **new_info_ptr,
1123 struct die_info *parent);
1124
1125 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1126 struct die_info **, gdb_byte *,
1127 int *);
1128
1129 static void process_die (struct die_info *, struct dwarf2_cu *);
1130
1131 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1132 struct obstack *);
1133
1134 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1135
1136 static const char *dwarf2_full_name (char *name,
1137 struct die_info *die,
1138 struct dwarf2_cu *cu);
1139
1140 static struct die_info *dwarf2_extension (struct die_info *die,
1141 struct dwarf2_cu **);
1142
1143 static char *dwarf_tag_name (unsigned int);
1144
1145 static char *dwarf_attr_name (unsigned int);
1146
1147 static char *dwarf_form_name (unsigned int);
1148
1149 static char *dwarf_bool_name (unsigned int);
1150
1151 static char *dwarf_type_encoding_name (unsigned int);
1152
1153 #if 0
1154 static char *dwarf_cfi_name (unsigned int);
1155 #endif
1156
1157 static struct die_info *sibling_die (struct die_info *);
1158
1159 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1160
1161 static void dump_die_for_error (struct die_info *);
1162
1163 static void dump_die_1 (struct ui_file *, int level, int max_level,
1164 struct die_info *);
1165
1166 /*static*/ void dump_die (struct die_info *, int max_level);
1167
1168 static void store_in_ref_table (struct die_info *,
1169 struct dwarf2_cu *);
1170
1171 static int is_ref_attr (struct attribute *);
1172
1173 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1174
1175 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1176
1177 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1178 struct attribute *,
1179 struct dwarf2_cu **);
1180
1181 static struct die_info *follow_die_ref (struct die_info *,
1182 struct attribute *,
1183 struct dwarf2_cu **);
1184
1185 static struct die_info *follow_die_sig (struct die_info *,
1186 struct attribute *,
1187 struct dwarf2_cu **);
1188
1189 static void read_signatured_type_at_offset (struct objfile *objfile,
1190 unsigned int offset);
1191
1192 static void read_signatured_type (struct objfile *,
1193 struct signatured_type *type_sig);
1194
1195 /* memory allocation interface */
1196
1197 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1198
1199 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1200
1201 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1202
1203 static void initialize_cu_func_list (struct dwarf2_cu *);
1204
1205 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1206 struct dwarf2_cu *);
1207
1208 static void dwarf_decode_macros (struct line_header *, unsigned int,
1209 char *, bfd *, struct dwarf2_cu *);
1210
1211 static int attr_form_is_block (struct attribute *);
1212
1213 static int attr_form_is_section_offset (struct attribute *);
1214
1215 static int attr_form_is_constant (struct attribute *);
1216
1217 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1218 struct symbol *sym,
1219 struct dwarf2_cu *cu);
1220
1221 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1222 struct abbrev_info *abbrev,
1223 struct dwarf2_cu *cu);
1224
1225 static void free_stack_comp_unit (void *);
1226
1227 static hashval_t partial_die_hash (const void *item);
1228
1229 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1230
1231 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1235 (unsigned int offset, struct objfile *objfile);
1236
1237 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1238
1239 static void free_one_comp_unit (void *);
1240
1241 static void free_cached_comp_units (void *);
1242
1243 static void age_cached_comp_units (void);
1244
1245 static void free_one_cached_comp_unit (void *);
1246
1247 static struct type *set_die_type (struct die_info *, struct type *,
1248 struct dwarf2_cu *);
1249
1250 static void create_all_comp_units (struct objfile *);
1251
1252 static int create_debug_types_hash_table (struct objfile *objfile);
1253
1254 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1255 struct objfile *);
1256
1257 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1258
1259 static void dwarf2_add_dependence (struct dwarf2_cu *,
1260 struct dwarf2_per_cu_data *);
1261
1262 static void dwarf2_mark (struct dwarf2_cu *);
1263
1264 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1265
1266 static struct type *get_die_type_at_offset (unsigned int,
1267 struct dwarf2_per_cu_data *per_cu);
1268
1269 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1270
1271 static void dwarf2_release_queue (void *dummy);
1272
1273 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1274 struct objfile *objfile);
1275
1276 static void process_queue (struct objfile *objfile);
1277
1278 static void find_file_and_directory (struct die_info *die,
1279 struct dwarf2_cu *cu,
1280 char **name, char **comp_dir);
1281
1282 static char *file_full_name (int file, struct line_header *lh,
1283 const char *comp_dir);
1284
1285 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1286 gdb_byte *info_ptr,
1287 gdb_byte *buffer,
1288 unsigned int buffer_size,
1289 bfd *abfd);
1290
1291 static void init_cu_die_reader (struct die_reader_specs *reader,
1292 struct dwarf2_cu *cu);
1293
1294 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1295
1296 #if WORDS_BIGENDIAN
1297
1298 /* Convert VALUE between big- and little-endian. */
1299 static offset_type
1300 byte_swap (offset_type value)
1301 {
1302 offset_type result;
1303
1304 result = (value & 0xff) << 24;
1305 result |= (value & 0xff00) << 8;
1306 result |= (value & 0xff0000) >> 8;
1307 result |= (value & 0xff000000) >> 24;
1308 return result;
1309 }
1310
1311 #define MAYBE_SWAP(V) byte_swap (V)
1312
1313 #else
1314 #define MAYBE_SWAP(V) (V)
1315 #endif /* WORDS_BIGENDIAN */
1316
1317 /* The suffix for an index file. */
1318 #define INDEX_SUFFIX ".gdb-index"
1319
1320 static const char *dwarf2_physname (char *name, struct die_info *die,
1321 struct dwarf2_cu *cu);
1322
1323 /* Try to locate the sections we need for DWARF 2 debugging
1324 information and return true if we have enough to do something. */
1325
1326 int
1327 dwarf2_has_info (struct objfile *objfile)
1328 {
1329 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1330 if (!dwarf2_per_objfile)
1331 {
1332 /* Initialize per-objfile state. */
1333 struct dwarf2_per_objfile *data
1334 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1335
1336 memset (data, 0, sizeof (*data));
1337 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1338 dwarf2_per_objfile = data;
1339
1340 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1341 dwarf2_per_objfile->objfile = objfile;
1342 }
1343 return (dwarf2_per_objfile->info.asection != NULL
1344 && dwarf2_per_objfile->abbrev.asection != NULL);
1345 }
1346
1347 /* When loading sections, we can either look for ".<name>", or for
1348 * ".z<name>", which indicates a compressed section. */
1349
1350 static int
1351 section_is_p (const char *section_name, const char *name)
1352 {
1353 return (section_name[0] == '.'
1354 && (strcmp (section_name + 1, name) == 0
1355 || (section_name[1] == 'z'
1356 && strcmp (section_name + 2, name) == 0)));
1357 }
1358
1359 /* This function is mapped across the sections and remembers the
1360 offset and size of each of the debugging sections we are interested
1361 in. */
1362
1363 static void
1364 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1365 {
1366 if (section_is_p (sectp->name, INFO_SECTION))
1367 {
1368 dwarf2_per_objfile->info.asection = sectp;
1369 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1370 }
1371 else if (section_is_p (sectp->name, ABBREV_SECTION))
1372 {
1373 dwarf2_per_objfile->abbrev.asection = sectp;
1374 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1375 }
1376 else if (section_is_p (sectp->name, LINE_SECTION))
1377 {
1378 dwarf2_per_objfile->line.asection = sectp;
1379 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1380 }
1381 else if (section_is_p (sectp->name, LOC_SECTION))
1382 {
1383 dwarf2_per_objfile->loc.asection = sectp;
1384 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1385 }
1386 else if (section_is_p (sectp->name, MACINFO_SECTION))
1387 {
1388 dwarf2_per_objfile->macinfo.asection = sectp;
1389 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1390 }
1391 else if (section_is_p (sectp->name, STR_SECTION))
1392 {
1393 dwarf2_per_objfile->str.asection = sectp;
1394 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1395 }
1396 else if (section_is_p (sectp->name, FRAME_SECTION))
1397 {
1398 dwarf2_per_objfile->frame.asection = sectp;
1399 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1400 }
1401 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1402 {
1403 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1404
1405 if (aflag & SEC_HAS_CONTENTS)
1406 {
1407 dwarf2_per_objfile->eh_frame.asection = sectp;
1408 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1409 }
1410 }
1411 else if (section_is_p (sectp->name, RANGES_SECTION))
1412 {
1413 dwarf2_per_objfile->ranges.asection = sectp;
1414 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1415 }
1416 else if (section_is_p (sectp->name, TYPES_SECTION))
1417 {
1418 dwarf2_per_objfile->types.asection = sectp;
1419 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1420 }
1421 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1422 {
1423 dwarf2_per_objfile->gdb_index.asection = sectp;
1424 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1425 }
1426
1427 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1428 && bfd_section_vma (abfd, sectp) == 0)
1429 dwarf2_per_objfile->has_section_at_zero = 1;
1430 }
1431
1432 /* Decompress a section that was compressed using zlib. Store the
1433 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1434
1435 static void
1436 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1437 gdb_byte **outbuf, bfd_size_type *outsize)
1438 {
1439 bfd *abfd = objfile->obfd;
1440 #ifndef HAVE_ZLIB_H
1441 error (_("Support for zlib-compressed DWARF data (from '%s') "
1442 "is disabled in this copy of GDB"),
1443 bfd_get_filename (abfd));
1444 #else
1445 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1446 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1447 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1448 bfd_size_type uncompressed_size;
1449 gdb_byte *uncompressed_buffer;
1450 z_stream strm;
1451 int rc;
1452 int header_size = 12;
1453
1454 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1455 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1456 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1457 bfd_get_filename (abfd));
1458
1459 /* Read the zlib header. In this case, it should be "ZLIB" followed
1460 by the uncompressed section size, 8 bytes in big-endian order. */
1461 if (compressed_size < header_size
1462 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1463 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1464 bfd_get_filename (abfd));
1465 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1466 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1467 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[11];
1473
1474 /* It is possible the section consists of several compressed
1475 buffers concatenated together, so we uncompress in a loop. */
1476 strm.zalloc = NULL;
1477 strm.zfree = NULL;
1478 strm.opaque = NULL;
1479 strm.avail_in = compressed_size - header_size;
1480 strm.next_in = (Bytef*) compressed_buffer + header_size;
1481 strm.avail_out = uncompressed_size;
1482 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1483 uncompressed_size);
1484 rc = inflateInit (&strm);
1485 while (strm.avail_in > 0)
1486 {
1487 if (rc != Z_OK)
1488 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1489 bfd_get_filename (abfd), rc);
1490 strm.next_out = ((Bytef*) uncompressed_buffer
1491 + (uncompressed_size - strm.avail_out));
1492 rc = inflate (&strm, Z_FINISH);
1493 if (rc != Z_STREAM_END)
1494 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1495 bfd_get_filename (abfd), rc);
1496 rc = inflateReset (&strm);
1497 }
1498 rc = inflateEnd (&strm);
1499 if (rc != Z_OK
1500 || strm.avail_out != 0)
1501 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1502 bfd_get_filename (abfd), rc);
1503
1504 do_cleanups (cleanup);
1505 *outbuf = uncompressed_buffer;
1506 *outsize = uncompressed_size;
1507 #endif
1508 }
1509
1510 /* Read the contents of the section SECTP from object file specified by
1511 OBJFILE, store info about the section into INFO.
1512 If the section is compressed, uncompress it before returning. */
1513
1514 static void
1515 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1516 {
1517 bfd *abfd = objfile->obfd;
1518 asection *sectp = info->asection;
1519 gdb_byte *buf, *retbuf;
1520 unsigned char header[4];
1521
1522 if (info->readin)
1523 return;
1524 info->buffer = NULL;
1525 info->was_mmapped = 0;
1526 info->readin = 1;
1527
1528 if (info->asection == NULL || info->size == 0)
1529 return;
1530
1531 /* Check if the file has a 4-byte header indicating compression. */
1532 if (info->size > sizeof (header)
1533 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1534 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1535 {
1536 /* Upon decompression, update the buffer and its size. */
1537 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1538 {
1539 zlib_decompress_section (objfile, sectp, &info->buffer,
1540 &info->size);
1541 return;
1542 }
1543 }
1544
1545 #ifdef HAVE_MMAP
1546 if (pagesize == 0)
1547 pagesize = getpagesize ();
1548
1549 /* Only try to mmap sections which are large enough: we don't want to
1550 waste space due to fragmentation. Also, only try mmap for sections
1551 without relocations. */
1552
1553 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1554 {
1555 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1556 size_t map_length = info->size + sectp->filepos - pg_offset;
1557 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1558 MAP_PRIVATE, pg_offset);
1559
1560 if (retbuf != MAP_FAILED)
1561 {
1562 info->was_mmapped = 1;
1563 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1564 #if HAVE_POSIX_MADVISE
1565 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1566 #endif
1567 return;
1568 }
1569 }
1570 #endif
1571
1572 /* If we get here, we are a normal, not-compressed section. */
1573 info->buffer = buf
1574 = obstack_alloc (&objfile->objfile_obstack, info->size);
1575
1576 /* When debugging .o files, we may need to apply relocations; see
1577 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1578 We never compress sections in .o files, so we only need to
1579 try this when the section is not compressed. */
1580 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1581 if (retbuf != NULL)
1582 {
1583 info->buffer = retbuf;
1584 return;
1585 }
1586
1587 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1588 || bfd_bread (buf, info->size, abfd) != info->size)
1589 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1590 bfd_get_filename (abfd));
1591 }
1592
1593 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1594 SECTION_NAME. */
1595
1596 void
1597 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1598 asection **sectp, gdb_byte **bufp,
1599 bfd_size_type *sizep)
1600 {
1601 struct dwarf2_per_objfile *data
1602 = objfile_data (objfile, dwarf2_objfile_data_key);
1603 struct dwarf2_section_info *info;
1604
1605 /* We may see an objfile without any DWARF, in which case we just
1606 return nothing. */
1607 if (data == NULL)
1608 {
1609 *sectp = NULL;
1610 *bufp = NULL;
1611 *sizep = 0;
1612 return;
1613 }
1614 if (section_is_p (section_name, EH_FRAME_SECTION))
1615 info = &data->eh_frame;
1616 else if (section_is_p (section_name, FRAME_SECTION))
1617 info = &data->frame;
1618 else
1619 gdb_assert_not_reached ("unexpected section");
1620
1621 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1622 /* We haven't read this section in yet. Do it now. */
1623 dwarf2_read_section (objfile, info);
1624
1625 *sectp = info->asection;
1626 *bufp = info->buffer;
1627 *sizep = info->size;
1628 }
1629
1630 \f
1631
1632 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1633 this CU came. */
1634 static void
1635 dw2_do_instantiate_symtab (struct objfile *objfile,
1636 struct dwarf2_per_cu_data *per_cu)
1637 {
1638 struct cleanup *back_to;
1639
1640 back_to = make_cleanup (dwarf2_release_queue, NULL);
1641
1642 queue_comp_unit (per_cu, objfile);
1643
1644 if (per_cu->from_debug_types)
1645 read_signatured_type_at_offset (objfile, per_cu->offset);
1646 else
1647 load_full_comp_unit (per_cu, objfile);
1648
1649 process_queue (objfile);
1650
1651 /* Age the cache, releasing compilation units that have not
1652 been used recently. */
1653 age_cached_comp_units ();
1654
1655 do_cleanups (back_to);
1656 }
1657
1658 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1659 the objfile from which this CU came. Returns the resulting symbol
1660 table. */
1661 static struct symtab *
1662 dw2_instantiate_symtab (struct objfile *objfile,
1663 struct dwarf2_per_cu_data *per_cu)
1664 {
1665 if (!per_cu->v.quick->symtab)
1666 {
1667 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1668 increment_reading_symtab ();
1669 dw2_do_instantiate_symtab (objfile, per_cu);
1670 do_cleanups (back_to);
1671 }
1672 return per_cu->v.quick->symtab;
1673 }
1674
1675 /* Return the CU given its index. */
1676 static struct dwarf2_per_cu_data *
1677 dw2_get_cu (int index)
1678 {
1679 if (index >= dwarf2_per_objfile->n_comp_units)
1680 {
1681 index -= dwarf2_per_objfile->n_comp_units;
1682 return dwarf2_per_objfile->type_comp_units[index];
1683 }
1684 return dwarf2_per_objfile->all_comp_units[index];
1685 }
1686
1687 /* A helper function that knows how to read a 64-bit value in a way
1688 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1689 otherwise. */
1690 static int
1691 extract_cu_value (const char *bytes, ULONGEST *result)
1692 {
1693 if (sizeof (ULONGEST) < 8)
1694 {
1695 int i;
1696
1697 /* Ignore the upper 4 bytes if they are all zero. */
1698 for (i = 0; i < 4; ++i)
1699 if (bytes[i + 4] != 0)
1700 return 0;
1701
1702 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1703 }
1704 else
1705 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1706 return 1;
1707 }
1708
1709 /* Read the CU list from the mapped index, and use it to create all
1710 the CU objects for this objfile. Return 0 if something went wrong,
1711 1 if everything went ok. */
1712 static int
1713 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1714 offset_type cu_list_elements)
1715 {
1716 offset_type i;
1717
1718 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1719 dwarf2_per_objfile->all_comp_units
1720 = obstack_alloc (&objfile->objfile_obstack,
1721 dwarf2_per_objfile->n_comp_units
1722 * sizeof (struct dwarf2_per_cu_data *));
1723
1724 for (i = 0; i < cu_list_elements; i += 2)
1725 {
1726 struct dwarf2_per_cu_data *the_cu;
1727 ULONGEST offset, length;
1728
1729 if (!extract_cu_value (cu_list, &offset)
1730 || !extract_cu_value (cu_list + 8, &length))
1731 return 0;
1732 cu_list += 2 * 8;
1733
1734 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1735 struct dwarf2_per_cu_data);
1736 the_cu->offset = offset;
1737 the_cu->length = length;
1738 the_cu->objfile = objfile;
1739 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1740 struct dwarf2_per_cu_quick_data);
1741 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1742 }
1743
1744 return 1;
1745 }
1746
1747 /* Create the signatured type hash table from the index. */
1748
1749 static int
1750 create_signatured_type_table_from_index (struct objfile *objfile,
1751 const gdb_byte *bytes,
1752 offset_type elements)
1753 {
1754 offset_type i;
1755 htab_t sig_types_hash;
1756
1757 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1758 dwarf2_per_objfile->type_comp_units
1759 = obstack_alloc (&objfile->objfile_obstack,
1760 dwarf2_per_objfile->n_type_comp_units
1761 * sizeof (struct dwarf2_per_cu_data *));
1762
1763 sig_types_hash = allocate_signatured_type_table (objfile);
1764
1765 for (i = 0; i < elements; i += 3)
1766 {
1767 struct signatured_type *type_sig;
1768 ULONGEST offset, type_offset, signature;
1769 void **slot;
1770
1771 if (!extract_cu_value (bytes, &offset)
1772 || !extract_cu_value (bytes + 8, &type_offset))
1773 return 0;
1774 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1775 bytes += 3 * 8;
1776
1777 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1778 struct signatured_type);
1779 type_sig->signature = signature;
1780 type_sig->offset = offset;
1781 type_sig->type_offset = type_offset;
1782 type_sig->per_cu.from_debug_types = 1;
1783 type_sig->per_cu.offset = offset;
1784 type_sig->per_cu.objfile = objfile;
1785 type_sig->per_cu.v.quick
1786 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1787 struct dwarf2_per_cu_quick_data);
1788
1789 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1790 *slot = type_sig;
1791
1792 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1793 }
1794
1795 dwarf2_per_objfile->signatured_types = sig_types_hash;
1796
1797 return 1;
1798 }
1799
1800 /* Read the address map data from the mapped index, and use it to
1801 populate the objfile's psymtabs_addrmap. */
1802 static void
1803 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1804 {
1805 const gdb_byte *iter, *end;
1806 struct obstack temp_obstack;
1807 struct addrmap *mutable_map;
1808 struct cleanup *cleanup;
1809 CORE_ADDR baseaddr;
1810
1811 obstack_init (&temp_obstack);
1812 cleanup = make_cleanup_obstack_free (&temp_obstack);
1813 mutable_map = addrmap_create_mutable (&temp_obstack);
1814
1815 iter = index->address_table;
1816 end = iter + index->address_table_size;
1817
1818 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1819
1820 while (iter < end)
1821 {
1822 ULONGEST hi, lo, cu_index;
1823 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1824 iter += 8;
1825 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1826 iter += 8;
1827 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1828 iter += 4;
1829
1830 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1831 dw2_get_cu (cu_index));
1832 }
1833
1834 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1835 &objfile->objfile_obstack);
1836 do_cleanups (cleanup);
1837 }
1838
1839 /* The hash function for strings in the mapped index. This is the
1840 same as the hashtab.c hash function, but we keep a separate copy to
1841 maintain control over the implementation. This is necessary
1842 because the hash function is tied to the format of the mapped index
1843 file. */
1844 static hashval_t
1845 mapped_index_string_hash (const void *p)
1846 {
1847 const unsigned char *str = (const unsigned char *) p;
1848 hashval_t r = 0;
1849 unsigned char c;
1850
1851 while ((c = *str++) != 0)
1852 r = r * 67 + c - 113;
1853
1854 return r;
1855 }
1856
1857 /* Find a slot in the mapped index INDEX for the object named NAME.
1858 If NAME is found, set *VEC_OUT to point to the CU vector in the
1859 constant pool and return 1. If NAME cannot be found, return 0. */
1860 static int
1861 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1862 offset_type **vec_out)
1863 {
1864 offset_type hash = mapped_index_string_hash (name);
1865 offset_type slot, step;
1866
1867 slot = hash & (index->index_table_slots - 1);
1868 step = ((hash * 17) & (index->index_table_slots - 1)) | 1;
1869
1870 for (;;)
1871 {
1872 /* Convert a slot number to an offset into the table. */
1873 offset_type i = 2 * slot;
1874 const char *str;
1875 if (index->index_table[i] == 0 && index->index_table[i + 1] == 0)
1876 return 0;
1877
1878 str = index->constant_pool + MAYBE_SWAP (index->index_table[i]);
1879 if (!strcmp (name, str))
1880 {
1881 *vec_out = (offset_type *) (index->constant_pool
1882 + MAYBE_SWAP (index->index_table[i + 1]));
1883 return 1;
1884 }
1885
1886 slot = (slot + step) & (index->index_table_slots - 1);
1887 }
1888 }
1889
1890 /* Read the index file. If everything went ok, initialize the "quick"
1891 elements of all the CUs and return 1. Otherwise, return 0. */
1892 static int
1893 dwarf2_read_index (struct objfile *objfile)
1894 {
1895 char *addr;
1896 struct mapped_index *map;
1897 offset_type *metadata;
1898 const gdb_byte *cu_list;
1899 const gdb_byte *types_list = NULL;
1900 offset_type version, cu_list_elements;
1901 offset_type types_list_elements = 0;
1902 int i;
1903
1904 if (dwarf2_per_objfile->gdb_index.asection == NULL
1905 || dwarf2_per_objfile->gdb_index.size == 0)
1906 return 0;
1907 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1908
1909 addr = dwarf2_per_objfile->gdb_index.buffer;
1910 /* Version check. */
1911 version = MAYBE_SWAP (*(offset_type *) addr);
1912 if (version == 1)
1913 {
1914 /* Index version 1 neglected to account for .debug_types. So,
1915 if we see .debug_types, we cannot use this index. */
1916 if (dwarf2_per_objfile->types.asection != NULL
1917 && dwarf2_per_objfile->types.size != 0)
1918 return 0;
1919 }
1920 else if (version != 2)
1921 return 0;
1922
1923 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1924 map->total_size = dwarf2_per_objfile->gdb_index.size;
1925
1926 metadata = (offset_type *) (addr + sizeof (offset_type));
1927
1928 i = 0;
1929 cu_list = addr + MAYBE_SWAP (metadata[i]);
1930 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
1931 / 8);
1932 ++i;
1933
1934 if (version == 2)
1935 {
1936 types_list = addr + MAYBE_SWAP (metadata[i]);
1937 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
1938 - MAYBE_SWAP (metadata[i]))
1939 / 8);
1940 ++i;
1941 }
1942
1943 map->address_table = addr + MAYBE_SWAP (metadata[i]);
1944 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
1945 - MAYBE_SWAP (metadata[i]));
1946 ++i;
1947
1948 map->index_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
1949 map->index_table_slots = ((MAYBE_SWAP (metadata[i + 1])
1950 - MAYBE_SWAP (metadata[i]))
1951 / (2 * sizeof (offset_type)));
1952 ++i;
1953
1954 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
1955
1956 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
1957 return 0;
1958
1959 if (version == 2
1960 && types_list_elements
1961 && !create_signatured_type_table_from_index (objfile, types_list,
1962 types_list_elements))
1963 return 0;
1964
1965 create_addrmap_from_index (objfile, map);
1966
1967 dwarf2_per_objfile->index_table = map;
1968 dwarf2_per_objfile->using_index = 1;
1969
1970 return 1;
1971 }
1972
1973 /* A helper for the "quick" functions which sets the global
1974 dwarf2_per_objfile according to OBJFILE. */
1975 static void
1976 dw2_setup (struct objfile *objfile)
1977 {
1978 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1979 gdb_assert (dwarf2_per_objfile);
1980 }
1981
1982 /* A helper for the "quick" functions which attempts to read the line
1983 table for THIS_CU. */
1984 static void
1985 dw2_require_line_header (struct objfile *objfile,
1986 struct dwarf2_per_cu_data *this_cu)
1987 {
1988 bfd *abfd = objfile->obfd;
1989 struct line_header *lh = NULL;
1990 struct attribute *attr;
1991 struct cleanup *cleanups;
1992 struct die_info *comp_unit_die;
1993 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
1994 int has_children, i;
1995 struct dwarf2_cu cu;
1996 unsigned int bytes_read, buffer_size;
1997 struct die_reader_specs reader_specs;
1998 char *name, *comp_dir;
1999
2000 if (this_cu->v.quick->read_lines)
2001 return;
2002 this_cu->v.quick->read_lines = 1;
2003
2004 memset (&cu, 0, sizeof (cu));
2005 cu.objfile = objfile;
2006 obstack_init (&cu.comp_unit_obstack);
2007
2008 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2009
2010 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2011 buffer_size = dwarf2_per_objfile->info.size;
2012 buffer = dwarf2_per_objfile->info.buffer;
2013 info_ptr = buffer + this_cu->offset;
2014 beg_of_comp_unit = info_ptr;
2015
2016 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2017 buffer, buffer_size,
2018 abfd);
2019
2020 /* Complete the cu_header. */
2021 cu.header.offset = beg_of_comp_unit - buffer;
2022 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2023
2024 this_cu->cu = &cu;
2025 cu.per_cu = this_cu;
2026
2027 dwarf2_read_abbrevs (abfd, &cu);
2028 make_cleanup (dwarf2_free_abbrev_table, &cu);
2029
2030 if (this_cu->from_debug_types)
2031 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2032 init_cu_die_reader (&reader_specs, &cu);
2033 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2034 &has_children);
2035
2036 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2037 if (attr)
2038 {
2039 unsigned int line_offset = DW_UNSND (attr);
2040 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2041 }
2042 if (lh == NULL)
2043 {
2044 do_cleanups (cleanups);
2045 return;
2046 }
2047
2048 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2049
2050 this_cu->v.quick->lines = lh;
2051
2052 this_cu->v.quick->file_names
2053 = obstack_alloc (&objfile->objfile_obstack,
2054 lh->num_file_names * sizeof (char *));
2055 for (i = 0; i < lh->num_file_names; ++i)
2056 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2057
2058 do_cleanups (cleanups);
2059 }
2060
2061 /* A helper for the "quick" functions which computes and caches the
2062 real path for a given file name from the line table.
2063 dw2_require_line_header must have been called before this is
2064 invoked. */
2065 static const char *
2066 dw2_require_full_path (struct objfile *objfile,
2067 struct dwarf2_per_cu_data *cu,
2068 int index)
2069 {
2070 if (!cu->v.quick->full_names)
2071 cu->v.quick->full_names
2072 = OBSTACK_CALLOC (&objfile->objfile_obstack,
2073 cu->v.quick->lines->num_file_names,
2074 sizeof (char *));
2075
2076 if (!cu->v.quick->full_names[index])
2077 cu->v.quick->full_names[index]
2078 = gdb_realpath (cu->v.quick->file_names[index]);
2079
2080 return cu->v.quick->full_names[index];
2081 }
2082
2083 static struct symtab *
2084 dw2_find_last_source_symtab (struct objfile *objfile)
2085 {
2086 int index;
2087 dw2_setup (objfile);
2088 index = dwarf2_per_objfile->n_comp_units - 1;
2089 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2090 }
2091
2092 static void
2093 dw2_forget_cached_source_info (struct objfile *objfile)
2094 {
2095 int i;
2096
2097 dw2_setup (objfile);
2098 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2099 + dwarf2_per_objfile->n_type_comp_units); ++i)
2100 {
2101 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2102
2103 if (cu->v.quick->full_names)
2104 {
2105 int j;
2106
2107 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2108 xfree ((void *) cu->v.quick->full_names[j]);
2109 }
2110 }
2111 }
2112
2113 static int
2114 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2115 const char *full_path, const char *real_path,
2116 struct symtab **result)
2117 {
2118 int i;
2119 int check_basename = lbasename (name) == name;
2120 struct dwarf2_per_cu_data *base_cu = NULL;
2121
2122 dw2_setup (objfile);
2123 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2124 + dwarf2_per_objfile->n_type_comp_units); ++i)
2125 {
2126 int j;
2127 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2128
2129 if (cu->v.quick->symtab)
2130 continue;
2131
2132 dw2_require_line_header (objfile, cu);
2133 if (!cu->v.quick->lines)
2134 continue;
2135
2136 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2137 {
2138 const char *this_name = cu->v.quick->file_names[j];
2139
2140 if (FILENAME_CMP (name, this_name) == 0)
2141 {
2142 *result = dw2_instantiate_symtab (objfile, cu);
2143 return 1;
2144 }
2145
2146 if (check_basename && ! base_cu
2147 && FILENAME_CMP (lbasename (this_name), name) == 0)
2148 base_cu = cu;
2149
2150 if (full_path != NULL)
2151 {
2152 const char *this_full_name = dw2_require_full_path (objfile,
2153 cu, j);
2154
2155 if (this_full_name
2156 && FILENAME_CMP (full_path, this_full_name) == 0)
2157 {
2158 *result = dw2_instantiate_symtab (objfile, cu);
2159 return 1;
2160 }
2161 }
2162
2163 if (real_path != NULL)
2164 {
2165 const char *this_full_name = dw2_require_full_path (objfile,
2166 cu, j);
2167
2168 if (this_full_name != NULL)
2169 {
2170 char *rp = gdb_realpath (this_full_name);
2171 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2172 {
2173 xfree (rp);
2174 *result = dw2_instantiate_symtab (objfile, cu);
2175 return 1;
2176 }
2177 xfree (rp);
2178 }
2179 }
2180 }
2181 }
2182
2183 if (base_cu)
2184 {
2185 *result = dw2_instantiate_symtab (objfile, base_cu);
2186 return 1;
2187 }
2188
2189 return 0;
2190 }
2191
2192 static struct symtab *
2193 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2194 const char *name, domain_enum domain)
2195 {
2196 /* We do all the work in the pre_expand_symtabs_matching hook
2197 instead. */
2198 return NULL;
2199 }
2200
2201 /* A helper function that expands all symtabs that hold an object
2202 named NAME. */
2203 static void
2204 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2205 {
2206 dw2_setup (objfile);
2207
2208 if (dwarf2_per_objfile->index_table)
2209 {
2210 offset_type *vec;
2211
2212 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2213 name, &vec))
2214 {
2215 offset_type i, len = MAYBE_SWAP (*vec);
2216 for (i = 0; i < len; ++i)
2217 {
2218 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2219 struct dwarf2_per_cu_data *cu = dw2_get_cu (cu_index);
2220
2221 dw2_instantiate_symtab (objfile, cu);
2222 }
2223 }
2224 }
2225 }
2226
2227 static void
2228 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2229 int kind, const char *name,
2230 domain_enum domain)
2231 {
2232 dw2_do_expand_symtabs_matching (objfile, name);
2233 }
2234
2235 static void
2236 dw2_print_stats (struct objfile *objfile)
2237 {
2238 int i, count;
2239
2240 dw2_setup (objfile);
2241 count = 0;
2242 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2243 + dwarf2_per_objfile->n_type_comp_units); ++i)
2244 {
2245 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2246
2247 if (!cu->v.quick->symtab)
2248 ++count;
2249 }
2250 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2251 }
2252
2253 static void
2254 dw2_dump (struct objfile *objfile)
2255 {
2256 /* Nothing worth printing. */
2257 }
2258
2259 static void
2260 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2261 struct section_offsets *delta)
2262 {
2263 /* There's nothing to relocate here. */
2264 }
2265
2266 static void
2267 dw2_expand_symtabs_for_function (struct objfile *objfile,
2268 const char *func_name)
2269 {
2270 dw2_do_expand_symtabs_matching (objfile, func_name);
2271 }
2272
2273 static void
2274 dw2_expand_all_symtabs (struct objfile *objfile)
2275 {
2276 int i;
2277
2278 dw2_setup (objfile);
2279
2280 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2281 + dwarf2_per_objfile->n_type_comp_units); ++i)
2282 {
2283 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2284
2285 dw2_instantiate_symtab (objfile, cu);
2286 }
2287 }
2288
2289 static void
2290 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2291 const char *filename)
2292 {
2293 int i;
2294
2295 dw2_setup (objfile);
2296 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2297 + dwarf2_per_objfile->n_type_comp_units); ++i)
2298 {
2299 int j;
2300 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2301
2302 if (cu->v.quick->symtab)
2303 continue;
2304
2305 dw2_require_line_header (objfile, cu);
2306 if (!cu->v.quick->lines)
2307 continue;
2308
2309 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2310 {
2311 const char *this_name = cu->v.quick->file_names[j];
2312 if (strcmp (this_name, filename) == 0)
2313 {
2314 dw2_instantiate_symtab (objfile, cu);
2315 break;
2316 }
2317 }
2318 }
2319 }
2320
2321 static const char *
2322 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2323 {
2324 struct dwarf2_per_cu_data *cu;
2325 offset_type *vec;
2326
2327 dw2_setup (objfile);
2328
2329 if (!dwarf2_per_objfile->index_table)
2330 return NULL;
2331
2332 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2333 name, &vec))
2334 return NULL;
2335
2336 /* Note that this just looks at the very first one named NAME -- but
2337 actually we are looking for a function. find_main_filename
2338 should be rewritten so that it doesn't require a custom hook. It
2339 could just use the ordinary symbol tables. */
2340 /* vec[0] is the length, which must always be >0. */
2341 cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2342
2343 dw2_require_line_header (objfile, cu);
2344 if (!cu->v.quick->lines)
2345 return NULL;
2346
2347 return cu->v.quick->file_names[cu->v.quick->lines->num_file_names - 1];
2348 }
2349
2350 static void
2351 dw2_map_ada_symtabs (struct objfile *objfile,
2352 int (*wild_match) (const char *, int, const char *),
2353 int (*is_name_suffix) (const char *),
2354 void (*callback) (struct objfile *,
2355 struct symtab *, void *),
2356 const char *name, int global,
2357 domain_enum namespace, int wild,
2358 void *data)
2359 {
2360 /* For now, we don't support Ada, so this function can't be
2361 reached. */
2362 internal_error (__FILE__, __LINE__,
2363 _("map_ada_symtabs called via index method"));
2364 }
2365
2366 static void
2367 dw2_expand_symtabs_matching (struct objfile *objfile,
2368 int (*file_matcher) (const char *, void *),
2369 int (*name_matcher) (const char *, void *),
2370 domain_enum kind,
2371 void *data)
2372 {
2373 int i;
2374 offset_type iter;
2375
2376 dw2_setup (objfile);
2377 if (!dwarf2_per_objfile->index_table)
2378 return;
2379
2380 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2381 + dwarf2_per_objfile->n_type_comp_units); ++i)
2382 {
2383 int j;
2384 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2385
2386 cu->v.quick->mark = 0;
2387 if (cu->v.quick->symtab)
2388 continue;
2389
2390 dw2_require_line_header (objfile, cu);
2391 if (!cu->v.quick->lines)
2392 continue;
2393
2394 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2395 {
2396 if (file_matcher (cu->v.quick->file_names[j], data))
2397 {
2398 cu->v.quick->mark = 1;
2399 break;
2400 }
2401 }
2402 }
2403
2404 for (iter = 0;
2405 iter < dwarf2_per_objfile->index_table->index_table_slots;
2406 ++iter)
2407 {
2408 offset_type idx = 2 * iter;
2409 const char *name;
2410 offset_type *vec, vec_len, vec_idx;
2411
2412 if (dwarf2_per_objfile->index_table->index_table[idx] == 0
2413 && dwarf2_per_objfile->index_table->index_table[idx + 1] == 0)
2414 continue;
2415
2416 name = (dwarf2_per_objfile->index_table->constant_pool
2417 + dwarf2_per_objfile->index_table->index_table[idx]);
2418
2419 if (! (*name_matcher) (name, data))
2420 continue;
2421
2422 /* The name was matched, now expand corresponding CUs that were
2423 marked. */
2424 vec = (offset_type *) (dwarf2_per_objfile->index_table->constant_pool
2425 + dwarf2_per_objfile->index_table->index_table[idx + 1]);
2426 vec_len = MAYBE_SWAP (vec[0]);
2427 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2428 {
2429 struct dwarf2_per_cu_data *cu;
2430
2431 cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2432 if (cu->v.quick->mark)
2433 dw2_instantiate_symtab (objfile, cu);
2434 }
2435 }
2436 }
2437
2438 static struct symtab *
2439 dw2_find_pc_sect_symtab (struct objfile *objfile,
2440 struct minimal_symbol *msymbol,
2441 CORE_ADDR pc,
2442 struct obj_section *section,
2443 int warn_if_readin)
2444 {
2445 struct dwarf2_per_cu_data *data;
2446
2447 dw2_setup (objfile);
2448
2449 if (!objfile->psymtabs_addrmap)
2450 return NULL;
2451
2452 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2453 if (!data)
2454 return NULL;
2455
2456 if (warn_if_readin && data->v.quick->symtab)
2457 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2458 paddress (get_objfile_arch (objfile), pc));
2459
2460 return dw2_instantiate_symtab (objfile, data);
2461 }
2462
2463 static void
2464 dw2_map_symbol_names (struct objfile *objfile,
2465 void (*fun) (const char *, void *),
2466 void *data)
2467 {
2468 offset_type iter;
2469 dw2_setup (objfile);
2470
2471 if (!dwarf2_per_objfile->index_table)
2472 return;
2473
2474 for (iter = 0;
2475 iter < dwarf2_per_objfile->index_table->index_table_slots;
2476 ++iter)
2477 {
2478 offset_type idx = 2 * iter;
2479 const char *name;
2480 offset_type *vec, vec_len, vec_idx;
2481
2482 if (dwarf2_per_objfile->index_table->index_table[idx] == 0
2483 && dwarf2_per_objfile->index_table->index_table[idx + 1] == 0)
2484 continue;
2485
2486 name = (dwarf2_per_objfile->index_table->constant_pool
2487 + dwarf2_per_objfile->index_table->index_table[idx]);
2488
2489 (*fun) (name, data);
2490 }
2491 }
2492
2493 static void
2494 dw2_map_symbol_filenames (struct objfile *objfile,
2495 void (*fun) (const char *, const char *, void *),
2496 void *data)
2497 {
2498 int i;
2499
2500 dw2_setup (objfile);
2501 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2502 + dwarf2_per_objfile->n_type_comp_units); ++i)
2503 {
2504 int j;
2505 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2506
2507 if (cu->v.quick->symtab)
2508 continue;
2509
2510 dw2_require_line_header (objfile, cu);
2511 if (!cu->v.quick->lines)
2512 continue;
2513
2514 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2515 {
2516 const char *this_full_name = dw2_require_full_path (objfile, cu, j);
2517 (*fun) (cu->v.quick->file_names[j], this_full_name, data);
2518 }
2519 }
2520 }
2521
2522 static int
2523 dw2_has_symbols (struct objfile *objfile)
2524 {
2525 return 1;
2526 }
2527
2528 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2529 {
2530 dw2_has_symbols,
2531 dw2_find_last_source_symtab,
2532 dw2_forget_cached_source_info,
2533 dw2_lookup_symtab,
2534 dw2_lookup_symbol,
2535 dw2_pre_expand_symtabs_matching,
2536 dw2_print_stats,
2537 dw2_dump,
2538 dw2_relocate,
2539 dw2_expand_symtabs_for_function,
2540 dw2_expand_all_symtabs,
2541 dw2_expand_symtabs_with_filename,
2542 dw2_find_symbol_file,
2543 dw2_map_ada_symtabs,
2544 dw2_expand_symtabs_matching,
2545 dw2_find_pc_sect_symtab,
2546 dw2_map_symbol_names,
2547 dw2_map_symbol_filenames
2548 };
2549
2550 /* Initialize for reading DWARF for this objfile. Return 0 if this
2551 file will use psymtabs, or 1 if using the GNU index. */
2552
2553 int
2554 dwarf2_initialize_objfile (struct objfile *objfile)
2555 {
2556 /* If we're about to read full symbols, don't bother with the
2557 indices. In this case we also don't care if some other debug
2558 format is making psymtabs, because they are all about to be
2559 expanded anyway. */
2560 if ((objfile->flags & OBJF_READNOW))
2561 {
2562 int i;
2563
2564 dwarf2_per_objfile->using_index = 1;
2565 create_all_comp_units (objfile);
2566 create_debug_types_hash_table (objfile);
2567
2568 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2569 + dwarf2_per_objfile->n_type_comp_units); ++i)
2570 {
2571 struct dwarf2_per_cu_data *cu = dw2_get_cu (i);
2572
2573 cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2574 struct dwarf2_per_cu_quick_data);
2575 }
2576
2577 /* Return 1 so that gdb sees the "quick" functions. However,
2578 these functions will be no-ops because we will have expanded
2579 all symtabs. */
2580 return 1;
2581 }
2582
2583 if (dwarf2_read_index (objfile))
2584 return 1;
2585
2586 dwarf2_build_psymtabs (objfile);
2587 return 0;
2588 }
2589
2590 \f
2591
2592 /* Build a partial symbol table. */
2593
2594 void
2595 dwarf2_build_psymtabs (struct objfile *objfile)
2596 {
2597 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2598 {
2599 init_psymbol_list (objfile, 1024);
2600 }
2601
2602 dwarf2_build_psymtabs_hard (objfile);
2603 }
2604
2605 /* Return TRUE if OFFSET is within CU_HEADER. */
2606
2607 static inline int
2608 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2609 {
2610 unsigned int bottom = cu_header->offset;
2611 unsigned int top = (cu_header->offset
2612 + cu_header->length
2613 + cu_header->initial_length_size);
2614
2615 return (offset >= bottom && offset < top);
2616 }
2617
2618 /* Read in the comp unit header information from the debug_info at info_ptr.
2619 NOTE: This leaves members offset, first_die_offset to be filled in
2620 by the caller. */
2621
2622 static gdb_byte *
2623 read_comp_unit_head (struct comp_unit_head *cu_header,
2624 gdb_byte *info_ptr, bfd *abfd)
2625 {
2626 int signed_addr;
2627 unsigned int bytes_read;
2628
2629 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2630 cu_header->initial_length_size = bytes_read;
2631 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2632 info_ptr += bytes_read;
2633 cu_header->version = read_2_bytes (abfd, info_ptr);
2634 info_ptr += 2;
2635 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2636 &bytes_read);
2637 info_ptr += bytes_read;
2638 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2639 info_ptr += 1;
2640 signed_addr = bfd_get_sign_extend_vma (abfd);
2641 if (signed_addr < 0)
2642 internal_error (__FILE__, __LINE__,
2643 _("read_comp_unit_head: dwarf from non elf file"));
2644 cu_header->signed_addr_p = signed_addr;
2645
2646 return info_ptr;
2647 }
2648
2649 static gdb_byte *
2650 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2651 gdb_byte *buffer, unsigned int buffer_size,
2652 bfd *abfd)
2653 {
2654 gdb_byte *beg_of_comp_unit = info_ptr;
2655
2656 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2657
2658 if (header->version != 2 && header->version != 3 && header->version != 4)
2659 error (_("Dwarf Error: wrong version in compilation unit header "
2660 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2661 bfd_get_filename (abfd));
2662
2663 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2664 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2665 "(offset 0x%lx + 6) [in module %s]"),
2666 (long) header->abbrev_offset,
2667 (long) (beg_of_comp_unit - buffer),
2668 bfd_get_filename (abfd));
2669
2670 if (beg_of_comp_unit + header->length + header->initial_length_size
2671 > buffer + buffer_size)
2672 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2673 "(offset 0x%lx + 0) [in module %s]"),
2674 (long) header->length,
2675 (long) (beg_of_comp_unit - buffer),
2676 bfd_get_filename (abfd));
2677
2678 return info_ptr;
2679 }
2680
2681 /* Read in the types comp unit header information from .debug_types entry at
2682 types_ptr. The result is a pointer to one past the end of the header. */
2683
2684 static gdb_byte *
2685 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2686 ULONGEST *signature,
2687 gdb_byte *types_ptr, bfd *abfd)
2688 {
2689 gdb_byte *initial_types_ptr = types_ptr;
2690
2691 dwarf2_read_section (dwarf2_per_objfile->objfile,
2692 &dwarf2_per_objfile->types);
2693 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2694
2695 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2696
2697 *signature = read_8_bytes (abfd, types_ptr);
2698 types_ptr += 8;
2699 types_ptr += cu_header->offset_size;
2700 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2701
2702 return types_ptr;
2703 }
2704
2705 /* Allocate a new partial symtab for file named NAME and mark this new
2706 partial symtab as being an include of PST. */
2707
2708 static void
2709 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2710 struct objfile *objfile)
2711 {
2712 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2713
2714 subpst->section_offsets = pst->section_offsets;
2715 subpst->textlow = 0;
2716 subpst->texthigh = 0;
2717
2718 subpst->dependencies = (struct partial_symtab **)
2719 obstack_alloc (&objfile->objfile_obstack,
2720 sizeof (struct partial_symtab *));
2721 subpst->dependencies[0] = pst;
2722 subpst->number_of_dependencies = 1;
2723
2724 subpst->globals_offset = 0;
2725 subpst->n_global_syms = 0;
2726 subpst->statics_offset = 0;
2727 subpst->n_static_syms = 0;
2728 subpst->symtab = NULL;
2729 subpst->read_symtab = pst->read_symtab;
2730 subpst->readin = 0;
2731
2732 /* No private part is necessary for include psymtabs. This property
2733 can be used to differentiate between such include psymtabs and
2734 the regular ones. */
2735 subpst->read_symtab_private = NULL;
2736 }
2737
2738 /* Read the Line Number Program data and extract the list of files
2739 included by the source file represented by PST. Build an include
2740 partial symtab for each of these included files. */
2741
2742 static void
2743 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2744 struct die_info *die,
2745 struct partial_symtab *pst)
2746 {
2747 struct objfile *objfile = cu->objfile;
2748 bfd *abfd = objfile->obfd;
2749 struct line_header *lh = NULL;
2750 struct attribute *attr;
2751
2752 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2753 if (attr)
2754 {
2755 unsigned int line_offset = DW_UNSND (attr);
2756
2757 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2758 }
2759 if (lh == NULL)
2760 return; /* No linetable, so no includes. */
2761
2762 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2763 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2764
2765 free_line_header (lh);
2766 }
2767
2768 static hashval_t
2769 hash_type_signature (const void *item)
2770 {
2771 const struct signatured_type *type_sig = item;
2772
2773 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2774 return type_sig->signature;
2775 }
2776
2777 static int
2778 eq_type_signature (const void *item_lhs, const void *item_rhs)
2779 {
2780 const struct signatured_type *lhs = item_lhs;
2781 const struct signatured_type *rhs = item_rhs;
2782
2783 return lhs->signature == rhs->signature;
2784 }
2785
2786 /* Allocate a hash table for signatured types. */
2787
2788 static htab_t
2789 allocate_signatured_type_table (struct objfile *objfile)
2790 {
2791 return htab_create_alloc_ex (41,
2792 hash_type_signature,
2793 eq_type_signature,
2794 NULL,
2795 &objfile->objfile_obstack,
2796 hashtab_obstack_allocate,
2797 dummy_obstack_deallocate);
2798 }
2799
2800 /* A helper function to add a signatured type CU to a list. */
2801
2802 static int
2803 add_signatured_type_cu_to_list (void **slot, void *datum)
2804 {
2805 struct signatured_type *sigt = *slot;
2806 struct dwarf2_per_cu_data ***datap = datum;
2807
2808 **datap = &sigt->per_cu;
2809 ++*datap;
2810
2811 return 1;
2812 }
2813
2814 /* Create the hash table of all entries in the .debug_types section.
2815 The result is zero if there is an error (e.g. missing .debug_types section),
2816 otherwise non-zero. */
2817
2818 static int
2819 create_debug_types_hash_table (struct objfile *objfile)
2820 {
2821 gdb_byte *info_ptr;
2822 htab_t types_htab;
2823 struct dwarf2_per_cu_data **iter;
2824
2825 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2826 info_ptr = dwarf2_per_objfile->types.buffer;
2827
2828 if (info_ptr == NULL)
2829 {
2830 dwarf2_per_objfile->signatured_types = NULL;
2831 return 0;
2832 }
2833
2834 types_htab = allocate_signatured_type_table (objfile);
2835
2836 if (dwarf2_die_debug)
2837 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2838
2839 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2840 {
2841 unsigned int offset;
2842 unsigned int offset_size;
2843 unsigned int type_offset;
2844 unsigned int length, initial_length_size;
2845 unsigned short version;
2846 ULONGEST signature;
2847 struct signatured_type *type_sig;
2848 void **slot;
2849 gdb_byte *ptr = info_ptr;
2850
2851 offset = ptr - dwarf2_per_objfile->types.buffer;
2852
2853 /* We need to read the type's signature in order to build the hash
2854 table, but we don't need to read anything else just yet. */
2855
2856 /* Sanity check to ensure entire cu is present. */
2857 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2858 if (ptr + length + initial_length_size
2859 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2860 {
2861 complaint (&symfile_complaints,
2862 _("debug type entry runs off end of `.debug_types' section, ignored"));
2863 break;
2864 }
2865
2866 offset_size = initial_length_size == 4 ? 4 : 8;
2867 ptr += initial_length_size;
2868 version = bfd_get_16 (objfile->obfd, ptr);
2869 ptr += 2;
2870 ptr += offset_size; /* abbrev offset */
2871 ptr += 1; /* address size */
2872 signature = bfd_get_64 (objfile->obfd, ptr);
2873 ptr += 8;
2874 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2875
2876 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2877 memset (type_sig, 0, sizeof (*type_sig));
2878 type_sig->signature = signature;
2879 type_sig->offset = offset;
2880 type_sig->type_offset = type_offset;
2881 type_sig->per_cu.objfile = objfile;
2882 type_sig->per_cu.from_debug_types = 1;
2883
2884 slot = htab_find_slot (types_htab, type_sig, INSERT);
2885 gdb_assert (slot != NULL);
2886 *slot = type_sig;
2887
2888 if (dwarf2_die_debug)
2889 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2890 offset, phex (signature, sizeof (signature)));
2891
2892 info_ptr = info_ptr + initial_length_size + length;
2893 }
2894
2895 dwarf2_per_objfile->signatured_types = types_htab;
2896
2897 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
2898 dwarf2_per_objfile->type_comp_units
2899 = obstack_alloc (&objfile->objfile_obstack,
2900 dwarf2_per_objfile->n_type_comp_units
2901 * sizeof (struct dwarf2_per_cu_data *));
2902 iter = &dwarf2_per_objfile->type_comp_units[0];
2903 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
2904 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
2905 == dwarf2_per_objfile->n_type_comp_units);
2906
2907 return 1;
2908 }
2909
2910 /* Lookup a signature based type.
2911 Returns NULL if SIG is not present in the table. */
2912
2913 static struct signatured_type *
2914 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2915 {
2916 struct signatured_type find_entry, *entry;
2917
2918 if (dwarf2_per_objfile->signatured_types == NULL)
2919 {
2920 complaint (&symfile_complaints,
2921 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2922 return 0;
2923 }
2924
2925 find_entry.signature = sig;
2926 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2927 return entry;
2928 }
2929
2930 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2931
2932 static void
2933 init_cu_die_reader (struct die_reader_specs *reader,
2934 struct dwarf2_cu *cu)
2935 {
2936 reader->abfd = cu->objfile->obfd;
2937 reader->cu = cu;
2938 if (cu->per_cu->from_debug_types)
2939 {
2940 gdb_assert (dwarf2_per_objfile->types.readin);
2941 reader->buffer = dwarf2_per_objfile->types.buffer;
2942 }
2943 else
2944 {
2945 gdb_assert (dwarf2_per_objfile->info.readin);
2946 reader->buffer = dwarf2_per_objfile->info.buffer;
2947 }
2948 }
2949
2950 /* Find the base address of the compilation unit for range lists and
2951 location lists. It will normally be specified by DW_AT_low_pc.
2952 In DWARF-3 draft 4, the base address could be overridden by
2953 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2954 compilation units with discontinuous ranges. */
2955
2956 static void
2957 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2958 {
2959 struct attribute *attr;
2960
2961 cu->base_known = 0;
2962 cu->base_address = 0;
2963
2964 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2965 if (attr)
2966 {
2967 cu->base_address = DW_ADDR (attr);
2968 cu->base_known = 1;
2969 }
2970 else
2971 {
2972 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2973 if (attr)
2974 {
2975 cu->base_address = DW_ADDR (attr);
2976 cu->base_known = 1;
2977 }
2978 }
2979 }
2980
2981 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
2982 to combine the common parts.
2983 Process a compilation unit for a psymtab.
2984 BUFFER is a pointer to the beginning of the dwarf section buffer,
2985 either .debug_info or debug_types.
2986 INFO_PTR is a pointer to the start of the CU.
2987 Returns a pointer to the next CU. */
2988
2989 static gdb_byte *
2990 process_psymtab_comp_unit (struct objfile *objfile,
2991 struct dwarf2_per_cu_data *this_cu,
2992 gdb_byte *buffer, gdb_byte *info_ptr,
2993 unsigned int buffer_size)
2994 {
2995 bfd *abfd = objfile->obfd;
2996 gdb_byte *beg_of_comp_unit = info_ptr;
2997 struct die_info *comp_unit_die;
2998 struct partial_symtab *pst;
2999 CORE_ADDR baseaddr;
3000 struct cleanup *back_to_inner;
3001 struct dwarf2_cu cu;
3002 int has_children, has_pc_info;
3003 struct attribute *attr;
3004 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3005 struct die_reader_specs reader_specs;
3006
3007 memset (&cu, 0, sizeof (cu));
3008 cu.objfile = objfile;
3009 obstack_init (&cu.comp_unit_obstack);
3010
3011 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3012
3013 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3014 buffer, buffer_size,
3015 abfd);
3016
3017 /* Complete the cu_header. */
3018 cu.header.offset = beg_of_comp_unit - buffer;
3019 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3020
3021 cu.list_in_scope = &file_symbols;
3022
3023 /* If this compilation unit was already read in, free the
3024 cached copy in order to read it in again. This is
3025 necessary because we skipped some symbols when we first
3026 read in the compilation unit (see load_partial_dies).
3027 This problem could be avoided, but the benefit is
3028 unclear. */
3029 if (this_cu->cu != NULL)
3030 free_one_cached_comp_unit (this_cu->cu);
3031
3032 /* Note that this is a pointer to our stack frame, being
3033 added to a global data structure. It will be cleaned up
3034 in free_stack_comp_unit when we finish with this
3035 compilation unit. */
3036 this_cu->cu = &cu;
3037 cu.per_cu = this_cu;
3038
3039 /* Read the abbrevs for this compilation unit into a table. */
3040 dwarf2_read_abbrevs (abfd, &cu);
3041 make_cleanup (dwarf2_free_abbrev_table, &cu);
3042
3043 /* Read the compilation unit die. */
3044 if (this_cu->from_debug_types)
3045 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3046 init_cu_die_reader (&reader_specs, &cu);
3047 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3048 &has_children);
3049
3050 if (this_cu->from_debug_types)
3051 {
3052 /* offset,length haven't been set yet for type units. */
3053 this_cu->offset = cu.header.offset;
3054 this_cu->length = cu.header.length + cu.header.initial_length_size;
3055 }
3056 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3057 {
3058 info_ptr = (beg_of_comp_unit + cu.header.length
3059 + cu.header.initial_length_size);
3060 do_cleanups (back_to_inner);
3061 return info_ptr;
3062 }
3063
3064 /* Set the language we're debugging. */
3065 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
3066 if (attr)
3067 set_cu_language (DW_UNSND (attr), &cu);
3068 else
3069 set_cu_language (language_minimal, &cu);
3070
3071 /* Allocate a new partial symbol table structure. */
3072 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3073 pst = start_psymtab_common (objfile, objfile->section_offsets,
3074 (attr != NULL) ? DW_STRING (attr) : "",
3075 /* TEXTLOW and TEXTHIGH are set below. */
3076 0,
3077 objfile->global_psymbols.next,
3078 objfile->static_psymbols.next);
3079
3080 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3081 if (attr != NULL)
3082 pst->dirname = DW_STRING (attr);
3083
3084 pst->read_symtab_private = this_cu;
3085
3086 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3087
3088 /* Store the function that reads in the rest of the symbol table */
3089 pst->read_symtab = dwarf2_psymtab_to_symtab;
3090
3091 this_cu->v.psymtab = pst;
3092
3093 dwarf2_find_base_address (comp_unit_die, &cu);
3094
3095 /* Possibly set the default values of LOWPC and HIGHPC from
3096 `DW_AT_ranges'. */
3097 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3098 &best_highpc, &cu, pst);
3099 if (has_pc_info == 1 && best_lowpc < best_highpc)
3100 /* Store the contiguous range if it is not empty; it can be empty for
3101 CUs with no code. */
3102 addrmap_set_empty (objfile->psymtabs_addrmap,
3103 best_lowpc + baseaddr,
3104 best_highpc + baseaddr - 1, pst);
3105
3106 /* Check if comp unit has_children.
3107 If so, read the rest of the partial symbols from this comp unit.
3108 If not, there's no more debug_info for this comp unit. */
3109 if (has_children)
3110 {
3111 struct partial_die_info *first_die;
3112 CORE_ADDR lowpc, highpc;
3113
3114 lowpc = ((CORE_ADDR) -1);
3115 highpc = ((CORE_ADDR) 0);
3116
3117 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3118
3119 scan_partial_symbols (first_die, &lowpc, &highpc,
3120 ! has_pc_info, &cu);
3121
3122 /* If we didn't find a lowpc, set it to highpc to avoid
3123 complaints from `maint check'. */
3124 if (lowpc == ((CORE_ADDR) -1))
3125 lowpc = highpc;
3126
3127 /* If the compilation unit didn't have an explicit address range,
3128 then use the information extracted from its child dies. */
3129 if (! has_pc_info)
3130 {
3131 best_lowpc = lowpc;
3132 best_highpc = highpc;
3133 }
3134 }
3135 pst->textlow = best_lowpc + baseaddr;
3136 pst->texthigh = best_highpc + baseaddr;
3137
3138 pst->n_global_syms = objfile->global_psymbols.next -
3139 (objfile->global_psymbols.list + pst->globals_offset);
3140 pst->n_static_syms = objfile->static_psymbols.next -
3141 (objfile->static_psymbols.list + pst->statics_offset);
3142 sort_pst_symbols (pst);
3143
3144 info_ptr = (beg_of_comp_unit + cu.header.length
3145 + cu.header.initial_length_size);
3146
3147 if (this_cu->from_debug_types)
3148 {
3149 /* It's not clear we want to do anything with stmt lists here.
3150 Waiting to see what gcc ultimately does. */
3151 }
3152 else
3153 {
3154 /* Get the list of files included in the current compilation unit,
3155 and build a psymtab for each of them. */
3156 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3157 }
3158
3159 do_cleanups (back_to_inner);
3160
3161 return info_ptr;
3162 }
3163
3164 /* Traversal function for htab_traverse_noresize.
3165 Process one .debug_types comp-unit. */
3166
3167 static int
3168 process_type_comp_unit (void **slot, void *info)
3169 {
3170 struct signatured_type *entry = (struct signatured_type *) *slot;
3171 struct objfile *objfile = (struct objfile *) info;
3172 struct dwarf2_per_cu_data *this_cu;
3173
3174 this_cu = &entry->per_cu;
3175
3176 gdb_assert (dwarf2_per_objfile->types.readin);
3177 process_psymtab_comp_unit (objfile, this_cu,
3178 dwarf2_per_objfile->types.buffer,
3179 dwarf2_per_objfile->types.buffer + entry->offset,
3180 dwarf2_per_objfile->types.size);
3181
3182 return 1;
3183 }
3184
3185 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3186 Build partial symbol tables for the .debug_types comp-units. */
3187
3188 static void
3189 build_type_psymtabs (struct objfile *objfile)
3190 {
3191 if (! create_debug_types_hash_table (objfile))
3192 return;
3193
3194 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3195 process_type_comp_unit, objfile);
3196 }
3197
3198 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3199
3200 static void
3201 psymtabs_addrmap_cleanup (void *o)
3202 {
3203 struct objfile *objfile = o;
3204
3205 objfile->psymtabs_addrmap = NULL;
3206 }
3207
3208 /* Build the partial symbol table by doing a quick pass through the
3209 .debug_info and .debug_abbrev sections. */
3210
3211 static void
3212 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3213 {
3214 gdb_byte *info_ptr;
3215 struct cleanup *back_to, *addrmap_cleanup;
3216 struct obstack temp_obstack;
3217
3218 dwarf2_per_objfile->reading_partial_symbols = 1;
3219
3220 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3221 info_ptr = dwarf2_per_objfile->info.buffer;
3222
3223 /* Any cached compilation units will be linked by the per-objfile
3224 read_in_chain. Make sure to free them when we're done. */
3225 back_to = make_cleanup (free_cached_comp_units, NULL);
3226
3227 build_type_psymtabs (objfile);
3228
3229 create_all_comp_units (objfile);
3230
3231 /* Create a temporary address map on a temporary obstack. We later
3232 copy this to the final obstack. */
3233 obstack_init (&temp_obstack);
3234 make_cleanup_obstack_free (&temp_obstack);
3235 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3236 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3237
3238 /* Since the objects we're extracting from .debug_info vary in
3239 length, only the individual functions to extract them (like
3240 read_comp_unit_head and load_partial_die) can really know whether
3241 the buffer is large enough to hold another complete object.
3242
3243 At the moment, they don't actually check that. If .debug_info
3244 holds just one extra byte after the last compilation unit's dies,
3245 then read_comp_unit_head will happily read off the end of the
3246 buffer. read_partial_die is similarly casual. Those functions
3247 should be fixed.
3248
3249 For this loop condition, simply checking whether there's any data
3250 left at all should be sufficient. */
3251
3252 while (info_ptr < (dwarf2_per_objfile->info.buffer
3253 + dwarf2_per_objfile->info.size))
3254 {
3255 struct dwarf2_per_cu_data *this_cu;
3256
3257 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3258 objfile);
3259
3260 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3261 dwarf2_per_objfile->info.buffer,
3262 info_ptr,
3263 dwarf2_per_objfile->info.size);
3264 }
3265
3266 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3267 &objfile->objfile_obstack);
3268 discard_cleanups (addrmap_cleanup);
3269
3270 do_cleanups (back_to);
3271 }
3272
3273 /* Load the partial DIEs for a secondary CU into memory. */
3274
3275 static void
3276 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3277 struct objfile *objfile)
3278 {
3279 bfd *abfd = objfile->obfd;
3280 gdb_byte *info_ptr, *beg_of_comp_unit;
3281 struct die_info *comp_unit_die;
3282 struct dwarf2_cu *cu;
3283 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3284 struct attribute *attr;
3285 int has_children;
3286 struct die_reader_specs reader_specs;
3287 int read_cu = 0;
3288
3289 gdb_assert (! this_cu->from_debug_types);
3290
3291 gdb_assert (dwarf2_per_objfile->info.readin);
3292 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3293 beg_of_comp_unit = info_ptr;
3294
3295 if (this_cu->cu == NULL)
3296 {
3297 cu = alloc_one_comp_unit (objfile);
3298
3299 read_cu = 1;
3300
3301 /* If an error occurs while loading, release our storage. */
3302 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3303
3304 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3305 dwarf2_per_objfile->info.buffer,
3306 dwarf2_per_objfile->info.size,
3307 abfd);
3308
3309 /* Complete the cu_header. */
3310 cu->header.offset = this_cu->offset;
3311 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3312
3313 /* Link this compilation unit into the compilation unit tree. */
3314 this_cu->cu = cu;
3315 cu->per_cu = this_cu;
3316
3317 /* Link this CU into read_in_chain. */
3318 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3319 dwarf2_per_objfile->read_in_chain = this_cu;
3320 }
3321 else
3322 {
3323 cu = this_cu->cu;
3324 info_ptr += cu->header.first_die_offset;
3325 }
3326
3327 /* Read the abbrevs for this compilation unit into a table. */
3328 gdb_assert (cu->dwarf2_abbrevs == NULL);
3329 dwarf2_read_abbrevs (abfd, cu);
3330 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3331
3332 /* Read the compilation unit die. */
3333 init_cu_die_reader (&reader_specs, cu);
3334 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3335 &has_children);
3336
3337 /* Set the language we're debugging. */
3338 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
3339 if (attr)
3340 set_cu_language (DW_UNSND (attr), cu);
3341 else
3342 set_cu_language (language_minimal, cu);
3343
3344 /* Check if comp unit has_children.
3345 If so, read the rest of the partial symbols from this comp unit.
3346 If not, there's no more debug_info for this comp unit. */
3347 if (has_children)
3348 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3349
3350 do_cleanups (free_abbrevs_cleanup);
3351
3352 if (read_cu)
3353 {
3354 /* We've successfully allocated this compilation unit. Let our
3355 caller clean it up when finished with it. */
3356 discard_cleanups (free_cu_cleanup);
3357 }
3358 }
3359
3360 /* Create a list of all compilation units in OBJFILE. We do this only
3361 if an inter-comp-unit reference is found; presumably if there is one,
3362 there will be many, and one will occur early in the .debug_info section.
3363 So there's no point in building this list incrementally. */
3364
3365 static void
3366 create_all_comp_units (struct objfile *objfile)
3367 {
3368 int n_allocated;
3369 int n_comp_units;
3370 struct dwarf2_per_cu_data **all_comp_units;
3371 gdb_byte *info_ptr;
3372
3373 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3374 info_ptr = dwarf2_per_objfile->info.buffer;
3375
3376 n_comp_units = 0;
3377 n_allocated = 10;
3378 all_comp_units = xmalloc (n_allocated
3379 * sizeof (struct dwarf2_per_cu_data *));
3380
3381 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
3382 {
3383 unsigned int length, initial_length_size;
3384 struct dwarf2_per_cu_data *this_cu;
3385 unsigned int offset;
3386
3387 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3388
3389 /* Read just enough information to find out where the next
3390 compilation unit is. */
3391 length = read_initial_length (objfile->obfd, info_ptr,
3392 &initial_length_size);
3393
3394 /* Save the compilation unit for later lookup. */
3395 this_cu = obstack_alloc (&objfile->objfile_obstack,
3396 sizeof (struct dwarf2_per_cu_data));
3397 memset (this_cu, 0, sizeof (*this_cu));
3398 this_cu->offset = offset;
3399 this_cu->length = length + initial_length_size;
3400 this_cu->objfile = objfile;
3401
3402 if (n_comp_units == n_allocated)
3403 {
3404 n_allocated *= 2;
3405 all_comp_units = xrealloc (all_comp_units,
3406 n_allocated
3407 * sizeof (struct dwarf2_per_cu_data *));
3408 }
3409 all_comp_units[n_comp_units++] = this_cu;
3410
3411 info_ptr = info_ptr + this_cu->length;
3412 }
3413
3414 dwarf2_per_objfile->all_comp_units
3415 = obstack_alloc (&objfile->objfile_obstack,
3416 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3417 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3418 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3419 xfree (all_comp_units);
3420 dwarf2_per_objfile->n_comp_units = n_comp_units;
3421 }
3422
3423 /* Process all loaded DIEs for compilation unit CU, starting at
3424 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3425 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3426 DW_AT_ranges). If NEED_PC is set, then this function will set
3427 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3428 and record the covered ranges in the addrmap. */
3429
3430 static void
3431 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3432 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3433 {
3434 struct partial_die_info *pdi;
3435
3436 /* Now, march along the PDI's, descending into ones which have
3437 interesting children but skipping the children of the other ones,
3438 until we reach the end of the compilation unit. */
3439
3440 pdi = first_die;
3441
3442 while (pdi != NULL)
3443 {
3444 fixup_partial_die (pdi, cu);
3445
3446 /* Anonymous namespaces or modules have no name but have interesting
3447 children, so we need to look at them. Ditto for anonymous
3448 enums. */
3449
3450 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3451 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3452 {
3453 switch (pdi->tag)
3454 {
3455 case DW_TAG_subprogram:
3456 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3457 break;
3458 case DW_TAG_variable:
3459 case DW_TAG_typedef:
3460 case DW_TAG_union_type:
3461 if (!pdi->is_declaration)
3462 {
3463 add_partial_symbol (pdi, cu);
3464 }
3465 break;
3466 case DW_TAG_class_type:
3467 case DW_TAG_interface_type:
3468 case DW_TAG_structure_type:
3469 if (!pdi->is_declaration)
3470 {
3471 add_partial_symbol (pdi, cu);
3472 }
3473 break;
3474 case DW_TAG_enumeration_type:
3475 if (!pdi->is_declaration)
3476 add_partial_enumeration (pdi, cu);
3477 break;
3478 case DW_TAG_base_type:
3479 case DW_TAG_subrange_type:
3480 /* File scope base type definitions are added to the partial
3481 symbol table. */
3482 add_partial_symbol (pdi, cu);
3483 break;
3484 case DW_TAG_namespace:
3485 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3486 break;
3487 case DW_TAG_module:
3488 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3489 break;
3490 default:
3491 break;
3492 }
3493 }
3494
3495 /* If the die has a sibling, skip to the sibling. */
3496
3497 pdi = pdi->die_sibling;
3498 }
3499 }
3500
3501 /* Functions used to compute the fully scoped name of a partial DIE.
3502
3503 Normally, this is simple. For C++, the parent DIE's fully scoped
3504 name is concatenated with "::" and the partial DIE's name. For
3505 Java, the same thing occurs except that "." is used instead of "::".
3506 Enumerators are an exception; they use the scope of their parent
3507 enumeration type, i.e. the name of the enumeration type is not
3508 prepended to the enumerator.
3509
3510 There are two complexities. One is DW_AT_specification; in this
3511 case "parent" means the parent of the target of the specification,
3512 instead of the direct parent of the DIE. The other is compilers
3513 which do not emit DW_TAG_namespace; in this case we try to guess
3514 the fully qualified name of structure types from their members'
3515 linkage names. This must be done using the DIE's children rather
3516 than the children of any DW_AT_specification target. We only need
3517 to do this for structures at the top level, i.e. if the target of
3518 any DW_AT_specification (if any; otherwise the DIE itself) does not
3519 have a parent. */
3520
3521 /* Compute the scope prefix associated with PDI's parent, in
3522 compilation unit CU. The result will be allocated on CU's
3523 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3524 field. NULL is returned if no prefix is necessary. */
3525 static char *
3526 partial_die_parent_scope (struct partial_die_info *pdi,
3527 struct dwarf2_cu *cu)
3528 {
3529 char *grandparent_scope;
3530 struct partial_die_info *parent, *real_pdi;
3531
3532 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3533 then this means the parent of the specification DIE. */
3534
3535 real_pdi = pdi;
3536 while (real_pdi->has_specification)
3537 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3538
3539 parent = real_pdi->die_parent;
3540 if (parent == NULL)
3541 return NULL;
3542
3543 if (parent->scope_set)
3544 return parent->scope;
3545
3546 fixup_partial_die (parent, cu);
3547
3548 grandparent_scope = partial_die_parent_scope (parent, cu);
3549
3550 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3551 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3552 Work around this problem here. */
3553 if (cu->language == language_cplus
3554 && parent->tag == DW_TAG_namespace
3555 && strcmp (parent->name, "::") == 0
3556 && grandparent_scope == NULL)
3557 {
3558 parent->scope = NULL;
3559 parent->scope_set = 1;
3560 return NULL;
3561 }
3562
3563 if (parent->tag == DW_TAG_namespace
3564 || parent->tag == DW_TAG_module
3565 || parent->tag == DW_TAG_structure_type
3566 || parent->tag == DW_TAG_class_type
3567 || parent->tag == DW_TAG_interface_type
3568 || parent->tag == DW_TAG_union_type
3569 || parent->tag == DW_TAG_enumeration_type)
3570 {
3571 if (grandparent_scope == NULL)
3572 parent->scope = parent->name;
3573 else
3574 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
3575 parent->name, 0, cu);
3576 }
3577 else if (parent->tag == DW_TAG_enumerator)
3578 /* Enumerators should not get the name of the enumeration as a prefix. */
3579 parent->scope = grandparent_scope;
3580 else
3581 {
3582 /* FIXME drow/2004-04-01: What should we be doing with
3583 function-local names? For partial symbols, we should probably be
3584 ignoring them. */
3585 complaint (&symfile_complaints,
3586 _("unhandled containing DIE tag %d for DIE at %d"),
3587 parent->tag, pdi->offset);
3588 parent->scope = grandparent_scope;
3589 }
3590
3591 parent->scope_set = 1;
3592 return parent->scope;
3593 }
3594
3595 /* Return the fully scoped name associated with PDI, from compilation unit
3596 CU. The result will be allocated with malloc. */
3597 static char *
3598 partial_die_full_name (struct partial_die_info *pdi,
3599 struct dwarf2_cu *cu)
3600 {
3601 char *parent_scope;
3602
3603 /* If this is a template instantiation, we can not work out the
3604 template arguments from partial DIEs. So, unfortunately, we have
3605 to go through the full DIEs. At least any work we do building
3606 types here will be reused if full symbols are loaded later. */
3607 if (pdi->has_template_arguments)
3608 {
3609 fixup_partial_die (pdi, cu);
3610
3611 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3612 {
3613 struct die_info *die;
3614 struct attribute attr;
3615 struct dwarf2_cu *ref_cu = cu;
3616
3617 attr.name = 0;
3618 attr.form = DW_FORM_ref_addr;
3619 attr.u.addr = pdi->offset;
3620 die = follow_die_ref (NULL, &attr, &ref_cu);
3621
3622 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3623 }
3624 }
3625
3626 parent_scope = partial_die_parent_scope (pdi, cu);
3627 if (parent_scope == NULL)
3628 return NULL;
3629 else
3630 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3631 }
3632
3633 static void
3634 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3635 {
3636 struct objfile *objfile = cu->objfile;
3637 CORE_ADDR addr = 0;
3638 char *actual_name = NULL;
3639 const struct partial_symbol *psym = NULL;
3640 CORE_ADDR baseaddr;
3641 int built_actual_name = 0;
3642
3643 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3644
3645 actual_name = partial_die_full_name (pdi, cu);
3646 if (actual_name)
3647 built_actual_name = 1;
3648
3649 if (actual_name == NULL)
3650 actual_name = pdi->name;
3651
3652 switch (pdi->tag)
3653 {
3654 case DW_TAG_subprogram:
3655 if (pdi->is_external || cu->language == language_ada)
3656 {
3657 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3658 of the global scope. But in Ada, we want to be able to access
3659 nested procedures globally. So all Ada subprograms are stored
3660 in the global scope. */
3661 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3662 mst_text, objfile); */
3663 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3664 built_actual_name,
3665 VAR_DOMAIN, LOC_BLOCK,
3666 &objfile->global_psymbols,
3667 0, pdi->lowpc + baseaddr,
3668 cu->language, objfile);
3669 }
3670 else
3671 {
3672 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3673 mst_file_text, objfile); */
3674 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3675 built_actual_name,
3676 VAR_DOMAIN, LOC_BLOCK,
3677 &objfile->static_psymbols,
3678 0, pdi->lowpc + baseaddr,
3679 cu->language, objfile);
3680 }
3681 break;
3682 case DW_TAG_variable:
3683 if (pdi->locdesc)
3684 addr = decode_locdesc (pdi->locdesc, cu);
3685
3686 if (pdi->locdesc
3687 && addr == 0
3688 && !dwarf2_per_objfile->has_section_at_zero)
3689 {
3690 /* A global or static variable may also have been stripped
3691 out by the linker if unused, in which case its address
3692 will be nullified; do not add such variables into partial
3693 symbol table then. */
3694 }
3695 else if (pdi->is_external)
3696 {
3697 /* Global Variable.
3698 Don't enter into the minimal symbol tables as there is
3699 a minimal symbol table entry from the ELF symbols already.
3700 Enter into partial symbol table if it has a location
3701 descriptor or a type.
3702 If the location descriptor is missing, new_symbol will create
3703 a LOC_UNRESOLVED symbol, the address of the variable will then
3704 be determined from the minimal symbol table whenever the variable
3705 is referenced.
3706 The address for the partial symbol table entry is not
3707 used by GDB, but it comes in handy for debugging partial symbol
3708 table building. */
3709
3710 if (pdi->locdesc || pdi->has_type)
3711 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3712 built_actual_name,
3713 VAR_DOMAIN, LOC_STATIC,
3714 &objfile->global_psymbols,
3715 0, addr + baseaddr,
3716 cu->language, objfile);
3717 }
3718 else
3719 {
3720 /* Static Variable. Skip symbols without location descriptors. */
3721 if (pdi->locdesc == NULL)
3722 {
3723 if (built_actual_name)
3724 xfree (actual_name);
3725 return;
3726 }
3727 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3728 mst_file_data, objfile); */
3729 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3730 built_actual_name,
3731 VAR_DOMAIN, LOC_STATIC,
3732 &objfile->static_psymbols,
3733 0, addr + baseaddr,
3734 cu->language, objfile);
3735 }
3736 break;
3737 case DW_TAG_typedef:
3738 case DW_TAG_base_type:
3739 case DW_TAG_subrange_type:
3740 add_psymbol_to_list (actual_name, strlen (actual_name),
3741 built_actual_name,
3742 VAR_DOMAIN, LOC_TYPEDEF,
3743 &objfile->static_psymbols,
3744 0, (CORE_ADDR) 0, cu->language, objfile);
3745 break;
3746 case DW_TAG_namespace:
3747 add_psymbol_to_list (actual_name, strlen (actual_name),
3748 built_actual_name,
3749 VAR_DOMAIN, LOC_TYPEDEF,
3750 &objfile->global_psymbols,
3751 0, (CORE_ADDR) 0, cu->language, objfile);
3752 break;
3753 case DW_TAG_class_type:
3754 case DW_TAG_interface_type:
3755 case DW_TAG_structure_type:
3756 case DW_TAG_union_type:
3757 case DW_TAG_enumeration_type:
3758 /* Skip external references. The DWARF standard says in the section
3759 about "Structure, Union, and Class Type Entries": "An incomplete
3760 structure, union or class type is represented by a structure,
3761 union or class entry that does not have a byte size attribute
3762 and that has a DW_AT_declaration attribute." */
3763 if (!pdi->has_byte_size && pdi->is_declaration)
3764 {
3765 if (built_actual_name)
3766 xfree (actual_name);
3767 return;
3768 }
3769
3770 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3771 static vs. global. */
3772 add_psymbol_to_list (actual_name, strlen (actual_name),
3773 built_actual_name,
3774 STRUCT_DOMAIN, LOC_TYPEDEF,
3775 (cu->language == language_cplus
3776 || cu->language == language_java)
3777 ? &objfile->global_psymbols
3778 : &objfile->static_psymbols,
3779 0, (CORE_ADDR) 0, cu->language, objfile);
3780
3781 break;
3782 case DW_TAG_enumerator:
3783 add_psymbol_to_list (actual_name, strlen (actual_name),
3784 built_actual_name,
3785 VAR_DOMAIN, LOC_CONST,
3786 (cu->language == language_cplus
3787 || cu->language == language_java)
3788 ? &objfile->global_psymbols
3789 : &objfile->static_psymbols,
3790 0, (CORE_ADDR) 0, cu->language, objfile);
3791 break;
3792 default:
3793 break;
3794 }
3795
3796 if (built_actual_name)
3797 xfree (actual_name);
3798 }
3799
3800 /* Read a partial die corresponding to a namespace; also, add a symbol
3801 corresponding to that namespace to the symbol table. NAMESPACE is
3802 the name of the enclosing namespace. */
3803
3804 static void
3805 add_partial_namespace (struct partial_die_info *pdi,
3806 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3807 int need_pc, struct dwarf2_cu *cu)
3808 {
3809 /* Add a symbol for the namespace. */
3810
3811 add_partial_symbol (pdi, cu);
3812
3813 /* Now scan partial symbols in that namespace. */
3814
3815 if (pdi->has_children)
3816 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3817 }
3818
3819 /* Read a partial die corresponding to a Fortran module. */
3820
3821 static void
3822 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3823 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3824 {
3825 /* Now scan partial symbols in that module. */
3826
3827 if (pdi->has_children)
3828 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3829 }
3830
3831 /* Read a partial die corresponding to a subprogram and create a partial
3832 symbol for that subprogram. When the CU language allows it, this
3833 routine also defines a partial symbol for each nested subprogram
3834 that this subprogram contains.
3835
3836 DIE my also be a lexical block, in which case we simply search
3837 recursively for suprograms defined inside that lexical block.
3838 Again, this is only performed when the CU language allows this
3839 type of definitions. */
3840
3841 static void
3842 add_partial_subprogram (struct partial_die_info *pdi,
3843 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3844 int need_pc, struct dwarf2_cu *cu)
3845 {
3846 if (pdi->tag == DW_TAG_subprogram)
3847 {
3848 if (pdi->has_pc_info)
3849 {
3850 if (pdi->lowpc < *lowpc)
3851 *lowpc = pdi->lowpc;
3852 if (pdi->highpc > *highpc)
3853 *highpc = pdi->highpc;
3854 if (need_pc)
3855 {
3856 CORE_ADDR baseaddr;
3857 struct objfile *objfile = cu->objfile;
3858
3859 baseaddr = ANOFFSET (objfile->section_offsets,
3860 SECT_OFF_TEXT (objfile));
3861 addrmap_set_empty (objfile->psymtabs_addrmap,
3862 pdi->lowpc + baseaddr,
3863 pdi->highpc - 1 + baseaddr,
3864 cu->per_cu->v.psymtab);
3865 }
3866 if (!pdi->is_declaration)
3867 /* Ignore subprogram DIEs that do not have a name, they are
3868 illegal. Do not emit a complaint at this point, we will
3869 do so when we convert this psymtab into a symtab. */
3870 if (pdi->name)
3871 add_partial_symbol (pdi, cu);
3872 }
3873 }
3874
3875 if (! pdi->has_children)
3876 return;
3877
3878 if (cu->language == language_ada)
3879 {
3880 pdi = pdi->die_child;
3881 while (pdi != NULL)
3882 {
3883 fixup_partial_die (pdi, cu);
3884 if (pdi->tag == DW_TAG_subprogram
3885 || pdi->tag == DW_TAG_lexical_block)
3886 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3887 pdi = pdi->die_sibling;
3888 }
3889 }
3890 }
3891
3892 /* See if we can figure out if the class lives in a namespace. We do
3893 this by looking for a member function; its demangled name will
3894 contain namespace info, if there is any. */
3895
3896 static void
3897 guess_structure_name (struct partial_die_info *struct_pdi,
3898 struct dwarf2_cu *cu)
3899 {
3900 if ((cu->language == language_cplus
3901 || cu->language == language_java)
3902 && cu->has_namespace_info == 0
3903 && struct_pdi->has_children)
3904 {
3905 /* NOTE: carlton/2003-10-07: Getting the info this way changes
3906 what template types look like, because the demangler
3907 frequently doesn't give the same name as the debug info. We
3908 could fix this by only using the demangled name to get the
3909 prefix (but see comment in read_structure_type). */
3910
3911 struct partial_die_info *real_pdi;
3912
3913 /* If this DIE (this DIE's specification, if any) has a parent, then
3914 we should not do this. We'll prepend the parent's fully qualified
3915 name when we create the partial symbol. */
3916
3917 real_pdi = struct_pdi;
3918 while (real_pdi->has_specification)
3919 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3920
3921 if (real_pdi->die_parent != NULL)
3922 return;
3923 }
3924 }
3925
3926 /* Read a partial die corresponding to an enumeration type. */
3927
3928 static void
3929 add_partial_enumeration (struct partial_die_info *enum_pdi,
3930 struct dwarf2_cu *cu)
3931 {
3932 struct partial_die_info *pdi;
3933
3934 if (enum_pdi->name != NULL)
3935 add_partial_symbol (enum_pdi, cu);
3936
3937 pdi = enum_pdi->die_child;
3938 while (pdi)
3939 {
3940 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
3941 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
3942 else
3943 add_partial_symbol (pdi, cu);
3944 pdi = pdi->die_sibling;
3945 }
3946 }
3947
3948 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3949 Return the corresponding abbrev, or NULL if the number is zero (indicating
3950 an empty DIE). In either case *BYTES_READ will be set to the length of
3951 the initial number. */
3952
3953 static struct abbrev_info *
3954 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
3955 struct dwarf2_cu *cu)
3956 {
3957 bfd *abfd = cu->objfile->obfd;
3958 unsigned int abbrev_number;
3959 struct abbrev_info *abbrev;
3960
3961 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3962
3963 if (abbrev_number == 0)
3964 return NULL;
3965
3966 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3967 if (!abbrev)
3968 {
3969 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
3970 bfd_get_filename (abfd));
3971 }
3972
3973 return abbrev;
3974 }
3975
3976 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3977 Returns a pointer to the end of a series of DIEs, terminated by an empty
3978 DIE. Any children of the skipped DIEs will also be skipped. */
3979
3980 static gdb_byte *
3981 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
3982 {
3983 struct abbrev_info *abbrev;
3984 unsigned int bytes_read;
3985
3986 while (1)
3987 {
3988 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3989 if (abbrev == NULL)
3990 return info_ptr + bytes_read;
3991 else
3992 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
3993 }
3994 }
3995
3996 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3997 INFO_PTR should point just after the initial uleb128 of a DIE, and the
3998 abbrev corresponding to that skipped uleb128 should be passed in
3999 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4000 children. */
4001
4002 static gdb_byte *
4003 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4004 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4005 {
4006 unsigned int bytes_read;
4007 struct attribute attr;
4008 bfd *abfd = cu->objfile->obfd;
4009 unsigned int form, i;
4010
4011 for (i = 0; i < abbrev->num_attrs; i++)
4012 {
4013 /* The only abbrev we care about is DW_AT_sibling. */
4014 if (abbrev->attrs[i].name == DW_AT_sibling)
4015 {
4016 read_attribute (&attr, &abbrev->attrs[i],
4017 abfd, info_ptr, cu);
4018 if (attr.form == DW_FORM_ref_addr)
4019 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4020 else
4021 return buffer + dwarf2_get_ref_die_offset (&attr);
4022 }
4023
4024 /* If it isn't DW_AT_sibling, skip this attribute. */
4025 form = abbrev->attrs[i].form;
4026 skip_attribute:
4027 switch (form)
4028 {
4029 case DW_FORM_ref_addr:
4030 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4031 and later it is offset sized. */
4032 if (cu->header.version == 2)
4033 info_ptr += cu->header.addr_size;
4034 else
4035 info_ptr += cu->header.offset_size;
4036 break;
4037 case DW_FORM_addr:
4038 info_ptr += cu->header.addr_size;
4039 break;
4040 case DW_FORM_data1:
4041 case DW_FORM_ref1:
4042 case DW_FORM_flag:
4043 info_ptr += 1;
4044 break;
4045 case DW_FORM_flag_present:
4046 break;
4047 case DW_FORM_data2:
4048 case DW_FORM_ref2:
4049 info_ptr += 2;
4050 break;
4051 case DW_FORM_data4:
4052 case DW_FORM_ref4:
4053 info_ptr += 4;
4054 break;
4055 case DW_FORM_data8:
4056 case DW_FORM_ref8:
4057 case DW_FORM_sig8:
4058 info_ptr += 8;
4059 break;
4060 case DW_FORM_string:
4061 read_direct_string (abfd, info_ptr, &bytes_read);
4062 info_ptr += bytes_read;
4063 break;
4064 case DW_FORM_sec_offset:
4065 case DW_FORM_strp:
4066 info_ptr += cu->header.offset_size;
4067 break;
4068 case DW_FORM_exprloc:
4069 case DW_FORM_block:
4070 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4071 info_ptr += bytes_read;
4072 break;
4073 case DW_FORM_block1:
4074 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4075 break;
4076 case DW_FORM_block2:
4077 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4078 break;
4079 case DW_FORM_block4:
4080 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4081 break;
4082 case DW_FORM_sdata:
4083 case DW_FORM_udata:
4084 case DW_FORM_ref_udata:
4085 info_ptr = skip_leb128 (abfd, info_ptr);
4086 break;
4087 case DW_FORM_indirect:
4088 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4089 info_ptr += bytes_read;
4090 /* We need to continue parsing from here, so just go back to
4091 the top. */
4092 goto skip_attribute;
4093
4094 default:
4095 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4096 dwarf_form_name (form),
4097 bfd_get_filename (abfd));
4098 }
4099 }
4100
4101 if (abbrev->has_children)
4102 return skip_children (buffer, info_ptr, cu);
4103 else
4104 return info_ptr;
4105 }
4106
4107 /* Locate ORIG_PDI's sibling.
4108 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4109 in BUFFER. */
4110
4111 static gdb_byte *
4112 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4113 gdb_byte *buffer, gdb_byte *info_ptr,
4114 bfd *abfd, struct dwarf2_cu *cu)
4115 {
4116 /* Do we know the sibling already? */
4117
4118 if (orig_pdi->sibling)
4119 return orig_pdi->sibling;
4120
4121 /* Are there any children to deal with? */
4122
4123 if (!orig_pdi->has_children)
4124 return info_ptr;
4125
4126 /* Skip the children the long way. */
4127
4128 return skip_children (buffer, info_ptr, cu);
4129 }
4130
4131 /* Expand this partial symbol table into a full symbol table. */
4132
4133 static void
4134 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4135 {
4136 if (pst != NULL)
4137 {
4138 if (pst->readin)
4139 {
4140 warning (_("bug: psymtab for %s is already read in."), pst->filename);
4141 }
4142 else
4143 {
4144 if (info_verbose)
4145 {
4146 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
4147 gdb_flush (gdb_stdout);
4148 }
4149
4150 /* Restore our global data. */
4151 dwarf2_per_objfile = objfile_data (pst->objfile,
4152 dwarf2_objfile_data_key);
4153
4154 /* If this psymtab is constructed from a debug-only objfile, the
4155 has_section_at_zero flag will not necessarily be correct. We
4156 can get the correct value for this flag by looking at the data
4157 associated with the (presumably stripped) associated objfile. */
4158 if (pst->objfile->separate_debug_objfile_backlink)
4159 {
4160 struct dwarf2_per_objfile *dpo_backlink
4161 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4162 dwarf2_objfile_data_key);
4163
4164 dwarf2_per_objfile->has_section_at_zero
4165 = dpo_backlink->has_section_at_zero;
4166 }
4167
4168 dwarf2_per_objfile->reading_partial_symbols = 0;
4169
4170 psymtab_to_symtab_1 (pst);
4171
4172 /* Finish up the debug error message. */
4173 if (info_verbose)
4174 printf_filtered (_("done.\n"));
4175 }
4176 }
4177 }
4178
4179 /* Add PER_CU to the queue. */
4180
4181 static void
4182 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4183 {
4184 struct dwarf2_queue_item *item;
4185
4186 per_cu->queued = 1;
4187 item = xmalloc (sizeof (*item));
4188 item->per_cu = per_cu;
4189 item->next = NULL;
4190
4191 if (dwarf2_queue == NULL)
4192 dwarf2_queue = item;
4193 else
4194 dwarf2_queue_tail->next = item;
4195
4196 dwarf2_queue_tail = item;
4197 }
4198
4199 /* Process the queue. */
4200
4201 static void
4202 process_queue (struct objfile *objfile)
4203 {
4204 struct dwarf2_queue_item *item, *next_item;
4205
4206 /* The queue starts out with one item, but following a DIE reference
4207 may load a new CU, adding it to the end of the queue. */
4208 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4209 {
4210 if (dwarf2_per_objfile->using_index
4211 ? !item->per_cu->v.quick->symtab
4212 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4213 process_full_comp_unit (item->per_cu);
4214
4215 item->per_cu->queued = 0;
4216 next_item = item->next;
4217 xfree (item);
4218 }
4219
4220 dwarf2_queue_tail = NULL;
4221 }
4222
4223 /* Free all allocated queue entries. This function only releases anything if
4224 an error was thrown; if the queue was processed then it would have been
4225 freed as we went along. */
4226
4227 static void
4228 dwarf2_release_queue (void *dummy)
4229 {
4230 struct dwarf2_queue_item *item, *last;
4231
4232 item = dwarf2_queue;
4233 while (item)
4234 {
4235 /* Anything still marked queued is likely to be in an
4236 inconsistent state, so discard it. */
4237 if (item->per_cu->queued)
4238 {
4239 if (item->per_cu->cu != NULL)
4240 free_one_cached_comp_unit (item->per_cu->cu);
4241 item->per_cu->queued = 0;
4242 }
4243
4244 last = item;
4245 item = item->next;
4246 xfree (last);
4247 }
4248
4249 dwarf2_queue = dwarf2_queue_tail = NULL;
4250 }
4251
4252 /* Read in full symbols for PST, and anything it depends on. */
4253
4254 static void
4255 psymtab_to_symtab_1 (struct partial_symtab *pst)
4256 {
4257 struct dwarf2_per_cu_data *per_cu;
4258 struct cleanup *back_to;
4259 int i;
4260
4261 for (i = 0; i < pst->number_of_dependencies; i++)
4262 if (!pst->dependencies[i]->readin)
4263 {
4264 /* Inform about additional files that need to be read in. */
4265 if (info_verbose)
4266 {
4267 /* FIXME: i18n: Need to make this a single string. */
4268 fputs_filtered (" ", gdb_stdout);
4269 wrap_here ("");
4270 fputs_filtered ("and ", gdb_stdout);
4271 wrap_here ("");
4272 printf_filtered ("%s...", pst->dependencies[i]->filename);
4273 wrap_here (""); /* Flush output */
4274 gdb_flush (gdb_stdout);
4275 }
4276 psymtab_to_symtab_1 (pst->dependencies[i]);
4277 }
4278
4279 per_cu = pst->read_symtab_private;
4280
4281 if (per_cu == NULL)
4282 {
4283 /* It's an include file, no symbols to read for it.
4284 Everything is in the parent symtab. */
4285 pst->readin = 1;
4286 return;
4287 }
4288
4289 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4290 }
4291
4292 /* Load the DIEs associated with PER_CU into memory. */
4293
4294 static void
4295 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4296 {
4297 bfd *abfd = objfile->obfd;
4298 struct dwarf2_cu *cu;
4299 unsigned int offset;
4300 gdb_byte *info_ptr, *beg_of_comp_unit;
4301 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4302 struct attribute *attr;
4303 int read_cu = 0;
4304
4305 gdb_assert (! per_cu->from_debug_types);
4306
4307 /* Set local variables from the partial symbol table info. */
4308 offset = per_cu->offset;
4309
4310 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4311 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4312 beg_of_comp_unit = info_ptr;
4313
4314 if (per_cu->cu == NULL)
4315 {
4316 cu = alloc_one_comp_unit (objfile);
4317
4318 read_cu = 1;
4319
4320 /* If an error occurs while loading, release our storage. */
4321 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4322
4323 /* Read in the comp_unit header. */
4324 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4325
4326 /* Complete the cu_header. */
4327 cu->header.offset = offset;
4328 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4329
4330 /* Read the abbrevs for this compilation unit. */
4331 dwarf2_read_abbrevs (abfd, cu);
4332 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4333
4334 /* Link this compilation unit into the compilation unit tree. */
4335 per_cu->cu = cu;
4336 cu->per_cu = per_cu;
4337
4338 /* Link this CU into read_in_chain. */
4339 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4340 dwarf2_per_objfile->read_in_chain = per_cu;
4341 }
4342 else
4343 {
4344 cu = per_cu->cu;
4345 info_ptr += cu->header.first_die_offset;
4346 }
4347
4348 cu->dies = read_comp_unit (info_ptr, cu);
4349
4350 /* We try not to read any attributes in this function, because not
4351 all objfiles needed for references have been loaded yet, and symbol
4352 table processing isn't initialized. But we have to set the CU language,
4353 or we won't be able to build types correctly. */
4354 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
4355 if (attr)
4356 set_cu_language (DW_UNSND (attr), cu);
4357 else
4358 set_cu_language (language_minimal, cu);
4359
4360 /* Similarly, if we do not read the producer, we can not apply
4361 producer-specific interpretation. */
4362 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4363 if (attr)
4364 cu->producer = DW_STRING (attr);
4365
4366 if (read_cu)
4367 {
4368 do_cleanups (free_abbrevs_cleanup);
4369
4370 /* We've successfully allocated this compilation unit. Let our
4371 caller clean it up when finished with it. */
4372 discard_cleanups (free_cu_cleanup);
4373 }
4374 }
4375
4376 /* Add a DIE to the delayed physname list. */
4377
4378 static void
4379 add_to_method_list (struct type *type, int fnfield_index, int index,
4380 const char *name, struct die_info *die,
4381 struct dwarf2_cu *cu)
4382 {
4383 struct delayed_method_info mi;
4384 mi.type = type;
4385 mi.fnfield_index = fnfield_index;
4386 mi.index = index;
4387 mi.name = name;
4388 mi.die = die;
4389 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4390 }
4391
4392 /* A cleanup for freeing the delayed method list. */
4393
4394 static void
4395 free_delayed_list (void *ptr)
4396 {
4397 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4398 if (cu->method_list != NULL)
4399 {
4400 VEC_free (delayed_method_info, cu->method_list);
4401 cu->method_list = NULL;
4402 }
4403 }
4404
4405 /* Compute the physnames of any methods on the CU's method list.
4406
4407 The computation of method physnames is delayed in order to avoid the
4408 (bad) condition that one of the method's formal parameters is of an as yet
4409 incomplete type. */
4410
4411 static void
4412 compute_delayed_physnames (struct dwarf2_cu *cu)
4413 {
4414 int i;
4415 struct delayed_method_info *mi;
4416 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4417 {
4418 char *physname;
4419 struct fn_fieldlist *fn_flp
4420 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4421 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4422 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4423 }
4424 }
4425
4426 /* Generate full symbol information for PST and CU, whose DIEs have
4427 already been loaded into memory. */
4428
4429 static void
4430 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4431 {
4432 struct dwarf2_cu *cu = per_cu->cu;
4433 struct objfile *objfile = per_cu->objfile;
4434 CORE_ADDR lowpc, highpc;
4435 struct symtab *symtab;
4436 struct cleanup *back_to, *delayed_list_cleanup;
4437 CORE_ADDR baseaddr;
4438
4439 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4440
4441 buildsym_init ();
4442 back_to = make_cleanup (really_free_pendings, NULL);
4443 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4444
4445 cu->list_in_scope = &file_symbols;
4446
4447 dwarf2_find_base_address (cu->dies, cu);
4448
4449 /* Do line number decoding in read_file_scope () */
4450 process_die (cu->dies, cu);
4451
4452 /* Now that we have processed all the DIEs in the CU, all the types
4453 should be complete, and it should now be safe to compute all of the
4454 physnames. */
4455 compute_delayed_physnames (cu);
4456 do_cleanups (delayed_list_cleanup);
4457
4458 /* Some compilers don't define a DW_AT_high_pc attribute for the
4459 compilation unit. If the DW_AT_high_pc is missing, synthesize
4460 it, by scanning the DIE's below the compilation unit. */
4461 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4462
4463 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4464
4465 /* Set symtab language to language from DW_AT_language.
4466 If the compilation is from a C file generated by language preprocessors,
4467 do not set the language if it was already deduced by start_subfile. */
4468 if (symtab != NULL
4469 && !(cu->language == language_c && symtab->language != language_c))
4470 {
4471 symtab->language = cu->language;
4472 }
4473
4474 if (dwarf2_per_objfile->using_index)
4475 per_cu->v.quick->symtab = symtab;
4476 else
4477 {
4478 struct partial_symtab *pst = per_cu->v.psymtab;
4479 pst->symtab = symtab;
4480 pst->readin = 1;
4481 }
4482
4483 do_cleanups (back_to);
4484 }
4485
4486 /* Process a die and its children. */
4487
4488 static void
4489 process_die (struct die_info *die, struct dwarf2_cu *cu)
4490 {
4491 switch (die->tag)
4492 {
4493 case DW_TAG_padding:
4494 break;
4495 case DW_TAG_compile_unit:
4496 read_file_scope (die, cu);
4497 break;
4498 case DW_TAG_type_unit:
4499 read_type_unit_scope (die, cu);
4500 break;
4501 case DW_TAG_subprogram:
4502 case DW_TAG_inlined_subroutine:
4503 read_func_scope (die, cu);
4504 break;
4505 case DW_TAG_lexical_block:
4506 case DW_TAG_try_block:
4507 case DW_TAG_catch_block:
4508 read_lexical_block_scope (die, cu);
4509 break;
4510 case DW_TAG_class_type:
4511 case DW_TAG_interface_type:
4512 case DW_TAG_structure_type:
4513 case DW_TAG_union_type:
4514 process_structure_scope (die, cu);
4515 break;
4516 case DW_TAG_enumeration_type:
4517 process_enumeration_scope (die, cu);
4518 break;
4519
4520 /* These dies have a type, but processing them does not create
4521 a symbol or recurse to process the children. Therefore we can
4522 read them on-demand through read_type_die. */
4523 case DW_TAG_subroutine_type:
4524 case DW_TAG_set_type:
4525 case DW_TAG_array_type:
4526 case DW_TAG_pointer_type:
4527 case DW_TAG_ptr_to_member_type:
4528 case DW_TAG_reference_type:
4529 case DW_TAG_string_type:
4530 break;
4531
4532 case DW_TAG_base_type:
4533 case DW_TAG_subrange_type:
4534 case DW_TAG_typedef:
4535 /* Add a typedef symbol for the type definition, if it has a
4536 DW_AT_name. */
4537 new_symbol (die, read_type_die (die, cu), cu);
4538 break;
4539 case DW_TAG_common_block:
4540 read_common_block (die, cu);
4541 break;
4542 case DW_TAG_common_inclusion:
4543 break;
4544 case DW_TAG_namespace:
4545 processing_has_namespace_info = 1;
4546 read_namespace (die, cu);
4547 break;
4548 case DW_TAG_module:
4549 processing_has_namespace_info = 1;
4550 read_module (die, cu);
4551 break;
4552 case DW_TAG_imported_declaration:
4553 case DW_TAG_imported_module:
4554 processing_has_namespace_info = 1;
4555 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4556 || cu->language != language_fortran))
4557 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4558 dwarf_tag_name (die->tag));
4559 read_import_statement (die, cu);
4560 break;
4561 default:
4562 new_symbol (die, NULL, cu);
4563 break;
4564 }
4565 }
4566
4567 /* A helper function for dwarf2_compute_name which determines whether DIE
4568 needs to have the name of the scope prepended to the name listed in the
4569 die. */
4570
4571 static int
4572 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4573 {
4574 struct attribute *attr;
4575
4576 switch (die->tag)
4577 {
4578 case DW_TAG_namespace:
4579 case DW_TAG_typedef:
4580 case DW_TAG_class_type:
4581 case DW_TAG_interface_type:
4582 case DW_TAG_structure_type:
4583 case DW_TAG_union_type:
4584 case DW_TAG_enumeration_type:
4585 case DW_TAG_enumerator:
4586 case DW_TAG_subprogram:
4587 case DW_TAG_member:
4588 return 1;
4589
4590 case DW_TAG_variable:
4591 /* We only need to prefix "globally" visible variables. These include
4592 any variable marked with DW_AT_external or any variable that
4593 lives in a namespace. [Variables in anonymous namespaces
4594 require prefixing, but they are not DW_AT_external.] */
4595
4596 if (dwarf2_attr (die, DW_AT_specification, cu))
4597 {
4598 struct dwarf2_cu *spec_cu = cu;
4599
4600 return die_needs_namespace (die_specification (die, &spec_cu),
4601 spec_cu);
4602 }
4603
4604 attr = dwarf2_attr (die, DW_AT_external, cu);
4605 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4606 && die->parent->tag != DW_TAG_module)
4607 return 0;
4608 /* A variable in a lexical block of some kind does not need a
4609 namespace, even though in C++ such variables may be external
4610 and have a mangled name. */
4611 if (die->parent->tag == DW_TAG_lexical_block
4612 || die->parent->tag == DW_TAG_try_block
4613 || die->parent->tag == DW_TAG_catch_block
4614 || die->parent->tag == DW_TAG_subprogram)
4615 return 0;
4616 return 1;
4617
4618 default:
4619 return 0;
4620 }
4621 }
4622
4623 /* Retrieve the last character from a mem_file. */
4624
4625 static void
4626 do_ui_file_peek_last (void *object, const char *buffer, long length)
4627 {
4628 char *last_char_p = (char *) object;
4629
4630 if (length > 0)
4631 *last_char_p = buffer[length - 1];
4632 }
4633
4634 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4635 compute the physname for the object, which include a method's
4636 formal parameters (C++/Java) and return type (Java).
4637
4638 For Ada, return the DIE's linkage name rather than the fully qualified
4639 name. PHYSNAME is ignored..
4640
4641 The result is allocated on the objfile_obstack and canonicalized. */
4642
4643 static const char *
4644 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4645 int physname)
4646 {
4647 if (name == NULL)
4648 name = dwarf2_name (die, cu);
4649
4650 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4651 compute it by typename_concat inside GDB. */
4652 if (cu->language == language_ada
4653 || (cu->language == language_fortran && physname))
4654 {
4655 /* For Ada unit, we prefer the linkage name over the name, as
4656 the former contains the exported name, which the user expects
4657 to be able to reference. Ideally, we want the user to be able
4658 to reference this entity using either natural or linkage name,
4659 but we haven't started looking at this enhancement yet. */
4660 struct attribute *attr;
4661
4662 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4663 if (attr == NULL)
4664 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4665 if (attr && DW_STRING (attr))
4666 return DW_STRING (attr);
4667 }
4668
4669 /* These are the only languages we know how to qualify names in. */
4670 if (name != NULL
4671 && (cu->language == language_cplus || cu->language == language_java
4672 || cu->language == language_fortran))
4673 {
4674 if (die_needs_namespace (die, cu))
4675 {
4676 long length;
4677 char *prefix;
4678 struct ui_file *buf;
4679
4680 prefix = determine_prefix (die, cu);
4681 buf = mem_fileopen ();
4682 if (*prefix != '\0')
4683 {
4684 char *prefixed_name = typename_concat (NULL, prefix, name,
4685 physname, cu);
4686
4687 fputs_unfiltered (prefixed_name, buf);
4688 xfree (prefixed_name);
4689 }
4690 else
4691 fputs_unfiltered (name ? name : "", buf);
4692
4693 /* Template parameters may be specified in the DIE's DW_AT_name, or
4694 as children with DW_TAG_template_type_param or
4695 DW_TAG_value_type_param. If the latter, add them to the name
4696 here. If the name already has template parameters, then
4697 skip this step; some versions of GCC emit both, and
4698 it is more efficient to use the pre-computed name.
4699
4700 Something to keep in mind about this process: it is very
4701 unlikely, or in some cases downright impossible, to produce
4702 something that will match the mangled name of a function.
4703 If the definition of the function has the same debug info,
4704 we should be able to match up with it anyway. But fallbacks
4705 using the minimal symbol, for instance to find a method
4706 implemented in a stripped copy of libstdc++, will not work.
4707 If we do not have debug info for the definition, we will have to
4708 match them up some other way.
4709
4710 When we do name matching there is a related problem with function
4711 templates; two instantiated function templates are allowed to
4712 differ only by their return types, which we do not add here. */
4713
4714 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4715 {
4716 struct attribute *attr;
4717 struct die_info *child;
4718 int first = 1;
4719
4720 die->building_fullname = 1;
4721
4722 for (child = die->child; child != NULL; child = child->sibling)
4723 {
4724 struct type *type;
4725 long value;
4726 gdb_byte *bytes;
4727 struct dwarf2_locexpr_baton *baton;
4728 struct value *v;
4729
4730 if (child->tag != DW_TAG_template_type_param
4731 && child->tag != DW_TAG_template_value_param)
4732 continue;
4733
4734 if (first)
4735 {
4736 fputs_unfiltered ("<", buf);
4737 first = 0;
4738 }
4739 else
4740 fputs_unfiltered (", ", buf);
4741
4742 attr = dwarf2_attr (child, DW_AT_type, cu);
4743 if (attr == NULL)
4744 {
4745 complaint (&symfile_complaints,
4746 _("template parameter missing DW_AT_type"));
4747 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4748 continue;
4749 }
4750 type = die_type (child, cu);
4751
4752 if (child->tag == DW_TAG_template_type_param)
4753 {
4754 c_print_type (type, "", buf, -1, 0);
4755 continue;
4756 }
4757
4758 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4759 if (attr == NULL)
4760 {
4761 complaint (&symfile_complaints,
4762 _("template parameter missing DW_AT_const_value"));
4763 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4764 continue;
4765 }
4766
4767 dwarf2_const_value_attr (attr, type, name,
4768 &cu->comp_unit_obstack, cu,
4769 &value, &bytes, &baton);
4770
4771 if (TYPE_NOSIGN (type))
4772 /* GDB prints characters as NUMBER 'CHAR'. If that's
4773 changed, this can use value_print instead. */
4774 c_printchar (value, type, buf);
4775 else
4776 {
4777 struct value_print_options opts;
4778
4779 if (baton != NULL)
4780 v = dwarf2_evaluate_loc_desc (type, NULL,
4781 baton->data,
4782 baton->size,
4783 baton->per_cu);
4784 else if (bytes != NULL)
4785 {
4786 v = allocate_value (type);
4787 memcpy (value_contents_writeable (v), bytes,
4788 TYPE_LENGTH (type));
4789 }
4790 else
4791 v = value_from_longest (type, value);
4792
4793 /* Specify decimal so that we do not depend on the radix. */
4794 get_formatted_print_options (&opts, 'd');
4795 opts.raw = 1;
4796 value_print (v, buf, &opts);
4797 release_value (v);
4798 value_free (v);
4799 }
4800 }
4801
4802 die->building_fullname = 0;
4803
4804 if (!first)
4805 {
4806 /* Close the argument list, with a space if necessary
4807 (nested templates). */
4808 char last_char = '\0';
4809 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4810 if (last_char == '>')
4811 fputs_unfiltered (" >", buf);
4812 else
4813 fputs_unfiltered (">", buf);
4814 }
4815 }
4816
4817 /* For Java and C++ methods, append formal parameter type
4818 information, if PHYSNAME. */
4819
4820 if (physname && die->tag == DW_TAG_subprogram
4821 && (cu->language == language_cplus
4822 || cu->language == language_java))
4823 {
4824 struct type *type = read_type_die (die, cu);
4825
4826 c_type_print_args (type, buf, 0, cu->language);
4827
4828 if (cu->language == language_java)
4829 {
4830 /* For java, we must append the return type to method
4831 names. */
4832 if (die->tag == DW_TAG_subprogram)
4833 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4834 0, 0);
4835 }
4836 else if (cu->language == language_cplus)
4837 {
4838 if (TYPE_NFIELDS (type) > 0
4839 && TYPE_FIELD_ARTIFICIAL (type, 0)
4840 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4841 fputs_unfiltered (" const", buf);
4842 }
4843 }
4844
4845 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4846 &length);
4847 ui_file_delete (buf);
4848
4849 if (cu->language == language_cplus)
4850 {
4851 char *cname
4852 = dwarf2_canonicalize_name (name, cu,
4853 &cu->objfile->objfile_obstack);
4854
4855 if (cname != NULL)
4856 name = cname;
4857 }
4858 }
4859 }
4860
4861 return name;
4862 }
4863
4864 /* Return the fully qualified name of DIE, based on its DW_AT_name.
4865 If scope qualifiers are appropriate they will be added. The result
4866 will be allocated on the objfile_obstack, or NULL if the DIE does
4867 not have a name. NAME may either be from a previous call to
4868 dwarf2_name or NULL.
4869
4870 The output string will be canonicalized (if C++/Java). */
4871
4872 static const char *
4873 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
4874 {
4875 return dwarf2_compute_name (name, die, cu, 0);
4876 }
4877
4878 /* Construct a physname for the given DIE in CU. NAME may either be
4879 from a previous call to dwarf2_name or NULL. The result will be
4880 allocated on the objfile_objstack or NULL if the DIE does not have a
4881 name.
4882
4883 The output string will be canonicalized (if C++/Java). */
4884
4885 static const char *
4886 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4887 {
4888 return dwarf2_compute_name (name, die, cu, 1);
4889 }
4890
4891 /* Read the import statement specified by the given die and record it. */
4892
4893 static void
4894 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4895 {
4896 struct attribute *import_attr;
4897 struct die_info *imported_die;
4898 struct dwarf2_cu *imported_cu;
4899 const char *imported_name;
4900 const char *imported_name_prefix;
4901 const char *canonical_name;
4902 const char *import_alias;
4903 const char *imported_declaration = NULL;
4904 const char *import_prefix;
4905
4906 char *temp;
4907
4908 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4909 if (import_attr == NULL)
4910 {
4911 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4912 dwarf_tag_name (die->tag));
4913 return;
4914 }
4915
4916 imported_cu = cu;
4917 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4918 imported_name = dwarf2_name (imported_die, imported_cu);
4919 if (imported_name == NULL)
4920 {
4921 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4922
4923 The import in the following code:
4924 namespace A
4925 {
4926 typedef int B;
4927 }
4928
4929 int main ()
4930 {
4931 using A::B;
4932 B b;
4933 return b;
4934 }
4935
4936 ...
4937 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4938 <52> DW_AT_decl_file : 1
4939 <53> DW_AT_decl_line : 6
4940 <54> DW_AT_import : <0x75>
4941 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4942 <59> DW_AT_name : B
4943 <5b> DW_AT_decl_file : 1
4944 <5c> DW_AT_decl_line : 2
4945 <5d> DW_AT_type : <0x6e>
4946 ...
4947 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4948 <76> DW_AT_byte_size : 4
4949 <77> DW_AT_encoding : 5 (signed)
4950
4951 imports the wrong die ( 0x75 instead of 0x58 ).
4952 This case will be ignored until the gcc bug is fixed. */
4953 return;
4954 }
4955
4956 /* Figure out the local name after import. */
4957 import_alias = dwarf2_name (die, cu);
4958
4959 /* Figure out where the statement is being imported to. */
4960 import_prefix = determine_prefix (die, cu);
4961
4962 /* Figure out what the scope of the imported die is and prepend it
4963 to the name of the imported die. */
4964 imported_name_prefix = determine_prefix (imported_die, imported_cu);
4965
4966 if (imported_die->tag != DW_TAG_namespace
4967 && imported_die->tag != DW_TAG_module)
4968 {
4969 imported_declaration = imported_name;
4970 canonical_name = imported_name_prefix;
4971 }
4972 else if (strlen (imported_name_prefix) > 0)
4973 {
4974 temp = alloca (strlen (imported_name_prefix)
4975 + 2 + strlen (imported_name) + 1);
4976 strcpy (temp, imported_name_prefix);
4977 strcat (temp, "::");
4978 strcat (temp, imported_name);
4979 canonical_name = temp;
4980 }
4981 else
4982 canonical_name = imported_name;
4983
4984 cp_add_using_directive (import_prefix,
4985 canonical_name,
4986 import_alias,
4987 imported_declaration,
4988 &cu->objfile->objfile_obstack);
4989 }
4990
4991 static void
4992 initialize_cu_func_list (struct dwarf2_cu *cu)
4993 {
4994 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
4995 }
4996
4997 static void
4998 free_cu_line_header (void *arg)
4999 {
5000 struct dwarf2_cu *cu = arg;
5001
5002 free_line_header (cu->line_header);
5003 cu->line_header = NULL;
5004 }
5005
5006 static void
5007 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5008 char **name, char **comp_dir)
5009 {
5010 struct attribute *attr;
5011
5012 *name = NULL;
5013 *comp_dir = NULL;
5014
5015 /* Find the filename. Do not use dwarf2_name here, since the filename
5016 is not a source language identifier. */
5017 attr = dwarf2_attr (die, DW_AT_name, cu);
5018 if (attr)
5019 {
5020 *name = DW_STRING (attr);
5021 }
5022
5023 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5024 if (attr)
5025 *comp_dir = DW_STRING (attr);
5026 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5027 {
5028 *comp_dir = ldirname (*name);
5029 if (*comp_dir != NULL)
5030 make_cleanup (xfree, *comp_dir);
5031 }
5032 if (*comp_dir != NULL)
5033 {
5034 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5035 directory, get rid of it. */
5036 char *cp = strchr (*comp_dir, ':');
5037
5038 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5039 *comp_dir = cp + 1;
5040 }
5041
5042 if (*name == NULL)
5043 *name = "<unknown>";
5044 }
5045
5046 static void
5047 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5048 {
5049 struct objfile *objfile = cu->objfile;
5050 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5051 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5052 CORE_ADDR highpc = ((CORE_ADDR) 0);
5053 struct attribute *attr;
5054 char *name = NULL;
5055 char *comp_dir = NULL;
5056 struct die_info *child_die;
5057 bfd *abfd = objfile->obfd;
5058 struct line_header *line_header = 0;
5059 CORE_ADDR baseaddr;
5060
5061 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5062
5063 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5064
5065 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5066 from finish_block. */
5067 if (lowpc == ((CORE_ADDR) -1))
5068 lowpc = highpc;
5069 lowpc += baseaddr;
5070 highpc += baseaddr;
5071
5072 find_file_and_directory (die, cu, &name, &comp_dir);
5073
5074 attr = dwarf2_attr (die, DW_AT_language, cu);
5075 if (attr)
5076 {
5077 set_cu_language (DW_UNSND (attr), cu);
5078 }
5079
5080 attr = dwarf2_attr (die, DW_AT_producer, cu);
5081 if (attr)
5082 cu->producer = DW_STRING (attr);
5083
5084 /* We assume that we're processing GCC output. */
5085 processing_gcc_compilation = 2;
5086
5087 processing_has_namespace_info = 0;
5088
5089 start_symtab (name, comp_dir, lowpc);
5090 record_debugformat ("DWARF 2");
5091 record_producer (cu->producer);
5092
5093 initialize_cu_func_list (cu);
5094
5095 /* Decode line number information if present. We do this before
5096 processing child DIEs, so that the line header table is available
5097 for DW_AT_decl_file. */
5098 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5099 if (attr)
5100 {
5101 unsigned int line_offset = DW_UNSND (attr);
5102 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5103 if (line_header)
5104 {
5105 cu->line_header = line_header;
5106 make_cleanup (free_cu_line_header, cu);
5107 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5108 }
5109 }
5110
5111 /* Process all dies in compilation unit. */
5112 if (die->child != NULL)
5113 {
5114 child_die = die->child;
5115 while (child_die && child_die->tag)
5116 {
5117 process_die (child_die, cu);
5118 child_die = sibling_die (child_die);
5119 }
5120 }
5121
5122 /* Decode macro information, if present. Dwarf 2 macro information
5123 refers to information in the line number info statement program
5124 header, so we can only read it if we've read the header
5125 successfully. */
5126 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5127 if (attr && line_header)
5128 {
5129 unsigned int macro_offset = DW_UNSND (attr);
5130
5131 dwarf_decode_macros (line_header, macro_offset,
5132 comp_dir, abfd, cu);
5133 }
5134 do_cleanups (back_to);
5135 }
5136
5137 /* For TUs we want to skip the first top level sibling if it's not the
5138 actual type being defined by this TU. In this case the first top
5139 level sibling is there to provide context only. */
5140
5141 static void
5142 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5143 {
5144 struct objfile *objfile = cu->objfile;
5145 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5146 CORE_ADDR lowpc;
5147 struct attribute *attr;
5148 char *name = NULL;
5149 char *comp_dir = NULL;
5150 struct die_info *child_die;
5151 bfd *abfd = objfile->obfd;
5152
5153 /* start_symtab needs a low pc, but we don't really have one.
5154 Do what read_file_scope would do in the absence of such info. */
5155 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5156
5157 /* Find the filename. Do not use dwarf2_name here, since the filename
5158 is not a source language identifier. */
5159 attr = dwarf2_attr (die, DW_AT_name, cu);
5160 if (attr)
5161 name = DW_STRING (attr);
5162
5163 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5164 if (attr)
5165 comp_dir = DW_STRING (attr);
5166 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5167 {
5168 comp_dir = ldirname (name);
5169 if (comp_dir != NULL)
5170 make_cleanup (xfree, comp_dir);
5171 }
5172
5173 if (name == NULL)
5174 name = "<unknown>";
5175
5176 attr = dwarf2_attr (die, DW_AT_language, cu);
5177 if (attr)
5178 set_cu_language (DW_UNSND (attr), cu);
5179
5180 /* This isn't technically needed today. It is done for symmetry
5181 with read_file_scope. */
5182 attr = dwarf2_attr (die, DW_AT_producer, cu);
5183 if (attr)
5184 cu->producer = DW_STRING (attr);
5185
5186 /* We assume that we're processing GCC output. */
5187 processing_gcc_compilation = 2;
5188
5189 processing_has_namespace_info = 0;
5190
5191 start_symtab (name, comp_dir, lowpc);
5192 record_debugformat ("DWARF 2");
5193 record_producer (cu->producer);
5194
5195 /* Process the dies in the type unit. */
5196 if (die->child == NULL)
5197 {
5198 dump_die_for_error (die);
5199 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5200 bfd_get_filename (abfd));
5201 }
5202
5203 child_die = die->child;
5204
5205 while (child_die && child_die->tag)
5206 {
5207 process_die (child_die, cu);
5208
5209 child_die = sibling_die (child_die);
5210 }
5211
5212 do_cleanups (back_to);
5213 }
5214
5215 static void
5216 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5217 struct dwarf2_cu *cu)
5218 {
5219 struct function_range *thisfn;
5220
5221 thisfn = (struct function_range *)
5222 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5223 thisfn->name = name;
5224 thisfn->lowpc = lowpc;
5225 thisfn->highpc = highpc;
5226 thisfn->seen_line = 0;
5227 thisfn->next = NULL;
5228
5229 if (cu->last_fn == NULL)
5230 cu->first_fn = thisfn;
5231 else
5232 cu->last_fn->next = thisfn;
5233
5234 cu->last_fn = thisfn;
5235 }
5236
5237 /* qsort helper for inherit_abstract_dies. */
5238
5239 static int
5240 unsigned_int_compar (const void *ap, const void *bp)
5241 {
5242 unsigned int a = *(unsigned int *) ap;
5243 unsigned int b = *(unsigned int *) bp;
5244
5245 return (a > b) - (b > a);
5246 }
5247
5248 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5249 Inherit only the children of the DW_AT_abstract_origin DIE not being already
5250 referenced by DW_AT_abstract_origin from the children of the current DIE. */
5251
5252 static void
5253 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5254 {
5255 struct die_info *child_die;
5256 unsigned die_children_count;
5257 /* CU offsets which were referenced by children of the current DIE. */
5258 unsigned *offsets;
5259 unsigned *offsets_end, *offsetp;
5260 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5261 struct die_info *origin_die;
5262 /* Iterator of the ORIGIN_DIE children. */
5263 struct die_info *origin_child_die;
5264 struct cleanup *cleanups;
5265 struct attribute *attr;
5266 struct dwarf2_cu *origin_cu;
5267 struct pending **origin_previous_list_in_scope;
5268
5269 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5270 if (!attr)
5271 return;
5272
5273 /* Note that following die references may follow to a die in a
5274 different cu. */
5275
5276 origin_cu = cu;
5277 origin_die = follow_die_ref (die, attr, &origin_cu);
5278
5279 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5280 symbols in. */
5281 origin_previous_list_in_scope = origin_cu->list_in_scope;
5282 origin_cu->list_in_scope = cu->list_in_scope;
5283
5284 if (die->tag != origin_die->tag
5285 && !(die->tag == DW_TAG_inlined_subroutine
5286 && origin_die->tag == DW_TAG_subprogram))
5287 complaint (&symfile_complaints,
5288 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5289 die->offset, origin_die->offset);
5290
5291 child_die = die->child;
5292 die_children_count = 0;
5293 while (child_die && child_die->tag)
5294 {
5295 child_die = sibling_die (child_die);
5296 die_children_count++;
5297 }
5298 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5299 cleanups = make_cleanup (xfree, offsets);
5300
5301 offsets_end = offsets;
5302 child_die = die->child;
5303 while (child_die && child_die->tag)
5304 {
5305 /* For each CHILD_DIE, find the corresponding child of
5306 ORIGIN_DIE. If there is more than one layer of
5307 DW_AT_abstract_origin, follow them all; there shouldn't be,
5308 but GCC versions at least through 4.4 generate this (GCC PR
5309 40573). */
5310 struct die_info *child_origin_die = child_die;
5311 struct dwarf2_cu *child_origin_cu = cu;
5312
5313 while (1)
5314 {
5315 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5316 child_origin_cu);
5317 if (attr == NULL)
5318 break;
5319 child_origin_die = follow_die_ref (child_origin_die, attr,
5320 &child_origin_cu);
5321 }
5322
5323 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5324 counterpart may exist. */
5325 if (child_origin_die != child_die)
5326 {
5327 if (child_die->tag != child_origin_die->tag
5328 && !(child_die->tag == DW_TAG_inlined_subroutine
5329 && child_origin_die->tag == DW_TAG_subprogram))
5330 complaint (&symfile_complaints,
5331 _("Child DIE 0x%x and its abstract origin 0x%x have "
5332 "different tags"), child_die->offset,
5333 child_origin_die->offset);
5334 if (child_origin_die->parent != origin_die)
5335 complaint (&symfile_complaints,
5336 _("Child DIE 0x%x and its abstract origin 0x%x have "
5337 "different parents"), child_die->offset,
5338 child_origin_die->offset);
5339 else
5340 *offsets_end++ = child_origin_die->offset;
5341 }
5342 child_die = sibling_die (child_die);
5343 }
5344 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5345 unsigned_int_compar);
5346 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5347 if (offsetp[-1] == *offsetp)
5348 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
5349 "to DIE 0x%x as their abstract origin"),
5350 die->offset, *offsetp);
5351
5352 offsetp = offsets;
5353 origin_child_die = origin_die->child;
5354 while (origin_child_die && origin_child_die->tag)
5355 {
5356 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5357 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5358 offsetp++;
5359 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5360 {
5361 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5362 process_die (origin_child_die, origin_cu);
5363 }
5364 origin_child_die = sibling_die (origin_child_die);
5365 }
5366 origin_cu->list_in_scope = origin_previous_list_in_scope;
5367
5368 do_cleanups (cleanups);
5369 }
5370
5371 static void
5372 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5373 {
5374 struct objfile *objfile = cu->objfile;
5375 struct context_stack *new;
5376 CORE_ADDR lowpc;
5377 CORE_ADDR highpc;
5378 struct die_info *child_die;
5379 struct attribute *attr, *call_line, *call_file;
5380 char *name;
5381 CORE_ADDR baseaddr;
5382 struct block *block;
5383 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5384 VEC (symbolp) *template_args = NULL;
5385 struct template_symbol *templ_func = NULL;
5386
5387 if (inlined_func)
5388 {
5389 /* If we do not have call site information, we can't show the
5390 caller of this inlined function. That's too confusing, so
5391 only use the scope for local variables. */
5392 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5393 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5394 if (call_line == NULL || call_file == NULL)
5395 {
5396 read_lexical_block_scope (die, cu);
5397 return;
5398 }
5399 }
5400
5401 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5402
5403 name = dwarf2_name (die, cu);
5404
5405 /* Ignore functions with missing or empty names. These are actually
5406 illegal according to the DWARF standard. */
5407 if (name == NULL)
5408 {
5409 complaint (&symfile_complaints,
5410 _("missing name for subprogram DIE at %d"), die->offset);
5411 return;
5412 }
5413
5414 /* Ignore functions with missing or invalid low and high pc attributes. */
5415 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5416 {
5417 attr = dwarf2_attr (die, DW_AT_external, cu);
5418 if (!attr || !DW_UNSND (attr))
5419 complaint (&symfile_complaints,
5420 _("cannot get low and high bounds for subprogram DIE at %d"),
5421 die->offset);
5422 return;
5423 }
5424
5425 lowpc += baseaddr;
5426 highpc += baseaddr;
5427
5428 /* Record the function range for dwarf_decode_lines. */
5429 add_to_cu_func_list (name, lowpc, highpc, cu);
5430
5431 /* If we have any template arguments, then we must allocate a
5432 different sort of symbol. */
5433 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5434 {
5435 if (child_die->tag == DW_TAG_template_type_param
5436 || child_die->tag == DW_TAG_template_value_param)
5437 {
5438 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5439 struct template_symbol);
5440 templ_func->base.is_cplus_template_function = 1;
5441 break;
5442 }
5443 }
5444
5445 new = push_context (0, lowpc);
5446 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5447 (struct symbol *) templ_func);
5448
5449 /* If there is a location expression for DW_AT_frame_base, record
5450 it. */
5451 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5452 if (attr)
5453 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5454 expression is being recorded directly in the function's symbol
5455 and not in a separate frame-base object. I guess this hack is
5456 to avoid adding some sort of frame-base adjunct/annex to the
5457 function's symbol :-(. The problem with doing this is that it
5458 results in a function symbol with a location expression that
5459 has nothing to do with the location of the function, ouch! The
5460 relationship should be: a function's symbol has-a frame base; a
5461 frame-base has-a location expression. */
5462 dwarf2_symbol_mark_computed (attr, new->name, cu);
5463
5464 cu->list_in_scope = &local_symbols;
5465
5466 if (die->child != NULL)
5467 {
5468 child_die = die->child;
5469 while (child_die && child_die->tag)
5470 {
5471 if (child_die->tag == DW_TAG_template_type_param
5472 || child_die->tag == DW_TAG_template_value_param)
5473 {
5474 struct symbol *arg = new_symbol (child_die, NULL, cu);
5475
5476 VEC_safe_push (symbolp, template_args, arg);
5477 }
5478 else
5479 process_die (child_die, cu);
5480 child_die = sibling_die (child_die);
5481 }
5482 }
5483
5484 inherit_abstract_dies (die, cu);
5485
5486 /* If we have a DW_AT_specification, we might need to import using
5487 directives from the context of the specification DIE. See the
5488 comment in determine_prefix. */
5489 if (cu->language == language_cplus
5490 && dwarf2_attr (die, DW_AT_specification, cu))
5491 {
5492 struct dwarf2_cu *spec_cu = cu;
5493 struct die_info *spec_die = die_specification (die, &spec_cu);
5494
5495 while (spec_die)
5496 {
5497 child_die = spec_die->child;
5498 while (child_die && child_die->tag)
5499 {
5500 if (child_die->tag == DW_TAG_imported_module)
5501 process_die (child_die, spec_cu);
5502 child_die = sibling_die (child_die);
5503 }
5504
5505 /* In some cases, GCC generates specification DIEs that
5506 themselves contain DW_AT_specification attributes. */
5507 spec_die = die_specification (spec_die, &spec_cu);
5508 }
5509 }
5510
5511 new = pop_context ();
5512 /* Make a block for the local symbols within. */
5513 block = finish_block (new->name, &local_symbols, new->old_blocks,
5514 lowpc, highpc, objfile);
5515
5516 /* For C++, set the block's scope. */
5517 if (cu->language == language_cplus || cu->language == language_fortran)
5518 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5519 determine_prefix (die, cu),
5520 processing_has_namespace_info);
5521
5522 /* If we have address ranges, record them. */
5523 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5524
5525 /* Attach template arguments to function. */
5526 if (! VEC_empty (symbolp, template_args))
5527 {
5528 gdb_assert (templ_func != NULL);
5529
5530 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5531 templ_func->template_arguments
5532 = obstack_alloc (&objfile->objfile_obstack,
5533 (templ_func->n_template_arguments
5534 * sizeof (struct symbol *)));
5535 memcpy (templ_func->template_arguments,
5536 VEC_address (symbolp, template_args),
5537 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5538 VEC_free (symbolp, template_args);
5539 }
5540
5541 /* In C++, we can have functions nested inside functions (e.g., when
5542 a function declares a class that has methods). This means that
5543 when we finish processing a function scope, we may need to go
5544 back to building a containing block's symbol lists. */
5545 local_symbols = new->locals;
5546 param_symbols = new->params;
5547 using_directives = new->using_directives;
5548
5549 /* If we've finished processing a top-level function, subsequent
5550 symbols go in the file symbol list. */
5551 if (outermost_context_p ())
5552 cu->list_in_scope = &file_symbols;
5553 }
5554
5555 /* Process all the DIES contained within a lexical block scope. Start
5556 a new scope, process the dies, and then close the scope. */
5557
5558 static void
5559 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5560 {
5561 struct objfile *objfile = cu->objfile;
5562 struct context_stack *new;
5563 CORE_ADDR lowpc, highpc;
5564 struct die_info *child_die;
5565 CORE_ADDR baseaddr;
5566
5567 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5568
5569 /* Ignore blocks with missing or invalid low and high pc attributes. */
5570 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5571 as multiple lexical blocks? Handling children in a sane way would
5572 be nasty. Might be easier to properly extend generic blocks to
5573 describe ranges. */
5574 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5575 return;
5576 lowpc += baseaddr;
5577 highpc += baseaddr;
5578
5579 push_context (0, lowpc);
5580 if (die->child != NULL)
5581 {
5582 child_die = die->child;
5583 while (child_die && child_die->tag)
5584 {
5585 process_die (child_die, cu);
5586 child_die = sibling_die (child_die);
5587 }
5588 }
5589 new = pop_context ();
5590
5591 if (local_symbols != NULL || using_directives != NULL)
5592 {
5593 struct block *block
5594 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5595 highpc, objfile);
5596
5597 /* Note that recording ranges after traversing children, as we
5598 do here, means that recording a parent's ranges entails
5599 walking across all its children's ranges as they appear in
5600 the address map, which is quadratic behavior.
5601
5602 It would be nicer to record the parent's ranges before
5603 traversing its children, simply overriding whatever you find
5604 there. But since we don't even decide whether to create a
5605 block until after we've traversed its children, that's hard
5606 to do. */
5607 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5608 }
5609 local_symbols = new->locals;
5610 using_directives = new->using_directives;
5611 }
5612
5613 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5614 Return 1 if the attributes are present and valid, otherwise, return 0.
5615 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5616
5617 static int
5618 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5619 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5620 struct partial_symtab *ranges_pst)
5621 {
5622 struct objfile *objfile = cu->objfile;
5623 struct comp_unit_head *cu_header = &cu->header;
5624 bfd *obfd = objfile->obfd;
5625 unsigned int addr_size = cu_header->addr_size;
5626 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5627 /* Base address selection entry. */
5628 CORE_ADDR base;
5629 int found_base;
5630 unsigned int dummy;
5631 gdb_byte *buffer;
5632 CORE_ADDR marker;
5633 int low_set;
5634 CORE_ADDR low = 0;
5635 CORE_ADDR high = 0;
5636 CORE_ADDR baseaddr;
5637
5638 found_base = cu->base_known;
5639 base = cu->base_address;
5640
5641 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5642 if (offset >= dwarf2_per_objfile->ranges.size)
5643 {
5644 complaint (&symfile_complaints,
5645 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5646 offset);
5647 return 0;
5648 }
5649 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5650
5651 /* Read in the largest possible address. */
5652 marker = read_address (obfd, buffer, cu, &dummy);
5653 if ((marker & mask) == mask)
5654 {
5655 /* If we found the largest possible address, then
5656 read the base address. */
5657 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5658 buffer += 2 * addr_size;
5659 offset += 2 * addr_size;
5660 found_base = 1;
5661 }
5662
5663 low_set = 0;
5664
5665 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5666
5667 while (1)
5668 {
5669 CORE_ADDR range_beginning, range_end;
5670
5671 range_beginning = read_address (obfd, buffer, cu, &dummy);
5672 buffer += addr_size;
5673 range_end = read_address (obfd, buffer, cu, &dummy);
5674 buffer += addr_size;
5675 offset += 2 * addr_size;
5676
5677 /* An end of list marker is a pair of zero addresses. */
5678 if (range_beginning == 0 && range_end == 0)
5679 /* Found the end of list entry. */
5680 break;
5681
5682 /* Each base address selection entry is a pair of 2 values.
5683 The first is the largest possible address, the second is
5684 the base address. Check for a base address here. */
5685 if ((range_beginning & mask) == mask)
5686 {
5687 /* If we found the largest possible address, then
5688 read the base address. */
5689 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5690 found_base = 1;
5691 continue;
5692 }
5693
5694 if (!found_base)
5695 {
5696 /* We have no valid base address for the ranges
5697 data. */
5698 complaint (&symfile_complaints,
5699 _("Invalid .debug_ranges data (no base address)"));
5700 return 0;
5701 }
5702
5703 range_beginning += base;
5704 range_end += base;
5705
5706 if (ranges_pst != NULL && range_beginning < range_end)
5707 addrmap_set_empty (objfile->psymtabs_addrmap,
5708 range_beginning + baseaddr, range_end - 1 + baseaddr,
5709 ranges_pst);
5710
5711 /* FIXME: This is recording everything as a low-high
5712 segment of consecutive addresses. We should have a
5713 data structure for discontiguous block ranges
5714 instead. */
5715 if (! low_set)
5716 {
5717 low = range_beginning;
5718 high = range_end;
5719 low_set = 1;
5720 }
5721 else
5722 {
5723 if (range_beginning < low)
5724 low = range_beginning;
5725 if (range_end > high)
5726 high = range_end;
5727 }
5728 }
5729
5730 if (! low_set)
5731 /* If the first entry is an end-of-list marker, the range
5732 describes an empty scope, i.e. no instructions. */
5733 return 0;
5734
5735 if (low_return)
5736 *low_return = low;
5737 if (high_return)
5738 *high_return = high;
5739 return 1;
5740 }
5741
5742 /* Get low and high pc attributes from a die. Return 1 if the attributes
5743 are present and valid, otherwise, return 0. Return -1 if the range is
5744 discontinuous, i.e. derived from DW_AT_ranges information. */
5745 static int
5746 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5747 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5748 struct partial_symtab *pst)
5749 {
5750 struct attribute *attr;
5751 CORE_ADDR low = 0;
5752 CORE_ADDR high = 0;
5753 int ret = 0;
5754
5755 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5756 if (attr)
5757 {
5758 high = DW_ADDR (attr);
5759 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5760 if (attr)
5761 low = DW_ADDR (attr);
5762 else
5763 /* Found high w/o low attribute. */
5764 return 0;
5765
5766 /* Found consecutive range of addresses. */
5767 ret = 1;
5768 }
5769 else
5770 {
5771 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5772 if (attr != NULL)
5773 {
5774 /* Value of the DW_AT_ranges attribute is the offset in the
5775 .debug_ranges section. */
5776 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5777 return 0;
5778 /* Found discontinuous range of addresses. */
5779 ret = -1;
5780 }
5781 }
5782
5783 if (high < low)
5784 return 0;
5785
5786 /* When using the GNU linker, .gnu.linkonce. sections are used to
5787 eliminate duplicate copies of functions and vtables and such.
5788 The linker will arbitrarily choose one and discard the others.
5789 The AT_*_pc values for such functions refer to local labels in
5790 these sections. If the section from that file was discarded, the
5791 labels are not in the output, so the relocs get a value of 0.
5792 If this is a discarded function, mark the pc bounds as invalid,
5793 so that GDB will ignore it. */
5794 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5795 return 0;
5796
5797 *lowpc = low;
5798 *highpc = high;
5799 return ret;
5800 }
5801
5802 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5803 its low and high PC addresses. Do nothing if these addresses could not
5804 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5805 and HIGHPC to the high address if greater than HIGHPC. */
5806
5807 static void
5808 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5809 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5810 struct dwarf2_cu *cu)
5811 {
5812 CORE_ADDR low, high;
5813 struct die_info *child = die->child;
5814
5815 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5816 {
5817 *lowpc = min (*lowpc, low);
5818 *highpc = max (*highpc, high);
5819 }
5820
5821 /* If the language does not allow nested subprograms (either inside
5822 subprograms or lexical blocks), we're done. */
5823 if (cu->language != language_ada)
5824 return;
5825
5826 /* Check all the children of the given DIE. If it contains nested
5827 subprograms, then check their pc bounds. Likewise, we need to
5828 check lexical blocks as well, as they may also contain subprogram
5829 definitions. */
5830 while (child && child->tag)
5831 {
5832 if (child->tag == DW_TAG_subprogram
5833 || child->tag == DW_TAG_lexical_block)
5834 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5835 child = sibling_die (child);
5836 }
5837 }
5838
5839 /* Get the low and high pc's represented by the scope DIE, and store
5840 them in *LOWPC and *HIGHPC. If the correct values can't be
5841 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5842
5843 static void
5844 get_scope_pc_bounds (struct die_info *die,
5845 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5846 struct dwarf2_cu *cu)
5847 {
5848 CORE_ADDR best_low = (CORE_ADDR) -1;
5849 CORE_ADDR best_high = (CORE_ADDR) 0;
5850 CORE_ADDR current_low, current_high;
5851
5852 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
5853 {
5854 best_low = current_low;
5855 best_high = current_high;
5856 }
5857 else
5858 {
5859 struct die_info *child = die->child;
5860
5861 while (child && child->tag)
5862 {
5863 switch (child->tag) {
5864 case DW_TAG_subprogram:
5865 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
5866 break;
5867 case DW_TAG_namespace:
5868 case DW_TAG_module:
5869 /* FIXME: carlton/2004-01-16: Should we do this for
5870 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5871 that current GCC's always emit the DIEs corresponding
5872 to definitions of methods of classes as children of a
5873 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5874 the DIEs giving the declarations, which could be
5875 anywhere). But I don't see any reason why the
5876 standards says that they have to be there. */
5877 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5878
5879 if (current_low != ((CORE_ADDR) -1))
5880 {
5881 best_low = min (best_low, current_low);
5882 best_high = max (best_high, current_high);
5883 }
5884 break;
5885 default:
5886 /* Ignore. */
5887 break;
5888 }
5889
5890 child = sibling_die (child);
5891 }
5892 }
5893
5894 *lowpc = best_low;
5895 *highpc = best_high;
5896 }
5897
5898 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
5899 in DIE. */
5900 static void
5901 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5902 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5903 {
5904 struct attribute *attr;
5905
5906 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5907 if (attr)
5908 {
5909 CORE_ADDR high = DW_ADDR (attr);
5910
5911 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5912 if (attr)
5913 {
5914 CORE_ADDR low = DW_ADDR (attr);
5915
5916 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5917 }
5918 }
5919
5920 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5921 if (attr)
5922 {
5923 bfd *obfd = cu->objfile->obfd;
5924
5925 /* The value of the DW_AT_ranges attribute is the offset of the
5926 address range list in the .debug_ranges section. */
5927 unsigned long offset = DW_UNSND (attr);
5928 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
5929
5930 /* For some target architectures, but not others, the
5931 read_address function sign-extends the addresses it returns.
5932 To recognize base address selection entries, we need a
5933 mask. */
5934 unsigned int addr_size = cu->header.addr_size;
5935 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5936
5937 /* The base address, to which the next pair is relative. Note
5938 that this 'base' is a DWARF concept: most entries in a range
5939 list are relative, to reduce the number of relocs against the
5940 debugging information. This is separate from this function's
5941 'baseaddr' argument, which GDB uses to relocate debugging
5942 information from a shared library based on the address at
5943 which the library was loaded. */
5944 CORE_ADDR base = cu->base_address;
5945 int base_known = cu->base_known;
5946
5947 gdb_assert (dwarf2_per_objfile->ranges.readin);
5948 if (offset >= dwarf2_per_objfile->ranges.size)
5949 {
5950 complaint (&symfile_complaints,
5951 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5952 offset);
5953 return;
5954 }
5955
5956 for (;;)
5957 {
5958 unsigned int bytes_read;
5959 CORE_ADDR start, end;
5960
5961 start = read_address (obfd, buffer, cu, &bytes_read);
5962 buffer += bytes_read;
5963 end = read_address (obfd, buffer, cu, &bytes_read);
5964 buffer += bytes_read;
5965
5966 /* Did we find the end of the range list? */
5967 if (start == 0 && end == 0)
5968 break;
5969
5970 /* Did we find a base address selection entry? */
5971 else if ((start & base_select_mask) == base_select_mask)
5972 {
5973 base = end;
5974 base_known = 1;
5975 }
5976
5977 /* We found an ordinary address range. */
5978 else
5979 {
5980 if (!base_known)
5981 {
5982 complaint (&symfile_complaints,
5983 _("Invalid .debug_ranges data (no base address)"));
5984 return;
5985 }
5986
5987 record_block_range (block,
5988 baseaddr + base + start,
5989 baseaddr + base + end - 1);
5990 }
5991 }
5992 }
5993 }
5994
5995 /* Add an aggregate field to the field list. */
5996
5997 static void
5998 dwarf2_add_field (struct field_info *fip, struct die_info *die,
5999 struct dwarf2_cu *cu)
6000 {
6001 struct objfile *objfile = cu->objfile;
6002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6003 struct nextfield *new_field;
6004 struct attribute *attr;
6005 struct field *fp;
6006 char *fieldname = "";
6007
6008 /* Allocate a new field list entry and link it in. */
6009 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6010 make_cleanup (xfree, new_field);
6011 memset (new_field, 0, sizeof (struct nextfield));
6012
6013 if (die->tag == DW_TAG_inheritance)
6014 {
6015 new_field->next = fip->baseclasses;
6016 fip->baseclasses = new_field;
6017 }
6018 else
6019 {
6020 new_field->next = fip->fields;
6021 fip->fields = new_field;
6022 }
6023 fip->nfields++;
6024
6025 /* Handle accessibility and virtuality of field.
6026 The default accessibility for members is public, the default
6027 accessibility for inheritance is private. */
6028 if (die->tag != DW_TAG_inheritance)
6029 new_field->accessibility = DW_ACCESS_public;
6030 else
6031 new_field->accessibility = DW_ACCESS_private;
6032 new_field->virtuality = DW_VIRTUALITY_none;
6033
6034 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6035 if (attr)
6036 new_field->accessibility = DW_UNSND (attr);
6037 if (new_field->accessibility != DW_ACCESS_public)
6038 fip->non_public_fields = 1;
6039 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6040 if (attr)
6041 new_field->virtuality = DW_UNSND (attr);
6042
6043 fp = &new_field->field;
6044
6045 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6046 {
6047 /* Data member other than a C++ static data member. */
6048
6049 /* Get type of field. */
6050 fp->type = die_type (die, cu);
6051
6052 SET_FIELD_BITPOS (*fp, 0);
6053
6054 /* Get bit size of field (zero if none). */
6055 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6056 if (attr)
6057 {
6058 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6059 }
6060 else
6061 {
6062 FIELD_BITSIZE (*fp) = 0;
6063 }
6064
6065 /* Get bit offset of field. */
6066 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6067 if (attr)
6068 {
6069 int byte_offset = 0;
6070
6071 if (attr_form_is_section_offset (attr))
6072 dwarf2_complex_location_expr_complaint ();
6073 else if (attr_form_is_constant (attr))
6074 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6075 else if (attr_form_is_block (attr))
6076 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6077 else
6078 dwarf2_complex_location_expr_complaint ();
6079
6080 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6081 }
6082 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6083 if (attr)
6084 {
6085 if (gdbarch_bits_big_endian (gdbarch))
6086 {
6087 /* For big endian bits, the DW_AT_bit_offset gives the
6088 additional bit offset from the MSB of the containing
6089 anonymous object to the MSB of the field. We don't
6090 have to do anything special since we don't need to
6091 know the size of the anonymous object. */
6092 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6093 }
6094 else
6095 {
6096 /* For little endian bits, compute the bit offset to the
6097 MSB of the anonymous object, subtract off the number of
6098 bits from the MSB of the field to the MSB of the
6099 object, and then subtract off the number of bits of
6100 the field itself. The result is the bit offset of
6101 the LSB of the field. */
6102 int anonymous_size;
6103 int bit_offset = DW_UNSND (attr);
6104
6105 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6106 if (attr)
6107 {
6108 /* The size of the anonymous object containing
6109 the bit field is explicit, so use the
6110 indicated size (in bytes). */
6111 anonymous_size = DW_UNSND (attr);
6112 }
6113 else
6114 {
6115 /* The size of the anonymous object containing
6116 the bit field must be inferred from the type
6117 attribute of the data member containing the
6118 bit field. */
6119 anonymous_size = TYPE_LENGTH (fp->type);
6120 }
6121 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6122 - bit_offset - FIELD_BITSIZE (*fp);
6123 }
6124 }
6125
6126 /* Get name of field. */
6127 fieldname = dwarf2_name (die, cu);
6128 if (fieldname == NULL)
6129 fieldname = "";
6130
6131 /* The name is already allocated along with this objfile, so we don't
6132 need to duplicate it for the type. */
6133 fp->name = fieldname;
6134
6135 /* Change accessibility for artificial fields (e.g. virtual table
6136 pointer or virtual base class pointer) to private. */
6137 if (dwarf2_attr (die, DW_AT_artificial, cu))
6138 {
6139 FIELD_ARTIFICIAL (*fp) = 1;
6140 new_field->accessibility = DW_ACCESS_private;
6141 fip->non_public_fields = 1;
6142 }
6143 }
6144 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6145 {
6146 /* C++ static member. */
6147
6148 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6149 is a declaration, but all versions of G++ as of this writing
6150 (so through at least 3.2.1) incorrectly generate
6151 DW_TAG_variable tags. */
6152
6153 char *physname;
6154
6155 /* Get name of field. */
6156 fieldname = dwarf2_name (die, cu);
6157 if (fieldname == NULL)
6158 return;
6159
6160 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6161 if (attr
6162 /* Only create a symbol if this is an external value.
6163 new_symbol checks this and puts the value in the global symbol
6164 table, which we want. If it is not external, new_symbol
6165 will try to put the value in cu->list_in_scope which is wrong. */
6166 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6167 {
6168 /* A static const member, not much different than an enum as far as
6169 we're concerned, except that we can support more types. */
6170 new_symbol (die, NULL, cu);
6171 }
6172
6173 /* Get physical name. */
6174 physname = (char *) dwarf2_physname (fieldname, die, cu);
6175
6176 /* The name is already allocated along with this objfile, so we don't
6177 need to duplicate it for the type. */
6178 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6179 FIELD_TYPE (*fp) = die_type (die, cu);
6180 FIELD_NAME (*fp) = fieldname;
6181 }
6182 else if (die->tag == DW_TAG_inheritance)
6183 {
6184 /* C++ base class field. */
6185 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6186 if (attr)
6187 {
6188 int byte_offset = 0;
6189
6190 if (attr_form_is_section_offset (attr))
6191 dwarf2_complex_location_expr_complaint ();
6192 else if (attr_form_is_constant (attr))
6193 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6194 else if (attr_form_is_block (attr))
6195 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6196 else
6197 dwarf2_complex_location_expr_complaint ();
6198
6199 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6200 }
6201 FIELD_BITSIZE (*fp) = 0;
6202 FIELD_TYPE (*fp) = die_type (die, cu);
6203 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6204 fip->nbaseclasses++;
6205 }
6206 }
6207
6208 /* Add a typedef defined in the scope of the FIP's class. */
6209
6210 static void
6211 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6212 struct dwarf2_cu *cu)
6213 {
6214 struct objfile *objfile = cu->objfile;
6215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6216 struct typedef_field_list *new_field;
6217 struct attribute *attr;
6218 struct typedef_field *fp;
6219 char *fieldname = "";
6220
6221 /* Allocate a new field list entry and link it in. */
6222 new_field = xzalloc (sizeof (*new_field));
6223 make_cleanup (xfree, new_field);
6224
6225 gdb_assert (die->tag == DW_TAG_typedef);
6226
6227 fp = &new_field->field;
6228
6229 /* Get name of field. */
6230 fp->name = dwarf2_name (die, cu);
6231 if (fp->name == NULL)
6232 return;
6233
6234 fp->type = read_type_die (die, cu);
6235
6236 new_field->next = fip->typedef_field_list;
6237 fip->typedef_field_list = new_field;
6238 fip->typedef_field_list_count++;
6239 }
6240
6241 /* Create the vector of fields, and attach it to the type. */
6242
6243 static void
6244 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6245 struct dwarf2_cu *cu)
6246 {
6247 int nfields = fip->nfields;
6248
6249 /* Record the field count, allocate space for the array of fields,
6250 and create blank accessibility bitfields if necessary. */
6251 TYPE_NFIELDS (type) = nfields;
6252 TYPE_FIELDS (type) = (struct field *)
6253 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6254 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6255
6256 if (fip->non_public_fields && cu->language != language_ada)
6257 {
6258 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6259
6260 TYPE_FIELD_PRIVATE_BITS (type) =
6261 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6262 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6263
6264 TYPE_FIELD_PROTECTED_BITS (type) =
6265 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6266 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6267
6268 TYPE_FIELD_IGNORE_BITS (type) =
6269 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6270 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6271 }
6272
6273 /* If the type has baseclasses, allocate and clear a bit vector for
6274 TYPE_FIELD_VIRTUAL_BITS. */
6275 if (fip->nbaseclasses && cu->language != language_ada)
6276 {
6277 int num_bytes = B_BYTES (fip->nbaseclasses);
6278 unsigned char *pointer;
6279
6280 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6281 pointer = TYPE_ALLOC (type, num_bytes);
6282 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6283 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6284 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6285 }
6286
6287 /* Copy the saved-up fields into the field vector. Start from the head
6288 of the list, adding to the tail of the field array, so that they end
6289 up in the same order in the array in which they were added to the list. */
6290 while (nfields-- > 0)
6291 {
6292 struct nextfield *fieldp;
6293
6294 if (fip->fields)
6295 {
6296 fieldp = fip->fields;
6297 fip->fields = fieldp->next;
6298 }
6299 else
6300 {
6301 fieldp = fip->baseclasses;
6302 fip->baseclasses = fieldp->next;
6303 }
6304
6305 TYPE_FIELD (type, nfields) = fieldp->field;
6306 switch (fieldp->accessibility)
6307 {
6308 case DW_ACCESS_private:
6309 if (cu->language != language_ada)
6310 SET_TYPE_FIELD_PRIVATE (type, nfields);
6311 break;
6312
6313 case DW_ACCESS_protected:
6314 if (cu->language != language_ada)
6315 SET_TYPE_FIELD_PROTECTED (type, nfields);
6316 break;
6317
6318 case DW_ACCESS_public:
6319 break;
6320
6321 default:
6322 /* Unknown accessibility. Complain and treat it as public. */
6323 {
6324 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6325 fieldp->accessibility);
6326 }
6327 break;
6328 }
6329 if (nfields < fip->nbaseclasses)
6330 {
6331 switch (fieldp->virtuality)
6332 {
6333 case DW_VIRTUALITY_virtual:
6334 case DW_VIRTUALITY_pure_virtual:
6335 if (cu->language == language_ada)
6336 error ("unexpected virtuality in component of Ada type");
6337 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6338 break;
6339 }
6340 }
6341 }
6342 }
6343
6344 /* Add a member function to the proper fieldlist. */
6345
6346 static void
6347 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6348 struct type *type, struct dwarf2_cu *cu)
6349 {
6350 struct objfile *objfile = cu->objfile;
6351 struct attribute *attr;
6352 struct fnfieldlist *flp;
6353 int i;
6354 struct fn_field *fnp;
6355 char *fieldname;
6356 struct nextfnfield *new_fnfield;
6357 struct type *this_type;
6358
6359 if (cu->language == language_ada)
6360 error ("unexpected member function in Ada type");
6361
6362 /* Get name of member function. */
6363 fieldname = dwarf2_name (die, cu);
6364 if (fieldname == NULL)
6365 return;
6366
6367 /* Look up member function name in fieldlist. */
6368 for (i = 0; i < fip->nfnfields; i++)
6369 {
6370 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6371 break;
6372 }
6373
6374 /* Create new list element if necessary. */
6375 if (i < fip->nfnfields)
6376 flp = &fip->fnfieldlists[i];
6377 else
6378 {
6379 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6380 {
6381 fip->fnfieldlists = (struct fnfieldlist *)
6382 xrealloc (fip->fnfieldlists,
6383 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6384 * sizeof (struct fnfieldlist));
6385 if (fip->nfnfields == 0)
6386 make_cleanup (free_current_contents, &fip->fnfieldlists);
6387 }
6388 flp = &fip->fnfieldlists[fip->nfnfields];
6389 flp->name = fieldname;
6390 flp->length = 0;
6391 flp->head = NULL;
6392 i = fip->nfnfields++;
6393 }
6394
6395 /* Create a new member function field and chain it to the field list
6396 entry. */
6397 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6398 make_cleanup (xfree, new_fnfield);
6399 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6400 new_fnfield->next = flp->head;
6401 flp->head = new_fnfield;
6402 flp->length++;
6403
6404 /* Fill in the member function field info. */
6405 fnp = &new_fnfield->fnfield;
6406
6407 /* Delay processing of the physname until later. */
6408 if (cu->language == language_cplus || cu->language == language_java)
6409 {
6410 add_to_method_list (type, i, flp->length - 1, fieldname,
6411 die, cu);
6412 }
6413 else
6414 {
6415 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6416 fnp->physname = physname ? physname : "";
6417 }
6418
6419 fnp->type = alloc_type (objfile);
6420 this_type = read_type_die (die, cu);
6421 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6422 {
6423 int nparams = TYPE_NFIELDS (this_type);
6424
6425 /* TYPE is the domain of this method, and THIS_TYPE is the type
6426 of the method itself (TYPE_CODE_METHOD). */
6427 smash_to_method_type (fnp->type, type,
6428 TYPE_TARGET_TYPE (this_type),
6429 TYPE_FIELDS (this_type),
6430 TYPE_NFIELDS (this_type),
6431 TYPE_VARARGS (this_type));
6432
6433 /* Handle static member functions.
6434 Dwarf2 has no clean way to discern C++ static and non-static
6435 member functions. G++ helps GDB by marking the first
6436 parameter for non-static member functions (which is the
6437 this pointer) as artificial. We obtain this information
6438 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6439 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6440 fnp->voffset = VOFFSET_STATIC;
6441 }
6442 else
6443 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6444 dwarf2_full_name (fieldname, die, cu));
6445
6446 /* Get fcontext from DW_AT_containing_type if present. */
6447 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6448 fnp->fcontext = die_containing_type (die, cu);
6449
6450 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
6451 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6452
6453 /* Get accessibility. */
6454 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6455 if (attr)
6456 {
6457 switch (DW_UNSND (attr))
6458 {
6459 case DW_ACCESS_private:
6460 fnp->is_private = 1;
6461 break;
6462 case DW_ACCESS_protected:
6463 fnp->is_protected = 1;
6464 break;
6465 }
6466 }
6467
6468 /* Check for artificial methods. */
6469 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6470 if (attr && DW_UNSND (attr) != 0)
6471 fnp->is_artificial = 1;
6472
6473 /* Get index in virtual function table if it is a virtual member
6474 function. For older versions of GCC, this is an offset in the
6475 appropriate virtual table, as specified by DW_AT_containing_type.
6476 For everyone else, it is an expression to be evaluated relative
6477 to the object address. */
6478
6479 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6480 if (attr)
6481 {
6482 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6483 {
6484 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6485 {
6486 /* Old-style GCC. */
6487 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6488 }
6489 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6490 || (DW_BLOCK (attr)->size > 1
6491 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6492 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6493 {
6494 struct dwarf_block blk;
6495 int offset;
6496
6497 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6498 ? 1 : 2);
6499 blk.size = DW_BLOCK (attr)->size - offset;
6500 blk.data = DW_BLOCK (attr)->data + offset;
6501 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6502 if ((fnp->voffset % cu->header.addr_size) != 0)
6503 dwarf2_complex_location_expr_complaint ();
6504 else
6505 fnp->voffset /= cu->header.addr_size;
6506 fnp->voffset += 2;
6507 }
6508 else
6509 dwarf2_complex_location_expr_complaint ();
6510
6511 if (!fnp->fcontext)
6512 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6513 }
6514 else if (attr_form_is_section_offset (attr))
6515 {
6516 dwarf2_complex_location_expr_complaint ();
6517 }
6518 else
6519 {
6520 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6521 fieldname);
6522 }
6523 }
6524 else
6525 {
6526 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6527 if (attr && DW_UNSND (attr))
6528 {
6529 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6530 complaint (&symfile_complaints,
6531 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
6532 fieldname, die->offset);
6533 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6534 TYPE_CPLUS_DYNAMIC (type) = 1;
6535 }
6536 }
6537 }
6538
6539 /* Create the vector of member function fields, and attach it to the type. */
6540
6541 static void
6542 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6543 struct dwarf2_cu *cu)
6544 {
6545 struct fnfieldlist *flp;
6546 int total_length = 0;
6547 int i;
6548
6549 if (cu->language == language_ada)
6550 error ("unexpected member functions in Ada type");
6551
6552 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6553 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6554 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6555
6556 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6557 {
6558 struct nextfnfield *nfp = flp->head;
6559 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6560 int k;
6561
6562 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6563 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6564 fn_flp->fn_fields = (struct fn_field *)
6565 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6566 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6567 fn_flp->fn_fields[k] = nfp->fnfield;
6568
6569 total_length += flp->length;
6570 }
6571
6572 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6573 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6574 }
6575
6576 /* Returns non-zero if NAME is the name of a vtable member in CU's
6577 language, zero otherwise. */
6578 static int
6579 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6580 {
6581 static const char vptr[] = "_vptr";
6582 static const char vtable[] = "vtable";
6583
6584 /* Look for the C++ and Java forms of the vtable. */
6585 if ((cu->language == language_java
6586 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6587 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6588 && is_cplus_marker (name[sizeof (vptr) - 1])))
6589 return 1;
6590
6591 return 0;
6592 }
6593
6594 /* GCC outputs unnamed structures that are really pointers to member
6595 functions, with the ABI-specified layout. If TYPE describes
6596 such a structure, smash it into a member function type.
6597
6598 GCC shouldn't do this; it should just output pointer to member DIEs.
6599 This is GCC PR debug/28767. */
6600
6601 static void
6602 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6603 {
6604 struct type *pfn_type, *domain_type, *new_type;
6605
6606 /* Check for a structure with no name and two children. */
6607 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6608 return;
6609
6610 /* Check for __pfn and __delta members. */
6611 if (TYPE_FIELD_NAME (type, 0) == NULL
6612 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6613 || TYPE_FIELD_NAME (type, 1) == NULL
6614 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6615 return;
6616
6617 /* Find the type of the method. */
6618 pfn_type = TYPE_FIELD_TYPE (type, 0);
6619 if (pfn_type == NULL
6620 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6621 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6622 return;
6623
6624 /* Look for the "this" argument. */
6625 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6626 if (TYPE_NFIELDS (pfn_type) == 0
6627 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6628 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6629 return;
6630
6631 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6632 new_type = alloc_type (objfile);
6633 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6634 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6635 TYPE_VARARGS (pfn_type));
6636 smash_to_methodptr_type (type, new_type);
6637 }
6638
6639 /* Called when we find the DIE that starts a structure or union scope
6640 (definition) to process all dies that define the members of the
6641 structure or union.
6642
6643 NOTE: we need to call struct_type regardless of whether or not the
6644 DIE has an at_name attribute, since it might be an anonymous
6645 structure or union. This gets the type entered into our set of
6646 user defined types.
6647
6648 However, if the structure is incomplete (an opaque struct/union)
6649 then suppress creating a symbol table entry for it since gdb only
6650 wants to find the one with the complete definition. Note that if
6651 it is complete, we just call new_symbol, which does it's own
6652 checking about whether the struct/union is anonymous or not (and
6653 suppresses creating a symbol table entry itself). */
6654
6655 static struct type *
6656 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6657 {
6658 struct objfile *objfile = cu->objfile;
6659 struct type *type;
6660 struct attribute *attr;
6661 char *name;
6662 struct cleanup *back_to;
6663
6664 /* If the definition of this type lives in .debug_types, read that type.
6665 Don't follow DW_AT_specification though, that will take us back up
6666 the chain and we want to go down. */
6667 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6668 if (attr)
6669 {
6670 struct dwarf2_cu *type_cu = cu;
6671 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6672
6673 /* We could just recurse on read_structure_type, but we need to call
6674 get_die_type to ensure only one type for this DIE is created.
6675 This is important, for example, because for c++ classes we need
6676 TYPE_NAME set which is only done by new_symbol. Blech. */
6677 type = read_type_die (type_die, type_cu);
6678
6679 /* TYPE_CU may not be the same as CU.
6680 Ensure TYPE is recorded in CU's type_hash table. */
6681 return set_die_type (die, type, cu);
6682 }
6683
6684 back_to = make_cleanup (null_cleanup, 0);
6685
6686 type = alloc_type (objfile);
6687 INIT_CPLUS_SPECIFIC (type);
6688
6689 name = dwarf2_name (die, cu);
6690 if (name != NULL)
6691 {
6692 if (cu->language == language_cplus
6693 || cu->language == language_java)
6694 {
6695 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6696
6697 /* dwarf2_full_name might have already finished building the DIE's
6698 type. If so, there is no need to continue. */
6699 if (get_die_type (die, cu) != NULL)
6700 return get_die_type (die, cu);
6701
6702 TYPE_TAG_NAME (type) = full_name;
6703 if (die->tag == DW_TAG_structure_type
6704 || die->tag == DW_TAG_class_type)
6705 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6706 }
6707 else
6708 {
6709 /* The name is already allocated along with this objfile, so
6710 we don't need to duplicate it for the type. */
6711 TYPE_TAG_NAME (type) = (char *) name;
6712 if (die->tag == DW_TAG_class_type)
6713 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6714 }
6715 }
6716
6717 if (die->tag == DW_TAG_structure_type)
6718 {
6719 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6720 }
6721 else if (die->tag == DW_TAG_union_type)
6722 {
6723 TYPE_CODE (type) = TYPE_CODE_UNION;
6724 }
6725 else
6726 {
6727 TYPE_CODE (type) = TYPE_CODE_CLASS;
6728 }
6729
6730 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6731 TYPE_DECLARED_CLASS (type) = 1;
6732
6733 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6734 if (attr)
6735 {
6736 TYPE_LENGTH (type) = DW_UNSND (attr);
6737 }
6738 else
6739 {
6740 TYPE_LENGTH (type) = 0;
6741 }
6742
6743 TYPE_STUB_SUPPORTED (type) = 1;
6744 if (die_is_declaration (die, cu))
6745 TYPE_STUB (type) = 1;
6746 else if (attr == NULL && die->child == NULL
6747 && producer_is_realview (cu->producer))
6748 /* RealView does not output the required DW_AT_declaration
6749 on incomplete types. */
6750 TYPE_STUB (type) = 1;
6751
6752 /* We need to add the type field to the die immediately so we don't
6753 infinitely recurse when dealing with pointers to the structure
6754 type within the structure itself. */
6755 set_die_type (die, type, cu);
6756
6757 /* set_die_type should be already done. */
6758 set_descriptive_type (type, die, cu);
6759
6760 if (die->child != NULL && ! die_is_declaration (die, cu))
6761 {
6762 struct field_info fi;
6763 struct die_info *child_die;
6764 VEC (symbolp) *template_args = NULL;
6765
6766 memset (&fi, 0, sizeof (struct field_info));
6767
6768 child_die = die->child;
6769
6770 while (child_die && child_die->tag)
6771 {
6772 if (child_die->tag == DW_TAG_member
6773 || child_die->tag == DW_TAG_variable)
6774 {
6775 /* NOTE: carlton/2002-11-05: A C++ static data member
6776 should be a DW_TAG_member that is a declaration, but
6777 all versions of G++ as of this writing (so through at
6778 least 3.2.1) incorrectly generate DW_TAG_variable
6779 tags for them instead. */
6780 dwarf2_add_field (&fi, child_die, cu);
6781 }
6782 else if (child_die->tag == DW_TAG_subprogram)
6783 {
6784 /* C++ member function. */
6785 dwarf2_add_member_fn (&fi, child_die, type, cu);
6786 }
6787 else if (child_die->tag == DW_TAG_inheritance)
6788 {
6789 /* C++ base class field. */
6790 dwarf2_add_field (&fi, child_die, cu);
6791 }
6792 else if (child_die->tag == DW_TAG_typedef)
6793 dwarf2_add_typedef (&fi, child_die, cu);
6794 else if (child_die->tag == DW_TAG_template_type_param
6795 || child_die->tag == DW_TAG_template_value_param)
6796 {
6797 struct symbol *arg = new_symbol (child_die, NULL, cu);
6798
6799 VEC_safe_push (symbolp, template_args, arg);
6800 }
6801
6802 child_die = sibling_die (child_die);
6803 }
6804
6805 /* Attach template arguments to type. */
6806 if (! VEC_empty (symbolp, template_args))
6807 {
6808 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6809 TYPE_N_TEMPLATE_ARGUMENTS (type)
6810 = VEC_length (symbolp, template_args);
6811 TYPE_TEMPLATE_ARGUMENTS (type)
6812 = obstack_alloc (&objfile->objfile_obstack,
6813 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6814 * sizeof (struct symbol *)));
6815 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6816 VEC_address (symbolp, template_args),
6817 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6818 * sizeof (struct symbol *)));
6819 VEC_free (symbolp, template_args);
6820 }
6821
6822 /* Attach fields and member functions to the type. */
6823 if (fi.nfields)
6824 dwarf2_attach_fields_to_type (&fi, type, cu);
6825 if (fi.nfnfields)
6826 {
6827 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
6828
6829 /* Get the type which refers to the base class (possibly this
6830 class itself) which contains the vtable pointer for the current
6831 class from the DW_AT_containing_type attribute. This use of
6832 DW_AT_containing_type is a GNU extension. */
6833
6834 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6835 {
6836 struct type *t = die_containing_type (die, cu);
6837
6838 TYPE_VPTR_BASETYPE (type) = t;
6839 if (type == t)
6840 {
6841 int i;
6842
6843 /* Our own class provides vtbl ptr. */
6844 for (i = TYPE_NFIELDS (t) - 1;
6845 i >= TYPE_N_BASECLASSES (t);
6846 --i)
6847 {
6848 char *fieldname = TYPE_FIELD_NAME (t, i);
6849
6850 if (is_vtable_name (fieldname, cu))
6851 {
6852 TYPE_VPTR_FIELDNO (type) = i;
6853 break;
6854 }
6855 }
6856
6857 /* Complain if virtual function table field not found. */
6858 if (i < TYPE_N_BASECLASSES (t))
6859 complaint (&symfile_complaints,
6860 _("virtual function table pointer not found when defining class '%s'"),
6861 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6862 "");
6863 }
6864 else
6865 {
6866 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6867 }
6868 }
6869 else if (cu->producer
6870 && strncmp (cu->producer,
6871 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6872 {
6873 /* The IBM XLC compiler does not provide direct indication
6874 of the containing type, but the vtable pointer is
6875 always named __vfp. */
6876
6877 int i;
6878
6879 for (i = TYPE_NFIELDS (type) - 1;
6880 i >= TYPE_N_BASECLASSES (type);
6881 --i)
6882 {
6883 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6884 {
6885 TYPE_VPTR_FIELDNO (type) = i;
6886 TYPE_VPTR_BASETYPE (type) = type;
6887 break;
6888 }
6889 }
6890 }
6891 }
6892
6893 /* Copy fi.typedef_field_list linked list elements content into the
6894 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6895 if (fi.typedef_field_list)
6896 {
6897 int i = fi.typedef_field_list_count;
6898
6899 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6900 TYPE_TYPEDEF_FIELD_ARRAY (type)
6901 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6902 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6903
6904 /* Reverse the list order to keep the debug info elements order. */
6905 while (--i >= 0)
6906 {
6907 struct typedef_field *dest, *src;
6908
6909 dest = &TYPE_TYPEDEF_FIELD (type, i);
6910 src = &fi.typedef_field_list->field;
6911 fi.typedef_field_list = fi.typedef_field_list->next;
6912 *dest = *src;
6913 }
6914 }
6915 }
6916
6917 quirk_gcc_member_function_pointer (type, cu->objfile);
6918
6919 do_cleanups (back_to);
6920 return type;
6921 }
6922
6923 static void
6924 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6925 {
6926 struct die_info *child_die = die->child;
6927 struct type *this_type;
6928
6929 this_type = get_die_type (die, cu);
6930 if (this_type == NULL)
6931 this_type = read_structure_type (die, cu);
6932
6933 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6934 snapshots) has been known to create a die giving a declaration
6935 for a class that has, as a child, a die giving a definition for a
6936 nested class. So we have to process our children even if the
6937 current die is a declaration. Normally, of course, a declaration
6938 won't have any children at all. */
6939
6940 while (child_die != NULL && child_die->tag)
6941 {
6942 if (child_die->tag == DW_TAG_member
6943 || child_die->tag == DW_TAG_variable
6944 || child_die->tag == DW_TAG_inheritance
6945 || child_die->tag == DW_TAG_template_value_param
6946 || child_die->tag == DW_TAG_template_type_param)
6947 {
6948 /* Do nothing. */
6949 }
6950 else
6951 process_die (child_die, cu);
6952
6953 child_die = sibling_die (child_die);
6954 }
6955
6956 /* Do not consider external references. According to the DWARF standard,
6957 these DIEs are identified by the fact that they have no byte_size
6958 attribute, and a declaration attribute. */
6959 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6960 || !die_is_declaration (die, cu))
6961 new_symbol (die, this_type, cu);
6962 }
6963
6964 /* Given a DW_AT_enumeration_type die, set its type. We do not
6965 complete the type's fields yet, or create any symbols. */
6966
6967 static struct type *
6968 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
6969 {
6970 struct objfile *objfile = cu->objfile;
6971 struct type *type;
6972 struct attribute *attr;
6973 const char *name;
6974
6975 /* If the definition of this type lives in .debug_types, read that type.
6976 Don't follow DW_AT_specification though, that will take us back up
6977 the chain and we want to go down. */
6978 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6979 if (attr)
6980 {
6981 struct dwarf2_cu *type_cu = cu;
6982 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6983
6984 type = read_type_die (type_die, type_cu);
6985
6986 /* TYPE_CU may not be the same as CU.
6987 Ensure TYPE is recorded in CU's type_hash table. */
6988 return set_die_type (die, type, cu);
6989 }
6990
6991 type = alloc_type (objfile);
6992
6993 TYPE_CODE (type) = TYPE_CODE_ENUM;
6994 name = dwarf2_full_name (NULL, die, cu);
6995 if (name != NULL)
6996 TYPE_TAG_NAME (type) = (char *) name;
6997
6998 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6999 if (attr)
7000 {
7001 TYPE_LENGTH (type) = DW_UNSND (attr);
7002 }
7003 else
7004 {
7005 TYPE_LENGTH (type) = 0;
7006 }
7007
7008 /* The enumeration DIE can be incomplete. In Ada, any type can be
7009 declared as private in the package spec, and then defined only
7010 inside the package body. Such types are known as Taft Amendment
7011 Types. When another package uses such a type, an incomplete DIE
7012 may be generated by the compiler. */
7013 if (die_is_declaration (die, cu))
7014 TYPE_STUB (type) = 1;
7015
7016 return set_die_type (die, type, cu);
7017 }
7018
7019 /* Given a pointer to a die which begins an enumeration, process all
7020 the dies that define the members of the enumeration, and create the
7021 symbol for the enumeration type.
7022
7023 NOTE: We reverse the order of the element list. */
7024
7025 static void
7026 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7027 {
7028 struct type *this_type;
7029
7030 this_type = get_die_type (die, cu);
7031 if (this_type == NULL)
7032 this_type = read_enumeration_type (die, cu);
7033
7034 if (die->child != NULL)
7035 {
7036 struct die_info *child_die;
7037 struct symbol *sym;
7038 struct field *fields = NULL;
7039 int num_fields = 0;
7040 int unsigned_enum = 1;
7041 char *name;
7042
7043 child_die = die->child;
7044 while (child_die && child_die->tag)
7045 {
7046 if (child_die->tag != DW_TAG_enumerator)
7047 {
7048 process_die (child_die, cu);
7049 }
7050 else
7051 {
7052 name = dwarf2_name (child_die, cu);
7053 if (name)
7054 {
7055 sym = new_symbol (child_die, this_type, cu);
7056 if (SYMBOL_VALUE (sym) < 0)
7057 unsigned_enum = 0;
7058
7059 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7060 {
7061 fields = (struct field *)
7062 xrealloc (fields,
7063 (num_fields + DW_FIELD_ALLOC_CHUNK)
7064 * sizeof (struct field));
7065 }
7066
7067 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7068 FIELD_TYPE (fields[num_fields]) = NULL;
7069 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7070 FIELD_BITSIZE (fields[num_fields]) = 0;
7071
7072 num_fields++;
7073 }
7074 }
7075
7076 child_die = sibling_die (child_die);
7077 }
7078
7079 if (num_fields)
7080 {
7081 TYPE_NFIELDS (this_type) = num_fields;
7082 TYPE_FIELDS (this_type) = (struct field *)
7083 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7084 memcpy (TYPE_FIELDS (this_type), fields,
7085 sizeof (struct field) * num_fields);
7086 xfree (fields);
7087 }
7088 if (unsigned_enum)
7089 TYPE_UNSIGNED (this_type) = 1;
7090 }
7091
7092 new_symbol (die, this_type, cu);
7093 }
7094
7095 /* Extract all information from a DW_TAG_array_type DIE and put it in
7096 the DIE's type field. For now, this only handles one dimensional
7097 arrays. */
7098
7099 static struct type *
7100 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7101 {
7102 struct objfile *objfile = cu->objfile;
7103 struct die_info *child_die;
7104 struct type *type;
7105 struct type *element_type, *range_type, *index_type;
7106 struct type **range_types = NULL;
7107 struct attribute *attr;
7108 int ndim = 0;
7109 struct cleanup *back_to;
7110 char *name;
7111
7112 element_type = die_type (die, cu);
7113
7114 /* The die_type call above may have already set the type for this DIE. */
7115 type = get_die_type (die, cu);
7116 if (type)
7117 return type;
7118
7119 /* Irix 6.2 native cc creates array types without children for
7120 arrays with unspecified length. */
7121 if (die->child == NULL)
7122 {
7123 index_type = objfile_type (objfile)->builtin_int;
7124 range_type = create_range_type (NULL, index_type, 0, -1);
7125 type = create_array_type (NULL, element_type, range_type);
7126 return set_die_type (die, type, cu);
7127 }
7128
7129 back_to = make_cleanup (null_cleanup, NULL);
7130 child_die = die->child;
7131 while (child_die && child_die->tag)
7132 {
7133 if (child_die->tag == DW_TAG_subrange_type)
7134 {
7135 struct type *child_type = read_type_die (child_die, cu);
7136
7137 if (child_type != NULL)
7138 {
7139 /* The range type was succesfully read. Save it for
7140 the array type creation. */
7141 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7142 {
7143 range_types = (struct type **)
7144 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7145 * sizeof (struct type *));
7146 if (ndim == 0)
7147 make_cleanup (free_current_contents, &range_types);
7148 }
7149 range_types[ndim++] = child_type;
7150 }
7151 }
7152 child_die = sibling_die (child_die);
7153 }
7154
7155 /* Dwarf2 dimensions are output from left to right, create the
7156 necessary array types in backwards order. */
7157
7158 type = element_type;
7159
7160 if (read_array_order (die, cu) == DW_ORD_col_major)
7161 {
7162 int i = 0;
7163
7164 while (i < ndim)
7165 type = create_array_type (NULL, type, range_types[i++]);
7166 }
7167 else
7168 {
7169 while (ndim-- > 0)
7170 type = create_array_type (NULL, type, range_types[ndim]);
7171 }
7172
7173 /* Understand Dwarf2 support for vector types (like they occur on
7174 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7175 array type. This is not part of the Dwarf2/3 standard yet, but a
7176 custom vendor extension. The main difference between a regular
7177 array and the vector variant is that vectors are passed by value
7178 to functions. */
7179 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7180 if (attr)
7181 make_vector_type (type);
7182
7183 name = dwarf2_name (die, cu);
7184 if (name)
7185 TYPE_NAME (type) = name;
7186
7187 /* Install the type in the die. */
7188 set_die_type (die, type, cu);
7189
7190 /* set_die_type should be already done. */
7191 set_descriptive_type (type, die, cu);
7192
7193 do_cleanups (back_to);
7194
7195 return type;
7196 }
7197
7198 static enum dwarf_array_dim_ordering
7199 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7200 {
7201 struct attribute *attr;
7202
7203 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7204
7205 if (attr) return DW_SND (attr);
7206
7207 /*
7208 GNU F77 is a special case, as at 08/2004 array type info is the
7209 opposite order to the dwarf2 specification, but data is still
7210 laid out as per normal fortran.
7211
7212 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7213 version checking.
7214 */
7215
7216 if (cu->language == language_fortran
7217 && cu->producer && strstr (cu->producer, "GNU F77"))
7218 {
7219 return DW_ORD_row_major;
7220 }
7221
7222 switch (cu->language_defn->la_array_ordering)
7223 {
7224 case array_column_major:
7225 return DW_ORD_col_major;
7226 case array_row_major:
7227 default:
7228 return DW_ORD_row_major;
7229 };
7230 }
7231
7232 /* Extract all information from a DW_TAG_set_type DIE and put it in
7233 the DIE's type field. */
7234
7235 static struct type *
7236 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7237 {
7238 struct type *domain_type, *set_type;
7239 struct attribute *attr;
7240
7241 domain_type = die_type (die, cu);
7242
7243 /* The die_type call above may have already set the type for this DIE. */
7244 set_type = get_die_type (die, cu);
7245 if (set_type)
7246 return set_type;
7247
7248 set_type = create_set_type (NULL, domain_type);
7249
7250 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7251 if (attr)
7252 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7253
7254 return set_die_type (die, set_type, cu);
7255 }
7256
7257 /* First cut: install each common block member as a global variable. */
7258
7259 static void
7260 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7261 {
7262 struct die_info *child_die;
7263 struct attribute *attr;
7264 struct symbol *sym;
7265 CORE_ADDR base = (CORE_ADDR) 0;
7266
7267 attr = dwarf2_attr (die, DW_AT_location, cu);
7268 if (attr)
7269 {
7270 /* Support the .debug_loc offsets */
7271 if (attr_form_is_block (attr))
7272 {
7273 base = decode_locdesc (DW_BLOCK (attr), cu);
7274 }
7275 else if (attr_form_is_section_offset (attr))
7276 {
7277 dwarf2_complex_location_expr_complaint ();
7278 }
7279 else
7280 {
7281 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7282 "common block member");
7283 }
7284 }
7285 if (die->child != NULL)
7286 {
7287 child_die = die->child;
7288 while (child_die && child_die->tag)
7289 {
7290 sym = new_symbol (child_die, NULL, cu);
7291 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7292 if (attr)
7293 {
7294 CORE_ADDR byte_offset = 0;
7295
7296 if (attr_form_is_section_offset (attr))
7297 dwarf2_complex_location_expr_complaint ();
7298 else if (attr_form_is_constant (attr))
7299 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7300 else if (attr_form_is_block (attr))
7301 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7302 else
7303 dwarf2_complex_location_expr_complaint ();
7304
7305 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7306 add_symbol_to_list (sym, &global_symbols);
7307 }
7308 child_die = sibling_die (child_die);
7309 }
7310 }
7311 }
7312
7313 /* Create a type for a C++ namespace. */
7314
7315 static struct type *
7316 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7317 {
7318 struct objfile *objfile = cu->objfile;
7319 const char *previous_prefix, *name;
7320 int is_anonymous;
7321 struct type *type;
7322
7323 /* For extensions, reuse the type of the original namespace. */
7324 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7325 {
7326 struct die_info *ext_die;
7327 struct dwarf2_cu *ext_cu = cu;
7328
7329 ext_die = dwarf2_extension (die, &ext_cu);
7330 type = read_type_die (ext_die, ext_cu);
7331
7332 /* EXT_CU may not be the same as CU.
7333 Ensure TYPE is recorded in CU's type_hash table. */
7334 return set_die_type (die, type, cu);
7335 }
7336
7337 name = namespace_name (die, &is_anonymous, cu);
7338
7339 /* Now build the name of the current namespace. */
7340
7341 previous_prefix = determine_prefix (die, cu);
7342 if (previous_prefix[0] != '\0')
7343 name = typename_concat (&objfile->objfile_obstack,
7344 previous_prefix, name, 0, cu);
7345
7346 /* Create the type. */
7347 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7348 objfile);
7349 TYPE_NAME (type) = (char *) name;
7350 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7351
7352 return set_die_type (die, type, cu);
7353 }
7354
7355 /* Read a C++ namespace. */
7356
7357 static void
7358 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7359 {
7360 struct objfile *objfile = cu->objfile;
7361 const char *name;
7362 int is_anonymous;
7363
7364 /* Add a symbol associated to this if we haven't seen the namespace
7365 before. Also, add a using directive if it's an anonymous
7366 namespace. */
7367
7368 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7369 {
7370 struct type *type;
7371
7372 type = read_type_die (die, cu);
7373 new_symbol (die, type, cu);
7374
7375 name = namespace_name (die, &is_anonymous, cu);
7376 if (is_anonymous)
7377 {
7378 const char *previous_prefix = determine_prefix (die, cu);
7379
7380 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7381 NULL, &objfile->objfile_obstack);
7382 }
7383 }
7384
7385 if (die->child != NULL)
7386 {
7387 struct die_info *child_die = die->child;
7388
7389 while (child_die && child_die->tag)
7390 {
7391 process_die (child_die, cu);
7392 child_die = sibling_die (child_die);
7393 }
7394 }
7395 }
7396
7397 /* Read a Fortran module as type. This DIE can be only a declaration used for
7398 imported module. Still we need that type as local Fortran "use ... only"
7399 declaration imports depend on the created type in determine_prefix. */
7400
7401 static struct type *
7402 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7403 {
7404 struct objfile *objfile = cu->objfile;
7405 char *module_name;
7406 struct type *type;
7407
7408 module_name = dwarf2_name (die, cu);
7409 if (!module_name)
7410 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
7411 die->offset);
7412 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7413
7414 /* determine_prefix uses TYPE_TAG_NAME. */
7415 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7416
7417 return set_die_type (die, type, cu);
7418 }
7419
7420 /* Read a Fortran module. */
7421
7422 static void
7423 read_module (struct die_info *die, struct dwarf2_cu *cu)
7424 {
7425 struct die_info *child_die = die->child;
7426
7427 while (child_die && child_die->tag)
7428 {
7429 process_die (child_die, cu);
7430 child_die = sibling_die (child_die);
7431 }
7432 }
7433
7434 /* Return the name of the namespace represented by DIE. Set
7435 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7436 namespace. */
7437
7438 static const char *
7439 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7440 {
7441 struct die_info *current_die;
7442 const char *name = NULL;
7443
7444 /* Loop through the extensions until we find a name. */
7445
7446 for (current_die = die;
7447 current_die != NULL;
7448 current_die = dwarf2_extension (die, &cu))
7449 {
7450 name = dwarf2_name (current_die, cu);
7451 if (name != NULL)
7452 break;
7453 }
7454
7455 /* Is it an anonymous namespace? */
7456
7457 *is_anonymous = (name == NULL);
7458 if (*is_anonymous)
7459 name = "(anonymous namespace)";
7460
7461 return name;
7462 }
7463
7464 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7465 the user defined type vector. */
7466
7467 static struct type *
7468 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7469 {
7470 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7471 struct comp_unit_head *cu_header = &cu->header;
7472 struct type *type;
7473 struct attribute *attr_byte_size;
7474 struct attribute *attr_address_class;
7475 int byte_size, addr_class;
7476 struct type *target_type;
7477
7478 target_type = die_type (die, cu);
7479
7480 /* The die_type call above may have already set the type for this DIE. */
7481 type = get_die_type (die, cu);
7482 if (type)
7483 return type;
7484
7485 type = lookup_pointer_type (target_type);
7486
7487 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7488 if (attr_byte_size)
7489 byte_size = DW_UNSND (attr_byte_size);
7490 else
7491 byte_size = cu_header->addr_size;
7492
7493 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7494 if (attr_address_class)
7495 addr_class = DW_UNSND (attr_address_class);
7496 else
7497 addr_class = DW_ADDR_none;
7498
7499 /* If the pointer size or address class is different than the
7500 default, create a type variant marked as such and set the
7501 length accordingly. */
7502 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7503 {
7504 if (gdbarch_address_class_type_flags_p (gdbarch))
7505 {
7506 int type_flags;
7507
7508 type_flags = gdbarch_address_class_type_flags
7509 (gdbarch, byte_size, addr_class);
7510 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7511 == 0);
7512 type = make_type_with_address_space (type, type_flags);
7513 }
7514 else if (TYPE_LENGTH (type) != byte_size)
7515 {
7516 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
7517 }
7518 else
7519 {
7520 /* Should we also complain about unhandled address classes? */
7521 }
7522 }
7523
7524 TYPE_LENGTH (type) = byte_size;
7525 return set_die_type (die, type, cu);
7526 }
7527
7528 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7529 the user defined type vector. */
7530
7531 static struct type *
7532 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7533 {
7534 struct type *type;
7535 struct type *to_type;
7536 struct type *domain;
7537
7538 to_type = die_type (die, cu);
7539 domain = die_containing_type (die, cu);
7540
7541 /* The calls above may have already set the type for this DIE. */
7542 type = get_die_type (die, cu);
7543 if (type)
7544 return type;
7545
7546 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7547 type = lookup_methodptr_type (to_type);
7548 else
7549 type = lookup_memberptr_type (to_type, domain);
7550
7551 return set_die_type (die, type, cu);
7552 }
7553
7554 /* Extract all information from a DW_TAG_reference_type DIE and add to
7555 the user defined type vector. */
7556
7557 static struct type *
7558 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7559 {
7560 struct comp_unit_head *cu_header = &cu->header;
7561 struct type *type, *target_type;
7562 struct attribute *attr;
7563
7564 target_type = die_type (die, cu);
7565
7566 /* The die_type call above may have already set the type for this DIE. */
7567 type = get_die_type (die, cu);
7568 if (type)
7569 return type;
7570
7571 type = lookup_reference_type (target_type);
7572 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7573 if (attr)
7574 {
7575 TYPE_LENGTH (type) = DW_UNSND (attr);
7576 }
7577 else
7578 {
7579 TYPE_LENGTH (type) = cu_header->addr_size;
7580 }
7581 return set_die_type (die, type, cu);
7582 }
7583
7584 static struct type *
7585 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7586 {
7587 struct type *base_type, *cv_type;
7588
7589 base_type = die_type (die, cu);
7590
7591 /* The die_type call above may have already set the type for this DIE. */
7592 cv_type = get_die_type (die, cu);
7593 if (cv_type)
7594 return cv_type;
7595
7596 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7597 return set_die_type (die, cv_type, cu);
7598 }
7599
7600 static struct type *
7601 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7602 {
7603 struct type *base_type, *cv_type;
7604
7605 base_type = die_type (die, cu);
7606
7607 /* The die_type call above may have already set the type for this DIE. */
7608 cv_type = get_die_type (die, cu);
7609 if (cv_type)
7610 return cv_type;
7611
7612 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7613 return set_die_type (die, cv_type, cu);
7614 }
7615
7616 /* Extract all information from a DW_TAG_string_type DIE and add to
7617 the user defined type vector. It isn't really a user defined type,
7618 but it behaves like one, with other DIE's using an AT_user_def_type
7619 attribute to reference it. */
7620
7621 static struct type *
7622 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7623 {
7624 struct objfile *objfile = cu->objfile;
7625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7626 struct type *type, *range_type, *index_type, *char_type;
7627 struct attribute *attr;
7628 unsigned int length;
7629
7630 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7631 if (attr)
7632 {
7633 length = DW_UNSND (attr);
7634 }
7635 else
7636 {
7637 /* check for the DW_AT_byte_size attribute */
7638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7639 if (attr)
7640 {
7641 length = DW_UNSND (attr);
7642 }
7643 else
7644 {
7645 length = 1;
7646 }
7647 }
7648
7649 index_type = objfile_type (objfile)->builtin_int;
7650 range_type = create_range_type (NULL, index_type, 1, length);
7651 char_type = language_string_char_type (cu->language_defn, gdbarch);
7652 type = create_string_type (NULL, char_type, range_type);
7653
7654 return set_die_type (die, type, cu);
7655 }
7656
7657 /* Handle DIES due to C code like:
7658
7659 struct foo
7660 {
7661 int (*funcp)(int a, long l);
7662 int b;
7663 };
7664
7665 ('funcp' generates a DW_TAG_subroutine_type DIE)
7666 */
7667
7668 static struct type *
7669 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7670 {
7671 struct type *type; /* Type that this function returns */
7672 struct type *ftype; /* Function that returns above type */
7673 struct attribute *attr;
7674
7675 type = die_type (die, cu);
7676
7677 /* The die_type call above may have already set the type for this DIE. */
7678 ftype = get_die_type (die, cu);
7679 if (ftype)
7680 return ftype;
7681
7682 ftype = lookup_function_type (type);
7683
7684 /* All functions in C++, Pascal and Java have prototypes. */
7685 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7686 if ((attr && (DW_UNSND (attr) != 0))
7687 || cu->language == language_cplus
7688 || cu->language == language_java
7689 || cu->language == language_pascal)
7690 TYPE_PROTOTYPED (ftype) = 1;
7691 else if (producer_is_realview (cu->producer))
7692 /* RealView does not emit DW_AT_prototyped. We can not
7693 distinguish prototyped and unprototyped functions; default to
7694 prototyped, since that is more common in modern code (and
7695 RealView warns about unprototyped functions). */
7696 TYPE_PROTOTYPED (ftype) = 1;
7697
7698 /* Store the calling convention in the type if it's available in
7699 the subroutine die. Otherwise set the calling convention to
7700 the default value DW_CC_normal. */
7701 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7702 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7703
7704 /* We need to add the subroutine type to the die immediately so
7705 we don't infinitely recurse when dealing with parameters
7706 declared as the same subroutine type. */
7707 set_die_type (die, ftype, cu);
7708
7709 if (die->child != NULL)
7710 {
7711 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7712 struct die_info *child_die;
7713 int nparams, iparams;
7714
7715 /* Count the number of parameters.
7716 FIXME: GDB currently ignores vararg functions, but knows about
7717 vararg member functions. */
7718 nparams = 0;
7719 child_die = die->child;
7720 while (child_die && child_die->tag)
7721 {
7722 if (child_die->tag == DW_TAG_formal_parameter)
7723 nparams++;
7724 else if (child_die->tag == DW_TAG_unspecified_parameters)
7725 TYPE_VARARGS (ftype) = 1;
7726 child_die = sibling_die (child_die);
7727 }
7728
7729 /* Allocate storage for parameters and fill them in. */
7730 TYPE_NFIELDS (ftype) = nparams;
7731 TYPE_FIELDS (ftype) = (struct field *)
7732 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7733
7734 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7735 even if we error out during the parameters reading below. */
7736 for (iparams = 0; iparams < nparams; iparams++)
7737 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7738
7739 iparams = 0;
7740 child_die = die->child;
7741 while (child_die && child_die->tag)
7742 {
7743 if (child_die->tag == DW_TAG_formal_parameter)
7744 {
7745 struct type *arg_type;
7746
7747 /* DWARF version 2 has no clean way to discern C++
7748 static and non-static member functions. G++ helps
7749 GDB by marking the first parameter for non-static
7750 member functions (which is the this pointer) as
7751 artificial. We pass this information to
7752 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7753
7754 DWARF version 3 added DW_AT_object_pointer, which GCC
7755 4.5 does not yet generate. */
7756 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7757 if (attr)
7758 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7759 else
7760 {
7761 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7762
7763 /* GCC/43521: In java, the formal parameter
7764 "this" is sometimes not marked with DW_AT_artificial. */
7765 if (cu->language == language_java)
7766 {
7767 const char *name = dwarf2_name (child_die, cu);
7768
7769 if (name && !strcmp (name, "this"))
7770 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7771 }
7772 }
7773 arg_type = die_type (child_die, cu);
7774
7775 /* RealView does not mark THIS as const, which the testsuite
7776 expects. GCC marks THIS as const in method definitions,
7777 but not in the class specifications (GCC PR 43053). */
7778 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7779 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7780 {
7781 int is_this = 0;
7782 struct dwarf2_cu *arg_cu = cu;
7783 const char *name = dwarf2_name (child_die, cu);
7784
7785 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7786 if (attr)
7787 {
7788 /* If the compiler emits this, use it. */
7789 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7790 is_this = 1;
7791 }
7792 else if (name && strcmp (name, "this") == 0)
7793 /* Function definitions will have the argument names. */
7794 is_this = 1;
7795 else if (name == NULL && iparams == 0)
7796 /* Declarations may not have the names, so like
7797 elsewhere in GDB, assume an artificial first
7798 argument is "this". */
7799 is_this = 1;
7800
7801 if (is_this)
7802 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
7803 arg_type, 0);
7804 }
7805
7806 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
7807 iparams++;
7808 }
7809 child_die = sibling_die (child_die);
7810 }
7811 }
7812
7813 return ftype;
7814 }
7815
7816 static struct type *
7817 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
7818 {
7819 struct objfile *objfile = cu->objfile;
7820 const char *name = NULL;
7821 struct type *this_type;
7822
7823 name = dwarf2_full_name (NULL, die, cu);
7824 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
7825 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7826 TYPE_NAME (this_type) = (char *) name;
7827 set_die_type (die, this_type, cu);
7828 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7829 return this_type;
7830 }
7831
7832 /* Find a representation of a given base type and install
7833 it in the TYPE field of the die. */
7834
7835 static struct type *
7836 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
7837 {
7838 struct objfile *objfile = cu->objfile;
7839 struct type *type;
7840 struct attribute *attr;
7841 int encoding = 0, size = 0;
7842 char *name;
7843 enum type_code code = TYPE_CODE_INT;
7844 int type_flags = 0;
7845 struct type *target_type = NULL;
7846
7847 attr = dwarf2_attr (die, DW_AT_encoding, cu);
7848 if (attr)
7849 {
7850 encoding = DW_UNSND (attr);
7851 }
7852 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7853 if (attr)
7854 {
7855 size = DW_UNSND (attr);
7856 }
7857 name = dwarf2_name (die, cu);
7858 if (!name)
7859 {
7860 complaint (&symfile_complaints,
7861 _("DW_AT_name missing from DW_TAG_base_type"));
7862 }
7863
7864 switch (encoding)
7865 {
7866 case DW_ATE_address:
7867 /* Turn DW_ATE_address into a void * pointer. */
7868 code = TYPE_CODE_PTR;
7869 type_flags |= TYPE_FLAG_UNSIGNED;
7870 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7871 break;
7872 case DW_ATE_boolean:
7873 code = TYPE_CODE_BOOL;
7874 type_flags |= TYPE_FLAG_UNSIGNED;
7875 break;
7876 case DW_ATE_complex_float:
7877 code = TYPE_CODE_COMPLEX;
7878 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7879 break;
7880 case DW_ATE_decimal_float:
7881 code = TYPE_CODE_DECFLOAT;
7882 break;
7883 case DW_ATE_float:
7884 code = TYPE_CODE_FLT;
7885 break;
7886 case DW_ATE_signed:
7887 break;
7888 case DW_ATE_unsigned:
7889 type_flags |= TYPE_FLAG_UNSIGNED;
7890 break;
7891 case DW_ATE_signed_char:
7892 if (cu->language == language_ada || cu->language == language_m2
7893 || cu->language == language_pascal)
7894 code = TYPE_CODE_CHAR;
7895 break;
7896 case DW_ATE_unsigned_char:
7897 if (cu->language == language_ada || cu->language == language_m2
7898 || cu->language == language_pascal)
7899 code = TYPE_CODE_CHAR;
7900 type_flags |= TYPE_FLAG_UNSIGNED;
7901 break;
7902 case DW_ATE_UTF:
7903 /* We just treat this as an integer and then recognize the
7904 type by name elsewhere. */
7905 break;
7906
7907 default:
7908 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7909 dwarf_type_encoding_name (encoding));
7910 break;
7911 }
7912
7913 type = init_type (code, size, type_flags, NULL, objfile);
7914 TYPE_NAME (type) = name;
7915 TYPE_TARGET_TYPE (type) = target_type;
7916
7917 if (name && strcmp (name, "char") == 0)
7918 TYPE_NOSIGN (type) = 1;
7919
7920 return set_die_type (die, type, cu);
7921 }
7922
7923 /* Read the given DW_AT_subrange DIE. */
7924
7925 static struct type *
7926 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7927 {
7928 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7929 struct type *base_type;
7930 struct type *range_type;
7931 struct attribute *attr;
7932 LONGEST low = 0;
7933 LONGEST high = -1;
7934 char *name;
7935 LONGEST negative_mask;
7936
7937 base_type = die_type (die, cu);
7938 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7939 check_typedef (base_type);
7940
7941 /* The die_type call above may have already set the type for this DIE. */
7942 range_type = get_die_type (die, cu);
7943 if (range_type)
7944 return range_type;
7945
7946 if (cu->language == language_fortran)
7947 {
7948 /* FORTRAN implies a lower bound of 1, if not given. */
7949 low = 1;
7950 }
7951
7952 /* FIXME: For variable sized arrays either of these could be
7953 a variable rather than a constant value. We'll allow it,
7954 but we don't know how to handle it. */
7955 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
7956 if (attr)
7957 low = dwarf2_get_attr_constant_value (attr, 0);
7958
7959 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
7960 if (attr)
7961 {
7962 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
7963 {
7964 /* GCC encodes arrays with unspecified or dynamic length
7965 with a DW_FORM_block1 attribute or a reference attribute.
7966 FIXME: GDB does not yet know how to handle dynamic
7967 arrays properly, treat them as arrays with unspecified
7968 length for now.
7969
7970 FIXME: jimb/2003-09-22: GDB does not really know
7971 how to handle arrays of unspecified length
7972 either; we just represent them as zero-length
7973 arrays. Choose an appropriate upper bound given
7974 the lower bound we've computed above. */
7975 high = low - 1;
7976 }
7977 else
7978 high = dwarf2_get_attr_constant_value (attr, 1);
7979 }
7980 else
7981 {
7982 attr = dwarf2_attr (die, DW_AT_count, cu);
7983 if (attr)
7984 {
7985 int count = dwarf2_get_attr_constant_value (attr, 1);
7986 high = low + count - 1;
7987 }
7988 }
7989
7990 /* Dwarf-2 specifications explicitly allows to create subrange types
7991 without specifying a base type.
7992 In that case, the base type must be set to the type of
7993 the lower bound, upper bound or count, in that order, if any of these
7994 three attributes references an object that has a type.
7995 If no base type is found, the Dwarf-2 specifications say that
7996 a signed integer type of size equal to the size of an address should
7997 be used.
7998 For the following C code: `extern char gdb_int [];'
7999 GCC produces an empty range DIE.
8000 FIXME: muller/2010-05-28: Possible references to object for low bound,
8001 high bound or count are not yet handled by this code.
8002 */
8003 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8004 {
8005 struct objfile *objfile = cu->objfile;
8006 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8007 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8008 struct type *int_type = objfile_type (objfile)->builtin_int;
8009
8010 /* Test "int", "long int", and "long long int" objfile types,
8011 and select the first one having a size above or equal to the
8012 architecture address size. */
8013 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8014 base_type = int_type;
8015 else
8016 {
8017 int_type = objfile_type (objfile)->builtin_long;
8018 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8019 base_type = int_type;
8020 else
8021 {
8022 int_type = objfile_type (objfile)->builtin_long_long;
8023 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8024 base_type = int_type;
8025 }
8026 }
8027 }
8028
8029 negative_mask =
8030 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8031 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8032 low |= negative_mask;
8033 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8034 high |= negative_mask;
8035
8036 range_type = create_range_type (NULL, base_type, low, high);
8037
8038 /* Mark arrays with dynamic length at least as an array of unspecified
8039 length. GDB could check the boundary but before it gets implemented at
8040 least allow accessing the array elements. */
8041 if (attr && attr->form == DW_FORM_block1)
8042 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8043
8044 name = dwarf2_name (die, cu);
8045 if (name)
8046 TYPE_NAME (range_type) = name;
8047
8048 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8049 if (attr)
8050 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8051
8052 set_die_type (die, range_type, cu);
8053
8054 /* set_die_type should be already done. */
8055 set_descriptive_type (range_type, die, cu);
8056
8057 return range_type;
8058 }
8059
8060 static struct type *
8061 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8062 {
8063 struct type *type;
8064
8065 /* For now, we only support the C meaning of an unspecified type: void. */
8066
8067 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8068 TYPE_NAME (type) = dwarf2_name (die, cu);
8069
8070 return set_die_type (die, type, cu);
8071 }
8072
8073 /* Trivial hash function for die_info: the hash value of a DIE
8074 is its offset in .debug_info for this objfile. */
8075
8076 static hashval_t
8077 die_hash (const void *item)
8078 {
8079 const struct die_info *die = item;
8080
8081 return die->offset;
8082 }
8083
8084 /* Trivial comparison function for die_info structures: two DIEs
8085 are equal if they have the same offset. */
8086
8087 static int
8088 die_eq (const void *item_lhs, const void *item_rhs)
8089 {
8090 const struct die_info *die_lhs = item_lhs;
8091 const struct die_info *die_rhs = item_rhs;
8092
8093 return die_lhs->offset == die_rhs->offset;
8094 }
8095
8096 /* Read a whole compilation unit into a linked list of dies. */
8097
8098 static struct die_info *
8099 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8100 {
8101 struct die_reader_specs reader_specs;
8102 int read_abbrevs = 0;
8103 struct cleanup *back_to = NULL;
8104 struct die_info *die;
8105
8106 if (cu->dwarf2_abbrevs == NULL)
8107 {
8108 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8109 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8110 read_abbrevs = 1;
8111 }
8112
8113 gdb_assert (cu->die_hash == NULL);
8114 cu->die_hash
8115 = htab_create_alloc_ex (cu->header.length / 12,
8116 die_hash,
8117 die_eq,
8118 NULL,
8119 &cu->comp_unit_obstack,
8120 hashtab_obstack_allocate,
8121 dummy_obstack_deallocate);
8122
8123 init_cu_die_reader (&reader_specs, cu);
8124
8125 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8126
8127 if (read_abbrevs)
8128 do_cleanups (back_to);
8129
8130 return die;
8131 }
8132
8133 /* Main entry point for reading a DIE and all children.
8134 Read the DIE and dump it if requested. */
8135
8136 static struct die_info *
8137 read_die_and_children (const struct die_reader_specs *reader,
8138 gdb_byte *info_ptr,
8139 gdb_byte **new_info_ptr,
8140 struct die_info *parent)
8141 {
8142 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8143 new_info_ptr, parent);
8144
8145 if (dwarf2_die_debug)
8146 {
8147 fprintf_unfiltered (gdb_stdlog,
8148 "\nRead die from %s of %s:\n",
8149 reader->buffer == dwarf2_per_objfile->info.buffer
8150 ? ".debug_info"
8151 : reader->buffer == dwarf2_per_objfile->types.buffer
8152 ? ".debug_types"
8153 : "unknown section",
8154 reader->abfd->filename);
8155 dump_die (result, dwarf2_die_debug);
8156 }
8157
8158 return result;
8159 }
8160
8161 /* Read a single die and all its descendents. Set the die's sibling
8162 field to NULL; set other fields in the die correctly, and set all
8163 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8164 location of the info_ptr after reading all of those dies. PARENT
8165 is the parent of the die in question. */
8166
8167 static struct die_info *
8168 read_die_and_children_1 (const struct die_reader_specs *reader,
8169 gdb_byte *info_ptr,
8170 gdb_byte **new_info_ptr,
8171 struct die_info *parent)
8172 {
8173 struct die_info *die;
8174 gdb_byte *cur_ptr;
8175 int has_children;
8176
8177 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8178 if (die == NULL)
8179 {
8180 *new_info_ptr = cur_ptr;
8181 return NULL;
8182 }
8183 store_in_ref_table (die, reader->cu);
8184
8185 if (has_children)
8186 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8187 else
8188 {
8189 die->child = NULL;
8190 *new_info_ptr = cur_ptr;
8191 }
8192
8193 die->sibling = NULL;
8194 die->parent = parent;
8195 return die;
8196 }
8197
8198 /* Read a die, all of its descendents, and all of its siblings; set
8199 all of the fields of all of the dies correctly. Arguments are as
8200 in read_die_and_children. */
8201
8202 static struct die_info *
8203 read_die_and_siblings (const struct die_reader_specs *reader,
8204 gdb_byte *info_ptr,
8205 gdb_byte **new_info_ptr,
8206 struct die_info *parent)
8207 {
8208 struct die_info *first_die, *last_sibling;
8209 gdb_byte *cur_ptr;
8210
8211 cur_ptr = info_ptr;
8212 first_die = last_sibling = NULL;
8213
8214 while (1)
8215 {
8216 struct die_info *die
8217 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8218
8219 if (die == NULL)
8220 {
8221 *new_info_ptr = cur_ptr;
8222 return first_die;
8223 }
8224
8225 if (!first_die)
8226 first_die = die;
8227 else
8228 last_sibling->sibling = die;
8229
8230 last_sibling = die;
8231 }
8232 }
8233
8234 /* Read the die from the .debug_info section buffer. Set DIEP to
8235 point to a newly allocated die with its information, except for its
8236 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8237 whether the die has children or not. */
8238
8239 static gdb_byte *
8240 read_full_die (const struct die_reader_specs *reader,
8241 struct die_info **diep, gdb_byte *info_ptr,
8242 int *has_children)
8243 {
8244 unsigned int abbrev_number, bytes_read, i, offset;
8245 struct abbrev_info *abbrev;
8246 struct die_info *die;
8247 struct dwarf2_cu *cu = reader->cu;
8248 bfd *abfd = reader->abfd;
8249
8250 offset = info_ptr - reader->buffer;
8251 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8252 info_ptr += bytes_read;
8253 if (!abbrev_number)
8254 {
8255 *diep = NULL;
8256 *has_children = 0;
8257 return info_ptr;
8258 }
8259
8260 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8261 if (!abbrev)
8262 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8263 abbrev_number,
8264 bfd_get_filename (abfd));
8265
8266 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8267 die->offset = offset;
8268 die->tag = abbrev->tag;
8269 die->abbrev = abbrev_number;
8270
8271 die->num_attrs = abbrev->num_attrs;
8272
8273 for (i = 0; i < abbrev->num_attrs; ++i)
8274 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8275 abfd, info_ptr, cu);
8276
8277 *diep = die;
8278 *has_children = abbrev->has_children;
8279 return info_ptr;
8280 }
8281
8282 /* In DWARF version 2, the description of the debugging information is
8283 stored in a separate .debug_abbrev section. Before we read any
8284 dies from a section we read in all abbreviations and install them
8285 in a hash table. This function also sets flags in CU describing
8286 the data found in the abbrev table. */
8287
8288 static void
8289 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8290 {
8291 struct comp_unit_head *cu_header = &cu->header;
8292 gdb_byte *abbrev_ptr;
8293 struct abbrev_info *cur_abbrev;
8294 unsigned int abbrev_number, bytes_read, abbrev_name;
8295 unsigned int abbrev_form, hash_number;
8296 struct attr_abbrev *cur_attrs;
8297 unsigned int allocated_attrs;
8298
8299 /* Initialize dwarf2 abbrevs */
8300 obstack_init (&cu->abbrev_obstack);
8301 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8302 (ABBREV_HASH_SIZE
8303 * sizeof (struct abbrev_info *)));
8304 memset (cu->dwarf2_abbrevs, 0,
8305 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8306
8307 dwarf2_read_section (dwarf2_per_objfile->objfile,
8308 &dwarf2_per_objfile->abbrev);
8309 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8310 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8311 abbrev_ptr += bytes_read;
8312
8313 allocated_attrs = ATTR_ALLOC_CHUNK;
8314 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8315
8316 /* loop until we reach an abbrev number of 0 */
8317 while (abbrev_number)
8318 {
8319 cur_abbrev = dwarf_alloc_abbrev (cu);
8320
8321 /* read in abbrev header */
8322 cur_abbrev->number = abbrev_number;
8323 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8324 abbrev_ptr += bytes_read;
8325 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8326 abbrev_ptr += 1;
8327
8328 if (cur_abbrev->tag == DW_TAG_namespace)
8329 cu->has_namespace_info = 1;
8330
8331 /* now read in declarations */
8332 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8333 abbrev_ptr += bytes_read;
8334 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8335 abbrev_ptr += bytes_read;
8336 while (abbrev_name)
8337 {
8338 if (cur_abbrev->num_attrs == allocated_attrs)
8339 {
8340 allocated_attrs += ATTR_ALLOC_CHUNK;
8341 cur_attrs
8342 = xrealloc (cur_attrs, (allocated_attrs
8343 * sizeof (struct attr_abbrev)));
8344 }
8345
8346 /* Record whether this compilation unit might have
8347 inter-compilation-unit references. If we don't know what form
8348 this attribute will have, then it might potentially be a
8349 DW_FORM_ref_addr, so we conservatively expect inter-CU
8350 references. */
8351
8352 if (abbrev_form == DW_FORM_ref_addr
8353 || abbrev_form == DW_FORM_indirect)
8354 cu->has_form_ref_addr = 1;
8355
8356 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8357 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8358 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8359 abbrev_ptr += bytes_read;
8360 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8361 abbrev_ptr += bytes_read;
8362 }
8363
8364 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8365 (cur_abbrev->num_attrs
8366 * sizeof (struct attr_abbrev)));
8367 memcpy (cur_abbrev->attrs, cur_attrs,
8368 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8369
8370 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8371 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8372 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8373
8374 /* Get next abbreviation.
8375 Under Irix6 the abbreviations for a compilation unit are not
8376 always properly terminated with an abbrev number of 0.
8377 Exit loop if we encounter an abbreviation which we have
8378 already read (which means we are about to read the abbreviations
8379 for the next compile unit) or if the end of the abbreviation
8380 table is reached. */
8381 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8382 >= dwarf2_per_objfile->abbrev.size)
8383 break;
8384 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8385 abbrev_ptr += bytes_read;
8386 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8387 break;
8388 }
8389
8390 xfree (cur_attrs);
8391 }
8392
8393 /* Release the memory used by the abbrev table for a compilation unit. */
8394
8395 static void
8396 dwarf2_free_abbrev_table (void *ptr_to_cu)
8397 {
8398 struct dwarf2_cu *cu = ptr_to_cu;
8399
8400 obstack_free (&cu->abbrev_obstack, NULL);
8401 cu->dwarf2_abbrevs = NULL;
8402 }
8403
8404 /* Lookup an abbrev_info structure in the abbrev hash table. */
8405
8406 static struct abbrev_info *
8407 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8408 {
8409 unsigned int hash_number;
8410 struct abbrev_info *abbrev;
8411
8412 hash_number = number % ABBREV_HASH_SIZE;
8413 abbrev = cu->dwarf2_abbrevs[hash_number];
8414
8415 while (abbrev)
8416 {
8417 if (abbrev->number == number)
8418 return abbrev;
8419 else
8420 abbrev = abbrev->next;
8421 }
8422 return NULL;
8423 }
8424
8425 /* Returns nonzero if TAG represents a type that we might generate a partial
8426 symbol for. */
8427
8428 static int
8429 is_type_tag_for_partial (int tag)
8430 {
8431 switch (tag)
8432 {
8433 #if 0
8434 /* Some types that would be reasonable to generate partial symbols for,
8435 that we don't at present. */
8436 case DW_TAG_array_type:
8437 case DW_TAG_file_type:
8438 case DW_TAG_ptr_to_member_type:
8439 case DW_TAG_set_type:
8440 case DW_TAG_string_type:
8441 case DW_TAG_subroutine_type:
8442 #endif
8443 case DW_TAG_base_type:
8444 case DW_TAG_class_type:
8445 case DW_TAG_interface_type:
8446 case DW_TAG_enumeration_type:
8447 case DW_TAG_structure_type:
8448 case DW_TAG_subrange_type:
8449 case DW_TAG_typedef:
8450 case DW_TAG_union_type:
8451 return 1;
8452 default:
8453 return 0;
8454 }
8455 }
8456
8457 /* Load all DIEs that are interesting for partial symbols into memory. */
8458
8459 static struct partial_die_info *
8460 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8461 int building_psymtab, struct dwarf2_cu *cu)
8462 {
8463 struct partial_die_info *part_die;
8464 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8465 struct abbrev_info *abbrev;
8466 unsigned int bytes_read;
8467 unsigned int load_all = 0;
8468
8469 int nesting_level = 1;
8470
8471 parent_die = NULL;
8472 last_die = NULL;
8473
8474 if (cu->per_cu && cu->per_cu->load_all_dies)
8475 load_all = 1;
8476
8477 cu->partial_dies
8478 = htab_create_alloc_ex (cu->header.length / 12,
8479 partial_die_hash,
8480 partial_die_eq,
8481 NULL,
8482 &cu->comp_unit_obstack,
8483 hashtab_obstack_allocate,
8484 dummy_obstack_deallocate);
8485
8486 part_die = obstack_alloc (&cu->comp_unit_obstack,
8487 sizeof (struct partial_die_info));
8488
8489 while (1)
8490 {
8491 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8492
8493 /* A NULL abbrev means the end of a series of children. */
8494 if (abbrev == NULL)
8495 {
8496 if (--nesting_level == 0)
8497 {
8498 /* PART_DIE was probably the last thing allocated on the
8499 comp_unit_obstack, so we could call obstack_free
8500 here. We don't do that because the waste is small,
8501 and will be cleaned up when we're done with this
8502 compilation unit. This way, we're also more robust
8503 against other users of the comp_unit_obstack. */
8504 return first_die;
8505 }
8506 info_ptr += bytes_read;
8507 last_die = parent_die;
8508 parent_die = parent_die->die_parent;
8509 continue;
8510 }
8511
8512 /* Check for template arguments. We never save these; if
8513 they're seen, we just mark the parent, and go on our way. */
8514 if (parent_die != NULL
8515 && cu->language == language_cplus
8516 && (abbrev->tag == DW_TAG_template_type_param
8517 || abbrev->tag == DW_TAG_template_value_param))
8518 {
8519 parent_die->has_template_arguments = 1;
8520
8521 if (!load_all)
8522 {
8523 /* We don't need a partial DIE for the template argument. */
8524 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8525 cu);
8526 continue;
8527 }
8528 }
8529
8530 /* We only recurse into subprograms looking for template arguments.
8531 Skip their other children. */
8532 if (!load_all
8533 && cu->language == language_cplus
8534 && parent_die != NULL
8535 && parent_die->tag == DW_TAG_subprogram)
8536 {
8537 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8538 continue;
8539 }
8540
8541 /* Check whether this DIE is interesting enough to save. Normally
8542 we would not be interested in members here, but there may be
8543 later variables referencing them via DW_AT_specification (for
8544 static members). */
8545 if (!load_all
8546 && !is_type_tag_for_partial (abbrev->tag)
8547 && abbrev->tag != DW_TAG_enumerator
8548 && abbrev->tag != DW_TAG_subprogram
8549 && abbrev->tag != DW_TAG_lexical_block
8550 && abbrev->tag != DW_TAG_variable
8551 && abbrev->tag != DW_TAG_namespace
8552 && abbrev->tag != DW_TAG_module
8553 && abbrev->tag != DW_TAG_member)
8554 {
8555 /* Otherwise we skip to the next sibling, if any. */
8556 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8557 continue;
8558 }
8559
8560 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8561 buffer, info_ptr, cu);
8562
8563 /* This two-pass algorithm for processing partial symbols has a
8564 high cost in cache pressure. Thus, handle some simple cases
8565 here which cover the majority of C partial symbols. DIEs
8566 which neither have specification tags in them, nor could have
8567 specification tags elsewhere pointing at them, can simply be
8568 processed and discarded.
8569
8570 This segment is also optional; scan_partial_symbols and
8571 add_partial_symbol will handle these DIEs if we chain
8572 them in normally. When compilers which do not emit large
8573 quantities of duplicate debug information are more common,
8574 this code can probably be removed. */
8575
8576 /* Any complete simple types at the top level (pretty much all
8577 of them, for a language without namespaces), can be processed
8578 directly. */
8579 if (parent_die == NULL
8580 && part_die->has_specification == 0
8581 && part_die->is_declaration == 0
8582 && (part_die->tag == DW_TAG_typedef
8583 || part_die->tag == DW_TAG_base_type
8584 || part_die->tag == DW_TAG_subrange_type))
8585 {
8586 if (building_psymtab && part_die->name != NULL)
8587 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8588 VAR_DOMAIN, LOC_TYPEDEF,
8589 &cu->objfile->static_psymbols,
8590 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8591 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8592 continue;
8593 }
8594
8595 /* If we're at the second level, and we're an enumerator, and
8596 our parent has no specification (meaning possibly lives in a
8597 namespace elsewhere), then we can add the partial symbol now
8598 instead of queueing it. */
8599 if (part_die->tag == DW_TAG_enumerator
8600 && parent_die != NULL
8601 && parent_die->die_parent == NULL
8602 && parent_die->tag == DW_TAG_enumeration_type
8603 && parent_die->has_specification == 0)
8604 {
8605 if (part_die->name == NULL)
8606 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8607 else if (building_psymtab)
8608 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8609 VAR_DOMAIN, LOC_CONST,
8610 (cu->language == language_cplus
8611 || cu->language == language_java)
8612 ? &cu->objfile->global_psymbols
8613 : &cu->objfile->static_psymbols,
8614 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8615
8616 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8617 continue;
8618 }
8619
8620 /* We'll save this DIE so link it in. */
8621 part_die->die_parent = parent_die;
8622 part_die->die_sibling = NULL;
8623 part_die->die_child = NULL;
8624
8625 if (last_die && last_die == parent_die)
8626 last_die->die_child = part_die;
8627 else if (last_die)
8628 last_die->die_sibling = part_die;
8629
8630 last_die = part_die;
8631
8632 if (first_die == NULL)
8633 first_die = part_die;
8634
8635 /* Maybe add the DIE to the hash table. Not all DIEs that we
8636 find interesting need to be in the hash table, because we
8637 also have the parent/sibling/child chains; only those that we
8638 might refer to by offset later during partial symbol reading.
8639
8640 For now this means things that might have be the target of a
8641 DW_AT_specification, DW_AT_abstract_origin, or
8642 DW_AT_extension. DW_AT_extension will refer only to
8643 namespaces; DW_AT_abstract_origin refers to functions (and
8644 many things under the function DIE, but we do not recurse
8645 into function DIEs during partial symbol reading) and
8646 possibly variables as well; DW_AT_specification refers to
8647 declarations. Declarations ought to have the DW_AT_declaration
8648 flag. It happens that GCC forgets to put it in sometimes, but
8649 only for functions, not for types.
8650
8651 Adding more things than necessary to the hash table is harmless
8652 except for the performance cost. Adding too few will result in
8653 wasted time in find_partial_die, when we reread the compilation
8654 unit with load_all_dies set. */
8655
8656 if (load_all
8657 || abbrev->tag == DW_TAG_subprogram
8658 || abbrev->tag == DW_TAG_variable
8659 || abbrev->tag == DW_TAG_namespace
8660 || part_die->is_declaration)
8661 {
8662 void **slot;
8663
8664 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8665 part_die->offset, INSERT);
8666 *slot = part_die;
8667 }
8668
8669 part_die = obstack_alloc (&cu->comp_unit_obstack,
8670 sizeof (struct partial_die_info));
8671
8672 /* For some DIEs we want to follow their children (if any). For C
8673 we have no reason to follow the children of structures; for other
8674 languages we have to, so that we can get at method physnames
8675 to infer fully qualified class names, for DW_AT_specification,
8676 and for C++ template arguments. For C++, we also look one level
8677 inside functions to find template arguments (if the name of the
8678 function does not already contain the template arguments).
8679
8680 For Ada, we need to scan the children of subprograms and lexical
8681 blocks as well because Ada allows the definition of nested
8682 entities that could be interesting for the debugger, such as
8683 nested subprograms for instance. */
8684 if (last_die->has_children
8685 && (load_all
8686 || last_die->tag == DW_TAG_namespace
8687 || last_die->tag == DW_TAG_module
8688 || last_die->tag == DW_TAG_enumeration_type
8689 || (cu->language == language_cplus
8690 && last_die->tag == DW_TAG_subprogram
8691 && (last_die->name == NULL
8692 || strchr (last_die->name, '<') == NULL))
8693 || (cu->language != language_c
8694 && (last_die->tag == DW_TAG_class_type
8695 || last_die->tag == DW_TAG_interface_type
8696 || last_die->tag == DW_TAG_structure_type
8697 || last_die->tag == DW_TAG_union_type))
8698 || (cu->language == language_ada
8699 && (last_die->tag == DW_TAG_subprogram
8700 || last_die->tag == DW_TAG_lexical_block))))
8701 {
8702 nesting_level++;
8703 parent_die = last_die;
8704 continue;
8705 }
8706
8707 /* Otherwise we skip to the next sibling, if any. */
8708 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8709
8710 /* Back to the top, do it again. */
8711 }
8712 }
8713
8714 /* Read a minimal amount of information into the minimal die structure. */
8715
8716 static gdb_byte *
8717 read_partial_die (struct partial_die_info *part_die,
8718 struct abbrev_info *abbrev,
8719 unsigned int abbrev_len, bfd *abfd,
8720 gdb_byte *buffer, gdb_byte *info_ptr,
8721 struct dwarf2_cu *cu)
8722 {
8723 unsigned int i;
8724 struct attribute attr;
8725 int has_low_pc_attr = 0;
8726 int has_high_pc_attr = 0;
8727
8728 memset (part_die, 0, sizeof (struct partial_die_info));
8729
8730 part_die->offset = info_ptr - buffer;
8731
8732 info_ptr += abbrev_len;
8733
8734 if (abbrev == NULL)
8735 return info_ptr;
8736
8737 part_die->tag = abbrev->tag;
8738 part_die->has_children = abbrev->has_children;
8739
8740 for (i = 0; i < abbrev->num_attrs; ++i)
8741 {
8742 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8743
8744 /* Store the data if it is of an attribute we want to keep in a
8745 partial symbol table. */
8746 switch (attr.name)
8747 {
8748 case DW_AT_name:
8749 switch (part_die->tag)
8750 {
8751 case DW_TAG_compile_unit:
8752 case DW_TAG_type_unit:
8753 /* Compilation units have a DW_AT_name that is a filename, not
8754 a source language identifier. */
8755 case DW_TAG_enumeration_type:
8756 case DW_TAG_enumerator:
8757 /* These tags always have simple identifiers already; no need
8758 to canonicalize them. */
8759 part_die->name = DW_STRING (&attr);
8760 break;
8761 default:
8762 part_die->name
8763 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8764 &cu->objfile->objfile_obstack);
8765 break;
8766 }
8767 break;
8768 case DW_AT_linkage_name:
8769 case DW_AT_MIPS_linkage_name:
8770 /* Note that both forms of linkage name might appear. We
8771 assume they will be the same, and we only store the last
8772 one we see. */
8773 if (cu->language == language_ada)
8774 part_die->name = DW_STRING (&attr);
8775 break;
8776 case DW_AT_low_pc:
8777 has_low_pc_attr = 1;
8778 part_die->lowpc = DW_ADDR (&attr);
8779 break;
8780 case DW_AT_high_pc:
8781 has_high_pc_attr = 1;
8782 part_die->highpc = DW_ADDR (&attr);
8783 break;
8784 case DW_AT_location:
8785 /* Support the .debug_loc offsets */
8786 if (attr_form_is_block (&attr))
8787 {
8788 part_die->locdesc = DW_BLOCK (&attr);
8789 }
8790 else if (attr_form_is_section_offset (&attr))
8791 {
8792 dwarf2_complex_location_expr_complaint ();
8793 }
8794 else
8795 {
8796 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8797 "partial symbol information");
8798 }
8799 break;
8800 case DW_AT_external:
8801 part_die->is_external = DW_UNSND (&attr);
8802 break;
8803 case DW_AT_declaration:
8804 part_die->is_declaration = DW_UNSND (&attr);
8805 break;
8806 case DW_AT_type:
8807 part_die->has_type = 1;
8808 break;
8809 case DW_AT_abstract_origin:
8810 case DW_AT_specification:
8811 case DW_AT_extension:
8812 part_die->has_specification = 1;
8813 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
8814 break;
8815 case DW_AT_sibling:
8816 /* Ignore absolute siblings, they might point outside of
8817 the current compile unit. */
8818 if (attr.form == DW_FORM_ref_addr)
8819 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
8820 else
8821 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
8822 break;
8823 case DW_AT_byte_size:
8824 part_die->has_byte_size = 1;
8825 break;
8826 case DW_AT_calling_convention:
8827 /* DWARF doesn't provide a way to identify a program's source-level
8828 entry point. DW_AT_calling_convention attributes are only meant
8829 to describe functions' calling conventions.
8830
8831 However, because it's a necessary piece of information in
8832 Fortran, and because DW_CC_program is the only piece of debugging
8833 information whose definition refers to a 'main program' at all,
8834 several compilers have begun marking Fortran main programs with
8835 DW_CC_program --- even when those functions use the standard
8836 calling conventions.
8837
8838 So until DWARF specifies a way to provide this information and
8839 compilers pick up the new representation, we'll support this
8840 practice. */
8841 if (DW_UNSND (&attr) == DW_CC_program
8842 && cu->language == language_fortran)
8843 set_main_name (part_die->name);
8844 break;
8845 default:
8846 break;
8847 }
8848 }
8849
8850 /* When using the GNU linker, .gnu.linkonce. sections are used to
8851 eliminate duplicate copies of functions and vtables and such.
8852 The linker will arbitrarily choose one and discard the others.
8853 The AT_*_pc values for such functions refer to local labels in
8854 these sections. If the section from that file was discarded, the
8855 labels are not in the output, so the relocs get a value of 0.
8856 If this is a discarded function, mark the pc bounds as invalid,
8857 so that GDB will ignore it. */
8858 if (has_low_pc_attr && has_high_pc_attr
8859 && part_die->lowpc < part_die->highpc
8860 && (part_die->lowpc != 0
8861 || dwarf2_per_objfile->has_section_at_zero))
8862 part_die->has_pc_info = 1;
8863
8864 return info_ptr;
8865 }
8866
8867 /* Find a cached partial DIE at OFFSET in CU. */
8868
8869 static struct partial_die_info *
8870 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
8871 {
8872 struct partial_die_info *lookup_die = NULL;
8873 struct partial_die_info part_die;
8874
8875 part_die.offset = offset;
8876 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8877
8878 return lookup_die;
8879 }
8880
8881 /* Find a partial DIE at OFFSET, which may or may not be in CU,
8882 except in the case of .debug_types DIEs which do not reference
8883 outside their CU (they do however referencing other types via
8884 DW_FORM_sig8). */
8885
8886 static struct partial_die_info *
8887 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
8888 {
8889 struct dwarf2_per_cu_data *per_cu = NULL;
8890 struct partial_die_info *pd = NULL;
8891
8892 if (cu->per_cu->from_debug_types)
8893 {
8894 pd = find_partial_die_in_comp_unit (offset, cu);
8895 if (pd != NULL)
8896 return pd;
8897 goto not_found;
8898 }
8899
8900 if (offset_in_cu_p (&cu->header, offset))
8901 {
8902 pd = find_partial_die_in_comp_unit (offset, cu);
8903 if (pd != NULL)
8904 return pd;
8905 }
8906
8907 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8908
8909 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
8910 load_partial_comp_unit (per_cu, cu->objfile);
8911
8912 per_cu->cu->last_used = 0;
8913 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8914
8915 if (pd == NULL && per_cu->load_all_dies == 0)
8916 {
8917 struct cleanup *back_to;
8918 struct partial_die_info comp_unit_die;
8919 struct abbrev_info *abbrev;
8920 unsigned int bytes_read;
8921 char *info_ptr;
8922
8923 per_cu->load_all_dies = 1;
8924
8925 /* Re-read the DIEs. */
8926 back_to = make_cleanup (null_cleanup, 0);
8927 if (per_cu->cu->dwarf2_abbrevs == NULL)
8928 {
8929 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
8930 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
8931 }
8932 info_ptr = (dwarf2_per_objfile->info.buffer
8933 + per_cu->cu->header.offset
8934 + per_cu->cu->header.first_die_offset);
8935 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8936 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
8937 per_cu->cu->objfile->obfd,
8938 dwarf2_per_objfile->info.buffer, info_ptr,
8939 per_cu->cu);
8940 if (comp_unit_die.has_children)
8941 load_partial_dies (per_cu->cu->objfile->obfd,
8942 dwarf2_per_objfile->info.buffer, info_ptr,
8943 0, per_cu->cu);
8944 do_cleanups (back_to);
8945
8946 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8947 }
8948
8949 not_found:
8950
8951 if (pd == NULL)
8952 internal_error (__FILE__, __LINE__,
8953 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
8954 offset, bfd_get_filename (cu->objfile->obfd));
8955 return pd;
8956 }
8957
8958 /* Adjust PART_DIE before generating a symbol for it. This function
8959 may set the is_external flag or change the DIE's name. */
8960
8961 static void
8962 fixup_partial_die (struct partial_die_info *part_die,
8963 struct dwarf2_cu *cu)
8964 {
8965 /* If we found a reference attribute and the DIE has no name, try
8966 to find a name in the referred to DIE. */
8967
8968 if (part_die->name == NULL && part_die->has_specification)
8969 {
8970 struct partial_die_info *spec_die;
8971
8972 spec_die = find_partial_die (part_die->spec_offset, cu);
8973
8974 fixup_partial_die (spec_die, cu);
8975
8976 if (spec_die->name)
8977 {
8978 part_die->name = spec_die->name;
8979
8980 /* Copy DW_AT_external attribute if it is set. */
8981 if (spec_die->is_external)
8982 part_die->is_external = spec_die->is_external;
8983 }
8984 }
8985
8986 /* Set default names for some unnamed DIEs. */
8987 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
8988 || part_die->tag == DW_TAG_class_type))
8989 part_die->name = "(anonymous class)";
8990
8991 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
8992 part_die->name = "(anonymous namespace)";
8993
8994 if (part_die->tag == DW_TAG_structure_type
8995 || part_die->tag == DW_TAG_class_type
8996 || part_die->tag == DW_TAG_union_type)
8997 guess_structure_name (part_die, cu);
8998 }
8999
9000 /* Read an attribute value described by an attribute form. */
9001
9002 static gdb_byte *
9003 read_attribute_value (struct attribute *attr, unsigned form,
9004 bfd *abfd, gdb_byte *info_ptr,
9005 struct dwarf2_cu *cu)
9006 {
9007 struct comp_unit_head *cu_header = &cu->header;
9008 unsigned int bytes_read;
9009 struct dwarf_block *blk;
9010
9011 attr->form = form;
9012 switch (form)
9013 {
9014 case DW_FORM_ref_addr:
9015 if (cu->header.version == 2)
9016 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9017 else
9018 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9019 info_ptr += bytes_read;
9020 break;
9021 case DW_FORM_addr:
9022 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9023 info_ptr += bytes_read;
9024 break;
9025 case DW_FORM_block2:
9026 blk = dwarf_alloc_block (cu);
9027 blk->size = read_2_bytes (abfd, info_ptr);
9028 info_ptr += 2;
9029 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9030 info_ptr += blk->size;
9031 DW_BLOCK (attr) = blk;
9032 break;
9033 case DW_FORM_block4:
9034 blk = dwarf_alloc_block (cu);
9035 blk->size = read_4_bytes (abfd, info_ptr);
9036 info_ptr += 4;
9037 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9038 info_ptr += blk->size;
9039 DW_BLOCK (attr) = blk;
9040 break;
9041 case DW_FORM_data2:
9042 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9043 info_ptr += 2;
9044 break;
9045 case DW_FORM_data4:
9046 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9047 info_ptr += 4;
9048 break;
9049 case DW_FORM_data8:
9050 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9051 info_ptr += 8;
9052 break;
9053 case DW_FORM_sec_offset:
9054 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9055 info_ptr += bytes_read;
9056 break;
9057 case DW_FORM_string:
9058 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9059 DW_STRING_IS_CANONICAL (attr) = 0;
9060 info_ptr += bytes_read;
9061 break;
9062 case DW_FORM_strp:
9063 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9064 &bytes_read);
9065 DW_STRING_IS_CANONICAL (attr) = 0;
9066 info_ptr += bytes_read;
9067 break;
9068 case DW_FORM_exprloc:
9069 case DW_FORM_block:
9070 blk = dwarf_alloc_block (cu);
9071 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9072 info_ptr += bytes_read;
9073 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9074 info_ptr += blk->size;
9075 DW_BLOCK (attr) = blk;
9076 break;
9077 case DW_FORM_block1:
9078 blk = dwarf_alloc_block (cu);
9079 blk->size = read_1_byte (abfd, info_ptr);
9080 info_ptr += 1;
9081 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9082 info_ptr += blk->size;
9083 DW_BLOCK (attr) = blk;
9084 break;
9085 case DW_FORM_data1:
9086 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9087 info_ptr += 1;
9088 break;
9089 case DW_FORM_flag:
9090 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9091 info_ptr += 1;
9092 break;
9093 case DW_FORM_flag_present:
9094 DW_UNSND (attr) = 1;
9095 break;
9096 case DW_FORM_sdata:
9097 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9098 info_ptr += bytes_read;
9099 break;
9100 case DW_FORM_udata:
9101 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9102 info_ptr += bytes_read;
9103 break;
9104 case DW_FORM_ref1:
9105 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9106 info_ptr += 1;
9107 break;
9108 case DW_FORM_ref2:
9109 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9110 info_ptr += 2;
9111 break;
9112 case DW_FORM_ref4:
9113 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9114 info_ptr += 4;
9115 break;
9116 case DW_FORM_ref8:
9117 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9118 info_ptr += 8;
9119 break;
9120 case DW_FORM_sig8:
9121 /* Convert the signature to something we can record in DW_UNSND
9122 for later lookup.
9123 NOTE: This is NULL if the type wasn't found. */
9124 DW_SIGNATURED_TYPE (attr) =
9125 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9126 info_ptr += 8;
9127 break;
9128 case DW_FORM_ref_udata:
9129 DW_ADDR (attr) = (cu->header.offset
9130 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9131 info_ptr += bytes_read;
9132 break;
9133 case DW_FORM_indirect:
9134 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9135 info_ptr += bytes_read;
9136 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9137 break;
9138 default:
9139 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9140 dwarf_form_name (form),
9141 bfd_get_filename (abfd));
9142 }
9143
9144 /* We have seen instances where the compiler tried to emit a byte
9145 size attribute of -1 which ended up being encoded as an unsigned
9146 0xffffffff. Although 0xffffffff is technically a valid size value,
9147 an object of this size seems pretty unlikely so we can relatively
9148 safely treat these cases as if the size attribute was invalid and
9149 treat them as zero by default. */
9150 if (attr->name == DW_AT_byte_size
9151 && form == DW_FORM_data4
9152 && DW_UNSND (attr) >= 0xffffffff)
9153 {
9154 complaint
9155 (&symfile_complaints,
9156 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9157 hex_string (DW_UNSND (attr)));
9158 DW_UNSND (attr) = 0;
9159 }
9160
9161 return info_ptr;
9162 }
9163
9164 /* Read an attribute described by an abbreviated attribute. */
9165
9166 static gdb_byte *
9167 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9168 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9169 {
9170 attr->name = abbrev->name;
9171 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9172 }
9173
9174 /* read dwarf information from a buffer */
9175
9176 static unsigned int
9177 read_1_byte (bfd *abfd, gdb_byte *buf)
9178 {
9179 return bfd_get_8 (abfd, buf);
9180 }
9181
9182 static int
9183 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9184 {
9185 return bfd_get_signed_8 (abfd, buf);
9186 }
9187
9188 static unsigned int
9189 read_2_bytes (bfd *abfd, gdb_byte *buf)
9190 {
9191 return bfd_get_16 (abfd, buf);
9192 }
9193
9194 static int
9195 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9196 {
9197 return bfd_get_signed_16 (abfd, buf);
9198 }
9199
9200 static unsigned int
9201 read_4_bytes (bfd *abfd, gdb_byte *buf)
9202 {
9203 return bfd_get_32 (abfd, buf);
9204 }
9205
9206 static int
9207 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9208 {
9209 return bfd_get_signed_32 (abfd, buf);
9210 }
9211
9212 static ULONGEST
9213 read_8_bytes (bfd *abfd, gdb_byte *buf)
9214 {
9215 return bfd_get_64 (abfd, buf);
9216 }
9217
9218 static CORE_ADDR
9219 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9220 unsigned int *bytes_read)
9221 {
9222 struct comp_unit_head *cu_header = &cu->header;
9223 CORE_ADDR retval = 0;
9224
9225 if (cu_header->signed_addr_p)
9226 {
9227 switch (cu_header->addr_size)
9228 {
9229 case 2:
9230 retval = bfd_get_signed_16 (abfd, buf);
9231 break;
9232 case 4:
9233 retval = bfd_get_signed_32 (abfd, buf);
9234 break;
9235 case 8:
9236 retval = bfd_get_signed_64 (abfd, buf);
9237 break;
9238 default:
9239 internal_error (__FILE__, __LINE__,
9240 _("read_address: bad switch, signed [in module %s]"),
9241 bfd_get_filename (abfd));
9242 }
9243 }
9244 else
9245 {
9246 switch (cu_header->addr_size)
9247 {
9248 case 2:
9249 retval = bfd_get_16 (abfd, buf);
9250 break;
9251 case 4:
9252 retval = bfd_get_32 (abfd, buf);
9253 break;
9254 case 8:
9255 retval = bfd_get_64 (abfd, buf);
9256 break;
9257 default:
9258 internal_error (__FILE__, __LINE__,
9259 _("read_address: bad switch, unsigned [in module %s]"),
9260 bfd_get_filename (abfd));
9261 }
9262 }
9263
9264 *bytes_read = cu_header->addr_size;
9265 return retval;
9266 }
9267
9268 /* Read the initial length from a section. The (draft) DWARF 3
9269 specification allows the initial length to take up either 4 bytes
9270 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9271 bytes describe the length and all offsets will be 8 bytes in length
9272 instead of 4.
9273
9274 An older, non-standard 64-bit format is also handled by this
9275 function. The older format in question stores the initial length
9276 as an 8-byte quantity without an escape value. Lengths greater
9277 than 2^32 aren't very common which means that the initial 4 bytes
9278 is almost always zero. Since a length value of zero doesn't make
9279 sense for the 32-bit format, this initial zero can be considered to
9280 be an escape value which indicates the presence of the older 64-bit
9281 format. As written, the code can't detect (old format) lengths
9282 greater than 4GB. If it becomes necessary to handle lengths
9283 somewhat larger than 4GB, we could allow other small values (such
9284 as the non-sensical values of 1, 2, and 3) to also be used as
9285 escape values indicating the presence of the old format.
9286
9287 The value returned via bytes_read should be used to increment the
9288 relevant pointer after calling read_initial_length().
9289
9290 [ Note: read_initial_length() and read_offset() are based on the
9291 document entitled "DWARF Debugging Information Format", revision
9292 3, draft 8, dated November 19, 2001. This document was obtained
9293 from:
9294
9295 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9296
9297 This document is only a draft and is subject to change. (So beware.)
9298
9299 Details regarding the older, non-standard 64-bit format were
9300 determined empirically by examining 64-bit ELF files produced by
9301 the SGI toolchain on an IRIX 6.5 machine.
9302
9303 - Kevin, July 16, 2002
9304 ] */
9305
9306 static LONGEST
9307 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9308 {
9309 LONGEST length = bfd_get_32 (abfd, buf);
9310
9311 if (length == 0xffffffff)
9312 {
9313 length = bfd_get_64 (abfd, buf + 4);
9314 *bytes_read = 12;
9315 }
9316 else if (length == 0)
9317 {
9318 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9319 length = bfd_get_64 (abfd, buf);
9320 *bytes_read = 8;
9321 }
9322 else
9323 {
9324 *bytes_read = 4;
9325 }
9326
9327 return length;
9328 }
9329
9330 /* Cover function for read_initial_length.
9331 Returns the length of the object at BUF, and stores the size of the
9332 initial length in *BYTES_READ and stores the size that offsets will be in
9333 *OFFSET_SIZE.
9334 If the initial length size is not equivalent to that specified in
9335 CU_HEADER then issue a complaint.
9336 This is useful when reading non-comp-unit headers. */
9337
9338 static LONGEST
9339 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9340 const struct comp_unit_head *cu_header,
9341 unsigned int *bytes_read,
9342 unsigned int *offset_size)
9343 {
9344 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9345
9346 gdb_assert (cu_header->initial_length_size == 4
9347 || cu_header->initial_length_size == 8
9348 || cu_header->initial_length_size == 12);
9349
9350 if (cu_header->initial_length_size != *bytes_read)
9351 complaint (&symfile_complaints,
9352 _("intermixed 32-bit and 64-bit DWARF sections"));
9353
9354 *offset_size = (*bytes_read == 4) ? 4 : 8;
9355 return length;
9356 }
9357
9358 /* Read an offset from the data stream. The size of the offset is
9359 given by cu_header->offset_size. */
9360
9361 static LONGEST
9362 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9363 unsigned int *bytes_read)
9364 {
9365 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9366
9367 *bytes_read = cu_header->offset_size;
9368 return offset;
9369 }
9370
9371 /* Read an offset from the data stream. */
9372
9373 static LONGEST
9374 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9375 {
9376 LONGEST retval = 0;
9377
9378 switch (offset_size)
9379 {
9380 case 4:
9381 retval = bfd_get_32 (abfd, buf);
9382 break;
9383 case 8:
9384 retval = bfd_get_64 (abfd, buf);
9385 break;
9386 default:
9387 internal_error (__FILE__, __LINE__,
9388 _("read_offset_1: bad switch [in module %s]"),
9389 bfd_get_filename (abfd));
9390 }
9391
9392 return retval;
9393 }
9394
9395 static gdb_byte *
9396 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9397 {
9398 /* If the size of a host char is 8 bits, we can return a pointer
9399 to the buffer, otherwise we have to copy the data to a buffer
9400 allocated on the temporary obstack. */
9401 gdb_assert (HOST_CHAR_BIT == 8);
9402 return buf;
9403 }
9404
9405 static char *
9406 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9407 {
9408 /* If the size of a host char is 8 bits, we can return a pointer
9409 to the string, otherwise we have to copy the string to a buffer
9410 allocated on the temporary obstack. */
9411 gdb_assert (HOST_CHAR_BIT == 8);
9412 if (*buf == '\0')
9413 {
9414 *bytes_read_ptr = 1;
9415 return NULL;
9416 }
9417 *bytes_read_ptr = strlen ((char *) buf) + 1;
9418 return (char *) buf;
9419 }
9420
9421 static char *
9422 read_indirect_string (bfd *abfd, gdb_byte *buf,
9423 const struct comp_unit_head *cu_header,
9424 unsigned int *bytes_read_ptr)
9425 {
9426 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9427
9428 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9429 if (dwarf2_per_objfile->str.buffer == NULL)
9430 {
9431 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9432 bfd_get_filename (abfd));
9433 return NULL;
9434 }
9435 if (str_offset >= dwarf2_per_objfile->str.size)
9436 {
9437 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
9438 bfd_get_filename (abfd));
9439 return NULL;
9440 }
9441 gdb_assert (HOST_CHAR_BIT == 8);
9442 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9443 return NULL;
9444 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9445 }
9446
9447 static unsigned long
9448 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9449 {
9450 unsigned long result;
9451 unsigned int num_read;
9452 int i, shift;
9453 unsigned char byte;
9454
9455 result = 0;
9456 shift = 0;
9457 num_read = 0;
9458 i = 0;
9459 while (1)
9460 {
9461 byte = bfd_get_8 (abfd, buf);
9462 buf++;
9463 num_read++;
9464 result |= ((unsigned long)(byte & 127) << shift);
9465 if ((byte & 128) == 0)
9466 {
9467 break;
9468 }
9469 shift += 7;
9470 }
9471 *bytes_read_ptr = num_read;
9472 return result;
9473 }
9474
9475 static long
9476 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9477 {
9478 long result;
9479 int i, shift, num_read;
9480 unsigned char byte;
9481
9482 result = 0;
9483 shift = 0;
9484 num_read = 0;
9485 i = 0;
9486 while (1)
9487 {
9488 byte = bfd_get_8 (abfd, buf);
9489 buf++;
9490 num_read++;
9491 result |= ((long)(byte & 127) << shift);
9492 shift += 7;
9493 if ((byte & 128) == 0)
9494 {
9495 break;
9496 }
9497 }
9498 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9499 result |= -(((long)1) << shift);
9500 *bytes_read_ptr = num_read;
9501 return result;
9502 }
9503
9504 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9505
9506 static gdb_byte *
9507 skip_leb128 (bfd *abfd, gdb_byte *buf)
9508 {
9509 int byte;
9510
9511 while (1)
9512 {
9513 byte = bfd_get_8 (abfd, buf);
9514 buf++;
9515 if ((byte & 128) == 0)
9516 return buf;
9517 }
9518 }
9519
9520 static void
9521 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9522 {
9523 switch (lang)
9524 {
9525 case DW_LANG_C89:
9526 case DW_LANG_C99:
9527 case DW_LANG_C:
9528 cu->language = language_c;
9529 break;
9530 case DW_LANG_C_plus_plus:
9531 cu->language = language_cplus;
9532 break;
9533 case DW_LANG_D:
9534 cu->language = language_d;
9535 break;
9536 case DW_LANG_Fortran77:
9537 case DW_LANG_Fortran90:
9538 case DW_LANG_Fortran95:
9539 cu->language = language_fortran;
9540 break;
9541 case DW_LANG_Mips_Assembler:
9542 cu->language = language_asm;
9543 break;
9544 case DW_LANG_Java:
9545 cu->language = language_java;
9546 break;
9547 case DW_LANG_Ada83:
9548 case DW_LANG_Ada95:
9549 cu->language = language_ada;
9550 break;
9551 case DW_LANG_Modula2:
9552 cu->language = language_m2;
9553 break;
9554 case DW_LANG_Pascal83:
9555 cu->language = language_pascal;
9556 break;
9557 case DW_LANG_ObjC:
9558 cu->language = language_objc;
9559 break;
9560 case DW_LANG_Cobol74:
9561 case DW_LANG_Cobol85:
9562 default:
9563 cu->language = language_minimal;
9564 break;
9565 }
9566 cu->language_defn = language_def (cu->language);
9567 }
9568
9569 /* Return the named attribute or NULL if not there. */
9570
9571 static struct attribute *
9572 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9573 {
9574 unsigned int i;
9575 struct attribute *spec = NULL;
9576
9577 for (i = 0; i < die->num_attrs; ++i)
9578 {
9579 if (die->attrs[i].name == name)
9580 return &die->attrs[i];
9581 if (die->attrs[i].name == DW_AT_specification
9582 || die->attrs[i].name == DW_AT_abstract_origin)
9583 spec = &die->attrs[i];
9584 }
9585
9586 if (spec)
9587 {
9588 die = follow_die_ref (die, spec, &cu);
9589 return dwarf2_attr (die, name, cu);
9590 }
9591
9592 return NULL;
9593 }
9594
9595 /* Return the named attribute or NULL if not there,
9596 but do not follow DW_AT_specification, etc.
9597 This is for use in contexts where we're reading .debug_types dies.
9598 Following DW_AT_specification, DW_AT_abstract_origin will take us
9599 back up the chain, and we want to go down. */
9600
9601 static struct attribute *
9602 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9603 struct dwarf2_cu *cu)
9604 {
9605 unsigned int i;
9606
9607 for (i = 0; i < die->num_attrs; ++i)
9608 if (die->attrs[i].name == name)
9609 return &die->attrs[i];
9610
9611 return NULL;
9612 }
9613
9614 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9615 and holds a non-zero value. This function should only be used for
9616 DW_FORM_flag or DW_FORM_flag_present attributes. */
9617
9618 static int
9619 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9620 {
9621 struct attribute *attr = dwarf2_attr (die, name, cu);
9622
9623 return (attr && DW_UNSND (attr));
9624 }
9625
9626 static int
9627 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9628 {
9629 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9630 which value is non-zero. However, we have to be careful with
9631 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9632 (via dwarf2_flag_true_p) follows this attribute. So we may
9633 end up accidently finding a declaration attribute that belongs
9634 to a different DIE referenced by the specification attribute,
9635 even though the given DIE does not have a declaration attribute. */
9636 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9637 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9638 }
9639
9640 /* Return the die giving the specification for DIE, if there is
9641 one. *SPEC_CU is the CU containing DIE on input, and the CU
9642 containing the return value on output. If there is no
9643 specification, but there is an abstract origin, that is
9644 returned. */
9645
9646 static struct die_info *
9647 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9648 {
9649 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9650 *spec_cu);
9651
9652 if (spec_attr == NULL)
9653 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9654
9655 if (spec_attr == NULL)
9656 return NULL;
9657 else
9658 return follow_die_ref (die, spec_attr, spec_cu);
9659 }
9660
9661 /* Free the line_header structure *LH, and any arrays and strings it
9662 refers to. */
9663 static void
9664 free_line_header (struct line_header *lh)
9665 {
9666 if (lh->standard_opcode_lengths)
9667 xfree (lh->standard_opcode_lengths);
9668
9669 /* Remember that all the lh->file_names[i].name pointers are
9670 pointers into debug_line_buffer, and don't need to be freed. */
9671 if (lh->file_names)
9672 xfree (lh->file_names);
9673
9674 /* Similarly for the include directory names. */
9675 if (lh->include_dirs)
9676 xfree (lh->include_dirs);
9677
9678 xfree (lh);
9679 }
9680
9681
9682 /* Add an entry to LH's include directory table. */
9683 static void
9684 add_include_dir (struct line_header *lh, char *include_dir)
9685 {
9686 /* Grow the array if necessary. */
9687 if (lh->include_dirs_size == 0)
9688 {
9689 lh->include_dirs_size = 1; /* for testing */
9690 lh->include_dirs = xmalloc (lh->include_dirs_size
9691 * sizeof (*lh->include_dirs));
9692 }
9693 else if (lh->num_include_dirs >= lh->include_dirs_size)
9694 {
9695 lh->include_dirs_size *= 2;
9696 lh->include_dirs = xrealloc (lh->include_dirs,
9697 (lh->include_dirs_size
9698 * sizeof (*lh->include_dirs)));
9699 }
9700
9701 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9702 }
9703
9704
9705 /* Add an entry to LH's file name table. */
9706 static void
9707 add_file_name (struct line_header *lh,
9708 char *name,
9709 unsigned int dir_index,
9710 unsigned int mod_time,
9711 unsigned int length)
9712 {
9713 struct file_entry *fe;
9714
9715 /* Grow the array if necessary. */
9716 if (lh->file_names_size == 0)
9717 {
9718 lh->file_names_size = 1; /* for testing */
9719 lh->file_names = xmalloc (lh->file_names_size
9720 * sizeof (*lh->file_names));
9721 }
9722 else if (lh->num_file_names >= lh->file_names_size)
9723 {
9724 lh->file_names_size *= 2;
9725 lh->file_names = xrealloc (lh->file_names,
9726 (lh->file_names_size
9727 * sizeof (*lh->file_names)));
9728 }
9729
9730 fe = &lh->file_names[lh->num_file_names++];
9731 fe->name = name;
9732 fe->dir_index = dir_index;
9733 fe->mod_time = mod_time;
9734 fe->length = length;
9735 fe->included_p = 0;
9736 fe->symtab = NULL;
9737 }
9738
9739
9740 /* Read the statement program header starting at OFFSET in
9741 .debug_line, according to the endianness of ABFD. Return a pointer
9742 to a struct line_header, allocated using xmalloc.
9743
9744 NOTE: the strings in the include directory and file name tables of
9745 the returned object point into debug_line_buffer, and must not be
9746 freed. */
9747 static struct line_header *
9748 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
9749 struct dwarf2_cu *cu)
9750 {
9751 struct cleanup *back_to;
9752 struct line_header *lh;
9753 gdb_byte *line_ptr;
9754 unsigned int bytes_read, offset_size;
9755 int i;
9756 char *cur_dir, *cur_file;
9757
9758 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
9759 if (dwarf2_per_objfile->line.buffer == NULL)
9760 {
9761 complaint (&symfile_complaints, _("missing .debug_line section"));
9762 return 0;
9763 }
9764
9765 /* Make sure that at least there's room for the total_length field.
9766 That could be 12 bytes long, but we're just going to fudge that. */
9767 if (offset + 4 >= dwarf2_per_objfile->line.size)
9768 {
9769 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9770 return 0;
9771 }
9772
9773 lh = xmalloc (sizeof (*lh));
9774 memset (lh, 0, sizeof (*lh));
9775 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9776 (void *) lh);
9777
9778 line_ptr = dwarf2_per_objfile->line.buffer + offset;
9779
9780 /* Read in the header. */
9781 lh->total_length =
9782 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9783 &bytes_read, &offset_size);
9784 line_ptr += bytes_read;
9785 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9786 + dwarf2_per_objfile->line.size))
9787 {
9788 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9789 return 0;
9790 }
9791 lh->statement_program_end = line_ptr + lh->total_length;
9792 lh->version = read_2_bytes (abfd, line_ptr);
9793 line_ptr += 2;
9794 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9795 line_ptr += offset_size;
9796 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9797 line_ptr += 1;
9798 if (lh->version >= 4)
9799 {
9800 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9801 line_ptr += 1;
9802 }
9803 else
9804 lh->maximum_ops_per_instruction = 1;
9805
9806 if (lh->maximum_ops_per_instruction == 0)
9807 {
9808 lh->maximum_ops_per_instruction = 1;
9809 complaint (&symfile_complaints,
9810 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9811 }
9812
9813 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9814 line_ptr += 1;
9815 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9816 line_ptr += 1;
9817 lh->line_range = read_1_byte (abfd, line_ptr);
9818 line_ptr += 1;
9819 lh->opcode_base = read_1_byte (abfd, line_ptr);
9820 line_ptr += 1;
9821 lh->standard_opcode_lengths
9822 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
9823
9824 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9825 for (i = 1; i < lh->opcode_base; ++i)
9826 {
9827 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9828 line_ptr += 1;
9829 }
9830
9831 /* Read directory table. */
9832 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9833 {
9834 line_ptr += bytes_read;
9835 add_include_dir (lh, cur_dir);
9836 }
9837 line_ptr += bytes_read;
9838
9839 /* Read file name table. */
9840 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9841 {
9842 unsigned int dir_index, mod_time, length;
9843
9844 line_ptr += bytes_read;
9845 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9846 line_ptr += bytes_read;
9847 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9848 line_ptr += bytes_read;
9849 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9850 line_ptr += bytes_read;
9851
9852 add_file_name (lh, cur_file, dir_index, mod_time, length);
9853 }
9854 line_ptr += bytes_read;
9855 lh->statement_program_start = line_ptr;
9856
9857 if (line_ptr > (dwarf2_per_objfile->line.buffer
9858 + dwarf2_per_objfile->line.size))
9859 complaint (&symfile_complaints,
9860 _("line number info header doesn't fit in `.debug_line' section"));
9861
9862 discard_cleanups (back_to);
9863 return lh;
9864 }
9865
9866 /* This function exists to work around a bug in certain compilers
9867 (particularly GCC 2.95), in which the first line number marker of a
9868 function does not show up until after the prologue, right before
9869 the second line number marker. This function shifts ADDRESS down
9870 to the beginning of the function if necessary, and is called on
9871 addresses passed to record_line. */
9872
9873 static CORE_ADDR
9874 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
9875 {
9876 struct function_range *fn;
9877
9878 /* Find the function_range containing address. */
9879 if (!cu->first_fn)
9880 return address;
9881
9882 if (!cu->cached_fn)
9883 cu->cached_fn = cu->first_fn;
9884
9885 fn = cu->cached_fn;
9886 while (fn)
9887 if (fn->lowpc <= address && fn->highpc > address)
9888 goto found;
9889 else
9890 fn = fn->next;
9891
9892 fn = cu->first_fn;
9893 while (fn && fn != cu->cached_fn)
9894 if (fn->lowpc <= address && fn->highpc > address)
9895 goto found;
9896 else
9897 fn = fn->next;
9898
9899 return address;
9900
9901 found:
9902 if (fn->seen_line)
9903 return address;
9904 if (address != fn->lowpc)
9905 complaint (&symfile_complaints,
9906 _("misplaced first line number at 0x%lx for '%s'"),
9907 (unsigned long) address, fn->name);
9908 fn->seen_line = 1;
9909 return fn->lowpc;
9910 }
9911
9912 /* Subroutine of dwarf_decode_lines to simplify it.
9913 Return the file name of the psymtab for included file FILE_INDEX
9914 in line header LH of PST.
9915 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
9916 If space for the result is malloc'd, it will be freed by a cleanup.
9917 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
9918
9919 static char *
9920 psymtab_include_file_name (const struct line_header *lh, int file_index,
9921 const struct partial_symtab *pst,
9922 const char *comp_dir)
9923 {
9924 const struct file_entry fe = lh->file_names [file_index];
9925 char *include_name = fe.name;
9926 char *include_name_to_compare = include_name;
9927 char *dir_name = NULL;
9928 char *pst_filename;
9929 int file_is_pst;
9930
9931 if (fe.dir_index)
9932 dir_name = lh->include_dirs[fe.dir_index - 1];
9933
9934 if (!IS_ABSOLUTE_PATH (include_name)
9935 && (dir_name != NULL || comp_dir != NULL))
9936 {
9937 /* Avoid creating a duplicate psymtab for PST.
9938 We do this by comparing INCLUDE_NAME and PST_FILENAME.
9939 Before we do the comparison, however, we need to account
9940 for DIR_NAME and COMP_DIR.
9941 First prepend dir_name (if non-NULL). If we still don't
9942 have an absolute path prepend comp_dir (if non-NULL).
9943 However, the directory we record in the include-file's
9944 psymtab does not contain COMP_DIR (to match the
9945 corresponding symtab(s)).
9946
9947 Example:
9948
9949 bash$ cd /tmp
9950 bash$ gcc -g ./hello.c
9951 include_name = "hello.c"
9952 dir_name = "."
9953 DW_AT_comp_dir = comp_dir = "/tmp"
9954 DW_AT_name = "./hello.c" */
9955
9956 if (dir_name != NULL)
9957 {
9958 include_name = concat (dir_name, SLASH_STRING,
9959 include_name, (char *)NULL);
9960 include_name_to_compare = include_name;
9961 make_cleanup (xfree, include_name);
9962 }
9963 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
9964 {
9965 include_name_to_compare = concat (comp_dir, SLASH_STRING,
9966 include_name, (char *)NULL);
9967 }
9968 }
9969
9970 pst_filename = pst->filename;
9971 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
9972 {
9973 pst_filename = concat (pst->dirname, SLASH_STRING,
9974 pst_filename, (char *)NULL);
9975 }
9976
9977 file_is_pst = strcmp (include_name_to_compare, pst_filename) == 0;
9978
9979 if (include_name_to_compare != include_name)
9980 xfree (include_name_to_compare);
9981 if (pst_filename != pst->filename)
9982 xfree (pst_filename);
9983
9984 if (file_is_pst)
9985 return NULL;
9986 return include_name;
9987 }
9988
9989 /* Decode the Line Number Program (LNP) for the given line_header
9990 structure and CU. The actual information extracted and the type
9991 of structures created from the LNP depends on the value of PST.
9992
9993 1. If PST is NULL, then this procedure uses the data from the program
9994 to create all necessary symbol tables, and their linetables.
9995
9996 2. If PST is not NULL, this procedure reads the program to determine
9997 the list of files included by the unit represented by PST, and
9998 builds all the associated partial symbol tables.
9999
10000 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10001 It is used for relative paths in the line table.
10002 NOTE: When processing partial symtabs (pst != NULL),
10003 comp_dir == pst->dirname.
10004
10005 NOTE: It is important that psymtabs have the same file name (via strcmp)
10006 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10007 symtab we don't use it in the name of the psymtabs we create.
10008 E.g. expand_line_sal requires this when finding psymtabs to expand.
10009 A good testcase for this is mb-inline.exp. */
10010
10011 static void
10012 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
10013 struct dwarf2_cu *cu, struct partial_symtab *pst)
10014 {
10015 gdb_byte *line_ptr, *extended_end;
10016 gdb_byte *line_end;
10017 unsigned int bytes_read, extended_len;
10018 unsigned char op_code, extended_op, adj_opcode;
10019 CORE_ADDR baseaddr;
10020 struct objfile *objfile = cu->objfile;
10021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10022 const int decode_for_pst_p = (pst != NULL);
10023 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10024
10025 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10026
10027 line_ptr = lh->statement_program_start;
10028 line_end = lh->statement_program_end;
10029
10030 /* Read the statement sequences until there's nothing left. */
10031 while (line_ptr < line_end)
10032 {
10033 /* state machine registers */
10034 CORE_ADDR address = 0;
10035 unsigned int file = 1;
10036 unsigned int line = 1;
10037 unsigned int column = 0;
10038 int is_stmt = lh->default_is_stmt;
10039 int basic_block = 0;
10040 int end_sequence = 0;
10041 CORE_ADDR addr;
10042 unsigned char op_index = 0;
10043
10044 if (!decode_for_pst_p && lh->num_file_names >= file)
10045 {
10046 /* Start a subfile for the current file of the state machine. */
10047 /* lh->include_dirs and lh->file_names are 0-based, but the
10048 directory and file name numbers in the statement program
10049 are 1-based. */
10050 struct file_entry *fe = &lh->file_names[file - 1];
10051 char *dir = NULL;
10052
10053 if (fe->dir_index)
10054 dir = lh->include_dirs[fe->dir_index - 1];
10055
10056 dwarf2_start_subfile (fe->name, dir, comp_dir);
10057 }
10058
10059 /* Decode the table. */
10060 while (!end_sequence)
10061 {
10062 op_code = read_1_byte (abfd, line_ptr);
10063 line_ptr += 1;
10064 if (line_ptr > line_end)
10065 {
10066 dwarf2_debug_line_missing_end_sequence_complaint ();
10067 break;
10068 }
10069
10070 if (op_code >= lh->opcode_base)
10071 {
10072 /* Special operand. */
10073 adj_opcode = op_code - lh->opcode_base;
10074 address += (((op_index + (adj_opcode / lh->line_range))
10075 / lh->maximum_ops_per_instruction)
10076 * lh->minimum_instruction_length);
10077 op_index = ((op_index + (adj_opcode / lh->line_range))
10078 % lh->maximum_ops_per_instruction);
10079 line += lh->line_base + (adj_opcode % lh->line_range);
10080 if (lh->num_file_names < file || file == 0)
10081 dwarf2_debug_line_missing_file_complaint ();
10082 /* For now we ignore lines not starting on an
10083 instruction boundary. */
10084 else if (op_index == 0)
10085 {
10086 lh->file_names[file - 1].included_p = 1;
10087 if (!decode_for_pst_p && is_stmt)
10088 {
10089 if (last_subfile != current_subfile)
10090 {
10091 addr = gdbarch_addr_bits_remove (gdbarch, address);
10092 if (last_subfile)
10093 record_line (last_subfile, 0, addr);
10094 last_subfile = current_subfile;
10095 }
10096 /* Append row to matrix using current values. */
10097 addr = check_cu_functions (address, cu);
10098 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10099 record_line (current_subfile, line, addr);
10100 }
10101 }
10102 basic_block = 0;
10103 }
10104 else switch (op_code)
10105 {
10106 case DW_LNS_extended_op:
10107 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10108 line_ptr += bytes_read;
10109 extended_end = line_ptr + extended_len;
10110 extended_op = read_1_byte (abfd, line_ptr);
10111 line_ptr += 1;
10112 switch (extended_op)
10113 {
10114 case DW_LNE_end_sequence:
10115 end_sequence = 1;
10116 break;
10117 case DW_LNE_set_address:
10118 address = read_address (abfd, line_ptr, cu, &bytes_read);
10119 op_index = 0;
10120 line_ptr += bytes_read;
10121 address += baseaddr;
10122 break;
10123 case DW_LNE_define_file:
10124 {
10125 char *cur_file;
10126 unsigned int dir_index, mod_time, length;
10127
10128 cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
10129 line_ptr += bytes_read;
10130 dir_index =
10131 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10132 line_ptr += bytes_read;
10133 mod_time =
10134 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10135 line_ptr += bytes_read;
10136 length =
10137 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10138 line_ptr += bytes_read;
10139 add_file_name (lh, cur_file, dir_index, mod_time, length);
10140 }
10141 break;
10142 case DW_LNE_set_discriminator:
10143 /* The discriminator is not interesting to the debugger;
10144 just ignore it. */
10145 line_ptr = extended_end;
10146 break;
10147 default:
10148 complaint (&symfile_complaints,
10149 _("mangled .debug_line section"));
10150 return;
10151 }
10152 /* Make sure that we parsed the extended op correctly. If e.g.
10153 we expected a different address size than the producer used,
10154 we may have read the wrong number of bytes. */
10155 if (line_ptr != extended_end)
10156 {
10157 complaint (&symfile_complaints,
10158 _("mangled .debug_line section"));
10159 return;
10160 }
10161 break;
10162 case DW_LNS_copy:
10163 if (lh->num_file_names < file || file == 0)
10164 dwarf2_debug_line_missing_file_complaint ();
10165 else
10166 {
10167 lh->file_names[file - 1].included_p = 1;
10168 if (!decode_for_pst_p && is_stmt)
10169 {
10170 if (last_subfile != current_subfile)
10171 {
10172 addr = gdbarch_addr_bits_remove (gdbarch, address);
10173 if (last_subfile)
10174 record_line (last_subfile, 0, addr);
10175 last_subfile = current_subfile;
10176 }
10177 addr = check_cu_functions (address, cu);
10178 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10179 record_line (current_subfile, line, addr);
10180 }
10181 }
10182 basic_block = 0;
10183 break;
10184 case DW_LNS_advance_pc:
10185 {
10186 CORE_ADDR adjust
10187 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10188
10189 address += (((op_index + adjust)
10190 / lh->maximum_ops_per_instruction)
10191 * lh->minimum_instruction_length);
10192 op_index = ((op_index + adjust)
10193 % lh->maximum_ops_per_instruction);
10194 line_ptr += bytes_read;
10195 }
10196 break;
10197 case DW_LNS_advance_line:
10198 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10199 line_ptr += bytes_read;
10200 break;
10201 case DW_LNS_set_file:
10202 {
10203 /* The arrays lh->include_dirs and lh->file_names are
10204 0-based, but the directory and file name numbers in
10205 the statement program are 1-based. */
10206 struct file_entry *fe;
10207 char *dir = NULL;
10208
10209 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10210 line_ptr += bytes_read;
10211 if (lh->num_file_names < file || file == 0)
10212 dwarf2_debug_line_missing_file_complaint ();
10213 else
10214 {
10215 fe = &lh->file_names[file - 1];
10216 if (fe->dir_index)
10217 dir = lh->include_dirs[fe->dir_index - 1];
10218 if (!decode_for_pst_p)
10219 {
10220 last_subfile = current_subfile;
10221 dwarf2_start_subfile (fe->name, dir, comp_dir);
10222 }
10223 }
10224 }
10225 break;
10226 case DW_LNS_set_column:
10227 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10228 line_ptr += bytes_read;
10229 break;
10230 case DW_LNS_negate_stmt:
10231 is_stmt = (!is_stmt);
10232 break;
10233 case DW_LNS_set_basic_block:
10234 basic_block = 1;
10235 break;
10236 /* Add to the address register of the state machine the
10237 address increment value corresponding to special opcode
10238 255. I.e., this value is scaled by the minimum
10239 instruction length since special opcode 255 would have
10240 scaled the the increment. */
10241 case DW_LNS_const_add_pc:
10242 {
10243 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10244
10245 address += (((op_index + adjust)
10246 / lh->maximum_ops_per_instruction)
10247 * lh->minimum_instruction_length);
10248 op_index = ((op_index + adjust)
10249 % lh->maximum_ops_per_instruction);
10250 }
10251 break;
10252 case DW_LNS_fixed_advance_pc:
10253 address += read_2_bytes (abfd, line_ptr);
10254 op_index = 0;
10255 line_ptr += 2;
10256 break;
10257 default:
10258 {
10259 /* Unknown standard opcode, ignore it. */
10260 int i;
10261
10262 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10263 {
10264 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10265 line_ptr += bytes_read;
10266 }
10267 }
10268 }
10269 }
10270 if (lh->num_file_names < file || file == 0)
10271 dwarf2_debug_line_missing_file_complaint ();
10272 else
10273 {
10274 lh->file_names[file - 1].included_p = 1;
10275 if (!decode_for_pst_p)
10276 {
10277 addr = gdbarch_addr_bits_remove (gdbarch, address);
10278 record_line (current_subfile, 0, addr);
10279 }
10280 }
10281 }
10282
10283 if (decode_for_pst_p)
10284 {
10285 int file_index;
10286
10287 /* Now that we're done scanning the Line Header Program, we can
10288 create the psymtab of each included file. */
10289 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10290 if (lh->file_names[file_index].included_p == 1)
10291 {
10292 char *include_name =
10293 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10294 if (include_name != NULL)
10295 dwarf2_create_include_psymtab (include_name, pst, objfile);
10296 }
10297 }
10298 else
10299 {
10300 /* Make sure a symtab is created for every file, even files
10301 which contain only variables (i.e. no code with associated
10302 line numbers). */
10303
10304 int i;
10305 struct file_entry *fe;
10306
10307 for (i = 0; i < lh->num_file_names; i++)
10308 {
10309 char *dir = NULL;
10310
10311 fe = &lh->file_names[i];
10312 if (fe->dir_index)
10313 dir = lh->include_dirs[fe->dir_index - 1];
10314 dwarf2_start_subfile (fe->name, dir, comp_dir);
10315
10316 /* Skip the main file; we don't need it, and it must be
10317 allocated last, so that it will show up before the
10318 non-primary symtabs in the objfile's symtab list. */
10319 if (current_subfile == first_subfile)
10320 continue;
10321
10322 if (current_subfile->symtab == NULL)
10323 current_subfile->symtab = allocate_symtab (current_subfile->name,
10324 cu->objfile);
10325 fe->symtab = current_subfile->symtab;
10326 }
10327 }
10328 }
10329
10330 /* Start a subfile for DWARF. FILENAME is the name of the file and
10331 DIRNAME the name of the source directory which contains FILENAME
10332 or NULL if not known. COMP_DIR is the compilation directory for the
10333 linetable's compilation unit or NULL if not known.
10334 This routine tries to keep line numbers from identical absolute and
10335 relative file names in a common subfile.
10336
10337 Using the `list' example from the GDB testsuite, which resides in
10338 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10339 of /srcdir/list0.c yields the following debugging information for list0.c:
10340
10341 DW_AT_name: /srcdir/list0.c
10342 DW_AT_comp_dir: /compdir
10343 files.files[0].name: list0.h
10344 files.files[0].dir: /srcdir
10345 files.files[1].name: list0.c
10346 files.files[1].dir: /srcdir
10347
10348 The line number information for list0.c has to end up in a single
10349 subfile, so that `break /srcdir/list0.c:1' works as expected.
10350 start_subfile will ensure that this happens provided that we pass the
10351 concatenation of files.files[1].dir and files.files[1].name as the
10352 subfile's name. */
10353
10354 static void
10355 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
10356 {
10357 char *fullname;
10358
10359 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10360 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10361 second argument to start_subfile. To be consistent, we do the
10362 same here. In order not to lose the line information directory,
10363 we concatenate it to the filename when it makes sense.
10364 Note that the Dwarf3 standard says (speaking of filenames in line
10365 information): ``The directory index is ignored for file names
10366 that represent full path names''. Thus ignoring dirname in the
10367 `else' branch below isn't an issue. */
10368
10369 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10370 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10371 else
10372 fullname = filename;
10373
10374 start_subfile (fullname, comp_dir);
10375
10376 if (fullname != filename)
10377 xfree (fullname);
10378 }
10379
10380 static void
10381 var_decode_location (struct attribute *attr, struct symbol *sym,
10382 struct dwarf2_cu *cu)
10383 {
10384 struct objfile *objfile = cu->objfile;
10385 struct comp_unit_head *cu_header = &cu->header;
10386
10387 /* NOTE drow/2003-01-30: There used to be a comment and some special
10388 code here to turn a symbol with DW_AT_external and a
10389 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10390 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10391 with some versions of binutils) where shared libraries could have
10392 relocations against symbols in their debug information - the
10393 minimal symbol would have the right address, but the debug info
10394 would not. It's no longer necessary, because we will explicitly
10395 apply relocations when we read in the debug information now. */
10396
10397 /* A DW_AT_location attribute with no contents indicates that a
10398 variable has been optimized away. */
10399 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10400 {
10401 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10402 return;
10403 }
10404
10405 /* Handle one degenerate form of location expression specially, to
10406 preserve GDB's previous behavior when section offsets are
10407 specified. If this is just a DW_OP_addr then mark this symbol
10408 as LOC_STATIC. */
10409
10410 if (attr_form_is_block (attr)
10411 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10412 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10413 {
10414 unsigned int dummy;
10415
10416 SYMBOL_VALUE_ADDRESS (sym) =
10417 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10418 SYMBOL_CLASS (sym) = LOC_STATIC;
10419 fixup_symbol_section (sym, objfile);
10420 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10421 SYMBOL_SECTION (sym));
10422 return;
10423 }
10424
10425 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10426 expression evaluator, and use LOC_COMPUTED only when necessary
10427 (i.e. when the value of a register or memory location is
10428 referenced, or a thread-local block, etc.). Then again, it might
10429 not be worthwhile. I'm assuming that it isn't unless performance
10430 or memory numbers show me otherwise. */
10431
10432 dwarf2_symbol_mark_computed (attr, sym, cu);
10433 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10434 }
10435
10436 /* Given a pointer to a DWARF information entry, figure out if we need
10437 to make a symbol table entry for it, and if so, create a new entry
10438 and return a pointer to it.
10439 If TYPE is NULL, determine symbol type from the die, otherwise
10440 used the passed type.
10441 If SPACE is not NULL, use it to hold the new symbol. If it is
10442 NULL, allocate a new symbol on the objfile's obstack. */
10443
10444 static struct symbol *
10445 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10446 struct symbol *space)
10447 {
10448 struct objfile *objfile = cu->objfile;
10449 struct symbol *sym = NULL;
10450 char *name;
10451 struct attribute *attr = NULL;
10452 struct attribute *attr2 = NULL;
10453 CORE_ADDR baseaddr;
10454 struct pending **list_to_add = NULL;
10455
10456 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10457
10458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10459
10460 name = dwarf2_name (die, cu);
10461 if (name)
10462 {
10463 const char *linkagename;
10464 int suppress_add = 0;
10465
10466 if (space)
10467 sym = space;
10468 else
10469 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10470 OBJSTAT (objfile, n_syms++);
10471
10472 /* Cache this symbol's name and the name's demangled form (if any). */
10473 SYMBOL_SET_LANGUAGE (sym, cu->language);
10474 linkagename = dwarf2_physname (name, die, cu);
10475 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10476
10477 /* Fortran does not have mangling standard and the mangling does differ
10478 between gfortran, iFort etc. */
10479 if (cu->language == language_fortran
10480 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10481 symbol_set_demangled_name (&(sym->ginfo),
10482 (char *) dwarf2_full_name (name, die, cu),
10483 NULL);
10484
10485 /* Default assumptions.
10486 Use the passed type or decode it from the die. */
10487 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10488 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10489 if (type != NULL)
10490 SYMBOL_TYPE (sym) = type;
10491 else
10492 SYMBOL_TYPE (sym) = die_type (die, cu);
10493 attr = dwarf2_attr (die,
10494 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10495 cu);
10496 if (attr)
10497 {
10498 SYMBOL_LINE (sym) = DW_UNSND (attr);
10499 }
10500
10501 attr = dwarf2_attr (die,
10502 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10503 cu);
10504 if (attr)
10505 {
10506 int file_index = DW_UNSND (attr);
10507
10508 if (cu->line_header == NULL
10509 || file_index > cu->line_header->num_file_names)
10510 complaint (&symfile_complaints,
10511 _("file index out of range"));
10512 else if (file_index > 0)
10513 {
10514 struct file_entry *fe;
10515
10516 fe = &cu->line_header->file_names[file_index - 1];
10517 SYMBOL_SYMTAB (sym) = fe->symtab;
10518 }
10519 }
10520
10521 switch (die->tag)
10522 {
10523 case DW_TAG_label:
10524 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10525 if (attr)
10526 {
10527 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10528 }
10529 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10530 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10531 SYMBOL_CLASS (sym) = LOC_LABEL;
10532 add_symbol_to_list (sym, cu->list_in_scope);
10533 break;
10534 case DW_TAG_subprogram:
10535 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10536 finish_block. */
10537 SYMBOL_CLASS (sym) = LOC_BLOCK;
10538 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10539 if ((attr2 && (DW_UNSND (attr2) != 0))
10540 || cu->language == language_ada)
10541 {
10542 /* Subprograms marked external are stored as a global symbol.
10543 Ada subprograms, whether marked external or not, are always
10544 stored as a global symbol, because we want to be able to
10545 access them globally. For instance, we want to be able
10546 to break on a nested subprogram without having to
10547 specify the context. */
10548 list_to_add = &global_symbols;
10549 }
10550 else
10551 {
10552 list_to_add = cu->list_in_scope;
10553 }
10554 break;
10555 case DW_TAG_inlined_subroutine:
10556 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10557 finish_block. */
10558 SYMBOL_CLASS (sym) = LOC_BLOCK;
10559 SYMBOL_INLINED (sym) = 1;
10560 /* Do not add the symbol to any lists. It will be found via
10561 BLOCK_FUNCTION from the blockvector. */
10562 break;
10563 case DW_TAG_template_value_param:
10564 suppress_add = 1;
10565 /* Fall through. */
10566 case DW_TAG_variable:
10567 case DW_TAG_member:
10568 /* Compilation with minimal debug info may result in variables
10569 with missing type entries. Change the misleading `void' type
10570 to something sensible. */
10571 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10572 SYMBOL_TYPE (sym)
10573 = objfile_type (objfile)->nodebug_data_symbol;
10574
10575 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10576 /* In the case of DW_TAG_member, we should only be called for
10577 static const members. */
10578 if (die->tag == DW_TAG_member)
10579 {
10580 /* dwarf2_add_field uses die_is_declaration,
10581 so we do the same. */
10582 gdb_assert (die_is_declaration (die, cu));
10583 gdb_assert (attr);
10584 }
10585 if (attr)
10586 {
10587 dwarf2_const_value (attr, sym, cu);
10588 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10589 if (!suppress_add)
10590 {
10591 if (attr2 && (DW_UNSND (attr2) != 0))
10592 list_to_add = &global_symbols;
10593 else
10594 list_to_add = cu->list_in_scope;
10595 }
10596 break;
10597 }
10598 attr = dwarf2_attr (die, DW_AT_location, cu);
10599 if (attr)
10600 {
10601 var_decode_location (attr, sym, cu);
10602 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10603 if (SYMBOL_CLASS (sym) == LOC_STATIC
10604 && SYMBOL_VALUE_ADDRESS (sym) == 0
10605 && !dwarf2_per_objfile->has_section_at_zero)
10606 {
10607 /* When a static variable is eliminated by the linker,
10608 the corresponding debug information is not stripped
10609 out, but the variable address is set to null;
10610 do not add such variables into symbol table. */
10611 }
10612 else if (attr2 && (DW_UNSND (attr2) != 0))
10613 {
10614 /* Workaround gfortran PR debug/40040 - it uses
10615 DW_AT_location for variables in -fPIC libraries which may
10616 get overriden by other libraries/executable and get
10617 a different address. Resolve it by the minimal symbol
10618 which may come from inferior's executable using copy
10619 relocation. Make this workaround only for gfortran as for
10620 other compilers GDB cannot guess the minimal symbol
10621 Fortran mangling kind. */
10622 if (cu->language == language_fortran && die->parent
10623 && die->parent->tag == DW_TAG_module
10624 && cu->producer
10625 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10626 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10627
10628 /* A variable with DW_AT_external is never static,
10629 but it may be block-scoped. */
10630 list_to_add = (cu->list_in_scope == &file_symbols
10631 ? &global_symbols : cu->list_in_scope);
10632 }
10633 else
10634 list_to_add = cu->list_in_scope;
10635 }
10636 else
10637 {
10638 /* We do not know the address of this symbol.
10639 If it is an external symbol and we have type information
10640 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10641 The address of the variable will then be determined from
10642 the minimal symbol table whenever the variable is
10643 referenced. */
10644 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10645 if (attr2 && (DW_UNSND (attr2) != 0)
10646 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10647 {
10648 /* A variable with DW_AT_external is never static, but it
10649 may be block-scoped. */
10650 list_to_add = (cu->list_in_scope == &file_symbols
10651 ? &global_symbols : cu->list_in_scope);
10652
10653 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10654 }
10655 else if (!die_is_declaration (die, cu))
10656 {
10657 /* Use the default LOC_OPTIMIZED_OUT class. */
10658 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10659 if (!suppress_add)
10660 list_to_add = cu->list_in_scope;
10661 }
10662 }
10663 break;
10664 case DW_TAG_formal_parameter:
10665 /* If we are inside a function, mark this as an argument. If
10666 not, we might be looking at an argument to an inlined function
10667 when we do not have enough information to show inlined frames;
10668 pretend it's a local variable in that case so that the user can
10669 still see it. */
10670 if (context_stack_depth > 0
10671 && context_stack[context_stack_depth - 1].name != NULL)
10672 SYMBOL_IS_ARGUMENT (sym) = 1;
10673 attr = dwarf2_attr (die, DW_AT_location, cu);
10674 if (attr)
10675 {
10676 var_decode_location (attr, sym, cu);
10677 }
10678 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10679 if (attr)
10680 {
10681 dwarf2_const_value (attr, sym, cu);
10682 }
10683 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10684 if (attr && DW_UNSND (attr))
10685 {
10686 struct type *ref_type;
10687
10688 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10689 SYMBOL_TYPE (sym) = ref_type;
10690 }
10691
10692 list_to_add = cu->list_in_scope;
10693 break;
10694 case DW_TAG_unspecified_parameters:
10695 /* From varargs functions; gdb doesn't seem to have any
10696 interest in this information, so just ignore it for now.
10697 (FIXME?) */
10698 break;
10699 case DW_TAG_template_type_param:
10700 suppress_add = 1;
10701 /* Fall through. */
10702 case DW_TAG_class_type:
10703 case DW_TAG_interface_type:
10704 case DW_TAG_structure_type:
10705 case DW_TAG_union_type:
10706 case DW_TAG_set_type:
10707 case DW_TAG_enumeration_type:
10708 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10709 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10710
10711 {
10712 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
10713 really ever be static objects: otherwise, if you try
10714 to, say, break of a class's method and you're in a file
10715 which doesn't mention that class, it won't work unless
10716 the check for all static symbols in lookup_symbol_aux
10717 saves you. See the OtherFileClass tests in
10718 gdb.c++/namespace.exp. */
10719
10720 if (!suppress_add)
10721 {
10722 list_to_add = (cu->list_in_scope == &file_symbols
10723 && (cu->language == language_cplus
10724 || cu->language == language_java)
10725 ? &global_symbols : cu->list_in_scope);
10726 }
10727
10728 /* The semantics of C++ state that "struct foo { ... }" also
10729 defines a typedef for "foo". A Java class declaration also
10730 defines a typedef for the class. */
10731 if (cu->language == language_cplus
10732 || cu->language == language_java
10733 || cu->language == language_ada)
10734 {
10735 /* The symbol's name is already allocated along with
10736 this objfile, so we don't need to duplicate it for
10737 the type. */
10738 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
10739 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
10740 }
10741 }
10742 break;
10743 case DW_TAG_typedef:
10744 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10745 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10746 list_to_add = cu->list_in_scope;
10747 break;
10748 case DW_TAG_base_type:
10749 case DW_TAG_subrange_type:
10750 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10751 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10752 list_to_add = cu->list_in_scope;
10753 break;
10754 case DW_TAG_enumerator:
10755 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10756 if (attr)
10757 {
10758 dwarf2_const_value (attr, sym, cu);
10759 }
10760 {
10761 /* NOTE: carlton/2003-11-10: See comment above in the
10762 DW_TAG_class_type, etc. block. */
10763
10764 list_to_add = (cu->list_in_scope == &file_symbols
10765 && (cu->language == language_cplus
10766 || cu->language == language_java)
10767 ? &global_symbols : cu->list_in_scope);
10768 }
10769 break;
10770 case DW_TAG_namespace:
10771 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10772 list_to_add = &global_symbols;
10773 break;
10774 default:
10775 /* Not a tag we recognize. Hopefully we aren't processing
10776 trash data, but since we must specifically ignore things
10777 we don't recognize, there is nothing else we should do at
10778 this point. */
10779 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
10780 dwarf_tag_name (die->tag));
10781 break;
10782 }
10783
10784 if (suppress_add)
10785 {
10786 sym->hash_next = objfile->template_symbols;
10787 objfile->template_symbols = sym;
10788 list_to_add = NULL;
10789 }
10790
10791 if (list_to_add != NULL)
10792 add_symbol_to_list (sym, list_to_add);
10793
10794 /* For the benefit of old versions of GCC, check for anonymous
10795 namespaces based on the demangled name. */
10796 if (!processing_has_namespace_info
10797 && cu->language == language_cplus)
10798 cp_scan_for_anonymous_namespaces (sym);
10799 }
10800 return (sym);
10801 }
10802
10803 /* A wrapper for new_symbol_full that always allocates a new symbol. */
10804
10805 static struct symbol *
10806 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10807 {
10808 return new_symbol_full (die, type, cu, NULL);
10809 }
10810
10811 /* Given an attr with a DW_FORM_dataN value in host byte order,
10812 zero-extend it as appropriate for the symbol's type. The DWARF
10813 standard (v4) is not entirely clear about the meaning of using
10814 DW_FORM_dataN for a constant with a signed type, where the type is
10815 wider than the data. The conclusion of a discussion on the DWARF
10816 list was that this is unspecified. We choose to always zero-extend
10817 because that is the interpretation long in use by GCC. */
10818
10819 static gdb_byte *
10820 dwarf2_const_value_data (struct attribute *attr, struct type *type,
10821 const char *name, struct obstack *obstack,
10822 struct dwarf2_cu *cu, long *value, int bits)
10823 {
10824 struct objfile *objfile = cu->objfile;
10825 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10826 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
10827 LONGEST l = DW_UNSND (attr);
10828
10829 if (bits < sizeof (*value) * 8)
10830 {
10831 l &= ((LONGEST) 1 << bits) - 1;
10832 *value = l;
10833 }
10834 else if (bits == sizeof (*value) * 8)
10835 *value = l;
10836 else
10837 {
10838 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
10839 store_unsigned_integer (bytes, bits / 8, byte_order, l);
10840 return bytes;
10841 }
10842
10843 return NULL;
10844 }
10845
10846 /* Read a constant value from an attribute. Either set *VALUE, or if
10847 the value does not fit in *VALUE, set *BYTES - either already
10848 allocated on the objfile obstack, or newly allocated on OBSTACK,
10849 or, set *BATON, if we translated the constant to a location
10850 expression. */
10851
10852 static void
10853 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
10854 const char *name, struct obstack *obstack,
10855 struct dwarf2_cu *cu,
10856 long *value, gdb_byte **bytes,
10857 struct dwarf2_locexpr_baton **baton)
10858 {
10859 struct objfile *objfile = cu->objfile;
10860 struct comp_unit_head *cu_header = &cu->header;
10861 struct dwarf_block *blk;
10862 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
10863 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
10864
10865 *value = 0;
10866 *bytes = NULL;
10867 *baton = NULL;
10868
10869 switch (attr->form)
10870 {
10871 case DW_FORM_addr:
10872 {
10873 gdb_byte *data;
10874
10875 if (TYPE_LENGTH (type) != cu_header->addr_size)
10876 dwarf2_const_value_length_mismatch_complaint (name,
10877 cu_header->addr_size,
10878 TYPE_LENGTH (type));
10879 /* Symbols of this form are reasonably rare, so we just
10880 piggyback on the existing location code rather than writing
10881 a new implementation of symbol_computed_ops. */
10882 *baton = obstack_alloc (&objfile->objfile_obstack,
10883 sizeof (struct dwarf2_locexpr_baton));
10884 (*baton)->per_cu = cu->per_cu;
10885 gdb_assert ((*baton)->per_cu);
10886
10887 (*baton)->size = 2 + cu_header->addr_size;
10888 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
10889 (*baton)->data = data;
10890
10891 data[0] = DW_OP_addr;
10892 store_unsigned_integer (&data[1], cu_header->addr_size,
10893 byte_order, DW_ADDR (attr));
10894 data[cu_header->addr_size + 1] = DW_OP_stack_value;
10895 }
10896 break;
10897 case DW_FORM_string:
10898 case DW_FORM_strp:
10899 /* DW_STRING is already allocated on the objfile obstack, point
10900 directly to it. */
10901 *bytes = (gdb_byte *) DW_STRING (attr);
10902 break;
10903 case DW_FORM_block1:
10904 case DW_FORM_block2:
10905 case DW_FORM_block4:
10906 case DW_FORM_block:
10907 case DW_FORM_exprloc:
10908 blk = DW_BLOCK (attr);
10909 if (TYPE_LENGTH (type) != blk->size)
10910 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
10911 TYPE_LENGTH (type));
10912 *bytes = blk->data;
10913 break;
10914
10915 /* The DW_AT_const_value attributes are supposed to carry the
10916 symbol's value "represented as it would be on the target
10917 architecture." By the time we get here, it's already been
10918 converted to host endianness, so we just need to sign- or
10919 zero-extend it as appropriate. */
10920 case DW_FORM_data1:
10921 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
10922 break;
10923 case DW_FORM_data2:
10924 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
10925 break;
10926 case DW_FORM_data4:
10927 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
10928 break;
10929 case DW_FORM_data8:
10930 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
10931 break;
10932
10933 case DW_FORM_sdata:
10934 *value = DW_SND (attr);
10935 break;
10936
10937 case DW_FORM_udata:
10938 *value = DW_UNSND (attr);
10939 break;
10940
10941 default:
10942 complaint (&symfile_complaints,
10943 _("unsupported const value attribute form: '%s'"),
10944 dwarf_form_name (attr->form));
10945 *value = 0;
10946 break;
10947 }
10948 }
10949
10950
10951 /* Copy constant value from an attribute to a symbol. */
10952
10953 static void
10954 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
10955 struct dwarf2_cu *cu)
10956 {
10957 struct objfile *objfile = cu->objfile;
10958 struct comp_unit_head *cu_header = &cu->header;
10959 long value;
10960 gdb_byte *bytes;
10961 struct dwarf2_locexpr_baton *baton;
10962
10963 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
10964 SYMBOL_PRINT_NAME (sym),
10965 &objfile->objfile_obstack, cu,
10966 &value, &bytes, &baton);
10967
10968 if (baton != NULL)
10969 {
10970 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
10971 SYMBOL_LOCATION_BATON (sym) = baton;
10972 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10973 }
10974 else if (bytes != NULL)
10975 {
10976 SYMBOL_VALUE_BYTES (sym) = bytes;
10977 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
10978 }
10979 else
10980 {
10981 SYMBOL_VALUE (sym) = value;
10982 SYMBOL_CLASS (sym) = LOC_CONST;
10983 }
10984 }
10985
10986 /* Return the type of the die in question using its DW_AT_type attribute. */
10987
10988 static struct type *
10989 die_type (struct die_info *die, struct dwarf2_cu *cu)
10990 {
10991 struct attribute *type_attr;
10992
10993 type_attr = dwarf2_attr (die, DW_AT_type, cu);
10994 if (!type_attr)
10995 {
10996 /* A missing DW_AT_type represents a void type. */
10997 return objfile_type (cu->objfile)->builtin_void;
10998 }
10999
11000 return lookup_die_type (die, type_attr, cu);
11001 }
11002
11003 /* True iff CU's producer generates GNAT Ada auxiliary information
11004 that allows to find parallel types through that information instead
11005 of having to do expensive parallel lookups by type name. */
11006
11007 static int
11008 need_gnat_info (struct dwarf2_cu *cu)
11009 {
11010 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11011 of GNAT produces this auxiliary information, without any indication
11012 that it is produced. Part of enhancing the FSF version of GNAT
11013 to produce that information will be to put in place an indicator
11014 that we can use in order to determine whether the descriptive type
11015 info is available or not. One suggestion that has been made is
11016 to use a new attribute, attached to the CU die. For now, assume
11017 that the descriptive type info is not available. */
11018 return 0;
11019 }
11020
11021 /* Return the auxiliary type of the die in question using its
11022 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11023 attribute is not present. */
11024
11025 static struct type *
11026 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11027 {
11028 struct attribute *type_attr;
11029
11030 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11031 if (!type_attr)
11032 return NULL;
11033
11034 return lookup_die_type (die, type_attr, cu);
11035 }
11036
11037 /* If DIE has a descriptive_type attribute, then set the TYPE's
11038 descriptive type accordingly. */
11039
11040 static void
11041 set_descriptive_type (struct type *type, struct die_info *die,
11042 struct dwarf2_cu *cu)
11043 {
11044 struct type *descriptive_type = die_descriptive_type (die, cu);
11045
11046 if (descriptive_type)
11047 {
11048 ALLOCATE_GNAT_AUX_TYPE (type);
11049 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11050 }
11051 }
11052
11053 /* Return the containing type of the die in question using its
11054 DW_AT_containing_type attribute. */
11055
11056 static struct type *
11057 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11058 {
11059 struct attribute *type_attr;
11060
11061 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11062 if (!type_attr)
11063 error (_("Dwarf Error: Problem turning containing type into gdb type "
11064 "[in module %s]"), cu->objfile->name);
11065
11066 return lookup_die_type (die, type_attr, cu);
11067 }
11068
11069 /* Look up the type of DIE in CU using its type attribute ATTR.
11070 If there is no type substitute an error marker. */
11071
11072 static struct type *
11073 lookup_die_type (struct die_info *die, struct attribute *attr,
11074 struct dwarf2_cu *cu)
11075 {
11076 struct type *this_type;
11077
11078 /* First see if we have it cached. */
11079
11080 if (is_ref_attr (attr))
11081 {
11082 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11083
11084 this_type = get_die_type_at_offset (offset, cu->per_cu);
11085 }
11086 else if (attr->form == DW_FORM_sig8)
11087 {
11088 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11089 struct dwarf2_cu *sig_cu;
11090 unsigned int offset;
11091
11092 /* sig_type will be NULL if the signatured type is missing from
11093 the debug info. */
11094 if (sig_type == NULL)
11095 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11096 "at 0x%x [in module %s]"),
11097 die->offset, cu->objfile->name);
11098
11099 gdb_assert (sig_type->per_cu.from_debug_types);
11100 offset = sig_type->offset + sig_type->type_offset;
11101 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11102 }
11103 else
11104 {
11105 dump_die_for_error (die);
11106 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11107 dwarf_attr_name (attr->name), cu->objfile->name);
11108 }
11109
11110 /* If not cached we need to read it in. */
11111
11112 if (this_type == NULL)
11113 {
11114 struct die_info *type_die;
11115 struct dwarf2_cu *type_cu = cu;
11116
11117 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11118 /* If the type is cached, we should have found it above. */
11119 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11120 this_type = read_type_die_1 (type_die, type_cu);
11121 }
11122
11123 /* If we still don't have a type use an error marker. */
11124
11125 if (this_type == NULL)
11126 {
11127 char *message, *saved;
11128
11129 /* read_type_die already issued a complaint. */
11130 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11131 cu->objfile->name,
11132 cu->header.offset,
11133 die->offset);
11134 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11135 message, strlen (message));
11136 xfree (message);
11137
11138 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11139 }
11140
11141 return this_type;
11142 }
11143
11144 /* Return the type in DIE, CU.
11145 Returns NULL for invalid types.
11146
11147 This first does a lookup in the appropriate type_hash table,
11148 and only reads the die in if necessary.
11149
11150 NOTE: This can be called when reading in partial or full symbols. */
11151
11152 static struct type *
11153 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11154 {
11155 struct type *this_type;
11156
11157 this_type = get_die_type (die, cu);
11158 if (this_type)
11159 return this_type;
11160
11161 return read_type_die_1 (die, cu);
11162 }
11163
11164 /* Read the type in DIE, CU.
11165 Returns NULL for invalid types. */
11166
11167 static struct type *
11168 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11169 {
11170 struct type *this_type = NULL;
11171
11172 switch (die->tag)
11173 {
11174 case DW_TAG_class_type:
11175 case DW_TAG_interface_type:
11176 case DW_TAG_structure_type:
11177 case DW_TAG_union_type:
11178 this_type = read_structure_type (die, cu);
11179 break;
11180 case DW_TAG_enumeration_type:
11181 this_type = read_enumeration_type (die, cu);
11182 break;
11183 case DW_TAG_subprogram:
11184 case DW_TAG_subroutine_type:
11185 case DW_TAG_inlined_subroutine:
11186 this_type = read_subroutine_type (die, cu);
11187 break;
11188 case DW_TAG_array_type:
11189 this_type = read_array_type (die, cu);
11190 break;
11191 case DW_TAG_set_type:
11192 this_type = read_set_type (die, cu);
11193 break;
11194 case DW_TAG_pointer_type:
11195 this_type = read_tag_pointer_type (die, cu);
11196 break;
11197 case DW_TAG_ptr_to_member_type:
11198 this_type = read_tag_ptr_to_member_type (die, cu);
11199 break;
11200 case DW_TAG_reference_type:
11201 this_type = read_tag_reference_type (die, cu);
11202 break;
11203 case DW_TAG_const_type:
11204 this_type = read_tag_const_type (die, cu);
11205 break;
11206 case DW_TAG_volatile_type:
11207 this_type = read_tag_volatile_type (die, cu);
11208 break;
11209 case DW_TAG_string_type:
11210 this_type = read_tag_string_type (die, cu);
11211 break;
11212 case DW_TAG_typedef:
11213 this_type = read_typedef (die, cu);
11214 break;
11215 case DW_TAG_subrange_type:
11216 this_type = read_subrange_type (die, cu);
11217 break;
11218 case DW_TAG_base_type:
11219 this_type = read_base_type (die, cu);
11220 break;
11221 case DW_TAG_unspecified_type:
11222 this_type = read_unspecified_type (die, cu);
11223 break;
11224 case DW_TAG_namespace:
11225 this_type = read_namespace_type (die, cu);
11226 break;
11227 case DW_TAG_module:
11228 this_type = read_module_type (die, cu);
11229 break;
11230 default:
11231 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
11232 dwarf_tag_name (die->tag));
11233 break;
11234 }
11235
11236 return this_type;
11237 }
11238
11239 /* Return the name of the namespace/class that DIE is defined within,
11240 or "" if we can't tell. The caller should not xfree the result.
11241
11242 For example, if we're within the method foo() in the following
11243 code:
11244
11245 namespace N {
11246 class C {
11247 void foo () {
11248 }
11249 };
11250 }
11251
11252 then determine_prefix on foo's die will return "N::C". */
11253
11254 static char *
11255 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11256 {
11257 struct die_info *parent, *spec_die;
11258 struct dwarf2_cu *spec_cu;
11259 struct type *parent_type;
11260
11261 if (cu->language != language_cplus && cu->language != language_java
11262 && cu->language != language_fortran)
11263 return "";
11264
11265 /* We have to be careful in the presence of DW_AT_specification.
11266 For example, with GCC 3.4, given the code
11267
11268 namespace N {
11269 void foo() {
11270 // Definition of N::foo.
11271 }
11272 }
11273
11274 then we'll have a tree of DIEs like this:
11275
11276 1: DW_TAG_compile_unit
11277 2: DW_TAG_namespace // N
11278 3: DW_TAG_subprogram // declaration of N::foo
11279 4: DW_TAG_subprogram // definition of N::foo
11280 DW_AT_specification // refers to die #3
11281
11282 Thus, when processing die #4, we have to pretend that we're in
11283 the context of its DW_AT_specification, namely the contex of die
11284 #3. */
11285 spec_cu = cu;
11286 spec_die = die_specification (die, &spec_cu);
11287 if (spec_die == NULL)
11288 parent = die->parent;
11289 else
11290 {
11291 parent = spec_die->parent;
11292 cu = spec_cu;
11293 }
11294
11295 if (parent == NULL)
11296 return "";
11297 else if (parent->building_fullname)
11298 {
11299 const char *name;
11300 const char *parent_name;
11301
11302 /* It has been seen on RealView 2.2 built binaries,
11303 DW_TAG_template_type_param types actually _defined_ as
11304 children of the parent class:
11305
11306 enum E {};
11307 template class <class Enum> Class{};
11308 Class<enum E> class_e;
11309
11310 1: DW_TAG_class_type (Class)
11311 2: DW_TAG_enumeration_type (E)
11312 3: DW_TAG_enumerator (enum1:0)
11313 3: DW_TAG_enumerator (enum2:1)
11314 ...
11315 2: DW_TAG_template_type_param
11316 DW_AT_type DW_FORM_ref_udata (E)
11317
11318 Besides being broken debug info, it can put GDB into an
11319 infinite loop. Consider:
11320
11321 When we're building the full name for Class<E>, we'll start
11322 at Class, and go look over its template type parameters,
11323 finding E. We'll then try to build the full name of E, and
11324 reach here. We're now trying to build the full name of E,
11325 and look over the parent DIE for containing scope. In the
11326 broken case, if we followed the parent DIE of E, we'd again
11327 find Class, and once again go look at its template type
11328 arguments, etc., etc. Simply don't consider such parent die
11329 as source-level parent of this die (it can't be, the language
11330 doesn't allow it), and break the loop here. */
11331 name = dwarf2_name (die, cu);
11332 parent_name = dwarf2_name (parent, cu);
11333 complaint (&symfile_complaints,
11334 _("template param type '%s' defined within parent '%s'"),
11335 name ? name : "<unknown>",
11336 parent_name ? parent_name : "<unknown>");
11337 return "";
11338 }
11339 else
11340 switch (parent->tag)
11341 {
11342 case DW_TAG_namespace:
11343 parent_type = read_type_die (parent, cu);
11344 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11345 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11346 Work around this problem here. */
11347 if (cu->language == language_cplus
11348 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11349 return "";
11350 /* We give a name to even anonymous namespaces. */
11351 return TYPE_TAG_NAME (parent_type);
11352 case DW_TAG_class_type:
11353 case DW_TAG_interface_type:
11354 case DW_TAG_structure_type:
11355 case DW_TAG_union_type:
11356 case DW_TAG_module:
11357 parent_type = read_type_die (parent, cu);
11358 if (TYPE_TAG_NAME (parent_type) != NULL)
11359 return TYPE_TAG_NAME (parent_type);
11360 else
11361 /* An anonymous structure is only allowed non-static data
11362 members; no typedefs, no member functions, et cetera.
11363 So it does not need a prefix. */
11364 return "";
11365 default:
11366 return determine_prefix (parent, cu);
11367 }
11368 }
11369
11370 /* Return a newly-allocated string formed by concatenating PREFIX and
11371 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11372 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
11373 perform an obconcat, otherwise allocate storage for the result. The CU argument
11374 is used to determine the language and hence, the appropriate separator. */
11375
11376 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11377
11378 static char *
11379 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11380 int physname, struct dwarf2_cu *cu)
11381 {
11382 const char *lead = "";
11383 const char *sep;
11384
11385 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
11386 sep = "";
11387 else if (cu->language == language_java)
11388 sep = ".";
11389 else if (cu->language == language_fortran && physname)
11390 {
11391 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11392 DW_AT_MIPS_linkage_name is preferred and used instead. */
11393
11394 lead = "__";
11395 sep = "_MOD_";
11396 }
11397 else
11398 sep = "::";
11399
11400 if (prefix == NULL)
11401 prefix = "";
11402 if (suffix == NULL)
11403 suffix = "";
11404
11405 if (obs == NULL)
11406 {
11407 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11408
11409 strcpy (retval, lead);
11410 strcat (retval, prefix);
11411 strcat (retval, sep);
11412 strcat (retval, suffix);
11413 return retval;
11414 }
11415 else
11416 {
11417 /* We have an obstack. */
11418 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11419 }
11420 }
11421
11422 /* Return sibling of die, NULL if no sibling. */
11423
11424 static struct die_info *
11425 sibling_die (struct die_info *die)
11426 {
11427 return die->sibling;
11428 }
11429
11430 /* Get name of a die, return NULL if not found. */
11431
11432 static char *
11433 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11434 struct obstack *obstack)
11435 {
11436 if (name && cu->language == language_cplus)
11437 {
11438 char *canon_name = cp_canonicalize_string (name);
11439
11440 if (canon_name != NULL)
11441 {
11442 if (strcmp (canon_name, name) != 0)
11443 name = obsavestring (canon_name, strlen (canon_name),
11444 obstack);
11445 xfree (canon_name);
11446 }
11447 }
11448
11449 return name;
11450 }
11451
11452 /* Get name of a die, return NULL if not found. */
11453
11454 static char *
11455 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11456 {
11457 struct attribute *attr;
11458
11459 attr = dwarf2_attr (die, DW_AT_name, cu);
11460 if (!attr || !DW_STRING (attr))
11461 return NULL;
11462
11463 switch (die->tag)
11464 {
11465 case DW_TAG_compile_unit:
11466 /* Compilation units have a DW_AT_name that is a filename, not
11467 a source language identifier. */
11468 case DW_TAG_enumeration_type:
11469 case DW_TAG_enumerator:
11470 /* These tags always have simple identifiers already; no need
11471 to canonicalize them. */
11472 return DW_STRING (attr);
11473
11474 case DW_TAG_subprogram:
11475 /* Java constructors will all be named "<init>", so return
11476 the class name when we see this special case. */
11477 if (cu->language == language_java
11478 && DW_STRING (attr) != NULL
11479 && strcmp (DW_STRING (attr), "<init>") == 0)
11480 {
11481 struct dwarf2_cu *spec_cu = cu;
11482 struct die_info *spec_die;
11483
11484 /* GCJ will output '<init>' for Java constructor names.
11485 For this special case, return the name of the parent class. */
11486
11487 /* GCJ may output suprogram DIEs with AT_specification set.
11488 If so, use the name of the specified DIE. */
11489 spec_die = die_specification (die, &spec_cu);
11490 if (spec_die != NULL)
11491 return dwarf2_name (spec_die, spec_cu);
11492
11493 do
11494 {
11495 die = die->parent;
11496 if (die->tag == DW_TAG_class_type)
11497 return dwarf2_name (die, cu);
11498 }
11499 while (die->tag != DW_TAG_compile_unit);
11500 }
11501 break;
11502
11503 case DW_TAG_class_type:
11504 case DW_TAG_interface_type:
11505 case DW_TAG_structure_type:
11506 case DW_TAG_union_type:
11507 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11508 structures or unions. These were of the form "._%d" in GCC 4.1,
11509 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11510 and GCC 4.4. We work around this problem by ignoring these. */
11511 if (strncmp (DW_STRING (attr), "._", 2) == 0
11512 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11513 return NULL;
11514 break;
11515
11516 default:
11517 break;
11518 }
11519
11520 if (!DW_STRING_IS_CANONICAL (attr))
11521 {
11522 DW_STRING (attr)
11523 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11524 &cu->objfile->objfile_obstack);
11525 DW_STRING_IS_CANONICAL (attr) = 1;
11526 }
11527 return DW_STRING (attr);
11528 }
11529
11530 /* Return the die that this die in an extension of, or NULL if there
11531 is none. *EXT_CU is the CU containing DIE on input, and the CU
11532 containing the return value on output. */
11533
11534 static struct die_info *
11535 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11536 {
11537 struct attribute *attr;
11538
11539 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11540 if (attr == NULL)
11541 return NULL;
11542
11543 return follow_die_ref (die, attr, ext_cu);
11544 }
11545
11546 /* Convert a DIE tag into its string name. */
11547
11548 static char *
11549 dwarf_tag_name (unsigned tag)
11550 {
11551 switch (tag)
11552 {
11553 case DW_TAG_padding:
11554 return "DW_TAG_padding";
11555 case DW_TAG_array_type:
11556 return "DW_TAG_array_type";
11557 case DW_TAG_class_type:
11558 return "DW_TAG_class_type";
11559 case DW_TAG_entry_point:
11560 return "DW_TAG_entry_point";
11561 case DW_TAG_enumeration_type:
11562 return "DW_TAG_enumeration_type";
11563 case DW_TAG_formal_parameter:
11564 return "DW_TAG_formal_parameter";
11565 case DW_TAG_imported_declaration:
11566 return "DW_TAG_imported_declaration";
11567 case DW_TAG_label:
11568 return "DW_TAG_label";
11569 case DW_TAG_lexical_block:
11570 return "DW_TAG_lexical_block";
11571 case DW_TAG_member:
11572 return "DW_TAG_member";
11573 case DW_TAG_pointer_type:
11574 return "DW_TAG_pointer_type";
11575 case DW_TAG_reference_type:
11576 return "DW_TAG_reference_type";
11577 case DW_TAG_compile_unit:
11578 return "DW_TAG_compile_unit";
11579 case DW_TAG_string_type:
11580 return "DW_TAG_string_type";
11581 case DW_TAG_structure_type:
11582 return "DW_TAG_structure_type";
11583 case DW_TAG_subroutine_type:
11584 return "DW_TAG_subroutine_type";
11585 case DW_TAG_typedef:
11586 return "DW_TAG_typedef";
11587 case DW_TAG_union_type:
11588 return "DW_TAG_union_type";
11589 case DW_TAG_unspecified_parameters:
11590 return "DW_TAG_unspecified_parameters";
11591 case DW_TAG_variant:
11592 return "DW_TAG_variant";
11593 case DW_TAG_common_block:
11594 return "DW_TAG_common_block";
11595 case DW_TAG_common_inclusion:
11596 return "DW_TAG_common_inclusion";
11597 case DW_TAG_inheritance:
11598 return "DW_TAG_inheritance";
11599 case DW_TAG_inlined_subroutine:
11600 return "DW_TAG_inlined_subroutine";
11601 case DW_TAG_module:
11602 return "DW_TAG_module";
11603 case DW_TAG_ptr_to_member_type:
11604 return "DW_TAG_ptr_to_member_type";
11605 case DW_TAG_set_type:
11606 return "DW_TAG_set_type";
11607 case DW_TAG_subrange_type:
11608 return "DW_TAG_subrange_type";
11609 case DW_TAG_with_stmt:
11610 return "DW_TAG_with_stmt";
11611 case DW_TAG_access_declaration:
11612 return "DW_TAG_access_declaration";
11613 case DW_TAG_base_type:
11614 return "DW_TAG_base_type";
11615 case DW_TAG_catch_block:
11616 return "DW_TAG_catch_block";
11617 case DW_TAG_const_type:
11618 return "DW_TAG_const_type";
11619 case DW_TAG_constant:
11620 return "DW_TAG_constant";
11621 case DW_TAG_enumerator:
11622 return "DW_TAG_enumerator";
11623 case DW_TAG_file_type:
11624 return "DW_TAG_file_type";
11625 case DW_TAG_friend:
11626 return "DW_TAG_friend";
11627 case DW_TAG_namelist:
11628 return "DW_TAG_namelist";
11629 case DW_TAG_namelist_item:
11630 return "DW_TAG_namelist_item";
11631 case DW_TAG_packed_type:
11632 return "DW_TAG_packed_type";
11633 case DW_TAG_subprogram:
11634 return "DW_TAG_subprogram";
11635 case DW_TAG_template_type_param:
11636 return "DW_TAG_template_type_param";
11637 case DW_TAG_template_value_param:
11638 return "DW_TAG_template_value_param";
11639 case DW_TAG_thrown_type:
11640 return "DW_TAG_thrown_type";
11641 case DW_TAG_try_block:
11642 return "DW_TAG_try_block";
11643 case DW_TAG_variant_part:
11644 return "DW_TAG_variant_part";
11645 case DW_TAG_variable:
11646 return "DW_TAG_variable";
11647 case DW_TAG_volatile_type:
11648 return "DW_TAG_volatile_type";
11649 case DW_TAG_dwarf_procedure:
11650 return "DW_TAG_dwarf_procedure";
11651 case DW_TAG_restrict_type:
11652 return "DW_TAG_restrict_type";
11653 case DW_TAG_interface_type:
11654 return "DW_TAG_interface_type";
11655 case DW_TAG_namespace:
11656 return "DW_TAG_namespace";
11657 case DW_TAG_imported_module:
11658 return "DW_TAG_imported_module";
11659 case DW_TAG_unspecified_type:
11660 return "DW_TAG_unspecified_type";
11661 case DW_TAG_partial_unit:
11662 return "DW_TAG_partial_unit";
11663 case DW_TAG_imported_unit:
11664 return "DW_TAG_imported_unit";
11665 case DW_TAG_condition:
11666 return "DW_TAG_condition";
11667 case DW_TAG_shared_type:
11668 return "DW_TAG_shared_type";
11669 case DW_TAG_type_unit:
11670 return "DW_TAG_type_unit";
11671 case DW_TAG_MIPS_loop:
11672 return "DW_TAG_MIPS_loop";
11673 case DW_TAG_HP_array_descriptor:
11674 return "DW_TAG_HP_array_descriptor";
11675 case DW_TAG_format_label:
11676 return "DW_TAG_format_label";
11677 case DW_TAG_function_template:
11678 return "DW_TAG_function_template";
11679 case DW_TAG_class_template:
11680 return "DW_TAG_class_template";
11681 case DW_TAG_GNU_BINCL:
11682 return "DW_TAG_GNU_BINCL";
11683 case DW_TAG_GNU_EINCL:
11684 return "DW_TAG_GNU_EINCL";
11685 case DW_TAG_upc_shared_type:
11686 return "DW_TAG_upc_shared_type";
11687 case DW_TAG_upc_strict_type:
11688 return "DW_TAG_upc_strict_type";
11689 case DW_TAG_upc_relaxed_type:
11690 return "DW_TAG_upc_relaxed_type";
11691 case DW_TAG_PGI_kanji_type:
11692 return "DW_TAG_PGI_kanji_type";
11693 case DW_TAG_PGI_interface_block:
11694 return "DW_TAG_PGI_interface_block";
11695 default:
11696 return "DW_TAG_<unknown>";
11697 }
11698 }
11699
11700 /* Convert a DWARF attribute code into its string name. */
11701
11702 static char *
11703 dwarf_attr_name (unsigned attr)
11704 {
11705 switch (attr)
11706 {
11707 case DW_AT_sibling:
11708 return "DW_AT_sibling";
11709 case DW_AT_location:
11710 return "DW_AT_location";
11711 case DW_AT_name:
11712 return "DW_AT_name";
11713 case DW_AT_ordering:
11714 return "DW_AT_ordering";
11715 case DW_AT_subscr_data:
11716 return "DW_AT_subscr_data";
11717 case DW_AT_byte_size:
11718 return "DW_AT_byte_size";
11719 case DW_AT_bit_offset:
11720 return "DW_AT_bit_offset";
11721 case DW_AT_bit_size:
11722 return "DW_AT_bit_size";
11723 case DW_AT_element_list:
11724 return "DW_AT_element_list";
11725 case DW_AT_stmt_list:
11726 return "DW_AT_stmt_list";
11727 case DW_AT_low_pc:
11728 return "DW_AT_low_pc";
11729 case DW_AT_high_pc:
11730 return "DW_AT_high_pc";
11731 case DW_AT_language:
11732 return "DW_AT_language";
11733 case DW_AT_member:
11734 return "DW_AT_member";
11735 case DW_AT_discr:
11736 return "DW_AT_discr";
11737 case DW_AT_discr_value:
11738 return "DW_AT_discr_value";
11739 case DW_AT_visibility:
11740 return "DW_AT_visibility";
11741 case DW_AT_import:
11742 return "DW_AT_import";
11743 case DW_AT_string_length:
11744 return "DW_AT_string_length";
11745 case DW_AT_common_reference:
11746 return "DW_AT_common_reference";
11747 case DW_AT_comp_dir:
11748 return "DW_AT_comp_dir";
11749 case DW_AT_const_value:
11750 return "DW_AT_const_value";
11751 case DW_AT_containing_type:
11752 return "DW_AT_containing_type";
11753 case DW_AT_default_value:
11754 return "DW_AT_default_value";
11755 case DW_AT_inline:
11756 return "DW_AT_inline";
11757 case DW_AT_is_optional:
11758 return "DW_AT_is_optional";
11759 case DW_AT_lower_bound:
11760 return "DW_AT_lower_bound";
11761 case DW_AT_producer:
11762 return "DW_AT_producer";
11763 case DW_AT_prototyped:
11764 return "DW_AT_prototyped";
11765 case DW_AT_return_addr:
11766 return "DW_AT_return_addr";
11767 case DW_AT_start_scope:
11768 return "DW_AT_start_scope";
11769 case DW_AT_bit_stride:
11770 return "DW_AT_bit_stride";
11771 case DW_AT_upper_bound:
11772 return "DW_AT_upper_bound";
11773 case DW_AT_abstract_origin:
11774 return "DW_AT_abstract_origin";
11775 case DW_AT_accessibility:
11776 return "DW_AT_accessibility";
11777 case DW_AT_address_class:
11778 return "DW_AT_address_class";
11779 case DW_AT_artificial:
11780 return "DW_AT_artificial";
11781 case DW_AT_base_types:
11782 return "DW_AT_base_types";
11783 case DW_AT_calling_convention:
11784 return "DW_AT_calling_convention";
11785 case DW_AT_count:
11786 return "DW_AT_count";
11787 case DW_AT_data_member_location:
11788 return "DW_AT_data_member_location";
11789 case DW_AT_decl_column:
11790 return "DW_AT_decl_column";
11791 case DW_AT_decl_file:
11792 return "DW_AT_decl_file";
11793 case DW_AT_decl_line:
11794 return "DW_AT_decl_line";
11795 case DW_AT_declaration:
11796 return "DW_AT_declaration";
11797 case DW_AT_discr_list:
11798 return "DW_AT_discr_list";
11799 case DW_AT_encoding:
11800 return "DW_AT_encoding";
11801 case DW_AT_external:
11802 return "DW_AT_external";
11803 case DW_AT_frame_base:
11804 return "DW_AT_frame_base";
11805 case DW_AT_friend:
11806 return "DW_AT_friend";
11807 case DW_AT_identifier_case:
11808 return "DW_AT_identifier_case";
11809 case DW_AT_macro_info:
11810 return "DW_AT_macro_info";
11811 case DW_AT_namelist_items:
11812 return "DW_AT_namelist_items";
11813 case DW_AT_priority:
11814 return "DW_AT_priority";
11815 case DW_AT_segment:
11816 return "DW_AT_segment";
11817 case DW_AT_specification:
11818 return "DW_AT_specification";
11819 case DW_AT_static_link:
11820 return "DW_AT_static_link";
11821 case DW_AT_type:
11822 return "DW_AT_type";
11823 case DW_AT_use_location:
11824 return "DW_AT_use_location";
11825 case DW_AT_variable_parameter:
11826 return "DW_AT_variable_parameter";
11827 case DW_AT_virtuality:
11828 return "DW_AT_virtuality";
11829 case DW_AT_vtable_elem_location:
11830 return "DW_AT_vtable_elem_location";
11831 /* DWARF 3 values. */
11832 case DW_AT_allocated:
11833 return "DW_AT_allocated";
11834 case DW_AT_associated:
11835 return "DW_AT_associated";
11836 case DW_AT_data_location:
11837 return "DW_AT_data_location";
11838 case DW_AT_byte_stride:
11839 return "DW_AT_byte_stride";
11840 case DW_AT_entry_pc:
11841 return "DW_AT_entry_pc";
11842 case DW_AT_use_UTF8:
11843 return "DW_AT_use_UTF8";
11844 case DW_AT_extension:
11845 return "DW_AT_extension";
11846 case DW_AT_ranges:
11847 return "DW_AT_ranges";
11848 case DW_AT_trampoline:
11849 return "DW_AT_trampoline";
11850 case DW_AT_call_column:
11851 return "DW_AT_call_column";
11852 case DW_AT_call_file:
11853 return "DW_AT_call_file";
11854 case DW_AT_call_line:
11855 return "DW_AT_call_line";
11856 case DW_AT_description:
11857 return "DW_AT_description";
11858 case DW_AT_binary_scale:
11859 return "DW_AT_binary_scale";
11860 case DW_AT_decimal_scale:
11861 return "DW_AT_decimal_scale";
11862 case DW_AT_small:
11863 return "DW_AT_small";
11864 case DW_AT_decimal_sign:
11865 return "DW_AT_decimal_sign";
11866 case DW_AT_digit_count:
11867 return "DW_AT_digit_count";
11868 case DW_AT_picture_string:
11869 return "DW_AT_picture_string";
11870 case DW_AT_mutable:
11871 return "DW_AT_mutable";
11872 case DW_AT_threads_scaled:
11873 return "DW_AT_threads_scaled";
11874 case DW_AT_explicit:
11875 return "DW_AT_explicit";
11876 case DW_AT_object_pointer:
11877 return "DW_AT_object_pointer";
11878 case DW_AT_endianity:
11879 return "DW_AT_endianity";
11880 case DW_AT_elemental:
11881 return "DW_AT_elemental";
11882 case DW_AT_pure:
11883 return "DW_AT_pure";
11884 case DW_AT_recursive:
11885 return "DW_AT_recursive";
11886 /* DWARF 4 values. */
11887 case DW_AT_signature:
11888 return "DW_AT_signature";
11889 case DW_AT_linkage_name:
11890 return "DW_AT_linkage_name";
11891 /* SGI/MIPS extensions. */
11892 #ifdef MIPS /* collides with DW_AT_HP_block_index */
11893 case DW_AT_MIPS_fde:
11894 return "DW_AT_MIPS_fde";
11895 #endif
11896 case DW_AT_MIPS_loop_begin:
11897 return "DW_AT_MIPS_loop_begin";
11898 case DW_AT_MIPS_tail_loop_begin:
11899 return "DW_AT_MIPS_tail_loop_begin";
11900 case DW_AT_MIPS_epilog_begin:
11901 return "DW_AT_MIPS_epilog_begin";
11902 case DW_AT_MIPS_loop_unroll_factor:
11903 return "DW_AT_MIPS_loop_unroll_factor";
11904 case DW_AT_MIPS_software_pipeline_depth:
11905 return "DW_AT_MIPS_software_pipeline_depth";
11906 case DW_AT_MIPS_linkage_name:
11907 return "DW_AT_MIPS_linkage_name";
11908 case DW_AT_MIPS_stride:
11909 return "DW_AT_MIPS_stride";
11910 case DW_AT_MIPS_abstract_name:
11911 return "DW_AT_MIPS_abstract_name";
11912 case DW_AT_MIPS_clone_origin:
11913 return "DW_AT_MIPS_clone_origin";
11914 case DW_AT_MIPS_has_inlines:
11915 return "DW_AT_MIPS_has_inlines";
11916 /* HP extensions. */
11917 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
11918 case DW_AT_HP_block_index:
11919 return "DW_AT_HP_block_index";
11920 #endif
11921 case DW_AT_HP_unmodifiable:
11922 return "DW_AT_HP_unmodifiable";
11923 case DW_AT_HP_actuals_stmt_list:
11924 return "DW_AT_HP_actuals_stmt_list";
11925 case DW_AT_HP_proc_per_section:
11926 return "DW_AT_HP_proc_per_section";
11927 case DW_AT_HP_raw_data_ptr:
11928 return "DW_AT_HP_raw_data_ptr";
11929 case DW_AT_HP_pass_by_reference:
11930 return "DW_AT_HP_pass_by_reference";
11931 case DW_AT_HP_opt_level:
11932 return "DW_AT_HP_opt_level";
11933 case DW_AT_HP_prof_version_id:
11934 return "DW_AT_HP_prof_version_id";
11935 case DW_AT_HP_opt_flags:
11936 return "DW_AT_HP_opt_flags";
11937 case DW_AT_HP_cold_region_low_pc:
11938 return "DW_AT_HP_cold_region_low_pc";
11939 case DW_AT_HP_cold_region_high_pc:
11940 return "DW_AT_HP_cold_region_high_pc";
11941 case DW_AT_HP_all_variables_modifiable:
11942 return "DW_AT_HP_all_variables_modifiable";
11943 case DW_AT_HP_linkage_name:
11944 return "DW_AT_HP_linkage_name";
11945 case DW_AT_HP_prof_flags:
11946 return "DW_AT_HP_prof_flags";
11947 /* GNU extensions. */
11948 case DW_AT_sf_names:
11949 return "DW_AT_sf_names";
11950 case DW_AT_src_info:
11951 return "DW_AT_src_info";
11952 case DW_AT_mac_info:
11953 return "DW_AT_mac_info";
11954 case DW_AT_src_coords:
11955 return "DW_AT_src_coords";
11956 case DW_AT_body_begin:
11957 return "DW_AT_body_begin";
11958 case DW_AT_body_end:
11959 return "DW_AT_body_end";
11960 case DW_AT_GNU_vector:
11961 return "DW_AT_GNU_vector";
11962 case DW_AT_GNU_odr_signature:
11963 return "DW_AT_GNU_odr_signature";
11964 /* VMS extensions. */
11965 case DW_AT_VMS_rtnbeg_pd_address:
11966 return "DW_AT_VMS_rtnbeg_pd_address";
11967 /* UPC extension. */
11968 case DW_AT_upc_threads_scaled:
11969 return "DW_AT_upc_threads_scaled";
11970 /* PGI (STMicroelectronics) extensions. */
11971 case DW_AT_PGI_lbase:
11972 return "DW_AT_PGI_lbase";
11973 case DW_AT_PGI_soffset:
11974 return "DW_AT_PGI_soffset";
11975 case DW_AT_PGI_lstride:
11976 return "DW_AT_PGI_lstride";
11977 default:
11978 return "DW_AT_<unknown>";
11979 }
11980 }
11981
11982 /* Convert a DWARF value form code into its string name. */
11983
11984 static char *
11985 dwarf_form_name (unsigned form)
11986 {
11987 switch (form)
11988 {
11989 case DW_FORM_addr:
11990 return "DW_FORM_addr";
11991 case DW_FORM_block2:
11992 return "DW_FORM_block2";
11993 case DW_FORM_block4:
11994 return "DW_FORM_block4";
11995 case DW_FORM_data2:
11996 return "DW_FORM_data2";
11997 case DW_FORM_data4:
11998 return "DW_FORM_data4";
11999 case DW_FORM_data8:
12000 return "DW_FORM_data8";
12001 case DW_FORM_string:
12002 return "DW_FORM_string";
12003 case DW_FORM_block:
12004 return "DW_FORM_block";
12005 case DW_FORM_block1:
12006 return "DW_FORM_block1";
12007 case DW_FORM_data1:
12008 return "DW_FORM_data1";
12009 case DW_FORM_flag:
12010 return "DW_FORM_flag";
12011 case DW_FORM_sdata:
12012 return "DW_FORM_sdata";
12013 case DW_FORM_strp:
12014 return "DW_FORM_strp";
12015 case DW_FORM_udata:
12016 return "DW_FORM_udata";
12017 case DW_FORM_ref_addr:
12018 return "DW_FORM_ref_addr";
12019 case DW_FORM_ref1:
12020 return "DW_FORM_ref1";
12021 case DW_FORM_ref2:
12022 return "DW_FORM_ref2";
12023 case DW_FORM_ref4:
12024 return "DW_FORM_ref4";
12025 case DW_FORM_ref8:
12026 return "DW_FORM_ref8";
12027 case DW_FORM_ref_udata:
12028 return "DW_FORM_ref_udata";
12029 case DW_FORM_indirect:
12030 return "DW_FORM_indirect";
12031 case DW_FORM_sec_offset:
12032 return "DW_FORM_sec_offset";
12033 case DW_FORM_exprloc:
12034 return "DW_FORM_exprloc";
12035 case DW_FORM_flag_present:
12036 return "DW_FORM_flag_present";
12037 case DW_FORM_sig8:
12038 return "DW_FORM_sig8";
12039 default:
12040 return "DW_FORM_<unknown>";
12041 }
12042 }
12043
12044 /* Convert a DWARF stack opcode into its string name. */
12045
12046 const char *
12047 dwarf_stack_op_name (unsigned op, int def)
12048 {
12049 switch (op)
12050 {
12051 case DW_OP_addr:
12052 return "DW_OP_addr";
12053 case DW_OP_deref:
12054 return "DW_OP_deref";
12055 case DW_OP_const1u:
12056 return "DW_OP_const1u";
12057 case DW_OP_const1s:
12058 return "DW_OP_const1s";
12059 case DW_OP_const2u:
12060 return "DW_OP_const2u";
12061 case DW_OP_const2s:
12062 return "DW_OP_const2s";
12063 case DW_OP_const4u:
12064 return "DW_OP_const4u";
12065 case DW_OP_const4s:
12066 return "DW_OP_const4s";
12067 case DW_OP_const8u:
12068 return "DW_OP_const8u";
12069 case DW_OP_const8s:
12070 return "DW_OP_const8s";
12071 case DW_OP_constu:
12072 return "DW_OP_constu";
12073 case DW_OP_consts:
12074 return "DW_OP_consts";
12075 case DW_OP_dup:
12076 return "DW_OP_dup";
12077 case DW_OP_drop:
12078 return "DW_OP_drop";
12079 case DW_OP_over:
12080 return "DW_OP_over";
12081 case DW_OP_pick:
12082 return "DW_OP_pick";
12083 case DW_OP_swap:
12084 return "DW_OP_swap";
12085 case DW_OP_rot:
12086 return "DW_OP_rot";
12087 case DW_OP_xderef:
12088 return "DW_OP_xderef";
12089 case DW_OP_abs:
12090 return "DW_OP_abs";
12091 case DW_OP_and:
12092 return "DW_OP_and";
12093 case DW_OP_div:
12094 return "DW_OP_div";
12095 case DW_OP_minus:
12096 return "DW_OP_minus";
12097 case DW_OP_mod:
12098 return "DW_OP_mod";
12099 case DW_OP_mul:
12100 return "DW_OP_mul";
12101 case DW_OP_neg:
12102 return "DW_OP_neg";
12103 case DW_OP_not:
12104 return "DW_OP_not";
12105 case DW_OP_or:
12106 return "DW_OP_or";
12107 case DW_OP_plus:
12108 return "DW_OP_plus";
12109 case DW_OP_plus_uconst:
12110 return "DW_OP_plus_uconst";
12111 case DW_OP_shl:
12112 return "DW_OP_shl";
12113 case DW_OP_shr:
12114 return "DW_OP_shr";
12115 case DW_OP_shra:
12116 return "DW_OP_shra";
12117 case DW_OP_xor:
12118 return "DW_OP_xor";
12119 case DW_OP_bra:
12120 return "DW_OP_bra";
12121 case DW_OP_eq:
12122 return "DW_OP_eq";
12123 case DW_OP_ge:
12124 return "DW_OP_ge";
12125 case DW_OP_gt:
12126 return "DW_OP_gt";
12127 case DW_OP_le:
12128 return "DW_OP_le";
12129 case DW_OP_lt:
12130 return "DW_OP_lt";
12131 case DW_OP_ne:
12132 return "DW_OP_ne";
12133 case DW_OP_skip:
12134 return "DW_OP_skip";
12135 case DW_OP_lit0:
12136 return "DW_OP_lit0";
12137 case DW_OP_lit1:
12138 return "DW_OP_lit1";
12139 case DW_OP_lit2:
12140 return "DW_OP_lit2";
12141 case DW_OP_lit3:
12142 return "DW_OP_lit3";
12143 case DW_OP_lit4:
12144 return "DW_OP_lit4";
12145 case DW_OP_lit5:
12146 return "DW_OP_lit5";
12147 case DW_OP_lit6:
12148 return "DW_OP_lit6";
12149 case DW_OP_lit7:
12150 return "DW_OP_lit7";
12151 case DW_OP_lit8:
12152 return "DW_OP_lit8";
12153 case DW_OP_lit9:
12154 return "DW_OP_lit9";
12155 case DW_OP_lit10:
12156 return "DW_OP_lit10";
12157 case DW_OP_lit11:
12158 return "DW_OP_lit11";
12159 case DW_OP_lit12:
12160 return "DW_OP_lit12";
12161 case DW_OP_lit13:
12162 return "DW_OP_lit13";
12163 case DW_OP_lit14:
12164 return "DW_OP_lit14";
12165 case DW_OP_lit15:
12166 return "DW_OP_lit15";
12167 case DW_OP_lit16:
12168 return "DW_OP_lit16";
12169 case DW_OP_lit17:
12170 return "DW_OP_lit17";
12171 case DW_OP_lit18:
12172 return "DW_OP_lit18";
12173 case DW_OP_lit19:
12174 return "DW_OP_lit19";
12175 case DW_OP_lit20:
12176 return "DW_OP_lit20";
12177 case DW_OP_lit21:
12178 return "DW_OP_lit21";
12179 case DW_OP_lit22:
12180 return "DW_OP_lit22";
12181 case DW_OP_lit23:
12182 return "DW_OP_lit23";
12183 case DW_OP_lit24:
12184 return "DW_OP_lit24";
12185 case DW_OP_lit25:
12186 return "DW_OP_lit25";
12187 case DW_OP_lit26:
12188 return "DW_OP_lit26";
12189 case DW_OP_lit27:
12190 return "DW_OP_lit27";
12191 case DW_OP_lit28:
12192 return "DW_OP_lit28";
12193 case DW_OP_lit29:
12194 return "DW_OP_lit29";
12195 case DW_OP_lit30:
12196 return "DW_OP_lit30";
12197 case DW_OP_lit31:
12198 return "DW_OP_lit31";
12199 case DW_OP_reg0:
12200 return "DW_OP_reg0";
12201 case DW_OP_reg1:
12202 return "DW_OP_reg1";
12203 case DW_OP_reg2:
12204 return "DW_OP_reg2";
12205 case DW_OP_reg3:
12206 return "DW_OP_reg3";
12207 case DW_OP_reg4:
12208 return "DW_OP_reg4";
12209 case DW_OP_reg5:
12210 return "DW_OP_reg5";
12211 case DW_OP_reg6:
12212 return "DW_OP_reg6";
12213 case DW_OP_reg7:
12214 return "DW_OP_reg7";
12215 case DW_OP_reg8:
12216 return "DW_OP_reg8";
12217 case DW_OP_reg9:
12218 return "DW_OP_reg9";
12219 case DW_OP_reg10:
12220 return "DW_OP_reg10";
12221 case DW_OP_reg11:
12222 return "DW_OP_reg11";
12223 case DW_OP_reg12:
12224 return "DW_OP_reg12";
12225 case DW_OP_reg13:
12226 return "DW_OP_reg13";
12227 case DW_OP_reg14:
12228 return "DW_OP_reg14";
12229 case DW_OP_reg15:
12230 return "DW_OP_reg15";
12231 case DW_OP_reg16:
12232 return "DW_OP_reg16";
12233 case DW_OP_reg17:
12234 return "DW_OP_reg17";
12235 case DW_OP_reg18:
12236 return "DW_OP_reg18";
12237 case DW_OP_reg19:
12238 return "DW_OP_reg19";
12239 case DW_OP_reg20:
12240 return "DW_OP_reg20";
12241 case DW_OP_reg21:
12242 return "DW_OP_reg21";
12243 case DW_OP_reg22:
12244 return "DW_OP_reg22";
12245 case DW_OP_reg23:
12246 return "DW_OP_reg23";
12247 case DW_OP_reg24:
12248 return "DW_OP_reg24";
12249 case DW_OP_reg25:
12250 return "DW_OP_reg25";
12251 case DW_OP_reg26:
12252 return "DW_OP_reg26";
12253 case DW_OP_reg27:
12254 return "DW_OP_reg27";
12255 case DW_OP_reg28:
12256 return "DW_OP_reg28";
12257 case DW_OP_reg29:
12258 return "DW_OP_reg29";
12259 case DW_OP_reg30:
12260 return "DW_OP_reg30";
12261 case DW_OP_reg31:
12262 return "DW_OP_reg31";
12263 case DW_OP_breg0:
12264 return "DW_OP_breg0";
12265 case DW_OP_breg1:
12266 return "DW_OP_breg1";
12267 case DW_OP_breg2:
12268 return "DW_OP_breg2";
12269 case DW_OP_breg3:
12270 return "DW_OP_breg3";
12271 case DW_OP_breg4:
12272 return "DW_OP_breg4";
12273 case DW_OP_breg5:
12274 return "DW_OP_breg5";
12275 case DW_OP_breg6:
12276 return "DW_OP_breg6";
12277 case DW_OP_breg7:
12278 return "DW_OP_breg7";
12279 case DW_OP_breg8:
12280 return "DW_OP_breg8";
12281 case DW_OP_breg9:
12282 return "DW_OP_breg9";
12283 case DW_OP_breg10:
12284 return "DW_OP_breg10";
12285 case DW_OP_breg11:
12286 return "DW_OP_breg11";
12287 case DW_OP_breg12:
12288 return "DW_OP_breg12";
12289 case DW_OP_breg13:
12290 return "DW_OP_breg13";
12291 case DW_OP_breg14:
12292 return "DW_OP_breg14";
12293 case DW_OP_breg15:
12294 return "DW_OP_breg15";
12295 case DW_OP_breg16:
12296 return "DW_OP_breg16";
12297 case DW_OP_breg17:
12298 return "DW_OP_breg17";
12299 case DW_OP_breg18:
12300 return "DW_OP_breg18";
12301 case DW_OP_breg19:
12302 return "DW_OP_breg19";
12303 case DW_OP_breg20:
12304 return "DW_OP_breg20";
12305 case DW_OP_breg21:
12306 return "DW_OP_breg21";
12307 case DW_OP_breg22:
12308 return "DW_OP_breg22";
12309 case DW_OP_breg23:
12310 return "DW_OP_breg23";
12311 case DW_OP_breg24:
12312 return "DW_OP_breg24";
12313 case DW_OP_breg25:
12314 return "DW_OP_breg25";
12315 case DW_OP_breg26:
12316 return "DW_OP_breg26";
12317 case DW_OP_breg27:
12318 return "DW_OP_breg27";
12319 case DW_OP_breg28:
12320 return "DW_OP_breg28";
12321 case DW_OP_breg29:
12322 return "DW_OP_breg29";
12323 case DW_OP_breg30:
12324 return "DW_OP_breg30";
12325 case DW_OP_breg31:
12326 return "DW_OP_breg31";
12327 case DW_OP_regx:
12328 return "DW_OP_regx";
12329 case DW_OP_fbreg:
12330 return "DW_OP_fbreg";
12331 case DW_OP_bregx:
12332 return "DW_OP_bregx";
12333 case DW_OP_piece:
12334 return "DW_OP_piece";
12335 case DW_OP_deref_size:
12336 return "DW_OP_deref_size";
12337 case DW_OP_xderef_size:
12338 return "DW_OP_xderef_size";
12339 case DW_OP_nop:
12340 return "DW_OP_nop";
12341 /* DWARF 3 extensions. */
12342 case DW_OP_push_object_address:
12343 return "DW_OP_push_object_address";
12344 case DW_OP_call2:
12345 return "DW_OP_call2";
12346 case DW_OP_call4:
12347 return "DW_OP_call4";
12348 case DW_OP_call_ref:
12349 return "DW_OP_call_ref";
12350 case DW_OP_form_tls_address:
12351 return "DW_OP_form_tls_address";
12352 case DW_OP_call_frame_cfa:
12353 return "DW_OP_call_frame_cfa";
12354 case DW_OP_bit_piece:
12355 return "DW_OP_bit_piece";
12356 /* DWARF 4 extensions. */
12357 case DW_OP_implicit_value:
12358 return "DW_OP_implicit_value";
12359 case DW_OP_stack_value:
12360 return "DW_OP_stack_value";
12361 /* GNU extensions. */
12362 case DW_OP_GNU_push_tls_address:
12363 return "DW_OP_GNU_push_tls_address";
12364 case DW_OP_GNU_uninit:
12365 return "DW_OP_GNU_uninit";
12366 default:
12367 return def ? "OP_<unknown>" : NULL;
12368 }
12369 }
12370
12371 static char *
12372 dwarf_bool_name (unsigned mybool)
12373 {
12374 if (mybool)
12375 return "TRUE";
12376 else
12377 return "FALSE";
12378 }
12379
12380 /* Convert a DWARF type code into its string name. */
12381
12382 static char *
12383 dwarf_type_encoding_name (unsigned enc)
12384 {
12385 switch (enc)
12386 {
12387 case DW_ATE_void:
12388 return "DW_ATE_void";
12389 case DW_ATE_address:
12390 return "DW_ATE_address";
12391 case DW_ATE_boolean:
12392 return "DW_ATE_boolean";
12393 case DW_ATE_complex_float:
12394 return "DW_ATE_complex_float";
12395 case DW_ATE_float:
12396 return "DW_ATE_float";
12397 case DW_ATE_signed:
12398 return "DW_ATE_signed";
12399 case DW_ATE_signed_char:
12400 return "DW_ATE_signed_char";
12401 case DW_ATE_unsigned:
12402 return "DW_ATE_unsigned";
12403 case DW_ATE_unsigned_char:
12404 return "DW_ATE_unsigned_char";
12405 /* DWARF 3. */
12406 case DW_ATE_imaginary_float:
12407 return "DW_ATE_imaginary_float";
12408 case DW_ATE_packed_decimal:
12409 return "DW_ATE_packed_decimal";
12410 case DW_ATE_numeric_string:
12411 return "DW_ATE_numeric_string";
12412 case DW_ATE_edited:
12413 return "DW_ATE_edited";
12414 case DW_ATE_signed_fixed:
12415 return "DW_ATE_signed_fixed";
12416 case DW_ATE_unsigned_fixed:
12417 return "DW_ATE_unsigned_fixed";
12418 case DW_ATE_decimal_float:
12419 return "DW_ATE_decimal_float";
12420 /* DWARF 4. */
12421 case DW_ATE_UTF:
12422 return "DW_ATE_UTF";
12423 /* HP extensions. */
12424 case DW_ATE_HP_float80:
12425 return "DW_ATE_HP_float80";
12426 case DW_ATE_HP_complex_float80:
12427 return "DW_ATE_HP_complex_float80";
12428 case DW_ATE_HP_float128:
12429 return "DW_ATE_HP_float128";
12430 case DW_ATE_HP_complex_float128:
12431 return "DW_ATE_HP_complex_float128";
12432 case DW_ATE_HP_floathpintel:
12433 return "DW_ATE_HP_floathpintel";
12434 case DW_ATE_HP_imaginary_float80:
12435 return "DW_ATE_HP_imaginary_float80";
12436 case DW_ATE_HP_imaginary_float128:
12437 return "DW_ATE_HP_imaginary_float128";
12438 default:
12439 return "DW_ATE_<unknown>";
12440 }
12441 }
12442
12443 /* Convert a DWARF call frame info operation to its string name. */
12444
12445 #if 0
12446 static char *
12447 dwarf_cfi_name (unsigned cfi_opc)
12448 {
12449 switch (cfi_opc)
12450 {
12451 case DW_CFA_advance_loc:
12452 return "DW_CFA_advance_loc";
12453 case DW_CFA_offset:
12454 return "DW_CFA_offset";
12455 case DW_CFA_restore:
12456 return "DW_CFA_restore";
12457 case DW_CFA_nop:
12458 return "DW_CFA_nop";
12459 case DW_CFA_set_loc:
12460 return "DW_CFA_set_loc";
12461 case DW_CFA_advance_loc1:
12462 return "DW_CFA_advance_loc1";
12463 case DW_CFA_advance_loc2:
12464 return "DW_CFA_advance_loc2";
12465 case DW_CFA_advance_loc4:
12466 return "DW_CFA_advance_loc4";
12467 case DW_CFA_offset_extended:
12468 return "DW_CFA_offset_extended";
12469 case DW_CFA_restore_extended:
12470 return "DW_CFA_restore_extended";
12471 case DW_CFA_undefined:
12472 return "DW_CFA_undefined";
12473 case DW_CFA_same_value:
12474 return "DW_CFA_same_value";
12475 case DW_CFA_register:
12476 return "DW_CFA_register";
12477 case DW_CFA_remember_state:
12478 return "DW_CFA_remember_state";
12479 case DW_CFA_restore_state:
12480 return "DW_CFA_restore_state";
12481 case DW_CFA_def_cfa:
12482 return "DW_CFA_def_cfa";
12483 case DW_CFA_def_cfa_register:
12484 return "DW_CFA_def_cfa_register";
12485 case DW_CFA_def_cfa_offset:
12486 return "DW_CFA_def_cfa_offset";
12487 /* DWARF 3. */
12488 case DW_CFA_def_cfa_expression:
12489 return "DW_CFA_def_cfa_expression";
12490 case DW_CFA_expression:
12491 return "DW_CFA_expression";
12492 case DW_CFA_offset_extended_sf:
12493 return "DW_CFA_offset_extended_sf";
12494 case DW_CFA_def_cfa_sf:
12495 return "DW_CFA_def_cfa_sf";
12496 case DW_CFA_def_cfa_offset_sf:
12497 return "DW_CFA_def_cfa_offset_sf";
12498 case DW_CFA_val_offset:
12499 return "DW_CFA_val_offset";
12500 case DW_CFA_val_offset_sf:
12501 return "DW_CFA_val_offset_sf";
12502 case DW_CFA_val_expression:
12503 return "DW_CFA_val_expression";
12504 /* SGI/MIPS specific. */
12505 case DW_CFA_MIPS_advance_loc8:
12506 return "DW_CFA_MIPS_advance_loc8";
12507 /* GNU extensions. */
12508 case DW_CFA_GNU_window_save:
12509 return "DW_CFA_GNU_window_save";
12510 case DW_CFA_GNU_args_size:
12511 return "DW_CFA_GNU_args_size";
12512 case DW_CFA_GNU_negative_offset_extended:
12513 return "DW_CFA_GNU_negative_offset_extended";
12514 default:
12515 return "DW_CFA_<unknown>";
12516 }
12517 }
12518 #endif
12519
12520 static void
12521 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12522 {
12523 unsigned int i;
12524
12525 print_spaces (indent, f);
12526 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12527 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12528
12529 if (die->parent != NULL)
12530 {
12531 print_spaces (indent, f);
12532 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12533 die->parent->offset);
12534 }
12535
12536 print_spaces (indent, f);
12537 fprintf_unfiltered (f, " has children: %s\n",
12538 dwarf_bool_name (die->child != NULL));
12539
12540 print_spaces (indent, f);
12541 fprintf_unfiltered (f, " attributes:\n");
12542
12543 for (i = 0; i < die->num_attrs; ++i)
12544 {
12545 print_spaces (indent, f);
12546 fprintf_unfiltered (f, " %s (%s) ",
12547 dwarf_attr_name (die->attrs[i].name),
12548 dwarf_form_name (die->attrs[i].form));
12549
12550 switch (die->attrs[i].form)
12551 {
12552 case DW_FORM_ref_addr:
12553 case DW_FORM_addr:
12554 fprintf_unfiltered (f, "address: ");
12555 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12556 break;
12557 case DW_FORM_block2:
12558 case DW_FORM_block4:
12559 case DW_FORM_block:
12560 case DW_FORM_block1:
12561 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
12562 break;
12563 case DW_FORM_exprloc:
12564 fprintf_unfiltered (f, "expression: size %u",
12565 DW_BLOCK (&die->attrs[i])->size);
12566 break;
12567 case DW_FORM_ref1:
12568 case DW_FORM_ref2:
12569 case DW_FORM_ref4:
12570 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12571 (long) (DW_ADDR (&die->attrs[i])));
12572 break;
12573 case DW_FORM_data1:
12574 case DW_FORM_data2:
12575 case DW_FORM_data4:
12576 case DW_FORM_data8:
12577 case DW_FORM_udata:
12578 case DW_FORM_sdata:
12579 fprintf_unfiltered (f, "constant: %s",
12580 pulongest (DW_UNSND (&die->attrs[i])));
12581 break;
12582 case DW_FORM_sec_offset:
12583 fprintf_unfiltered (f, "section offset: %s",
12584 pulongest (DW_UNSND (&die->attrs[i])));
12585 break;
12586 case DW_FORM_sig8:
12587 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12588 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12589 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12590 else
12591 fprintf_unfiltered (f, "signatured type, offset: unknown");
12592 break;
12593 case DW_FORM_string:
12594 case DW_FORM_strp:
12595 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12596 DW_STRING (&die->attrs[i])
12597 ? DW_STRING (&die->attrs[i]) : "",
12598 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12599 break;
12600 case DW_FORM_flag:
12601 if (DW_UNSND (&die->attrs[i]))
12602 fprintf_unfiltered (f, "flag: TRUE");
12603 else
12604 fprintf_unfiltered (f, "flag: FALSE");
12605 break;
12606 case DW_FORM_flag_present:
12607 fprintf_unfiltered (f, "flag: TRUE");
12608 break;
12609 case DW_FORM_indirect:
12610 /* the reader will have reduced the indirect form to
12611 the "base form" so this form should not occur */
12612 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
12613 break;
12614 default:
12615 fprintf_unfiltered (f, "unsupported attribute form: %d.",
12616 die->attrs[i].form);
12617 break;
12618 }
12619 fprintf_unfiltered (f, "\n");
12620 }
12621 }
12622
12623 static void
12624 dump_die_for_error (struct die_info *die)
12625 {
12626 dump_die_shallow (gdb_stderr, 0, die);
12627 }
12628
12629 static void
12630 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
12631 {
12632 int indent = level * 4;
12633
12634 gdb_assert (die != NULL);
12635
12636 if (level >= max_level)
12637 return;
12638
12639 dump_die_shallow (f, indent, die);
12640
12641 if (die->child != NULL)
12642 {
12643 print_spaces (indent, f);
12644 fprintf_unfiltered (f, " Children:");
12645 if (level + 1 < max_level)
12646 {
12647 fprintf_unfiltered (f, "\n");
12648 dump_die_1 (f, level + 1, max_level, die->child);
12649 }
12650 else
12651 {
12652 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
12653 }
12654 }
12655
12656 if (die->sibling != NULL && level > 0)
12657 {
12658 dump_die_1 (f, level, max_level, die->sibling);
12659 }
12660 }
12661
12662 /* This is called from the pdie macro in gdbinit.in.
12663 It's not static so gcc will keep a copy callable from gdb. */
12664
12665 void
12666 dump_die (struct die_info *die, int max_level)
12667 {
12668 dump_die_1 (gdb_stdlog, 0, max_level, die);
12669 }
12670
12671 static void
12672 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
12673 {
12674 void **slot;
12675
12676 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
12677
12678 *slot = die;
12679 }
12680
12681 static int
12682 is_ref_attr (struct attribute *attr)
12683 {
12684 switch (attr->form)
12685 {
12686 case DW_FORM_ref_addr:
12687 case DW_FORM_ref1:
12688 case DW_FORM_ref2:
12689 case DW_FORM_ref4:
12690 case DW_FORM_ref8:
12691 case DW_FORM_ref_udata:
12692 return 1;
12693 default:
12694 return 0;
12695 }
12696 }
12697
12698 static unsigned int
12699 dwarf2_get_ref_die_offset (struct attribute *attr)
12700 {
12701 if (is_ref_attr (attr))
12702 return DW_ADDR (attr);
12703
12704 complaint (&symfile_complaints,
12705 _("unsupported die ref attribute form: '%s'"),
12706 dwarf_form_name (attr->form));
12707 return 0;
12708 }
12709
12710 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
12711 * the value held by the attribute is not constant. */
12712
12713 static LONGEST
12714 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
12715 {
12716 if (attr->form == DW_FORM_sdata)
12717 return DW_SND (attr);
12718 else if (attr->form == DW_FORM_udata
12719 || attr->form == DW_FORM_data1
12720 || attr->form == DW_FORM_data2
12721 || attr->form == DW_FORM_data4
12722 || attr->form == DW_FORM_data8)
12723 return DW_UNSND (attr);
12724 else
12725 {
12726 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
12727 dwarf_form_name (attr->form));
12728 return default_value;
12729 }
12730 }
12731
12732 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
12733 unit and add it to our queue.
12734 The result is non-zero if PER_CU was queued, otherwise the result is zero
12735 meaning either PER_CU is already queued or it is already loaded. */
12736
12737 static int
12738 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
12739 struct dwarf2_per_cu_data *per_cu)
12740 {
12741 /* We may arrive here during partial symbol reading, if we need full
12742 DIEs to process an unusual case (e.g. template arguments). Do
12743 not queue PER_CU, just tell our caller to load its DIEs. */
12744 if (dwarf2_per_objfile->reading_partial_symbols)
12745 {
12746 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
12747 return 1;
12748 return 0;
12749 }
12750
12751 /* Mark the dependence relation so that we don't flush PER_CU
12752 too early. */
12753 dwarf2_add_dependence (this_cu, per_cu);
12754
12755 /* If it's already on the queue, we have nothing to do. */
12756 if (per_cu->queued)
12757 return 0;
12758
12759 /* If the compilation unit is already loaded, just mark it as
12760 used. */
12761 if (per_cu->cu != NULL)
12762 {
12763 per_cu->cu->last_used = 0;
12764 return 0;
12765 }
12766
12767 /* Add it to the queue. */
12768 queue_comp_unit (per_cu, this_cu->objfile);
12769
12770 return 1;
12771 }
12772
12773 /* Follow reference or signature attribute ATTR of SRC_DIE.
12774 On entry *REF_CU is the CU of SRC_DIE.
12775 On exit *REF_CU is the CU of the result. */
12776
12777 static struct die_info *
12778 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
12779 struct dwarf2_cu **ref_cu)
12780 {
12781 struct die_info *die;
12782
12783 if (is_ref_attr (attr))
12784 die = follow_die_ref (src_die, attr, ref_cu);
12785 else if (attr->form == DW_FORM_sig8)
12786 die = follow_die_sig (src_die, attr, ref_cu);
12787 else
12788 {
12789 dump_die_for_error (src_die);
12790 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
12791 (*ref_cu)->objfile->name);
12792 }
12793
12794 return die;
12795 }
12796
12797 /* Follow reference OFFSET.
12798 On entry *REF_CU is the CU of the source die referencing OFFSET.
12799 On exit *REF_CU is the CU of the result.
12800 Returns NULL if OFFSET is invalid. */
12801
12802 static struct die_info *
12803 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
12804 {
12805 struct die_info temp_die;
12806 struct dwarf2_cu *target_cu, *cu = *ref_cu;
12807
12808 gdb_assert (cu->per_cu != NULL);
12809
12810 target_cu = cu;
12811
12812 if (cu->per_cu->from_debug_types)
12813 {
12814 /* .debug_types CUs cannot reference anything outside their CU.
12815 If they need to, they have to reference a signatured type via
12816 DW_FORM_sig8. */
12817 if (! offset_in_cu_p (&cu->header, offset))
12818 return NULL;
12819 }
12820 else if (! offset_in_cu_p (&cu->header, offset))
12821 {
12822 struct dwarf2_per_cu_data *per_cu;
12823
12824 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
12825
12826 /* If necessary, add it to the queue and load its DIEs. */
12827 if (maybe_queue_comp_unit (cu, per_cu))
12828 load_full_comp_unit (per_cu, cu->objfile);
12829
12830 target_cu = per_cu->cu;
12831 }
12832 else if (cu->dies == NULL)
12833 {
12834 /* We're loading full DIEs during partial symbol reading. */
12835 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
12836 load_full_comp_unit (cu->per_cu, cu->objfile);
12837 }
12838
12839 *ref_cu = target_cu;
12840 temp_die.offset = offset;
12841 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
12842 }
12843
12844 /* Follow reference attribute ATTR of SRC_DIE.
12845 On entry *REF_CU is the CU of SRC_DIE.
12846 On exit *REF_CU is the CU of the result. */
12847
12848 static struct die_info *
12849 follow_die_ref (struct die_info *src_die, struct attribute *attr,
12850 struct dwarf2_cu **ref_cu)
12851 {
12852 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12853 struct dwarf2_cu *cu = *ref_cu;
12854 struct die_info *die;
12855
12856 die = follow_die_offset (offset, ref_cu);
12857 if (!die)
12858 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
12859 "at 0x%x [in module %s]"),
12860 offset, src_die->offset, cu->objfile->name);
12861
12862 return die;
12863 }
12864
12865 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
12866 value is intended for DW_OP_call*. */
12867
12868 struct dwarf2_locexpr_baton
12869 dwarf2_fetch_die_location_block (unsigned int offset,
12870 struct dwarf2_per_cu_data *per_cu)
12871 {
12872 struct dwarf2_cu *cu = per_cu->cu;
12873 struct die_info *die;
12874 struct attribute *attr;
12875 struct dwarf2_locexpr_baton retval;
12876
12877 die = follow_die_offset (offset, &cu);
12878 if (!die)
12879 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
12880 offset, per_cu->cu->objfile->name);
12881
12882 attr = dwarf2_attr (die, DW_AT_location, cu);
12883 if (!attr)
12884 {
12885 /* DWARF: "If there is no such attribute, then there is no effect.". */
12886
12887 retval.data = NULL;
12888 retval.size = 0;
12889 }
12890 else
12891 {
12892 if (!attr_form_is_block (attr))
12893 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
12894 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
12895 offset, per_cu->cu->objfile->name);
12896
12897 retval.data = DW_BLOCK (attr)->data;
12898 retval.size = DW_BLOCK (attr)->size;
12899 }
12900 retval.per_cu = cu->per_cu;
12901 return retval;
12902 }
12903
12904 /* Follow the signature attribute ATTR in SRC_DIE.
12905 On entry *REF_CU is the CU of SRC_DIE.
12906 On exit *REF_CU is the CU of the result. */
12907
12908 static struct die_info *
12909 follow_die_sig (struct die_info *src_die, struct attribute *attr,
12910 struct dwarf2_cu **ref_cu)
12911 {
12912 struct objfile *objfile = (*ref_cu)->objfile;
12913 struct die_info temp_die;
12914 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12915 struct dwarf2_cu *sig_cu;
12916 struct die_info *die;
12917
12918 /* sig_type will be NULL if the signatured type is missing from
12919 the debug info. */
12920 if (sig_type == NULL)
12921 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12922 "at 0x%x [in module %s]"),
12923 src_die->offset, objfile->name);
12924
12925 /* If necessary, add it to the queue and load its DIEs. */
12926
12927 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
12928 read_signatured_type (objfile, sig_type);
12929
12930 gdb_assert (sig_type->per_cu.cu != NULL);
12931
12932 sig_cu = sig_type->per_cu.cu;
12933 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
12934 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
12935 if (die)
12936 {
12937 *ref_cu = sig_cu;
12938 return die;
12939 }
12940
12941 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
12942 "at 0x%x [in module %s]"),
12943 sig_type->type_offset, src_die->offset, objfile->name);
12944 }
12945
12946 /* Given an offset of a signatured type, return its signatured_type. */
12947
12948 static struct signatured_type *
12949 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
12950 {
12951 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
12952 unsigned int length, initial_length_size;
12953 unsigned int sig_offset;
12954 struct signatured_type find_entry, *type_sig;
12955
12956 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
12957 sig_offset = (initial_length_size
12958 + 2 /*version*/
12959 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
12960 + 1 /*address_size*/);
12961 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
12962 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
12963
12964 /* This is only used to lookup previously recorded types.
12965 If we didn't find it, it's our bug. */
12966 gdb_assert (type_sig != NULL);
12967 gdb_assert (offset == type_sig->offset);
12968
12969 return type_sig;
12970 }
12971
12972 /* Read in signatured type at OFFSET and build its CU and die(s). */
12973
12974 static void
12975 read_signatured_type_at_offset (struct objfile *objfile,
12976 unsigned int offset)
12977 {
12978 struct signatured_type *type_sig;
12979
12980 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
12981
12982 /* We have the section offset, but we need the signature to do the
12983 hash table lookup. */
12984 type_sig = lookup_signatured_type_at_offset (objfile, offset);
12985
12986 gdb_assert (type_sig->per_cu.cu == NULL);
12987
12988 read_signatured_type (objfile, type_sig);
12989
12990 gdb_assert (type_sig->per_cu.cu != NULL);
12991 }
12992
12993 /* Read in a signatured type and build its CU and DIEs. */
12994
12995 static void
12996 read_signatured_type (struct objfile *objfile,
12997 struct signatured_type *type_sig)
12998 {
12999 gdb_byte *types_ptr;
13000 struct die_reader_specs reader_specs;
13001 struct dwarf2_cu *cu;
13002 ULONGEST signature;
13003 struct cleanup *back_to, *free_cu_cleanup;
13004 struct attribute *attr;
13005
13006 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13007 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13008
13009 gdb_assert (type_sig->per_cu.cu == NULL);
13010
13011 cu = xmalloc (sizeof (struct dwarf2_cu));
13012 memset (cu, 0, sizeof (struct dwarf2_cu));
13013 obstack_init (&cu->comp_unit_obstack);
13014 cu->objfile = objfile;
13015 type_sig->per_cu.cu = cu;
13016 cu->per_cu = &type_sig->per_cu;
13017
13018 /* If an error occurs while loading, release our storage. */
13019 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13020
13021 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13022 types_ptr, objfile->obfd);
13023 gdb_assert (signature == type_sig->signature);
13024
13025 cu->die_hash
13026 = htab_create_alloc_ex (cu->header.length / 12,
13027 die_hash,
13028 die_eq,
13029 NULL,
13030 &cu->comp_unit_obstack,
13031 hashtab_obstack_allocate,
13032 dummy_obstack_deallocate);
13033
13034 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13035 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13036
13037 init_cu_die_reader (&reader_specs, cu);
13038
13039 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13040 NULL /*parent*/);
13041
13042 /* We try not to read any attributes in this function, because not
13043 all objfiles needed for references have been loaded yet, and symbol
13044 table processing isn't initialized. But we have to set the CU language,
13045 or we won't be able to build types correctly. */
13046 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
13047 if (attr)
13048 set_cu_language (DW_UNSND (attr), cu);
13049 else
13050 set_cu_language (language_minimal, cu);
13051
13052 do_cleanups (back_to);
13053
13054 /* We've successfully allocated this compilation unit. Let our caller
13055 clean it up when finished with it. */
13056 discard_cleanups (free_cu_cleanup);
13057
13058 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13059 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13060 }
13061
13062 /* Decode simple location descriptions.
13063 Given a pointer to a dwarf block that defines a location, compute
13064 the location and return the value.
13065
13066 NOTE drow/2003-11-18: This function is called in two situations
13067 now: for the address of static or global variables (partial symbols
13068 only) and for offsets into structures which are expected to be
13069 (more or less) constant. The partial symbol case should go away,
13070 and only the constant case should remain. That will let this
13071 function complain more accurately. A few special modes are allowed
13072 without complaint for global variables (for instance, global
13073 register values and thread-local values).
13074
13075 A location description containing no operations indicates that the
13076 object is optimized out. The return value is 0 for that case.
13077 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13078 callers will only want a very basic result and this can become a
13079 complaint.
13080
13081 Note that stack[0] is unused except as a default error return.
13082 Note that stack overflow is not yet handled. */
13083
13084 static CORE_ADDR
13085 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13086 {
13087 struct objfile *objfile = cu->objfile;
13088 int i;
13089 int size = blk->size;
13090 gdb_byte *data = blk->data;
13091 CORE_ADDR stack[64];
13092 int stacki;
13093 unsigned int bytes_read, unsnd;
13094 gdb_byte op;
13095
13096 i = 0;
13097 stacki = 0;
13098 stack[stacki] = 0;
13099
13100 while (i < size)
13101 {
13102 op = data[i++];
13103 switch (op)
13104 {
13105 case DW_OP_lit0:
13106 case DW_OP_lit1:
13107 case DW_OP_lit2:
13108 case DW_OP_lit3:
13109 case DW_OP_lit4:
13110 case DW_OP_lit5:
13111 case DW_OP_lit6:
13112 case DW_OP_lit7:
13113 case DW_OP_lit8:
13114 case DW_OP_lit9:
13115 case DW_OP_lit10:
13116 case DW_OP_lit11:
13117 case DW_OP_lit12:
13118 case DW_OP_lit13:
13119 case DW_OP_lit14:
13120 case DW_OP_lit15:
13121 case DW_OP_lit16:
13122 case DW_OP_lit17:
13123 case DW_OP_lit18:
13124 case DW_OP_lit19:
13125 case DW_OP_lit20:
13126 case DW_OP_lit21:
13127 case DW_OP_lit22:
13128 case DW_OP_lit23:
13129 case DW_OP_lit24:
13130 case DW_OP_lit25:
13131 case DW_OP_lit26:
13132 case DW_OP_lit27:
13133 case DW_OP_lit28:
13134 case DW_OP_lit29:
13135 case DW_OP_lit30:
13136 case DW_OP_lit31:
13137 stack[++stacki] = op - DW_OP_lit0;
13138 break;
13139
13140 case DW_OP_reg0:
13141 case DW_OP_reg1:
13142 case DW_OP_reg2:
13143 case DW_OP_reg3:
13144 case DW_OP_reg4:
13145 case DW_OP_reg5:
13146 case DW_OP_reg6:
13147 case DW_OP_reg7:
13148 case DW_OP_reg8:
13149 case DW_OP_reg9:
13150 case DW_OP_reg10:
13151 case DW_OP_reg11:
13152 case DW_OP_reg12:
13153 case DW_OP_reg13:
13154 case DW_OP_reg14:
13155 case DW_OP_reg15:
13156 case DW_OP_reg16:
13157 case DW_OP_reg17:
13158 case DW_OP_reg18:
13159 case DW_OP_reg19:
13160 case DW_OP_reg20:
13161 case DW_OP_reg21:
13162 case DW_OP_reg22:
13163 case DW_OP_reg23:
13164 case DW_OP_reg24:
13165 case DW_OP_reg25:
13166 case DW_OP_reg26:
13167 case DW_OP_reg27:
13168 case DW_OP_reg28:
13169 case DW_OP_reg29:
13170 case DW_OP_reg30:
13171 case DW_OP_reg31:
13172 stack[++stacki] = op - DW_OP_reg0;
13173 if (i < size)
13174 dwarf2_complex_location_expr_complaint ();
13175 break;
13176
13177 case DW_OP_regx:
13178 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13179 i += bytes_read;
13180 stack[++stacki] = unsnd;
13181 if (i < size)
13182 dwarf2_complex_location_expr_complaint ();
13183 break;
13184
13185 case DW_OP_addr:
13186 stack[++stacki] = read_address (objfile->obfd, &data[i],
13187 cu, &bytes_read);
13188 i += bytes_read;
13189 break;
13190
13191 case DW_OP_const1u:
13192 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13193 i += 1;
13194 break;
13195
13196 case DW_OP_const1s:
13197 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13198 i += 1;
13199 break;
13200
13201 case DW_OP_const2u:
13202 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13203 i += 2;
13204 break;
13205
13206 case DW_OP_const2s:
13207 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13208 i += 2;
13209 break;
13210
13211 case DW_OP_const4u:
13212 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13213 i += 4;
13214 break;
13215
13216 case DW_OP_const4s:
13217 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13218 i += 4;
13219 break;
13220
13221 case DW_OP_constu:
13222 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13223 &bytes_read);
13224 i += bytes_read;
13225 break;
13226
13227 case DW_OP_consts:
13228 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13229 i += bytes_read;
13230 break;
13231
13232 case DW_OP_dup:
13233 stack[stacki + 1] = stack[stacki];
13234 stacki++;
13235 break;
13236
13237 case DW_OP_plus:
13238 stack[stacki - 1] += stack[stacki];
13239 stacki--;
13240 break;
13241
13242 case DW_OP_plus_uconst:
13243 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13244 i += bytes_read;
13245 break;
13246
13247 case DW_OP_minus:
13248 stack[stacki - 1] -= stack[stacki];
13249 stacki--;
13250 break;
13251
13252 case DW_OP_deref:
13253 /* If we're not the last op, then we definitely can't encode
13254 this using GDB's address_class enum. This is valid for partial
13255 global symbols, although the variable's address will be bogus
13256 in the psymtab. */
13257 if (i < size)
13258 dwarf2_complex_location_expr_complaint ();
13259 break;
13260
13261 case DW_OP_GNU_push_tls_address:
13262 /* The top of the stack has the offset from the beginning
13263 of the thread control block at which the variable is located. */
13264 /* Nothing should follow this operator, so the top of stack would
13265 be returned. */
13266 /* This is valid for partial global symbols, but the variable's
13267 address will be bogus in the psymtab. */
13268 if (i < size)
13269 dwarf2_complex_location_expr_complaint ();
13270 break;
13271
13272 case DW_OP_GNU_uninit:
13273 break;
13274
13275 default:
13276 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13277 dwarf_stack_op_name (op, 1));
13278 return (stack[stacki]);
13279 }
13280 }
13281 return (stack[stacki]);
13282 }
13283
13284 /* memory allocation interface */
13285
13286 static struct dwarf_block *
13287 dwarf_alloc_block (struct dwarf2_cu *cu)
13288 {
13289 struct dwarf_block *blk;
13290
13291 blk = (struct dwarf_block *)
13292 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13293 return (blk);
13294 }
13295
13296 static struct abbrev_info *
13297 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13298 {
13299 struct abbrev_info *abbrev;
13300
13301 abbrev = (struct abbrev_info *)
13302 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13303 memset (abbrev, 0, sizeof (struct abbrev_info));
13304 return (abbrev);
13305 }
13306
13307 static struct die_info *
13308 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13309 {
13310 struct die_info *die;
13311 size_t size = sizeof (struct die_info);
13312
13313 if (num_attrs > 1)
13314 size += (num_attrs - 1) * sizeof (struct attribute);
13315
13316 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13317 memset (die, 0, sizeof (struct die_info));
13318 return (die);
13319 }
13320
13321 \f
13322 /* Macro support. */
13323
13324
13325 /* Return the full name of file number I in *LH's file name table.
13326 Use COMP_DIR as the name of the current directory of the
13327 compilation. The result is allocated using xmalloc; the caller is
13328 responsible for freeing it. */
13329 static char *
13330 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13331 {
13332 /* Is the file number a valid index into the line header's file name
13333 table? Remember that file numbers start with one, not zero. */
13334 if (1 <= file && file <= lh->num_file_names)
13335 {
13336 struct file_entry *fe = &lh->file_names[file - 1];
13337
13338 if (IS_ABSOLUTE_PATH (fe->name))
13339 return xstrdup (fe->name);
13340 else
13341 {
13342 const char *dir;
13343 int dir_len;
13344 char *full_name;
13345
13346 if (fe->dir_index)
13347 dir = lh->include_dirs[fe->dir_index - 1];
13348 else
13349 dir = comp_dir;
13350
13351 if (dir)
13352 {
13353 dir_len = strlen (dir);
13354 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13355 strcpy (full_name, dir);
13356 full_name[dir_len] = '/';
13357 strcpy (full_name + dir_len + 1, fe->name);
13358 return full_name;
13359 }
13360 else
13361 return xstrdup (fe->name);
13362 }
13363 }
13364 else
13365 {
13366 /* The compiler produced a bogus file number. We can at least
13367 record the macro definitions made in the file, even if we
13368 won't be able to find the file by name. */
13369 char fake_name[80];
13370
13371 sprintf (fake_name, "<bad macro file number %d>", file);
13372
13373 complaint (&symfile_complaints,
13374 _("bad file number in macro information (%d)"),
13375 file);
13376
13377 return xstrdup (fake_name);
13378 }
13379 }
13380
13381
13382 static struct macro_source_file *
13383 macro_start_file (int file, int line,
13384 struct macro_source_file *current_file,
13385 const char *comp_dir,
13386 struct line_header *lh, struct objfile *objfile)
13387 {
13388 /* The full name of this source file. */
13389 char *full_name = file_full_name (file, lh, comp_dir);
13390
13391 /* We don't create a macro table for this compilation unit
13392 at all until we actually get a filename. */
13393 if (! pending_macros)
13394 pending_macros = new_macro_table (&objfile->objfile_obstack,
13395 objfile->macro_cache);
13396
13397 if (! current_file)
13398 /* If we have no current file, then this must be the start_file
13399 directive for the compilation unit's main source file. */
13400 current_file = macro_set_main (pending_macros, full_name);
13401 else
13402 current_file = macro_include (current_file, line, full_name);
13403
13404 xfree (full_name);
13405
13406 return current_file;
13407 }
13408
13409
13410 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13411 followed by a null byte. */
13412 static char *
13413 copy_string (const char *buf, int len)
13414 {
13415 char *s = xmalloc (len + 1);
13416
13417 memcpy (s, buf, len);
13418 s[len] = '\0';
13419 return s;
13420 }
13421
13422
13423 static const char *
13424 consume_improper_spaces (const char *p, const char *body)
13425 {
13426 if (*p == ' ')
13427 {
13428 complaint (&symfile_complaints,
13429 _("macro definition contains spaces in formal argument list:\n`%s'"),
13430 body);
13431
13432 while (*p == ' ')
13433 p++;
13434 }
13435
13436 return p;
13437 }
13438
13439
13440 static void
13441 parse_macro_definition (struct macro_source_file *file, int line,
13442 const char *body)
13443 {
13444 const char *p;
13445
13446 /* The body string takes one of two forms. For object-like macro
13447 definitions, it should be:
13448
13449 <macro name> " " <definition>
13450
13451 For function-like macro definitions, it should be:
13452
13453 <macro name> "() " <definition>
13454 or
13455 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13456
13457 Spaces may appear only where explicitly indicated, and in the
13458 <definition>.
13459
13460 The Dwarf 2 spec says that an object-like macro's name is always
13461 followed by a space, but versions of GCC around March 2002 omit
13462 the space when the macro's definition is the empty string.
13463
13464 The Dwarf 2 spec says that there should be no spaces between the
13465 formal arguments in a function-like macro's formal argument list,
13466 but versions of GCC around March 2002 include spaces after the
13467 commas. */
13468
13469
13470 /* Find the extent of the macro name. The macro name is terminated
13471 by either a space or null character (for an object-like macro) or
13472 an opening paren (for a function-like macro). */
13473 for (p = body; *p; p++)
13474 if (*p == ' ' || *p == '(')
13475 break;
13476
13477 if (*p == ' ' || *p == '\0')
13478 {
13479 /* It's an object-like macro. */
13480 int name_len = p - body;
13481 char *name = copy_string (body, name_len);
13482 const char *replacement;
13483
13484 if (*p == ' ')
13485 replacement = body + name_len + 1;
13486 else
13487 {
13488 dwarf2_macro_malformed_definition_complaint (body);
13489 replacement = body + name_len;
13490 }
13491
13492 macro_define_object (file, line, name, replacement);
13493
13494 xfree (name);
13495 }
13496 else if (*p == '(')
13497 {
13498 /* It's a function-like macro. */
13499 char *name = copy_string (body, p - body);
13500 int argc = 0;
13501 int argv_size = 1;
13502 char **argv = xmalloc (argv_size * sizeof (*argv));
13503
13504 p++;
13505
13506 p = consume_improper_spaces (p, body);
13507
13508 /* Parse the formal argument list. */
13509 while (*p && *p != ')')
13510 {
13511 /* Find the extent of the current argument name. */
13512 const char *arg_start = p;
13513
13514 while (*p && *p != ',' && *p != ')' && *p != ' ')
13515 p++;
13516
13517 if (! *p || p == arg_start)
13518 dwarf2_macro_malformed_definition_complaint (body);
13519 else
13520 {
13521 /* Make sure argv has room for the new argument. */
13522 if (argc >= argv_size)
13523 {
13524 argv_size *= 2;
13525 argv = xrealloc (argv, argv_size * sizeof (*argv));
13526 }
13527
13528 argv[argc++] = copy_string (arg_start, p - arg_start);
13529 }
13530
13531 p = consume_improper_spaces (p, body);
13532
13533 /* Consume the comma, if present. */
13534 if (*p == ',')
13535 {
13536 p++;
13537
13538 p = consume_improper_spaces (p, body);
13539 }
13540 }
13541
13542 if (*p == ')')
13543 {
13544 p++;
13545
13546 if (*p == ' ')
13547 /* Perfectly formed definition, no complaints. */
13548 macro_define_function (file, line, name,
13549 argc, (const char **) argv,
13550 p + 1);
13551 else if (*p == '\0')
13552 {
13553 /* Complain, but do define it. */
13554 dwarf2_macro_malformed_definition_complaint (body);
13555 macro_define_function (file, line, name,
13556 argc, (const char **) argv,
13557 p);
13558 }
13559 else
13560 /* Just complain. */
13561 dwarf2_macro_malformed_definition_complaint (body);
13562 }
13563 else
13564 /* Just complain. */
13565 dwarf2_macro_malformed_definition_complaint (body);
13566
13567 xfree (name);
13568 {
13569 int i;
13570
13571 for (i = 0; i < argc; i++)
13572 xfree (argv[i]);
13573 }
13574 xfree (argv);
13575 }
13576 else
13577 dwarf2_macro_malformed_definition_complaint (body);
13578 }
13579
13580
13581 static void
13582 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
13583 char *comp_dir, bfd *abfd,
13584 struct dwarf2_cu *cu)
13585 {
13586 gdb_byte *mac_ptr, *mac_end;
13587 struct macro_source_file *current_file = 0;
13588 enum dwarf_macinfo_record_type macinfo_type;
13589 int at_commandline;
13590
13591 dwarf2_read_section (dwarf2_per_objfile->objfile,
13592 &dwarf2_per_objfile->macinfo);
13593 if (dwarf2_per_objfile->macinfo.buffer == NULL)
13594 {
13595 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
13596 return;
13597 }
13598
13599 /* First pass: Find the name of the base filename.
13600 This filename is needed in order to process all macros whose definition
13601 (or undefinition) comes from the command line. These macros are defined
13602 before the first DW_MACINFO_start_file entry, and yet still need to be
13603 associated to the base file.
13604
13605 To determine the base file name, we scan the macro definitions until we
13606 reach the first DW_MACINFO_start_file entry. We then initialize
13607 CURRENT_FILE accordingly so that any macro definition found before the
13608 first DW_MACINFO_start_file can still be associated to the base file. */
13609
13610 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13611 mac_end = dwarf2_per_objfile->macinfo.buffer
13612 + dwarf2_per_objfile->macinfo.size;
13613
13614 do
13615 {
13616 /* Do we at least have room for a macinfo type byte? */
13617 if (mac_ptr >= mac_end)
13618 {
13619 /* Complaint is printed during the second pass as GDB will probably
13620 stop the first pass earlier upon finding DW_MACINFO_start_file. */
13621 break;
13622 }
13623
13624 macinfo_type = read_1_byte (abfd, mac_ptr);
13625 mac_ptr++;
13626
13627 switch (macinfo_type)
13628 {
13629 /* A zero macinfo type indicates the end of the macro
13630 information. */
13631 case 0:
13632 break;
13633
13634 case DW_MACINFO_define:
13635 case DW_MACINFO_undef:
13636 /* Only skip the data by MAC_PTR. */
13637 {
13638 unsigned int bytes_read;
13639
13640 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13641 mac_ptr += bytes_read;
13642 read_direct_string (abfd, mac_ptr, &bytes_read);
13643 mac_ptr += bytes_read;
13644 }
13645 break;
13646
13647 case DW_MACINFO_start_file:
13648 {
13649 unsigned int bytes_read;
13650 int line, file;
13651
13652 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13653 mac_ptr += bytes_read;
13654 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13655 mac_ptr += bytes_read;
13656
13657 current_file = macro_start_file (file, line, current_file, comp_dir,
13658 lh, cu->objfile);
13659 }
13660 break;
13661
13662 case DW_MACINFO_end_file:
13663 /* No data to skip by MAC_PTR. */
13664 break;
13665
13666 case DW_MACINFO_vendor_ext:
13667 /* Only skip the data by MAC_PTR. */
13668 {
13669 unsigned int bytes_read;
13670
13671 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13672 mac_ptr += bytes_read;
13673 read_direct_string (abfd, mac_ptr, &bytes_read);
13674 mac_ptr += bytes_read;
13675 }
13676 break;
13677
13678 default:
13679 break;
13680 }
13681 } while (macinfo_type != 0 && current_file == NULL);
13682
13683 /* Second pass: Process all entries.
13684
13685 Use the AT_COMMAND_LINE flag to determine whether we are still processing
13686 command-line macro definitions/undefinitions. This flag is unset when we
13687 reach the first DW_MACINFO_start_file entry. */
13688
13689 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13690
13691 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
13692 GDB is still reading the definitions from command line. First
13693 DW_MACINFO_start_file will need to be ignored as it was already executed
13694 to create CURRENT_FILE for the main source holding also the command line
13695 definitions. On first met DW_MACINFO_start_file this flag is reset to
13696 normally execute all the remaining DW_MACINFO_start_file macinfos. */
13697
13698 at_commandline = 1;
13699
13700 do
13701 {
13702 /* Do we at least have room for a macinfo type byte? */
13703 if (mac_ptr >= mac_end)
13704 {
13705 dwarf2_macros_too_long_complaint ();
13706 break;
13707 }
13708
13709 macinfo_type = read_1_byte (abfd, mac_ptr);
13710 mac_ptr++;
13711
13712 switch (macinfo_type)
13713 {
13714 /* A zero macinfo type indicates the end of the macro
13715 information. */
13716 case 0:
13717 break;
13718
13719 case DW_MACINFO_define:
13720 case DW_MACINFO_undef:
13721 {
13722 unsigned int bytes_read;
13723 int line;
13724 char *body;
13725
13726 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13727 mac_ptr += bytes_read;
13728 body = read_direct_string (abfd, mac_ptr, &bytes_read);
13729 mac_ptr += bytes_read;
13730
13731 if (! current_file)
13732 {
13733 /* DWARF violation as no main source is present. */
13734 complaint (&symfile_complaints,
13735 _("debug info with no main source gives macro %s "
13736 "on line %d: %s"),
13737 macinfo_type == DW_MACINFO_define ?
13738 _("definition") :
13739 macinfo_type == DW_MACINFO_undef ?
13740 _("undefinition") :
13741 _("something-or-other"), line, body);
13742 break;
13743 }
13744 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13745 complaint (&symfile_complaints,
13746 _("debug info gives %s macro %s with %s line %d: %s"),
13747 at_commandline ? _("command-line") : _("in-file"),
13748 macinfo_type == DW_MACINFO_define ?
13749 _("definition") :
13750 macinfo_type == DW_MACINFO_undef ?
13751 _("undefinition") :
13752 _("something-or-other"),
13753 line == 0 ? _("zero") : _("non-zero"), line, body);
13754
13755 if (macinfo_type == DW_MACINFO_define)
13756 parse_macro_definition (current_file, line, body);
13757 else if (macinfo_type == DW_MACINFO_undef)
13758 macro_undef (current_file, line, body);
13759 }
13760 break;
13761
13762 case DW_MACINFO_start_file:
13763 {
13764 unsigned int bytes_read;
13765 int line, file;
13766
13767 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13768 mac_ptr += bytes_read;
13769 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13770 mac_ptr += bytes_read;
13771
13772 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13773 complaint (&symfile_complaints,
13774 _("debug info gives source %d included "
13775 "from %s at %s line %d"),
13776 file, at_commandline ? _("command-line") : _("file"),
13777 line == 0 ? _("zero") : _("non-zero"), line);
13778
13779 if (at_commandline)
13780 {
13781 /* This DW_MACINFO_start_file was executed in the pass one. */
13782 at_commandline = 0;
13783 }
13784 else
13785 current_file = macro_start_file (file, line,
13786 current_file, comp_dir,
13787 lh, cu->objfile);
13788 }
13789 break;
13790
13791 case DW_MACINFO_end_file:
13792 if (! current_file)
13793 complaint (&symfile_complaints,
13794 _("macro debug info has an unmatched `close_file' directive"));
13795 else
13796 {
13797 current_file = current_file->included_by;
13798 if (! current_file)
13799 {
13800 enum dwarf_macinfo_record_type next_type;
13801
13802 /* GCC circa March 2002 doesn't produce the zero
13803 type byte marking the end of the compilation
13804 unit. Complain if it's not there, but exit no
13805 matter what. */
13806
13807 /* Do we at least have room for a macinfo type byte? */
13808 if (mac_ptr >= mac_end)
13809 {
13810 dwarf2_macros_too_long_complaint ();
13811 return;
13812 }
13813
13814 /* We don't increment mac_ptr here, so this is just
13815 a look-ahead. */
13816 next_type = read_1_byte (abfd, mac_ptr);
13817 if (next_type != 0)
13818 complaint (&symfile_complaints,
13819 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
13820
13821 return;
13822 }
13823 }
13824 break;
13825
13826 case DW_MACINFO_vendor_ext:
13827 {
13828 unsigned int bytes_read;
13829 int constant;
13830 char *string;
13831
13832 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13833 mac_ptr += bytes_read;
13834 string = read_direct_string (abfd, mac_ptr, &bytes_read);
13835 mac_ptr += bytes_read;
13836
13837 /* We don't recognize any vendor extensions. */
13838 }
13839 break;
13840 }
13841 } while (macinfo_type != 0);
13842 }
13843
13844 /* Check if the attribute's form is a DW_FORM_block*
13845 if so return true else false. */
13846 static int
13847 attr_form_is_block (struct attribute *attr)
13848 {
13849 return (attr == NULL ? 0 :
13850 attr->form == DW_FORM_block1
13851 || attr->form == DW_FORM_block2
13852 || attr->form == DW_FORM_block4
13853 || attr->form == DW_FORM_block
13854 || attr->form == DW_FORM_exprloc);
13855 }
13856
13857 /* Return non-zero if ATTR's value is a section offset --- classes
13858 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
13859 You may use DW_UNSND (attr) to retrieve such offsets.
13860
13861 Section 7.5.4, "Attribute Encodings", explains that no attribute
13862 may have a value that belongs to more than one of these classes; it
13863 would be ambiguous if we did, because we use the same forms for all
13864 of them. */
13865 static int
13866 attr_form_is_section_offset (struct attribute *attr)
13867 {
13868 return (attr->form == DW_FORM_data4
13869 || attr->form == DW_FORM_data8
13870 || attr->form == DW_FORM_sec_offset);
13871 }
13872
13873
13874 /* Return non-zero if ATTR's value falls in the 'constant' class, or
13875 zero otherwise. When this function returns true, you can apply
13876 dwarf2_get_attr_constant_value to it.
13877
13878 However, note that for some attributes you must check
13879 attr_form_is_section_offset before using this test. DW_FORM_data4
13880 and DW_FORM_data8 are members of both the constant class, and of
13881 the classes that contain offsets into other debug sections
13882 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
13883 that, if an attribute's can be either a constant or one of the
13884 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
13885 taken as section offsets, not constants. */
13886 static int
13887 attr_form_is_constant (struct attribute *attr)
13888 {
13889 switch (attr->form)
13890 {
13891 case DW_FORM_sdata:
13892 case DW_FORM_udata:
13893 case DW_FORM_data1:
13894 case DW_FORM_data2:
13895 case DW_FORM_data4:
13896 case DW_FORM_data8:
13897 return 1;
13898 default:
13899 return 0;
13900 }
13901 }
13902
13903 static void
13904 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
13905 struct dwarf2_cu *cu)
13906 {
13907 if (attr_form_is_section_offset (attr)
13908 /* ".debug_loc" may not exist at all, or the offset may be outside
13909 the section. If so, fall through to the complaint in the
13910 other branch. */
13911 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
13912 {
13913 struct dwarf2_loclist_baton *baton;
13914
13915 baton = obstack_alloc (&cu->objfile->objfile_obstack,
13916 sizeof (struct dwarf2_loclist_baton));
13917 baton->per_cu = cu->per_cu;
13918 gdb_assert (baton->per_cu);
13919
13920 dwarf2_read_section (dwarf2_per_objfile->objfile,
13921 &dwarf2_per_objfile->loc);
13922
13923 /* We don't know how long the location list is, but make sure we
13924 don't run off the edge of the section. */
13925 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
13926 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
13927 baton->base_address = cu->base_address;
13928 if (cu->base_known == 0)
13929 complaint (&symfile_complaints,
13930 _("Location list used without specifying the CU base address."));
13931
13932 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
13933 SYMBOL_LOCATION_BATON (sym) = baton;
13934 }
13935 else
13936 {
13937 struct dwarf2_locexpr_baton *baton;
13938
13939 baton = obstack_alloc (&cu->objfile->objfile_obstack,
13940 sizeof (struct dwarf2_locexpr_baton));
13941 baton->per_cu = cu->per_cu;
13942 gdb_assert (baton->per_cu);
13943
13944 if (attr_form_is_block (attr))
13945 {
13946 /* Note that we're just copying the block's data pointer
13947 here, not the actual data. We're still pointing into the
13948 info_buffer for SYM's objfile; right now we never release
13949 that buffer, but when we do clean up properly this may
13950 need to change. */
13951 baton->size = DW_BLOCK (attr)->size;
13952 baton->data = DW_BLOCK (attr)->data;
13953 }
13954 else
13955 {
13956 dwarf2_invalid_attrib_class_complaint ("location description",
13957 SYMBOL_NATURAL_NAME (sym));
13958 baton->size = 0;
13959 baton->data = NULL;
13960 }
13961
13962 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
13963 SYMBOL_LOCATION_BATON (sym) = baton;
13964 }
13965 }
13966
13967 /* Return the OBJFILE associated with the compilation unit CU. If CU
13968 came from a separate debuginfo file, then the master objfile is
13969 returned. */
13970
13971 struct objfile *
13972 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
13973 {
13974 struct objfile *objfile = per_cu->objfile;
13975
13976 /* Return the master objfile, so that we can report and look up the
13977 correct file containing this variable. */
13978 if (objfile->separate_debug_objfile_backlink)
13979 objfile = objfile->separate_debug_objfile_backlink;
13980
13981 return objfile;
13982 }
13983
13984 /* Return the address size given in the compilation unit header for CU. */
13985
13986 CORE_ADDR
13987 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
13988 {
13989 if (per_cu->cu)
13990 return per_cu->cu->header.addr_size;
13991 else
13992 {
13993 /* If the CU is not currently read in, we re-read its header. */
13994 struct objfile *objfile = per_cu->objfile;
13995 struct dwarf2_per_objfile *per_objfile
13996 = objfile_data (objfile, dwarf2_objfile_data_key);
13997 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
13998 struct comp_unit_head cu_header;
13999
14000 memset (&cu_header, 0, sizeof cu_header);
14001 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14002 return cu_header.addr_size;
14003 }
14004 }
14005
14006 /* Return the offset size given in the compilation unit header for CU. */
14007
14008 int
14009 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14010 {
14011 if (per_cu->cu)
14012 return per_cu->cu->header.offset_size;
14013 else
14014 {
14015 /* If the CU is not currently read in, we re-read its header. */
14016 struct objfile *objfile = per_cu->objfile;
14017 struct dwarf2_per_objfile *per_objfile
14018 = objfile_data (objfile, dwarf2_objfile_data_key);
14019 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14020 struct comp_unit_head cu_header;
14021
14022 memset (&cu_header, 0, sizeof cu_header);
14023 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14024 return cu_header.offset_size;
14025 }
14026 }
14027
14028 /* Return the text offset of the CU. The returned offset comes from
14029 this CU's objfile. If this objfile came from a separate debuginfo
14030 file, then the offset may be different from the corresponding
14031 offset in the parent objfile. */
14032
14033 CORE_ADDR
14034 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14035 {
14036 struct objfile *objfile = per_cu->objfile;
14037
14038 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14039 }
14040
14041 /* Locate the .debug_info compilation unit from CU's objfile which contains
14042 the DIE at OFFSET. Raises an error on failure. */
14043
14044 static struct dwarf2_per_cu_data *
14045 dwarf2_find_containing_comp_unit (unsigned int offset,
14046 struct objfile *objfile)
14047 {
14048 struct dwarf2_per_cu_data *this_cu;
14049 int low, high;
14050
14051 low = 0;
14052 high = dwarf2_per_objfile->n_comp_units - 1;
14053 while (high > low)
14054 {
14055 int mid = low + (high - low) / 2;
14056
14057 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14058 high = mid;
14059 else
14060 low = mid + 1;
14061 }
14062 gdb_assert (low == high);
14063 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14064 {
14065 if (low == 0)
14066 error (_("Dwarf Error: could not find partial DIE containing "
14067 "offset 0x%lx [in module %s]"),
14068 (long) offset, bfd_get_filename (objfile->obfd));
14069
14070 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14071 return dwarf2_per_objfile->all_comp_units[low-1];
14072 }
14073 else
14074 {
14075 this_cu = dwarf2_per_objfile->all_comp_units[low];
14076 if (low == dwarf2_per_objfile->n_comp_units - 1
14077 && offset >= this_cu->offset + this_cu->length)
14078 error (_("invalid dwarf2 offset %u"), offset);
14079 gdb_assert (offset < this_cu->offset + this_cu->length);
14080 return this_cu;
14081 }
14082 }
14083
14084 /* Locate the compilation unit from OBJFILE which is located at exactly
14085 OFFSET. Raises an error on failure. */
14086
14087 static struct dwarf2_per_cu_data *
14088 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14089 {
14090 struct dwarf2_per_cu_data *this_cu;
14091
14092 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14093 if (this_cu->offset != offset)
14094 error (_("no compilation unit with offset %u."), offset);
14095 return this_cu;
14096 }
14097
14098 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
14099
14100 static struct dwarf2_cu *
14101 alloc_one_comp_unit (struct objfile *objfile)
14102 {
14103 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
14104 cu->objfile = objfile;
14105 obstack_init (&cu->comp_unit_obstack);
14106 return cu;
14107 }
14108
14109 /* Release one cached compilation unit, CU. We unlink it from the tree
14110 of compilation units, but we don't remove it from the read_in_chain;
14111 the caller is responsible for that.
14112 NOTE: DATA is a void * because this function is also used as a
14113 cleanup routine. */
14114
14115 static void
14116 free_one_comp_unit (void *data)
14117 {
14118 struct dwarf2_cu *cu = data;
14119
14120 if (cu->per_cu != NULL)
14121 cu->per_cu->cu = NULL;
14122 cu->per_cu = NULL;
14123
14124 obstack_free (&cu->comp_unit_obstack, NULL);
14125
14126 xfree (cu);
14127 }
14128
14129 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14130 when we're finished with it. We can't free the pointer itself, but be
14131 sure to unlink it from the cache. Also release any associated storage
14132 and perform cache maintenance.
14133
14134 Only used during partial symbol parsing. */
14135
14136 static void
14137 free_stack_comp_unit (void *data)
14138 {
14139 struct dwarf2_cu *cu = data;
14140
14141 obstack_free (&cu->comp_unit_obstack, NULL);
14142 cu->partial_dies = NULL;
14143
14144 if (cu->per_cu != NULL)
14145 {
14146 /* This compilation unit is on the stack in our caller, so we
14147 should not xfree it. Just unlink it. */
14148 cu->per_cu->cu = NULL;
14149 cu->per_cu = NULL;
14150
14151 /* If we had a per-cu pointer, then we may have other compilation
14152 units loaded, so age them now. */
14153 age_cached_comp_units ();
14154 }
14155 }
14156
14157 /* Free all cached compilation units. */
14158
14159 static void
14160 free_cached_comp_units (void *data)
14161 {
14162 struct dwarf2_per_cu_data *per_cu, **last_chain;
14163
14164 per_cu = dwarf2_per_objfile->read_in_chain;
14165 last_chain = &dwarf2_per_objfile->read_in_chain;
14166 while (per_cu != NULL)
14167 {
14168 struct dwarf2_per_cu_data *next_cu;
14169
14170 next_cu = per_cu->cu->read_in_chain;
14171
14172 free_one_comp_unit (per_cu->cu);
14173 *last_chain = next_cu;
14174
14175 per_cu = next_cu;
14176 }
14177 }
14178
14179 /* Increase the age counter on each cached compilation unit, and free
14180 any that are too old. */
14181
14182 static void
14183 age_cached_comp_units (void)
14184 {
14185 struct dwarf2_per_cu_data *per_cu, **last_chain;
14186
14187 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14188 per_cu = dwarf2_per_objfile->read_in_chain;
14189 while (per_cu != NULL)
14190 {
14191 per_cu->cu->last_used ++;
14192 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14193 dwarf2_mark (per_cu->cu);
14194 per_cu = per_cu->cu->read_in_chain;
14195 }
14196
14197 per_cu = dwarf2_per_objfile->read_in_chain;
14198 last_chain = &dwarf2_per_objfile->read_in_chain;
14199 while (per_cu != NULL)
14200 {
14201 struct dwarf2_per_cu_data *next_cu;
14202
14203 next_cu = per_cu->cu->read_in_chain;
14204
14205 if (!per_cu->cu->mark)
14206 {
14207 free_one_comp_unit (per_cu->cu);
14208 *last_chain = next_cu;
14209 }
14210 else
14211 last_chain = &per_cu->cu->read_in_chain;
14212
14213 per_cu = next_cu;
14214 }
14215 }
14216
14217 /* Remove a single compilation unit from the cache. */
14218
14219 static void
14220 free_one_cached_comp_unit (void *target_cu)
14221 {
14222 struct dwarf2_per_cu_data *per_cu, **last_chain;
14223
14224 per_cu = dwarf2_per_objfile->read_in_chain;
14225 last_chain = &dwarf2_per_objfile->read_in_chain;
14226 while (per_cu != NULL)
14227 {
14228 struct dwarf2_per_cu_data *next_cu;
14229
14230 next_cu = per_cu->cu->read_in_chain;
14231
14232 if (per_cu->cu == target_cu)
14233 {
14234 free_one_comp_unit (per_cu->cu);
14235 *last_chain = next_cu;
14236 break;
14237 }
14238 else
14239 last_chain = &per_cu->cu->read_in_chain;
14240
14241 per_cu = next_cu;
14242 }
14243 }
14244
14245 /* Release all extra memory associated with OBJFILE. */
14246
14247 void
14248 dwarf2_free_objfile (struct objfile *objfile)
14249 {
14250 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14251
14252 if (dwarf2_per_objfile == NULL)
14253 return;
14254
14255 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14256 free_cached_comp_units (NULL);
14257
14258 if (dwarf2_per_objfile->using_index)
14259 {
14260 int i;
14261
14262 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14263 {
14264 int j;
14265 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
14266
14267 if (!cu->v.quick->lines)
14268 continue;
14269
14270 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
14271 {
14272 if (cu->v.quick->file_names)
14273 xfree ((void *) cu->v.quick->file_names[j]);
14274 if (cu->v.quick->full_names)
14275 xfree ((void *) cu->v.quick->full_names[j]);
14276 }
14277
14278 free_line_header (cu->v.quick->lines);
14279 }
14280 }
14281
14282 /* Everything else should be on the objfile obstack. */
14283 }
14284
14285 /* A pair of DIE offset and GDB type pointer. We store these
14286 in a hash table separate from the DIEs, and preserve them
14287 when the DIEs are flushed out of cache. */
14288
14289 struct dwarf2_offset_and_type
14290 {
14291 unsigned int offset;
14292 struct type *type;
14293 };
14294
14295 /* Hash function for a dwarf2_offset_and_type. */
14296
14297 static hashval_t
14298 offset_and_type_hash (const void *item)
14299 {
14300 const struct dwarf2_offset_and_type *ofs = item;
14301
14302 return ofs->offset;
14303 }
14304
14305 /* Equality function for a dwarf2_offset_and_type. */
14306
14307 static int
14308 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14309 {
14310 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14311 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14312
14313 return ofs_lhs->offset == ofs_rhs->offset;
14314 }
14315
14316 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14317 table if necessary. For convenience, return TYPE.
14318
14319 The DIEs reading must have careful ordering to:
14320 * Not cause infite loops trying to read in DIEs as a prerequisite for
14321 reading current DIE.
14322 * Not trying to dereference contents of still incompletely read in types
14323 while reading in other DIEs.
14324 * Enable referencing still incompletely read in types just by a pointer to
14325 the type without accessing its fields.
14326
14327 Therefore caller should follow these rules:
14328 * Try to fetch any prerequisite types we may need to build this DIE type
14329 before building the type and calling set_die_type.
14330 * After building type call set_die_type for current DIE as soon as
14331 possible before fetching more types to complete the current type.
14332 * Make the type as complete as possible before fetching more types. */
14333
14334 static struct type *
14335 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14336 {
14337 struct dwarf2_offset_and_type **slot, ofs;
14338 struct objfile *objfile = cu->objfile;
14339 htab_t *type_hash_ptr;
14340
14341 /* For Ada types, make sure that the gnat-specific data is always
14342 initialized (if not already set). There are a few types where
14343 we should not be doing so, because the type-specific area is
14344 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14345 where the type-specific area is used to store the floatformat).
14346 But this is not a problem, because the gnat-specific information
14347 is actually not needed for these types. */
14348 if (need_gnat_info (cu)
14349 && TYPE_CODE (type) != TYPE_CODE_FUNC
14350 && TYPE_CODE (type) != TYPE_CODE_FLT
14351 && !HAVE_GNAT_AUX_INFO (type))
14352 INIT_GNAT_SPECIFIC (type);
14353
14354 if (cu->per_cu->from_debug_types)
14355 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14356 else
14357 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14358
14359 if (*type_hash_ptr == NULL)
14360 {
14361 *type_hash_ptr
14362 = htab_create_alloc_ex (127,
14363 offset_and_type_hash,
14364 offset_and_type_eq,
14365 NULL,
14366 &objfile->objfile_obstack,
14367 hashtab_obstack_allocate,
14368 dummy_obstack_deallocate);
14369 }
14370
14371 ofs.offset = die->offset;
14372 ofs.type = type;
14373 slot = (struct dwarf2_offset_and_type **)
14374 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14375 if (*slot)
14376 complaint (&symfile_complaints,
14377 _("A problem internal to GDB: DIE 0x%x has type already set"),
14378 die->offset);
14379 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14380 **slot = ofs;
14381 return type;
14382 }
14383
14384 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14385 table, or return NULL if the die does not have a saved type. */
14386
14387 static struct type *
14388 get_die_type_at_offset (unsigned int offset,
14389 struct dwarf2_per_cu_data *per_cu)
14390 {
14391 struct dwarf2_offset_and_type *slot, ofs;
14392 htab_t type_hash;
14393
14394 if (per_cu->from_debug_types)
14395 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14396 else
14397 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14398 if (type_hash == NULL)
14399 return NULL;
14400
14401 ofs.offset = offset;
14402 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14403 if (slot)
14404 return slot->type;
14405 else
14406 return NULL;
14407 }
14408
14409 /* Look up the type for DIE in the appropriate type_hash table,
14410 or return NULL if DIE does not have a saved type. */
14411
14412 static struct type *
14413 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14414 {
14415 return get_die_type_at_offset (die->offset, cu->per_cu);
14416 }
14417
14418 /* Add a dependence relationship from CU to REF_PER_CU. */
14419
14420 static void
14421 dwarf2_add_dependence (struct dwarf2_cu *cu,
14422 struct dwarf2_per_cu_data *ref_per_cu)
14423 {
14424 void **slot;
14425
14426 if (cu->dependencies == NULL)
14427 cu->dependencies
14428 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14429 NULL, &cu->comp_unit_obstack,
14430 hashtab_obstack_allocate,
14431 dummy_obstack_deallocate);
14432
14433 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14434 if (*slot == NULL)
14435 *slot = ref_per_cu;
14436 }
14437
14438 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14439 Set the mark field in every compilation unit in the
14440 cache that we must keep because we are keeping CU. */
14441
14442 static int
14443 dwarf2_mark_helper (void **slot, void *data)
14444 {
14445 struct dwarf2_per_cu_data *per_cu;
14446
14447 per_cu = (struct dwarf2_per_cu_data *) *slot;
14448 if (per_cu->cu->mark)
14449 return 1;
14450 per_cu->cu->mark = 1;
14451
14452 if (per_cu->cu->dependencies != NULL)
14453 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14454
14455 return 1;
14456 }
14457
14458 /* Set the mark field in CU and in every other compilation unit in the
14459 cache that we must keep because we are keeping CU. */
14460
14461 static void
14462 dwarf2_mark (struct dwarf2_cu *cu)
14463 {
14464 if (cu->mark)
14465 return;
14466 cu->mark = 1;
14467 if (cu->dependencies != NULL)
14468 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14469 }
14470
14471 static void
14472 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14473 {
14474 while (per_cu)
14475 {
14476 per_cu->cu->mark = 0;
14477 per_cu = per_cu->cu->read_in_chain;
14478 }
14479 }
14480
14481 /* Trivial hash function for partial_die_info: the hash value of a DIE
14482 is its offset in .debug_info for this objfile. */
14483
14484 static hashval_t
14485 partial_die_hash (const void *item)
14486 {
14487 const struct partial_die_info *part_die = item;
14488
14489 return part_die->offset;
14490 }
14491
14492 /* Trivial comparison function for partial_die_info structures: two DIEs
14493 are equal if they have the same offset. */
14494
14495 static int
14496 partial_die_eq (const void *item_lhs, const void *item_rhs)
14497 {
14498 const struct partial_die_info *part_die_lhs = item_lhs;
14499 const struct partial_die_info *part_die_rhs = item_rhs;
14500
14501 return part_die_lhs->offset == part_die_rhs->offset;
14502 }
14503
14504 static struct cmd_list_element *set_dwarf2_cmdlist;
14505 static struct cmd_list_element *show_dwarf2_cmdlist;
14506
14507 static void
14508 set_dwarf2_cmd (char *args, int from_tty)
14509 {
14510 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14511 }
14512
14513 static void
14514 show_dwarf2_cmd (char *args, int from_tty)
14515 {
14516 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14517 }
14518
14519 /* If section described by INFO was mmapped, munmap it now. */
14520
14521 static void
14522 munmap_section_buffer (struct dwarf2_section_info *info)
14523 {
14524 if (info->was_mmapped)
14525 {
14526 #ifdef HAVE_MMAP
14527 intptr_t begin = (intptr_t) info->buffer;
14528 intptr_t map_begin = begin & ~(pagesize - 1);
14529 size_t map_length = info->size + begin - map_begin;
14530
14531 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14532 #else
14533 /* Without HAVE_MMAP, we should never be here to begin with. */
14534 gdb_assert_not_reached ("no mmap support");
14535 #endif
14536 }
14537 }
14538
14539 /* munmap debug sections for OBJFILE, if necessary. */
14540
14541 static void
14542 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14543 {
14544 struct dwarf2_per_objfile *data = d;
14545
14546 munmap_section_buffer (&data->info);
14547 munmap_section_buffer (&data->abbrev);
14548 munmap_section_buffer (&data->line);
14549 munmap_section_buffer (&data->str);
14550 munmap_section_buffer (&data->macinfo);
14551 munmap_section_buffer (&data->ranges);
14552 munmap_section_buffer (&data->loc);
14553 munmap_section_buffer (&data->frame);
14554 munmap_section_buffer (&data->eh_frame);
14555 munmap_section_buffer (&data->gdb_index);
14556 }
14557
14558 \f
14559
14560 /* The contents of the hash table we create when building the string
14561 table. */
14562 struct strtab_entry
14563 {
14564 offset_type offset;
14565 const char *str;
14566 };
14567
14568 /* Hash function for a strtab_entry. */
14569 static hashval_t
14570 hash_strtab_entry (const void *e)
14571 {
14572 const struct strtab_entry *entry = e;
14573 return mapped_index_string_hash (entry->str);
14574 }
14575
14576 /* Equality function for a strtab_entry. */
14577 static int
14578 eq_strtab_entry (const void *a, const void *b)
14579 {
14580 const struct strtab_entry *ea = a;
14581 const struct strtab_entry *eb = b;
14582 return !strcmp (ea->str, eb->str);
14583 }
14584
14585 /* Create a strtab_entry hash table. */
14586 static htab_t
14587 create_strtab (void)
14588 {
14589 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
14590 xfree, xcalloc, xfree);
14591 }
14592
14593 /* Add a string to the constant pool. Return the string's offset in
14594 host order. */
14595 static offset_type
14596 add_string (htab_t table, struct obstack *cpool, const char *str)
14597 {
14598 void **slot;
14599 struct strtab_entry entry;
14600 struct strtab_entry *result;
14601
14602 entry.str = str;
14603 slot = htab_find_slot (table, &entry, INSERT);
14604 if (*slot)
14605 result = *slot;
14606 else
14607 {
14608 result = XNEW (struct strtab_entry);
14609 result->offset = obstack_object_size (cpool);
14610 result->str = str;
14611 obstack_grow_str0 (cpool, str);
14612 *slot = result;
14613 }
14614 return result->offset;
14615 }
14616
14617 /* An entry in the symbol table. */
14618 struct symtab_index_entry
14619 {
14620 /* The name of the symbol. */
14621 const char *name;
14622 /* The offset of the name in the constant pool. */
14623 offset_type index_offset;
14624 /* A sorted vector of the indices of all the CUs that hold an object
14625 of this name. */
14626 VEC (offset_type) *cu_indices;
14627 };
14628
14629 /* The symbol table. This is a power-of-2-sized hash table. */
14630 struct mapped_symtab
14631 {
14632 offset_type n_elements;
14633 offset_type size;
14634 struct symtab_index_entry **data;
14635 };
14636
14637 /* Hash function for a symtab_index_entry. */
14638 static hashval_t
14639 hash_symtab_entry (const void *e)
14640 {
14641 const struct symtab_index_entry *entry = e;
14642 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
14643 sizeof (offset_type) * VEC_length (offset_type,
14644 entry->cu_indices),
14645 0);
14646 }
14647
14648 /* Equality function for a symtab_index_entry. */
14649 static int
14650 eq_symtab_entry (const void *a, const void *b)
14651 {
14652 const struct symtab_index_entry *ea = a;
14653 const struct symtab_index_entry *eb = b;
14654 int len = VEC_length (offset_type, ea->cu_indices);
14655 if (len != VEC_length (offset_type, eb->cu_indices))
14656 return 0;
14657 return !memcmp (VEC_address (offset_type, ea->cu_indices),
14658 VEC_address (offset_type, eb->cu_indices),
14659 sizeof (offset_type) * len);
14660 }
14661
14662 /* Destroy a symtab_index_entry. */
14663 static void
14664 delete_symtab_entry (void *p)
14665 {
14666 struct symtab_index_entry *entry = p;
14667 VEC_free (offset_type, entry->cu_indices);
14668 xfree (entry);
14669 }
14670
14671 /* Create a hash table holding symtab_index_entry objects. */
14672 static htab_t
14673 create_index_table (void)
14674 {
14675 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
14676 delete_symtab_entry, xcalloc, xfree);
14677 }
14678
14679 /* Create a new mapped symtab object. */
14680 static struct mapped_symtab *
14681 create_mapped_symtab (void)
14682 {
14683 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
14684 symtab->n_elements = 0;
14685 symtab->size = 1024;
14686 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14687 return symtab;
14688 }
14689
14690 /* Destroy a mapped_symtab. */
14691 static void
14692 cleanup_mapped_symtab (void *p)
14693 {
14694 struct mapped_symtab *symtab = p;
14695 /* The contents of the array are freed when the other hash table is
14696 destroyed. */
14697 xfree (symtab->data);
14698 xfree (symtab);
14699 }
14700
14701 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
14702 the slot. */
14703 static struct symtab_index_entry **
14704 find_slot (struct mapped_symtab *symtab, const char *name)
14705 {
14706 offset_type index, step, hash = mapped_index_string_hash (name);
14707
14708 index = hash & (symtab->size - 1);
14709 step = ((hash * 17) & (symtab->size - 1)) | 1;
14710
14711 for (;;)
14712 {
14713 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
14714 return &symtab->data[index];
14715 index = (index + step) & (symtab->size - 1);
14716 }
14717 }
14718
14719 /* Expand SYMTAB's hash table. */
14720 static void
14721 hash_expand (struct mapped_symtab *symtab)
14722 {
14723 offset_type old_size = symtab->size;
14724 offset_type i;
14725 struct symtab_index_entry **old_entries = symtab->data;
14726
14727 symtab->size *= 2;
14728 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14729
14730 for (i = 0; i < old_size; ++i)
14731 {
14732 if (old_entries[i])
14733 {
14734 struct symtab_index_entry **slot = find_slot (symtab,
14735 old_entries[i]->name);
14736 *slot = old_entries[i];
14737 }
14738 }
14739
14740 xfree (old_entries);
14741 }
14742
14743 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
14744 is the index of the CU in which the symbol appears. */
14745 static void
14746 add_index_entry (struct mapped_symtab *symtab, const char *name,
14747 offset_type cu_index)
14748 {
14749 struct symtab_index_entry **slot;
14750
14751 ++symtab->n_elements;
14752 if (4 * symtab->n_elements / 3 >= symtab->size)
14753 hash_expand (symtab);
14754
14755 slot = find_slot (symtab, name);
14756 if (!*slot)
14757 {
14758 *slot = XNEW (struct symtab_index_entry);
14759 (*slot)->name = name;
14760 (*slot)->cu_indices = NULL;
14761 }
14762 /* Don't push an index twice. Due to how we add entries we only
14763 have to check the last one. */
14764 if (VEC_empty (offset_type, (*slot)->cu_indices)
14765 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
14766 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
14767 }
14768
14769 /* Add a vector of indices to the constant pool. */
14770 static offset_type
14771 add_indices_to_cpool (htab_t index_table, struct obstack *cpool,
14772 struct symtab_index_entry *entry)
14773 {
14774 void **slot;
14775
14776 slot = htab_find_slot (index_table, entry, INSERT);
14777 if (!*slot)
14778 {
14779 offset_type len = VEC_length (offset_type, entry->cu_indices);
14780 offset_type val = MAYBE_SWAP (len);
14781 offset_type iter;
14782 int i;
14783
14784 *slot = entry;
14785 entry->index_offset = obstack_object_size (cpool);
14786
14787 obstack_grow (cpool, &val, sizeof (val));
14788 for (i = 0;
14789 VEC_iterate (offset_type, entry->cu_indices, i, iter);
14790 ++i)
14791 {
14792 val = MAYBE_SWAP (iter);
14793 obstack_grow (cpool, &val, sizeof (val));
14794 }
14795 }
14796 else
14797 {
14798 struct symtab_index_entry *old_entry = *slot;
14799 entry->index_offset = old_entry->index_offset;
14800 entry = old_entry;
14801 }
14802 return entry->index_offset;
14803 }
14804
14805 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
14806 constant pool entries going into the obstack CPOOL. */
14807 static void
14808 write_hash_table (struct mapped_symtab *symtab,
14809 struct obstack *output, struct obstack *cpool)
14810 {
14811 offset_type i;
14812 htab_t index_table;
14813 htab_t str_table;
14814
14815 index_table = create_index_table ();
14816 str_table = create_strtab ();
14817 /* We add all the index vectors to the constant pool first, to
14818 ensure alignment is ok. */
14819 for (i = 0; i < symtab->size; ++i)
14820 {
14821 if (symtab->data[i])
14822 add_indices_to_cpool (index_table, cpool, symtab->data[i]);
14823 }
14824
14825 /* Now write out the hash table. */
14826 for (i = 0; i < symtab->size; ++i)
14827 {
14828 offset_type str_off, vec_off;
14829
14830 if (symtab->data[i])
14831 {
14832 str_off = add_string (str_table, cpool, symtab->data[i]->name);
14833 vec_off = symtab->data[i]->index_offset;
14834 }
14835 else
14836 {
14837 /* While 0 is a valid constant pool index, it is not valid
14838 to have 0 for both offsets. */
14839 str_off = 0;
14840 vec_off = 0;
14841 }
14842
14843 str_off = MAYBE_SWAP (str_off);
14844 vec_off = MAYBE_SWAP (vec_off);
14845
14846 obstack_grow (output, &str_off, sizeof (str_off));
14847 obstack_grow (output, &vec_off, sizeof (vec_off));
14848 }
14849
14850 htab_delete (str_table);
14851 htab_delete (index_table);
14852 }
14853
14854 /* Write an address entry to ADDR_OBSTACK. The addresses are taken
14855 from PST; CU_INDEX is the index of the CU in the vector of all
14856 CUs. */
14857 static void
14858 add_address_entry (struct objfile *objfile,
14859 struct obstack *addr_obstack, struct partial_symtab *pst,
14860 unsigned int cu_index)
14861 {
14862 offset_type offset;
14863 char addr[8];
14864 CORE_ADDR baseaddr;
14865
14866 /* Don't bother recording empty ranges. */
14867 if (pst->textlow == pst->texthigh)
14868 return;
14869
14870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14871
14872 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
14873 obstack_grow (addr_obstack, addr, 8);
14874 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
14875 obstack_grow (addr_obstack, addr, 8);
14876 offset = MAYBE_SWAP (cu_index);
14877 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
14878 }
14879
14880 /* Add a list of partial symbols to SYMTAB. */
14881 static void
14882 write_psymbols (struct mapped_symtab *symtab,
14883 struct partial_symbol **psymp,
14884 int count,
14885 offset_type cu_index)
14886 {
14887 for (; count-- > 0; ++psymp)
14888 {
14889 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
14890 error (_("Ada is not currently supported by the index"));
14891 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
14892 }
14893 }
14894
14895 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
14896 exception if there is an error. */
14897 static void
14898 write_obstack (FILE *file, struct obstack *obstack)
14899 {
14900 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
14901 file)
14902 != obstack_object_size (obstack))
14903 error (_("couldn't data write to file"));
14904 }
14905
14906 /* Unlink a file if the argument is not NULL. */
14907 static void
14908 unlink_if_set (void *p)
14909 {
14910 char **filename = p;
14911 if (*filename)
14912 unlink (*filename);
14913 }
14914
14915 /* A helper struct used when iterating over debug_types. */
14916 struct signatured_type_index_data
14917 {
14918 struct objfile *objfile;
14919 struct mapped_symtab *symtab;
14920 struct obstack *types_list;
14921 int cu_index;
14922 };
14923
14924 /* A helper function that writes a single signatured_type to an
14925 obstack. */
14926 static int
14927 write_one_signatured_type (void **slot, void *d)
14928 {
14929 struct signatured_type_index_data *info = d;
14930 struct signatured_type *entry = (struct signatured_type *) *slot;
14931 struct dwarf2_per_cu_data *cu = &entry->per_cu;
14932 struct partial_symtab *psymtab = cu->v.psymtab;
14933 gdb_byte val[8];
14934
14935 write_psymbols (info->symtab,
14936 info->objfile->global_psymbols.list + psymtab->globals_offset,
14937 psymtab->n_global_syms, info->cu_index);
14938 write_psymbols (info->symtab,
14939 info->objfile->static_psymbols.list + psymtab->statics_offset,
14940 psymtab->n_static_syms, info->cu_index);
14941
14942 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
14943 obstack_grow (info->types_list, val, 8);
14944 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
14945 obstack_grow (info->types_list, val, 8);
14946 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
14947 obstack_grow (info->types_list, val, 8);
14948
14949 ++info->cu_index;
14950
14951 return 1;
14952 }
14953
14954 /* Create an index file for OBJFILE in the directory DIR. */
14955 static void
14956 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
14957 {
14958 struct cleanup *cleanup;
14959 char *filename, *cleanup_filename;
14960 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
14961 struct obstack cu_list, types_cu_list;
14962 int i;
14963 FILE *out_file;
14964 struct mapped_symtab *symtab;
14965 offset_type val, size_of_contents, total_len;
14966 struct stat st;
14967 char buf[8];
14968
14969 if (!objfile->psymtabs)
14970 return;
14971 if (dwarf2_per_objfile->using_index)
14972 error (_("Cannot use an index to create the index"));
14973
14974 if (stat (objfile->name, &st) < 0)
14975 perror_with_name (_("Could not stat"));
14976
14977 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
14978 INDEX_SUFFIX, (char *) NULL);
14979 cleanup = make_cleanup (xfree, filename);
14980
14981 out_file = fopen (filename, "wb");
14982 if (!out_file)
14983 error (_("Can't open `%s' for writing"), filename);
14984
14985 cleanup_filename = filename;
14986 make_cleanup (unlink_if_set, &cleanup_filename);
14987
14988 symtab = create_mapped_symtab ();
14989 make_cleanup (cleanup_mapped_symtab, symtab);
14990
14991 obstack_init (&addr_obstack);
14992 make_cleanup_obstack_free (&addr_obstack);
14993
14994 obstack_init (&cu_list);
14995 make_cleanup_obstack_free (&cu_list);
14996
14997 obstack_init (&types_cu_list);
14998 make_cleanup_obstack_free (&types_cu_list);
14999
15000 /* The list is already sorted, so we don't need to do additional
15001 work here. Also, the debug_types entries do not appear in
15002 all_comp_units, but only in their own hash table. */
15003 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15004 {
15005 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
15006 struct partial_symtab *psymtab = cu->v.psymtab;
15007 gdb_byte val[8];
15008
15009 write_psymbols (symtab,
15010 objfile->global_psymbols.list + psymtab->globals_offset,
15011 psymtab->n_global_syms, i);
15012 write_psymbols (symtab,
15013 objfile->static_psymbols.list + psymtab->statics_offset,
15014 psymtab->n_static_syms, i);
15015
15016 add_address_entry (objfile, &addr_obstack, psymtab, i);
15017
15018 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, cu->offset);
15019 obstack_grow (&cu_list, val, 8);
15020 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, cu->length);
15021 obstack_grow (&cu_list, val, 8);
15022 }
15023
15024 /* Write out the .debug_type entries, if any. */
15025 if (dwarf2_per_objfile->signatured_types)
15026 {
15027 struct signatured_type_index_data sig_data;
15028
15029 sig_data.objfile = objfile;
15030 sig_data.symtab = symtab;
15031 sig_data.types_list = &types_cu_list;
15032 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15033 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15034 write_one_signatured_type, &sig_data);
15035 }
15036
15037 obstack_init (&constant_pool);
15038 make_cleanup_obstack_free (&constant_pool);
15039 obstack_init (&symtab_obstack);
15040 make_cleanup_obstack_free (&symtab_obstack);
15041 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15042
15043 obstack_init (&contents);
15044 make_cleanup_obstack_free (&contents);
15045 size_of_contents = 6 * sizeof (offset_type);
15046 total_len = size_of_contents;
15047
15048 /* The version number. */
15049 val = MAYBE_SWAP (2);
15050 obstack_grow (&contents, &val, sizeof (val));
15051
15052 /* The offset of the CU list from the start of the file. */
15053 val = MAYBE_SWAP (total_len);
15054 obstack_grow (&contents, &val, sizeof (val));
15055 total_len += obstack_object_size (&cu_list);
15056
15057 /* The offset of the types CU list from the start of the file. */
15058 val = MAYBE_SWAP (total_len);
15059 obstack_grow (&contents, &val, sizeof (val));
15060 total_len += obstack_object_size (&types_cu_list);
15061
15062 /* The offset of the address table from the start of the file. */
15063 val = MAYBE_SWAP (total_len);
15064 obstack_grow (&contents, &val, sizeof (val));
15065 total_len += obstack_object_size (&addr_obstack);
15066
15067 /* The offset of the symbol table from the start of the file. */
15068 val = MAYBE_SWAP (total_len);
15069 obstack_grow (&contents, &val, sizeof (val));
15070 total_len += obstack_object_size (&symtab_obstack);
15071
15072 /* The offset of the constant pool from the start of the file. */
15073 val = MAYBE_SWAP (total_len);
15074 obstack_grow (&contents, &val, sizeof (val));
15075 total_len += obstack_object_size (&constant_pool);
15076
15077 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15078
15079 write_obstack (out_file, &contents);
15080 write_obstack (out_file, &cu_list);
15081 write_obstack (out_file, &types_cu_list);
15082 write_obstack (out_file, &addr_obstack);
15083 write_obstack (out_file, &symtab_obstack);
15084 write_obstack (out_file, &constant_pool);
15085
15086 fclose (out_file);
15087
15088 /* We want to keep the file, so we set cleanup_filename to NULL
15089 here. See unlink_if_set. */
15090 cleanup_filename = NULL;
15091
15092 do_cleanups (cleanup);
15093 }
15094
15095 /* The mapped index file format is designed to be directly mmap()able
15096 on any architecture. In most cases, a datum is represented using a
15097 little-endian 32-bit integer value, called an offset_type. Big
15098 endian machines must byte-swap the values before using them.
15099 Exceptions to this rule are noted. The data is laid out such that
15100 alignment is always respected.
15101
15102 A mapped index consists of several sections.
15103
15104 1. The file header. This is a sequence of values, of offset_type
15105 unless otherwise noted:
15106 [0] The version number. Currently 1 or 2. The differences are
15107 noted below. Version 1 did not account for .debug_types sections;
15108 the presence of a .debug_types section invalidates any version 1
15109 index that may exist.
15110 [1] The offset, from the start of the file, of the CU list.
15111 [1.5] In version 2, the offset, from the start of the file, of the
15112 types CU list. This offset does not appear in version 1. Note
15113 that this can be empty, in which case this offset will be equal to
15114 the next offset.
15115 [2] The offset, from the start of the file, of the address section.
15116 [3] The offset, from the start of the file, of the symbol table.
15117 [4] The offset, from the start of the file, of the constant pool.
15118
15119 2. The CU list. This is a sequence of pairs of 64-bit
15120 little-endian values, sorted by the CU offset. The first element
15121 in each pair is the offset of a CU in the .debug_info section. The
15122 second element in each pair is the length of that CU. References
15123 to a CU elsewhere in the map are done using a CU index, which is
15124 just the 0-based index into this table. Note that if there are
15125 type CUs, then conceptually CUs and type CUs form a single list for
15126 the purposes of CU indices.
15127
15128 2.5 The types CU list. This does not appear in a version 1 index.
15129 This is a sequence of triplets of 64-bit little-endian values. In
15130 a triplet, the first value is the CU offset, the second value is
15131 the type offset in the CU, and the third value is the type
15132 signature. The types CU list is not sorted.
15133
15134 3. The address section. The address section consists of a sequence
15135 of address entries. Each address entry has three elements.
15136 [0] The low address. This is a 64-bit little-endian value.
15137 [1] The high address. This is a 64-bit little-endian value.
15138 [2] The CU index. This is an offset_type value.
15139
15140 4. The symbol table. This is a hash table. The size of the hash
15141 table is always a power of 2. The initial hash and the step are
15142 currently defined by the `find_slot' function.
15143
15144 Each slot in the hash table consists of a pair of offset_type
15145 values. The first value is the offset of the symbol's name in the
15146 constant pool. The second value is the offset of the CU vector in
15147 the constant pool.
15148
15149 If both values are 0, then this slot in the hash table is empty.
15150 This is ok because while 0 is a valid constant pool index, it
15151 cannot be a valid index for both a string and a CU vector.
15152
15153 A string in the constant pool is stored as a \0-terminated string,
15154 as you'd expect.
15155
15156 A CU vector in the constant pool is a sequence of offset_type
15157 values. The first value is the number of CU indices in the vector.
15158 Each subsequent value is the index of a CU in the CU list. This
15159 element in the hash table is used to indicate which CUs define the
15160 symbol.
15161
15162 5. The constant pool. This is simply a bunch of bytes. It is
15163 organized so that alignment is correct: CU vectors are stored
15164 first, followed by strings. */
15165 static void
15166 save_gdb_index_command (char *arg, int from_tty)
15167 {
15168 struct objfile *objfile;
15169
15170 if (!arg || !*arg)
15171 error (_("usage: save gdb-index DIRECTORY"));
15172
15173 ALL_OBJFILES (objfile)
15174 {
15175 struct stat st;
15176
15177 /* If the objfile does not correspond to an actual file, skip it. */
15178 if (stat (objfile->name, &st) < 0)
15179 continue;
15180
15181 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15182 if (dwarf2_per_objfile)
15183 {
15184 volatile struct gdb_exception except;
15185
15186 TRY_CATCH (except, RETURN_MASK_ERROR)
15187 {
15188 write_psymtabs_to_index (objfile, arg);
15189 }
15190 if (except.reason < 0)
15191 exception_fprintf (gdb_stderr, except,
15192 _("Error while writing index for `%s': "),
15193 objfile->name);
15194 }
15195 }
15196 }
15197
15198 \f
15199
15200 int dwarf2_always_disassemble;
15201
15202 static void
15203 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15204 struct cmd_list_element *c, const char *value)
15205 {
15206 fprintf_filtered (file, _("\
15207 Whether to always disassemble DWARF expressions is %s.\n"),
15208 value);
15209 }
15210
15211 void _initialize_dwarf2_read (void);
15212
15213 void
15214 _initialize_dwarf2_read (void)
15215 {
15216 struct cmd_list_element *c;
15217
15218 dwarf2_objfile_data_key
15219 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15220
15221 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15222 Set DWARF 2 specific variables.\n\
15223 Configure DWARF 2 variables such as the cache size"),
15224 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15225 0/*allow-unknown*/, &maintenance_set_cmdlist);
15226
15227 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15228 Show DWARF 2 specific variables\n\
15229 Show DWARF 2 variables such as the cache size"),
15230 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15231 0/*allow-unknown*/, &maintenance_show_cmdlist);
15232
15233 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15234 &dwarf2_max_cache_age, _("\
15235 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15236 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15237 A higher limit means that cached compilation units will be stored\n\
15238 in memory longer, and more total memory will be used. Zero disables\n\
15239 caching, which can slow down startup."),
15240 NULL,
15241 show_dwarf2_max_cache_age,
15242 &set_dwarf2_cmdlist,
15243 &show_dwarf2_cmdlist);
15244
15245 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15246 &dwarf2_always_disassemble, _("\
15247 Set whether `info address' always disassembles DWARF expressions."), _("\
15248 Show whether `info address' always disassembles DWARF expressions."), _("\
15249 When enabled, DWARF expressions are always printed in an assembly-like\n\
15250 syntax. When disabled, expressions will be printed in a more\n\
15251 conversational style, when possible."),
15252 NULL,
15253 show_dwarf2_always_disassemble,
15254 &set_dwarf2_cmdlist,
15255 &show_dwarf2_cmdlist);
15256
15257 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15258 Set debugging of the dwarf2 DIE reader."), _("\
15259 Show debugging of the dwarf2 DIE reader."), _("\
15260 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15261 The value is the maximum depth to print."),
15262 NULL,
15263 NULL,
15264 &setdebuglist, &showdebuglist);
15265
15266 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15267 _("Save a .gdb-index file"),
15268 &save_cmdlist);
15269 set_cmd_completer (c, filename_completer);
15270 }
This page took 0.34669 seconds and 4 git commands to generate.