gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
564 struct dwarf2_section_info *section;
565
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
568 struct dwarf2_cu *cu;
569
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
580 or NULL for unread partial units. */
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
586
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
605 };
606
607 /* Entry in the signatured_types hash table. */
608
609 struct signatured_type
610 {
611 /* The "per_cu" object of this type.
612 This struct is used iff per_cu.is_debug_types.
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
617 /* The type's signature. */
618 ULONGEST signature;
619
620 /* Offset in the TU of the type's DIE, as read from the TU header.
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
644 };
645
646 typedef struct signatured_type *sig_type_ptr;
647 DEF_VEC_P (sig_type_ptr);
648
649 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652 struct stmt_list_hash
653 {
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659 };
660
661 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664 struct type_unit_group
665 {
666 /* dwarf2read.c's main "handle" on a TU symtab.
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
671 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
672 struct dwarf2_per_cu_data per_cu;
673
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
678
679 /* The primary symtab.
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
682 struct symtab *primary_symtab;
683
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700 };
701
702 /* These sections are what may appear in a DWO file. */
703
704 struct dwo_sections
705 {
706 struct dwarf2_section_info abbrev;
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
715 VEC (dwarf2_section_info_def) *types;
716 };
717
718 /* CUs/TUs in DWP/DWO files. */
719
720 struct dwo_unit
721 {
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
731 struct dwarf2_section_info *section;
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739 };
740
741 /* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
744
745 struct dwo_file
746 {
747 /* The DW_AT_GNU_dwo_name attribute.
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
755
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773 };
774
775 /* These sections are what may appear in a DWP file. */
776
777 struct dwp_sections
778 {
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784 };
785
786 /* These sections are what may appear in a virtual DWO file. */
787
788 struct virtual_dwo_sections
789 {
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
797 That is recorded here, and copied to dwo_unit.section. */
798 struct dwarf2_section_info info_or_types;
799 };
800
801 /* Contents of DWP hash tables. */
802
803 struct dwp_hash_table
804 {
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* The bfd, when the file is open. Otherwise this is NULL. */
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834 };
835
836 /* This represents a '.dwz' file. */
837
838 struct dwz_file
839 {
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
846 struct dwarf2_section_info gdb_index;
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850 };
851
852 /* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
855 struct exists to abstract away the constant parameters of die reading. */
856
857 struct die_reader_specs
858 {
859 /* die_section->asection->owner. */
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
866 struct dwo_file *dwo_file;
867
868 /* The section the die comes from.
869 This is either .debug_info or .debug_types, or the .dwo variants. */
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
873 const gdb_byte *buffer;
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880 };
881
882 /* Type of function passed to init_cutu_and_read_dies, et.al. */
883 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
884 const gdb_byte *info_ptr,
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
889 /* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892 struct line_header
893 {
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
898 unsigned char maximum_ops_per_instruction;
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
915 const char **include_dirs;
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
922 {
923 const char *name;
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
927 int included_p; /* Non-zero if referenced by the Line Number Program. */
928 struct symtab *symtab; /* The associated symbol table, if any. */
929 } *file_names;
930
931 /* The start and end of the statement program following this
932 header. These point into dwarf2_per_objfile->line_buffer. */
933 const gdb_byte *statement_program_start, *statement_program_end;
934 };
935
936 /* When we construct a partial symbol table entry we only
937 need this much information. */
938 struct partial_die_info
939 {
940 /* Offset of this DIE. */
941 sect_offset offset;
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
953 unsigned int may_be_inlined : 1;
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
974 /* The name of this DIE. Normally the value of DW_AT_name, but
975 sometimes a default name for unnamed DIEs. */
976 const char *name;
977
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
984 const char *scope;
985
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
999
1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1001 DW_AT_sibling, if any. */
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
1004 const gdb_byte *sibling;
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
1009 sect_offset spec_offset;
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
1014 };
1015
1016 /* This data structure holds the information of an abbrev. */
1017 struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027 struct attr_abbrev
1028 {
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
1031 };
1032
1033 /* Size of abbrev_table.abbrev_hash_table. */
1034 #define ABBREV_HASH_SIZE 121
1035
1036 /* Top level data structure to contain an abbreviation table. */
1037
1038 struct abbrev_table
1039 {
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052 };
1053
1054 /* Attributes have a name and a value. */
1055 struct attribute
1056 {
1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
1065 union
1066 {
1067 const char *str;
1068 struct dwarf_block *blk;
1069 ULONGEST unsnd;
1070 LONGEST snd;
1071 CORE_ADDR addr;
1072 ULONGEST signature;
1073 }
1074 u;
1075 };
1076
1077 /* This data structure holds a complete die structure. */
1078 struct die_info
1079 {
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
1093 /* Offset in .debug_info or .debug_types section. */
1094 sect_offset offset;
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
1099 together via their SIBLING fields. */
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
1103
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
1108 };
1109
1110 /* Get at parts of an attribute structure. */
1111
1112 #define DW_STRING(attr) ((attr)->u.str)
1113 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1114 #define DW_UNSND(attr) ((attr)->u.unsnd)
1115 #define DW_BLOCK(attr) ((attr)->u.blk)
1116 #define DW_SND(attr) ((attr)->u.snd)
1117 #define DW_ADDR(attr) ((attr)->u.addr)
1118 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1119
1120 /* Blocks are a bunch of untyped bytes. */
1121 struct dwarf_block
1122 {
1123 size_t size;
1124
1125 /* Valid only if SIZE is not zero. */
1126 const gdb_byte *data;
1127 };
1128
1129 #ifndef ATTR_ALLOC_CHUNK
1130 #define ATTR_ALLOC_CHUNK 4
1131 #endif
1132
1133 /* Allocate fields for structs, unions and enums in this size. */
1134 #ifndef DW_FIELD_ALLOC_CHUNK
1135 #define DW_FIELD_ALLOC_CHUNK 4
1136 #endif
1137
1138 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141 static int bits_per_byte = 8;
1142
1143 /* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146 struct field_info
1147 {
1148 /* List of data member and baseclasses fields. */
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
1156 *fields, *baseclasses;
1157
1158 /* Number of fields (including baseclasses). */
1159 int nfields;
1160
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
1163
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
1166
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
1175
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
1181 const char *name;
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
1186
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
1199 };
1200
1201 /* One item on the queue of compilation units to read in full symbols
1202 for. */
1203 struct dwarf2_queue_item
1204 {
1205 struct dwarf2_per_cu_data *per_cu;
1206 enum language pretend_language;
1207 struct dwarf2_queue_item *next;
1208 };
1209
1210 /* The current queue. */
1211 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
1213 /* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218 static int dwarf2_max_cache_age = 5;
1219 static void
1220 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222 {
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
1225 value);
1226 }
1227
1228
1229 /* Various complaints about symbol reading that don't abort the process. */
1230
1231 static void
1232 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1233 {
1234 complaint (&symfile_complaints,
1235 _("statement list doesn't fit in .debug_line section"));
1236 }
1237
1238 static void
1239 dwarf2_debug_line_missing_file_complaint (void)
1240 {
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243 }
1244
1245 static void
1246 dwarf2_debug_line_missing_end_sequence_complaint (void)
1247 {
1248 complaint (&symfile_complaints,
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
1251 }
1252
1253 static void
1254 dwarf2_complex_location_expr_complaint (void)
1255 {
1256 complaint (&symfile_complaints, _("location expression too complex"));
1257 }
1258
1259 static void
1260 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
1262 {
1263 complaint (&symfile_complaints,
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
1266 }
1267
1268 static void
1269 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1270 {
1271 complaint (&symfile_complaints,
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
1276 }
1277
1278 static void
1279 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1280 {
1281 complaint (&symfile_complaints,
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
1284 arg1);
1285 }
1286
1287 static void
1288 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1289 {
1290 complaint (&symfile_complaints,
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
1293 }
1294
1295 /* local function prototypes */
1296
1297 static void dwarf2_locate_sections (bfd *, asection *, void *);
1298
1299 static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
1302 static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
1305 static void dwarf2_build_psymtabs_hard (struct objfile *);
1306
1307 static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
1309 int, struct dwarf2_cu *);
1310
1311 static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
1314 static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1316 int need_pc, struct dwarf2_cu *cu);
1317
1318 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
1322 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
1324
1325 static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1327 int need_pc, struct dwarf2_cu *cu);
1328
1329 static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
1331
1332 static void psymtab_to_symtab_1 (struct partial_symtab *);
1333
1334 static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337 static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340 static void abbrev_table_free (struct abbrev_table *);
1341
1342 static void abbrev_table_free_cleanup (void *);
1343
1344 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
1346
1347 static void dwarf2_free_abbrev_table (void *);
1348
1349 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1350
1351 static struct partial_die_info *load_partial_dies
1352 (const struct die_reader_specs *, const gdb_byte *, int);
1353
1354 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
1359
1360 static struct partial_die_info *find_partial_die (sect_offset, int,
1361 struct dwarf2_cu *);
1362
1363 static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
1366 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
1369
1370 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1371
1372 static int read_1_signed_byte (bfd *, const gdb_byte *);
1373
1374 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1375
1376 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1377
1378 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1379
1380 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1381 unsigned int *);
1382
1383 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1384
1385 static LONGEST read_checked_initial_length_and_offset
1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1387 unsigned int *, unsigned int *);
1388
1389 static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
1391 unsigned int *);
1392
1393 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1394
1395 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
1398 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1399
1400 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1401
1402 static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
1405
1406 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1407
1408 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1409
1410 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
1414 unsigned int *);
1415
1416 static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
1418
1419 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1420
1421 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
1423
1424 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1425 unsigned int);
1426
1427 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
1430 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1431
1432 static struct die_info *die_specification (struct die_info *die,
1433 struct dwarf2_cu **);
1434
1435 static void free_line_header (struct line_header *lh);
1436
1437 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
1439
1440 static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
1443
1444 static void dwarf2_start_subfile (const char *, const char *, const char *);
1445
1446 static void dwarf2_start_symtab (struct dwarf2_cu *,
1447 const char *, const char *, CORE_ADDR);
1448
1449 static struct symbol *new_symbol (struct die_info *, struct type *,
1450 struct dwarf2_cu *);
1451
1452 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
1455 static void dwarf2_const_value (struct attribute *, struct symbol *,
1456 struct dwarf2_cu *);
1457
1458 static void dwarf2_const_value_attr (struct attribute *attr,
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
1462 struct dwarf2_cu *cu, LONGEST *value,
1463 const gdb_byte **bytes,
1464 struct dwarf2_locexpr_baton **baton);
1465
1466 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1467
1468 static int need_gnat_info (struct dwarf2_cu *);
1469
1470 static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
1472
1473 static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
1476 static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
1478
1479 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1480 struct dwarf2_cu *);
1481
1482 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1483
1484 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
1486 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1487
1488 static char *typename_concat (struct obstack *obs, const char *prefix,
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
1491
1492 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1493
1494 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
1496 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1497
1498 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1499
1500 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
1502 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
1505 static int dwarf2_get_pc_bounds (struct die_info *,
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
1508
1509 static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
1513 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
1516 static void dwarf2_add_field (struct field_info *, struct die_info *,
1517 struct dwarf2_cu *);
1518
1519 static void dwarf2_attach_fields_to_type (struct field_info *,
1520 struct type *, struct dwarf2_cu *);
1521
1522 static void dwarf2_add_member_fn (struct field_info *,
1523 struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1527 struct type *,
1528 struct dwarf2_cu *);
1529
1530 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1531
1532 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1533
1534 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1535
1536 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
1538 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
1540 static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
1543 static const char *namespace_name (struct die_info *die,
1544 int *is_anonymous, struct dwarf2_cu *);
1545
1546 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1547
1548 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1549
1550 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct die_info *read_die_and_siblings_1
1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1555 struct die_info *);
1556
1557 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
1560 struct die_info *parent);
1561
1562 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
1565
1566 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
1569
1570 static void process_die (struct die_info *, struct dwarf2_cu *);
1571
1572 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
1574
1575 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1576
1577 static const char *dwarf2_full_name (const char *name,
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
1581 static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
1584 static struct die_info *dwarf2_extension (struct die_info *die,
1585 struct dwarf2_cu **);
1586
1587 static const char *dwarf_tag_name (unsigned int);
1588
1589 static const char *dwarf_attr_name (unsigned int);
1590
1591 static const char *dwarf_form_name (unsigned int);
1592
1593 static char *dwarf_bool_name (unsigned int);
1594
1595 static const char *dwarf_type_encoding_name (unsigned int);
1596
1597 static struct die_info *sibling_die (struct die_info *);
1598
1599 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601 static void dump_die_for_error (struct die_info *);
1602
1603 static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
1605
1606 /*static*/ void dump_die (struct die_info *, int max_level);
1607
1608 static void store_in_ref_table (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static int is_ref_attr (struct attribute *);
1612
1613 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1614
1615 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1616
1617 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1618 struct attribute *,
1619 struct dwarf2_cu **);
1620
1621 static struct die_info *follow_die_ref (struct die_info *,
1622 struct attribute *,
1623 struct dwarf2_cu **);
1624
1625 static struct die_info *follow_die_sig (struct die_info *,
1626 struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1630 struct dwarf2_cu *);
1631
1632 static struct type *get_DW_AT_signature_type (struct die_info *,
1633 struct attribute *,
1634 struct dwarf2_cu *);
1635
1636 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1637
1638 static void read_signatured_type (struct signatured_type *);
1639
1640 static struct type_unit_group *get_type_unit_group
1641 (struct dwarf2_cu *, struct attribute *);
1642
1643 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1644
1645 /* memory allocation interface */
1646
1647 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1648
1649 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1650
1651 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1652 const char *, int);
1653
1654 static int attr_form_is_block (struct attribute *);
1655
1656 static int attr_form_is_section_offset (struct attribute *);
1657
1658 static int attr_form_is_constant (struct attribute *);
1659
1660 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
1662 struct attribute *attr);
1663
1664 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1665 struct symbol *sym,
1666 struct dwarf2_cu *cu,
1667 int is_block);
1668
1669 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
1672
1673 static void free_stack_comp_unit (void *);
1674
1675 static hashval_t partial_die_hash (const void *item);
1676
1677 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
1679 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1681
1682 static void init_one_comp_unit (struct dwarf2_cu *cu,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
1688
1689 static void free_heap_comp_unit (void *);
1690
1691 static void free_cached_comp_units (void *);
1692
1693 static void age_cached_comp_units (void);
1694
1695 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1696
1697 static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1699
1700 static void create_all_comp_units (struct objfile *);
1701
1702 static int create_all_type_units (struct objfile *);
1703
1704 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
1706
1707 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
1709
1710 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
1713 static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
1716 static void dwarf2_mark (struct dwarf2_cu *);
1717
1718 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
1720 static struct type *get_die_type_at_offset (sect_offset,
1721 struct dwarf2_per_cu_data *);
1722
1723 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1724
1725 static void dwarf2_release_queue (void *dummy);
1726
1727 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
1733
1734 static void process_queue (void);
1735
1736 static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
1738 const char **name, const char **comp_dir);
1739
1740 static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
1743 static const gdb_byte *read_and_check_comp_unit_head
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1747 int is_debug_types_section);
1748
1749 static void init_cutu_and_read_dies
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
1754 static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
1757
1758 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1759
1760 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
1762 static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766 static struct dwp_file *get_dwp_file (void);
1767
1768 static struct dwo_unit *lookup_dwo_comp_unit
1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1770
1771 static struct dwo_unit *lookup_dwo_type_unit
1772 (struct signatured_type *, const char *, const char *);
1773
1774 static void free_dwo_file_cleanup (void *);
1775
1776 static void process_cu_includes (void);
1777
1778 static void check_producer (struct dwarf2_cu *cu);
1779
1780 #if WORDS_BIGENDIAN
1781
1782 /* Convert VALUE between big- and little-endian. */
1783 static offset_type
1784 byte_swap (offset_type value)
1785 {
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793 }
1794
1795 #define MAYBE_SWAP(V) byte_swap (V)
1796
1797 #else
1798 #define MAYBE_SWAP(V) (V)
1799 #endif /* WORDS_BIGENDIAN */
1800
1801 /* The suffix for an index file. */
1802 #define INDEX_SUFFIX ".gdb-index"
1803
1804 /* Try to locate the sections we need for DWARF 2 debugging
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
1808
1809 int
1810 dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
1812 {
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1819
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
1823
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
1830 }
1831
1832 /* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
1834
1835 static int
1836 section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
1838 {
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
1846 }
1847
1848 /* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852 static void
1853 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1854 {
1855 const struct dwarf2_debug_sections *names;
1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
1867 {
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1870 }
1871 else if (section_is_p (sectp->name, &names->abbrev))
1872 {
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1875 }
1876 else if (section_is_p (sectp->name, &names->line))
1877 {
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->loc))
1882 {
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->macinfo))
1887 {
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->str))
1897 {
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->frame))
1907 {
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->eh_frame))
1912 {
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->ranges))
1917 {
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->types))
1922 {
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
1931 }
1932 else if (section_is_p (sectp->name, &names->gdb_index))
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
1937
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
1941 }
1942
1943 /* A helper function that decides whether a section is empty,
1944 or not present. */
1945
1946 static int
1947 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948 {
1949 return info->asection == NULL || info->size == 0;
1950 }
1951
1952 /* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
1956 If the section is compressed, uncompress it before returning. */
1957
1958 static void
1959 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1960 {
1961 asection *sectp = info->asection;
1962 bfd *abfd;
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
1965
1966 if (info->readin)
1967 return;
1968 info->buffer = NULL;
1969 info->readin = 1;
1970
1971 if (dwarf2_section_empty_p (info))
1972 return;
1973
1974 abfd = sectp->owner;
1975
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
1979 {
1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1981 return;
1982 }
1983
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002 }
2003
2004 /* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011 static bfd_size_type
2012 dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014 {
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018 }
2019
2020 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2021 SECTION_NAME. */
2022
2023 void
2024 dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
2026 asection **sectp, const gdb_byte **bufp,
2027 bfd_size_type *sizep)
2028 {
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
2053
2054 dwarf2_read_section (objfile, info);
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059 }
2060
2061 /* A helper function to find the sections for a .dwz file. */
2062
2063 static void
2064 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065 {
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
2100 }
2101
2102 /* Open the separate '.dwz' debug file, if needed. Error if the file
2103 cannot be found. */
2104
2105 static struct dwz_file *
2106 dwarf2_get_dwz_file (void)
2107 {
2108 bfd *abfd, *dwz_bfd;
2109 asection *section;
2110 gdb_byte *data;
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
2114
2115 if (dwarf2_per_objfile->dwz_file != NULL)
2116 return dwarf2_per_objfile->dwz_file;
2117
2118 abfd = dwarf2_per_objfile->objfile->obfd;
2119 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2120 if (section == NULL)
2121 error (_("could not find '.gnu_debugaltlink' section"));
2122 if (!bfd_malloc_and_get_section (abfd, section, &data))
2123 error (_("could not read '.gnu_debugaltlink' section: %s"),
2124 bfd_errmsg (bfd_get_error ()));
2125 cleanup = make_cleanup (xfree, data);
2126
2127 filename = (const char *) data;
2128 if (!IS_ABSOLUTE_PATH (filename))
2129 {
2130 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2131 char *rel;
2132
2133 make_cleanup (xfree, abs);
2134 abs = ldirname (abs);
2135 make_cleanup (xfree, abs);
2136
2137 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2138 make_cleanup (xfree, rel);
2139 filename = rel;
2140 }
2141
2142 /* The format is just a NUL-terminated file name, followed by the
2143 build-id. For now, though, we ignore the build-id. */
2144 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2145 if (dwz_bfd == NULL)
2146 error (_("could not read '%s': %s"), filename,
2147 bfd_errmsg (bfd_get_error ()));
2148
2149 if (!bfd_check_format (dwz_bfd, bfd_object))
2150 {
2151 gdb_bfd_unref (dwz_bfd);
2152 error (_("file '%s' was not usable: %s"), filename,
2153 bfd_errmsg (bfd_get_error ()));
2154 }
2155
2156 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2157 struct dwz_file);
2158 result->dwz_bfd = dwz_bfd;
2159
2160 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2161
2162 do_cleanups (cleanup);
2163
2164 dwarf2_per_objfile->dwz_file = result;
2165 return result;
2166 }
2167 \f
2168 /* DWARF quick_symbols_functions support. */
2169
2170 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2171 unique line tables, so we maintain a separate table of all .debug_line
2172 derived entries to support the sharing.
2173 All the quick functions need is the list of file names. We discard the
2174 line_header when we're done and don't need to record it here. */
2175 struct quick_file_names
2176 {
2177 /* The data used to construct the hash key. */
2178 struct stmt_list_hash hash;
2179
2180 /* The number of entries in file_names, real_names. */
2181 unsigned int num_file_names;
2182
2183 /* The file names from the line table, after being run through
2184 file_full_name. */
2185 const char **file_names;
2186
2187 /* The file names from the line table after being run through
2188 gdb_realpath. These are computed lazily. */
2189 const char **real_names;
2190 };
2191
2192 /* When using the index (and thus not using psymtabs), each CU has an
2193 object of this type. This is used to hold information needed by
2194 the various "quick" methods. */
2195 struct dwarf2_per_cu_quick_data
2196 {
2197 /* The file table. This can be NULL if there was no file table
2198 or it's currently not read in.
2199 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2200 struct quick_file_names *file_names;
2201
2202 /* The corresponding symbol table. This is NULL if symbols for this
2203 CU have not yet been read. */
2204 struct symtab *symtab;
2205
2206 /* A temporary mark bit used when iterating over all CUs in
2207 expand_symtabs_matching. */
2208 unsigned int mark : 1;
2209
2210 /* True if we've tried to read the file table and found there isn't one.
2211 There will be no point in trying to read it again next time. */
2212 unsigned int no_file_data : 1;
2213 };
2214
2215 /* Utility hash function for a stmt_list_hash. */
2216
2217 static hashval_t
2218 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2219 {
2220 hashval_t v = 0;
2221
2222 if (stmt_list_hash->dwo_unit != NULL)
2223 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2224 v += stmt_list_hash->line_offset.sect_off;
2225 return v;
2226 }
2227
2228 /* Utility equality function for a stmt_list_hash. */
2229
2230 static int
2231 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2232 const struct stmt_list_hash *rhs)
2233 {
2234 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2235 return 0;
2236 if (lhs->dwo_unit != NULL
2237 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2238 return 0;
2239
2240 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2241 }
2242
2243 /* Hash function for a quick_file_names. */
2244
2245 static hashval_t
2246 hash_file_name_entry (const void *e)
2247 {
2248 const struct quick_file_names *file_data = e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = a;
2259 const struct quick_file_names *eb = b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_t
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree);
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, language_minimal);
2304
2305 gdb_assert (per_cu->cu != NULL);
2306
2307 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2308 }
2309
2310 /* Read in the symbols for PER_CU. */
2311
2312 static void
2313 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2314 {
2315 struct cleanup *back_to;
2316
2317 /* Skip type_unit_groups, reading the type units they contain
2318 is handled elsewhere. */
2319 if (IS_TYPE_UNIT_GROUP (per_cu))
2320 return;
2321
2322 back_to = make_cleanup (dwarf2_release_queue, NULL);
2323
2324 if (dwarf2_per_objfile->using_index
2325 ? per_cu->v.quick->symtab == NULL
2326 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2327 {
2328 queue_comp_unit (per_cu, language_minimal);
2329 load_cu (per_cu);
2330 }
2331
2332 process_queue ();
2333
2334 /* Age the cache, releasing compilation units that have not
2335 been used recently. */
2336 age_cached_comp_units ();
2337
2338 do_cleanups (back_to);
2339 }
2340
2341 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2342 the objfile from which this CU came. Returns the resulting symbol
2343 table. */
2344
2345 static struct symtab *
2346 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2347 {
2348 gdb_assert (dwarf2_per_objfile->using_index);
2349 if (!per_cu->v.quick->symtab)
2350 {
2351 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2352 increment_reading_symtab ();
2353 dw2_do_instantiate_symtab (per_cu);
2354 process_cu_includes ();
2355 do_cleanups (back_to);
2356 }
2357 return per_cu->v.quick->symtab;
2358 }
2359
2360 /* Return the CU given its index.
2361
2362 This is intended for loops like:
2363
2364 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2365 + dwarf2_per_objfile->n_type_units); ++i)
2366 {
2367 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2368
2369 ...;
2370 }
2371 */
2372
2373 static struct dwarf2_per_cu_data *
2374 dw2_get_cu (int index)
2375 {
2376 if (index >= dwarf2_per_objfile->n_comp_units)
2377 {
2378 index -= dwarf2_per_objfile->n_comp_units;
2379 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2380 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2381 }
2382
2383 return dwarf2_per_objfile->all_comp_units[index];
2384 }
2385
2386 /* Return the primary CU given its index.
2387 The difference between this function and dw2_get_cu is in the handling
2388 of type units (TUs). Here we return the type_unit_group object.
2389
2390 This is intended for loops like:
2391
2392 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2393 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2394 {
2395 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2396
2397 ...;
2398 }
2399 */
2400
2401 static struct dwarf2_per_cu_data *
2402 dw2_get_primary_cu (int index)
2403 {
2404 if (index >= dwarf2_per_objfile->n_comp_units)
2405 {
2406 index -= dwarf2_per_objfile->n_comp_units;
2407 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2408 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2409 }
2410
2411 return dwarf2_per_objfile->all_comp_units[index];
2412 }
2413
2414 /* A helper for create_cus_from_index that handles a given list of
2415 CUs. */
2416
2417 static void
2418 create_cus_from_index_list (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type n_elements,
2420 struct dwarf2_section_info *section,
2421 int is_dwz,
2422 int base_offset)
2423 {
2424 offset_type i;
2425
2426 for (i = 0; i < n_elements; i += 2)
2427 {
2428 struct dwarf2_per_cu_data *the_cu;
2429 ULONGEST offset, length;
2430
2431 gdb_static_assert (sizeof (ULONGEST) >= 8);
2432 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2433 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2434 cu_list += 2 * 8;
2435
2436 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2437 struct dwarf2_per_cu_data);
2438 the_cu->offset.sect_off = offset;
2439 the_cu->length = length;
2440 the_cu->objfile = objfile;
2441 the_cu->section = section;
2442 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2443 struct dwarf2_per_cu_quick_data);
2444 the_cu->is_dwz = is_dwz;
2445 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2446 }
2447 }
2448
2449 /* Read the CU list from the mapped index, and use it to create all
2450 the CU objects for this objfile. */
2451
2452 static void
2453 create_cus_from_index (struct objfile *objfile,
2454 const gdb_byte *cu_list, offset_type cu_list_elements,
2455 const gdb_byte *dwz_list, offset_type dwz_elements)
2456 {
2457 struct dwz_file *dwz;
2458
2459 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2460 dwarf2_per_objfile->all_comp_units
2461 = obstack_alloc (&objfile->objfile_obstack,
2462 dwarf2_per_objfile->n_comp_units
2463 * sizeof (struct dwarf2_per_cu_data *));
2464
2465 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2466 &dwarf2_per_objfile->info, 0, 0);
2467
2468 if (dwz_elements == 0)
2469 return;
2470
2471 dwz = dwarf2_get_dwz_file ();
2472 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2473 cu_list_elements / 2);
2474 }
2475
2476 /* Create the signatured type hash table from the index. */
2477
2478 static void
2479 create_signatured_type_table_from_index (struct objfile *objfile,
2480 struct dwarf2_section_info *section,
2481 const gdb_byte *bytes,
2482 offset_type elements)
2483 {
2484 offset_type i;
2485 htab_t sig_types_hash;
2486
2487 dwarf2_per_objfile->n_type_units = elements / 3;
2488 dwarf2_per_objfile->all_type_units
2489 = xmalloc (dwarf2_per_objfile->n_type_units
2490 * sizeof (struct signatured_type *));
2491
2492 sig_types_hash = allocate_signatured_type_table (objfile);
2493
2494 for (i = 0; i < elements; i += 3)
2495 {
2496 struct signatured_type *sig_type;
2497 ULONGEST offset, type_offset_in_tu, signature;
2498 void **slot;
2499
2500 gdb_static_assert (sizeof (ULONGEST) >= 8);
2501 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2502 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2503 BFD_ENDIAN_LITTLE);
2504 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2505 bytes += 3 * 8;
2506
2507 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2508 struct signatured_type);
2509 sig_type->signature = signature;
2510 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2511 sig_type->per_cu.is_debug_types = 1;
2512 sig_type->per_cu.section = section;
2513 sig_type->per_cu.offset.sect_off = offset;
2514 sig_type->per_cu.objfile = objfile;
2515 sig_type->per_cu.v.quick
2516 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2517 struct dwarf2_per_cu_quick_data);
2518
2519 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2520 *slot = sig_type;
2521
2522 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2523 }
2524
2525 dwarf2_per_objfile->signatured_types = sig_types_hash;
2526 }
2527
2528 /* Read the address map data from the mapped index, and use it to
2529 populate the objfile's psymtabs_addrmap. */
2530
2531 static void
2532 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2533 {
2534 const gdb_byte *iter, *end;
2535 struct obstack temp_obstack;
2536 struct addrmap *mutable_map;
2537 struct cleanup *cleanup;
2538 CORE_ADDR baseaddr;
2539
2540 obstack_init (&temp_obstack);
2541 cleanup = make_cleanup_obstack_free (&temp_obstack);
2542 mutable_map = addrmap_create_mutable (&temp_obstack);
2543
2544 iter = index->address_table;
2545 end = iter + index->address_table_size;
2546
2547 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2548
2549 while (iter < end)
2550 {
2551 ULONGEST hi, lo, cu_index;
2552 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2553 iter += 8;
2554 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2555 iter += 8;
2556 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2557 iter += 4;
2558
2559 if (cu_index < dwarf2_per_objfile->n_comp_units)
2560 {
2561 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2562 dw2_get_cu (cu_index));
2563 }
2564 else
2565 {
2566 complaint (&symfile_complaints,
2567 _(".gdb_index address table has invalid CU number %u"),
2568 (unsigned) cu_index);
2569 }
2570 }
2571
2572 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2573 &objfile->objfile_obstack);
2574 do_cleanups (cleanup);
2575 }
2576
2577 /* The hash function for strings in the mapped index. This is the same as
2578 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2579 implementation. This is necessary because the hash function is tied to the
2580 format of the mapped index file. The hash values do not have to match with
2581 SYMBOL_HASH_NEXT.
2582
2583 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2584
2585 static hashval_t
2586 mapped_index_string_hash (int index_version, const void *p)
2587 {
2588 const unsigned char *str = (const unsigned char *) p;
2589 hashval_t r = 0;
2590 unsigned char c;
2591
2592 while ((c = *str++) != 0)
2593 {
2594 if (index_version >= 5)
2595 c = tolower (c);
2596 r = r * 67 + c - 113;
2597 }
2598
2599 return r;
2600 }
2601
2602 /* Find a slot in the mapped index INDEX for the object named NAME.
2603 If NAME is found, set *VEC_OUT to point to the CU vector in the
2604 constant pool and return 1. If NAME cannot be found, return 0. */
2605
2606 static int
2607 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2608 offset_type **vec_out)
2609 {
2610 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2611 offset_type hash;
2612 offset_type slot, step;
2613 int (*cmp) (const char *, const char *);
2614
2615 if (current_language->la_language == language_cplus
2616 || current_language->la_language == language_java
2617 || current_language->la_language == language_fortran)
2618 {
2619 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2620 not contain any. */
2621 const char *paren = strchr (name, '(');
2622
2623 if (paren)
2624 {
2625 char *dup;
2626
2627 dup = xmalloc (paren - name + 1);
2628 memcpy (dup, name, paren - name);
2629 dup[paren - name] = 0;
2630
2631 make_cleanup (xfree, dup);
2632 name = dup;
2633 }
2634 }
2635
2636 /* Index version 4 did not support case insensitive searches. But the
2637 indices for case insensitive languages are built in lowercase, therefore
2638 simulate our NAME being searched is also lowercased. */
2639 hash = mapped_index_string_hash ((index->version == 4
2640 && case_sensitivity == case_sensitive_off
2641 ? 5 : index->version),
2642 name);
2643
2644 slot = hash & (index->symbol_table_slots - 1);
2645 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2646 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2647
2648 for (;;)
2649 {
2650 /* Convert a slot number to an offset into the table. */
2651 offset_type i = 2 * slot;
2652 const char *str;
2653 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2654 {
2655 do_cleanups (back_to);
2656 return 0;
2657 }
2658
2659 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2660 if (!cmp (name, str))
2661 {
2662 *vec_out = (offset_type *) (index->constant_pool
2663 + MAYBE_SWAP (index->symbol_table[i + 1]));
2664 do_cleanups (back_to);
2665 return 1;
2666 }
2667
2668 slot = (slot + step) & (index->symbol_table_slots - 1);
2669 }
2670 }
2671
2672 /* A helper function that reads the .gdb_index from SECTION and fills
2673 in MAP. FILENAME is the name of the file containing the section;
2674 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2675 ok to use deprecated sections.
2676
2677 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2678 out parameters that are filled in with information about the CU and
2679 TU lists in the section.
2680
2681 Returns 1 if all went well, 0 otherwise. */
2682
2683 static int
2684 read_index_from_section (struct objfile *objfile,
2685 const char *filename,
2686 int deprecated_ok,
2687 struct dwarf2_section_info *section,
2688 struct mapped_index *map,
2689 const gdb_byte **cu_list,
2690 offset_type *cu_list_elements,
2691 const gdb_byte **types_list,
2692 offset_type *types_list_elements)
2693 {
2694 const gdb_byte *addr;
2695 offset_type version;
2696 offset_type *metadata;
2697 int i;
2698
2699 if (dwarf2_section_empty_p (section))
2700 return 0;
2701
2702 /* Older elfutils strip versions could keep the section in the main
2703 executable while splitting it for the separate debug info file. */
2704 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2705 return 0;
2706
2707 dwarf2_read_section (objfile, section);
2708
2709 addr = section->buffer;
2710 /* Version check. */
2711 version = MAYBE_SWAP (*(offset_type *) addr);
2712 /* Versions earlier than 3 emitted every copy of a psymbol. This
2713 causes the index to behave very poorly for certain requests. Version 3
2714 contained incomplete addrmap. So, it seems better to just ignore such
2715 indices. */
2716 if (version < 4)
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("Skipping obsolete .gdb_index section in %s."),
2722 filename);
2723 warning_printed = 1;
2724 }
2725 return 0;
2726 }
2727 /* Index version 4 uses a different hash function than index version
2728 5 and later.
2729
2730 Versions earlier than 6 did not emit psymbols for inlined
2731 functions. Using these files will cause GDB not to be able to
2732 set breakpoints on inlined functions by name, so we ignore these
2733 indices unless the user has done
2734 "set use-deprecated-index-sections on". */
2735 if (version < 6 && !deprecated_ok)
2736 {
2737 static int warning_printed = 0;
2738 if (!warning_printed)
2739 {
2740 warning (_("\
2741 Skipping deprecated .gdb_index section in %s.\n\
2742 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2743 to use the section anyway."),
2744 filename);
2745 warning_printed = 1;
2746 }
2747 return 0;
2748 }
2749 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2750 of the TU (for symbols coming from TUs). It's just a performance bug, and
2751 we can't distinguish gdb-generated indices from gold-generated ones, so
2752 nothing to do here. */
2753
2754 /* Indexes with higher version than the one supported by GDB may be no
2755 longer backward compatible. */
2756 if (version > 8)
2757 return 0;
2758
2759 map->version = version;
2760 map->total_size = section->size;
2761
2762 metadata = (offset_type *) (addr + sizeof (offset_type));
2763
2764 i = 0;
2765 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2766 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2767 / 8);
2768 ++i;
2769
2770 *types_list = addr + MAYBE_SWAP (metadata[i]);
2771 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2772 - MAYBE_SWAP (metadata[i]))
2773 / 8);
2774 ++i;
2775
2776 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2777 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2778 - MAYBE_SWAP (metadata[i]));
2779 ++i;
2780
2781 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2782 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2783 - MAYBE_SWAP (metadata[i]))
2784 / (2 * sizeof (offset_type)));
2785 ++i;
2786
2787 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2788
2789 return 1;
2790 }
2791
2792
2793 /* Read the index file. If everything went ok, initialize the "quick"
2794 elements of all the CUs and return 1. Otherwise, return 0. */
2795
2796 static int
2797 dwarf2_read_index (struct objfile *objfile)
2798 {
2799 struct mapped_index local_map, *map;
2800 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2801 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2802
2803 if (!read_index_from_section (objfile, objfile->name,
2804 use_deprecated_index_sections,
2805 &dwarf2_per_objfile->gdb_index, &local_map,
2806 &cu_list, &cu_list_elements,
2807 &types_list, &types_list_elements))
2808 return 0;
2809
2810 /* Don't use the index if it's empty. */
2811 if (local_map.symbol_table_slots == 0)
2812 return 0;
2813
2814 /* If there is a .dwz file, read it so we can get its CU list as
2815 well. */
2816 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2817 {
2818 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2819 struct mapped_index dwz_map;
2820 const gdb_byte *dwz_types_ignore;
2821 offset_type dwz_types_elements_ignore;
2822
2823 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2824 1,
2825 &dwz->gdb_index, &dwz_map,
2826 &dwz_list, &dwz_list_elements,
2827 &dwz_types_ignore,
2828 &dwz_types_elements_ignore))
2829 {
2830 warning (_("could not read '.gdb_index' section from %s; skipping"),
2831 bfd_get_filename (dwz->dwz_bfd));
2832 return 0;
2833 }
2834 }
2835
2836 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2837 dwz_list_elements);
2838
2839 if (types_list_elements)
2840 {
2841 struct dwarf2_section_info *section;
2842
2843 /* We can only handle a single .debug_types when we have an
2844 index. */
2845 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2846 return 0;
2847
2848 section = VEC_index (dwarf2_section_info_def,
2849 dwarf2_per_objfile->types, 0);
2850
2851 create_signatured_type_table_from_index (objfile, section, types_list,
2852 types_list_elements);
2853 }
2854
2855 create_addrmap_from_index (objfile, &local_map);
2856
2857 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2858 *map = local_map;
2859
2860 dwarf2_per_objfile->index_table = map;
2861 dwarf2_per_objfile->using_index = 1;
2862 dwarf2_per_objfile->quick_file_names_table =
2863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2864
2865 return 1;
2866 }
2867
2868 /* A helper for the "quick" functions which sets the global
2869 dwarf2_per_objfile according to OBJFILE. */
2870
2871 static void
2872 dw2_setup (struct objfile *objfile)
2873 {
2874 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2875 gdb_assert (dwarf2_per_objfile);
2876 }
2877
2878 /* die_reader_func for dw2_get_file_names. */
2879
2880 static void
2881 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2882 const gdb_byte *info_ptr,
2883 struct die_info *comp_unit_die,
2884 int has_children,
2885 void *data)
2886 {
2887 struct dwarf2_cu *cu = reader->cu;
2888 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2889 struct objfile *objfile = dwarf2_per_objfile->objfile;
2890 struct dwarf2_per_cu_data *lh_cu;
2891 struct line_header *lh;
2892 struct attribute *attr;
2893 int i;
2894 const char *name, *comp_dir;
2895 void **slot;
2896 struct quick_file_names *qfn;
2897 unsigned int line_offset;
2898
2899 gdb_assert (! this_cu->is_debug_types);
2900
2901 /* Our callers never want to match partial units -- instead they
2902 will match the enclosing full CU. */
2903 if (comp_unit_die->tag == DW_TAG_partial_unit)
2904 {
2905 this_cu->v.quick->no_file_data = 1;
2906 return;
2907 }
2908
2909 lh_cu = this_cu;
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
2929 lh_cu->v.quick->file_names = *slot;
2930 return;
2931 }
2932
2933 lh = dwarf_decode_line_header (line_offset, cu);
2934 }
2935 if (lh == NULL)
2936 {
2937 lh_cu->v.quick->no_file_data = 1;
2938 return;
2939 }
2940
2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
2946
2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2948
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
2952 for (i = 0; i < lh->num_file_names; ++i)
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
2955
2956 free_line_header (lh);
2957
2958 lh_cu->v.quick->file_names = qfn;
2959 }
2960
2961 /* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964 static struct quick_file_names *
2965 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2966 {
2967 /* This should never be called for TUs. */
2968 gdb_assert (! this_cu->is_debug_types);
2969 /* Nor type unit groups. */
2970 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2971
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
2978 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2979
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982 return this_cu->v.quick->file_names;
2983 }
2984
2985 /* A helper for the "quick" functions which computes and caches the
2986 real path for a given file name from the line table. */
2987
2988 static const char *
2989 dw2_get_real_path (struct objfile *objfile,
2990 struct quick_file_names *qfn, int index)
2991 {
2992 if (qfn->real_names == NULL)
2993 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2994 qfn->num_file_names, sizeof (char *));
2995
2996 if (qfn->real_names[index] == NULL)
2997 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2998
2999 return qfn->real_names[index];
3000 }
3001
3002 static struct symtab *
3003 dw2_find_last_source_symtab (struct objfile *objfile)
3004 {
3005 int index;
3006
3007 dw2_setup (objfile);
3008 index = dwarf2_per_objfile->n_comp_units - 1;
3009 return dw2_instantiate_symtab (dw2_get_cu (index));
3010 }
3011
3012 /* Traversal function for dw2_forget_cached_source_info. */
3013
3014 static int
3015 dw2_free_cached_file_names (void **slot, void *info)
3016 {
3017 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3018
3019 if (file_data->real_names)
3020 {
3021 int i;
3022
3023 for (i = 0; i < file_data->num_file_names; ++i)
3024 {
3025 xfree ((void*) file_data->real_names[i]);
3026 file_data->real_names[i] = NULL;
3027 }
3028 }
3029
3030 return 1;
3031 }
3032
3033 static void
3034 dw2_forget_cached_source_info (struct objfile *objfile)
3035 {
3036 dw2_setup (objfile);
3037
3038 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3039 dw2_free_cached_file_names, NULL);
3040 }
3041
3042 /* Helper function for dw2_map_symtabs_matching_filename that expands
3043 the symtabs and calls the iterator. */
3044
3045 static int
3046 dw2_map_expand_apply (struct objfile *objfile,
3047 struct dwarf2_per_cu_data *per_cu,
3048 const char *name, const char *real_path,
3049 int (*callback) (struct symtab *, void *),
3050 void *data)
3051 {
3052 struct symtab *last_made = objfile->symtabs;
3053
3054 /* Don't visit already-expanded CUs. */
3055 if (per_cu->v.quick->symtab)
3056 return 0;
3057
3058 /* This may expand more than one symtab, and we want to iterate over
3059 all of them. */
3060 dw2_instantiate_symtab (per_cu);
3061
3062 return iterate_over_some_symtabs (name, real_path, callback, data,
3063 objfile->symtabs, last_made);
3064 }
3065
3066 /* Implementation of the map_symtabs_matching_filename method. */
3067
3068 static int
3069 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3070 const char *real_path,
3071 int (*callback) (struct symtab *, void *),
3072 void *data)
3073 {
3074 int i;
3075 const char *name_basename = lbasename (name);
3076
3077 dw2_setup (objfile);
3078
3079 /* The rule is CUs specify all the files, including those used by
3080 any TU, so there's no need to scan TUs here. */
3081
3082 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3083 {
3084 int j;
3085 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3086 struct quick_file_names *file_data;
3087
3088 /* We only need to look at symtabs not already expanded. */
3089 if (per_cu->v.quick->symtab)
3090 continue;
3091
3092 file_data = dw2_get_file_names (per_cu);
3093 if (file_data == NULL)
3094 continue;
3095
3096 for (j = 0; j < file_data->num_file_names; ++j)
3097 {
3098 const char *this_name = file_data->file_names[j];
3099 const char *this_real_name;
3100
3101 if (compare_filenames_for_search (this_name, name))
3102 {
3103 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3104 callback, data))
3105 return 1;
3106 continue;
3107 }
3108
3109 /* Before we invoke realpath, which can get expensive when many
3110 files are involved, do a quick comparison of the basenames. */
3111 if (! basenames_may_differ
3112 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3113 continue;
3114
3115 this_real_name = dw2_get_real_path (objfile, file_data, j);
3116 if (compare_filenames_for_search (this_real_name, name))
3117 {
3118 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3119 callback, data))
3120 return 1;
3121 continue;
3122 }
3123
3124 if (real_path != NULL)
3125 {
3126 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3127 gdb_assert (IS_ABSOLUTE_PATH (name));
3128 if (this_real_name != NULL
3129 && FILENAME_CMP (real_path, this_real_name) == 0)
3130 {
3131 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3132 callback, data))
3133 return 1;
3134 continue;
3135 }
3136 }
3137 }
3138 }
3139
3140 return 0;
3141 }
3142
3143 /* Struct used to manage iterating over all CUs looking for a symbol. */
3144
3145 struct dw2_symtab_iterator
3146 {
3147 /* The internalized form of .gdb_index. */
3148 struct mapped_index *index;
3149 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3150 int want_specific_block;
3151 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3152 Unused if !WANT_SPECIFIC_BLOCK. */
3153 int block_index;
3154 /* The kind of symbol we're looking for. */
3155 domain_enum domain;
3156 /* The list of CUs from the index entry of the symbol,
3157 or NULL if not found. */
3158 offset_type *vec;
3159 /* The next element in VEC to look at. */
3160 int next;
3161 /* The number of elements in VEC, or zero if there is no match. */
3162 int length;
3163 };
3164
3165 /* Initialize the index symtab iterator ITER.
3166 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3167 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3168
3169 static void
3170 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3171 struct mapped_index *index,
3172 int want_specific_block,
3173 int block_index,
3174 domain_enum domain,
3175 const char *name)
3176 {
3177 iter->index = index;
3178 iter->want_specific_block = want_specific_block;
3179 iter->block_index = block_index;
3180 iter->domain = domain;
3181 iter->next = 0;
3182
3183 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3184 iter->length = MAYBE_SWAP (*iter->vec);
3185 else
3186 {
3187 iter->vec = NULL;
3188 iter->length = 0;
3189 }
3190 }
3191
3192 /* Return the next matching CU or NULL if there are no more. */
3193
3194 static struct dwarf2_per_cu_data *
3195 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3196 {
3197 for ( ; iter->next < iter->length; ++iter->next)
3198 {
3199 offset_type cu_index_and_attrs =
3200 MAYBE_SWAP (iter->vec[iter->next + 1]);
3201 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3202 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3203 int want_static = iter->block_index != GLOBAL_BLOCK;
3204 /* This value is only valid for index versions >= 7. */
3205 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3206 gdb_index_symbol_kind symbol_kind =
3207 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3208 /* Only check the symbol attributes if they're present.
3209 Indices prior to version 7 don't record them,
3210 and indices >= 7 may elide them for certain symbols
3211 (gold does this). */
3212 int attrs_valid =
3213 (iter->index->version >= 7
3214 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3215
3216 /* Skip if already read in. */
3217 if (per_cu->v.quick->symtab)
3218 continue;
3219
3220 if (attrs_valid
3221 && iter->want_specific_block
3222 && want_static != is_static)
3223 continue;
3224
3225 /* Only check the symbol's kind if it has one. */
3226 if (attrs_valid)
3227 {
3228 switch (iter->domain)
3229 {
3230 case VAR_DOMAIN:
3231 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3232 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3233 /* Some types are also in VAR_DOMAIN. */
3234 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3235 continue;
3236 break;
3237 case STRUCT_DOMAIN:
3238 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3239 continue;
3240 break;
3241 case LABEL_DOMAIN:
3242 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3243 continue;
3244 break;
3245 default:
3246 break;
3247 }
3248 }
3249
3250 ++iter->next;
3251 return per_cu;
3252 }
3253
3254 return NULL;
3255 }
3256
3257 static struct symtab *
3258 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3259 const char *name, domain_enum domain)
3260 {
3261 struct symtab *stab_best = NULL;
3262 struct mapped_index *index;
3263
3264 dw2_setup (objfile);
3265
3266 index = dwarf2_per_objfile->index_table;
3267
3268 /* index is NULL if OBJF_READNOW. */
3269 if (index)
3270 {
3271 struct dw2_symtab_iterator iter;
3272 struct dwarf2_per_cu_data *per_cu;
3273
3274 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3275
3276 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3277 {
3278 struct symbol *sym = NULL;
3279 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3280
3281 /* Some caution must be observed with overloaded functions
3282 and methods, since the index will not contain any overload
3283 information (but NAME might contain it). */
3284 if (stab->primary)
3285 {
3286 struct blockvector *bv = BLOCKVECTOR (stab);
3287 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3288
3289 sym = lookup_block_symbol (block, name, domain);
3290 }
3291
3292 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3293 {
3294 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3295 return stab;
3296
3297 stab_best = stab;
3298 }
3299
3300 /* Keep looking through other CUs. */
3301 }
3302 }
3303
3304 return stab_best;
3305 }
3306
3307 static void
3308 dw2_print_stats (struct objfile *objfile)
3309 {
3310 int i, total, count;
3311
3312 dw2_setup (objfile);
3313 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3314 count = 0;
3315 for (i = 0; i < total; ++i)
3316 {
3317 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3318
3319 if (!per_cu->v.quick->symtab)
3320 ++count;
3321 }
3322 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3323 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3324 }
3325
3326 static void
3327 dw2_dump (struct objfile *objfile)
3328 {
3329 /* Nothing worth printing. */
3330 }
3331
3332 static void
3333 dw2_relocate (struct objfile *objfile,
3334 const struct section_offsets *new_offsets,
3335 const struct section_offsets *delta)
3336 {
3337 /* There's nothing to relocate here. */
3338 }
3339
3340 static void
3341 dw2_expand_symtabs_for_function (struct objfile *objfile,
3342 const char *func_name)
3343 {
3344 struct mapped_index *index;
3345
3346 dw2_setup (objfile);
3347
3348 index = dwarf2_per_objfile->index_table;
3349
3350 /* index is NULL if OBJF_READNOW. */
3351 if (index)
3352 {
3353 struct dw2_symtab_iterator iter;
3354 struct dwarf2_per_cu_data *per_cu;
3355
3356 /* Note: It doesn't matter what we pass for block_index here. */
3357 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3358 func_name);
3359
3360 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3361 dw2_instantiate_symtab (per_cu);
3362 }
3363 }
3364
3365 static void
3366 dw2_expand_all_symtabs (struct objfile *objfile)
3367 {
3368 int i;
3369
3370 dw2_setup (objfile);
3371
3372 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3373 + dwarf2_per_objfile->n_type_units); ++i)
3374 {
3375 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3376
3377 dw2_instantiate_symtab (per_cu);
3378 }
3379 }
3380
3381 static void
3382 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3383 const char *fullname)
3384 {
3385 int i;
3386
3387 dw2_setup (objfile);
3388
3389 /* We don't need to consider type units here.
3390 This is only called for examining code, e.g. expand_line_sal.
3391 There can be an order of magnitude (or more) more type units
3392 than comp units, and we avoid them if we can. */
3393
3394 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3395 {
3396 int j;
3397 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3398 struct quick_file_names *file_data;
3399
3400 /* We only need to look at symtabs not already expanded. */
3401 if (per_cu->v.quick->symtab)
3402 continue;
3403
3404 file_data = dw2_get_file_names (per_cu);
3405 if (file_data == NULL)
3406 continue;
3407
3408 for (j = 0; j < file_data->num_file_names; ++j)
3409 {
3410 const char *this_fullname = file_data->file_names[j];
3411
3412 if (filename_cmp (this_fullname, fullname) == 0)
3413 {
3414 dw2_instantiate_symtab (per_cu);
3415 break;
3416 }
3417 }
3418 }
3419 }
3420
3421 /* A helper function for dw2_find_symbol_file that finds the primary
3422 file name for a given CU. This is a die_reader_func. */
3423
3424 static void
3425 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3426 const gdb_byte *info_ptr,
3427 struct die_info *comp_unit_die,
3428 int has_children,
3429 void *data)
3430 {
3431 const char **result_ptr = data;
3432 struct dwarf2_cu *cu = reader->cu;
3433 struct attribute *attr;
3434
3435 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3436 if (attr == NULL)
3437 *result_ptr = NULL;
3438 else
3439 *result_ptr = DW_STRING (attr);
3440 }
3441
3442 static const char *
3443 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3444 {
3445 struct dwarf2_per_cu_data *per_cu;
3446 offset_type *vec;
3447 const char *filename;
3448
3449 dw2_setup (objfile);
3450
3451 /* index_table is NULL if OBJF_READNOW. */
3452 if (!dwarf2_per_objfile->index_table)
3453 {
3454 struct symtab *s;
3455
3456 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3457 {
3458 struct blockvector *bv = BLOCKVECTOR (s);
3459 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3460 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3461
3462 if (sym)
3463 {
3464 /* Only file extension of returned filename is recognized. */
3465 return SYMBOL_SYMTAB (sym)->filename;
3466 }
3467 }
3468 return NULL;
3469 }
3470
3471 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3472 name, &vec))
3473 return NULL;
3474
3475 /* Note that this just looks at the very first one named NAME -- but
3476 actually we are looking for a function. find_main_filename
3477 should be rewritten so that it doesn't require a custom hook. It
3478 could just use the ordinary symbol tables. */
3479 /* vec[0] is the length, which must always be >0. */
3480 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3481
3482 if (per_cu->v.quick->symtab != NULL)
3483 {
3484 /* Only file extension of returned filename is recognized. */
3485 return per_cu->v.quick->symtab->filename;
3486 }
3487
3488 /* Initialize filename in case there's a problem reading the DWARF,
3489 dw2_get_primary_filename_reader may not get called. */
3490 filename = NULL;
3491 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3492 dw2_get_primary_filename_reader, &filename);
3493
3494 /* Only file extension of returned filename is recognized. */
3495 return filename;
3496 }
3497
3498 static void
3499 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3500 struct objfile *objfile, int global,
3501 int (*callback) (struct block *,
3502 struct symbol *, void *),
3503 void *data, symbol_compare_ftype *match,
3504 symbol_compare_ftype *ordered_compare)
3505 {
3506 /* Currently unimplemented; used for Ada. The function can be called if the
3507 current language is Ada for a non-Ada objfile using GNU index. As Ada
3508 does not look for non-Ada symbols this function should just return. */
3509 }
3510
3511 static void
3512 dw2_expand_symtabs_matching
3513 (struct objfile *objfile,
3514 int (*file_matcher) (const char *, void *, int basenames),
3515 int (*name_matcher) (const char *, void *),
3516 enum search_domain kind,
3517 void *data)
3518 {
3519 int i;
3520 offset_type iter;
3521 struct mapped_index *index;
3522
3523 dw2_setup (objfile);
3524
3525 /* index_table is NULL if OBJF_READNOW. */
3526 if (!dwarf2_per_objfile->index_table)
3527 return;
3528 index = dwarf2_per_objfile->index_table;
3529
3530 if (file_matcher != NULL)
3531 {
3532 struct cleanup *cleanup;
3533 htab_t visited_found, visited_not_found;
3534
3535 visited_found = htab_create_alloc (10,
3536 htab_hash_pointer, htab_eq_pointer,
3537 NULL, xcalloc, xfree);
3538 cleanup = make_cleanup_htab_delete (visited_found);
3539 visited_not_found = htab_create_alloc (10,
3540 htab_hash_pointer, htab_eq_pointer,
3541 NULL, xcalloc, xfree);
3542 make_cleanup_htab_delete (visited_not_found);
3543
3544 /* The rule is CUs specify all the files, including those used by
3545 any TU, so there's no need to scan TUs here. */
3546
3547 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3548 {
3549 int j;
3550 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3551 struct quick_file_names *file_data;
3552 void **slot;
3553
3554 per_cu->v.quick->mark = 0;
3555
3556 /* We only need to look at symtabs not already expanded. */
3557 if (per_cu->v.quick->symtab)
3558 continue;
3559
3560 file_data = dw2_get_file_names (per_cu);
3561 if (file_data == NULL)
3562 continue;
3563
3564 if (htab_find (visited_not_found, file_data) != NULL)
3565 continue;
3566 else if (htab_find (visited_found, file_data) != NULL)
3567 {
3568 per_cu->v.quick->mark = 1;
3569 continue;
3570 }
3571
3572 for (j = 0; j < file_data->num_file_names; ++j)
3573 {
3574 const char *this_real_name;
3575
3576 if (file_matcher (file_data->file_names[j], data, 0))
3577 {
3578 per_cu->v.quick->mark = 1;
3579 break;
3580 }
3581
3582 /* Before we invoke realpath, which can get expensive when many
3583 files are involved, do a quick comparison of the basenames. */
3584 if (!basenames_may_differ
3585 && !file_matcher (lbasename (file_data->file_names[j]),
3586 data, 1))
3587 continue;
3588
3589 this_real_name = dw2_get_real_path (objfile, file_data, j);
3590 if (file_matcher (this_real_name, data, 0))
3591 {
3592 per_cu->v.quick->mark = 1;
3593 break;
3594 }
3595 }
3596
3597 slot = htab_find_slot (per_cu->v.quick->mark
3598 ? visited_found
3599 : visited_not_found,
3600 file_data, INSERT);
3601 *slot = file_data;
3602 }
3603
3604 do_cleanups (cleanup);
3605 }
3606
3607 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3608 {
3609 offset_type idx = 2 * iter;
3610 const char *name;
3611 offset_type *vec, vec_len, vec_idx;
3612
3613 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3614 continue;
3615
3616 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3617
3618 if (! (*name_matcher) (name, data))
3619 continue;
3620
3621 /* The name was matched, now expand corresponding CUs that were
3622 marked. */
3623 vec = (offset_type *) (index->constant_pool
3624 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3625 vec_len = MAYBE_SWAP (vec[0]);
3626 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3627 {
3628 struct dwarf2_per_cu_data *per_cu;
3629 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3630 gdb_index_symbol_kind symbol_kind =
3631 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3632 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3633
3634 /* Don't crash on bad data. */
3635 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3636 + dwarf2_per_objfile->n_type_units))
3637 continue;
3638
3639 /* Only check the symbol's kind if it has one.
3640 Indices prior to version 7 don't record it. */
3641 if (index->version >= 7)
3642 {
3643 switch (kind)
3644 {
3645 case VARIABLES_DOMAIN:
3646 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3647 continue;
3648 break;
3649 case FUNCTIONS_DOMAIN:
3650 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3651 continue;
3652 break;
3653 case TYPES_DOMAIN:
3654 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3655 continue;
3656 break;
3657 default:
3658 break;
3659 }
3660 }
3661
3662 per_cu = dw2_get_cu (cu_index);
3663 if (file_matcher == NULL || per_cu->v.quick->mark)
3664 dw2_instantiate_symtab (per_cu);
3665 }
3666 }
3667 }
3668
3669 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3670 symtab. */
3671
3672 static struct symtab *
3673 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3674 {
3675 int i;
3676
3677 if (BLOCKVECTOR (symtab) != NULL
3678 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3679 return symtab;
3680
3681 if (symtab->includes == NULL)
3682 return NULL;
3683
3684 for (i = 0; symtab->includes[i]; ++i)
3685 {
3686 struct symtab *s = symtab->includes[i];
3687
3688 s = recursively_find_pc_sect_symtab (s, pc);
3689 if (s != NULL)
3690 return s;
3691 }
3692
3693 return NULL;
3694 }
3695
3696 static struct symtab *
3697 dw2_find_pc_sect_symtab (struct objfile *objfile,
3698 struct minimal_symbol *msymbol,
3699 CORE_ADDR pc,
3700 struct obj_section *section,
3701 int warn_if_readin)
3702 {
3703 struct dwarf2_per_cu_data *data;
3704 struct symtab *result;
3705
3706 dw2_setup (objfile);
3707
3708 if (!objfile->psymtabs_addrmap)
3709 return NULL;
3710
3711 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3712 if (!data)
3713 return NULL;
3714
3715 if (warn_if_readin && data->v.quick->symtab)
3716 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3717 paddress (get_objfile_arch (objfile), pc));
3718
3719 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3720 gdb_assert (result != NULL);
3721 return result;
3722 }
3723
3724 static void
3725 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3726 void *data, int need_fullname)
3727 {
3728 int i;
3729 struct cleanup *cleanup;
3730 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3731 NULL, xcalloc, xfree);
3732
3733 cleanup = make_cleanup_htab_delete (visited);
3734 dw2_setup (objfile);
3735
3736 /* The rule is CUs specify all the files, including those used by
3737 any TU, so there's no need to scan TUs here.
3738 We can ignore file names coming from already-expanded CUs. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3743
3744 if (per_cu->v.quick->symtab)
3745 {
3746 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3747 INSERT);
3748
3749 *slot = per_cu->v.quick->file_names;
3750 }
3751 }
3752
3753 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3754 {
3755 int j;
3756 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3757 struct quick_file_names *file_data;
3758 void **slot;
3759
3760 /* We only need to look at symtabs not already expanded. */
3761 if (per_cu->v.quick->symtab)
3762 continue;
3763
3764 file_data = dw2_get_file_names (per_cu);
3765 if (file_data == NULL)
3766 continue;
3767
3768 slot = htab_find_slot (visited, file_data, INSERT);
3769 if (*slot)
3770 {
3771 /* Already visited. */
3772 continue;
3773 }
3774 *slot = file_data;
3775
3776 for (j = 0; j < file_data->num_file_names; ++j)
3777 {
3778 const char *this_real_name;
3779
3780 if (need_fullname)
3781 this_real_name = dw2_get_real_path (objfile, file_data, j);
3782 else
3783 this_real_name = NULL;
3784 (*fun) (file_data->file_names[j], this_real_name, data);
3785 }
3786 }
3787
3788 do_cleanups (cleanup);
3789 }
3790
3791 static int
3792 dw2_has_symbols (struct objfile *objfile)
3793 {
3794 return 1;
3795 }
3796
3797 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3798 {
3799 dw2_has_symbols,
3800 dw2_find_last_source_symtab,
3801 dw2_forget_cached_source_info,
3802 dw2_map_symtabs_matching_filename,
3803 dw2_lookup_symbol,
3804 dw2_print_stats,
3805 dw2_dump,
3806 dw2_relocate,
3807 dw2_expand_symtabs_for_function,
3808 dw2_expand_all_symtabs,
3809 dw2_expand_symtabs_with_fullname,
3810 dw2_find_symbol_file,
3811 dw2_map_matching_symbols,
3812 dw2_expand_symtabs_matching,
3813 dw2_find_pc_sect_symtab,
3814 dw2_map_symbol_filenames
3815 };
3816
3817 /* Initialize for reading DWARF for this objfile. Return 0 if this
3818 file will use psymtabs, or 1 if using the GNU index. */
3819
3820 int
3821 dwarf2_initialize_objfile (struct objfile *objfile)
3822 {
3823 /* If we're about to read full symbols, don't bother with the
3824 indices. In this case we also don't care if some other debug
3825 format is making psymtabs, because they are all about to be
3826 expanded anyway. */
3827 if ((objfile->flags & OBJF_READNOW))
3828 {
3829 int i;
3830
3831 dwarf2_per_objfile->using_index = 1;
3832 create_all_comp_units (objfile);
3833 create_all_type_units (objfile);
3834 dwarf2_per_objfile->quick_file_names_table =
3835 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3836
3837 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3838 + dwarf2_per_objfile->n_type_units); ++i)
3839 {
3840 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3841
3842 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3843 struct dwarf2_per_cu_quick_data);
3844 }
3845
3846 /* Return 1 so that gdb sees the "quick" functions. However,
3847 these functions will be no-ops because we will have expanded
3848 all symtabs. */
3849 return 1;
3850 }
3851
3852 if (dwarf2_read_index (objfile))
3853 return 1;
3854
3855 return 0;
3856 }
3857
3858 \f
3859
3860 /* Build a partial symbol table. */
3861
3862 void
3863 dwarf2_build_psymtabs (struct objfile *objfile)
3864 {
3865 volatile struct gdb_exception except;
3866
3867 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3868 {
3869 init_psymbol_list (objfile, 1024);
3870 }
3871
3872 TRY_CATCH (except, RETURN_MASK_ERROR)
3873 {
3874 /* This isn't really ideal: all the data we allocate on the
3875 objfile's obstack is still uselessly kept around. However,
3876 freeing it seems unsafe. */
3877 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3878
3879 dwarf2_build_psymtabs_hard (objfile);
3880 discard_cleanups (cleanups);
3881 }
3882 if (except.reason < 0)
3883 exception_print (gdb_stderr, except);
3884 }
3885
3886 /* Return the total length of the CU described by HEADER. */
3887
3888 static unsigned int
3889 get_cu_length (const struct comp_unit_head *header)
3890 {
3891 return header->initial_length_size + header->length;
3892 }
3893
3894 /* Return TRUE if OFFSET is within CU_HEADER. */
3895
3896 static inline int
3897 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3898 {
3899 sect_offset bottom = { cu_header->offset.sect_off };
3900 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3901
3902 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3903 }
3904
3905 /* Find the base address of the compilation unit for range lists and
3906 location lists. It will normally be specified by DW_AT_low_pc.
3907 In DWARF-3 draft 4, the base address could be overridden by
3908 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3909 compilation units with discontinuous ranges. */
3910
3911 static void
3912 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3913 {
3914 struct attribute *attr;
3915
3916 cu->base_known = 0;
3917 cu->base_address = 0;
3918
3919 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3920 if (attr)
3921 {
3922 cu->base_address = DW_ADDR (attr);
3923 cu->base_known = 1;
3924 }
3925 else
3926 {
3927 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3928 if (attr)
3929 {
3930 cu->base_address = DW_ADDR (attr);
3931 cu->base_known = 1;
3932 }
3933 }
3934 }
3935
3936 /* Read in the comp unit header information from the debug_info at info_ptr.
3937 NOTE: This leaves members offset, first_die_offset to be filled in
3938 by the caller. */
3939
3940 static const gdb_byte *
3941 read_comp_unit_head (struct comp_unit_head *cu_header,
3942 const gdb_byte *info_ptr, bfd *abfd)
3943 {
3944 int signed_addr;
3945 unsigned int bytes_read;
3946
3947 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3948 cu_header->initial_length_size = bytes_read;
3949 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3950 info_ptr += bytes_read;
3951 cu_header->version = read_2_bytes (abfd, info_ptr);
3952 info_ptr += 2;
3953 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3954 &bytes_read);
3955 info_ptr += bytes_read;
3956 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3957 info_ptr += 1;
3958 signed_addr = bfd_get_sign_extend_vma (abfd);
3959 if (signed_addr < 0)
3960 internal_error (__FILE__, __LINE__,
3961 _("read_comp_unit_head: dwarf from non elf file"));
3962 cu_header->signed_addr_p = signed_addr;
3963
3964 return info_ptr;
3965 }
3966
3967 /* Helper function that returns the proper abbrev section for
3968 THIS_CU. */
3969
3970 static struct dwarf2_section_info *
3971 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3972 {
3973 struct dwarf2_section_info *abbrev;
3974
3975 if (this_cu->is_dwz)
3976 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3977 else
3978 abbrev = &dwarf2_per_objfile->abbrev;
3979
3980 return abbrev;
3981 }
3982
3983 /* Subroutine of read_and_check_comp_unit_head and
3984 read_and_check_type_unit_head to simplify them.
3985 Perform various error checking on the header. */
3986
3987 static void
3988 error_check_comp_unit_head (struct comp_unit_head *header,
3989 struct dwarf2_section_info *section,
3990 struct dwarf2_section_info *abbrev_section)
3991 {
3992 bfd *abfd = section->asection->owner;
3993 const char *filename = bfd_get_filename (abfd);
3994
3995 if (header->version != 2 && header->version != 3 && header->version != 4)
3996 error (_("Dwarf Error: wrong version in compilation unit header "
3997 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3998 filename);
3999
4000 if (header->abbrev_offset.sect_off
4001 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4002 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4003 "(offset 0x%lx + 6) [in module %s]"),
4004 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4005 filename);
4006
4007 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4008 avoid potential 32-bit overflow. */
4009 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4010 > section->size)
4011 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4012 "(offset 0x%lx + 0) [in module %s]"),
4013 (long) header->length, (long) header->offset.sect_off,
4014 filename);
4015 }
4016
4017 /* Read in a CU/TU header and perform some basic error checking.
4018 The contents of the header are stored in HEADER.
4019 The result is a pointer to the start of the first DIE. */
4020
4021 static const gdb_byte *
4022 read_and_check_comp_unit_head (struct comp_unit_head *header,
4023 struct dwarf2_section_info *section,
4024 struct dwarf2_section_info *abbrev_section,
4025 const gdb_byte *info_ptr,
4026 int is_debug_types_section)
4027 {
4028 const gdb_byte *beg_of_comp_unit = info_ptr;
4029 bfd *abfd = section->asection->owner;
4030
4031 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4032
4033 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4034
4035 /* If we're reading a type unit, skip over the signature and
4036 type_offset fields. */
4037 if (is_debug_types_section)
4038 info_ptr += 8 /*signature*/ + header->offset_size;
4039
4040 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4041
4042 error_check_comp_unit_head (header, section, abbrev_section);
4043
4044 return info_ptr;
4045 }
4046
4047 /* Read in the types comp unit header information from .debug_types entry at
4048 types_ptr. The result is a pointer to one past the end of the header. */
4049
4050 static const gdb_byte *
4051 read_and_check_type_unit_head (struct comp_unit_head *header,
4052 struct dwarf2_section_info *section,
4053 struct dwarf2_section_info *abbrev_section,
4054 const gdb_byte *info_ptr,
4055 ULONGEST *signature,
4056 cu_offset *type_offset_in_tu)
4057 {
4058 const gdb_byte *beg_of_comp_unit = info_ptr;
4059 bfd *abfd = section->asection->owner;
4060
4061 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4062
4063 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4064
4065 /* If we're reading a type unit, skip over the signature and
4066 type_offset fields. */
4067 if (signature != NULL)
4068 *signature = read_8_bytes (abfd, info_ptr);
4069 info_ptr += 8;
4070 if (type_offset_in_tu != NULL)
4071 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4072 header->offset_size);
4073 info_ptr += header->offset_size;
4074
4075 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4076
4077 error_check_comp_unit_head (header, section, abbrev_section);
4078
4079 return info_ptr;
4080 }
4081
4082 /* Fetch the abbreviation table offset from a comp or type unit header. */
4083
4084 static sect_offset
4085 read_abbrev_offset (struct dwarf2_section_info *section,
4086 sect_offset offset)
4087 {
4088 bfd *abfd = section->asection->owner;
4089 const gdb_byte *info_ptr;
4090 unsigned int length, initial_length_size, offset_size;
4091 sect_offset abbrev_offset;
4092
4093 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4094 info_ptr = section->buffer + offset.sect_off;
4095 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4096 offset_size = initial_length_size == 4 ? 4 : 8;
4097 info_ptr += initial_length_size + 2 /*version*/;
4098 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4099 return abbrev_offset;
4100 }
4101
4102 /* Allocate a new partial symtab for file named NAME and mark this new
4103 partial symtab as being an include of PST. */
4104
4105 static void
4106 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4107 struct objfile *objfile)
4108 {
4109 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4110
4111 if (!IS_ABSOLUTE_PATH (subpst->filename))
4112 {
4113 /* It shares objfile->objfile_obstack. */
4114 subpst->dirname = pst->dirname;
4115 }
4116
4117 subpst->section_offsets = pst->section_offsets;
4118 subpst->textlow = 0;
4119 subpst->texthigh = 0;
4120
4121 subpst->dependencies = (struct partial_symtab **)
4122 obstack_alloc (&objfile->objfile_obstack,
4123 sizeof (struct partial_symtab *));
4124 subpst->dependencies[0] = pst;
4125 subpst->number_of_dependencies = 1;
4126
4127 subpst->globals_offset = 0;
4128 subpst->n_global_syms = 0;
4129 subpst->statics_offset = 0;
4130 subpst->n_static_syms = 0;
4131 subpst->symtab = NULL;
4132 subpst->read_symtab = pst->read_symtab;
4133 subpst->readin = 0;
4134
4135 /* No private part is necessary for include psymtabs. This property
4136 can be used to differentiate between such include psymtabs and
4137 the regular ones. */
4138 subpst->read_symtab_private = NULL;
4139 }
4140
4141 /* Read the Line Number Program data and extract the list of files
4142 included by the source file represented by PST. Build an include
4143 partial symtab for each of these included files. */
4144
4145 static void
4146 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4147 struct die_info *die,
4148 struct partial_symtab *pst)
4149 {
4150 struct line_header *lh = NULL;
4151 struct attribute *attr;
4152
4153 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4154 if (attr)
4155 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4156 if (lh == NULL)
4157 return; /* No linetable, so no includes. */
4158
4159 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4160 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4161
4162 free_line_header (lh);
4163 }
4164
4165 static hashval_t
4166 hash_signatured_type (const void *item)
4167 {
4168 const struct signatured_type *sig_type = item;
4169
4170 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4171 return sig_type->signature;
4172 }
4173
4174 static int
4175 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4176 {
4177 const struct signatured_type *lhs = item_lhs;
4178 const struct signatured_type *rhs = item_rhs;
4179
4180 return lhs->signature == rhs->signature;
4181 }
4182
4183 /* Allocate a hash table for signatured types. */
4184
4185 static htab_t
4186 allocate_signatured_type_table (struct objfile *objfile)
4187 {
4188 return htab_create_alloc_ex (41,
4189 hash_signatured_type,
4190 eq_signatured_type,
4191 NULL,
4192 &objfile->objfile_obstack,
4193 hashtab_obstack_allocate,
4194 dummy_obstack_deallocate);
4195 }
4196
4197 /* A helper function to add a signatured type CU to a table. */
4198
4199 static int
4200 add_signatured_type_cu_to_table (void **slot, void *datum)
4201 {
4202 struct signatured_type *sigt = *slot;
4203 struct signatured_type ***datap = datum;
4204
4205 **datap = sigt;
4206 ++*datap;
4207
4208 return 1;
4209 }
4210
4211 /* Create the hash table of all entries in the .debug_types
4212 (or .debug_types.dwo) section(s).
4213 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4214 otherwise it is NULL.
4215
4216 The result is a pointer to the hash table or NULL if there are no types.
4217
4218 Note: This function processes DWO files only, not DWP files. */
4219
4220 static htab_t
4221 create_debug_types_hash_table (struct dwo_file *dwo_file,
4222 VEC (dwarf2_section_info_def) *types)
4223 {
4224 struct objfile *objfile = dwarf2_per_objfile->objfile;
4225 htab_t types_htab = NULL;
4226 int ix;
4227 struct dwarf2_section_info *section;
4228 struct dwarf2_section_info *abbrev_section;
4229
4230 if (VEC_empty (dwarf2_section_info_def, types))
4231 return NULL;
4232
4233 abbrev_section = (dwo_file != NULL
4234 ? &dwo_file->sections.abbrev
4235 : &dwarf2_per_objfile->abbrev);
4236
4237 if (dwarf2_read_debug)
4238 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4239 dwo_file ? ".dwo" : "",
4240 bfd_get_filename (abbrev_section->asection->owner));
4241
4242 for (ix = 0;
4243 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4244 ++ix)
4245 {
4246 bfd *abfd;
4247 const gdb_byte *info_ptr, *end_ptr;
4248 struct dwarf2_section_info *abbrev_section;
4249
4250 dwarf2_read_section (objfile, section);
4251 info_ptr = section->buffer;
4252
4253 if (info_ptr == NULL)
4254 continue;
4255
4256 /* We can't set abfd until now because the section may be empty or
4257 not present, in which case section->asection will be NULL. */
4258 abfd = section->asection->owner;
4259
4260 if (dwo_file)
4261 abbrev_section = &dwo_file->sections.abbrev;
4262 else
4263 abbrev_section = &dwarf2_per_objfile->abbrev;
4264
4265 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4266 because we don't need to read any dies: the signature is in the
4267 header. */
4268
4269 end_ptr = info_ptr + section->size;
4270 while (info_ptr < end_ptr)
4271 {
4272 sect_offset offset;
4273 cu_offset type_offset_in_tu;
4274 ULONGEST signature;
4275 struct signatured_type *sig_type;
4276 struct dwo_unit *dwo_tu;
4277 void **slot;
4278 const gdb_byte *ptr = info_ptr;
4279 struct comp_unit_head header;
4280 unsigned int length;
4281
4282 offset.sect_off = ptr - section->buffer;
4283
4284 /* We need to read the type's signature in order to build the hash
4285 table, but we don't need anything else just yet. */
4286
4287 ptr = read_and_check_type_unit_head (&header, section,
4288 abbrev_section, ptr,
4289 &signature, &type_offset_in_tu);
4290
4291 length = get_cu_length (&header);
4292
4293 /* Skip dummy type units. */
4294 if (ptr >= info_ptr + length
4295 || peek_abbrev_code (abfd, ptr) == 0)
4296 {
4297 info_ptr += length;
4298 continue;
4299 }
4300
4301 if (types_htab == NULL)
4302 {
4303 if (dwo_file)
4304 types_htab = allocate_dwo_unit_table (objfile);
4305 else
4306 types_htab = allocate_signatured_type_table (objfile);
4307 }
4308
4309 if (dwo_file)
4310 {
4311 sig_type = NULL;
4312 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4313 struct dwo_unit);
4314 dwo_tu->dwo_file = dwo_file;
4315 dwo_tu->signature = signature;
4316 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4317 dwo_tu->section = section;
4318 dwo_tu->offset = offset;
4319 dwo_tu->length = length;
4320 }
4321 else
4322 {
4323 /* N.B.: type_offset is not usable if this type uses a DWO file.
4324 The real type_offset is in the DWO file. */
4325 dwo_tu = NULL;
4326 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4327 struct signatured_type);
4328 sig_type->signature = signature;
4329 sig_type->type_offset_in_tu = type_offset_in_tu;
4330 sig_type->per_cu.objfile = objfile;
4331 sig_type->per_cu.is_debug_types = 1;
4332 sig_type->per_cu.section = section;
4333 sig_type->per_cu.offset = offset;
4334 sig_type->per_cu.length = length;
4335 }
4336
4337 slot = htab_find_slot (types_htab,
4338 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4339 INSERT);
4340 gdb_assert (slot != NULL);
4341 if (*slot != NULL)
4342 {
4343 sect_offset dup_offset;
4344
4345 if (dwo_file)
4346 {
4347 const struct dwo_unit *dup_tu = *slot;
4348
4349 dup_offset = dup_tu->offset;
4350 }
4351 else
4352 {
4353 const struct signatured_type *dup_tu = *slot;
4354
4355 dup_offset = dup_tu->per_cu.offset;
4356 }
4357
4358 complaint (&symfile_complaints,
4359 _("debug type entry at offset 0x%x is duplicate to"
4360 " the entry at offset 0x%x, signature %s"),
4361 offset.sect_off, dup_offset.sect_off,
4362 hex_string (signature));
4363 }
4364 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4365
4366 if (dwarf2_read_debug)
4367 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4368 offset.sect_off,
4369 hex_string (signature));
4370
4371 info_ptr += length;
4372 }
4373 }
4374
4375 return types_htab;
4376 }
4377
4378 /* Create the hash table of all entries in the .debug_types section,
4379 and initialize all_type_units.
4380 The result is zero if there is an error (e.g. missing .debug_types section),
4381 otherwise non-zero. */
4382
4383 static int
4384 create_all_type_units (struct objfile *objfile)
4385 {
4386 htab_t types_htab;
4387 struct signatured_type **iter;
4388
4389 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4390 if (types_htab == NULL)
4391 {
4392 dwarf2_per_objfile->signatured_types = NULL;
4393 return 0;
4394 }
4395
4396 dwarf2_per_objfile->signatured_types = types_htab;
4397
4398 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4399 dwarf2_per_objfile->all_type_units
4400 = xmalloc (dwarf2_per_objfile->n_type_units
4401 * sizeof (struct signatured_type *));
4402 iter = &dwarf2_per_objfile->all_type_units[0];
4403 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4404 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4405 == dwarf2_per_objfile->n_type_units);
4406
4407 return 1;
4408 }
4409
4410 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4411 Fill in SIG_ENTRY with DWO_ENTRY. */
4412
4413 static void
4414 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4415 struct signatured_type *sig_entry,
4416 struct dwo_unit *dwo_entry)
4417 {
4418 sig_entry->per_cu.section = dwo_entry->section;
4419 sig_entry->per_cu.offset = dwo_entry->offset;
4420 sig_entry->per_cu.length = dwo_entry->length;
4421 sig_entry->per_cu.reading_dwo_directly = 1;
4422 sig_entry->per_cu.objfile = objfile;
4423 gdb_assert (! sig_entry->per_cu.queued);
4424 gdb_assert (sig_entry->per_cu.cu == NULL);
4425 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4426 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4427 gdb_assert (sig_entry->signature == dwo_entry->signature);
4428 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4429 gdb_assert (sig_entry->type_unit_group == NULL);
4430 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4431 sig_entry->dwo_unit = dwo_entry;
4432 }
4433
4434 /* Subroutine of lookup_signatured_type.
4435 Create the signatured_type data structure for a TU to be read in
4436 directly from a DWO file, bypassing the stub.
4437 We do this for the case where there is no DWP file and we're using
4438 .gdb_index: When reading a CU we want to stay in the DWO file containing
4439 that CU. Otherwise we could end up reading several other DWO files (due
4440 to comdat folding) to process the transitive closure of all the mentioned
4441 TUs, and that can be slow. The current DWO file will have every type
4442 signature that it needs.
4443 We only do this for .gdb_index because in the psymtab case we already have
4444 to read all the DWOs to build the type unit groups. */
4445
4446 static struct signatured_type *
4447 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4448 {
4449 struct objfile *objfile = dwarf2_per_objfile->objfile;
4450 struct dwo_file *dwo_file;
4451 struct dwo_unit find_dwo_entry, *dwo_entry;
4452 struct signatured_type find_sig_entry, *sig_entry;
4453
4454 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4455
4456 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4457 dwo_unit of the TU itself. */
4458 dwo_file = cu->dwo_unit->dwo_file;
4459
4460 /* We only ever need to read in one copy of a signatured type.
4461 Just use the global signatured_types array. If this is the first time
4462 we're reading this type, replace the recorded data from .gdb_index with
4463 this TU. */
4464
4465 if (dwarf2_per_objfile->signatured_types == NULL)
4466 return NULL;
4467 find_sig_entry.signature = sig;
4468 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4469 if (sig_entry == NULL)
4470 return NULL;
4471 /* Have we already tried to read this TU? */
4472 if (sig_entry->dwo_unit != NULL)
4473 return sig_entry;
4474
4475 /* Ok, this is the first time we're reading this TU. */
4476 if (dwo_file->tus == NULL)
4477 return NULL;
4478 find_dwo_entry.signature = sig;
4479 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4480 if (dwo_entry == NULL)
4481 return NULL;
4482
4483 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4484 return sig_entry;
4485 }
4486
4487 /* Subroutine of lookup_dwp_signatured_type.
4488 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4489
4490 static struct signatured_type *
4491 add_type_unit (ULONGEST sig)
4492 {
4493 struct objfile *objfile = dwarf2_per_objfile->objfile;
4494 int n_type_units = dwarf2_per_objfile->n_type_units;
4495 struct signatured_type *sig_type;
4496 void **slot;
4497
4498 ++n_type_units;
4499 dwarf2_per_objfile->all_type_units =
4500 xrealloc (dwarf2_per_objfile->all_type_units,
4501 n_type_units * sizeof (struct signatured_type *));
4502 dwarf2_per_objfile->n_type_units = n_type_units;
4503 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4504 struct signatured_type);
4505 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4506 sig_type->signature = sig;
4507 sig_type->per_cu.is_debug_types = 1;
4508 sig_type->per_cu.v.quick =
4509 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4510 struct dwarf2_per_cu_quick_data);
4511 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4512 sig_type, INSERT);
4513 gdb_assert (*slot == NULL);
4514 *slot = sig_type;
4515 /* The rest of sig_type must be filled in by the caller. */
4516 return sig_type;
4517 }
4518
4519 /* Subroutine of lookup_signatured_type.
4520 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4521 then try the DWP file.
4522 Normally this "can't happen", but if there's a bug in signature
4523 generation and/or the DWP file is built incorrectly, it can happen.
4524 Using the type directly from the DWP file means we don't have the stub
4525 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4526 not critical. [Eventually the stub may go away for type units anyway.] */
4527
4528 static struct signatured_type *
4529 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4530 {
4531 struct objfile *objfile = dwarf2_per_objfile->objfile;
4532 struct dwp_file *dwp_file = get_dwp_file ();
4533 struct dwo_unit *dwo_entry;
4534 struct signatured_type find_sig_entry, *sig_entry;
4535
4536 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4537 gdb_assert (dwp_file != NULL);
4538
4539 if (dwarf2_per_objfile->signatured_types != NULL)
4540 {
4541 find_sig_entry.signature = sig;
4542 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4543 &find_sig_entry);
4544 if (sig_entry != NULL)
4545 return sig_entry;
4546 }
4547
4548 /* This is the "shouldn't happen" case.
4549 Try the DWP file and hope for the best. */
4550 if (dwp_file->tus == NULL)
4551 return NULL;
4552 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4553 sig, 1 /* is_debug_types */);
4554 if (dwo_entry == NULL)
4555 return NULL;
4556
4557 sig_entry = add_type_unit (sig);
4558 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4559
4560 /* The caller will signal a complaint if we return NULL.
4561 Here we don't return NULL but we still want to complain. */
4562 complaint (&symfile_complaints,
4563 _("Bad type signature %s referenced by %s at 0x%x,"
4564 " coping by using copy in DWP [in module %s]"),
4565 hex_string (sig),
4566 cu->per_cu->is_debug_types ? "TU" : "CU",
4567 cu->per_cu->offset.sect_off,
4568 objfile->name);
4569
4570 return sig_entry;
4571 }
4572
4573 /* Lookup a signature based type for DW_FORM_ref_sig8.
4574 Returns NULL if signature SIG is not present in the table.
4575 It is up to the caller to complain about this. */
4576
4577 static struct signatured_type *
4578 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4579 {
4580 if (cu->dwo_unit
4581 && dwarf2_per_objfile->using_index)
4582 {
4583 /* We're in a DWO/DWP file, and we're using .gdb_index.
4584 These cases require special processing. */
4585 if (get_dwp_file () == NULL)
4586 return lookup_dwo_signatured_type (cu, sig);
4587 else
4588 return lookup_dwp_signatured_type (cu, sig);
4589 }
4590 else
4591 {
4592 struct signatured_type find_entry, *entry;
4593
4594 if (dwarf2_per_objfile->signatured_types == NULL)
4595 return NULL;
4596 find_entry.signature = sig;
4597 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4598 return entry;
4599 }
4600 }
4601 \f
4602 /* Low level DIE reading support. */
4603
4604 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4605
4606 static void
4607 init_cu_die_reader (struct die_reader_specs *reader,
4608 struct dwarf2_cu *cu,
4609 struct dwarf2_section_info *section,
4610 struct dwo_file *dwo_file)
4611 {
4612 gdb_assert (section->readin && section->buffer != NULL);
4613 reader->abfd = section->asection->owner;
4614 reader->cu = cu;
4615 reader->dwo_file = dwo_file;
4616 reader->die_section = section;
4617 reader->buffer = section->buffer;
4618 reader->buffer_end = section->buffer + section->size;
4619 reader->comp_dir = NULL;
4620 }
4621
4622 /* Subroutine of init_cutu_and_read_dies to simplify it.
4623 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4624 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4625 already.
4626
4627 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4628 from it to the DIE in the DWO. If NULL we are skipping the stub.
4629 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4630 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4631 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4632 COMP_DIR must be non-NULL.
4633 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4634 are filled in with the info of the DIE from the DWO file.
4635 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4636 provided an abbrev table to use.
4637 The result is non-zero if a valid (non-dummy) DIE was found. */
4638
4639 static int
4640 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4641 struct dwo_unit *dwo_unit,
4642 int abbrev_table_provided,
4643 struct die_info *stub_comp_unit_die,
4644 const char *stub_comp_dir,
4645 struct die_reader_specs *result_reader,
4646 const gdb_byte **result_info_ptr,
4647 struct die_info **result_comp_unit_die,
4648 int *result_has_children)
4649 {
4650 struct objfile *objfile = dwarf2_per_objfile->objfile;
4651 struct dwarf2_cu *cu = this_cu->cu;
4652 struct dwarf2_section_info *section;
4653 bfd *abfd;
4654 const gdb_byte *begin_info_ptr, *info_ptr;
4655 const char *comp_dir_string;
4656 ULONGEST signature; /* Or dwo_id. */
4657 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4658 int i,num_extra_attrs;
4659 struct dwarf2_section_info *dwo_abbrev_section;
4660 struct attribute *attr;
4661 struct attribute comp_dir_attr;
4662 struct die_info *comp_unit_die;
4663
4664 /* Both can't be provided. */
4665 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4666
4667 /* These attributes aren't processed until later:
4668 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4669 However, the attribute is found in the stub which we won't have later.
4670 In order to not impose this complication on the rest of the code,
4671 we read them here and copy them to the DWO CU/TU die. */
4672
4673 stmt_list = NULL;
4674 low_pc = NULL;
4675 high_pc = NULL;
4676 ranges = NULL;
4677 comp_dir = NULL;
4678
4679 if (stub_comp_unit_die != NULL)
4680 {
4681 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4682 DWO file. */
4683 if (! this_cu->is_debug_types)
4684 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4685 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4686 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4687 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4688 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4689
4690 /* There should be a DW_AT_addr_base attribute here (if needed).
4691 We need the value before we can process DW_FORM_GNU_addr_index. */
4692 cu->addr_base = 0;
4693 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4694 if (attr)
4695 cu->addr_base = DW_UNSND (attr);
4696
4697 /* There should be a DW_AT_ranges_base attribute here (if needed).
4698 We need the value before we can process DW_AT_ranges. */
4699 cu->ranges_base = 0;
4700 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4701 if (attr)
4702 cu->ranges_base = DW_UNSND (attr);
4703 }
4704 else if (stub_comp_dir != NULL)
4705 {
4706 /* Reconstruct the comp_dir attribute to simplify the code below. */
4707 comp_dir = (struct attribute *)
4708 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4709 comp_dir->name = DW_AT_comp_dir;
4710 comp_dir->form = DW_FORM_string;
4711 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4712 DW_STRING (comp_dir) = stub_comp_dir;
4713 }
4714
4715 /* Set up for reading the DWO CU/TU. */
4716 cu->dwo_unit = dwo_unit;
4717 section = dwo_unit->section;
4718 dwarf2_read_section (objfile, section);
4719 abfd = section->asection->owner;
4720 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4721 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4722 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4723
4724 if (this_cu->is_debug_types)
4725 {
4726 ULONGEST header_signature;
4727 cu_offset type_offset_in_tu;
4728 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4729
4730 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4731 dwo_abbrev_section,
4732 info_ptr,
4733 &header_signature,
4734 &type_offset_in_tu);
4735 /* This is not an assert because it can be caused by bad debug info. */
4736 if (sig_type->signature != header_signature)
4737 {
4738 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4739 " TU at offset 0x%x [in module %s]"),
4740 hex_string (sig_type->signature),
4741 hex_string (header_signature),
4742 dwo_unit->offset.sect_off,
4743 bfd_get_filename (abfd));
4744 }
4745 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4746 /* For DWOs coming from DWP files, we don't know the CU length
4747 nor the type's offset in the TU until now. */
4748 dwo_unit->length = get_cu_length (&cu->header);
4749 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4750
4751 /* Establish the type offset that can be used to lookup the type.
4752 For DWO files, we don't know it until now. */
4753 sig_type->type_offset_in_section.sect_off =
4754 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4755 }
4756 else
4757 {
4758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4759 dwo_abbrev_section,
4760 info_ptr, 0);
4761 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4762 /* For DWOs coming from DWP files, we don't know the CU length
4763 until now. */
4764 dwo_unit->length = get_cu_length (&cu->header);
4765 }
4766
4767 /* Replace the CU's original abbrev table with the DWO's.
4768 Reminder: We can't read the abbrev table until we've read the header. */
4769 if (abbrev_table_provided)
4770 {
4771 /* Don't free the provided abbrev table, the caller of
4772 init_cutu_and_read_dies owns it. */
4773 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4774 /* Ensure the DWO abbrev table gets freed. */
4775 make_cleanup (dwarf2_free_abbrev_table, cu);
4776 }
4777 else
4778 {
4779 dwarf2_free_abbrev_table (cu);
4780 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4781 /* Leave any existing abbrev table cleanup as is. */
4782 }
4783
4784 /* Read in the die, but leave space to copy over the attributes
4785 from the stub. This has the benefit of simplifying the rest of
4786 the code - all the work to maintain the illusion of a single
4787 DW_TAG_{compile,type}_unit DIE is done here. */
4788 num_extra_attrs = ((stmt_list != NULL)
4789 + (low_pc != NULL)
4790 + (high_pc != NULL)
4791 + (ranges != NULL)
4792 + (comp_dir != NULL));
4793 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4794 result_has_children, num_extra_attrs);
4795
4796 /* Copy over the attributes from the stub to the DIE we just read in. */
4797 comp_unit_die = *result_comp_unit_die;
4798 i = comp_unit_die->num_attrs;
4799 if (stmt_list != NULL)
4800 comp_unit_die->attrs[i++] = *stmt_list;
4801 if (low_pc != NULL)
4802 comp_unit_die->attrs[i++] = *low_pc;
4803 if (high_pc != NULL)
4804 comp_unit_die->attrs[i++] = *high_pc;
4805 if (ranges != NULL)
4806 comp_unit_die->attrs[i++] = *ranges;
4807 if (comp_dir != NULL)
4808 comp_unit_die->attrs[i++] = *comp_dir;
4809 comp_unit_die->num_attrs += num_extra_attrs;
4810
4811 if (dwarf2_die_debug)
4812 {
4813 fprintf_unfiltered (gdb_stdlog,
4814 "Read die from %s@0x%x of %s:\n",
4815 bfd_section_name (abfd, section->asection),
4816 (unsigned) (begin_info_ptr - section->buffer),
4817 bfd_get_filename (abfd));
4818 dump_die (comp_unit_die, dwarf2_die_debug);
4819 }
4820
4821 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4822 TUs by skipping the stub and going directly to the entry in the DWO file.
4823 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4824 to get it via circuitous means. Blech. */
4825 if (comp_dir != NULL)
4826 result_reader->comp_dir = DW_STRING (comp_dir);
4827
4828 /* Skip dummy compilation units. */
4829 if (info_ptr >= begin_info_ptr + dwo_unit->length
4830 || peek_abbrev_code (abfd, info_ptr) == 0)
4831 return 0;
4832
4833 *result_info_ptr = info_ptr;
4834 return 1;
4835 }
4836
4837 /* Subroutine of init_cutu_and_read_dies to simplify it.
4838 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4839 Returns NULL if the specified DWO unit cannot be found. */
4840
4841 static struct dwo_unit *
4842 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4843 struct die_info *comp_unit_die)
4844 {
4845 struct dwarf2_cu *cu = this_cu->cu;
4846 struct attribute *attr;
4847 ULONGEST signature;
4848 struct dwo_unit *dwo_unit;
4849 const char *comp_dir, *dwo_name;
4850
4851 gdb_assert (cu != NULL);
4852
4853 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4854 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4855 gdb_assert (attr != NULL);
4856 dwo_name = DW_STRING (attr);
4857 comp_dir = NULL;
4858 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4859 if (attr)
4860 comp_dir = DW_STRING (attr);
4861
4862 if (this_cu->is_debug_types)
4863 {
4864 struct signatured_type *sig_type;
4865
4866 /* Since this_cu is the first member of struct signatured_type,
4867 we can go from a pointer to one to a pointer to the other. */
4868 sig_type = (struct signatured_type *) this_cu;
4869 signature = sig_type->signature;
4870 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4871 }
4872 else
4873 {
4874 struct attribute *attr;
4875
4876 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4877 if (! attr)
4878 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4879 " [in module %s]"),
4880 dwo_name, this_cu->objfile->name);
4881 signature = DW_UNSND (attr);
4882 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4883 signature);
4884 }
4885
4886 return dwo_unit;
4887 }
4888
4889 /* Subroutine of init_cutu_and_read_dies to simplify it.
4890 Read a TU directly from a DWO file, bypassing the stub. */
4891
4892 static void
4893 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4894 die_reader_func_ftype *die_reader_func,
4895 void *data)
4896 {
4897 struct dwarf2_cu *cu;
4898 struct signatured_type *sig_type;
4899 struct cleanup *cleanups, *free_cu_cleanup;
4900 struct die_reader_specs reader;
4901 const gdb_byte *info_ptr;
4902 struct die_info *comp_unit_die;
4903 int has_children;
4904
4905 /* Verify we can do the following downcast, and that we have the
4906 data we need. */
4907 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4908 sig_type = (struct signatured_type *) this_cu;
4909 gdb_assert (sig_type->dwo_unit != NULL);
4910
4911 cleanups = make_cleanup (null_cleanup, NULL);
4912
4913 gdb_assert (this_cu->cu == NULL);
4914 cu = xmalloc (sizeof (*cu));
4915 init_one_comp_unit (cu, this_cu);
4916 /* If an error occurs while loading, release our storage. */
4917 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4918
4919 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4920 0 /* abbrev_table_provided */,
4921 NULL /* stub_comp_unit_die */,
4922 sig_type->dwo_unit->dwo_file->comp_dir,
4923 &reader, &info_ptr,
4924 &comp_unit_die, &has_children) == 0)
4925 {
4926 /* Dummy die. */
4927 do_cleanups (cleanups);
4928 return;
4929 }
4930
4931 /* All the "real" work is done here. */
4932 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4933
4934 /* This duplicates some code in init_cutu_and_read_dies,
4935 but the alternative is making the latter more complex.
4936 This function is only for the special case of using DWO files directly:
4937 no point in overly complicating the general case just to handle this. */
4938 if (keep)
4939 {
4940 /* We've successfully allocated this compilation unit. Let our
4941 caller clean it up when finished with it. */
4942 discard_cleanups (free_cu_cleanup);
4943
4944 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4945 So we have to manually free the abbrev table. */
4946 dwarf2_free_abbrev_table (cu);
4947
4948 /* Link this CU into read_in_chain. */
4949 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4950 dwarf2_per_objfile->read_in_chain = this_cu;
4951 }
4952 else
4953 do_cleanups (free_cu_cleanup);
4954
4955 do_cleanups (cleanups);
4956 }
4957
4958 /* Initialize a CU (or TU) and read its DIEs.
4959 If the CU defers to a DWO file, read the DWO file as well.
4960
4961 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4962 Otherwise the table specified in the comp unit header is read in and used.
4963 This is an optimization for when we already have the abbrev table.
4964
4965 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4966 Otherwise, a new CU is allocated with xmalloc.
4967
4968 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4969 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4970
4971 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4972 linker) then DIE_READER_FUNC will not get called. */
4973
4974 static void
4975 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4976 struct abbrev_table *abbrev_table,
4977 int use_existing_cu, int keep,
4978 die_reader_func_ftype *die_reader_func,
4979 void *data)
4980 {
4981 struct objfile *objfile = dwarf2_per_objfile->objfile;
4982 struct dwarf2_section_info *section = this_cu->section;
4983 bfd *abfd = section->asection->owner;
4984 struct dwarf2_cu *cu;
4985 const gdb_byte *begin_info_ptr, *info_ptr;
4986 struct die_reader_specs reader;
4987 struct die_info *comp_unit_die;
4988 int has_children;
4989 struct attribute *attr;
4990 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4991 struct signatured_type *sig_type = NULL;
4992 struct dwarf2_section_info *abbrev_section;
4993 /* Non-zero if CU currently points to a DWO file and we need to
4994 reread it. When this happens we need to reread the skeleton die
4995 before we can reread the DWO file (this only applies to CUs, not TUs). */
4996 int rereading_dwo_cu = 0;
4997
4998 if (dwarf2_die_debug)
4999 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5000 this_cu->is_debug_types ? "type" : "comp",
5001 this_cu->offset.sect_off);
5002
5003 if (use_existing_cu)
5004 gdb_assert (keep);
5005
5006 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5007 file (instead of going through the stub), short-circuit all of this. */
5008 if (this_cu->reading_dwo_directly)
5009 {
5010 /* Narrow down the scope of possibilities to have to understand. */
5011 gdb_assert (this_cu->is_debug_types);
5012 gdb_assert (abbrev_table == NULL);
5013 gdb_assert (!use_existing_cu);
5014 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5015 return;
5016 }
5017
5018 cleanups = make_cleanup (null_cleanup, NULL);
5019
5020 /* This is cheap if the section is already read in. */
5021 dwarf2_read_section (objfile, section);
5022
5023 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5024
5025 abbrev_section = get_abbrev_section_for_cu (this_cu);
5026
5027 if (use_existing_cu && this_cu->cu != NULL)
5028 {
5029 cu = this_cu->cu;
5030
5031 /* If this CU is from a DWO file we need to start over, we need to
5032 refetch the attributes from the skeleton CU.
5033 This could be optimized by retrieving those attributes from when we
5034 were here the first time: the previous comp_unit_die was stored in
5035 comp_unit_obstack. But there's no data yet that we need this
5036 optimization. */
5037 if (cu->dwo_unit != NULL)
5038 rereading_dwo_cu = 1;
5039 }
5040 else
5041 {
5042 /* If !use_existing_cu, this_cu->cu must be NULL. */
5043 gdb_assert (this_cu->cu == NULL);
5044
5045 cu = xmalloc (sizeof (*cu));
5046 init_one_comp_unit (cu, this_cu);
5047
5048 /* If an error occurs while loading, release our storage. */
5049 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5050 }
5051
5052 /* Get the header. */
5053 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5054 {
5055 /* We already have the header, there's no need to read it in again. */
5056 info_ptr += cu->header.first_die_offset.cu_off;
5057 }
5058 else
5059 {
5060 if (this_cu->is_debug_types)
5061 {
5062 ULONGEST signature;
5063 cu_offset type_offset_in_tu;
5064
5065 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5066 abbrev_section, info_ptr,
5067 &signature,
5068 &type_offset_in_tu);
5069
5070 /* Since per_cu is the first member of struct signatured_type,
5071 we can go from a pointer to one to a pointer to the other. */
5072 sig_type = (struct signatured_type *) this_cu;
5073 gdb_assert (sig_type->signature == signature);
5074 gdb_assert (sig_type->type_offset_in_tu.cu_off
5075 == type_offset_in_tu.cu_off);
5076 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5077
5078 /* LENGTH has not been set yet for type units if we're
5079 using .gdb_index. */
5080 this_cu->length = get_cu_length (&cu->header);
5081
5082 /* Establish the type offset that can be used to lookup the type. */
5083 sig_type->type_offset_in_section.sect_off =
5084 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5085 }
5086 else
5087 {
5088 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5089 abbrev_section,
5090 info_ptr, 0);
5091
5092 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5093 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5094 }
5095 }
5096
5097 /* Skip dummy compilation units. */
5098 if (info_ptr >= begin_info_ptr + this_cu->length
5099 || peek_abbrev_code (abfd, info_ptr) == 0)
5100 {
5101 do_cleanups (cleanups);
5102 return;
5103 }
5104
5105 /* If we don't have them yet, read the abbrevs for this compilation unit.
5106 And if we need to read them now, make sure they're freed when we're
5107 done. Note that it's important that if the CU had an abbrev table
5108 on entry we don't free it when we're done: Somewhere up the call stack
5109 it may be in use. */
5110 if (abbrev_table != NULL)
5111 {
5112 gdb_assert (cu->abbrev_table == NULL);
5113 gdb_assert (cu->header.abbrev_offset.sect_off
5114 == abbrev_table->offset.sect_off);
5115 cu->abbrev_table = abbrev_table;
5116 }
5117 else if (cu->abbrev_table == NULL)
5118 {
5119 dwarf2_read_abbrevs (cu, abbrev_section);
5120 make_cleanup (dwarf2_free_abbrev_table, cu);
5121 }
5122 else if (rereading_dwo_cu)
5123 {
5124 dwarf2_free_abbrev_table (cu);
5125 dwarf2_read_abbrevs (cu, abbrev_section);
5126 }
5127
5128 /* Read the top level CU/TU die. */
5129 init_cu_die_reader (&reader, cu, section, NULL);
5130 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5131
5132 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5133 from the DWO file.
5134 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5135 DWO CU, that this test will fail (the attribute will not be present). */
5136 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5137 if (attr)
5138 {
5139 struct dwo_unit *dwo_unit;
5140 struct die_info *dwo_comp_unit_die;
5141
5142 if (has_children)
5143 {
5144 complaint (&symfile_complaints,
5145 _("compilation unit with DW_AT_GNU_dwo_name"
5146 " has children (offset 0x%x) [in module %s]"),
5147 this_cu->offset.sect_off, bfd_get_filename (abfd));
5148 }
5149 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5150 if (dwo_unit != NULL)
5151 {
5152 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5153 abbrev_table != NULL,
5154 comp_unit_die, NULL,
5155 &reader, &info_ptr,
5156 &dwo_comp_unit_die, &has_children) == 0)
5157 {
5158 /* Dummy die. */
5159 do_cleanups (cleanups);
5160 return;
5161 }
5162 comp_unit_die = dwo_comp_unit_die;
5163 }
5164 else
5165 {
5166 /* Yikes, we couldn't find the rest of the DIE, we only have
5167 the stub. A complaint has already been logged. There's
5168 not much more we can do except pass on the stub DIE to
5169 die_reader_func. We don't want to throw an error on bad
5170 debug info. */
5171 }
5172 }
5173
5174 /* All of the above is setup for this call. Yikes. */
5175 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5176
5177 /* Done, clean up. */
5178 if (free_cu_cleanup != NULL)
5179 {
5180 if (keep)
5181 {
5182 /* We've successfully allocated this compilation unit. Let our
5183 caller clean it up when finished with it. */
5184 discard_cleanups (free_cu_cleanup);
5185
5186 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5187 So we have to manually free the abbrev table. */
5188 dwarf2_free_abbrev_table (cu);
5189
5190 /* Link this CU into read_in_chain. */
5191 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5192 dwarf2_per_objfile->read_in_chain = this_cu;
5193 }
5194 else
5195 do_cleanups (free_cu_cleanup);
5196 }
5197
5198 do_cleanups (cleanups);
5199 }
5200
5201 /* Read CU/TU THIS_CU in section SECTION,
5202 but do not follow DW_AT_GNU_dwo_name if present.
5203 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5204 to have already done the lookup to find the DWO/DWP file).
5205
5206 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5207 THIS_CU->is_debug_types, but nothing else.
5208
5209 We fill in THIS_CU->length.
5210
5211 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5212 linker) then DIE_READER_FUNC will not get called.
5213
5214 THIS_CU->cu is always freed when done.
5215 This is done in order to not leave THIS_CU->cu in a state where we have
5216 to care whether it refers to the "main" CU or the DWO CU. */
5217
5218 static void
5219 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5220 struct dwarf2_section_info *abbrev_section,
5221 struct dwo_file *dwo_file,
5222 die_reader_func_ftype *die_reader_func,
5223 void *data)
5224 {
5225 struct objfile *objfile = dwarf2_per_objfile->objfile;
5226 struct dwarf2_section_info *section = this_cu->section;
5227 bfd *abfd = section->asection->owner;
5228 struct dwarf2_cu cu;
5229 const gdb_byte *begin_info_ptr, *info_ptr;
5230 struct die_reader_specs reader;
5231 struct cleanup *cleanups;
5232 struct die_info *comp_unit_die;
5233 int has_children;
5234
5235 if (dwarf2_die_debug)
5236 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5237 this_cu->is_debug_types ? "type" : "comp",
5238 this_cu->offset.sect_off);
5239
5240 gdb_assert (this_cu->cu == NULL);
5241
5242 /* This is cheap if the section is already read in. */
5243 dwarf2_read_section (objfile, section);
5244
5245 init_one_comp_unit (&cu, this_cu);
5246
5247 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5248
5249 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5250 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5251 abbrev_section, info_ptr,
5252 this_cu->is_debug_types);
5253
5254 this_cu->length = get_cu_length (&cu.header);
5255
5256 /* Skip dummy compilation units. */
5257 if (info_ptr >= begin_info_ptr + this_cu->length
5258 || peek_abbrev_code (abfd, info_ptr) == 0)
5259 {
5260 do_cleanups (cleanups);
5261 return;
5262 }
5263
5264 dwarf2_read_abbrevs (&cu, abbrev_section);
5265 make_cleanup (dwarf2_free_abbrev_table, &cu);
5266
5267 init_cu_die_reader (&reader, &cu, section, dwo_file);
5268 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5269
5270 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5271
5272 do_cleanups (cleanups);
5273 }
5274
5275 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5276 does not lookup the specified DWO file.
5277 This cannot be used to read DWO files.
5278
5279 THIS_CU->cu is always freed when done.
5280 This is done in order to not leave THIS_CU->cu in a state where we have
5281 to care whether it refers to the "main" CU or the DWO CU.
5282 We can revisit this if the data shows there's a performance issue. */
5283
5284 static void
5285 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5286 die_reader_func_ftype *die_reader_func,
5287 void *data)
5288 {
5289 init_cutu_and_read_dies_no_follow (this_cu,
5290 get_abbrev_section_for_cu (this_cu),
5291 NULL,
5292 die_reader_func, data);
5293 }
5294 \f
5295 /* Type Unit Groups.
5296
5297 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5298 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5299 so that all types coming from the same compilation (.o file) are grouped
5300 together. A future step could be to put the types in the same symtab as
5301 the CU the types ultimately came from. */
5302
5303 static hashval_t
5304 hash_type_unit_group (const void *item)
5305 {
5306 const struct type_unit_group *tu_group = item;
5307
5308 return hash_stmt_list_entry (&tu_group->hash);
5309 }
5310
5311 static int
5312 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5313 {
5314 const struct type_unit_group *lhs = item_lhs;
5315 const struct type_unit_group *rhs = item_rhs;
5316
5317 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5318 }
5319
5320 /* Allocate a hash table for type unit groups. */
5321
5322 static htab_t
5323 allocate_type_unit_groups_table (void)
5324 {
5325 return htab_create_alloc_ex (3,
5326 hash_type_unit_group,
5327 eq_type_unit_group,
5328 NULL,
5329 &dwarf2_per_objfile->objfile->objfile_obstack,
5330 hashtab_obstack_allocate,
5331 dummy_obstack_deallocate);
5332 }
5333
5334 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5335 partial symtabs. We combine several TUs per psymtab to not let the size
5336 of any one psymtab grow too big. */
5337 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5338 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5339
5340 /* Helper routine for get_type_unit_group.
5341 Create the type_unit_group object used to hold one or more TUs. */
5342
5343 static struct type_unit_group *
5344 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5345 {
5346 struct objfile *objfile = dwarf2_per_objfile->objfile;
5347 struct dwarf2_per_cu_data *per_cu;
5348 struct type_unit_group *tu_group;
5349
5350 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5351 struct type_unit_group);
5352 per_cu = &tu_group->per_cu;
5353 per_cu->objfile = objfile;
5354
5355 if (dwarf2_per_objfile->using_index)
5356 {
5357 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5358 struct dwarf2_per_cu_quick_data);
5359 }
5360 else
5361 {
5362 unsigned int line_offset = line_offset_struct.sect_off;
5363 struct partial_symtab *pst;
5364 char *name;
5365
5366 /* Give the symtab a useful name for debug purposes. */
5367 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5368 name = xstrprintf ("<type_units_%d>",
5369 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5370 else
5371 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5372
5373 pst = create_partial_symtab (per_cu, name);
5374 pst->anonymous = 1;
5375
5376 xfree (name);
5377 }
5378
5379 tu_group->hash.dwo_unit = cu->dwo_unit;
5380 tu_group->hash.line_offset = line_offset_struct;
5381
5382 return tu_group;
5383 }
5384
5385 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5386 STMT_LIST is a DW_AT_stmt_list attribute. */
5387
5388 static struct type_unit_group *
5389 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5390 {
5391 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5392 struct type_unit_group *tu_group;
5393 void **slot;
5394 unsigned int line_offset;
5395 struct type_unit_group type_unit_group_for_lookup;
5396
5397 if (dwarf2_per_objfile->type_unit_groups == NULL)
5398 {
5399 dwarf2_per_objfile->type_unit_groups =
5400 allocate_type_unit_groups_table ();
5401 }
5402
5403 /* Do we need to create a new group, or can we use an existing one? */
5404
5405 if (stmt_list)
5406 {
5407 line_offset = DW_UNSND (stmt_list);
5408 ++tu_stats->nr_symtab_sharers;
5409 }
5410 else
5411 {
5412 /* Ugh, no stmt_list. Rare, but we have to handle it.
5413 We can do various things here like create one group per TU or
5414 spread them over multiple groups to split up the expansion work.
5415 To avoid worst case scenarios (too many groups or too large groups)
5416 we, umm, group them in bunches. */
5417 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5418 | (tu_stats->nr_stmt_less_type_units
5419 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5420 ++tu_stats->nr_stmt_less_type_units;
5421 }
5422
5423 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5424 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5425 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5426 &type_unit_group_for_lookup, INSERT);
5427 if (*slot != NULL)
5428 {
5429 tu_group = *slot;
5430 gdb_assert (tu_group != NULL);
5431 }
5432 else
5433 {
5434 sect_offset line_offset_struct;
5435
5436 line_offset_struct.sect_off = line_offset;
5437 tu_group = create_type_unit_group (cu, line_offset_struct);
5438 *slot = tu_group;
5439 ++tu_stats->nr_symtabs;
5440 }
5441
5442 return tu_group;
5443 }
5444
5445 /* Struct used to sort TUs by their abbreviation table offset. */
5446
5447 struct tu_abbrev_offset
5448 {
5449 struct signatured_type *sig_type;
5450 sect_offset abbrev_offset;
5451 };
5452
5453 /* Helper routine for build_type_unit_groups, passed to qsort. */
5454
5455 static int
5456 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5457 {
5458 const struct tu_abbrev_offset * const *a = ap;
5459 const struct tu_abbrev_offset * const *b = bp;
5460 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5461 unsigned int boff = (*b)->abbrev_offset.sect_off;
5462
5463 return (aoff > boff) - (aoff < boff);
5464 }
5465
5466 /* A helper function to add a type_unit_group to a table. */
5467
5468 static int
5469 add_type_unit_group_to_table (void **slot, void *datum)
5470 {
5471 struct type_unit_group *tu_group = *slot;
5472 struct type_unit_group ***datap = datum;
5473
5474 **datap = tu_group;
5475 ++*datap;
5476
5477 return 1;
5478 }
5479
5480 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5481 each one passing FUNC,DATA.
5482
5483 The efficiency is because we sort TUs by the abbrev table they use and
5484 only read each abbrev table once. In one program there are 200K TUs
5485 sharing 8K abbrev tables.
5486
5487 The main purpose of this function is to support building the
5488 dwarf2_per_objfile->type_unit_groups table.
5489 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5490 can collapse the search space by grouping them by stmt_list.
5491 The savings can be significant, in the same program from above the 200K TUs
5492 share 8K stmt_list tables.
5493
5494 FUNC is expected to call get_type_unit_group, which will create the
5495 struct type_unit_group if necessary and add it to
5496 dwarf2_per_objfile->type_unit_groups. */
5497
5498 static void
5499 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5500 {
5501 struct objfile *objfile = dwarf2_per_objfile->objfile;
5502 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5503 struct cleanup *cleanups;
5504 struct abbrev_table *abbrev_table;
5505 sect_offset abbrev_offset;
5506 struct tu_abbrev_offset *sorted_by_abbrev;
5507 struct type_unit_group **iter;
5508 int i;
5509
5510 /* It's up to the caller to not call us multiple times. */
5511 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5512
5513 if (dwarf2_per_objfile->n_type_units == 0)
5514 return;
5515
5516 /* TUs typically share abbrev tables, and there can be way more TUs than
5517 abbrev tables. Sort by abbrev table to reduce the number of times we
5518 read each abbrev table in.
5519 Alternatives are to punt or to maintain a cache of abbrev tables.
5520 This is simpler and efficient enough for now.
5521
5522 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5523 symtab to use). Typically TUs with the same abbrev offset have the same
5524 stmt_list value too so in practice this should work well.
5525
5526 The basic algorithm here is:
5527
5528 sort TUs by abbrev table
5529 for each TU with same abbrev table:
5530 read abbrev table if first user
5531 read TU top level DIE
5532 [IWBN if DWO skeletons had DW_AT_stmt_list]
5533 call FUNC */
5534
5535 if (dwarf2_read_debug)
5536 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5537
5538 /* Sort in a separate table to maintain the order of all_type_units
5539 for .gdb_index: TU indices directly index all_type_units. */
5540 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5541 dwarf2_per_objfile->n_type_units);
5542 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5543 {
5544 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5545
5546 sorted_by_abbrev[i].sig_type = sig_type;
5547 sorted_by_abbrev[i].abbrev_offset =
5548 read_abbrev_offset (sig_type->per_cu.section,
5549 sig_type->per_cu.offset);
5550 }
5551 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5552 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5553 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5554
5555 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5556 called any number of times, so we don't reset tu_stats here. */
5557
5558 abbrev_offset.sect_off = ~(unsigned) 0;
5559 abbrev_table = NULL;
5560 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5561
5562 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5563 {
5564 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5565
5566 /* Switch to the next abbrev table if necessary. */
5567 if (abbrev_table == NULL
5568 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5569 {
5570 if (abbrev_table != NULL)
5571 {
5572 abbrev_table_free (abbrev_table);
5573 /* Reset to NULL in case abbrev_table_read_table throws
5574 an error: abbrev_table_free_cleanup will get called. */
5575 abbrev_table = NULL;
5576 }
5577 abbrev_offset = tu->abbrev_offset;
5578 abbrev_table =
5579 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5580 abbrev_offset);
5581 ++tu_stats->nr_uniq_abbrev_tables;
5582 }
5583
5584 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5585 func, data);
5586 }
5587
5588 /* type_unit_groups can be NULL if there is an error in the debug info.
5589 Just create an empty table so the rest of gdb doesn't have to watch
5590 for this error case. */
5591 if (dwarf2_per_objfile->type_unit_groups == NULL)
5592 {
5593 dwarf2_per_objfile->type_unit_groups =
5594 allocate_type_unit_groups_table ();
5595 dwarf2_per_objfile->n_type_unit_groups = 0;
5596 }
5597
5598 /* Create a vector of pointers to primary type units to make it easy to
5599 iterate over them and CUs. See dw2_get_primary_cu. */
5600 dwarf2_per_objfile->n_type_unit_groups =
5601 htab_elements (dwarf2_per_objfile->type_unit_groups);
5602 dwarf2_per_objfile->all_type_unit_groups =
5603 obstack_alloc (&objfile->objfile_obstack,
5604 dwarf2_per_objfile->n_type_unit_groups
5605 * sizeof (struct type_unit_group *));
5606 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5607 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5608 add_type_unit_group_to_table, &iter);
5609 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5610 == dwarf2_per_objfile->n_type_unit_groups);
5611
5612 do_cleanups (cleanups);
5613
5614 if (dwarf2_read_debug)
5615 {
5616 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5617 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5618 dwarf2_per_objfile->n_type_units);
5619 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5620 tu_stats->nr_uniq_abbrev_tables);
5621 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5622 tu_stats->nr_symtabs);
5623 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5624 tu_stats->nr_symtab_sharers);
5625 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5626 tu_stats->nr_stmt_less_type_units);
5627 }
5628 }
5629 \f
5630 /* Partial symbol tables. */
5631
5632 /* Create a psymtab named NAME and assign it to PER_CU.
5633
5634 The caller must fill in the following details:
5635 dirname, textlow, texthigh. */
5636
5637 static struct partial_symtab *
5638 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5639 {
5640 struct objfile *objfile = per_cu->objfile;
5641 struct partial_symtab *pst;
5642
5643 pst = start_psymtab_common (objfile, objfile->section_offsets,
5644 name, 0,
5645 objfile->global_psymbols.next,
5646 objfile->static_psymbols.next);
5647
5648 pst->psymtabs_addrmap_supported = 1;
5649
5650 /* This is the glue that links PST into GDB's symbol API. */
5651 pst->read_symtab_private = per_cu;
5652 pst->read_symtab = dwarf2_read_symtab;
5653 per_cu->v.psymtab = pst;
5654
5655 return pst;
5656 }
5657
5658 /* die_reader_func for process_psymtab_comp_unit. */
5659
5660 static void
5661 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5662 const gdb_byte *info_ptr,
5663 struct die_info *comp_unit_die,
5664 int has_children,
5665 void *data)
5666 {
5667 struct dwarf2_cu *cu = reader->cu;
5668 struct objfile *objfile = cu->objfile;
5669 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5670 struct attribute *attr;
5671 CORE_ADDR baseaddr;
5672 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5673 struct partial_symtab *pst;
5674 int has_pc_info;
5675 const char *filename;
5676 int *want_partial_unit_ptr = data;
5677
5678 if (comp_unit_die->tag == DW_TAG_partial_unit
5679 && (want_partial_unit_ptr == NULL
5680 || !*want_partial_unit_ptr))
5681 return;
5682
5683 gdb_assert (! per_cu->is_debug_types);
5684
5685 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5686
5687 cu->list_in_scope = &file_symbols;
5688
5689 /* Allocate a new partial symbol table structure. */
5690 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5691 if (attr == NULL || !DW_STRING (attr))
5692 filename = "";
5693 else
5694 filename = DW_STRING (attr);
5695
5696 pst = create_partial_symtab (per_cu, filename);
5697
5698 /* This must be done before calling dwarf2_build_include_psymtabs. */
5699 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5700 if (attr != NULL)
5701 pst->dirname = DW_STRING (attr);
5702
5703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5704
5705 dwarf2_find_base_address (comp_unit_die, cu);
5706
5707 /* Possibly set the default values of LOWPC and HIGHPC from
5708 `DW_AT_ranges'. */
5709 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5710 &best_highpc, cu, pst);
5711 if (has_pc_info == 1 && best_lowpc < best_highpc)
5712 /* Store the contiguous range if it is not empty; it can be empty for
5713 CUs with no code. */
5714 addrmap_set_empty (objfile->psymtabs_addrmap,
5715 best_lowpc + baseaddr,
5716 best_highpc + baseaddr - 1, pst);
5717
5718 /* Check if comp unit has_children.
5719 If so, read the rest of the partial symbols from this comp unit.
5720 If not, there's no more debug_info for this comp unit. */
5721 if (has_children)
5722 {
5723 struct partial_die_info *first_die;
5724 CORE_ADDR lowpc, highpc;
5725
5726 lowpc = ((CORE_ADDR) -1);
5727 highpc = ((CORE_ADDR) 0);
5728
5729 first_die = load_partial_dies (reader, info_ptr, 1);
5730
5731 scan_partial_symbols (first_die, &lowpc, &highpc,
5732 ! has_pc_info, cu);
5733
5734 /* If we didn't find a lowpc, set it to highpc to avoid
5735 complaints from `maint check'. */
5736 if (lowpc == ((CORE_ADDR) -1))
5737 lowpc = highpc;
5738
5739 /* If the compilation unit didn't have an explicit address range,
5740 then use the information extracted from its child dies. */
5741 if (! has_pc_info)
5742 {
5743 best_lowpc = lowpc;
5744 best_highpc = highpc;
5745 }
5746 }
5747 pst->textlow = best_lowpc + baseaddr;
5748 pst->texthigh = best_highpc + baseaddr;
5749
5750 pst->n_global_syms = objfile->global_psymbols.next -
5751 (objfile->global_psymbols.list + pst->globals_offset);
5752 pst->n_static_syms = objfile->static_psymbols.next -
5753 (objfile->static_psymbols.list + pst->statics_offset);
5754 sort_pst_symbols (objfile, pst);
5755
5756 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5757 {
5758 int i;
5759 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5760 struct dwarf2_per_cu_data *iter;
5761
5762 /* Fill in 'dependencies' here; we fill in 'users' in a
5763 post-pass. */
5764 pst->number_of_dependencies = len;
5765 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5766 len * sizeof (struct symtab *));
5767 for (i = 0;
5768 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5769 i, iter);
5770 ++i)
5771 pst->dependencies[i] = iter->v.psymtab;
5772
5773 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5774 }
5775
5776 /* Get the list of files included in the current compilation unit,
5777 and build a psymtab for each of them. */
5778 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5779
5780 if (dwarf2_read_debug)
5781 {
5782 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5783
5784 fprintf_unfiltered (gdb_stdlog,
5785 "Psymtab for %s unit @0x%x: %s - %s"
5786 ", %d global, %d static syms\n",
5787 per_cu->is_debug_types ? "type" : "comp",
5788 per_cu->offset.sect_off,
5789 paddress (gdbarch, pst->textlow),
5790 paddress (gdbarch, pst->texthigh),
5791 pst->n_global_syms, pst->n_static_syms);
5792 }
5793 }
5794
5795 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5796 Process compilation unit THIS_CU for a psymtab. */
5797
5798 static void
5799 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5800 int want_partial_unit)
5801 {
5802 /* If this compilation unit was already read in, free the
5803 cached copy in order to read it in again. This is
5804 necessary because we skipped some symbols when we first
5805 read in the compilation unit (see load_partial_dies).
5806 This problem could be avoided, but the benefit is unclear. */
5807 if (this_cu->cu != NULL)
5808 free_one_cached_comp_unit (this_cu);
5809
5810 gdb_assert (! this_cu->is_debug_types);
5811 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5812 process_psymtab_comp_unit_reader,
5813 &want_partial_unit);
5814
5815 /* Age out any secondary CUs. */
5816 age_cached_comp_units ();
5817 }
5818
5819 /* Reader function for build_type_psymtabs. */
5820
5821 static void
5822 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5823 const gdb_byte *info_ptr,
5824 struct die_info *type_unit_die,
5825 int has_children,
5826 void *data)
5827 {
5828 struct objfile *objfile = dwarf2_per_objfile->objfile;
5829 struct dwarf2_cu *cu = reader->cu;
5830 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5831 struct signatured_type *sig_type;
5832 struct type_unit_group *tu_group;
5833 struct attribute *attr;
5834 struct partial_die_info *first_die;
5835 CORE_ADDR lowpc, highpc;
5836 struct partial_symtab *pst;
5837
5838 gdb_assert (data == NULL);
5839 gdb_assert (per_cu->is_debug_types);
5840 sig_type = (struct signatured_type *) per_cu;
5841
5842 if (! has_children)
5843 return;
5844
5845 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5846 tu_group = get_type_unit_group (cu, attr);
5847
5848 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5849
5850 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5851 cu->list_in_scope = &file_symbols;
5852 pst = create_partial_symtab (per_cu, "");
5853 pst->anonymous = 1;
5854
5855 first_die = load_partial_dies (reader, info_ptr, 1);
5856
5857 lowpc = (CORE_ADDR) -1;
5858 highpc = (CORE_ADDR) 0;
5859 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5860
5861 pst->n_global_syms = objfile->global_psymbols.next -
5862 (objfile->global_psymbols.list + pst->globals_offset);
5863 pst->n_static_syms = objfile->static_psymbols.next -
5864 (objfile->static_psymbols.list + pst->statics_offset);
5865 sort_pst_symbols (objfile, pst);
5866 }
5867
5868 /* Traversal function for build_type_psymtabs. */
5869
5870 static int
5871 build_type_psymtab_dependencies (void **slot, void *info)
5872 {
5873 struct objfile *objfile = dwarf2_per_objfile->objfile;
5874 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5875 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5876 struct partial_symtab *pst = per_cu->v.psymtab;
5877 int len = VEC_length (sig_type_ptr, tu_group->tus);
5878 struct signatured_type *iter;
5879 int i;
5880
5881 gdb_assert (len > 0);
5882 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5883
5884 pst->number_of_dependencies = len;
5885 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5886 len * sizeof (struct psymtab *));
5887 for (i = 0;
5888 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5889 ++i)
5890 {
5891 gdb_assert (iter->per_cu.is_debug_types);
5892 pst->dependencies[i] = iter->per_cu.v.psymtab;
5893 iter->type_unit_group = tu_group;
5894 }
5895
5896 VEC_free (sig_type_ptr, tu_group->tus);
5897
5898 return 1;
5899 }
5900
5901 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5902 Build partial symbol tables for the .debug_types comp-units. */
5903
5904 static void
5905 build_type_psymtabs (struct objfile *objfile)
5906 {
5907 if (! create_all_type_units (objfile))
5908 return;
5909
5910 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5911
5912 /* Now that all TUs have been processed we can fill in the dependencies. */
5913 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5914 build_type_psymtab_dependencies, NULL);
5915 }
5916
5917 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5918
5919 static void
5920 psymtabs_addrmap_cleanup (void *o)
5921 {
5922 struct objfile *objfile = o;
5923
5924 objfile->psymtabs_addrmap = NULL;
5925 }
5926
5927 /* Compute the 'user' field for each psymtab in OBJFILE. */
5928
5929 static void
5930 set_partial_user (struct objfile *objfile)
5931 {
5932 int i;
5933
5934 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5935 {
5936 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5937 struct partial_symtab *pst = per_cu->v.psymtab;
5938 int j;
5939
5940 if (pst == NULL)
5941 continue;
5942
5943 for (j = 0; j < pst->number_of_dependencies; ++j)
5944 {
5945 /* Set the 'user' field only if it is not already set. */
5946 if (pst->dependencies[j]->user == NULL)
5947 pst->dependencies[j]->user = pst;
5948 }
5949 }
5950 }
5951
5952 /* Build the partial symbol table by doing a quick pass through the
5953 .debug_info and .debug_abbrev sections. */
5954
5955 static void
5956 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5957 {
5958 struct cleanup *back_to, *addrmap_cleanup;
5959 struct obstack temp_obstack;
5960 int i;
5961
5962 if (dwarf2_read_debug)
5963 {
5964 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5965 objfile->name);
5966 }
5967
5968 dwarf2_per_objfile->reading_partial_symbols = 1;
5969
5970 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5971
5972 /* Any cached compilation units will be linked by the per-objfile
5973 read_in_chain. Make sure to free them when we're done. */
5974 back_to = make_cleanup (free_cached_comp_units, NULL);
5975
5976 build_type_psymtabs (objfile);
5977
5978 create_all_comp_units (objfile);
5979
5980 /* Create a temporary address map on a temporary obstack. We later
5981 copy this to the final obstack. */
5982 obstack_init (&temp_obstack);
5983 make_cleanup_obstack_free (&temp_obstack);
5984 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5985 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5986
5987 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5988 {
5989 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5990
5991 process_psymtab_comp_unit (per_cu, 0);
5992 }
5993
5994 set_partial_user (objfile);
5995
5996 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5997 &objfile->objfile_obstack);
5998 discard_cleanups (addrmap_cleanup);
5999
6000 do_cleanups (back_to);
6001
6002 if (dwarf2_read_debug)
6003 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6004 objfile->name);
6005 }
6006
6007 /* die_reader_func for load_partial_comp_unit. */
6008
6009 static void
6010 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6011 const gdb_byte *info_ptr,
6012 struct die_info *comp_unit_die,
6013 int has_children,
6014 void *data)
6015 {
6016 struct dwarf2_cu *cu = reader->cu;
6017
6018 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6019
6020 /* Check if comp unit has_children.
6021 If so, read the rest of the partial symbols from this comp unit.
6022 If not, there's no more debug_info for this comp unit. */
6023 if (has_children)
6024 load_partial_dies (reader, info_ptr, 0);
6025 }
6026
6027 /* Load the partial DIEs for a secondary CU into memory.
6028 This is also used when rereading a primary CU with load_all_dies. */
6029
6030 static void
6031 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6032 {
6033 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6034 load_partial_comp_unit_reader, NULL);
6035 }
6036
6037 static void
6038 read_comp_units_from_section (struct objfile *objfile,
6039 struct dwarf2_section_info *section,
6040 unsigned int is_dwz,
6041 int *n_allocated,
6042 int *n_comp_units,
6043 struct dwarf2_per_cu_data ***all_comp_units)
6044 {
6045 const gdb_byte *info_ptr;
6046 bfd *abfd = section->asection->owner;
6047
6048 if (dwarf2_read_debug)
6049 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6050 section->asection->name, bfd_get_filename (abfd));
6051
6052 dwarf2_read_section (objfile, section);
6053
6054 info_ptr = section->buffer;
6055
6056 while (info_ptr < section->buffer + section->size)
6057 {
6058 unsigned int length, initial_length_size;
6059 struct dwarf2_per_cu_data *this_cu;
6060 sect_offset offset;
6061
6062 offset.sect_off = info_ptr - section->buffer;
6063
6064 /* Read just enough information to find out where the next
6065 compilation unit is. */
6066 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6067
6068 /* Save the compilation unit for later lookup. */
6069 this_cu = obstack_alloc (&objfile->objfile_obstack,
6070 sizeof (struct dwarf2_per_cu_data));
6071 memset (this_cu, 0, sizeof (*this_cu));
6072 this_cu->offset = offset;
6073 this_cu->length = length + initial_length_size;
6074 this_cu->is_dwz = is_dwz;
6075 this_cu->objfile = objfile;
6076 this_cu->section = section;
6077
6078 if (*n_comp_units == *n_allocated)
6079 {
6080 *n_allocated *= 2;
6081 *all_comp_units = xrealloc (*all_comp_units,
6082 *n_allocated
6083 * sizeof (struct dwarf2_per_cu_data *));
6084 }
6085 (*all_comp_units)[*n_comp_units] = this_cu;
6086 ++*n_comp_units;
6087
6088 info_ptr = info_ptr + this_cu->length;
6089 }
6090 }
6091
6092 /* Create a list of all compilation units in OBJFILE.
6093 This is only done for -readnow and building partial symtabs. */
6094
6095 static void
6096 create_all_comp_units (struct objfile *objfile)
6097 {
6098 int n_allocated;
6099 int n_comp_units;
6100 struct dwarf2_per_cu_data **all_comp_units;
6101
6102 n_comp_units = 0;
6103 n_allocated = 10;
6104 all_comp_units = xmalloc (n_allocated
6105 * sizeof (struct dwarf2_per_cu_data *));
6106
6107 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6108 &n_allocated, &n_comp_units, &all_comp_units);
6109
6110 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
6111 {
6112 struct dwz_file *dwz = dwarf2_get_dwz_file ();
6113
6114 read_comp_units_from_section (objfile, &dwz->info, 1,
6115 &n_allocated, &n_comp_units,
6116 &all_comp_units);
6117 }
6118
6119 dwarf2_per_objfile->all_comp_units
6120 = obstack_alloc (&objfile->objfile_obstack,
6121 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6122 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6123 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6124 xfree (all_comp_units);
6125 dwarf2_per_objfile->n_comp_units = n_comp_units;
6126 }
6127
6128 /* Process all loaded DIEs for compilation unit CU, starting at
6129 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6130 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6131 DW_AT_ranges). If NEED_PC is set, then this function will set
6132 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6133 and record the covered ranges in the addrmap. */
6134
6135 static void
6136 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6137 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6138 {
6139 struct partial_die_info *pdi;
6140
6141 /* Now, march along the PDI's, descending into ones which have
6142 interesting children but skipping the children of the other ones,
6143 until we reach the end of the compilation unit. */
6144
6145 pdi = first_die;
6146
6147 while (pdi != NULL)
6148 {
6149 fixup_partial_die (pdi, cu);
6150
6151 /* Anonymous namespaces or modules have no name but have interesting
6152 children, so we need to look at them. Ditto for anonymous
6153 enums. */
6154
6155 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6156 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6157 || pdi->tag == DW_TAG_imported_unit)
6158 {
6159 switch (pdi->tag)
6160 {
6161 case DW_TAG_subprogram:
6162 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6163 break;
6164 case DW_TAG_constant:
6165 case DW_TAG_variable:
6166 case DW_TAG_typedef:
6167 case DW_TAG_union_type:
6168 if (!pdi->is_declaration)
6169 {
6170 add_partial_symbol (pdi, cu);
6171 }
6172 break;
6173 case DW_TAG_class_type:
6174 case DW_TAG_interface_type:
6175 case DW_TAG_structure_type:
6176 if (!pdi->is_declaration)
6177 {
6178 add_partial_symbol (pdi, cu);
6179 }
6180 break;
6181 case DW_TAG_enumeration_type:
6182 if (!pdi->is_declaration)
6183 add_partial_enumeration (pdi, cu);
6184 break;
6185 case DW_TAG_base_type:
6186 case DW_TAG_subrange_type:
6187 /* File scope base type definitions are added to the partial
6188 symbol table. */
6189 add_partial_symbol (pdi, cu);
6190 break;
6191 case DW_TAG_namespace:
6192 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6193 break;
6194 case DW_TAG_module:
6195 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6196 break;
6197 case DW_TAG_imported_unit:
6198 {
6199 struct dwarf2_per_cu_data *per_cu;
6200
6201 /* For now we don't handle imported units in type units. */
6202 if (cu->per_cu->is_debug_types)
6203 {
6204 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6205 " supported in type units [in module %s]"),
6206 cu->objfile->name);
6207 }
6208
6209 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6210 pdi->is_dwz,
6211 cu->objfile);
6212
6213 /* Go read the partial unit, if needed. */
6214 if (per_cu->v.psymtab == NULL)
6215 process_psymtab_comp_unit (per_cu, 1);
6216
6217 VEC_safe_push (dwarf2_per_cu_ptr,
6218 cu->per_cu->imported_symtabs, per_cu);
6219 }
6220 break;
6221 default:
6222 break;
6223 }
6224 }
6225
6226 /* If the die has a sibling, skip to the sibling. */
6227
6228 pdi = pdi->die_sibling;
6229 }
6230 }
6231
6232 /* Functions used to compute the fully scoped name of a partial DIE.
6233
6234 Normally, this is simple. For C++, the parent DIE's fully scoped
6235 name is concatenated with "::" and the partial DIE's name. For
6236 Java, the same thing occurs except that "." is used instead of "::".
6237 Enumerators are an exception; they use the scope of their parent
6238 enumeration type, i.e. the name of the enumeration type is not
6239 prepended to the enumerator.
6240
6241 There are two complexities. One is DW_AT_specification; in this
6242 case "parent" means the parent of the target of the specification,
6243 instead of the direct parent of the DIE. The other is compilers
6244 which do not emit DW_TAG_namespace; in this case we try to guess
6245 the fully qualified name of structure types from their members'
6246 linkage names. This must be done using the DIE's children rather
6247 than the children of any DW_AT_specification target. We only need
6248 to do this for structures at the top level, i.e. if the target of
6249 any DW_AT_specification (if any; otherwise the DIE itself) does not
6250 have a parent. */
6251
6252 /* Compute the scope prefix associated with PDI's parent, in
6253 compilation unit CU. The result will be allocated on CU's
6254 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6255 field. NULL is returned if no prefix is necessary. */
6256 static const char *
6257 partial_die_parent_scope (struct partial_die_info *pdi,
6258 struct dwarf2_cu *cu)
6259 {
6260 const char *grandparent_scope;
6261 struct partial_die_info *parent, *real_pdi;
6262
6263 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6264 then this means the parent of the specification DIE. */
6265
6266 real_pdi = pdi;
6267 while (real_pdi->has_specification)
6268 real_pdi = find_partial_die (real_pdi->spec_offset,
6269 real_pdi->spec_is_dwz, cu);
6270
6271 parent = real_pdi->die_parent;
6272 if (parent == NULL)
6273 return NULL;
6274
6275 if (parent->scope_set)
6276 return parent->scope;
6277
6278 fixup_partial_die (parent, cu);
6279
6280 grandparent_scope = partial_die_parent_scope (parent, cu);
6281
6282 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6283 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6284 Work around this problem here. */
6285 if (cu->language == language_cplus
6286 && parent->tag == DW_TAG_namespace
6287 && strcmp (parent->name, "::") == 0
6288 && grandparent_scope == NULL)
6289 {
6290 parent->scope = NULL;
6291 parent->scope_set = 1;
6292 return NULL;
6293 }
6294
6295 if (pdi->tag == DW_TAG_enumerator)
6296 /* Enumerators should not get the name of the enumeration as a prefix. */
6297 parent->scope = grandparent_scope;
6298 else if (parent->tag == DW_TAG_namespace
6299 || parent->tag == DW_TAG_module
6300 || parent->tag == DW_TAG_structure_type
6301 || parent->tag == DW_TAG_class_type
6302 || parent->tag == DW_TAG_interface_type
6303 || parent->tag == DW_TAG_union_type
6304 || parent->tag == DW_TAG_enumeration_type)
6305 {
6306 if (grandparent_scope == NULL)
6307 parent->scope = parent->name;
6308 else
6309 parent->scope = typename_concat (&cu->comp_unit_obstack,
6310 grandparent_scope,
6311 parent->name, 0, cu);
6312 }
6313 else
6314 {
6315 /* FIXME drow/2004-04-01: What should we be doing with
6316 function-local names? For partial symbols, we should probably be
6317 ignoring them. */
6318 complaint (&symfile_complaints,
6319 _("unhandled containing DIE tag %d for DIE at %d"),
6320 parent->tag, pdi->offset.sect_off);
6321 parent->scope = grandparent_scope;
6322 }
6323
6324 parent->scope_set = 1;
6325 return parent->scope;
6326 }
6327
6328 /* Return the fully scoped name associated with PDI, from compilation unit
6329 CU. The result will be allocated with malloc. */
6330
6331 static char *
6332 partial_die_full_name (struct partial_die_info *pdi,
6333 struct dwarf2_cu *cu)
6334 {
6335 const char *parent_scope;
6336
6337 /* If this is a template instantiation, we can not work out the
6338 template arguments from partial DIEs. So, unfortunately, we have
6339 to go through the full DIEs. At least any work we do building
6340 types here will be reused if full symbols are loaded later. */
6341 if (pdi->has_template_arguments)
6342 {
6343 fixup_partial_die (pdi, cu);
6344
6345 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6346 {
6347 struct die_info *die;
6348 struct attribute attr;
6349 struct dwarf2_cu *ref_cu = cu;
6350
6351 /* DW_FORM_ref_addr is using section offset. */
6352 attr.name = 0;
6353 attr.form = DW_FORM_ref_addr;
6354 attr.u.unsnd = pdi->offset.sect_off;
6355 die = follow_die_ref (NULL, &attr, &ref_cu);
6356
6357 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6358 }
6359 }
6360
6361 parent_scope = partial_die_parent_scope (pdi, cu);
6362 if (parent_scope == NULL)
6363 return NULL;
6364 else
6365 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6366 }
6367
6368 static void
6369 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6370 {
6371 struct objfile *objfile = cu->objfile;
6372 CORE_ADDR addr = 0;
6373 const char *actual_name = NULL;
6374 CORE_ADDR baseaddr;
6375 char *built_actual_name;
6376
6377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6378
6379 built_actual_name = partial_die_full_name (pdi, cu);
6380 if (built_actual_name != NULL)
6381 actual_name = built_actual_name;
6382
6383 if (actual_name == NULL)
6384 actual_name = pdi->name;
6385
6386 switch (pdi->tag)
6387 {
6388 case DW_TAG_subprogram:
6389 if (pdi->is_external || cu->language == language_ada)
6390 {
6391 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6392 of the global scope. But in Ada, we want to be able to access
6393 nested procedures globally. So all Ada subprograms are stored
6394 in the global scope. */
6395 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6396 mst_text, objfile); */
6397 add_psymbol_to_list (actual_name, strlen (actual_name),
6398 built_actual_name != NULL,
6399 VAR_DOMAIN, LOC_BLOCK,
6400 &objfile->global_psymbols,
6401 0, pdi->lowpc + baseaddr,
6402 cu->language, objfile);
6403 }
6404 else
6405 {
6406 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6407 mst_file_text, objfile); */
6408 add_psymbol_to_list (actual_name, strlen (actual_name),
6409 built_actual_name != NULL,
6410 VAR_DOMAIN, LOC_BLOCK,
6411 &objfile->static_psymbols,
6412 0, pdi->lowpc + baseaddr,
6413 cu->language, objfile);
6414 }
6415 break;
6416 case DW_TAG_constant:
6417 {
6418 struct psymbol_allocation_list *list;
6419
6420 if (pdi->is_external)
6421 list = &objfile->global_psymbols;
6422 else
6423 list = &objfile->static_psymbols;
6424 add_psymbol_to_list (actual_name, strlen (actual_name),
6425 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6426 list, 0, 0, cu->language, objfile);
6427 }
6428 break;
6429 case DW_TAG_variable:
6430 if (pdi->d.locdesc)
6431 addr = decode_locdesc (pdi->d.locdesc, cu);
6432
6433 if (pdi->d.locdesc
6434 && addr == 0
6435 && !dwarf2_per_objfile->has_section_at_zero)
6436 {
6437 /* A global or static variable may also have been stripped
6438 out by the linker if unused, in which case its address
6439 will be nullified; do not add such variables into partial
6440 symbol table then. */
6441 }
6442 else if (pdi->is_external)
6443 {
6444 /* Global Variable.
6445 Don't enter into the minimal symbol tables as there is
6446 a minimal symbol table entry from the ELF symbols already.
6447 Enter into partial symbol table if it has a location
6448 descriptor or a type.
6449 If the location descriptor is missing, new_symbol will create
6450 a LOC_UNRESOLVED symbol, the address of the variable will then
6451 be determined from the minimal symbol table whenever the variable
6452 is referenced.
6453 The address for the partial symbol table entry is not
6454 used by GDB, but it comes in handy for debugging partial symbol
6455 table building. */
6456
6457 if (pdi->d.locdesc || pdi->has_type)
6458 add_psymbol_to_list (actual_name, strlen (actual_name),
6459 built_actual_name != NULL,
6460 VAR_DOMAIN, LOC_STATIC,
6461 &objfile->global_psymbols,
6462 0, addr + baseaddr,
6463 cu->language, objfile);
6464 }
6465 else
6466 {
6467 /* Static Variable. Skip symbols without location descriptors. */
6468 if (pdi->d.locdesc == NULL)
6469 {
6470 xfree (built_actual_name);
6471 return;
6472 }
6473 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6474 mst_file_data, objfile); */
6475 add_psymbol_to_list (actual_name, strlen (actual_name),
6476 built_actual_name != NULL,
6477 VAR_DOMAIN, LOC_STATIC,
6478 &objfile->static_psymbols,
6479 0, addr + baseaddr,
6480 cu->language, objfile);
6481 }
6482 break;
6483 case DW_TAG_typedef:
6484 case DW_TAG_base_type:
6485 case DW_TAG_subrange_type:
6486 add_psymbol_to_list (actual_name, strlen (actual_name),
6487 built_actual_name != NULL,
6488 VAR_DOMAIN, LOC_TYPEDEF,
6489 &objfile->static_psymbols,
6490 0, (CORE_ADDR) 0, cu->language, objfile);
6491 break;
6492 case DW_TAG_namespace:
6493 add_psymbol_to_list (actual_name, strlen (actual_name),
6494 built_actual_name != NULL,
6495 VAR_DOMAIN, LOC_TYPEDEF,
6496 &objfile->global_psymbols,
6497 0, (CORE_ADDR) 0, cu->language, objfile);
6498 break;
6499 case DW_TAG_class_type:
6500 case DW_TAG_interface_type:
6501 case DW_TAG_structure_type:
6502 case DW_TAG_union_type:
6503 case DW_TAG_enumeration_type:
6504 /* Skip external references. The DWARF standard says in the section
6505 about "Structure, Union, and Class Type Entries": "An incomplete
6506 structure, union or class type is represented by a structure,
6507 union or class entry that does not have a byte size attribute
6508 and that has a DW_AT_declaration attribute." */
6509 if (!pdi->has_byte_size && pdi->is_declaration)
6510 {
6511 xfree (built_actual_name);
6512 return;
6513 }
6514
6515 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6516 static vs. global. */
6517 add_psymbol_to_list (actual_name, strlen (actual_name),
6518 built_actual_name != NULL,
6519 STRUCT_DOMAIN, LOC_TYPEDEF,
6520 (cu->language == language_cplus
6521 || cu->language == language_java)
6522 ? &objfile->global_psymbols
6523 : &objfile->static_psymbols,
6524 0, (CORE_ADDR) 0, cu->language, objfile);
6525
6526 break;
6527 case DW_TAG_enumerator:
6528 add_psymbol_to_list (actual_name, strlen (actual_name),
6529 built_actual_name != NULL,
6530 VAR_DOMAIN, LOC_CONST,
6531 (cu->language == language_cplus
6532 || cu->language == language_java)
6533 ? &objfile->global_psymbols
6534 : &objfile->static_psymbols,
6535 0, (CORE_ADDR) 0, cu->language, objfile);
6536 break;
6537 default:
6538 break;
6539 }
6540
6541 xfree (built_actual_name);
6542 }
6543
6544 /* Read a partial die corresponding to a namespace; also, add a symbol
6545 corresponding to that namespace to the symbol table. NAMESPACE is
6546 the name of the enclosing namespace. */
6547
6548 static void
6549 add_partial_namespace (struct partial_die_info *pdi,
6550 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6551 int need_pc, struct dwarf2_cu *cu)
6552 {
6553 /* Add a symbol for the namespace. */
6554
6555 add_partial_symbol (pdi, cu);
6556
6557 /* Now scan partial symbols in that namespace. */
6558
6559 if (pdi->has_children)
6560 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6561 }
6562
6563 /* Read a partial die corresponding to a Fortran module. */
6564
6565 static void
6566 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6567 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6568 {
6569 /* Now scan partial symbols in that module. */
6570
6571 if (pdi->has_children)
6572 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6573 }
6574
6575 /* Read a partial die corresponding to a subprogram and create a partial
6576 symbol for that subprogram. When the CU language allows it, this
6577 routine also defines a partial symbol for each nested subprogram
6578 that this subprogram contains.
6579
6580 DIE my also be a lexical block, in which case we simply search
6581 recursively for suprograms defined inside that lexical block.
6582 Again, this is only performed when the CU language allows this
6583 type of definitions. */
6584
6585 static void
6586 add_partial_subprogram (struct partial_die_info *pdi,
6587 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6588 int need_pc, struct dwarf2_cu *cu)
6589 {
6590 if (pdi->tag == DW_TAG_subprogram)
6591 {
6592 if (pdi->has_pc_info)
6593 {
6594 if (pdi->lowpc < *lowpc)
6595 *lowpc = pdi->lowpc;
6596 if (pdi->highpc > *highpc)
6597 *highpc = pdi->highpc;
6598 if (need_pc)
6599 {
6600 CORE_ADDR baseaddr;
6601 struct objfile *objfile = cu->objfile;
6602
6603 baseaddr = ANOFFSET (objfile->section_offsets,
6604 SECT_OFF_TEXT (objfile));
6605 addrmap_set_empty (objfile->psymtabs_addrmap,
6606 pdi->lowpc + baseaddr,
6607 pdi->highpc - 1 + baseaddr,
6608 cu->per_cu->v.psymtab);
6609 }
6610 }
6611
6612 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6613 {
6614 if (!pdi->is_declaration)
6615 /* Ignore subprogram DIEs that do not have a name, they are
6616 illegal. Do not emit a complaint at this point, we will
6617 do so when we convert this psymtab into a symtab. */
6618 if (pdi->name)
6619 add_partial_symbol (pdi, cu);
6620 }
6621 }
6622
6623 if (! pdi->has_children)
6624 return;
6625
6626 if (cu->language == language_ada)
6627 {
6628 pdi = pdi->die_child;
6629 while (pdi != NULL)
6630 {
6631 fixup_partial_die (pdi, cu);
6632 if (pdi->tag == DW_TAG_subprogram
6633 || pdi->tag == DW_TAG_lexical_block)
6634 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6635 pdi = pdi->die_sibling;
6636 }
6637 }
6638 }
6639
6640 /* Read a partial die corresponding to an enumeration type. */
6641
6642 static void
6643 add_partial_enumeration (struct partial_die_info *enum_pdi,
6644 struct dwarf2_cu *cu)
6645 {
6646 struct partial_die_info *pdi;
6647
6648 if (enum_pdi->name != NULL)
6649 add_partial_symbol (enum_pdi, cu);
6650
6651 pdi = enum_pdi->die_child;
6652 while (pdi)
6653 {
6654 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6655 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6656 else
6657 add_partial_symbol (pdi, cu);
6658 pdi = pdi->die_sibling;
6659 }
6660 }
6661
6662 /* Return the initial uleb128 in the die at INFO_PTR. */
6663
6664 static unsigned int
6665 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6666 {
6667 unsigned int bytes_read;
6668
6669 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6670 }
6671
6672 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6673 Return the corresponding abbrev, or NULL if the number is zero (indicating
6674 an empty DIE). In either case *BYTES_READ will be set to the length of
6675 the initial number. */
6676
6677 static struct abbrev_info *
6678 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6679 struct dwarf2_cu *cu)
6680 {
6681 bfd *abfd = cu->objfile->obfd;
6682 unsigned int abbrev_number;
6683 struct abbrev_info *abbrev;
6684
6685 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6686
6687 if (abbrev_number == 0)
6688 return NULL;
6689
6690 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6691 if (!abbrev)
6692 {
6693 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6694 abbrev_number, bfd_get_filename (abfd));
6695 }
6696
6697 return abbrev;
6698 }
6699
6700 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6701 Returns a pointer to the end of a series of DIEs, terminated by an empty
6702 DIE. Any children of the skipped DIEs will also be skipped. */
6703
6704 static const gdb_byte *
6705 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6706 {
6707 struct dwarf2_cu *cu = reader->cu;
6708 struct abbrev_info *abbrev;
6709 unsigned int bytes_read;
6710
6711 while (1)
6712 {
6713 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6714 if (abbrev == NULL)
6715 return info_ptr + bytes_read;
6716 else
6717 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6718 }
6719 }
6720
6721 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6722 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6723 abbrev corresponding to that skipped uleb128 should be passed in
6724 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6725 children. */
6726
6727 static const gdb_byte *
6728 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6729 struct abbrev_info *abbrev)
6730 {
6731 unsigned int bytes_read;
6732 struct attribute attr;
6733 bfd *abfd = reader->abfd;
6734 struct dwarf2_cu *cu = reader->cu;
6735 const gdb_byte *buffer = reader->buffer;
6736 const gdb_byte *buffer_end = reader->buffer_end;
6737 const gdb_byte *start_info_ptr = info_ptr;
6738 unsigned int form, i;
6739
6740 for (i = 0; i < abbrev->num_attrs; i++)
6741 {
6742 /* The only abbrev we care about is DW_AT_sibling. */
6743 if (abbrev->attrs[i].name == DW_AT_sibling)
6744 {
6745 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6746 if (attr.form == DW_FORM_ref_addr)
6747 complaint (&symfile_complaints,
6748 _("ignoring absolute DW_AT_sibling"));
6749 else
6750 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6751 }
6752
6753 /* If it isn't DW_AT_sibling, skip this attribute. */
6754 form = abbrev->attrs[i].form;
6755 skip_attribute:
6756 switch (form)
6757 {
6758 case DW_FORM_ref_addr:
6759 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6760 and later it is offset sized. */
6761 if (cu->header.version == 2)
6762 info_ptr += cu->header.addr_size;
6763 else
6764 info_ptr += cu->header.offset_size;
6765 break;
6766 case DW_FORM_GNU_ref_alt:
6767 info_ptr += cu->header.offset_size;
6768 break;
6769 case DW_FORM_addr:
6770 info_ptr += cu->header.addr_size;
6771 break;
6772 case DW_FORM_data1:
6773 case DW_FORM_ref1:
6774 case DW_FORM_flag:
6775 info_ptr += 1;
6776 break;
6777 case DW_FORM_flag_present:
6778 break;
6779 case DW_FORM_data2:
6780 case DW_FORM_ref2:
6781 info_ptr += 2;
6782 break;
6783 case DW_FORM_data4:
6784 case DW_FORM_ref4:
6785 info_ptr += 4;
6786 break;
6787 case DW_FORM_data8:
6788 case DW_FORM_ref8:
6789 case DW_FORM_ref_sig8:
6790 info_ptr += 8;
6791 break;
6792 case DW_FORM_string:
6793 read_direct_string (abfd, info_ptr, &bytes_read);
6794 info_ptr += bytes_read;
6795 break;
6796 case DW_FORM_sec_offset:
6797 case DW_FORM_strp:
6798 case DW_FORM_GNU_strp_alt:
6799 info_ptr += cu->header.offset_size;
6800 break;
6801 case DW_FORM_exprloc:
6802 case DW_FORM_block:
6803 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6804 info_ptr += bytes_read;
6805 break;
6806 case DW_FORM_block1:
6807 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6808 break;
6809 case DW_FORM_block2:
6810 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6811 break;
6812 case DW_FORM_block4:
6813 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6814 break;
6815 case DW_FORM_sdata:
6816 case DW_FORM_udata:
6817 case DW_FORM_ref_udata:
6818 case DW_FORM_GNU_addr_index:
6819 case DW_FORM_GNU_str_index:
6820 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6821 break;
6822 case DW_FORM_indirect:
6823 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6824 info_ptr += bytes_read;
6825 /* We need to continue parsing from here, so just go back to
6826 the top. */
6827 goto skip_attribute;
6828
6829 default:
6830 error (_("Dwarf Error: Cannot handle %s "
6831 "in DWARF reader [in module %s]"),
6832 dwarf_form_name (form),
6833 bfd_get_filename (abfd));
6834 }
6835 }
6836
6837 if (abbrev->has_children)
6838 return skip_children (reader, info_ptr);
6839 else
6840 return info_ptr;
6841 }
6842
6843 /* Locate ORIG_PDI's sibling.
6844 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6845
6846 static const gdb_byte *
6847 locate_pdi_sibling (const struct die_reader_specs *reader,
6848 struct partial_die_info *orig_pdi,
6849 const gdb_byte *info_ptr)
6850 {
6851 /* Do we know the sibling already? */
6852
6853 if (orig_pdi->sibling)
6854 return orig_pdi->sibling;
6855
6856 /* Are there any children to deal with? */
6857
6858 if (!orig_pdi->has_children)
6859 return info_ptr;
6860
6861 /* Skip the children the long way. */
6862
6863 return skip_children (reader, info_ptr);
6864 }
6865
6866 /* Expand this partial symbol table into a full symbol table. SELF is
6867 not NULL. */
6868
6869 static void
6870 dwarf2_read_symtab (struct partial_symtab *self,
6871 struct objfile *objfile)
6872 {
6873 if (self->readin)
6874 {
6875 warning (_("bug: psymtab for %s is already read in."),
6876 self->filename);
6877 }
6878 else
6879 {
6880 if (info_verbose)
6881 {
6882 printf_filtered (_("Reading in symbols for %s..."),
6883 self->filename);
6884 gdb_flush (gdb_stdout);
6885 }
6886
6887 /* Restore our global data. */
6888 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6889
6890 /* If this psymtab is constructed from a debug-only objfile, the
6891 has_section_at_zero flag will not necessarily be correct. We
6892 can get the correct value for this flag by looking at the data
6893 associated with the (presumably stripped) associated objfile. */
6894 if (objfile->separate_debug_objfile_backlink)
6895 {
6896 struct dwarf2_per_objfile *dpo_backlink
6897 = objfile_data (objfile->separate_debug_objfile_backlink,
6898 dwarf2_objfile_data_key);
6899
6900 dwarf2_per_objfile->has_section_at_zero
6901 = dpo_backlink->has_section_at_zero;
6902 }
6903
6904 dwarf2_per_objfile->reading_partial_symbols = 0;
6905
6906 psymtab_to_symtab_1 (self);
6907
6908 /* Finish up the debug error message. */
6909 if (info_verbose)
6910 printf_filtered (_("done.\n"));
6911 }
6912
6913 process_cu_includes ();
6914 }
6915 \f
6916 /* Reading in full CUs. */
6917
6918 /* Add PER_CU to the queue. */
6919
6920 static void
6921 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6922 enum language pretend_language)
6923 {
6924 struct dwarf2_queue_item *item;
6925
6926 per_cu->queued = 1;
6927 item = xmalloc (sizeof (*item));
6928 item->per_cu = per_cu;
6929 item->pretend_language = pretend_language;
6930 item->next = NULL;
6931
6932 if (dwarf2_queue == NULL)
6933 dwarf2_queue = item;
6934 else
6935 dwarf2_queue_tail->next = item;
6936
6937 dwarf2_queue_tail = item;
6938 }
6939
6940 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6941 unit and add it to our queue.
6942 The result is non-zero if PER_CU was queued, otherwise the result is zero
6943 meaning either PER_CU is already queued or it is already loaded. */
6944
6945 static int
6946 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6947 struct dwarf2_per_cu_data *per_cu,
6948 enum language pretend_language)
6949 {
6950 /* We may arrive here during partial symbol reading, if we need full
6951 DIEs to process an unusual case (e.g. template arguments). Do
6952 not queue PER_CU, just tell our caller to load its DIEs. */
6953 if (dwarf2_per_objfile->reading_partial_symbols)
6954 {
6955 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6956 return 1;
6957 return 0;
6958 }
6959
6960 /* Mark the dependence relation so that we don't flush PER_CU
6961 too early. */
6962 dwarf2_add_dependence (this_cu, per_cu);
6963
6964 /* If it's already on the queue, we have nothing to do. */
6965 if (per_cu->queued)
6966 return 0;
6967
6968 /* If the compilation unit is already loaded, just mark it as
6969 used. */
6970 if (per_cu->cu != NULL)
6971 {
6972 per_cu->cu->last_used = 0;
6973 return 0;
6974 }
6975
6976 /* Add it to the queue. */
6977 queue_comp_unit (per_cu, pretend_language);
6978
6979 return 1;
6980 }
6981
6982 /* Process the queue. */
6983
6984 static void
6985 process_queue (void)
6986 {
6987 struct dwarf2_queue_item *item, *next_item;
6988
6989 if (dwarf2_read_debug)
6990 {
6991 fprintf_unfiltered (gdb_stdlog,
6992 "Expanding one or more symtabs of objfile %s ...\n",
6993 dwarf2_per_objfile->objfile->name);
6994 }
6995
6996 /* The queue starts out with one item, but following a DIE reference
6997 may load a new CU, adding it to the end of the queue. */
6998 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6999 {
7000 if (dwarf2_per_objfile->using_index
7001 ? !item->per_cu->v.quick->symtab
7002 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7003 {
7004 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7005
7006 if (dwarf2_read_debug)
7007 {
7008 fprintf_unfiltered (gdb_stdlog,
7009 "Expanding symtab of %s at offset 0x%x\n",
7010 per_cu->is_debug_types ? "TU" : "CU",
7011 per_cu->offset.sect_off);
7012 }
7013
7014 if (per_cu->is_debug_types)
7015 process_full_type_unit (per_cu, item->pretend_language);
7016 else
7017 process_full_comp_unit (per_cu, item->pretend_language);
7018
7019 if (dwarf2_read_debug)
7020 {
7021 fprintf_unfiltered (gdb_stdlog,
7022 "Done expanding %s at offset 0x%x\n",
7023 per_cu->is_debug_types ? "TU" : "CU",
7024 per_cu->offset.sect_off);
7025 }
7026 }
7027
7028 item->per_cu->queued = 0;
7029 next_item = item->next;
7030 xfree (item);
7031 }
7032
7033 dwarf2_queue_tail = NULL;
7034
7035 if (dwarf2_read_debug)
7036 {
7037 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7038 dwarf2_per_objfile->objfile->name);
7039 }
7040 }
7041
7042 /* Free all allocated queue entries. This function only releases anything if
7043 an error was thrown; if the queue was processed then it would have been
7044 freed as we went along. */
7045
7046 static void
7047 dwarf2_release_queue (void *dummy)
7048 {
7049 struct dwarf2_queue_item *item, *last;
7050
7051 item = dwarf2_queue;
7052 while (item)
7053 {
7054 /* Anything still marked queued is likely to be in an
7055 inconsistent state, so discard it. */
7056 if (item->per_cu->queued)
7057 {
7058 if (item->per_cu->cu != NULL)
7059 free_one_cached_comp_unit (item->per_cu);
7060 item->per_cu->queued = 0;
7061 }
7062
7063 last = item;
7064 item = item->next;
7065 xfree (last);
7066 }
7067
7068 dwarf2_queue = dwarf2_queue_tail = NULL;
7069 }
7070
7071 /* Read in full symbols for PST, and anything it depends on. */
7072
7073 static void
7074 psymtab_to_symtab_1 (struct partial_symtab *pst)
7075 {
7076 struct dwarf2_per_cu_data *per_cu;
7077 int i;
7078
7079 if (pst->readin)
7080 return;
7081
7082 for (i = 0; i < pst->number_of_dependencies; i++)
7083 if (!pst->dependencies[i]->readin
7084 && pst->dependencies[i]->user == NULL)
7085 {
7086 /* Inform about additional files that need to be read in. */
7087 if (info_verbose)
7088 {
7089 /* FIXME: i18n: Need to make this a single string. */
7090 fputs_filtered (" ", gdb_stdout);
7091 wrap_here ("");
7092 fputs_filtered ("and ", gdb_stdout);
7093 wrap_here ("");
7094 printf_filtered ("%s...", pst->dependencies[i]->filename);
7095 wrap_here (""); /* Flush output. */
7096 gdb_flush (gdb_stdout);
7097 }
7098 psymtab_to_symtab_1 (pst->dependencies[i]);
7099 }
7100
7101 per_cu = pst->read_symtab_private;
7102
7103 if (per_cu == NULL)
7104 {
7105 /* It's an include file, no symbols to read for it.
7106 Everything is in the parent symtab. */
7107 pst->readin = 1;
7108 return;
7109 }
7110
7111 dw2_do_instantiate_symtab (per_cu);
7112 }
7113
7114 /* Trivial hash function for die_info: the hash value of a DIE
7115 is its offset in .debug_info for this objfile. */
7116
7117 static hashval_t
7118 die_hash (const void *item)
7119 {
7120 const struct die_info *die = item;
7121
7122 return die->offset.sect_off;
7123 }
7124
7125 /* Trivial comparison function for die_info structures: two DIEs
7126 are equal if they have the same offset. */
7127
7128 static int
7129 die_eq (const void *item_lhs, const void *item_rhs)
7130 {
7131 const struct die_info *die_lhs = item_lhs;
7132 const struct die_info *die_rhs = item_rhs;
7133
7134 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7135 }
7136
7137 /* die_reader_func for load_full_comp_unit.
7138 This is identical to read_signatured_type_reader,
7139 but is kept separate for now. */
7140
7141 static void
7142 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7143 const gdb_byte *info_ptr,
7144 struct die_info *comp_unit_die,
7145 int has_children,
7146 void *data)
7147 {
7148 struct dwarf2_cu *cu = reader->cu;
7149 enum language *language_ptr = data;
7150
7151 gdb_assert (cu->die_hash == NULL);
7152 cu->die_hash =
7153 htab_create_alloc_ex (cu->header.length / 12,
7154 die_hash,
7155 die_eq,
7156 NULL,
7157 &cu->comp_unit_obstack,
7158 hashtab_obstack_allocate,
7159 dummy_obstack_deallocate);
7160
7161 if (has_children)
7162 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7163 &info_ptr, comp_unit_die);
7164 cu->dies = comp_unit_die;
7165 /* comp_unit_die is not stored in die_hash, no need. */
7166
7167 /* We try not to read any attributes in this function, because not
7168 all CUs needed for references have been loaded yet, and symbol
7169 table processing isn't initialized. But we have to set the CU language,
7170 or we won't be able to build types correctly.
7171 Similarly, if we do not read the producer, we can not apply
7172 producer-specific interpretation. */
7173 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7174 }
7175
7176 /* Load the DIEs associated with PER_CU into memory. */
7177
7178 static void
7179 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7180 enum language pretend_language)
7181 {
7182 gdb_assert (! this_cu->is_debug_types);
7183
7184 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7185 load_full_comp_unit_reader, &pretend_language);
7186 }
7187
7188 /* Add a DIE to the delayed physname list. */
7189
7190 static void
7191 add_to_method_list (struct type *type, int fnfield_index, int index,
7192 const char *name, struct die_info *die,
7193 struct dwarf2_cu *cu)
7194 {
7195 struct delayed_method_info mi;
7196 mi.type = type;
7197 mi.fnfield_index = fnfield_index;
7198 mi.index = index;
7199 mi.name = name;
7200 mi.die = die;
7201 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7202 }
7203
7204 /* A cleanup for freeing the delayed method list. */
7205
7206 static void
7207 free_delayed_list (void *ptr)
7208 {
7209 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7210 if (cu->method_list != NULL)
7211 {
7212 VEC_free (delayed_method_info, cu->method_list);
7213 cu->method_list = NULL;
7214 }
7215 }
7216
7217 /* Compute the physnames of any methods on the CU's method list.
7218
7219 The computation of method physnames is delayed in order to avoid the
7220 (bad) condition that one of the method's formal parameters is of an as yet
7221 incomplete type. */
7222
7223 static void
7224 compute_delayed_physnames (struct dwarf2_cu *cu)
7225 {
7226 int i;
7227 struct delayed_method_info *mi;
7228 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7229 {
7230 const char *physname;
7231 struct fn_fieldlist *fn_flp
7232 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7233 physname = dwarf2_physname (mi->name, mi->die, cu);
7234 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7235 }
7236 }
7237
7238 /* Go objects should be embedded in a DW_TAG_module DIE,
7239 and it's not clear if/how imported objects will appear.
7240 To keep Go support simple until that's worked out,
7241 go back through what we've read and create something usable.
7242 We could do this while processing each DIE, and feels kinda cleaner,
7243 but that way is more invasive.
7244 This is to, for example, allow the user to type "p var" or "b main"
7245 without having to specify the package name, and allow lookups
7246 of module.object to work in contexts that use the expression
7247 parser. */
7248
7249 static void
7250 fixup_go_packaging (struct dwarf2_cu *cu)
7251 {
7252 char *package_name = NULL;
7253 struct pending *list;
7254 int i;
7255
7256 for (list = global_symbols; list != NULL; list = list->next)
7257 {
7258 for (i = 0; i < list->nsyms; ++i)
7259 {
7260 struct symbol *sym = list->symbol[i];
7261
7262 if (SYMBOL_LANGUAGE (sym) == language_go
7263 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7264 {
7265 char *this_package_name = go_symbol_package_name (sym);
7266
7267 if (this_package_name == NULL)
7268 continue;
7269 if (package_name == NULL)
7270 package_name = this_package_name;
7271 else
7272 {
7273 if (strcmp (package_name, this_package_name) != 0)
7274 complaint (&symfile_complaints,
7275 _("Symtab %s has objects from two different Go packages: %s and %s"),
7276 (SYMBOL_SYMTAB (sym)
7277 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7278 : cu->objfile->name),
7279 this_package_name, package_name);
7280 xfree (this_package_name);
7281 }
7282 }
7283 }
7284 }
7285
7286 if (package_name != NULL)
7287 {
7288 struct objfile *objfile = cu->objfile;
7289 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7290 package_name,
7291 strlen (package_name));
7292 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7293 saved_package_name, objfile);
7294 struct symbol *sym;
7295
7296 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7297
7298 sym = allocate_symbol (objfile);
7299 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7300 SYMBOL_SET_NAMES (sym, saved_package_name,
7301 strlen (saved_package_name), 0, objfile);
7302 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7303 e.g., "main" finds the "main" module and not C's main(). */
7304 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7305 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7306 SYMBOL_TYPE (sym) = type;
7307
7308 add_symbol_to_list (sym, &global_symbols);
7309
7310 xfree (package_name);
7311 }
7312 }
7313
7314 /* Return the symtab for PER_CU. This works properly regardless of
7315 whether we're using the index or psymtabs. */
7316
7317 static struct symtab *
7318 get_symtab (struct dwarf2_per_cu_data *per_cu)
7319 {
7320 return (dwarf2_per_objfile->using_index
7321 ? per_cu->v.quick->symtab
7322 : per_cu->v.psymtab->symtab);
7323 }
7324
7325 /* A helper function for computing the list of all symbol tables
7326 included by PER_CU. */
7327
7328 static void
7329 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7330 htab_t all_children,
7331 struct dwarf2_per_cu_data *per_cu)
7332 {
7333 void **slot;
7334 int ix;
7335 struct dwarf2_per_cu_data *iter;
7336
7337 slot = htab_find_slot (all_children, per_cu, INSERT);
7338 if (*slot != NULL)
7339 {
7340 /* This inclusion and its children have been processed. */
7341 return;
7342 }
7343
7344 *slot = per_cu;
7345 /* Only add a CU if it has a symbol table. */
7346 if (get_symtab (per_cu) != NULL)
7347 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7348
7349 for (ix = 0;
7350 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7351 ++ix)
7352 recursively_compute_inclusions (result, all_children, iter);
7353 }
7354
7355 /* Compute the symtab 'includes' fields for the symtab related to
7356 PER_CU. */
7357
7358 static void
7359 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7360 {
7361 gdb_assert (! per_cu->is_debug_types);
7362
7363 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7364 {
7365 int ix, len;
7366 struct dwarf2_per_cu_data *iter;
7367 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7368 htab_t all_children;
7369 struct symtab *symtab = get_symtab (per_cu);
7370
7371 /* If we don't have a symtab, we can just skip this case. */
7372 if (symtab == NULL)
7373 return;
7374
7375 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7376 NULL, xcalloc, xfree);
7377
7378 for (ix = 0;
7379 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7380 ix, iter);
7381 ++ix)
7382 recursively_compute_inclusions (&result_children, all_children, iter);
7383
7384 /* Now we have a transitive closure of all the included CUs, and
7385 for .gdb_index version 7 the included TUs, so we can convert it
7386 to a list of symtabs. */
7387 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7388 symtab->includes
7389 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7390 (len + 1) * sizeof (struct symtab *));
7391 for (ix = 0;
7392 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7393 ++ix)
7394 symtab->includes[ix] = get_symtab (iter);
7395 symtab->includes[len] = NULL;
7396
7397 VEC_free (dwarf2_per_cu_ptr, result_children);
7398 htab_delete (all_children);
7399 }
7400 }
7401
7402 /* Compute the 'includes' field for the symtabs of all the CUs we just
7403 read. */
7404
7405 static void
7406 process_cu_includes (void)
7407 {
7408 int ix;
7409 struct dwarf2_per_cu_data *iter;
7410
7411 for (ix = 0;
7412 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7413 ix, iter);
7414 ++ix)
7415 {
7416 if (! iter->is_debug_types)
7417 compute_symtab_includes (iter);
7418 }
7419
7420 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7421 }
7422
7423 /* Generate full symbol information for PER_CU, whose DIEs have
7424 already been loaded into memory. */
7425
7426 static void
7427 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7428 enum language pretend_language)
7429 {
7430 struct dwarf2_cu *cu = per_cu->cu;
7431 struct objfile *objfile = per_cu->objfile;
7432 CORE_ADDR lowpc, highpc;
7433 struct symtab *symtab;
7434 struct cleanup *back_to, *delayed_list_cleanup;
7435 CORE_ADDR baseaddr;
7436 struct block *static_block;
7437
7438 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7439
7440 buildsym_init ();
7441 back_to = make_cleanup (really_free_pendings, NULL);
7442 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7443
7444 cu->list_in_scope = &file_symbols;
7445
7446 cu->language = pretend_language;
7447 cu->language_defn = language_def (cu->language);
7448
7449 /* Do line number decoding in read_file_scope () */
7450 process_die (cu->dies, cu);
7451
7452 /* For now fudge the Go package. */
7453 if (cu->language == language_go)
7454 fixup_go_packaging (cu);
7455
7456 /* Now that we have processed all the DIEs in the CU, all the types
7457 should be complete, and it should now be safe to compute all of the
7458 physnames. */
7459 compute_delayed_physnames (cu);
7460 do_cleanups (delayed_list_cleanup);
7461
7462 /* Some compilers don't define a DW_AT_high_pc attribute for the
7463 compilation unit. If the DW_AT_high_pc is missing, synthesize
7464 it, by scanning the DIE's below the compilation unit. */
7465 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7466
7467 static_block
7468 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7469
7470 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7471 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7472 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7473 addrmap to help ensure it has an accurate map of pc values belonging to
7474 this comp unit. */
7475 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7476
7477 symtab = end_symtab_from_static_block (static_block, objfile,
7478 SECT_OFF_TEXT (objfile), 0);
7479
7480 if (symtab != NULL)
7481 {
7482 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7483
7484 /* Set symtab language to language from DW_AT_language. If the
7485 compilation is from a C file generated by language preprocessors, do
7486 not set the language if it was already deduced by start_subfile. */
7487 if (!(cu->language == language_c && symtab->language != language_c))
7488 symtab->language = cu->language;
7489
7490 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7491 produce DW_AT_location with location lists but it can be possibly
7492 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7493 there were bugs in prologue debug info, fixed later in GCC-4.5
7494 by "unwind info for epilogues" patch (which is not directly related).
7495
7496 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7497 needed, it would be wrong due to missing DW_AT_producer there.
7498
7499 Still one can confuse GDB by using non-standard GCC compilation
7500 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7501 */
7502 if (cu->has_loclist && gcc_4_minor >= 5)
7503 symtab->locations_valid = 1;
7504
7505 if (gcc_4_minor >= 5)
7506 symtab->epilogue_unwind_valid = 1;
7507
7508 symtab->call_site_htab = cu->call_site_htab;
7509 }
7510
7511 if (dwarf2_per_objfile->using_index)
7512 per_cu->v.quick->symtab = symtab;
7513 else
7514 {
7515 struct partial_symtab *pst = per_cu->v.psymtab;
7516 pst->symtab = symtab;
7517 pst->readin = 1;
7518 }
7519
7520 /* Push it for inclusion processing later. */
7521 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7522
7523 do_cleanups (back_to);
7524 }
7525
7526 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7527 already been loaded into memory. */
7528
7529 static void
7530 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7531 enum language pretend_language)
7532 {
7533 struct dwarf2_cu *cu = per_cu->cu;
7534 struct objfile *objfile = per_cu->objfile;
7535 struct symtab *symtab;
7536 struct cleanup *back_to, *delayed_list_cleanup;
7537 struct signatured_type *sig_type;
7538
7539 gdb_assert (per_cu->is_debug_types);
7540 sig_type = (struct signatured_type *) per_cu;
7541
7542 buildsym_init ();
7543 back_to = make_cleanup (really_free_pendings, NULL);
7544 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7545
7546 cu->list_in_scope = &file_symbols;
7547
7548 cu->language = pretend_language;
7549 cu->language_defn = language_def (cu->language);
7550
7551 /* The symbol tables are set up in read_type_unit_scope. */
7552 process_die (cu->dies, cu);
7553
7554 /* For now fudge the Go package. */
7555 if (cu->language == language_go)
7556 fixup_go_packaging (cu);
7557
7558 /* Now that we have processed all the DIEs in the CU, all the types
7559 should be complete, and it should now be safe to compute all of the
7560 physnames. */
7561 compute_delayed_physnames (cu);
7562 do_cleanups (delayed_list_cleanup);
7563
7564 /* TUs share symbol tables.
7565 If this is the first TU to use this symtab, complete the construction
7566 of it with end_expandable_symtab. Otherwise, complete the addition of
7567 this TU's symbols to the existing symtab. */
7568 if (sig_type->type_unit_group->primary_symtab == NULL)
7569 {
7570 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7571 sig_type->type_unit_group->primary_symtab = symtab;
7572
7573 if (symtab != NULL)
7574 {
7575 /* Set symtab language to language from DW_AT_language. If the
7576 compilation is from a C file generated by language preprocessors,
7577 do not set the language if it was already deduced by
7578 start_subfile. */
7579 if (!(cu->language == language_c && symtab->language != language_c))
7580 symtab->language = cu->language;
7581 }
7582 }
7583 else
7584 {
7585 augment_type_symtab (objfile,
7586 sig_type->type_unit_group->primary_symtab);
7587 symtab = sig_type->type_unit_group->primary_symtab;
7588 }
7589
7590 if (dwarf2_per_objfile->using_index)
7591 per_cu->v.quick->symtab = symtab;
7592 else
7593 {
7594 struct partial_symtab *pst = per_cu->v.psymtab;
7595 pst->symtab = symtab;
7596 pst->readin = 1;
7597 }
7598
7599 do_cleanups (back_to);
7600 }
7601
7602 /* Process an imported unit DIE. */
7603
7604 static void
7605 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7606 {
7607 struct attribute *attr;
7608
7609 /* For now we don't handle imported units in type units. */
7610 if (cu->per_cu->is_debug_types)
7611 {
7612 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7613 " supported in type units [in module %s]"),
7614 cu->objfile->name);
7615 }
7616
7617 attr = dwarf2_attr (die, DW_AT_import, cu);
7618 if (attr != NULL)
7619 {
7620 struct dwarf2_per_cu_data *per_cu;
7621 struct symtab *imported_symtab;
7622 sect_offset offset;
7623 int is_dwz;
7624
7625 offset = dwarf2_get_ref_die_offset (attr);
7626 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7627 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7628
7629 /* Queue the unit, if needed. */
7630 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7631 load_full_comp_unit (per_cu, cu->language);
7632
7633 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7634 per_cu);
7635 }
7636 }
7637
7638 /* Process a die and its children. */
7639
7640 static void
7641 process_die (struct die_info *die, struct dwarf2_cu *cu)
7642 {
7643 switch (die->tag)
7644 {
7645 case DW_TAG_padding:
7646 break;
7647 case DW_TAG_compile_unit:
7648 case DW_TAG_partial_unit:
7649 read_file_scope (die, cu);
7650 break;
7651 case DW_TAG_type_unit:
7652 read_type_unit_scope (die, cu);
7653 break;
7654 case DW_TAG_subprogram:
7655 case DW_TAG_inlined_subroutine:
7656 read_func_scope (die, cu);
7657 break;
7658 case DW_TAG_lexical_block:
7659 case DW_TAG_try_block:
7660 case DW_TAG_catch_block:
7661 read_lexical_block_scope (die, cu);
7662 break;
7663 case DW_TAG_GNU_call_site:
7664 read_call_site_scope (die, cu);
7665 break;
7666 case DW_TAG_class_type:
7667 case DW_TAG_interface_type:
7668 case DW_TAG_structure_type:
7669 case DW_TAG_union_type:
7670 process_structure_scope (die, cu);
7671 break;
7672 case DW_TAG_enumeration_type:
7673 process_enumeration_scope (die, cu);
7674 break;
7675
7676 /* These dies have a type, but processing them does not create
7677 a symbol or recurse to process the children. Therefore we can
7678 read them on-demand through read_type_die. */
7679 case DW_TAG_subroutine_type:
7680 case DW_TAG_set_type:
7681 case DW_TAG_array_type:
7682 case DW_TAG_pointer_type:
7683 case DW_TAG_ptr_to_member_type:
7684 case DW_TAG_reference_type:
7685 case DW_TAG_string_type:
7686 break;
7687
7688 case DW_TAG_base_type:
7689 case DW_TAG_subrange_type:
7690 case DW_TAG_typedef:
7691 /* Add a typedef symbol for the type definition, if it has a
7692 DW_AT_name. */
7693 new_symbol (die, read_type_die (die, cu), cu);
7694 break;
7695 case DW_TAG_common_block:
7696 read_common_block (die, cu);
7697 break;
7698 case DW_TAG_common_inclusion:
7699 break;
7700 case DW_TAG_namespace:
7701 cu->processing_has_namespace_info = 1;
7702 read_namespace (die, cu);
7703 break;
7704 case DW_TAG_module:
7705 cu->processing_has_namespace_info = 1;
7706 read_module (die, cu);
7707 break;
7708 case DW_TAG_imported_declaration:
7709 case DW_TAG_imported_module:
7710 cu->processing_has_namespace_info = 1;
7711 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7712 || cu->language != language_fortran))
7713 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7714 dwarf_tag_name (die->tag));
7715 read_import_statement (die, cu);
7716 break;
7717
7718 case DW_TAG_imported_unit:
7719 process_imported_unit_die (die, cu);
7720 break;
7721
7722 default:
7723 new_symbol (die, NULL, cu);
7724 break;
7725 }
7726 }
7727 \f
7728 /* DWARF name computation. */
7729
7730 /* A helper function for dwarf2_compute_name which determines whether DIE
7731 needs to have the name of the scope prepended to the name listed in the
7732 die. */
7733
7734 static int
7735 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7736 {
7737 struct attribute *attr;
7738
7739 switch (die->tag)
7740 {
7741 case DW_TAG_namespace:
7742 case DW_TAG_typedef:
7743 case DW_TAG_class_type:
7744 case DW_TAG_interface_type:
7745 case DW_TAG_structure_type:
7746 case DW_TAG_union_type:
7747 case DW_TAG_enumeration_type:
7748 case DW_TAG_enumerator:
7749 case DW_TAG_subprogram:
7750 case DW_TAG_member:
7751 return 1;
7752
7753 case DW_TAG_variable:
7754 case DW_TAG_constant:
7755 /* We only need to prefix "globally" visible variables. These include
7756 any variable marked with DW_AT_external or any variable that
7757 lives in a namespace. [Variables in anonymous namespaces
7758 require prefixing, but they are not DW_AT_external.] */
7759
7760 if (dwarf2_attr (die, DW_AT_specification, cu))
7761 {
7762 struct dwarf2_cu *spec_cu = cu;
7763
7764 return die_needs_namespace (die_specification (die, &spec_cu),
7765 spec_cu);
7766 }
7767
7768 attr = dwarf2_attr (die, DW_AT_external, cu);
7769 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7770 && die->parent->tag != DW_TAG_module)
7771 return 0;
7772 /* A variable in a lexical block of some kind does not need a
7773 namespace, even though in C++ such variables may be external
7774 and have a mangled name. */
7775 if (die->parent->tag == DW_TAG_lexical_block
7776 || die->parent->tag == DW_TAG_try_block
7777 || die->parent->tag == DW_TAG_catch_block
7778 || die->parent->tag == DW_TAG_subprogram)
7779 return 0;
7780 return 1;
7781
7782 default:
7783 return 0;
7784 }
7785 }
7786
7787 /* Retrieve the last character from a mem_file. */
7788
7789 static void
7790 do_ui_file_peek_last (void *object, const char *buffer, long length)
7791 {
7792 char *last_char_p = (char *) object;
7793
7794 if (length > 0)
7795 *last_char_p = buffer[length - 1];
7796 }
7797
7798 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7799 compute the physname for the object, which include a method's:
7800 - formal parameters (C++/Java),
7801 - receiver type (Go),
7802 - return type (Java).
7803
7804 The term "physname" is a bit confusing.
7805 For C++, for example, it is the demangled name.
7806 For Go, for example, it's the mangled name.
7807
7808 For Ada, return the DIE's linkage name rather than the fully qualified
7809 name. PHYSNAME is ignored..
7810
7811 The result is allocated on the objfile_obstack and canonicalized. */
7812
7813 static const char *
7814 dwarf2_compute_name (const char *name,
7815 struct die_info *die, struct dwarf2_cu *cu,
7816 int physname)
7817 {
7818 struct objfile *objfile = cu->objfile;
7819
7820 if (name == NULL)
7821 name = dwarf2_name (die, cu);
7822
7823 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7824 compute it by typename_concat inside GDB. */
7825 if (cu->language == language_ada
7826 || (cu->language == language_fortran && physname))
7827 {
7828 /* For Ada unit, we prefer the linkage name over the name, as
7829 the former contains the exported name, which the user expects
7830 to be able to reference. Ideally, we want the user to be able
7831 to reference this entity using either natural or linkage name,
7832 but we haven't started looking at this enhancement yet. */
7833 struct attribute *attr;
7834
7835 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7836 if (attr == NULL)
7837 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7838 if (attr && DW_STRING (attr))
7839 return DW_STRING (attr);
7840 }
7841
7842 /* These are the only languages we know how to qualify names in. */
7843 if (name != NULL
7844 && (cu->language == language_cplus || cu->language == language_java
7845 || cu->language == language_fortran))
7846 {
7847 if (die_needs_namespace (die, cu))
7848 {
7849 long length;
7850 const char *prefix;
7851 struct ui_file *buf;
7852
7853 prefix = determine_prefix (die, cu);
7854 buf = mem_fileopen ();
7855 if (*prefix != '\0')
7856 {
7857 char *prefixed_name = typename_concat (NULL, prefix, name,
7858 physname, cu);
7859
7860 fputs_unfiltered (prefixed_name, buf);
7861 xfree (prefixed_name);
7862 }
7863 else
7864 fputs_unfiltered (name, buf);
7865
7866 /* Template parameters may be specified in the DIE's DW_AT_name, or
7867 as children with DW_TAG_template_type_param or
7868 DW_TAG_value_type_param. If the latter, add them to the name
7869 here. If the name already has template parameters, then
7870 skip this step; some versions of GCC emit both, and
7871 it is more efficient to use the pre-computed name.
7872
7873 Something to keep in mind about this process: it is very
7874 unlikely, or in some cases downright impossible, to produce
7875 something that will match the mangled name of a function.
7876 If the definition of the function has the same debug info,
7877 we should be able to match up with it anyway. But fallbacks
7878 using the minimal symbol, for instance to find a method
7879 implemented in a stripped copy of libstdc++, will not work.
7880 If we do not have debug info for the definition, we will have to
7881 match them up some other way.
7882
7883 When we do name matching there is a related problem with function
7884 templates; two instantiated function templates are allowed to
7885 differ only by their return types, which we do not add here. */
7886
7887 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7888 {
7889 struct attribute *attr;
7890 struct die_info *child;
7891 int first = 1;
7892
7893 die->building_fullname = 1;
7894
7895 for (child = die->child; child != NULL; child = child->sibling)
7896 {
7897 struct type *type;
7898 LONGEST value;
7899 const gdb_byte *bytes;
7900 struct dwarf2_locexpr_baton *baton;
7901 struct value *v;
7902
7903 if (child->tag != DW_TAG_template_type_param
7904 && child->tag != DW_TAG_template_value_param)
7905 continue;
7906
7907 if (first)
7908 {
7909 fputs_unfiltered ("<", buf);
7910 first = 0;
7911 }
7912 else
7913 fputs_unfiltered (", ", buf);
7914
7915 attr = dwarf2_attr (child, DW_AT_type, cu);
7916 if (attr == NULL)
7917 {
7918 complaint (&symfile_complaints,
7919 _("template parameter missing DW_AT_type"));
7920 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7921 continue;
7922 }
7923 type = die_type (child, cu);
7924
7925 if (child->tag == DW_TAG_template_type_param)
7926 {
7927 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7928 continue;
7929 }
7930
7931 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7932 if (attr == NULL)
7933 {
7934 complaint (&symfile_complaints,
7935 _("template parameter missing "
7936 "DW_AT_const_value"));
7937 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7938 continue;
7939 }
7940
7941 dwarf2_const_value_attr (attr, type, name,
7942 &cu->comp_unit_obstack, cu,
7943 &value, &bytes, &baton);
7944
7945 if (TYPE_NOSIGN (type))
7946 /* GDB prints characters as NUMBER 'CHAR'. If that's
7947 changed, this can use value_print instead. */
7948 c_printchar (value, type, buf);
7949 else
7950 {
7951 struct value_print_options opts;
7952
7953 if (baton != NULL)
7954 v = dwarf2_evaluate_loc_desc (type, NULL,
7955 baton->data,
7956 baton->size,
7957 baton->per_cu);
7958 else if (bytes != NULL)
7959 {
7960 v = allocate_value (type);
7961 memcpy (value_contents_writeable (v), bytes,
7962 TYPE_LENGTH (type));
7963 }
7964 else
7965 v = value_from_longest (type, value);
7966
7967 /* Specify decimal so that we do not depend on
7968 the radix. */
7969 get_formatted_print_options (&opts, 'd');
7970 opts.raw = 1;
7971 value_print (v, buf, &opts);
7972 release_value (v);
7973 value_free (v);
7974 }
7975 }
7976
7977 die->building_fullname = 0;
7978
7979 if (!first)
7980 {
7981 /* Close the argument list, with a space if necessary
7982 (nested templates). */
7983 char last_char = '\0';
7984 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7985 if (last_char == '>')
7986 fputs_unfiltered (" >", buf);
7987 else
7988 fputs_unfiltered (">", buf);
7989 }
7990 }
7991
7992 /* For Java and C++ methods, append formal parameter type
7993 information, if PHYSNAME. */
7994
7995 if (physname && die->tag == DW_TAG_subprogram
7996 && (cu->language == language_cplus
7997 || cu->language == language_java))
7998 {
7999 struct type *type = read_type_die (die, cu);
8000
8001 c_type_print_args (type, buf, 1, cu->language,
8002 &type_print_raw_options);
8003
8004 if (cu->language == language_java)
8005 {
8006 /* For java, we must append the return type to method
8007 names. */
8008 if (die->tag == DW_TAG_subprogram)
8009 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8010 0, 0, &type_print_raw_options);
8011 }
8012 else if (cu->language == language_cplus)
8013 {
8014 /* Assume that an artificial first parameter is
8015 "this", but do not crash if it is not. RealView
8016 marks unnamed (and thus unused) parameters as
8017 artificial; there is no way to differentiate
8018 the two cases. */
8019 if (TYPE_NFIELDS (type) > 0
8020 && TYPE_FIELD_ARTIFICIAL (type, 0)
8021 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8022 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8023 0))))
8024 fputs_unfiltered (" const", buf);
8025 }
8026 }
8027
8028 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8029 &length);
8030 ui_file_delete (buf);
8031
8032 if (cu->language == language_cplus)
8033 {
8034 const char *cname
8035 = dwarf2_canonicalize_name (name, cu,
8036 &objfile->objfile_obstack);
8037
8038 if (cname != NULL)
8039 name = cname;
8040 }
8041 }
8042 }
8043
8044 return name;
8045 }
8046
8047 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8048 If scope qualifiers are appropriate they will be added. The result
8049 will be allocated on the objfile_obstack, or NULL if the DIE does
8050 not have a name. NAME may either be from a previous call to
8051 dwarf2_name or NULL.
8052
8053 The output string will be canonicalized (if C++/Java). */
8054
8055 static const char *
8056 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8057 {
8058 return dwarf2_compute_name (name, die, cu, 0);
8059 }
8060
8061 /* Construct a physname for the given DIE in CU. NAME may either be
8062 from a previous call to dwarf2_name or NULL. The result will be
8063 allocated on the objfile_objstack or NULL if the DIE does not have a
8064 name.
8065
8066 The output string will be canonicalized (if C++/Java). */
8067
8068 static const char *
8069 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8070 {
8071 struct objfile *objfile = cu->objfile;
8072 struct attribute *attr;
8073 const char *retval, *mangled = NULL, *canon = NULL;
8074 struct cleanup *back_to;
8075 int need_copy = 1;
8076
8077 /* In this case dwarf2_compute_name is just a shortcut not building anything
8078 on its own. */
8079 if (!die_needs_namespace (die, cu))
8080 return dwarf2_compute_name (name, die, cu, 1);
8081
8082 back_to = make_cleanup (null_cleanup, NULL);
8083
8084 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8085 if (!attr)
8086 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8087
8088 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8089 has computed. */
8090 if (attr && DW_STRING (attr))
8091 {
8092 char *demangled;
8093
8094 mangled = DW_STRING (attr);
8095
8096 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8097 type. It is easier for GDB users to search for such functions as
8098 `name(params)' than `long name(params)'. In such case the minimal
8099 symbol names do not match the full symbol names but for template
8100 functions there is never a need to look up their definition from their
8101 declaration so the only disadvantage remains the minimal symbol
8102 variant `long name(params)' does not have the proper inferior type.
8103 */
8104
8105 if (cu->language == language_go)
8106 {
8107 /* This is a lie, but we already lie to the caller new_symbol_full.
8108 new_symbol_full assumes we return the mangled name.
8109 This just undoes that lie until things are cleaned up. */
8110 demangled = NULL;
8111 }
8112 else
8113 {
8114 demangled = gdb_demangle (mangled,
8115 (DMGL_PARAMS | DMGL_ANSI
8116 | (cu->language == language_java
8117 ? DMGL_JAVA | DMGL_RET_POSTFIX
8118 : DMGL_RET_DROP)));
8119 }
8120 if (demangled)
8121 {
8122 make_cleanup (xfree, demangled);
8123 canon = demangled;
8124 }
8125 else
8126 {
8127 canon = mangled;
8128 need_copy = 0;
8129 }
8130 }
8131
8132 if (canon == NULL || check_physname)
8133 {
8134 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8135
8136 if (canon != NULL && strcmp (physname, canon) != 0)
8137 {
8138 /* It may not mean a bug in GDB. The compiler could also
8139 compute DW_AT_linkage_name incorrectly. But in such case
8140 GDB would need to be bug-to-bug compatible. */
8141
8142 complaint (&symfile_complaints,
8143 _("Computed physname <%s> does not match demangled <%s> "
8144 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8145 physname, canon, mangled, die->offset.sect_off, objfile->name);
8146
8147 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8148 is available here - over computed PHYSNAME. It is safer
8149 against both buggy GDB and buggy compilers. */
8150
8151 retval = canon;
8152 }
8153 else
8154 {
8155 retval = physname;
8156 need_copy = 0;
8157 }
8158 }
8159 else
8160 retval = canon;
8161
8162 if (need_copy)
8163 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8164
8165 do_cleanups (back_to);
8166 return retval;
8167 }
8168
8169 /* Read the import statement specified by the given die and record it. */
8170
8171 static void
8172 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8173 {
8174 struct objfile *objfile = cu->objfile;
8175 struct attribute *import_attr;
8176 struct die_info *imported_die, *child_die;
8177 struct dwarf2_cu *imported_cu;
8178 const char *imported_name;
8179 const char *imported_name_prefix;
8180 const char *canonical_name;
8181 const char *import_alias;
8182 const char *imported_declaration = NULL;
8183 const char *import_prefix;
8184 VEC (const_char_ptr) *excludes = NULL;
8185 struct cleanup *cleanups;
8186
8187 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8188 if (import_attr == NULL)
8189 {
8190 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8191 dwarf_tag_name (die->tag));
8192 return;
8193 }
8194
8195 imported_cu = cu;
8196 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8197 imported_name = dwarf2_name (imported_die, imported_cu);
8198 if (imported_name == NULL)
8199 {
8200 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8201
8202 The import in the following code:
8203 namespace A
8204 {
8205 typedef int B;
8206 }
8207
8208 int main ()
8209 {
8210 using A::B;
8211 B b;
8212 return b;
8213 }
8214
8215 ...
8216 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8217 <52> DW_AT_decl_file : 1
8218 <53> DW_AT_decl_line : 6
8219 <54> DW_AT_import : <0x75>
8220 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8221 <59> DW_AT_name : B
8222 <5b> DW_AT_decl_file : 1
8223 <5c> DW_AT_decl_line : 2
8224 <5d> DW_AT_type : <0x6e>
8225 ...
8226 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8227 <76> DW_AT_byte_size : 4
8228 <77> DW_AT_encoding : 5 (signed)
8229
8230 imports the wrong die ( 0x75 instead of 0x58 ).
8231 This case will be ignored until the gcc bug is fixed. */
8232 return;
8233 }
8234
8235 /* Figure out the local name after import. */
8236 import_alias = dwarf2_name (die, cu);
8237
8238 /* Figure out where the statement is being imported to. */
8239 import_prefix = determine_prefix (die, cu);
8240
8241 /* Figure out what the scope of the imported die is and prepend it
8242 to the name of the imported die. */
8243 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8244
8245 if (imported_die->tag != DW_TAG_namespace
8246 && imported_die->tag != DW_TAG_module)
8247 {
8248 imported_declaration = imported_name;
8249 canonical_name = imported_name_prefix;
8250 }
8251 else if (strlen (imported_name_prefix) > 0)
8252 canonical_name = obconcat (&objfile->objfile_obstack,
8253 imported_name_prefix, "::", imported_name,
8254 (char *) NULL);
8255 else
8256 canonical_name = imported_name;
8257
8258 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8259
8260 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8261 for (child_die = die->child; child_die && child_die->tag;
8262 child_die = sibling_die (child_die))
8263 {
8264 /* DWARF-4: A Fortran use statement with a “rename list” may be
8265 represented by an imported module entry with an import attribute
8266 referring to the module and owned entries corresponding to those
8267 entities that are renamed as part of being imported. */
8268
8269 if (child_die->tag != DW_TAG_imported_declaration)
8270 {
8271 complaint (&symfile_complaints,
8272 _("child DW_TAG_imported_declaration expected "
8273 "- DIE at 0x%x [in module %s]"),
8274 child_die->offset.sect_off, objfile->name);
8275 continue;
8276 }
8277
8278 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8279 if (import_attr == NULL)
8280 {
8281 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8282 dwarf_tag_name (child_die->tag));
8283 continue;
8284 }
8285
8286 imported_cu = cu;
8287 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8288 &imported_cu);
8289 imported_name = dwarf2_name (imported_die, imported_cu);
8290 if (imported_name == NULL)
8291 {
8292 complaint (&symfile_complaints,
8293 _("child DW_TAG_imported_declaration has unknown "
8294 "imported name - DIE at 0x%x [in module %s]"),
8295 child_die->offset.sect_off, objfile->name);
8296 continue;
8297 }
8298
8299 VEC_safe_push (const_char_ptr, excludes, imported_name);
8300
8301 process_die (child_die, cu);
8302 }
8303
8304 cp_add_using_directive (import_prefix,
8305 canonical_name,
8306 import_alias,
8307 imported_declaration,
8308 excludes,
8309 0,
8310 &objfile->objfile_obstack);
8311
8312 do_cleanups (cleanups);
8313 }
8314
8315 /* Cleanup function for handle_DW_AT_stmt_list. */
8316
8317 static void
8318 free_cu_line_header (void *arg)
8319 {
8320 struct dwarf2_cu *cu = arg;
8321
8322 free_line_header (cu->line_header);
8323 cu->line_header = NULL;
8324 }
8325
8326 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8327 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8328 this, it was first present in GCC release 4.3.0. */
8329
8330 static int
8331 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8332 {
8333 if (!cu->checked_producer)
8334 check_producer (cu);
8335
8336 return cu->producer_is_gcc_lt_4_3;
8337 }
8338
8339 static void
8340 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8341 const char **name, const char **comp_dir)
8342 {
8343 struct attribute *attr;
8344
8345 *name = NULL;
8346 *comp_dir = NULL;
8347
8348 /* Find the filename. Do not use dwarf2_name here, since the filename
8349 is not a source language identifier. */
8350 attr = dwarf2_attr (die, DW_AT_name, cu);
8351 if (attr)
8352 {
8353 *name = DW_STRING (attr);
8354 }
8355
8356 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8357 if (attr)
8358 *comp_dir = DW_STRING (attr);
8359 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8360 && IS_ABSOLUTE_PATH (*name))
8361 {
8362 char *d = ldirname (*name);
8363
8364 *comp_dir = d;
8365 if (d != NULL)
8366 make_cleanup (xfree, d);
8367 }
8368 if (*comp_dir != NULL)
8369 {
8370 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8371 directory, get rid of it. */
8372 char *cp = strchr (*comp_dir, ':');
8373
8374 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8375 *comp_dir = cp + 1;
8376 }
8377
8378 if (*name == NULL)
8379 *name = "<unknown>";
8380 }
8381
8382 /* Handle DW_AT_stmt_list for a compilation unit.
8383 DIE is the DW_TAG_compile_unit die for CU.
8384 COMP_DIR is the compilation directory.
8385 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8386
8387 static void
8388 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8389 const char *comp_dir) /* ARI: editCase function */
8390 {
8391 struct attribute *attr;
8392
8393 gdb_assert (! cu->per_cu->is_debug_types);
8394
8395 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8396 if (attr)
8397 {
8398 unsigned int line_offset = DW_UNSND (attr);
8399 struct line_header *line_header
8400 = dwarf_decode_line_header (line_offset, cu);
8401
8402 if (line_header)
8403 {
8404 cu->line_header = line_header;
8405 make_cleanup (free_cu_line_header, cu);
8406 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8407 }
8408 }
8409 }
8410
8411 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8412
8413 static void
8414 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8415 {
8416 struct objfile *objfile = dwarf2_per_objfile->objfile;
8417 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8418 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8419 CORE_ADDR highpc = ((CORE_ADDR) 0);
8420 struct attribute *attr;
8421 const char *name = NULL;
8422 const char *comp_dir = NULL;
8423 struct die_info *child_die;
8424 bfd *abfd = objfile->obfd;
8425 CORE_ADDR baseaddr;
8426
8427 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8428
8429 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8430
8431 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8432 from finish_block. */
8433 if (lowpc == ((CORE_ADDR) -1))
8434 lowpc = highpc;
8435 lowpc += baseaddr;
8436 highpc += baseaddr;
8437
8438 find_file_and_directory (die, cu, &name, &comp_dir);
8439
8440 prepare_one_comp_unit (cu, die, cu->language);
8441
8442 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8443 standardised yet. As a workaround for the language detection we fall
8444 back to the DW_AT_producer string. */
8445 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8446 cu->language = language_opencl;
8447
8448 /* Similar hack for Go. */
8449 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8450 set_cu_language (DW_LANG_Go, cu);
8451
8452 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8453
8454 /* Decode line number information if present. We do this before
8455 processing child DIEs, so that the line header table is available
8456 for DW_AT_decl_file. */
8457 handle_DW_AT_stmt_list (die, cu, comp_dir);
8458
8459 /* Process all dies in compilation unit. */
8460 if (die->child != NULL)
8461 {
8462 child_die = die->child;
8463 while (child_die && child_die->tag)
8464 {
8465 process_die (child_die, cu);
8466 child_die = sibling_die (child_die);
8467 }
8468 }
8469
8470 /* Decode macro information, if present. Dwarf 2 macro information
8471 refers to information in the line number info statement program
8472 header, so we can only read it if we've read the header
8473 successfully. */
8474 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8475 if (attr && cu->line_header)
8476 {
8477 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8478 complaint (&symfile_complaints,
8479 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8480
8481 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8482 }
8483 else
8484 {
8485 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8486 if (attr && cu->line_header)
8487 {
8488 unsigned int macro_offset = DW_UNSND (attr);
8489
8490 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8491 }
8492 }
8493
8494 do_cleanups (back_to);
8495 }
8496
8497 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8498 Create the set of symtabs used by this TU, or if this TU is sharing
8499 symtabs with another TU and the symtabs have already been created
8500 then restore those symtabs in the line header.
8501 We don't need the pc/line-number mapping for type units. */
8502
8503 static void
8504 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8505 {
8506 struct objfile *objfile = dwarf2_per_objfile->objfile;
8507 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8508 struct type_unit_group *tu_group;
8509 int first_time;
8510 struct line_header *lh;
8511 struct attribute *attr;
8512 unsigned int i, line_offset;
8513 struct signatured_type *sig_type;
8514
8515 gdb_assert (per_cu->is_debug_types);
8516 sig_type = (struct signatured_type *) per_cu;
8517
8518 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8519
8520 /* If we're using .gdb_index (includes -readnow) then
8521 per_cu->type_unit_group may not have been set up yet. */
8522 if (sig_type->type_unit_group == NULL)
8523 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8524 tu_group = sig_type->type_unit_group;
8525
8526 /* If we've already processed this stmt_list there's no real need to
8527 do it again, we could fake it and just recreate the part we need
8528 (file name,index -> symtab mapping). If data shows this optimization
8529 is useful we can do it then. */
8530 first_time = tu_group->primary_symtab == NULL;
8531
8532 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8533 debug info. */
8534 lh = NULL;
8535 if (attr != NULL)
8536 {
8537 line_offset = DW_UNSND (attr);
8538 lh = dwarf_decode_line_header (line_offset, cu);
8539 }
8540 if (lh == NULL)
8541 {
8542 if (first_time)
8543 dwarf2_start_symtab (cu, "", NULL, 0);
8544 else
8545 {
8546 gdb_assert (tu_group->symtabs == NULL);
8547 restart_symtab (0);
8548 }
8549 /* Note: The primary symtab will get allocated at the end. */
8550 return;
8551 }
8552
8553 cu->line_header = lh;
8554 make_cleanup (free_cu_line_header, cu);
8555
8556 if (first_time)
8557 {
8558 dwarf2_start_symtab (cu, "", NULL, 0);
8559
8560 tu_group->num_symtabs = lh->num_file_names;
8561 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8562
8563 for (i = 0; i < lh->num_file_names; ++i)
8564 {
8565 const char *dir = NULL;
8566 struct file_entry *fe = &lh->file_names[i];
8567
8568 if (fe->dir_index)
8569 dir = lh->include_dirs[fe->dir_index - 1];
8570 dwarf2_start_subfile (fe->name, dir, NULL);
8571
8572 /* Note: We don't have to watch for the main subfile here, type units
8573 don't have DW_AT_name. */
8574
8575 if (current_subfile->symtab == NULL)
8576 {
8577 /* NOTE: start_subfile will recognize when it's been passed
8578 a file it has already seen. So we can't assume there's a
8579 simple mapping from lh->file_names to subfiles,
8580 lh->file_names may contain dups. */
8581 current_subfile->symtab = allocate_symtab (current_subfile->name,
8582 objfile);
8583 }
8584
8585 fe->symtab = current_subfile->symtab;
8586 tu_group->symtabs[i] = fe->symtab;
8587 }
8588 }
8589 else
8590 {
8591 restart_symtab (0);
8592
8593 for (i = 0; i < lh->num_file_names; ++i)
8594 {
8595 struct file_entry *fe = &lh->file_names[i];
8596
8597 fe->symtab = tu_group->symtabs[i];
8598 }
8599 }
8600
8601 /* The main symtab is allocated last. Type units don't have DW_AT_name
8602 so they don't have a "real" (so to speak) symtab anyway.
8603 There is later code that will assign the main symtab to all symbols
8604 that don't have one. We need to handle the case of a symbol with a
8605 missing symtab (DW_AT_decl_file) anyway. */
8606 }
8607
8608 /* Process DW_TAG_type_unit.
8609 For TUs we want to skip the first top level sibling if it's not the
8610 actual type being defined by this TU. In this case the first top
8611 level sibling is there to provide context only. */
8612
8613 static void
8614 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8615 {
8616 struct die_info *child_die;
8617
8618 prepare_one_comp_unit (cu, die, language_minimal);
8619
8620 /* Initialize (or reinitialize) the machinery for building symtabs.
8621 We do this before processing child DIEs, so that the line header table
8622 is available for DW_AT_decl_file. */
8623 setup_type_unit_groups (die, cu);
8624
8625 if (die->child != NULL)
8626 {
8627 child_die = die->child;
8628 while (child_die && child_die->tag)
8629 {
8630 process_die (child_die, cu);
8631 child_die = sibling_die (child_die);
8632 }
8633 }
8634 }
8635 \f
8636 /* DWO/DWP files.
8637
8638 http://gcc.gnu.org/wiki/DebugFission
8639 http://gcc.gnu.org/wiki/DebugFissionDWP
8640
8641 To simplify handling of both DWO files ("object" files with the DWARF info)
8642 and DWP files (a file with the DWOs packaged up into one file), we treat
8643 DWP files as having a collection of virtual DWO files. */
8644
8645 static hashval_t
8646 hash_dwo_file (const void *item)
8647 {
8648 const struct dwo_file *dwo_file = item;
8649 hashval_t hash;
8650
8651 hash = htab_hash_string (dwo_file->dwo_name);
8652 if (dwo_file->comp_dir != NULL)
8653 hash += htab_hash_string (dwo_file->comp_dir);
8654 return hash;
8655 }
8656
8657 static int
8658 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8659 {
8660 const struct dwo_file *lhs = item_lhs;
8661 const struct dwo_file *rhs = item_rhs;
8662
8663 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8664 return 0;
8665 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8666 return lhs->comp_dir == rhs->comp_dir;
8667 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8668 }
8669
8670 /* Allocate a hash table for DWO files. */
8671
8672 static htab_t
8673 allocate_dwo_file_hash_table (void)
8674 {
8675 struct objfile *objfile = dwarf2_per_objfile->objfile;
8676
8677 return htab_create_alloc_ex (41,
8678 hash_dwo_file,
8679 eq_dwo_file,
8680 NULL,
8681 &objfile->objfile_obstack,
8682 hashtab_obstack_allocate,
8683 dummy_obstack_deallocate);
8684 }
8685
8686 /* Lookup DWO file DWO_NAME. */
8687
8688 static void **
8689 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8690 {
8691 struct dwo_file find_entry;
8692 void **slot;
8693
8694 if (dwarf2_per_objfile->dwo_files == NULL)
8695 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8696
8697 memset (&find_entry, 0, sizeof (find_entry));
8698 find_entry.dwo_name = dwo_name;
8699 find_entry.comp_dir = comp_dir;
8700 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8701
8702 return slot;
8703 }
8704
8705 static hashval_t
8706 hash_dwo_unit (const void *item)
8707 {
8708 const struct dwo_unit *dwo_unit = item;
8709
8710 /* This drops the top 32 bits of the id, but is ok for a hash. */
8711 return dwo_unit->signature;
8712 }
8713
8714 static int
8715 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8716 {
8717 const struct dwo_unit *lhs = item_lhs;
8718 const struct dwo_unit *rhs = item_rhs;
8719
8720 /* The signature is assumed to be unique within the DWO file.
8721 So while object file CU dwo_id's always have the value zero,
8722 that's OK, assuming each object file DWO file has only one CU,
8723 and that's the rule for now. */
8724 return lhs->signature == rhs->signature;
8725 }
8726
8727 /* Allocate a hash table for DWO CUs,TUs.
8728 There is one of these tables for each of CUs,TUs for each DWO file. */
8729
8730 static htab_t
8731 allocate_dwo_unit_table (struct objfile *objfile)
8732 {
8733 /* Start out with a pretty small number.
8734 Generally DWO files contain only one CU and maybe some TUs. */
8735 return htab_create_alloc_ex (3,
8736 hash_dwo_unit,
8737 eq_dwo_unit,
8738 NULL,
8739 &objfile->objfile_obstack,
8740 hashtab_obstack_allocate,
8741 dummy_obstack_deallocate);
8742 }
8743
8744 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8745
8746 struct create_dwo_cu_data
8747 {
8748 struct dwo_file *dwo_file;
8749 struct dwo_unit dwo_unit;
8750 };
8751
8752 /* die_reader_func for create_dwo_cu. */
8753
8754 static void
8755 create_dwo_cu_reader (const struct die_reader_specs *reader,
8756 const gdb_byte *info_ptr,
8757 struct die_info *comp_unit_die,
8758 int has_children,
8759 void *datap)
8760 {
8761 struct dwarf2_cu *cu = reader->cu;
8762 struct objfile *objfile = dwarf2_per_objfile->objfile;
8763 sect_offset offset = cu->per_cu->offset;
8764 struct dwarf2_section_info *section = cu->per_cu->section;
8765 struct create_dwo_cu_data *data = datap;
8766 struct dwo_file *dwo_file = data->dwo_file;
8767 struct dwo_unit *dwo_unit = &data->dwo_unit;
8768 struct attribute *attr;
8769
8770 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8771 if (attr == NULL)
8772 {
8773 complaint (&symfile_complaints,
8774 _("Dwarf Error: debug entry at offset 0x%x is missing"
8775 " its dwo_id [in module %s]"),
8776 offset.sect_off, dwo_file->dwo_name);
8777 return;
8778 }
8779
8780 dwo_unit->dwo_file = dwo_file;
8781 dwo_unit->signature = DW_UNSND (attr);
8782 dwo_unit->section = section;
8783 dwo_unit->offset = offset;
8784 dwo_unit->length = cu->per_cu->length;
8785
8786 if (dwarf2_read_debug)
8787 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8788 offset.sect_off, hex_string (dwo_unit->signature));
8789 }
8790
8791 /* Create the dwo_unit for the lone CU in DWO_FILE.
8792 Note: This function processes DWO files only, not DWP files. */
8793
8794 static struct dwo_unit *
8795 create_dwo_cu (struct dwo_file *dwo_file)
8796 {
8797 struct objfile *objfile = dwarf2_per_objfile->objfile;
8798 struct dwarf2_section_info *section = &dwo_file->sections.info;
8799 bfd *abfd;
8800 htab_t cu_htab;
8801 const gdb_byte *info_ptr, *end_ptr;
8802 struct create_dwo_cu_data create_dwo_cu_data;
8803 struct dwo_unit *dwo_unit;
8804
8805 dwarf2_read_section (objfile, section);
8806 info_ptr = section->buffer;
8807
8808 if (info_ptr == NULL)
8809 return NULL;
8810
8811 /* We can't set abfd until now because the section may be empty or
8812 not present, in which case section->asection will be NULL. */
8813 abfd = section->asection->owner;
8814
8815 if (dwarf2_read_debug)
8816 {
8817 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8818 bfd_section_name (abfd, section->asection),
8819 bfd_get_filename (abfd));
8820 }
8821
8822 create_dwo_cu_data.dwo_file = dwo_file;
8823 dwo_unit = NULL;
8824
8825 end_ptr = info_ptr + section->size;
8826 while (info_ptr < end_ptr)
8827 {
8828 struct dwarf2_per_cu_data per_cu;
8829
8830 memset (&create_dwo_cu_data.dwo_unit, 0,
8831 sizeof (create_dwo_cu_data.dwo_unit));
8832 memset (&per_cu, 0, sizeof (per_cu));
8833 per_cu.objfile = objfile;
8834 per_cu.is_debug_types = 0;
8835 per_cu.offset.sect_off = info_ptr - section->buffer;
8836 per_cu.section = section;
8837
8838 init_cutu_and_read_dies_no_follow (&per_cu,
8839 &dwo_file->sections.abbrev,
8840 dwo_file,
8841 create_dwo_cu_reader,
8842 &create_dwo_cu_data);
8843
8844 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8845 {
8846 /* If we've already found one, complain. We only support one
8847 because having more than one requires hacking the dwo_name of
8848 each to match, which is highly unlikely to happen. */
8849 if (dwo_unit != NULL)
8850 {
8851 complaint (&symfile_complaints,
8852 _("Multiple CUs in DWO file %s [in module %s]"),
8853 dwo_file->dwo_name, objfile->name);
8854 break;
8855 }
8856
8857 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8858 *dwo_unit = create_dwo_cu_data.dwo_unit;
8859 }
8860
8861 info_ptr += per_cu.length;
8862 }
8863
8864 return dwo_unit;
8865 }
8866
8867 /* DWP file .debug_{cu,tu}_index section format:
8868 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8869
8870 DWP Version 1:
8871
8872 Both index sections have the same format, and serve to map a 64-bit
8873 signature to a set of section numbers. Each section begins with a header,
8874 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8875 indexes, and a pool of 32-bit section numbers. The index sections will be
8876 aligned at 8-byte boundaries in the file.
8877
8878 The index section header consists of:
8879
8880 V, 32 bit version number
8881 -, 32 bits unused
8882 N, 32 bit number of compilation units or type units in the index
8883 M, 32 bit number of slots in the hash table
8884
8885 Numbers are recorded using the byte order of the application binary.
8886
8887 We assume that N and M will not exceed 2^32 - 1.
8888
8889 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8890
8891 The hash table begins at offset 16 in the section, and consists of an array
8892 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8893 order of the application binary). Unused slots in the hash table are 0.
8894 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8895
8896 The parallel table begins immediately after the hash table
8897 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8898 array of 32-bit indexes (using the byte order of the application binary),
8899 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8900 table contains a 32-bit index into the pool of section numbers. For unused
8901 hash table slots, the corresponding entry in the parallel table will be 0.
8902
8903 Given a 64-bit compilation unit signature or a type signature S, an entry
8904 in the hash table is located as follows:
8905
8906 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8907 the low-order k bits all set to 1.
8908
8909 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8910
8911 3) If the hash table entry at index H matches the signature, use that
8912 entry. If the hash table entry at index H is unused (all zeroes),
8913 terminate the search: the signature is not present in the table.
8914
8915 4) Let H = (H + H') modulo M. Repeat at Step 3.
8916
8917 Because M > N and H' and M are relatively prime, the search is guaranteed
8918 to stop at an unused slot or find the match.
8919
8920 The pool of section numbers begins immediately following the hash table
8921 (at offset 16 + 12 * M from the beginning of the section). The pool of
8922 section numbers consists of an array of 32-bit words (using the byte order
8923 of the application binary). Each item in the array is indexed starting
8924 from 0. The hash table entry provides the index of the first section
8925 number in the set. Additional section numbers in the set follow, and the
8926 set is terminated by a 0 entry (section number 0 is not used in ELF).
8927
8928 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8929 section must be the first entry in the set, and the .debug_abbrev.dwo must
8930 be the second entry. Other members of the set may follow in any order. */
8931
8932 /* Create a hash table to map DWO IDs to their CU/TU entry in
8933 .debug_{info,types}.dwo in DWP_FILE.
8934 Returns NULL if there isn't one.
8935 Note: This function processes DWP files only, not DWO files. */
8936
8937 static struct dwp_hash_table *
8938 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8939 {
8940 struct objfile *objfile = dwarf2_per_objfile->objfile;
8941 bfd *dbfd = dwp_file->dbfd;
8942 const gdb_byte *index_ptr, *index_end;
8943 struct dwarf2_section_info *index;
8944 uint32_t version, nr_units, nr_slots;
8945 struct dwp_hash_table *htab;
8946
8947 if (is_debug_types)
8948 index = &dwp_file->sections.tu_index;
8949 else
8950 index = &dwp_file->sections.cu_index;
8951
8952 if (dwarf2_section_empty_p (index))
8953 return NULL;
8954 dwarf2_read_section (objfile, index);
8955
8956 index_ptr = index->buffer;
8957 index_end = index_ptr + index->size;
8958
8959 version = read_4_bytes (dbfd, index_ptr);
8960 index_ptr += 8; /* Skip the unused word. */
8961 nr_units = read_4_bytes (dbfd, index_ptr);
8962 index_ptr += 4;
8963 nr_slots = read_4_bytes (dbfd, index_ptr);
8964 index_ptr += 4;
8965
8966 if (version != 1)
8967 {
8968 error (_("Dwarf Error: unsupported DWP file version (%s)"
8969 " [in module %s]"),
8970 pulongest (version), dwp_file->name);
8971 }
8972 if (nr_slots != (nr_slots & -nr_slots))
8973 {
8974 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
8975 " is not power of 2 [in module %s]"),
8976 pulongest (nr_slots), dwp_file->name);
8977 }
8978
8979 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8980 htab->nr_units = nr_units;
8981 htab->nr_slots = nr_slots;
8982 htab->hash_table = index_ptr;
8983 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8984 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8985
8986 return htab;
8987 }
8988
8989 /* Update SECTIONS with the data from SECTP.
8990
8991 This function is like the other "locate" section routines that are
8992 passed to bfd_map_over_sections, but in this context the sections to
8993 read comes from the DWP hash table, not the full ELF section table.
8994
8995 The result is non-zero for success, or zero if an error was found. */
8996
8997 static int
8998 locate_virtual_dwo_sections (asection *sectp,
8999 struct virtual_dwo_sections *sections)
9000 {
9001 const struct dwop_section_names *names = &dwop_section_names;
9002
9003 if (section_is_p (sectp->name, &names->abbrev_dwo))
9004 {
9005 /* There can be only one. */
9006 if (sections->abbrev.asection != NULL)
9007 return 0;
9008 sections->abbrev.asection = sectp;
9009 sections->abbrev.size = bfd_get_section_size (sectp);
9010 }
9011 else if (section_is_p (sectp->name, &names->info_dwo)
9012 || section_is_p (sectp->name, &names->types_dwo))
9013 {
9014 /* There can be only one. */
9015 if (sections->info_or_types.asection != NULL)
9016 return 0;
9017 sections->info_or_types.asection = sectp;
9018 sections->info_or_types.size = bfd_get_section_size (sectp);
9019 }
9020 else if (section_is_p (sectp->name, &names->line_dwo))
9021 {
9022 /* There can be only one. */
9023 if (sections->line.asection != NULL)
9024 return 0;
9025 sections->line.asection = sectp;
9026 sections->line.size = bfd_get_section_size (sectp);
9027 }
9028 else if (section_is_p (sectp->name, &names->loc_dwo))
9029 {
9030 /* There can be only one. */
9031 if (sections->loc.asection != NULL)
9032 return 0;
9033 sections->loc.asection = sectp;
9034 sections->loc.size = bfd_get_section_size (sectp);
9035 }
9036 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9037 {
9038 /* There can be only one. */
9039 if (sections->macinfo.asection != NULL)
9040 return 0;
9041 sections->macinfo.asection = sectp;
9042 sections->macinfo.size = bfd_get_section_size (sectp);
9043 }
9044 else if (section_is_p (sectp->name, &names->macro_dwo))
9045 {
9046 /* There can be only one. */
9047 if (sections->macro.asection != NULL)
9048 return 0;
9049 sections->macro.asection = sectp;
9050 sections->macro.size = bfd_get_section_size (sectp);
9051 }
9052 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9053 {
9054 /* There can be only one. */
9055 if (sections->str_offsets.asection != NULL)
9056 return 0;
9057 sections->str_offsets.asection = sectp;
9058 sections->str_offsets.size = bfd_get_section_size (sectp);
9059 }
9060 else
9061 {
9062 /* No other kind of section is valid. */
9063 return 0;
9064 }
9065
9066 return 1;
9067 }
9068
9069 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9070 HTAB is the hash table from the DWP file.
9071 SECTION_INDEX is the index of the DWO in HTAB.
9072 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9073
9074 static struct dwo_unit *
9075 create_dwo_in_dwp (struct dwp_file *dwp_file,
9076 const struct dwp_hash_table *htab,
9077 uint32_t section_index,
9078 const char *comp_dir,
9079 ULONGEST signature, int is_debug_types)
9080 {
9081 struct objfile *objfile = dwarf2_per_objfile->objfile;
9082 bfd *dbfd = dwp_file->dbfd;
9083 const char *kind = is_debug_types ? "TU" : "CU";
9084 struct dwo_file *dwo_file;
9085 struct dwo_unit *dwo_unit;
9086 struct virtual_dwo_sections sections;
9087 void **dwo_file_slot;
9088 char *virtual_dwo_name;
9089 struct dwarf2_section_info *cutu;
9090 struct cleanup *cleanups;
9091 int i;
9092
9093 if (dwarf2_read_debug)
9094 {
9095 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9096 kind,
9097 pulongest (section_index), hex_string (signature),
9098 dwp_file->name);
9099 }
9100
9101 /* Fetch the sections of this DWO.
9102 Put a limit on the number of sections we look for so that bad data
9103 doesn't cause us to loop forever. */
9104
9105 #define MAX_NR_DWO_SECTIONS \
9106 (1 /* .debug_info or .debug_types */ \
9107 + 1 /* .debug_abbrev */ \
9108 + 1 /* .debug_line */ \
9109 + 1 /* .debug_loc */ \
9110 + 1 /* .debug_str_offsets */ \
9111 + 1 /* .debug_macro */ \
9112 + 1 /* .debug_macinfo */ \
9113 + 1 /* trailing zero */)
9114
9115 memset (&sections, 0, sizeof (sections));
9116 cleanups = make_cleanup (null_cleanup, 0);
9117
9118 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9119 {
9120 asection *sectp;
9121 uint32_t section_nr =
9122 read_4_bytes (dbfd,
9123 htab->section_pool
9124 + (section_index + i) * sizeof (uint32_t));
9125
9126 if (section_nr == 0)
9127 break;
9128 if (section_nr >= dwp_file->num_sections)
9129 {
9130 error (_("Dwarf Error: bad DWP hash table, section number too large"
9131 " [in module %s]"),
9132 dwp_file->name);
9133 }
9134
9135 sectp = dwp_file->elf_sections[section_nr];
9136 if (! locate_virtual_dwo_sections (sectp, &sections))
9137 {
9138 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9139 " [in module %s]"),
9140 dwp_file->name);
9141 }
9142 }
9143
9144 if (i < 2
9145 || sections.info_or_types.asection == NULL
9146 || sections.abbrev.asection == NULL)
9147 {
9148 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9149 " [in module %s]"),
9150 dwp_file->name);
9151 }
9152 if (i == MAX_NR_DWO_SECTIONS)
9153 {
9154 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9155 " [in module %s]"),
9156 dwp_file->name);
9157 }
9158
9159 /* It's easier for the rest of the code if we fake a struct dwo_file and
9160 have dwo_unit "live" in that. At least for now.
9161
9162 The DWP file can be made up of a random collection of CUs and TUs.
9163 However, for each CU + set of TUs that came from the same original DWO
9164 file, we want to combine them back into a virtual DWO file to save space
9165 (fewer struct dwo_file objects to allocated). Remember that for really
9166 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9167
9168 virtual_dwo_name =
9169 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9170 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9171 sections.line.asection ? sections.line.asection->id : 0,
9172 sections.loc.asection ? sections.loc.asection->id : 0,
9173 (sections.str_offsets.asection
9174 ? sections.str_offsets.asection->id
9175 : 0));
9176 make_cleanup (xfree, virtual_dwo_name);
9177 /* Can we use an existing virtual DWO file? */
9178 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9179 /* Create one if necessary. */
9180 if (*dwo_file_slot == NULL)
9181 {
9182 if (dwarf2_read_debug)
9183 {
9184 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9185 virtual_dwo_name);
9186 }
9187 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9188 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9189 virtual_dwo_name,
9190 strlen (virtual_dwo_name));
9191 dwo_file->comp_dir = comp_dir;
9192 dwo_file->sections.abbrev = sections.abbrev;
9193 dwo_file->sections.line = sections.line;
9194 dwo_file->sections.loc = sections.loc;
9195 dwo_file->sections.macinfo = sections.macinfo;
9196 dwo_file->sections.macro = sections.macro;
9197 dwo_file->sections.str_offsets = sections.str_offsets;
9198 /* The "str" section is global to the entire DWP file. */
9199 dwo_file->sections.str = dwp_file->sections.str;
9200 /* The info or types section is assigned later to dwo_unit,
9201 there's no need to record it in dwo_file.
9202 Also, we can't simply record type sections in dwo_file because
9203 we record a pointer into the vector in dwo_unit. As we collect more
9204 types we'll grow the vector and eventually have to reallocate space
9205 for it, invalidating all the pointers into the current copy. */
9206 *dwo_file_slot = dwo_file;
9207 }
9208 else
9209 {
9210 if (dwarf2_read_debug)
9211 {
9212 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9213 virtual_dwo_name);
9214 }
9215 dwo_file = *dwo_file_slot;
9216 }
9217 do_cleanups (cleanups);
9218
9219 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9220 dwo_unit->dwo_file = dwo_file;
9221 dwo_unit->signature = signature;
9222 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9223 sizeof (struct dwarf2_section_info));
9224 *dwo_unit->section = sections.info_or_types;
9225 /* offset, length, type_offset_in_tu are set later. */
9226
9227 return dwo_unit;
9228 }
9229
9230 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9231
9232 static struct dwo_unit *
9233 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9234 const struct dwp_hash_table *htab,
9235 const char *comp_dir,
9236 ULONGEST signature, int is_debug_types)
9237 {
9238 bfd *dbfd = dwp_file->dbfd;
9239 uint32_t mask = htab->nr_slots - 1;
9240 uint32_t hash = signature & mask;
9241 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9242 unsigned int i;
9243 void **slot;
9244 struct dwo_unit find_dwo_cu, *dwo_cu;
9245
9246 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9247 find_dwo_cu.signature = signature;
9248 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9249
9250 if (*slot != NULL)
9251 return *slot;
9252
9253 /* Use a for loop so that we don't loop forever on bad debug info. */
9254 for (i = 0; i < htab->nr_slots; ++i)
9255 {
9256 ULONGEST signature_in_table;
9257
9258 signature_in_table =
9259 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9260 if (signature_in_table == signature)
9261 {
9262 uint32_t section_index =
9263 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9264
9265 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9266 comp_dir, signature, is_debug_types);
9267 return *slot;
9268 }
9269 if (signature_in_table == 0)
9270 return NULL;
9271 hash = (hash + hash2) & mask;
9272 }
9273
9274 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9275 " [in module %s]"),
9276 dwp_file->name);
9277 }
9278
9279 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9280 Open the file specified by FILE_NAME and hand it off to BFD for
9281 preliminary analysis. Return a newly initialized bfd *, which
9282 includes a canonicalized copy of FILE_NAME.
9283 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9284 In case of trouble, return NULL.
9285 NOTE: This function is derived from symfile_bfd_open. */
9286
9287 static bfd *
9288 try_open_dwop_file (const char *file_name, int is_dwp)
9289 {
9290 bfd *sym_bfd;
9291 int desc, flags;
9292 char *absolute_name;
9293
9294 flags = OPF_TRY_CWD_FIRST;
9295 if (is_dwp)
9296 flags |= OPF_SEARCH_IN_PATH;
9297 desc = openp (debug_file_directory, flags, file_name,
9298 O_RDONLY | O_BINARY, &absolute_name);
9299 if (desc < 0)
9300 return NULL;
9301
9302 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9303 if (!sym_bfd)
9304 {
9305 xfree (absolute_name);
9306 return NULL;
9307 }
9308 xfree (absolute_name);
9309 bfd_set_cacheable (sym_bfd, 1);
9310
9311 if (!bfd_check_format (sym_bfd, bfd_object))
9312 {
9313 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9314 return NULL;
9315 }
9316
9317 return sym_bfd;
9318 }
9319
9320 /* Try to open DWO file FILE_NAME.
9321 COMP_DIR is the DW_AT_comp_dir attribute.
9322 The result is the bfd handle of the file.
9323 If there is a problem finding or opening the file, return NULL.
9324 Upon success, the canonicalized path of the file is stored in the bfd,
9325 same as symfile_bfd_open. */
9326
9327 static bfd *
9328 open_dwo_file (const char *file_name, const char *comp_dir)
9329 {
9330 bfd *abfd;
9331
9332 if (IS_ABSOLUTE_PATH (file_name))
9333 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9334
9335 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9336
9337 if (comp_dir != NULL)
9338 {
9339 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9340
9341 /* NOTE: If comp_dir is a relative path, this will also try the
9342 search path, which seems useful. */
9343 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
9344 xfree (path_to_try);
9345 if (abfd != NULL)
9346 return abfd;
9347 }
9348
9349 /* That didn't work, try debug-file-directory, which, despite its name,
9350 is a list of paths. */
9351
9352 if (*debug_file_directory == '\0')
9353 return NULL;
9354
9355 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9356 }
9357
9358 /* This function is mapped across the sections and remembers the offset and
9359 size of each of the DWO debugging sections we are interested in. */
9360
9361 static void
9362 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9363 {
9364 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9365 const struct dwop_section_names *names = &dwop_section_names;
9366
9367 if (section_is_p (sectp->name, &names->abbrev_dwo))
9368 {
9369 dwo_sections->abbrev.asection = sectp;
9370 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9371 }
9372 else if (section_is_p (sectp->name, &names->info_dwo))
9373 {
9374 dwo_sections->info.asection = sectp;
9375 dwo_sections->info.size = bfd_get_section_size (sectp);
9376 }
9377 else if (section_is_p (sectp->name, &names->line_dwo))
9378 {
9379 dwo_sections->line.asection = sectp;
9380 dwo_sections->line.size = bfd_get_section_size (sectp);
9381 }
9382 else if (section_is_p (sectp->name, &names->loc_dwo))
9383 {
9384 dwo_sections->loc.asection = sectp;
9385 dwo_sections->loc.size = bfd_get_section_size (sectp);
9386 }
9387 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9388 {
9389 dwo_sections->macinfo.asection = sectp;
9390 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9391 }
9392 else if (section_is_p (sectp->name, &names->macro_dwo))
9393 {
9394 dwo_sections->macro.asection = sectp;
9395 dwo_sections->macro.size = bfd_get_section_size (sectp);
9396 }
9397 else if (section_is_p (sectp->name, &names->str_dwo))
9398 {
9399 dwo_sections->str.asection = sectp;
9400 dwo_sections->str.size = bfd_get_section_size (sectp);
9401 }
9402 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9403 {
9404 dwo_sections->str_offsets.asection = sectp;
9405 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9406 }
9407 else if (section_is_p (sectp->name, &names->types_dwo))
9408 {
9409 struct dwarf2_section_info type_section;
9410
9411 memset (&type_section, 0, sizeof (type_section));
9412 type_section.asection = sectp;
9413 type_section.size = bfd_get_section_size (sectp);
9414 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9415 &type_section);
9416 }
9417 }
9418
9419 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9420 by PER_CU. This is for the non-DWP case.
9421 The result is NULL if DWO_NAME can't be found. */
9422
9423 static struct dwo_file *
9424 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9425 const char *dwo_name, const char *comp_dir)
9426 {
9427 struct objfile *objfile = dwarf2_per_objfile->objfile;
9428 struct dwo_file *dwo_file;
9429 bfd *dbfd;
9430 struct cleanup *cleanups;
9431
9432 dbfd = open_dwo_file (dwo_name, comp_dir);
9433 if (dbfd == NULL)
9434 {
9435 if (dwarf2_read_debug)
9436 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9437 return NULL;
9438 }
9439 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9440 dwo_file->dwo_name = dwo_name;
9441 dwo_file->comp_dir = comp_dir;
9442 dwo_file->dbfd = dbfd;
9443
9444 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9445
9446 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9447
9448 dwo_file->cu = create_dwo_cu (dwo_file);
9449
9450 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9451 dwo_file->sections.types);
9452
9453 discard_cleanups (cleanups);
9454
9455 if (dwarf2_read_debug)
9456 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9457
9458 return dwo_file;
9459 }
9460
9461 /* This function is mapped across the sections and remembers the offset and
9462 size of each of the DWP debugging sections we are interested in. */
9463
9464 static void
9465 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9466 {
9467 struct dwp_file *dwp_file = dwp_file_ptr;
9468 const struct dwop_section_names *names = &dwop_section_names;
9469 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9470
9471 /* Record the ELF section number for later lookup: this is what the
9472 .debug_cu_index,.debug_tu_index tables use. */
9473 gdb_assert (elf_section_nr < dwp_file->num_sections);
9474 dwp_file->elf_sections[elf_section_nr] = sectp;
9475
9476 /* Look for specific sections that we need. */
9477 if (section_is_p (sectp->name, &names->str_dwo))
9478 {
9479 dwp_file->sections.str.asection = sectp;
9480 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9481 }
9482 else if (section_is_p (sectp->name, &names->cu_index))
9483 {
9484 dwp_file->sections.cu_index.asection = sectp;
9485 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9486 }
9487 else if (section_is_p (sectp->name, &names->tu_index))
9488 {
9489 dwp_file->sections.tu_index.asection = sectp;
9490 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9491 }
9492 }
9493
9494 /* Hash function for dwp_file loaded CUs/TUs. */
9495
9496 static hashval_t
9497 hash_dwp_loaded_cutus (const void *item)
9498 {
9499 const struct dwo_unit *dwo_unit = item;
9500
9501 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9502 return dwo_unit->signature;
9503 }
9504
9505 /* Equality function for dwp_file loaded CUs/TUs. */
9506
9507 static int
9508 eq_dwp_loaded_cutus (const void *a, const void *b)
9509 {
9510 const struct dwo_unit *dua = a;
9511 const struct dwo_unit *dub = b;
9512
9513 return dua->signature == dub->signature;
9514 }
9515
9516 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9517
9518 static htab_t
9519 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9520 {
9521 return htab_create_alloc_ex (3,
9522 hash_dwp_loaded_cutus,
9523 eq_dwp_loaded_cutus,
9524 NULL,
9525 &objfile->objfile_obstack,
9526 hashtab_obstack_allocate,
9527 dummy_obstack_deallocate);
9528 }
9529
9530 /* Try to open DWP file FILE_NAME.
9531 The result is the bfd handle of the file.
9532 If there is a problem finding or opening the file, return NULL.
9533 Upon success, the canonicalized path of the file is stored in the bfd,
9534 same as symfile_bfd_open. */
9535
9536 static bfd *
9537 open_dwp_file (const char *file_name)
9538 {
9539 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9540 }
9541
9542 /* Initialize the use of the DWP file for the current objfile.
9543 By convention the name of the DWP file is ${objfile}.dwp.
9544 The result is NULL if it can't be found. */
9545
9546 static struct dwp_file *
9547 open_and_init_dwp_file (void)
9548 {
9549 struct objfile *objfile = dwarf2_per_objfile->objfile;
9550 struct dwp_file *dwp_file;
9551 char *dwp_name;
9552 bfd *dbfd;
9553 struct cleanup *cleanups;
9554
9555 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9556 cleanups = make_cleanup (xfree, dwp_name);
9557
9558 dbfd = open_dwp_file (dwp_name);
9559 if (dbfd == NULL)
9560 {
9561 if (dwarf2_read_debug)
9562 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9563 do_cleanups (cleanups);
9564 return NULL;
9565 }
9566 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9567 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9568 dwp_name, strlen (dwp_name));
9569 dwp_file->dbfd = dbfd;
9570 do_cleanups (cleanups);
9571
9572 /* +1: section 0 is unused */
9573 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9574 dwp_file->elf_sections =
9575 OBSTACK_CALLOC (&objfile->objfile_obstack,
9576 dwp_file->num_sections, asection *);
9577
9578 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9579
9580 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9581
9582 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9583
9584 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9585
9586 if (dwarf2_read_debug)
9587 {
9588 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9589 fprintf_unfiltered (gdb_stdlog,
9590 " %s CUs, %s TUs\n",
9591 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9592 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9593 }
9594
9595 return dwp_file;
9596 }
9597
9598 /* Wrapper around open_and_init_dwp_file, only open it once. */
9599
9600 static struct dwp_file *
9601 get_dwp_file (void)
9602 {
9603 if (! dwarf2_per_objfile->dwp_checked)
9604 {
9605 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9606 dwarf2_per_objfile->dwp_checked = 1;
9607 }
9608 return dwarf2_per_objfile->dwp_file;
9609 }
9610
9611 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9612 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9613 or in the DWP file for the objfile, referenced by THIS_UNIT.
9614 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9615 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9616
9617 This is called, for example, when wanting to read a variable with a
9618 complex location. Therefore we don't want to do file i/o for every call.
9619 Therefore we don't want to look for a DWO file on every call.
9620 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9621 then we check if we've already seen DWO_NAME, and only THEN do we check
9622 for a DWO file.
9623
9624 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9625 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9626
9627 static struct dwo_unit *
9628 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9629 const char *dwo_name, const char *comp_dir,
9630 ULONGEST signature, int is_debug_types)
9631 {
9632 struct objfile *objfile = dwarf2_per_objfile->objfile;
9633 const char *kind = is_debug_types ? "TU" : "CU";
9634 void **dwo_file_slot;
9635 struct dwo_file *dwo_file;
9636 struct dwp_file *dwp_file;
9637
9638 /* First see if there's a DWP file.
9639 If we have a DWP file but didn't find the DWO inside it, don't
9640 look for the original DWO file. It makes gdb behave differently
9641 depending on whether one is debugging in the build tree. */
9642
9643 dwp_file = get_dwp_file ();
9644 if (dwp_file != NULL)
9645 {
9646 const struct dwp_hash_table *dwp_htab =
9647 is_debug_types ? dwp_file->tus : dwp_file->cus;
9648
9649 if (dwp_htab != NULL)
9650 {
9651 struct dwo_unit *dwo_cutu =
9652 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9653 signature, is_debug_types);
9654
9655 if (dwo_cutu != NULL)
9656 {
9657 if (dwarf2_read_debug)
9658 {
9659 fprintf_unfiltered (gdb_stdlog,
9660 "Virtual DWO %s %s found: @%s\n",
9661 kind, hex_string (signature),
9662 host_address_to_string (dwo_cutu));
9663 }
9664 return dwo_cutu;
9665 }
9666 }
9667 }
9668 else
9669 {
9670 /* No DWP file, look for the DWO file. */
9671
9672 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9673 if (*dwo_file_slot == NULL)
9674 {
9675 /* Read in the file and build a table of the CUs/TUs it contains. */
9676 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9677 }
9678 /* NOTE: This will be NULL if unable to open the file. */
9679 dwo_file = *dwo_file_slot;
9680
9681 if (dwo_file != NULL)
9682 {
9683 struct dwo_unit *dwo_cutu = NULL;
9684
9685 if (is_debug_types && dwo_file->tus)
9686 {
9687 struct dwo_unit find_dwo_cutu;
9688
9689 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9690 find_dwo_cutu.signature = signature;
9691 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9692 }
9693 else if (!is_debug_types && dwo_file->cu)
9694 {
9695 if (signature == dwo_file->cu->signature)
9696 dwo_cutu = dwo_file->cu;
9697 }
9698
9699 if (dwo_cutu != NULL)
9700 {
9701 if (dwarf2_read_debug)
9702 {
9703 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9704 kind, dwo_name, hex_string (signature),
9705 host_address_to_string (dwo_cutu));
9706 }
9707 return dwo_cutu;
9708 }
9709 }
9710 }
9711
9712 /* We didn't find it. This could mean a dwo_id mismatch, or
9713 someone deleted the DWO/DWP file, or the search path isn't set up
9714 correctly to find the file. */
9715
9716 if (dwarf2_read_debug)
9717 {
9718 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9719 kind, dwo_name, hex_string (signature));
9720 }
9721
9722 complaint (&symfile_complaints,
9723 _("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9724 " [in module %s]"),
9725 kind, dwo_name, hex_string (signature),
9726 this_unit->is_debug_types ? "TU" : "CU",
9727 this_unit->offset.sect_off, objfile->name);
9728 return NULL;
9729 }
9730
9731 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9732 See lookup_dwo_cutu_unit for details. */
9733
9734 static struct dwo_unit *
9735 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9736 const char *dwo_name, const char *comp_dir,
9737 ULONGEST signature)
9738 {
9739 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9740 }
9741
9742 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9743 See lookup_dwo_cutu_unit for details. */
9744
9745 static struct dwo_unit *
9746 lookup_dwo_type_unit (struct signatured_type *this_tu,
9747 const char *dwo_name, const char *comp_dir)
9748 {
9749 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9750 }
9751
9752 /* Free all resources associated with DWO_FILE.
9753 Close the DWO file and munmap the sections.
9754 All memory should be on the objfile obstack. */
9755
9756 static void
9757 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9758 {
9759 int ix;
9760 struct dwarf2_section_info *section;
9761
9762 /* Note: dbfd is NULL for virtual DWO files. */
9763 gdb_bfd_unref (dwo_file->dbfd);
9764
9765 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9766 }
9767
9768 /* Wrapper for free_dwo_file for use in cleanups. */
9769
9770 static void
9771 free_dwo_file_cleanup (void *arg)
9772 {
9773 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9774 struct objfile *objfile = dwarf2_per_objfile->objfile;
9775
9776 free_dwo_file (dwo_file, objfile);
9777 }
9778
9779 /* Traversal function for free_dwo_files. */
9780
9781 static int
9782 free_dwo_file_from_slot (void **slot, void *info)
9783 {
9784 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9785 struct objfile *objfile = (struct objfile *) info;
9786
9787 free_dwo_file (dwo_file, objfile);
9788
9789 return 1;
9790 }
9791
9792 /* Free all resources associated with DWO_FILES. */
9793
9794 static void
9795 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9796 {
9797 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9798 }
9799 \f
9800 /* Read in various DIEs. */
9801
9802 /* qsort helper for inherit_abstract_dies. */
9803
9804 static int
9805 unsigned_int_compar (const void *ap, const void *bp)
9806 {
9807 unsigned int a = *(unsigned int *) ap;
9808 unsigned int b = *(unsigned int *) bp;
9809
9810 return (a > b) - (b > a);
9811 }
9812
9813 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9814 Inherit only the children of the DW_AT_abstract_origin DIE not being
9815 already referenced by DW_AT_abstract_origin from the children of the
9816 current DIE. */
9817
9818 static void
9819 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9820 {
9821 struct die_info *child_die;
9822 unsigned die_children_count;
9823 /* CU offsets which were referenced by children of the current DIE. */
9824 sect_offset *offsets;
9825 sect_offset *offsets_end, *offsetp;
9826 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9827 struct die_info *origin_die;
9828 /* Iterator of the ORIGIN_DIE children. */
9829 struct die_info *origin_child_die;
9830 struct cleanup *cleanups;
9831 struct attribute *attr;
9832 struct dwarf2_cu *origin_cu;
9833 struct pending **origin_previous_list_in_scope;
9834
9835 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9836 if (!attr)
9837 return;
9838
9839 /* Note that following die references may follow to a die in a
9840 different cu. */
9841
9842 origin_cu = cu;
9843 origin_die = follow_die_ref (die, attr, &origin_cu);
9844
9845 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9846 symbols in. */
9847 origin_previous_list_in_scope = origin_cu->list_in_scope;
9848 origin_cu->list_in_scope = cu->list_in_scope;
9849
9850 if (die->tag != origin_die->tag
9851 && !(die->tag == DW_TAG_inlined_subroutine
9852 && origin_die->tag == DW_TAG_subprogram))
9853 complaint (&symfile_complaints,
9854 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9855 die->offset.sect_off, origin_die->offset.sect_off);
9856
9857 child_die = die->child;
9858 die_children_count = 0;
9859 while (child_die && child_die->tag)
9860 {
9861 child_die = sibling_die (child_die);
9862 die_children_count++;
9863 }
9864 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9865 cleanups = make_cleanup (xfree, offsets);
9866
9867 offsets_end = offsets;
9868 child_die = die->child;
9869 while (child_die && child_die->tag)
9870 {
9871 /* For each CHILD_DIE, find the corresponding child of
9872 ORIGIN_DIE. If there is more than one layer of
9873 DW_AT_abstract_origin, follow them all; there shouldn't be,
9874 but GCC versions at least through 4.4 generate this (GCC PR
9875 40573). */
9876 struct die_info *child_origin_die = child_die;
9877 struct dwarf2_cu *child_origin_cu = cu;
9878
9879 while (1)
9880 {
9881 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9882 child_origin_cu);
9883 if (attr == NULL)
9884 break;
9885 child_origin_die = follow_die_ref (child_origin_die, attr,
9886 &child_origin_cu);
9887 }
9888
9889 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9890 counterpart may exist. */
9891 if (child_origin_die != child_die)
9892 {
9893 if (child_die->tag != child_origin_die->tag
9894 && !(child_die->tag == DW_TAG_inlined_subroutine
9895 && child_origin_die->tag == DW_TAG_subprogram))
9896 complaint (&symfile_complaints,
9897 _("Child DIE 0x%x and its abstract origin 0x%x have "
9898 "different tags"), child_die->offset.sect_off,
9899 child_origin_die->offset.sect_off);
9900 if (child_origin_die->parent != origin_die)
9901 complaint (&symfile_complaints,
9902 _("Child DIE 0x%x and its abstract origin 0x%x have "
9903 "different parents"), child_die->offset.sect_off,
9904 child_origin_die->offset.sect_off);
9905 else
9906 *offsets_end++ = child_origin_die->offset;
9907 }
9908 child_die = sibling_die (child_die);
9909 }
9910 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9911 unsigned_int_compar);
9912 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9913 if (offsetp[-1].sect_off == offsetp->sect_off)
9914 complaint (&symfile_complaints,
9915 _("Multiple children of DIE 0x%x refer "
9916 "to DIE 0x%x as their abstract origin"),
9917 die->offset.sect_off, offsetp->sect_off);
9918
9919 offsetp = offsets;
9920 origin_child_die = origin_die->child;
9921 while (origin_child_die && origin_child_die->tag)
9922 {
9923 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9924 while (offsetp < offsets_end
9925 && offsetp->sect_off < origin_child_die->offset.sect_off)
9926 offsetp++;
9927 if (offsetp >= offsets_end
9928 || offsetp->sect_off > origin_child_die->offset.sect_off)
9929 {
9930 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9931 process_die (origin_child_die, origin_cu);
9932 }
9933 origin_child_die = sibling_die (origin_child_die);
9934 }
9935 origin_cu->list_in_scope = origin_previous_list_in_scope;
9936
9937 do_cleanups (cleanups);
9938 }
9939
9940 static void
9941 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9942 {
9943 struct objfile *objfile = cu->objfile;
9944 struct context_stack *new;
9945 CORE_ADDR lowpc;
9946 CORE_ADDR highpc;
9947 struct die_info *child_die;
9948 struct attribute *attr, *call_line, *call_file;
9949 const char *name;
9950 CORE_ADDR baseaddr;
9951 struct block *block;
9952 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9953 VEC (symbolp) *template_args = NULL;
9954 struct template_symbol *templ_func = NULL;
9955
9956 if (inlined_func)
9957 {
9958 /* If we do not have call site information, we can't show the
9959 caller of this inlined function. That's too confusing, so
9960 only use the scope for local variables. */
9961 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9962 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9963 if (call_line == NULL || call_file == NULL)
9964 {
9965 read_lexical_block_scope (die, cu);
9966 return;
9967 }
9968 }
9969
9970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9971
9972 name = dwarf2_name (die, cu);
9973
9974 /* Ignore functions with missing or empty names. These are actually
9975 illegal according to the DWARF standard. */
9976 if (name == NULL)
9977 {
9978 complaint (&symfile_complaints,
9979 _("missing name for subprogram DIE at %d"),
9980 die->offset.sect_off);
9981 return;
9982 }
9983
9984 /* Ignore functions with missing or invalid low and high pc attributes. */
9985 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9986 {
9987 attr = dwarf2_attr (die, DW_AT_external, cu);
9988 if (!attr || !DW_UNSND (attr))
9989 complaint (&symfile_complaints,
9990 _("cannot get low and high bounds "
9991 "for subprogram DIE at %d"),
9992 die->offset.sect_off);
9993 return;
9994 }
9995
9996 lowpc += baseaddr;
9997 highpc += baseaddr;
9998
9999 /* If we have any template arguments, then we must allocate a
10000 different sort of symbol. */
10001 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10002 {
10003 if (child_die->tag == DW_TAG_template_type_param
10004 || child_die->tag == DW_TAG_template_value_param)
10005 {
10006 templ_func = allocate_template_symbol (objfile);
10007 templ_func->base.is_cplus_template_function = 1;
10008 break;
10009 }
10010 }
10011
10012 new = push_context (0, lowpc);
10013 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10014 (struct symbol *) templ_func);
10015
10016 /* If there is a location expression for DW_AT_frame_base, record
10017 it. */
10018 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10019 if (attr)
10020 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10021
10022 cu->list_in_scope = &local_symbols;
10023
10024 if (die->child != NULL)
10025 {
10026 child_die = die->child;
10027 while (child_die && child_die->tag)
10028 {
10029 if (child_die->tag == DW_TAG_template_type_param
10030 || child_die->tag == DW_TAG_template_value_param)
10031 {
10032 struct symbol *arg = new_symbol (child_die, NULL, cu);
10033
10034 if (arg != NULL)
10035 VEC_safe_push (symbolp, template_args, arg);
10036 }
10037 else
10038 process_die (child_die, cu);
10039 child_die = sibling_die (child_die);
10040 }
10041 }
10042
10043 inherit_abstract_dies (die, cu);
10044
10045 /* If we have a DW_AT_specification, we might need to import using
10046 directives from the context of the specification DIE. See the
10047 comment in determine_prefix. */
10048 if (cu->language == language_cplus
10049 && dwarf2_attr (die, DW_AT_specification, cu))
10050 {
10051 struct dwarf2_cu *spec_cu = cu;
10052 struct die_info *spec_die = die_specification (die, &spec_cu);
10053
10054 while (spec_die)
10055 {
10056 child_die = spec_die->child;
10057 while (child_die && child_die->tag)
10058 {
10059 if (child_die->tag == DW_TAG_imported_module)
10060 process_die (child_die, spec_cu);
10061 child_die = sibling_die (child_die);
10062 }
10063
10064 /* In some cases, GCC generates specification DIEs that
10065 themselves contain DW_AT_specification attributes. */
10066 spec_die = die_specification (spec_die, &spec_cu);
10067 }
10068 }
10069
10070 new = pop_context ();
10071 /* Make a block for the local symbols within. */
10072 block = finish_block (new->name, &local_symbols, new->old_blocks,
10073 lowpc, highpc, objfile);
10074
10075 /* For C++, set the block's scope. */
10076 if ((cu->language == language_cplus || cu->language == language_fortran)
10077 && cu->processing_has_namespace_info)
10078 block_set_scope (block, determine_prefix (die, cu),
10079 &objfile->objfile_obstack);
10080
10081 /* If we have address ranges, record them. */
10082 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10083
10084 /* Attach template arguments to function. */
10085 if (! VEC_empty (symbolp, template_args))
10086 {
10087 gdb_assert (templ_func != NULL);
10088
10089 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10090 templ_func->template_arguments
10091 = obstack_alloc (&objfile->objfile_obstack,
10092 (templ_func->n_template_arguments
10093 * sizeof (struct symbol *)));
10094 memcpy (templ_func->template_arguments,
10095 VEC_address (symbolp, template_args),
10096 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10097 VEC_free (symbolp, template_args);
10098 }
10099
10100 /* In C++, we can have functions nested inside functions (e.g., when
10101 a function declares a class that has methods). This means that
10102 when we finish processing a function scope, we may need to go
10103 back to building a containing block's symbol lists. */
10104 local_symbols = new->locals;
10105 using_directives = new->using_directives;
10106
10107 /* If we've finished processing a top-level function, subsequent
10108 symbols go in the file symbol list. */
10109 if (outermost_context_p ())
10110 cu->list_in_scope = &file_symbols;
10111 }
10112
10113 /* Process all the DIES contained within a lexical block scope. Start
10114 a new scope, process the dies, and then close the scope. */
10115
10116 static void
10117 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10118 {
10119 struct objfile *objfile = cu->objfile;
10120 struct context_stack *new;
10121 CORE_ADDR lowpc, highpc;
10122 struct die_info *child_die;
10123 CORE_ADDR baseaddr;
10124
10125 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10126
10127 /* Ignore blocks with missing or invalid low and high pc attributes. */
10128 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10129 as multiple lexical blocks? Handling children in a sane way would
10130 be nasty. Might be easier to properly extend generic blocks to
10131 describe ranges. */
10132 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10133 return;
10134 lowpc += baseaddr;
10135 highpc += baseaddr;
10136
10137 push_context (0, lowpc);
10138 if (die->child != NULL)
10139 {
10140 child_die = die->child;
10141 while (child_die && child_die->tag)
10142 {
10143 process_die (child_die, cu);
10144 child_die = sibling_die (child_die);
10145 }
10146 }
10147 new = pop_context ();
10148
10149 if (local_symbols != NULL || using_directives != NULL)
10150 {
10151 struct block *block
10152 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10153 highpc, objfile);
10154
10155 /* Note that recording ranges after traversing children, as we
10156 do here, means that recording a parent's ranges entails
10157 walking across all its children's ranges as they appear in
10158 the address map, which is quadratic behavior.
10159
10160 It would be nicer to record the parent's ranges before
10161 traversing its children, simply overriding whatever you find
10162 there. But since we don't even decide whether to create a
10163 block until after we've traversed its children, that's hard
10164 to do. */
10165 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10166 }
10167 local_symbols = new->locals;
10168 using_directives = new->using_directives;
10169 }
10170
10171 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10172
10173 static void
10174 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10175 {
10176 struct objfile *objfile = cu->objfile;
10177 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10178 CORE_ADDR pc, baseaddr;
10179 struct attribute *attr;
10180 struct call_site *call_site, call_site_local;
10181 void **slot;
10182 int nparams;
10183 struct die_info *child_die;
10184
10185 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10186
10187 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10188 if (!attr)
10189 {
10190 complaint (&symfile_complaints,
10191 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10192 "DIE 0x%x [in module %s]"),
10193 die->offset.sect_off, objfile->name);
10194 return;
10195 }
10196 pc = DW_ADDR (attr) + baseaddr;
10197
10198 if (cu->call_site_htab == NULL)
10199 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10200 NULL, &objfile->objfile_obstack,
10201 hashtab_obstack_allocate, NULL);
10202 call_site_local.pc = pc;
10203 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10204 if (*slot != NULL)
10205 {
10206 complaint (&symfile_complaints,
10207 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10208 "DIE 0x%x [in module %s]"),
10209 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10210 return;
10211 }
10212
10213 /* Count parameters at the caller. */
10214
10215 nparams = 0;
10216 for (child_die = die->child; child_die && child_die->tag;
10217 child_die = sibling_die (child_die))
10218 {
10219 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10220 {
10221 complaint (&symfile_complaints,
10222 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10223 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10224 child_die->tag, child_die->offset.sect_off, objfile->name);
10225 continue;
10226 }
10227
10228 nparams++;
10229 }
10230
10231 call_site = obstack_alloc (&objfile->objfile_obstack,
10232 (sizeof (*call_site)
10233 + (sizeof (*call_site->parameter)
10234 * (nparams - 1))));
10235 *slot = call_site;
10236 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10237 call_site->pc = pc;
10238
10239 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10240 {
10241 struct die_info *func_die;
10242
10243 /* Skip also over DW_TAG_inlined_subroutine. */
10244 for (func_die = die->parent;
10245 func_die && func_die->tag != DW_TAG_subprogram
10246 && func_die->tag != DW_TAG_subroutine_type;
10247 func_die = func_die->parent);
10248
10249 /* DW_AT_GNU_all_call_sites is a superset
10250 of DW_AT_GNU_all_tail_call_sites. */
10251 if (func_die
10252 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10253 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10254 {
10255 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10256 not complete. But keep CALL_SITE for look ups via call_site_htab,
10257 both the initial caller containing the real return address PC and
10258 the final callee containing the current PC of a chain of tail
10259 calls do not need to have the tail call list complete. But any
10260 function candidate for a virtual tail call frame searched via
10261 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10262 determined unambiguously. */
10263 }
10264 else
10265 {
10266 struct type *func_type = NULL;
10267
10268 if (func_die)
10269 func_type = get_die_type (func_die, cu);
10270 if (func_type != NULL)
10271 {
10272 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10273
10274 /* Enlist this call site to the function. */
10275 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10276 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10277 }
10278 else
10279 complaint (&symfile_complaints,
10280 _("Cannot find function owning DW_TAG_GNU_call_site "
10281 "DIE 0x%x [in module %s]"),
10282 die->offset.sect_off, objfile->name);
10283 }
10284 }
10285
10286 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10287 if (attr == NULL)
10288 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10289 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10290 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10291 /* Keep NULL DWARF_BLOCK. */;
10292 else if (attr_form_is_block (attr))
10293 {
10294 struct dwarf2_locexpr_baton *dlbaton;
10295
10296 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10297 dlbaton->data = DW_BLOCK (attr)->data;
10298 dlbaton->size = DW_BLOCK (attr)->size;
10299 dlbaton->per_cu = cu->per_cu;
10300
10301 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10302 }
10303 else if (is_ref_attr (attr))
10304 {
10305 struct dwarf2_cu *target_cu = cu;
10306 struct die_info *target_die;
10307
10308 target_die = follow_die_ref (die, attr, &target_cu);
10309 gdb_assert (target_cu->objfile == objfile);
10310 if (die_is_declaration (target_die, target_cu))
10311 {
10312 const char *target_physname = NULL;
10313 struct attribute *target_attr;
10314
10315 /* Prefer the mangled name; otherwise compute the demangled one. */
10316 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10317 if (target_attr == NULL)
10318 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10319 target_cu);
10320 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10321 target_physname = DW_STRING (target_attr);
10322 else
10323 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10324 if (target_physname == NULL)
10325 complaint (&symfile_complaints,
10326 _("DW_AT_GNU_call_site_target target DIE has invalid "
10327 "physname, for referencing DIE 0x%x [in module %s]"),
10328 die->offset.sect_off, objfile->name);
10329 else
10330 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10331 }
10332 else
10333 {
10334 CORE_ADDR lowpc;
10335
10336 /* DW_AT_entry_pc should be preferred. */
10337 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10338 complaint (&symfile_complaints,
10339 _("DW_AT_GNU_call_site_target target DIE has invalid "
10340 "low pc, for referencing DIE 0x%x [in module %s]"),
10341 die->offset.sect_off, objfile->name);
10342 else
10343 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10344 }
10345 }
10346 else
10347 complaint (&symfile_complaints,
10348 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10349 "block nor reference, for DIE 0x%x [in module %s]"),
10350 die->offset.sect_off, objfile->name);
10351
10352 call_site->per_cu = cu->per_cu;
10353
10354 for (child_die = die->child;
10355 child_die && child_die->tag;
10356 child_die = sibling_die (child_die))
10357 {
10358 struct call_site_parameter *parameter;
10359 struct attribute *loc, *origin;
10360
10361 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10362 {
10363 /* Already printed the complaint above. */
10364 continue;
10365 }
10366
10367 gdb_assert (call_site->parameter_count < nparams);
10368 parameter = &call_site->parameter[call_site->parameter_count];
10369
10370 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10371 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10372 register is contained in DW_AT_GNU_call_site_value. */
10373
10374 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10375 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10376 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10377 {
10378 sect_offset offset;
10379
10380 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10381 offset = dwarf2_get_ref_die_offset (origin);
10382 if (!offset_in_cu_p (&cu->header, offset))
10383 {
10384 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10385 binding can be done only inside one CU. Such referenced DIE
10386 therefore cannot be even moved to DW_TAG_partial_unit. */
10387 complaint (&symfile_complaints,
10388 _("DW_AT_abstract_origin offset is not in CU for "
10389 "DW_TAG_GNU_call_site child DIE 0x%x "
10390 "[in module %s]"),
10391 child_die->offset.sect_off, objfile->name);
10392 continue;
10393 }
10394 parameter->u.param_offset.cu_off = (offset.sect_off
10395 - cu->header.offset.sect_off);
10396 }
10397 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10398 {
10399 complaint (&symfile_complaints,
10400 _("No DW_FORM_block* DW_AT_location for "
10401 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10402 child_die->offset.sect_off, objfile->name);
10403 continue;
10404 }
10405 else
10406 {
10407 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10408 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10409 if (parameter->u.dwarf_reg != -1)
10410 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10411 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10412 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10413 &parameter->u.fb_offset))
10414 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10415 else
10416 {
10417 complaint (&symfile_complaints,
10418 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10419 "for DW_FORM_block* DW_AT_location is supported for "
10420 "DW_TAG_GNU_call_site child DIE 0x%x "
10421 "[in module %s]"),
10422 child_die->offset.sect_off, objfile->name);
10423 continue;
10424 }
10425 }
10426
10427 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10428 if (!attr_form_is_block (attr))
10429 {
10430 complaint (&symfile_complaints,
10431 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10432 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10433 child_die->offset.sect_off, objfile->name);
10434 continue;
10435 }
10436 parameter->value = DW_BLOCK (attr)->data;
10437 parameter->value_size = DW_BLOCK (attr)->size;
10438
10439 /* Parameters are not pre-cleared by memset above. */
10440 parameter->data_value = NULL;
10441 parameter->data_value_size = 0;
10442 call_site->parameter_count++;
10443
10444 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10445 if (attr)
10446 {
10447 if (!attr_form_is_block (attr))
10448 complaint (&symfile_complaints,
10449 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10450 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10451 child_die->offset.sect_off, objfile->name);
10452 else
10453 {
10454 parameter->data_value = DW_BLOCK (attr)->data;
10455 parameter->data_value_size = DW_BLOCK (attr)->size;
10456 }
10457 }
10458 }
10459 }
10460
10461 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10462 Return 1 if the attributes are present and valid, otherwise, return 0.
10463 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10464
10465 static int
10466 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10467 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10468 struct partial_symtab *ranges_pst)
10469 {
10470 struct objfile *objfile = cu->objfile;
10471 struct comp_unit_head *cu_header = &cu->header;
10472 bfd *obfd = objfile->obfd;
10473 unsigned int addr_size = cu_header->addr_size;
10474 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10475 /* Base address selection entry. */
10476 CORE_ADDR base;
10477 int found_base;
10478 unsigned int dummy;
10479 const gdb_byte *buffer;
10480 CORE_ADDR marker;
10481 int low_set;
10482 CORE_ADDR low = 0;
10483 CORE_ADDR high = 0;
10484 CORE_ADDR baseaddr;
10485
10486 found_base = cu->base_known;
10487 base = cu->base_address;
10488
10489 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10490 if (offset >= dwarf2_per_objfile->ranges.size)
10491 {
10492 complaint (&symfile_complaints,
10493 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10494 offset);
10495 return 0;
10496 }
10497 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10498
10499 /* Read in the largest possible address. */
10500 marker = read_address (obfd, buffer, cu, &dummy);
10501 if ((marker & mask) == mask)
10502 {
10503 /* If we found the largest possible address, then
10504 read the base address. */
10505 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10506 buffer += 2 * addr_size;
10507 offset += 2 * addr_size;
10508 found_base = 1;
10509 }
10510
10511 low_set = 0;
10512
10513 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10514
10515 while (1)
10516 {
10517 CORE_ADDR range_beginning, range_end;
10518
10519 range_beginning = read_address (obfd, buffer, cu, &dummy);
10520 buffer += addr_size;
10521 range_end = read_address (obfd, buffer, cu, &dummy);
10522 buffer += addr_size;
10523 offset += 2 * addr_size;
10524
10525 /* An end of list marker is a pair of zero addresses. */
10526 if (range_beginning == 0 && range_end == 0)
10527 /* Found the end of list entry. */
10528 break;
10529
10530 /* Each base address selection entry is a pair of 2 values.
10531 The first is the largest possible address, the second is
10532 the base address. Check for a base address here. */
10533 if ((range_beginning & mask) == mask)
10534 {
10535 /* If we found the largest possible address, then
10536 read the base address. */
10537 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10538 found_base = 1;
10539 continue;
10540 }
10541
10542 if (!found_base)
10543 {
10544 /* We have no valid base address for the ranges
10545 data. */
10546 complaint (&symfile_complaints,
10547 _("Invalid .debug_ranges data (no base address)"));
10548 return 0;
10549 }
10550
10551 if (range_beginning > range_end)
10552 {
10553 /* Inverted range entries are invalid. */
10554 complaint (&symfile_complaints,
10555 _("Invalid .debug_ranges data (inverted range)"));
10556 return 0;
10557 }
10558
10559 /* Empty range entries have no effect. */
10560 if (range_beginning == range_end)
10561 continue;
10562
10563 range_beginning += base;
10564 range_end += base;
10565
10566 /* A not-uncommon case of bad debug info.
10567 Don't pollute the addrmap with bad data. */
10568 if (range_beginning + baseaddr == 0
10569 && !dwarf2_per_objfile->has_section_at_zero)
10570 {
10571 complaint (&symfile_complaints,
10572 _(".debug_ranges entry has start address of zero"
10573 " [in module %s]"), objfile->name);
10574 continue;
10575 }
10576
10577 if (ranges_pst != NULL)
10578 addrmap_set_empty (objfile->psymtabs_addrmap,
10579 range_beginning + baseaddr,
10580 range_end - 1 + baseaddr,
10581 ranges_pst);
10582
10583 /* FIXME: This is recording everything as a low-high
10584 segment of consecutive addresses. We should have a
10585 data structure for discontiguous block ranges
10586 instead. */
10587 if (! low_set)
10588 {
10589 low = range_beginning;
10590 high = range_end;
10591 low_set = 1;
10592 }
10593 else
10594 {
10595 if (range_beginning < low)
10596 low = range_beginning;
10597 if (range_end > high)
10598 high = range_end;
10599 }
10600 }
10601
10602 if (! low_set)
10603 /* If the first entry is an end-of-list marker, the range
10604 describes an empty scope, i.e. no instructions. */
10605 return 0;
10606
10607 if (low_return)
10608 *low_return = low;
10609 if (high_return)
10610 *high_return = high;
10611 return 1;
10612 }
10613
10614 /* Get low and high pc attributes from a die. Return 1 if the attributes
10615 are present and valid, otherwise, return 0. Return -1 if the range is
10616 discontinuous, i.e. derived from DW_AT_ranges information. */
10617
10618 static int
10619 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10620 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10621 struct partial_symtab *pst)
10622 {
10623 struct attribute *attr;
10624 struct attribute *attr_high;
10625 CORE_ADDR low = 0;
10626 CORE_ADDR high = 0;
10627 int ret = 0;
10628
10629 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10630 if (attr_high)
10631 {
10632 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10633 if (attr)
10634 {
10635 low = DW_ADDR (attr);
10636 if (attr_high->form == DW_FORM_addr
10637 || attr_high->form == DW_FORM_GNU_addr_index)
10638 high = DW_ADDR (attr_high);
10639 else
10640 high = low + DW_UNSND (attr_high);
10641 }
10642 else
10643 /* Found high w/o low attribute. */
10644 return 0;
10645
10646 /* Found consecutive range of addresses. */
10647 ret = 1;
10648 }
10649 else
10650 {
10651 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10652 if (attr != NULL)
10653 {
10654 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10655 We take advantage of the fact that DW_AT_ranges does not appear
10656 in DW_TAG_compile_unit of DWO files. */
10657 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10658 unsigned int ranges_offset = (DW_UNSND (attr)
10659 + (need_ranges_base
10660 ? cu->ranges_base
10661 : 0));
10662
10663 /* Value of the DW_AT_ranges attribute is the offset in the
10664 .debug_ranges section. */
10665 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10666 return 0;
10667 /* Found discontinuous range of addresses. */
10668 ret = -1;
10669 }
10670 }
10671
10672 /* read_partial_die has also the strict LOW < HIGH requirement. */
10673 if (high <= low)
10674 return 0;
10675
10676 /* When using the GNU linker, .gnu.linkonce. sections are used to
10677 eliminate duplicate copies of functions and vtables and such.
10678 The linker will arbitrarily choose one and discard the others.
10679 The AT_*_pc values for such functions refer to local labels in
10680 these sections. If the section from that file was discarded, the
10681 labels are not in the output, so the relocs get a value of 0.
10682 If this is a discarded function, mark the pc bounds as invalid,
10683 so that GDB will ignore it. */
10684 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10685 return 0;
10686
10687 *lowpc = low;
10688 if (highpc)
10689 *highpc = high;
10690 return ret;
10691 }
10692
10693 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10694 its low and high PC addresses. Do nothing if these addresses could not
10695 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10696 and HIGHPC to the high address if greater than HIGHPC. */
10697
10698 static void
10699 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10700 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10701 struct dwarf2_cu *cu)
10702 {
10703 CORE_ADDR low, high;
10704 struct die_info *child = die->child;
10705
10706 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10707 {
10708 *lowpc = min (*lowpc, low);
10709 *highpc = max (*highpc, high);
10710 }
10711
10712 /* If the language does not allow nested subprograms (either inside
10713 subprograms or lexical blocks), we're done. */
10714 if (cu->language != language_ada)
10715 return;
10716
10717 /* Check all the children of the given DIE. If it contains nested
10718 subprograms, then check their pc bounds. Likewise, we need to
10719 check lexical blocks as well, as they may also contain subprogram
10720 definitions. */
10721 while (child && child->tag)
10722 {
10723 if (child->tag == DW_TAG_subprogram
10724 || child->tag == DW_TAG_lexical_block)
10725 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10726 child = sibling_die (child);
10727 }
10728 }
10729
10730 /* Get the low and high pc's represented by the scope DIE, and store
10731 them in *LOWPC and *HIGHPC. If the correct values can't be
10732 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10733
10734 static void
10735 get_scope_pc_bounds (struct die_info *die,
10736 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10737 struct dwarf2_cu *cu)
10738 {
10739 CORE_ADDR best_low = (CORE_ADDR) -1;
10740 CORE_ADDR best_high = (CORE_ADDR) 0;
10741 CORE_ADDR current_low, current_high;
10742
10743 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10744 {
10745 best_low = current_low;
10746 best_high = current_high;
10747 }
10748 else
10749 {
10750 struct die_info *child = die->child;
10751
10752 while (child && child->tag)
10753 {
10754 switch (child->tag) {
10755 case DW_TAG_subprogram:
10756 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10757 break;
10758 case DW_TAG_namespace:
10759 case DW_TAG_module:
10760 /* FIXME: carlton/2004-01-16: Should we do this for
10761 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10762 that current GCC's always emit the DIEs corresponding
10763 to definitions of methods of classes as children of a
10764 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10765 the DIEs giving the declarations, which could be
10766 anywhere). But I don't see any reason why the
10767 standards says that they have to be there. */
10768 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10769
10770 if (current_low != ((CORE_ADDR) -1))
10771 {
10772 best_low = min (best_low, current_low);
10773 best_high = max (best_high, current_high);
10774 }
10775 break;
10776 default:
10777 /* Ignore. */
10778 break;
10779 }
10780
10781 child = sibling_die (child);
10782 }
10783 }
10784
10785 *lowpc = best_low;
10786 *highpc = best_high;
10787 }
10788
10789 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10790 in DIE. */
10791
10792 static void
10793 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10794 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10795 {
10796 struct objfile *objfile = cu->objfile;
10797 struct attribute *attr;
10798 struct attribute *attr_high;
10799
10800 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10801 if (attr_high)
10802 {
10803 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10804 if (attr)
10805 {
10806 CORE_ADDR low = DW_ADDR (attr);
10807 CORE_ADDR high;
10808 if (attr_high->form == DW_FORM_addr
10809 || attr_high->form == DW_FORM_GNU_addr_index)
10810 high = DW_ADDR (attr_high);
10811 else
10812 high = low + DW_UNSND (attr_high);
10813
10814 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10815 }
10816 }
10817
10818 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10819 if (attr)
10820 {
10821 bfd *obfd = objfile->obfd;
10822 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10823 We take advantage of the fact that DW_AT_ranges does not appear
10824 in DW_TAG_compile_unit of DWO files. */
10825 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10826
10827 /* The value of the DW_AT_ranges attribute is the offset of the
10828 address range list in the .debug_ranges section. */
10829 unsigned long offset = (DW_UNSND (attr)
10830 + (need_ranges_base ? cu->ranges_base : 0));
10831 const gdb_byte *buffer;
10832
10833 /* For some target architectures, but not others, the
10834 read_address function sign-extends the addresses it returns.
10835 To recognize base address selection entries, we need a
10836 mask. */
10837 unsigned int addr_size = cu->header.addr_size;
10838 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10839
10840 /* The base address, to which the next pair is relative. Note
10841 that this 'base' is a DWARF concept: most entries in a range
10842 list are relative, to reduce the number of relocs against the
10843 debugging information. This is separate from this function's
10844 'baseaddr' argument, which GDB uses to relocate debugging
10845 information from a shared library based on the address at
10846 which the library was loaded. */
10847 CORE_ADDR base = cu->base_address;
10848 int base_known = cu->base_known;
10849
10850 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10851 if (offset >= dwarf2_per_objfile->ranges.size)
10852 {
10853 complaint (&symfile_complaints,
10854 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10855 offset);
10856 return;
10857 }
10858 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10859
10860 for (;;)
10861 {
10862 unsigned int bytes_read;
10863 CORE_ADDR start, end;
10864
10865 start = read_address (obfd, buffer, cu, &bytes_read);
10866 buffer += bytes_read;
10867 end = read_address (obfd, buffer, cu, &bytes_read);
10868 buffer += bytes_read;
10869
10870 /* Did we find the end of the range list? */
10871 if (start == 0 && end == 0)
10872 break;
10873
10874 /* Did we find a base address selection entry? */
10875 else if ((start & base_select_mask) == base_select_mask)
10876 {
10877 base = end;
10878 base_known = 1;
10879 }
10880
10881 /* We found an ordinary address range. */
10882 else
10883 {
10884 if (!base_known)
10885 {
10886 complaint (&symfile_complaints,
10887 _("Invalid .debug_ranges data "
10888 "(no base address)"));
10889 return;
10890 }
10891
10892 if (start > end)
10893 {
10894 /* Inverted range entries are invalid. */
10895 complaint (&symfile_complaints,
10896 _("Invalid .debug_ranges data "
10897 "(inverted range)"));
10898 return;
10899 }
10900
10901 /* Empty range entries have no effect. */
10902 if (start == end)
10903 continue;
10904
10905 start += base + baseaddr;
10906 end += base + baseaddr;
10907
10908 /* A not-uncommon case of bad debug info.
10909 Don't pollute the addrmap with bad data. */
10910 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10911 {
10912 complaint (&symfile_complaints,
10913 _(".debug_ranges entry has start address of zero"
10914 " [in module %s]"), objfile->name);
10915 continue;
10916 }
10917
10918 record_block_range (block, start, end - 1);
10919 }
10920 }
10921 }
10922 }
10923
10924 /* Check whether the producer field indicates either of GCC < 4.6, or the
10925 Intel C/C++ compiler, and cache the result in CU. */
10926
10927 static void
10928 check_producer (struct dwarf2_cu *cu)
10929 {
10930 const char *cs;
10931 int major, minor, release;
10932
10933 if (cu->producer == NULL)
10934 {
10935 /* For unknown compilers expect their behavior is DWARF version
10936 compliant.
10937
10938 GCC started to support .debug_types sections by -gdwarf-4 since
10939 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10940 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10941 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10942 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10943 }
10944 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10945 {
10946 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10947
10948 cs = &cu->producer[strlen ("GNU ")];
10949 while (*cs && !isdigit (*cs))
10950 cs++;
10951 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10952 {
10953 /* Not recognized as GCC. */
10954 }
10955 else
10956 {
10957 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10958 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10959 }
10960 }
10961 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10962 cu->producer_is_icc = 1;
10963 else
10964 {
10965 /* For other non-GCC compilers, expect their behavior is DWARF version
10966 compliant. */
10967 }
10968
10969 cu->checked_producer = 1;
10970 }
10971
10972 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10973 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10974 during 4.6.0 experimental. */
10975
10976 static int
10977 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10978 {
10979 if (!cu->checked_producer)
10980 check_producer (cu);
10981
10982 return cu->producer_is_gxx_lt_4_6;
10983 }
10984
10985 /* Return the default accessibility type if it is not overriden by
10986 DW_AT_accessibility. */
10987
10988 static enum dwarf_access_attribute
10989 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10990 {
10991 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10992 {
10993 /* The default DWARF 2 accessibility for members is public, the default
10994 accessibility for inheritance is private. */
10995
10996 if (die->tag != DW_TAG_inheritance)
10997 return DW_ACCESS_public;
10998 else
10999 return DW_ACCESS_private;
11000 }
11001 else
11002 {
11003 /* DWARF 3+ defines the default accessibility a different way. The same
11004 rules apply now for DW_TAG_inheritance as for the members and it only
11005 depends on the container kind. */
11006
11007 if (die->parent->tag == DW_TAG_class_type)
11008 return DW_ACCESS_private;
11009 else
11010 return DW_ACCESS_public;
11011 }
11012 }
11013
11014 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11015 offset. If the attribute was not found return 0, otherwise return
11016 1. If it was found but could not properly be handled, set *OFFSET
11017 to 0. */
11018
11019 static int
11020 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11021 LONGEST *offset)
11022 {
11023 struct attribute *attr;
11024
11025 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11026 if (attr != NULL)
11027 {
11028 *offset = 0;
11029
11030 /* Note that we do not check for a section offset first here.
11031 This is because DW_AT_data_member_location is new in DWARF 4,
11032 so if we see it, we can assume that a constant form is really
11033 a constant and not a section offset. */
11034 if (attr_form_is_constant (attr))
11035 *offset = dwarf2_get_attr_constant_value (attr, 0);
11036 else if (attr_form_is_section_offset (attr))
11037 dwarf2_complex_location_expr_complaint ();
11038 else if (attr_form_is_block (attr))
11039 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11040 else
11041 dwarf2_complex_location_expr_complaint ();
11042
11043 return 1;
11044 }
11045
11046 return 0;
11047 }
11048
11049 /* Add an aggregate field to the field list. */
11050
11051 static void
11052 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11053 struct dwarf2_cu *cu)
11054 {
11055 struct objfile *objfile = cu->objfile;
11056 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11057 struct nextfield *new_field;
11058 struct attribute *attr;
11059 struct field *fp;
11060 const char *fieldname = "";
11061
11062 /* Allocate a new field list entry and link it in. */
11063 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11064 make_cleanup (xfree, new_field);
11065 memset (new_field, 0, sizeof (struct nextfield));
11066
11067 if (die->tag == DW_TAG_inheritance)
11068 {
11069 new_field->next = fip->baseclasses;
11070 fip->baseclasses = new_field;
11071 }
11072 else
11073 {
11074 new_field->next = fip->fields;
11075 fip->fields = new_field;
11076 }
11077 fip->nfields++;
11078
11079 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11080 if (attr)
11081 new_field->accessibility = DW_UNSND (attr);
11082 else
11083 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11084 if (new_field->accessibility != DW_ACCESS_public)
11085 fip->non_public_fields = 1;
11086
11087 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11088 if (attr)
11089 new_field->virtuality = DW_UNSND (attr);
11090 else
11091 new_field->virtuality = DW_VIRTUALITY_none;
11092
11093 fp = &new_field->field;
11094
11095 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11096 {
11097 LONGEST offset;
11098
11099 /* Data member other than a C++ static data member. */
11100
11101 /* Get type of field. */
11102 fp->type = die_type (die, cu);
11103
11104 SET_FIELD_BITPOS (*fp, 0);
11105
11106 /* Get bit size of field (zero if none). */
11107 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11108 if (attr)
11109 {
11110 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11111 }
11112 else
11113 {
11114 FIELD_BITSIZE (*fp) = 0;
11115 }
11116
11117 /* Get bit offset of field. */
11118 if (handle_data_member_location (die, cu, &offset))
11119 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11120 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11121 if (attr)
11122 {
11123 if (gdbarch_bits_big_endian (gdbarch))
11124 {
11125 /* For big endian bits, the DW_AT_bit_offset gives the
11126 additional bit offset from the MSB of the containing
11127 anonymous object to the MSB of the field. We don't
11128 have to do anything special since we don't need to
11129 know the size of the anonymous object. */
11130 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11131 }
11132 else
11133 {
11134 /* For little endian bits, compute the bit offset to the
11135 MSB of the anonymous object, subtract off the number of
11136 bits from the MSB of the field to the MSB of the
11137 object, and then subtract off the number of bits of
11138 the field itself. The result is the bit offset of
11139 the LSB of the field. */
11140 int anonymous_size;
11141 int bit_offset = DW_UNSND (attr);
11142
11143 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11144 if (attr)
11145 {
11146 /* The size of the anonymous object containing
11147 the bit field is explicit, so use the
11148 indicated size (in bytes). */
11149 anonymous_size = DW_UNSND (attr);
11150 }
11151 else
11152 {
11153 /* The size of the anonymous object containing
11154 the bit field must be inferred from the type
11155 attribute of the data member containing the
11156 bit field. */
11157 anonymous_size = TYPE_LENGTH (fp->type);
11158 }
11159 SET_FIELD_BITPOS (*fp,
11160 (FIELD_BITPOS (*fp)
11161 + anonymous_size * bits_per_byte
11162 - bit_offset - FIELD_BITSIZE (*fp)));
11163 }
11164 }
11165
11166 /* Get name of field. */
11167 fieldname = dwarf2_name (die, cu);
11168 if (fieldname == NULL)
11169 fieldname = "";
11170
11171 /* The name is already allocated along with this objfile, so we don't
11172 need to duplicate it for the type. */
11173 fp->name = fieldname;
11174
11175 /* Change accessibility for artificial fields (e.g. virtual table
11176 pointer or virtual base class pointer) to private. */
11177 if (dwarf2_attr (die, DW_AT_artificial, cu))
11178 {
11179 FIELD_ARTIFICIAL (*fp) = 1;
11180 new_field->accessibility = DW_ACCESS_private;
11181 fip->non_public_fields = 1;
11182 }
11183 }
11184 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11185 {
11186 /* C++ static member. */
11187
11188 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11189 is a declaration, but all versions of G++ as of this writing
11190 (so through at least 3.2.1) incorrectly generate
11191 DW_TAG_variable tags. */
11192
11193 const char *physname;
11194
11195 /* Get name of field. */
11196 fieldname = dwarf2_name (die, cu);
11197 if (fieldname == NULL)
11198 return;
11199
11200 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11201 if (attr
11202 /* Only create a symbol if this is an external value.
11203 new_symbol checks this and puts the value in the global symbol
11204 table, which we want. If it is not external, new_symbol
11205 will try to put the value in cu->list_in_scope which is wrong. */
11206 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11207 {
11208 /* A static const member, not much different than an enum as far as
11209 we're concerned, except that we can support more types. */
11210 new_symbol (die, NULL, cu);
11211 }
11212
11213 /* Get physical name. */
11214 physname = dwarf2_physname (fieldname, die, cu);
11215
11216 /* The name is already allocated along with this objfile, so we don't
11217 need to duplicate it for the type. */
11218 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11219 FIELD_TYPE (*fp) = die_type (die, cu);
11220 FIELD_NAME (*fp) = fieldname;
11221 }
11222 else if (die->tag == DW_TAG_inheritance)
11223 {
11224 LONGEST offset;
11225
11226 /* C++ base class field. */
11227 if (handle_data_member_location (die, cu, &offset))
11228 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11229 FIELD_BITSIZE (*fp) = 0;
11230 FIELD_TYPE (*fp) = die_type (die, cu);
11231 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11232 fip->nbaseclasses++;
11233 }
11234 }
11235
11236 /* Add a typedef defined in the scope of the FIP's class. */
11237
11238 static void
11239 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11240 struct dwarf2_cu *cu)
11241 {
11242 struct objfile *objfile = cu->objfile;
11243 struct typedef_field_list *new_field;
11244 struct attribute *attr;
11245 struct typedef_field *fp;
11246 char *fieldname = "";
11247
11248 /* Allocate a new field list entry and link it in. */
11249 new_field = xzalloc (sizeof (*new_field));
11250 make_cleanup (xfree, new_field);
11251
11252 gdb_assert (die->tag == DW_TAG_typedef);
11253
11254 fp = &new_field->field;
11255
11256 /* Get name of field. */
11257 fp->name = dwarf2_name (die, cu);
11258 if (fp->name == NULL)
11259 return;
11260
11261 fp->type = read_type_die (die, cu);
11262
11263 new_field->next = fip->typedef_field_list;
11264 fip->typedef_field_list = new_field;
11265 fip->typedef_field_list_count++;
11266 }
11267
11268 /* Create the vector of fields, and attach it to the type. */
11269
11270 static void
11271 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11272 struct dwarf2_cu *cu)
11273 {
11274 int nfields = fip->nfields;
11275
11276 /* Record the field count, allocate space for the array of fields,
11277 and create blank accessibility bitfields if necessary. */
11278 TYPE_NFIELDS (type) = nfields;
11279 TYPE_FIELDS (type) = (struct field *)
11280 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11281 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11282
11283 if (fip->non_public_fields && cu->language != language_ada)
11284 {
11285 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11286
11287 TYPE_FIELD_PRIVATE_BITS (type) =
11288 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11289 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11290
11291 TYPE_FIELD_PROTECTED_BITS (type) =
11292 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11293 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11294
11295 TYPE_FIELD_IGNORE_BITS (type) =
11296 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11297 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11298 }
11299
11300 /* If the type has baseclasses, allocate and clear a bit vector for
11301 TYPE_FIELD_VIRTUAL_BITS. */
11302 if (fip->nbaseclasses && cu->language != language_ada)
11303 {
11304 int num_bytes = B_BYTES (fip->nbaseclasses);
11305 unsigned char *pointer;
11306
11307 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11308 pointer = TYPE_ALLOC (type, num_bytes);
11309 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11310 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11311 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11312 }
11313
11314 /* Copy the saved-up fields into the field vector. Start from the head of
11315 the list, adding to the tail of the field array, so that they end up in
11316 the same order in the array in which they were added to the list. */
11317 while (nfields-- > 0)
11318 {
11319 struct nextfield *fieldp;
11320
11321 if (fip->fields)
11322 {
11323 fieldp = fip->fields;
11324 fip->fields = fieldp->next;
11325 }
11326 else
11327 {
11328 fieldp = fip->baseclasses;
11329 fip->baseclasses = fieldp->next;
11330 }
11331
11332 TYPE_FIELD (type, nfields) = fieldp->field;
11333 switch (fieldp->accessibility)
11334 {
11335 case DW_ACCESS_private:
11336 if (cu->language != language_ada)
11337 SET_TYPE_FIELD_PRIVATE (type, nfields);
11338 break;
11339
11340 case DW_ACCESS_protected:
11341 if (cu->language != language_ada)
11342 SET_TYPE_FIELD_PROTECTED (type, nfields);
11343 break;
11344
11345 case DW_ACCESS_public:
11346 break;
11347
11348 default:
11349 /* Unknown accessibility. Complain and treat it as public. */
11350 {
11351 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11352 fieldp->accessibility);
11353 }
11354 break;
11355 }
11356 if (nfields < fip->nbaseclasses)
11357 {
11358 switch (fieldp->virtuality)
11359 {
11360 case DW_VIRTUALITY_virtual:
11361 case DW_VIRTUALITY_pure_virtual:
11362 if (cu->language == language_ada)
11363 error (_("unexpected virtuality in component of Ada type"));
11364 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11365 break;
11366 }
11367 }
11368 }
11369 }
11370
11371 /* Return true if this member function is a constructor, false
11372 otherwise. */
11373
11374 static int
11375 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11376 {
11377 const char *fieldname;
11378 const char *typename;
11379 int len;
11380
11381 if (die->parent == NULL)
11382 return 0;
11383
11384 if (die->parent->tag != DW_TAG_structure_type
11385 && die->parent->tag != DW_TAG_union_type
11386 && die->parent->tag != DW_TAG_class_type)
11387 return 0;
11388
11389 fieldname = dwarf2_name (die, cu);
11390 typename = dwarf2_name (die->parent, cu);
11391 if (fieldname == NULL || typename == NULL)
11392 return 0;
11393
11394 len = strlen (fieldname);
11395 return (strncmp (fieldname, typename, len) == 0
11396 && (typename[len] == '\0' || typename[len] == '<'));
11397 }
11398
11399 /* Add a member function to the proper fieldlist. */
11400
11401 static void
11402 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11403 struct type *type, struct dwarf2_cu *cu)
11404 {
11405 struct objfile *objfile = cu->objfile;
11406 struct attribute *attr;
11407 struct fnfieldlist *flp;
11408 int i;
11409 struct fn_field *fnp;
11410 const char *fieldname;
11411 struct nextfnfield *new_fnfield;
11412 struct type *this_type;
11413 enum dwarf_access_attribute accessibility;
11414
11415 if (cu->language == language_ada)
11416 error (_("unexpected member function in Ada type"));
11417
11418 /* Get name of member function. */
11419 fieldname = dwarf2_name (die, cu);
11420 if (fieldname == NULL)
11421 return;
11422
11423 /* Look up member function name in fieldlist. */
11424 for (i = 0; i < fip->nfnfields; i++)
11425 {
11426 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11427 break;
11428 }
11429
11430 /* Create new list element if necessary. */
11431 if (i < fip->nfnfields)
11432 flp = &fip->fnfieldlists[i];
11433 else
11434 {
11435 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11436 {
11437 fip->fnfieldlists = (struct fnfieldlist *)
11438 xrealloc (fip->fnfieldlists,
11439 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11440 * sizeof (struct fnfieldlist));
11441 if (fip->nfnfields == 0)
11442 make_cleanup (free_current_contents, &fip->fnfieldlists);
11443 }
11444 flp = &fip->fnfieldlists[fip->nfnfields];
11445 flp->name = fieldname;
11446 flp->length = 0;
11447 flp->head = NULL;
11448 i = fip->nfnfields++;
11449 }
11450
11451 /* Create a new member function field and chain it to the field list
11452 entry. */
11453 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11454 make_cleanup (xfree, new_fnfield);
11455 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11456 new_fnfield->next = flp->head;
11457 flp->head = new_fnfield;
11458 flp->length++;
11459
11460 /* Fill in the member function field info. */
11461 fnp = &new_fnfield->fnfield;
11462
11463 /* Delay processing of the physname until later. */
11464 if (cu->language == language_cplus || cu->language == language_java)
11465 {
11466 add_to_method_list (type, i, flp->length - 1, fieldname,
11467 die, cu);
11468 }
11469 else
11470 {
11471 const char *physname = dwarf2_physname (fieldname, die, cu);
11472 fnp->physname = physname ? physname : "";
11473 }
11474
11475 fnp->type = alloc_type (objfile);
11476 this_type = read_type_die (die, cu);
11477 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11478 {
11479 int nparams = TYPE_NFIELDS (this_type);
11480
11481 /* TYPE is the domain of this method, and THIS_TYPE is the type
11482 of the method itself (TYPE_CODE_METHOD). */
11483 smash_to_method_type (fnp->type, type,
11484 TYPE_TARGET_TYPE (this_type),
11485 TYPE_FIELDS (this_type),
11486 TYPE_NFIELDS (this_type),
11487 TYPE_VARARGS (this_type));
11488
11489 /* Handle static member functions.
11490 Dwarf2 has no clean way to discern C++ static and non-static
11491 member functions. G++ helps GDB by marking the first
11492 parameter for non-static member functions (which is the this
11493 pointer) as artificial. We obtain this information from
11494 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11495 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11496 fnp->voffset = VOFFSET_STATIC;
11497 }
11498 else
11499 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11500 dwarf2_full_name (fieldname, die, cu));
11501
11502 /* Get fcontext from DW_AT_containing_type if present. */
11503 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11504 fnp->fcontext = die_containing_type (die, cu);
11505
11506 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11507 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11508
11509 /* Get accessibility. */
11510 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11511 if (attr)
11512 accessibility = DW_UNSND (attr);
11513 else
11514 accessibility = dwarf2_default_access_attribute (die, cu);
11515 switch (accessibility)
11516 {
11517 case DW_ACCESS_private:
11518 fnp->is_private = 1;
11519 break;
11520 case DW_ACCESS_protected:
11521 fnp->is_protected = 1;
11522 break;
11523 }
11524
11525 /* Check for artificial methods. */
11526 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11527 if (attr && DW_UNSND (attr) != 0)
11528 fnp->is_artificial = 1;
11529
11530 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11531
11532 /* Get index in virtual function table if it is a virtual member
11533 function. For older versions of GCC, this is an offset in the
11534 appropriate virtual table, as specified by DW_AT_containing_type.
11535 For everyone else, it is an expression to be evaluated relative
11536 to the object address. */
11537
11538 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11539 if (attr)
11540 {
11541 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11542 {
11543 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11544 {
11545 /* Old-style GCC. */
11546 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11547 }
11548 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11549 || (DW_BLOCK (attr)->size > 1
11550 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11551 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11552 {
11553 struct dwarf_block blk;
11554 int offset;
11555
11556 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11557 ? 1 : 2);
11558 blk.size = DW_BLOCK (attr)->size - offset;
11559 blk.data = DW_BLOCK (attr)->data + offset;
11560 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11561 if ((fnp->voffset % cu->header.addr_size) != 0)
11562 dwarf2_complex_location_expr_complaint ();
11563 else
11564 fnp->voffset /= cu->header.addr_size;
11565 fnp->voffset += 2;
11566 }
11567 else
11568 dwarf2_complex_location_expr_complaint ();
11569
11570 if (!fnp->fcontext)
11571 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11572 }
11573 else if (attr_form_is_section_offset (attr))
11574 {
11575 dwarf2_complex_location_expr_complaint ();
11576 }
11577 else
11578 {
11579 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11580 fieldname);
11581 }
11582 }
11583 else
11584 {
11585 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11586 if (attr && DW_UNSND (attr))
11587 {
11588 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11589 complaint (&symfile_complaints,
11590 _("Member function \"%s\" (offset %d) is virtual "
11591 "but the vtable offset is not specified"),
11592 fieldname, die->offset.sect_off);
11593 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11594 TYPE_CPLUS_DYNAMIC (type) = 1;
11595 }
11596 }
11597 }
11598
11599 /* Create the vector of member function fields, and attach it to the type. */
11600
11601 static void
11602 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11603 struct dwarf2_cu *cu)
11604 {
11605 struct fnfieldlist *flp;
11606 int i;
11607
11608 if (cu->language == language_ada)
11609 error (_("unexpected member functions in Ada type"));
11610
11611 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11612 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11613 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11614
11615 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11616 {
11617 struct nextfnfield *nfp = flp->head;
11618 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11619 int k;
11620
11621 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11622 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11623 fn_flp->fn_fields = (struct fn_field *)
11624 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11625 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11626 fn_flp->fn_fields[k] = nfp->fnfield;
11627 }
11628
11629 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11630 }
11631
11632 /* Returns non-zero if NAME is the name of a vtable member in CU's
11633 language, zero otherwise. */
11634 static int
11635 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11636 {
11637 static const char vptr[] = "_vptr";
11638 static const char vtable[] = "vtable";
11639
11640 /* Look for the C++ and Java forms of the vtable. */
11641 if ((cu->language == language_java
11642 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11643 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11644 && is_cplus_marker (name[sizeof (vptr) - 1])))
11645 return 1;
11646
11647 return 0;
11648 }
11649
11650 /* GCC outputs unnamed structures that are really pointers to member
11651 functions, with the ABI-specified layout. If TYPE describes
11652 such a structure, smash it into a member function type.
11653
11654 GCC shouldn't do this; it should just output pointer to member DIEs.
11655 This is GCC PR debug/28767. */
11656
11657 static void
11658 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11659 {
11660 struct type *pfn_type, *domain_type, *new_type;
11661
11662 /* Check for a structure with no name and two children. */
11663 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11664 return;
11665
11666 /* Check for __pfn and __delta members. */
11667 if (TYPE_FIELD_NAME (type, 0) == NULL
11668 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11669 || TYPE_FIELD_NAME (type, 1) == NULL
11670 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11671 return;
11672
11673 /* Find the type of the method. */
11674 pfn_type = TYPE_FIELD_TYPE (type, 0);
11675 if (pfn_type == NULL
11676 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11677 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11678 return;
11679
11680 /* Look for the "this" argument. */
11681 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11682 if (TYPE_NFIELDS (pfn_type) == 0
11683 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11684 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11685 return;
11686
11687 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11688 new_type = alloc_type (objfile);
11689 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11690 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11691 TYPE_VARARGS (pfn_type));
11692 smash_to_methodptr_type (type, new_type);
11693 }
11694
11695 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11696 (icc). */
11697
11698 static int
11699 producer_is_icc (struct dwarf2_cu *cu)
11700 {
11701 if (!cu->checked_producer)
11702 check_producer (cu);
11703
11704 return cu->producer_is_icc;
11705 }
11706
11707 /* Called when we find the DIE that starts a structure or union scope
11708 (definition) to create a type for the structure or union. Fill in
11709 the type's name and general properties; the members will not be
11710 processed until process_structure_scope.
11711
11712 NOTE: we need to call these functions regardless of whether or not the
11713 DIE has a DW_AT_name attribute, since it might be an anonymous
11714 structure or union. This gets the type entered into our set of
11715 user defined types.
11716
11717 However, if the structure is incomplete (an opaque struct/union)
11718 then suppress creating a symbol table entry for it since gdb only
11719 wants to find the one with the complete definition. Note that if
11720 it is complete, we just call new_symbol, which does it's own
11721 checking about whether the struct/union is anonymous or not (and
11722 suppresses creating a symbol table entry itself). */
11723
11724 static struct type *
11725 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11726 {
11727 struct objfile *objfile = cu->objfile;
11728 struct type *type;
11729 struct attribute *attr;
11730 const char *name;
11731
11732 /* If the definition of this type lives in .debug_types, read that type.
11733 Don't follow DW_AT_specification though, that will take us back up
11734 the chain and we want to go down. */
11735 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11736 if (attr)
11737 {
11738 type = get_DW_AT_signature_type (die, attr, cu);
11739
11740 /* The type's CU may not be the same as CU.
11741 Ensure TYPE is recorded with CU in die_type_hash. */
11742 return set_die_type (die, type, cu);
11743 }
11744
11745 type = alloc_type (objfile);
11746 INIT_CPLUS_SPECIFIC (type);
11747
11748 name = dwarf2_name (die, cu);
11749 if (name != NULL)
11750 {
11751 if (cu->language == language_cplus
11752 || cu->language == language_java)
11753 {
11754 const char *full_name = dwarf2_full_name (name, die, cu);
11755
11756 /* dwarf2_full_name might have already finished building the DIE's
11757 type. If so, there is no need to continue. */
11758 if (get_die_type (die, cu) != NULL)
11759 return get_die_type (die, cu);
11760
11761 TYPE_TAG_NAME (type) = full_name;
11762 if (die->tag == DW_TAG_structure_type
11763 || die->tag == DW_TAG_class_type)
11764 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11765 }
11766 else
11767 {
11768 /* The name is already allocated along with this objfile, so
11769 we don't need to duplicate it for the type. */
11770 TYPE_TAG_NAME (type) = name;
11771 if (die->tag == DW_TAG_class_type)
11772 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11773 }
11774 }
11775
11776 if (die->tag == DW_TAG_structure_type)
11777 {
11778 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11779 }
11780 else if (die->tag == DW_TAG_union_type)
11781 {
11782 TYPE_CODE (type) = TYPE_CODE_UNION;
11783 }
11784 else
11785 {
11786 TYPE_CODE (type) = TYPE_CODE_CLASS;
11787 }
11788
11789 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11790 TYPE_DECLARED_CLASS (type) = 1;
11791
11792 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11793 if (attr)
11794 {
11795 TYPE_LENGTH (type) = DW_UNSND (attr);
11796 }
11797 else
11798 {
11799 TYPE_LENGTH (type) = 0;
11800 }
11801
11802 if (producer_is_icc (cu))
11803 {
11804 /* ICC does not output the required DW_AT_declaration
11805 on incomplete types, but gives them a size of zero. */
11806 }
11807 else
11808 TYPE_STUB_SUPPORTED (type) = 1;
11809
11810 if (die_is_declaration (die, cu))
11811 TYPE_STUB (type) = 1;
11812 else if (attr == NULL && die->child == NULL
11813 && producer_is_realview (cu->producer))
11814 /* RealView does not output the required DW_AT_declaration
11815 on incomplete types. */
11816 TYPE_STUB (type) = 1;
11817
11818 /* We need to add the type field to the die immediately so we don't
11819 infinitely recurse when dealing with pointers to the structure
11820 type within the structure itself. */
11821 set_die_type (die, type, cu);
11822
11823 /* set_die_type should be already done. */
11824 set_descriptive_type (type, die, cu);
11825
11826 return type;
11827 }
11828
11829 /* Finish creating a structure or union type, including filling in
11830 its members and creating a symbol for it. */
11831
11832 static void
11833 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11834 {
11835 struct objfile *objfile = cu->objfile;
11836 struct die_info *child_die = die->child;
11837 struct type *type;
11838
11839 type = get_die_type (die, cu);
11840 if (type == NULL)
11841 type = read_structure_type (die, cu);
11842
11843 if (die->child != NULL && ! die_is_declaration (die, cu))
11844 {
11845 struct field_info fi;
11846 struct die_info *child_die;
11847 VEC (symbolp) *template_args = NULL;
11848 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11849
11850 memset (&fi, 0, sizeof (struct field_info));
11851
11852 child_die = die->child;
11853
11854 while (child_die && child_die->tag)
11855 {
11856 if (child_die->tag == DW_TAG_member
11857 || child_die->tag == DW_TAG_variable)
11858 {
11859 /* NOTE: carlton/2002-11-05: A C++ static data member
11860 should be a DW_TAG_member that is a declaration, but
11861 all versions of G++ as of this writing (so through at
11862 least 3.2.1) incorrectly generate DW_TAG_variable
11863 tags for them instead. */
11864 dwarf2_add_field (&fi, child_die, cu);
11865 }
11866 else if (child_die->tag == DW_TAG_subprogram)
11867 {
11868 /* C++ member function. */
11869 dwarf2_add_member_fn (&fi, child_die, type, cu);
11870 }
11871 else if (child_die->tag == DW_TAG_inheritance)
11872 {
11873 /* C++ base class field. */
11874 dwarf2_add_field (&fi, child_die, cu);
11875 }
11876 else if (child_die->tag == DW_TAG_typedef)
11877 dwarf2_add_typedef (&fi, child_die, cu);
11878 else if (child_die->tag == DW_TAG_template_type_param
11879 || child_die->tag == DW_TAG_template_value_param)
11880 {
11881 struct symbol *arg = new_symbol (child_die, NULL, cu);
11882
11883 if (arg != NULL)
11884 VEC_safe_push (symbolp, template_args, arg);
11885 }
11886
11887 child_die = sibling_die (child_die);
11888 }
11889
11890 /* Attach template arguments to type. */
11891 if (! VEC_empty (symbolp, template_args))
11892 {
11893 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11894 TYPE_N_TEMPLATE_ARGUMENTS (type)
11895 = VEC_length (symbolp, template_args);
11896 TYPE_TEMPLATE_ARGUMENTS (type)
11897 = obstack_alloc (&objfile->objfile_obstack,
11898 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11899 * sizeof (struct symbol *)));
11900 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11901 VEC_address (symbolp, template_args),
11902 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11903 * sizeof (struct symbol *)));
11904 VEC_free (symbolp, template_args);
11905 }
11906
11907 /* Attach fields and member functions to the type. */
11908 if (fi.nfields)
11909 dwarf2_attach_fields_to_type (&fi, type, cu);
11910 if (fi.nfnfields)
11911 {
11912 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11913
11914 /* Get the type which refers to the base class (possibly this
11915 class itself) which contains the vtable pointer for the current
11916 class from the DW_AT_containing_type attribute. This use of
11917 DW_AT_containing_type is a GNU extension. */
11918
11919 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11920 {
11921 struct type *t = die_containing_type (die, cu);
11922
11923 TYPE_VPTR_BASETYPE (type) = t;
11924 if (type == t)
11925 {
11926 int i;
11927
11928 /* Our own class provides vtbl ptr. */
11929 for (i = TYPE_NFIELDS (t) - 1;
11930 i >= TYPE_N_BASECLASSES (t);
11931 --i)
11932 {
11933 const char *fieldname = TYPE_FIELD_NAME (t, i);
11934
11935 if (is_vtable_name (fieldname, cu))
11936 {
11937 TYPE_VPTR_FIELDNO (type) = i;
11938 break;
11939 }
11940 }
11941
11942 /* Complain if virtual function table field not found. */
11943 if (i < TYPE_N_BASECLASSES (t))
11944 complaint (&symfile_complaints,
11945 _("virtual function table pointer "
11946 "not found when defining class '%s'"),
11947 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11948 "");
11949 }
11950 else
11951 {
11952 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11953 }
11954 }
11955 else if (cu->producer
11956 && strncmp (cu->producer,
11957 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11958 {
11959 /* The IBM XLC compiler does not provide direct indication
11960 of the containing type, but the vtable pointer is
11961 always named __vfp. */
11962
11963 int i;
11964
11965 for (i = TYPE_NFIELDS (type) - 1;
11966 i >= TYPE_N_BASECLASSES (type);
11967 --i)
11968 {
11969 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11970 {
11971 TYPE_VPTR_FIELDNO (type) = i;
11972 TYPE_VPTR_BASETYPE (type) = type;
11973 break;
11974 }
11975 }
11976 }
11977 }
11978
11979 /* Copy fi.typedef_field_list linked list elements content into the
11980 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11981 if (fi.typedef_field_list)
11982 {
11983 int i = fi.typedef_field_list_count;
11984
11985 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11986 TYPE_TYPEDEF_FIELD_ARRAY (type)
11987 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11988 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11989
11990 /* Reverse the list order to keep the debug info elements order. */
11991 while (--i >= 0)
11992 {
11993 struct typedef_field *dest, *src;
11994
11995 dest = &TYPE_TYPEDEF_FIELD (type, i);
11996 src = &fi.typedef_field_list->field;
11997 fi.typedef_field_list = fi.typedef_field_list->next;
11998 *dest = *src;
11999 }
12000 }
12001
12002 do_cleanups (back_to);
12003
12004 if (HAVE_CPLUS_STRUCT (type))
12005 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12006 }
12007
12008 quirk_gcc_member_function_pointer (type, objfile);
12009
12010 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12011 snapshots) has been known to create a die giving a declaration
12012 for a class that has, as a child, a die giving a definition for a
12013 nested class. So we have to process our children even if the
12014 current die is a declaration. Normally, of course, a declaration
12015 won't have any children at all. */
12016
12017 while (child_die != NULL && child_die->tag)
12018 {
12019 if (child_die->tag == DW_TAG_member
12020 || child_die->tag == DW_TAG_variable
12021 || child_die->tag == DW_TAG_inheritance
12022 || child_die->tag == DW_TAG_template_value_param
12023 || child_die->tag == DW_TAG_template_type_param)
12024 {
12025 /* Do nothing. */
12026 }
12027 else
12028 process_die (child_die, cu);
12029
12030 child_die = sibling_die (child_die);
12031 }
12032
12033 /* Do not consider external references. According to the DWARF standard,
12034 these DIEs are identified by the fact that they have no byte_size
12035 attribute, and a declaration attribute. */
12036 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12037 || !die_is_declaration (die, cu))
12038 new_symbol (die, type, cu);
12039 }
12040
12041 /* Given a DW_AT_enumeration_type die, set its type. We do not
12042 complete the type's fields yet, or create any symbols. */
12043
12044 static struct type *
12045 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12046 {
12047 struct objfile *objfile = cu->objfile;
12048 struct type *type;
12049 struct attribute *attr;
12050 const char *name;
12051
12052 /* If the definition of this type lives in .debug_types, read that type.
12053 Don't follow DW_AT_specification though, that will take us back up
12054 the chain and we want to go down. */
12055 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12056 if (attr)
12057 {
12058 type = get_DW_AT_signature_type (die, attr, cu);
12059
12060 /* The type's CU may not be the same as CU.
12061 Ensure TYPE is recorded with CU in die_type_hash. */
12062 return set_die_type (die, type, cu);
12063 }
12064
12065 type = alloc_type (objfile);
12066
12067 TYPE_CODE (type) = TYPE_CODE_ENUM;
12068 name = dwarf2_full_name (NULL, die, cu);
12069 if (name != NULL)
12070 TYPE_TAG_NAME (type) = name;
12071
12072 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12073 if (attr)
12074 {
12075 TYPE_LENGTH (type) = DW_UNSND (attr);
12076 }
12077 else
12078 {
12079 TYPE_LENGTH (type) = 0;
12080 }
12081
12082 /* The enumeration DIE can be incomplete. In Ada, any type can be
12083 declared as private in the package spec, and then defined only
12084 inside the package body. Such types are known as Taft Amendment
12085 Types. When another package uses such a type, an incomplete DIE
12086 may be generated by the compiler. */
12087 if (die_is_declaration (die, cu))
12088 TYPE_STUB (type) = 1;
12089
12090 return set_die_type (die, type, cu);
12091 }
12092
12093 /* Given a pointer to a die which begins an enumeration, process all
12094 the dies that define the members of the enumeration, and create the
12095 symbol for the enumeration type.
12096
12097 NOTE: We reverse the order of the element list. */
12098
12099 static void
12100 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12101 {
12102 struct type *this_type;
12103
12104 this_type = get_die_type (die, cu);
12105 if (this_type == NULL)
12106 this_type = read_enumeration_type (die, cu);
12107
12108 if (die->child != NULL)
12109 {
12110 struct die_info *child_die;
12111 struct symbol *sym;
12112 struct field *fields = NULL;
12113 int num_fields = 0;
12114 int unsigned_enum = 1;
12115 const char *name;
12116 int flag_enum = 1;
12117 ULONGEST mask = 0;
12118
12119 child_die = die->child;
12120 while (child_die && child_die->tag)
12121 {
12122 if (child_die->tag != DW_TAG_enumerator)
12123 {
12124 process_die (child_die, cu);
12125 }
12126 else
12127 {
12128 name = dwarf2_name (child_die, cu);
12129 if (name)
12130 {
12131 sym = new_symbol (child_die, this_type, cu);
12132 if (SYMBOL_VALUE (sym) < 0)
12133 {
12134 unsigned_enum = 0;
12135 flag_enum = 0;
12136 }
12137 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12138 flag_enum = 0;
12139 else
12140 mask |= SYMBOL_VALUE (sym);
12141
12142 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12143 {
12144 fields = (struct field *)
12145 xrealloc (fields,
12146 (num_fields + DW_FIELD_ALLOC_CHUNK)
12147 * sizeof (struct field));
12148 }
12149
12150 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12151 FIELD_TYPE (fields[num_fields]) = NULL;
12152 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12153 FIELD_BITSIZE (fields[num_fields]) = 0;
12154
12155 num_fields++;
12156 }
12157 }
12158
12159 child_die = sibling_die (child_die);
12160 }
12161
12162 if (num_fields)
12163 {
12164 TYPE_NFIELDS (this_type) = num_fields;
12165 TYPE_FIELDS (this_type) = (struct field *)
12166 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12167 memcpy (TYPE_FIELDS (this_type), fields,
12168 sizeof (struct field) * num_fields);
12169 xfree (fields);
12170 }
12171 if (unsigned_enum)
12172 TYPE_UNSIGNED (this_type) = 1;
12173 if (flag_enum)
12174 TYPE_FLAG_ENUM (this_type) = 1;
12175 }
12176
12177 /* If we are reading an enum from a .debug_types unit, and the enum
12178 is a declaration, and the enum is not the signatured type in the
12179 unit, then we do not want to add a symbol for it. Adding a
12180 symbol would in some cases obscure the true definition of the
12181 enum, giving users an incomplete type when the definition is
12182 actually available. Note that we do not want to do this for all
12183 enums which are just declarations, because C++0x allows forward
12184 enum declarations. */
12185 if (cu->per_cu->is_debug_types
12186 && die_is_declaration (die, cu))
12187 {
12188 struct signatured_type *sig_type;
12189
12190 sig_type = (struct signatured_type *) cu->per_cu;
12191 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12192 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12193 return;
12194 }
12195
12196 new_symbol (die, this_type, cu);
12197 }
12198
12199 /* Extract all information from a DW_TAG_array_type DIE and put it in
12200 the DIE's type field. For now, this only handles one dimensional
12201 arrays. */
12202
12203 static struct type *
12204 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12205 {
12206 struct objfile *objfile = cu->objfile;
12207 struct die_info *child_die;
12208 struct type *type;
12209 struct type *element_type, *range_type, *index_type;
12210 struct type **range_types = NULL;
12211 struct attribute *attr;
12212 int ndim = 0;
12213 struct cleanup *back_to;
12214 const char *name;
12215
12216 element_type = die_type (die, cu);
12217
12218 /* The die_type call above may have already set the type for this DIE. */
12219 type = get_die_type (die, cu);
12220 if (type)
12221 return type;
12222
12223 /* Irix 6.2 native cc creates array types without children for
12224 arrays with unspecified length. */
12225 if (die->child == NULL)
12226 {
12227 index_type = objfile_type (objfile)->builtin_int;
12228 range_type = create_range_type (NULL, index_type, 0, -1);
12229 type = create_array_type (NULL, element_type, range_type);
12230 return set_die_type (die, type, cu);
12231 }
12232
12233 back_to = make_cleanup (null_cleanup, NULL);
12234 child_die = die->child;
12235 while (child_die && child_die->tag)
12236 {
12237 if (child_die->tag == DW_TAG_subrange_type)
12238 {
12239 struct type *child_type = read_type_die (child_die, cu);
12240
12241 if (child_type != NULL)
12242 {
12243 /* The range type was succesfully read. Save it for the
12244 array type creation. */
12245 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12246 {
12247 range_types = (struct type **)
12248 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12249 * sizeof (struct type *));
12250 if (ndim == 0)
12251 make_cleanup (free_current_contents, &range_types);
12252 }
12253 range_types[ndim++] = child_type;
12254 }
12255 }
12256 child_die = sibling_die (child_die);
12257 }
12258
12259 /* Dwarf2 dimensions are output from left to right, create the
12260 necessary array types in backwards order. */
12261
12262 type = element_type;
12263
12264 if (read_array_order (die, cu) == DW_ORD_col_major)
12265 {
12266 int i = 0;
12267
12268 while (i < ndim)
12269 type = create_array_type (NULL, type, range_types[i++]);
12270 }
12271 else
12272 {
12273 while (ndim-- > 0)
12274 type = create_array_type (NULL, type, range_types[ndim]);
12275 }
12276
12277 /* Understand Dwarf2 support for vector types (like they occur on
12278 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12279 array type. This is not part of the Dwarf2/3 standard yet, but a
12280 custom vendor extension. The main difference between a regular
12281 array and the vector variant is that vectors are passed by value
12282 to functions. */
12283 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12284 if (attr)
12285 make_vector_type (type);
12286
12287 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12288 implementation may choose to implement triple vectors using this
12289 attribute. */
12290 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12291 if (attr)
12292 {
12293 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12294 TYPE_LENGTH (type) = DW_UNSND (attr);
12295 else
12296 complaint (&symfile_complaints,
12297 _("DW_AT_byte_size for array type smaller "
12298 "than the total size of elements"));
12299 }
12300
12301 name = dwarf2_name (die, cu);
12302 if (name)
12303 TYPE_NAME (type) = name;
12304
12305 /* Install the type in the die. */
12306 set_die_type (die, type, cu);
12307
12308 /* set_die_type should be already done. */
12309 set_descriptive_type (type, die, cu);
12310
12311 do_cleanups (back_to);
12312
12313 return type;
12314 }
12315
12316 static enum dwarf_array_dim_ordering
12317 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12318 {
12319 struct attribute *attr;
12320
12321 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12322
12323 if (attr) return DW_SND (attr);
12324
12325 /* GNU F77 is a special case, as at 08/2004 array type info is the
12326 opposite order to the dwarf2 specification, but data is still
12327 laid out as per normal fortran.
12328
12329 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12330 version checking. */
12331
12332 if (cu->language == language_fortran
12333 && cu->producer && strstr (cu->producer, "GNU F77"))
12334 {
12335 return DW_ORD_row_major;
12336 }
12337
12338 switch (cu->language_defn->la_array_ordering)
12339 {
12340 case array_column_major:
12341 return DW_ORD_col_major;
12342 case array_row_major:
12343 default:
12344 return DW_ORD_row_major;
12345 };
12346 }
12347
12348 /* Extract all information from a DW_TAG_set_type DIE and put it in
12349 the DIE's type field. */
12350
12351 static struct type *
12352 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12353 {
12354 struct type *domain_type, *set_type;
12355 struct attribute *attr;
12356
12357 domain_type = die_type (die, cu);
12358
12359 /* The die_type call above may have already set the type for this DIE. */
12360 set_type = get_die_type (die, cu);
12361 if (set_type)
12362 return set_type;
12363
12364 set_type = create_set_type (NULL, domain_type);
12365
12366 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12367 if (attr)
12368 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12369
12370 return set_die_type (die, set_type, cu);
12371 }
12372
12373 /* A helper for read_common_block that creates a locexpr baton.
12374 SYM is the symbol which we are marking as computed.
12375 COMMON_DIE is the DIE for the common block.
12376 COMMON_LOC is the location expression attribute for the common
12377 block itself.
12378 MEMBER_LOC is the location expression attribute for the particular
12379 member of the common block that we are processing.
12380 CU is the CU from which the above come. */
12381
12382 static void
12383 mark_common_block_symbol_computed (struct symbol *sym,
12384 struct die_info *common_die,
12385 struct attribute *common_loc,
12386 struct attribute *member_loc,
12387 struct dwarf2_cu *cu)
12388 {
12389 struct objfile *objfile = dwarf2_per_objfile->objfile;
12390 struct dwarf2_locexpr_baton *baton;
12391 gdb_byte *ptr;
12392 unsigned int cu_off;
12393 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12394 LONGEST offset = 0;
12395
12396 gdb_assert (common_loc && member_loc);
12397 gdb_assert (attr_form_is_block (common_loc));
12398 gdb_assert (attr_form_is_block (member_loc)
12399 || attr_form_is_constant (member_loc));
12400
12401 baton = obstack_alloc (&objfile->objfile_obstack,
12402 sizeof (struct dwarf2_locexpr_baton));
12403 baton->per_cu = cu->per_cu;
12404 gdb_assert (baton->per_cu);
12405
12406 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12407
12408 if (attr_form_is_constant (member_loc))
12409 {
12410 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12411 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12412 }
12413 else
12414 baton->size += DW_BLOCK (member_loc)->size;
12415
12416 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12417 baton->data = ptr;
12418
12419 *ptr++ = DW_OP_call4;
12420 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12421 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12422 ptr += 4;
12423
12424 if (attr_form_is_constant (member_loc))
12425 {
12426 *ptr++ = DW_OP_addr;
12427 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12428 ptr += cu->header.addr_size;
12429 }
12430 else
12431 {
12432 /* We have to copy the data here, because DW_OP_call4 will only
12433 use a DW_AT_location attribute. */
12434 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12435 ptr += DW_BLOCK (member_loc)->size;
12436 }
12437
12438 *ptr++ = DW_OP_plus;
12439 gdb_assert (ptr - baton->data == baton->size);
12440
12441 SYMBOL_LOCATION_BATON (sym) = baton;
12442 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12443 }
12444
12445 /* Create appropriate locally-scoped variables for all the
12446 DW_TAG_common_block entries. Also create a struct common_block
12447 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12448 is used to sepate the common blocks name namespace from regular
12449 variable names. */
12450
12451 static void
12452 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12453 {
12454 struct attribute *attr;
12455
12456 attr = dwarf2_attr (die, DW_AT_location, cu);
12457 if (attr)
12458 {
12459 /* Support the .debug_loc offsets. */
12460 if (attr_form_is_block (attr))
12461 {
12462 /* Ok. */
12463 }
12464 else if (attr_form_is_section_offset (attr))
12465 {
12466 dwarf2_complex_location_expr_complaint ();
12467 attr = NULL;
12468 }
12469 else
12470 {
12471 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12472 "common block member");
12473 attr = NULL;
12474 }
12475 }
12476
12477 if (die->child != NULL)
12478 {
12479 struct objfile *objfile = cu->objfile;
12480 struct die_info *child_die;
12481 size_t n_entries = 0, size;
12482 struct common_block *common_block;
12483 struct symbol *sym;
12484
12485 for (child_die = die->child;
12486 child_die && child_die->tag;
12487 child_die = sibling_die (child_die))
12488 ++n_entries;
12489
12490 size = (sizeof (struct common_block)
12491 + (n_entries - 1) * sizeof (struct symbol *));
12492 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12493 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12494 common_block->n_entries = 0;
12495
12496 for (child_die = die->child;
12497 child_die && child_die->tag;
12498 child_die = sibling_die (child_die))
12499 {
12500 /* Create the symbol in the DW_TAG_common_block block in the current
12501 symbol scope. */
12502 sym = new_symbol (child_die, NULL, cu);
12503 if (sym != NULL)
12504 {
12505 struct attribute *member_loc;
12506
12507 common_block->contents[common_block->n_entries++] = sym;
12508
12509 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12510 cu);
12511 if (member_loc)
12512 {
12513 /* GDB has handled this for a long time, but it is
12514 not specified by DWARF. It seems to have been
12515 emitted by gfortran at least as recently as:
12516 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12517 complaint (&symfile_complaints,
12518 _("Variable in common block has "
12519 "DW_AT_data_member_location "
12520 "- DIE at 0x%x [in module %s]"),
12521 child_die->offset.sect_off, cu->objfile->name);
12522
12523 if (attr_form_is_section_offset (member_loc))
12524 dwarf2_complex_location_expr_complaint ();
12525 else if (attr_form_is_constant (member_loc)
12526 || attr_form_is_block (member_loc))
12527 {
12528 if (attr)
12529 mark_common_block_symbol_computed (sym, die, attr,
12530 member_loc, cu);
12531 }
12532 else
12533 dwarf2_complex_location_expr_complaint ();
12534 }
12535 }
12536 }
12537
12538 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12539 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12540 }
12541 }
12542
12543 /* Create a type for a C++ namespace. */
12544
12545 static struct type *
12546 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12547 {
12548 struct objfile *objfile = cu->objfile;
12549 const char *previous_prefix, *name;
12550 int is_anonymous;
12551 struct type *type;
12552
12553 /* For extensions, reuse the type of the original namespace. */
12554 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12555 {
12556 struct die_info *ext_die;
12557 struct dwarf2_cu *ext_cu = cu;
12558
12559 ext_die = dwarf2_extension (die, &ext_cu);
12560 type = read_type_die (ext_die, ext_cu);
12561
12562 /* EXT_CU may not be the same as CU.
12563 Ensure TYPE is recorded with CU in die_type_hash. */
12564 return set_die_type (die, type, cu);
12565 }
12566
12567 name = namespace_name (die, &is_anonymous, cu);
12568
12569 /* Now build the name of the current namespace. */
12570
12571 previous_prefix = determine_prefix (die, cu);
12572 if (previous_prefix[0] != '\0')
12573 name = typename_concat (&objfile->objfile_obstack,
12574 previous_prefix, name, 0, cu);
12575
12576 /* Create the type. */
12577 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12578 objfile);
12579 TYPE_NAME (type) = name;
12580 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12581
12582 return set_die_type (die, type, cu);
12583 }
12584
12585 /* Read a C++ namespace. */
12586
12587 static void
12588 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12589 {
12590 struct objfile *objfile = cu->objfile;
12591 int is_anonymous;
12592
12593 /* Add a symbol associated to this if we haven't seen the namespace
12594 before. Also, add a using directive if it's an anonymous
12595 namespace. */
12596
12597 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12598 {
12599 struct type *type;
12600
12601 type = read_type_die (die, cu);
12602 new_symbol (die, type, cu);
12603
12604 namespace_name (die, &is_anonymous, cu);
12605 if (is_anonymous)
12606 {
12607 const char *previous_prefix = determine_prefix (die, cu);
12608
12609 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12610 NULL, NULL, 0, &objfile->objfile_obstack);
12611 }
12612 }
12613
12614 if (die->child != NULL)
12615 {
12616 struct die_info *child_die = die->child;
12617
12618 while (child_die && child_die->tag)
12619 {
12620 process_die (child_die, cu);
12621 child_die = sibling_die (child_die);
12622 }
12623 }
12624 }
12625
12626 /* Read a Fortran module as type. This DIE can be only a declaration used for
12627 imported module. Still we need that type as local Fortran "use ... only"
12628 declaration imports depend on the created type in determine_prefix. */
12629
12630 static struct type *
12631 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12632 {
12633 struct objfile *objfile = cu->objfile;
12634 const char *module_name;
12635 struct type *type;
12636
12637 module_name = dwarf2_name (die, cu);
12638 if (!module_name)
12639 complaint (&symfile_complaints,
12640 _("DW_TAG_module has no name, offset 0x%x"),
12641 die->offset.sect_off);
12642 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12643
12644 /* determine_prefix uses TYPE_TAG_NAME. */
12645 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12646
12647 return set_die_type (die, type, cu);
12648 }
12649
12650 /* Read a Fortran module. */
12651
12652 static void
12653 read_module (struct die_info *die, struct dwarf2_cu *cu)
12654 {
12655 struct die_info *child_die = die->child;
12656
12657 while (child_die && child_die->tag)
12658 {
12659 process_die (child_die, cu);
12660 child_die = sibling_die (child_die);
12661 }
12662 }
12663
12664 /* Return the name of the namespace represented by DIE. Set
12665 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12666 namespace. */
12667
12668 static const char *
12669 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12670 {
12671 struct die_info *current_die;
12672 const char *name = NULL;
12673
12674 /* Loop through the extensions until we find a name. */
12675
12676 for (current_die = die;
12677 current_die != NULL;
12678 current_die = dwarf2_extension (die, &cu))
12679 {
12680 name = dwarf2_name (current_die, cu);
12681 if (name != NULL)
12682 break;
12683 }
12684
12685 /* Is it an anonymous namespace? */
12686
12687 *is_anonymous = (name == NULL);
12688 if (*is_anonymous)
12689 name = CP_ANONYMOUS_NAMESPACE_STR;
12690
12691 return name;
12692 }
12693
12694 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12695 the user defined type vector. */
12696
12697 static struct type *
12698 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12699 {
12700 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12701 struct comp_unit_head *cu_header = &cu->header;
12702 struct type *type;
12703 struct attribute *attr_byte_size;
12704 struct attribute *attr_address_class;
12705 int byte_size, addr_class;
12706 struct type *target_type;
12707
12708 target_type = die_type (die, cu);
12709
12710 /* The die_type call above may have already set the type for this DIE. */
12711 type = get_die_type (die, cu);
12712 if (type)
12713 return type;
12714
12715 type = lookup_pointer_type (target_type);
12716
12717 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12718 if (attr_byte_size)
12719 byte_size = DW_UNSND (attr_byte_size);
12720 else
12721 byte_size = cu_header->addr_size;
12722
12723 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12724 if (attr_address_class)
12725 addr_class = DW_UNSND (attr_address_class);
12726 else
12727 addr_class = DW_ADDR_none;
12728
12729 /* If the pointer size or address class is different than the
12730 default, create a type variant marked as such and set the
12731 length accordingly. */
12732 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12733 {
12734 if (gdbarch_address_class_type_flags_p (gdbarch))
12735 {
12736 int type_flags;
12737
12738 type_flags = gdbarch_address_class_type_flags
12739 (gdbarch, byte_size, addr_class);
12740 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12741 == 0);
12742 type = make_type_with_address_space (type, type_flags);
12743 }
12744 else if (TYPE_LENGTH (type) != byte_size)
12745 {
12746 complaint (&symfile_complaints,
12747 _("invalid pointer size %d"), byte_size);
12748 }
12749 else
12750 {
12751 /* Should we also complain about unhandled address classes? */
12752 }
12753 }
12754
12755 TYPE_LENGTH (type) = byte_size;
12756 return set_die_type (die, type, cu);
12757 }
12758
12759 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12760 the user defined type vector. */
12761
12762 static struct type *
12763 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12764 {
12765 struct type *type;
12766 struct type *to_type;
12767 struct type *domain;
12768
12769 to_type = die_type (die, cu);
12770 domain = die_containing_type (die, cu);
12771
12772 /* The calls above may have already set the type for this DIE. */
12773 type = get_die_type (die, cu);
12774 if (type)
12775 return type;
12776
12777 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12778 type = lookup_methodptr_type (to_type);
12779 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12780 {
12781 struct type *new_type = alloc_type (cu->objfile);
12782
12783 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12784 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12785 TYPE_VARARGS (to_type));
12786 type = lookup_methodptr_type (new_type);
12787 }
12788 else
12789 type = lookup_memberptr_type (to_type, domain);
12790
12791 return set_die_type (die, type, cu);
12792 }
12793
12794 /* Extract all information from a DW_TAG_reference_type DIE and add to
12795 the user defined type vector. */
12796
12797 static struct type *
12798 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12799 {
12800 struct comp_unit_head *cu_header = &cu->header;
12801 struct type *type, *target_type;
12802 struct attribute *attr;
12803
12804 target_type = die_type (die, cu);
12805
12806 /* The die_type call above may have already set the type for this DIE. */
12807 type = get_die_type (die, cu);
12808 if (type)
12809 return type;
12810
12811 type = lookup_reference_type (target_type);
12812 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12813 if (attr)
12814 {
12815 TYPE_LENGTH (type) = DW_UNSND (attr);
12816 }
12817 else
12818 {
12819 TYPE_LENGTH (type) = cu_header->addr_size;
12820 }
12821 return set_die_type (die, type, cu);
12822 }
12823
12824 static struct type *
12825 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12826 {
12827 struct type *base_type, *cv_type;
12828
12829 base_type = die_type (die, cu);
12830
12831 /* The die_type call above may have already set the type for this DIE. */
12832 cv_type = get_die_type (die, cu);
12833 if (cv_type)
12834 return cv_type;
12835
12836 /* In case the const qualifier is applied to an array type, the element type
12837 is so qualified, not the array type (section 6.7.3 of C99). */
12838 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12839 {
12840 struct type *el_type, *inner_array;
12841
12842 base_type = copy_type (base_type);
12843 inner_array = base_type;
12844
12845 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12846 {
12847 TYPE_TARGET_TYPE (inner_array) =
12848 copy_type (TYPE_TARGET_TYPE (inner_array));
12849 inner_array = TYPE_TARGET_TYPE (inner_array);
12850 }
12851
12852 el_type = TYPE_TARGET_TYPE (inner_array);
12853 TYPE_TARGET_TYPE (inner_array) =
12854 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12855
12856 return set_die_type (die, base_type, cu);
12857 }
12858
12859 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12860 return set_die_type (die, cv_type, cu);
12861 }
12862
12863 static struct type *
12864 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12865 {
12866 struct type *base_type, *cv_type;
12867
12868 base_type = die_type (die, cu);
12869
12870 /* The die_type call above may have already set the type for this DIE. */
12871 cv_type = get_die_type (die, cu);
12872 if (cv_type)
12873 return cv_type;
12874
12875 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12876 return set_die_type (die, cv_type, cu);
12877 }
12878
12879 /* Handle DW_TAG_restrict_type. */
12880
12881 static struct type *
12882 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12883 {
12884 struct type *base_type, *cv_type;
12885
12886 base_type = die_type (die, cu);
12887
12888 /* The die_type call above may have already set the type for this DIE. */
12889 cv_type = get_die_type (die, cu);
12890 if (cv_type)
12891 return cv_type;
12892
12893 cv_type = make_restrict_type (base_type);
12894 return set_die_type (die, cv_type, cu);
12895 }
12896
12897 /* Extract all information from a DW_TAG_string_type DIE and add to
12898 the user defined type vector. It isn't really a user defined type,
12899 but it behaves like one, with other DIE's using an AT_user_def_type
12900 attribute to reference it. */
12901
12902 static struct type *
12903 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12904 {
12905 struct objfile *objfile = cu->objfile;
12906 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12907 struct type *type, *range_type, *index_type, *char_type;
12908 struct attribute *attr;
12909 unsigned int length;
12910
12911 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12912 if (attr)
12913 {
12914 length = DW_UNSND (attr);
12915 }
12916 else
12917 {
12918 /* Check for the DW_AT_byte_size attribute. */
12919 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12920 if (attr)
12921 {
12922 length = DW_UNSND (attr);
12923 }
12924 else
12925 {
12926 length = 1;
12927 }
12928 }
12929
12930 index_type = objfile_type (objfile)->builtin_int;
12931 range_type = create_range_type (NULL, index_type, 1, length);
12932 char_type = language_string_char_type (cu->language_defn, gdbarch);
12933 type = create_string_type (NULL, char_type, range_type);
12934
12935 return set_die_type (die, type, cu);
12936 }
12937
12938 /* Assuming that DIE corresponds to a function, returns nonzero
12939 if the function is prototyped. */
12940
12941 static int
12942 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
12943 {
12944 struct attribute *attr;
12945
12946 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12947 if (attr && (DW_UNSND (attr) != 0))
12948 return 1;
12949
12950 /* The DWARF standard implies that the DW_AT_prototyped attribute
12951 is only meaninful for C, but the concept also extends to other
12952 languages that allow unprototyped functions (Eg: Objective C).
12953 For all other languages, assume that functions are always
12954 prototyped. */
12955 if (cu->language != language_c
12956 && cu->language != language_objc
12957 && cu->language != language_opencl)
12958 return 1;
12959
12960 /* RealView does not emit DW_AT_prototyped. We can not distinguish
12961 prototyped and unprototyped functions; default to prototyped,
12962 since that is more common in modern code (and RealView warns
12963 about unprototyped functions). */
12964 if (producer_is_realview (cu->producer))
12965 return 1;
12966
12967 return 0;
12968 }
12969
12970 /* Handle DIES due to C code like:
12971
12972 struct foo
12973 {
12974 int (*funcp)(int a, long l);
12975 int b;
12976 };
12977
12978 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12979
12980 static struct type *
12981 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12982 {
12983 struct objfile *objfile = cu->objfile;
12984 struct type *type; /* Type that this function returns. */
12985 struct type *ftype; /* Function that returns above type. */
12986 struct attribute *attr;
12987
12988 type = die_type (die, cu);
12989
12990 /* The die_type call above may have already set the type for this DIE. */
12991 ftype = get_die_type (die, cu);
12992 if (ftype)
12993 return ftype;
12994
12995 ftype = lookup_function_type (type);
12996
12997 if (prototyped_function_p (die, cu))
12998 TYPE_PROTOTYPED (ftype) = 1;
12999
13000 /* Store the calling convention in the type if it's available in
13001 the subroutine die. Otherwise set the calling convention to
13002 the default value DW_CC_normal. */
13003 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13004 if (attr)
13005 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13006 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13007 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13008 else
13009 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13010
13011 /* We need to add the subroutine type to the die immediately so
13012 we don't infinitely recurse when dealing with parameters
13013 declared as the same subroutine type. */
13014 set_die_type (die, ftype, cu);
13015
13016 if (die->child != NULL)
13017 {
13018 struct type *void_type = objfile_type (objfile)->builtin_void;
13019 struct die_info *child_die;
13020 int nparams, iparams;
13021
13022 /* Count the number of parameters.
13023 FIXME: GDB currently ignores vararg functions, but knows about
13024 vararg member functions. */
13025 nparams = 0;
13026 child_die = die->child;
13027 while (child_die && child_die->tag)
13028 {
13029 if (child_die->tag == DW_TAG_formal_parameter)
13030 nparams++;
13031 else if (child_die->tag == DW_TAG_unspecified_parameters)
13032 TYPE_VARARGS (ftype) = 1;
13033 child_die = sibling_die (child_die);
13034 }
13035
13036 /* Allocate storage for parameters and fill them in. */
13037 TYPE_NFIELDS (ftype) = nparams;
13038 TYPE_FIELDS (ftype) = (struct field *)
13039 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13040
13041 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13042 even if we error out during the parameters reading below. */
13043 for (iparams = 0; iparams < nparams; iparams++)
13044 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13045
13046 iparams = 0;
13047 child_die = die->child;
13048 while (child_die && child_die->tag)
13049 {
13050 if (child_die->tag == DW_TAG_formal_parameter)
13051 {
13052 struct type *arg_type;
13053
13054 /* DWARF version 2 has no clean way to discern C++
13055 static and non-static member functions. G++ helps
13056 GDB by marking the first parameter for non-static
13057 member functions (which is the this pointer) as
13058 artificial. We pass this information to
13059 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13060
13061 DWARF version 3 added DW_AT_object_pointer, which GCC
13062 4.5 does not yet generate. */
13063 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13064 if (attr)
13065 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13066 else
13067 {
13068 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13069
13070 /* GCC/43521: In java, the formal parameter
13071 "this" is sometimes not marked with DW_AT_artificial. */
13072 if (cu->language == language_java)
13073 {
13074 const char *name = dwarf2_name (child_die, cu);
13075
13076 if (name && !strcmp (name, "this"))
13077 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13078 }
13079 }
13080 arg_type = die_type (child_die, cu);
13081
13082 /* RealView does not mark THIS as const, which the testsuite
13083 expects. GCC marks THIS as const in method definitions,
13084 but not in the class specifications (GCC PR 43053). */
13085 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13086 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13087 {
13088 int is_this = 0;
13089 struct dwarf2_cu *arg_cu = cu;
13090 const char *name = dwarf2_name (child_die, cu);
13091
13092 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13093 if (attr)
13094 {
13095 /* If the compiler emits this, use it. */
13096 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13097 is_this = 1;
13098 }
13099 else if (name && strcmp (name, "this") == 0)
13100 /* Function definitions will have the argument names. */
13101 is_this = 1;
13102 else if (name == NULL && iparams == 0)
13103 /* Declarations may not have the names, so like
13104 elsewhere in GDB, assume an artificial first
13105 argument is "this". */
13106 is_this = 1;
13107
13108 if (is_this)
13109 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13110 arg_type, 0);
13111 }
13112
13113 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13114 iparams++;
13115 }
13116 child_die = sibling_die (child_die);
13117 }
13118 }
13119
13120 return ftype;
13121 }
13122
13123 static struct type *
13124 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13125 {
13126 struct objfile *objfile = cu->objfile;
13127 const char *name = NULL;
13128 struct type *this_type, *target_type;
13129
13130 name = dwarf2_full_name (NULL, die, cu);
13131 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13132 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13133 TYPE_NAME (this_type) = name;
13134 set_die_type (die, this_type, cu);
13135 target_type = die_type (die, cu);
13136 if (target_type != this_type)
13137 TYPE_TARGET_TYPE (this_type) = target_type;
13138 else
13139 {
13140 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13141 spec and cause infinite loops in GDB. */
13142 complaint (&symfile_complaints,
13143 _("Self-referential DW_TAG_typedef "
13144 "- DIE at 0x%x [in module %s]"),
13145 die->offset.sect_off, objfile->name);
13146 TYPE_TARGET_TYPE (this_type) = NULL;
13147 }
13148 return this_type;
13149 }
13150
13151 /* Find a representation of a given base type and install
13152 it in the TYPE field of the die. */
13153
13154 static struct type *
13155 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13156 {
13157 struct objfile *objfile = cu->objfile;
13158 struct type *type;
13159 struct attribute *attr;
13160 int encoding = 0, size = 0;
13161 const char *name;
13162 enum type_code code = TYPE_CODE_INT;
13163 int type_flags = 0;
13164 struct type *target_type = NULL;
13165
13166 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13167 if (attr)
13168 {
13169 encoding = DW_UNSND (attr);
13170 }
13171 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13172 if (attr)
13173 {
13174 size = DW_UNSND (attr);
13175 }
13176 name = dwarf2_name (die, cu);
13177 if (!name)
13178 {
13179 complaint (&symfile_complaints,
13180 _("DW_AT_name missing from DW_TAG_base_type"));
13181 }
13182
13183 switch (encoding)
13184 {
13185 case DW_ATE_address:
13186 /* Turn DW_ATE_address into a void * pointer. */
13187 code = TYPE_CODE_PTR;
13188 type_flags |= TYPE_FLAG_UNSIGNED;
13189 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13190 break;
13191 case DW_ATE_boolean:
13192 code = TYPE_CODE_BOOL;
13193 type_flags |= TYPE_FLAG_UNSIGNED;
13194 break;
13195 case DW_ATE_complex_float:
13196 code = TYPE_CODE_COMPLEX;
13197 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13198 break;
13199 case DW_ATE_decimal_float:
13200 code = TYPE_CODE_DECFLOAT;
13201 break;
13202 case DW_ATE_float:
13203 code = TYPE_CODE_FLT;
13204 break;
13205 case DW_ATE_signed:
13206 break;
13207 case DW_ATE_unsigned:
13208 type_flags |= TYPE_FLAG_UNSIGNED;
13209 if (cu->language == language_fortran
13210 && name
13211 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13212 code = TYPE_CODE_CHAR;
13213 break;
13214 case DW_ATE_signed_char:
13215 if (cu->language == language_ada || cu->language == language_m2
13216 || cu->language == language_pascal
13217 || cu->language == language_fortran)
13218 code = TYPE_CODE_CHAR;
13219 break;
13220 case DW_ATE_unsigned_char:
13221 if (cu->language == language_ada || cu->language == language_m2
13222 || cu->language == language_pascal
13223 || cu->language == language_fortran)
13224 code = TYPE_CODE_CHAR;
13225 type_flags |= TYPE_FLAG_UNSIGNED;
13226 break;
13227 case DW_ATE_UTF:
13228 /* We just treat this as an integer and then recognize the
13229 type by name elsewhere. */
13230 break;
13231
13232 default:
13233 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13234 dwarf_type_encoding_name (encoding));
13235 break;
13236 }
13237
13238 type = init_type (code, size, type_flags, NULL, objfile);
13239 TYPE_NAME (type) = name;
13240 TYPE_TARGET_TYPE (type) = target_type;
13241
13242 if (name && strcmp (name, "char") == 0)
13243 TYPE_NOSIGN (type) = 1;
13244
13245 return set_die_type (die, type, cu);
13246 }
13247
13248 /* Read the given DW_AT_subrange DIE. */
13249
13250 static struct type *
13251 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13252 {
13253 struct type *base_type, *orig_base_type;
13254 struct type *range_type;
13255 struct attribute *attr;
13256 LONGEST low, high;
13257 int low_default_is_valid;
13258 const char *name;
13259 LONGEST negative_mask;
13260
13261 orig_base_type = die_type (die, cu);
13262 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13263 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13264 creating the range type, but we use the result of check_typedef
13265 when examining properties of the type. */
13266 base_type = check_typedef (orig_base_type);
13267
13268 /* The die_type call above may have already set the type for this DIE. */
13269 range_type = get_die_type (die, cu);
13270 if (range_type)
13271 return range_type;
13272
13273 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13274 omitting DW_AT_lower_bound. */
13275 switch (cu->language)
13276 {
13277 case language_c:
13278 case language_cplus:
13279 low = 0;
13280 low_default_is_valid = 1;
13281 break;
13282 case language_fortran:
13283 low = 1;
13284 low_default_is_valid = 1;
13285 break;
13286 case language_d:
13287 case language_java:
13288 case language_objc:
13289 low = 0;
13290 low_default_is_valid = (cu->header.version >= 4);
13291 break;
13292 case language_ada:
13293 case language_m2:
13294 case language_pascal:
13295 low = 1;
13296 low_default_is_valid = (cu->header.version >= 4);
13297 break;
13298 default:
13299 low = 0;
13300 low_default_is_valid = 0;
13301 break;
13302 }
13303
13304 /* FIXME: For variable sized arrays either of these could be
13305 a variable rather than a constant value. We'll allow it,
13306 but we don't know how to handle it. */
13307 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13308 if (attr)
13309 low = dwarf2_get_attr_constant_value (attr, low);
13310 else if (!low_default_is_valid)
13311 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13312 "- DIE at 0x%x [in module %s]"),
13313 die->offset.sect_off, cu->objfile->name);
13314
13315 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13316 if (attr)
13317 {
13318 if (attr_form_is_block (attr) || is_ref_attr (attr))
13319 {
13320 /* GCC encodes arrays with unspecified or dynamic length
13321 with a DW_FORM_block1 attribute or a reference attribute.
13322 FIXME: GDB does not yet know how to handle dynamic
13323 arrays properly, treat them as arrays with unspecified
13324 length for now.
13325
13326 FIXME: jimb/2003-09-22: GDB does not really know
13327 how to handle arrays of unspecified length
13328 either; we just represent them as zero-length
13329 arrays. Choose an appropriate upper bound given
13330 the lower bound we've computed above. */
13331 high = low - 1;
13332 }
13333 else
13334 high = dwarf2_get_attr_constant_value (attr, 1);
13335 }
13336 else
13337 {
13338 attr = dwarf2_attr (die, DW_AT_count, cu);
13339 if (attr)
13340 {
13341 int count = dwarf2_get_attr_constant_value (attr, 1);
13342 high = low + count - 1;
13343 }
13344 else
13345 {
13346 /* Unspecified array length. */
13347 high = low - 1;
13348 }
13349 }
13350
13351 /* Dwarf-2 specifications explicitly allows to create subrange types
13352 without specifying a base type.
13353 In that case, the base type must be set to the type of
13354 the lower bound, upper bound or count, in that order, if any of these
13355 three attributes references an object that has a type.
13356 If no base type is found, the Dwarf-2 specifications say that
13357 a signed integer type of size equal to the size of an address should
13358 be used.
13359 For the following C code: `extern char gdb_int [];'
13360 GCC produces an empty range DIE.
13361 FIXME: muller/2010-05-28: Possible references to object for low bound,
13362 high bound or count are not yet handled by this code. */
13363 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13364 {
13365 struct objfile *objfile = cu->objfile;
13366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13367 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13368 struct type *int_type = objfile_type (objfile)->builtin_int;
13369
13370 /* Test "int", "long int", and "long long int" objfile types,
13371 and select the first one having a size above or equal to the
13372 architecture address size. */
13373 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13374 base_type = int_type;
13375 else
13376 {
13377 int_type = objfile_type (objfile)->builtin_long;
13378 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13379 base_type = int_type;
13380 else
13381 {
13382 int_type = objfile_type (objfile)->builtin_long_long;
13383 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13384 base_type = int_type;
13385 }
13386 }
13387 }
13388
13389 negative_mask =
13390 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13391 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13392 low |= negative_mask;
13393 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13394 high |= negative_mask;
13395
13396 range_type = create_range_type (NULL, orig_base_type, low, high);
13397
13398 /* Mark arrays with dynamic length at least as an array of unspecified
13399 length. GDB could check the boundary but before it gets implemented at
13400 least allow accessing the array elements. */
13401 if (attr && attr_form_is_block (attr))
13402 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13403
13404 /* Ada expects an empty array on no boundary attributes. */
13405 if (attr == NULL && cu->language != language_ada)
13406 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13407
13408 name = dwarf2_name (die, cu);
13409 if (name)
13410 TYPE_NAME (range_type) = name;
13411
13412 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13413 if (attr)
13414 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13415
13416 set_die_type (die, range_type, cu);
13417
13418 /* set_die_type should be already done. */
13419 set_descriptive_type (range_type, die, cu);
13420
13421 return range_type;
13422 }
13423
13424 static struct type *
13425 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13426 {
13427 struct type *type;
13428
13429 /* For now, we only support the C meaning of an unspecified type: void. */
13430
13431 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13432 TYPE_NAME (type) = dwarf2_name (die, cu);
13433
13434 return set_die_type (die, type, cu);
13435 }
13436
13437 /* Read a single die and all its descendents. Set the die's sibling
13438 field to NULL; set other fields in the die correctly, and set all
13439 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13440 location of the info_ptr after reading all of those dies. PARENT
13441 is the parent of the die in question. */
13442
13443 static struct die_info *
13444 read_die_and_children (const struct die_reader_specs *reader,
13445 const gdb_byte *info_ptr,
13446 const gdb_byte **new_info_ptr,
13447 struct die_info *parent)
13448 {
13449 struct die_info *die;
13450 const gdb_byte *cur_ptr;
13451 int has_children;
13452
13453 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13454 if (die == NULL)
13455 {
13456 *new_info_ptr = cur_ptr;
13457 return NULL;
13458 }
13459 store_in_ref_table (die, reader->cu);
13460
13461 if (has_children)
13462 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13463 else
13464 {
13465 die->child = NULL;
13466 *new_info_ptr = cur_ptr;
13467 }
13468
13469 die->sibling = NULL;
13470 die->parent = parent;
13471 return die;
13472 }
13473
13474 /* Read a die, all of its descendents, and all of its siblings; set
13475 all of the fields of all of the dies correctly. Arguments are as
13476 in read_die_and_children. */
13477
13478 static struct die_info *
13479 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13480 const gdb_byte *info_ptr,
13481 const gdb_byte **new_info_ptr,
13482 struct die_info *parent)
13483 {
13484 struct die_info *first_die, *last_sibling;
13485 const gdb_byte *cur_ptr;
13486
13487 cur_ptr = info_ptr;
13488 first_die = last_sibling = NULL;
13489
13490 while (1)
13491 {
13492 struct die_info *die
13493 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13494
13495 if (die == NULL)
13496 {
13497 *new_info_ptr = cur_ptr;
13498 return first_die;
13499 }
13500
13501 if (!first_die)
13502 first_die = die;
13503 else
13504 last_sibling->sibling = die;
13505
13506 last_sibling = die;
13507 }
13508 }
13509
13510 /* Read a die, all of its descendents, and all of its siblings; set
13511 all of the fields of all of the dies correctly. Arguments are as
13512 in read_die_and_children.
13513 This the main entry point for reading a DIE and all its children. */
13514
13515 static struct die_info *
13516 read_die_and_siblings (const struct die_reader_specs *reader,
13517 const gdb_byte *info_ptr,
13518 const gdb_byte **new_info_ptr,
13519 struct die_info *parent)
13520 {
13521 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13522 new_info_ptr, parent);
13523
13524 if (dwarf2_die_debug)
13525 {
13526 fprintf_unfiltered (gdb_stdlog,
13527 "Read die from %s@0x%x of %s:\n",
13528 bfd_section_name (reader->abfd,
13529 reader->die_section->asection),
13530 (unsigned) (info_ptr - reader->die_section->buffer),
13531 bfd_get_filename (reader->abfd));
13532 dump_die (die, dwarf2_die_debug);
13533 }
13534
13535 return die;
13536 }
13537
13538 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13539 attributes.
13540 The caller is responsible for filling in the extra attributes
13541 and updating (*DIEP)->num_attrs.
13542 Set DIEP to point to a newly allocated die with its information,
13543 except for its child, sibling, and parent fields.
13544 Set HAS_CHILDREN to tell whether the die has children or not. */
13545
13546 static const gdb_byte *
13547 read_full_die_1 (const struct die_reader_specs *reader,
13548 struct die_info **diep, const gdb_byte *info_ptr,
13549 int *has_children, int num_extra_attrs)
13550 {
13551 unsigned int abbrev_number, bytes_read, i;
13552 sect_offset offset;
13553 struct abbrev_info *abbrev;
13554 struct die_info *die;
13555 struct dwarf2_cu *cu = reader->cu;
13556 bfd *abfd = reader->abfd;
13557
13558 offset.sect_off = info_ptr - reader->buffer;
13559 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13560 info_ptr += bytes_read;
13561 if (!abbrev_number)
13562 {
13563 *diep = NULL;
13564 *has_children = 0;
13565 return info_ptr;
13566 }
13567
13568 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13569 if (!abbrev)
13570 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13571 abbrev_number,
13572 bfd_get_filename (abfd));
13573
13574 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13575 die->offset = offset;
13576 die->tag = abbrev->tag;
13577 die->abbrev = abbrev_number;
13578
13579 /* Make the result usable.
13580 The caller needs to update num_attrs after adding the extra
13581 attributes. */
13582 die->num_attrs = abbrev->num_attrs;
13583
13584 for (i = 0; i < abbrev->num_attrs; ++i)
13585 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13586 info_ptr);
13587
13588 *diep = die;
13589 *has_children = abbrev->has_children;
13590 return info_ptr;
13591 }
13592
13593 /* Read a die and all its attributes.
13594 Set DIEP to point to a newly allocated die with its information,
13595 except for its child, sibling, and parent fields.
13596 Set HAS_CHILDREN to tell whether the die has children or not. */
13597
13598 static const gdb_byte *
13599 read_full_die (const struct die_reader_specs *reader,
13600 struct die_info **diep, const gdb_byte *info_ptr,
13601 int *has_children)
13602 {
13603 const gdb_byte *result;
13604
13605 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13606
13607 if (dwarf2_die_debug)
13608 {
13609 fprintf_unfiltered (gdb_stdlog,
13610 "Read die from %s@0x%x of %s:\n",
13611 bfd_section_name (reader->abfd,
13612 reader->die_section->asection),
13613 (unsigned) (info_ptr - reader->die_section->buffer),
13614 bfd_get_filename (reader->abfd));
13615 dump_die (*diep, dwarf2_die_debug);
13616 }
13617
13618 return result;
13619 }
13620 \f
13621 /* Abbreviation tables.
13622
13623 In DWARF version 2, the description of the debugging information is
13624 stored in a separate .debug_abbrev section. Before we read any
13625 dies from a section we read in all abbreviations and install them
13626 in a hash table. */
13627
13628 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13629
13630 static struct abbrev_info *
13631 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13632 {
13633 struct abbrev_info *abbrev;
13634
13635 abbrev = (struct abbrev_info *)
13636 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13637 memset (abbrev, 0, sizeof (struct abbrev_info));
13638 return abbrev;
13639 }
13640
13641 /* Add an abbreviation to the table. */
13642
13643 static void
13644 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13645 unsigned int abbrev_number,
13646 struct abbrev_info *abbrev)
13647 {
13648 unsigned int hash_number;
13649
13650 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13651 abbrev->next = abbrev_table->abbrevs[hash_number];
13652 abbrev_table->abbrevs[hash_number] = abbrev;
13653 }
13654
13655 /* Look up an abbrev in the table.
13656 Returns NULL if the abbrev is not found. */
13657
13658 static struct abbrev_info *
13659 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13660 unsigned int abbrev_number)
13661 {
13662 unsigned int hash_number;
13663 struct abbrev_info *abbrev;
13664
13665 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13666 abbrev = abbrev_table->abbrevs[hash_number];
13667
13668 while (abbrev)
13669 {
13670 if (abbrev->number == abbrev_number)
13671 return abbrev;
13672 abbrev = abbrev->next;
13673 }
13674 return NULL;
13675 }
13676
13677 /* Read in an abbrev table. */
13678
13679 static struct abbrev_table *
13680 abbrev_table_read_table (struct dwarf2_section_info *section,
13681 sect_offset offset)
13682 {
13683 struct objfile *objfile = dwarf2_per_objfile->objfile;
13684 bfd *abfd = section->asection->owner;
13685 struct abbrev_table *abbrev_table;
13686 const gdb_byte *abbrev_ptr;
13687 struct abbrev_info *cur_abbrev;
13688 unsigned int abbrev_number, bytes_read, abbrev_name;
13689 unsigned int abbrev_form;
13690 struct attr_abbrev *cur_attrs;
13691 unsigned int allocated_attrs;
13692
13693 abbrev_table = XMALLOC (struct abbrev_table);
13694 abbrev_table->offset = offset;
13695 obstack_init (&abbrev_table->abbrev_obstack);
13696 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13697 (ABBREV_HASH_SIZE
13698 * sizeof (struct abbrev_info *)));
13699 memset (abbrev_table->abbrevs, 0,
13700 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13701
13702 dwarf2_read_section (objfile, section);
13703 abbrev_ptr = section->buffer + offset.sect_off;
13704 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13705 abbrev_ptr += bytes_read;
13706
13707 allocated_attrs = ATTR_ALLOC_CHUNK;
13708 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13709
13710 /* Loop until we reach an abbrev number of 0. */
13711 while (abbrev_number)
13712 {
13713 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13714
13715 /* read in abbrev header */
13716 cur_abbrev->number = abbrev_number;
13717 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13718 abbrev_ptr += bytes_read;
13719 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13720 abbrev_ptr += 1;
13721
13722 /* now read in declarations */
13723 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13724 abbrev_ptr += bytes_read;
13725 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13726 abbrev_ptr += bytes_read;
13727 while (abbrev_name)
13728 {
13729 if (cur_abbrev->num_attrs == allocated_attrs)
13730 {
13731 allocated_attrs += ATTR_ALLOC_CHUNK;
13732 cur_attrs
13733 = xrealloc (cur_attrs, (allocated_attrs
13734 * sizeof (struct attr_abbrev)));
13735 }
13736
13737 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13738 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13739 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13740 abbrev_ptr += bytes_read;
13741 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13742 abbrev_ptr += bytes_read;
13743 }
13744
13745 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13746 (cur_abbrev->num_attrs
13747 * sizeof (struct attr_abbrev)));
13748 memcpy (cur_abbrev->attrs, cur_attrs,
13749 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13750
13751 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13752
13753 /* Get next abbreviation.
13754 Under Irix6 the abbreviations for a compilation unit are not
13755 always properly terminated with an abbrev number of 0.
13756 Exit loop if we encounter an abbreviation which we have
13757 already read (which means we are about to read the abbreviations
13758 for the next compile unit) or if the end of the abbreviation
13759 table is reached. */
13760 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13761 break;
13762 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13763 abbrev_ptr += bytes_read;
13764 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13765 break;
13766 }
13767
13768 xfree (cur_attrs);
13769 return abbrev_table;
13770 }
13771
13772 /* Free the resources held by ABBREV_TABLE. */
13773
13774 static void
13775 abbrev_table_free (struct abbrev_table *abbrev_table)
13776 {
13777 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13778 xfree (abbrev_table);
13779 }
13780
13781 /* Same as abbrev_table_free but as a cleanup.
13782 We pass in a pointer to the pointer to the table so that we can
13783 set the pointer to NULL when we're done. It also simplifies
13784 build_type_unit_groups. */
13785
13786 static void
13787 abbrev_table_free_cleanup (void *table_ptr)
13788 {
13789 struct abbrev_table **abbrev_table_ptr = table_ptr;
13790
13791 if (*abbrev_table_ptr != NULL)
13792 abbrev_table_free (*abbrev_table_ptr);
13793 *abbrev_table_ptr = NULL;
13794 }
13795
13796 /* Read the abbrev table for CU from ABBREV_SECTION. */
13797
13798 static void
13799 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13800 struct dwarf2_section_info *abbrev_section)
13801 {
13802 cu->abbrev_table =
13803 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13804 }
13805
13806 /* Release the memory used by the abbrev table for a compilation unit. */
13807
13808 static void
13809 dwarf2_free_abbrev_table (void *ptr_to_cu)
13810 {
13811 struct dwarf2_cu *cu = ptr_to_cu;
13812
13813 if (cu->abbrev_table != NULL)
13814 abbrev_table_free (cu->abbrev_table);
13815 /* Set this to NULL so that we SEGV if we try to read it later,
13816 and also because free_comp_unit verifies this is NULL. */
13817 cu->abbrev_table = NULL;
13818 }
13819 \f
13820 /* Returns nonzero if TAG represents a type that we might generate a partial
13821 symbol for. */
13822
13823 static int
13824 is_type_tag_for_partial (int tag)
13825 {
13826 switch (tag)
13827 {
13828 #if 0
13829 /* Some types that would be reasonable to generate partial symbols for,
13830 that we don't at present. */
13831 case DW_TAG_array_type:
13832 case DW_TAG_file_type:
13833 case DW_TAG_ptr_to_member_type:
13834 case DW_TAG_set_type:
13835 case DW_TAG_string_type:
13836 case DW_TAG_subroutine_type:
13837 #endif
13838 case DW_TAG_base_type:
13839 case DW_TAG_class_type:
13840 case DW_TAG_interface_type:
13841 case DW_TAG_enumeration_type:
13842 case DW_TAG_structure_type:
13843 case DW_TAG_subrange_type:
13844 case DW_TAG_typedef:
13845 case DW_TAG_union_type:
13846 return 1;
13847 default:
13848 return 0;
13849 }
13850 }
13851
13852 /* Load all DIEs that are interesting for partial symbols into memory. */
13853
13854 static struct partial_die_info *
13855 load_partial_dies (const struct die_reader_specs *reader,
13856 const gdb_byte *info_ptr, int building_psymtab)
13857 {
13858 struct dwarf2_cu *cu = reader->cu;
13859 struct objfile *objfile = cu->objfile;
13860 struct partial_die_info *part_die;
13861 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13862 struct abbrev_info *abbrev;
13863 unsigned int bytes_read;
13864 unsigned int load_all = 0;
13865 int nesting_level = 1;
13866
13867 parent_die = NULL;
13868 last_die = NULL;
13869
13870 gdb_assert (cu->per_cu != NULL);
13871 if (cu->per_cu->load_all_dies)
13872 load_all = 1;
13873
13874 cu->partial_dies
13875 = htab_create_alloc_ex (cu->header.length / 12,
13876 partial_die_hash,
13877 partial_die_eq,
13878 NULL,
13879 &cu->comp_unit_obstack,
13880 hashtab_obstack_allocate,
13881 dummy_obstack_deallocate);
13882
13883 part_die = obstack_alloc (&cu->comp_unit_obstack,
13884 sizeof (struct partial_die_info));
13885
13886 while (1)
13887 {
13888 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13889
13890 /* A NULL abbrev means the end of a series of children. */
13891 if (abbrev == NULL)
13892 {
13893 if (--nesting_level == 0)
13894 {
13895 /* PART_DIE was probably the last thing allocated on the
13896 comp_unit_obstack, so we could call obstack_free
13897 here. We don't do that because the waste is small,
13898 and will be cleaned up when we're done with this
13899 compilation unit. This way, we're also more robust
13900 against other users of the comp_unit_obstack. */
13901 return first_die;
13902 }
13903 info_ptr += bytes_read;
13904 last_die = parent_die;
13905 parent_die = parent_die->die_parent;
13906 continue;
13907 }
13908
13909 /* Check for template arguments. We never save these; if
13910 they're seen, we just mark the parent, and go on our way. */
13911 if (parent_die != NULL
13912 && cu->language == language_cplus
13913 && (abbrev->tag == DW_TAG_template_type_param
13914 || abbrev->tag == DW_TAG_template_value_param))
13915 {
13916 parent_die->has_template_arguments = 1;
13917
13918 if (!load_all)
13919 {
13920 /* We don't need a partial DIE for the template argument. */
13921 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13922 continue;
13923 }
13924 }
13925
13926 /* We only recurse into c++ subprograms looking for template arguments.
13927 Skip their other children. */
13928 if (!load_all
13929 && cu->language == language_cplus
13930 && parent_die != NULL
13931 && parent_die->tag == DW_TAG_subprogram)
13932 {
13933 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13934 continue;
13935 }
13936
13937 /* Check whether this DIE is interesting enough to save. Normally
13938 we would not be interested in members here, but there may be
13939 later variables referencing them via DW_AT_specification (for
13940 static members). */
13941 if (!load_all
13942 && !is_type_tag_for_partial (abbrev->tag)
13943 && abbrev->tag != DW_TAG_constant
13944 && abbrev->tag != DW_TAG_enumerator
13945 && abbrev->tag != DW_TAG_subprogram
13946 && abbrev->tag != DW_TAG_lexical_block
13947 && abbrev->tag != DW_TAG_variable
13948 && abbrev->tag != DW_TAG_namespace
13949 && abbrev->tag != DW_TAG_module
13950 && abbrev->tag != DW_TAG_member
13951 && abbrev->tag != DW_TAG_imported_unit)
13952 {
13953 /* Otherwise we skip to the next sibling, if any. */
13954 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13955 continue;
13956 }
13957
13958 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13959 info_ptr);
13960
13961 /* This two-pass algorithm for processing partial symbols has a
13962 high cost in cache pressure. Thus, handle some simple cases
13963 here which cover the majority of C partial symbols. DIEs
13964 which neither have specification tags in them, nor could have
13965 specification tags elsewhere pointing at them, can simply be
13966 processed and discarded.
13967
13968 This segment is also optional; scan_partial_symbols and
13969 add_partial_symbol will handle these DIEs if we chain
13970 them in normally. When compilers which do not emit large
13971 quantities of duplicate debug information are more common,
13972 this code can probably be removed. */
13973
13974 /* Any complete simple types at the top level (pretty much all
13975 of them, for a language without namespaces), can be processed
13976 directly. */
13977 if (parent_die == NULL
13978 && part_die->has_specification == 0
13979 && part_die->is_declaration == 0
13980 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13981 || part_die->tag == DW_TAG_base_type
13982 || part_die->tag == DW_TAG_subrange_type))
13983 {
13984 if (building_psymtab && part_die->name != NULL)
13985 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13986 VAR_DOMAIN, LOC_TYPEDEF,
13987 &objfile->static_psymbols,
13988 0, (CORE_ADDR) 0, cu->language, objfile);
13989 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13990 continue;
13991 }
13992
13993 /* The exception for DW_TAG_typedef with has_children above is
13994 a workaround of GCC PR debug/47510. In the case of this complaint
13995 type_name_no_tag_or_error will error on such types later.
13996
13997 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13998 it could not find the child DIEs referenced later, this is checked
13999 above. In correct DWARF DW_TAG_typedef should have no children. */
14000
14001 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14002 complaint (&symfile_complaints,
14003 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14004 "- DIE at 0x%x [in module %s]"),
14005 part_die->offset.sect_off, objfile->name);
14006
14007 /* If we're at the second level, and we're an enumerator, and
14008 our parent has no specification (meaning possibly lives in a
14009 namespace elsewhere), then we can add the partial symbol now
14010 instead of queueing it. */
14011 if (part_die->tag == DW_TAG_enumerator
14012 && parent_die != NULL
14013 && parent_die->die_parent == NULL
14014 && parent_die->tag == DW_TAG_enumeration_type
14015 && parent_die->has_specification == 0)
14016 {
14017 if (part_die->name == NULL)
14018 complaint (&symfile_complaints,
14019 _("malformed enumerator DIE ignored"));
14020 else if (building_psymtab)
14021 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14022 VAR_DOMAIN, LOC_CONST,
14023 (cu->language == language_cplus
14024 || cu->language == language_java)
14025 ? &objfile->global_psymbols
14026 : &objfile->static_psymbols,
14027 0, (CORE_ADDR) 0, cu->language, objfile);
14028
14029 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14030 continue;
14031 }
14032
14033 /* We'll save this DIE so link it in. */
14034 part_die->die_parent = parent_die;
14035 part_die->die_sibling = NULL;
14036 part_die->die_child = NULL;
14037
14038 if (last_die && last_die == parent_die)
14039 last_die->die_child = part_die;
14040 else if (last_die)
14041 last_die->die_sibling = part_die;
14042
14043 last_die = part_die;
14044
14045 if (first_die == NULL)
14046 first_die = part_die;
14047
14048 /* Maybe add the DIE to the hash table. Not all DIEs that we
14049 find interesting need to be in the hash table, because we
14050 also have the parent/sibling/child chains; only those that we
14051 might refer to by offset later during partial symbol reading.
14052
14053 For now this means things that might have be the target of a
14054 DW_AT_specification, DW_AT_abstract_origin, or
14055 DW_AT_extension. DW_AT_extension will refer only to
14056 namespaces; DW_AT_abstract_origin refers to functions (and
14057 many things under the function DIE, but we do not recurse
14058 into function DIEs during partial symbol reading) and
14059 possibly variables as well; DW_AT_specification refers to
14060 declarations. Declarations ought to have the DW_AT_declaration
14061 flag. It happens that GCC forgets to put it in sometimes, but
14062 only for functions, not for types.
14063
14064 Adding more things than necessary to the hash table is harmless
14065 except for the performance cost. Adding too few will result in
14066 wasted time in find_partial_die, when we reread the compilation
14067 unit with load_all_dies set. */
14068
14069 if (load_all
14070 || abbrev->tag == DW_TAG_constant
14071 || abbrev->tag == DW_TAG_subprogram
14072 || abbrev->tag == DW_TAG_variable
14073 || abbrev->tag == DW_TAG_namespace
14074 || part_die->is_declaration)
14075 {
14076 void **slot;
14077
14078 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14079 part_die->offset.sect_off, INSERT);
14080 *slot = part_die;
14081 }
14082
14083 part_die = obstack_alloc (&cu->comp_unit_obstack,
14084 sizeof (struct partial_die_info));
14085
14086 /* For some DIEs we want to follow their children (if any). For C
14087 we have no reason to follow the children of structures; for other
14088 languages we have to, so that we can get at method physnames
14089 to infer fully qualified class names, for DW_AT_specification,
14090 and for C++ template arguments. For C++, we also look one level
14091 inside functions to find template arguments (if the name of the
14092 function does not already contain the template arguments).
14093
14094 For Ada, we need to scan the children of subprograms and lexical
14095 blocks as well because Ada allows the definition of nested
14096 entities that could be interesting for the debugger, such as
14097 nested subprograms for instance. */
14098 if (last_die->has_children
14099 && (load_all
14100 || last_die->tag == DW_TAG_namespace
14101 || last_die->tag == DW_TAG_module
14102 || last_die->tag == DW_TAG_enumeration_type
14103 || (cu->language == language_cplus
14104 && last_die->tag == DW_TAG_subprogram
14105 && (last_die->name == NULL
14106 || strchr (last_die->name, '<') == NULL))
14107 || (cu->language != language_c
14108 && (last_die->tag == DW_TAG_class_type
14109 || last_die->tag == DW_TAG_interface_type
14110 || last_die->tag == DW_TAG_structure_type
14111 || last_die->tag == DW_TAG_union_type))
14112 || (cu->language == language_ada
14113 && (last_die->tag == DW_TAG_subprogram
14114 || last_die->tag == DW_TAG_lexical_block))))
14115 {
14116 nesting_level++;
14117 parent_die = last_die;
14118 continue;
14119 }
14120
14121 /* Otherwise we skip to the next sibling, if any. */
14122 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14123
14124 /* Back to the top, do it again. */
14125 }
14126 }
14127
14128 /* Read a minimal amount of information into the minimal die structure. */
14129
14130 static const gdb_byte *
14131 read_partial_die (const struct die_reader_specs *reader,
14132 struct partial_die_info *part_die,
14133 struct abbrev_info *abbrev, unsigned int abbrev_len,
14134 const gdb_byte *info_ptr)
14135 {
14136 struct dwarf2_cu *cu = reader->cu;
14137 struct objfile *objfile = cu->objfile;
14138 const gdb_byte *buffer = reader->buffer;
14139 unsigned int i;
14140 struct attribute attr;
14141 int has_low_pc_attr = 0;
14142 int has_high_pc_attr = 0;
14143 int high_pc_relative = 0;
14144
14145 memset (part_die, 0, sizeof (struct partial_die_info));
14146
14147 part_die->offset.sect_off = info_ptr - buffer;
14148
14149 info_ptr += abbrev_len;
14150
14151 if (abbrev == NULL)
14152 return info_ptr;
14153
14154 part_die->tag = abbrev->tag;
14155 part_die->has_children = abbrev->has_children;
14156
14157 for (i = 0; i < abbrev->num_attrs; ++i)
14158 {
14159 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14160
14161 /* Store the data if it is of an attribute we want to keep in a
14162 partial symbol table. */
14163 switch (attr.name)
14164 {
14165 case DW_AT_name:
14166 switch (part_die->tag)
14167 {
14168 case DW_TAG_compile_unit:
14169 case DW_TAG_partial_unit:
14170 case DW_TAG_type_unit:
14171 /* Compilation units have a DW_AT_name that is a filename, not
14172 a source language identifier. */
14173 case DW_TAG_enumeration_type:
14174 case DW_TAG_enumerator:
14175 /* These tags always have simple identifiers already; no need
14176 to canonicalize them. */
14177 part_die->name = DW_STRING (&attr);
14178 break;
14179 default:
14180 part_die->name
14181 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14182 &objfile->objfile_obstack);
14183 break;
14184 }
14185 break;
14186 case DW_AT_linkage_name:
14187 case DW_AT_MIPS_linkage_name:
14188 /* Note that both forms of linkage name might appear. We
14189 assume they will be the same, and we only store the last
14190 one we see. */
14191 if (cu->language == language_ada)
14192 part_die->name = DW_STRING (&attr);
14193 part_die->linkage_name = DW_STRING (&attr);
14194 break;
14195 case DW_AT_low_pc:
14196 has_low_pc_attr = 1;
14197 part_die->lowpc = DW_ADDR (&attr);
14198 break;
14199 case DW_AT_high_pc:
14200 has_high_pc_attr = 1;
14201 if (attr.form == DW_FORM_addr
14202 || attr.form == DW_FORM_GNU_addr_index)
14203 part_die->highpc = DW_ADDR (&attr);
14204 else
14205 {
14206 high_pc_relative = 1;
14207 part_die->highpc = DW_UNSND (&attr);
14208 }
14209 break;
14210 case DW_AT_location:
14211 /* Support the .debug_loc offsets. */
14212 if (attr_form_is_block (&attr))
14213 {
14214 part_die->d.locdesc = DW_BLOCK (&attr);
14215 }
14216 else if (attr_form_is_section_offset (&attr))
14217 {
14218 dwarf2_complex_location_expr_complaint ();
14219 }
14220 else
14221 {
14222 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14223 "partial symbol information");
14224 }
14225 break;
14226 case DW_AT_external:
14227 part_die->is_external = DW_UNSND (&attr);
14228 break;
14229 case DW_AT_declaration:
14230 part_die->is_declaration = DW_UNSND (&attr);
14231 break;
14232 case DW_AT_type:
14233 part_die->has_type = 1;
14234 break;
14235 case DW_AT_abstract_origin:
14236 case DW_AT_specification:
14237 case DW_AT_extension:
14238 part_die->has_specification = 1;
14239 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14240 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14241 || cu->per_cu->is_dwz);
14242 break;
14243 case DW_AT_sibling:
14244 /* Ignore absolute siblings, they might point outside of
14245 the current compile unit. */
14246 if (attr.form == DW_FORM_ref_addr)
14247 complaint (&symfile_complaints,
14248 _("ignoring absolute DW_AT_sibling"));
14249 else
14250 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14251 break;
14252 case DW_AT_byte_size:
14253 part_die->has_byte_size = 1;
14254 break;
14255 case DW_AT_calling_convention:
14256 /* DWARF doesn't provide a way to identify a program's source-level
14257 entry point. DW_AT_calling_convention attributes are only meant
14258 to describe functions' calling conventions.
14259
14260 However, because it's a necessary piece of information in
14261 Fortran, and because DW_CC_program is the only piece of debugging
14262 information whose definition refers to a 'main program' at all,
14263 several compilers have begun marking Fortran main programs with
14264 DW_CC_program --- even when those functions use the standard
14265 calling conventions.
14266
14267 So until DWARF specifies a way to provide this information and
14268 compilers pick up the new representation, we'll support this
14269 practice. */
14270 if (DW_UNSND (&attr) == DW_CC_program
14271 && cu->language == language_fortran)
14272 {
14273 set_main_name (part_die->name);
14274
14275 /* As this DIE has a static linkage the name would be difficult
14276 to look up later. */
14277 language_of_main = language_fortran;
14278 }
14279 break;
14280 case DW_AT_inline:
14281 if (DW_UNSND (&attr) == DW_INL_inlined
14282 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14283 part_die->may_be_inlined = 1;
14284 break;
14285
14286 case DW_AT_import:
14287 if (part_die->tag == DW_TAG_imported_unit)
14288 {
14289 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14290 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14291 || cu->per_cu->is_dwz);
14292 }
14293 break;
14294
14295 default:
14296 break;
14297 }
14298 }
14299
14300 if (high_pc_relative)
14301 part_die->highpc += part_die->lowpc;
14302
14303 if (has_low_pc_attr && has_high_pc_attr)
14304 {
14305 /* When using the GNU linker, .gnu.linkonce. sections are used to
14306 eliminate duplicate copies of functions and vtables and such.
14307 The linker will arbitrarily choose one and discard the others.
14308 The AT_*_pc values for such functions refer to local labels in
14309 these sections. If the section from that file was discarded, the
14310 labels are not in the output, so the relocs get a value of 0.
14311 If this is a discarded function, mark the pc bounds as invalid,
14312 so that GDB will ignore it. */
14313 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14314 {
14315 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14316
14317 complaint (&symfile_complaints,
14318 _("DW_AT_low_pc %s is zero "
14319 "for DIE at 0x%x [in module %s]"),
14320 paddress (gdbarch, part_die->lowpc),
14321 part_die->offset.sect_off, objfile->name);
14322 }
14323 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14324 else if (part_die->lowpc >= part_die->highpc)
14325 {
14326 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14327
14328 complaint (&symfile_complaints,
14329 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14330 "for DIE at 0x%x [in module %s]"),
14331 paddress (gdbarch, part_die->lowpc),
14332 paddress (gdbarch, part_die->highpc),
14333 part_die->offset.sect_off, objfile->name);
14334 }
14335 else
14336 part_die->has_pc_info = 1;
14337 }
14338
14339 return info_ptr;
14340 }
14341
14342 /* Find a cached partial DIE at OFFSET in CU. */
14343
14344 static struct partial_die_info *
14345 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14346 {
14347 struct partial_die_info *lookup_die = NULL;
14348 struct partial_die_info part_die;
14349
14350 part_die.offset = offset;
14351 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14352 offset.sect_off);
14353
14354 return lookup_die;
14355 }
14356
14357 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14358 except in the case of .debug_types DIEs which do not reference
14359 outside their CU (they do however referencing other types via
14360 DW_FORM_ref_sig8). */
14361
14362 static struct partial_die_info *
14363 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14364 {
14365 struct objfile *objfile = cu->objfile;
14366 struct dwarf2_per_cu_data *per_cu = NULL;
14367 struct partial_die_info *pd = NULL;
14368
14369 if (offset_in_dwz == cu->per_cu->is_dwz
14370 && offset_in_cu_p (&cu->header, offset))
14371 {
14372 pd = find_partial_die_in_comp_unit (offset, cu);
14373 if (pd != NULL)
14374 return pd;
14375 /* We missed recording what we needed.
14376 Load all dies and try again. */
14377 per_cu = cu->per_cu;
14378 }
14379 else
14380 {
14381 /* TUs don't reference other CUs/TUs (except via type signatures). */
14382 if (cu->per_cu->is_debug_types)
14383 {
14384 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14385 " external reference to offset 0x%lx [in module %s].\n"),
14386 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14387 bfd_get_filename (objfile->obfd));
14388 }
14389 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14390 objfile);
14391
14392 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14393 load_partial_comp_unit (per_cu);
14394
14395 per_cu->cu->last_used = 0;
14396 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14397 }
14398
14399 /* If we didn't find it, and not all dies have been loaded,
14400 load them all and try again. */
14401
14402 if (pd == NULL && per_cu->load_all_dies == 0)
14403 {
14404 per_cu->load_all_dies = 1;
14405
14406 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14407 THIS_CU->cu may already be in use. So we can't just free it and
14408 replace its DIEs with the ones we read in. Instead, we leave those
14409 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14410 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14411 set. */
14412 load_partial_comp_unit (per_cu);
14413
14414 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14415 }
14416
14417 if (pd == NULL)
14418 internal_error (__FILE__, __LINE__,
14419 _("could not find partial DIE 0x%x "
14420 "in cache [from module %s]\n"),
14421 offset.sect_off, bfd_get_filename (objfile->obfd));
14422 return pd;
14423 }
14424
14425 /* See if we can figure out if the class lives in a namespace. We do
14426 this by looking for a member function; its demangled name will
14427 contain namespace info, if there is any. */
14428
14429 static void
14430 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14431 struct dwarf2_cu *cu)
14432 {
14433 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14434 what template types look like, because the demangler
14435 frequently doesn't give the same name as the debug info. We
14436 could fix this by only using the demangled name to get the
14437 prefix (but see comment in read_structure_type). */
14438
14439 struct partial_die_info *real_pdi;
14440 struct partial_die_info *child_pdi;
14441
14442 /* If this DIE (this DIE's specification, if any) has a parent, then
14443 we should not do this. We'll prepend the parent's fully qualified
14444 name when we create the partial symbol. */
14445
14446 real_pdi = struct_pdi;
14447 while (real_pdi->has_specification)
14448 real_pdi = find_partial_die (real_pdi->spec_offset,
14449 real_pdi->spec_is_dwz, cu);
14450
14451 if (real_pdi->die_parent != NULL)
14452 return;
14453
14454 for (child_pdi = struct_pdi->die_child;
14455 child_pdi != NULL;
14456 child_pdi = child_pdi->die_sibling)
14457 {
14458 if (child_pdi->tag == DW_TAG_subprogram
14459 && child_pdi->linkage_name != NULL)
14460 {
14461 char *actual_class_name
14462 = language_class_name_from_physname (cu->language_defn,
14463 child_pdi->linkage_name);
14464 if (actual_class_name != NULL)
14465 {
14466 struct_pdi->name
14467 = obstack_copy0 (&cu->objfile->objfile_obstack,
14468 actual_class_name,
14469 strlen (actual_class_name));
14470 xfree (actual_class_name);
14471 }
14472 break;
14473 }
14474 }
14475 }
14476
14477 /* Adjust PART_DIE before generating a symbol for it. This function
14478 may set the is_external flag or change the DIE's name. */
14479
14480 static void
14481 fixup_partial_die (struct partial_die_info *part_die,
14482 struct dwarf2_cu *cu)
14483 {
14484 /* Once we've fixed up a die, there's no point in doing so again.
14485 This also avoids a memory leak if we were to call
14486 guess_partial_die_structure_name multiple times. */
14487 if (part_die->fixup_called)
14488 return;
14489
14490 /* If we found a reference attribute and the DIE has no name, try
14491 to find a name in the referred to DIE. */
14492
14493 if (part_die->name == NULL && part_die->has_specification)
14494 {
14495 struct partial_die_info *spec_die;
14496
14497 spec_die = find_partial_die (part_die->spec_offset,
14498 part_die->spec_is_dwz, cu);
14499
14500 fixup_partial_die (spec_die, cu);
14501
14502 if (spec_die->name)
14503 {
14504 part_die->name = spec_die->name;
14505
14506 /* Copy DW_AT_external attribute if it is set. */
14507 if (spec_die->is_external)
14508 part_die->is_external = spec_die->is_external;
14509 }
14510 }
14511
14512 /* Set default names for some unnamed DIEs. */
14513
14514 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14515 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14516
14517 /* If there is no parent die to provide a namespace, and there are
14518 children, see if we can determine the namespace from their linkage
14519 name. */
14520 if (cu->language == language_cplus
14521 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14522 && part_die->die_parent == NULL
14523 && part_die->has_children
14524 && (part_die->tag == DW_TAG_class_type
14525 || part_die->tag == DW_TAG_structure_type
14526 || part_die->tag == DW_TAG_union_type))
14527 guess_partial_die_structure_name (part_die, cu);
14528
14529 /* GCC might emit a nameless struct or union that has a linkage
14530 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14531 if (part_die->name == NULL
14532 && (part_die->tag == DW_TAG_class_type
14533 || part_die->tag == DW_TAG_interface_type
14534 || part_die->tag == DW_TAG_structure_type
14535 || part_die->tag == DW_TAG_union_type)
14536 && part_die->linkage_name != NULL)
14537 {
14538 char *demangled;
14539
14540 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14541 if (demangled)
14542 {
14543 const char *base;
14544
14545 /* Strip any leading namespaces/classes, keep only the base name.
14546 DW_AT_name for named DIEs does not contain the prefixes. */
14547 base = strrchr (demangled, ':');
14548 if (base && base > demangled && base[-1] == ':')
14549 base++;
14550 else
14551 base = demangled;
14552
14553 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14554 base, strlen (base));
14555 xfree (demangled);
14556 }
14557 }
14558
14559 part_die->fixup_called = 1;
14560 }
14561
14562 /* Read an attribute value described by an attribute form. */
14563
14564 static const gdb_byte *
14565 read_attribute_value (const struct die_reader_specs *reader,
14566 struct attribute *attr, unsigned form,
14567 const gdb_byte *info_ptr)
14568 {
14569 struct dwarf2_cu *cu = reader->cu;
14570 bfd *abfd = reader->abfd;
14571 struct comp_unit_head *cu_header = &cu->header;
14572 unsigned int bytes_read;
14573 struct dwarf_block *blk;
14574
14575 attr->form = form;
14576 switch (form)
14577 {
14578 case DW_FORM_ref_addr:
14579 if (cu->header.version == 2)
14580 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14581 else
14582 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14583 &cu->header, &bytes_read);
14584 info_ptr += bytes_read;
14585 break;
14586 case DW_FORM_GNU_ref_alt:
14587 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14588 info_ptr += bytes_read;
14589 break;
14590 case DW_FORM_addr:
14591 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14592 info_ptr += bytes_read;
14593 break;
14594 case DW_FORM_block2:
14595 blk = dwarf_alloc_block (cu);
14596 blk->size = read_2_bytes (abfd, info_ptr);
14597 info_ptr += 2;
14598 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14599 info_ptr += blk->size;
14600 DW_BLOCK (attr) = blk;
14601 break;
14602 case DW_FORM_block4:
14603 blk = dwarf_alloc_block (cu);
14604 blk->size = read_4_bytes (abfd, info_ptr);
14605 info_ptr += 4;
14606 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14607 info_ptr += blk->size;
14608 DW_BLOCK (attr) = blk;
14609 break;
14610 case DW_FORM_data2:
14611 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14612 info_ptr += 2;
14613 break;
14614 case DW_FORM_data4:
14615 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14616 info_ptr += 4;
14617 break;
14618 case DW_FORM_data8:
14619 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14620 info_ptr += 8;
14621 break;
14622 case DW_FORM_sec_offset:
14623 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14624 info_ptr += bytes_read;
14625 break;
14626 case DW_FORM_string:
14627 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14628 DW_STRING_IS_CANONICAL (attr) = 0;
14629 info_ptr += bytes_read;
14630 break;
14631 case DW_FORM_strp:
14632 if (!cu->per_cu->is_dwz)
14633 {
14634 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14635 &bytes_read);
14636 DW_STRING_IS_CANONICAL (attr) = 0;
14637 info_ptr += bytes_read;
14638 break;
14639 }
14640 /* FALLTHROUGH */
14641 case DW_FORM_GNU_strp_alt:
14642 {
14643 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14644 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14645 &bytes_read);
14646
14647 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14648 DW_STRING_IS_CANONICAL (attr) = 0;
14649 info_ptr += bytes_read;
14650 }
14651 break;
14652 case DW_FORM_exprloc:
14653 case DW_FORM_block:
14654 blk = dwarf_alloc_block (cu);
14655 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14656 info_ptr += bytes_read;
14657 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14658 info_ptr += blk->size;
14659 DW_BLOCK (attr) = blk;
14660 break;
14661 case DW_FORM_block1:
14662 blk = dwarf_alloc_block (cu);
14663 blk->size = read_1_byte (abfd, info_ptr);
14664 info_ptr += 1;
14665 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14666 info_ptr += blk->size;
14667 DW_BLOCK (attr) = blk;
14668 break;
14669 case DW_FORM_data1:
14670 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14671 info_ptr += 1;
14672 break;
14673 case DW_FORM_flag:
14674 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14675 info_ptr += 1;
14676 break;
14677 case DW_FORM_flag_present:
14678 DW_UNSND (attr) = 1;
14679 break;
14680 case DW_FORM_sdata:
14681 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14682 info_ptr += bytes_read;
14683 break;
14684 case DW_FORM_udata:
14685 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14686 info_ptr += bytes_read;
14687 break;
14688 case DW_FORM_ref1:
14689 DW_UNSND (attr) = (cu->header.offset.sect_off
14690 + read_1_byte (abfd, info_ptr));
14691 info_ptr += 1;
14692 break;
14693 case DW_FORM_ref2:
14694 DW_UNSND (attr) = (cu->header.offset.sect_off
14695 + read_2_bytes (abfd, info_ptr));
14696 info_ptr += 2;
14697 break;
14698 case DW_FORM_ref4:
14699 DW_UNSND (attr) = (cu->header.offset.sect_off
14700 + read_4_bytes (abfd, info_ptr));
14701 info_ptr += 4;
14702 break;
14703 case DW_FORM_ref8:
14704 DW_UNSND (attr) = (cu->header.offset.sect_off
14705 + read_8_bytes (abfd, info_ptr));
14706 info_ptr += 8;
14707 break;
14708 case DW_FORM_ref_sig8:
14709 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14710 info_ptr += 8;
14711 break;
14712 case DW_FORM_ref_udata:
14713 DW_UNSND (attr) = (cu->header.offset.sect_off
14714 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14715 info_ptr += bytes_read;
14716 break;
14717 case DW_FORM_indirect:
14718 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14719 info_ptr += bytes_read;
14720 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14721 break;
14722 case DW_FORM_GNU_addr_index:
14723 if (reader->dwo_file == NULL)
14724 {
14725 /* For now flag a hard error.
14726 Later we can turn this into a complaint. */
14727 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14728 dwarf_form_name (form),
14729 bfd_get_filename (abfd));
14730 }
14731 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14732 info_ptr += bytes_read;
14733 break;
14734 case DW_FORM_GNU_str_index:
14735 if (reader->dwo_file == NULL)
14736 {
14737 /* For now flag a hard error.
14738 Later we can turn this into a complaint if warranted. */
14739 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14740 dwarf_form_name (form),
14741 bfd_get_filename (abfd));
14742 }
14743 {
14744 ULONGEST str_index =
14745 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14746
14747 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14748 DW_STRING_IS_CANONICAL (attr) = 0;
14749 info_ptr += bytes_read;
14750 }
14751 break;
14752 default:
14753 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14754 dwarf_form_name (form),
14755 bfd_get_filename (abfd));
14756 }
14757
14758 /* Super hack. */
14759 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14760 attr->form = DW_FORM_GNU_ref_alt;
14761
14762 /* We have seen instances where the compiler tried to emit a byte
14763 size attribute of -1 which ended up being encoded as an unsigned
14764 0xffffffff. Although 0xffffffff is technically a valid size value,
14765 an object of this size seems pretty unlikely so we can relatively
14766 safely treat these cases as if the size attribute was invalid and
14767 treat them as zero by default. */
14768 if (attr->name == DW_AT_byte_size
14769 && form == DW_FORM_data4
14770 && DW_UNSND (attr) >= 0xffffffff)
14771 {
14772 complaint
14773 (&symfile_complaints,
14774 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14775 hex_string (DW_UNSND (attr)));
14776 DW_UNSND (attr) = 0;
14777 }
14778
14779 return info_ptr;
14780 }
14781
14782 /* Read an attribute described by an abbreviated attribute. */
14783
14784 static const gdb_byte *
14785 read_attribute (const struct die_reader_specs *reader,
14786 struct attribute *attr, struct attr_abbrev *abbrev,
14787 const gdb_byte *info_ptr)
14788 {
14789 attr->name = abbrev->name;
14790 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14791 }
14792
14793 /* Read dwarf information from a buffer. */
14794
14795 static unsigned int
14796 read_1_byte (bfd *abfd, const gdb_byte *buf)
14797 {
14798 return bfd_get_8 (abfd, buf);
14799 }
14800
14801 static int
14802 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14803 {
14804 return bfd_get_signed_8 (abfd, buf);
14805 }
14806
14807 static unsigned int
14808 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14809 {
14810 return bfd_get_16 (abfd, buf);
14811 }
14812
14813 static int
14814 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14815 {
14816 return bfd_get_signed_16 (abfd, buf);
14817 }
14818
14819 static unsigned int
14820 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14821 {
14822 return bfd_get_32 (abfd, buf);
14823 }
14824
14825 static int
14826 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14827 {
14828 return bfd_get_signed_32 (abfd, buf);
14829 }
14830
14831 static ULONGEST
14832 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14833 {
14834 return bfd_get_64 (abfd, buf);
14835 }
14836
14837 static CORE_ADDR
14838 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14839 unsigned int *bytes_read)
14840 {
14841 struct comp_unit_head *cu_header = &cu->header;
14842 CORE_ADDR retval = 0;
14843
14844 if (cu_header->signed_addr_p)
14845 {
14846 switch (cu_header->addr_size)
14847 {
14848 case 2:
14849 retval = bfd_get_signed_16 (abfd, buf);
14850 break;
14851 case 4:
14852 retval = bfd_get_signed_32 (abfd, buf);
14853 break;
14854 case 8:
14855 retval = bfd_get_signed_64 (abfd, buf);
14856 break;
14857 default:
14858 internal_error (__FILE__, __LINE__,
14859 _("read_address: bad switch, signed [in module %s]"),
14860 bfd_get_filename (abfd));
14861 }
14862 }
14863 else
14864 {
14865 switch (cu_header->addr_size)
14866 {
14867 case 2:
14868 retval = bfd_get_16 (abfd, buf);
14869 break;
14870 case 4:
14871 retval = bfd_get_32 (abfd, buf);
14872 break;
14873 case 8:
14874 retval = bfd_get_64 (abfd, buf);
14875 break;
14876 default:
14877 internal_error (__FILE__, __LINE__,
14878 _("read_address: bad switch, "
14879 "unsigned [in module %s]"),
14880 bfd_get_filename (abfd));
14881 }
14882 }
14883
14884 *bytes_read = cu_header->addr_size;
14885 return retval;
14886 }
14887
14888 /* Read the initial length from a section. The (draft) DWARF 3
14889 specification allows the initial length to take up either 4 bytes
14890 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14891 bytes describe the length and all offsets will be 8 bytes in length
14892 instead of 4.
14893
14894 An older, non-standard 64-bit format is also handled by this
14895 function. The older format in question stores the initial length
14896 as an 8-byte quantity without an escape value. Lengths greater
14897 than 2^32 aren't very common which means that the initial 4 bytes
14898 is almost always zero. Since a length value of zero doesn't make
14899 sense for the 32-bit format, this initial zero can be considered to
14900 be an escape value which indicates the presence of the older 64-bit
14901 format. As written, the code can't detect (old format) lengths
14902 greater than 4GB. If it becomes necessary to handle lengths
14903 somewhat larger than 4GB, we could allow other small values (such
14904 as the non-sensical values of 1, 2, and 3) to also be used as
14905 escape values indicating the presence of the old format.
14906
14907 The value returned via bytes_read should be used to increment the
14908 relevant pointer after calling read_initial_length().
14909
14910 [ Note: read_initial_length() and read_offset() are based on the
14911 document entitled "DWARF Debugging Information Format", revision
14912 3, draft 8, dated November 19, 2001. This document was obtained
14913 from:
14914
14915 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14916
14917 This document is only a draft and is subject to change. (So beware.)
14918
14919 Details regarding the older, non-standard 64-bit format were
14920 determined empirically by examining 64-bit ELF files produced by
14921 the SGI toolchain on an IRIX 6.5 machine.
14922
14923 - Kevin, July 16, 2002
14924 ] */
14925
14926 static LONGEST
14927 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14928 {
14929 LONGEST length = bfd_get_32 (abfd, buf);
14930
14931 if (length == 0xffffffff)
14932 {
14933 length = bfd_get_64 (abfd, buf + 4);
14934 *bytes_read = 12;
14935 }
14936 else if (length == 0)
14937 {
14938 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14939 length = bfd_get_64 (abfd, buf);
14940 *bytes_read = 8;
14941 }
14942 else
14943 {
14944 *bytes_read = 4;
14945 }
14946
14947 return length;
14948 }
14949
14950 /* Cover function for read_initial_length.
14951 Returns the length of the object at BUF, and stores the size of the
14952 initial length in *BYTES_READ and stores the size that offsets will be in
14953 *OFFSET_SIZE.
14954 If the initial length size is not equivalent to that specified in
14955 CU_HEADER then issue a complaint.
14956 This is useful when reading non-comp-unit headers. */
14957
14958 static LONGEST
14959 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14960 const struct comp_unit_head *cu_header,
14961 unsigned int *bytes_read,
14962 unsigned int *offset_size)
14963 {
14964 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14965
14966 gdb_assert (cu_header->initial_length_size == 4
14967 || cu_header->initial_length_size == 8
14968 || cu_header->initial_length_size == 12);
14969
14970 if (cu_header->initial_length_size != *bytes_read)
14971 complaint (&symfile_complaints,
14972 _("intermixed 32-bit and 64-bit DWARF sections"));
14973
14974 *offset_size = (*bytes_read == 4) ? 4 : 8;
14975 return length;
14976 }
14977
14978 /* Read an offset from the data stream. The size of the offset is
14979 given by cu_header->offset_size. */
14980
14981 static LONGEST
14982 read_offset (bfd *abfd, const gdb_byte *buf,
14983 const struct comp_unit_head *cu_header,
14984 unsigned int *bytes_read)
14985 {
14986 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14987
14988 *bytes_read = cu_header->offset_size;
14989 return offset;
14990 }
14991
14992 /* Read an offset from the data stream. */
14993
14994 static LONGEST
14995 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
14996 {
14997 LONGEST retval = 0;
14998
14999 switch (offset_size)
15000 {
15001 case 4:
15002 retval = bfd_get_32 (abfd, buf);
15003 break;
15004 case 8:
15005 retval = bfd_get_64 (abfd, buf);
15006 break;
15007 default:
15008 internal_error (__FILE__, __LINE__,
15009 _("read_offset_1: bad switch [in module %s]"),
15010 bfd_get_filename (abfd));
15011 }
15012
15013 return retval;
15014 }
15015
15016 static const gdb_byte *
15017 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15018 {
15019 /* If the size of a host char is 8 bits, we can return a pointer
15020 to the buffer, otherwise we have to copy the data to a buffer
15021 allocated on the temporary obstack. */
15022 gdb_assert (HOST_CHAR_BIT == 8);
15023 return buf;
15024 }
15025
15026 static const char *
15027 read_direct_string (bfd *abfd, const gdb_byte *buf,
15028 unsigned int *bytes_read_ptr)
15029 {
15030 /* If the size of a host char is 8 bits, we can return a pointer
15031 to the string, otherwise we have to copy the string to a buffer
15032 allocated on the temporary obstack. */
15033 gdb_assert (HOST_CHAR_BIT == 8);
15034 if (*buf == '\0')
15035 {
15036 *bytes_read_ptr = 1;
15037 return NULL;
15038 }
15039 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15040 return (const char *) buf;
15041 }
15042
15043 static const char *
15044 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15045 {
15046 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15047 if (dwarf2_per_objfile->str.buffer == NULL)
15048 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15049 bfd_get_filename (abfd));
15050 if (str_offset >= dwarf2_per_objfile->str.size)
15051 error (_("DW_FORM_strp pointing outside of "
15052 ".debug_str section [in module %s]"),
15053 bfd_get_filename (abfd));
15054 gdb_assert (HOST_CHAR_BIT == 8);
15055 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15056 return NULL;
15057 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15058 }
15059
15060 /* Read a string at offset STR_OFFSET in the .debug_str section from
15061 the .dwz file DWZ. Throw an error if the offset is too large. If
15062 the string consists of a single NUL byte, return NULL; otherwise
15063 return a pointer to the string. */
15064
15065 static const char *
15066 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15067 {
15068 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15069
15070 if (dwz->str.buffer == NULL)
15071 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15072 "section [in module %s]"),
15073 bfd_get_filename (dwz->dwz_bfd));
15074 if (str_offset >= dwz->str.size)
15075 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15076 ".debug_str section [in module %s]"),
15077 bfd_get_filename (dwz->dwz_bfd));
15078 gdb_assert (HOST_CHAR_BIT == 8);
15079 if (dwz->str.buffer[str_offset] == '\0')
15080 return NULL;
15081 return (const char *) (dwz->str.buffer + str_offset);
15082 }
15083
15084 static const char *
15085 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15086 const struct comp_unit_head *cu_header,
15087 unsigned int *bytes_read_ptr)
15088 {
15089 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15090
15091 return read_indirect_string_at_offset (abfd, str_offset);
15092 }
15093
15094 static ULONGEST
15095 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15096 unsigned int *bytes_read_ptr)
15097 {
15098 ULONGEST result;
15099 unsigned int num_read;
15100 int i, shift;
15101 unsigned char byte;
15102
15103 result = 0;
15104 shift = 0;
15105 num_read = 0;
15106 i = 0;
15107 while (1)
15108 {
15109 byte = bfd_get_8 (abfd, buf);
15110 buf++;
15111 num_read++;
15112 result |= ((ULONGEST) (byte & 127) << shift);
15113 if ((byte & 128) == 0)
15114 {
15115 break;
15116 }
15117 shift += 7;
15118 }
15119 *bytes_read_ptr = num_read;
15120 return result;
15121 }
15122
15123 static LONGEST
15124 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15125 unsigned int *bytes_read_ptr)
15126 {
15127 LONGEST result;
15128 int i, shift, num_read;
15129 unsigned char byte;
15130
15131 result = 0;
15132 shift = 0;
15133 num_read = 0;
15134 i = 0;
15135 while (1)
15136 {
15137 byte = bfd_get_8 (abfd, buf);
15138 buf++;
15139 num_read++;
15140 result |= ((LONGEST) (byte & 127) << shift);
15141 shift += 7;
15142 if ((byte & 128) == 0)
15143 {
15144 break;
15145 }
15146 }
15147 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15148 result |= -(((LONGEST) 1) << shift);
15149 *bytes_read_ptr = num_read;
15150 return result;
15151 }
15152
15153 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15154 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15155 ADDR_SIZE is the size of addresses from the CU header. */
15156
15157 static CORE_ADDR
15158 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15159 {
15160 struct objfile *objfile = dwarf2_per_objfile->objfile;
15161 bfd *abfd = objfile->obfd;
15162 const gdb_byte *info_ptr;
15163
15164 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15165 if (dwarf2_per_objfile->addr.buffer == NULL)
15166 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15167 objfile->name);
15168 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15169 error (_("DW_FORM_addr_index pointing outside of "
15170 ".debug_addr section [in module %s]"),
15171 objfile->name);
15172 info_ptr = (dwarf2_per_objfile->addr.buffer
15173 + addr_base + addr_index * addr_size);
15174 if (addr_size == 4)
15175 return bfd_get_32 (abfd, info_ptr);
15176 else
15177 return bfd_get_64 (abfd, info_ptr);
15178 }
15179
15180 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15181
15182 static CORE_ADDR
15183 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15184 {
15185 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15186 }
15187
15188 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15189
15190 static CORE_ADDR
15191 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15192 unsigned int *bytes_read)
15193 {
15194 bfd *abfd = cu->objfile->obfd;
15195 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15196
15197 return read_addr_index (cu, addr_index);
15198 }
15199
15200 /* Data structure to pass results from dwarf2_read_addr_index_reader
15201 back to dwarf2_read_addr_index. */
15202
15203 struct dwarf2_read_addr_index_data
15204 {
15205 ULONGEST addr_base;
15206 int addr_size;
15207 };
15208
15209 /* die_reader_func for dwarf2_read_addr_index. */
15210
15211 static void
15212 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15213 const gdb_byte *info_ptr,
15214 struct die_info *comp_unit_die,
15215 int has_children,
15216 void *data)
15217 {
15218 struct dwarf2_cu *cu = reader->cu;
15219 struct dwarf2_read_addr_index_data *aidata =
15220 (struct dwarf2_read_addr_index_data *) data;
15221
15222 aidata->addr_base = cu->addr_base;
15223 aidata->addr_size = cu->header.addr_size;
15224 }
15225
15226 /* Given an index in .debug_addr, fetch the value.
15227 NOTE: This can be called during dwarf expression evaluation,
15228 long after the debug information has been read, and thus per_cu->cu
15229 may no longer exist. */
15230
15231 CORE_ADDR
15232 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15233 unsigned int addr_index)
15234 {
15235 struct objfile *objfile = per_cu->objfile;
15236 struct dwarf2_cu *cu = per_cu->cu;
15237 ULONGEST addr_base;
15238 int addr_size;
15239
15240 /* This is intended to be called from outside this file. */
15241 dw2_setup (objfile);
15242
15243 /* We need addr_base and addr_size.
15244 If we don't have PER_CU->cu, we have to get it.
15245 Nasty, but the alternative is storing the needed info in PER_CU,
15246 which at this point doesn't seem justified: it's not clear how frequently
15247 it would get used and it would increase the size of every PER_CU.
15248 Entry points like dwarf2_per_cu_addr_size do a similar thing
15249 so we're not in uncharted territory here.
15250 Alas we need to be a bit more complicated as addr_base is contained
15251 in the DIE.
15252
15253 We don't need to read the entire CU(/TU).
15254 We just need the header and top level die.
15255
15256 IWBN to use the aging mechanism to let us lazily later discard the CU.
15257 For now we skip this optimization. */
15258
15259 if (cu != NULL)
15260 {
15261 addr_base = cu->addr_base;
15262 addr_size = cu->header.addr_size;
15263 }
15264 else
15265 {
15266 struct dwarf2_read_addr_index_data aidata;
15267
15268 /* Note: We can't use init_cutu_and_read_dies_simple here,
15269 we need addr_base. */
15270 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15271 dwarf2_read_addr_index_reader, &aidata);
15272 addr_base = aidata.addr_base;
15273 addr_size = aidata.addr_size;
15274 }
15275
15276 return read_addr_index_1 (addr_index, addr_base, addr_size);
15277 }
15278
15279 /* Given a DW_AT_str_index, fetch the string. */
15280
15281 static const char *
15282 read_str_index (const struct die_reader_specs *reader,
15283 struct dwarf2_cu *cu, ULONGEST str_index)
15284 {
15285 struct objfile *objfile = dwarf2_per_objfile->objfile;
15286 const char *dwo_name = objfile->name;
15287 bfd *abfd = objfile->obfd;
15288 struct dwo_sections *sections = &reader->dwo_file->sections;
15289 const gdb_byte *info_ptr;
15290 ULONGEST str_offset;
15291
15292 dwarf2_read_section (objfile, &sections->str);
15293 dwarf2_read_section (objfile, &sections->str_offsets);
15294 if (sections->str.buffer == NULL)
15295 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15296 " in CU at offset 0x%lx [in module %s]"),
15297 (long) cu->header.offset.sect_off, dwo_name);
15298 if (sections->str_offsets.buffer == NULL)
15299 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15300 " in CU at offset 0x%lx [in module %s]"),
15301 (long) cu->header.offset.sect_off, dwo_name);
15302 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15303 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15304 " section in CU at offset 0x%lx [in module %s]"),
15305 (long) cu->header.offset.sect_off, dwo_name);
15306 info_ptr = (sections->str_offsets.buffer
15307 + str_index * cu->header.offset_size);
15308 if (cu->header.offset_size == 4)
15309 str_offset = bfd_get_32 (abfd, info_ptr);
15310 else
15311 str_offset = bfd_get_64 (abfd, info_ptr);
15312 if (str_offset >= sections->str.size)
15313 error (_("Offset from DW_FORM_str_index pointing outside of"
15314 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15315 (long) cu->header.offset.sect_off, dwo_name);
15316 return (const char *) (sections->str.buffer + str_offset);
15317 }
15318
15319 /* Return the length of an LEB128 number in BUF. */
15320
15321 static int
15322 leb128_size (const gdb_byte *buf)
15323 {
15324 const gdb_byte *begin = buf;
15325 gdb_byte byte;
15326
15327 while (1)
15328 {
15329 byte = *buf++;
15330 if ((byte & 128) == 0)
15331 return buf - begin;
15332 }
15333 }
15334
15335 static void
15336 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15337 {
15338 switch (lang)
15339 {
15340 case DW_LANG_C89:
15341 case DW_LANG_C99:
15342 case DW_LANG_C:
15343 case DW_LANG_UPC:
15344 cu->language = language_c;
15345 break;
15346 case DW_LANG_C_plus_plus:
15347 cu->language = language_cplus;
15348 break;
15349 case DW_LANG_D:
15350 cu->language = language_d;
15351 break;
15352 case DW_LANG_Fortran77:
15353 case DW_LANG_Fortran90:
15354 case DW_LANG_Fortran95:
15355 cu->language = language_fortran;
15356 break;
15357 case DW_LANG_Go:
15358 cu->language = language_go;
15359 break;
15360 case DW_LANG_Mips_Assembler:
15361 cu->language = language_asm;
15362 break;
15363 case DW_LANG_Java:
15364 cu->language = language_java;
15365 break;
15366 case DW_LANG_Ada83:
15367 case DW_LANG_Ada95:
15368 cu->language = language_ada;
15369 break;
15370 case DW_LANG_Modula2:
15371 cu->language = language_m2;
15372 break;
15373 case DW_LANG_Pascal83:
15374 cu->language = language_pascal;
15375 break;
15376 case DW_LANG_ObjC:
15377 cu->language = language_objc;
15378 break;
15379 case DW_LANG_Cobol74:
15380 case DW_LANG_Cobol85:
15381 default:
15382 cu->language = language_minimal;
15383 break;
15384 }
15385 cu->language_defn = language_def (cu->language);
15386 }
15387
15388 /* Return the named attribute or NULL if not there. */
15389
15390 static struct attribute *
15391 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15392 {
15393 for (;;)
15394 {
15395 unsigned int i;
15396 struct attribute *spec = NULL;
15397
15398 for (i = 0; i < die->num_attrs; ++i)
15399 {
15400 if (die->attrs[i].name == name)
15401 return &die->attrs[i];
15402 if (die->attrs[i].name == DW_AT_specification
15403 || die->attrs[i].name == DW_AT_abstract_origin)
15404 spec = &die->attrs[i];
15405 }
15406
15407 if (!spec)
15408 break;
15409
15410 die = follow_die_ref (die, spec, &cu);
15411 }
15412
15413 return NULL;
15414 }
15415
15416 /* Return the named attribute or NULL if not there,
15417 but do not follow DW_AT_specification, etc.
15418 This is for use in contexts where we're reading .debug_types dies.
15419 Following DW_AT_specification, DW_AT_abstract_origin will take us
15420 back up the chain, and we want to go down. */
15421
15422 static struct attribute *
15423 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15424 {
15425 unsigned int i;
15426
15427 for (i = 0; i < die->num_attrs; ++i)
15428 if (die->attrs[i].name == name)
15429 return &die->attrs[i];
15430
15431 return NULL;
15432 }
15433
15434 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15435 and holds a non-zero value. This function should only be used for
15436 DW_FORM_flag or DW_FORM_flag_present attributes. */
15437
15438 static int
15439 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15440 {
15441 struct attribute *attr = dwarf2_attr (die, name, cu);
15442
15443 return (attr && DW_UNSND (attr));
15444 }
15445
15446 static int
15447 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15448 {
15449 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15450 which value is non-zero. However, we have to be careful with
15451 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15452 (via dwarf2_flag_true_p) follows this attribute. So we may
15453 end up accidently finding a declaration attribute that belongs
15454 to a different DIE referenced by the specification attribute,
15455 even though the given DIE does not have a declaration attribute. */
15456 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15457 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15458 }
15459
15460 /* Return the die giving the specification for DIE, if there is
15461 one. *SPEC_CU is the CU containing DIE on input, and the CU
15462 containing the return value on output. If there is no
15463 specification, but there is an abstract origin, that is
15464 returned. */
15465
15466 static struct die_info *
15467 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15468 {
15469 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15470 *spec_cu);
15471
15472 if (spec_attr == NULL)
15473 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15474
15475 if (spec_attr == NULL)
15476 return NULL;
15477 else
15478 return follow_die_ref (die, spec_attr, spec_cu);
15479 }
15480
15481 /* Free the line_header structure *LH, and any arrays and strings it
15482 refers to.
15483 NOTE: This is also used as a "cleanup" function. */
15484
15485 static void
15486 free_line_header (struct line_header *lh)
15487 {
15488 if (lh->standard_opcode_lengths)
15489 xfree (lh->standard_opcode_lengths);
15490
15491 /* Remember that all the lh->file_names[i].name pointers are
15492 pointers into debug_line_buffer, and don't need to be freed. */
15493 if (lh->file_names)
15494 xfree (lh->file_names);
15495
15496 /* Similarly for the include directory names. */
15497 if (lh->include_dirs)
15498 xfree (lh->include_dirs);
15499
15500 xfree (lh);
15501 }
15502
15503 /* Add an entry to LH's include directory table. */
15504
15505 static void
15506 add_include_dir (struct line_header *lh, const char *include_dir)
15507 {
15508 /* Grow the array if necessary. */
15509 if (lh->include_dirs_size == 0)
15510 {
15511 lh->include_dirs_size = 1; /* for testing */
15512 lh->include_dirs = xmalloc (lh->include_dirs_size
15513 * sizeof (*lh->include_dirs));
15514 }
15515 else if (lh->num_include_dirs >= lh->include_dirs_size)
15516 {
15517 lh->include_dirs_size *= 2;
15518 lh->include_dirs = xrealloc (lh->include_dirs,
15519 (lh->include_dirs_size
15520 * sizeof (*lh->include_dirs)));
15521 }
15522
15523 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15524 }
15525
15526 /* Add an entry to LH's file name table. */
15527
15528 static void
15529 add_file_name (struct line_header *lh,
15530 const char *name,
15531 unsigned int dir_index,
15532 unsigned int mod_time,
15533 unsigned int length)
15534 {
15535 struct file_entry *fe;
15536
15537 /* Grow the array if necessary. */
15538 if (lh->file_names_size == 0)
15539 {
15540 lh->file_names_size = 1; /* for testing */
15541 lh->file_names = xmalloc (lh->file_names_size
15542 * sizeof (*lh->file_names));
15543 }
15544 else if (lh->num_file_names >= lh->file_names_size)
15545 {
15546 lh->file_names_size *= 2;
15547 lh->file_names = xrealloc (lh->file_names,
15548 (lh->file_names_size
15549 * sizeof (*lh->file_names)));
15550 }
15551
15552 fe = &lh->file_names[lh->num_file_names++];
15553 fe->name = name;
15554 fe->dir_index = dir_index;
15555 fe->mod_time = mod_time;
15556 fe->length = length;
15557 fe->included_p = 0;
15558 fe->symtab = NULL;
15559 }
15560
15561 /* A convenience function to find the proper .debug_line section for a
15562 CU. */
15563
15564 static struct dwarf2_section_info *
15565 get_debug_line_section (struct dwarf2_cu *cu)
15566 {
15567 struct dwarf2_section_info *section;
15568
15569 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15570 DWO file. */
15571 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15572 section = &cu->dwo_unit->dwo_file->sections.line;
15573 else if (cu->per_cu->is_dwz)
15574 {
15575 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15576
15577 section = &dwz->line;
15578 }
15579 else
15580 section = &dwarf2_per_objfile->line;
15581
15582 return section;
15583 }
15584
15585 /* Read the statement program header starting at OFFSET in
15586 .debug_line, or .debug_line.dwo. Return a pointer
15587 to a struct line_header, allocated using xmalloc.
15588
15589 NOTE: the strings in the include directory and file name tables of
15590 the returned object point into the dwarf line section buffer,
15591 and must not be freed. */
15592
15593 static struct line_header *
15594 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15595 {
15596 struct cleanup *back_to;
15597 struct line_header *lh;
15598 const gdb_byte *line_ptr;
15599 unsigned int bytes_read, offset_size;
15600 int i;
15601 const char *cur_dir, *cur_file;
15602 struct dwarf2_section_info *section;
15603 bfd *abfd;
15604
15605 section = get_debug_line_section (cu);
15606 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15607 if (section->buffer == NULL)
15608 {
15609 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15610 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15611 else
15612 complaint (&symfile_complaints, _("missing .debug_line section"));
15613 return 0;
15614 }
15615
15616 /* We can't do this until we know the section is non-empty.
15617 Only then do we know we have such a section. */
15618 abfd = section->asection->owner;
15619
15620 /* Make sure that at least there's room for the total_length field.
15621 That could be 12 bytes long, but we're just going to fudge that. */
15622 if (offset + 4 >= section->size)
15623 {
15624 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15625 return 0;
15626 }
15627
15628 lh = xmalloc (sizeof (*lh));
15629 memset (lh, 0, sizeof (*lh));
15630 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15631 (void *) lh);
15632
15633 line_ptr = section->buffer + offset;
15634
15635 /* Read in the header. */
15636 lh->total_length =
15637 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15638 &bytes_read, &offset_size);
15639 line_ptr += bytes_read;
15640 if (line_ptr + lh->total_length > (section->buffer + section->size))
15641 {
15642 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15643 return 0;
15644 }
15645 lh->statement_program_end = line_ptr + lh->total_length;
15646 lh->version = read_2_bytes (abfd, line_ptr);
15647 line_ptr += 2;
15648 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15649 line_ptr += offset_size;
15650 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15651 line_ptr += 1;
15652 if (lh->version >= 4)
15653 {
15654 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15655 line_ptr += 1;
15656 }
15657 else
15658 lh->maximum_ops_per_instruction = 1;
15659
15660 if (lh->maximum_ops_per_instruction == 0)
15661 {
15662 lh->maximum_ops_per_instruction = 1;
15663 complaint (&symfile_complaints,
15664 _("invalid maximum_ops_per_instruction "
15665 "in `.debug_line' section"));
15666 }
15667
15668 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15669 line_ptr += 1;
15670 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15671 line_ptr += 1;
15672 lh->line_range = read_1_byte (abfd, line_ptr);
15673 line_ptr += 1;
15674 lh->opcode_base = read_1_byte (abfd, line_ptr);
15675 line_ptr += 1;
15676 lh->standard_opcode_lengths
15677 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15678
15679 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15680 for (i = 1; i < lh->opcode_base; ++i)
15681 {
15682 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15683 line_ptr += 1;
15684 }
15685
15686 /* Read directory table. */
15687 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15688 {
15689 line_ptr += bytes_read;
15690 add_include_dir (lh, cur_dir);
15691 }
15692 line_ptr += bytes_read;
15693
15694 /* Read file name table. */
15695 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15696 {
15697 unsigned int dir_index, mod_time, length;
15698
15699 line_ptr += bytes_read;
15700 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15701 line_ptr += bytes_read;
15702 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15703 line_ptr += bytes_read;
15704 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15705 line_ptr += bytes_read;
15706
15707 add_file_name (lh, cur_file, dir_index, mod_time, length);
15708 }
15709 line_ptr += bytes_read;
15710 lh->statement_program_start = line_ptr;
15711
15712 if (line_ptr > (section->buffer + section->size))
15713 complaint (&symfile_complaints,
15714 _("line number info header doesn't "
15715 "fit in `.debug_line' section"));
15716
15717 discard_cleanups (back_to);
15718 return lh;
15719 }
15720
15721 /* Subroutine of dwarf_decode_lines to simplify it.
15722 Return the file name of the psymtab for included file FILE_INDEX
15723 in line header LH of PST.
15724 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15725 If space for the result is malloc'd, it will be freed by a cleanup.
15726 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15727
15728 The function creates dangling cleanup registration. */
15729
15730 static const char *
15731 psymtab_include_file_name (const struct line_header *lh, int file_index,
15732 const struct partial_symtab *pst,
15733 const char *comp_dir)
15734 {
15735 const struct file_entry fe = lh->file_names [file_index];
15736 const char *include_name = fe.name;
15737 const char *include_name_to_compare = include_name;
15738 const char *dir_name = NULL;
15739 const char *pst_filename;
15740 char *copied_name = NULL;
15741 int file_is_pst;
15742
15743 if (fe.dir_index)
15744 dir_name = lh->include_dirs[fe.dir_index - 1];
15745
15746 if (!IS_ABSOLUTE_PATH (include_name)
15747 && (dir_name != NULL || comp_dir != NULL))
15748 {
15749 /* Avoid creating a duplicate psymtab for PST.
15750 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15751 Before we do the comparison, however, we need to account
15752 for DIR_NAME and COMP_DIR.
15753 First prepend dir_name (if non-NULL). If we still don't
15754 have an absolute path prepend comp_dir (if non-NULL).
15755 However, the directory we record in the include-file's
15756 psymtab does not contain COMP_DIR (to match the
15757 corresponding symtab(s)).
15758
15759 Example:
15760
15761 bash$ cd /tmp
15762 bash$ gcc -g ./hello.c
15763 include_name = "hello.c"
15764 dir_name = "."
15765 DW_AT_comp_dir = comp_dir = "/tmp"
15766 DW_AT_name = "./hello.c" */
15767
15768 if (dir_name != NULL)
15769 {
15770 char *tem = concat (dir_name, SLASH_STRING,
15771 include_name, (char *)NULL);
15772
15773 make_cleanup (xfree, tem);
15774 include_name = tem;
15775 include_name_to_compare = include_name;
15776 }
15777 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15778 {
15779 char *tem = concat (comp_dir, SLASH_STRING,
15780 include_name, (char *)NULL);
15781
15782 make_cleanup (xfree, tem);
15783 include_name_to_compare = tem;
15784 }
15785 }
15786
15787 pst_filename = pst->filename;
15788 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15789 {
15790 copied_name = concat (pst->dirname, SLASH_STRING,
15791 pst_filename, (char *)NULL);
15792 pst_filename = copied_name;
15793 }
15794
15795 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15796
15797 if (copied_name != NULL)
15798 xfree (copied_name);
15799
15800 if (file_is_pst)
15801 return NULL;
15802 return include_name;
15803 }
15804
15805 /* Ignore this record_line request. */
15806
15807 static void
15808 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15809 {
15810 return;
15811 }
15812
15813 /* Subroutine of dwarf_decode_lines to simplify it.
15814 Process the line number information in LH. */
15815
15816 static void
15817 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15818 struct dwarf2_cu *cu, struct partial_symtab *pst)
15819 {
15820 const gdb_byte *line_ptr, *extended_end;
15821 const gdb_byte *line_end;
15822 unsigned int bytes_read, extended_len;
15823 unsigned char op_code, extended_op, adj_opcode;
15824 CORE_ADDR baseaddr;
15825 struct objfile *objfile = cu->objfile;
15826 bfd *abfd = objfile->obfd;
15827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15828 const int decode_for_pst_p = (pst != NULL);
15829 struct subfile *last_subfile = NULL;
15830 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15831 = record_line;
15832
15833 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15834
15835 line_ptr = lh->statement_program_start;
15836 line_end = lh->statement_program_end;
15837
15838 /* Read the statement sequences until there's nothing left. */
15839 while (line_ptr < line_end)
15840 {
15841 /* state machine registers */
15842 CORE_ADDR address = 0;
15843 unsigned int file = 1;
15844 unsigned int line = 1;
15845 unsigned int column = 0;
15846 int is_stmt = lh->default_is_stmt;
15847 int basic_block = 0;
15848 int end_sequence = 0;
15849 CORE_ADDR addr;
15850 unsigned char op_index = 0;
15851
15852 if (!decode_for_pst_p && lh->num_file_names >= file)
15853 {
15854 /* Start a subfile for the current file of the state machine. */
15855 /* lh->include_dirs and lh->file_names are 0-based, but the
15856 directory and file name numbers in the statement program
15857 are 1-based. */
15858 struct file_entry *fe = &lh->file_names[file - 1];
15859 const char *dir = NULL;
15860
15861 if (fe->dir_index)
15862 dir = lh->include_dirs[fe->dir_index - 1];
15863
15864 dwarf2_start_subfile (fe->name, dir, comp_dir);
15865 }
15866
15867 /* Decode the table. */
15868 while (!end_sequence)
15869 {
15870 op_code = read_1_byte (abfd, line_ptr);
15871 line_ptr += 1;
15872 if (line_ptr > line_end)
15873 {
15874 dwarf2_debug_line_missing_end_sequence_complaint ();
15875 break;
15876 }
15877
15878 if (op_code >= lh->opcode_base)
15879 {
15880 /* Special operand. */
15881 adj_opcode = op_code - lh->opcode_base;
15882 address += (((op_index + (adj_opcode / lh->line_range))
15883 / lh->maximum_ops_per_instruction)
15884 * lh->minimum_instruction_length);
15885 op_index = ((op_index + (adj_opcode / lh->line_range))
15886 % lh->maximum_ops_per_instruction);
15887 line += lh->line_base + (adj_opcode % lh->line_range);
15888 if (lh->num_file_names < file || file == 0)
15889 dwarf2_debug_line_missing_file_complaint ();
15890 /* For now we ignore lines not starting on an
15891 instruction boundary. */
15892 else if (op_index == 0)
15893 {
15894 lh->file_names[file - 1].included_p = 1;
15895 if (!decode_for_pst_p && is_stmt)
15896 {
15897 if (last_subfile != current_subfile)
15898 {
15899 addr = gdbarch_addr_bits_remove (gdbarch, address);
15900 if (last_subfile)
15901 (*p_record_line) (last_subfile, 0, addr);
15902 last_subfile = current_subfile;
15903 }
15904 /* Append row to matrix using current values. */
15905 addr = gdbarch_addr_bits_remove (gdbarch, address);
15906 (*p_record_line) (current_subfile, line, addr);
15907 }
15908 }
15909 basic_block = 0;
15910 }
15911 else switch (op_code)
15912 {
15913 case DW_LNS_extended_op:
15914 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15915 &bytes_read);
15916 line_ptr += bytes_read;
15917 extended_end = line_ptr + extended_len;
15918 extended_op = read_1_byte (abfd, line_ptr);
15919 line_ptr += 1;
15920 switch (extended_op)
15921 {
15922 case DW_LNE_end_sequence:
15923 p_record_line = record_line;
15924 end_sequence = 1;
15925 break;
15926 case DW_LNE_set_address:
15927 address = read_address (abfd, line_ptr, cu, &bytes_read);
15928
15929 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15930 {
15931 /* This line table is for a function which has been
15932 GCd by the linker. Ignore it. PR gdb/12528 */
15933
15934 long line_offset
15935 = line_ptr - get_debug_line_section (cu)->buffer;
15936
15937 complaint (&symfile_complaints,
15938 _(".debug_line address at offset 0x%lx is 0 "
15939 "[in module %s]"),
15940 line_offset, objfile->name);
15941 p_record_line = noop_record_line;
15942 }
15943
15944 op_index = 0;
15945 line_ptr += bytes_read;
15946 address += baseaddr;
15947 break;
15948 case DW_LNE_define_file:
15949 {
15950 const char *cur_file;
15951 unsigned int dir_index, mod_time, length;
15952
15953 cur_file = read_direct_string (abfd, line_ptr,
15954 &bytes_read);
15955 line_ptr += bytes_read;
15956 dir_index =
15957 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15958 line_ptr += bytes_read;
15959 mod_time =
15960 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15961 line_ptr += bytes_read;
15962 length =
15963 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15964 line_ptr += bytes_read;
15965 add_file_name (lh, cur_file, dir_index, mod_time, length);
15966 }
15967 break;
15968 case DW_LNE_set_discriminator:
15969 /* The discriminator is not interesting to the debugger;
15970 just ignore it. */
15971 line_ptr = extended_end;
15972 break;
15973 default:
15974 complaint (&symfile_complaints,
15975 _("mangled .debug_line section"));
15976 return;
15977 }
15978 /* Make sure that we parsed the extended op correctly. If e.g.
15979 we expected a different address size than the producer used,
15980 we may have read the wrong number of bytes. */
15981 if (line_ptr != extended_end)
15982 {
15983 complaint (&symfile_complaints,
15984 _("mangled .debug_line section"));
15985 return;
15986 }
15987 break;
15988 case DW_LNS_copy:
15989 if (lh->num_file_names < file || file == 0)
15990 dwarf2_debug_line_missing_file_complaint ();
15991 else
15992 {
15993 lh->file_names[file - 1].included_p = 1;
15994 if (!decode_for_pst_p && is_stmt)
15995 {
15996 if (last_subfile != current_subfile)
15997 {
15998 addr = gdbarch_addr_bits_remove (gdbarch, address);
15999 if (last_subfile)
16000 (*p_record_line) (last_subfile, 0, addr);
16001 last_subfile = current_subfile;
16002 }
16003 addr = gdbarch_addr_bits_remove (gdbarch, address);
16004 (*p_record_line) (current_subfile, line, addr);
16005 }
16006 }
16007 basic_block = 0;
16008 break;
16009 case DW_LNS_advance_pc:
16010 {
16011 CORE_ADDR adjust
16012 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16013
16014 address += (((op_index + adjust)
16015 / lh->maximum_ops_per_instruction)
16016 * lh->minimum_instruction_length);
16017 op_index = ((op_index + adjust)
16018 % lh->maximum_ops_per_instruction);
16019 line_ptr += bytes_read;
16020 }
16021 break;
16022 case DW_LNS_advance_line:
16023 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16024 line_ptr += bytes_read;
16025 break;
16026 case DW_LNS_set_file:
16027 {
16028 /* The arrays lh->include_dirs and lh->file_names are
16029 0-based, but the directory and file name numbers in
16030 the statement program are 1-based. */
16031 struct file_entry *fe;
16032 const char *dir = NULL;
16033
16034 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16035 line_ptr += bytes_read;
16036 if (lh->num_file_names < file || file == 0)
16037 dwarf2_debug_line_missing_file_complaint ();
16038 else
16039 {
16040 fe = &lh->file_names[file - 1];
16041 if (fe->dir_index)
16042 dir = lh->include_dirs[fe->dir_index - 1];
16043 if (!decode_for_pst_p)
16044 {
16045 last_subfile = current_subfile;
16046 dwarf2_start_subfile (fe->name, dir, comp_dir);
16047 }
16048 }
16049 }
16050 break;
16051 case DW_LNS_set_column:
16052 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16053 line_ptr += bytes_read;
16054 break;
16055 case DW_LNS_negate_stmt:
16056 is_stmt = (!is_stmt);
16057 break;
16058 case DW_LNS_set_basic_block:
16059 basic_block = 1;
16060 break;
16061 /* Add to the address register of the state machine the
16062 address increment value corresponding to special opcode
16063 255. I.e., this value is scaled by the minimum
16064 instruction length since special opcode 255 would have
16065 scaled the increment. */
16066 case DW_LNS_const_add_pc:
16067 {
16068 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16069
16070 address += (((op_index + adjust)
16071 / lh->maximum_ops_per_instruction)
16072 * lh->minimum_instruction_length);
16073 op_index = ((op_index + adjust)
16074 % lh->maximum_ops_per_instruction);
16075 }
16076 break;
16077 case DW_LNS_fixed_advance_pc:
16078 address += read_2_bytes (abfd, line_ptr);
16079 op_index = 0;
16080 line_ptr += 2;
16081 break;
16082 default:
16083 {
16084 /* Unknown standard opcode, ignore it. */
16085 int i;
16086
16087 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16088 {
16089 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16090 line_ptr += bytes_read;
16091 }
16092 }
16093 }
16094 }
16095 if (lh->num_file_names < file || file == 0)
16096 dwarf2_debug_line_missing_file_complaint ();
16097 else
16098 {
16099 lh->file_names[file - 1].included_p = 1;
16100 if (!decode_for_pst_p)
16101 {
16102 addr = gdbarch_addr_bits_remove (gdbarch, address);
16103 (*p_record_line) (current_subfile, 0, addr);
16104 }
16105 }
16106 }
16107 }
16108
16109 /* Decode the Line Number Program (LNP) for the given line_header
16110 structure and CU. The actual information extracted and the type
16111 of structures created from the LNP depends on the value of PST.
16112
16113 1. If PST is NULL, then this procedure uses the data from the program
16114 to create all necessary symbol tables, and their linetables.
16115
16116 2. If PST is not NULL, this procedure reads the program to determine
16117 the list of files included by the unit represented by PST, and
16118 builds all the associated partial symbol tables.
16119
16120 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16121 It is used for relative paths in the line table.
16122 NOTE: When processing partial symtabs (pst != NULL),
16123 comp_dir == pst->dirname.
16124
16125 NOTE: It is important that psymtabs have the same file name (via strcmp)
16126 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16127 symtab we don't use it in the name of the psymtabs we create.
16128 E.g. expand_line_sal requires this when finding psymtabs to expand.
16129 A good testcase for this is mb-inline.exp. */
16130
16131 static void
16132 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16133 struct dwarf2_cu *cu, struct partial_symtab *pst,
16134 int want_line_info)
16135 {
16136 struct objfile *objfile = cu->objfile;
16137 const int decode_for_pst_p = (pst != NULL);
16138 struct subfile *first_subfile = current_subfile;
16139
16140 if (want_line_info)
16141 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16142
16143 if (decode_for_pst_p)
16144 {
16145 int file_index;
16146
16147 /* Now that we're done scanning the Line Header Program, we can
16148 create the psymtab of each included file. */
16149 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16150 if (lh->file_names[file_index].included_p == 1)
16151 {
16152 const char *include_name =
16153 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16154 if (include_name != NULL)
16155 dwarf2_create_include_psymtab (include_name, pst, objfile);
16156 }
16157 }
16158 else
16159 {
16160 /* Make sure a symtab is created for every file, even files
16161 which contain only variables (i.e. no code with associated
16162 line numbers). */
16163 int i;
16164
16165 for (i = 0; i < lh->num_file_names; i++)
16166 {
16167 const char *dir = NULL;
16168 struct file_entry *fe;
16169
16170 fe = &lh->file_names[i];
16171 if (fe->dir_index)
16172 dir = lh->include_dirs[fe->dir_index - 1];
16173 dwarf2_start_subfile (fe->name, dir, comp_dir);
16174
16175 /* Skip the main file; we don't need it, and it must be
16176 allocated last, so that it will show up before the
16177 non-primary symtabs in the objfile's symtab list. */
16178 if (current_subfile == first_subfile)
16179 continue;
16180
16181 if (current_subfile->symtab == NULL)
16182 current_subfile->symtab = allocate_symtab (current_subfile->name,
16183 objfile);
16184 fe->symtab = current_subfile->symtab;
16185 }
16186 }
16187 }
16188
16189 /* Start a subfile for DWARF. FILENAME is the name of the file and
16190 DIRNAME the name of the source directory which contains FILENAME
16191 or NULL if not known. COMP_DIR is the compilation directory for the
16192 linetable's compilation unit or NULL if not known.
16193 This routine tries to keep line numbers from identical absolute and
16194 relative file names in a common subfile.
16195
16196 Using the `list' example from the GDB testsuite, which resides in
16197 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16198 of /srcdir/list0.c yields the following debugging information for list0.c:
16199
16200 DW_AT_name: /srcdir/list0.c
16201 DW_AT_comp_dir: /compdir
16202 files.files[0].name: list0.h
16203 files.files[0].dir: /srcdir
16204 files.files[1].name: list0.c
16205 files.files[1].dir: /srcdir
16206
16207 The line number information for list0.c has to end up in a single
16208 subfile, so that `break /srcdir/list0.c:1' works as expected.
16209 start_subfile will ensure that this happens provided that we pass the
16210 concatenation of files.files[1].dir and files.files[1].name as the
16211 subfile's name. */
16212
16213 static void
16214 dwarf2_start_subfile (const char *filename, const char *dirname,
16215 const char *comp_dir)
16216 {
16217 char *copy = NULL;
16218
16219 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16220 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16221 second argument to start_subfile. To be consistent, we do the
16222 same here. In order not to lose the line information directory,
16223 we concatenate it to the filename when it makes sense.
16224 Note that the Dwarf3 standard says (speaking of filenames in line
16225 information): ``The directory index is ignored for file names
16226 that represent full path names''. Thus ignoring dirname in the
16227 `else' branch below isn't an issue. */
16228
16229 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16230 {
16231 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16232 filename = copy;
16233 }
16234
16235 start_subfile (filename, comp_dir);
16236
16237 if (copy != NULL)
16238 xfree (copy);
16239 }
16240
16241 /* Start a symtab for DWARF.
16242 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16243
16244 static void
16245 dwarf2_start_symtab (struct dwarf2_cu *cu,
16246 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16247 {
16248 start_symtab (name, comp_dir, low_pc);
16249 record_debugformat ("DWARF 2");
16250 record_producer (cu->producer);
16251
16252 /* We assume that we're processing GCC output. */
16253 processing_gcc_compilation = 2;
16254
16255 cu->processing_has_namespace_info = 0;
16256 }
16257
16258 static void
16259 var_decode_location (struct attribute *attr, struct symbol *sym,
16260 struct dwarf2_cu *cu)
16261 {
16262 struct objfile *objfile = cu->objfile;
16263 struct comp_unit_head *cu_header = &cu->header;
16264
16265 /* NOTE drow/2003-01-30: There used to be a comment and some special
16266 code here to turn a symbol with DW_AT_external and a
16267 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16268 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16269 with some versions of binutils) where shared libraries could have
16270 relocations against symbols in their debug information - the
16271 minimal symbol would have the right address, but the debug info
16272 would not. It's no longer necessary, because we will explicitly
16273 apply relocations when we read in the debug information now. */
16274
16275 /* A DW_AT_location attribute with no contents indicates that a
16276 variable has been optimized away. */
16277 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16278 {
16279 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16280 return;
16281 }
16282
16283 /* Handle one degenerate form of location expression specially, to
16284 preserve GDB's previous behavior when section offsets are
16285 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16286 then mark this symbol as LOC_STATIC. */
16287
16288 if (attr_form_is_block (attr)
16289 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16290 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16291 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16292 && (DW_BLOCK (attr)->size
16293 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16294 {
16295 unsigned int dummy;
16296
16297 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16298 SYMBOL_VALUE_ADDRESS (sym) =
16299 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16300 else
16301 SYMBOL_VALUE_ADDRESS (sym) =
16302 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16303 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16304 fixup_symbol_section (sym, objfile);
16305 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16306 SYMBOL_SECTION (sym));
16307 return;
16308 }
16309
16310 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16311 expression evaluator, and use LOC_COMPUTED only when necessary
16312 (i.e. when the value of a register or memory location is
16313 referenced, or a thread-local block, etc.). Then again, it might
16314 not be worthwhile. I'm assuming that it isn't unless performance
16315 or memory numbers show me otherwise. */
16316
16317 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16318
16319 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16320 cu->has_loclist = 1;
16321 }
16322
16323 /* Given a pointer to a DWARF information entry, figure out if we need
16324 to make a symbol table entry for it, and if so, create a new entry
16325 and return a pointer to it.
16326 If TYPE is NULL, determine symbol type from the die, otherwise
16327 used the passed type.
16328 If SPACE is not NULL, use it to hold the new symbol. If it is
16329 NULL, allocate a new symbol on the objfile's obstack. */
16330
16331 static struct symbol *
16332 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16333 struct symbol *space)
16334 {
16335 struct objfile *objfile = cu->objfile;
16336 struct symbol *sym = NULL;
16337 const char *name;
16338 struct attribute *attr = NULL;
16339 struct attribute *attr2 = NULL;
16340 CORE_ADDR baseaddr;
16341 struct pending **list_to_add = NULL;
16342
16343 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16344
16345 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16346
16347 name = dwarf2_name (die, cu);
16348 if (name)
16349 {
16350 const char *linkagename;
16351 int suppress_add = 0;
16352
16353 if (space)
16354 sym = space;
16355 else
16356 sym = allocate_symbol (objfile);
16357 OBJSTAT (objfile, n_syms++);
16358
16359 /* Cache this symbol's name and the name's demangled form (if any). */
16360 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16361 linkagename = dwarf2_physname (name, die, cu);
16362 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16363
16364 /* Fortran does not have mangling standard and the mangling does differ
16365 between gfortran, iFort etc. */
16366 if (cu->language == language_fortran
16367 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16368 symbol_set_demangled_name (&(sym->ginfo),
16369 dwarf2_full_name (name, die, cu),
16370 NULL);
16371
16372 /* Default assumptions.
16373 Use the passed type or decode it from the die. */
16374 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16375 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16376 if (type != NULL)
16377 SYMBOL_TYPE (sym) = type;
16378 else
16379 SYMBOL_TYPE (sym) = die_type (die, cu);
16380 attr = dwarf2_attr (die,
16381 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16382 cu);
16383 if (attr)
16384 {
16385 SYMBOL_LINE (sym) = DW_UNSND (attr);
16386 }
16387
16388 attr = dwarf2_attr (die,
16389 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16390 cu);
16391 if (attr)
16392 {
16393 int file_index = DW_UNSND (attr);
16394
16395 if (cu->line_header == NULL
16396 || file_index > cu->line_header->num_file_names)
16397 complaint (&symfile_complaints,
16398 _("file index out of range"));
16399 else if (file_index > 0)
16400 {
16401 struct file_entry *fe;
16402
16403 fe = &cu->line_header->file_names[file_index - 1];
16404 SYMBOL_SYMTAB (sym) = fe->symtab;
16405 }
16406 }
16407
16408 switch (die->tag)
16409 {
16410 case DW_TAG_label:
16411 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16412 if (attr)
16413 {
16414 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16415 }
16416 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16417 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16418 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16419 add_symbol_to_list (sym, cu->list_in_scope);
16420 break;
16421 case DW_TAG_subprogram:
16422 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16423 finish_block. */
16424 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16425 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16426 if ((attr2 && (DW_UNSND (attr2) != 0))
16427 || cu->language == language_ada)
16428 {
16429 /* Subprograms marked external are stored as a global symbol.
16430 Ada subprograms, whether marked external or not, are always
16431 stored as a global symbol, because we want to be able to
16432 access them globally. For instance, we want to be able
16433 to break on a nested subprogram without having to
16434 specify the context. */
16435 list_to_add = &global_symbols;
16436 }
16437 else
16438 {
16439 list_to_add = cu->list_in_scope;
16440 }
16441 break;
16442 case DW_TAG_inlined_subroutine:
16443 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16444 finish_block. */
16445 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16446 SYMBOL_INLINED (sym) = 1;
16447 list_to_add = cu->list_in_scope;
16448 break;
16449 case DW_TAG_template_value_param:
16450 suppress_add = 1;
16451 /* Fall through. */
16452 case DW_TAG_constant:
16453 case DW_TAG_variable:
16454 case DW_TAG_member:
16455 /* Compilation with minimal debug info may result in
16456 variables with missing type entries. Change the
16457 misleading `void' type to something sensible. */
16458 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16459 SYMBOL_TYPE (sym)
16460 = objfile_type (objfile)->nodebug_data_symbol;
16461
16462 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16463 /* In the case of DW_TAG_member, we should only be called for
16464 static const members. */
16465 if (die->tag == DW_TAG_member)
16466 {
16467 /* dwarf2_add_field uses die_is_declaration,
16468 so we do the same. */
16469 gdb_assert (die_is_declaration (die, cu));
16470 gdb_assert (attr);
16471 }
16472 if (attr)
16473 {
16474 dwarf2_const_value (attr, sym, cu);
16475 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16476 if (!suppress_add)
16477 {
16478 if (attr2 && (DW_UNSND (attr2) != 0))
16479 list_to_add = &global_symbols;
16480 else
16481 list_to_add = cu->list_in_scope;
16482 }
16483 break;
16484 }
16485 attr = dwarf2_attr (die, DW_AT_location, cu);
16486 if (attr)
16487 {
16488 var_decode_location (attr, sym, cu);
16489 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16490
16491 /* Fortran explicitly imports any global symbols to the local
16492 scope by DW_TAG_common_block. */
16493 if (cu->language == language_fortran && die->parent
16494 && die->parent->tag == DW_TAG_common_block)
16495 attr2 = NULL;
16496
16497 if (SYMBOL_CLASS (sym) == LOC_STATIC
16498 && SYMBOL_VALUE_ADDRESS (sym) == 0
16499 && !dwarf2_per_objfile->has_section_at_zero)
16500 {
16501 /* When a static variable is eliminated by the linker,
16502 the corresponding debug information is not stripped
16503 out, but the variable address is set to null;
16504 do not add such variables into symbol table. */
16505 }
16506 else if (attr2 && (DW_UNSND (attr2) != 0))
16507 {
16508 /* Workaround gfortran PR debug/40040 - it uses
16509 DW_AT_location for variables in -fPIC libraries which may
16510 get overriden by other libraries/executable and get
16511 a different address. Resolve it by the minimal symbol
16512 which may come from inferior's executable using copy
16513 relocation. Make this workaround only for gfortran as for
16514 other compilers GDB cannot guess the minimal symbol
16515 Fortran mangling kind. */
16516 if (cu->language == language_fortran && die->parent
16517 && die->parent->tag == DW_TAG_module
16518 && cu->producer
16519 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16520 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16521
16522 /* A variable with DW_AT_external is never static,
16523 but it may be block-scoped. */
16524 list_to_add = (cu->list_in_scope == &file_symbols
16525 ? &global_symbols : cu->list_in_scope);
16526 }
16527 else
16528 list_to_add = cu->list_in_scope;
16529 }
16530 else
16531 {
16532 /* We do not know the address of this symbol.
16533 If it is an external symbol and we have type information
16534 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16535 The address of the variable will then be determined from
16536 the minimal symbol table whenever the variable is
16537 referenced. */
16538 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16539
16540 /* Fortran explicitly imports any global symbols to the local
16541 scope by DW_TAG_common_block. */
16542 if (cu->language == language_fortran && die->parent
16543 && die->parent->tag == DW_TAG_common_block)
16544 {
16545 /* SYMBOL_CLASS doesn't matter here because
16546 read_common_block is going to reset it. */
16547 if (!suppress_add)
16548 list_to_add = cu->list_in_scope;
16549 }
16550 else if (attr2 && (DW_UNSND (attr2) != 0)
16551 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16552 {
16553 /* A variable with DW_AT_external is never static, but it
16554 may be block-scoped. */
16555 list_to_add = (cu->list_in_scope == &file_symbols
16556 ? &global_symbols : cu->list_in_scope);
16557
16558 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16559 }
16560 else if (!die_is_declaration (die, cu))
16561 {
16562 /* Use the default LOC_OPTIMIZED_OUT class. */
16563 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16564 if (!suppress_add)
16565 list_to_add = cu->list_in_scope;
16566 }
16567 }
16568 break;
16569 case DW_TAG_formal_parameter:
16570 /* If we are inside a function, mark this as an argument. If
16571 not, we might be looking at an argument to an inlined function
16572 when we do not have enough information to show inlined frames;
16573 pretend it's a local variable in that case so that the user can
16574 still see it. */
16575 if (context_stack_depth > 0
16576 && context_stack[context_stack_depth - 1].name != NULL)
16577 SYMBOL_IS_ARGUMENT (sym) = 1;
16578 attr = dwarf2_attr (die, DW_AT_location, cu);
16579 if (attr)
16580 {
16581 var_decode_location (attr, sym, cu);
16582 }
16583 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16584 if (attr)
16585 {
16586 dwarf2_const_value (attr, sym, cu);
16587 }
16588
16589 list_to_add = cu->list_in_scope;
16590 break;
16591 case DW_TAG_unspecified_parameters:
16592 /* From varargs functions; gdb doesn't seem to have any
16593 interest in this information, so just ignore it for now.
16594 (FIXME?) */
16595 break;
16596 case DW_TAG_template_type_param:
16597 suppress_add = 1;
16598 /* Fall through. */
16599 case DW_TAG_class_type:
16600 case DW_TAG_interface_type:
16601 case DW_TAG_structure_type:
16602 case DW_TAG_union_type:
16603 case DW_TAG_set_type:
16604 case DW_TAG_enumeration_type:
16605 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16606 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16607
16608 {
16609 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16610 really ever be static objects: otherwise, if you try
16611 to, say, break of a class's method and you're in a file
16612 which doesn't mention that class, it won't work unless
16613 the check for all static symbols in lookup_symbol_aux
16614 saves you. See the OtherFileClass tests in
16615 gdb.c++/namespace.exp. */
16616
16617 if (!suppress_add)
16618 {
16619 list_to_add = (cu->list_in_scope == &file_symbols
16620 && (cu->language == language_cplus
16621 || cu->language == language_java)
16622 ? &global_symbols : cu->list_in_scope);
16623
16624 /* The semantics of C++ state that "struct foo {
16625 ... }" also defines a typedef for "foo". A Java
16626 class declaration also defines a typedef for the
16627 class. */
16628 if (cu->language == language_cplus
16629 || cu->language == language_java
16630 || cu->language == language_ada)
16631 {
16632 /* The symbol's name is already allocated along
16633 with this objfile, so we don't need to
16634 duplicate it for the type. */
16635 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16636 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16637 }
16638 }
16639 }
16640 break;
16641 case DW_TAG_typedef:
16642 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16643 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16644 list_to_add = cu->list_in_scope;
16645 break;
16646 case DW_TAG_base_type:
16647 case DW_TAG_subrange_type:
16648 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16649 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16650 list_to_add = cu->list_in_scope;
16651 break;
16652 case DW_TAG_enumerator:
16653 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16654 if (attr)
16655 {
16656 dwarf2_const_value (attr, sym, cu);
16657 }
16658 {
16659 /* NOTE: carlton/2003-11-10: See comment above in the
16660 DW_TAG_class_type, etc. block. */
16661
16662 list_to_add = (cu->list_in_scope == &file_symbols
16663 && (cu->language == language_cplus
16664 || cu->language == language_java)
16665 ? &global_symbols : cu->list_in_scope);
16666 }
16667 break;
16668 case DW_TAG_namespace:
16669 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16670 list_to_add = &global_symbols;
16671 break;
16672 case DW_TAG_common_block:
16673 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16674 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16675 add_symbol_to_list (sym, cu->list_in_scope);
16676 break;
16677 default:
16678 /* Not a tag we recognize. Hopefully we aren't processing
16679 trash data, but since we must specifically ignore things
16680 we don't recognize, there is nothing else we should do at
16681 this point. */
16682 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16683 dwarf_tag_name (die->tag));
16684 break;
16685 }
16686
16687 if (suppress_add)
16688 {
16689 sym->hash_next = objfile->template_symbols;
16690 objfile->template_symbols = sym;
16691 list_to_add = NULL;
16692 }
16693
16694 if (list_to_add != NULL)
16695 add_symbol_to_list (sym, list_to_add);
16696
16697 /* For the benefit of old versions of GCC, check for anonymous
16698 namespaces based on the demangled name. */
16699 if (!cu->processing_has_namespace_info
16700 && cu->language == language_cplus)
16701 cp_scan_for_anonymous_namespaces (sym, objfile);
16702 }
16703 return (sym);
16704 }
16705
16706 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16707
16708 static struct symbol *
16709 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16710 {
16711 return new_symbol_full (die, type, cu, NULL);
16712 }
16713
16714 /* Given an attr with a DW_FORM_dataN value in host byte order,
16715 zero-extend it as appropriate for the symbol's type. The DWARF
16716 standard (v4) is not entirely clear about the meaning of using
16717 DW_FORM_dataN for a constant with a signed type, where the type is
16718 wider than the data. The conclusion of a discussion on the DWARF
16719 list was that this is unspecified. We choose to always zero-extend
16720 because that is the interpretation long in use by GCC. */
16721
16722 static gdb_byte *
16723 dwarf2_const_value_data (struct attribute *attr, struct obstack *obstack,
16724 struct dwarf2_cu *cu, LONGEST *value, int bits)
16725 {
16726 struct objfile *objfile = cu->objfile;
16727 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16728 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16729 LONGEST l = DW_UNSND (attr);
16730
16731 if (bits < sizeof (*value) * 8)
16732 {
16733 l &= ((LONGEST) 1 << bits) - 1;
16734 *value = l;
16735 }
16736 else if (bits == sizeof (*value) * 8)
16737 *value = l;
16738 else
16739 {
16740 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16741 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16742 return bytes;
16743 }
16744
16745 return NULL;
16746 }
16747
16748 /* Read a constant value from an attribute. Either set *VALUE, or if
16749 the value does not fit in *VALUE, set *BYTES - either already
16750 allocated on the objfile obstack, or newly allocated on OBSTACK,
16751 or, set *BATON, if we translated the constant to a location
16752 expression. */
16753
16754 static void
16755 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16756 const char *name, struct obstack *obstack,
16757 struct dwarf2_cu *cu,
16758 LONGEST *value, const gdb_byte **bytes,
16759 struct dwarf2_locexpr_baton **baton)
16760 {
16761 struct objfile *objfile = cu->objfile;
16762 struct comp_unit_head *cu_header = &cu->header;
16763 struct dwarf_block *blk;
16764 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16765 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16766
16767 *value = 0;
16768 *bytes = NULL;
16769 *baton = NULL;
16770
16771 switch (attr->form)
16772 {
16773 case DW_FORM_addr:
16774 case DW_FORM_GNU_addr_index:
16775 {
16776 gdb_byte *data;
16777
16778 if (TYPE_LENGTH (type) != cu_header->addr_size)
16779 dwarf2_const_value_length_mismatch_complaint (name,
16780 cu_header->addr_size,
16781 TYPE_LENGTH (type));
16782 /* Symbols of this form are reasonably rare, so we just
16783 piggyback on the existing location code rather than writing
16784 a new implementation of symbol_computed_ops. */
16785 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16786 (*baton)->per_cu = cu->per_cu;
16787 gdb_assert ((*baton)->per_cu);
16788
16789 (*baton)->size = 2 + cu_header->addr_size;
16790 data = obstack_alloc (obstack, (*baton)->size);
16791 (*baton)->data = data;
16792
16793 data[0] = DW_OP_addr;
16794 store_unsigned_integer (&data[1], cu_header->addr_size,
16795 byte_order, DW_ADDR (attr));
16796 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16797 }
16798 break;
16799 case DW_FORM_string:
16800 case DW_FORM_strp:
16801 case DW_FORM_GNU_str_index:
16802 case DW_FORM_GNU_strp_alt:
16803 /* DW_STRING is already allocated on the objfile obstack, point
16804 directly to it. */
16805 *bytes = (const gdb_byte *) DW_STRING (attr);
16806 break;
16807 case DW_FORM_block1:
16808 case DW_FORM_block2:
16809 case DW_FORM_block4:
16810 case DW_FORM_block:
16811 case DW_FORM_exprloc:
16812 blk = DW_BLOCK (attr);
16813 if (TYPE_LENGTH (type) != blk->size)
16814 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16815 TYPE_LENGTH (type));
16816 *bytes = blk->data;
16817 break;
16818
16819 /* The DW_AT_const_value attributes are supposed to carry the
16820 symbol's value "represented as it would be on the target
16821 architecture." By the time we get here, it's already been
16822 converted to host endianness, so we just need to sign- or
16823 zero-extend it as appropriate. */
16824 case DW_FORM_data1:
16825 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16826 break;
16827 case DW_FORM_data2:
16828 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16829 break;
16830 case DW_FORM_data4:
16831 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16832 break;
16833 case DW_FORM_data8:
16834 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16835 break;
16836
16837 case DW_FORM_sdata:
16838 *value = DW_SND (attr);
16839 break;
16840
16841 case DW_FORM_udata:
16842 *value = DW_UNSND (attr);
16843 break;
16844
16845 default:
16846 complaint (&symfile_complaints,
16847 _("unsupported const value attribute form: '%s'"),
16848 dwarf_form_name (attr->form));
16849 *value = 0;
16850 break;
16851 }
16852 }
16853
16854
16855 /* Copy constant value from an attribute to a symbol. */
16856
16857 static void
16858 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16859 struct dwarf2_cu *cu)
16860 {
16861 struct objfile *objfile = cu->objfile;
16862 struct comp_unit_head *cu_header = &cu->header;
16863 LONGEST value;
16864 const gdb_byte *bytes;
16865 struct dwarf2_locexpr_baton *baton;
16866
16867 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16868 SYMBOL_PRINT_NAME (sym),
16869 &objfile->objfile_obstack, cu,
16870 &value, &bytes, &baton);
16871
16872 if (baton != NULL)
16873 {
16874 SYMBOL_LOCATION_BATON (sym) = baton;
16875 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16876 }
16877 else if (bytes != NULL)
16878 {
16879 SYMBOL_VALUE_BYTES (sym) = bytes;
16880 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16881 }
16882 else
16883 {
16884 SYMBOL_VALUE (sym) = value;
16885 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16886 }
16887 }
16888
16889 /* Return the type of the die in question using its DW_AT_type attribute. */
16890
16891 static struct type *
16892 die_type (struct die_info *die, struct dwarf2_cu *cu)
16893 {
16894 struct attribute *type_attr;
16895
16896 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16897 if (!type_attr)
16898 {
16899 /* A missing DW_AT_type represents a void type. */
16900 return objfile_type (cu->objfile)->builtin_void;
16901 }
16902
16903 return lookup_die_type (die, type_attr, cu);
16904 }
16905
16906 /* True iff CU's producer generates GNAT Ada auxiliary information
16907 that allows to find parallel types through that information instead
16908 of having to do expensive parallel lookups by type name. */
16909
16910 static int
16911 need_gnat_info (struct dwarf2_cu *cu)
16912 {
16913 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16914 of GNAT produces this auxiliary information, without any indication
16915 that it is produced. Part of enhancing the FSF version of GNAT
16916 to produce that information will be to put in place an indicator
16917 that we can use in order to determine whether the descriptive type
16918 info is available or not. One suggestion that has been made is
16919 to use a new attribute, attached to the CU die. For now, assume
16920 that the descriptive type info is not available. */
16921 return 0;
16922 }
16923
16924 /* Return the auxiliary type of the die in question using its
16925 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16926 attribute is not present. */
16927
16928 static struct type *
16929 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16930 {
16931 struct attribute *type_attr;
16932
16933 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16934 if (!type_attr)
16935 return NULL;
16936
16937 return lookup_die_type (die, type_attr, cu);
16938 }
16939
16940 /* If DIE has a descriptive_type attribute, then set the TYPE's
16941 descriptive type accordingly. */
16942
16943 static void
16944 set_descriptive_type (struct type *type, struct die_info *die,
16945 struct dwarf2_cu *cu)
16946 {
16947 struct type *descriptive_type = die_descriptive_type (die, cu);
16948
16949 if (descriptive_type)
16950 {
16951 ALLOCATE_GNAT_AUX_TYPE (type);
16952 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16953 }
16954 }
16955
16956 /* Return the containing type of the die in question using its
16957 DW_AT_containing_type attribute. */
16958
16959 static struct type *
16960 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16961 {
16962 struct attribute *type_attr;
16963
16964 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16965 if (!type_attr)
16966 error (_("Dwarf Error: Problem turning containing type into gdb type "
16967 "[in module %s]"), cu->objfile->name);
16968
16969 return lookup_die_type (die, type_attr, cu);
16970 }
16971
16972 /* Return an error marker type to use for the ill formed type in DIE/CU. */
16973
16974 static struct type *
16975 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
16976 {
16977 struct objfile *objfile = dwarf2_per_objfile->objfile;
16978 char *message, *saved;
16979
16980 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16981 objfile->name,
16982 cu->header.offset.sect_off,
16983 die->offset.sect_off);
16984 saved = obstack_copy0 (&objfile->objfile_obstack,
16985 message, strlen (message));
16986 xfree (message);
16987
16988 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16989 }
16990
16991 /* Look up the type of DIE in CU using its type attribute ATTR.
16992 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
16993 DW_AT_containing_type.
16994 If there is no type substitute an error marker. */
16995
16996 static struct type *
16997 lookup_die_type (struct die_info *die, struct attribute *attr,
16998 struct dwarf2_cu *cu)
16999 {
17000 struct objfile *objfile = cu->objfile;
17001 struct type *this_type;
17002
17003 gdb_assert (attr->name == DW_AT_type
17004 || attr->name == DW_AT_GNAT_descriptive_type
17005 || attr->name == DW_AT_containing_type);
17006
17007 /* First see if we have it cached. */
17008
17009 if (attr->form == DW_FORM_GNU_ref_alt)
17010 {
17011 struct dwarf2_per_cu_data *per_cu;
17012 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17013
17014 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17015 this_type = get_die_type_at_offset (offset, per_cu);
17016 }
17017 else if (is_ref_attr (attr))
17018 {
17019 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17020
17021 this_type = get_die_type_at_offset (offset, cu->per_cu);
17022 }
17023 else if (attr->form == DW_FORM_ref_sig8)
17024 {
17025 ULONGEST signature = DW_SIGNATURE (attr);
17026
17027 return get_signatured_type (die, signature, cu);
17028 }
17029 else
17030 {
17031 complaint (&symfile_complaints,
17032 _("Dwarf Error: Bad type attribute %s in DIE"
17033 " at 0x%x [in module %s]"),
17034 dwarf_attr_name (attr->name), die->offset.sect_off,
17035 objfile->name);
17036 return build_error_marker_type (cu, die);
17037 }
17038
17039 /* If not cached we need to read it in. */
17040
17041 if (this_type == NULL)
17042 {
17043 struct die_info *type_die = NULL;
17044 struct dwarf2_cu *type_cu = cu;
17045
17046 if (is_ref_attr (attr))
17047 type_die = follow_die_ref (die, attr, &type_cu);
17048 if (type_die == NULL)
17049 return build_error_marker_type (cu, die);
17050 /* If we find the type now, it's probably because the type came
17051 from an inter-CU reference and the type's CU got expanded before
17052 ours. */
17053 this_type = read_type_die (type_die, type_cu);
17054 }
17055
17056 /* If we still don't have a type use an error marker. */
17057
17058 if (this_type == NULL)
17059 return build_error_marker_type (cu, die);
17060
17061 return this_type;
17062 }
17063
17064 /* Return the type in DIE, CU.
17065 Returns NULL for invalid types.
17066
17067 This first does a lookup in die_type_hash,
17068 and only reads the die in if necessary.
17069
17070 NOTE: This can be called when reading in partial or full symbols. */
17071
17072 static struct type *
17073 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17074 {
17075 struct type *this_type;
17076
17077 this_type = get_die_type (die, cu);
17078 if (this_type)
17079 return this_type;
17080
17081 return read_type_die_1 (die, cu);
17082 }
17083
17084 /* Read the type in DIE, CU.
17085 Returns NULL for invalid types. */
17086
17087 static struct type *
17088 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17089 {
17090 struct type *this_type = NULL;
17091
17092 switch (die->tag)
17093 {
17094 case DW_TAG_class_type:
17095 case DW_TAG_interface_type:
17096 case DW_TAG_structure_type:
17097 case DW_TAG_union_type:
17098 this_type = read_structure_type (die, cu);
17099 break;
17100 case DW_TAG_enumeration_type:
17101 this_type = read_enumeration_type (die, cu);
17102 break;
17103 case DW_TAG_subprogram:
17104 case DW_TAG_subroutine_type:
17105 case DW_TAG_inlined_subroutine:
17106 this_type = read_subroutine_type (die, cu);
17107 break;
17108 case DW_TAG_array_type:
17109 this_type = read_array_type (die, cu);
17110 break;
17111 case DW_TAG_set_type:
17112 this_type = read_set_type (die, cu);
17113 break;
17114 case DW_TAG_pointer_type:
17115 this_type = read_tag_pointer_type (die, cu);
17116 break;
17117 case DW_TAG_ptr_to_member_type:
17118 this_type = read_tag_ptr_to_member_type (die, cu);
17119 break;
17120 case DW_TAG_reference_type:
17121 this_type = read_tag_reference_type (die, cu);
17122 break;
17123 case DW_TAG_const_type:
17124 this_type = read_tag_const_type (die, cu);
17125 break;
17126 case DW_TAG_volatile_type:
17127 this_type = read_tag_volatile_type (die, cu);
17128 break;
17129 case DW_TAG_restrict_type:
17130 this_type = read_tag_restrict_type (die, cu);
17131 break;
17132 case DW_TAG_string_type:
17133 this_type = read_tag_string_type (die, cu);
17134 break;
17135 case DW_TAG_typedef:
17136 this_type = read_typedef (die, cu);
17137 break;
17138 case DW_TAG_subrange_type:
17139 this_type = read_subrange_type (die, cu);
17140 break;
17141 case DW_TAG_base_type:
17142 this_type = read_base_type (die, cu);
17143 break;
17144 case DW_TAG_unspecified_type:
17145 this_type = read_unspecified_type (die, cu);
17146 break;
17147 case DW_TAG_namespace:
17148 this_type = read_namespace_type (die, cu);
17149 break;
17150 case DW_TAG_module:
17151 this_type = read_module_type (die, cu);
17152 break;
17153 default:
17154 complaint (&symfile_complaints,
17155 _("unexpected tag in read_type_die: '%s'"),
17156 dwarf_tag_name (die->tag));
17157 break;
17158 }
17159
17160 return this_type;
17161 }
17162
17163 /* See if we can figure out if the class lives in a namespace. We do
17164 this by looking for a member function; its demangled name will
17165 contain namespace info, if there is any.
17166 Return the computed name or NULL.
17167 Space for the result is allocated on the objfile's obstack.
17168 This is the full-die version of guess_partial_die_structure_name.
17169 In this case we know DIE has no useful parent. */
17170
17171 static char *
17172 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17173 {
17174 struct die_info *spec_die;
17175 struct dwarf2_cu *spec_cu;
17176 struct die_info *child;
17177
17178 spec_cu = cu;
17179 spec_die = die_specification (die, &spec_cu);
17180 if (spec_die != NULL)
17181 {
17182 die = spec_die;
17183 cu = spec_cu;
17184 }
17185
17186 for (child = die->child;
17187 child != NULL;
17188 child = child->sibling)
17189 {
17190 if (child->tag == DW_TAG_subprogram)
17191 {
17192 struct attribute *attr;
17193
17194 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17195 if (attr == NULL)
17196 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17197 if (attr != NULL)
17198 {
17199 char *actual_name
17200 = language_class_name_from_physname (cu->language_defn,
17201 DW_STRING (attr));
17202 char *name = NULL;
17203
17204 if (actual_name != NULL)
17205 {
17206 const char *die_name = dwarf2_name (die, cu);
17207
17208 if (die_name != NULL
17209 && strcmp (die_name, actual_name) != 0)
17210 {
17211 /* Strip off the class name from the full name.
17212 We want the prefix. */
17213 int die_name_len = strlen (die_name);
17214 int actual_name_len = strlen (actual_name);
17215
17216 /* Test for '::' as a sanity check. */
17217 if (actual_name_len > die_name_len + 2
17218 && actual_name[actual_name_len
17219 - die_name_len - 1] == ':')
17220 name =
17221 obstack_copy0 (&cu->objfile->objfile_obstack,
17222 actual_name,
17223 actual_name_len - die_name_len - 2);
17224 }
17225 }
17226 xfree (actual_name);
17227 return name;
17228 }
17229 }
17230 }
17231
17232 return NULL;
17233 }
17234
17235 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17236 prefix part in such case. See
17237 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17238
17239 static char *
17240 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17241 {
17242 struct attribute *attr;
17243 char *base;
17244
17245 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17246 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17247 return NULL;
17248
17249 attr = dwarf2_attr (die, DW_AT_name, cu);
17250 if (attr != NULL && DW_STRING (attr) != NULL)
17251 return NULL;
17252
17253 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17254 if (attr == NULL)
17255 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17256 if (attr == NULL || DW_STRING (attr) == NULL)
17257 return NULL;
17258
17259 /* dwarf2_name had to be already called. */
17260 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17261
17262 /* Strip the base name, keep any leading namespaces/classes. */
17263 base = strrchr (DW_STRING (attr), ':');
17264 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17265 return "";
17266
17267 return obstack_copy0 (&cu->objfile->objfile_obstack,
17268 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17269 }
17270
17271 /* Return the name of the namespace/class that DIE is defined within,
17272 or "" if we can't tell. The caller should not xfree the result.
17273
17274 For example, if we're within the method foo() in the following
17275 code:
17276
17277 namespace N {
17278 class C {
17279 void foo () {
17280 }
17281 };
17282 }
17283
17284 then determine_prefix on foo's die will return "N::C". */
17285
17286 static const char *
17287 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17288 {
17289 struct die_info *parent, *spec_die;
17290 struct dwarf2_cu *spec_cu;
17291 struct type *parent_type;
17292 char *retval;
17293
17294 if (cu->language != language_cplus && cu->language != language_java
17295 && cu->language != language_fortran)
17296 return "";
17297
17298 retval = anonymous_struct_prefix (die, cu);
17299 if (retval)
17300 return retval;
17301
17302 /* We have to be careful in the presence of DW_AT_specification.
17303 For example, with GCC 3.4, given the code
17304
17305 namespace N {
17306 void foo() {
17307 // Definition of N::foo.
17308 }
17309 }
17310
17311 then we'll have a tree of DIEs like this:
17312
17313 1: DW_TAG_compile_unit
17314 2: DW_TAG_namespace // N
17315 3: DW_TAG_subprogram // declaration of N::foo
17316 4: DW_TAG_subprogram // definition of N::foo
17317 DW_AT_specification // refers to die #3
17318
17319 Thus, when processing die #4, we have to pretend that we're in
17320 the context of its DW_AT_specification, namely the contex of die
17321 #3. */
17322 spec_cu = cu;
17323 spec_die = die_specification (die, &spec_cu);
17324 if (spec_die == NULL)
17325 parent = die->parent;
17326 else
17327 {
17328 parent = spec_die->parent;
17329 cu = spec_cu;
17330 }
17331
17332 if (parent == NULL)
17333 return "";
17334 else if (parent->building_fullname)
17335 {
17336 const char *name;
17337 const char *parent_name;
17338
17339 /* It has been seen on RealView 2.2 built binaries,
17340 DW_TAG_template_type_param types actually _defined_ as
17341 children of the parent class:
17342
17343 enum E {};
17344 template class <class Enum> Class{};
17345 Class<enum E> class_e;
17346
17347 1: DW_TAG_class_type (Class)
17348 2: DW_TAG_enumeration_type (E)
17349 3: DW_TAG_enumerator (enum1:0)
17350 3: DW_TAG_enumerator (enum2:1)
17351 ...
17352 2: DW_TAG_template_type_param
17353 DW_AT_type DW_FORM_ref_udata (E)
17354
17355 Besides being broken debug info, it can put GDB into an
17356 infinite loop. Consider:
17357
17358 When we're building the full name for Class<E>, we'll start
17359 at Class, and go look over its template type parameters,
17360 finding E. We'll then try to build the full name of E, and
17361 reach here. We're now trying to build the full name of E,
17362 and look over the parent DIE for containing scope. In the
17363 broken case, if we followed the parent DIE of E, we'd again
17364 find Class, and once again go look at its template type
17365 arguments, etc., etc. Simply don't consider such parent die
17366 as source-level parent of this die (it can't be, the language
17367 doesn't allow it), and break the loop here. */
17368 name = dwarf2_name (die, cu);
17369 parent_name = dwarf2_name (parent, cu);
17370 complaint (&symfile_complaints,
17371 _("template param type '%s' defined within parent '%s'"),
17372 name ? name : "<unknown>",
17373 parent_name ? parent_name : "<unknown>");
17374 return "";
17375 }
17376 else
17377 switch (parent->tag)
17378 {
17379 case DW_TAG_namespace:
17380 parent_type = read_type_die (parent, cu);
17381 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17382 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17383 Work around this problem here. */
17384 if (cu->language == language_cplus
17385 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17386 return "";
17387 /* We give a name to even anonymous namespaces. */
17388 return TYPE_TAG_NAME (parent_type);
17389 case DW_TAG_class_type:
17390 case DW_TAG_interface_type:
17391 case DW_TAG_structure_type:
17392 case DW_TAG_union_type:
17393 case DW_TAG_module:
17394 parent_type = read_type_die (parent, cu);
17395 if (TYPE_TAG_NAME (parent_type) != NULL)
17396 return TYPE_TAG_NAME (parent_type);
17397 else
17398 /* An anonymous structure is only allowed non-static data
17399 members; no typedefs, no member functions, et cetera.
17400 So it does not need a prefix. */
17401 return "";
17402 case DW_TAG_compile_unit:
17403 case DW_TAG_partial_unit:
17404 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17405 if (cu->language == language_cplus
17406 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17407 && die->child != NULL
17408 && (die->tag == DW_TAG_class_type
17409 || die->tag == DW_TAG_structure_type
17410 || die->tag == DW_TAG_union_type))
17411 {
17412 char *name = guess_full_die_structure_name (die, cu);
17413 if (name != NULL)
17414 return name;
17415 }
17416 return "";
17417 default:
17418 return determine_prefix (parent, cu);
17419 }
17420 }
17421
17422 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17423 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17424 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17425 an obconcat, otherwise allocate storage for the result. The CU argument is
17426 used to determine the language and hence, the appropriate separator. */
17427
17428 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17429
17430 static char *
17431 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17432 int physname, struct dwarf2_cu *cu)
17433 {
17434 const char *lead = "";
17435 const char *sep;
17436
17437 if (suffix == NULL || suffix[0] == '\0'
17438 || prefix == NULL || prefix[0] == '\0')
17439 sep = "";
17440 else if (cu->language == language_java)
17441 sep = ".";
17442 else if (cu->language == language_fortran && physname)
17443 {
17444 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17445 DW_AT_MIPS_linkage_name is preferred and used instead. */
17446
17447 lead = "__";
17448 sep = "_MOD_";
17449 }
17450 else
17451 sep = "::";
17452
17453 if (prefix == NULL)
17454 prefix = "";
17455 if (suffix == NULL)
17456 suffix = "";
17457
17458 if (obs == NULL)
17459 {
17460 char *retval
17461 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17462
17463 strcpy (retval, lead);
17464 strcat (retval, prefix);
17465 strcat (retval, sep);
17466 strcat (retval, suffix);
17467 return retval;
17468 }
17469 else
17470 {
17471 /* We have an obstack. */
17472 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17473 }
17474 }
17475
17476 /* Return sibling of die, NULL if no sibling. */
17477
17478 static struct die_info *
17479 sibling_die (struct die_info *die)
17480 {
17481 return die->sibling;
17482 }
17483
17484 /* Get name of a die, return NULL if not found. */
17485
17486 static const char *
17487 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17488 struct obstack *obstack)
17489 {
17490 if (name && cu->language == language_cplus)
17491 {
17492 char *canon_name = cp_canonicalize_string (name);
17493
17494 if (canon_name != NULL)
17495 {
17496 if (strcmp (canon_name, name) != 0)
17497 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17498 xfree (canon_name);
17499 }
17500 }
17501
17502 return name;
17503 }
17504
17505 /* Get name of a die, return NULL if not found. */
17506
17507 static const char *
17508 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17509 {
17510 struct attribute *attr;
17511
17512 attr = dwarf2_attr (die, DW_AT_name, cu);
17513 if ((!attr || !DW_STRING (attr))
17514 && die->tag != DW_TAG_class_type
17515 && die->tag != DW_TAG_interface_type
17516 && die->tag != DW_TAG_structure_type
17517 && die->tag != DW_TAG_union_type)
17518 return NULL;
17519
17520 switch (die->tag)
17521 {
17522 case DW_TAG_compile_unit:
17523 case DW_TAG_partial_unit:
17524 /* Compilation units have a DW_AT_name that is a filename, not
17525 a source language identifier. */
17526 case DW_TAG_enumeration_type:
17527 case DW_TAG_enumerator:
17528 /* These tags always have simple identifiers already; no need
17529 to canonicalize them. */
17530 return DW_STRING (attr);
17531
17532 case DW_TAG_subprogram:
17533 /* Java constructors will all be named "<init>", so return
17534 the class name when we see this special case. */
17535 if (cu->language == language_java
17536 && DW_STRING (attr) != NULL
17537 && strcmp (DW_STRING (attr), "<init>") == 0)
17538 {
17539 struct dwarf2_cu *spec_cu = cu;
17540 struct die_info *spec_die;
17541
17542 /* GCJ will output '<init>' for Java constructor names.
17543 For this special case, return the name of the parent class. */
17544
17545 /* GCJ may output suprogram DIEs with AT_specification set.
17546 If so, use the name of the specified DIE. */
17547 spec_die = die_specification (die, &spec_cu);
17548 if (spec_die != NULL)
17549 return dwarf2_name (spec_die, spec_cu);
17550
17551 do
17552 {
17553 die = die->parent;
17554 if (die->tag == DW_TAG_class_type)
17555 return dwarf2_name (die, cu);
17556 }
17557 while (die->tag != DW_TAG_compile_unit
17558 && die->tag != DW_TAG_partial_unit);
17559 }
17560 break;
17561
17562 case DW_TAG_class_type:
17563 case DW_TAG_interface_type:
17564 case DW_TAG_structure_type:
17565 case DW_TAG_union_type:
17566 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17567 structures or unions. These were of the form "._%d" in GCC 4.1,
17568 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17569 and GCC 4.4. We work around this problem by ignoring these. */
17570 if (attr && DW_STRING (attr)
17571 && (strncmp (DW_STRING (attr), "._", 2) == 0
17572 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17573 return NULL;
17574
17575 /* GCC might emit a nameless typedef that has a linkage name. See
17576 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17577 if (!attr || DW_STRING (attr) == NULL)
17578 {
17579 char *demangled = NULL;
17580
17581 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17582 if (attr == NULL)
17583 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17584
17585 if (attr == NULL || DW_STRING (attr) == NULL)
17586 return NULL;
17587
17588 /* Avoid demangling DW_STRING (attr) the second time on a second
17589 call for the same DIE. */
17590 if (!DW_STRING_IS_CANONICAL (attr))
17591 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17592
17593 if (demangled)
17594 {
17595 char *base;
17596
17597 /* FIXME: we already did this for the partial symbol... */
17598 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17599 demangled, strlen (demangled));
17600 DW_STRING_IS_CANONICAL (attr) = 1;
17601 xfree (demangled);
17602
17603 /* Strip any leading namespaces/classes, keep only the base name.
17604 DW_AT_name for named DIEs does not contain the prefixes. */
17605 base = strrchr (DW_STRING (attr), ':');
17606 if (base && base > DW_STRING (attr) && base[-1] == ':')
17607 return &base[1];
17608 else
17609 return DW_STRING (attr);
17610 }
17611 }
17612 break;
17613
17614 default:
17615 break;
17616 }
17617
17618 if (!DW_STRING_IS_CANONICAL (attr))
17619 {
17620 DW_STRING (attr)
17621 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17622 &cu->objfile->objfile_obstack);
17623 DW_STRING_IS_CANONICAL (attr) = 1;
17624 }
17625 return DW_STRING (attr);
17626 }
17627
17628 /* Return the die that this die in an extension of, or NULL if there
17629 is none. *EXT_CU is the CU containing DIE on input, and the CU
17630 containing the return value on output. */
17631
17632 static struct die_info *
17633 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17634 {
17635 struct attribute *attr;
17636
17637 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17638 if (attr == NULL)
17639 return NULL;
17640
17641 return follow_die_ref (die, attr, ext_cu);
17642 }
17643
17644 /* Convert a DIE tag into its string name. */
17645
17646 static const char *
17647 dwarf_tag_name (unsigned tag)
17648 {
17649 const char *name = get_DW_TAG_name (tag);
17650
17651 if (name == NULL)
17652 return "DW_TAG_<unknown>";
17653
17654 return name;
17655 }
17656
17657 /* Convert a DWARF attribute code into its string name. */
17658
17659 static const char *
17660 dwarf_attr_name (unsigned attr)
17661 {
17662 const char *name;
17663
17664 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17665 if (attr == DW_AT_MIPS_fde)
17666 return "DW_AT_MIPS_fde";
17667 #else
17668 if (attr == DW_AT_HP_block_index)
17669 return "DW_AT_HP_block_index";
17670 #endif
17671
17672 name = get_DW_AT_name (attr);
17673
17674 if (name == NULL)
17675 return "DW_AT_<unknown>";
17676
17677 return name;
17678 }
17679
17680 /* Convert a DWARF value form code into its string name. */
17681
17682 static const char *
17683 dwarf_form_name (unsigned form)
17684 {
17685 const char *name = get_DW_FORM_name (form);
17686
17687 if (name == NULL)
17688 return "DW_FORM_<unknown>";
17689
17690 return name;
17691 }
17692
17693 static char *
17694 dwarf_bool_name (unsigned mybool)
17695 {
17696 if (mybool)
17697 return "TRUE";
17698 else
17699 return "FALSE";
17700 }
17701
17702 /* Convert a DWARF type code into its string name. */
17703
17704 static const char *
17705 dwarf_type_encoding_name (unsigned enc)
17706 {
17707 const char *name = get_DW_ATE_name (enc);
17708
17709 if (name == NULL)
17710 return "DW_ATE_<unknown>";
17711
17712 return name;
17713 }
17714
17715 static void
17716 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17717 {
17718 unsigned int i;
17719
17720 print_spaces (indent, f);
17721 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17722 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17723
17724 if (die->parent != NULL)
17725 {
17726 print_spaces (indent, f);
17727 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17728 die->parent->offset.sect_off);
17729 }
17730
17731 print_spaces (indent, f);
17732 fprintf_unfiltered (f, " has children: %s\n",
17733 dwarf_bool_name (die->child != NULL));
17734
17735 print_spaces (indent, f);
17736 fprintf_unfiltered (f, " attributes:\n");
17737
17738 for (i = 0; i < die->num_attrs; ++i)
17739 {
17740 print_spaces (indent, f);
17741 fprintf_unfiltered (f, " %s (%s) ",
17742 dwarf_attr_name (die->attrs[i].name),
17743 dwarf_form_name (die->attrs[i].form));
17744
17745 switch (die->attrs[i].form)
17746 {
17747 case DW_FORM_addr:
17748 case DW_FORM_GNU_addr_index:
17749 fprintf_unfiltered (f, "address: ");
17750 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17751 break;
17752 case DW_FORM_block2:
17753 case DW_FORM_block4:
17754 case DW_FORM_block:
17755 case DW_FORM_block1:
17756 fprintf_unfiltered (f, "block: size %s",
17757 pulongest (DW_BLOCK (&die->attrs[i])->size));
17758 break;
17759 case DW_FORM_exprloc:
17760 fprintf_unfiltered (f, "expression: size %s",
17761 pulongest (DW_BLOCK (&die->attrs[i])->size));
17762 break;
17763 case DW_FORM_ref_addr:
17764 fprintf_unfiltered (f, "ref address: ");
17765 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17766 break;
17767 case DW_FORM_GNU_ref_alt:
17768 fprintf_unfiltered (f, "alt ref address: ");
17769 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17770 break;
17771 case DW_FORM_ref1:
17772 case DW_FORM_ref2:
17773 case DW_FORM_ref4:
17774 case DW_FORM_ref8:
17775 case DW_FORM_ref_udata:
17776 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17777 (long) (DW_UNSND (&die->attrs[i])));
17778 break;
17779 case DW_FORM_data1:
17780 case DW_FORM_data2:
17781 case DW_FORM_data4:
17782 case DW_FORM_data8:
17783 case DW_FORM_udata:
17784 case DW_FORM_sdata:
17785 fprintf_unfiltered (f, "constant: %s",
17786 pulongest (DW_UNSND (&die->attrs[i])));
17787 break;
17788 case DW_FORM_sec_offset:
17789 fprintf_unfiltered (f, "section offset: %s",
17790 pulongest (DW_UNSND (&die->attrs[i])));
17791 break;
17792 case DW_FORM_ref_sig8:
17793 fprintf_unfiltered (f, "signature: %s",
17794 hex_string (DW_SIGNATURE (&die->attrs[i])));
17795 break;
17796 case DW_FORM_string:
17797 case DW_FORM_strp:
17798 case DW_FORM_GNU_str_index:
17799 case DW_FORM_GNU_strp_alt:
17800 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17801 DW_STRING (&die->attrs[i])
17802 ? DW_STRING (&die->attrs[i]) : "",
17803 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17804 break;
17805 case DW_FORM_flag:
17806 if (DW_UNSND (&die->attrs[i]))
17807 fprintf_unfiltered (f, "flag: TRUE");
17808 else
17809 fprintf_unfiltered (f, "flag: FALSE");
17810 break;
17811 case DW_FORM_flag_present:
17812 fprintf_unfiltered (f, "flag: TRUE");
17813 break;
17814 case DW_FORM_indirect:
17815 /* The reader will have reduced the indirect form to
17816 the "base form" so this form should not occur. */
17817 fprintf_unfiltered (f,
17818 "unexpected attribute form: DW_FORM_indirect");
17819 break;
17820 default:
17821 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17822 die->attrs[i].form);
17823 break;
17824 }
17825 fprintf_unfiltered (f, "\n");
17826 }
17827 }
17828
17829 static void
17830 dump_die_for_error (struct die_info *die)
17831 {
17832 dump_die_shallow (gdb_stderr, 0, die);
17833 }
17834
17835 static void
17836 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17837 {
17838 int indent = level * 4;
17839
17840 gdb_assert (die != NULL);
17841
17842 if (level >= max_level)
17843 return;
17844
17845 dump_die_shallow (f, indent, die);
17846
17847 if (die->child != NULL)
17848 {
17849 print_spaces (indent, f);
17850 fprintf_unfiltered (f, " Children:");
17851 if (level + 1 < max_level)
17852 {
17853 fprintf_unfiltered (f, "\n");
17854 dump_die_1 (f, level + 1, max_level, die->child);
17855 }
17856 else
17857 {
17858 fprintf_unfiltered (f,
17859 " [not printed, max nesting level reached]\n");
17860 }
17861 }
17862
17863 if (die->sibling != NULL && level > 0)
17864 {
17865 dump_die_1 (f, level, max_level, die->sibling);
17866 }
17867 }
17868
17869 /* This is called from the pdie macro in gdbinit.in.
17870 It's not static so gcc will keep a copy callable from gdb. */
17871
17872 void
17873 dump_die (struct die_info *die, int max_level)
17874 {
17875 dump_die_1 (gdb_stdlog, 0, max_level, die);
17876 }
17877
17878 static void
17879 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17880 {
17881 void **slot;
17882
17883 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17884 INSERT);
17885
17886 *slot = die;
17887 }
17888
17889 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17890 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17891
17892 static int
17893 is_ref_attr (struct attribute *attr)
17894 {
17895 switch (attr->form)
17896 {
17897 case DW_FORM_ref_addr:
17898 case DW_FORM_ref1:
17899 case DW_FORM_ref2:
17900 case DW_FORM_ref4:
17901 case DW_FORM_ref8:
17902 case DW_FORM_ref_udata:
17903 case DW_FORM_GNU_ref_alt:
17904 return 1;
17905 default:
17906 return 0;
17907 }
17908 }
17909
17910 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17911 required kind. */
17912
17913 static sect_offset
17914 dwarf2_get_ref_die_offset (struct attribute *attr)
17915 {
17916 sect_offset retval = { DW_UNSND (attr) };
17917
17918 if (is_ref_attr (attr))
17919 return retval;
17920
17921 retval.sect_off = 0;
17922 complaint (&symfile_complaints,
17923 _("unsupported die ref attribute form: '%s'"),
17924 dwarf_form_name (attr->form));
17925 return retval;
17926 }
17927
17928 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17929 * the value held by the attribute is not constant. */
17930
17931 static LONGEST
17932 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17933 {
17934 if (attr->form == DW_FORM_sdata)
17935 return DW_SND (attr);
17936 else if (attr->form == DW_FORM_udata
17937 || attr->form == DW_FORM_data1
17938 || attr->form == DW_FORM_data2
17939 || attr->form == DW_FORM_data4
17940 || attr->form == DW_FORM_data8)
17941 return DW_UNSND (attr);
17942 else
17943 {
17944 complaint (&symfile_complaints,
17945 _("Attribute value is not a constant (%s)"),
17946 dwarf_form_name (attr->form));
17947 return default_value;
17948 }
17949 }
17950
17951 /* Follow reference or signature attribute ATTR of SRC_DIE.
17952 On entry *REF_CU is the CU of SRC_DIE.
17953 On exit *REF_CU is the CU of the result. */
17954
17955 static struct die_info *
17956 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17957 struct dwarf2_cu **ref_cu)
17958 {
17959 struct die_info *die;
17960
17961 if (is_ref_attr (attr))
17962 die = follow_die_ref (src_die, attr, ref_cu);
17963 else if (attr->form == DW_FORM_ref_sig8)
17964 die = follow_die_sig (src_die, attr, ref_cu);
17965 else
17966 {
17967 dump_die_for_error (src_die);
17968 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17969 (*ref_cu)->objfile->name);
17970 }
17971
17972 return die;
17973 }
17974
17975 /* Follow reference OFFSET.
17976 On entry *REF_CU is the CU of the source die referencing OFFSET.
17977 On exit *REF_CU is the CU of the result.
17978 Returns NULL if OFFSET is invalid. */
17979
17980 static struct die_info *
17981 follow_die_offset (sect_offset offset, int offset_in_dwz,
17982 struct dwarf2_cu **ref_cu)
17983 {
17984 struct die_info temp_die;
17985 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17986
17987 gdb_assert (cu->per_cu != NULL);
17988
17989 target_cu = cu;
17990
17991 if (cu->per_cu->is_debug_types)
17992 {
17993 /* .debug_types CUs cannot reference anything outside their CU.
17994 If they need to, they have to reference a signatured type via
17995 DW_FORM_ref_sig8. */
17996 if (! offset_in_cu_p (&cu->header, offset))
17997 return NULL;
17998 }
17999 else if (offset_in_dwz != cu->per_cu->is_dwz
18000 || ! offset_in_cu_p (&cu->header, offset))
18001 {
18002 struct dwarf2_per_cu_data *per_cu;
18003
18004 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18005 cu->objfile);
18006
18007 /* If necessary, add it to the queue and load its DIEs. */
18008 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18009 load_full_comp_unit (per_cu, cu->language);
18010
18011 target_cu = per_cu->cu;
18012 }
18013 else if (cu->dies == NULL)
18014 {
18015 /* We're loading full DIEs during partial symbol reading. */
18016 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18017 load_full_comp_unit (cu->per_cu, language_minimal);
18018 }
18019
18020 *ref_cu = target_cu;
18021 temp_die.offset = offset;
18022 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18023 }
18024
18025 /* Follow reference attribute ATTR of SRC_DIE.
18026 On entry *REF_CU is the CU of SRC_DIE.
18027 On exit *REF_CU is the CU of the result. */
18028
18029 static struct die_info *
18030 follow_die_ref (struct die_info *src_die, struct attribute *attr,
18031 struct dwarf2_cu **ref_cu)
18032 {
18033 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18034 struct dwarf2_cu *cu = *ref_cu;
18035 struct die_info *die;
18036
18037 die = follow_die_offset (offset,
18038 (attr->form == DW_FORM_GNU_ref_alt
18039 || cu->per_cu->is_dwz),
18040 ref_cu);
18041 if (!die)
18042 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18043 "at 0x%x [in module %s]"),
18044 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18045
18046 return die;
18047 }
18048
18049 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18050 Returned value is intended for DW_OP_call*. Returned
18051 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18052
18053 struct dwarf2_locexpr_baton
18054 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18055 struct dwarf2_per_cu_data *per_cu,
18056 CORE_ADDR (*get_frame_pc) (void *baton),
18057 void *baton)
18058 {
18059 struct dwarf2_cu *cu;
18060 struct die_info *die;
18061 struct attribute *attr;
18062 struct dwarf2_locexpr_baton retval;
18063
18064 dw2_setup (per_cu->objfile);
18065
18066 if (per_cu->cu == NULL)
18067 load_cu (per_cu);
18068 cu = per_cu->cu;
18069
18070 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18071 if (!die)
18072 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18073 offset.sect_off, per_cu->objfile->name);
18074
18075 attr = dwarf2_attr (die, DW_AT_location, cu);
18076 if (!attr)
18077 {
18078 /* DWARF: "If there is no such attribute, then there is no effect.".
18079 DATA is ignored if SIZE is 0. */
18080
18081 retval.data = NULL;
18082 retval.size = 0;
18083 }
18084 else if (attr_form_is_section_offset (attr))
18085 {
18086 struct dwarf2_loclist_baton loclist_baton;
18087 CORE_ADDR pc = (*get_frame_pc) (baton);
18088 size_t size;
18089
18090 fill_in_loclist_baton (cu, &loclist_baton, attr);
18091
18092 retval.data = dwarf2_find_location_expression (&loclist_baton,
18093 &size, pc);
18094 retval.size = size;
18095 }
18096 else
18097 {
18098 if (!attr_form_is_block (attr))
18099 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18100 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18101 offset.sect_off, per_cu->objfile->name);
18102
18103 retval.data = DW_BLOCK (attr)->data;
18104 retval.size = DW_BLOCK (attr)->size;
18105 }
18106 retval.per_cu = cu->per_cu;
18107
18108 age_cached_comp_units ();
18109
18110 return retval;
18111 }
18112
18113 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18114 offset. */
18115
18116 struct dwarf2_locexpr_baton
18117 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18118 struct dwarf2_per_cu_data *per_cu,
18119 CORE_ADDR (*get_frame_pc) (void *baton),
18120 void *baton)
18121 {
18122 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18123
18124 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18125 }
18126
18127 /* Write a constant of a given type as target-ordered bytes into
18128 OBSTACK. */
18129
18130 static const gdb_byte *
18131 write_constant_as_bytes (struct obstack *obstack,
18132 enum bfd_endian byte_order,
18133 struct type *type,
18134 ULONGEST value,
18135 LONGEST *len)
18136 {
18137 gdb_byte *result;
18138
18139 *len = TYPE_LENGTH (type);
18140 result = obstack_alloc (obstack, *len);
18141 store_unsigned_integer (result, *len, byte_order, value);
18142
18143 return result;
18144 }
18145
18146 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18147 pointer to the constant bytes and set LEN to the length of the
18148 data. If memory is needed, allocate it on OBSTACK. If the DIE
18149 does not have a DW_AT_const_value, return NULL. */
18150
18151 const gdb_byte *
18152 dwarf2_fetch_constant_bytes (sect_offset offset,
18153 struct dwarf2_per_cu_data *per_cu,
18154 struct obstack *obstack,
18155 LONGEST *len)
18156 {
18157 struct dwarf2_cu *cu;
18158 struct die_info *die;
18159 struct attribute *attr;
18160 const gdb_byte *result = NULL;
18161 struct type *type;
18162 LONGEST value;
18163 enum bfd_endian byte_order;
18164
18165 dw2_setup (per_cu->objfile);
18166
18167 if (per_cu->cu == NULL)
18168 load_cu (per_cu);
18169 cu = per_cu->cu;
18170
18171 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18172 if (!die)
18173 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18174 offset.sect_off, per_cu->objfile->name);
18175
18176
18177 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18178 if (attr == NULL)
18179 return NULL;
18180
18181 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18182 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18183
18184 switch (attr->form)
18185 {
18186 case DW_FORM_addr:
18187 case DW_FORM_GNU_addr_index:
18188 {
18189 gdb_byte *tem;
18190
18191 *len = cu->header.addr_size;
18192 tem = obstack_alloc (obstack, *len);
18193 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18194 result = tem;
18195 }
18196 break;
18197 case DW_FORM_string:
18198 case DW_FORM_strp:
18199 case DW_FORM_GNU_str_index:
18200 case DW_FORM_GNU_strp_alt:
18201 /* DW_STRING is already allocated on the objfile obstack, point
18202 directly to it. */
18203 result = (const gdb_byte *) DW_STRING (attr);
18204 *len = strlen (DW_STRING (attr));
18205 break;
18206 case DW_FORM_block1:
18207 case DW_FORM_block2:
18208 case DW_FORM_block4:
18209 case DW_FORM_block:
18210 case DW_FORM_exprloc:
18211 result = DW_BLOCK (attr)->data;
18212 *len = DW_BLOCK (attr)->size;
18213 break;
18214
18215 /* The DW_AT_const_value attributes are supposed to carry the
18216 symbol's value "represented as it would be on the target
18217 architecture." By the time we get here, it's already been
18218 converted to host endianness, so we just need to sign- or
18219 zero-extend it as appropriate. */
18220 case DW_FORM_data1:
18221 type = die_type (die, cu);
18222 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18223 if (result == NULL)
18224 result = write_constant_as_bytes (obstack, byte_order,
18225 type, value, len);
18226 break;
18227 case DW_FORM_data2:
18228 type = die_type (die, cu);
18229 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18230 if (result == NULL)
18231 result = write_constant_as_bytes (obstack, byte_order,
18232 type, value, len);
18233 break;
18234 case DW_FORM_data4:
18235 type = die_type (die, cu);
18236 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18237 if (result == NULL)
18238 result = write_constant_as_bytes (obstack, byte_order,
18239 type, value, len);
18240 break;
18241 case DW_FORM_data8:
18242 type = die_type (die, cu);
18243 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18244 if (result == NULL)
18245 result = write_constant_as_bytes (obstack, byte_order,
18246 type, value, len);
18247 break;
18248
18249 case DW_FORM_sdata:
18250 type = die_type (die, cu);
18251 result = write_constant_as_bytes (obstack, byte_order,
18252 type, DW_SND (attr), len);
18253 break;
18254
18255 case DW_FORM_udata:
18256 type = die_type (die, cu);
18257 result = write_constant_as_bytes (obstack, byte_order,
18258 type, DW_UNSND (attr), len);
18259 break;
18260
18261 default:
18262 complaint (&symfile_complaints,
18263 _("unsupported const value attribute form: '%s'"),
18264 dwarf_form_name (attr->form));
18265 break;
18266 }
18267
18268 return result;
18269 }
18270
18271 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18272 PER_CU. */
18273
18274 struct type *
18275 dwarf2_get_die_type (cu_offset die_offset,
18276 struct dwarf2_per_cu_data *per_cu)
18277 {
18278 sect_offset die_offset_sect;
18279
18280 dw2_setup (per_cu->objfile);
18281
18282 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18283 return get_die_type_at_offset (die_offset_sect, per_cu);
18284 }
18285
18286 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18287 On entry *REF_CU is the CU of SRC_DIE.
18288 On exit *REF_CU is the CU of the result.
18289 Returns NULL if the referenced DIE isn't found. */
18290
18291 static struct die_info *
18292 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18293 struct dwarf2_cu **ref_cu)
18294 {
18295 struct objfile *objfile = (*ref_cu)->objfile;
18296 struct die_info temp_die;
18297 struct dwarf2_cu *sig_cu;
18298 struct die_info *die;
18299
18300 /* While it might be nice to assert sig_type->type == NULL here,
18301 we can get here for DW_AT_imported_declaration where we need
18302 the DIE not the type. */
18303
18304 /* If necessary, add it to the queue and load its DIEs. */
18305
18306 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18307 read_signatured_type (sig_type);
18308
18309 gdb_assert (sig_type->per_cu.cu != NULL);
18310
18311 sig_cu = sig_type->per_cu.cu;
18312 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18313 temp_die.offset = sig_type->type_offset_in_section;
18314 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18315 temp_die.offset.sect_off);
18316 if (die)
18317 {
18318 /* For .gdb_index version 7 keep track of included TUs.
18319 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18320 if (dwarf2_per_objfile->index_table != NULL
18321 && dwarf2_per_objfile->index_table->version <= 7)
18322 {
18323 VEC_safe_push (dwarf2_per_cu_ptr,
18324 (*ref_cu)->per_cu->imported_symtabs,
18325 sig_cu->per_cu);
18326 }
18327
18328 *ref_cu = sig_cu;
18329 return die;
18330 }
18331
18332 return NULL;
18333 }
18334
18335 /* Follow signatured type referenced by ATTR in SRC_DIE.
18336 On entry *REF_CU is the CU of SRC_DIE.
18337 On exit *REF_CU is the CU of the result.
18338 The result is the DIE of the type.
18339 If the referenced type cannot be found an error is thrown. */
18340
18341 static struct die_info *
18342 follow_die_sig (struct die_info *src_die, struct attribute *attr,
18343 struct dwarf2_cu **ref_cu)
18344 {
18345 ULONGEST signature = DW_SIGNATURE (attr);
18346 struct signatured_type *sig_type;
18347 struct die_info *die;
18348
18349 gdb_assert (attr->form == DW_FORM_ref_sig8);
18350
18351 sig_type = lookup_signatured_type (*ref_cu, signature);
18352 /* sig_type will be NULL if the signatured type is missing from
18353 the debug info. */
18354 if (sig_type == NULL)
18355 {
18356 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18357 " from DIE at 0x%x [in module %s]"),
18358 hex_string (signature), src_die->offset.sect_off,
18359 (*ref_cu)->objfile->name);
18360 }
18361
18362 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18363 if (die == NULL)
18364 {
18365 dump_die_for_error (src_die);
18366 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18367 " from DIE at 0x%x [in module %s]"),
18368 hex_string (signature), src_die->offset.sect_off,
18369 (*ref_cu)->objfile->name);
18370 }
18371
18372 return die;
18373 }
18374
18375 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18376 reading in and processing the type unit if necessary. */
18377
18378 static struct type *
18379 get_signatured_type (struct die_info *die, ULONGEST signature,
18380 struct dwarf2_cu *cu)
18381 {
18382 struct signatured_type *sig_type;
18383 struct dwarf2_cu *type_cu;
18384 struct die_info *type_die;
18385 struct type *type;
18386
18387 sig_type = lookup_signatured_type (cu, signature);
18388 /* sig_type will be NULL if the signatured type is missing from
18389 the debug info. */
18390 if (sig_type == NULL)
18391 {
18392 complaint (&symfile_complaints,
18393 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18394 " from DIE at 0x%x [in module %s]"),
18395 hex_string (signature), die->offset.sect_off,
18396 dwarf2_per_objfile->objfile->name);
18397 return build_error_marker_type (cu, die);
18398 }
18399
18400 /* If we already know the type we're done. */
18401 if (sig_type->type != NULL)
18402 return sig_type->type;
18403
18404 type_cu = cu;
18405 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18406 if (type_die != NULL)
18407 {
18408 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18409 is created. This is important, for example, because for c++ classes
18410 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18411 type = read_type_die (type_die, type_cu);
18412 if (type == NULL)
18413 {
18414 complaint (&symfile_complaints,
18415 _("Dwarf Error: Cannot build signatured type %s"
18416 " referenced from DIE at 0x%x [in module %s]"),
18417 hex_string (signature), die->offset.sect_off,
18418 dwarf2_per_objfile->objfile->name);
18419 type = build_error_marker_type (cu, die);
18420 }
18421 }
18422 else
18423 {
18424 complaint (&symfile_complaints,
18425 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18426 " from DIE at 0x%x [in module %s]"),
18427 hex_string (signature), die->offset.sect_off,
18428 dwarf2_per_objfile->objfile->name);
18429 type = build_error_marker_type (cu, die);
18430 }
18431 sig_type->type = type;
18432
18433 return type;
18434 }
18435
18436 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18437 reading in and processing the type unit if necessary. */
18438
18439 static struct type *
18440 get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
18441 struct dwarf2_cu *cu) /* ARI: editCase function */
18442 {
18443 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18444 if (is_ref_attr (attr))
18445 {
18446 struct dwarf2_cu *type_cu = cu;
18447 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18448
18449 return read_type_die (type_die, type_cu);
18450 }
18451 else if (attr->form == DW_FORM_ref_sig8)
18452 {
18453 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18454 }
18455 else
18456 {
18457 complaint (&symfile_complaints,
18458 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18459 " at 0x%x [in module %s]"),
18460 dwarf_form_name (attr->form), die->offset.sect_off,
18461 dwarf2_per_objfile->objfile->name);
18462 return build_error_marker_type (cu, die);
18463 }
18464 }
18465
18466 /* Load the DIEs associated with type unit PER_CU into memory. */
18467
18468 static void
18469 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18470 {
18471 struct signatured_type *sig_type;
18472
18473 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18474 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18475
18476 /* We have the per_cu, but we need the signatured_type.
18477 Fortunately this is an easy translation. */
18478 gdb_assert (per_cu->is_debug_types);
18479 sig_type = (struct signatured_type *) per_cu;
18480
18481 gdb_assert (per_cu->cu == NULL);
18482
18483 read_signatured_type (sig_type);
18484
18485 gdb_assert (per_cu->cu != NULL);
18486 }
18487
18488 /* die_reader_func for read_signatured_type.
18489 This is identical to load_full_comp_unit_reader,
18490 but is kept separate for now. */
18491
18492 static void
18493 read_signatured_type_reader (const struct die_reader_specs *reader,
18494 const gdb_byte *info_ptr,
18495 struct die_info *comp_unit_die,
18496 int has_children,
18497 void *data)
18498 {
18499 struct dwarf2_cu *cu = reader->cu;
18500
18501 gdb_assert (cu->die_hash == NULL);
18502 cu->die_hash =
18503 htab_create_alloc_ex (cu->header.length / 12,
18504 die_hash,
18505 die_eq,
18506 NULL,
18507 &cu->comp_unit_obstack,
18508 hashtab_obstack_allocate,
18509 dummy_obstack_deallocate);
18510
18511 if (has_children)
18512 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18513 &info_ptr, comp_unit_die);
18514 cu->dies = comp_unit_die;
18515 /* comp_unit_die is not stored in die_hash, no need. */
18516
18517 /* We try not to read any attributes in this function, because not
18518 all CUs needed for references have been loaded yet, and symbol
18519 table processing isn't initialized. But we have to set the CU language,
18520 or we won't be able to build types correctly.
18521 Similarly, if we do not read the producer, we can not apply
18522 producer-specific interpretation. */
18523 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18524 }
18525
18526 /* Read in a signatured type and build its CU and DIEs.
18527 If the type is a stub for the real type in a DWO file,
18528 read in the real type from the DWO file as well. */
18529
18530 static void
18531 read_signatured_type (struct signatured_type *sig_type)
18532 {
18533 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18534
18535 gdb_assert (per_cu->is_debug_types);
18536 gdb_assert (per_cu->cu == NULL);
18537
18538 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18539 read_signatured_type_reader, NULL);
18540 }
18541
18542 /* Decode simple location descriptions.
18543 Given a pointer to a dwarf block that defines a location, compute
18544 the location and return the value.
18545
18546 NOTE drow/2003-11-18: This function is called in two situations
18547 now: for the address of static or global variables (partial symbols
18548 only) and for offsets into structures which are expected to be
18549 (more or less) constant. The partial symbol case should go away,
18550 and only the constant case should remain. That will let this
18551 function complain more accurately. A few special modes are allowed
18552 without complaint for global variables (for instance, global
18553 register values and thread-local values).
18554
18555 A location description containing no operations indicates that the
18556 object is optimized out. The return value is 0 for that case.
18557 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18558 callers will only want a very basic result and this can become a
18559 complaint.
18560
18561 Note that stack[0] is unused except as a default error return. */
18562
18563 static CORE_ADDR
18564 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18565 {
18566 struct objfile *objfile = cu->objfile;
18567 size_t i;
18568 size_t size = blk->size;
18569 const gdb_byte *data = blk->data;
18570 CORE_ADDR stack[64];
18571 int stacki;
18572 unsigned int bytes_read, unsnd;
18573 gdb_byte op;
18574
18575 i = 0;
18576 stacki = 0;
18577 stack[stacki] = 0;
18578 stack[++stacki] = 0;
18579
18580 while (i < size)
18581 {
18582 op = data[i++];
18583 switch (op)
18584 {
18585 case DW_OP_lit0:
18586 case DW_OP_lit1:
18587 case DW_OP_lit2:
18588 case DW_OP_lit3:
18589 case DW_OP_lit4:
18590 case DW_OP_lit5:
18591 case DW_OP_lit6:
18592 case DW_OP_lit7:
18593 case DW_OP_lit8:
18594 case DW_OP_lit9:
18595 case DW_OP_lit10:
18596 case DW_OP_lit11:
18597 case DW_OP_lit12:
18598 case DW_OP_lit13:
18599 case DW_OP_lit14:
18600 case DW_OP_lit15:
18601 case DW_OP_lit16:
18602 case DW_OP_lit17:
18603 case DW_OP_lit18:
18604 case DW_OP_lit19:
18605 case DW_OP_lit20:
18606 case DW_OP_lit21:
18607 case DW_OP_lit22:
18608 case DW_OP_lit23:
18609 case DW_OP_lit24:
18610 case DW_OP_lit25:
18611 case DW_OP_lit26:
18612 case DW_OP_lit27:
18613 case DW_OP_lit28:
18614 case DW_OP_lit29:
18615 case DW_OP_lit30:
18616 case DW_OP_lit31:
18617 stack[++stacki] = op - DW_OP_lit0;
18618 break;
18619
18620 case DW_OP_reg0:
18621 case DW_OP_reg1:
18622 case DW_OP_reg2:
18623 case DW_OP_reg3:
18624 case DW_OP_reg4:
18625 case DW_OP_reg5:
18626 case DW_OP_reg6:
18627 case DW_OP_reg7:
18628 case DW_OP_reg8:
18629 case DW_OP_reg9:
18630 case DW_OP_reg10:
18631 case DW_OP_reg11:
18632 case DW_OP_reg12:
18633 case DW_OP_reg13:
18634 case DW_OP_reg14:
18635 case DW_OP_reg15:
18636 case DW_OP_reg16:
18637 case DW_OP_reg17:
18638 case DW_OP_reg18:
18639 case DW_OP_reg19:
18640 case DW_OP_reg20:
18641 case DW_OP_reg21:
18642 case DW_OP_reg22:
18643 case DW_OP_reg23:
18644 case DW_OP_reg24:
18645 case DW_OP_reg25:
18646 case DW_OP_reg26:
18647 case DW_OP_reg27:
18648 case DW_OP_reg28:
18649 case DW_OP_reg29:
18650 case DW_OP_reg30:
18651 case DW_OP_reg31:
18652 stack[++stacki] = op - DW_OP_reg0;
18653 if (i < size)
18654 dwarf2_complex_location_expr_complaint ();
18655 break;
18656
18657 case DW_OP_regx:
18658 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18659 i += bytes_read;
18660 stack[++stacki] = unsnd;
18661 if (i < size)
18662 dwarf2_complex_location_expr_complaint ();
18663 break;
18664
18665 case DW_OP_addr:
18666 stack[++stacki] = read_address (objfile->obfd, &data[i],
18667 cu, &bytes_read);
18668 i += bytes_read;
18669 break;
18670
18671 case DW_OP_const1u:
18672 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18673 i += 1;
18674 break;
18675
18676 case DW_OP_const1s:
18677 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18678 i += 1;
18679 break;
18680
18681 case DW_OP_const2u:
18682 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18683 i += 2;
18684 break;
18685
18686 case DW_OP_const2s:
18687 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18688 i += 2;
18689 break;
18690
18691 case DW_OP_const4u:
18692 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18693 i += 4;
18694 break;
18695
18696 case DW_OP_const4s:
18697 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18698 i += 4;
18699 break;
18700
18701 case DW_OP_const8u:
18702 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18703 i += 8;
18704 break;
18705
18706 case DW_OP_constu:
18707 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18708 &bytes_read);
18709 i += bytes_read;
18710 break;
18711
18712 case DW_OP_consts:
18713 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18714 i += bytes_read;
18715 break;
18716
18717 case DW_OP_dup:
18718 stack[stacki + 1] = stack[stacki];
18719 stacki++;
18720 break;
18721
18722 case DW_OP_plus:
18723 stack[stacki - 1] += stack[stacki];
18724 stacki--;
18725 break;
18726
18727 case DW_OP_plus_uconst:
18728 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18729 &bytes_read);
18730 i += bytes_read;
18731 break;
18732
18733 case DW_OP_minus:
18734 stack[stacki - 1] -= stack[stacki];
18735 stacki--;
18736 break;
18737
18738 case DW_OP_deref:
18739 /* If we're not the last op, then we definitely can't encode
18740 this using GDB's address_class enum. This is valid for partial
18741 global symbols, although the variable's address will be bogus
18742 in the psymtab. */
18743 if (i < size)
18744 dwarf2_complex_location_expr_complaint ();
18745 break;
18746
18747 case DW_OP_GNU_push_tls_address:
18748 /* The top of the stack has the offset from the beginning
18749 of the thread control block at which the variable is located. */
18750 /* Nothing should follow this operator, so the top of stack would
18751 be returned. */
18752 /* This is valid for partial global symbols, but the variable's
18753 address will be bogus in the psymtab. Make it always at least
18754 non-zero to not look as a variable garbage collected by linker
18755 which have DW_OP_addr 0. */
18756 if (i < size)
18757 dwarf2_complex_location_expr_complaint ();
18758 stack[stacki]++;
18759 break;
18760
18761 case DW_OP_GNU_uninit:
18762 break;
18763
18764 case DW_OP_GNU_addr_index:
18765 case DW_OP_GNU_const_index:
18766 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18767 &bytes_read);
18768 i += bytes_read;
18769 break;
18770
18771 default:
18772 {
18773 const char *name = get_DW_OP_name (op);
18774
18775 if (name)
18776 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18777 name);
18778 else
18779 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18780 op);
18781 }
18782
18783 return (stack[stacki]);
18784 }
18785
18786 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18787 outside of the allocated space. Also enforce minimum>0. */
18788 if (stacki >= ARRAY_SIZE (stack) - 1)
18789 {
18790 complaint (&symfile_complaints,
18791 _("location description stack overflow"));
18792 return 0;
18793 }
18794
18795 if (stacki <= 0)
18796 {
18797 complaint (&symfile_complaints,
18798 _("location description stack underflow"));
18799 return 0;
18800 }
18801 }
18802 return (stack[stacki]);
18803 }
18804
18805 /* memory allocation interface */
18806
18807 static struct dwarf_block *
18808 dwarf_alloc_block (struct dwarf2_cu *cu)
18809 {
18810 struct dwarf_block *blk;
18811
18812 blk = (struct dwarf_block *)
18813 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18814 return (blk);
18815 }
18816
18817 static struct die_info *
18818 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18819 {
18820 struct die_info *die;
18821 size_t size = sizeof (struct die_info);
18822
18823 if (num_attrs > 1)
18824 size += (num_attrs - 1) * sizeof (struct attribute);
18825
18826 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18827 memset (die, 0, sizeof (struct die_info));
18828 return (die);
18829 }
18830
18831 \f
18832 /* Macro support. */
18833
18834 /* Return file name relative to the compilation directory of file number I in
18835 *LH's file name table. The result is allocated using xmalloc; the caller is
18836 responsible for freeing it. */
18837
18838 static char *
18839 file_file_name (int file, struct line_header *lh)
18840 {
18841 /* Is the file number a valid index into the line header's file name
18842 table? Remember that file numbers start with one, not zero. */
18843 if (1 <= file && file <= lh->num_file_names)
18844 {
18845 struct file_entry *fe = &lh->file_names[file - 1];
18846
18847 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18848 return xstrdup (fe->name);
18849 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18850 fe->name, NULL);
18851 }
18852 else
18853 {
18854 /* The compiler produced a bogus file number. We can at least
18855 record the macro definitions made in the file, even if we
18856 won't be able to find the file by name. */
18857 char fake_name[80];
18858
18859 xsnprintf (fake_name, sizeof (fake_name),
18860 "<bad macro file number %d>", file);
18861
18862 complaint (&symfile_complaints,
18863 _("bad file number in macro information (%d)"),
18864 file);
18865
18866 return xstrdup (fake_name);
18867 }
18868 }
18869
18870 /* Return the full name of file number I in *LH's file name table.
18871 Use COMP_DIR as the name of the current directory of the
18872 compilation. The result is allocated using xmalloc; the caller is
18873 responsible for freeing it. */
18874 static char *
18875 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18876 {
18877 /* Is the file number a valid index into the line header's file name
18878 table? Remember that file numbers start with one, not zero. */
18879 if (1 <= file && file <= lh->num_file_names)
18880 {
18881 char *relative = file_file_name (file, lh);
18882
18883 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18884 return relative;
18885 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18886 }
18887 else
18888 return file_file_name (file, lh);
18889 }
18890
18891
18892 static struct macro_source_file *
18893 macro_start_file (int file, int line,
18894 struct macro_source_file *current_file,
18895 const char *comp_dir,
18896 struct line_header *lh, struct objfile *objfile)
18897 {
18898 /* File name relative to the compilation directory of this source file. */
18899 char *file_name = file_file_name (file, lh);
18900
18901 /* We don't create a macro table for this compilation unit
18902 at all until we actually get a filename. */
18903 if (! pending_macros)
18904 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18905 objfile->per_bfd->macro_cache,
18906 comp_dir);
18907
18908 if (! current_file)
18909 {
18910 /* If we have no current file, then this must be the start_file
18911 directive for the compilation unit's main source file. */
18912 current_file = macro_set_main (pending_macros, file_name);
18913 macro_define_special (pending_macros);
18914 }
18915 else
18916 current_file = macro_include (current_file, line, file_name);
18917
18918 xfree (file_name);
18919
18920 return current_file;
18921 }
18922
18923
18924 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18925 followed by a null byte. */
18926 static char *
18927 copy_string (const char *buf, int len)
18928 {
18929 char *s = xmalloc (len + 1);
18930
18931 memcpy (s, buf, len);
18932 s[len] = '\0';
18933 return s;
18934 }
18935
18936
18937 static const char *
18938 consume_improper_spaces (const char *p, const char *body)
18939 {
18940 if (*p == ' ')
18941 {
18942 complaint (&symfile_complaints,
18943 _("macro definition contains spaces "
18944 "in formal argument list:\n`%s'"),
18945 body);
18946
18947 while (*p == ' ')
18948 p++;
18949 }
18950
18951 return p;
18952 }
18953
18954
18955 static void
18956 parse_macro_definition (struct macro_source_file *file, int line,
18957 const char *body)
18958 {
18959 const char *p;
18960
18961 /* The body string takes one of two forms. For object-like macro
18962 definitions, it should be:
18963
18964 <macro name> " " <definition>
18965
18966 For function-like macro definitions, it should be:
18967
18968 <macro name> "() " <definition>
18969 or
18970 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18971
18972 Spaces may appear only where explicitly indicated, and in the
18973 <definition>.
18974
18975 The Dwarf 2 spec says that an object-like macro's name is always
18976 followed by a space, but versions of GCC around March 2002 omit
18977 the space when the macro's definition is the empty string.
18978
18979 The Dwarf 2 spec says that there should be no spaces between the
18980 formal arguments in a function-like macro's formal argument list,
18981 but versions of GCC around March 2002 include spaces after the
18982 commas. */
18983
18984
18985 /* Find the extent of the macro name. The macro name is terminated
18986 by either a space or null character (for an object-like macro) or
18987 an opening paren (for a function-like macro). */
18988 for (p = body; *p; p++)
18989 if (*p == ' ' || *p == '(')
18990 break;
18991
18992 if (*p == ' ' || *p == '\0')
18993 {
18994 /* It's an object-like macro. */
18995 int name_len = p - body;
18996 char *name = copy_string (body, name_len);
18997 const char *replacement;
18998
18999 if (*p == ' ')
19000 replacement = body + name_len + 1;
19001 else
19002 {
19003 dwarf2_macro_malformed_definition_complaint (body);
19004 replacement = body + name_len;
19005 }
19006
19007 macro_define_object (file, line, name, replacement);
19008
19009 xfree (name);
19010 }
19011 else if (*p == '(')
19012 {
19013 /* It's a function-like macro. */
19014 char *name = copy_string (body, p - body);
19015 int argc = 0;
19016 int argv_size = 1;
19017 char **argv = xmalloc (argv_size * sizeof (*argv));
19018
19019 p++;
19020
19021 p = consume_improper_spaces (p, body);
19022
19023 /* Parse the formal argument list. */
19024 while (*p && *p != ')')
19025 {
19026 /* Find the extent of the current argument name. */
19027 const char *arg_start = p;
19028
19029 while (*p && *p != ',' && *p != ')' && *p != ' ')
19030 p++;
19031
19032 if (! *p || p == arg_start)
19033 dwarf2_macro_malformed_definition_complaint (body);
19034 else
19035 {
19036 /* Make sure argv has room for the new argument. */
19037 if (argc >= argv_size)
19038 {
19039 argv_size *= 2;
19040 argv = xrealloc (argv, argv_size * sizeof (*argv));
19041 }
19042
19043 argv[argc++] = copy_string (arg_start, p - arg_start);
19044 }
19045
19046 p = consume_improper_spaces (p, body);
19047
19048 /* Consume the comma, if present. */
19049 if (*p == ',')
19050 {
19051 p++;
19052
19053 p = consume_improper_spaces (p, body);
19054 }
19055 }
19056
19057 if (*p == ')')
19058 {
19059 p++;
19060
19061 if (*p == ' ')
19062 /* Perfectly formed definition, no complaints. */
19063 macro_define_function (file, line, name,
19064 argc, (const char **) argv,
19065 p + 1);
19066 else if (*p == '\0')
19067 {
19068 /* Complain, but do define it. */
19069 dwarf2_macro_malformed_definition_complaint (body);
19070 macro_define_function (file, line, name,
19071 argc, (const char **) argv,
19072 p);
19073 }
19074 else
19075 /* Just complain. */
19076 dwarf2_macro_malformed_definition_complaint (body);
19077 }
19078 else
19079 /* Just complain. */
19080 dwarf2_macro_malformed_definition_complaint (body);
19081
19082 xfree (name);
19083 {
19084 int i;
19085
19086 for (i = 0; i < argc; i++)
19087 xfree (argv[i]);
19088 }
19089 xfree (argv);
19090 }
19091 else
19092 dwarf2_macro_malformed_definition_complaint (body);
19093 }
19094
19095 /* Skip some bytes from BYTES according to the form given in FORM.
19096 Returns the new pointer. */
19097
19098 static const gdb_byte *
19099 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19100 enum dwarf_form form,
19101 unsigned int offset_size,
19102 struct dwarf2_section_info *section)
19103 {
19104 unsigned int bytes_read;
19105
19106 switch (form)
19107 {
19108 case DW_FORM_data1:
19109 case DW_FORM_flag:
19110 ++bytes;
19111 break;
19112
19113 case DW_FORM_data2:
19114 bytes += 2;
19115 break;
19116
19117 case DW_FORM_data4:
19118 bytes += 4;
19119 break;
19120
19121 case DW_FORM_data8:
19122 bytes += 8;
19123 break;
19124
19125 case DW_FORM_string:
19126 read_direct_string (abfd, bytes, &bytes_read);
19127 bytes += bytes_read;
19128 break;
19129
19130 case DW_FORM_sec_offset:
19131 case DW_FORM_strp:
19132 case DW_FORM_GNU_strp_alt:
19133 bytes += offset_size;
19134 break;
19135
19136 case DW_FORM_block:
19137 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19138 bytes += bytes_read;
19139 break;
19140
19141 case DW_FORM_block1:
19142 bytes += 1 + read_1_byte (abfd, bytes);
19143 break;
19144 case DW_FORM_block2:
19145 bytes += 2 + read_2_bytes (abfd, bytes);
19146 break;
19147 case DW_FORM_block4:
19148 bytes += 4 + read_4_bytes (abfd, bytes);
19149 break;
19150
19151 case DW_FORM_sdata:
19152 case DW_FORM_udata:
19153 case DW_FORM_GNU_addr_index:
19154 case DW_FORM_GNU_str_index:
19155 bytes = gdb_skip_leb128 (bytes, buffer_end);
19156 if (bytes == NULL)
19157 {
19158 dwarf2_section_buffer_overflow_complaint (section);
19159 return NULL;
19160 }
19161 break;
19162
19163 default:
19164 {
19165 complain:
19166 complaint (&symfile_complaints,
19167 _("invalid form 0x%x in `%s'"),
19168 form,
19169 section->asection->name);
19170 return NULL;
19171 }
19172 }
19173
19174 return bytes;
19175 }
19176
19177 /* A helper for dwarf_decode_macros that handles skipping an unknown
19178 opcode. Returns an updated pointer to the macro data buffer; or,
19179 on error, issues a complaint and returns NULL. */
19180
19181 static const gdb_byte *
19182 skip_unknown_opcode (unsigned int opcode,
19183 const gdb_byte **opcode_definitions,
19184 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19185 bfd *abfd,
19186 unsigned int offset_size,
19187 struct dwarf2_section_info *section)
19188 {
19189 unsigned int bytes_read, i;
19190 unsigned long arg;
19191 const gdb_byte *defn;
19192
19193 if (opcode_definitions[opcode] == NULL)
19194 {
19195 complaint (&symfile_complaints,
19196 _("unrecognized DW_MACFINO opcode 0x%x"),
19197 opcode);
19198 return NULL;
19199 }
19200
19201 defn = opcode_definitions[opcode];
19202 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19203 defn += bytes_read;
19204
19205 for (i = 0; i < arg; ++i)
19206 {
19207 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19208 section);
19209 if (mac_ptr == NULL)
19210 {
19211 /* skip_form_bytes already issued the complaint. */
19212 return NULL;
19213 }
19214 }
19215
19216 return mac_ptr;
19217 }
19218
19219 /* A helper function which parses the header of a macro section.
19220 If the macro section is the extended (for now called "GNU") type,
19221 then this updates *OFFSET_SIZE. Returns a pointer to just after
19222 the header, or issues a complaint and returns NULL on error. */
19223
19224 static const gdb_byte *
19225 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19226 bfd *abfd,
19227 const gdb_byte *mac_ptr,
19228 unsigned int *offset_size,
19229 int section_is_gnu)
19230 {
19231 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19232
19233 if (section_is_gnu)
19234 {
19235 unsigned int version, flags;
19236
19237 version = read_2_bytes (abfd, mac_ptr);
19238 if (version != 4)
19239 {
19240 complaint (&symfile_complaints,
19241 _("unrecognized version `%d' in .debug_macro section"),
19242 version);
19243 return NULL;
19244 }
19245 mac_ptr += 2;
19246
19247 flags = read_1_byte (abfd, mac_ptr);
19248 ++mac_ptr;
19249 *offset_size = (flags & 1) ? 8 : 4;
19250
19251 if ((flags & 2) != 0)
19252 /* We don't need the line table offset. */
19253 mac_ptr += *offset_size;
19254
19255 /* Vendor opcode descriptions. */
19256 if ((flags & 4) != 0)
19257 {
19258 unsigned int i, count;
19259
19260 count = read_1_byte (abfd, mac_ptr);
19261 ++mac_ptr;
19262 for (i = 0; i < count; ++i)
19263 {
19264 unsigned int opcode, bytes_read;
19265 unsigned long arg;
19266
19267 opcode = read_1_byte (abfd, mac_ptr);
19268 ++mac_ptr;
19269 opcode_definitions[opcode] = mac_ptr;
19270 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19271 mac_ptr += bytes_read;
19272 mac_ptr += arg;
19273 }
19274 }
19275 }
19276
19277 return mac_ptr;
19278 }
19279
19280 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19281 including DW_MACRO_GNU_transparent_include. */
19282
19283 static void
19284 dwarf_decode_macro_bytes (bfd *abfd,
19285 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19286 struct macro_source_file *current_file,
19287 struct line_header *lh, const char *comp_dir,
19288 struct dwarf2_section_info *section,
19289 int section_is_gnu, int section_is_dwz,
19290 unsigned int offset_size,
19291 struct objfile *objfile,
19292 htab_t include_hash)
19293 {
19294 enum dwarf_macro_record_type macinfo_type;
19295 int at_commandline;
19296 const gdb_byte *opcode_definitions[256];
19297
19298 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19299 &offset_size, section_is_gnu);
19300 if (mac_ptr == NULL)
19301 {
19302 /* We already issued a complaint. */
19303 return;
19304 }
19305
19306 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19307 GDB is still reading the definitions from command line. First
19308 DW_MACINFO_start_file will need to be ignored as it was already executed
19309 to create CURRENT_FILE for the main source holding also the command line
19310 definitions. On first met DW_MACINFO_start_file this flag is reset to
19311 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19312
19313 at_commandline = 1;
19314
19315 do
19316 {
19317 /* Do we at least have room for a macinfo type byte? */
19318 if (mac_ptr >= mac_end)
19319 {
19320 dwarf2_section_buffer_overflow_complaint (section);
19321 break;
19322 }
19323
19324 macinfo_type = read_1_byte (abfd, mac_ptr);
19325 mac_ptr++;
19326
19327 /* Note that we rely on the fact that the corresponding GNU and
19328 DWARF constants are the same. */
19329 switch (macinfo_type)
19330 {
19331 /* A zero macinfo type indicates the end of the macro
19332 information. */
19333 case 0:
19334 break;
19335
19336 case DW_MACRO_GNU_define:
19337 case DW_MACRO_GNU_undef:
19338 case DW_MACRO_GNU_define_indirect:
19339 case DW_MACRO_GNU_undef_indirect:
19340 case DW_MACRO_GNU_define_indirect_alt:
19341 case DW_MACRO_GNU_undef_indirect_alt:
19342 {
19343 unsigned int bytes_read;
19344 int line;
19345 const char *body;
19346 int is_define;
19347
19348 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19349 mac_ptr += bytes_read;
19350
19351 if (macinfo_type == DW_MACRO_GNU_define
19352 || macinfo_type == DW_MACRO_GNU_undef)
19353 {
19354 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19355 mac_ptr += bytes_read;
19356 }
19357 else
19358 {
19359 LONGEST str_offset;
19360
19361 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19362 mac_ptr += offset_size;
19363
19364 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19365 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19366 || section_is_dwz)
19367 {
19368 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19369
19370 body = read_indirect_string_from_dwz (dwz, str_offset);
19371 }
19372 else
19373 body = read_indirect_string_at_offset (abfd, str_offset);
19374 }
19375
19376 is_define = (macinfo_type == DW_MACRO_GNU_define
19377 || macinfo_type == DW_MACRO_GNU_define_indirect
19378 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19379 if (! current_file)
19380 {
19381 /* DWARF violation as no main source is present. */
19382 complaint (&symfile_complaints,
19383 _("debug info with no main source gives macro %s "
19384 "on line %d: %s"),
19385 is_define ? _("definition") : _("undefinition"),
19386 line, body);
19387 break;
19388 }
19389 if ((line == 0 && !at_commandline)
19390 || (line != 0 && at_commandline))
19391 complaint (&symfile_complaints,
19392 _("debug info gives %s macro %s with %s line %d: %s"),
19393 at_commandline ? _("command-line") : _("in-file"),
19394 is_define ? _("definition") : _("undefinition"),
19395 line == 0 ? _("zero") : _("non-zero"), line, body);
19396
19397 if (is_define)
19398 parse_macro_definition (current_file, line, body);
19399 else
19400 {
19401 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19402 || macinfo_type == DW_MACRO_GNU_undef_indirect
19403 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19404 macro_undef (current_file, line, body);
19405 }
19406 }
19407 break;
19408
19409 case DW_MACRO_GNU_start_file:
19410 {
19411 unsigned int bytes_read;
19412 int line, file;
19413
19414 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19415 mac_ptr += bytes_read;
19416 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19417 mac_ptr += bytes_read;
19418
19419 if ((line == 0 && !at_commandline)
19420 || (line != 0 && at_commandline))
19421 complaint (&symfile_complaints,
19422 _("debug info gives source %d included "
19423 "from %s at %s line %d"),
19424 file, at_commandline ? _("command-line") : _("file"),
19425 line == 0 ? _("zero") : _("non-zero"), line);
19426
19427 if (at_commandline)
19428 {
19429 /* This DW_MACRO_GNU_start_file was executed in the
19430 pass one. */
19431 at_commandline = 0;
19432 }
19433 else
19434 current_file = macro_start_file (file, line,
19435 current_file, comp_dir,
19436 lh, objfile);
19437 }
19438 break;
19439
19440 case DW_MACRO_GNU_end_file:
19441 if (! current_file)
19442 complaint (&symfile_complaints,
19443 _("macro debug info has an unmatched "
19444 "`close_file' directive"));
19445 else
19446 {
19447 current_file = current_file->included_by;
19448 if (! current_file)
19449 {
19450 enum dwarf_macro_record_type next_type;
19451
19452 /* GCC circa March 2002 doesn't produce the zero
19453 type byte marking the end of the compilation
19454 unit. Complain if it's not there, but exit no
19455 matter what. */
19456
19457 /* Do we at least have room for a macinfo type byte? */
19458 if (mac_ptr >= mac_end)
19459 {
19460 dwarf2_section_buffer_overflow_complaint (section);
19461 return;
19462 }
19463
19464 /* We don't increment mac_ptr here, so this is just
19465 a look-ahead. */
19466 next_type = read_1_byte (abfd, mac_ptr);
19467 if (next_type != 0)
19468 complaint (&symfile_complaints,
19469 _("no terminating 0-type entry for "
19470 "macros in `.debug_macinfo' section"));
19471
19472 return;
19473 }
19474 }
19475 break;
19476
19477 case DW_MACRO_GNU_transparent_include:
19478 case DW_MACRO_GNU_transparent_include_alt:
19479 {
19480 LONGEST offset;
19481 void **slot;
19482 bfd *include_bfd = abfd;
19483 struct dwarf2_section_info *include_section = section;
19484 struct dwarf2_section_info alt_section;
19485 const gdb_byte *include_mac_end = mac_end;
19486 int is_dwz = section_is_dwz;
19487 const gdb_byte *new_mac_ptr;
19488
19489 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19490 mac_ptr += offset_size;
19491
19492 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19493 {
19494 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19495
19496 dwarf2_read_section (dwarf2_per_objfile->objfile,
19497 &dwz->macro);
19498
19499 include_bfd = dwz->macro.asection->owner;
19500 include_section = &dwz->macro;
19501 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19502 is_dwz = 1;
19503 }
19504
19505 new_mac_ptr = include_section->buffer + offset;
19506 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19507
19508 if (*slot != NULL)
19509 {
19510 /* This has actually happened; see
19511 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19512 complaint (&symfile_complaints,
19513 _("recursive DW_MACRO_GNU_transparent_include in "
19514 ".debug_macro section"));
19515 }
19516 else
19517 {
19518 *slot = (void *) new_mac_ptr;
19519
19520 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19521 include_mac_end, current_file,
19522 lh, comp_dir,
19523 section, section_is_gnu, is_dwz,
19524 offset_size, objfile, include_hash);
19525
19526 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19527 }
19528 }
19529 break;
19530
19531 case DW_MACINFO_vendor_ext:
19532 if (!section_is_gnu)
19533 {
19534 unsigned int bytes_read;
19535 int constant;
19536
19537 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19538 mac_ptr += bytes_read;
19539 read_direct_string (abfd, mac_ptr, &bytes_read);
19540 mac_ptr += bytes_read;
19541
19542 /* We don't recognize any vendor extensions. */
19543 break;
19544 }
19545 /* FALLTHROUGH */
19546
19547 default:
19548 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19549 mac_ptr, mac_end, abfd, offset_size,
19550 section);
19551 if (mac_ptr == NULL)
19552 return;
19553 break;
19554 }
19555 } while (macinfo_type != 0);
19556 }
19557
19558 static void
19559 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19560 const char *comp_dir, int section_is_gnu)
19561 {
19562 struct objfile *objfile = dwarf2_per_objfile->objfile;
19563 struct line_header *lh = cu->line_header;
19564 bfd *abfd;
19565 const gdb_byte *mac_ptr, *mac_end;
19566 struct macro_source_file *current_file = 0;
19567 enum dwarf_macro_record_type macinfo_type;
19568 unsigned int offset_size = cu->header.offset_size;
19569 const gdb_byte *opcode_definitions[256];
19570 struct cleanup *cleanup;
19571 htab_t include_hash;
19572 void **slot;
19573 struct dwarf2_section_info *section;
19574 const char *section_name;
19575
19576 if (cu->dwo_unit != NULL)
19577 {
19578 if (section_is_gnu)
19579 {
19580 section = &cu->dwo_unit->dwo_file->sections.macro;
19581 section_name = ".debug_macro.dwo";
19582 }
19583 else
19584 {
19585 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19586 section_name = ".debug_macinfo.dwo";
19587 }
19588 }
19589 else
19590 {
19591 if (section_is_gnu)
19592 {
19593 section = &dwarf2_per_objfile->macro;
19594 section_name = ".debug_macro";
19595 }
19596 else
19597 {
19598 section = &dwarf2_per_objfile->macinfo;
19599 section_name = ".debug_macinfo";
19600 }
19601 }
19602
19603 dwarf2_read_section (objfile, section);
19604 if (section->buffer == NULL)
19605 {
19606 complaint (&symfile_complaints, _("missing %s section"), section_name);
19607 return;
19608 }
19609 abfd = section->asection->owner;
19610
19611 /* First pass: Find the name of the base filename.
19612 This filename is needed in order to process all macros whose definition
19613 (or undefinition) comes from the command line. These macros are defined
19614 before the first DW_MACINFO_start_file entry, and yet still need to be
19615 associated to the base file.
19616
19617 To determine the base file name, we scan the macro definitions until we
19618 reach the first DW_MACINFO_start_file entry. We then initialize
19619 CURRENT_FILE accordingly so that any macro definition found before the
19620 first DW_MACINFO_start_file can still be associated to the base file. */
19621
19622 mac_ptr = section->buffer + offset;
19623 mac_end = section->buffer + section->size;
19624
19625 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19626 &offset_size, section_is_gnu);
19627 if (mac_ptr == NULL)
19628 {
19629 /* We already issued a complaint. */
19630 return;
19631 }
19632
19633 do
19634 {
19635 /* Do we at least have room for a macinfo type byte? */
19636 if (mac_ptr >= mac_end)
19637 {
19638 /* Complaint is printed during the second pass as GDB will probably
19639 stop the first pass earlier upon finding
19640 DW_MACINFO_start_file. */
19641 break;
19642 }
19643
19644 macinfo_type = read_1_byte (abfd, mac_ptr);
19645 mac_ptr++;
19646
19647 /* Note that we rely on the fact that the corresponding GNU and
19648 DWARF constants are the same. */
19649 switch (macinfo_type)
19650 {
19651 /* A zero macinfo type indicates the end of the macro
19652 information. */
19653 case 0:
19654 break;
19655
19656 case DW_MACRO_GNU_define:
19657 case DW_MACRO_GNU_undef:
19658 /* Only skip the data by MAC_PTR. */
19659 {
19660 unsigned int bytes_read;
19661
19662 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19663 mac_ptr += bytes_read;
19664 read_direct_string (abfd, mac_ptr, &bytes_read);
19665 mac_ptr += bytes_read;
19666 }
19667 break;
19668
19669 case DW_MACRO_GNU_start_file:
19670 {
19671 unsigned int bytes_read;
19672 int line, file;
19673
19674 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19675 mac_ptr += bytes_read;
19676 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19677 mac_ptr += bytes_read;
19678
19679 current_file = macro_start_file (file, line, current_file,
19680 comp_dir, lh, objfile);
19681 }
19682 break;
19683
19684 case DW_MACRO_GNU_end_file:
19685 /* No data to skip by MAC_PTR. */
19686 break;
19687
19688 case DW_MACRO_GNU_define_indirect:
19689 case DW_MACRO_GNU_undef_indirect:
19690 case DW_MACRO_GNU_define_indirect_alt:
19691 case DW_MACRO_GNU_undef_indirect_alt:
19692 {
19693 unsigned int bytes_read;
19694
19695 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19696 mac_ptr += bytes_read;
19697 mac_ptr += offset_size;
19698 }
19699 break;
19700
19701 case DW_MACRO_GNU_transparent_include:
19702 case DW_MACRO_GNU_transparent_include_alt:
19703 /* Note that, according to the spec, a transparent include
19704 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19705 skip this opcode. */
19706 mac_ptr += offset_size;
19707 break;
19708
19709 case DW_MACINFO_vendor_ext:
19710 /* Only skip the data by MAC_PTR. */
19711 if (!section_is_gnu)
19712 {
19713 unsigned int bytes_read;
19714
19715 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19716 mac_ptr += bytes_read;
19717 read_direct_string (abfd, mac_ptr, &bytes_read);
19718 mac_ptr += bytes_read;
19719 }
19720 /* FALLTHROUGH */
19721
19722 default:
19723 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19724 mac_ptr, mac_end, abfd, offset_size,
19725 section);
19726 if (mac_ptr == NULL)
19727 return;
19728 break;
19729 }
19730 } while (macinfo_type != 0 && current_file == NULL);
19731
19732 /* Second pass: Process all entries.
19733
19734 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19735 command-line macro definitions/undefinitions. This flag is unset when we
19736 reach the first DW_MACINFO_start_file entry. */
19737
19738 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19739 NULL, xcalloc, xfree);
19740 cleanup = make_cleanup_htab_delete (include_hash);
19741 mac_ptr = section->buffer + offset;
19742 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19743 *slot = (void *) mac_ptr;
19744 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19745 current_file, lh, comp_dir, section,
19746 section_is_gnu, 0,
19747 offset_size, objfile, include_hash);
19748 do_cleanups (cleanup);
19749 }
19750
19751 /* Check if the attribute's form is a DW_FORM_block*
19752 if so return true else false. */
19753
19754 static int
19755 attr_form_is_block (struct attribute *attr)
19756 {
19757 return (attr == NULL ? 0 :
19758 attr->form == DW_FORM_block1
19759 || attr->form == DW_FORM_block2
19760 || attr->form == DW_FORM_block4
19761 || attr->form == DW_FORM_block
19762 || attr->form == DW_FORM_exprloc);
19763 }
19764
19765 /* Return non-zero if ATTR's value is a section offset --- classes
19766 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19767 You may use DW_UNSND (attr) to retrieve such offsets.
19768
19769 Section 7.5.4, "Attribute Encodings", explains that no attribute
19770 may have a value that belongs to more than one of these classes; it
19771 would be ambiguous if we did, because we use the same forms for all
19772 of them. */
19773
19774 static int
19775 attr_form_is_section_offset (struct attribute *attr)
19776 {
19777 return (attr->form == DW_FORM_data4
19778 || attr->form == DW_FORM_data8
19779 || attr->form == DW_FORM_sec_offset);
19780 }
19781
19782 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19783 zero otherwise. When this function returns true, you can apply
19784 dwarf2_get_attr_constant_value to it.
19785
19786 However, note that for some attributes you must check
19787 attr_form_is_section_offset before using this test. DW_FORM_data4
19788 and DW_FORM_data8 are members of both the constant class, and of
19789 the classes that contain offsets into other debug sections
19790 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19791 that, if an attribute's can be either a constant or one of the
19792 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19793 taken as section offsets, not constants. */
19794
19795 static int
19796 attr_form_is_constant (struct attribute *attr)
19797 {
19798 switch (attr->form)
19799 {
19800 case DW_FORM_sdata:
19801 case DW_FORM_udata:
19802 case DW_FORM_data1:
19803 case DW_FORM_data2:
19804 case DW_FORM_data4:
19805 case DW_FORM_data8:
19806 return 1;
19807 default:
19808 return 0;
19809 }
19810 }
19811
19812 /* Return the .debug_loc section to use for CU.
19813 For DWO files use .debug_loc.dwo. */
19814
19815 static struct dwarf2_section_info *
19816 cu_debug_loc_section (struct dwarf2_cu *cu)
19817 {
19818 if (cu->dwo_unit)
19819 return &cu->dwo_unit->dwo_file->sections.loc;
19820 return &dwarf2_per_objfile->loc;
19821 }
19822
19823 /* A helper function that fills in a dwarf2_loclist_baton. */
19824
19825 static void
19826 fill_in_loclist_baton (struct dwarf2_cu *cu,
19827 struct dwarf2_loclist_baton *baton,
19828 struct attribute *attr)
19829 {
19830 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19831
19832 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19833
19834 baton->per_cu = cu->per_cu;
19835 gdb_assert (baton->per_cu);
19836 /* We don't know how long the location list is, but make sure we
19837 don't run off the edge of the section. */
19838 baton->size = section->size - DW_UNSND (attr);
19839 baton->data = section->buffer + DW_UNSND (attr);
19840 baton->base_address = cu->base_address;
19841 baton->from_dwo = cu->dwo_unit != NULL;
19842 }
19843
19844 static void
19845 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19846 struct dwarf2_cu *cu, int is_block)
19847 {
19848 struct objfile *objfile = dwarf2_per_objfile->objfile;
19849 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19850
19851 if (attr_form_is_section_offset (attr)
19852 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19853 the section. If so, fall through to the complaint in the
19854 other branch. */
19855 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19856 {
19857 struct dwarf2_loclist_baton *baton;
19858
19859 baton = obstack_alloc (&objfile->objfile_obstack,
19860 sizeof (struct dwarf2_loclist_baton));
19861
19862 fill_in_loclist_baton (cu, baton, attr);
19863
19864 if (cu->base_known == 0)
19865 complaint (&symfile_complaints,
19866 _("Location list used without "
19867 "specifying the CU base address."));
19868
19869 SYMBOL_ACLASS_INDEX (sym) = (is_block
19870 ? dwarf2_loclist_block_index
19871 : dwarf2_loclist_index);
19872 SYMBOL_LOCATION_BATON (sym) = baton;
19873 }
19874 else
19875 {
19876 struct dwarf2_locexpr_baton *baton;
19877
19878 baton = obstack_alloc (&objfile->objfile_obstack,
19879 sizeof (struct dwarf2_locexpr_baton));
19880 baton->per_cu = cu->per_cu;
19881 gdb_assert (baton->per_cu);
19882
19883 if (attr_form_is_block (attr))
19884 {
19885 /* Note that we're just copying the block's data pointer
19886 here, not the actual data. We're still pointing into the
19887 info_buffer for SYM's objfile; right now we never release
19888 that buffer, but when we do clean up properly this may
19889 need to change. */
19890 baton->size = DW_BLOCK (attr)->size;
19891 baton->data = DW_BLOCK (attr)->data;
19892 }
19893 else
19894 {
19895 dwarf2_invalid_attrib_class_complaint ("location description",
19896 SYMBOL_NATURAL_NAME (sym));
19897 baton->size = 0;
19898 }
19899
19900 SYMBOL_ACLASS_INDEX (sym) = (is_block
19901 ? dwarf2_locexpr_block_index
19902 : dwarf2_locexpr_index);
19903 SYMBOL_LOCATION_BATON (sym) = baton;
19904 }
19905 }
19906
19907 /* Return the OBJFILE associated with the compilation unit CU. If CU
19908 came from a separate debuginfo file, then the master objfile is
19909 returned. */
19910
19911 struct objfile *
19912 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19913 {
19914 struct objfile *objfile = per_cu->objfile;
19915
19916 /* Return the master objfile, so that we can report and look up the
19917 correct file containing this variable. */
19918 if (objfile->separate_debug_objfile_backlink)
19919 objfile = objfile->separate_debug_objfile_backlink;
19920
19921 return objfile;
19922 }
19923
19924 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19925 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19926 CU_HEADERP first. */
19927
19928 static const struct comp_unit_head *
19929 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19930 struct dwarf2_per_cu_data *per_cu)
19931 {
19932 const gdb_byte *info_ptr;
19933
19934 if (per_cu->cu)
19935 return &per_cu->cu->header;
19936
19937 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19938
19939 memset (cu_headerp, 0, sizeof (*cu_headerp));
19940 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19941
19942 return cu_headerp;
19943 }
19944
19945 /* Return the address size given in the compilation unit header for CU. */
19946
19947 int
19948 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19949 {
19950 struct comp_unit_head cu_header_local;
19951 const struct comp_unit_head *cu_headerp;
19952
19953 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19954
19955 return cu_headerp->addr_size;
19956 }
19957
19958 /* Return the offset size given in the compilation unit header for CU. */
19959
19960 int
19961 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19962 {
19963 struct comp_unit_head cu_header_local;
19964 const struct comp_unit_head *cu_headerp;
19965
19966 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19967
19968 return cu_headerp->offset_size;
19969 }
19970
19971 /* See its dwarf2loc.h declaration. */
19972
19973 int
19974 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19975 {
19976 struct comp_unit_head cu_header_local;
19977 const struct comp_unit_head *cu_headerp;
19978
19979 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19980
19981 if (cu_headerp->version == 2)
19982 return cu_headerp->addr_size;
19983 else
19984 return cu_headerp->offset_size;
19985 }
19986
19987 /* Return the text offset of the CU. The returned offset comes from
19988 this CU's objfile. If this objfile came from a separate debuginfo
19989 file, then the offset may be different from the corresponding
19990 offset in the parent objfile. */
19991
19992 CORE_ADDR
19993 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19994 {
19995 struct objfile *objfile = per_cu->objfile;
19996
19997 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19998 }
19999
20000 /* Locate the .debug_info compilation unit from CU's objfile which contains
20001 the DIE at OFFSET. Raises an error on failure. */
20002
20003 static struct dwarf2_per_cu_data *
20004 dwarf2_find_containing_comp_unit (sect_offset offset,
20005 unsigned int offset_in_dwz,
20006 struct objfile *objfile)
20007 {
20008 struct dwarf2_per_cu_data *this_cu;
20009 int low, high;
20010 const sect_offset *cu_off;
20011
20012 low = 0;
20013 high = dwarf2_per_objfile->n_comp_units - 1;
20014 while (high > low)
20015 {
20016 struct dwarf2_per_cu_data *mid_cu;
20017 int mid = low + (high - low) / 2;
20018
20019 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20020 cu_off = &mid_cu->offset;
20021 if (mid_cu->is_dwz > offset_in_dwz
20022 || (mid_cu->is_dwz == offset_in_dwz
20023 && cu_off->sect_off >= offset.sect_off))
20024 high = mid;
20025 else
20026 low = mid + 1;
20027 }
20028 gdb_assert (low == high);
20029 this_cu = dwarf2_per_objfile->all_comp_units[low];
20030 cu_off = &this_cu->offset;
20031 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20032 {
20033 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20034 error (_("Dwarf Error: could not find partial DIE containing "
20035 "offset 0x%lx [in module %s]"),
20036 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20037
20038 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20039 <= offset.sect_off);
20040 return dwarf2_per_objfile->all_comp_units[low-1];
20041 }
20042 else
20043 {
20044 this_cu = dwarf2_per_objfile->all_comp_units[low];
20045 if (low == dwarf2_per_objfile->n_comp_units - 1
20046 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20047 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20048 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20049 return this_cu;
20050 }
20051 }
20052
20053 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20054
20055 static void
20056 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20057 {
20058 memset (cu, 0, sizeof (*cu));
20059 per_cu->cu = cu;
20060 cu->per_cu = per_cu;
20061 cu->objfile = per_cu->objfile;
20062 obstack_init (&cu->comp_unit_obstack);
20063 }
20064
20065 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20066
20067 static void
20068 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20069 enum language pretend_language)
20070 {
20071 struct attribute *attr;
20072
20073 /* Set the language we're debugging. */
20074 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20075 if (attr)
20076 set_cu_language (DW_UNSND (attr), cu);
20077 else
20078 {
20079 cu->language = pretend_language;
20080 cu->language_defn = language_def (cu->language);
20081 }
20082
20083 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20084 if (attr)
20085 cu->producer = DW_STRING (attr);
20086 }
20087
20088 /* Release one cached compilation unit, CU. We unlink it from the tree
20089 of compilation units, but we don't remove it from the read_in_chain;
20090 the caller is responsible for that.
20091 NOTE: DATA is a void * because this function is also used as a
20092 cleanup routine. */
20093
20094 static void
20095 free_heap_comp_unit (void *data)
20096 {
20097 struct dwarf2_cu *cu = data;
20098
20099 gdb_assert (cu->per_cu != NULL);
20100 cu->per_cu->cu = NULL;
20101 cu->per_cu = NULL;
20102
20103 obstack_free (&cu->comp_unit_obstack, NULL);
20104
20105 xfree (cu);
20106 }
20107
20108 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20109 when we're finished with it. We can't free the pointer itself, but be
20110 sure to unlink it from the cache. Also release any associated storage. */
20111
20112 static void
20113 free_stack_comp_unit (void *data)
20114 {
20115 struct dwarf2_cu *cu = data;
20116
20117 gdb_assert (cu->per_cu != NULL);
20118 cu->per_cu->cu = NULL;
20119 cu->per_cu = NULL;
20120
20121 obstack_free (&cu->comp_unit_obstack, NULL);
20122 cu->partial_dies = NULL;
20123 }
20124
20125 /* Free all cached compilation units. */
20126
20127 static void
20128 free_cached_comp_units (void *data)
20129 {
20130 struct dwarf2_per_cu_data *per_cu, **last_chain;
20131
20132 per_cu = dwarf2_per_objfile->read_in_chain;
20133 last_chain = &dwarf2_per_objfile->read_in_chain;
20134 while (per_cu != NULL)
20135 {
20136 struct dwarf2_per_cu_data *next_cu;
20137
20138 next_cu = per_cu->cu->read_in_chain;
20139
20140 free_heap_comp_unit (per_cu->cu);
20141 *last_chain = next_cu;
20142
20143 per_cu = next_cu;
20144 }
20145 }
20146
20147 /* Increase the age counter on each cached compilation unit, and free
20148 any that are too old. */
20149
20150 static void
20151 age_cached_comp_units (void)
20152 {
20153 struct dwarf2_per_cu_data *per_cu, **last_chain;
20154
20155 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20156 per_cu = dwarf2_per_objfile->read_in_chain;
20157 while (per_cu != NULL)
20158 {
20159 per_cu->cu->last_used ++;
20160 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20161 dwarf2_mark (per_cu->cu);
20162 per_cu = per_cu->cu->read_in_chain;
20163 }
20164
20165 per_cu = dwarf2_per_objfile->read_in_chain;
20166 last_chain = &dwarf2_per_objfile->read_in_chain;
20167 while (per_cu != NULL)
20168 {
20169 struct dwarf2_per_cu_data *next_cu;
20170
20171 next_cu = per_cu->cu->read_in_chain;
20172
20173 if (!per_cu->cu->mark)
20174 {
20175 free_heap_comp_unit (per_cu->cu);
20176 *last_chain = next_cu;
20177 }
20178 else
20179 last_chain = &per_cu->cu->read_in_chain;
20180
20181 per_cu = next_cu;
20182 }
20183 }
20184
20185 /* Remove a single compilation unit from the cache. */
20186
20187 static void
20188 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20189 {
20190 struct dwarf2_per_cu_data *per_cu, **last_chain;
20191
20192 per_cu = dwarf2_per_objfile->read_in_chain;
20193 last_chain = &dwarf2_per_objfile->read_in_chain;
20194 while (per_cu != NULL)
20195 {
20196 struct dwarf2_per_cu_data *next_cu;
20197
20198 next_cu = per_cu->cu->read_in_chain;
20199
20200 if (per_cu == target_per_cu)
20201 {
20202 free_heap_comp_unit (per_cu->cu);
20203 per_cu->cu = NULL;
20204 *last_chain = next_cu;
20205 break;
20206 }
20207 else
20208 last_chain = &per_cu->cu->read_in_chain;
20209
20210 per_cu = next_cu;
20211 }
20212 }
20213
20214 /* Release all extra memory associated with OBJFILE. */
20215
20216 void
20217 dwarf2_free_objfile (struct objfile *objfile)
20218 {
20219 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20220
20221 if (dwarf2_per_objfile == NULL)
20222 return;
20223
20224 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20225 free_cached_comp_units (NULL);
20226
20227 if (dwarf2_per_objfile->quick_file_names_table)
20228 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20229
20230 /* Everything else should be on the objfile obstack. */
20231 }
20232
20233 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20234 We store these in a hash table separate from the DIEs, and preserve them
20235 when the DIEs are flushed out of cache.
20236
20237 The CU "per_cu" pointer is needed because offset alone is not enough to
20238 uniquely identify the type. A file may have multiple .debug_types sections,
20239 or the type may come from a DWO file. Furthermore, while it's more logical
20240 to use per_cu->section+offset, with Fission the section with the data is in
20241 the DWO file but we don't know that section at the point we need it.
20242 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20243 because we can enter the lookup routine, get_die_type_at_offset, from
20244 outside this file, and thus won't necessarily have PER_CU->cu.
20245 Fortunately, PER_CU is stable for the life of the objfile. */
20246
20247 struct dwarf2_per_cu_offset_and_type
20248 {
20249 const struct dwarf2_per_cu_data *per_cu;
20250 sect_offset offset;
20251 struct type *type;
20252 };
20253
20254 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20255
20256 static hashval_t
20257 per_cu_offset_and_type_hash (const void *item)
20258 {
20259 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20260
20261 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20262 }
20263
20264 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20265
20266 static int
20267 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20268 {
20269 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20270 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20271
20272 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20273 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20274 }
20275
20276 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20277 table if necessary. For convenience, return TYPE.
20278
20279 The DIEs reading must have careful ordering to:
20280 * Not cause infite loops trying to read in DIEs as a prerequisite for
20281 reading current DIE.
20282 * Not trying to dereference contents of still incompletely read in types
20283 while reading in other DIEs.
20284 * Enable referencing still incompletely read in types just by a pointer to
20285 the type without accessing its fields.
20286
20287 Therefore caller should follow these rules:
20288 * Try to fetch any prerequisite types we may need to build this DIE type
20289 before building the type and calling set_die_type.
20290 * After building type call set_die_type for current DIE as soon as
20291 possible before fetching more types to complete the current type.
20292 * Make the type as complete as possible before fetching more types. */
20293
20294 static struct type *
20295 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20296 {
20297 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20298 struct objfile *objfile = cu->objfile;
20299
20300 /* For Ada types, make sure that the gnat-specific data is always
20301 initialized (if not already set). There are a few types where
20302 we should not be doing so, because the type-specific area is
20303 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20304 where the type-specific area is used to store the floatformat).
20305 But this is not a problem, because the gnat-specific information
20306 is actually not needed for these types. */
20307 if (need_gnat_info (cu)
20308 && TYPE_CODE (type) != TYPE_CODE_FUNC
20309 && TYPE_CODE (type) != TYPE_CODE_FLT
20310 && !HAVE_GNAT_AUX_INFO (type))
20311 INIT_GNAT_SPECIFIC (type);
20312
20313 if (dwarf2_per_objfile->die_type_hash == NULL)
20314 {
20315 dwarf2_per_objfile->die_type_hash =
20316 htab_create_alloc_ex (127,
20317 per_cu_offset_and_type_hash,
20318 per_cu_offset_and_type_eq,
20319 NULL,
20320 &objfile->objfile_obstack,
20321 hashtab_obstack_allocate,
20322 dummy_obstack_deallocate);
20323 }
20324
20325 ofs.per_cu = cu->per_cu;
20326 ofs.offset = die->offset;
20327 ofs.type = type;
20328 slot = (struct dwarf2_per_cu_offset_and_type **)
20329 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20330 if (*slot)
20331 complaint (&symfile_complaints,
20332 _("A problem internal to GDB: DIE 0x%x has type already set"),
20333 die->offset.sect_off);
20334 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20335 **slot = ofs;
20336 return type;
20337 }
20338
20339 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20340 or return NULL if the die does not have a saved type. */
20341
20342 static struct type *
20343 get_die_type_at_offset (sect_offset offset,
20344 struct dwarf2_per_cu_data *per_cu)
20345 {
20346 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20347
20348 if (dwarf2_per_objfile->die_type_hash == NULL)
20349 return NULL;
20350
20351 ofs.per_cu = per_cu;
20352 ofs.offset = offset;
20353 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20354 if (slot)
20355 return slot->type;
20356 else
20357 return NULL;
20358 }
20359
20360 /* Look up the type for DIE in CU in die_type_hash,
20361 or return NULL if DIE does not have a saved type. */
20362
20363 static struct type *
20364 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20365 {
20366 return get_die_type_at_offset (die->offset, cu->per_cu);
20367 }
20368
20369 /* Add a dependence relationship from CU to REF_PER_CU. */
20370
20371 static void
20372 dwarf2_add_dependence (struct dwarf2_cu *cu,
20373 struct dwarf2_per_cu_data *ref_per_cu)
20374 {
20375 void **slot;
20376
20377 if (cu->dependencies == NULL)
20378 cu->dependencies
20379 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20380 NULL, &cu->comp_unit_obstack,
20381 hashtab_obstack_allocate,
20382 dummy_obstack_deallocate);
20383
20384 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20385 if (*slot == NULL)
20386 *slot = ref_per_cu;
20387 }
20388
20389 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20390 Set the mark field in every compilation unit in the
20391 cache that we must keep because we are keeping CU. */
20392
20393 static int
20394 dwarf2_mark_helper (void **slot, void *data)
20395 {
20396 struct dwarf2_per_cu_data *per_cu;
20397
20398 per_cu = (struct dwarf2_per_cu_data *) *slot;
20399
20400 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20401 reading of the chain. As such dependencies remain valid it is not much
20402 useful to track and undo them during QUIT cleanups. */
20403 if (per_cu->cu == NULL)
20404 return 1;
20405
20406 if (per_cu->cu->mark)
20407 return 1;
20408 per_cu->cu->mark = 1;
20409
20410 if (per_cu->cu->dependencies != NULL)
20411 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20412
20413 return 1;
20414 }
20415
20416 /* Set the mark field in CU and in every other compilation unit in the
20417 cache that we must keep because we are keeping CU. */
20418
20419 static void
20420 dwarf2_mark (struct dwarf2_cu *cu)
20421 {
20422 if (cu->mark)
20423 return;
20424 cu->mark = 1;
20425 if (cu->dependencies != NULL)
20426 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20427 }
20428
20429 static void
20430 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20431 {
20432 while (per_cu)
20433 {
20434 per_cu->cu->mark = 0;
20435 per_cu = per_cu->cu->read_in_chain;
20436 }
20437 }
20438
20439 /* Trivial hash function for partial_die_info: the hash value of a DIE
20440 is its offset in .debug_info for this objfile. */
20441
20442 static hashval_t
20443 partial_die_hash (const void *item)
20444 {
20445 const struct partial_die_info *part_die = item;
20446
20447 return part_die->offset.sect_off;
20448 }
20449
20450 /* Trivial comparison function for partial_die_info structures: two DIEs
20451 are equal if they have the same offset. */
20452
20453 static int
20454 partial_die_eq (const void *item_lhs, const void *item_rhs)
20455 {
20456 const struct partial_die_info *part_die_lhs = item_lhs;
20457 const struct partial_die_info *part_die_rhs = item_rhs;
20458
20459 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20460 }
20461
20462 static struct cmd_list_element *set_dwarf2_cmdlist;
20463 static struct cmd_list_element *show_dwarf2_cmdlist;
20464
20465 static void
20466 set_dwarf2_cmd (char *args, int from_tty)
20467 {
20468 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20469 }
20470
20471 static void
20472 show_dwarf2_cmd (char *args, int from_tty)
20473 {
20474 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20475 }
20476
20477 /* Free data associated with OBJFILE, if necessary. */
20478
20479 static void
20480 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20481 {
20482 struct dwarf2_per_objfile *data = d;
20483 int ix;
20484
20485 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
20486 VEC_free (dwarf2_per_cu_ptr,
20487 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
20488
20489 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
20490 VEC_free (dwarf2_per_cu_ptr,
20491 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
20492 xfree (dwarf2_per_objfile->all_type_units);
20493
20494 VEC_free (dwarf2_section_info_def, data->types);
20495
20496 if (data->dwo_files)
20497 free_dwo_files (data->dwo_files, objfile);
20498 if (data->dwp_file)
20499 gdb_bfd_unref (data->dwp_file->dbfd);
20500
20501 if (data->dwz_file && data->dwz_file->dwz_bfd)
20502 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20503 }
20504
20505 \f
20506 /* The "save gdb-index" command. */
20507
20508 /* The contents of the hash table we create when building the string
20509 table. */
20510 struct strtab_entry
20511 {
20512 offset_type offset;
20513 const char *str;
20514 };
20515
20516 /* Hash function for a strtab_entry.
20517
20518 Function is used only during write_hash_table so no index format backward
20519 compatibility is needed. */
20520
20521 static hashval_t
20522 hash_strtab_entry (const void *e)
20523 {
20524 const struct strtab_entry *entry = e;
20525 return mapped_index_string_hash (INT_MAX, entry->str);
20526 }
20527
20528 /* Equality function for a strtab_entry. */
20529
20530 static int
20531 eq_strtab_entry (const void *a, const void *b)
20532 {
20533 const struct strtab_entry *ea = a;
20534 const struct strtab_entry *eb = b;
20535 return !strcmp (ea->str, eb->str);
20536 }
20537
20538 /* Create a strtab_entry hash table. */
20539
20540 static htab_t
20541 create_strtab (void)
20542 {
20543 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20544 xfree, xcalloc, xfree);
20545 }
20546
20547 /* Add a string to the constant pool. Return the string's offset in
20548 host order. */
20549
20550 static offset_type
20551 add_string (htab_t table, struct obstack *cpool, const char *str)
20552 {
20553 void **slot;
20554 struct strtab_entry entry;
20555 struct strtab_entry *result;
20556
20557 entry.str = str;
20558 slot = htab_find_slot (table, &entry, INSERT);
20559 if (*slot)
20560 result = *slot;
20561 else
20562 {
20563 result = XNEW (struct strtab_entry);
20564 result->offset = obstack_object_size (cpool);
20565 result->str = str;
20566 obstack_grow_str0 (cpool, str);
20567 *slot = result;
20568 }
20569 return result->offset;
20570 }
20571
20572 /* An entry in the symbol table. */
20573 struct symtab_index_entry
20574 {
20575 /* The name of the symbol. */
20576 const char *name;
20577 /* The offset of the name in the constant pool. */
20578 offset_type index_offset;
20579 /* A sorted vector of the indices of all the CUs that hold an object
20580 of this name. */
20581 VEC (offset_type) *cu_indices;
20582 };
20583
20584 /* The symbol table. This is a power-of-2-sized hash table. */
20585 struct mapped_symtab
20586 {
20587 offset_type n_elements;
20588 offset_type size;
20589 struct symtab_index_entry **data;
20590 };
20591
20592 /* Hash function for a symtab_index_entry. */
20593
20594 static hashval_t
20595 hash_symtab_entry (const void *e)
20596 {
20597 const struct symtab_index_entry *entry = e;
20598 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20599 sizeof (offset_type) * VEC_length (offset_type,
20600 entry->cu_indices),
20601 0);
20602 }
20603
20604 /* Equality function for a symtab_index_entry. */
20605
20606 static int
20607 eq_symtab_entry (const void *a, const void *b)
20608 {
20609 const struct symtab_index_entry *ea = a;
20610 const struct symtab_index_entry *eb = b;
20611 int len = VEC_length (offset_type, ea->cu_indices);
20612 if (len != VEC_length (offset_type, eb->cu_indices))
20613 return 0;
20614 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20615 VEC_address (offset_type, eb->cu_indices),
20616 sizeof (offset_type) * len);
20617 }
20618
20619 /* Destroy a symtab_index_entry. */
20620
20621 static void
20622 delete_symtab_entry (void *p)
20623 {
20624 struct symtab_index_entry *entry = p;
20625 VEC_free (offset_type, entry->cu_indices);
20626 xfree (entry);
20627 }
20628
20629 /* Create a hash table holding symtab_index_entry objects. */
20630
20631 static htab_t
20632 create_symbol_hash_table (void)
20633 {
20634 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20635 delete_symtab_entry, xcalloc, xfree);
20636 }
20637
20638 /* Create a new mapped symtab object. */
20639
20640 static struct mapped_symtab *
20641 create_mapped_symtab (void)
20642 {
20643 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20644 symtab->n_elements = 0;
20645 symtab->size = 1024;
20646 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20647 return symtab;
20648 }
20649
20650 /* Destroy a mapped_symtab. */
20651
20652 static void
20653 cleanup_mapped_symtab (void *p)
20654 {
20655 struct mapped_symtab *symtab = p;
20656 /* The contents of the array are freed when the other hash table is
20657 destroyed. */
20658 xfree (symtab->data);
20659 xfree (symtab);
20660 }
20661
20662 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20663 the slot.
20664
20665 Function is used only during write_hash_table so no index format backward
20666 compatibility is needed. */
20667
20668 static struct symtab_index_entry **
20669 find_slot (struct mapped_symtab *symtab, const char *name)
20670 {
20671 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20672
20673 index = hash & (symtab->size - 1);
20674 step = ((hash * 17) & (symtab->size - 1)) | 1;
20675
20676 for (;;)
20677 {
20678 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20679 return &symtab->data[index];
20680 index = (index + step) & (symtab->size - 1);
20681 }
20682 }
20683
20684 /* Expand SYMTAB's hash table. */
20685
20686 static void
20687 hash_expand (struct mapped_symtab *symtab)
20688 {
20689 offset_type old_size = symtab->size;
20690 offset_type i;
20691 struct symtab_index_entry **old_entries = symtab->data;
20692
20693 symtab->size *= 2;
20694 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20695
20696 for (i = 0; i < old_size; ++i)
20697 {
20698 if (old_entries[i])
20699 {
20700 struct symtab_index_entry **slot = find_slot (symtab,
20701 old_entries[i]->name);
20702 *slot = old_entries[i];
20703 }
20704 }
20705
20706 xfree (old_entries);
20707 }
20708
20709 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20710 CU_INDEX is the index of the CU in which the symbol appears.
20711 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20712
20713 static void
20714 add_index_entry (struct mapped_symtab *symtab, const char *name,
20715 int is_static, gdb_index_symbol_kind kind,
20716 offset_type cu_index)
20717 {
20718 struct symtab_index_entry **slot;
20719 offset_type cu_index_and_attrs;
20720
20721 ++symtab->n_elements;
20722 if (4 * symtab->n_elements / 3 >= symtab->size)
20723 hash_expand (symtab);
20724
20725 slot = find_slot (symtab, name);
20726 if (!*slot)
20727 {
20728 *slot = XNEW (struct symtab_index_entry);
20729 (*slot)->name = name;
20730 /* index_offset is set later. */
20731 (*slot)->cu_indices = NULL;
20732 }
20733
20734 cu_index_and_attrs = 0;
20735 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20736 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20737 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20738
20739 /* We don't want to record an index value twice as we want to avoid the
20740 duplication.
20741 We process all global symbols and then all static symbols
20742 (which would allow us to avoid the duplication by only having to check
20743 the last entry pushed), but a symbol could have multiple kinds in one CU.
20744 To keep things simple we don't worry about the duplication here and
20745 sort and uniqufy the list after we've processed all symbols. */
20746 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20747 }
20748
20749 /* qsort helper routine for uniquify_cu_indices. */
20750
20751 static int
20752 offset_type_compare (const void *ap, const void *bp)
20753 {
20754 offset_type a = *(offset_type *) ap;
20755 offset_type b = *(offset_type *) bp;
20756
20757 return (a > b) - (b > a);
20758 }
20759
20760 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20761
20762 static void
20763 uniquify_cu_indices (struct mapped_symtab *symtab)
20764 {
20765 int i;
20766
20767 for (i = 0; i < symtab->size; ++i)
20768 {
20769 struct symtab_index_entry *entry = symtab->data[i];
20770
20771 if (entry
20772 && entry->cu_indices != NULL)
20773 {
20774 unsigned int next_to_insert, next_to_check;
20775 offset_type last_value;
20776
20777 qsort (VEC_address (offset_type, entry->cu_indices),
20778 VEC_length (offset_type, entry->cu_indices),
20779 sizeof (offset_type), offset_type_compare);
20780
20781 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20782 next_to_insert = 1;
20783 for (next_to_check = 1;
20784 next_to_check < VEC_length (offset_type, entry->cu_indices);
20785 ++next_to_check)
20786 {
20787 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20788 != last_value)
20789 {
20790 last_value = VEC_index (offset_type, entry->cu_indices,
20791 next_to_check);
20792 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20793 last_value);
20794 ++next_to_insert;
20795 }
20796 }
20797 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20798 }
20799 }
20800 }
20801
20802 /* Add a vector of indices to the constant pool. */
20803
20804 static offset_type
20805 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20806 struct symtab_index_entry *entry)
20807 {
20808 void **slot;
20809
20810 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20811 if (!*slot)
20812 {
20813 offset_type len = VEC_length (offset_type, entry->cu_indices);
20814 offset_type val = MAYBE_SWAP (len);
20815 offset_type iter;
20816 int i;
20817
20818 *slot = entry;
20819 entry->index_offset = obstack_object_size (cpool);
20820
20821 obstack_grow (cpool, &val, sizeof (val));
20822 for (i = 0;
20823 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20824 ++i)
20825 {
20826 val = MAYBE_SWAP (iter);
20827 obstack_grow (cpool, &val, sizeof (val));
20828 }
20829 }
20830 else
20831 {
20832 struct symtab_index_entry *old_entry = *slot;
20833 entry->index_offset = old_entry->index_offset;
20834 entry = old_entry;
20835 }
20836 return entry->index_offset;
20837 }
20838
20839 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20840 constant pool entries going into the obstack CPOOL. */
20841
20842 static void
20843 write_hash_table (struct mapped_symtab *symtab,
20844 struct obstack *output, struct obstack *cpool)
20845 {
20846 offset_type i;
20847 htab_t symbol_hash_table;
20848 htab_t str_table;
20849
20850 symbol_hash_table = create_symbol_hash_table ();
20851 str_table = create_strtab ();
20852
20853 /* We add all the index vectors to the constant pool first, to
20854 ensure alignment is ok. */
20855 for (i = 0; i < symtab->size; ++i)
20856 {
20857 if (symtab->data[i])
20858 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20859 }
20860
20861 /* Now write out the hash table. */
20862 for (i = 0; i < symtab->size; ++i)
20863 {
20864 offset_type str_off, vec_off;
20865
20866 if (symtab->data[i])
20867 {
20868 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20869 vec_off = symtab->data[i]->index_offset;
20870 }
20871 else
20872 {
20873 /* While 0 is a valid constant pool index, it is not valid
20874 to have 0 for both offsets. */
20875 str_off = 0;
20876 vec_off = 0;
20877 }
20878
20879 str_off = MAYBE_SWAP (str_off);
20880 vec_off = MAYBE_SWAP (vec_off);
20881
20882 obstack_grow (output, &str_off, sizeof (str_off));
20883 obstack_grow (output, &vec_off, sizeof (vec_off));
20884 }
20885
20886 htab_delete (str_table);
20887 htab_delete (symbol_hash_table);
20888 }
20889
20890 /* Struct to map psymtab to CU index in the index file. */
20891 struct psymtab_cu_index_map
20892 {
20893 struct partial_symtab *psymtab;
20894 unsigned int cu_index;
20895 };
20896
20897 static hashval_t
20898 hash_psymtab_cu_index (const void *item)
20899 {
20900 const struct psymtab_cu_index_map *map = item;
20901
20902 return htab_hash_pointer (map->psymtab);
20903 }
20904
20905 static int
20906 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20907 {
20908 const struct psymtab_cu_index_map *lhs = item_lhs;
20909 const struct psymtab_cu_index_map *rhs = item_rhs;
20910
20911 return lhs->psymtab == rhs->psymtab;
20912 }
20913
20914 /* Helper struct for building the address table. */
20915 struct addrmap_index_data
20916 {
20917 struct objfile *objfile;
20918 struct obstack *addr_obstack;
20919 htab_t cu_index_htab;
20920
20921 /* Non-zero if the previous_* fields are valid.
20922 We can't write an entry until we see the next entry (since it is only then
20923 that we know the end of the entry). */
20924 int previous_valid;
20925 /* Index of the CU in the table of all CUs in the index file. */
20926 unsigned int previous_cu_index;
20927 /* Start address of the CU. */
20928 CORE_ADDR previous_cu_start;
20929 };
20930
20931 /* Write an address entry to OBSTACK. */
20932
20933 static void
20934 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20935 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20936 {
20937 offset_type cu_index_to_write;
20938 gdb_byte addr[8];
20939 CORE_ADDR baseaddr;
20940
20941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20942
20943 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20944 obstack_grow (obstack, addr, 8);
20945 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20946 obstack_grow (obstack, addr, 8);
20947 cu_index_to_write = MAYBE_SWAP (cu_index);
20948 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20949 }
20950
20951 /* Worker function for traversing an addrmap to build the address table. */
20952
20953 static int
20954 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20955 {
20956 struct addrmap_index_data *data = datap;
20957 struct partial_symtab *pst = obj;
20958
20959 if (data->previous_valid)
20960 add_address_entry (data->objfile, data->addr_obstack,
20961 data->previous_cu_start, start_addr,
20962 data->previous_cu_index);
20963
20964 data->previous_cu_start = start_addr;
20965 if (pst != NULL)
20966 {
20967 struct psymtab_cu_index_map find_map, *map;
20968 find_map.psymtab = pst;
20969 map = htab_find (data->cu_index_htab, &find_map);
20970 gdb_assert (map != NULL);
20971 data->previous_cu_index = map->cu_index;
20972 data->previous_valid = 1;
20973 }
20974 else
20975 data->previous_valid = 0;
20976
20977 return 0;
20978 }
20979
20980 /* Write OBJFILE's address map to OBSTACK.
20981 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20982 in the index file. */
20983
20984 static void
20985 write_address_map (struct objfile *objfile, struct obstack *obstack,
20986 htab_t cu_index_htab)
20987 {
20988 struct addrmap_index_data addrmap_index_data;
20989
20990 /* When writing the address table, we have to cope with the fact that
20991 the addrmap iterator only provides the start of a region; we have to
20992 wait until the next invocation to get the start of the next region. */
20993
20994 addrmap_index_data.objfile = objfile;
20995 addrmap_index_data.addr_obstack = obstack;
20996 addrmap_index_data.cu_index_htab = cu_index_htab;
20997 addrmap_index_data.previous_valid = 0;
20998
20999 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21000 &addrmap_index_data);
21001
21002 /* It's highly unlikely the last entry (end address = 0xff...ff)
21003 is valid, but we should still handle it.
21004 The end address is recorded as the start of the next region, but that
21005 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21006 anyway. */
21007 if (addrmap_index_data.previous_valid)
21008 add_address_entry (objfile, obstack,
21009 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21010 addrmap_index_data.previous_cu_index);
21011 }
21012
21013 /* Return the symbol kind of PSYM. */
21014
21015 static gdb_index_symbol_kind
21016 symbol_kind (struct partial_symbol *psym)
21017 {
21018 domain_enum domain = PSYMBOL_DOMAIN (psym);
21019 enum address_class aclass = PSYMBOL_CLASS (psym);
21020
21021 switch (domain)
21022 {
21023 case VAR_DOMAIN:
21024 switch (aclass)
21025 {
21026 case LOC_BLOCK:
21027 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21028 case LOC_TYPEDEF:
21029 return GDB_INDEX_SYMBOL_KIND_TYPE;
21030 case LOC_COMPUTED:
21031 case LOC_CONST_BYTES:
21032 case LOC_OPTIMIZED_OUT:
21033 case LOC_STATIC:
21034 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21035 case LOC_CONST:
21036 /* Note: It's currently impossible to recognize psyms as enum values
21037 short of reading the type info. For now punt. */
21038 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21039 default:
21040 /* There are other LOC_FOO values that one might want to classify
21041 as variables, but dwarf2read.c doesn't currently use them. */
21042 return GDB_INDEX_SYMBOL_KIND_OTHER;
21043 }
21044 case STRUCT_DOMAIN:
21045 return GDB_INDEX_SYMBOL_KIND_TYPE;
21046 default:
21047 return GDB_INDEX_SYMBOL_KIND_OTHER;
21048 }
21049 }
21050
21051 /* Add a list of partial symbols to SYMTAB. */
21052
21053 static void
21054 write_psymbols (struct mapped_symtab *symtab,
21055 htab_t psyms_seen,
21056 struct partial_symbol **psymp,
21057 int count,
21058 offset_type cu_index,
21059 int is_static)
21060 {
21061 for (; count-- > 0; ++psymp)
21062 {
21063 struct partial_symbol *psym = *psymp;
21064 void **slot;
21065
21066 if (SYMBOL_LANGUAGE (psym) == language_ada)
21067 error (_("Ada is not currently supported by the index"));
21068
21069 /* Only add a given psymbol once. */
21070 slot = htab_find_slot (psyms_seen, psym, INSERT);
21071 if (!*slot)
21072 {
21073 gdb_index_symbol_kind kind = symbol_kind (psym);
21074
21075 *slot = psym;
21076 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21077 is_static, kind, cu_index);
21078 }
21079 }
21080 }
21081
21082 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21083 exception if there is an error. */
21084
21085 static void
21086 write_obstack (FILE *file, struct obstack *obstack)
21087 {
21088 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21089 file)
21090 != obstack_object_size (obstack))
21091 error (_("couldn't data write to file"));
21092 }
21093
21094 /* Unlink a file if the argument is not NULL. */
21095
21096 static void
21097 unlink_if_set (void *p)
21098 {
21099 char **filename = p;
21100 if (*filename)
21101 unlink (*filename);
21102 }
21103
21104 /* A helper struct used when iterating over debug_types. */
21105 struct signatured_type_index_data
21106 {
21107 struct objfile *objfile;
21108 struct mapped_symtab *symtab;
21109 struct obstack *types_list;
21110 htab_t psyms_seen;
21111 int cu_index;
21112 };
21113
21114 /* A helper function that writes a single signatured_type to an
21115 obstack. */
21116
21117 static int
21118 write_one_signatured_type (void **slot, void *d)
21119 {
21120 struct signatured_type_index_data *info = d;
21121 struct signatured_type *entry = (struct signatured_type *) *slot;
21122 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21123 gdb_byte val[8];
21124
21125 write_psymbols (info->symtab,
21126 info->psyms_seen,
21127 info->objfile->global_psymbols.list
21128 + psymtab->globals_offset,
21129 psymtab->n_global_syms, info->cu_index,
21130 0);
21131 write_psymbols (info->symtab,
21132 info->psyms_seen,
21133 info->objfile->static_psymbols.list
21134 + psymtab->statics_offset,
21135 psymtab->n_static_syms, info->cu_index,
21136 1);
21137
21138 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21139 entry->per_cu.offset.sect_off);
21140 obstack_grow (info->types_list, val, 8);
21141 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21142 entry->type_offset_in_tu.cu_off);
21143 obstack_grow (info->types_list, val, 8);
21144 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21145 obstack_grow (info->types_list, val, 8);
21146
21147 ++info->cu_index;
21148
21149 return 1;
21150 }
21151
21152 /* Recurse into all "included" dependencies and write their symbols as
21153 if they appeared in this psymtab. */
21154
21155 static void
21156 recursively_write_psymbols (struct objfile *objfile,
21157 struct partial_symtab *psymtab,
21158 struct mapped_symtab *symtab,
21159 htab_t psyms_seen,
21160 offset_type cu_index)
21161 {
21162 int i;
21163
21164 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21165 if (psymtab->dependencies[i]->user != NULL)
21166 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21167 symtab, psyms_seen, cu_index);
21168
21169 write_psymbols (symtab,
21170 psyms_seen,
21171 objfile->global_psymbols.list + psymtab->globals_offset,
21172 psymtab->n_global_syms, cu_index,
21173 0);
21174 write_psymbols (symtab,
21175 psyms_seen,
21176 objfile->static_psymbols.list + psymtab->statics_offset,
21177 psymtab->n_static_syms, cu_index,
21178 1);
21179 }
21180
21181 /* Create an index file for OBJFILE in the directory DIR. */
21182
21183 static void
21184 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21185 {
21186 struct cleanup *cleanup;
21187 char *filename, *cleanup_filename;
21188 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21189 struct obstack cu_list, types_cu_list;
21190 int i;
21191 FILE *out_file;
21192 struct mapped_symtab *symtab;
21193 offset_type val, size_of_contents, total_len;
21194 struct stat st;
21195 htab_t psyms_seen;
21196 htab_t cu_index_htab;
21197 struct psymtab_cu_index_map *psymtab_cu_index_map;
21198
21199 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21200 return;
21201
21202 if (dwarf2_per_objfile->using_index)
21203 error (_("Cannot use an index to create the index"));
21204
21205 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21206 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21207
21208 if (stat (objfile->name, &st) < 0)
21209 perror_with_name (objfile->name);
21210
21211 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21212 INDEX_SUFFIX, (char *) NULL);
21213 cleanup = make_cleanup (xfree, filename);
21214
21215 out_file = gdb_fopen_cloexec (filename, "wb");
21216 if (!out_file)
21217 error (_("Can't open `%s' for writing"), filename);
21218
21219 cleanup_filename = filename;
21220 make_cleanup (unlink_if_set, &cleanup_filename);
21221
21222 symtab = create_mapped_symtab ();
21223 make_cleanup (cleanup_mapped_symtab, symtab);
21224
21225 obstack_init (&addr_obstack);
21226 make_cleanup_obstack_free (&addr_obstack);
21227
21228 obstack_init (&cu_list);
21229 make_cleanup_obstack_free (&cu_list);
21230
21231 obstack_init (&types_cu_list);
21232 make_cleanup_obstack_free (&types_cu_list);
21233
21234 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21235 NULL, xcalloc, xfree);
21236 make_cleanup_htab_delete (psyms_seen);
21237
21238 /* While we're scanning CU's create a table that maps a psymtab pointer
21239 (which is what addrmap records) to its index (which is what is recorded
21240 in the index file). This will later be needed to write the address
21241 table. */
21242 cu_index_htab = htab_create_alloc (100,
21243 hash_psymtab_cu_index,
21244 eq_psymtab_cu_index,
21245 NULL, xcalloc, xfree);
21246 make_cleanup_htab_delete (cu_index_htab);
21247 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21248 xmalloc (sizeof (struct psymtab_cu_index_map)
21249 * dwarf2_per_objfile->n_comp_units);
21250 make_cleanup (xfree, psymtab_cu_index_map);
21251
21252 /* The CU list is already sorted, so we don't need to do additional
21253 work here. Also, the debug_types entries do not appear in
21254 all_comp_units, but only in their own hash table. */
21255 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21256 {
21257 struct dwarf2_per_cu_data *per_cu
21258 = dwarf2_per_objfile->all_comp_units[i];
21259 struct partial_symtab *psymtab = per_cu->v.psymtab;
21260 gdb_byte val[8];
21261 struct psymtab_cu_index_map *map;
21262 void **slot;
21263
21264 if (psymtab->user == NULL)
21265 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21266
21267 map = &psymtab_cu_index_map[i];
21268 map->psymtab = psymtab;
21269 map->cu_index = i;
21270 slot = htab_find_slot (cu_index_htab, map, INSERT);
21271 gdb_assert (slot != NULL);
21272 gdb_assert (*slot == NULL);
21273 *slot = map;
21274
21275 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21276 per_cu->offset.sect_off);
21277 obstack_grow (&cu_list, val, 8);
21278 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21279 obstack_grow (&cu_list, val, 8);
21280 }
21281
21282 /* Dump the address map. */
21283 write_address_map (objfile, &addr_obstack, cu_index_htab);
21284
21285 /* Write out the .debug_type entries, if any. */
21286 if (dwarf2_per_objfile->signatured_types)
21287 {
21288 struct signatured_type_index_data sig_data;
21289
21290 sig_data.objfile = objfile;
21291 sig_data.symtab = symtab;
21292 sig_data.types_list = &types_cu_list;
21293 sig_data.psyms_seen = psyms_seen;
21294 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21295 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21296 write_one_signatured_type, &sig_data);
21297 }
21298
21299 /* Now that we've processed all symbols we can shrink their cu_indices
21300 lists. */
21301 uniquify_cu_indices (symtab);
21302
21303 obstack_init (&constant_pool);
21304 make_cleanup_obstack_free (&constant_pool);
21305 obstack_init (&symtab_obstack);
21306 make_cleanup_obstack_free (&symtab_obstack);
21307 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21308
21309 obstack_init (&contents);
21310 make_cleanup_obstack_free (&contents);
21311 size_of_contents = 6 * sizeof (offset_type);
21312 total_len = size_of_contents;
21313
21314 /* The version number. */
21315 val = MAYBE_SWAP (8);
21316 obstack_grow (&contents, &val, sizeof (val));
21317
21318 /* The offset of the CU list from the start of the file. */
21319 val = MAYBE_SWAP (total_len);
21320 obstack_grow (&contents, &val, sizeof (val));
21321 total_len += obstack_object_size (&cu_list);
21322
21323 /* The offset of the types CU list from the start of the file. */
21324 val = MAYBE_SWAP (total_len);
21325 obstack_grow (&contents, &val, sizeof (val));
21326 total_len += obstack_object_size (&types_cu_list);
21327
21328 /* The offset of the address table from the start of the file. */
21329 val = MAYBE_SWAP (total_len);
21330 obstack_grow (&contents, &val, sizeof (val));
21331 total_len += obstack_object_size (&addr_obstack);
21332
21333 /* The offset of the symbol table from the start of the file. */
21334 val = MAYBE_SWAP (total_len);
21335 obstack_grow (&contents, &val, sizeof (val));
21336 total_len += obstack_object_size (&symtab_obstack);
21337
21338 /* The offset of the constant pool from the start of the file. */
21339 val = MAYBE_SWAP (total_len);
21340 obstack_grow (&contents, &val, sizeof (val));
21341 total_len += obstack_object_size (&constant_pool);
21342
21343 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21344
21345 write_obstack (out_file, &contents);
21346 write_obstack (out_file, &cu_list);
21347 write_obstack (out_file, &types_cu_list);
21348 write_obstack (out_file, &addr_obstack);
21349 write_obstack (out_file, &symtab_obstack);
21350 write_obstack (out_file, &constant_pool);
21351
21352 fclose (out_file);
21353
21354 /* We want to keep the file, so we set cleanup_filename to NULL
21355 here. See unlink_if_set. */
21356 cleanup_filename = NULL;
21357
21358 do_cleanups (cleanup);
21359 }
21360
21361 /* Implementation of the `save gdb-index' command.
21362
21363 Note that the file format used by this command is documented in the
21364 GDB manual. Any changes here must be documented there. */
21365
21366 static void
21367 save_gdb_index_command (char *arg, int from_tty)
21368 {
21369 struct objfile *objfile;
21370
21371 if (!arg || !*arg)
21372 error (_("usage: save gdb-index DIRECTORY"));
21373
21374 ALL_OBJFILES (objfile)
21375 {
21376 struct stat st;
21377
21378 /* If the objfile does not correspond to an actual file, skip it. */
21379 if (stat (objfile->name, &st) < 0)
21380 continue;
21381
21382 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21383 if (dwarf2_per_objfile)
21384 {
21385 volatile struct gdb_exception except;
21386
21387 TRY_CATCH (except, RETURN_MASK_ERROR)
21388 {
21389 write_psymtabs_to_index (objfile, arg);
21390 }
21391 if (except.reason < 0)
21392 exception_fprintf (gdb_stderr, except,
21393 _("Error while writing index for `%s': "),
21394 objfile->name);
21395 }
21396 }
21397 }
21398
21399 \f
21400
21401 int dwarf2_always_disassemble;
21402
21403 static void
21404 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21405 struct cmd_list_element *c, const char *value)
21406 {
21407 fprintf_filtered (file,
21408 _("Whether to always disassemble "
21409 "DWARF expressions is %s.\n"),
21410 value);
21411 }
21412
21413 static void
21414 show_check_physname (struct ui_file *file, int from_tty,
21415 struct cmd_list_element *c, const char *value)
21416 {
21417 fprintf_filtered (file,
21418 _("Whether to check \"physname\" is %s.\n"),
21419 value);
21420 }
21421
21422 void _initialize_dwarf2_read (void);
21423
21424 void
21425 _initialize_dwarf2_read (void)
21426 {
21427 struct cmd_list_element *c;
21428
21429 dwarf2_objfile_data_key
21430 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21431
21432 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21433 Set DWARF 2 specific variables.\n\
21434 Configure DWARF 2 variables such as the cache size"),
21435 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21436 0/*allow-unknown*/, &maintenance_set_cmdlist);
21437
21438 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21439 Show DWARF 2 specific variables\n\
21440 Show DWARF 2 variables such as the cache size"),
21441 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21442 0/*allow-unknown*/, &maintenance_show_cmdlist);
21443
21444 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21445 &dwarf2_max_cache_age, _("\
21446 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21447 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21448 A higher limit means that cached compilation units will be stored\n\
21449 in memory longer, and more total memory will be used. Zero disables\n\
21450 caching, which can slow down startup."),
21451 NULL,
21452 show_dwarf2_max_cache_age,
21453 &set_dwarf2_cmdlist,
21454 &show_dwarf2_cmdlist);
21455
21456 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21457 &dwarf2_always_disassemble, _("\
21458 Set whether `info address' always disassembles DWARF expressions."), _("\
21459 Show whether `info address' always disassembles DWARF expressions."), _("\
21460 When enabled, DWARF expressions are always printed in an assembly-like\n\
21461 syntax. When disabled, expressions will be printed in a more\n\
21462 conversational style, when possible."),
21463 NULL,
21464 show_dwarf2_always_disassemble,
21465 &set_dwarf2_cmdlist,
21466 &show_dwarf2_cmdlist);
21467
21468 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21469 Set debugging of the dwarf2 reader."), _("\
21470 Show debugging of the dwarf2 reader."), _("\
21471 When enabled, debugging messages are printed during dwarf2 reading\n\
21472 and symtab expansion."),
21473 NULL,
21474 NULL,
21475 &setdebuglist, &showdebuglist);
21476
21477 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21478 Set debugging of the dwarf2 DIE reader."), _("\
21479 Show debugging of the dwarf2 DIE reader."), _("\
21480 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21481 The value is the maximum depth to print."),
21482 NULL,
21483 NULL,
21484 &setdebuglist, &showdebuglist);
21485
21486 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21487 Set cross-checking of \"physname\" code against demangler."), _("\
21488 Show cross-checking of \"physname\" code against demangler."), _("\
21489 When enabled, GDB's internal \"physname\" code is checked against\n\
21490 the demangler."),
21491 NULL, show_check_physname,
21492 &setdebuglist, &showdebuglist);
21493
21494 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21495 no_class, &use_deprecated_index_sections, _("\
21496 Set whether to use deprecated gdb_index sections."), _("\
21497 Show whether to use deprecated gdb_index sections."), _("\
21498 When enabled, deprecated .gdb_index sections are used anyway.\n\
21499 Normally they are ignored either because of a missing feature or\n\
21500 performance issue.\n\
21501 Warning: This option must be enabled before gdb reads the file."),
21502 NULL,
21503 NULL,
21504 &setlist, &showlist);
21505
21506 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21507 _("\
21508 Save a gdb-index file.\n\
21509 Usage: save gdb-index DIRECTORY"),
21510 &save_cmdlist);
21511 set_cmd_completer (c, filename_completer);
21512
21513 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21514 &dwarf2_locexpr_funcs);
21515 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21516 &dwarf2_loclist_funcs);
21517
21518 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21519 &dwarf2_block_frame_base_locexpr_funcs);
21520 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21521 &dwarf2_block_frame_base_loclist_funcs);
21522 }
This page took 0.619051 seconds and 4 git commands to generate.