Teach the testsuite that GDBserver reliably reports program exits.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 /* Pointer to section data, only valid if readin. */
107 const gdb_byte *buffer;
108 bfd_size_type size;
109 /* True if we have tried to read this section. */
110 int readin;
111 };
112
113 typedef struct dwarf2_section_info dwarf2_section_info_def;
114 DEF_VEC_O (dwarf2_section_info_def);
115
116 /* All offsets in the index are of this type. It must be
117 architecture-independent. */
118 typedef uint32_t offset_type;
119
120 DEF_VEC_I (offset_type);
121
122 /* Ensure only legit values are used. */
123 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
124 do { \
125 gdb_assert ((unsigned int) (value) <= 1); \
126 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
127 } while (0)
128
129 /* Ensure only legit values are used. */
130 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
131 do { \
132 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
133 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
134 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
135 } while (0)
136
137 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
138 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
139 do { \
140 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
141 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
142 } while (0)
143
144 /* A description of the mapped index. The file format is described in
145 a comment by the code that writes the index. */
146 struct mapped_index
147 {
148 /* Index data format version. */
149 int version;
150
151 /* The total length of the buffer. */
152 off_t total_size;
153
154 /* A pointer to the address table data. */
155 const gdb_byte *address_table;
156
157 /* Size of the address table data in bytes. */
158 offset_type address_table_size;
159
160 /* The symbol table, implemented as a hash table. */
161 const offset_type *symbol_table;
162
163 /* Size in slots, each slot is 2 offset_types. */
164 offset_type symbol_table_slots;
165
166 /* A pointer to the constant pool. */
167 const char *constant_pool;
168 };
169
170 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
171 DEF_VEC_P (dwarf2_per_cu_ptr);
172
173 /* Collection of data recorded per objfile.
174 This hangs off of dwarf2_objfile_data_key. */
175
176 struct dwarf2_per_objfile
177 {
178 struct dwarf2_section_info info;
179 struct dwarf2_section_info abbrev;
180 struct dwarf2_section_info line;
181 struct dwarf2_section_info loc;
182 struct dwarf2_section_info macinfo;
183 struct dwarf2_section_info macro;
184 struct dwarf2_section_info str;
185 struct dwarf2_section_info ranges;
186 struct dwarf2_section_info addr;
187 struct dwarf2_section_info frame;
188 struct dwarf2_section_info eh_frame;
189 struct dwarf2_section_info gdb_index;
190
191 VEC (dwarf2_section_info_def) *types;
192
193 /* Back link. */
194 struct objfile *objfile;
195
196 /* Table of all the compilation units. This is used to locate
197 the target compilation unit of a particular reference. */
198 struct dwarf2_per_cu_data **all_comp_units;
199
200 /* The number of compilation units in ALL_COMP_UNITS. */
201 int n_comp_units;
202
203 /* The number of .debug_types-related CUs. */
204 int n_type_units;
205
206 /* The .debug_types-related CUs (TUs).
207 This is stored in malloc space because we may realloc it. */
208 struct signatured_type **all_type_units;
209
210 /* The number of entries in all_type_unit_groups. */
211 int n_type_unit_groups;
212
213 /* Table of type unit groups.
214 This exists to make it easy to iterate over all CUs and TU groups. */
215 struct type_unit_group **all_type_unit_groups;
216
217 /* Table of struct type_unit_group objects.
218 The hash key is the DW_AT_stmt_list value. */
219 htab_t type_unit_groups;
220
221 /* A table mapping .debug_types signatures to its signatured_type entry.
222 This is NULL if the .debug_types section hasn't been read in yet. */
223 htab_t signatured_types;
224
225 /* Type unit statistics, to see how well the scaling improvements
226 are doing. */
227 struct tu_stats
228 {
229 int nr_uniq_abbrev_tables;
230 int nr_symtabs;
231 int nr_symtab_sharers;
232 int nr_stmt_less_type_units;
233 } tu_stats;
234
235 /* A chain of compilation units that are currently read in, so that
236 they can be freed later. */
237 struct dwarf2_per_cu_data *read_in_chain;
238
239 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
240 This is NULL if the table hasn't been allocated yet. */
241 htab_t dwo_files;
242
243 /* Non-zero if we've check for whether there is a DWP file. */
244 int dwp_checked;
245
246 /* The DWP file if there is one, or NULL. */
247 struct dwp_file *dwp_file;
248
249 /* The shared '.dwz' file, if one exists. This is used when the
250 original data was compressed using 'dwz -m'. */
251 struct dwz_file *dwz_file;
252
253 /* A flag indicating wether this objfile has a section loaded at a
254 VMA of 0. */
255 int has_section_at_zero;
256
257 /* True if we are using the mapped index,
258 or we are faking it for OBJF_READNOW's sake. */
259 unsigned char using_index;
260
261 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
262 struct mapped_index *index_table;
263
264 /* When using index_table, this keeps track of all quick_file_names entries.
265 TUs typically share line table entries with a CU, so we maintain a
266 separate table of all line table entries to support the sharing.
267 Note that while there can be way more TUs than CUs, we've already
268 sorted all the TUs into "type unit groups", grouped by their
269 DW_AT_stmt_list value. Therefore the only sharing done here is with a
270 CU and its associated TU group if there is one. */
271 htab_t quick_file_names_table;
272
273 /* Set during partial symbol reading, to prevent queueing of full
274 symbols. */
275 int reading_partial_symbols;
276
277 /* Table mapping type DIEs to their struct type *.
278 This is NULL if not allocated yet.
279 The mapping is done via (CU/TU + DIE offset) -> type. */
280 htab_t die_type_hash;
281
282 /* The CUs we recently read. */
283 VEC (dwarf2_per_cu_ptr) *just_read_cus;
284 };
285
286 static struct dwarf2_per_objfile *dwarf2_per_objfile;
287
288 /* Default names of the debugging sections. */
289
290 /* Note that if the debugging section has been compressed, it might
291 have a name like .zdebug_info. */
292
293 static const struct dwarf2_debug_sections dwarf2_elf_names =
294 {
295 { ".debug_info", ".zdebug_info" },
296 { ".debug_abbrev", ".zdebug_abbrev" },
297 { ".debug_line", ".zdebug_line" },
298 { ".debug_loc", ".zdebug_loc" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_ranges", ".zdebug_ranges" },
303 { ".debug_types", ".zdebug_types" },
304 { ".debug_addr", ".zdebug_addr" },
305 { ".debug_frame", ".zdebug_frame" },
306 { ".eh_frame", NULL },
307 { ".gdb_index", ".zgdb_index" },
308 23
309 };
310
311 /* List of DWO/DWP sections. */
312
313 static const struct dwop_section_names
314 {
315 struct dwarf2_section_names abbrev_dwo;
316 struct dwarf2_section_names info_dwo;
317 struct dwarf2_section_names line_dwo;
318 struct dwarf2_section_names loc_dwo;
319 struct dwarf2_section_names macinfo_dwo;
320 struct dwarf2_section_names macro_dwo;
321 struct dwarf2_section_names str_dwo;
322 struct dwarf2_section_names str_offsets_dwo;
323 struct dwarf2_section_names types_dwo;
324 struct dwarf2_section_names cu_index;
325 struct dwarf2_section_names tu_index;
326 }
327 dwop_section_names =
328 {
329 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
330 { ".debug_info.dwo", ".zdebug_info.dwo" },
331 { ".debug_line.dwo", ".zdebug_line.dwo" },
332 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
333 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
334 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
335 { ".debug_str.dwo", ".zdebug_str.dwo" },
336 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
337 { ".debug_types.dwo", ".zdebug_types.dwo" },
338 { ".debug_cu_index", ".zdebug_cu_index" },
339 { ".debug_tu_index", ".zdebug_tu_index" },
340 };
341
342 /* local data types */
343
344 /* The data in a compilation unit header, after target2host
345 translation, looks like this. */
346 struct comp_unit_head
347 {
348 unsigned int length;
349 short version;
350 unsigned char addr_size;
351 unsigned char signed_addr_p;
352 sect_offset abbrev_offset;
353
354 /* Size of file offsets; either 4 or 8. */
355 unsigned int offset_size;
356
357 /* Size of the length field; either 4 or 12. */
358 unsigned int initial_length_size;
359
360 /* Offset to the first byte of this compilation unit header in the
361 .debug_info section, for resolving relative reference dies. */
362 sect_offset offset;
363
364 /* Offset to first die in this cu from the start of the cu.
365 This will be the first byte following the compilation unit header. */
366 cu_offset first_die_offset;
367 };
368
369 /* Type used for delaying computation of method physnames.
370 See comments for compute_delayed_physnames. */
371 struct delayed_method_info
372 {
373 /* The type to which the method is attached, i.e., its parent class. */
374 struct type *type;
375
376 /* The index of the method in the type's function fieldlists. */
377 int fnfield_index;
378
379 /* The index of the method in the fieldlist. */
380 int index;
381
382 /* The name of the DIE. */
383 const char *name;
384
385 /* The DIE associated with this method. */
386 struct die_info *die;
387 };
388
389 typedef struct delayed_method_info delayed_method_info;
390 DEF_VEC_O (delayed_method_info);
391
392 /* Internal state when decoding a particular compilation unit. */
393 struct dwarf2_cu
394 {
395 /* The objfile containing this compilation unit. */
396 struct objfile *objfile;
397
398 /* The header of the compilation unit. */
399 struct comp_unit_head header;
400
401 /* Base address of this compilation unit. */
402 CORE_ADDR base_address;
403
404 /* Non-zero if base_address has been set. */
405 int base_known;
406
407 /* The language we are debugging. */
408 enum language language;
409 const struct language_defn *language_defn;
410
411 const char *producer;
412
413 /* The generic symbol table building routines have separate lists for
414 file scope symbols and all all other scopes (local scopes). So
415 we need to select the right one to pass to add_symbol_to_list().
416 We do it by keeping a pointer to the correct list in list_in_scope.
417
418 FIXME: The original dwarf code just treated the file scope as the
419 first local scope, and all other local scopes as nested local
420 scopes, and worked fine. Check to see if we really need to
421 distinguish these in buildsym.c. */
422 struct pending **list_in_scope;
423
424 /* The abbrev table for this CU.
425 Normally this points to the abbrev table in the objfile.
426 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
427 struct abbrev_table *abbrev_table;
428
429 /* Hash table holding all the loaded partial DIEs
430 with partial_die->offset.SECT_OFF as hash. */
431 htab_t partial_dies;
432
433 /* Storage for things with the same lifetime as this read-in compilation
434 unit, including partial DIEs. */
435 struct obstack comp_unit_obstack;
436
437 /* When multiple dwarf2_cu structures are living in memory, this field
438 chains them all together, so that they can be released efficiently.
439 We will probably also want a generation counter so that most-recently-used
440 compilation units are cached... */
441 struct dwarf2_per_cu_data *read_in_chain;
442
443 /* Backlink to our per_cu entry. */
444 struct dwarf2_per_cu_data *per_cu;
445
446 /* How many compilation units ago was this CU last referenced? */
447 int last_used;
448
449 /* A hash table of DIE cu_offset for following references with
450 die_info->offset.sect_off as hash. */
451 htab_t die_hash;
452
453 /* Full DIEs if read in. */
454 struct die_info *dies;
455
456 /* A set of pointers to dwarf2_per_cu_data objects for compilation
457 units referenced by this one. Only set during full symbol processing;
458 partial symbol tables do not have dependencies. */
459 htab_t dependencies;
460
461 /* Header data from the line table, during full symbol processing. */
462 struct line_header *line_header;
463
464 /* A list of methods which need to have physnames computed
465 after all type information has been read. */
466 VEC (delayed_method_info) *method_list;
467
468 /* To be copied to symtab->call_site_htab. */
469 htab_t call_site_htab;
470
471 /* Non-NULL if this CU came from a DWO file.
472 There is an invariant here that is important to remember:
473 Except for attributes copied from the top level DIE in the "main"
474 (or "stub") file in preparation for reading the DWO file
475 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
476 Either there isn't a DWO file (in which case this is NULL and the point
477 is moot), or there is and either we're not going to read it (in which
478 case this is NULL) or there is and we are reading it (in which case this
479 is non-NULL). */
480 struct dwo_unit *dwo_unit;
481
482 /* The DW_AT_addr_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE. */
485 ULONGEST addr_base;
486
487 /* The DW_AT_ranges_base attribute if present, zero otherwise
488 (zero is a valid value though).
489 Note this value comes from the stub CU/TU's DIE.
490 Also note that the value is zero in the non-DWO case so this value can
491 be used without needing to know whether DWO files are in use or not.
492 N.B. This does not apply to DW_AT_ranges appearing in
493 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
494 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
495 DW_AT_ranges_base *would* have to be applied, and we'd have to care
496 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
497 ULONGEST ranges_base;
498
499 /* Mark used when releasing cached dies. */
500 unsigned int mark : 1;
501
502 /* This CU references .debug_loc. See the symtab->locations_valid field.
503 This test is imperfect as there may exist optimized debug code not using
504 any location list and still facing inlining issues if handled as
505 unoptimized code. For a future better test see GCC PR other/32998. */
506 unsigned int has_loclist : 1;
507
508 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
509 if all the producer_is_* fields are valid. This information is cached
510 because profiling CU expansion showed excessive time spent in
511 producer_is_gxx_lt_4_6. */
512 unsigned int checked_producer : 1;
513 unsigned int producer_is_gxx_lt_4_6 : 1;
514 unsigned int producer_is_gcc_lt_4_3 : 1;
515 unsigned int producer_is_icc : 1;
516
517 /* When set, the file that we're processing is known to have
518 debugging info for C++ namespaces. GCC 3.3.x did not produce
519 this information, but later versions do. */
520
521 unsigned int processing_has_namespace_info : 1;
522 };
523
524 /* Persistent data held for a compilation unit, even when not
525 processing it. We put a pointer to this structure in the
526 read_symtab_private field of the psymtab. */
527
528 struct dwarf2_per_cu_data
529 {
530 /* The start offset and length of this compilation unit.
531 NOTE: Unlike comp_unit_head.length, this length includes
532 initial_length_size.
533 If the DIE refers to a DWO file, this is always of the original die,
534 not the DWO file. */
535 sect_offset offset;
536 unsigned int length;
537
538 /* Flag indicating this compilation unit will be read in before
539 any of the current compilation units are processed. */
540 unsigned int queued : 1;
541
542 /* This flag will be set when reading partial DIEs if we need to load
543 absolutely all DIEs for this compilation unit, instead of just the ones
544 we think are interesting. It gets set if we look for a DIE in the
545 hash table and don't find it. */
546 unsigned int load_all_dies : 1;
547
548 /* Non-zero if this CU is from .debug_types.
549 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
550 this is non-zero. */
551 unsigned int is_debug_types : 1;
552
553 /* Non-zero if this CU is from the .dwz file. */
554 unsigned int is_dwz : 1;
555
556 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
557 This flag is only valid if is_debug_types is true.
558 We can't read a CU directly from a DWO file: There are required
559 attributes in the stub. */
560 unsigned int reading_dwo_directly : 1;
561
562 /* Non-zero if the TU has been read.
563 This is used to assist the "Stay in DWO Optimization" for Fission:
564 When reading a DWO, it's faster to read TUs from the DWO instead of
565 fetching them from random other DWOs (due to comdat folding).
566 If the TU has already been read, the optimization is unnecessary
567 (and unwise - we don't want to change where gdb thinks the TU lives
568 "midflight").
569 This flag is only valid if is_debug_types is true. */
570 unsigned int tu_read : 1;
571
572 /* The section this CU/TU lives in.
573 If the DIE refers to a DWO file, this is always the original die,
574 not the DWO file. */
575 struct dwarf2_section_info *section;
576
577 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
578 of the CU cache it gets reset to NULL again. */
579 struct dwarf2_cu *cu;
580
581 /* The corresponding objfile.
582 Normally we can get the objfile from dwarf2_per_objfile.
583 However we can enter this file with just a "per_cu" handle. */
584 struct objfile *objfile;
585
586 /* When using partial symbol tables, the 'psymtab' field is active.
587 Otherwise the 'quick' field is active. */
588 union
589 {
590 /* The partial symbol table associated with this compilation unit,
591 or NULL for unread partial units. */
592 struct partial_symtab *psymtab;
593
594 /* Data needed by the "quick" functions. */
595 struct dwarf2_per_cu_quick_data *quick;
596 } v;
597
598 /* The CUs we import using DW_TAG_imported_unit. This is filled in
599 while reading psymtabs, used to compute the psymtab dependencies,
600 and then cleared. Then it is filled in again while reading full
601 symbols, and only deleted when the objfile is destroyed.
602
603 This is also used to work around a difference between the way gold
604 generates .gdb_index version <=7 and the way gdb does. Arguably this
605 is a gold bug. For symbols coming from TUs, gold records in the index
606 the CU that includes the TU instead of the TU itself. This breaks
607 dw2_lookup_symbol: It assumes that if the index says symbol X lives
608 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
609 will find X. Alas TUs live in their own symtab, so after expanding CU Y
610 we need to look in TU Z to find X. Fortunately, this is akin to
611 DW_TAG_imported_unit, so we just use the same mechanism: For
612 .gdb_index version <=7 this also records the TUs that the CU referred
613 to. Concurrently with this change gdb was modified to emit version 8
614 indices so we only pay a price for gold generated indices.
615 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
616 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
617 };
618
619 /* Entry in the signatured_types hash table. */
620
621 struct signatured_type
622 {
623 /* The "per_cu" object of this type.
624 This struct is used iff per_cu.is_debug_types.
625 N.B.: This is the first member so that it's easy to convert pointers
626 between them. */
627 struct dwarf2_per_cu_data per_cu;
628
629 /* The type's signature. */
630 ULONGEST signature;
631
632 /* Offset in the TU of the type's DIE, as read from the TU header.
633 If this TU is a DWO stub and the definition lives in a DWO file
634 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
635 cu_offset type_offset_in_tu;
636
637 /* Offset in the section of the type's DIE.
638 If the definition lives in a DWO file, this is the offset in the
639 .debug_types.dwo section.
640 The value is zero until the actual value is known.
641 Zero is otherwise not a valid section offset. */
642 sect_offset type_offset_in_section;
643
644 /* Type units are grouped by their DW_AT_stmt_list entry so that they
645 can share them. This points to the containing symtab. */
646 struct type_unit_group *type_unit_group;
647
648 /* The type.
649 The first time we encounter this type we fully read it in and install it
650 in the symbol tables. Subsequent times we only need the type. */
651 struct type *type;
652
653 /* Containing DWO unit.
654 This field is valid iff per_cu.reading_dwo_directly. */
655 struct dwo_unit *dwo_unit;
656 };
657
658 typedef struct signatured_type *sig_type_ptr;
659 DEF_VEC_P (sig_type_ptr);
660
661 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
662 This includes type_unit_group and quick_file_names. */
663
664 struct stmt_list_hash
665 {
666 /* The DWO unit this table is from or NULL if there is none. */
667 struct dwo_unit *dwo_unit;
668
669 /* Offset in .debug_line or .debug_line.dwo. */
670 sect_offset line_offset;
671 };
672
673 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
674 an object of this type. */
675
676 struct type_unit_group
677 {
678 /* dwarf2read.c's main "handle" on a TU symtab.
679 To simplify things we create an artificial CU that "includes" all the
680 type units using this stmt_list so that the rest of the code still has
681 a "per_cu" handle on the symtab.
682 This PER_CU is recognized by having no section. */
683 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
684 struct dwarf2_per_cu_data per_cu;
685
686 /* The TUs that share this DW_AT_stmt_list entry.
687 This is added to while parsing type units to build partial symtabs,
688 and is deleted afterwards and not used again. */
689 VEC (sig_type_ptr) *tus;
690
691 /* The primary symtab.
692 Type units in a group needn't all be defined in the same source file,
693 so we create an essentially anonymous symtab as the primary symtab. */
694 struct symtab *primary_symtab;
695
696 /* The data used to construct the hash key. */
697 struct stmt_list_hash hash;
698
699 /* The number of symtabs from the line header.
700 The value here must match line_header.num_file_names. */
701 unsigned int num_symtabs;
702
703 /* The symbol tables for this TU (obtained from the files listed in
704 DW_AT_stmt_list).
705 WARNING: The order of entries here must match the order of entries
706 in the line header. After the first TU using this type_unit_group, the
707 line header for the subsequent TUs is recreated from this. This is done
708 because we need to use the same symtabs for each TU using the same
709 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
710 there's no guarantee the line header doesn't have duplicate entries. */
711 struct symtab **symtabs;
712 };
713
714 /* These sections are what may appear in a DWO file. */
715
716 struct dwo_sections
717 {
718 struct dwarf2_section_info abbrev;
719 struct dwarf2_section_info line;
720 struct dwarf2_section_info loc;
721 struct dwarf2_section_info macinfo;
722 struct dwarf2_section_info macro;
723 struct dwarf2_section_info str;
724 struct dwarf2_section_info str_offsets;
725 /* In the case of a virtual DWO file, these two are unused. */
726 struct dwarf2_section_info info;
727 VEC (dwarf2_section_info_def) *types;
728 };
729
730 /* CUs/TUs in DWP/DWO files. */
731
732 struct dwo_unit
733 {
734 /* Backlink to the containing struct dwo_file. */
735 struct dwo_file *dwo_file;
736
737 /* The "id" that distinguishes this CU/TU.
738 .debug_info calls this "dwo_id", .debug_types calls this "signature".
739 Since signatures came first, we stick with it for consistency. */
740 ULONGEST signature;
741
742 /* The section this CU/TU lives in, in the DWO file. */
743 struct dwarf2_section_info *section;
744
745 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
746 sect_offset offset;
747 unsigned int length;
748
749 /* For types, offset in the type's DIE of the type defined by this TU. */
750 cu_offset type_offset_in_tu;
751 };
752
753 /* Data for one DWO file.
754
755 This includes virtual DWO files (a virtual DWO file is a DWO file as it
756 appears in a DWP file). DWP files don't really have DWO files per se -
757 comdat folding of types "loses" the DWO file they came from, and from
758 a high level view DWP files appear to contain a mass of random types.
759 However, to maintain consistency with the non-DWP case we pretend DWP
760 files contain virtual DWO files, and we assign each TU with one virtual
761 DWO file (generally based on the line and abbrev section offsets -
762 a heuristic that seems to work in practice). */
763
764 struct dwo_file
765 {
766 /* The DW_AT_GNU_dwo_name attribute.
767 For virtual DWO files the name is constructed from the section offsets
768 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
769 from related CU+TUs. */
770 const char *dwo_name;
771
772 /* The DW_AT_comp_dir attribute. */
773 const char *comp_dir;
774
775 /* The bfd, when the file is open. Otherwise this is NULL.
776 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
777 bfd *dbfd;
778
779 /* Section info for this file. */
780 struct dwo_sections sections;
781
782 /* The CU in the file.
783 We only support one because having more than one requires hacking the
784 dwo_name of each to match, which is highly unlikely to happen.
785 Doing this means all TUs can share comp_dir: We also assume that
786 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
787 struct dwo_unit *cu;
788
789 /* Table of TUs in the file.
790 Each element is a struct dwo_unit. */
791 htab_t tus;
792 };
793
794 /* These sections are what may appear in a DWP file. */
795
796 struct dwp_sections
797 {
798 struct dwarf2_section_info str;
799 struct dwarf2_section_info cu_index;
800 struct dwarf2_section_info tu_index;
801 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
802 by section number. We don't need to record them here. */
803 };
804
805 /* These sections are what may appear in a virtual DWO file. */
806
807 struct virtual_dwo_sections
808 {
809 struct dwarf2_section_info abbrev;
810 struct dwarf2_section_info line;
811 struct dwarf2_section_info loc;
812 struct dwarf2_section_info macinfo;
813 struct dwarf2_section_info macro;
814 struct dwarf2_section_info str_offsets;
815 /* Each DWP hash table entry records one CU or one TU.
816 That is recorded here, and copied to dwo_unit.section. */
817 struct dwarf2_section_info info_or_types;
818 };
819
820 /* Contents of DWP hash tables. */
821
822 struct dwp_hash_table
823 {
824 uint32_t nr_units, nr_slots;
825 const gdb_byte *hash_table, *unit_table, *section_pool;
826 };
827
828 /* Data for one DWP file. */
829
830 struct dwp_file
831 {
832 /* Name of the file. */
833 const char *name;
834
835 /* The bfd. */
836 bfd *dbfd;
837
838 /* Section info for this file. */
839 struct dwp_sections sections;
840
841 /* Table of CUs in the file. */
842 const struct dwp_hash_table *cus;
843
844 /* Table of TUs in the file. */
845 const struct dwp_hash_table *tus;
846
847 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
848 htab_t loaded_cus;
849 htab_t loaded_tus;
850
851 /* Table to map ELF section numbers to their sections. */
852 unsigned int num_sections;
853 asection **elf_sections;
854 };
855
856 /* This represents a '.dwz' file. */
857
858 struct dwz_file
859 {
860 /* A dwz file can only contain a few sections. */
861 struct dwarf2_section_info abbrev;
862 struct dwarf2_section_info info;
863 struct dwarf2_section_info str;
864 struct dwarf2_section_info line;
865 struct dwarf2_section_info macro;
866 struct dwarf2_section_info gdb_index;
867
868 /* The dwz's BFD. */
869 bfd *dwz_bfd;
870 };
871
872 /* Struct used to pass misc. parameters to read_die_and_children, et
873 al. which are used for both .debug_info and .debug_types dies.
874 All parameters here are unchanging for the life of the call. This
875 struct exists to abstract away the constant parameters of die reading. */
876
877 struct die_reader_specs
878 {
879 /* The bfd of die_section. */
880 bfd* abfd;
881
882 /* The CU of the DIE we are parsing. */
883 struct dwarf2_cu *cu;
884
885 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
886 struct dwo_file *dwo_file;
887
888 /* The section the die comes from.
889 This is either .debug_info or .debug_types, or the .dwo variants. */
890 struct dwarf2_section_info *die_section;
891
892 /* die_section->buffer. */
893 const gdb_byte *buffer;
894
895 /* The end of the buffer. */
896 const gdb_byte *buffer_end;
897
898 /* The value of the DW_AT_comp_dir attribute. */
899 const char *comp_dir;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* The line number information for a compilation unit (found in the
910 .debug_line section) begins with a "statement program header",
911 which contains the following information. */
912 struct line_header
913 {
914 unsigned int total_length;
915 unsigned short version;
916 unsigned int header_length;
917 unsigned char minimum_instruction_length;
918 unsigned char maximum_ops_per_instruction;
919 unsigned char default_is_stmt;
920 int line_base;
921 unsigned char line_range;
922 unsigned char opcode_base;
923
924 /* standard_opcode_lengths[i] is the number of operands for the
925 standard opcode whose value is i. This means that
926 standard_opcode_lengths[0] is unused, and the last meaningful
927 element is standard_opcode_lengths[opcode_base - 1]. */
928 unsigned char *standard_opcode_lengths;
929
930 /* The include_directories table. NOTE! These strings are not
931 allocated with xmalloc; instead, they are pointers into
932 debug_line_buffer. If you try to free them, `free' will get
933 indigestion. */
934 unsigned int num_include_dirs, include_dirs_size;
935 const char **include_dirs;
936
937 /* The file_names table. NOTE! These strings are not allocated
938 with xmalloc; instead, they are pointers into debug_line_buffer.
939 Don't try to free them directly. */
940 unsigned int num_file_names, file_names_size;
941 struct file_entry
942 {
943 const char *name;
944 unsigned int dir_index;
945 unsigned int mod_time;
946 unsigned int length;
947 int included_p; /* Non-zero if referenced by the Line Number Program. */
948 struct symtab *symtab; /* The associated symbol table, if any. */
949 } *file_names;
950
951 /* The start and end of the statement program following this
952 header. These point into dwarf2_per_objfile->line_buffer. */
953 const gdb_byte *statement_program_start, *statement_program_end;
954 };
955
956 /* When we construct a partial symbol table entry we only
957 need this much information. */
958 struct partial_die_info
959 {
960 /* Offset of this DIE. */
961 sect_offset offset;
962
963 /* DWARF-2 tag for this DIE. */
964 ENUM_BITFIELD(dwarf_tag) tag : 16;
965
966 /* Assorted flags describing the data found in this DIE. */
967 unsigned int has_children : 1;
968 unsigned int is_external : 1;
969 unsigned int is_declaration : 1;
970 unsigned int has_type : 1;
971 unsigned int has_specification : 1;
972 unsigned int has_pc_info : 1;
973 unsigned int may_be_inlined : 1;
974
975 /* Flag set if the SCOPE field of this structure has been
976 computed. */
977 unsigned int scope_set : 1;
978
979 /* Flag set if the DIE has a byte_size attribute. */
980 unsigned int has_byte_size : 1;
981
982 /* Flag set if any of the DIE's children are template arguments. */
983 unsigned int has_template_arguments : 1;
984
985 /* Flag set if fixup_partial_die has been called on this die. */
986 unsigned int fixup_called : 1;
987
988 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
989 unsigned int is_dwz : 1;
990
991 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
992 unsigned int spec_is_dwz : 1;
993
994 /* The name of this DIE. Normally the value of DW_AT_name, but
995 sometimes a default name for unnamed DIEs. */
996 const char *name;
997
998 /* The linkage name, if present. */
999 const char *linkage_name;
1000
1001 /* The scope to prepend to our children. This is generally
1002 allocated on the comp_unit_obstack, so will disappear
1003 when this compilation unit leaves the cache. */
1004 const char *scope;
1005
1006 /* Some data associated with the partial DIE. The tag determines
1007 which field is live. */
1008 union
1009 {
1010 /* The location description associated with this DIE, if any. */
1011 struct dwarf_block *locdesc;
1012 /* The offset of an import, for DW_TAG_imported_unit. */
1013 sect_offset offset;
1014 } d;
1015
1016 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1017 CORE_ADDR lowpc;
1018 CORE_ADDR highpc;
1019
1020 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1021 DW_AT_sibling, if any. */
1022 /* NOTE: This member isn't strictly necessary, read_partial_die could
1023 return DW_AT_sibling values to its caller load_partial_dies. */
1024 const gdb_byte *sibling;
1025
1026 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1027 DW_AT_specification (or DW_AT_abstract_origin or
1028 DW_AT_extension). */
1029 sect_offset spec_offset;
1030
1031 /* Pointers to this DIE's parent, first child, and next sibling,
1032 if any. */
1033 struct partial_die_info *die_parent, *die_child, *die_sibling;
1034 };
1035
1036 /* This data structure holds the information of an abbrev. */
1037 struct abbrev_info
1038 {
1039 unsigned int number; /* number identifying abbrev */
1040 enum dwarf_tag tag; /* dwarf tag */
1041 unsigned short has_children; /* boolean */
1042 unsigned short num_attrs; /* number of attributes */
1043 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1044 struct abbrev_info *next; /* next in chain */
1045 };
1046
1047 struct attr_abbrev
1048 {
1049 ENUM_BITFIELD(dwarf_attribute) name : 16;
1050 ENUM_BITFIELD(dwarf_form) form : 16;
1051 };
1052
1053 /* Size of abbrev_table.abbrev_hash_table. */
1054 #define ABBREV_HASH_SIZE 121
1055
1056 /* Top level data structure to contain an abbreviation table. */
1057
1058 struct abbrev_table
1059 {
1060 /* Where the abbrev table came from.
1061 This is used as a sanity check when the table is used. */
1062 sect_offset offset;
1063
1064 /* Storage for the abbrev table. */
1065 struct obstack abbrev_obstack;
1066
1067 /* Hash table of abbrevs.
1068 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1069 It could be statically allocated, but the previous code didn't so we
1070 don't either. */
1071 struct abbrev_info **abbrevs;
1072 };
1073
1074 /* Attributes have a name and a value. */
1075 struct attribute
1076 {
1077 ENUM_BITFIELD(dwarf_attribute) name : 16;
1078 ENUM_BITFIELD(dwarf_form) form : 15;
1079
1080 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1081 field should be in u.str (existing only for DW_STRING) but it is kept
1082 here for better struct attribute alignment. */
1083 unsigned int string_is_canonical : 1;
1084
1085 union
1086 {
1087 const char *str;
1088 struct dwarf_block *blk;
1089 ULONGEST unsnd;
1090 LONGEST snd;
1091 CORE_ADDR addr;
1092 ULONGEST signature;
1093 }
1094 u;
1095 };
1096
1097 /* This data structure holds a complete die structure. */
1098 struct die_info
1099 {
1100 /* DWARF-2 tag for this DIE. */
1101 ENUM_BITFIELD(dwarf_tag) tag : 16;
1102
1103 /* Number of attributes */
1104 unsigned char num_attrs;
1105
1106 /* True if we're presently building the full type name for the
1107 type derived from this DIE. */
1108 unsigned char building_fullname : 1;
1109
1110 /* Abbrev number */
1111 unsigned int abbrev;
1112
1113 /* Offset in .debug_info or .debug_types section. */
1114 sect_offset offset;
1115
1116 /* The dies in a compilation unit form an n-ary tree. PARENT
1117 points to this die's parent; CHILD points to the first child of
1118 this node; and all the children of a given node are chained
1119 together via their SIBLING fields. */
1120 struct die_info *child; /* Its first child, if any. */
1121 struct die_info *sibling; /* Its next sibling, if any. */
1122 struct die_info *parent; /* Its parent, if any. */
1123
1124 /* An array of attributes, with NUM_ATTRS elements. There may be
1125 zero, but it's not common and zero-sized arrays are not
1126 sufficiently portable C. */
1127 struct attribute attrs[1];
1128 };
1129
1130 /* Get at parts of an attribute structure. */
1131
1132 #define DW_STRING(attr) ((attr)->u.str)
1133 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1134 #define DW_UNSND(attr) ((attr)->u.unsnd)
1135 #define DW_BLOCK(attr) ((attr)->u.blk)
1136 #define DW_SND(attr) ((attr)->u.snd)
1137 #define DW_ADDR(attr) ((attr)->u.addr)
1138 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1139
1140 /* Blocks are a bunch of untyped bytes. */
1141 struct dwarf_block
1142 {
1143 size_t size;
1144
1145 /* Valid only if SIZE is not zero. */
1146 const gdb_byte *data;
1147 };
1148
1149 #ifndef ATTR_ALLOC_CHUNK
1150 #define ATTR_ALLOC_CHUNK 4
1151 #endif
1152
1153 /* Allocate fields for structs, unions and enums in this size. */
1154 #ifndef DW_FIELD_ALLOC_CHUNK
1155 #define DW_FIELD_ALLOC_CHUNK 4
1156 #endif
1157
1158 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1159 but this would require a corresponding change in unpack_field_as_long
1160 and friends. */
1161 static int bits_per_byte = 8;
1162
1163 /* The routines that read and process dies for a C struct or C++ class
1164 pass lists of data member fields and lists of member function fields
1165 in an instance of a field_info structure, as defined below. */
1166 struct field_info
1167 {
1168 /* List of data member and baseclasses fields. */
1169 struct nextfield
1170 {
1171 struct nextfield *next;
1172 int accessibility;
1173 int virtuality;
1174 struct field field;
1175 }
1176 *fields, *baseclasses;
1177
1178 /* Number of fields (including baseclasses). */
1179 int nfields;
1180
1181 /* Number of baseclasses. */
1182 int nbaseclasses;
1183
1184 /* Set if the accesibility of one of the fields is not public. */
1185 int non_public_fields;
1186
1187 /* Member function fields array, entries are allocated in the order they
1188 are encountered in the object file. */
1189 struct nextfnfield
1190 {
1191 struct nextfnfield *next;
1192 struct fn_field fnfield;
1193 }
1194 *fnfields;
1195
1196 /* Member function fieldlist array, contains name of possibly overloaded
1197 member function, number of overloaded member functions and a pointer
1198 to the head of the member function field chain. */
1199 struct fnfieldlist
1200 {
1201 const char *name;
1202 int length;
1203 struct nextfnfield *head;
1204 }
1205 *fnfieldlists;
1206
1207 /* Number of entries in the fnfieldlists array. */
1208 int nfnfields;
1209
1210 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1211 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1212 struct typedef_field_list
1213 {
1214 struct typedef_field field;
1215 struct typedef_field_list *next;
1216 }
1217 *typedef_field_list;
1218 unsigned typedef_field_list_count;
1219 };
1220
1221 /* One item on the queue of compilation units to read in full symbols
1222 for. */
1223 struct dwarf2_queue_item
1224 {
1225 struct dwarf2_per_cu_data *per_cu;
1226 enum language pretend_language;
1227 struct dwarf2_queue_item *next;
1228 };
1229
1230 /* The current queue. */
1231 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1232
1233 /* Loaded secondary compilation units are kept in memory until they
1234 have not been referenced for the processing of this many
1235 compilation units. Set this to zero to disable caching. Cache
1236 sizes of up to at least twenty will improve startup time for
1237 typical inter-CU-reference binaries, at an obvious memory cost. */
1238 static int dwarf2_max_cache_age = 5;
1239 static void
1240 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1241 struct cmd_list_element *c, const char *value)
1242 {
1243 fprintf_filtered (file, _("The upper bound on the age of cached "
1244 "dwarf2 compilation units is %s.\n"),
1245 value);
1246 }
1247 \f
1248 /* local function prototypes */
1249
1250 static const char *get_section_name (const struct dwarf2_section_info *);
1251
1252 static const char *get_section_file_name (const struct dwarf2_section_info *);
1253
1254 static void dwarf2_locate_sections (bfd *, asection *, void *);
1255
1256 static void dwarf2_find_base_address (struct die_info *die,
1257 struct dwarf2_cu *cu);
1258
1259 static struct partial_symtab *create_partial_symtab
1260 (struct dwarf2_per_cu_data *per_cu, const char *name);
1261
1262 static void dwarf2_build_psymtabs_hard (struct objfile *);
1263
1264 static void scan_partial_symbols (struct partial_die_info *,
1265 CORE_ADDR *, CORE_ADDR *,
1266 int, struct dwarf2_cu *);
1267
1268 static void add_partial_symbol (struct partial_die_info *,
1269 struct dwarf2_cu *);
1270
1271 static void add_partial_namespace (struct partial_die_info *pdi,
1272 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1273 int need_pc, struct dwarf2_cu *cu);
1274
1275 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1276 CORE_ADDR *highpc, int need_pc,
1277 struct dwarf2_cu *cu);
1278
1279 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1280 struct dwarf2_cu *cu);
1281
1282 static void add_partial_subprogram (struct partial_die_info *pdi,
1283 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1284 int need_pc, struct dwarf2_cu *cu);
1285
1286 static void dwarf2_read_symtab (struct partial_symtab *,
1287 struct objfile *);
1288
1289 static void psymtab_to_symtab_1 (struct partial_symtab *);
1290
1291 static struct abbrev_info *abbrev_table_lookup_abbrev
1292 (const struct abbrev_table *, unsigned int);
1293
1294 static struct abbrev_table *abbrev_table_read_table
1295 (struct dwarf2_section_info *, sect_offset);
1296
1297 static void abbrev_table_free (struct abbrev_table *);
1298
1299 static void abbrev_table_free_cleanup (void *);
1300
1301 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1302 struct dwarf2_section_info *);
1303
1304 static void dwarf2_free_abbrev_table (void *);
1305
1306 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1307
1308 static struct partial_die_info *load_partial_dies
1309 (const struct die_reader_specs *, const gdb_byte *, int);
1310
1311 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1312 struct partial_die_info *,
1313 struct abbrev_info *,
1314 unsigned int,
1315 const gdb_byte *);
1316
1317 static struct partial_die_info *find_partial_die (sect_offset, int,
1318 struct dwarf2_cu *);
1319
1320 static void fixup_partial_die (struct partial_die_info *,
1321 struct dwarf2_cu *);
1322
1323 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1324 struct attribute *, struct attr_abbrev *,
1325 const gdb_byte *);
1326
1327 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1328
1329 static int read_1_signed_byte (bfd *, const gdb_byte *);
1330
1331 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1332
1333 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1334
1335 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1336
1337 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1338 unsigned int *);
1339
1340 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1341
1342 static LONGEST read_checked_initial_length_and_offset
1343 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1344 unsigned int *, unsigned int *);
1345
1346 static LONGEST read_offset (bfd *, const gdb_byte *,
1347 const struct comp_unit_head *,
1348 unsigned int *);
1349
1350 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1351
1352 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1353 sect_offset);
1354
1355 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1356
1357 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1358
1359 static const char *read_indirect_string (bfd *, const gdb_byte *,
1360 const struct comp_unit_head *,
1361 unsigned int *);
1362
1363 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1364
1365 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1366
1367 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1368
1369 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1370 const gdb_byte *,
1371 unsigned int *);
1372
1373 static const char *read_str_index (const struct die_reader_specs *reader,
1374 struct dwarf2_cu *cu, ULONGEST str_index);
1375
1376 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1377
1378 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1379 struct dwarf2_cu *);
1380
1381 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1382 unsigned int);
1383
1384 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1385 struct dwarf2_cu *cu);
1386
1387 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1388
1389 static struct die_info *die_specification (struct die_info *die,
1390 struct dwarf2_cu **);
1391
1392 static void free_line_header (struct line_header *lh);
1393
1394 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1395 struct dwarf2_cu *cu);
1396
1397 static void dwarf_decode_lines (struct line_header *, const char *,
1398 struct dwarf2_cu *, struct partial_symtab *,
1399 int);
1400
1401 static void dwarf2_start_subfile (const char *, const char *, const char *);
1402
1403 static void dwarf2_start_symtab (struct dwarf2_cu *,
1404 const char *, const char *, CORE_ADDR);
1405
1406 static struct symbol *new_symbol (struct die_info *, struct type *,
1407 struct dwarf2_cu *);
1408
1409 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1410 struct dwarf2_cu *, struct symbol *);
1411
1412 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1413 struct dwarf2_cu *);
1414
1415 static void dwarf2_const_value_attr (const struct attribute *attr,
1416 struct type *type,
1417 const char *name,
1418 struct obstack *obstack,
1419 struct dwarf2_cu *cu, LONGEST *value,
1420 const gdb_byte **bytes,
1421 struct dwarf2_locexpr_baton **baton);
1422
1423 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1424
1425 static int need_gnat_info (struct dwarf2_cu *);
1426
1427 static struct type *die_descriptive_type (struct die_info *,
1428 struct dwarf2_cu *);
1429
1430 static void set_descriptive_type (struct type *, struct die_info *,
1431 struct dwarf2_cu *);
1432
1433 static struct type *die_containing_type (struct die_info *,
1434 struct dwarf2_cu *);
1435
1436 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1437 struct dwarf2_cu *);
1438
1439 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1440
1441 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1442
1443 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1444
1445 static char *typename_concat (struct obstack *obs, const char *prefix,
1446 const char *suffix, int physname,
1447 struct dwarf2_cu *cu);
1448
1449 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1450
1451 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1452
1453 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1454
1455 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1456
1457 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1458
1459 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1460 struct dwarf2_cu *, struct partial_symtab *);
1461
1462 static int dwarf2_get_pc_bounds (struct die_info *,
1463 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1464 struct partial_symtab *);
1465
1466 static void get_scope_pc_bounds (struct die_info *,
1467 CORE_ADDR *, CORE_ADDR *,
1468 struct dwarf2_cu *);
1469
1470 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1471 CORE_ADDR, struct dwarf2_cu *);
1472
1473 static void dwarf2_add_field (struct field_info *, struct die_info *,
1474 struct dwarf2_cu *);
1475
1476 static void dwarf2_attach_fields_to_type (struct field_info *,
1477 struct type *, struct dwarf2_cu *);
1478
1479 static void dwarf2_add_member_fn (struct field_info *,
1480 struct die_info *, struct type *,
1481 struct dwarf2_cu *);
1482
1483 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1484 struct type *,
1485 struct dwarf2_cu *);
1486
1487 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1488
1489 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1490
1491 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1492
1493 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1494
1495 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1496
1497 static struct type *read_module_type (struct die_info *die,
1498 struct dwarf2_cu *cu);
1499
1500 static const char *namespace_name (struct die_info *die,
1501 int *is_anonymous, struct dwarf2_cu *);
1502
1503 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1504
1505 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1506
1507 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1508 struct dwarf2_cu *);
1509
1510 static struct die_info *read_die_and_siblings_1
1511 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1512 struct die_info *);
1513
1514 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1515 const gdb_byte *info_ptr,
1516 const gdb_byte **new_info_ptr,
1517 struct die_info *parent);
1518
1519 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1520 struct die_info **, const gdb_byte *,
1521 int *, int);
1522
1523 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1524 struct die_info **, const gdb_byte *,
1525 int *);
1526
1527 static void process_die (struct die_info *, struct dwarf2_cu *);
1528
1529 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1530 struct obstack *);
1531
1532 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1533
1534 static const char *dwarf2_full_name (const char *name,
1535 struct die_info *die,
1536 struct dwarf2_cu *cu);
1537
1538 static const char *dwarf2_physname (const char *name, struct die_info *die,
1539 struct dwarf2_cu *cu);
1540
1541 static struct die_info *dwarf2_extension (struct die_info *die,
1542 struct dwarf2_cu **);
1543
1544 static const char *dwarf_tag_name (unsigned int);
1545
1546 static const char *dwarf_attr_name (unsigned int);
1547
1548 static const char *dwarf_form_name (unsigned int);
1549
1550 static char *dwarf_bool_name (unsigned int);
1551
1552 static const char *dwarf_type_encoding_name (unsigned int);
1553
1554 static struct die_info *sibling_die (struct die_info *);
1555
1556 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1557
1558 static void dump_die_for_error (struct die_info *);
1559
1560 static void dump_die_1 (struct ui_file *, int level, int max_level,
1561 struct die_info *);
1562
1563 /*static*/ void dump_die (struct die_info *, int max_level);
1564
1565 static void store_in_ref_table (struct die_info *,
1566 struct dwarf2_cu *);
1567
1568 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1569
1570 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1571
1572 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1573 const struct attribute *,
1574 struct dwarf2_cu **);
1575
1576 static struct die_info *follow_die_ref (struct die_info *,
1577 const struct attribute *,
1578 struct dwarf2_cu **);
1579
1580 static struct die_info *follow_die_sig (struct die_info *,
1581 const struct attribute *,
1582 struct dwarf2_cu **);
1583
1584 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1585 struct dwarf2_cu *);
1586
1587 static struct type *get_DW_AT_signature_type (struct die_info *,
1588 const struct attribute *,
1589 struct dwarf2_cu *);
1590
1591 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1592
1593 static void read_signatured_type (struct signatured_type *);
1594
1595 static struct type_unit_group *get_type_unit_group
1596 (struct dwarf2_cu *, const struct attribute *);
1597
1598 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1599
1600 /* memory allocation interface */
1601
1602 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1603
1604 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1605
1606 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1607 const char *, int);
1608
1609 static int attr_form_is_block (const struct attribute *);
1610
1611 static int attr_form_is_section_offset (const struct attribute *);
1612
1613 static int attr_form_is_constant (const struct attribute *);
1614
1615 static int attr_form_is_ref (const struct attribute *);
1616
1617 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1618 struct dwarf2_loclist_baton *baton,
1619 const struct attribute *attr);
1620
1621 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1622 struct symbol *sym,
1623 struct dwarf2_cu *cu,
1624 int is_block);
1625
1626 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1627 const gdb_byte *info_ptr,
1628 struct abbrev_info *abbrev);
1629
1630 static void free_stack_comp_unit (void *);
1631
1632 static hashval_t partial_die_hash (const void *item);
1633
1634 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1635
1636 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1637 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1638
1639 static void init_one_comp_unit (struct dwarf2_cu *cu,
1640 struct dwarf2_per_cu_data *per_cu);
1641
1642 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1643 struct die_info *comp_unit_die,
1644 enum language pretend_language);
1645
1646 static void free_heap_comp_unit (void *);
1647
1648 static void free_cached_comp_units (void *);
1649
1650 static void age_cached_comp_units (void);
1651
1652 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1653
1654 static struct type *set_die_type (struct die_info *, struct type *,
1655 struct dwarf2_cu *);
1656
1657 static void create_all_comp_units (struct objfile *);
1658
1659 static int create_all_type_units (struct objfile *);
1660
1661 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1662 enum language);
1663
1664 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1665 enum language);
1666
1667 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1668 enum language);
1669
1670 static void dwarf2_add_dependence (struct dwarf2_cu *,
1671 struct dwarf2_per_cu_data *);
1672
1673 static void dwarf2_mark (struct dwarf2_cu *);
1674
1675 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1676
1677 static struct type *get_die_type_at_offset (sect_offset,
1678 struct dwarf2_per_cu_data *);
1679
1680 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1681
1682 static void dwarf2_release_queue (void *dummy);
1683
1684 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1685 enum language pretend_language);
1686
1687 static void process_queue (void);
1688
1689 static void find_file_and_directory (struct die_info *die,
1690 struct dwarf2_cu *cu,
1691 const char **name, const char **comp_dir);
1692
1693 static char *file_full_name (int file, struct line_header *lh,
1694 const char *comp_dir);
1695
1696 static const gdb_byte *read_and_check_comp_unit_head
1697 (struct comp_unit_head *header,
1698 struct dwarf2_section_info *section,
1699 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1700 int is_debug_types_section);
1701
1702 static void init_cutu_and_read_dies
1703 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1704 int use_existing_cu, int keep,
1705 die_reader_func_ftype *die_reader_func, void *data);
1706
1707 static void init_cutu_and_read_dies_simple
1708 (struct dwarf2_per_cu_data *this_cu,
1709 die_reader_func_ftype *die_reader_func, void *data);
1710
1711 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1712
1713 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1714
1715 static struct dwo_unit *lookup_dwo_unit_in_dwp
1716 (struct dwp_file *dwp_file, const char *comp_dir,
1717 ULONGEST signature, int is_debug_types);
1718
1719 static struct dwp_file *get_dwp_file (void);
1720
1721 static struct dwo_unit *lookup_dwo_comp_unit
1722 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1723
1724 static struct dwo_unit *lookup_dwo_type_unit
1725 (struct signatured_type *, const char *, const char *);
1726
1727 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1728
1729 static void free_dwo_file_cleanup (void *);
1730
1731 static void process_cu_includes (void);
1732
1733 static void check_producer (struct dwarf2_cu *cu);
1734 \f
1735 /* Various complaints about symbol reading that don't abort the process. */
1736
1737 static void
1738 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1739 {
1740 complaint (&symfile_complaints,
1741 _("statement list doesn't fit in .debug_line section"));
1742 }
1743
1744 static void
1745 dwarf2_debug_line_missing_file_complaint (void)
1746 {
1747 complaint (&symfile_complaints,
1748 _(".debug_line section has line data without a file"));
1749 }
1750
1751 static void
1752 dwarf2_debug_line_missing_end_sequence_complaint (void)
1753 {
1754 complaint (&symfile_complaints,
1755 _(".debug_line section has line "
1756 "program sequence without an end"));
1757 }
1758
1759 static void
1760 dwarf2_complex_location_expr_complaint (void)
1761 {
1762 complaint (&symfile_complaints, _("location expression too complex"));
1763 }
1764
1765 static void
1766 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1767 int arg3)
1768 {
1769 complaint (&symfile_complaints,
1770 _("const value length mismatch for '%s', got %d, expected %d"),
1771 arg1, arg2, arg3);
1772 }
1773
1774 static void
1775 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1776 {
1777 complaint (&symfile_complaints,
1778 _("debug info runs off end of %s section"
1779 " [in module %s]"),
1780 get_section_name (section),
1781 get_section_file_name (section));
1782 }
1783
1784 static void
1785 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1786 {
1787 complaint (&symfile_complaints,
1788 _("macro debug info contains a "
1789 "malformed macro definition:\n`%s'"),
1790 arg1);
1791 }
1792
1793 static void
1794 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1795 {
1796 complaint (&symfile_complaints,
1797 _("invalid attribute class or form for '%s' in '%s'"),
1798 arg1, arg2);
1799 }
1800 \f
1801 #if WORDS_BIGENDIAN
1802
1803 /* Convert VALUE between big- and little-endian. */
1804 static offset_type
1805 byte_swap (offset_type value)
1806 {
1807 offset_type result;
1808
1809 result = (value & 0xff) << 24;
1810 result |= (value & 0xff00) << 8;
1811 result |= (value & 0xff0000) >> 8;
1812 result |= (value & 0xff000000) >> 24;
1813 return result;
1814 }
1815
1816 #define MAYBE_SWAP(V) byte_swap (V)
1817
1818 #else
1819 #define MAYBE_SWAP(V) (V)
1820 #endif /* WORDS_BIGENDIAN */
1821
1822 /* The suffix for an index file. */
1823 #define INDEX_SUFFIX ".gdb-index"
1824
1825 /* Try to locate the sections we need for DWARF 2 debugging
1826 information and return true if we have enough to do something.
1827 NAMES points to the dwarf2 section names, or is NULL if the standard
1828 ELF names are used. */
1829
1830 int
1831 dwarf2_has_info (struct objfile *objfile,
1832 const struct dwarf2_debug_sections *names)
1833 {
1834 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1835 if (!dwarf2_per_objfile)
1836 {
1837 /* Initialize per-objfile state. */
1838 struct dwarf2_per_objfile *data
1839 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1840
1841 memset (data, 0, sizeof (*data));
1842 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1843 dwarf2_per_objfile = data;
1844
1845 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1846 (void *) names);
1847 dwarf2_per_objfile->objfile = objfile;
1848 }
1849 return (dwarf2_per_objfile->info.asection != NULL
1850 && dwarf2_per_objfile->abbrev.asection != NULL);
1851 }
1852
1853 /* Return the bfd owner of SECTION. */
1854
1855 static struct bfd *
1856 get_section_bfd_owner (const struct dwarf2_section_info *section)
1857 {
1858 return section->asection->owner;
1859 }
1860
1861 /* Return the bfd section of SECTION.
1862 Returns NULL if the section is not present. */
1863
1864 static asection *
1865 get_section_bfd_section (const struct dwarf2_section_info *section)
1866 {
1867 return section->asection;
1868 }
1869
1870 /* Return the name of SECTION. */
1871
1872 static const char *
1873 get_section_name (const struct dwarf2_section_info *section)
1874 {
1875 asection *sectp = get_section_bfd_section (section);
1876
1877 gdb_assert (sectp != NULL);
1878 return bfd_section_name (get_section_bfd_owner (section), sectp);
1879 }
1880
1881 /* Return the name of the file SECTION is in. */
1882
1883 static const char *
1884 get_section_file_name (const struct dwarf2_section_info *section)
1885 {
1886 bfd *abfd = get_section_bfd_owner (section);
1887
1888 return bfd_get_filename (abfd);
1889 }
1890
1891 /* Return the id of SECTION.
1892 Returns 0 if SECTION doesn't exist. */
1893
1894 static int
1895 get_section_id (const struct dwarf2_section_info *section)
1896 {
1897 asection *sectp = get_section_bfd_section (section);
1898
1899 if (sectp == NULL)
1900 return 0;
1901 return sectp->id;
1902 }
1903
1904 /* Return the flags of SECTION.
1905 SECTION must exist. */
1906
1907 static int
1908 get_section_flags (const struct dwarf2_section_info *section)
1909 {
1910 asection *sectp = get_section_bfd_section (section);
1911
1912 gdb_assert (sectp != NULL);
1913 return bfd_get_section_flags (sectp->owner, sectp);
1914 }
1915
1916 /* When loading sections, we look either for uncompressed section or for
1917 compressed section names. */
1918
1919 static int
1920 section_is_p (const char *section_name,
1921 const struct dwarf2_section_names *names)
1922 {
1923 if (names->normal != NULL
1924 && strcmp (section_name, names->normal) == 0)
1925 return 1;
1926 if (names->compressed != NULL
1927 && strcmp (section_name, names->compressed) == 0)
1928 return 1;
1929 return 0;
1930 }
1931
1932 /* This function is mapped across the sections and remembers the
1933 offset and size of each of the debugging sections we are interested
1934 in. */
1935
1936 static void
1937 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1938 {
1939 const struct dwarf2_debug_sections *names;
1940 flagword aflag = bfd_get_section_flags (abfd, sectp);
1941
1942 if (vnames == NULL)
1943 names = &dwarf2_elf_names;
1944 else
1945 names = (const struct dwarf2_debug_sections *) vnames;
1946
1947 if ((aflag & SEC_HAS_CONTENTS) == 0)
1948 {
1949 }
1950 else if (section_is_p (sectp->name, &names->info))
1951 {
1952 dwarf2_per_objfile->info.asection = sectp;
1953 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1954 }
1955 else if (section_is_p (sectp->name, &names->abbrev))
1956 {
1957 dwarf2_per_objfile->abbrev.asection = sectp;
1958 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1959 }
1960 else if (section_is_p (sectp->name, &names->line))
1961 {
1962 dwarf2_per_objfile->line.asection = sectp;
1963 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1964 }
1965 else if (section_is_p (sectp->name, &names->loc))
1966 {
1967 dwarf2_per_objfile->loc.asection = sectp;
1968 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1969 }
1970 else if (section_is_p (sectp->name, &names->macinfo))
1971 {
1972 dwarf2_per_objfile->macinfo.asection = sectp;
1973 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1974 }
1975 else if (section_is_p (sectp->name, &names->macro))
1976 {
1977 dwarf2_per_objfile->macro.asection = sectp;
1978 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1979 }
1980 else if (section_is_p (sectp->name, &names->str))
1981 {
1982 dwarf2_per_objfile->str.asection = sectp;
1983 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1984 }
1985 else if (section_is_p (sectp->name, &names->addr))
1986 {
1987 dwarf2_per_objfile->addr.asection = sectp;
1988 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1989 }
1990 else if (section_is_p (sectp->name, &names->frame))
1991 {
1992 dwarf2_per_objfile->frame.asection = sectp;
1993 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1994 }
1995 else if (section_is_p (sectp->name, &names->eh_frame))
1996 {
1997 dwarf2_per_objfile->eh_frame.asection = sectp;
1998 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1999 }
2000 else if (section_is_p (sectp->name, &names->ranges))
2001 {
2002 dwarf2_per_objfile->ranges.asection = sectp;
2003 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2004 }
2005 else if (section_is_p (sectp->name, &names->types))
2006 {
2007 struct dwarf2_section_info type_section;
2008
2009 memset (&type_section, 0, sizeof (type_section));
2010 type_section.asection = sectp;
2011 type_section.size = bfd_get_section_size (sectp);
2012
2013 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2014 &type_section);
2015 }
2016 else if (section_is_p (sectp->name, &names->gdb_index))
2017 {
2018 dwarf2_per_objfile->gdb_index.asection = sectp;
2019 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2020 }
2021
2022 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2023 && bfd_section_vma (abfd, sectp) == 0)
2024 dwarf2_per_objfile->has_section_at_zero = 1;
2025 }
2026
2027 /* A helper function that decides whether a section is empty,
2028 or not present. */
2029
2030 static int
2031 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2032 {
2033 return section->asection == NULL || section->size == 0;
2034 }
2035
2036 /* Read the contents of the section INFO.
2037 OBJFILE is the main object file, but not necessarily the file where
2038 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2039 of the DWO file.
2040 If the section is compressed, uncompress it before returning. */
2041
2042 static void
2043 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2044 {
2045 asection *sectp;
2046 bfd *abfd;
2047 gdb_byte *buf, *retbuf;
2048
2049 if (info->readin)
2050 return;
2051 info->buffer = NULL;
2052 info->readin = 1;
2053
2054 if (dwarf2_section_empty_p (info))
2055 return;
2056
2057 sectp = get_section_bfd_section (info);
2058
2059 /* If the section has relocations, we must read it ourselves.
2060 Otherwise we attach it to the BFD. */
2061 if ((sectp->flags & SEC_RELOC) == 0)
2062 {
2063 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2064 return;
2065 }
2066
2067 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2068 info->buffer = buf;
2069
2070 /* When debugging .o files, we may need to apply relocations; see
2071 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2072 We never compress sections in .o files, so we only need to
2073 try this when the section is not compressed. */
2074 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2075 if (retbuf != NULL)
2076 {
2077 info->buffer = retbuf;
2078 return;
2079 }
2080
2081 abfd = get_section_bfd_owner (info);
2082 gdb_assert (abfd != NULL);
2083
2084 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2085 || bfd_bread (buf, info->size, abfd) != info->size)
2086 {
2087 error (_("Dwarf Error: Can't read DWARF data"
2088 " in section %s [in module %s]"),
2089 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2090 }
2091 }
2092
2093 /* A helper function that returns the size of a section in a safe way.
2094 If you are positive that the section has been read before using the
2095 size, then it is safe to refer to the dwarf2_section_info object's
2096 "size" field directly. In other cases, you must call this
2097 function, because for compressed sections the size field is not set
2098 correctly until the section has been read. */
2099
2100 static bfd_size_type
2101 dwarf2_section_size (struct objfile *objfile,
2102 struct dwarf2_section_info *info)
2103 {
2104 if (!info->readin)
2105 dwarf2_read_section (objfile, info);
2106 return info->size;
2107 }
2108
2109 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2110 SECTION_NAME. */
2111
2112 void
2113 dwarf2_get_section_info (struct objfile *objfile,
2114 enum dwarf2_section_enum sect,
2115 asection **sectp, const gdb_byte **bufp,
2116 bfd_size_type *sizep)
2117 {
2118 struct dwarf2_per_objfile *data
2119 = objfile_data (objfile, dwarf2_objfile_data_key);
2120 struct dwarf2_section_info *info;
2121
2122 /* We may see an objfile without any DWARF, in which case we just
2123 return nothing. */
2124 if (data == NULL)
2125 {
2126 *sectp = NULL;
2127 *bufp = NULL;
2128 *sizep = 0;
2129 return;
2130 }
2131 switch (sect)
2132 {
2133 case DWARF2_DEBUG_FRAME:
2134 info = &data->frame;
2135 break;
2136 case DWARF2_EH_FRAME:
2137 info = &data->eh_frame;
2138 break;
2139 default:
2140 gdb_assert_not_reached ("unexpected section");
2141 }
2142
2143 dwarf2_read_section (objfile, info);
2144
2145 *sectp = get_section_bfd_section (info);
2146 *bufp = info->buffer;
2147 *sizep = info->size;
2148 }
2149
2150 /* A helper function to find the sections for a .dwz file. */
2151
2152 static void
2153 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2154 {
2155 struct dwz_file *dwz_file = arg;
2156
2157 /* Note that we only support the standard ELF names, because .dwz
2158 is ELF-only (at the time of writing). */
2159 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2160 {
2161 dwz_file->abbrev.asection = sectp;
2162 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2165 {
2166 dwz_file->info.asection = sectp;
2167 dwz_file->info.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2170 {
2171 dwz_file->str.asection = sectp;
2172 dwz_file->str.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2175 {
2176 dwz_file->line.asection = sectp;
2177 dwz_file->line.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2180 {
2181 dwz_file->macro.asection = sectp;
2182 dwz_file->macro.size = bfd_get_section_size (sectp);
2183 }
2184 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2185 {
2186 dwz_file->gdb_index.asection = sectp;
2187 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2188 }
2189 }
2190
2191 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2192 there is no .gnu_debugaltlink section in the file. Error if there
2193 is such a section but the file cannot be found. */
2194
2195 static struct dwz_file *
2196 dwarf2_get_dwz_file (void)
2197 {
2198 bfd *dwz_bfd;
2199 char *data;
2200 struct cleanup *cleanup;
2201 const char *filename;
2202 struct dwz_file *result;
2203 unsigned long buildid;
2204
2205 if (dwarf2_per_objfile->dwz_file != NULL)
2206 return dwarf2_per_objfile->dwz_file;
2207
2208 bfd_set_error (bfd_error_no_error);
2209 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2210 &buildid);
2211 if (data == NULL)
2212 {
2213 if (bfd_get_error () == bfd_error_no_error)
2214 return NULL;
2215 error (_("could not read '.gnu_debugaltlink' section: %s"),
2216 bfd_errmsg (bfd_get_error ()));
2217 }
2218 cleanup = make_cleanup (xfree, data);
2219
2220 filename = (const char *) data;
2221 if (!IS_ABSOLUTE_PATH (filename))
2222 {
2223 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2224 char *rel;
2225
2226 make_cleanup (xfree, abs);
2227 abs = ldirname (abs);
2228 make_cleanup (xfree, abs);
2229
2230 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2231 make_cleanup (xfree, rel);
2232 filename = rel;
2233 }
2234
2235 /* The format is just a NUL-terminated file name, followed by the
2236 build-id. For now, though, we ignore the build-id. */
2237 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2238 if (dwz_bfd == NULL)
2239 error (_("could not read '%s': %s"), filename,
2240 bfd_errmsg (bfd_get_error ()));
2241
2242 if (!bfd_check_format (dwz_bfd, bfd_object))
2243 {
2244 gdb_bfd_unref (dwz_bfd);
2245 error (_("file '%s' was not usable: %s"), filename,
2246 bfd_errmsg (bfd_get_error ()));
2247 }
2248
2249 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2250 struct dwz_file);
2251 result->dwz_bfd = dwz_bfd;
2252
2253 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2254
2255 do_cleanups (cleanup);
2256
2257 dwarf2_per_objfile->dwz_file = result;
2258 return result;
2259 }
2260 \f
2261 /* DWARF quick_symbols_functions support. */
2262
2263 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2264 unique line tables, so we maintain a separate table of all .debug_line
2265 derived entries to support the sharing.
2266 All the quick functions need is the list of file names. We discard the
2267 line_header when we're done and don't need to record it here. */
2268 struct quick_file_names
2269 {
2270 /* The data used to construct the hash key. */
2271 struct stmt_list_hash hash;
2272
2273 /* The number of entries in file_names, real_names. */
2274 unsigned int num_file_names;
2275
2276 /* The file names from the line table, after being run through
2277 file_full_name. */
2278 const char **file_names;
2279
2280 /* The file names from the line table after being run through
2281 gdb_realpath. These are computed lazily. */
2282 const char **real_names;
2283 };
2284
2285 /* When using the index (and thus not using psymtabs), each CU has an
2286 object of this type. This is used to hold information needed by
2287 the various "quick" methods. */
2288 struct dwarf2_per_cu_quick_data
2289 {
2290 /* The file table. This can be NULL if there was no file table
2291 or it's currently not read in.
2292 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2293 struct quick_file_names *file_names;
2294
2295 /* The corresponding symbol table. This is NULL if symbols for this
2296 CU have not yet been read. */
2297 struct symtab *symtab;
2298
2299 /* A temporary mark bit used when iterating over all CUs in
2300 expand_symtabs_matching. */
2301 unsigned int mark : 1;
2302
2303 /* True if we've tried to read the file table and found there isn't one.
2304 There will be no point in trying to read it again next time. */
2305 unsigned int no_file_data : 1;
2306 };
2307
2308 /* Utility hash function for a stmt_list_hash. */
2309
2310 static hashval_t
2311 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2312 {
2313 hashval_t v = 0;
2314
2315 if (stmt_list_hash->dwo_unit != NULL)
2316 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2317 v += stmt_list_hash->line_offset.sect_off;
2318 return v;
2319 }
2320
2321 /* Utility equality function for a stmt_list_hash. */
2322
2323 static int
2324 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2325 const struct stmt_list_hash *rhs)
2326 {
2327 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2328 return 0;
2329 if (lhs->dwo_unit != NULL
2330 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2331 return 0;
2332
2333 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2334 }
2335
2336 /* Hash function for a quick_file_names. */
2337
2338 static hashval_t
2339 hash_file_name_entry (const void *e)
2340 {
2341 const struct quick_file_names *file_data = e;
2342
2343 return hash_stmt_list_entry (&file_data->hash);
2344 }
2345
2346 /* Equality function for a quick_file_names. */
2347
2348 static int
2349 eq_file_name_entry (const void *a, const void *b)
2350 {
2351 const struct quick_file_names *ea = a;
2352 const struct quick_file_names *eb = b;
2353
2354 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2355 }
2356
2357 /* Delete function for a quick_file_names. */
2358
2359 static void
2360 delete_file_name_entry (void *e)
2361 {
2362 struct quick_file_names *file_data = e;
2363 int i;
2364
2365 for (i = 0; i < file_data->num_file_names; ++i)
2366 {
2367 xfree ((void*) file_data->file_names[i]);
2368 if (file_data->real_names)
2369 xfree ((void*) file_data->real_names[i]);
2370 }
2371
2372 /* The space for the struct itself lives on objfile_obstack,
2373 so we don't free it here. */
2374 }
2375
2376 /* Create a quick_file_names hash table. */
2377
2378 static htab_t
2379 create_quick_file_names_table (unsigned int nr_initial_entries)
2380 {
2381 return htab_create_alloc (nr_initial_entries,
2382 hash_file_name_entry, eq_file_name_entry,
2383 delete_file_name_entry, xcalloc, xfree);
2384 }
2385
2386 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2387 have to be created afterwards. You should call age_cached_comp_units after
2388 processing PER_CU->CU. dw2_setup must have been already called. */
2389
2390 static void
2391 load_cu (struct dwarf2_per_cu_data *per_cu)
2392 {
2393 if (per_cu->is_debug_types)
2394 load_full_type_unit (per_cu);
2395 else
2396 load_full_comp_unit (per_cu, language_minimal);
2397
2398 gdb_assert (per_cu->cu != NULL);
2399
2400 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2401 }
2402
2403 /* Read in the symbols for PER_CU. */
2404
2405 static void
2406 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2407 {
2408 struct cleanup *back_to;
2409
2410 /* Skip type_unit_groups, reading the type units they contain
2411 is handled elsewhere. */
2412 if (IS_TYPE_UNIT_GROUP (per_cu))
2413 return;
2414
2415 back_to = make_cleanup (dwarf2_release_queue, NULL);
2416
2417 if (dwarf2_per_objfile->using_index
2418 ? per_cu->v.quick->symtab == NULL
2419 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2420 {
2421 queue_comp_unit (per_cu, language_minimal);
2422 load_cu (per_cu);
2423
2424 /* If we just loaded a CU from a DWO, and we're working with an index
2425 that may badly handle TUs, load all the TUs in that DWO as well.
2426 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2427 if (!per_cu->is_debug_types
2428 && per_cu->cu->dwo_unit != NULL
2429 && dwarf2_per_objfile->index_table != NULL
2430 && dwarf2_per_objfile->index_table->version <= 7
2431 /* DWP files aren't supported yet. */
2432 && get_dwp_file () == NULL)
2433 queue_and_load_all_dwo_tus (per_cu);
2434 }
2435
2436 process_queue ();
2437
2438 /* Age the cache, releasing compilation units that have not
2439 been used recently. */
2440 age_cached_comp_units ();
2441
2442 do_cleanups (back_to);
2443 }
2444
2445 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2446 the objfile from which this CU came. Returns the resulting symbol
2447 table. */
2448
2449 static struct symtab *
2450 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2451 {
2452 gdb_assert (dwarf2_per_objfile->using_index);
2453 if (!per_cu->v.quick->symtab)
2454 {
2455 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2456 increment_reading_symtab ();
2457 dw2_do_instantiate_symtab (per_cu);
2458 process_cu_includes ();
2459 do_cleanups (back_to);
2460 }
2461 return per_cu->v.quick->symtab;
2462 }
2463
2464 /* Return the CU given its index.
2465
2466 This is intended for loops like:
2467
2468 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2469 + dwarf2_per_objfile->n_type_units); ++i)
2470 {
2471 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2472
2473 ...;
2474 }
2475 */
2476
2477 static struct dwarf2_per_cu_data *
2478 dw2_get_cu (int index)
2479 {
2480 if (index >= dwarf2_per_objfile->n_comp_units)
2481 {
2482 index -= dwarf2_per_objfile->n_comp_units;
2483 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2484 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2485 }
2486
2487 return dwarf2_per_objfile->all_comp_units[index];
2488 }
2489
2490 /* Return the primary CU given its index.
2491 The difference between this function and dw2_get_cu is in the handling
2492 of type units (TUs). Here we return the type_unit_group object.
2493
2494 This is intended for loops like:
2495
2496 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2497 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2498 {
2499 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2500
2501 ...;
2502 }
2503 */
2504
2505 static struct dwarf2_per_cu_data *
2506 dw2_get_primary_cu (int index)
2507 {
2508 if (index >= dwarf2_per_objfile->n_comp_units)
2509 {
2510 index -= dwarf2_per_objfile->n_comp_units;
2511 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2512 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2513 }
2514
2515 return dwarf2_per_objfile->all_comp_units[index];
2516 }
2517
2518 /* A helper for create_cus_from_index that handles a given list of
2519 CUs. */
2520
2521 static void
2522 create_cus_from_index_list (struct objfile *objfile,
2523 const gdb_byte *cu_list, offset_type n_elements,
2524 struct dwarf2_section_info *section,
2525 int is_dwz,
2526 int base_offset)
2527 {
2528 offset_type i;
2529
2530 for (i = 0; i < n_elements; i += 2)
2531 {
2532 struct dwarf2_per_cu_data *the_cu;
2533 ULONGEST offset, length;
2534
2535 gdb_static_assert (sizeof (ULONGEST) >= 8);
2536 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2537 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2538 cu_list += 2 * 8;
2539
2540 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2541 struct dwarf2_per_cu_data);
2542 the_cu->offset.sect_off = offset;
2543 the_cu->length = length;
2544 the_cu->objfile = objfile;
2545 the_cu->section = section;
2546 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2547 struct dwarf2_per_cu_quick_data);
2548 the_cu->is_dwz = is_dwz;
2549 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2550 }
2551 }
2552
2553 /* Read the CU list from the mapped index, and use it to create all
2554 the CU objects for this objfile. */
2555
2556 static void
2557 create_cus_from_index (struct objfile *objfile,
2558 const gdb_byte *cu_list, offset_type cu_list_elements,
2559 const gdb_byte *dwz_list, offset_type dwz_elements)
2560 {
2561 struct dwz_file *dwz;
2562
2563 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2564 dwarf2_per_objfile->all_comp_units
2565 = obstack_alloc (&objfile->objfile_obstack,
2566 dwarf2_per_objfile->n_comp_units
2567 * sizeof (struct dwarf2_per_cu_data *));
2568
2569 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2570 &dwarf2_per_objfile->info, 0, 0);
2571
2572 if (dwz_elements == 0)
2573 return;
2574
2575 dwz = dwarf2_get_dwz_file ();
2576 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2577 cu_list_elements / 2);
2578 }
2579
2580 /* Create the signatured type hash table from the index. */
2581
2582 static void
2583 create_signatured_type_table_from_index (struct objfile *objfile,
2584 struct dwarf2_section_info *section,
2585 const gdb_byte *bytes,
2586 offset_type elements)
2587 {
2588 offset_type i;
2589 htab_t sig_types_hash;
2590
2591 dwarf2_per_objfile->n_type_units = elements / 3;
2592 dwarf2_per_objfile->all_type_units
2593 = xmalloc (dwarf2_per_objfile->n_type_units
2594 * sizeof (struct signatured_type *));
2595
2596 sig_types_hash = allocate_signatured_type_table (objfile);
2597
2598 for (i = 0; i < elements; i += 3)
2599 {
2600 struct signatured_type *sig_type;
2601 ULONGEST offset, type_offset_in_tu, signature;
2602 void **slot;
2603
2604 gdb_static_assert (sizeof (ULONGEST) >= 8);
2605 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2606 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2607 BFD_ENDIAN_LITTLE);
2608 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2609 bytes += 3 * 8;
2610
2611 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2612 struct signatured_type);
2613 sig_type->signature = signature;
2614 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2615 sig_type->per_cu.is_debug_types = 1;
2616 sig_type->per_cu.section = section;
2617 sig_type->per_cu.offset.sect_off = offset;
2618 sig_type->per_cu.objfile = objfile;
2619 sig_type->per_cu.v.quick
2620 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2621 struct dwarf2_per_cu_quick_data);
2622
2623 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2624 *slot = sig_type;
2625
2626 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2627 }
2628
2629 dwarf2_per_objfile->signatured_types = sig_types_hash;
2630 }
2631
2632 /* Read the address map data from the mapped index, and use it to
2633 populate the objfile's psymtabs_addrmap. */
2634
2635 static void
2636 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2637 {
2638 const gdb_byte *iter, *end;
2639 struct obstack temp_obstack;
2640 struct addrmap *mutable_map;
2641 struct cleanup *cleanup;
2642 CORE_ADDR baseaddr;
2643
2644 obstack_init (&temp_obstack);
2645 cleanup = make_cleanup_obstack_free (&temp_obstack);
2646 mutable_map = addrmap_create_mutable (&temp_obstack);
2647
2648 iter = index->address_table;
2649 end = iter + index->address_table_size;
2650
2651 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2652
2653 while (iter < end)
2654 {
2655 ULONGEST hi, lo, cu_index;
2656 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2657 iter += 8;
2658 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2659 iter += 8;
2660 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2661 iter += 4;
2662
2663 if (lo > hi)
2664 {
2665 complaint (&symfile_complaints,
2666 _(".gdb_index address table has invalid range (%s - %s)"),
2667 hex_string (lo), hex_string (hi));
2668 continue;
2669 }
2670
2671 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2672 {
2673 complaint (&symfile_complaints,
2674 _(".gdb_index address table has invalid CU number %u"),
2675 (unsigned) cu_index);
2676 continue;
2677 }
2678
2679 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2680 dw2_get_cu (cu_index));
2681 }
2682
2683 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2684 &objfile->objfile_obstack);
2685 do_cleanups (cleanup);
2686 }
2687
2688 /* The hash function for strings in the mapped index. This is the same as
2689 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2690 implementation. This is necessary because the hash function is tied to the
2691 format of the mapped index file. The hash values do not have to match with
2692 SYMBOL_HASH_NEXT.
2693
2694 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2695
2696 static hashval_t
2697 mapped_index_string_hash (int index_version, const void *p)
2698 {
2699 const unsigned char *str = (const unsigned char *) p;
2700 hashval_t r = 0;
2701 unsigned char c;
2702
2703 while ((c = *str++) != 0)
2704 {
2705 if (index_version >= 5)
2706 c = tolower (c);
2707 r = r * 67 + c - 113;
2708 }
2709
2710 return r;
2711 }
2712
2713 /* Find a slot in the mapped index INDEX for the object named NAME.
2714 If NAME is found, set *VEC_OUT to point to the CU vector in the
2715 constant pool and return 1. If NAME cannot be found, return 0. */
2716
2717 static int
2718 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2719 offset_type **vec_out)
2720 {
2721 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2722 offset_type hash;
2723 offset_type slot, step;
2724 int (*cmp) (const char *, const char *);
2725
2726 if (current_language->la_language == language_cplus
2727 || current_language->la_language == language_java
2728 || current_language->la_language == language_fortran)
2729 {
2730 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2731 not contain any. */
2732 const char *paren = strchr (name, '(');
2733
2734 if (paren)
2735 {
2736 char *dup;
2737
2738 dup = xmalloc (paren - name + 1);
2739 memcpy (dup, name, paren - name);
2740 dup[paren - name] = 0;
2741
2742 make_cleanup (xfree, dup);
2743 name = dup;
2744 }
2745 }
2746
2747 /* Index version 4 did not support case insensitive searches. But the
2748 indices for case insensitive languages are built in lowercase, therefore
2749 simulate our NAME being searched is also lowercased. */
2750 hash = mapped_index_string_hash ((index->version == 4
2751 && case_sensitivity == case_sensitive_off
2752 ? 5 : index->version),
2753 name);
2754
2755 slot = hash & (index->symbol_table_slots - 1);
2756 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2757 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2758
2759 for (;;)
2760 {
2761 /* Convert a slot number to an offset into the table. */
2762 offset_type i = 2 * slot;
2763 const char *str;
2764 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2765 {
2766 do_cleanups (back_to);
2767 return 0;
2768 }
2769
2770 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2771 if (!cmp (name, str))
2772 {
2773 *vec_out = (offset_type *) (index->constant_pool
2774 + MAYBE_SWAP (index->symbol_table[i + 1]));
2775 do_cleanups (back_to);
2776 return 1;
2777 }
2778
2779 slot = (slot + step) & (index->symbol_table_slots - 1);
2780 }
2781 }
2782
2783 /* A helper function that reads the .gdb_index from SECTION and fills
2784 in MAP. FILENAME is the name of the file containing the section;
2785 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2786 ok to use deprecated sections.
2787
2788 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2789 out parameters that are filled in with information about the CU and
2790 TU lists in the section.
2791
2792 Returns 1 if all went well, 0 otherwise. */
2793
2794 static int
2795 read_index_from_section (struct objfile *objfile,
2796 const char *filename,
2797 int deprecated_ok,
2798 struct dwarf2_section_info *section,
2799 struct mapped_index *map,
2800 const gdb_byte **cu_list,
2801 offset_type *cu_list_elements,
2802 const gdb_byte **types_list,
2803 offset_type *types_list_elements)
2804 {
2805 const gdb_byte *addr;
2806 offset_type version;
2807 offset_type *metadata;
2808 int i;
2809
2810 if (dwarf2_section_empty_p (section))
2811 return 0;
2812
2813 /* Older elfutils strip versions could keep the section in the main
2814 executable while splitting it for the separate debug info file. */
2815 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2816 return 0;
2817
2818 dwarf2_read_section (objfile, section);
2819
2820 addr = section->buffer;
2821 /* Version check. */
2822 version = MAYBE_SWAP (*(offset_type *) addr);
2823 /* Versions earlier than 3 emitted every copy of a psymbol. This
2824 causes the index to behave very poorly for certain requests. Version 3
2825 contained incomplete addrmap. So, it seems better to just ignore such
2826 indices. */
2827 if (version < 4)
2828 {
2829 static int warning_printed = 0;
2830 if (!warning_printed)
2831 {
2832 warning (_("Skipping obsolete .gdb_index section in %s."),
2833 filename);
2834 warning_printed = 1;
2835 }
2836 return 0;
2837 }
2838 /* Index version 4 uses a different hash function than index version
2839 5 and later.
2840
2841 Versions earlier than 6 did not emit psymbols for inlined
2842 functions. Using these files will cause GDB not to be able to
2843 set breakpoints on inlined functions by name, so we ignore these
2844 indices unless the user has done
2845 "set use-deprecated-index-sections on". */
2846 if (version < 6 && !deprecated_ok)
2847 {
2848 static int warning_printed = 0;
2849 if (!warning_printed)
2850 {
2851 warning (_("\
2852 Skipping deprecated .gdb_index section in %s.\n\
2853 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2854 to use the section anyway."),
2855 filename);
2856 warning_printed = 1;
2857 }
2858 return 0;
2859 }
2860 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2861 of the TU (for symbols coming from TUs). It's just a performance bug, and
2862 we can't distinguish gdb-generated indices from gold-generated ones, so
2863 nothing to do here. */
2864
2865 /* Indexes with higher version than the one supported by GDB may be no
2866 longer backward compatible. */
2867 if (version > 8)
2868 return 0;
2869
2870 map->version = version;
2871 map->total_size = section->size;
2872
2873 metadata = (offset_type *) (addr + sizeof (offset_type));
2874
2875 i = 0;
2876 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2877 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2878 / 8);
2879 ++i;
2880
2881 *types_list = addr + MAYBE_SWAP (metadata[i]);
2882 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2883 - MAYBE_SWAP (metadata[i]))
2884 / 8);
2885 ++i;
2886
2887 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2888 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2889 - MAYBE_SWAP (metadata[i]));
2890 ++i;
2891
2892 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2893 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2894 - MAYBE_SWAP (metadata[i]))
2895 / (2 * sizeof (offset_type)));
2896 ++i;
2897
2898 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2899
2900 return 1;
2901 }
2902
2903
2904 /* Read the index file. If everything went ok, initialize the "quick"
2905 elements of all the CUs and return 1. Otherwise, return 0. */
2906
2907 static int
2908 dwarf2_read_index (struct objfile *objfile)
2909 {
2910 struct mapped_index local_map, *map;
2911 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2912 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2913 struct dwz_file *dwz;
2914
2915 if (!read_index_from_section (objfile, objfile_name (objfile),
2916 use_deprecated_index_sections,
2917 &dwarf2_per_objfile->gdb_index, &local_map,
2918 &cu_list, &cu_list_elements,
2919 &types_list, &types_list_elements))
2920 return 0;
2921
2922 /* Don't use the index if it's empty. */
2923 if (local_map.symbol_table_slots == 0)
2924 return 0;
2925
2926 /* If there is a .dwz file, read it so we can get its CU list as
2927 well. */
2928 dwz = dwarf2_get_dwz_file ();
2929 if (dwz != NULL)
2930 {
2931 struct mapped_index dwz_map;
2932 const gdb_byte *dwz_types_ignore;
2933 offset_type dwz_types_elements_ignore;
2934
2935 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2936 1,
2937 &dwz->gdb_index, &dwz_map,
2938 &dwz_list, &dwz_list_elements,
2939 &dwz_types_ignore,
2940 &dwz_types_elements_ignore))
2941 {
2942 warning (_("could not read '.gdb_index' section from %s; skipping"),
2943 bfd_get_filename (dwz->dwz_bfd));
2944 return 0;
2945 }
2946 }
2947
2948 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2949 dwz_list_elements);
2950
2951 if (types_list_elements)
2952 {
2953 struct dwarf2_section_info *section;
2954
2955 /* We can only handle a single .debug_types when we have an
2956 index. */
2957 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2958 return 0;
2959
2960 section = VEC_index (dwarf2_section_info_def,
2961 dwarf2_per_objfile->types, 0);
2962
2963 create_signatured_type_table_from_index (objfile, section, types_list,
2964 types_list_elements);
2965 }
2966
2967 create_addrmap_from_index (objfile, &local_map);
2968
2969 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2970 *map = local_map;
2971
2972 dwarf2_per_objfile->index_table = map;
2973 dwarf2_per_objfile->using_index = 1;
2974 dwarf2_per_objfile->quick_file_names_table =
2975 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2976
2977 return 1;
2978 }
2979
2980 /* A helper for the "quick" functions which sets the global
2981 dwarf2_per_objfile according to OBJFILE. */
2982
2983 static void
2984 dw2_setup (struct objfile *objfile)
2985 {
2986 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2987 gdb_assert (dwarf2_per_objfile);
2988 }
2989
2990 /* die_reader_func for dw2_get_file_names. */
2991
2992 static void
2993 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2994 const gdb_byte *info_ptr,
2995 struct die_info *comp_unit_die,
2996 int has_children,
2997 void *data)
2998 {
2999 struct dwarf2_cu *cu = reader->cu;
3000 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3001 struct objfile *objfile = dwarf2_per_objfile->objfile;
3002 struct dwarf2_per_cu_data *lh_cu;
3003 struct line_header *lh;
3004 struct attribute *attr;
3005 int i;
3006 const char *name, *comp_dir;
3007 void **slot;
3008 struct quick_file_names *qfn;
3009 unsigned int line_offset;
3010
3011 gdb_assert (! this_cu->is_debug_types);
3012
3013 /* Our callers never want to match partial units -- instead they
3014 will match the enclosing full CU. */
3015 if (comp_unit_die->tag == DW_TAG_partial_unit)
3016 {
3017 this_cu->v.quick->no_file_data = 1;
3018 return;
3019 }
3020
3021 lh_cu = this_cu;
3022 lh = NULL;
3023 slot = NULL;
3024 line_offset = 0;
3025
3026 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3027 if (attr)
3028 {
3029 struct quick_file_names find_entry;
3030
3031 line_offset = DW_UNSND (attr);
3032
3033 /* We may have already read in this line header (TU line header sharing).
3034 If we have we're done. */
3035 find_entry.hash.dwo_unit = cu->dwo_unit;
3036 find_entry.hash.line_offset.sect_off = line_offset;
3037 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3038 &find_entry, INSERT);
3039 if (*slot != NULL)
3040 {
3041 lh_cu->v.quick->file_names = *slot;
3042 return;
3043 }
3044
3045 lh = dwarf_decode_line_header (line_offset, cu);
3046 }
3047 if (lh == NULL)
3048 {
3049 lh_cu->v.quick->no_file_data = 1;
3050 return;
3051 }
3052
3053 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3054 qfn->hash.dwo_unit = cu->dwo_unit;
3055 qfn->hash.line_offset.sect_off = line_offset;
3056 gdb_assert (slot != NULL);
3057 *slot = qfn;
3058
3059 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3060
3061 qfn->num_file_names = lh->num_file_names;
3062 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3063 lh->num_file_names * sizeof (char *));
3064 for (i = 0; i < lh->num_file_names; ++i)
3065 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3066 qfn->real_names = NULL;
3067
3068 free_line_header (lh);
3069
3070 lh_cu->v.quick->file_names = qfn;
3071 }
3072
3073 /* A helper for the "quick" functions which attempts to read the line
3074 table for THIS_CU. */
3075
3076 static struct quick_file_names *
3077 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3078 {
3079 /* This should never be called for TUs. */
3080 gdb_assert (! this_cu->is_debug_types);
3081 /* Nor type unit groups. */
3082 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3083
3084 if (this_cu->v.quick->file_names != NULL)
3085 return this_cu->v.quick->file_names;
3086 /* If we know there is no line data, no point in looking again. */
3087 if (this_cu->v.quick->no_file_data)
3088 return NULL;
3089
3090 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3091
3092 if (this_cu->v.quick->no_file_data)
3093 return NULL;
3094 return this_cu->v.quick->file_names;
3095 }
3096
3097 /* A helper for the "quick" functions which computes and caches the
3098 real path for a given file name from the line table. */
3099
3100 static const char *
3101 dw2_get_real_path (struct objfile *objfile,
3102 struct quick_file_names *qfn, int index)
3103 {
3104 if (qfn->real_names == NULL)
3105 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3106 qfn->num_file_names, sizeof (char *));
3107
3108 if (qfn->real_names[index] == NULL)
3109 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3110
3111 return qfn->real_names[index];
3112 }
3113
3114 static struct symtab *
3115 dw2_find_last_source_symtab (struct objfile *objfile)
3116 {
3117 int index;
3118
3119 dw2_setup (objfile);
3120 index = dwarf2_per_objfile->n_comp_units - 1;
3121 return dw2_instantiate_symtab (dw2_get_cu (index));
3122 }
3123
3124 /* Traversal function for dw2_forget_cached_source_info. */
3125
3126 static int
3127 dw2_free_cached_file_names (void **slot, void *info)
3128 {
3129 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3130
3131 if (file_data->real_names)
3132 {
3133 int i;
3134
3135 for (i = 0; i < file_data->num_file_names; ++i)
3136 {
3137 xfree ((void*) file_data->real_names[i]);
3138 file_data->real_names[i] = NULL;
3139 }
3140 }
3141
3142 return 1;
3143 }
3144
3145 static void
3146 dw2_forget_cached_source_info (struct objfile *objfile)
3147 {
3148 dw2_setup (objfile);
3149
3150 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3151 dw2_free_cached_file_names, NULL);
3152 }
3153
3154 /* Helper function for dw2_map_symtabs_matching_filename that expands
3155 the symtabs and calls the iterator. */
3156
3157 static int
3158 dw2_map_expand_apply (struct objfile *objfile,
3159 struct dwarf2_per_cu_data *per_cu,
3160 const char *name, const char *real_path,
3161 int (*callback) (struct symtab *, void *),
3162 void *data)
3163 {
3164 struct symtab *last_made = objfile->symtabs;
3165
3166 /* Don't visit already-expanded CUs. */
3167 if (per_cu->v.quick->symtab)
3168 return 0;
3169
3170 /* This may expand more than one symtab, and we want to iterate over
3171 all of them. */
3172 dw2_instantiate_symtab (per_cu);
3173
3174 return iterate_over_some_symtabs (name, real_path, callback, data,
3175 objfile->symtabs, last_made);
3176 }
3177
3178 /* Implementation of the map_symtabs_matching_filename method. */
3179
3180 static int
3181 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3182 const char *real_path,
3183 int (*callback) (struct symtab *, void *),
3184 void *data)
3185 {
3186 int i;
3187 const char *name_basename = lbasename (name);
3188
3189 dw2_setup (objfile);
3190
3191 /* The rule is CUs specify all the files, including those used by
3192 any TU, so there's no need to scan TUs here. */
3193
3194 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3195 {
3196 int j;
3197 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3198 struct quick_file_names *file_data;
3199
3200 /* We only need to look at symtabs not already expanded. */
3201 if (per_cu->v.quick->symtab)
3202 continue;
3203
3204 file_data = dw2_get_file_names (per_cu);
3205 if (file_data == NULL)
3206 continue;
3207
3208 for (j = 0; j < file_data->num_file_names; ++j)
3209 {
3210 const char *this_name = file_data->file_names[j];
3211 const char *this_real_name;
3212
3213 if (compare_filenames_for_search (this_name, name))
3214 {
3215 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3216 callback, data))
3217 return 1;
3218 continue;
3219 }
3220
3221 /* Before we invoke realpath, which can get expensive when many
3222 files are involved, do a quick comparison of the basenames. */
3223 if (! basenames_may_differ
3224 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3225 continue;
3226
3227 this_real_name = dw2_get_real_path (objfile, file_data, j);
3228 if (compare_filenames_for_search (this_real_name, name))
3229 {
3230 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3231 callback, data))
3232 return 1;
3233 continue;
3234 }
3235
3236 if (real_path != NULL)
3237 {
3238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3239 gdb_assert (IS_ABSOLUTE_PATH (name));
3240 if (this_real_name != NULL
3241 && FILENAME_CMP (real_path, this_real_name) == 0)
3242 {
3243 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3244 callback, data))
3245 return 1;
3246 continue;
3247 }
3248 }
3249 }
3250 }
3251
3252 return 0;
3253 }
3254
3255 /* Struct used to manage iterating over all CUs looking for a symbol. */
3256
3257 struct dw2_symtab_iterator
3258 {
3259 /* The internalized form of .gdb_index. */
3260 struct mapped_index *index;
3261 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3262 int want_specific_block;
3263 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3264 Unused if !WANT_SPECIFIC_BLOCK. */
3265 int block_index;
3266 /* The kind of symbol we're looking for. */
3267 domain_enum domain;
3268 /* The list of CUs from the index entry of the symbol,
3269 or NULL if not found. */
3270 offset_type *vec;
3271 /* The next element in VEC to look at. */
3272 int next;
3273 /* The number of elements in VEC, or zero if there is no match. */
3274 int length;
3275 };
3276
3277 /* Initialize the index symtab iterator ITER.
3278 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3279 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3280
3281 static void
3282 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3283 struct mapped_index *index,
3284 int want_specific_block,
3285 int block_index,
3286 domain_enum domain,
3287 const char *name)
3288 {
3289 iter->index = index;
3290 iter->want_specific_block = want_specific_block;
3291 iter->block_index = block_index;
3292 iter->domain = domain;
3293 iter->next = 0;
3294
3295 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3296 iter->length = MAYBE_SWAP (*iter->vec);
3297 else
3298 {
3299 iter->vec = NULL;
3300 iter->length = 0;
3301 }
3302 }
3303
3304 /* Return the next matching CU or NULL if there are no more. */
3305
3306 static struct dwarf2_per_cu_data *
3307 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3308 {
3309 for ( ; iter->next < iter->length; ++iter->next)
3310 {
3311 offset_type cu_index_and_attrs =
3312 MAYBE_SWAP (iter->vec[iter->next + 1]);
3313 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3314 struct dwarf2_per_cu_data *per_cu;
3315 int want_static = iter->block_index != GLOBAL_BLOCK;
3316 /* This value is only valid for index versions >= 7. */
3317 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3318 gdb_index_symbol_kind symbol_kind =
3319 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3320 /* Only check the symbol attributes if they're present.
3321 Indices prior to version 7 don't record them,
3322 and indices >= 7 may elide them for certain symbols
3323 (gold does this). */
3324 int attrs_valid =
3325 (iter->index->version >= 7
3326 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3327
3328 /* Don't crash on bad data. */
3329 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3330 + dwarf2_per_objfile->n_type_units))
3331 {
3332 complaint (&symfile_complaints,
3333 _(".gdb_index entry has bad CU index"
3334 " [in module %s]"),
3335 objfile_name (dwarf2_per_objfile->objfile));
3336 continue;
3337 }
3338
3339 per_cu = dw2_get_cu (cu_index);
3340
3341 /* Skip if already read in. */
3342 if (per_cu->v.quick->symtab)
3343 continue;
3344
3345 if (attrs_valid
3346 && iter->want_specific_block
3347 && want_static != is_static)
3348 continue;
3349
3350 /* Only check the symbol's kind if it has one. */
3351 if (attrs_valid)
3352 {
3353 switch (iter->domain)
3354 {
3355 case VAR_DOMAIN:
3356 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3357 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3358 /* Some types are also in VAR_DOMAIN. */
3359 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3360 continue;
3361 break;
3362 case STRUCT_DOMAIN:
3363 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3364 continue;
3365 break;
3366 case LABEL_DOMAIN:
3367 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3368 continue;
3369 break;
3370 default:
3371 break;
3372 }
3373 }
3374
3375 ++iter->next;
3376 return per_cu;
3377 }
3378
3379 return NULL;
3380 }
3381
3382 static struct symtab *
3383 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3384 const char *name, domain_enum domain)
3385 {
3386 struct symtab *stab_best = NULL;
3387 struct mapped_index *index;
3388
3389 dw2_setup (objfile);
3390
3391 index = dwarf2_per_objfile->index_table;
3392
3393 /* index is NULL if OBJF_READNOW. */
3394 if (index)
3395 {
3396 struct dw2_symtab_iterator iter;
3397 struct dwarf2_per_cu_data *per_cu;
3398
3399 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3400
3401 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3402 {
3403 struct symbol *sym = NULL;
3404 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3405
3406 /* Some caution must be observed with overloaded functions
3407 and methods, since the index will not contain any overload
3408 information (but NAME might contain it). */
3409 if (stab->primary)
3410 {
3411 struct blockvector *bv = BLOCKVECTOR (stab);
3412 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3413
3414 sym = lookup_block_symbol (block, name, domain);
3415 }
3416
3417 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3418 {
3419 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3420 return stab;
3421
3422 stab_best = stab;
3423 }
3424
3425 /* Keep looking through other CUs. */
3426 }
3427 }
3428
3429 return stab_best;
3430 }
3431
3432 static void
3433 dw2_print_stats (struct objfile *objfile)
3434 {
3435 int i, total, count;
3436
3437 dw2_setup (objfile);
3438 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3439 count = 0;
3440 for (i = 0; i < total; ++i)
3441 {
3442 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3443
3444 if (!per_cu->v.quick->symtab)
3445 ++count;
3446 }
3447 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3448 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3449 }
3450
3451 /* This dumps minimal information about the index.
3452 It is called via "mt print objfiles".
3453 One use is to verify .gdb_index has been loaded by the
3454 gdb.dwarf2/gdb-index.exp testcase. */
3455
3456 static void
3457 dw2_dump (struct objfile *objfile)
3458 {
3459 dw2_setup (objfile);
3460 gdb_assert (dwarf2_per_objfile->using_index);
3461 printf_filtered (".gdb_index:");
3462 if (dwarf2_per_objfile->index_table != NULL)
3463 {
3464 printf_filtered (" version %d\n",
3465 dwarf2_per_objfile->index_table->version);
3466 }
3467 else
3468 printf_filtered (" faked for \"readnow\"\n");
3469 printf_filtered ("\n");
3470 }
3471
3472 static void
3473 dw2_relocate (struct objfile *objfile,
3474 const struct section_offsets *new_offsets,
3475 const struct section_offsets *delta)
3476 {
3477 /* There's nothing to relocate here. */
3478 }
3479
3480 static void
3481 dw2_expand_symtabs_for_function (struct objfile *objfile,
3482 const char *func_name)
3483 {
3484 struct mapped_index *index;
3485
3486 dw2_setup (objfile);
3487
3488 index = dwarf2_per_objfile->index_table;
3489
3490 /* index is NULL if OBJF_READNOW. */
3491 if (index)
3492 {
3493 struct dw2_symtab_iterator iter;
3494 struct dwarf2_per_cu_data *per_cu;
3495
3496 /* Note: It doesn't matter what we pass for block_index here. */
3497 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3498 func_name);
3499
3500 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3501 dw2_instantiate_symtab (per_cu);
3502 }
3503 }
3504
3505 static void
3506 dw2_expand_all_symtabs (struct objfile *objfile)
3507 {
3508 int i;
3509
3510 dw2_setup (objfile);
3511
3512 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3513 + dwarf2_per_objfile->n_type_units); ++i)
3514 {
3515 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3516
3517 dw2_instantiate_symtab (per_cu);
3518 }
3519 }
3520
3521 static void
3522 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3523 const char *fullname)
3524 {
3525 int i;
3526
3527 dw2_setup (objfile);
3528
3529 /* We don't need to consider type units here.
3530 This is only called for examining code, e.g. expand_line_sal.
3531 There can be an order of magnitude (or more) more type units
3532 than comp units, and we avoid them if we can. */
3533
3534 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3535 {
3536 int j;
3537 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3538 struct quick_file_names *file_data;
3539
3540 /* We only need to look at symtabs not already expanded. */
3541 if (per_cu->v.quick->symtab)
3542 continue;
3543
3544 file_data = dw2_get_file_names (per_cu);
3545 if (file_data == NULL)
3546 continue;
3547
3548 for (j = 0; j < file_data->num_file_names; ++j)
3549 {
3550 const char *this_fullname = file_data->file_names[j];
3551
3552 if (filename_cmp (this_fullname, fullname) == 0)
3553 {
3554 dw2_instantiate_symtab (per_cu);
3555 break;
3556 }
3557 }
3558 }
3559 }
3560
3561 static void
3562 dw2_map_matching_symbols (struct objfile *objfile,
3563 const char * name, domain_enum namespace,
3564 int global,
3565 int (*callback) (struct block *,
3566 struct symbol *, void *),
3567 void *data, symbol_compare_ftype *match,
3568 symbol_compare_ftype *ordered_compare)
3569 {
3570 /* Currently unimplemented; used for Ada. The function can be called if the
3571 current language is Ada for a non-Ada objfile using GNU index. As Ada
3572 does not look for non-Ada symbols this function should just return. */
3573 }
3574
3575 static void
3576 dw2_expand_symtabs_matching
3577 (struct objfile *objfile,
3578 int (*file_matcher) (const char *, void *, int basenames),
3579 int (*name_matcher) (const char *, void *),
3580 enum search_domain kind,
3581 void *data)
3582 {
3583 int i;
3584 offset_type iter;
3585 struct mapped_index *index;
3586
3587 dw2_setup (objfile);
3588
3589 /* index_table is NULL if OBJF_READNOW. */
3590 if (!dwarf2_per_objfile->index_table)
3591 return;
3592 index = dwarf2_per_objfile->index_table;
3593
3594 if (file_matcher != NULL)
3595 {
3596 struct cleanup *cleanup;
3597 htab_t visited_found, visited_not_found;
3598
3599 visited_found = htab_create_alloc (10,
3600 htab_hash_pointer, htab_eq_pointer,
3601 NULL, xcalloc, xfree);
3602 cleanup = make_cleanup_htab_delete (visited_found);
3603 visited_not_found = htab_create_alloc (10,
3604 htab_hash_pointer, htab_eq_pointer,
3605 NULL, xcalloc, xfree);
3606 make_cleanup_htab_delete (visited_not_found);
3607
3608 /* The rule is CUs specify all the files, including those used by
3609 any TU, so there's no need to scan TUs here. */
3610
3611 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3612 {
3613 int j;
3614 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3615 struct quick_file_names *file_data;
3616 void **slot;
3617
3618 per_cu->v.quick->mark = 0;
3619
3620 /* We only need to look at symtabs not already expanded. */
3621 if (per_cu->v.quick->symtab)
3622 continue;
3623
3624 file_data = dw2_get_file_names (per_cu);
3625 if (file_data == NULL)
3626 continue;
3627
3628 if (htab_find (visited_not_found, file_data) != NULL)
3629 continue;
3630 else if (htab_find (visited_found, file_data) != NULL)
3631 {
3632 per_cu->v.quick->mark = 1;
3633 continue;
3634 }
3635
3636 for (j = 0; j < file_data->num_file_names; ++j)
3637 {
3638 const char *this_real_name;
3639
3640 if (file_matcher (file_data->file_names[j], data, 0))
3641 {
3642 per_cu->v.quick->mark = 1;
3643 break;
3644 }
3645
3646 /* Before we invoke realpath, which can get expensive when many
3647 files are involved, do a quick comparison of the basenames. */
3648 if (!basenames_may_differ
3649 && !file_matcher (lbasename (file_data->file_names[j]),
3650 data, 1))
3651 continue;
3652
3653 this_real_name = dw2_get_real_path (objfile, file_data, j);
3654 if (file_matcher (this_real_name, data, 0))
3655 {
3656 per_cu->v.quick->mark = 1;
3657 break;
3658 }
3659 }
3660
3661 slot = htab_find_slot (per_cu->v.quick->mark
3662 ? visited_found
3663 : visited_not_found,
3664 file_data, INSERT);
3665 *slot = file_data;
3666 }
3667
3668 do_cleanups (cleanup);
3669 }
3670
3671 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3672 {
3673 offset_type idx = 2 * iter;
3674 const char *name;
3675 offset_type *vec, vec_len, vec_idx;
3676
3677 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3678 continue;
3679
3680 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3681
3682 if (! (*name_matcher) (name, data))
3683 continue;
3684
3685 /* The name was matched, now expand corresponding CUs that were
3686 marked. */
3687 vec = (offset_type *) (index->constant_pool
3688 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3689 vec_len = MAYBE_SWAP (vec[0]);
3690 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3691 {
3692 struct dwarf2_per_cu_data *per_cu;
3693 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3694 gdb_index_symbol_kind symbol_kind =
3695 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3696 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3697 /* Only check the symbol attributes if they're present.
3698 Indices prior to version 7 don't record them,
3699 and indices >= 7 may elide them for certain symbols
3700 (gold does this). */
3701 int attrs_valid =
3702 (index->version >= 7
3703 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3704
3705 /* Only check the symbol's kind if it has one. */
3706 if (attrs_valid)
3707 {
3708 switch (kind)
3709 {
3710 case VARIABLES_DOMAIN:
3711 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3712 continue;
3713 break;
3714 case FUNCTIONS_DOMAIN:
3715 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3716 continue;
3717 break;
3718 case TYPES_DOMAIN:
3719 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3720 continue;
3721 break;
3722 default:
3723 break;
3724 }
3725 }
3726
3727 /* Don't crash on bad data. */
3728 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3729 + dwarf2_per_objfile->n_type_units))
3730 {
3731 complaint (&symfile_complaints,
3732 _(".gdb_index entry has bad CU index"
3733 " [in module %s]"), objfile_name (objfile));
3734 continue;
3735 }
3736
3737 per_cu = dw2_get_cu (cu_index);
3738 if (file_matcher == NULL || per_cu->v.quick->mark)
3739 dw2_instantiate_symtab (per_cu);
3740 }
3741 }
3742 }
3743
3744 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3745 symtab. */
3746
3747 static struct symtab *
3748 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3749 {
3750 int i;
3751
3752 if (BLOCKVECTOR (symtab) != NULL
3753 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3754 return symtab;
3755
3756 if (symtab->includes == NULL)
3757 return NULL;
3758
3759 for (i = 0; symtab->includes[i]; ++i)
3760 {
3761 struct symtab *s = symtab->includes[i];
3762
3763 s = recursively_find_pc_sect_symtab (s, pc);
3764 if (s != NULL)
3765 return s;
3766 }
3767
3768 return NULL;
3769 }
3770
3771 static struct symtab *
3772 dw2_find_pc_sect_symtab (struct objfile *objfile,
3773 struct minimal_symbol *msymbol,
3774 CORE_ADDR pc,
3775 struct obj_section *section,
3776 int warn_if_readin)
3777 {
3778 struct dwarf2_per_cu_data *data;
3779 struct symtab *result;
3780
3781 dw2_setup (objfile);
3782
3783 if (!objfile->psymtabs_addrmap)
3784 return NULL;
3785
3786 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3787 if (!data)
3788 return NULL;
3789
3790 if (warn_if_readin && data->v.quick->symtab)
3791 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3792 paddress (get_objfile_arch (objfile), pc));
3793
3794 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3795 gdb_assert (result != NULL);
3796 return result;
3797 }
3798
3799 static void
3800 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3801 void *data, int need_fullname)
3802 {
3803 int i;
3804 struct cleanup *cleanup;
3805 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3806 NULL, xcalloc, xfree);
3807
3808 cleanup = make_cleanup_htab_delete (visited);
3809 dw2_setup (objfile);
3810
3811 /* The rule is CUs specify all the files, including those used by
3812 any TU, so there's no need to scan TUs here.
3813 We can ignore file names coming from already-expanded CUs. */
3814
3815 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3816 {
3817 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3818
3819 if (per_cu->v.quick->symtab)
3820 {
3821 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3822 INSERT);
3823
3824 *slot = per_cu->v.quick->file_names;
3825 }
3826 }
3827
3828 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3829 {
3830 int j;
3831 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3832 struct quick_file_names *file_data;
3833 void **slot;
3834
3835 /* We only need to look at symtabs not already expanded. */
3836 if (per_cu->v.quick->symtab)
3837 continue;
3838
3839 file_data = dw2_get_file_names (per_cu);
3840 if (file_data == NULL)
3841 continue;
3842
3843 slot = htab_find_slot (visited, file_data, INSERT);
3844 if (*slot)
3845 {
3846 /* Already visited. */
3847 continue;
3848 }
3849 *slot = file_data;
3850
3851 for (j = 0; j < file_data->num_file_names; ++j)
3852 {
3853 const char *this_real_name;
3854
3855 if (need_fullname)
3856 this_real_name = dw2_get_real_path (objfile, file_data, j);
3857 else
3858 this_real_name = NULL;
3859 (*fun) (file_data->file_names[j], this_real_name, data);
3860 }
3861 }
3862
3863 do_cleanups (cleanup);
3864 }
3865
3866 static int
3867 dw2_has_symbols (struct objfile *objfile)
3868 {
3869 return 1;
3870 }
3871
3872 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3873 {
3874 dw2_has_symbols,
3875 dw2_find_last_source_symtab,
3876 dw2_forget_cached_source_info,
3877 dw2_map_symtabs_matching_filename,
3878 dw2_lookup_symbol,
3879 dw2_print_stats,
3880 dw2_dump,
3881 dw2_relocate,
3882 dw2_expand_symtabs_for_function,
3883 dw2_expand_all_symtabs,
3884 dw2_expand_symtabs_with_fullname,
3885 dw2_map_matching_symbols,
3886 dw2_expand_symtabs_matching,
3887 dw2_find_pc_sect_symtab,
3888 dw2_map_symbol_filenames
3889 };
3890
3891 /* Initialize for reading DWARF for this objfile. Return 0 if this
3892 file will use psymtabs, or 1 if using the GNU index. */
3893
3894 int
3895 dwarf2_initialize_objfile (struct objfile *objfile)
3896 {
3897 /* If we're about to read full symbols, don't bother with the
3898 indices. In this case we also don't care if some other debug
3899 format is making psymtabs, because they are all about to be
3900 expanded anyway. */
3901 if ((objfile->flags & OBJF_READNOW))
3902 {
3903 int i;
3904
3905 dwarf2_per_objfile->using_index = 1;
3906 create_all_comp_units (objfile);
3907 create_all_type_units (objfile);
3908 dwarf2_per_objfile->quick_file_names_table =
3909 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3910
3911 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3912 + dwarf2_per_objfile->n_type_units); ++i)
3913 {
3914 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3915
3916 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3917 struct dwarf2_per_cu_quick_data);
3918 }
3919
3920 /* Return 1 so that gdb sees the "quick" functions. However,
3921 these functions will be no-ops because we will have expanded
3922 all symtabs. */
3923 return 1;
3924 }
3925
3926 if (dwarf2_read_index (objfile))
3927 return 1;
3928
3929 return 0;
3930 }
3931
3932 \f
3933
3934 /* Build a partial symbol table. */
3935
3936 void
3937 dwarf2_build_psymtabs (struct objfile *objfile)
3938 {
3939 volatile struct gdb_exception except;
3940
3941 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3942 {
3943 init_psymbol_list (objfile, 1024);
3944 }
3945
3946 TRY_CATCH (except, RETURN_MASK_ERROR)
3947 {
3948 /* This isn't really ideal: all the data we allocate on the
3949 objfile's obstack is still uselessly kept around. However,
3950 freeing it seems unsafe. */
3951 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3952
3953 dwarf2_build_psymtabs_hard (objfile);
3954 discard_cleanups (cleanups);
3955 }
3956 if (except.reason < 0)
3957 exception_print (gdb_stderr, except);
3958 }
3959
3960 /* Return the total length of the CU described by HEADER. */
3961
3962 static unsigned int
3963 get_cu_length (const struct comp_unit_head *header)
3964 {
3965 return header->initial_length_size + header->length;
3966 }
3967
3968 /* Return TRUE if OFFSET is within CU_HEADER. */
3969
3970 static inline int
3971 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3972 {
3973 sect_offset bottom = { cu_header->offset.sect_off };
3974 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3975
3976 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3977 }
3978
3979 /* Find the base address of the compilation unit for range lists and
3980 location lists. It will normally be specified by DW_AT_low_pc.
3981 In DWARF-3 draft 4, the base address could be overridden by
3982 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3983 compilation units with discontinuous ranges. */
3984
3985 static void
3986 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3987 {
3988 struct attribute *attr;
3989
3990 cu->base_known = 0;
3991 cu->base_address = 0;
3992
3993 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3994 if (attr)
3995 {
3996 cu->base_address = DW_ADDR (attr);
3997 cu->base_known = 1;
3998 }
3999 else
4000 {
4001 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4002 if (attr)
4003 {
4004 cu->base_address = DW_ADDR (attr);
4005 cu->base_known = 1;
4006 }
4007 }
4008 }
4009
4010 /* Read in the comp unit header information from the debug_info at info_ptr.
4011 NOTE: This leaves members offset, first_die_offset to be filled in
4012 by the caller. */
4013
4014 static const gdb_byte *
4015 read_comp_unit_head (struct comp_unit_head *cu_header,
4016 const gdb_byte *info_ptr, bfd *abfd)
4017 {
4018 int signed_addr;
4019 unsigned int bytes_read;
4020
4021 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4022 cu_header->initial_length_size = bytes_read;
4023 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4024 info_ptr += bytes_read;
4025 cu_header->version = read_2_bytes (abfd, info_ptr);
4026 info_ptr += 2;
4027 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4028 &bytes_read);
4029 info_ptr += bytes_read;
4030 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4031 info_ptr += 1;
4032 signed_addr = bfd_get_sign_extend_vma (abfd);
4033 if (signed_addr < 0)
4034 internal_error (__FILE__, __LINE__,
4035 _("read_comp_unit_head: dwarf from non elf file"));
4036 cu_header->signed_addr_p = signed_addr;
4037
4038 return info_ptr;
4039 }
4040
4041 /* Helper function that returns the proper abbrev section for
4042 THIS_CU. */
4043
4044 static struct dwarf2_section_info *
4045 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4046 {
4047 struct dwarf2_section_info *abbrev;
4048
4049 if (this_cu->is_dwz)
4050 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4051 else
4052 abbrev = &dwarf2_per_objfile->abbrev;
4053
4054 return abbrev;
4055 }
4056
4057 /* Subroutine of read_and_check_comp_unit_head and
4058 read_and_check_type_unit_head to simplify them.
4059 Perform various error checking on the header. */
4060
4061 static void
4062 error_check_comp_unit_head (struct comp_unit_head *header,
4063 struct dwarf2_section_info *section,
4064 struct dwarf2_section_info *abbrev_section)
4065 {
4066 bfd *abfd = get_section_bfd_owner (section);
4067 const char *filename = get_section_file_name (section);
4068
4069 if (header->version != 2 && header->version != 3 && header->version != 4)
4070 error (_("Dwarf Error: wrong version in compilation unit header "
4071 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4072 filename);
4073
4074 if (header->abbrev_offset.sect_off
4075 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4076 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4077 "(offset 0x%lx + 6) [in module %s]"),
4078 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4079 filename);
4080
4081 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4082 avoid potential 32-bit overflow. */
4083 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4084 > section->size)
4085 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4086 "(offset 0x%lx + 0) [in module %s]"),
4087 (long) header->length, (long) header->offset.sect_off,
4088 filename);
4089 }
4090
4091 /* Read in a CU/TU header and perform some basic error checking.
4092 The contents of the header are stored in HEADER.
4093 The result is a pointer to the start of the first DIE. */
4094
4095 static const gdb_byte *
4096 read_and_check_comp_unit_head (struct comp_unit_head *header,
4097 struct dwarf2_section_info *section,
4098 struct dwarf2_section_info *abbrev_section,
4099 const gdb_byte *info_ptr,
4100 int is_debug_types_section)
4101 {
4102 const gdb_byte *beg_of_comp_unit = info_ptr;
4103 bfd *abfd = get_section_bfd_owner (section);
4104
4105 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4106
4107 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4108
4109 /* If we're reading a type unit, skip over the signature and
4110 type_offset fields. */
4111 if (is_debug_types_section)
4112 info_ptr += 8 /*signature*/ + header->offset_size;
4113
4114 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4115
4116 error_check_comp_unit_head (header, section, abbrev_section);
4117
4118 return info_ptr;
4119 }
4120
4121 /* Read in the types comp unit header information from .debug_types entry at
4122 types_ptr. The result is a pointer to one past the end of the header. */
4123
4124 static const gdb_byte *
4125 read_and_check_type_unit_head (struct comp_unit_head *header,
4126 struct dwarf2_section_info *section,
4127 struct dwarf2_section_info *abbrev_section,
4128 const gdb_byte *info_ptr,
4129 ULONGEST *signature,
4130 cu_offset *type_offset_in_tu)
4131 {
4132 const gdb_byte *beg_of_comp_unit = info_ptr;
4133 bfd *abfd = get_section_bfd_owner (section);
4134
4135 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4136
4137 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4138
4139 /* If we're reading a type unit, skip over the signature and
4140 type_offset fields. */
4141 if (signature != NULL)
4142 *signature = read_8_bytes (abfd, info_ptr);
4143 info_ptr += 8;
4144 if (type_offset_in_tu != NULL)
4145 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4146 header->offset_size);
4147 info_ptr += header->offset_size;
4148
4149 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4150
4151 error_check_comp_unit_head (header, section, abbrev_section);
4152
4153 return info_ptr;
4154 }
4155
4156 /* Fetch the abbreviation table offset from a comp or type unit header. */
4157
4158 static sect_offset
4159 read_abbrev_offset (struct dwarf2_section_info *section,
4160 sect_offset offset)
4161 {
4162 bfd *abfd = get_section_bfd_owner (section);
4163 const gdb_byte *info_ptr;
4164 unsigned int length, initial_length_size, offset_size;
4165 sect_offset abbrev_offset;
4166
4167 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4168 info_ptr = section->buffer + offset.sect_off;
4169 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4170 offset_size = initial_length_size == 4 ? 4 : 8;
4171 info_ptr += initial_length_size + 2 /*version*/;
4172 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4173 return abbrev_offset;
4174 }
4175
4176 /* Allocate a new partial symtab for file named NAME and mark this new
4177 partial symtab as being an include of PST. */
4178
4179 static void
4180 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4181 struct objfile *objfile)
4182 {
4183 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4184
4185 if (!IS_ABSOLUTE_PATH (subpst->filename))
4186 {
4187 /* It shares objfile->objfile_obstack. */
4188 subpst->dirname = pst->dirname;
4189 }
4190
4191 subpst->section_offsets = pst->section_offsets;
4192 subpst->textlow = 0;
4193 subpst->texthigh = 0;
4194
4195 subpst->dependencies = (struct partial_symtab **)
4196 obstack_alloc (&objfile->objfile_obstack,
4197 sizeof (struct partial_symtab *));
4198 subpst->dependencies[0] = pst;
4199 subpst->number_of_dependencies = 1;
4200
4201 subpst->globals_offset = 0;
4202 subpst->n_global_syms = 0;
4203 subpst->statics_offset = 0;
4204 subpst->n_static_syms = 0;
4205 subpst->symtab = NULL;
4206 subpst->read_symtab = pst->read_symtab;
4207 subpst->readin = 0;
4208
4209 /* No private part is necessary for include psymtabs. This property
4210 can be used to differentiate between such include psymtabs and
4211 the regular ones. */
4212 subpst->read_symtab_private = NULL;
4213 }
4214
4215 /* Read the Line Number Program data and extract the list of files
4216 included by the source file represented by PST. Build an include
4217 partial symtab for each of these included files. */
4218
4219 static void
4220 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4221 struct die_info *die,
4222 struct partial_symtab *pst)
4223 {
4224 struct line_header *lh = NULL;
4225 struct attribute *attr;
4226
4227 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4228 if (attr)
4229 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4230 if (lh == NULL)
4231 return; /* No linetable, so no includes. */
4232
4233 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4234 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4235
4236 free_line_header (lh);
4237 }
4238
4239 static hashval_t
4240 hash_signatured_type (const void *item)
4241 {
4242 const struct signatured_type *sig_type = item;
4243
4244 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4245 return sig_type->signature;
4246 }
4247
4248 static int
4249 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4250 {
4251 const struct signatured_type *lhs = item_lhs;
4252 const struct signatured_type *rhs = item_rhs;
4253
4254 return lhs->signature == rhs->signature;
4255 }
4256
4257 /* Allocate a hash table for signatured types. */
4258
4259 static htab_t
4260 allocate_signatured_type_table (struct objfile *objfile)
4261 {
4262 return htab_create_alloc_ex (41,
4263 hash_signatured_type,
4264 eq_signatured_type,
4265 NULL,
4266 &objfile->objfile_obstack,
4267 hashtab_obstack_allocate,
4268 dummy_obstack_deallocate);
4269 }
4270
4271 /* A helper function to add a signatured type CU to a table. */
4272
4273 static int
4274 add_signatured_type_cu_to_table (void **slot, void *datum)
4275 {
4276 struct signatured_type *sigt = *slot;
4277 struct signatured_type ***datap = datum;
4278
4279 **datap = sigt;
4280 ++*datap;
4281
4282 return 1;
4283 }
4284
4285 /* Create the hash table of all entries in the .debug_types
4286 (or .debug_types.dwo) section(s).
4287 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4288 otherwise it is NULL.
4289
4290 The result is a pointer to the hash table or NULL if there are no types.
4291
4292 Note: This function processes DWO files only, not DWP files. */
4293
4294 static htab_t
4295 create_debug_types_hash_table (struct dwo_file *dwo_file,
4296 VEC (dwarf2_section_info_def) *types)
4297 {
4298 struct objfile *objfile = dwarf2_per_objfile->objfile;
4299 htab_t types_htab = NULL;
4300 int ix;
4301 struct dwarf2_section_info *section;
4302 struct dwarf2_section_info *abbrev_section;
4303
4304 if (VEC_empty (dwarf2_section_info_def, types))
4305 return NULL;
4306
4307 abbrev_section = (dwo_file != NULL
4308 ? &dwo_file->sections.abbrev
4309 : &dwarf2_per_objfile->abbrev);
4310
4311 if (dwarf2_read_debug)
4312 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4313 dwo_file ? ".dwo" : "",
4314 get_section_file_name (abbrev_section));
4315
4316 for (ix = 0;
4317 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4318 ++ix)
4319 {
4320 bfd *abfd;
4321 const gdb_byte *info_ptr, *end_ptr;
4322
4323 dwarf2_read_section (objfile, section);
4324 info_ptr = section->buffer;
4325
4326 if (info_ptr == NULL)
4327 continue;
4328
4329 /* We can't set abfd until now because the section may be empty or
4330 not present, in which case the bfd is unknown. */
4331 abfd = get_section_bfd_owner (section);
4332
4333 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4334 because we don't need to read any dies: the signature is in the
4335 header. */
4336
4337 end_ptr = info_ptr + section->size;
4338 while (info_ptr < end_ptr)
4339 {
4340 sect_offset offset;
4341 cu_offset type_offset_in_tu;
4342 ULONGEST signature;
4343 struct signatured_type *sig_type;
4344 struct dwo_unit *dwo_tu;
4345 void **slot;
4346 const gdb_byte *ptr = info_ptr;
4347 struct comp_unit_head header;
4348 unsigned int length;
4349
4350 offset.sect_off = ptr - section->buffer;
4351
4352 /* We need to read the type's signature in order to build the hash
4353 table, but we don't need anything else just yet. */
4354
4355 ptr = read_and_check_type_unit_head (&header, section,
4356 abbrev_section, ptr,
4357 &signature, &type_offset_in_tu);
4358
4359 length = get_cu_length (&header);
4360
4361 /* Skip dummy type units. */
4362 if (ptr >= info_ptr + length
4363 || peek_abbrev_code (abfd, ptr) == 0)
4364 {
4365 info_ptr += length;
4366 continue;
4367 }
4368
4369 if (types_htab == NULL)
4370 {
4371 if (dwo_file)
4372 types_htab = allocate_dwo_unit_table (objfile);
4373 else
4374 types_htab = allocate_signatured_type_table (objfile);
4375 }
4376
4377 if (dwo_file)
4378 {
4379 sig_type = NULL;
4380 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4381 struct dwo_unit);
4382 dwo_tu->dwo_file = dwo_file;
4383 dwo_tu->signature = signature;
4384 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4385 dwo_tu->section = section;
4386 dwo_tu->offset = offset;
4387 dwo_tu->length = length;
4388 }
4389 else
4390 {
4391 /* N.B.: type_offset is not usable if this type uses a DWO file.
4392 The real type_offset is in the DWO file. */
4393 dwo_tu = NULL;
4394 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4395 struct signatured_type);
4396 sig_type->signature = signature;
4397 sig_type->type_offset_in_tu = type_offset_in_tu;
4398 sig_type->per_cu.objfile = objfile;
4399 sig_type->per_cu.is_debug_types = 1;
4400 sig_type->per_cu.section = section;
4401 sig_type->per_cu.offset = offset;
4402 sig_type->per_cu.length = length;
4403 }
4404
4405 slot = htab_find_slot (types_htab,
4406 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4407 INSERT);
4408 gdb_assert (slot != NULL);
4409 if (*slot != NULL)
4410 {
4411 sect_offset dup_offset;
4412
4413 if (dwo_file)
4414 {
4415 const struct dwo_unit *dup_tu = *slot;
4416
4417 dup_offset = dup_tu->offset;
4418 }
4419 else
4420 {
4421 const struct signatured_type *dup_tu = *slot;
4422
4423 dup_offset = dup_tu->per_cu.offset;
4424 }
4425
4426 complaint (&symfile_complaints,
4427 _("debug type entry at offset 0x%x is duplicate to"
4428 " the entry at offset 0x%x, signature %s"),
4429 offset.sect_off, dup_offset.sect_off,
4430 hex_string (signature));
4431 }
4432 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4433
4434 if (dwarf2_read_debug)
4435 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4436 offset.sect_off,
4437 hex_string (signature));
4438
4439 info_ptr += length;
4440 }
4441 }
4442
4443 return types_htab;
4444 }
4445
4446 /* Create the hash table of all entries in the .debug_types section,
4447 and initialize all_type_units.
4448 The result is zero if there is an error (e.g. missing .debug_types section),
4449 otherwise non-zero. */
4450
4451 static int
4452 create_all_type_units (struct objfile *objfile)
4453 {
4454 htab_t types_htab;
4455 struct signatured_type **iter;
4456
4457 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4458 if (types_htab == NULL)
4459 {
4460 dwarf2_per_objfile->signatured_types = NULL;
4461 return 0;
4462 }
4463
4464 dwarf2_per_objfile->signatured_types = types_htab;
4465
4466 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4467 dwarf2_per_objfile->all_type_units
4468 = xmalloc (dwarf2_per_objfile->n_type_units
4469 * sizeof (struct signatured_type *));
4470 iter = &dwarf2_per_objfile->all_type_units[0];
4471 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4472 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4473 == dwarf2_per_objfile->n_type_units);
4474
4475 return 1;
4476 }
4477
4478 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4479 Fill in SIG_ENTRY with DWO_ENTRY. */
4480
4481 static void
4482 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4483 struct signatured_type *sig_entry,
4484 struct dwo_unit *dwo_entry)
4485 {
4486 /* Make sure we're not clobbering something we don't expect to. */
4487 gdb_assert (! sig_entry->per_cu.queued);
4488 gdb_assert (sig_entry->per_cu.cu == NULL);
4489 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4490 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4491 gdb_assert (sig_entry->signature == dwo_entry->signature);
4492 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4493 gdb_assert (sig_entry->type_unit_group == NULL);
4494 gdb_assert (sig_entry->dwo_unit == NULL);
4495
4496 sig_entry->per_cu.section = dwo_entry->section;
4497 sig_entry->per_cu.offset = dwo_entry->offset;
4498 sig_entry->per_cu.length = dwo_entry->length;
4499 sig_entry->per_cu.reading_dwo_directly = 1;
4500 sig_entry->per_cu.objfile = objfile;
4501 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4502 sig_entry->dwo_unit = dwo_entry;
4503 }
4504
4505 /* Subroutine of lookup_signatured_type.
4506 If we haven't read the TU yet, create the signatured_type data structure
4507 for a TU to be read in directly from a DWO file, bypassing the stub.
4508 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4509 using .gdb_index, then when reading a CU we want to stay in the DWO file
4510 containing that CU. Otherwise we could end up reading several other DWO
4511 files (due to comdat folding) to process the transitive closure of all the
4512 mentioned TUs, and that can be slow. The current DWO file will have every
4513 type signature that it needs.
4514 We only do this for .gdb_index because in the psymtab case we already have
4515 to read all the DWOs to build the type unit groups. */
4516
4517 static struct signatured_type *
4518 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4519 {
4520 struct objfile *objfile = dwarf2_per_objfile->objfile;
4521 struct dwo_file *dwo_file;
4522 struct dwo_unit find_dwo_entry, *dwo_entry;
4523 struct signatured_type find_sig_entry, *sig_entry;
4524
4525 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4526
4527 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4528 dwo_unit of the TU itself. */
4529 dwo_file = cu->dwo_unit->dwo_file;
4530
4531 /* We only ever need to read in one copy of a signatured type.
4532 Just use the global signatured_types array. If this is the first time
4533 we're reading this type, replace the recorded data from .gdb_index with
4534 this TU. */
4535
4536 if (dwarf2_per_objfile->signatured_types == NULL)
4537 return NULL;
4538 find_sig_entry.signature = sig;
4539 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4540 if (sig_entry == NULL)
4541 return NULL;
4542
4543 /* We can get here with the TU already read, *or* in the process of being
4544 read. Don't reassign it if that's the case. Also note that if the TU is
4545 already being read, it may not have come from a DWO, the program may be
4546 a mix of Fission-compiled code and non-Fission-compiled code. */
4547 /* Have we already tried to read this TU? */
4548 if (sig_entry->per_cu.tu_read)
4549 return sig_entry;
4550
4551 /* Ok, this is the first time we're reading this TU. */
4552 if (dwo_file->tus == NULL)
4553 return NULL;
4554 find_dwo_entry.signature = sig;
4555 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4556 if (dwo_entry == NULL)
4557 return NULL;
4558
4559 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4560 sig_entry->per_cu.tu_read = 1;
4561 return sig_entry;
4562 }
4563
4564 /* Subroutine of lookup_dwp_signatured_type.
4565 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4566
4567 static struct signatured_type *
4568 add_type_unit (ULONGEST sig)
4569 {
4570 struct objfile *objfile = dwarf2_per_objfile->objfile;
4571 int n_type_units = dwarf2_per_objfile->n_type_units;
4572 struct signatured_type *sig_type;
4573 void **slot;
4574
4575 ++n_type_units;
4576 dwarf2_per_objfile->all_type_units =
4577 xrealloc (dwarf2_per_objfile->all_type_units,
4578 n_type_units * sizeof (struct signatured_type *));
4579 dwarf2_per_objfile->n_type_units = n_type_units;
4580 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4581 struct signatured_type);
4582 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4583 sig_type->signature = sig;
4584 sig_type->per_cu.is_debug_types = 1;
4585 sig_type->per_cu.v.quick =
4586 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4587 struct dwarf2_per_cu_quick_data);
4588 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4589 sig_type, INSERT);
4590 gdb_assert (*slot == NULL);
4591 *slot = sig_type;
4592 /* The rest of sig_type must be filled in by the caller. */
4593 return sig_type;
4594 }
4595
4596 /* Subroutine of lookup_signatured_type.
4597 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4598 then try the DWP file.
4599 Normally this "can't happen", but if there's a bug in signature
4600 generation and/or the DWP file is built incorrectly, it can happen.
4601 Using the type directly from the DWP file means we don't have the stub
4602 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4603 not critical. [Eventually the stub may go away for type units anyway.] */
4604
4605 static struct signatured_type *
4606 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4607 {
4608 struct objfile *objfile = dwarf2_per_objfile->objfile;
4609 struct dwp_file *dwp_file = get_dwp_file ();
4610 struct dwo_unit *dwo_entry;
4611 struct signatured_type find_sig_entry, *sig_entry;
4612
4613 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4614 gdb_assert (dwp_file != NULL);
4615
4616 if (dwarf2_per_objfile->signatured_types != NULL)
4617 {
4618 find_sig_entry.signature = sig;
4619 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4620 &find_sig_entry);
4621 if (sig_entry != NULL)
4622 return sig_entry;
4623 }
4624
4625 /* This is the "shouldn't happen" case.
4626 Try the DWP file and hope for the best. */
4627 if (dwp_file->tus == NULL)
4628 return NULL;
4629 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4630 sig, 1 /* is_debug_types */);
4631 if (dwo_entry == NULL)
4632 return NULL;
4633
4634 sig_entry = add_type_unit (sig);
4635 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4636
4637 /* The caller will signal a complaint if we return NULL.
4638 Here we don't return NULL but we still want to complain. */
4639 complaint (&symfile_complaints,
4640 _("Bad type signature %s referenced by %s at 0x%x,"
4641 " coping by using copy in DWP [in module %s]"),
4642 hex_string (sig),
4643 cu->per_cu->is_debug_types ? "TU" : "CU",
4644 cu->per_cu->offset.sect_off,
4645 objfile_name (objfile));
4646
4647 return sig_entry;
4648 }
4649
4650 /* Lookup a signature based type for DW_FORM_ref_sig8.
4651 Returns NULL if signature SIG is not present in the table.
4652 It is up to the caller to complain about this. */
4653
4654 static struct signatured_type *
4655 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4656 {
4657 if (cu->dwo_unit
4658 && dwarf2_per_objfile->using_index)
4659 {
4660 /* We're in a DWO/DWP file, and we're using .gdb_index.
4661 These cases require special processing. */
4662 if (get_dwp_file () == NULL)
4663 return lookup_dwo_signatured_type (cu, sig);
4664 else
4665 return lookup_dwp_signatured_type (cu, sig);
4666 }
4667 else
4668 {
4669 struct signatured_type find_entry, *entry;
4670
4671 if (dwarf2_per_objfile->signatured_types == NULL)
4672 return NULL;
4673 find_entry.signature = sig;
4674 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4675 return entry;
4676 }
4677 }
4678 \f
4679 /* Low level DIE reading support. */
4680
4681 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4682
4683 static void
4684 init_cu_die_reader (struct die_reader_specs *reader,
4685 struct dwarf2_cu *cu,
4686 struct dwarf2_section_info *section,
4687 struct dwo_file *dwo_file)
4688 {
4689 gdb_assert (section->readin && section->buffer != NULL);
4690 reader->abfd = get_section_bfd_owner (section);
4691 reader->cu = cu;
4692 reader->dwo_file = dwo_file;
4693 reader->die_section = section;
4694 reader->buffer = section->buffer;
4695 reader->buffer_end = section->buffer + section->size;
4696 reader->comp_dir = NULL;
4697 }
4698
4699 /* Subroutine of init_cutu_and_read_dies to simplify it.
4700 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4701 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4702 already.
4703
4704 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4705 from it to the DIE in the DWO. If NULL we are skipping the stub.
4706 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4707 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4708 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4709 COMP_DIR must be non-NULL.
4710 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4711 are filled in with the info of the DIE from the DWO file.
4712 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4713 provided an abbrev table to use.
4714 The result is non-zero if a valid (non-dummy) DIE was found. */
4715
4716 static int
4717 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4718 struct dwo_unit *dwo_unit,
4719 int abbrev_table_provided,
4720 struct die_info *stub_comp_unit_die,
4721 const char *stub_comp_dir,
4722 struct die_reader_specs *result_reader,
4723 const gdb_byte **result_info_ptr,
4724 struct die_info **result_comp_unit_die,
4725 int *result_has_children)
4726 {
4727 struct objfile *objfile = dwarf2_per_objfile->objfile;
4728 struct dwarf2_cu *cu = this_cu->cu;
4729 struct dwarf2_section_info *section;
4730 bfd *abfd;
4731 const gdb_byte *begin_info_ptr, *info_ptr;
4732 const char *comp_dir_string;
4733 ULONGEST signature; /* Or dwo_id. */
4734 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4735 int i,num_extra_attrs;
4736 struct dwarf2_section_info *dwo_abbrev_section;
4737 struct attribute *attr;
4738 struct attribute comp_dir_attr;
4739 struct die_info *comp_unit_die;
4740
4741 /* Both can't be provided. */
4742 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4743
4744 /* These attributes aren't processed until later:
4745 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4746 However, the attribute is found in the stub which we won't have later.
4747 In order to not impose this complication on the rest of the code,
4748 we read them here and copy them to the DWO CU/TU die. */
4749
4750 stmt_list = NULL;
4751 low_pc = NULL;
4752 high_pc = NULL;
4753 ranges = NULL;
4754 comp_dir = NULL;
4755
4756 if (stub_comp_unit_die != NULL)
4757 {
4758 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4759 DWO file. */
4760 if (! this_cu->is_debug_types)
4761 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4762 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4763 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4764 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4765 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4766
4767 /* There should be a DW_AT_addr_base attribute here (if needed).
4768 We need the value before we can process DW_FORM_GNU_addr_index. */
4769 cu->addr_base = 0;
4770 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4771 if (attr)
4772 cu->addr_base = DW_UNSND (attr);
4773
4774 /* There should be a DW_AT_ranges_base attribute here (if needed).
4775 We need the value before we can process DW_AT_ranges. */
4776 cu->ranges_base = 0;
4777 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4778 if (attr)
4779 cu->ranges_base = DW_UNSND (attr);
4780 }
4781 else if (stub_comp_dir != NULL)
4782 {
4783 /* Reconstruct the comp_dir attribute to simplify the code below. */
4784 comp_dir = (struct attribute *)
4785 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4786 comp_dir->name = DW_AT_comp_dir;
4787 comp_dir->form = DW_FORM_string;
4788 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4789 DW_STRING (comp_dir) = stub_comp_dir;
4790 }
4791
4792 /* Set up for reading the DWO CU/TU. */
4793 cu->dwo_unit = dwo_unit;
4794 section = dwo_unit->section;
4795 dwarf2_read_section (objfile, section);
4796 abfd = get_section_bfd_owner (section);
4797 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4798 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4799 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4800
4801 if (this_cu->is_debug_types)
4802 {
4803 ULONGEST header_signature;
4804 cu_offset type_offset_in_tu;
4805 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4806
4807 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4808 dwo_abbrev_section,
4809 info_ptr,
4810 &header_signature,
4811 &type_offset_in_tu);
4812 /* This is not an assert because it can be caused by bad debug info. */
4813 if (sig_type->signature != header_signature)
4814 {
4815 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4816 " TU at offset 0x%x [in module %s]"),
4817 hex_string (sig_type->signature),
4818 hex_string (header_signature),
4819 dwo_unit->offset.sect_off,
4820 bfd_get_filename (abfd));
4821 }
4822 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4823 /* For DWOs coming from DWP files, we don't know the CU length
4824 nor the type's offset in the TU until now. */
4825 dwo_unit->length = get_cu_length (&cu->header);
4826 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4827
4828 /* Establish the type offset that can be used to lookup the type.
4829 For DWO files, we don't know it until now. */
4830 sig_type->type_offset_in_section.sect_off =
4831 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4832 }
4833 else
4834 {
4835 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4836 dwo_abbrev_section,
4837 info_ptr, 0);
4838 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4839 /* For DWOs coming from DWP files, we don't know the CU length
4840 until now. */
4841 dwo_unit->length = get_cu_length (&cu->header);
4842 }
4843
4844 /* Replace the CU's original abbrev table with the DWO's.
4845 Reminder: We can't read the abbrev table until we've read the header. */
4846 if (abbrev_table_provided)
4847 {
4848 /* Don't free the provided abbrev table, the caller of
4849 init_cutu_and_read_dies owns it. */
4850 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4851 /* Ensure the DWO abbrev table gets freed. */
4852 make_cleanup (dwarf2_free_abbrev_table, cu);
4853 }
4854 else
4855 {
4856 dwarf2_free_abbrev_table (cu);
4857 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4858 /* Leave any existing abbrev table cleanup as is. */
4859 }
4860
4861 /* Read in the die, but leave space to copy over the attributes
4862 from the stub. This has the benefit of simplifying the rest of
4863 the code - all the work to maintain the illusion of a single
4864 DW_TAG_{compile,type}_unit DIE is done here. */
4865 num_extra_attrs = ((stmt_list != NULL)
4866 + (low_pc != NULL)
4867 + (high_pc != NULL)
4868 + (ranges != NULL)
4869 + (comp_dir != NULL));
4870 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4871 result_has_children, num_extra_attrs);
4872
4873 /* Copy over the attributes from the stub to the DIE we just read in. */
4874 comp_unit_die = *result_comp_unit_die;
4875 i = comp_unit_die->num_attrs;
4876 if (stmt_list != NULL)
4877 comp_unit_die->attrs[i++] = *stmt_list;
4878 if (low_pc != NULL)
4879 comp_unit_die->attrs[i++] = *low_pc;
4880 if (high_pc != NULL)
4881 comp_unit_die->attrs[i++] = *high_pc;
4882 if (ranges != NULL)
4883 comp_unit_die->attrs[i++] = *ranges;
4884 if (comp_dir != NULL)
4885 comp_unit_die->attrs[i++] = *comp_dir;
4886 comp_unit_die->num_attrs += num_extra_attrs;
4887
4888 if (dwarf2_die_debug)
4889 {
4890 fprintf_unfiltered (gdb_stdlog,
4891 "Read die from %s@0x%x of %s:\n",
4892 get_section_name (section),
4893 (unsigned) (begin_info_ptr - section->buffer),
4894 bfd_get_filename (abfd));
4895 dump_die (comp_unit_die, dwarf2_die_debug);
4896 }
4897
4898 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4899 TUs by skipping the stub and going directly to the entry in the DWO file.
4900 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4901 to get it via circuitous means. Blech. */
4902 if (comp_dir != NULL)
4903 result_reader->comp_dir = DW_STRING (comp_dir);
4904
4905 /* Skip dummy compilation units. */
4906 if (info_ptr >= begin_info_ptr + dwo_unit->length
4907 || peek_abbrev_code (abfd, info_ptr) == 0)
4908 return 0;
4909
4910 *result_info_ptr = info_ptr;
4911 return 1;
4912 }
4913
4914 /* Subroutine of init_cutu_and_read_dies to simplify it.
4915 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4916 Returns NULL if the specified DWO unit cannot be found. */
4917
4918 static struct dwo_unit *
4919 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4920 struct die_info *comp_unit_die)
4921 {
4922 struct dwarf2_cu *cu = this_cu->cu;
4923 struct attribute *attr;
4924 ULONGEST signature;
4925 struct dwo_unit *dwo_unit;
4926 const char *comp_dir, *dwo_name;
4927
4928 gdb_assert (cu != NULL);
4929
4930 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4931 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4932 gdb_assert (attr != NULL);
4933 dwo_name = DW_STRING (attr);
4934 comp_dir = NULL;
4935 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4936 if (attr)
4937 comp_dir = DW_STRING (attr);
4938
4939 if (this_cu->is_debug_types)
4940 {
4941 struct signatured_type *sig_type;
4942
4943 /* Since this_cu is the first member of struct signatured_type,
4944 we can go from a pointer to one to a pointer to the other. */
4945 sig_type = (struct signatured_type *) this_cu;
4946 signature = sig_type->signature;
4947 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4948 }
4949 else
4950 {
4951 struct attribute *attr;
4952
4953 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4954 if (! attr)
4955 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4956 " [in module %s]"),
4957 dwo_name, objfile_name (this_cu->objfile));
4958 signature = DW_UNSND (attr);
4959 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4960 signature);
4961 }
4962
4963 return dwo_unit;
4964 }
4965
4966 /* Subroutine of init_cutu_and_read_dies to simplify it.
4967 Read a TU directly from a DWO file, bypassing the stub. */
4968
4969 static void
4970 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4971 die_reader_func_ftype *die_reader_func,
4972 void *data)
4973 {
4974 struct dwarf2_cu *cu;
4975 struct signatured_type *sig_type;
4976 struct cleanup *cleanups, *free_cu_cleanup;
4977 struct die_reader_specs reader;
4978 const gdb_byte *info_ptr;
4979 struct die_info *comp_unit_die;
4980 int has_children;
4981
4982 /* Verify we can do the following downcast, and that we have the
4983 data we need. */
4984 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4985 sig_type = (struct signatured_type *) this_cu;
4986 gdb_assert (sig_type->dwo_unit != NULL);
4987
4988 cleanups = make_cleanup (null_cleanup, NULL);
4989
4990 gdb_assert (this_cu->cu == NULL);
4991 cu = xmalloc (sizeof (*cu));
4992 init_one_comp_unit (cu, this_cu);
4993 /* If an error occurs while loading, release our storage. */
4994 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4995
4996 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4997 0 /* abbrev_table_provided */,
4998 NULL /* stub_comp_unit_die */,
4999 sig_type->dwo_unit->dwo_file->comp_dir,
5000 &reader, &info_ptr,
5001 &comp_unit_die, &has_children) == 0)
5002 {
5003 /* Dummy die. */
5004 do_cleanups (cleanups);
5005 return;
5006 }
5007
5008 /* All the "real" work is done here. */
5009 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5010
5011 /* This duplicates some code in init_cutu_and_read_dies,
5012 but the alternative is making the latter more complex.
5013 This function is only for the special case of using DWO files directly:
5014 no point in overly complicating the general case just to handle this. */
5015 if (keep)
5016 {
5017 /* We've successfully allocated this compilation unit. Let our
5018 caller clean it up when finished with it. */
5019 discard_cleanups (free_cu_cleanup);
5020
5021 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5022 So we have to manually free the abbrev table. */
5023 dwarf2_free_abbrev_table (cu);
5024
5025 /* Link this CU into read_in_chain. */
5026 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5027 dwarf2_per_objfile->read_in_chain = this_cu;
5028 }
5029 else
5030 do_cleanups (free_cu_cleanup);
5031
5032 do_cleanups (cleanups);
5033 }
5034
5035 /* Initialize a CU (or TU) and read its DIEs.
5036 If the CU defers to a DWO file, read the DWO file as well.
5037
5038 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5039 Otherwise the table specified in the comp unit header is read in and used.
5040 This is an optimization for when we already have the abbrev table.
5041
5042 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5043 Otherwise, a new CU is allocated with xmalloc.
5044
5045 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5046 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5047
5048 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5049 linker) then DIE_READER_FUNC will not get called. */
5050
5051 static void
5052 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5053 struct abbrev_table *abbrev_table,
5054 int use_existing_cu, int keep,
5055 die_reader_func_ftype *die_reader_func,
5056 void *data)
5057 {
5058 struct objfile *objfile = dwarf2_per_objfile->objfile;
5059 struct dwarf2_section_info *section = this_cu->section;
5060 bfd *abfd = get_section_bfd_owner (section);
5061 struct dwarf2_cu *cu;
5062 const gdb_byte *begin_info_ptr, *info_ptr;
5063 struct die_reader_specs reader;
5064 struct die_info *comp_unit_die;
5065 int has_children;
5066 struct attribute *attr;
5067 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5068 struct signatured_type *sig_type = NULL;
5069 struct dwarf2_section_info *abbrev_section;
5070 /* Non-zero if CU currently points to a DWO file and we need to
5071 reread it. When this happens we need to reread the skeleton die
5072 before we can reread the DWO file (this only applies to CUs, not TUs). */
5073 int rereading_dwo_cu = 0;
5074
5075 if (dwarf2_die_debug)
5076 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5077 this_cu->is_debug_types ? "type" : "comp",
5078 this_cu->offset.sect_off);
5079
5080 if (use_existing_cu)
5081 gdb_assert (keep);
5082
5083 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5084 file (instead of going through the stub), short-circuit all of this. */
5085 if (this_cu->reading_dwo_directly)
5086 {
5087 /* Narrow down the scope of possibilities to have to understand. */
5088 gdb_assert (this_cu->is_debug_types);
5089 gdb_assert (abbrev_table == NULL);
5090 gdb_assert (!use_existing_cu);
5091 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5092 return;
5093 }
5094
5095 cleanups = make_cleanup (null_cleanup, NULL);
5096
5097 /* This is cheap if the section is already read in. */
5098 dwarf2_read_section (objfile, section);
5099
5100 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5101
5102 abbrev_section = get_abbrev_section_for_cu (this_cu);
5103
5104 if (use_existing_cu && this_cu->cu != NULL)
5105 {
5106 cu = this_cu->cu;
5107
5108 /* If this CU is from a DWO file we need to start over, we need to
5109 refetch the attributes from the skeleton CU.
5110 This could be optimized by retrieving those attributes from when we
5111 were here the first time: the previous comp_unit_die was stored in
5112 comp_unit_obstack. But there's no data yet that we need this
5113 optimization. */
5114 if (cu->dwo_unit != NULL)
5115 rereading_dwo_cu = 1;
5116 }
5117 else
5118 {
5119 /* If !use_existing_cu, this_cu->cu must be NULL. */
5120 gdb_assert (this_cu->cu == NULL);
5121
5122 cu = xmalloc (sizeof (*cu));
5123 init_one_comp_unit (cu, this_cu);
5124
5125 /* If an error occurs while loading, release our storage. */
5126 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5127 }
5128
5129 /* Get the header. */
5130 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5131 {
5132 /* We already have the header, there's no need to read it in again. */
5133 info_ptr += cu->header.first_die_offset.cu_off;
5134 }
5135 else
5136 {
5137 if (this_cu->is_debug_types)
5138 {
5139 ULONGEST signature;
5140 cu_offset type_offset_in_tu;
5141
5142 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5143 abbrev_section, info_ptr,
5144 &signature,
5145 &type_offset_in_tu);
5146
5147 /* Since per_cu is the first member of struct signatured_type,
5148 we can go from a pointer to one to a pointer to the other. */
5149 sig_type = (struct signatured_type *) this_cu;
5150 gdb_assert (sig_type->signature == signature);
5151 gdb_assert (sig_type->type_offset_in_tu.cu_off
5152 == type_offset_in_tu.cu_off);
5153 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5154
5155 /* LENGTH has not been set yet for type units if we're
5156 using .gdb_index. */
5157 this_cu->length = get_cu_length (&cu->header);
5158
5159 /* Establish the type offset that can be used to lookup the type. */
5160 sig_type->type_offset_in_section.sect_off =
5161 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5162 }
5163 else
5164 {
5165 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5166 abbrev_section,
5167 info_ptr, 0);
5168
5169 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5170 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5171 }
5172 }
5173
5174 /* Skip dummy compilation units. */
5175 if (info_ptr >= begin_info_ptr + this_cu->length
5176 || peek_abbrev_code (abfd, info_ptr) == 0)
5177 {
5178 do_cleanups (cleanups);
5179 return;
5180 }
5181
5182 /* If we don't have them yet, read the abbrevs for this compilation unit.
5183 And if we need to read them now, make sure they're freed when we're
5184 done. Note that it's important that if the CU had an abbrev table
5185 on entry we don't free it when we're done: Somewhere up the call stack
5186 it may be in use. */
5187 if (abbrev_table != NULL)
5188 {
5189 gdb_assert (cu->abbrev_table == NULL);
5190 gdb_assert (cu->header.abbrev_offset.sect_off
5191 == abbrev_table->offset.sect_off);
5192 cu->abbrev_table = abbrev_table;
5193 }
5194 else if (cu->abbrev_table == NULL)
5195 {
5196 dwarf2_read_abbrevs (cu, abbrev_section);
5197 make_cleanup (dwarf2_free_abbrev_table, cu);
5198 }
5199 else if (rereading_dwo_cu)
5200 {
5201 dwarf2_free_abbrev_table (cu);
5202 dwarf2_read_abbrevs (cu, abbrev_section);
5203 }
5204
5205 /* Read the top level CU/TU die. */
5206 init_cu_die_reader (&reader, cu, section, NULL);
5207 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5208
5209 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5210 from the DWO file.
5211 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5212 DWO CU, that this test will fail (the attribute will not be present). */
5213 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5214 if (attr)
5215 {
5216 struct dwo_unit *dwo_unit;
5217 struct die_info *dwo_comp_unit_die;
5218
5219 if (has_children)
5220 {
5221 complaint (&symfile_complaints,
5222 _("compilation unit with DW_AT_GNU_dwo_name"
5223 " has children (offset 0x%x) [in module %s]"),
5224 this_cu->offset.sect_off, bfd_get_filename (abfd));
5225 }
5226 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5227 if (dwo_unit != NULL)
5228 {
5229 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5230 abbrev_table != NULL,
5231 comp_unit_die, NULL,
5232 &reader, &info_ptr,
5233 &dwo_comp_unit_die, &has_children) == 0)
5234 {
5235 /* Dummy die. */
5236 do_cleanups (cleanups);
5237 return;
5238 }
5239 comp_unit_die = dwo_comp_unit_die;
5240 }
5241 else
5242 {
5243 /* Yikes, we couldn't find the rest of the DIE, we only have
5244 the stub. A complaint has already been logged. There's
5245 not much more we can do except pass on the stub DIE to
5246 die_reader_func. We don't want to throw an error on bad
5247 debug info. */
5248 }
5249 }
5250
5251 /* All of the above is setup for this call. Yikes. */
5252 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5253
5254 /* Done, clean up. */
5255 if (free_cu_cleanup != NULL)
5256 {
5257 if (keep)
5258 {
5259 /* We've successfully allocated this compilation unit. Let our
5260 caller clean it up when finished with it. */
5261 discard_cleanups (free_cu_cleanup);
5262
5263 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5264 So we have to manually free the abbrev table. */
5265 dwarf2_free_abbrev_table (cu);
5266
5267 /* Link this CU into read_in_chain. */
5268 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5269 dwarf2_per_objfile->read_in_chain = this_cu;
5270 }
5271 else
5272 do_cleanups (free_cu_cleanup);
5273 }
5274
5275 do_cleanups (cleanups);
5276 }
5277
5278 /* Read CU/TU THIS_CU in section SECTION,
5279 but do not follow DW_AT_GNU_dwo_name if present.
5280 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5281 to have already done the lookup to find the DWO/DWP file).
5282
5283 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5284 THIS_CU->is_debug_types, but nothing else.
5285
5286 We fill in THIS_CU->length.
5287
5288 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5289 linker) then DIE_READER_FUNC will not get called.
5290
5291 THIS_CU->cu is always freed when done.
5292 This is done in order to not leave THIS_CU->cu in a state where we have
5293 to care whether it refers to the "main" CU or the DWO CU. */
5294
5295 static void
5296 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5297 struct dwarf2_section_info *abbrev_section,
5298 struct dwo_file *dwo_file,
5299 die_reader_func_ftype *die_reader_func,
5300 void *data)
5301 {
5302 struct objfile *objfile = dwarf2_per_objfile->objfile;
5303 struct dwarf2_section_info *section = this_cu->section;
5304 bfd *abfd = get_section_bfd_owner (section);
5305 struct dwarf2_cu cu;
5306 const gdb_byte *begin_info_ptr, *info_ptr;
5307 struct die_reader_specs reader;
5308 struct cleanup *cleanups;
5309 struct die_info *comp_unit_die;
5310 int has_children;
5311
5312 if (dwarf2_die_debug)
5313 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5314 this_cu->is_debug_types ? "type" : "comp",
5315 this_cu->offset.sect_off);
5316
5317 gdb_assert (this_cu->cu == NULL);
5318
5319 /* This is cheap if the section is already read in. */
5320 dwarf2_read_section (objfile, section);
5321
5322 init_one_comp_unit (&cu, this_cu);
5323
5324 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5325
5326 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5327 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5328 abbrev_section, info_ptr,
5329 this_cu->is_debug_types);
5330
5331 this_cu->length = get_cu_length (&cu.header);
5332
5333 /* Skip dummy compilation units. */
5334 if (info_ptr >= begin_info_ptr + this_cu->length
5335 || peek_abbrev_code (abfd, info_ptr) == 0)
5336 {
5337 do_cleanups (cleanups);
5338 return;
5339 }
5340
5341 dwarf2_read_abbrevs (&cu, abbrev_section);
5342 make_cleanup (dwarf2_free_abbrev_table, &cu);
5343
5344 init_cu_die_reader (&reader, &cu, section, dwo_file);
5345 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5346
5347 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5348
5349 do_cleanups (cleanups);
5350 }
5351
5352 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5353 does not lookup the specified DWO file.
5354 This cannot be used to read DWO files.
5355
5356 THIS_CU->cu is always freed when done.
5357 This is done in order to not leave THIS_CU->cu in a state where we have
5358 to care whether it refers to the "main" CU or the DWO CU.
5359 We can revisit this if the data shows there's a performance issue. */
5360
5361 static void
5362 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5363 die_reader_func_ftype *die_reader_func,
5364 void *data)
5365 {
5366 init_cutu_and_read_dies_no_follow (this_cu,
5367 get_abbrev_section_for_cu (this_cu),
5368 NULL,
5369 die_reader_func, data);
5370 }
5371 \f
5372 /* Type Unit Groups.
5373
5374 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5375 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5376 so that all types coming from the same compilation (.o file) are grouped
5377 together. A future step could be to put the types in the same symtab as
5378 the CU the types ultimately came from. */
5379
5380 static hashval_t
5381 hash_type_unit_group (const void *item)
5382 {
5383 const struct type_unit_group *tu_group = item;
5384
5385 return hash_stmt_list_entry (&tu_group->hash);
5386 }
5387
5388 static int
5389 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5390 {
5391 const struct type_unit_group *lhs = item_lhs;
5392 const struct type_unit_group *rhs = item_rhs;
5393
5394 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5395 }
5396
5397 /* Allocate a hash table for type unit groups. */
5398
5399 static htab_t
5400 allocate_type_unit_groups_table (void)
5401 {
5402 return htab_create_alloc_ex (3,
5403 hash_type_unit_group,
5404 eq_type_unit_group,
5405 NULL,
5406 &dwarf2_per_objfile->objfile->objfile_obstack,
5407 hashtab_obstack_allocate,
5408 dummy_obstack_deallocate);
5409 }
5410
5411 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5412 partial symtabs. We combine several TUs per psymtab to not let the size
5413 of any one psymtab grow too big. */
5414 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5415 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5416
5417 /* Helper routine for get_type_unit_group.
5418 Create the type_unit_group object used to hold one or more TUs. */
5419
5420 static struct type_unit_group *
5421 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5422 {
5423 struct objfile *objfile = dwarf2_per_objfile->objfile;
5424 struct dwarf2_per_cu_data *per_cu;
5425 struct type_unit_group *tu_group;
5426
5427 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5428 struct type_unit_group);
5429 per_cu = &tu_group->per_cu;
5430 per_cu->objfile = objfile;
5431
5432 if (dwarf2_per_objfile->using_index)
5433 {
5434 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5435 struct dwarf2_per_cu_quick_data);
5436 }
5437 else
5438 {
5439 unsigned int line_offset = line_offset_struct.sect_off;
5440 struct partial_symtab *pst;
5441 char *name;
5442
5443 /* Give the symtab a useful name for debug purposes. */
5444 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5445 name = xstrprintf ("<type_units_%d>",
5446 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5447 else
5448 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5449
5450 pst = create_partial_symtab (per_cu, name);
5451 pst->anonymous = 1;
5452
5453 xfree (name);
5454 }
5455
5456 tu_group->hash.dwo_unit = cu->dwo_unit;
5457 tu_group->hash.line_offset = line_offset_struct;
5458
5459 return tu_group;
5460 }
5461
5462 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5463 STMT_LIST is a DW_AT_stmt_list attribute. */
5464
5465 static struct type_unit_group *
5466 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5467 {
5468 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5469 struct type_unit_group *tu_group;
5470 void **slot;
5471 unsigned int line_offset;
5472 struct type_unit_group type_unit_group_for_lookup;
5473
5474 if (dwarf2_per_objfile->type_unit_groups == NULL)
5475 {
5476 dwarf2_per_objfile->type_unit_groups =
5477 allocate_type_unit_groups_table ();
5478 }
5479
5480 /* Do we need to create a new group, or can we use an existing one? */
5481
5482 if (stmt_list)
5483 {
5484 line_offset = DW_UNSND (stmt_list);
5485 ++tu_stats->nr_symtab_sharers;
5486 }
5487 else
5488 {
5489 /* Ugh, no stmt_list. Rare, but we have to handle it.
5490 We can do various things here like create one group per TU or
5491 spread them over multiple groups to split up the expansion work.
5492 To avoid worst case scenarios (too many groups or too large groups)
5493 we, umm, group them in bunches. */
5494 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5495 | (tu_stats->nr_stmt_less_type_units
5496 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5497 ++tu_stats->nr_stmt_less_type_units;
5498 }
5499
5500 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5501 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5502 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5503 &type_unit_group_for_lookup, INSERT);
5504 if (*slot != NULL)
5505 {
5506 tu_group = *slot;
5507 gdb_assert (tu_group != NULL);
5508 }
5509 else
5510 {
5511 sect_offset line_offset_struct;
5512
5513 line_offset_struct.sect_off = line_offset;
5514 tu_group = create_type_unit_group (cu, line_offset_struct);
5515 *slot = tu_group;
5516 ++tu_stats->nr_symtabs;
5517 }
5518
5519 return tu_group;
5520 }
5521
5522 /* Struct used to sort TUs by their abbreviation table offset. */
5523
5524 struct tu_abbrev_offset
5525 {
5526 struct signatured_type *sig_type;
5527 sect_offset abbrev_offset;
5528 };
5529
5530 /* Helper routine for build_type_unit_groups, passed to qsort. */
5531
5532 static int
5533 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5534 {
5535 const struct tu_abbrev_offset * const *a = ap;
5536 const struct tu_abbrev_offset * const *b = bp;
5537 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5538 unsigned int boff = (*b)->abbrev_offset.sect_off;
5539
5540 return (aoff > boff) - (aoff < boff);
5541 }
5542
5543 /* A helper function to add a type_unit_group to a table. */
5544
5545 static int
5546 add_type_unit_group_to_table (void **slot, void *datum)
5547 {
5548 struct type_unit_group *tu_group = *slot;
5549 struct type_unit_group ***datap = datum;
5550
5551 **datap = tu_group;
5552 ++*datap;
5553
5554 return 1;
5555 }
5556
5557 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5558 each one passing FUNC,DATA.
5559
5560 The efficiency is because we sort TUs by the abbrev table they use and
5561 only read each abbrev table once. In one program there are 200K TUs
5562 sharing 8K abbrev tables.
5563
5564 The main purpose of this function is to support building the
5565 dwarf2_per_objfile->type_unit_groups table.
5566 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5567 can collapse the search space by grouping them by stmt_list.
5568 The savings can be significant, in the same program from above the 200K TUs
5569 share 8K stmt_list tables.
5570
5571 FUNC is expected to call get_type_unit_group, which will create the
5572 struct type_unit_group if necessary and add it to
5573 dwarf2_per_objfile->type_unit_groups. */
5574
5575 static void
5576 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5577 {
5578 struct objfile *objfile = dwarf2_per_objfile->objfile;
5579 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5580 struct cleanup *cleanups;
5581 struct abbrev_table *abbrev_table;
5582 sect_offset abbrev_offset;
5583 struct tu_abbrev_offset *sorted_by_abbrev;
5584 struct type_unit_group **iter;
5585 int i;
5586
5587 /* It's up to the caller to not call us multiple times. */
5588 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5589
5590 if (dwarf2_per_objfile->n_type_units == 0)
5591 return;
5592
5593 /* TUs typically share abbrev tables, and there can be way more TUs than
5594 abbrev tables. Sort by abbrev table to reduce the number of times we
5595 read each abbrev table in.
5596 Alternatives are to punt or to maintain a cache of abbrev tables.
5597 This is simpler and efficient enough for now.
5598
5599 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5600 symtab to use). Typically TUs with the same abbrev offset have the same
5601 stmt_list value too so in practice this should work well.
5602
5603 The basic algorithm here is:
5604
5605 sort TUs by abbrev table
5606 for each TU with same abbrev table:
5607 read abbrev table if first user
5608 read TU top level DIE
5609 [IWBN if DWO skeletons had DW_AT_stmt_list]
5610 call FUNC */
5611
5612 if (dwarf2_read_debug)
5613 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5614
5615 /* Sort in a separate table to maintain the order of all_type_units
5616 for .gdb_index: TU indices directly index all_type_units. */
5617 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5618 dwarf2_per_objfile->n_type_units);
5619 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5620 {
5621 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5622
5623 sorted_by_abbrev[i].sig_type = sig_type;
5624 sorted_by_abbrev[i].abbrev_offset =
5625 read_abbrev_offset (sig_type->per_cu.section,
5626 sig_type->per_cu.offset);
5627 }
5628 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5629 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5630 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5631
5632 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5633 called any number of times, so we don't reset tu_stats here. */
5634
5635 abbrev_offset.sect_off = ~(unsigned) 0;
5636 abbrev_table = NULL;
5637 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5638
5639 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5640 {
5641 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5642
5643 /* Switch to the next abbrev table if necessary. */
5644 if (abbrev_table == NULL
5645 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5646 {
5647 if (abbrev_table != NULL)
5648 {
5649 abbrev_table_free (abbrev_table);
5650 /* Reset to NULL in case abbrev_table_read_table throws
5651 an error: abbrev_table_free_cleanup will get called. */
5652 abbrev_table = NULL;
5653 }
5654 abbrev_offset = tu->abbrev_offset;
5655 abbrev_table =
5656 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5657 abbrev_offset);
5658 ++tu_stats->nr_uniq_abbrev_tables;
5659 }
5660
5661 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5662 func, data);
5663 }
5664
5665 /* type_unit_groups can be NULL if there is an error in the debug info.
5666 Just create an empty table so the rest of gdb doesn't have to watch
5667 for this error case. */
5668 if (dwarf2_per_objfile->type_unit_groups == NULL)
5669 {
5670 dwarf2_per_objfile->type_unit_groups =
5671 allocate_type_unit_groups_table ();
5672 dwarf2_per_objfile->n_type_unit_groups = 0;
5673 }
5674
5675 /* Create a vector of pointers to primary type units to make it easy to
5676 iterate over them and CUs. See dw2_get_primary_cu. */
5677 dwarf2_per_objfile->n_type_unit_groups =
5678 htab_elements (dwarf2_per_objfile->type_unit_groups);
5679 dwarf2_per_objfile->all_type_unit_groups =
5680 obstack_alloc (&objfile->objfile_obstack,
5681 dwarf2_per_objfile->n_type_unit_groups
5682 * sizeof (struct type_unit_group *));
5683 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5684 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5685 add_type_unit_group_to_table, &iter);
5686 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5687 == dwarf2_per_objfile->n_type_unit_groups);
5688
5689 do_cleanups (cleanups);
5690
5691 if (dwarf2_read_debug)
5692 {
5693 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5694 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5695 dwarf2_per_objfile->n_type_units);
5696 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5697 tu_stats->nr_uniq_abbrev_tables);
5698 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5699 tu_stats->nr_symtabs);
5700 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5701 tu_stats->nr_symtab_sharers);
5702 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5703 tu_stats->nr_stmt_less_type_units);
5704 }
5705 }
5706 \f
5707 /* Partial symbol tables. */
5708
5709 /* Create a psymtab named NAME and assign it to PER_CU.
5710
5711 The caller must fill in the following details:
5712 dirname, textlow, texthigh. */
5713
5714 static struct partial_symtab *
5715 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5716 {
5717 struct objfile *objfile = per_cu->objfile;
5718 struct partial_symtab *pst;
5719
5720 pst = start_psymtab_common (objfile, objfile->section_offsets,
5721 name, 0,
5722 objfile->global_psymbols.next,
5723 objfile->static_psymbols.next);
5724
5725 pst->psymtabs_addrmap_supported = 1;
5726
5727 /* This is the glue that links PST into GDB's symbol API. */
5728 pst->read_symtab_private = per_cu;
5729 pst->read_symtab = dwarf2_read_symtab;
5730 per_cu->v.psymtab = pst;
5731
5732 return pst;
5733 }
5734
5735 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5736 type. */
5737
5738 struct process_psymtab_comp_unit_data
5739 {
5740 /* True if we are reading a DW_TAG_partial_unit. */
5741
5742 int want_partial_unit;
5743
5744 /* The "pretend" language that is used if the CU doesn't declare a
5745 language. */
5746
5747 enum language pretend_language;
5748 };
5749
5750 /* die_reader_func for process_psymtab_comp_unit. */
5751
5752 static void
5753 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5754 const gdb_byte *info_ptr,
5755 struct die_info *comp_unit_die,
5756 int has_children,
5757 void *data)
5758 {
5759 struct dwarf2_cu *cu = reader->cu;
5760 struct objfile *objfile = cu->objfile;
5761 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5762 struct attribute *attr;
5763 CORE_ADDR baseaddr;
5764 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5765 struct partial_symtab *pst;
5766 int has_pc_info;
5767 const char *filename;
5768 struct process_psymtab_comp_unit_data *info = data;
5769
5770 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5771 return;
5772
5773 gdb_assert (! per_cu->is_debug_types);
5774
5775 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5776
5777 cu->list_in_scope = &file_symbols;
5778
5779 /* Allocate a new partial symbol table structure. */
5780 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5781 if (attr == NULL || !DW_STRING (attr))
5782 filename = "";
5783 else
5784 filename = DW_STRING (attr);
5785
5786 pst = create_partial_symtab (per_cu, filename);
5787
5788 /* This must be done before calling dwarf2_build_include_psymtabs. */
5789 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5790 if (attr != NULL)
5791 pst->dirname = DW_STRING (attr);
5792
5793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5794
5795 dwarf2_find_base_address (comp_unit_die, cu);
5796
5797 /* Possibly set the default values of LOWPC and HIGHPC from
5798 `DW_AT_ranges'. */
5799 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5800 &best_highpc, cu, pst);
5801 if (has_pc_info == 1 && best_lowpc < best_highpc)
5802 /* Store the contiguous range if it is not empty; it can be empty for
5803 CUs with no code. */
5804 addrmap_set_empty (objfile->psymtabs_addrmap,
5805 best_lowpc + baseaddr,
5806 best_highpc + baseaddr - 1, pst);
5807
5808 /* Check if comp unit has_children.
5809 If so, read the rest of the partial symbols from this comp unit.
5810 If not, there's no more debug_info for this comp unit. */
5811 if (has_children)
5812 {
5813 struct partial_die_info *first_die;
5814 CORE_ADDR lowpc, highpc;
5815
5816 lowpc = ((CORE_ADDR) -1);
5817 highpc = ((CORE_ADDR) 0);
5818
5819 first_die = load_partial_dies (reader, info_ptr, 1);
5820
5821 scan_partial_symbols (first_die, &lowpc, &highpc,
5822 ! has_pc_info, cu);
5823
5824 /* If we didn't find a lowpc, set it to highpc to avoid
5825 complaints from `maint check'. */
5826 if (lowpc == ((CORE_ADDR) -1))
5827 lowpc = highpc;
5828
5829 /* If the compilation unit didn't have an explicit address range,
5830 then use the information extracted from its child dies. */
5831 if (! has_pc_info)
5832 {
5833 best_lowpc = lowpc;
5834 best_highpc = highpc;
5835 }
5836 }
5837 pst->textlow = best_lowpc + baseaddr;
5838 pst->texthigh = best_highpc + baseaddr;
5839
5840 pst->n_global_syms = objfile->global_psymbols.next -
5841 (objfile->global_psymbols.list + pst->globals_offset);
5842 pst->n_static_syms = objfile->static_psymbols.next -
5843 (objfile->static_psymbols.list + pst->statics_offset);
5844 sort_pst_symbols (objfile, pst);
5845
5846 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5847 {
5848 int i;
5849 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5850 struct dwarf2_per_cu_data *iter;
5851
5852 /* Fill in 'dependencies' here; we fill in 'users' in a
5853 post-pass. */
5854 pst->number_of_dependencies = len;
5855 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5856 len * sizeof (struct symtab *));
5857 for (i = 0;
5858 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5859 i, iter);
5860 ++i)
5861 pst->dependencies[i] = iter->v.psymtab;
5862
5863 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5864 }
5865
5866 /* Get the list of files included in the current compilation unit,
5867 and build a psymtab for each of them. */
5868 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5869
5870 if (dwarf2_read_debug)
5871 {
5872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5873
5874 fprintf_unfiltered (gdb_stdlog,
5875 "Psymtab for %s unit @0x%x: %s - %s"
5876 ", %d global, %d static syms\n",
5877 per_cu->is_debug_types ? "type" : "comp",
5878 per_cu->offset.sect_off,
5879 paddress (gdbarch, pst->textlow),
5880 paddress (gdbarch, pst->texthigh),
5881 pst->n_global_syms, pst->n_static_syms);
5882 }
5883 }
5884
5885 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5886 Process compilation unit THIS_CU for a psymtab. */
5887
5888 static void
5889 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5890 int want_partial_unit,
5891 enum language pretend_language)
5892 {
5893 struct process_psymtab_comp_unit_data info;
5894
5895 /* If this compilation unit was already read in, free the
5896 cached copy in order to read it in again. This is
5897 necessary because we skipped some symbols when we first
5898 read in the compilation unit (see load_partial_dies).
5899 This problem could be avoided, but the benefit is unclear. */
5900 if (this_cu->cu != NULL)
5901 free_one_cached_comp_unit (this_cu);
5902
5903 gdb_assert (! this_cu->is_debug_types);
5904 info.want_partial_unit = want_partial_unit;
5905 info.pretend_language = pretend_language;
5906 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5907 process_psymtab_comp_unit_reader,
5908 &info);
5909
5910 /* Age out any secondary CUs. */
5911 age_cached_comp_units ();
5912 }
5913
5914 /* Reader function for build_type_psymtabs. */
5915
5916 static void
5917 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5918 const gdb_byte *info_ptr,
5919 struct die_info *type_unit_die,
5920 int has_children,
5921 void *data)
5922 {
5923 struct objfile *objfile = dwarf2_per_objfile->objfile;
5924 struct dwarf2_cu *cu = reader->cu;
5925 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5926 struct signatured_type *sig_type;
5927 struct type_unit_group *tu_group;
5928 struct attribute *attr;
5929 struct partial_die_info *first_die;
5930 CORE_ADDR lowpc, highpc;
5931 struct partial_symtab *pst;
5932
5933 gdb_assert (data == NULL);
5934 gdb_assert (per_cu->is_debug_types);
5935 sig_type = (struct signatured_type *) per_cu;
5936
5937 if (! has_children)
5938 return;
5939
5940 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5941 tu_group = get_type_unit_group (cu, attr);
5942
5943 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5944
5945 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5946 cu->list_in_scope = &file_symbols;
5947 pst = create_partial_symtab (per_cu, "");
5948 pst->anonymous = 1;
5949
5950 first_die = load_partial_dies (reader, info_ptr, 1);
5951
5952 lowpc = (CORE_ADDR) -1;
5953 highpc = (CORE_ADDR) 0;
5954 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5955
5956 pst->n_global_syms = objfile->global_psymbols.next -
5957 (objfile->global_psymbols.list + pst->globals_offset);
5958 pst->n_static_syms = objfile->static_psymbols.next -
5959 (objfile->static_psymbols.list + pst->statics_offset);
5960 sort_pst_symbols (objfile, pst);
5961 }
5962
5963 /* Traversal function for build_type_psymtabs. */
5964
5965 static int
5966 build_type_psymtab_dependencies (void **slot, void *info)
5967 {
5968 struct objfile *objfile = dwarf2_per_objfile->objfile;
5969 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5970 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5971 struct partial_symtab *pst = per_cu->v.psymtab;
5972 int len = VEC_length (sig_type_ptr, tu_group->tus);
5973 struct signatured_type *iter;
5974 int i;
5975
5976 gdb_assert (len > 0);
5977 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5978
5979 pst->number_of_dependencies = len;
5980 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5981 len * sizeof (struct psymtab *));
5982 for (i = 0;
5983 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5984 ++i)
5985 {
5986 gdb_assert (iter->per_cu.is_debug_types);
5987 pst->dependencies[i] = iter->per_cu.v.psymtab;
5988 iter->type_unit_group = tu_group;
5989 }
5990
5991 VEC_free (sig_type_ptr, tu_group->tus);
5992
5993 return 1;
5994 }
5995
5996 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5997 Build partial symbol tables for the .debug_types comp-units. */
5998
5999 static void
6000 build_type_psymtabs (struct objfile *objfile)
6001 {
6002 if (! create_all_type_units (objfile))
6003 return;
6004
6005 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6006
6007 /* Now that all TUs have been processed we can fill in the dependencies. */
6008 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6009 build_type_psymtab_dependencies, NULL);
6010 }
6011
6012 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6013
6014 static void
6015 psymtabs_addrmap_cleanup (void *o)
6016 {
6017 struct objfile *objfile = o;
6018
6019 objfile->psymtabs_addrmap = NULL;
6020 }
6021
6022 /* Compute the 'user' field for each psymtab in OBJFILE. */
6023
6024 static void
6025 set_partial_user (struct objfile *objfile)
6026 {
6027 int i;
6028
6029 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6030 {
6031 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6032 struct partial_symtab *pst = per_cu->v.psymtab;
6033 int j;
6034
6035 if (pst == NULL)
6036 continue;
6037
6038 for (j = 0; j < pst->number_of_dependencies; ++j)
6039 {
6040 /* Set the 'user' field only if it is not already set. */
6041 if (pst->dependencies[j]->user == NULL)
6042 pst->dependencies[j]->user = pst;
6043 }
6044 }
6045 }
6046
6047 /* Build the partial symbol table by doing a quick pass through the
6048 .debug_info and .debug_abbrev sections. */
6049
6050 static void
6051 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6052 {
6053 struct cleanup *back_to, *addrmap_cleanup;
6054 struct obstack temp_obstack;
6055 int i;
6056
6057 if (dwarf2_read_debug)
6058 {
6059 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6060 objfile_name (objfile));
6061 }
6062
6063 dwarf2_per_objfile->reading_partial_symbols = 1;
6064
6065 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6066
6067 /* Any cached compilation units will be linked by the per-objfile
6068 read_in_chain. Make sure to free them when we're done. */
6069 back_to = make_cleanup (free_cached_comp_units, NULL);
6070
6071 build_type_psymtabs (objfile);
6072
6073 create_all_comp_units (objfile);
6074
6075 /* Create a temporary address map on a temporary obstack. We later
6076 copy this to the final obstack. */
6077 obstack_init (&temp_obstack);
6078 make_cleanup_obstack_free (&temp_obstack);
6079 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6080 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6081
6082 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6083 {
6084 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6085
6086 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6087 }
6088
6089 set_partial_user (objfile);
6090
6091 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6092 &objfile->objfile_obstack);
6093 discard_cleanups (addrmap_cleanup);
6094
6095 do_cleanups (back_to);
6096
6097 if (dwarf2_read_debug)
6098 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6099 objfile_name (objfile));
6100 }
6101
6102 /* die_reader_func for load_partial_comp_unit. */
6103
6104 static void
6105 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6106 const gdb_byte *info_ptr,
6107 struct die_info *comp_unit_die,
6108 int has_children,
6109 void *data)
6110 {
6111 struct dwarf2_cu *cu = reader->cu;
6112
6113 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6114
6115 /* Check if comp unit has_children.
6116 If so, read the rest of the partial symbols from this comp unit.
6117 If not, there's no more debug_info for this comp unit. */
6118 if (has_children)
6119 load_partial_dies (reader, info_ptr, 0);
6120 }
6121
6122 /* Load the partial DIEs for a secondary CU into memory.
6123 This is also used when rereading a primary CU with load_all_dies. */
6124
6125 static void
6126 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6127 {
6128 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6129 load_partial_comp_unit_reader, NULL);
6130 }
6131
6132 static void
6133 read_comp_units_from_section (struct objfile *objfile,
6134 struct dwarf2_section_info *section,
6135 unsigned int is_dwz,
6136 int *n_allocated,
6137 int *n_comp_units,
6138 struct dwarf2_per_cu_data ***all_comp_units)
6139 {
6140 const gdb_byte *info_ptr;
6141 bfd *abfd = get_section_bfd_owner (section);
6142
6143 if (dwarf2_read_debug)
6144 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6145 get_section_name (section),
6146 get_section_file_name (section));
6147
6148 dwarf2_read_section (objfile, section);
6149
6150 info_ptr = section->buffer;
6151
6152 while (info_ptr < section->buffer + section->size)
6153 {
6154 unsigned int length, initial_length_size;
6155 struct dwarf2_per_cu_data *this_cu;
6156 sect_offset offset;
6157
6158 offset.sect_off = info_ptr - section->buffer;
6159
6160 /* Read just enough information to find out where the next
6161 compilation unit is. */
6162 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6163
6164 /* Save the compilation unit for later lookup. */
6165 this_cu = obstack_alloc (&objfile->objfile_obstack,
6166 sizeof (struct dwarf2_per_cu_data));
6167 memset (this_cu, 0, sizeof (*this_cu));
6168 this_cu->offset = offset;
6169 this_cu->length = length + initial_length_size;
6170 this_cu->is_dwz = is_dwz;
6171 this_cu->objfile = objfile;
6172 this_cu->section = section;
6173
6174 if (*n_comp_units == *n_allocated)
6175 {
6176 *n_allocated *= 2;
6177 *all_comp_units = xrealloc (*all_comp_units,
6178 *n_allocated
6179 * sizeof (struct dwarf2_per_cu_data *));
6180 }
6181 (*all_comp_units)[*n_comp_units] = this_cu;
6182 ++*n_comp_units;
6183
6184 info_ptr = info_ptr + this_cu->length;
6185 }
6186 }
6187
6188 /* Create a list of all compilation units in OBJFILE.
6189 This is only done for -readnow and building partial symtabs. */
6190
6191 static void
6192 create_all_comp_units (struct objfile *objfile)
6193 {
6194 int n_allocated;
6195 int n_comp_units;
6196 struct dwarf2_per_cu_data **all_comp_units;
6197 struct dwz_file *dwz;
6198
6199 n_comp_units = 0;
6200 n_allocated = 10;
6201 all_comp_units = xmalloc (n_allocated
6202 * sizeof (struct dwarf2_per_cu_data *));
6203
6204 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6205 &n_allocated, &n_comp_units, &all_comp_units);
6206
6207 dwz = dwarf2_get_dwz_file ();
6208 if (dwz != NULL)
6209 read_comp_units_from_section (objfile, &dwz->info, 1,
6210 &n_allocated, &n_comp_units,
6211 &all_comp_units);
6212
6213 dwarf2_per_objfile->all_comp_units
6214 = obstack_alloc (&objfile->objfile_obstack,
6215 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6216 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6217 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6218 xfree (all_comp_units);
6219 dwarf2_per_objfile->n_comp_units = n_comp_units;
6220 }
6221
6222 /* Process all loaded DIEs for compilation unit CU, starting at
6223 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6224 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6225 DW_AT_ranges). If NEED_PC is set, then this function will set
6226 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6227 and record the covered ranges in the addrmap. */
6228
6229 static void
6230 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6231 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6232 {
6233 struct partial_die_info *pdi;
6234
6235 /* Now, march along the PDI's, descending into ones which have
6236 interesting children but skipping the children of the other ones,
6237 until we reach the end of the compilation unit. */
6238
6239 pdi = first_die;
6240
6241 while (pdi != NULL)
6242 {
6243 fixup_partial_die (pdi, cu);
6244
6245 /* Anonymous namespaces or modules have no name but have interesting
6246 children, so we need to look at them. Ditto for anonymous
6247 enums. */
6248
6249 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6250 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6251 || pdi->tag == DW_TAG_imported_unit)
6252 {
6253 switch (pdi->tag)
6254 {
6255 case DW_TAG_subprogram:
6256 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6257 break;
6258 case DW_TAG_constant:
6259 case DW_TAG_variable:
6260 case DW_TAG_typedef:
6261 case DW_TAG_union_type:
6262 if (!pdi->is_declaration)
6263 {
6264 add_partial_symbol (pdi, cu);
6265 }
6266 break;
6267 case DW_TAG_class_type:
6268 case DW_TAG_interface_type:
6269 case DW_TAG_structure_type:
6270 if (!pdi->is_declaration)
6271 {
6272 add_partial_symbol (pdi, cu);
6273 }
6274 break;
6275 case DW_TAG_enumeration_type:
6276 if (!pdi->is_declaration)
6277 add_partial_enumeration (pdi, cu);
6278 break;
6279 case DW_TAG_base_type:
6280 case DW_TAG_subrange_type:
6281 /* File scope base type definitions are added to the partial
6282 symbol table. */
6283 add_partial_symbol (pdi, cu);
6284 break;
6285 case DW_TAG_namespace:
6286 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6287 break;
6288 case DW_TAG_module:
6289 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6290 break;
6291 case DW_TAG_imported_unit:
6292 {
6293 struct dwarf2_per_cu_data *per_cu;
6294
6295 /* For now we don't handle imported units in type units. */
6296 if (cu->per_cu->is_debug_types)
6297 {
6298 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6299 " supported in type units [in module %s]"),
6300 objfile_name (cu->objfile));
6301 }
6302
6303 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6304 pdi->is_dwz,
6305 cu->objfile);
6306
6307 /* Go read the partial unit, if needed. */
6308 if (per_cu->v.psymtab == NULL)
6309 process_psymtab_comp_unit (per_cu, 1, cu->language);
6310
6311 VEC_safe_push (dwarf2_per_cu_ptr,
6312 cu->per_cu->imported_symtabs, per_cu);
6313 }
6314 break;
6315 default:
6316 break;
6317 }
6318 }
6319
6320 /* If the die has a sibling, skip to the sibling. */
6321
6322 pdi = pdi->die_sibling;
6323 }
6324 }
6325
6326 /* Functions used to compute the fully scoped name of a partial DIE.
6327
6328 Normally, this is simple. For C++, the parent DIE's fully scoped
6329 name is concatenated with "::" and the partial DIE's name. For
6330 Java, the same thing occurs except that "." is used instead of "::".
6331 Enumerators are an exception; they use the scope of their parent
6332 enumeration type, i.e. the name of the enumeration type is not
6333 prepended to the enumerator.
6334
6335 There are two complexities. One is DW_AT_specification; in this
6336 case "parent" means the parent of the target of the specification,
6337 instead of the direct parent of the DIE. The other is compilers
6338 which do not emit DW_TAG_namespace; in this case we try to guess
6339 the fully qualified name of structure types from their members'
6340 linkage names. This must be done using the DIE's children rather
6341 than the children of any DW_AT_specification target. We only need
6342 to do this for structures at the top level, i.e. if the target of
6343 any DW_AT_specification (if any; otherwise the DIE itself) does not
6344 have a parent. */
6345
6346 /* Compute the scope prefix associated with PDI's parent, in
6347 compilation unit CU. The result will be allocated on CU's
6348 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6349 field. NULL is returned if no prefix is necessary. */
6350 static const char *
6351 partial_die_parent_scope (struct partial_die_info *pdi,
6352 struct dwarf2_cu *cu)
6353 {
6354 const char *grandparent_scope;
6355 struct partial_die_info *parent, *real_pdi;
6356
6357 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6358 then this means the parent of the specification DIE. */
6359
6360 real_pdi = pdi;
6361 while (real_pdi->has_specification)
6362 real_pdi = find_partial_die (real_pdi->spec_offset,
6363 real_pdi->spec_is_dwz, cu);
6364
6365 parent = real_pdi->die_parent;
6366 if (parent == NULL)
6367 return NULL;
6368
6369 if (parent->scope_set)
6370 return parent->scope;
6371
6372 fixup_partial_die (parent, cu);
6373
6374 grandparent_scope = partial_die_parent_scope (parent, cu);
6375
6376 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6377 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6378 Work around this problem here. */
6379 if (cu->language == language_cplus
6380 && parent->tag == DW_TAG_namespace
6381 && strcmp (parent->name, "::") == 0
6382 && grandparent_scope == NULL)
6383 {
6384 parent->scope = NULL;
6385 parent->scope_set = 1;
6386 return NULL;
6387 }
6388
6389 if (pdi->tag == DW_TAG_enumerator)
6390 /* Enumerators should not get the name of the enumeration as a prefix. */
6391 parent->scope = grandparent_scope;
6392 else if (parent->tag == DW_TAG_namespace
6393 || parent->tag == DW_TAG_module
6394 || parent->tag == DW_TAG_structure_type
6395 || parent->tag == DW_TAG_class_type
6396 || parent->tag == DW_TAG_interface_type
6397 || parent->tag == DW_TAG_union_type
6398 || parent->tag == DW_TAG_enumeration_type)
6399 {
6400 if (grandparent_scope == NULL)
6401 parent->scope = parent->name;
6402 else
6403 parent->scope = typename_concat (&cu->comp_unit_obstack,
6404 grandparent_scope,
6405 parent->name, 0, cu);
6406 }
6407 else
6408 {
6409 /* FIXME drow/2004-04-01: What should we be doing with
6410 function-local names? For partial symbols, we should probably be
6411 ignoring them. */
6412 complaint (&symfile_complaints,
6413 _("unhandled containing DIE tag %d for DIE at %d"),
6414 parent->tag, pdi->offset.sect_off);
6415 parent->scope = grandparent_scope;
6416 }
6417
6418 parent->scope_set = 1;
6419 return parent->scope;
6420 }
6421
6422 /* Return the fully scoped name associated with PDI, from compilation unit
6423 CU. The result will be allocated with malloc. */
6424
6425 static char *
6426 partial_die_full_name (struct partial_die_info *pdi,
6427 struct dwarf2_cu *cu)
6428 {
6429 const char *parent_scope;
6430
6431 /* If this is a template instantiation, we can not work out the
6432 template arguments from partial DIEs. So, unfortunately, we have
6433 to go through the full DIEs. At least any work we do building
6434 types here will be reused if full symbols are loaded later. */
6435 if (pdi->has_template_arguments)
6436 {
6437 fixup_partial_die (pdi, cu);
6438
6439 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6440 {
6441 struct die_info *die;
6442 struct attribute attr;
6443 struct dwarf2_cu *ref_cu = cu;
6444
6445 /* DW_FORM_ref_addr is using section offset. */
6446 attr.name = 0;
6447 attr.form = DW_FORM_ref_addr;
6448 attr.u.unsnd = pdi->offset.sect_off;
6449 die = follow_die_ref (NULL, &attr, &ref_cu);
6450
6451 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6452 }
6453 }
6454
6455 parent_scope = partial_die_parent_scope (pdi, cu);
6456 if (parent_scope == NULL)
6457 return NULL;
6458 else
6459 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6460 }
6461
6462 static void
6463 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6464 {
6465 struct objfile *objfile = cu->objfile;
6466 CORE_ADDR addr = 0;
6467 const char *actual_name = NULL;
6468 CORE_ADDR baseaddr;
6469 char *built_actual_name;
6470
6471 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6472
6473 built_actual_name = partial_die_full_name (pdi, cu);
6474 if (built_actual_name != NULL)
6475 actual_name = built_actual_name;
6476
6477 if (actual_name == NULL)
6478 actual_name = pdi->name;
6479
6480 switch (pdi->tag)
6481 {
6482 case DW_TAG_subprogram:
6483 if (pdi->is_external || cu->language == language_ada)
6484 {
6485 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6486 of the global scope. But in Ada, we want to be able to access
6487 nested procedures globally. So all Ada subprograms are stored
6488 in the global scope. */
6489 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6490 mst_text, objfile); */
6491 add_psymbol_to_list (actual_name, strlen (actual_name),
6492 built_actual_name != NULL,
6493 VAR_DOMAIN, LOC_BLOCK,
6494 &objfile->global_psymbols,
6495 0, pdi->lowpc + baseaddr,
6496 cu->language, objfile);
6497 }
6498 else
6499 {
6500 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6501 mst_file_text, objfile); */
6502 add_psymbol_to_list (actual_name, strlen (actual_name),
6503 built_actual_name != NULL,
6504 VAR_DOMAIN, LOC_BLOCK,
6505 &objfile->static_psymbols,
6506 0, pdi->lowpc + baseaddr,
6507 cu->language, objfile);
6508 }
6509 break;
6510 case DW_TAG_constant:
6511 {
6512 struct psymbol_allocation_list *list;
6513
6514 if (pdi->is_external)
6515 list = &objfile->global_psymbols;
6516 else
6517 list = &objfile->static_psymbols;
6518 add_psymbol_to_list (actual_name, strlen (actual_name),
6519 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6520 list, 0, 0, cu->language, objfile);
6521 }
6522 break;
6523 case DW_TAG_variable:
6524 if (pdi->d.locdesc)
6525 addr = decode_locdesc (pdi->d.locdesc, cu);
6526
6527 if (pdi->d.locdesc
6528 && addr == 0
6529 && !dwarf2_per_objfile->has_section_at_zero)
6530 {
6531 /* A global or static variable may also have been stripped
6532 out by the linker if unused, in which case its address
6533 will be nullified; do not add such variables into partial
6534 symbol table then. */
6535 }
6536 else if (pdi->is_external)
6537 {
6538 /* Global Variable.
6539 Don't enter into the minimal symbol tables as there is
6540 a minimal symbol table entry from the ELF symbols already.
6541 Enter into partial symbol table if it has a location
6542 descriptor or a type.
6543 If the location descriptor is missing, new_symbol will create
6544 a LOC_UNRESOLVED symbol, the address of the variable will then
6545 be determined from the minimal symbol table whenever the variable
6546 is referenced.
6547 The address for the partial symbol table entry is not
6548 used by GDB, but it comes in handy for debugging partial symbol
6549 table building. */
6550
6551 if (pdi->d.locdesc || pdi->has_type)
6552 add_psymbol_to_list (actual_name, strlen (actual_name),
6553 built_actual_name != NULL,
6554 VAR_DOMAIN, LOC_STATIC,
6555 &objfile->global_psymbols,
6556 0, addr + baseaddr,
6557 cu->language, objfile);
6558 }
6559 else
6560 {
6561 /* Static Variable. Skip symbols without location descriptors. */
6562 if (pdi->d.locdesc == NULL)
6563 {
6564 xfree (built_actual_name);
6565 return;
6566 }
6567 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6568 mst_file_data, objfile); */
6569 add_psymbol_to_list (actual_name, strlen (actual_name),
6570 built_actual_name != NULL,
6571 VAR_DOMAIN, LOC_STATIC,
6572 &objfile->static_psymbols,
6573 0, addr + baseaddr,
6574 cu->language, objfile);
6575 }
6576 break;
6577 case DW_TAG_typedef:
6578 case DW_TAG_base_type:
6579 case DW_TAG_subrange_type:
6580 add_psymbol_to_list (actual_name, strlen (actual_name),
6581 built_actual_name != NULL,
6582 VAR_DOMAIN, LOC_TYPEDEF,
6583 &objfile->static_psymbols,
6584 0, (CORE_ADDR) 0, cu->language, objfile);
6585 break;
6586 case DW_TAG_namespace:
6587 add_psymbol_to_list (actual_name, strlen (actual_name),
6588 built_actual_name != NULL,
6589 VAR_DOMAIN, LOC_TYPEDEF,
6590 &objfile->global_psymbols,
6591 0, (CORE_ADDR) 0, cu->language, objfile);
6592 break;
6593 case DW_TAG_class_type:
6594 case DW_TAG_interface_type:
6595 case DW_TAG_structure_type:
6596 case DW_TAG_union_type:
6597 case DW_TAG_enumeration_type:
6598 /* Skip external references. The DWARF standard says in the section
6599 about "Structure, Union, and Class Type Entries": "An incomplete
6600 structure, union or class type is represented by a structure,
6601 union or class entry that does not have a byte size attribute
6602 and that has a DW_AT_declaration attribute." */
6603 if (!pdi->has_byte_size && pdi->is_declaration)
6604 {
6605 xfree (built_actual_name);
6606 return;
6607 }
6608
6609 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6610 static vs. global. */
6611 add_psymbol_to_list (actual_name, strlen (actual_name),
6612 built_actual_name != NULL,
6613 STRUCT_DOMAIN, LOC_TYPEDEF,
6614 (cu->language == language_cplus
6615 || cu->language == language_java)
6616 ? &objfile->global_psymbols
6617 : &objfile->static_psymbols,
6618 0, (CORE_ADDR) 0, cu->language, objfile);
6619
6620 break;
6621 case DW_TAG_enumerator:
6622 add_psymbol_to_list (actual_name, strlen (actual_name),
6623 built_actual_name != NULL,
6624 VAR_DOMAIN, LOC_CONST,
6625 (cu->language == language_cplus
6626 || cu->language == language_java)
6627 ? &objfile->global_psymbols
6628 : &objfile->static_psymbols,
6629 0, (CORE_ADDR) 0, cu->language, objfile);
6630 break;
6631 default:
6632 break;
6633 }
6634
6635 xfree (built_actual_name);
6636 }
6637
6638 /* Read a partial die corresponding to a namespace; also, add a symbol
6639 corresponding to that namespace to the symbol table. NAMESPACE is
6640 the name of the enclosing namespace. */
6641
6642 static void
6643 add_partial_namespace (struct partial_die_info *pdi,
6644 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6645 int need_pc, struct dwarf2_cu *cu)
6646 {
6647 /* Add a symbol for the namespace. */
6648
6649 add_partial_symbol (pdi, cu);
6650
6651 /* Now scan partial symbols in that namespace. */
6652
6653 if (pdi->has_children)
6654 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6655 }
6656
6657 /* Read a partial die corresponding to a Fortran module. */
6658
6659 static void
6660 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6661 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6662 {
6663 /* Now scan partial symbols in that module. */
6664
6665 if (pdi->has_children)
6666 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6667 }
6668
6669 /* Read a partial die corresponding to a subprogram and create a partial
6670 symbol for that subprogram. When the CU language allows it, this
6671 routine also defines a partial symbol for each nested subprogram
6672 that this subprogram contains.
6673
6674 DIE my also be a lexical block, in which case we simply search
6675 recursively for suprograms defined inside that lexical block.
6676 Again, this is only performed when the CU language allows this
6677 type of definitions. */
6678
6679 static void
6680 add_partial_subprogram (struct partial_die_info *pdi,
6681 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6682 int need_pc, struct dwarf2_cu *cu)
6683 {
6684 if (pdi->tag == DW_TAG_subprogram)
6685 {
6686 if (pdi->has_pc_info)
6687 {
6688 if (pdi->lowpc < *lowpc)
6689 *lowpc = pdi->lowpc;
6690 if (pdi->highpc > *highpc)
6691 *highpc = pdi->highpc;
6692 if (need_pc)
6693 {
6694 CORE_ADDR baseaddr;
6695 struct objfile *objfile = cu->objfile;
6696
6697 baseaddr = ANOFFSET (objfile->section_offsets,
6698 SECT_OFF_TEXT (objfile));
6699 addrmap_set_empty (objfile->psymtabs_addrmap,
6700 pdi->lowpc + baseaddr,
6701 pdi->highpc - 1 + baseaddr,
6702 cu->per_cu->v.psymtab);
6703 }
6704 }
6705
6706 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6707 {
6708 if (!pdi->is_declaration)
6709 /* Ignore subprogram DIEs that do not have a name, they are
6710 illegal. Do not emit a complaint at this point, we will
6711 do so when we convert this psymtab into a symtab. */
6712 if (pdi->name)
6713 add_partial_symbol (pdi, cu);
6714 }
6715 }
6716
6717 if (! pdi->has_children)
6718 return;
6719
6720 if (cu->language == language_ada)
6721 {
6722 pdi = pdi->die_child;
6723 while (pdi != NULL)
6724 {
6725 fixup_partial_die (pdi, cu);
6726 if (pdi->tag == DW_TAG_subprogram
6727 || pdi->tag == DW_TAG_lexical_block)
6728 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6729 pdi = pdi->die_sibling;
6730 }
6731 }
6732 }
6733
6734 /* Read a partial die corresponding to an enumeration type. */
6735
6736 static void
6737 add_partial_enumeration (struct partial_die_info *enum_pdi,
6738 struct dwarf2_cu *cu)
6739 {
6740 struct partial_die_info *pdi;
6741
6742 if (enum_pdi->name != NULL)
6743 add_partial_symbol (enum_pdi, cu);
6744
6745 pdi = enum_pdi->die_child;
6746 while (pdi)
6747 {
6748 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6749 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6750 else
6751 add_partial_symbol (pdi, cu);
6752 pdi = pdi->die_sibling;
6753 }
6754 }
6755
6756 /* Return the initial uleb128 in the die at INFO_PTR. */
6757
6758 static unsigned int
6759 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6760 {
6761 unsigned int bytes_read;
6762
6763 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6764 }
6765
6766 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6767 Return the corresponding abbrev, or NULL if the number is zero (indicating
6768 an empty DIE). In either case *BYTES_READ will be set to the length of
6769 the initial number. */
6770
6771 static struct abbrev_info *
6772 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6773 struct dwarf2_cu *cu)
6774 {
6775 bfd *abfd = cu->objfile->obfd;
6776 unsigned int abbrev_number;
6777 struct abbrev_info *abbrev;
6778
6779 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6780
6781 if (abbrev_number == 0)
6782 return NULL;
6783
6784 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6785 if (!abbrev)
6786 {
6787 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6788 abbrev_number, bfd_get_filename (abfd));
6789 }
6790
6791 return abbrev;
6792 }
6793
6794 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6795 Returns a pointer to the end of a series of DIEs, terminated by an empty
6796 DIE. Any children of the skipped DIEs will also be skipped. */
6797
6798 static const gdb_byte *
6799 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6800 {
6801 struct dwarf2_cu *cu = reader->cu;
6802 struct abbrev_info *abbrev;
6803 unsigned int bytes_read;
6804
6805 while (1)
6806 {
6807 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6808 if (abbrev == NULL)
6809 return info_ptr + bytes_read;
6810 else
6811 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6812 }
6813 }
6814
6815 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6816 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6817 abbrev corresponding to that skipped uleb128 should be passed in
6818 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6819 children. */
6820
6821 static const gdb_byte *
6822 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6823 struct abbrev_info *abbrev)
6824 {
6825 unsigned int bytes_read;
6826 struct attribute attr;
6827 bfd *abfd = reader->abfd;
6828 struct dwarf2_cu *cu = reader->cu;
6829 const gdb_byte *buffer = reader->buffer;
6830 const gdb_byte *buffer_end = reader->buffer_end;
6831 const gdb_byte *start_info_ptr = info_ptr;
6832 unsigned int form, i;
6833
6834 for (i = 0; i < abbrev->num_attrs; i++)
6835 {
6836 /* The only abbrev we care about is DW_AT_sibling. */
6837 if (abbrev->attrs[i].name == DW_AT_sibling)
6838 {
6839 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6840 if (attr.form == DW_FORM_ref_addr)
6841 complaint (&symfile_complaints,
6842 _("ignoring absolute DW_AT_sibling"));
6843 else
6844 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6845 }
6846
6847 /* If it isn't DW_AT_sibling, skip this attribute. */
6848 form = abbrev->attrs[i].form;
6849 skip_attribute:
6850 switch (form)
6851 {
6852 case DW_FORM_ref_addr:
6853 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6854 and later it is offset sized. */
6855 if (cu->header.version == 2)
6856 info_ptr += cu->header.addr_size;
6857 else
6858 info_ptr += cu->header.offset_size;
6859 break;
6860 case DW_FORM_GNU_ref_alt:
6861 info_ptr += cu->header.offset_size;
6862 break;
6863 case DW_FORM_addr:
6864 info_ptr += cu->header.addr_size;
6865 break;
6866 case DW_FORM_data1:
6867 case DW_FORM_ref1:
6868 case DW_FORM_flag:
6869 info_ptr += 1;
6870 break;
6871 case DW_FORM_flag_present:
6872 break;
6873 case DW_FORM_data2:
6874 case DW_FORM_ref2:
6875 info_ptr += 2;
6876 break;
6877 case DW_FORM_data4:
6878 case DW_FORM_ref4:
6879 info_ptr += 4;
6880 break;
6881 case DW_FORM_data8:
6882 case DW_FORM_ref8:
6883 case DW_FORM_ref_sig8:
6884 info_ptr += 8;
6885 break;
6886 case DW_FORM_string:
6887 read_direct_string (abfd, info_ptr, &bytes_read);
6888 info_ptr += bytes_read;
6889 break;
6890 case DW_FORM_sec_offset:
6891 case DW_FORM_strp:
6892 case DW_FORM_GNU_strp_alt:
6893 info_ptr += cu->header.offset_size;
6894 break;
6895 case DW_FORM_exprloc:
6896 case DW_FORM_block:
6897 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6898 info_ptr += bytes_read;
6899 break;
6900 case DW_FORM_block1:
6901 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6902 break;
6903 case DW_FORM_block2:
6904 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6905 break;
6906 case DW_FORM_block4:
6907 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6908 break;
6909 case DW_FORM_sdata:
6910 case DW_FORM_udata:
6911 case DW_FORM_ref_udata:
6912 case DW_FORM_GNU_addr_index:
6913 case DW_FORM_GNU_str_index:
6914 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6915 break;
6916 case DW_FORM_indirect:
6917 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6918 info_ptr += bytes_read;
6919 /* We need to continue parsing from here, so just go back to
6920 the top. */
6921 goto skip_attribute;
6922
6923 default:
6924 error (_("Dwarf Error: Cannot handle %s "
6925 "in DWARF reader [in module %s]"),
6926 dwarf_form_name (form),
6927 bfd_get_filename (abfd));
6928 }
6929 }
6930
6931 if (abbrev->has_children)
6932 return skip_children (reader, info_ptr);
6933 else
6934 return info_ptr;
6935 }
6936
6937 /* Locate ORIG_PDI's sibling.
6938 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6939
6940 static const gdb_byte *
6941 locate_pdi_sibling (const struct die_reader_specs *reader,
6942 struct partial_die_info *orig_pdi,
6943 const gdb_byte *info_ptr)
6944 {
6945 /* Do we know the sibling already? */
6946
6947 if (orig_pdi->sibling)
6948 return orig_pdi->sibling;
6949
6950 /* Are there any children to deal with? */
6951
6952 if (!orig_pdi->has_children)
6953 return info_ptr;
6954
6955 /* Skip the children the long way. */
6956
6957 return skip_children (reader, info_ptr);
6958 }
6959
6960 /* Expand this partial symbol table into a full symbol table. SELF is
6961 not NULL. */
6962
6963 static void
6964 dwarf2_read_symtab (struct partial_symtab *self,
6965 struct objfile *objfile)
6966 {
6967 if (self->readin)
6968 {
6969 warning (_("bug: psymtab for %s is already read in."),
6970 self->filename);
6971 }
6972 else
6973 {
6974 if (info_verbose)
6975 {
6976 printf_filtered (_("Reading in symbols for %s..."),
6977 self->filename);
6978 gdb_flush (gdb_stdout);
6979 }
6980
6981 /* Restore our global data. */
6982 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6983
6984 /* If this psymtab is constructed from a debug-only objfile, the
6985 has_section_at_zero flag will not necessarily be correct. We
6986 can get the correct value for this flag by looking at the data
6987 associated with the (presumably stripped) associated objfile. */
6988 if (objfile->separate_debug_objfile_backlink)
6989 {
6990 struct dwarf2_per_objfile *dpo_backlink
6991 = objfile_data (objfile->separate_debug_objfile_backlink,
6992 dwarf2_objfile_data_key);
6993
6994 dwarf2_per_objfile->has_section_at_zero
6995 = dpo_backlink->has_section_at_zero;
6996 }
6997
6998 dwarf2_per_objfile->reading_partial_symbols = 0;
6999
7000 psymtab_to_symtab_1 (self);
7001
7002 /* Finish up the debug error message. */
7003 if (info_verbose)
7004 printf_filtered (_("done.\n"));
7005 }
7006
7007 process_cu_includes ();
7008 }
7009 \f
7010 /* Reading in full CUs. */
7011
7012 /* Add PER_CU to the queue. */
7013
7014 static void
7015 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7016 enum language pretend_language)
7017 {
7018 struct dwarf2_queue_item *item;
7019
7020 per_cu->queued = 1;
7021 item = xmalloc (sizeof (*item));
7022 item->per_cu = per_cu;
7023 item->pretend_language = pretend_language;
7024 item->next = NULL;
7025
7026 if (dwarf2_queue == NULL)
7027 dwarf2_queue = item;
7028 else
7029 dwarf2_queue_tail->next = item;
7030
7031 dwarf2_queue_tail = item;
7032 }
7033
7034 /* If PER_CU is not yet queued, add it to the queue.
7035 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7036 dependency.
7037 The result is non-zero if PER_CU was queued, otherwise the result is zero
7038 meaning either PER_CU is already queued or it is already loaded.
7039
7040 N.B. There is an invariant here that if a CU is queued then it is loaded.
7041 The caller is required to load PER_CU if we return non-zero. */
7042
7043 static int
7044 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7045 struct dwarf2_per_cu_data *per_cu,
7046 enum language pretend_language)
7047 {
7048 /* We may arrive here during partial symbol reading, if we need full
7049 DIEs to process an unusual case (e.g. template arguments). Do
7050 not queue PER_CU, just tell our caller to load its DIEs. */
7051 if (dwarf2_per_objfile->reading_partial_symbols)
7052 {
7053 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7054 return 1;
7055 return 0;
7056 }
7057
7058 /* Mark the dependence relation so that we don't flush PER_CU
7059 too early. */
7060 if (dependent_cu != NULL)
7061 dwarf2_add_dependence (dependent_cu, per_cu);
7062
7063 /* If it's already on the queue, we have nothing to do. */
7064 if (per_cu->queued)
7065 return 0;
7066
7067 /* If the compilation unit is already loaded, just mark it as
7068 used. */
7069 if (per_cu->cu != NULL)
7070 {
7071 per_cu->cu->last_used = 0;
7072 return 0;
7073 }
7074
7075 /* Add it to the queue. */
7076 queue_comp_unit (per_cu, pretend_language);
7077
7078 return 1;
7079 }
7080
7081 /* Process the queue. */
7082
7083 static void
7084 process_queue (void)
7085 {
7086 struct dwarf2_queue_item *item, *next_item;
7087
7088 if (dwarf2_read_debug)
7089 {
7090 fprintf_unfiltered (gdb_stdlog,
7091 "Expanding one or more symtabs of objfile %s ...\n",
7092 objfile_name (dwarf2_per_objfile->objfile));
7093 }
7094
7095 /* The queue starts out with one item, but following a DIE reference
7096 may load a new CU, adding it to the end of the queue. */
7097 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7098 {
7099 if (dwarf2_per_objfile->using_index
7100 ? !item->per_cu->v.quick->symtab
7101 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7102 {
7103 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7104 char buf[100];
7105
7106 if (per_cu->is_debug_types)
7107 {
7108 struct signatured_type *sig_type =
7109 (struct signatured_type *) per_cu;
7110
7111 sprintf (buf, "TU %s at offset 0x%x",
7112 hex_string (sig_type->signature), per_cu->offset.sect_off);
7113 }
7114 else
7115 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7116
7117 if (dwarf2_read_debug)
7118 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7119
7120 if (per_cu->is_debug_types)
7121 process_full_type_unit (per_cu, item->pretend_language);
7122 else
7123 process_full_comp_unit (per_cu, item->pretend_language);
7124
7125 if (dwarf2_read_debug)
7126 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7127 }
7128
7129 item->per_cu->queued = 0;
7130 next_item = item->next;
7131 xfree (item);
7132 }
7133
7134 dwarf2_queue_tail = NULL;
7135
7136 if (dwarf2_read_debug)
7137 {
7138 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7139 objfile_name (dwarf2_per_objfile->objfile));
7140 }
7141 }
7142
7143 /* Free all allocated queue entries. This function only releases anything if
7144 an error was thrown; if the queue was processed then it would have been
7145 freed as we went along. */
7146
7147 static void
7148 dwarf2_release_queue (void *dummy)
7149 {
7150 struct dwarf2_queue_item *item, *last;
7151
7152 item = dwarf2_queue;
7153 while (item)
7154 {
7155 /* Anything still marked queued is likely to be in an
7156 inconsistent state, so discard it. */
7157 if (item->per_cu->queued)
7158 {
7159 if (item->per_cu->cu != NULL)
7160 free_one_cached_comp_unit (item->per_cu);
7161 item->per_cu->queued = 0;
7162 }
7163
7164 last = item;
7165 item = item->next;
7166 xfree (last);
7167 }
7168
7169 dwarf2_queue = dwarf2_queue_tail = NULL;
7170 }
7171
7172 /* Read in full symbols for PST, and anything it depends on. */
7173
7174 static void
7175 psymtab_to_symtab_1 (struct partial_symtab *pst)
7176 {
7177 struct dwarf2_per_cu_data *per_cu;
7178 int i;
7179
7180 if (pst->readin)
7181 return;
7182
7183 for (i = 0; i < pst->number_of_dependencies; i++)
7184 if (!pst->dependencies[i]->readin
7185 && pst->dependencies[i]->user == NULL)
7186 {
7187 /* Inform about additional files that need to be read in. */
7188 if (info_verbose)
7189 {
7190 /* FIXME: i18n: Need to make this a single string. */
7191 fputs_filtered (" ", gdb_stdout);
7192 wrap_here ("");
7193 fputs_filtered ("and ", gdb_stdout);
7194 wrap_here ("");
7195 printf_filtered ("%s...", pst->dependencies[i]->filename);
7196 wrap_here (""); /* Flush output. */
7197 gdb_flush (gdb_stdout);
7198 }
7199 psymtab_to_symtab_1 (pst->dependencies[i]);
7200 }
7201
7202 per_cu = pst->read_symtab_private;
7203
7204 if (per_cu == NULL)
7205 {
7206 /* It's an include file, no symbols to read for it.
7207 Everything is in the parent symtab. */
7208 pst->readin = 1;
7209 return;
7210 }
7211
7212 dw2_do_instantiate_symtab (per_cu);
7213 }
7214
7215 /* Trivial hash function for die_info: the hash value of a DIE
7216 is its offset in .debug_info for this objfile. */
7217
7218 static hashval_t
7219 die_hash (const void *item)
7220 {
7221 const struct die_info *die = item;
7222
7223 return die->offset.sect_off;
7224 }
7225
7226 /* Trivial comparison function for die_info structures: two DIEs
7227 are equal if they have the same offset. */
7228
7229 static int
7230 die_eq (const void *item_lhs, const void *item_rhs)
7231 {
7232 const struct die_info *die_lhs = item_lhs;
7233 const struct die_info *die_rhs = item_rhs;
7234
7235 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7236 }
7237
7238 /* die_reader_func for load_full_comp_unit.
7239 This is identical to read_signatured_type_reader,
7240 but is kept separate for now. */
7241
7242 static void
7243 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7244 const gdb_byte *info_ptr,
7245 struct die_info *comp_unit_die,
7246 int has_children,
7247 void *data)
7248 {
7249 struct dwarf2_cu *cu = reader->cu;
7250 enum language *language_ptr = data;
7251
7252 gdb_assert (cu->die_hash == NULL);
7253 cu->die_hash =
7254 htab_create_alloc_ex (cu->header.length / 12,
7255 die_hash,
7256 die_eq,
7257 NULL,
7258 &cu->comp_unit_obstack,
7259 hashtab_obstack_allocate,
7260 dummy_obstack_deallocate);
7261
7262 if (has_children)
7263 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7264 &info_ptr, comp_unit_die);
7265 cu->dies = comp_unit_die;
7266 /* comp_unit_die is not stored in die_hash, no need. */
7267
7268 /* We try not to read any attributes in this function, because not
7269 all CUs needed for references have been loaded yet, and symbol
7270 table processing isn't initialized. But we have to set the CU language,
7271 or we won't be able to build types correctly.
7272 Similarly, if we do not read the producer, we can not apply
7273 producer-specific interpretation. */
7274 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7275 }
7276
7277 /* Load the DIEs associated with PER_CU into memory. */
7278
7279 static void
7280 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7281 enum language pretend_language)
7282 {
7283 gdb_assert (! this_cu->is_debug_types);
7284
7285 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7286 load_full_comp_unit_reader, &pretend_language);
7287 }
7288
7289 /* Add a DIE to the delayed physname list. */
7290
7291 static void
7292 add_to_method_list (struct type *type, int fnfield_index, int index,
7293 const char *name, struct die_info *die,
7294 struct dwarf2_cu *cu)
7295 {
7296 struct delayed_method_info mi;
7297 mi.type = type;
7298 mi.fnfield_index = fnfield_index;
7299 mi.index = index;
7300 mi.name = name;
7301 mi.die = die;
7302 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7303 }
7304
7305 /* A cleanup for freeing the delayed method list. */
7306
7307 static void
7308 free_delayed_list (void *ptr)
7309 {
7310 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7311 if (cu->method_list != NULL)
7312 {
7313 VEC_free (delayed_method_info, cu->method_list);
7314 cu->method_list = NULL;
7315 }
7316 }
7317
7318 /* Compute the physnames of any methods on the CU's method list.
7319
7320 The computation of method physnames is delayed in order to avoid the
7321 (bad) condition that one of the method's formal parameters is of an as yet
7322 incomplete type. */
7323
7324 static void
7325 compute_delayed_physnames (struct dwarf2_cu *cu)
7326 {
7327 int i;
7328 struct delayed_method_info *mi;
7329 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7330 {
7331 const char *physname;
7332 struct fn_fieldlist *fn_flp
7333 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7334 physname = dwarf2_physname (mi->name, mi->die, cu);
7335 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7336 }
7337 }
7338
7339 /* Go objects should be embedded in a DW_TAG_module DIE,
7340 and it's not clear if/how imported objects will appear.
7341 To keep Go support simple until that's worked out,
7342 go back through what we've read and create something usable.
7343 We could do this while processing each DIE, and feels kinda cleaner,
7344 but that way is more invasive.
7345 This is to, for example, allow the user to type "p var" or "b main"
7346 without having to specify the package name, and allow lookups
7347 of module.object to work in contexts that use the expression
7348 parser. */
7349
7350 static void
7351 fixup_go_packaging (struct dwarf2_cu *cu)
7352 {
7353 char *package_name = NULL;
7354 struct pending *list;
7355 int i;
7356
7357 for (list = global_symbols; list != NULL; list = list->next)
7358 {
7359 for (i = 0; i < list->nsyms; ++i)
7360 {
7361 struct symbol *sym = list->symbol[i];
7362
7363 if (SYMBOL_LANGUAGE (sym) == language_go
7364 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7365 {
7366 char *this_package_name = go_symbol_package_name (sym);
7367
7368 if (this_package_name == NULL)
7369 continue;
7370 if (package_name == NULL)
7371 package_name = this_package_name;
7372 else
7373 {
7374 if (strcmp (package_name, this_package_name) != 0)
7375 complaint (&symfile_complaints,
7376 _("Symtab %s has objects from two different Go packages: %s and %s"),
7377 (SYMBOL_SYMTAB (sym)
7378 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7379 : objfile_name (cu->objfile)),
7380 this_package_name, package_name);
7381 xfree (this_package_name);
7382 }
7383 }
7384 }
7385 }
7386
7387 if (package_name != NULL)
7388 {
7389 struct objfile *objfile = cu->objfile;
7390 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7391 package_name,
7392 strlen (package_name));
7393 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7394 saved_package_name, objfile);
7395 struct symbol *sym;
7396
7397 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7398
7399 sym = allocate_symbol (objfile);
7400 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7401 SYMBOL_SET_NAMES (sym, saved_package_name,
7402 strlen (saved_package_name), 0, objfile);
7403 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7404 e.g., "main" finds the "main" module and not C's main(). */
7405 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7406 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7407 SYMBOL_TYPE (sym) = type;
7408
7409 add_symbol_to_list (sym, &global_symbols);
7410
7411 xfree (package_name);
7412 }
7413 }
7414
7415 /* Return the symtab for PER_CU. This works properly regardless of
7416 whether we're using the index or psymtabs. */
7417
7418 static struct symtab *
7419 get_symtab (struct dwarf2_per_cu_data *per_cu)
7420 {
7421 return (dwarf2_per_objfile->using_index
7422 ? per_cu->v.quick->symtab
7423 : per_cu->v.psymtab->symtab);
7424 }
7425
7426 /* A helper function for computing the list of all symbol tables
7427 included by PER_CU. */
7428
7429 static void
7430 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7431 htab_t all_children, htab_t all_type_symtabs,
7432 struct dwarf2_per_cu_data *per_cu,
7433 struct symtab *immediate_parent)
7434 {
7435 void **slot;
7436 int ix;
7437 struct symtab *symtab;
7438 struct dwarf2_per_cu_data *iter;
7439
7440 slot = htab_find_slot (all_children, per_cu, INSERT);
7441 if (*slot != NULL)
7442 {
7443 /* This inclusion and its children have been processed. */
7444 return;
7445 }
7446
7447 *slot = per_cu;
7448 /* Only add a CU if it has a symbol table. */
7449 symtab = get_symtab (per_cu);
7450 if (symtab != NULL)
7451 {
7452 /* If this is a type unit only add its symbol table if we haven't
7453 seen it yet (type unit per_cu's can share symtabs). */
7454 if (per_cu->is_debug_types)
7455 {
7456 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7457 if (*slot == NULL)
7458 {
7459 *slot = symtab;
7460 VEC_safe_push (symtab_ptr, *result, symtab);
7461 if (symtab->user == NULL)
7462 symtab->user = immediate_parent;
7463 }
7464 }
7465 else
7466 {
7467 VEC_safe_push (symtab_ptr, *result, symtab);
7468 if (symtab->user == NULL)
7469 symtab->user = immediate_parent;
7470 }
7471 }
7472
7473 for (ix = 0;
7474 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7475 ++ix)
7476 {
7477 recursively_compute_inclusions (result, all_children,
7478 all_type_symtabs, iter, symtab);
7479 }
7480 }
7481
7482 /* Compute the symtab 'includes' fields for the symtab related to
7483 PER_CU. */
7484
7485 static void
7486 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7487 {
7488 gdb_assert (! per_cu->is_debug_types);
7489
7490 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7491 {
7492 int ix, len;
7493 struct dwarf2_per_cu_data *per_cu_iter;
7494 struct symtab *symtab_iter;
7495 VEC (symtab_ptr) *result_symtabs = NULL;
7496 htab_t all_children, all_type_symtabs;
7497 struct symtab *symtab = get_symtab (per_cu);
7498
7499 /* If we don't have a symtab, we can just skip this case. */
7500 if (symtab == NULL)
7501 return;
7502
7503 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7504 NULL, xcalloc, xfree);
7505 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7506 NULL, xcalloc, xfree);
7507
7508 for (ix = 0;
7509 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7510 ix, per_cu_iter);
7511 ++ix)
7512 {
7513 recursively_compute_inclusions (&result_symtabs, all_children,
7514 all_type_symtabs, per_cu_iter,
7515 symtab);
7516 }
7517
7518 /* Now we have a transitive closure of all the included symtabs. */
7519 len = VEC_length (symtab_ptr, result_symtabs);
7520 symtab->includes
7521 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7522 (len + 1) * sizeof (struct symtab *));
7523 for (ix = 0;
7524 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7525 ++ix)
7526 symtab->includes[ix] = symtab_iter;
7527 symtab->includes[len] = NULL;
7528
7529 VEC_free (symtab_ptr, result_symtabs);
7530 htab_delete (all_children);
7531 htab_delete (all_type_symtabs);
7532 }
7533 }
7534
7535 /* Compute the 'includes' field for the symtabs of all the CUs we just
7536 read. */
7537
7538 static void
7539 process_cu_includes (void)
7540 {
7541 int ix;
7542 struct dwarf2_per_cu_data *iter;
7543
7544 for (ix = 0;
7545 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7546 ix, iter);
7547 ++ix)
7548 {
7549 if (! iter->is_debug_types)
7550 compute_symtab_includes (iter);
7551 }
7552
7553 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7554 }
7555
7556 /* Generate full symbol information for PER_CU, whose DIEs have
7557 already been loaded into memory. */
7558
7559 static void
7560 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7561 enum language pretend_language)
7562 {
7563 struct dwarf2_cu *cu = per_cu->cu;
7564 struct objfile *objfile = per_cu->objfile;
7565 CORE_ADDR lowpc, highpc;
7566 struct symtab *symtab;
7567 struct cleanup *back_to, *delayed_list_cleanup;
7568 CORE_ADDR baseaddr;
7569 struct block *static_block;
7570
7571 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7572
7573 buildsym_init ();
7574 back_to = make_cleanup (really_free_pendings, NULL);
7575 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7576
7577 cu->list_in_scope = &file_symbols;
7578
7579 cu->language = pretend_language;
7580 cu->language_defn = language_def (cu->language);
7581
7582 /* Do line number decoding in read_file_scope () */
7583 process_die (cu->dies, cu);
7584
7585 /* For now fudge the Go package. */
7586 if (cu->language == language_go)
7587 fixup_go_packaging (cu);
7588
7589 /* Now that we have processed all the DIEs in the CU, all the types
7590 should be complete, and it should now be safe to compute all of the
7591 physnames. */
7592 compute_delayed_physnames (cu);
7593 do_cleanups (delayed_list_cleanup);
7594
7595 /* Some compilers don't define a DW_AT_high_pc attribute for the
7596 compilation unit. If the DW_AT_high_pc is missing, synthesize
7597 it, by scanning the DIE's below the compilation unit. */
7598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7599
7600 static_block
7601 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7602
7603 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7604 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7605 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7606 addrmap to help ensure it has an accurate map of pc values belonging to
7607 this comp unit. */
7608 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7609
7610 symtab = end_symtab_from_static_block (static_block, objfile,
7611 SECT_OFF_TEXT (objfile), 0);
7612
7613 if (symtab != NULL)
7614 {
7615 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7616
7617 /* Set symtab language to language from DW_AT_language. If the
7618 compilation is from a C file generated by language preprocessors, do
7619 not set the language if it was already deduced by start_subfile. */
7620 if (!(cu->language == language_c && symtab->language != language_c))
7621 symtab->language = cu->language;
7622
7623 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7624 produce DW_AT_location with location lists but it can be possibly
7625 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7626 there were bugs in prologue debug info, fixed later in GCC-4.5
7627 by "unwind info for epilogues" patch (which is not directly related).
7628
7629 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7630 needed, it would be wrong due to missing DW_AT_producer there.
7631
7632 Still one can confuse GDB by using non-standard GCC compilation
7633 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7634 */
7635 if (cu->has_loclist && gcc_4_minor >= 5)
7636 symtab->locations_valid = 1;
7637
7638 if (gcc_4_minor >= 5)
7639 symtab->epilogue_unwind_valid = 1;
7640
7641 symtab->call_site_htab = cu->call_site_htab;
7642 }
7643
7644 if (dwarf2_per_objfile->using_index)
7645 per_cu->v.quick->symtab = symtab;
7646 else
7647 {
7648 struct partial_symtab *pst = per_cu->v.psymtab;
7649 pst->symtab = symtab;
7650 pst->readin = 1;
7651 }
7652
7653 /* Push it for inclusion processing later. */
7654 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7655
7656 do_cleanups (back_to);
7657 }
7658
7659 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7660 already been loaded into memory. */
7661
7662 static void
7663 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7664 enum language pretend_language)
7665 {
7666 struct dwarf2_cu *cu = per_cu->cu;
7667 struct objfile *objfile = per_cu->objfile;
7668 struct symtab *symtab;
7669 struct cleanup *back_to, *delayed_list_cleanup;
7670 struct signatured_type *sig_type;
7671
7672 gdb_assert (per_cu->is_debug_types);
7673 sig_type = (struct signatured_type *) per_cu;
7674
7675 buildsym_init ();
7676 back_to = make_cleanup (really_free_pendings, NULL);
7677 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7678
7679 cu->list_in_scope = &file_symbols;
7680
7681 cu->language = pretend_language;
7682 cu->language_defn = language_def (cu->language);
7683
7684 /* The symbol tables are set up in read_type_unit_scope. */
7685 process_die (cu->dies, cu);
7686
7687 /* For now fudge the Go package. */
7688 if (cu->language == language_go)
7689 fixup_go_packaging (cu);
7690
7691 /* Now that we have processed all the DIEs in the CU, all the types
7692 should be complete, and it should now be safe to compute all of the
7693 physnames. */
7694 compute_delayed_physnames (cu);
7695 do_cleanups (delayed_list_cleanup);
7696
7697 /* TUs share symbol tables.
7698 If this is the first TU to use this symtab, complete the construction
7699 of it with end_expandable_symtab. Otherwise, complete the addition of
7700 this TU's symbols to the existing symtab. */
7701 if (sig_type->type_unit_group->primary_symtab == NULL)
7702 {
7703 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7704 sig_type->type_unit_group->primary_symtab = symtab;
7705
7706 if (symtab != NULL)
7707 {
7708 /* Set symtab language to language from DW_AT_language. If the
7709 compilation is from a C file generated by language preprocessors,
7710 do not set the language if it was already deduced by
7711 start_subfile. */
7712 if (!(cu->language == language_c && symtab->language != language_c))
7713 symtab->language = cu->language;
7714 }
7715 }
7716 else
7717 {
7718 augment_type_symtab (objfile,
7719 sig_type->type_unit_group->primary_symtab);
7720 symtab = sig_type->type_unit_group->primary_symtab;
7721 }
7722
7723 if (dwarf2_per_objfile->using_index)
7724 per_cu->v.quick->symtab = symtab;
7725 else
7726 {
7727 struct partial_symtab *pst = per_cu->v.psymtab;
7728 pst->symtab = symtab;
7729 pst->readin = 1;
7730 }
7731
7732 do_cleanups (back_to);
7733 }
7734
7735 /* Process an imported unit DIE. */
7736
7737 static void
7738 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7739 {
7740 struct attribute *attr;
7741
7742 /* For now we don't handle imported units in type units. */
7743 if (cu->per_cu->is_debug_types)
7744 {
7745 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7746 " supported in type units [in module %s]"),
7747 objfile_name (cu->objfile));
7748 }
7749
7750 attr = dwarf2_attr (die, DW_AT_import, cu);
7751 if (attr != NULL)
7752 {
7753 struct dwarf2_per_cu_data *per_cu;
7754 struct symtab *imported_symtab;
7755 sect_offset offset;
7756 int is_dwz;
7757
7758 offset = dwarf2_get_ref_die_offset (attr);
7759 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7760 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7761
7762 /* If necessary, add it to the queue and load its DIEs. */
7763 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7764 load_full_comp_unit (per_cu, cu->language);
7765
7766 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7767 per_cu);
7768 }
7769 }
7770
7771 /* Process a die and its children. */
7772
7773 static void
7774 process_die (struct die_info *die, struct dwarf2_cu *cu)
7775 {
7776 switch (die->tag)
7777 {
7778 case DW_TAG_padding:
7779 break;
7780 case DW_TAG_compile_unit:
7781 case DW_TAG_partial_unit:
7782 read_file_scope (die, cu);
7783 break;
7784 case DW_TAG_type_unit:
7785 read_type_unit_scope (die, cu);
7786 break;
7787 case DW_TAG_subprogram:
7788 case DW_TAG_inlined_subroutine:
7789 read_func_scope (die, cu);
7790 break;
7791 case DW_TAG_lexical_block:
7792 case DW_TAG_try_block:
7793 case DW_TAG_catch_block:
7794 read_lexical_block_scope (die, cu);
7795 break;
7796 case DW_TAG_GNU_call_site:
7797 read_call_site_scope (die, cu);
7798 break;
7799 case DW_TAG_class_type:
7800 case DW_TAG_interface_type:
7801 case DW_TAG_structure_type:
7802 case DW_TAG_union_type:
7803 process_structure_scope (die, cu);
7804 break;
7805 case DW_TAG_enumeration_type:
7806 process_enumeration_scope (die, cu);
7807 break;
7808
7809 /* These dies have a type, but processing them does not create
7810 a symbol or recurse to process the children. Therefore we can
7811 read them on-demand through read_type_die. */
7812 case DW_TAG_subroutine_type:
7813 case DW_TAG_set_type:
7814 case DW_TAG_array_type:
7815 case DW_TAG_pointer_type:
7816 case DW_TAG_ptr_to_member_type:
7817 case DW_TAG_reference_type:
7818 case DW_TAG_string_type:
7819 break;
7820
7821 case DW_TAG_base_type:
7822 case DW_TAG_subrange_type:
7823 case DW_TAG_typedef:
7824 /* Add a typedef symbol for the type definition, if it has a
7825 DW_AT_name. */
7826 new_symbol (die, read_type_die (die, cu), cu);
7827 break;
7828 case DW_TAG_common_block:
7829 read_common_block (die, cu);
7830 break;
7831 case DW_TAG_common_inclusion:
7832 break;
7833 case DW_TAG_namespace:
7834 cu->processing_has_namespace_info = 1;
7835 read_namespace (die, cu);
7836 break;
7837 case DW_TAG_module:
7838 cu->processing_has_namespace_info = 1;
7839 read_module (die, cu);
7840 break;
7841 case DW_TAG_imported_declaration:
7842 case DW_TAG_imported_module:
7843 cu->processing_has_namespace_info = 1;
7844 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7845 || cu->language != language_fortran))
7846 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7847 dwarf_tag_name (die->tag));
7848 read_import_statement (die, cu);
7849 break;
7850
7851 case DW_TAG_imported_unit:
7852 process_imported_unit_die (die, cu);
7853 break;
7854
7855 default:
7856 new_symbol (die, NULL, cu);
7857 break;
7858 }
7859 }
7860 \f
7861 /* DWARF name computation. */
7862
7863 /* A helper function for dwarf2_compute_name which determines whether DIE
7864 needs to have the name of the scope prepended to the name listed in the
7865 die. */
7866
7867 static int
7868 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7869 {
7870 struct attribute *attr;
7871
7872 switch (die->tag)
7873 {
7874 case DW_TAG_namespace:
7875 case DW_TAG_typedef:
7876 case DW_TAG_class_type:
7877 case DW_TAG_interface_type:
7878 case DW_TAG_structure_type:
7879 case DW_TAG_union_type:
7880 case DW_TAG_enumeration_type:
7881 case DW_TAG_enumerator:
7882 case DW_TAG_subprogram:
7883 case DW_TAG_member:
7884 return 1;
7885
7886 case DW_TAG_variable:
7887 case DW_TAG_constant:
7888 /* We only need to prefix "globally" visible variables. These include
7889 any variable marked with DW_AT_external or any variable that
7890 lives in a namespace. [Variables in anonymous namespaces
7891 require prefixing, but they are not DW_AT_external.] */
7892
7893 if (dwarf2_attr (die, DW_AT_specification, cu))
7894 {
7895 struct dwarf2_cu *spec_cu = cu;
7896
7897 return die_needs_namespace (die_specification (die, &spec_cu),
7898 spec_cu);
7899 }
7900
7901 attr = dwarf2_attr (die, DW_AT_external, cu);
7902 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7903 && die->parent->tag != DW_TAG_module)
7904 return 0;
7905 /* A variable in a lexical block of some kind does not need a
7906 namespace, even though in C++ such variables may be external
7907 and have a mangled name. */
7908 if (die->parent->tag == DW_TAG_lexical_block
7909 || die->parent->tag == DW_TAG_try_block
7910 || die->parent->tag == DW_TAG_catch_block
7911 || die->parent->tag == DW_TAG_subprogram)
7912 return 0;
7913 return 1;
7914
7915 default:
7916 return 0;
7917 }
7918 }
7919
7920 /* Retrieve the last character from a mem_file. */
7921
7922 static void
7923 do_ui_file_peek_last (void *object, const char *buffer, long length)
7924 {
7925 char *last_char_p = (char *) object;
7926
7927 if (length > 0)
7928 *last_char_p = buffer[length - 1];
7929 }
7930
7931 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7932 compute the physname for the object, which include a method's:
7933 - formal parameters (C++/Java),
7934 - receiver type (Go),
7935 - return type (Java).
7936
7937 The term "physname" is a bit confusing.
7938 For C++, for example, it is the demangled name.
7939 For Go, for example, it's the mangled name.
7940
7941 For Ada, return the DIE's linkage name rather than the fully qualified
7942 name. PHYSNAME is ignored..
7943
7944 The result is allocated on the objfile_obstack and canonicalized. */
7945
7946 static const char *
7947 dwarf2_compute_name (const char *name,
7948 struct die_info *die, struct dwarf2_cu *cu,
7949 int physname)
7950 {
7951 struct objfile *objfile = cu->objfile;
7952
7953 if (name == NULL)
7954 name = dwarf2_name (die, cu);
7955
7956 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7957 compute it by typename_concat inside GDB. */
7958 if (cu->language == language_ada
7959 || (cu->language == language_fortran && physname))
7960 {
7961 /* For Ada unit, we prefer the linkage name over the name, as
7962 the former contains the exported name, which the user expects
7963 to be able to reference. Ideally, we want the user to be able
7964 to reference this entity using either natural or linkage name,
7965 but we haven't started looking at this enhancement yet. */
7966 struct attribute *attr;
7967
7968 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7969 if (attr == NULL)
7970 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7971 if (attr && DW_STRING (attr))
7972 return DW_STRING (attr);
7973 }
7974
7975 /* These are the only languages we know how to qualify names in. */
7976 if (name != NULL
7977 && (cu->language == language_cplus || cu->language == language_java
7978 || cu->language == language_fortran))
7979 {
7980 if (die_needs_namespace (die, cu))
7981 {
7982 long length;
7983 const char *prefix;
7984 struct ui_file *buf;
7985
7986 prefix = determine_prefix (die, cu);
7987 buf = mem_fileopen ();
7988 if (*prefix != '\0')
7989 {
7990 char *prefixed_name = typename_concat (NULL, prefix, name,
7991 physname, cu);
7992
7993 fputs_unfiltered (prefixed_name, buf);
7994 xfree (prefixed_name);
7995 }
7996 else
7997 fputs_unfiltered (name, buf);
7998
7999 /* Template parameters may be specified in the DIE's DW_AT_name, or
8000 as children with DW_TAG_template_type_param or
8001 DW_TAG_value_type_param. If the latter, add them to the name
8002 here. If the name already has template parameters, then
8003 skip this step; some versions of GCC emit both, and
8004 it is more efficient to use the pre-computed name.
8005
8006 Something to keep in mind about this process: it is very
8007 unlikely, or in some cases downright impossible, to produce
8008 something that will match the mangled name of a function.
8009 If the definition of the function has the same debug info,
8010 we should be able to match up with it anyway. But fallbacks
8011 using the minimal symbol, for instance to find a method
8012 implemented in a stripped copy of libstdc++, will not work.
8013 If we do not have debug info for the definition, we will have to
8014 match them up some other way.
8015
8016 When we do name matching there is a related problem with function
8017 templates; two instantiated function templates are allowed to
8018 differ only by their return types, which we do not add here. */
8019
8020 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8021 {
8022 struct attribute *attr;
8023 struct die_info *child;
8024 int first = 1;
8025
8026 die->building_fullname = 1;
8027
8028 for (child = die->child; child != NULL; child = child->sibling)
8029 {
8030 struct type *type;
8031 LONGEST value;
8032 const gdb_byte *bytes;
8033 struct dwarf2_locexpr_baton *baton;
8034 struct value *v;
8035
8036 if (child->tag != DW_TAG_template_type_param
8037 && child->tag != DW_TAG_template_value_param)
8038 continue;
8039
8040 if (first)
8041 {
8042 fputs_unfiltered ("<", buf);
8043 first = 0;
8044 }
8045 else
8046 fputs_unfiltered (", ", buf);
8047
8048 attr = dwarf2_attr (child, DW_AT_type, cu);
8049 if (attr == NULL)
8050 {
8051 complaint (&symfile_complaints,
8052 _("template parameter missing DW_AT_type"));
8053 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8054 continue;
8055 }
8056 type = die_type (child, cu);
8057
8058 if (child->tag == DW_TAG_template_type_param)
8059 {
8060 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8061 continue;
8062 }
8063
8064 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8065 if (attr == NULL)
8066 {
8067 complaint (&symfile_complaints,
8068 _("template parameter missing "
8069 "DW_AT_const_value"));
8070 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8071 continue;
8072 }
8073
8074 dwarf2_const_value_attr (attr, type, name,
8075 &cu->comp_unit_obstack, cu,
8076 &value, &bytes, &baton);
8077
8078 if (TYPE_NOSIGN (type))
8079 /* GDB prints characters as NUMBER 'CHAR'. If that's
8080 changed, this can use value_print instead. */
8081 c_printchar (value, type, buf);
8082 else
8083 {
8084 struct value_print_options opts;
8085
8086 if (baton != NULL)
8087 v = dwarf2_evaluate_loc_desc (type, NULL,
8088 baton->data,
8089 baton->size,
8090 baton->per_cu);
8091 else if (bytes != NULL)
8092 {
8093 v = allocate_value (type);
8094 memcpy (value_contents_writeable (v), bytes,
8095 TYPE_LENGTH (type));
8096 }
8097 else
8098 v = value_from_longest (type, value);
8099
8100 /* Specify decimal so that we do not depend on
8101 the radix. */
8102 get_formatted_print_options (&opts, 'd');
8103 opts.raw = 1;
8104 value_print (v, buf, &opts);
8105 release_value (v);
8106 value_free (v);
8107 }
8108 }
8109
8110 die->building_fullname = 0;
8111
8112 if (!first)
8113 {
8114 /* Close the argument list, with a space if necessary
8115 (nested templates). */
8116 char last_char = '\0';
8117 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8118 if (last_char == '>')
8119 fputs_unfiltered (" >", buf);
8120 else
8121 fputs_unfiltered (">", buf);
8122 }
8123 }
8124
8125 /* For Java and C++ methods, append formal parameter type
8126 information, if PHYSNAME. */
8127
8128 if (physname && die->tag == DW_TAG_subprogram
8129 && (cu->language == language_cplus
8130 || cu->language == language_java))
8131 {
8132 struct type *type = read_type_die (die, cu);
8133
8134 c_type_print_args (type, buf, 1, cu->language,
8135 &type_print_raw_options);
8136
8137 if (cu->language == language_java)
8138 {
8139 /* For java, we must append the return type to method
8140 names. */
8141 if (die->tag == DW_TAG_subprogram)
8142 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8143 0, 0, &type_print_raw_options);
8144 }
8145 else if (cu->language == language_cplus)
8146 {
8147 /* Assume that an artificial first parameter is
8148 "this", but do not crash if it is not. RealView
8149 marks unnamed (and thus unused) parameters as
8150 artificial; there is no way to differentiate
8151 the two cases. */
8152 if (TYPE_NFIELDS (type) > 0
8153 && TYPE_FIELD_ARTIFICIAL (type, 0)
8154 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8155 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8156 0))))
8157 fputs_unfiltered (" const", buf);
8158 }
8159 }
8160
8161 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8162 &length);
8163 ui_file_delete (buf);
8164
8165 if (cu->language == language_cplus)
8166 {
8167 const char *cname
8168 = dwarf2_canonicalize_name (name, cu,
8169 &objfile->objfile_obstack);
8170
8171 if (cname != NULL)
8172 name = cname;
8173 }
8174 }
8175 }
8176
8177 return name;
8178 }
8179
8180 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8181 If scope qualifiers are appropriate they will be added. The result
8182 will be allocated on the objfile_obstack, or NULL if the DIE does
8183 not have a name. NAME may either be from a previous call to
8184 dwarf2_name or NULL.
8185
8186 The output string will be canonicalized (if C++/Java). */
8187
8188 static const char *
8189 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8190 {
8191 return dwarf2_compute_name (name, die, cu, 0);
8192 }
8193
8194 /* Construct a physname for the given DIE in CU. NAME may either be
8195 from a previous call to dwarf2_name or NULL. The result will be
8196 allocated on the objfile_objstack or NULL if the DIE does not have a
8197 name.
8198
8199 The output string will be canonicalized (if C++/Java). */
8200
8201 static const char *
8202 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8203 {
8204 struct objfile *objfile = cu->objfile;
8205 struct attribute *attr;
8206 const char *retval, *mangled = NULL, *canon = NULL;
8207 struct cleanup *back_to;
8208 int need_copy = 1;
8209
8210 /* In this case dwarf2_compute_name is just a shortcut not building anything
8211 on its own. */
8212 if (!die_needs_namespace (die, cu))
8213 return dwarf2_compute_name (name, die, cu, 1);
8214
8215 back_to = make_cleanup (null_cleanup, NULL);
8216
8217 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8218 if (!attr)
8219 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8220
8221 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8222 has computed. */
8223 if (attr && DW_STRING (attr))
8224 {
8225 char *demangled;
8226
8227 mangled = DW_STRING (attr);
8228
8229 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8230 type. It is easier for GDB users to search for such functions as
8231 `name(params)' than `long name(params)'. In such case the minimal
8232 symbol names do not match the full symbol names but for template
8233 functions there is never a need to look up their definition from their
8234 declaration so the only disadvantage remains the minimal symbol
8235 variant `long name(params)' does not have the proper inferior type.
8236 */
8237
8238 if (cu->language == language_go)
8239 {
8240 /* This is a lie, but we already lie to the caller new_symbol_full.
8241 new_symbol_full assumes we return the mangled name.
8242 This just undoes that lie until things are cleaned up. */
8243 demangled = NULL;
8244 }
8245 else
8246 {
8247 demangled = gdb_demangle (mangled,
8248 (DMGL_PARAMS | DMGL_ANSI
8249 | (cu->language == language_java
8250 ? DMGL_JAVA | DMGL_RET_POSTFIX
8251 : DMGL_RET_DROP)));
8252 }
8253 if (demangled)
8254 {
8255 make_cleanup (xfree, demangled);
8256 canon = demangled;
8257 }
8258 else
8259 {
8260 canon = mangled;
8261 need_copy = 0;
8262 }
8263 }
8264
8265 if (canon == NULL || check_physname)
8266 {
8267 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8268
8269 if (canon != NULL && strcmp (physname, canon) != 0)
8270 {
8271 /* It may not mean a bug in GDB. The compiler could also
8272 compute DW_AT_linkage_name incorrectly. But in such case
8273 GDB would need to be bug-to-bug compatible. */
8274
8275 complaint (&symfile_complaints,
8276 _("Computed physname <%s> does not match demangled <%s> "
8277 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8278 physname, canon, mangled, die->offset.sect_off,
8279 objfile_name (objfile));
8280
8281 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8282 is available here - over computed PHYSNAME. It is safer
8283 against both buggy GDB and buggy compilers. */
8284
8285 retval = canon;
8286 }
8287 else
8288 {
8289 retval = physname;
8290 need_copy = 0;
8291 }
8292 }
8293 else
8294 retval = canon;
8295
8296 if (need_copy)
8297 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8298
8299 do_cleanups (back_to);
8300 return retval;
8301 }
8302
8303 /* Read the import statement specified by the given die and record it. */
8304
8305 static void
8306 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8307 {
8308 struct objfile *objfile = cu->objfile;
8309 struct attribute *import_attr;
8310 struct die_info *imported_die, *child_die;
8311 struct dwarf2_cu *imported_cu;
8312 const char *imported_name;
8313 const char *imported_name_prefix;
8314 const char *canonical_name;
8315 const char *import_alias;
8316 const char *imported_declaration = NULL;
8317 const char *import_prefix;
8318 VEC (const_char_ptr) *excludes = NULL;
8319 struct cleanup *cleanups;
8320
8321 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8322 if (import_attr == NULL)
8323 {
8324 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8325 dwarf_tag_name (die->tag));
8326 return;
8327 }
8328
8329 imported_cu = cu;
8330 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8331 imported_name = dwarf2_name (imported_die, imported_cu);
8332 if (imported_name == NULL)
8333 {
8334 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8335
8336 The import in the following code:
8337 namespace A
8338 {
8339 typedef int B;
8340 }
8341
8342 int main ()
8343 {
8344 using A::B;
8345 B b;
8346 return b;
8347 }
8348
8349 ...
8350 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8351 <52> DW_AT_decl_file : 1
8352 <53> DW_AT_decl_line : 6
8353 <54> DW_AT_import : <0x75>
8354 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8355 <59> DW_AT_name : B
8356 <5b> DW_AT_decl_file : 1
8357 <5c> DW_AT_decl_line : 2
8358 <5d> DW_AT_type : <0x6e>
8359 ...
8360 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8361 <76> DW_AT_byte_size : 4
8362 <77> DW_AT_encoding : 5 (signed)
8363
8364 imports the wrong die ( 0x75 instead of 0x58 ).
8365 This case will be ignored until the gcc bug is fixed. */
8366 return;
8367 }
8368
8369 /* Figure out the local name after import. */
8370 import_alias = dwarf2_name (die, cu);
8371
8372 /* Figure out where the statement is being imported to. */
8373 import_prefix = determine_prefix (die, cu);
8374
8375 /* Figure out what the scope of the imported die is and prepend it
8376 to the name of the imported die. */
8377 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8378
8379 if (imported_die->tag != DW_TAG_namespace
8380 && imported_die->tag != DW_TAG_module)
8381 {
8382 imported_declaration = imported_name;
8383 canonical_name = imported_name_prefix;
8384 }
8385 else if (strlen (imported_name_prefix) > 0)
8386 canonical_name = obconcat (&objfile->objfile_obstack,
8387 imported_name_prefix, "::", imported_name,
8388 (char *) NULL);
8389 else
8390 canonical_name = imported_name;
8391
8392 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8393
8394 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8395 for (child_die = die->child; child_die && child_die->tag;
8396 child_die = sibling_die (child_die))
8397 {
8398 /* DWARF-4: A Fortran use statement with a “rename list” may be
8399 represented by an imported module entry with an import attribute
8400 referring to the module and owned entries corresponding to those
8401 entities that are renamed as part of being imported. */
8402
8403 if (child_die->tag != DW_TAG_imported_declaration)
8404 {
8405 complaint (&symfile_complaints,
8406 _("child DW_TAG_imported_declaration expected "
8407 "- DIE at 0x%x [in module %s]"),
8408 child_die->offset.sect_off, objfile_name (objfile));
8409 continue;
8410 }
8411
8412 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8413 if (import_attr == NULL)
8414 {
8415 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8416 dwarf_tag_name (child_die->tag));
8417 continue;
8418 }
8419
8420 imported_cu = cu;
8421 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8422 &imported_cu);
8423 imported_name = dwarf2_name (imported_die, imported_cu);
8424 if (imported_name == NULL)
8425 {
8426 complaint (&symfile_complaints,
8427 _("child DW_TAG_imported_declaration has unknown "
8428 "imported name - DIE at 0x%x [in module %s]"),
8429 child_die->offset.sect_off, objfile_name (objfile));
8430 continue;
8431 }
8432
8433 VEC_safe_push (const_char_ptr, excludes, imported_name);
8434
8435 process_die (child_die, cu);
8436 }
8437
8438 cp_add_using_directive (import_prefix,
8439 canonical_name,
8440 import_alias,
8441 imported_declaration,
8442 excludes,
8443 0,
8444 &objfile->objfile_obstack);
8445
8446 do_cleanups (cleanups);
8447 }
8448
8449 /* Cleanup function for handle_DW_AT_stmt_list. */
8450
8451 static void
8452 free_cu_line_header (void *arg)
8453 {
8454 struct dwarf2_cu *cu = arg;
8455
8456 free_line_header (cu->line_header);
8457 cu->line_header = NULL;
8458 }
8459
8460 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8461 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8462 this, it was first present in GCC release 4.3.0. */
8463
8464 static int
8465 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8466 {
8467 if (!cu->checked_producer)
8468 check_producer (cu);
8469
8470 return cu->producer_is_gcc_lt_4_3;
8471 }
8472
8473 static void
8474 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8475 const char **name, const char **comp_dir)
8476 {
8477 struct attribute *attr;
8478
8479 *name = NULL;
8480 *comp_dir = NULL;
8481
8482 /* Find the filename. Do not use dwarf2_name here, since the filename
8483 is not a source language identifier. */
8484 attr = dwarf2_attr (die, DW_AT_name, cu);
8485 if (attr)
8486 {
8487 *name = DW_STRING (attr);
8488 }
8489
8490 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8491 if (attr)
8492 *comp_dir = DW_STRING (attr);
8493 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8494 && IS_ABSOLUTE_PATH (*name))
8495 {
8496 char *d = ldirname (*name);
8497
8498 *comp_dir = d;
8499 if (d != NULL)
8500 make_cleanup (xfree, d);
8501 }
8502 if (*comp_dir != NULL)
8503 {
8504 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8505 directory, get rid of it. */
8506 char *cp = strchr (*comp_dir, ':');
8507
8508 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8509 *comp_dir = cp + 1;
8510 }
8511
8512 if (*name == NULL)
8513 *name = "<unknown>";
8514 }
8515
8516 /* Handle DW_AT_stmt_list for a compilation unit.
8517 DIE is the DW_TAG_compile_unit die for CU.
8518 COMP_DIR is the compilation directory.
8519 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8520
8521 static void
8522 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8523 const char *comp_dir) /* ARI: editCase function */
8524 {
8525 struct attribute *attr;
8526
8527 gdb_assert (! cu->per_cu->is_debug_types);
8528
8529 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8530 if (attr)
8531 {
8532 unsigned int line_offset = DW_UNSND (attr);
8533 struct line_header *line_header
8534 = dwarf_decode_line_header (line_offset, cu);
8535
8536 if (line_header)
8537 {
8538 cu->line_header = line_header;
8539 make_cleanup (free_cu_line_header, cu);
8540 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8541 }
8542 }
8543 }
8544
8545 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8546
8547 static void
8548 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8549 {
8550 struct objfile *objfile = dwarf2_per_objfile->objfile;
8551 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8552 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8553 CORE_ADDR highpc = ((CORE_ADDR) 0);
8554 struct attribute *attr;
8555 const char *name = NULL;
8556 const char *comp_dir = NULL;
8557 struct die_info *child_die;
8558 bfd *abfd = objfile->obfd;
8559 CORE_ADDR baseaddr;
8560
8561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8562
8563 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8564
8565 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8566 from finish_block. */
8567 if (lowpc == ((CORE_ADDR) -1))
8568 lowpc = highpc;
8569 lowpc += baseaddr;
8570 highpc += baseaddr;
8571
8572 find_file_and_directory (die, cu, &name, &comp_dir);
8573
8574 prepare_one_comp_unit (cu, die, cu->language);
8575
8576 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8577 standardised yet. As a workaround for the language detection we fall
8578 back to the DW_AT_producer string. */
8579 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8580 cu->language = language_opencl;
8581
8582 /* Similar hack for Go. */
8583 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8584 set_cu_language (DW_LANG_Go, cu);
8585
8586 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8587
8588 /* Decode line number information if present. We do this before
8589 processing child DIEs, so that the line header table is available
8590 for DW_AT_decl_file. */
8591 handle_DW_AT_stmt_list (die, cu, comp_dir);
8592
8593 /* Process all dies in compilation unit. */
8594 if (die->child != NULL)
8595 {
8596 child_die = die->child;
8597 while (child_die && child_die->tag)
8598 {
8599 process_die (child_die, cu);
8600 child_die = sibling_die (child_die);
8601 }
8602 }
8603
8604 /* Decode macro information, if present. Dwarf 2 macro information
8605 refers to information in the line number info statement program
8606 header, so we can only read it if we've read the header
8607 successfully. */
8608 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8609 if (attr && cu->line_header)
8610 {
8611 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8612 complaint (&symfile_complaints,
8613 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8614
8615 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8616 }
8617 else
8618 {
8619 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8620 if (attr && cu->line_header)
8621 {
8622 unsigned int macro_offset = DW_UNSND (attr);
8623
8624 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8625 }
8626 }
8627
8628 do_cleanups (back_to);
8629 }
8630
8631 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8632 Create the set of symtabs used by this TU, or if this TU is sharing
8633 symtabs with another TU and the symtabs have already been created
8634 then restore those symtabs in the line header.
8635 We don't need the pc/line-number mapping for type units. */
8636
8637 static void
8638 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8639 {
8640 struct objfile *objfile = dwarf2_per_objfile->objfile;
8641 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8642 struct type_unit_group *tu_group;
8643 int first_time;
8644 struct line_header *lh;
8645 struct attribute *attr;
8646 unsigned int i, line_offset;
8647 struct signatured_type *sig_type;
8648
8649 gdb_assert (per_cu->is_debug_types);
8650 sig_type = (struct signatured_type *) per_cu;
8651
8652 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8653
8654 /* If we're using .gdb_index (includes -readnow) then
8655 per_cu->type_unit_group may not have been set up yet. */
8656 if (sig_type->type_unit_group == NULL)
8657 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8658 tu_group = sig_type->type_unit_group;
8659
8660 /* If we've already processed this stmt_list there's no real need to
8661 do it again, we could fake it and just recreate the part we need
8662 (file name,index -> symtab mapping). If data shows this optimization
8663 is useful we can do it then. */
8664 first_time = tu_group->primary_symtab == NULL;
8665
8666 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8667 debug info. */
8668 lh = NULL;
8669 if (attr != NULL)
8670 {
8671 line_offset = DW_UNSND (attr);
8672 lh = dwarf_decode_line_header (line_offset, cu);
8673 }
8674 if (lh == NULL)
8675 {
8676 if (first_time)
8677 dwarf2_start_symtab (cu, "", NULL, 0);
8678 else
8679 {
8680 gdb_assert (tu_group->symtabs == NULL);
8681 restart_symtab (0);
8682 }
8683 /* Note: The primary symtab will get allocated at the end. */
8684 return;
8685 }
8686
8687 cu->line_header = lh;
8688 make_cleanup (free_cu_line_header, cu);
8689
8690 if (first_time)
8691 {
8692 dwarf2_start_symtab (cu, "", NULL, 0);
8693
8694 tu_group->num_symtabs = lh->num_file_names;
8695 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8696
8697 for (i = 0; i < lh->num_file_names; ++i)
8698 {
8699 const char *dir = NULL;
8700 struct file_entry *fe = &lh->file_names[i];
8701
8702 if (fe->dir_index)
8703 dir = lh->include_dirs[fe->dir_index - 1];
8704 dwarf2_start_subfile (fe->name, dir, NULL);
8705
8706 /* Note: We don't have to watch for the main subfile here, type units
8707 don't have DW_AT_name. */
8708
8709 if (current_subfile->symtab == NULL)
8710 {
8711 /* NOTE: start_subfile will recognize when it's been passed
8712 a file it has already seen. So we can't assume there's a
8713 simple mapping from lh->file_names to subfiles,
8714 lh->file_names may contain dups. */
8715 current_subfile->symtab = allocate_symtab (current_subfile->name,
8716 objfile);
8717 }
8718
8719 fe->symtab = current_subfile->symtab;
8720 tu_group->symtabs[i] = fe->symtab;
8721 }
8722 }
8723 else
8724 {
8725 restart_symtab (0);
8726
8727 for (i = 0; i < lh->num_file_names; ++i)
8728 {
8729 struct file_entry *fe = &lh->file_names[i];
8730
8731 fe->symtab = tu_group->symtabs[i];
8732 }
8733 }
8734
8735 /* The main symtab is allocated last. Type units don't have DW_AT_name
8736 so they don't have a "real" (so to speak) symtab anyway.
8737 There is later code that will assign the main symtab to all symbols
8738 that don't have one. We need to handle the case of a symbol with a
8739 missing symtab (DW_AT_decl_file) anyway. */
8740 }
8741
8742 /* Process DW_TAG_type_unit.
8743 For TUs we want to skip the first top level sibling if it's not the
8744 actual type being defined by this TU. In this case the first top
8745 level sibling is there to provide context only. */
8746
8747 static void
8748 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8749 {
8750 struct die_info *child_die;
8751
8752 prepare_one_comp_unit (cu, die, language_minimal);
8753
8754 /* Initialize (or reinitialize) the machinery for building symtabs.
8755 We do this before processing child DIEs, so that the line header table
8756 is available for DW_AT_decl_file. */
8757 setup_type_unit_groups (die, cu);
8758
8759 if (die->child != NULL)
8760 {
8761 child_die = die->child;
8762 while (child_die && child_die->tag)
8763 {
8764 process_die (child_die, cu);
8765 child_die = sibling_die (child_die);
8766 }
8767 }
8768 }
8769 \f
8770 /* DWO/DWP files.
8771
8772 http://gcc.gnu.org/wiki/DebugFission
8773 http://gcc.gnu.org/wiki/DebugFissionDWP
8774
8775 To simplify handling of both DWO files ("object" files with the DWARF info)
8776 and DWP files (a file with the DWOs packaged up into one file), we treat
8777 DWP files as having a collection of virtual DWO files. */
8778
8779 static hashval_t
8780 hash_dwo_file (const void *item)
8781 {
8782 const struct dwo_file *dwo_file = item;
8783 hashval_t hash;
8784
8785 hash = htab_hash_string (dwo_file->dwo_name);
8786 if (dwo_file->comp_dir != NULL)
8787 hash += htab_hash_string (dwo_file->comp_dir);
8788 return hash;
8789 }
8790
8791 static int
8792 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8793 {
8794 const struct dwo_file *lhs = item_lhs;
8795 const struct dwo_file *rhs = item_rhs;
8796
8797 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8798 return 0;
8799 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8800 return lhs->comp_dir == rhs->comp_dir;
8801 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8802 }
8803
8804 /* Allocate a hash table for DWO files. */
8805
8806 static htab_t
8807 allocate_dwo_file_hash_table (void)
8808 {
8809 struct objfile *objfile = dwarf2_per_objfile->objfile;
8810
8811 return htab_create_alloc_ex (41,
8812 hash_dwo_file,
8813 eq_dwo_file,
8814 NULL,
8815 &objfile->objfile_obstack,
8816 hashtab_obstack_allocate,
8817 dummy_obstack_deallocate);
8818 }
8819
8820 /* Lookup DWO file DWO_NAME. */
8821
8822 static void **
8823 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8824 {
8825 struct dwo_file find_entry;
8826 void **slot;
8827
8828 if (dwarf2_per_objfile->dwo_files == NULL)
8829 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8830
8831 memset (&find_entry, 0, sizeof (find_entry));
8832 find_entry.dwo_name = dwo_name;
8833 find_entry.comp_dir = comp_dir;
8834 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8835
8836 return slot;
8837 }
8838
8839 static hashval_t
8840 hash_dwo_unit (const void *item)
8841 {
8842 const struct dwo_unit *dwo_unit = item;
8843
8844 /* This drops the top 32 bits of the id, but is ok for a hash. */
8845 return dwo_unit->signature;
8846 }
8847
8848 static int
8849 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8850 {
8851 const struct dwo_unit *lhs = item_lhs;
8852 const struct dwo_unit *rhs = item_rhs;
8853
8854 /* The signature is assumed to be unique within the DWO file.
8855 So while object file CU dwo_id's always have the value zero,
8856 that's OK, assuming each object file DWO file has only one CU,
8857 and that's the rule for now. */
8858 return lhs->signature == rhs->signature;
8859 }
8860
8861 /* Allocate a hash table for DWO CUs,TUs.
8862 There is one of these tables for each of CUs,TUs for each DWO file. */
8863
8864 static htab_t
8865 allocate_dwo_unit_table (struct objfile *objfile)
8866 {
8867 /* Start out with a pretty small number.
8868 Generally DWO files contain only one CU and maybe some TUs. */
8869 return htab_create_alloc_ex (3,
8870 hash_dwo_unit,
8871 eq_dwo_unit,
8872 NULL,
8873 &objfile->objfile_obstack,
8874 hashtab_obstack_allocate,
8875 dummy_obstack_deallocate);
8876 }
8877
8878 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8879
8880 struct create_dwo_cu_data
8881 {
8882 struct dwo_file *dwo_file;
8883 struct dwo_unit dwo_unit;
8884 };
8885
8886 /* die_reader_func for create_dwo_cu. */
8887
8888 static void
8889 create_dwo_cu_reader (const struct die_reader_specs *reader,
8890 const gdb_byte *info_ptr,
8891 struct die_info *comp_unit_die,
8892 int has_children,
8893 void *datap)
8894 {
8895 struct dwarf2_cu *cu = reader->cu;
8896 struct objfile *objfile = dwarf2_per_objfile->objfile;
8897 sect_offset offset = cu->per_cu->offset;
8898 struct dwarf2_section_info *section = cu->per_cu->section;
8899 struct create_dwo_cu_data *data = datap;
8900 struct dwo_file *dwo_file = data->dwo_file;
8901 struct dwo_unit *dwo_unit = &data->dwo_unit;
8902 struct attribute *attr;
8903
8904 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8905 if (attr == NULL)
8906 {
8907 complaint (&symfile_complaints,
8908 _("Dwarf Error: debug entry at offset 0x%x is missing"
8909 " its dwo_id [in module %s]"),
8910 offset.sect_off, dwo_file->dwo_name);
8911 return;
8912 }
8913
8914 dwo_unit->dwo_file = dwo_file;
8915 dwo_unit->signature = DW_UNSND (attr);
8916 dwo_unit->section = section;
8917 dwo_unit->offset = offset;
8918 dwo_unit->length = cu->per_cu->length;
8919
8920 if (dwarf2_read_debug)
8921 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8922 offset.sect_off, hex_string (dwo_unit->signature));
8923 }
8924
8925 /* Create the dwo_unit for the lone CU in DWO_FILE.
8926 Note: This function processes DWO files only, not DWP files. */
8927
8928 static struct dwo_unit *
8929 create_dwo_cu (struct dwo_file *dwo_file)
8930 {
8931 struct objfile *objfile = dwarf2_per_objfile->objfile;
8932 struct dwarf2_section_info *section = &dwo_file->sections.info;
8933 bfd *abfd;
8934 htab_t cu_htab;
8935 const gdb_byte *info_ptr, *end_ptr;
8936 struct create_dwo_cu_data create_dwo_cu_data;
8937 struct dwo_unit *dwo_unit;
8938
8939 dwarf2_read_section (objfile, section);
8940 info_ptr = section->buffer;
8941
8942 if (info_ptr == NULL)
8943 return NULL;
8944
8945 /* We can't set abfd until now because the section may be empty or
8946 not present, in which case section->asection will be NULL. */
8947 abfd = get_section_bfd_owner (section);
8948
8949 if (dwarf2_read_debug)
8950 {
8951 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8952 get_section_name (section),
8953 get_section_file_name (section));
8954 }
8955
8956 create_dwo_cu_data.dwo_file = dwo_file;
8957 dwo_unit = NULL;
8958
8959 end_ptr = info_ptr + section->size;
8960 while (info_ptr < end_ptr)
8961 {
8962 struct dwarf2_per_cu_data per_cu;
8963
8964 memset (&create_dwo_cu_data.dwo_unit, 0,
8965 sizeof (create_dwo_cu_data.dwo_unit));
8966 memset (&per_cu, 0, sizeof (per_cu));
8967 per_cu.objfile = objfile;
8968 per_cu.is_debug_types = 0;
8969 per_cu.offset.sect_off = info_ptr - section->buffer;
8970 per_cu.section = section;
8971
8972 init_cutu_and_read_dies_no_follow (&per_cu,
8973 &dwo_file->sections.abbrev,
8974 dwo_file,
8975 create_dwo_cu_reader,
8976 &create_dwo_cu_data);
8977
8978 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8979 {
8980 /* If we've already found one, complain. We only support one
8981 because having more than one requires hacking the dwo_name of
8982 each to match, which is highly unlikely to happen. */
8983 if (dwo_unit != NULL)
8984 {
8985 complaint (&symfile_complaints,
8986 _("Multiple CUs in DWO file %s [in module %s]"),
8987 dwo_file->dwo_name, objfile_name (objfile));
8988 break;
8989 }
8990
8991 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8992 *dwo_unit = create_dwo_cu_data.dwo_unit;
8993 }
8994
8995 info_ptr += per_cu.length;
8996 }
8997
8998 return dwo_unit;
8999 }
9000
9001 /* DWP file .debug_{cu,tu}_index section format:
9002 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9003
9004 DWP Version 1:
9005
9006 Both index sections have the same format, and serve to map a 64-bit
9007 signature to a set of section numbers. Each section begins with a header,
9008 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9009 indexes, and a pool of 32-bit section numbers. The index sections will be
9010 aligned at 8-byte boundaries in the file.
9011
9012 The index section header consists of:
9013
9014 V, 32 bit version number
9015 -, 32 bits unused
9016 N, 32 bit number of compilation units or type units in the index
9017 M, 32 bit number of slots in the hash table
9018
9019 Numbers are recorded using the byte order of the application binary.
9020
9021 We assume that N and M will not exceed 2^32 - 1.
9022
9023 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9024
9025 The hash table begins at offset 16 in the section, and consists of an array
9026 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9027 order of the application binary). Unused slots in the hash table are 0.
9028 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9029
9030 The parallel table begins immediately after the hash table
9031 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9032 array of 32-bit indexes (using the byte order of the application binary),
9033 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9034 table contains a 32-bit index into the pool of section numbers. For unused
9035 hash table slots, the corresponding entry in the parallel table will be 0.
9036
9037 Given a 64-bit compilation unit signature or a type signature S, an entry
9038 in the hash table is located as follows:
9039
9040 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9041 the low-order k bits all set to 1.
9042
9043 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9044
9045 3) If the hash table entry at index H matches the signature, use that
9046 entry. If the hash table entry at index H is unused (all zeroes),
9047 terminate the search: the signature is not present in the table.
9048
9049 4) Let H = (H + H') modulo M. Repeat at Step 3.
9050
9051 Because M > N and H' and M are relatively prime, the search is guaranteed
9052 to stop at an unused slot or find the match.
9053
9054 The pool of section numbers begins immediately following the hash table
9055 (at offset 16 + 12 * M from the beginning of the section). The pool of
9056 section numbers consists of an array of 32-bit words (using the byte order
9057 of the application binary). Each item in the array is indexed starting
9058 from 0. The hash table entry provides the index of the first section
9059 number in the set. Additional section numbers in the set follow, and the
9060 set is terminated by a 0 entry (section number 0 is not used in ELF).
9061
9062 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9063 section must be the first entry in the set, and the .debug_abbrev.dwo must
9064 be the second entry. Other members of the set may follow in any order. */
9065
9066 /* Create a hash table to map DWO IDs to their CU/TU entry in
9067 .debug_{info,types}.dwo in DWP_FILE.
9068 Returns NULL if there isn't one.
9069 Note: This function processes DWP files only, not DWO files. */
9070
9071 static struct dwp_hash_table *
9072 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9073 {
9074 struct objfile *objfile = dwarf2_per_objfile->objfile;
9075 bfd *dbfd = dwp_file->dbfd;
9076 const gdb_byte *index_ptr, *index_end;
9077 struct dwarf2_section_info *index;
9078 uint32_t version, nr_units, nr_slots;
9079 struct dwp_hash_table *htab;
9080
9081 if (is_debug_types)
9082 index = &dwp_file->sections.tu_index;
9083 else
9084 index = &dwp_file->sections.cu_index;
9085
9086 if (dwarf2_section_empty_p (index))
9087 return NULL;
9088 dwarf2_read_section (objfile, index);
9089
9090 index_ptr = index->buffer;
9091 index_end = index_ptr + index->size;
9092
9093 version = read_4_bytes (dbfd, index_ptr);
9094 index_ptr += 8; /* Skip the unused word. */
9095 nr_units = read_4_bytes (dbfd, index_ptr);
9096 index_ptr += 4;
9097 nr_slots = read_4_bytes (dbfd, index_ptr);
9098 index_ptr += 4;
9099
9100 if (version != 1)
9101 {
9102 error (_("Dwarf Error: unsupported DWP file version (%s)"
9103 " [in module %s]"),
9104 pulongest (version), dwp_file->name);
9105 }
9106 if (nr_slots != (nr_slots & -nr_slots))
9107 {
9108 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9109 " is not power of 2 [in module %s]"),
9110 pulongest (nr_slots), dwp_file->name);
9111 }
9112
9113 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9114 htab->nr_units = nr_units;
9115 htab->nr_slots = nr_slots;
9116 htab->hash_table = index_ptr;
9117 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9118 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9119
9120 return htab;
9121 }
9122
9123 /* Update SECTIONS with the data from SECTP.
9124
9125 This function is like the other "locate" section routines that are
9126 passed to bfd_map_over_sections, but in this context the sections to
9127 read comes from the DWP hash table, not the full ELF section table.
9128
9129 The result is non-zero for success, or zero if an error was found. */
9130
9131 static int
9132 locate_virtual_dwo_sections (asection *sectp,
9133 struct virtual_dwo_sections *sections)
9134 {
9135 const struct dwop_section_names *names = &dwop_section_names;
9136
9137 if (section_is_p (sectp->name, &names->abbrev_dwo))
9138 {
9139 /* There can be only one. */
9140 if (sections->abbrev.asection != NULL)
9141 return 0;
9142 sections->abbrev.asection = sectp;
9143 sections->abbrev.size = bfd_get_section_size (sectp);
9144 }
9145 else if (section_is_p (sectp->name, &names->info_dwo)
9146 || section_is_p (sectp->name, &names->types_dwo))
9147 {
9148 /* There can be only one. */
9149 if (sections->info_or_types.asection != NULL)
9150 return 0;
9151 sections->info_or_types.asection = sectp;
9152 sections->info_or_types.size = bfd_get_section_size (sectp);
9153 }
9154 else if (section_is_p (sectp->name, &names->line_dwo))
9155 {
9156 /* There can be only one. */
9157 if (sections->line.asection != NULL)
9158 return 0;
9159 sections->line.asection = sectp;
9160 sections->line.size = bfd_get_section_size (sectp);
9161 }
9162 else if (section_is_p (sectp->name, &names->loc_dwo))
9163 {
9164 /* There can be only one. */
9165 if (sections->loc.asection != NULL)
9166 return 0;
9167 sections->loc.asection = sectp;
9168 sections->loc.size = bfd_get_section_size (sectp);
9169 }
9170 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9171 {
9172 /* There can be only one. */
9173 if (sections->macinfo.asection != NULL)
9174 return 0;
9175 sections->macinfo.asection = sectp;
9176 sections->macinfo.size = bfd_get_section_size (sectp);
9177 }
9178 else if (section_is_p (sectp->name, &names->macro_dwo))
9179 {
9180 /* There can be only one. */
9181 if (sections->macro.asection != NULL)
9182 return 0;
9183 sections->macro.asection = sectp;
9184 sections->macro.size = bfd_get_section_size (sectp);
9185 }
9186 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9187 {
9188 /* There can be only one. */
9189 if (sections->str_offsets.asection != NULL)
9190 return 0;
9191 sections->str_offsets.asection = sectp;
9192 sections->str_offsets.size = bfd_get_section_size (sectp);
9193 }
9194 else
9195 {
9196 /* No other kind of section is valid. */
9197 return 0;
9198 }
9199
9200 return 1;
9201 }
9202
9203 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9204 HTAB is the hash table from the DWP file.
9205 SECTION_INDEX is the index of the DWO in HTAB.
9206 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9207
9208 static struct dwo_unit *
9209 create_dwo_in_dwp (struct dwp_file *dwp_file,
9210 const struct dwp_hash_table *htab,
9211 uint32_t section_index,
9212 const char *comp_dir,
9213 ULONGEST signature, int is_debug_types)
9214 {
9215 struct objfile *objfile = dwarf2_per_objfile->objfile;
9216 bfd *dbfd = dwp_file->dbfd;
9217 const char *kind = is_debug_types ? "TU" : "CU";
9218 struct dwo_file *dwo_file;
9219 struct dwo_unit *dwo_unit;
9220 struct virtual_dwo_sections sections;
9221 void **dwo_file_slot;
9222 char *virtual_dwo_name;
9223 struct dwarf2_section_info *cutu;
9224 struct cleanup *cleanups;
9225 int i;
9226
9227 if (dwarf2_read_debug)
9228 {
9229 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9230 kind,
9231 pulongest (section_index), hex_string (signature),
9232 dwp_file->name);
9233 }
9234
9235 /* Fetch the sections of this DWO unit.
9236 Put a limit on the number of sections we look for so that bad data
9237 doesn't cause us to loop forever. */
9238
9239 #define MAX_NR_DWO_SECTIONS \
9240 (1 /* .debug_info or .debug_types */ \
9241 + 1 /* .debug_abbrev */ \
9242 + 1 /* .debug_line */ \
9243 + 1 /* .debug_loc */ \
9244 + 1 /* .debug_str_offsets */ \
9245 + 1 /* .debug_macro or .debug_macinfo */ \
9246 + 1 /* trailing zero */)
9247
9248 memset (&sections, 0, sizeof (sections));
9249 cleanups = make_cleanup (null_cleanup, 0);
9250
9251 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9252 {
9253 asection *sectp;
9254 uint32_t section_nr =
9255 read_4_bytes (dbfd,
9256 htab->section_pool
9257 + (section_index + i) * sizeof (uint32_t));
9258
9259 if (section_nr == 0)
9260 break;
9261 if (section_nr >= dwp_file->num_sections)
9262 {
9263 error (_("Dwarf Error: bad DWP hash table, section number too large"
9264 " [in module %s]"),
9265 dwp_file->name);
9266 }
9267
9268 sectp = dwp_file->elf_sections[section_nr];
9269 if (! locate_virtual_dwo_sections (sectp, &sections))
9270 {
9271 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9272 " [in module %s]"),
9273 dwp_file->name);
9274 }
9275 }
9276
9277 if (i < 2
9278 || dwarf2_section_empty_p (&sections.info_or_types)
9279 || dwarf2_section_empty_p (&sections.abbrev))
9280 {
9281 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9282 " [in module %s]"),
9283 dwp_file->name);
9284 }
9285 if (i == MAX_NR_DWO_SECTIONS)
9286 {
9287 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9288 " [in module %s]"),
9289 dwp_file->name);
9290 }
9291
9292 /* It's easier for the rest of the code if we fake a struct dwo_file and
9293 have dwo_unit "live" in that. At least for now.
9294
9295 The DWP file can be made up of a random collection of CUs and TUs.
9296 However, for each CU + set of TUs that came from the same original DWO
9297 file, we can combine them back into a virtual DWO file to save space
9298 (fewer struct dwo_file objects to allocate). Remember that for really
9299 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9300
9301 virtual_dwo_name =
9302 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9303 get_section_id (&sections.abbrev),
9304 get_section_id (&sections.line),
9305 get_section_id (&sections.loc),
9306 get_section_id (&sections.str_offsets));
9307 make_cleanup (xfree, virtual_dwo_name);
9308 /* Can we use an existing virtual DWO file? */
9309 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9310 /* Create one if necessary. */
9311 if (*dwo_file_slot == NULL)
9312 {
9313 if (dwarf2_read_debug)
9314 {
9315 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9316 virtual_dwo_name);
9317 }
9318 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9319 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9320 virtual_dwo_name,
9321 strlen (virtual_dwo_name));
9322 dwo_file->comp_dir = comp_dir;
9323 dwo_file->sections.abbrev = sections.abbrev;
9324 dwo_file->sections.line = sections.line;
9325 dwo_file->sections.loc = sections.loc;
9326 dwo_file->sections.macinfo = sections.macinfo;
9327 dwo_file->sections.macro = sections.macro;
9328 dwo_file->sections.str_offsets = sections.str_offsets;
9329 /* The "str" section is global to the entire DWP file. */
9330 dwo_file->sections.str = dwp_file->sections.str;
9331 /* The info or types section is assigned below to dwo_unit,
9332 there's no need to record it in dwo_file.
9333 Also, we can't simply record type sections in dwo_file because
9334 we record a pointer into the vector in dwo_unit. As we collect more
9335 types we'll grow the vector and eventually have to reallocate space
9336 for it, invalidating all copies of pointers into the previous
9337 contents. */
9338 *dwo_file_slot = dwo_file;
9339 }
9340 else
9341 {
9342 if (dwarf2_read_debug)
9343 {
9344 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9345 virtual_dwo_name);
9346 }
9347 dwo_file = *dwo_file_slot;
9348 }
9349 do_cleanups (cleanups);
9350
9351 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9352 dwo_unit->dwo_file = dwo_file;
9353 dwo_unit->signature = signature;
9354 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9355 sizeof (struct dwarf2_section_info));
9356 *dwo_unit->section = sections.info_or_types;
9357 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9358
9359 return dwo_unit;
9360 }
9361
9362 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
9363 Returns NULL if the signature isn't found. */
9364
9365 static struct dwo_unit *
9366 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
9367 ULONGEST signature, int is_debug_types)
9368 {
9369 const struct dwp_hash_table *dwp_htab =
9370 is_debug_types ? dwp_file->tus : dwp_file->cus;
9371 bfd *dbfd = dwp_file->dbfd;
9372 uint32_t mask = dwp_htab->nr_slots - 1;
9373 uint32_t hash = signature & mask;
9374 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9375 unsigned int i;
9376 void **slot;
9377 struct dwo_unit find_dwo_cu, *dwo_cu;
9378
9379 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9380 find_dwo_cu.signature = signature;
9381 slot = htab_find_slot (is_debug_types
9382 ? dwp_file->loaded_tus
9383 : dwp_file->loaded_cus,
9384 &find_dwo_cu, INSERT);
9385
9386 if (*slot != NULL)
9387 return *slot;
9388
9389 /* Use a for loop so that we don't loop forever on bad debug info. */
9390 for (i = 0; i < dwp_htab->nr_slots; ++i)
9391 {
9392 ULONGEST signature_in_table;
9393
9394 signature_in_table =
9395 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
9396 if (signature_in_table == signature)
9397 {
9398 uint32_t unit_index =
9399 read_4_bytes (dbfd,
9400 dwp_htab->unit_table + hash * sizeof (uint32_t));
9401
9402 *slot = create_dwo_in_dwp (dwp_file, dwp_htab, unit_index,
9403 comp_dir, signature, is_debug_types);
9404 return *slot;
9405 }
9406 if (signature_in_table == 0)
9407 return NULL;
9408 hash = (hash + hash2) & mask;
9409 }
9410
9411 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9412 " [in module %s]"),
9413 dwp_file->name);
9414 }
9415
9416 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9417 Open the file specified by FILE_NAME and hand it off to BFD for
9418 preliminary analysis. Return a newly initialized bfd *, which
9419 includes a canonicalized copy of FILE_NAME.
9420 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9421 SEARCH_CWD is true if the current directory is to be searched.
9422 It will be searched before debug-file-directory.
9423 If unable to find/open the file, return NULL.
9424 NOTE: This function is derived from symfile_bfd_open. */
9425
9426 static bfd *
9427 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9428 {
9429 bfd *sym_bfd;
9430 int desc, flags;
9431 char *absolute_name;
9432 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9433 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9434 to debug_file_directory. */
9435 char *search_path;
9436 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9437
9438 if (search_cwd)
9439 {
9440 if (*debug_file_directory != '\0')
9441 search_path = concat (".", dirname_separator_string,
9442 debug_file_directory, NULL);
9443 else
9444 search_path = xstrdup (".");
9445 }
9446 else
9447 search_path = xstrdup (debug_file_directory);
9448
9449 flags = OPF_RETURN_REALPATH;
9450 if (is_dwp)
9451 flags |= OPF_SEARCH_IN_PATH;
9452 desc = openp (search_path, flags, file_name,
9453 O_RDONLY | O_BINARY, &absolute_name);
9454 xfree (search_path);
9455 if (desc < 0)
9456 return NULL;
9457
9458 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9459 xfree (absolute_name);
9460 if (sym_bfd == NULL)
9461 return NULL;
9462 bfd_set_cacheable (sym_bfd, 1);
9463
9464 if (!bfd_check_format (sym_bfd, bfd_object))
9465 {
9466 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9467 return NULL;
9468 }
9469
9470 return sym_bfd;
9471 }
9472
9473 /* Try to open DWO file FILE_NAME.
9474 COMP_DIR is the DW_AT_comp_dir attribute.
9475 The result is the bfd handle of the file.
9476 If there is a problem finding or opening the file, return NULL.
9477 Upon success, the canonicalized path of the file is stored in the bfd,
9478 same as symfile_bfd_open. */
9479
9480 static bfd *
9481 open_dwo_file (const char *file_name, const char *comp_dir)
9482 {
9483 bfd *abfd;
9484
9485 if (IS_ABSOLUTE_PATH (file_name))
9486 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9487
9488 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9489
9490 if (comp_dir != NULL)
9491 {
9492 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9493
9494 /* NOTE: If comp_dir is a relative path, this will also try the
9495 search path, which seems useful. */
9496 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9497 xfree (path_to_try);
9498 if (abfd != NULL)
9499 return abfd;
9500 }
9501
9502 /* That didn't work, try debug-file-directory, which, despite its name,
9503 is a list of paths. */
9504
9505 if (*debug_file_directory == '\0')
9506 return NULL;
9507
9508 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9509 }
9510
9511 /* This function is mapped across the sections and remembers the offset and
9512 size of each of the DWO debugging sections we are interested in. */
9513
9514 static void
9515 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9516 {
9517 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9518 const struct dwop_section_names *names = &dwop_section_names;
9519
9520 if (section_is_p (sectp->name, &names->abbrev_dwo))
9521 {
9522 dwo_sections->abbrev.asection = sectp;
9523 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9524 }
9525 else if (section_is_p (sectp->name, &names->info_dwo))
9526 {
9527 dwo_sections->info.asection = sectp;
9528 dwo_sections->info.size = bfd_get_section_size (sectp);
9529 }
9530 else if (section_is_p (sectp->name, &names->line_dwo))
9531 {
9532 dwo_sections->line.asection = sectp;
9533 dwo_sections->line.size = bfd_get_section_size (sectp);
9534 }
9535 else if (section_is_p (sectp->name, &names->loc_dwo))
9536 {
9537 dwo_sections->loc.asection = sectp;
9538 dwo_sections->loc.size = bfd_get_section_size (sectp);
9539 }
9540 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9541 {
9542 dwo_sections->macinfo.asection = sectp;
9543 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9544 }
9545 else if (section_is_p (sectp->name, &names->macro_dwo))
9546 {
9547 dwo_sections->macro.asection = sectp;
9548 dwo_sections->macro.size = bfd_get_section_size (sectp);
9549 }
9550 else if (section_is_p (sectp->name, &names->str_dwo))
9551 {
9552 dwo_sections->str.asection = sectp;
9553 dwo_sections->str.size = bfd_get_section_size (sectp);
9554 }
9555 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9556 {
9557 dwo_sections->str_offsets.asection = sectp;
9558 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9559 }
9560 else if (section_is_p (sectp->name, &names->types_dwo))
9561 {
9562 struct dwarf2_section_info type_section;
9563
9564 memset (&type_section, 0, sizeof (type_section));
9565 type_section.asection = sectp;
9566 type_section.size = bfd_get_section_size (sectp);
9567 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9568 &type_section);
9569 }
9570 }
9571
9572 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9573 by PER_CU. This is for the non-DWP case.
9574 The result is NULL if DWO_NAME can't be found. */
9575
9576 static struct dwo_file *
9577 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9578 const char *dwo_name, const char *comp_dir)
9579 {
9580 struct objfile *objfile = dwarf2_per_objfile->objfile;
9581 struct dwo_file *dwo_file;
9582 bfd *dbfd;
9583 struct cleanup *cleanups;
9584
9585 dbfd = open_dwo_file (dwo_name, comp_dir);
9586 if (dbfd == NULL)
9587 {
9588 if (dwarf2_read_debug)
9589 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9590 return NULL;
9591 }
9592 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9593 dwo_file->dwo_name = dwo_name;
9594 dwo_file->comp_dir = comp_dir;
9595 dwo_file->dbfd = dbfd;
9596
9597 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9598
9599 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9600
9601 dwo_file->cu = create_dwo_cu (dwo_file);
9602
9603 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9604 dwo_file->sections.types);
9605
9606 discard_cleanups (cleanups);
9607
9608 if (dwarf2_read_debug)
9609 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9610
9611 return dwo_file;
9612 }
9613
9614 /* This function is mapped across the sections and remembers the offset and
9615 size of each of the DWP debugging sections we are interested in. */
9616
9617 static void
9618 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9619 {
9620 struct dwp_file *dwp_file = dwp_file_ptr;
9621 const struct dwop_section_names *names = &dwop_section_names;
9622 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9623
9624 /* Record the ELF section number for later lookup: this is what the
9625 .debug_cu_index,.debug_tu_index tables use. */
9626 gdb_assert (elf_section_nr < dwp_file->num_sections);
9627 dwp_file->elf_sections[elf_section_nr] = sectp;
9628
9629 /* Look for specific sections that we need. */
9630 if (section_is_p (sectp->name, &names->str_dwo))
9631 {
9632 dwp_file->sections.str.asection = sectp;
9633 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9634 }
9635 else if (section_is_p (sectp->name, &names->cu_index))
9636 {
9637 dwp_file->sections.cu_index.asection = sectp;
9638 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9639 }
9640 else if (section_is_p (sectp->name, &names->tu_index))
9641 {
9642 dwp_file->sections.tu_index.asection = sectp;
9643 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9644 }
9645 }
9646
9647 /* Hash function for dwp_file loaded CUs/TUs. */
9648
9649 static hashval_t
9650 hash_dwp_loaded_cutus (const void *item)
9651 {
9652 const struct dwo_unit *dwo_unit = item;
9653
9654 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9655 return dwo_unit->signature;
9656 }
9657
9658 /* Equality function for dwp_file loaded CUs/TUs. */
9659
9660 static int
9661 eq_dwp_loaded_cutus (const void *a, const void *b)
9662 {
9663 const struct dwo_unit *dua = a;
9664 const struct dwo_unit *dub = b;
9665
9666 return dua->signature == dub->signature;
9667 }
9668
9669 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9670
9671 static htab_t
9672 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9673 {
9674 return htab_create_alloc_ex (3,
9675 hash_dwp_loaded_cutus,
9676 eq_dwp_loaded_cutus,
9677 NULL,
9678 &objfile->objfile_obstack,
9679 hashtab_obstack_allocate,
9680 dummy_obstack_deallocate);
9681 }
9682
9683 /* Try to open DWP file FILE_NAME.
9684 The result is the bfd handle of the file.
9685 If there is a problem finding or opening the file, return NULL.
9686 Upon success, the canonicalized path of the file is stored in the bfd,
9687 same as symfile_bfd_open. */
9688
9689 static bfd *
9690 open_dwp_file (const char *file_name)
9691 {
9692 bfd *abfd;
9693
9694 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9695 if (abfd != NULL)
9696 return abfd;
9697
9698 /* Work around upstream bug 15652.
9699 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9700 [Whether that's a "bug" is debatable, but it is getting in our way.]
9701 We have no real idea where the dwp file is, because gdb's realpath-ing
9702 of the executable's path may have discarded the needed info.
9703 [IWBN if the dwp file name was recorded in the executable, akin to
9704 .gnu_debuglink, but that doesn't exist yet.]
9705 Strip the directory from FILE_NAME and search again. */
9706 if (*debug_file_directory != '\0')
9707 {
9708 /* Don't implicitly search the current directory here.
9709 If the user wants to search "." to handle this case,
9710 it must be added to debug-file-directory. */
9711 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9712 0 /*search_cwd*/);
9713 }
9714
9715 return NULL;
9716 }
9717
9718 /* Initialize the use of the DWP file for the current objfile.
9719 By convention the name of the DWP file is ${objfile}.dwp.
9720 The result is NULL if it can't be found. */
9721
9722 static struct dwp_file *
9723 open_and_init_dwp_file (void)
9724 {
9725 struct objfile *objfile = dwarf2_per_objfile->objfile;
9726 struct dwp_file *dwp_file;
9727 char *dwp_name;
9728 bfd *dbfd;
9729 struct cleanup *cleanups;
9730
9731 /* Try to find first .dwp for the binary file before any symbolic links
9732 resolving. */
9733 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
9734 cleanups = make_cleanup (xfree, dwp_name);
9735
9736 dbfd = open_dwp_file (dwp_name);
9737 if (dbfd == NULL
9738 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
9739 {
9740 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
9741 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
9742 make_cleanup (xfree, dwp_name);
9743 dbfd = open_dwp_file (dwp_name);
9744 }
9745
9746 if (dbfd == NULL)
9747 {
9748 if (dwarf2_read_debug)
9749 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9750 do_cleanups (cleanups);
9751 return NULL;
9752 }
9753 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9754 dwp_file->name = bfd_get_filename (dbfd);
9755 dwp_file->dbfd = dbfd;
9756 do_cleanups (cleanups);
9757
9758 /* +1: section 0 is unused */
9759 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9760 dwp_file->elf_sections =
9761 OBSTACK_CALLOC (&objfile->objfile_obstack,
9762 dwp_file->num_sections, asection *);
9763
9764 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9765
9766 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9767
9768 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9769
9770 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
9771 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
9772
9773 if (dwarf2_read_debug)
9774 {
9775 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9776 fprintf_unfiltered (gdb_stdlog,
9777 " %s CUs, %s TUs\n",
9778 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9779 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9780 }
9781
9782 return dwp_file;
9783 }
9784
9785 /* Wrapper around open_and_init_dwp_file, only open it once. */
9786
9787 static struct dwp_file *
9788 get_dwp_file (void)
9789 {
9790 if (! dwarf2_per_objfile->dwp_checked)
9791 {
9792 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9793 dwarf2_per_objfile->dwp_checked = 1;
9794 }
9795 return dwarf2_per_objfile->dwp_file;
9796 }
9797
9798 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9799 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9800 or in the DWP file for the objfile, referenced by THIS_UNIT.
9801 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9802 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9803
9804 This is called, for example, when wanting to read a variable with a
9805 complex location. Therefore we don't want to do file i/o for every call.
9806 Therefore we don't want to look for a DWO file on every call.
9807 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9808 then we check if we've already seen DWO_NAME, and only THEN do we check
9809 for a DWO file.
9810
9811 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9812 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9813
9814 static struct dwo_unit *
9815 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9816 const char *dwo_name, const char *comp_dir,
9817 ULONGEST signature, int is_debug_types)
9818 {
9819 struct objfile *objfile = dwarf2_per_objfile->objfile;
9820 const char *kind = is_debug_types ? "TU" : "CU";
9821 void **dwo_file_slot;
9822 struct dwo_file *dwo_file;
9823 struct dwp_file *dwp_file;
9824
9825 /* First see if there's a DWP file.
9826 If we have a DWP file but didn't find the DWO inside it, don't
9827 look for the original DWO file. It makes gdb behave differently
9828 depending on whether one is debugging in the build tree. */
9829
9830 dwp_file = get_dwp_file ();
9831 if (dwp_file != NULL)
9832 {
9833 const struct dwp_hash_table *dwp_htab =
9834 is_debug_types ? dwp_file->tus : dwp_file->cus;
9835
9836 if (dwp_htab != NULL)
9837 {
9838 struct dwo_unit *dwo_cutu =
9839 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
9840 signature, is_debug_types);
9841
9842 if (dwo_cutu != NULL)
9843 {
9844 if (dwarf2_read_debug)
9845 {
9846 fprintf_unfiltered (gdb_stdlog,
9847 "Virtual DWO %s %s found: @%s\n",
9848 kind, hex_string (signature),
9849 host_address_to_string (dwo_cutu));
9850 }
9851 return dwo_cutu;
9852 }
9853 }
9854 }
9855 else
9856 {
9857 /* No DWP file, look for the DWO file. */
9858
9859 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9860 if (*dwo_file_slot == NULL)
9861 {
9862 /* Read in the file and build a table of the CUs/TUs it contains. */
9863 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9864 }
9865 /* NOTE: This will be NULL if unable to open the file. */
9866 dwo_file = *dwo_file_slot;
9867
9868 if (dwo_file != NULL)
9869 {
9870 struct dwo_unit *dwo_cutu = NULL;
9871
9872 if (is_debug_types && dwo_file->tus)
9873 {
9874 struct dwo_unit find_dwo_cutu;
9875
9876 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9877 find_dwo_cutu.signature = signature;
9878 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9879 }
9880 else if (!is_debug_types && dwo_file->cu)
9881 {
9882 if (signature == dwo_file->cu->signature)
9883 dwo_cutu = dwo_file->cu;
9884 }
9885
9886 if (dwo_cutu != NULL)
9887 {
9888 if (dwarf2_read_debug)
9889 {
9890 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9891 kind, dwo_name, hex_string (signature),
9892 host_address_to_string (dwo_cutu));
9893 }
9894 return dwo_cutu;
9895 }
9896 }
9897 }
9898
9899 /* We didn't find it. This could mean a dwo_id mismatch, or
9900 someone deleted the DWO/DWP file, or the search path isn't set up
9901 correctly to find the file. */
9902
9903 if (dwarf2_read_debug)
9904 {
9905 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9906 kind, dwo_name, hex_string (signature));
9907 }
9908
9909 /* This is a warning and not a complaint because it can be caused by
9910 pilot error (e.g., user accidentally deleting the DWO). */
9911 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9912 " [in module %s]"),
9913 kind, dwo_name, hex_string (signature),
9914 this_unit->is_debug_types ? "TU" : "CU",
9915 this_unit->offset.sect_off, objfile_name (objfile));
9916 return NULL;
9917 }
9918
9919 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9920 See lookup_dwo_cutu_unit for details. */
9921
9922 static struct dwo_unit *
9923 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9924 const char *dwo_name, const char *comp_dir,
9925 ULONGEST signature)
9926 {
9927 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9928 }
9929
9930 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9931 See lookup_dwo_cutu_unit for details. */
9932
9933 static struct dwo_unit *
9934 lookup_dwo_type_unit (struct signatured_type *this_tu,
9935 const char *dwo_name, const char *comp_dir)
9936 {
9937 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9938 }
9939
9940 /* Traversal function for queue_and_load_all_dwo_tus. */
9941
9942 static int
9943 queue_and_load_dwo_tu (void **slot, void *info)
9944 {
9945 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9946 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
9947 ULONGEST signature = dwo_unit->signature;
9948 struct signatured_type *sig_type =
9949 lookup_dwo_signatured_type (per_cu->cu, signature);
9950
9951 if (sig_type != NULL)
9952 {
9953 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
9954
9955 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
9956 a real dependency of PER_CU on SIG_TYPE. That is detected later
9957 while processing PER_CU. */
9958 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
9959 load_full_type_unit (sig_cu);
9960 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
9961 }
9962
9963 return 1;
9964 }
9965
9966 /* Queue all TUs contained in the DWO of PER_CU to be read in.
9967 The DWO may have the only definition of the type, though it may not be
9968 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
9969 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
9970
9971 static void
9972 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
9973 {
9974 struct dwo_unit *dwo_unit;
9975 struct dwo_file *dwo_file;
9976
9977 gdb_assert (!per_cu->is_debug_types);
9978 gdb_assert (get_dwp_file () == NULL);
9979 gdb_assert (per_cu->cu != NULL);
9980
9981 dwo_unit = per_cu->cu->dwo_unit;
9982 gdb_assert (dwo_unit != NULL);
9983
9984 dwo_file = dwo_unit->dwo_file;
9985 if (dwo_file->tus != NULL)
9986 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
9987 }
9988
9989 /* Free all resources associated with DWO_FILE.
9990 Close the DWO file and munmap the sections.
9991 All memory should be on the objfile obstack. */
9992
9993 static void
9994 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9995 {
9996 int ix;
9997 struct dwarf2_section_info *section;
9998
9999 /* Note: dbfd is NULL for virtual DWO files. */
10000 gdb_bfd_unref (dwo_file->dbfd);
10001
10002 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10003 }
10004
10005 /* Wrapper for free_dwo_file for use in cleanups. */
10006
10007 static void
10008 free_dwo_file_cleanup (void *arg)
10009 {
10010 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10011 struct objfile *objfile = dwarf2_per_objfile->objfile;
10012
10013 free_dwo_file (dwo_file, objfile);
10014 }
10015
10016 /* Traversal function for free_dwo_files. */
10017
10018 static int
10019 free_dwo_file_from_slot (void **slot, void *info)
10020 {
10021 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10022 struct objfile *objfile = (struct objfile *) info;
10023
10024 free_dwo_file (dwo_file, objfile);
10025
10026 return 1;
10027 }
10028
10029 /* Free all resources associated with DWO_FILES. */
10030
10031 static void
10032 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10033 {
10034 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10035 }
10036 \f
10037 /* Read in various DIEs. */
10038
10039 /* qsort helper for inherit_abstract_dies. */
10040
10041 static int
10042 unsigned_int_compar (const void *ap, const void *bp)
10043 {
10044 unsigned int a = *(unsigned int *) ap;
10045 unsigned int b = *(unsigned int *) bp;
10046
10047 return (a > b) - (b > a);
10048 }
10049
10050 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10051 Inherit only the children of the DW_AT_abstract_origin DIE not being
10052 already referenced by DW_AT_abstract_origin from the children of the
10053 current DIE. */
10054
10055 static void
10056 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10057 {
10058 struct die_info *child_die;
10059 unsigned die_children_count;
10060 /* CU offsets which were referenced by children of the current DIE. */
10061 sect_offset *offsets;
10062 sect_offset *offsets_end, *offsetp;
10063 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10064 struct die_info *origin_die;
10065 /* Iterator of the ORIGIN_DIE children. */
10066 struct die_info *origin_child_die;
10067 struct cleanup *cleanups;
10068 struct attribute *attr;
10069 struct dwarf2_cu *origin_cu;
10070 struct pending **origin_previous_list_in_scope;
10071
10072 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10073 if (!attr)
10074 return;
10075
10076 /* Note that following die references may follow to a die in a
10077 different cu. */
10078
10079 origin_cu = cu;
10080 origin_die = follow_die_ref (die, attr, &origin_cu);
10081
10082 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10083 symbols in. */
10084 origin_previous_list_in_scope = origin_cu->list_in_scope;
10085 origin_cu->list_in_scope = cu->list_in_scope;
10086
10087 if (die->tag != origin_die->tag
10088 && !(die->tag == DW_TAG_inlined_subroutine
10089 && origin_die->tag == DW_TAG_subprogram))
10090 complaint (&symfile_complaints,
10091 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10092 die->offset.sect_off, origin_die->offset.sect_off);
10093
10094 child_die = die->child;
10095 die_children_count = 0;
10096 while (child_die && child_die->tag)
10097 {
10098 child_die = sibling_die (child_die);
10099 die_children_count++;
10100 }
10101 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10102 cleanups = make_cleanup (xfree, offsets);
10103
10104 offsets_end = offsets;
10105 child_die = die->child;
10106 while (child_die && child_die->tag)
10107 {
10108 /* For each CHILD_DIE, find the corresponding child of
10109 ORIGIN_DIE. If there is more than one layer of
10110 DW_AT_abstract_origin, follow them all; there shouldn't be,
10111 but GCC versions at least through 4.4 generate this (GCC PR
10112 40573). */
10113 struct die_info *child_origin_die = child_die;
10114 struct dwarf2_cu *child_origin_cu = cu;
10115
10116 while (1)
10117 {
10118 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10119 child_origin_cu);
10120 if (attr == NULL)
10121 break;
10122 child_origin_die = follow_die_ref (child_origin_die, attr,
10123 &child_origin_cu);
10124 }
10125
10126 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10127 counterpart may exist. */
10128 if (child_origin_die != child_die)
10129 {
10130 if (child_die->tag != child_origin_die->tag
10131 && !(child_die->tag == DW_TAG_inlined_subroutine
10132 && child_origin_die->tag == DW_TAG_subprogram))
10133 complaint (&symfile_complaints,
10134 _("Child DIE 0x%x and its abstract origin 0x%x have "
10135 "different tags"), child_die->offset.sect_off,
10136 child_origin_die->offset.sect_off);
10137 if (child_origin_die->parent != origin_die)
10138 complaint (&symfile_complaints,
10139 _("Child DIE 0x%x and its abstract origin 0x%x have "
10140 "different parents"), child_die->offset.sect_off,
10141 child_origin_die->offset.sect_off);
10142 else
10143 *offsets_end++ = child_origin_die->offset;
10144 }
10145 child_die = sibling_die (child_die);
10146 }
10147 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10148 unsigned_int_compar);
10149 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10150 if (offsetp[-1].sect_off == offsetp->sect_off)
10151 complaint (&symfile_complaints,
10152 _("Multiple children of DIE 0x%x refer "
10153 "to DIE 0x%x as their abstract origin"),
10154 die->offset.sect_off, offsetp->sect_off);
10155
10156 offsetp = offsets;
10157 origin_child_die = origin_die->child;
10158 while (origin_child_die && origin_child_die->tag)
10159 {
10160 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10161 while (offsetp < offsets_end
10162 && offsetp->sect_off < origin_child_die->offset.sect_off)
10163 offsetp++;
10164 if (offsetp >= offsets_end
10165 || offsetp->sect_off > origin_child_die->offset.sect_off)
10166 {
10167 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10168 process_die (origin_child_die, origin_cu);
10169 }
10170 origin_child_die = sibling_die (origin_child_die);
10171 }
10172 origin_cu->list_in_scope = origin_previous_list_in_scope;
10173
10174 do_cleanups (cleanups);
10175 }
10176
10177 static void
10178 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10179 {
10180 struct objfile *objfile = cu->objfile;
10181 struct context_stack *new;
10182 CORE_ADDR lowpc;
10183 CORE_ADDR highpc;
10184 struct die_info *child_die;
10185 struct attribute *attr, *call_line, *call_file;
10186 const char *name;
10187 CORE_ADDR baseaddr;
10188 struct block *block;
10189 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10190 VEC (symbolp) *template_args = NULL;
10191 struct template_symbol *templ_func = NULL;
10192
10193 if (inlined_func)
10194 {
10195 /* If we do not have call site information, we can't show the
10196 caller of this inlined function. That's too confusing, so
10197 only use the scope for local variables. */
10198 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10199 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10200 if (call_line == NULL || call_file == NULL)
10201 {
10202 read_lexical_block_scope (die, cu);
10203 return;
10204 }
10205 }
10206
10207 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10208
10209 name = dwarf2_name (die, cu);
10210
10211 /* Ignore functions with missing or empty names. These are actually
10212 illegal according to the DWARF standard. */
10213 if (name == NULL)
10214 {
10215 complaint (&symfile_complaints,
10216 _("missing name for subprogram DIE at %d"),
10217 die->offset.sect_off);
10218 return;
10219 }
10220
10221 /* Ignore functions with missing or invalid low and high pc attributes. */
10222 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10223 {
10224 attr = dwarf2_attr (die, DW_AT_external, cu);
10225 if (!attr || !DW_UNSND (attr))
10226 complaint (&symfile_complaints,
10227 _("cannot get low and high bounds "
10228 "for subprogram DIE at %d"),
10229 die->offset.sect_off);
10230 return;
10231 }
10232
10233 lowpc += baseaddr;
10234 highpc += baseaddr;
10235
10236 /* If we have any template arguments, then we must allocate a
10237 different sort of symbol. */
10238 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10239 {
10240 if (child_die->tag == DW_TAG_template_type_param
10241 || child_die->tag == DW_TAG_template_value_param)
10242 {
10243 templ_func = allocate_template_symbol (objfile);
10244 templ_func->base.is_cplus_template_function = 1;
10245 break;
10246 }
10247 }
10248
10249 new = push_context (0, lowpc);
10250 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10251 (struct symbol *) templ_func);
10252
10253 /* If there is a location expression for DW_AT_frame_base, record
10254 it. */
10255 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10256 if (attr)
10257 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10258
10259 cu->list_in_scope = &local_symbols;
10260
10261 if (die->child != NULL)
10262 {
10263 child_die = die->child;
10264 while (child_die && child_die->tag)
10265 {
10266 if (child_die->tag == DW_TAG_template_type_param
10267 || child_die->tag == DW_TAG_template_value_param)
10268 {
10269 struct symbol *arg = new_symbol (child_die, NULL, cu);
10270
10271 if (arg != NULL)
10272 VEC_safe_push (symbolp, template_args, arg);
10273 }
10274 else
10275 process_die (child_die, cu);
10276 child_die = sibling_die (child_die);
10277 }
10278 }
10279
10280 inherit_abstract_dies (die, cu);
10281
10282 /* If we have a DW_AT_specification, we might need to import using
10283 directives from the context of the specification DIE. See the
10284 comment in determine_prefix. */
10285 if (cu->language == language_cplus
10286 && dwarf2_attr (die, DW_AT_specification, cu))
10287 {
10288 struct dwarf2_cu *spec_cu = cu;
10289 struct die_info *spec_die = die_specification (die, &spec_cu);
10290
10291 while (spec_die)
10292 {
10293 child_die = spec_die->child;
10294 while (child_die && child_die->tag)
10295 {
10296 if (child_die->tag == DW_TAG_imported_module)
10297 process_die (child_die, spec_cu);
10298 child_die = sibling_die (child_die);
10299 }
10300
10301 /* In some cases, GCC generates specification DIEs that
10302 themselves contain DW_AT_specification attributes. */
10303 spec_die = die_specification (spec_die, &spec_cu);
10304 }
10305 }
10306
10307 new = pop_context ();
10308 /* Make a block for the local symbols within. */
10309 block = finish_block (new->name, &local_symbols, new->old_blocks,
10310 lowpc, highpc, objfile);
10311
10312 /* For C++, set the block's scope. */
10313 if ((cu->language == language_cplus || cu->language == language_fortran)
10314 && cu->processing_has_namespace_info)
10315 block_set_scope (block, determine_prefix (die, cu),
10316 &objfile->objfile_obstack);
10317
10318 /* If we have address ranges, record them. */
10319 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10320
10321 /* Attach template arguments to function. */
10322 if (! VEC_empty (symbolp, template_args))
10323 {
10324 gdb_assert (templ_func != NULL);
10325
10326 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10327 templ_func->template_arguments
10328 = obstack_alloc (&objfile->objfile_obstack,
10329 (templ_func->n_template_arguments
10330 * sizeof (struct symbol *)));
10331 memcpy (templ_func->template_arguments,
10332 VEC_address (symbolp, template_args),
10333 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10334 VEC_free (symbolp, template_args);
10335 }
10336
10337 /* In C++, we can have functions nested inside functions (e.g., when
10338 a function declares a class that has methods). This means that
10339 when we finish processing a function scope, we may need to go
10340 back to building a containing block's symbol lists. */
10341 local_symbols = new->locals;
10342 using_directives = new->using_directives;
10343
10344 /* If we've finished processing a top-level function, subsequent
10345 symbols go in the file symbol list. */
10346 if (outermost_context_p ())
10347 cu->list_in_scope = &file_symbols;
10348 }
10349
10350 /* Process all the DIES contained within a lexical block scope. Start
10351 a new scope, process the dies, and then close the scope. */
10352
10353 static void
10354 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10355 {
10356 struct objfile *objfile = cu->objfile;
10357 struct context_stack *new;
10358 CORE_ADDR lowpc, highpc;
10359 struct die_info *child_die;
10360 CORE_ADDR baseaddr;
10361
10362 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10363
10364 /* Ignore blocks with missing or invalid low and high pc attributes. */
10365 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10366 as multiple lexical blocks? Handling children in a sane way would
10367 be nasty. Might be easier to properly extend generic blocks to
10368 describe ranges. */
10369 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10370 return;
10371 lowpc += baseaddr;
10372 highpc += baseaddr;
10373
10374 push_context (0, lowpc);
10375 if (die->child != NULL)
10376 {
10377 child_die = die->child;
10378 while (child_die && child_die->tag)
10379 {
10380 process_die (child_die, cu);
10381 child_die = sibling_die (child_die);
10382 }
10383 }
10384 new = pop_context ();
10385
10386 if (local_symbols != NULL || using_directives != NULL)
10387 {
10388 struct block *block
10389 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10390 highpc, objfile);
10391
10392 /* Note that recording ranges after traversing children, as we
10393 do here, means that recording a parent's ranges entails
10394 walking across all its children's ranges as they appear in
10395 the address map, which is quadratic behavior.
10396
10397 It would be nicer to record the parent's ranges before
10398 traversing its children, simply overriding whatever you find
10399 there. But since we don't even decide whether to create a
10400 block until after we've traversed its children, that's hard
10401 to do. */
10402 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10403 }
10404 local_symbols = new->locals;
10405 using_directives = new->using_directives;
10406 }
10407
10408 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10409
10410 static void
10411 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10412 {
10413 struct objfile *objfile = cu->objfile;
10414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10415 CORE_ADDR pc, baseaddr;
10416 struct attribute *attr;
10417 struct call_site *call_site, call_site_local;
10418 void **slot;
10419 int nparams;
10420 struct die_info *child_die;
10421
10422 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10423
10424 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10425 if (!attr)
10426 {
10427 complaint (&symfile_complaints,
10428 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10429 "DIE 0x%x [in module %s]"),
10430 die->offset.sect_off, objfile_name (objfile));
10431 return;
10432 }
10433 pc = DW_ADDR (attr) + baseaddr;
10434
10435 if (cu->call_site_htab == NULL)
10436 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10437 NULL, &objfile->objfile_obstack,
10438 hashtab_obstack_allocate, NULL);
10439 call_site_local.pc = pc;
10440 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10441 if (*slot != NULL)
10442 {
10443 complaint (&symfile_complaints,
10444 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10445 "DIE 0x%x [in module %s]"),
10446 paddress (gdbarch, pc), die->offset.sect_off,
10447 objfile_name (objfile));
10448 return;
10449 }
10450
10451 /* Count parameters at the caller. */
10452
10453 nparams = 0;
10454 for (child_die = die->child; child_die && child_die->tag;
10455 child_die = sibling_die (child_die))
10456 {
10457 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10458 {
10459 complaint (&symfile_complaints,
10460 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10461 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10462 child_die->tag, child_die->offset.sect_off,
10463 objfile_name (objfile));
10464 continue;
10465 }
10466
10467 nparams++;
10468 }
10469
10470 call_site = obstack_alloc (&objfile->objfile_obstack,
10471 (sizeof (*call_site)
10472 + (sizeof (*call_site->parameter)
10473 * (nparams - 1))));
10474 *slot = call_site;
10475 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10476 call_site->pc = pc;
10477
10478 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10479 {
10480 struct die_info *func_die;
10481
10482 /* Skip also over DW_TAG_inlined_subroutine. */
10483 for (func_die = die->parent;
10484 func_die && func_die->tag != DW_TAG_subprogram
10485 && func_die->tag != DW_TAG_subroutine_type;
10486 func_die = func_die->parent);
10487
10488 /* DW_AT_GNU_all_call_sites is a superset
10489 of DW_AT_GNU_all_tail_call_sites. */
10490 if (func_die
10491 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10492 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10493 {
10494 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10495 not complete. But keep CALL_SITE for look ups via call_site_htab,
10496 both the initial caller containing the real return address PC and
10497 the final callee containing the current PC of a chain of tail
10498 calls do not need to have the tail call list complete. But any
10499 function candidate for a virtual tail call frame searched via
10500 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10501 determined unambiguously. */
10502 }
10503 else
10504 {
10505 struct type *func_type = NULL;
10506
10507 if (func_die)
10508 func_type = get_die_type (func_die, cu);
10509 if (func_type != NULL)
10510 {
10511 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10512
10513 /* Enlist this call site to the function. */
10514 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10515 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10516 }
10517 else
10518 complaint (&symfile_complaints,
10519 _("Cannot find function owning DW_TAG_GNU_call_site "
10520 "DIE 0x%x [in module %s]"),
10521 die->offset.sect_off, objfile_name (objfile));
10522 }
10523 }
10524
10525 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10526 if (attr == NULL)
10527 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10528 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10529 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10530 /* Keep NULL DWARF_BLOCK. */;
10531 else if (attr_form_is_block (attr))
10532 {
10533 struct dwarf2_locexpr_baton *dlbaton;
10534
10535 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10536 dlbaton->data = DW_BLOCK (attr)->data;
10537 dlbaton->size = DW_BLOCK (attr)->size;
10538 dlbaton->per_cu = cu->per_cu;
10539
10540 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10541 }
10542 else if (attr_form_is_ref (attr))
10543 {
10544 struct dwarf2_cu *target_cu = cu;
10545 struct die_info *target_die;
10546
10547 target_die = follow_die_ref (die, attr, &target_cu);
10548 gdb_assert (target_cu->objfile == objfile);
10549 if (die_is_declaration (target_die, target_cu))
10550 {
10551 const char *target_physname = NULL;
10552 struct attribute *target_attr;
10553
10554 /* Prefer the mangled name; otherwise compute the demangled one. */
10555 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10556 if (target_attr == NULL)
10557 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10558 target_cu);
10559 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10560 target_physname = DW_STRING (target_attr);
10561 else
10562 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10563 if (target_physname == NULL)
10564 complaint (&symfile_complaints,
10565 _("DW_AT_GNU_call_site_target target DIE has invalid "
10566 "physname, for referencing DIE 0x%x [in module %s]"),
10567 die->offset.sect_off, objfile_name (objfile));
10568 else
10569 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10570 }
10571 else
10572 {
10573 CORE_ADDR lowpc;
10574
10575 /* DW_AT_entry_pc should be preferred. */
10576 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10577 complaint (&symfile_complaints,
10578 _("DW_AT_GNU_call_site_target target DIE has invalid "
10579 "low pc, for referencing DIE 0x%x [in module %s]"),
10580 die->offset.sect_off, objfile_name (objfile));
10581 else
10582 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10583 }
10584 }
10585 else
10586 complaint (&symfile_complaints,
10587 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10588 "block nor reference, for DIE 0x%x [in module %s]"),
10589 die->offset.sect_off, objfile_name (objfile));
10590
10591 call_site->per_cu = cu->per_cu;
10592
10593 for (child_die = die->child;
10594 child_die && child_die->tag;
10595 child_die = sibling_die (child_die))
10596 {
10597 struct call_site_parameter *parameter;
10598 struct attribute *loc, *origin;
10599
10600 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10601 {
10602 /* Already printed the complaint above. */
10603 continue;
10604 }
10605
10606 gdb_assert (call_site->parameter_count < nparams);
10607 parameter = &call_site->parameter[call_site->parameter_count];
10608
10609 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10610 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10611 register is contained in DW_AT_GNU_call_site_value. */
10612
10613 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10614 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10615 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
10616 {
10617 sect_offset offset;
10618
10619 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10620 offset = dwarf2_get_ref_die_offset (origin);
10621 if (!offset_in_cu_p (&cu->header, offset))
10622 {
10623 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10624 binding can be done only inside one CU. Such referenced DIE
10625 therefore cannot be even moved to DW_TAG_partial_unit. */
10626 complaint (&symfile_complaints,
10627 _("DW_AT_abstract_origin offset is not in CU for "
10628 "DW_TAG_GNU_call_site child DIE 0x%x "
10629 "[in module %s]"),
10630 child_die->offset.sect_off, objfile_name (objfile));
10631 continue;
10632 }
10633 parameter->u.param_offset.cu_off = (offset.sect_off
10634 - cu->header.offset.sect_off);
10635 }
10636 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10637 {
10638 complaint (&symfile_complaints,
10639 _("No DW_FORM_block* DW_AT_location for "
10640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10641 child_die->offset.sect_off, objfile_name (objfile));
10642 continue;
10643 }
10644 else
10645 {
10646 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10647 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10648 if (parameter->u.dwarf_reg != -1)
10649 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10650 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10651 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10652 &parameter->u.fb_offset))
10653 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10654 else
10655 {
10656 complaint (&symfile_complaints,
10657 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10658 "for DW_FORM_block* DW_AT_location is supported for "
10659 "DW_TAG_GNU_call_site child DIE 0x%x "
10660 "[in module %s]"),
10661 child_die->offset.sect_off, objfile_name (objfile));
10662 continue;
10663 }
10664 }
10665
10666 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10667 if (!attr_form_is_block (attr))
10668 {
10669 complaint (&symfile_complaints,
10670 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10671 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10672 child_die->offset.sect_off, objfile_name (objfile));
10673 continue;
10674 }
10675 parameter->value = DW_BLOCK (attr)->data;
10676 parameter->value_size = DW_BLOCK (attr)->size;
10677
10678 /* Parameters are not pre-cleared by memset above. */
10679 parameter->data_value = NULL;
10680 parameter->data_value_size = 0;
10681 call_site->parameter_count++;
10682
10683 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10684 if (attr)
10685 {
10686 if (!attr_form_is_block (attr))
10687 complaint (&symfile_complaints,
10688 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10689 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10690 child_die->offset.sect_off, objfile_name (objfile));
10691 else
10692 {
10693 parameter->data_value = DW_BLOCK (attr)->data;
10694 parameter->data_value_size = DW_BLOCK (attr)->size;
10695 }
10696 }
10697 }
10698 }
10699
10700 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10701 Return 1 if the attributes are present and valid, otherwise, return 0.
10702 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10703
10704 static int
10705 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10706 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10707 struct partial_symtab *ranges_pst)
10708 {
10709 struct objfile *objfile = cu->objfile;
10710 struct comp_unit_head *cu_header = &cu->header;
10711 bfd *obfd = objfile->obfd;
10712 unsigned int addr_size = cu_header->addr_size;
10713 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10714 /* Base address selection entry. */
10715 CORE_ADDR base;
10716 int found_base;
10717 unsigned int dummy;
10718 const gdb_byte *buffer;
10719 CORE_ADDR marker;
10720 int low_set;
10721 CORE_ADDR low = 0;
10722 CORE_ADDR high = 0;
10723 CORE_ADDR baseaddr;
10724
10725 found_base = cu->base_known;
10726 base = cu->base_address;
10727
10728 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10729 if (offset >= dwarf2_per_objfile->ranges.size)
10730 {
10731 complaint (&symfile_complaints,
10732 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10733 offset);
10734 return 0;
10735 }
10736 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10737
10738 /* Read in the largest possible address. */
10739 marker = read_address (obfd, buffer, cu, &dummy);
10740 if ((marker & mask) == mask)
10741 {
10742 /* If we found the largest possible address, then
10743 read the base address. */
10744 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10745 buffer += 2 * addr_size;
10746 offset += 2 * addr_size;
10747 found_base = 1;
10748 }
10749
10750 low_set = 0;
10751
10752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10753
10754 while (1)
10755 {
10756 CORE_ADDR range_beginning, range_end;
10757
10758 range_beginning = read_address (obfd, buffer, cu, &dummy);
10759 buffer += addr_size;
10760 range_end = read_address (obfd, buffer, cu, &dummy);
10761 buffer += addr_size;
10762 offset += 2 * addr_size;
10763
10764 /* An end of list marker is a pair of zero addresses. */
10765 if (range_beginning == 0 && range_end == 0)
10766 /* Found the end of list entry. */
10767 break;
10768
10769 /* Each base address selection entry is a pair of 2 values.
10770 The first is the largest possible address, the second is
10771 the base address. Check for a base address here. */
10772 if ((range_beginning & mask) == mask)
10773 {
10774 /* If we found the largest possible address, then
10775 read the base address. */
10776 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10777 found_base = 1;
10778 continue;
10779 }
10780
10781 if (!found_base)
10782 {
10783 /* We have no valid base address for the ranges
10784 data. */
10785 complaint (&symfile_complaints,
10786 _("Invalid .debug_ranges data (no base address)"));
10787 return 0;
10788 }
10789
10790 if (range_beginning > range_end)
10791 {
10792 /* Inverted range entries are invalid. */
10793 complaint (&symfile_complaints,
10794 _("Invalid .debug_ranges data (inverted range)"));
10795 return 0;
10796 }
10797
10798 /* Empty range entries have no effect. */
10799 if (range_beginning == range_end)
10800 continue;
10801
10802 range_beginning += base;
10803 range_end += base;
10804
10805 /* A not-uncommon case of bad debug info.
10806 Don't pollute the addrmap with bad data. */
10807 if (range_beginning + baseaddr == 0
10808 && !dwarf2_per_objfile->has_section_at_zero)
10809 {
10810 complaint (&symfile_complaints,
10811 _(".debug_ranges entry has start address of zero"
10812 " [in module %s]"), objfile_name (objfile));
10813 continue;
10814 }
10815
10816 if (ranges_pst != NULL)
10817 addrmap_set_empty (objfile->psymtabs_addrmap,
10818 range_beginning + baseaddr,
10819 range_end - 1 + baseaddr,
10820 ranges_pst);
10821
10822 /* FIXME: This is recording everything as a low-high
10823 segment of consecutive addresses. We should have a
10824 data structure for discontiguous block ranges
10825 instead. */
10826 if (! low_set)
10827 {
10828 low = range_beginning;
10829 high = range_end;
10830 low_set = 1;
10831 }
10832 else
10833 {
10834 if (range_beginning < low)
10835 low = range_beginning;
10836 if (range_end > high)
10837 high = range_end;
10838 }
10839 }
10840
10841 if (! low_set)
10842 /* If the first entry is an end-of-list marker, the range
10843 describes an empty scope, i.e. no instructions. */
10844 return 0;
10845
10846 if (low_return)
10847 *low_return = low;
10848 if (high_return)
10849 *high_return = high;
10850 return 1;
10851 }
10852
10853 /* Get low and high pc attributes from a die. Return 1 if the attributes
10854 are present and valid, otherwise, return 0. Return -1 if the range is
10855 discontinuous, i.e. derived from DW_AT_ranges information. */
10856
10857 static int
10858 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10859 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10860 struct partial_symtab *pst)
10861 {
10862 struct attribute *attr;
10863 struct attribute *attr_high;
10864 CORE_ADDR low = 0;
10865 CORE_ADDR high = 0;
10866 int ret = 0;
10867
10868 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10869 if (attr_high)
10870 {
10871 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10872 if (attr)
10873 {
10874 low = DW_ADDR (attr);
10875 if (attr_high->form == DW_FORM_addr
10876 || attr_high->form == DW_FORM_GNU_addr_index)
10877 high = DW_ADDR (attr_high);
10878 else
10879 high = low + DW_UNSND (attr_high);
10880 }
10881 else
10882 /* Found high w/o low attribute. */
10883 return 0;
10884
10885 /* Found consecutive range of addresses. */
10886 ret = 1;
10887 }
10888 else
10889 {
10890 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10891 if (attr != NULL)
10892 {
10893 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10894 We take advantage of the fact that DW_AT_ranges does not appear
10895 in DW_TAG_compile_unit of DWO files. */
10896 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10897 unsigned int ranges_offset = (DW_UNSND (attr)
10898 + (need_ranges_base
10899 ? cu->ranges_base
10900 : 0));
10901
10902 /* Value of the DW_AT_ranges attribute is the offset in the
10903 .debug_ranges section. */
10904 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10905 return 0;
10906 /* Found discontinuous range of addresses. */
10907 ret = -1;
10908 }
10909 }
10910
10911 /* read_partial_die has also the strict LOW < HIGH requirement. */
10912 if (high <= low)
10913 return 0;
10914
10915 /* When using the GNU linker, .gnu.linkonce. sections are used to
10916 eliminate duplicate copies of functions and vtables and such.
10917 The linker will arbitrarily choose one and discard the others.
10918 The AT_*_pc values for such functions refer to local labels in
10919 these sections. If the section from that file was discarded, the
10920 labels are not in the output, so the relocs get a value of 0.
10921 If this is a discarded function, mark the pc bounds as invalid,
10922 so that GDB will ignore it. */
10923 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10924 return 0;
10925
10926 *lowpc = low;
10927 if (highpc)
10928 *highpc = high;
10929 return ret;
10930 }
10931
10932 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10933 its low and high PC addresses. Do nothing if these addresses could not
10934 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10935 and HIGHPC to the high address if greater than HIGHPC. */
10936
10937 static void
10938 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10939 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10940 struct dwarf2_cu *cu)
10941 {
10942 CORE_ADDR low, high;
10943 struct die_info *child = die->child;
10944
10945 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10946 {
10947 *lowpc = min (*lowpc, low);
10948 *highpc = max (*highpc, high);
10949 }
10950
10951 /* If the language does not allow nested subprograms (either inside
10952 subprograms or lexical blocks), we're done. */
10953 if (cu->language != language_ada)
10954 return;
10955
10956 /* Check all the children of the given DIE. If it contains nested
10957 subprograms, then check their pc bounds. Likewise, we need to
10958 check lexical blocks as well, as they may also contain subprogram
10959 definitions. */
10960 while (child && child->tag)
10961 {
10962 if (child->tag == DW_TAG_subprogram
10963 || child->tag == DW_TAG_lexical_block)
10964 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10965 child = sibling_die (child);
10966 }
10967 }
10968
10969 /* Get the low and high pc's represented by the scope DIE, and store
10970 them in *LOWPC and *HIGHPC. If the correct values can't be
10971 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10972
10973 static void
10974 get_scope_pc_bounds (struct die_info *die,
10975 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10976 struct dwarf2_cu *cu)
10977 {
10978 CORE_ADDR best_low = (CORE_ADDR) -1;
10979 CORE_ADDR best_high = (CORE_ADDR) 0;
10980 CORE_ADDR current_low, current_high;
10981
10982 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10983 {
10984 best_low = current_low;
10985 best_high = current_high;
10986 }
10987 else
10988 {
10989 struct die_info *child = die->child;
10990
10991 while (child && child->tag)
10992 {
10993 switch (child->tag) {
10994 case DW_TAG_subprogram:
10995 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10996 break;
10997 case DW_TAG_namespace:
10998 case DW_TAG_module:
10999 /* FIXME: carlton/2004-01-16: Should we do this for
11000 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11001 that current GCC's always emit the DIEs corresponding
11002 to definitions of methods of classes as children of a
11003 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11004 the DIEs giving the declarations, which could be
11005 anywhere). But I don't see any reason why the
11006 standards says that they have to be there. */
11007 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11008
11009 if (current_low != ((CORE_ADDR) -1))
11010 {
11011 best_low = min (best_low, current_low);
11012 best_high = max (best_high, current_high);
11013 }
11014 break;
11015 default:
11016 /* Ignore. */
11017 break;
11018 }
11019
11020 child = sibling_die (child);
11021 }
11022 }
11023
11024 *lowpc = best_low;
11025 *highpc = best_high;
11026 }
11027
11028 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11029 in DIE. */
11030
11031 static void
11032 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11033 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11034 {
11035 struct objfile *objfile = cu->objfile;
11036 struct attribute *attr;
11037 struct attribute *attr_high;
11038
11039 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11040 if (attr_high)
11041 {
11042 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11043 if (attr)
11044 {
11045 CORE_ADDR low = DW_ADDR (attr);
11046 CORE_ADDR high;
11047 if (attr_high->form == DW_FORM_addr
11048 || attr_high->form == DW_FORM_GNU_addr_index)
11049 high = DW_ADDR (attr_high);
11050 else
11051 high = low + DW_UNSND (attr_high);
11052
11053 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11054 }
11055 }
11056
11057 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11058 if (attr)
11059 {
11060 bfd *obfd = objfile->obfd;
11061 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11062 We take advantage of the fact that DW_AT_ranges does not appear
11063 in DW_TAG_compile_unit of DWO files. */
11064 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11065
11066 /* The value of the DW_AT_ranges attribute is the offset of the
11067 address range list in the .debug_ranges section. */
11068 unsigned long offset = (DW_UNSND (attr)
11069 + (need_ranges_base ? cu->ranges_base : 0));
11070 const gdb_byte *buffer;
11071
11072 /* For some target architectures, but not others, the
11073 read_address function sign-extends the addresses it returns.
11074 To recognize base address selection entries, we need a
11075 mask. */
11076 unsigned int addr_size = cu->header.addr_size;
11077 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11078
11079 /* The base address, to which the next pair is relative. Note
11080 that this 'base' is a DWARF concept: most entries in a range
11081 list are relative, to reduce the number of relocs against the
11082 debugging information. This is separate from this function's
11083 'baseaddr' argument, which GDB uses to relocate debugging
11084 information from a shared library based on the address at
11085 which the library was loaded. */
11086 CORE_ADDR base = cu->base_address;
11087 int base_known = cu->base_known;
11088
11089 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11090 if (offset >= dwarf2_per_objfile->ranges.size)
11091 {
11092 complaint (&symfile_complaints,
11093 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11094 offset);
11095 return;
11096 }
11097 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11098
11099 for (;;)
11100 {
11101 unsigned int bytes_read;
11102 CORE_ADDR start, end;
11103
11104 start = read_address (obfd, buffer, cu, &bytes_read);
11105 buffer += bytes_read;
11106 end = read_address (obfd, buffer, cu, &bytes_read);
11107 buffer += bytes_read;
11108
11109 /* Did we find the end of the range list? */
11110 if (start == 0 && end == 0)
11111 break;
11112
11113 /* Did we find a base address selection entry? */
11114 else if ((start & base_select_mask) == base_select_mask)
11115 {
11116 base = end;
11117 base_known = 1;
11118 }
11119
11120 /* We found an ordinary address range. */
11121 else
11122 {
11123 if (!base_known)
11124 {
11125 complaint (&symfile_complaints,
11126 _("Invalid .debug_ranges data "
11127 "(no base address)"));
11128 return;
11129 }
11130
11131 if (start > end)
11132 {
11133 /* Inverted range entries are invalid. */
11134 complaint (&symfile_complaints,
11135 _("Invalid .debug_ranges data "
11136 "(inverted range)"));
11137 return;
11138 }
11139
11140 /* Empty range entries have no effect. */
11141 if (start == end)
11142 continue;
11143
11144 start += base + baseaddr;
11145 end += base + baseaddr;
11146
11147 /* A not-uncommon case of bad debug info.
11148 Don't pollute the addrmap with bad data. */
11149 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11150 {
11151 complaint (&symfile_complaints,
11152 _(".debug_ranges entry has start address of zero"
11153 " [in module %s]"), objfile_name (objfile));
11154 continue;
11155 }
11156
11157 record_block_range (block, start, end - 1);
11158 }
11159 }
11160 }
11161 }
11162
11163 /* Check whether the producer field indicates either of GCC < 4.6, or the
11164 Intel C/C++ compiler, and cache the result in CU. */
11165
11166 static void
11167 check_producer (struct dwarf2_cu *cu)
11168 {
11169 const char *cs;
11170 int major, minor, release;
11171
11172 if (cu->producer == NULL)
11173 {
11174 /* For unknown compilers expect their behavior is DWARF version
11175 compliant.
11176
11177 GCC started to support .debug_types sections by -gdwarf-4 since
11178 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11179 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11180 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11181 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11182 }
11183 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11184 {
11185 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11186
11187 cs = &cu->producer[strlen ("GNU ")];
11188 while (*cs && !isdigit (*cs))
11189 cs++;
11190 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11191 {
11192 /* Not recognized as GCC. */
11193 }
11194 else
11195 {
11196 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11197 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11198 }
11199 }
11200 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11201 cu->producer_is_icc = 1;
11202 else
11203 {
11204 /* For other non-GCC compilers, expect their behavior is DWARF version
11205 compliant. */
11206 }
11207
11208 cu->checked_producer = 1;
11209 }
11210
11211 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11212 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11213 during 4.6.0 experimental. */
11214
11215 static int
11216 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11217 {
11218 if (!cu->checked_producer)
11219 check_producer (cu);
11220
11221 return cu->producer_is_gxx_lt_4_6;
11222 }
11223
11224 /* Return the default accessibility type if it is not overriden by
11225 DW_AT_accessibility. */
11226
11227 static enum dwarf_access_attribute
11228 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11229 {
11230 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11231 {
11232 /* The default DWARF 2 accessibility for members is public, the default
11233 accessibility for inheritance is private. */
11234
11235 if (die->tag != DW_TAG_inheritance)
11236 return DW_ACCESS_public;
11237 else
11238 return DW_ACCESS_private;
11239 }
11240 else
11241 {
11242 /* DWARF 3+ defines the default accessibility a different way. The same
11243 rules apply now for DW_TAG_inheritance as for the members and it only
11244 depends on the container kind. */
11245
11246 if (die->parent->tag == DW_TAG_class_type)
11247 return DW_ACCESS_private;
11248 else
11249 return DW_ACCESS_public;
11250 }
11251 }
11252
11253 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11254 offset. If the attribute was not found return 0, otherwise return
11255 1. If it was found but could not properly be handled, set *OFFSET
11256 to 0. */
11257
11258 static int
11259 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11260 LONGEST *offset)
11261 {
11262 struct attribute *attr;
11263
11264 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11265 if (attr != NULL)
11266 {
11267 *offset = 0;
11268
11269 /* Note that we do not check for a section offset first here.
11270 This is because DW_AT_data_member_location is new in DWARF 4,
11271 so if we see it, we can assume that a constant form is really
11272 a constant and not a section offset. */
11273 if (attr_form_is_constant (attr))
11274 *offset = dwarf2_get_attr_constant_value (attr, 0);
11275 else if (attr_form_is_section_offset (attr))
11276 dwarf2_complex_location_expr_complaint ();
11277 else if (attr_form_is_block (attr))
11278 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11279 else
11280 dwarf2_complex_location_expr_complaint ();
11281
11282 return 1;
11283 }
11284
11285 return 0;
11286 }
11287
11288 /* Add an aggregate field to the field list. */
11289
11290 static void
11291 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11292 struct dwarf2_cu *cu)
11293 {
11294 struct objfile *objfile = cu->objfile;
11295 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11296 struct nextfield *new_field;
11297 struct attribute *attr;
11298 struct field *fp;
11299 const char *fieldname = "";
11300
11301 /* Allocate a new field list entry and link it in. */
11302 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11303 make_cleanup (xfree, new_field);
11304 memset (new_field, 0, sizeof (struct nextfield));
11305
11306 if (die->tag == DW_TAG_inheritance)
11307 {
11308 new_field->next = fip->baseclasses;
11309 fip->baseclasses = new_field;
11310 }
11311 else
11312 {
11313 new_field->next = fip->fields;
11314 fip->fields = new_field;
11315 }
11316 fip->nfields++;
11317
11318 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11319 if (attr)
11320 new_field->accessibility = DW_UNSND (attr);
11321 else
11322 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11323 if (new_field->accessibility != DW_ACCESS_public)
11324 fip->non_public_fields = 1;
11325
11326 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11327 if (attr)
11328 new_field->virtuality = DW_UNSND (attr);
11329 else
11330 new_field->virtuality = DW_VIRTUALITY_none;
11331
11332 fp = &new_field->field;
11333
11334 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11335 {
11336 LONGEST offset;
11337
11338 /* Data member other than a C++ static data member. */
11339
11340 /* Get type of field. */
11341 fp->type = die_type (die, cu);
11342
11343 SET_FIELD_BITPOS (*fp, 0);
11344
11345 /* Get bit size of field (zero if none). */
11346 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11347 if (attr)
11348 {
11349 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11350 }
11351 else
11352 {
11353 FIELD_BITSIZE (*fp) = 0;
11354 }
11355
11356 /* Get bit offset of field. */
11357 if (handle_data_member_location (die, cu, &offset))
11358 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11359 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11360 if (attr)
11361 {
11362 if (gdbarch_bits_big_endian (gdbarch))
11363 {
11364 /* For big endian bits, the DW_AT_bit_offset gives the
11365 additional bit offset from the MSB of the containing
11366 anonymous object to the MSB of the field. We don't
11367 have to do anything special since we don't need to
11368 know the size of the anonymous object. */
11369 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11370 }
11371 else
11372 {
11373 /* For little endian bits, compute the bit offset to the
11374 MSB of the anonymous object, subtract off the number of
11375 bits from the MSB of the field to the MSB of the
11376 object, and then subtract off the number of bits of
11377 the field itself. The result is the bit offset of
11378 the LSB of the field. */
11379 int anonymous_size;
11380 int bit_offset = DW_UNSND (attr);
11381
11382 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11383 if (attr)
11384 {
11385 /* The size of the anonymous object containing
11386 the bit field is explicit, so use the
11387 indicated size (in bytes). */
11388 anonymous_size = DW_UNSND (attr);
11389 }
11390 else
11391 {
11392 /* The size of the anonymous object containing
11393 the bit field must be inferred from the type
11394 attribute of the data member containing the
11395 bit field. */
11396 anonymous_size = TYPE_LENGTH (fp->type);
11397 }
11398 SET_FIELD_BITPOS (*fp,
11399 (FIELD_BITPOS (*fp)
11400 + anonymous_size * bits_per_byte
11401 - bit_offset - FIELD_BITSIZE (*fp)));
11402 }
11403 }
11404
11405 /* Get name of field. */
11406 fieldname = dwarf2_name (die, cu);
11407 if (fieldname == NULL)
11408 fieldname = "";
11409
11410 /* The name is already allocated along with this objfile, so we don't
11411 need to duplicate it for the type. */
11412 fp->name = fieldname;
11413
11414 /* Change accessibility for artificial fields (e.g. virtual table
11415 pointer or virtual base class pointer) to private. */
11416 if (dwarf2_attr (die, DW_AT_artificial, cu))
11417 {
11418 FIELD_ARTIFICIAL (*fp) = 1;
11419 new_field->accessibility = DW_ACCESS_private;
11420 fip->non_public_fields = 1;
11421 }
11422 }
11423 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11424 {
11425 /* C++ static member. */
11426
11427 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11428 is a declaration, but all versions of G++ as of this writing
11429 (so through at least 3.2.1) incorrectly generate
11430 DW_TAG_variable tags. */
11431
11432 const char *physname;
11433
11434 /* Get name of field. */
11435 fieldname = dwarf2_name (die, cu);
11436 if (fieldname == NULL)
11437 return;
11438
11439 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11440 if (attr
11441 /* Only create a symbol if this is an external value.
11442 new_symbol checks this and puts the value in the global symbol
11443 table, which we want. If it is not external, new_symbol
11444 will try to put the value in cu->list_in_scope which is wrong. */
11445 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11446 {
11447 /* A static const member, not much different than an enum as far as
11448 we're concerned, except that we can support more types. */
11449 new_symbol (die, NULL, cu);
11450 }
11451
11452 /* Get physical name. */
11453 physname = dwarf2_physname (fieldname, die, cu);
11454
11455 /* The name is already allocated along with this objfile, so we don't
11456 need to duplicate it for the type. */
11457 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11458 FIELD_TYPE (*fp) = die_type (die, cu);
11459 FIELD_NAME (*fp) = fieldname;
11460 }
11461 else if (die->tag == DW_TAG_inheritance)
11462 {
11463 LONGEST offset;
11464
11465 /* C++ base class field. */
11466 if (handle_data_member_location (die, cu, &offset))
11467 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11468 FIELD_BITSIZE (*fp) = 0;
11469 FIELD_TYPE (*fp) = die_type (die, cu);
11470 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11471 fip->nbaseclasses++;
11472 }
11473 }
11474
11475 /* Add a typedef defined in the scope of the FIP's class. */
11476
11477 static void
11478 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11479 struct dwarf2_cu *cu)
11480 {
11481 struct objfile *objfile = cu->objfile;
11482 struct typedef_field_list *new_field;
11483 struct attribute *attr;
11484 struct typedef_field *fp;
11485 char *fieldname = "";
11486
11487 /* Allocate a new field list entry and link it in. */
11488 new_field = xzalloc (sizeof (*new_field));
11489 make_cleanup (xfree, new_field);
11490
11491 gdb_assert (die->tag == DW_TAG_typedef);
11492
11493 fp = &new_field->field;
11494
11495 /* Get name of field. */
11496 fp->name = dwarf2_name (die, cu);
11497 if (fp->name == NULL)
11498 return;
11499
11500 fp->type = read_type_die (die, cu);
11501
11502 new_field->next = fip->typedef_field_list;
11503 fip->typedef_field_list = new_field;
11504 fip->typedef_field_list_count++;
11505 }
11506
11507 /* Create the vector of fields, and attach it to the type. */
11508
11509 static void
11510 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11511 struct dwarf2_cu *cu)
11512 {
11513 int nfields = fip->nfields;
11514
11515 /* Record the field count, allocate space for the array of fields,
11516 and create blank accessibility bitfields if necessary. */
11517 TYPE_NFIELDS (type) = nfields;
11518 TYPE_FIELDS (type) = (struct field *)
11519 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11520 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11521
11522 if (fip->non_public_fields && cu->language != language_ada)
11523 {
11524 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11525
11526 TYPE_FIELD_PRIVATE_BITS (type) =
11527 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11528 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11529
11530 TYPE_FIELD_PROTECTED_BITS (type) =
11531 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11532 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11533
11534 TYPE_FIELD_IGNORE_BITS (type) =
11535 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11536 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11537 }
11538
11539 /* If the type has baseclasses, allocate and clear a bit vector for
11540 TYPE_FIELD_VIRTUAL_BITS. */
11541 if (fip->nbaseclasses && cu->language != language_ada)
11542 {
11543 int num_bytes = B_BYTES (fip->nbaseclasses);
11544 unsigned char *pointer;
11545
11546 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11547 pointer = TYPE_ALLOC (type, num_bytes);
11548 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11549 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11550 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11551 }
11552
11553 /* Copy the saved-up fields into the field vector. Start from the head of
11554 the list, adding to the tail of the field array, so that they end up in
11555 the same order in the array in which they were added to the list. */
11556 while (nfields-- > 0)
11557 {
11558 struct nextfield *fieldp;
11559
11560 if (fip->fields)
11561 {
11562 fieldp = fip->fields;
11563 fip->fields = fieldp->next;
11564 }
11565 else
11566 {
11567 fieldp = fip->baseclasses;
11568 fip->baseclasses = fieldp->next;
11569 }
11570
11571 TYPE_FIELD (type, nfields) = fieldp->field;
11572 switch (fieldp->accessibility)
11573 {
11574 case DW_ACCESS_private:
11575 if (cu->language != language_ada)
11576 SET_TYPE_FIELD_PRIVATE (type, nfields);
11577 break;
11578
11579 case DW_ACCESS_protected:
11580 if (cu->language != language_ada)
11581 SET_TYPE_FIELD_PROTECTED (type, nfields);
11582 break;
11583
11584 case DW_ACCESS_public:
11585 break;
11586
11587 default:
11588 /* Unknown accessibility. Complain and treat it as public. */
11589 {
11590 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11591 fieldp->accessibility);
11592 }
11593 break;
11594 }
11595 if (nfields < fip->nbaseclasses)
11596 {
11597 switch (fieldp->virtuality)
11598 {
11599 case DW_VIRTUALITY_virtual:
11600 case DW_VIRTUALITY_pure_virtual:
11601 if (cu->language == language_ada)
11602 error (_("unexpected virtuality in component of Ada type"));
11603 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11604 break;
11605 }
11606 }
11607 }
11608 }
11609
11610 /* Return true if this member function is a constructor, false
11611 otherwise. */
11612
11613 static int
11614 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11615 {
11616 const char *fieldname;
11617 const char *typename;
11618 int len;
11619
11620 if (die->parent == NULL)
11621 return 0;
11622
11623 if (die->parent->tag != DW_TAG_structure_type
11624 && die->parent->tag != DW_TAG_union_type
11625 && die->parent->tag != DW_TAG_class_type)
11626 return 0;
11627
11628 fieldname = dwarf2_name (die, cu);
11629 typename = dwarf2_name (die->parent, cu);
11630 if (fieldname == NULL || typename == NULL)
11631 return 0;
11632
11633 len = strlen (fieldname);
11634 return (strncmp (fieldname, typename, len) == 0
11635 && (typename[len] == '\0' || typename[len] == '<'));
11636 }
11637
11638 /* Add a member function to the proper fieldlist. */
11639
11640 static void
11641 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11642 struct type *type, struct dwarf2_cu *cu)
11643 {
11644 struct objfile *objfile = cu->objfile;
11645 struct attribute *attr;
11646 struct fnfieldlist *flp;
11647 int i;
11648 struct fn_field *fnp;
11649 const char *fieldname;
11650 struct nextfnfield *new_fnfield;
11651 struct type *this_type;
11652 enum dwarf_access_attribute accessibility;
11653
11654 if (cu->language == language_ada)
11655 error (_("unexpected member function in Ada type"));
11656
11657 /* Get name of member function. */
11658 fieldname = dwarf2_name (die, cu);
11659 if (fieldname == NULL)
11660 return;
11661
11662 /* Look up member function name in fieldlist. */
11663 for (i = 0; i < fip->nfnfields; i++)
11664 {
11665 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11666 break;
11667 }
11668
11669 /* Create new list element if necessary. */
11670 if (i < fip->nfnfields)
11671 flp = &fip->fnfieldlists[i];
11672 else
11673 {
11674 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11675 {
11676 fip->fnfieldlists = (struct fnfieldlist *)
11677 xrealloc (fip->fnfieldlists,
11678 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11679 * sizeof (struct fnfieldlist));
11680 if (fip->nfnfields == 0)
11681 make_cleanup (free_current_contents, &fip->fnfieldlists);
11682 }
11683 flp = &fip->fnfieldlists[fip->nfnfields];
11684 flp->name = fieldname;
11685 flp->length = 0;
11686 flp->head = NULL;
11687 i = fip->nfnfields++;
11688 }
11689
11690 /* Create a new member function field and chain it to the field list
11691 entry. */
11692 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11693 make_cleanup (xfree, new_fnfield);
11694 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11695 new_fnfield->next = flp->head;
11696 flp->head = new_fnfield;
11697 flp->length++;
11698
11699 /* Fill in the member function field info. */
11700 fnp = &new_fnfield->fnfield;
11701
11702 /* Delay processing of the physname until later. */
11703 if (cu->language == language_cplus || cu->language == language_java)
11704 {
11705 add_to_method_list (type, i, flp->length - 1, fieldname,
11706 die, cu);
11707 }
11708 else
11709 {
11710 const char *physname = dwarf2_physname (fieldname, die, cu);
11711 fnp->physname = physname ? physname : "";
11712 }
11713
11714 fnp->type = alloc_type (objfile);
11715 this_type = read_type_die (die, cu);
11716 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11717 {
11718 int nparams = TYPE_NFIELDS (this_type);
11719
11720 /* TYPE is the domain of this method, and THIS_TYPE is the type
11721 of the method itself (TYPE_CODE_METHOD). */
11722 smash_to_method_type (fnp->type, type,
11723 TYPE_TARGET_TYPE (this_type),
11724 TYPE_FIELDS (this_type),
11725 TYPE_NFIELDS (this_type),
11726 TYPE_VARARGS (this_type));
11727
11728 /* Handle static member functions.
11729 Dwarf2 has no clean way to discern C++ static and non-static
11730 member functions. G++ helps GDB by marking the first
11731 parameter for non-static member functions (which is the this
11732 pointer) as artificial. We obtain this information from
11733 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11734 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11735 fnp->voffset = VOFFSET_STATIC;
11736 }
11737 else
11738 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11739 dwarf2_full_name (fieldname, die, cu));
11740
11741 /* Get fcontext from DW_AT_containing_type if present. */
11742 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11743 fnp->fcontext = die_containing_type (die, cu);
11744
11745 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11746 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11747
11748 /* Get accessibility. */
11749 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11750 if (attr)
11751 accessibility = DW_UNSND (attr);
11752 else
11753 accessibility = dwarf2_default_access_attribute (die, cu);
11754 switch (accessibility)
11755 {
11756 case DW_ACCESS_private:
11757 fnp->is_private = 1;
11758 break;
11759 case DW_ACCESS_protected:
11760 fnp->is_protected = 1;
11761 break;
11762 }
11763
11764 /* Check for artificial methods. */
11765 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11766 if (attr && DW_UNSND (attr) != 0)
11767 fnp->is_artificial = 1;
11768
11769 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11770
11771 /* Get index in virtual function table if it is a virtual member
11772 function. For older versions of GCC, this is an offset in the
11773 appropriate virtual table, as specified by DW_AT_containing_type.
11774 For everyone else, it is an expression to be evaluated relative
11775 to the object address. */
11776
11777 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11778 if (attr)
11779 {
11780 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11781 {
11782 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11783 {
11784 /* Old-style GCC. */
11785 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11786 }
11787 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11788 || (DW_BLOCK (attr)->size > 1
11789 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11790 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11791 {
11792 struct dwarf_block blk;
11793 int offset;
11794
11795 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11796 ? 1 : 2);
11797 blk.size = DW_BLOCK (attr)->size - offset;
11798 blk.data = DW_BLOCK (attr)->data + offset;
11799 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11800 if ((fnp->voffset % cu->header.addr_size) != 0)
11801 dwarf2_complex_location_expr_complaint ();
11802 else
11803 fnp->voffset /= cu->header.addr_size;
11804 fnp->voffset += 2;
11805 }
11806 else
11807 dwarf2_complex_location_expr_complaint ();
11808
11809 if (!fnp->fcontext)
11810 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11811 }
11812 else if (attr_form_is_section_offset (attr))
11813 {
11814 dwarf2_complex_location_expr_complaint ();
11815 }
11816 else
11817 {
11818 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11819 fieldname);
11820 }
11821 }
11822 else
11823 {
11824 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11825 if (attr && DW_UNSND (attr))
11826 {
11827 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11828 complaint (&symfile_complaints,
11829 _("Member function \"%s\" (offset %d) is virtual "
11830 "but the vtable offset is not specified"),
11831 fieldname, die->offset.sect_off);
11832 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11833 TYPE_CPLUS_DYNAMIC (type) = 1;
11834 }
11835 }
11836 }
11837
11838 /* Create the vector of member function fields, and attach it to the type. */
11839
11840 static void
11841 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11842 struct dwarf2_cu *cu)
11843 {
11844 struct fnfieldlist *flp;
11845 int i;
11846
11847 if (cu->language == language_ada)
11848 error (_("unexpected member functions in Ada type"));
11849
11850 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11851 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11852 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11853
11854 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11855 {
11856 struct nextfnfield *nfp = flp->head;
11857 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11858 int k;
11859
11860 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11861 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11862 fn_flp->fn_fields = (struct fn_field *)
11863 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11864 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11865 fn_flp->fn_fields[k] = nfp->fnfield;
11866 }
11867
11868 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11869 }
11870
11871 /* Returns non-zero if NAME is the name of a vtable member in CU's
11872 language, zero otherwise. */
11873 static int
11874 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11875 {
11876 static const char vptr[] = "_vptr";
11877 static const char vtable[] = "vtable";
11878
11879 /* Look for the C++ and Java forms of the vtable. */
11880 if ((cu->language == language_java
11881 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11882 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11883 && is_cplus_marker (name[sizeof (vptr) - 1])))
11884 return 1;
11885
11886 return 0;
11887 }
11888
11889 /* GCC outputs unnamed structures that are really pointers to member
11890 functions, with the ABI-specified layout. If TYPE describes
11891 such a structure, smash it into a member function type.
11892
11893 GCC shouldn't do this; it should just output pointer to member DIEs.
11894 This is GCC PR debug/28767. */
11895
11896 static void
11897 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11898 {
11899 struct type *pfn_type, *domain_type, *new_type;
11900
11901 /* Check for a structure with no name and two children. */
11902 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11903 return;
11904
11905 /* Check for __pfn and __delta members. */
11906 if (TYPE_FIELD_NAME (type, 0) == NULL
11907 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11908 || TYPE_FIELD_NAME (type, 1) == NULL
11909 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11910 return;
11911
11912 /* Find the type of the method. */
11913 pfn_type = TYPE_FIELD_TYPE (type, 0);
11914 if (pfn_type == NULL
11915 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11916 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11917 return;
11918
11919 /* Look for the "this" argument. */
11920 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11921 if (TYPE_NFIELDS (pfn_type) == 0
11922 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11923 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11924 return;
11925
11926 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11927 new_type = alloc_type (objfile);
11928 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11929 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11930 TYPE_VARARGS (pfn_type));
11931 smash_to_methodptr_type (type, new_type);
11932 }
11933
11934 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11935 (icc). */
11936
11937 static int
11938 producer_is_icc (struct dwarf2_cu *cu)
11939 {
11940 if (!cu->checked_producer)
11941 check_producer (cu);
11942
11943 return cu->producer_is_icc;
11944 }
11945
11946 /* Called when we find the DIE that starts a structure or union scope
11947 (definition) to create a type for the structure or union. Fill in
11948 the type's name and general properties; the members will not be
11949 processed until process_structure_scope.
11950
11951 NOTE: we need to call these functions regardless of whether or not the
11952 DIE has a DW_AT_name attribute, since it might be an anonymous
11953 structure or union. This gets the type entered into our set of
11954 user defined types.
11955
11956 However, if the structure is incomplete (an opaque struct/union)
11957 then suppress creating a symbol table entry for it since gdb only
11958 wants to find the one with the complete definition. Note that if
11959 it is complete, we just call new_symbol, which does it's own
11960 checking about whether the struct/union is anonymous or not (and
11961 suppresses creating a symbol table entry itself). */
11962
11963 static struct type *
11964 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11965 {
11966 struct objfile *objfile = cu->objfile;
11967 struct type *type;
11968 struct attribute *attr;
11969 const char *name;
11970
11971 /* If the definition of this type lives in .debug_types, read that type.
11972 Don't follow DW_AT_specification though, that will take us back up
11973 the chain and we want to go down. */
11974 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11975 if (attr)
11976 {
11977 type = get_DW_AT_signature_type (die, attr, cu);
11978
11979 /* The type's CU may not be the same as CU.
11980 Ensure TYPE is recorded with CU in die_type_hash. */
11981 return set_die_type (die, type, cu);
11982 }
11983
11984 type = alloc_type (objfile);
11985 INIT_CPLUS_SPECIFIC (type);
11986
11987 name = dwarf2_name (die, cu);
11988 if (name != NULL)
11989 {
11990 if (cu->language == language_cplus
11991 || cu->language == language_java)
11992 {
11993 const char *full_name = dwarf2_full_name (name, die, cu);
11994
11995 /* dwarf2_full_name might have already finished building the DIE's
11996 type. If so, there is no need to continue. */
11997 if (get_die_type (die, cu) != NULL)
11998 return get_die_type (die, cu);
11999
12000 TYPE_TAG_NAME (type) = full_name;
12001 if (die->tag == DW_TAG_structure_type
12002 || die->tag == DW_TAG_class_type)
12003 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12004 }
12005 else
12006 {
12007 /* The name is already allocated along with this objfile, so
12008 we don't need to duplicate it for the type. */
12009 TYPE_TAG_NAME (type) = name;
12010 if (die->tag == DW_TAG_class_type)
12011 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12012 }
12013 }
12014
12015 if (die->tag == DW_TAG_structure_type)
12016 {
12017 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12018 }
12019 else if (die->tag == DW_TAG_union_type)
12020 {
12021 TYPE_CODE (type) = TYPE_CODE_UNION;
12022 }
12023 else
12024 {
12025 TYPE_CODE (type) = TYPE_CODE_CLASS;
12026 }
12027
12028 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12029 TYPE_DECLARED_CLASS (type) = 1;
12030
12031 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12032 if (attr)
12033 {
12034 TYPE_LENGTH (type) = DW_UNSND (attr);
12035 }
12036 else
12037 {
12038 TYPE_LENGTH (type) = 0;
12039 }
12040
12041 if (producer_is_icc (cu))
12042 {
12043 /* ICC does not output the required DW_AT_declaration
12044 on incomplete types, but gives them a size of zero. */
12045 }
12046 else
12047 TYPE_STUB_SUPPORTED (type) = 1;
12048
12049 if (die_is_declaration (die, cu))
12050 TYPE_STUB (type) = 1;
12051 else if (attr == NULL && die->child == NULL
12052 && producer_is_realview (cu->producer))
12053 /* RealView does not output the required DW_AT_declaration
12054 on incomplete types. */
12055 TYPE_STUB (type) = 1;
12056
12057 /* We need to add the type field to the die immediately so we don't
12058 infinitely recurse when dealing with pointers to the structure
12059 type within the structure itself. */
12060 set_die_type (die, type, cu);
12061
12062 /* set_die_type should be already done. */
12063 set_descriptive_type (type, die, cu);
12064
12065 return type;
12066 }
12067
12068 /* Finish creating a structure or union type, including filling in
12069 its members and creating a symbol for it. */
12070
12071 static void
12072 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12073 {
12074 struct objfile *objfile = cu->objfile;
12075 struct die_info *child_die = die->child;
12076 struct type *type;
12077
12078 type = get_die_type (die, cu);
12079 if (type == NULL)
12080 type = read_structure_type (die, cu);
12081
12082 if (die->child != NULL && ! die_is_declaration (die, cu))
12083 {
12084 struct field_info fi;
12085 struct die_info *child_die;
12086 VEC (symbolp) *template_args = NULL;
12087 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12088
12089 memset (&fi, 0, sizeof (struct field_info));
12090
12091 child_die = die->child;
12092
12093 while (child_die && child_die->tag)
12094 {
12095 if (child_die->tag == DW_TAG_member
12096 || child_die->tag == DW_TAG_variable)
12097 {
12098 /* NOTE: carlton/2002-11-05: A C++ static data member
12099 should be a DW_TAG_member that is a declaration, but
12100 all versions of G++ as of this writing (so through at
12101 least 3.2.1) incorrectly generate DW_TAG_variable
12102 tags for them instead. */
12103 dwarf2_add_field (&fi, child_die, cu);
12104 }
12105 else if (child_die->tag == DW_TAG_subprogram)
12106 {
12107 /* C++ member function. */
12108 dwarf2_add_member_fn (&fi, child_die, type, cu);
12109 }
12110 else if (child_die->tag == DW_TAG_inheritance)
12111 {
12112 /* C++ base class field. */
12113 dwarf2_add_field (&fi, child_die, cu);
12114 }
12115 else if (child_die->tag == DW_TAG_typedef)
12116 dwarf2_add_typedef (&fi, child_die, cu);
12117 else if (child_die->tag == DW_TAG_template_type_param
12118 || child_die->tag == DW_TAG_template_value_param)
12119 {
12120 struct symbol *arg = new_symbol (child_die, NULL, cu);
12121
12122 if (arg != NULL)
12123 VEC_safe_push (symbolp, template_args, arg);
12124 }
12125
12126 child_die = sibling_die (child_die);
12127 }
12128
12129 /* Attach template arguments to type. */
12130 if (! VEC_empty (symbolp, template_args))
12131 {
12132 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12133 TYPE_N_TEMPLATE_ARGUMENTS (type)
12134 = VEC_length (symbolp, template_args);
12135 TYPE_TEMPLATE_ARGUMENTS (type)
12136 = obstack_alloc (&objfile->objfile_obstack,
12137 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12138 * sizeof (struct symbol *)));
12139 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12140 VEC_address (symbolp, template_args),
12141 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12142 * sizeof (struct symbol *)));
12143 VEC_free (symbolp, template_args);
12144 }
12145
12146 /* Attach fields and member functions to the type. */
12147 if (fi.nfields)
12148 dwarf2_attach_fields_to_type (&fi, type, cu);
12149 if (fi.nfnfields)
12150 {
12151 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12152
12153 /* Get the type which refers to the base class (possibly this
12154 class itself) which contains the vtable pointer for the current
12155 class from the DW_AT_containing_type attribute. This use of
12156 DW_AT_containing_type is a GNU extension. */
12157
12158 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12159 {
12160 struct type *t = die_containing_type (die, cu);
12161
12162 TYPE_VPTR_BASETYPE (type) = t;
12163 if (type == t)
12164 {
12165 int i;
12166
12167 /* Our own class provides vtbl ptr. */
12168 for (i = TYPE_NFIELDS (t) - 1;
12169 i >= TYPE_N_BASECLASSES (t);
12170 --i)
12171 {
12172 const char *fieldname = TYPE_FIELD_NAME (t, i);
12173
12174 if (is_vtable_name (fieldname, cu))
12175 {
12176 TYPE_VPTR_FIELDNO (type) = i;
12177 break;
12178 }
12179 }
12180
12181 /* Complain if virtual function table field not found. */
12182 if (i < TYPE_N_BASECLASSES (t))
12183 complaint (&symfile_complaints,
12184 _("virtual function table pointer "
12185 "not found when defining class '%s'"),
12186 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12187 "");
12188 }
12189 else
12190 {
12191 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12192 }
12193 }
12194 else if (cu->producer
12195 && strncmp (cu->producer,
12196 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12197 {
12198 /* The IBM XLC compiler does not provide direct indication
12199 of the containing type, but the vtable pointer is
12200 always named __vfp. */
12201
12202 int i;
12203
12204 for (i = TYPE_NFIELDS (type) - 1;
12205 i >= TYPE_N_BASECLASSES (type);
12206 --i)
12207 {
12208 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12209 {
12210 TYPE_VPTR_FIELDNO (type) = i;
12211 TYPE_VPTR_BASETYPE (type) = type;
12212 break;
12213 }
12214 }
12215 }
12216 }
12217
12218 /* Copy fi.typedef_field_list linked list elements content into the
12219 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12220 if (fi.typedef_field_list)
12221 {
12222 int i = fi.typedef_field_list_count;
12223
12224 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12225 TYPE_TYPEDEF_FIELD_ARRAY (type)
12226 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12227 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12228
12229 /* Reverse the list order to keep the debug info elements order. */
12230 while (--i >= 0)
12231 {
12232 struct typedef_field *dest, *src;
12233
12234 dest = &TYPE_TYPEDEF_FIELD (type, i);
12235 src = &fi.typedef_field_list->field;
12236 fi.typedef_field_list = fi.typedef_field_list->next;
12237 *dest = *src;
12238 }
12239 }
12240
12241 do_cleanups (back_to);
12242
12243 if (HAVE_CPLUS_STRUCT (type))
12244 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12245 }
12246
12247 quirk_gcc_member_function_pointer (type, objfile);
12248
12249 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12250 snapshots) has been known to create a die giving a declaration
12251 for a class that has, as a child, a die giving a definition for a
12252 nested class. So we have to process our children even if the
12253 current die is a declaration. Normally, of course, a declaration
12254 won't have any children at all. */
12255
12256 while (child_die != NULL && child_die->tag)
12257 {
12258 if (child_die->tag == DW_TAG_member
12259 || child_die->tag == DW_TAG_variable
12260 || child_die->tag == DW_TAG_inheritance
12261 || child_die->tag == DW_TAG_template_value_param
12262 || child_die->tag == DW_TAG_template_type_param)
12263 {
12264 /* Do nothing. */
12265 }
12266 else
12267 process_die (child_die, cu);
12268
12269 child_die = sibling_die (child_die);
12270 }
12271
12272 /* Do not consider external references. According to the DWARF standard,
12273 these DIEs are identified by the fact that they have no byte_size
12274 attribute, and a declaration attribute. */
12275 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12276 || !die_is_declaration (die, cu))
12277 new_symbol (die, type, cu);
12278 }
12279
12280 /* Given a DW_AT_enumeration_type die, set its type. We do not
12281 complete the type's fields yet, or create any symbols. */
12282
12283 static struct type *
12284 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12285 {
12286 struct objfile *objfile = cu->objfile;
12287 struct type *type;
12288 struct attribute *attr;
12289 const char *name;
12290
12291 /* If the definition of this type lives in .debug_types, read that type.
12292 Don't follow DW_AT_specification though, that will take us back up
12293 the chain and we want to go down. */
12294 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12295 if (attr)
12296 {
12297 type = get_DW_AT_signature_type (die, attr, cu);
12298
12299 /* The type's CU may not be the same as CU.
12300 Ensure TYPE is recorded with CU in die_type_hash. */
12301 return set_die_type (die, type, cu);
12302 }
12303
12304 type = alloc_type (objfile);
12305
12306 TYPE_CODE (type) = TYPE_CODE_ENUM;
12307 name = dwarf2_full_name (NULL, die, cu);
12308 if (name != NULL)
12309 TYPE_TAG_NAME (type) = name;
12310
12311 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12312 if (attr)
12313 {
12314 TYPE_LENGTH (type) = DW_UNSND (attr);
12315 }
12316 else
12317 {
12318 TYPE_LENGTH (type) = 0;
12319 }
12320
12321 /* The enumeration DIE can be incomplete. In Ada, any type can be
12322 declared as private in the package spec, and then defined only
12323 inside the package body. Such types are known as Taft Amendment
12324 Types. When another package uses such a type, an incomplete DIE
12325 may be generated by the compiler. */
12326 if (die_is_declaration (die, cu))
12327 TYPE_STUB (type) = 1;
12328
12329 return set_die_type (die, type, cu);
12330 }
12331
12332 /* Given a pointer to a die which begins an enumeration, process all
12333 the dies that define the members of the enumeration, and create the
12334 symbol for the enumeration type.
12335
12336 NOTE: We reverse the order of the element list. */
12337
12338 static void
12339 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12340 {
12341 struct type *this_type;
12342
12343 this_type = get_die_type (die, cu);
12344 if (this_type == NULL)
12345 this_type = read_enumeration_type (die, cu);
12346
12347 if (die->child != NULL)
12348 {
12349 struct die_info *child_die;
12350 struct symbol *sym;
12351 struct field *fields = NULL;
12352 int num_fields = 0;
12353 int unsigned_enum = 1;
12354 const char *name;
12355 int flag_enum = 1;
12356 ULONGEST mask = 0;
12357
12358 child_die = die->child;
12359 while (child_die && child_die->tag)
12360 {
12361 if (child_die->tag != DW_TAG_enumerator)
12362 {
12363 process_die (child_die, cu);
12364 }
12365 else
12366 {
12367 name = dwarf2_name (child_die, cu);
12368 if (name)
12369 {
12370 sym = new_symbol (child_die, this_type, cu);
12371 if (SYMBOL_VALUE (sym) < 0)
12372 {
12373 unsigned_enum = 0;
12374 flag_enum = 0;
12375 }
12376 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12377 flag_enum = 0;
12378 else
12379 mask |= SYMBOL_VALUE (sym);
12380
12381 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12382 {
12383 fields = (struct field *)
12384 xrealloc (fields,
12385 (num_fields + DW_FIELD_ALLOC_CHUNK)
12386 * sizeof (struct field));
12387 }
12388
12389 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12390 FIELD_TYPE (fields[num_fields]) = NULL;
12391 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12392 FIELD_BITSIZE (fields[num_fields]) = 0;
12393
12394 num_fields++;
12395 }
12396 }
12397
12398 child_die = sibling_die (child_die);
12399 }
12400
12401 if (num_fields)
12402 {
12403 TYPE_NFIELDS (this_type) = num_fields;
12404 TYPE_FIELDS (this_type) = (struct field *)
12405 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12406 memcpy (TYPE_FIELDS (this_type), fields,
12407 sizeof (struct field) * num_fields);
12408 xfree (fields);
12409 }
12410 if (unsigned_enum)
12411 TYPE_UNSIGNED (this_type) = 1;
12412 if (flag_enum)
12413 TYPE_FLAG_ENUM (this_type) = 1;
12414 }
12415
12416 /* If we are reading an enum from a .debug_types unit, and the enum
12417 is a declaration, and the enum is not the signatured type in the
12418 unit, then we do not want to add a symbol for it. Adding a
12419 symbol would in some cases obscure the true definition of the
12420 enum, giving users an incomplete type when the definition is
12421 actually available. Note that we do not want to do this for all
12422 enums which are just declarations, because C++0x allows forward
12423 enum declarations. */
12424 if (cu->per_cu->is_debug_types
12425 && die_is_declaration (die, cu))
12426 {
12427 struct signatured_type *sig_type;
12428
12429 sig_type = (struct signatured_type *) cu->per_cu;
12430 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12431 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12432 return;
12433 }
12434
12435 new_symbol (die, this_type, cu);
12436 }
12437
12438 /* Extract all information from a DW_TAG_array_type DIE and put it in
12439 the DIE's type field. For now, this only handles one dimensional
12440 arrays. */
12441
12442 static struct type *
12443 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12444 {
12445 struct objfile *objfile = cu->objfile;
12446 struct die_info *child_die;
12447 struct type *type;
12448 struct type *element_type, *range_type, *index_type;
12449 struct type **range_types = NULL;
12450 struct attribute *attr;
12451 int ndim = 0;
12452 struct cleanup *back_to;
12453 const char *name;
12454
12455 element_type = die_type (die, cu);
12456
12457 /* The die_type call above may have already set the type for this DIE. */
12458 type = get_die_type (die, cu);
12459 if (type)
12460 return type;
12461
12462 /* Irix 6.2 native cc creates array types without children for
12463 arrays with unspecified length. */
12464 if (die->child == NULL)
12465 {
12466 index_type = objfile_type (objfile)->builtin_int;
12467 range_type = create_range_type (NULL, index_type, 0, -1);
12468 type = create_array_type (NULL, element_type, range_type);
12469 return set_die_type (die, type, cu);
12470 }
12471
12472 back_to = make_cleanup (null_cleanup, NULL);
12473 child_die = die->child;
12474 while (child_die && child_die->tag)
12475 {
12476 if (child_die->tag == DW_TAG_subrange_type)
12477 {
12478 struct type *child_type = read_type_die (child_die, cu);
12479
12480 if (child_type != NULL)
12481 {
12482 /* The range type was succesfully read. Save it for the
12483 array type creation. */
12484 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12485 {
12486 range_types = (struct type **)
12487 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12488 * sizeof (struct type *));
12489 if (ndim == 0)
12490 make_cleanup (free_current_contents, &range_types);
12491 }
12492 range_types[ndim++] = child_type;
12493 }
12494 }
12495 child_die = sibling_die (child_die);
12496 }
12497
12498 /* Dwarf2 dimensions are output from left to right, create the
12499 necessary array types in backwards order. */
12500
12501 type = element_type;
12502
12503 if (read_array_order (die, cu) == DW_ORD_col_major)
12504 {
12505 int i = 0;
12506
12507 while (i < ndim)
12508 type = create_array_type (NULL, type, range_types[i++]);
12509 }
12510 else
12511 {
12512 while (ndim-- > 0)
12513 type = create_array_type (NULL, type, range_types[ndim]);
12514 }
12515
12516 /* Understand Dwarf2 support for vector types (like they occur on
12517 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12518 array type. This is not part of the Dwarf2/3 standard yet, but a
12519 custom vendor extension. The main difference between a regular
12520 array and the vector variant is that vectors are passed by value
12521 to functions. */
12522 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12523 if (attr)
12524 make_vector_type (type);
12525
12526 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12527 implementation may choose to implement triple vectors using this
12528 attribute. */
12529 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12530 if (attr)
12531 {
12532 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12533 TYPE_LENGTH (type) = DW_UNSND (attr);
12534 else
12535 complaint (&symfile_complaints,
12536 _("DW_AT_byte_size for array type smaller "
12537 "than the total size of elements"));
12538 }
12539
12540 name = dwarf2_name (die, cu);
12541 if (name)
12542 TYPE_NAME (type) = name;
12543
12544 /* Install the type in the die. */
12545 set_die_type (die, type, cu);
12546
12547 /* set_die_type should be already done. */
12548 set_descriptive_type (type, die, cu);
12549
12550 do_cleanups (back_to);
12551
12552 return type;
12553 }
12554
12555 static enum dwarf_array_dim_ordering
12556 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12557 {
12558 struct attribute *attr;
12559
12560 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12561
12562 if (attr) return DW_SND (attr);
12563
12564 /* GNU F77 is a special case, as at 08/2004 array type info is the
12565 opposite order to the dwarf2 specification, but data is still
12566 laid out as per normal fortran.
12567
12568 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12569 version checking. */
12570
12571 if (cu->language == language_fortran
12572 && cu->producer && strstr (cu->producer, "GNU F77"))
12573 {
12574 return DW_ORD_row_major;
12575 }
12576
12577 switch (cu->language_defn->la_array_ordering)
12578 {
12579 case array_column_major:
12580 return DW_ORD_col_major;
12581 case array_row_major:
12582 default:
12583 return DW_ORD_row_major;
12584 };
12585 }
12586
12587 /* Extract all information from a DW_TAG_set_type DIE and put it in
12588 the DIE's type field. */
12589
12590 static struct type *
12591 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12592 {
12593 struct type *domain_type, *set_type;
12594 struct attribute *attr;
12595
12596 domain_type = die_type (die, cu);
12597
12598 /* The die_type call above may have already set the type for this DIE. */
12599 set_type = get_die_type (die, cu);
12600 if (set_type)
12601 return set_type;
12602
12603 set_type = create_set_type (NULL, domain_type);
12604
12605 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12606 if (attr)
12607 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12608
12609 return set_die_type (die, set_type, cu);
12610 }
12611
12612 /* A helper for read_common_block that creates a locexpr baton.
12613 SYM is the symbol which we are marking as computed.
12614 COMMON_DIE is the DIE for the common block.
12615 COMMON_LOC is the location expression attribute for the common
12616 block itself.
12617 MEMBER_LOC is the location expression attribute for the particular
12618 member of the common block that we are processing.
12619 CU is the CU from which the above come. */
12620
12621 static void
12622 mark_common_block_symbol_computed (struct symbol *sym,
12623 struct die_info *common_die,
12624 struct attribute *common_loc,
12625 struct attribute *member_loc,
12626 struct dwarf2_cu *cu)
12627 {
12628 struct objfile *objfile = dwarf2_per_objfile->objfile;
12629 struct dwarf2_locexpr_baton *baton;
12630 gdb_byte *ptr;
12631 unsigned int cu_off;
12632 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12633 LONGEST offset = 0;
12634
12635 gdb_assert (common_loc && member_loc);
12636 gdb_assert (attr_form_is_block (common_loc));
12637 gdb_assert (attr_form_is_block (member_loc)
12638 || attr_form_is_constant (member_loc));
12639
12640 baton = obstack_alloc (&objfile->objfile_obstack,
12641 sizeof (struct dwarf2_locexpr_baton));
12642 baton->per_cu = cu->per_cu;
12643 gdb_assert (baton->per_cu);
12644
12645 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12646
12647 if (attr_form_is_constant (member_loc))
12648 {
12649 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12650 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12651 }
12652 else
12653 baton->size += DW_BLOCK (member_loc)->size;
12654
12655 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12656 baton->data = ptr;
12657
12658 *ptr++ = DW_OP_call4;
12659 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12660 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12661 ptr += 4;
12662
12663 if (attr_form_is_constant (member_loc))
12664 {
12665 *ptr++ = DW_OP_addr;
12666 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12667 ptr += cu->header.addr_size;
12668 }
12669 else
12670 {
12671 /* We have to copy the data here, because DW_OP_call4 will only
12672 use a DW_AT_location attribute. */
12673 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12674 ptr += DW_BLOCK (member_loc)->size;
12675 }
12676
12677 *ptr++ = DW_OP_plus;
12678 gdb_assert (ptr - baton->data == baton->size);
12679
12680 SYMBOL_LOCATION_BATON (sym) = baton;
12681 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12682 }
12683
12684 /* Create appropriate locally-scoped variables for all the
12685 DW_TAG_common_block entries. Also create a struct common_block
12686 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12687 is used to sepate the common blocks name namespace from regular
12688 variable names. */
12689
12690 static void
12691 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12692 {
12693 struct attribute *attr;
12694
12695 attr = dwarf2_attr (die, DW_AT_location, cu);
12696 if (attr)
12697 {
12698 /* Support the .debug_loc offsets. */
12699 if (attr_form_is_block (attr))
12700 {
12701 /* Ok. */
12702 }
12703 else if (attr_form_is_section_offset (attr))
12704 {
12705 dwarf2_complex_location_expr_complaint ();
12706 attr = NULL;
12707 }
12708 else
12709 {
12710 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12711 "common block member");
12712 attr = NULL;
12713 }
12714 }
12715
12716 if (die->child != NULL)
12717 {
12718 struct objfile *objfile = cu->objfile;
12719 struct die_info *child_die;
12720 size_t n_entries = 0, size;
12721 struct common_block *common_block;
12722 struct symbol *sym;
12723
12724 for (child_die = die->child;
12725 child_die && child_die->tag;
12726 child_die = sibling_die (child_die))
12727 ++n_entries;
12728
12729 size = (sizeof (struct common_block)
12730 + (n_entries - 1) * sizeof (struct symbol *));
12731 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12732 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12733 common_block->n_entries = 0;
12734
12735 for (child_die = die->child;
12736 child_die && child_die->tag;
12737 child_die = sibling_die (child_die))
12738 {
12739 /* Create the symbol in the DW_TAG_common_block block in the current
12740 symbol scope. */
12741 sym = new_symbol (child_die, NULL, cu);
12742 if (sym != NULL)
12743 {
12744 struct attribute *member_loc;
12745
12746 common_block->contents[common_block->n_entries++] = sym;
12747
12748 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12749 cu);
12750 if (member_loc)
12751 {
12752 /* GDB has handled this for a long time, but it is
12753 not specified by DWARF. It seems to have been
12754 emitted by gfortran at least as recently as:
12755 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12756 complaint (&symfile_complaints,
12757 _("Variable in common block has "
12758 "DW_AT_data_member_location "
12759 "- DIE at 0x%x [in module %s]"),
12760 child_die->offset.sect_off,
12761 objfile_name (cu->objfile));
12762
12763 if (attr_form_is_section_offset (member_loc))
12764 dwarf2_complex_location_expr_complaint ();
12765 else if (attr_form_is_constant (member_loc)
12766 || attr_form_is_block (member_loc))
12767 {
12768 if (attr)
12769 mark_common_block_symbol_computed (sym, die, attr,
12770 member_loc, cu);
12771 }
12772 else
12773 dwarf2_complex_location_expr_complaint ();
12774 }
12775 }
12776 }
12777
12778 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12779 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12780 }
12781 }
12782
12783 /* Create a type for a C++ namespace. */
12784
12785 static struct type *
12786 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12787 {
12788 struct objfile *objfile = cu->objfile;
12789 const char *previous_prefix, *name;
12790 int is_anonymous;
12791 struct type *type;
12792
12793 /* For extensions, reuse the type of the original namespace. */
12794 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12795 {
12796 struct die_info *ext_die;
12797 struct dwarf2_cu *ext_cu = cu;
12798
12799 ext_die = dwarf2_extension (die, &ext_cu);
12800 type = read_type_die (ext_die, ext_cu);
12801
12802 /* EXT_CU may not be the same as CU.
12803 Ensure TYPE is recorded with CU in die_type_hash. */
12804 return set_die_type (die, type, cu);
12805 }
12806
12807 name = namespace_name (die, &is_anonymous, cu);
12808
12809 /* Now build the name of the current namespace. */
12810
12811 previous_prefix = determine_prefix (die, cu);
12812 if (previous_prefix[0] != '\0')
12813 name = typename_concat (&objfile->objfile_obstack,
12814 previous_prefix, name, 0, cu);
12815
12816 /* Create the type. */
12817 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12818 objfile);
12819 TYPE_NAME (type) = name;
12820 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12821
12822 return set_die_type (die, type, cu);
12823 }
12824
12825 /* Read a C++ namespace. */
12826
12827 static void
12828 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12829 {
12830 struct objfile *objfile = cu->objfile;
12831 int is_anonymous;
12832
12833 /* Add a symbol associated to this if we haven't seen the namespace
12834 before. Also, add a using directive if it's an anonymous
12835 namespace. */
12836
12837 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12838 {
12839 struct type *type;
12840
12841 type = read_type_die (die, cu);
12842 new_symbol (die, type, cu);
12843
12844 namespace_name (die, &is_anonymous, cu);
12845 if (is_anonymous)
12846 {
12847 const char *previous_prefix = determine_prefix (die, cu);
12848
12849 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12850 NULL, NULL, 0, &objfile->objfile_obstack);
12851 }
12852 }
12853
12854 if (die->child != NULL)
12855 {
12856 struct die_info *child_die = die->child;
12857
12858 while (child_die && child_die->tag)
12859 {
12860 process_die (child_die, cu);
12861 child_die = sibling_die (child_die);
12862 }
12863 }
12864 }
12865
12866 /* Read a Fortran module as type. This DIE can be only a declaration used for
12867 imported module. Still we need that type as local Fortran "use ... only"
12868 declaration imports depend on the created type in determine_prefix. */
12869
12870 static struct type *
12871 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12872 {
12873 struct objfile *objfile = cu->objfile;
12874 const char *module_name;
12875 struct type *type;
12876
12877 module_name = dwarf2_name (die, cu);
12878 if (!module_name)
12879 complaint (&symfile_complaints,
12880 _("DW_TAG_module has no name, offset 0x%x"),
12881 die->offset.sect_off);
12882 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12883
12884 /* determine_prefix uses TYPE_TAG_NAME. */
12885 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12886
12887 return set_die_type (die, type, cu);
12888 }
12889
12890 /* Read a Fortran module. */
12891
12892 static void
12893 read_module (struct die_info *die, struct dwarf2_cu *cu)
12894 {
12895 struct die_info *child_die = die->child;
12896
12897 while (child_die && child_die->tag)
12898 {
12899 process_die (child_die, cu);
12900 child_die = sibling_die (child_die);
12901 }
12902 }
12903
12904 /* Return the name of the namespace represented by DIE. Set
12905 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12906 namespace. */
12907
12908 static const char *
12909 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12910 {
12911 struct die_info *current_die;
12912 const char *name = NULL;
12913
12914 /* Loop through the extensions until we find a name. */
12915
12916 for (current_die = die;
12917 current_die != NULL;
12918 current_die = dwarf2_extension (die, &cu))
12919 {
12920 name = dwarf2_name (current_die, cu);
12921 if (name != NULL)
12922 break;
12923 }
12924
12925 /* Is it an anonymous namespace? */
12926
12927 *is_anonymous = (name == NULL);
12928 if (*is_anonymous)
12929 name = CP_ANONYMOUS_NAMESPACE_STR;
12930
12931 return name;
12932 }
12933
12934 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12935 the user defined type vector. */
12936
12937 static struct type *
12938 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12939 {
12940 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12941 struct comp_unit_head *cu_header = &cu->header;
12942 struct type *type;
12943 struct attribute *attr_byte_size;
12944 struct attribute *attr_address_class;
12945 int byte_size, addr_class;
12946 struct type *target_type;
12947
12948 target_type = die_type (die, cu);
12949
12950 /* The die_type call above may have already set the type for this DIE. */
12951 type = get_die_type (die, cu);
12952 if (type)
12953 return type;
12954
12955 type = lookup_pointer_type (target_type);
12956
12957 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12958 if (attr_byte_size)
12959 byte_size = DW_UNSND (attr_byte_size);
12960 else
12961 byte_size = cu_header->addr_size;
12962
12963 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12964 if (attr_address_class)
12965 addr_class = DW_UNSND (attr_address_class);
12966 else
12967 addr_class = DW_ADDR_none;
12968
12969 /* If the pointer size or address class is different than the
12970 default, create a type variant marked as such and set the
12971 length accordingly. */
12972 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12973 {
12974 if (gdbarch_address_class_type_flags_p (gdbarch))
12975 {
12976 int type_flags;
12977
12978 type_flags = gdbarch_address_class_type_flags
12979 (gdbarch, byte_size, addr_class);
12980 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12981 == 0);
12982 type = make_type_with_address_space (type, type_flags);
12983 }
12984 else if (TYPE_LENGTH (type) != byte_size)
12985 {
12986 complaint (&symfile_complaints,
12987 _("invalid pointer size %d"), byte_size);
12988 }
12989 else
12990 {
12991 /* Should we also complain about unhandled address classes? */
12992 }
12993 }
12994
12995 TYPE_LENGTH (type) = byte_size;
12996 return set_die_type (die, type, cu);
12997 }
12998
12999 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13000 the user defined type vector. */
13001
13002 static struct type *
13003 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13004 {
13005 struct type *type;
13006 struct type *to_type;
13007 struct type *domain;
13008
13009 to_type = die_type (die, cu);
13010 domain = die_containing_type (die, cu);
13011
13012 /* The calls above may have already set the type for this DIE. */
13013 type = get_die_type (die, cu);
13014 if (type)
13015 return type;
13016
13017 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13018 type = lookup_methodptr_type (to_type);
13019 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13020 {
13021 struct type *new_type = alloc_type (cu->objfile);
13022
13023 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13024 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13025 TYPE_VARARGS (to_type));
13026 type = lookup_methodptr_type (new_type);
13027 }
13028 else
13029 type = lookup_memberptr_type (to_type, domain);
13030
13031 return set_die_type (die, type, cu);
13032 }
13033
13034 /* Extract all information from a DW_TAG_reference_type DIE and add to
13035 the user defined type vector. */
13036
13037 static struct type *
13038 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13039 {
13040 struct comp_unit_head *cu_header = &cu->header;
13041 struct type *type, *target_type;
13042 struct attribute *attr;
13043
13044 target_type = die_type (die, cu);
13045
13046 /* The die_type call above may have already set the type for this DIE. */
13047 type = get_die_type (die, cu);
13048 if (type)
13049 return type;
13050
13051 type = lookup_reference_type (target_type);
13052 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13053 if (attr)
13054 {
13055 TYPE_LENGTH (type) = DW_UNSND (attr);
13056 }
13057 else
13058 {
13059 TYPE_LENGTH (type) = cu_header->addr_size;
13060 }
13061 return set_die_type (die, type, cu);
13062 }
13063
13064 static struct type *
13065 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13066 {
13067 struct type *base_type, *cv_type;
13068
13069 base_type = die_type (die, cu);
13070
13071 /* The die_type call above may have already set the type for this DIE. */
13072 cv_type = get_die_type (die, cu);
13073 if (cv_type)
13074 return cv_type;
13075
13076 /* In case the const qualifier is applied to an array type, the element type
13077 is so qualified, not the array type (section 6.7.3 of C99). */
13078 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13079 {
13080 struct type *el_type, *inner_array;
13081
13082 base_type = copy_type (base_type);
13083 inner_array = base_type;
13084
13085 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13086 {
13087 TYPE_TARGET_TYPE (inner_array) =
13088 copy_type (TYPE_TARGET_TYPE (inner_array));
13089 inner_array = TYPE_TARGET_TYPE (inner_array);
13090 }
13091
13092 el_type = TYPE_TARGET_TYPE (inner_array);
13093 TYPE_TARGET_TYPE (inner_array) =
13094 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13095
13096 return set_die_type (die, base_type, cu);
13097 }
13098
13099 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13100 return set_die_type (die, cv_type, cu);
13101 }
13102
13103 static struct type *
13104 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13105 {
13106 struct type *base_type, *cv_type;
13107
13108 base_type = die_type (die, cu);
13109
13110 /* The die_type call above may have already set the type for this DIE. */
13111 cv_type = get_die_type (die, cu);
13112 if (cv_type)
13113 return cv_type;
13114
13115 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13116 return set_die_type (die, cv_type, cu);
13117 }
13118
13119 /* Handle DW_TAG_restrict_type. */
13120
13121 static struct type *
13122 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13123 {
13124 struct type *base_type, *cv_type;
13125
13126 base_type = die_type (die, cu);
13127
13128 /* The die_type call above may have already set the type for this DIE. */
13129 cv_type = get_die_type (die, cu);
13130 if (cv_type)
13131 return cv_type;
13132
13133 cv_type = make_restrict_type (base_type);
13134 return set_die_type (die, cv_type, cu);
13135 }
13136
13137 /* Extract all information from a DW_TAG_string_type DIE and add to
13138 the user defined type vector. It isn't really a user defined type,
13139 but it behaves like one, with other DIE's using an AT_user_def_type
13140 attribute to reference it. */
13141
13142 static struct type *
13143 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13144 {
13145 struct objfile *objfile = cu->objfile;
13146 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13147 struct type *type, *range_type, *index_type, *char_type;
13148 struct attribute *attr;
13149 unsigned int length;
13150
13151 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13152 if (attr)
13153 {
13154 length = DW_UNSND (attr);
13155 }
13156 else
13157 {
13158 /* Check for the DW_AT_byte_size attribute. */
13159 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13160 if (attr)
13161 {
13162 length = DW_UNSND (attr);
13163 }
13164 else
13165 {
13166 length = 1;
13167 }
13168 }
13169
13170 index_type = objfile_type (objfile)->builtin_int;
13171 range_type = create_range_type (NULL, index_type, 1, length);
13172 char_type = language_string_char_type (cu->language_defn, gdbarch);
13173 type = create_string_type (NULL, char_type, range_type);
13174
13175 return set_die_type (die, type, cu);
13176 }
13177
13178 /* Assuming that DIE corresponds to a function, returns nonzero
13179 if the function is prototyped. */
13180
13181 static int
13182 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13183 {
13184 struct attribute *attr;
13185
13186 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13187 if (attr && (DW_UNSND (attr) != 0))
13188 return 1;
13189
13190 /* The DWARF standard implies that the DW_AT_prototyped attribute
13191 is only meaninful for C, but the concept also extends to other
13192 languages that allow unprototyped functions (Eg: Objective C).
13193 For all other languages, assume that functions are always
13194 prototyped. */
13195 if (cu->language != language_c
13196 && cu->language != language_objc
13197 && cu->language != language_opencl)
13198 return 1;
13199
13200 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13201 prototyped and unprototyped functions; default to prototyped,
13202 since that is more common in modern code (and RealView warns
13203 about unprototyped functions). */
13204 if (producer_is_realview (cu->producer))
13205 return 1;
13206
13207 return 0;
13208 }
13209
13210 /* Handle DIES due to C code like:
13211
13212 struct foo
13213 {
13214 int (*funcp)(int a, long l);
13215 int b;
13216 };
13217
13218 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13219
13220 static struct type *
13221 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13222 {
13223 struct objfile *objfile = cu->objfile;
13224 struct type *type; /* Type that this function returns. */
13225 struct type *ftype; /* Function that returns above type. */
13226 struct attribute *attr;
13227
13228 type = die_type (die, cu);
13229
13230 /* The die_type call above may have already set the type for this DIE. */
13231 ftype = get_die_type (die, cu);
13232 if (ftype)
13233 return ftype;
13234
13235 ftype = lookup_function_type (type);
13236
13237 if (prototyped_function_p (die, cu))
13238 TYPE_PROTOTYPED (ftype) = 1;
13239
13240 /* Store the calling convention in the type if it's available in
13241 the subroutine die. Otherwise set the calling convention to
13242 the default value DW_CC_normal. */
13243 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13244 if (attr)
13245 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13246 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13247 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13248 else
13249 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13250
13251 /* We need to add the subroutine type to the die immediately so
13252 we don't infinitely recurse when dealing with parameters
13253 declared as the same subroutine type. */
13254 set_die_type (die, ftype, cu);
13255
13256 if (die->child != NULL)
13257 {
13258 struct type *void_type = objfile_type (objfile)->builtin_void;
13259 struct die_info *child_die;
13260 int nparams, iparams;
13261
13262 /* Count the number of parameters.
13263 FIXME: GDB currently ignores vararg functions, but knows about
13264 vararg member functions. */
13265 nparams = 0;
13266 child_die = die->child;
13267 while (child_die && child_die->tag)
13268 {
13269 if (child_die->tag == DW_TAG_formal_parameter)
13270 nparams++;
13271 else if (child_die->tag == DW_TAG_unspecified_parameters)
13272 TYPE_VARARGS (ftype) = 1;
13273 child_die = sibling_die (child_die);
13274 }
13275
13276 /* Allocate storage for parameters and fill them in. */
13277 TYPE_NFIELDS (ftype) = nparams;
13278 TYPE_FIELDS (ftype) = (struct field *)
13279 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13280
13281 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13282 even if we error out during the parameters reading below. */
13283 for (iparams = 0; iparams < nparams; iparams++)
13284 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13285
13286 iparams = 0;
13287 child_die = die->child;
13288 while (child_die && child_die->tag)
13289 {
13290 if (child_die->tag == DW_TAG_formal_parameter)
13291 {
13292 struct type *arg_type;
13293
13294 /* DWARF version 2 has no clean way to discern C++
13295 static and non-static member functions. G++ helps
13296 GDB by marking the first parameter for non-static
13297 member functions (which is the this pointer) as
13298 artificial. We pass this information to
13299 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13300
13301 DWARF version 3 added DW_AT_object_pointer, which GCC
13302 4.5 does not yet generate. */
13303 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13304 if (attr)
13305 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13306 else
13307 {
13308 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13309
13310 /* GCC/43521: In java, the formal parameter
13311 "this" is sometimes not marked with DW_AT_artificial. */
13312 if (cu->language == language_java)
13313 {
13314 const char *name = dwarf2_name (child_die, cu);
13315
13316 if (name && !strcmp (name, "this"))
13317 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13318 }
13319 }
13320 arg_type = die_type (child_die, cu);
13321
13322 /* RealView does not mark THIS as const, which the testsuite
13323 expects. GCC marks THIS as const in method definitions,
13324 but not in the class specifications (GCC PR 43053). */
13325 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13326 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13327 {
13328 int is_this = 0;
13329 struct dwarf2_cu *arg_cu = cu;
13330 const char *name = dwarf2_name (child_die, cu);
13331
13332 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13333 if (attr)
13334 {
13335 /* If the compiler emits this, use it. */
13336 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13337 is_this = 1;
13338 }
13339 else if (name && strcmp (name, "this") == 0)
13340 /* Function definitions will have the argument names. */
13341 is_this = 1;
13342 else if (name == NULL && iparams == 0)
13343 /* Declarations may not have the names, so like
13344 elsewhere in GDB, assume an artificial first
13345 argument is "this". */
13346 is_this = 1;
13347
13348 if (is_this)
13349 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13350 arg_type, 0);
13351 }
13352
13353 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13354 iparams++;
13355 }
13356 child_die = sibling_die (child_die);
13357 }
13358 }
13359
13360 return ftype;
13361 }
13362
13363 static struct type *
13364 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13365 {
13366 struct objfile *objfile = cu->objfile;
13367 const char *name = NULL;
13368 struct type *this_type, *target_type;
13369
13370 name = dwarf2_full_name (NULL, die, cu);
13371 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13372 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13373 TYPE_NAME (this_type) = name;
13374 set_die_type (die, this_type, cu);
13375 target_type = die_type (die, cu);
13376 if (target_type != this_type)
13377 TYPE_TARGET_TYPE (this_type) = target_type;
13378 else
13379 {
13380 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13381 spec and cause infinite loops in GDB. */
13382 complaint (&symfile_complaints,
13383 _("Self-referential DW_TAG_typedef "
13384 "- DIE at 0x%x [in module %s]"),
13385 die->offset.sect_off, objfile_name (objfile));
13386 TYPE_TARGET_TYPE (this_type) = NULL;
13387 }
13388 return this_type;
13389 }
13390
13391 /* Find a representation of a given base type and install
13392 it in the TYPE field of the die. */
13393
13394 static struct type *
13395 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13396 {
13397 struct objfile *objfile = cu->objfile;
13398 struct type *type;
13399 struct attribute *attr;
13400 int encoding = 0, size = 0;
13401 const char *name;
13402 enum type_code code = TYPE_CODE_INT;
13403 int type_flags = 0;
13404 struct type *target_type = NULL;
13405
13406 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13407 if (attr)
13408 {
13409 encoding = DW_UNSND (attr);
13410 }
13411 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13412 if (attr)
13413 {
13414 size = DW_UNSND (attr);
13415 }
13416 name = dwarf2_name (die, cu);
13417 if (!name)
13418 {
13419 complaint (&symfile_complaints,
13420 _("DW_AT_name missing from DW_TAG_base_type"));
13421 }
13422
13423 switch (encoding)
13424 {
13425 case DW_ATE_address:
13426 /* Turn DW_ATE_address into a void * pointer. */
13427 code = TYPE_CODE_PTR;
13428 type_flags |= TYPE_FLAG_UNSIGNED;
13429 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13430 break;
13431 case DW_ATE_boolean:
13432 code = TYPE_CODE_BOOL;
13433 type_flags |= TYPE_FLAG_UNSIGNED;
13434 break;
13435 case DW_ATE_complex_float:
13436 code = TYPE_CODE_COMPLEX;
13437 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13438 break;
13439 case DW_ATE_decimal_float:
13440 code = TYPE_CODE_DECFLOAT;
13441 break;
13442 case DW_ATE_float:
13443 code = TYPE_CODE_FLT;
13444 break;
13445 case DW_ATE_signed:
13446 break;
13447 case DW_ATE_unsigned:
13448 type_flags |= TYPE_FLAG_UNSIGNED;
13449 if (cu->language == language_fortran
13450 && name
13451 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13452 code = TYPE_CODE_CHAR;
13453 break;
13454 case DW_ATE_signed_char:
13455 if (cu->language == language_ada || cu->language == language_m2
13456 || cu->language == language_pascal
13457 || cu->language == language_fortran)
13458 code = TYPE_CODE_CHAR;
13459 break;
13460 case DW_ATE_unsigned_char:
13461 if (cu->language == language_ada || cu->language == language_m2
13462 || cu->language == language_pascal
13463 || cu->language == language_fortran)
13464 code = TYPE_CODE_CHAR;
13465 type_flags |= TYPE_FLAG_UNSIGNED;
13466 break;
13467 case DW_ATE_UTF:
13468 /* We just treat this as an integer and then recognize the
13469 type by name elsewhere. */
13470 break;
13471
13472 default:
13473 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13474 dwarf_type_encoding_name (encoding));
13475 break;
13476 }
13477
13478 type = init_type (code, size, type_flags, NULL, objfile);
13479 TYPE_NAME (type) = name;
13480 TYPE_TARGET_TYPE (type) = target_type;
13481
13482 if (name && strcmp (name, "char") == 0)
13483 TYPE_NOSIGN (type) = 1;
13484
13485 return set_die_type (die, type, cu);
13486 }
13487
13488 /* Read the given DW_AT_subrange DIE. */
13489
13490 static struct type *
13491 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13492 {
13493 struct type *base_type, *orig_base_type;
13494 struct type *range_type;
13495 struct attribute *attr;
13496 LONGEST low, high;
13497 int low_default_is_valid;
13498 const char *name;
13499 LONGEST negative_mask;
13500
13501 orig_base_type = die_type (die, cu);
13502 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13503 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13504 creating the range type, but we use the result of check_typedef
13505 when examining properties of the type. */
13506 base_type = check_typedef (orig_base_type);
13507
13508 /* The die_type call above may have already set the type for this DIE. */
13509 range_type = get_die_type (die, cu);
13510 if (range_type)
13511 return range_type;
13512
13513 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13514 omitting DW_AT_lower_bound. */
13515 switch (cu->language)
13516 {
13517 case language_c:
13518 case language_cplus:
13519 low = 0;
13520 low_default_is_valid = 1;
13521 break;
13522 case language_fortran:
13523 low = 1;
13524 low_default_is_valid = 1;
13525 break;
13526 case language_d:
13527 case language_java:
13528 case language_objc:
13529 low = 0;
13530 low_default_is_valid = (cu->header.version >= 4);
13531 break;
13532 case language_ada:
13533 case language_m2:
13534 case language_pascal:
13535 low = 1;
13536 low_default_is_valid = (cu->header.version >= 4);
13537 break;
13538 default:
13539 low = 0;
13540 low_default_is_valid = 0;
13541 break;
13542 }
13543
13544 /* FIXME: For variable sized arrays either of these could be
13545 a variable rather than a constant value. We'll allow it,
13546 but we don't know how to handle it. */
13547 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13548 if (attr)
13549 low = dwarf2_get_attr_constant_value (attr, low);
13550 else if (!low_default_is_valid)
13551 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13552 "- DIE at 0x%x [in module %s]"),
13553 die->offset.sect_off, objfile_name (cu->objfile));
13554
13555 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13556 if (attr)
13557 {
13558 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
13559 {
13560 /* GCC encodes arrays with unspecified or dynamic length
13561 with a DW_FORM_block1 attribute or a reference attribute.
13562 FIXME: GDB does not yet know how to handle dynamic
13563 arrays properly, treat them as arrays with unspecified
13564 length for now.
13565
13566 FIXME: jimb/2003-09-22: GDB does not really know
13567 how to handle arrays of unspecified length
13568 either; we just represent them as zero-length
13569 arrays. Choose an appropriate upper bound given
13570 the lower bound we've computed above. */
13571 high = low - 1;
13572 }
13573 else
13574 high = dwarf2_get_attr_constant_value (attr, 1);
13575 }
13576 else
13577 {
13578 attr = dwarf2_attr (die, DW_AT_count, cu);
13579 if (attr)
13580 {
13581 int count = dwarf2_get_attr_constant_value (attr, 1);
13582 high = low + count - 1;
13583 }
13584 else
13585 {
13586 /* Unspecified array length. */
13587 high = low - 1;
13588 }
13589 }
13590
13591 /* Dwarf-2 specifications explicitly allows to create subrange types
13592 without specifying a base type.
13593 In that case, the base type must be set to the type of
13594 the lower bound, upper bound or count, in that order, if any of these
13595 three attributes references an object that has a type.
13596 If no base type is found, the Dwarf-2 specifications say that
13597 a signed integer type of size equal to the size of an address should
13598 be used.
13599 For the following C code: `extern char gdb_int [];'
13600 GCC produces an empty range DIE.
13601 FIXME: muller/2010-05-28: Possible references to object for low bound,
13602 high bound or count are not yet handled by this code. */
13603 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13604 {
13605 struct objfile *objfile = cu->objfile;
13606 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13607 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13608 struct type *int_type = objfile_type (objfile)->builtin_int;
13609
13610 /* Test "int", "long int", and "long long int" objfile types,
13611 and select the first one having a size above or equal to the
13612 architecture address size. */
13613 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13614 base_type = int_type;
13615 else
13616 {
13617 int_type = objfile_type (objfile)->builtin_long;
13618 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13619 base_type = int_type;
13620 else
13621 {
13622 int_type = objfile_type (objfile)->builtin_long_long;
13623 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13624 base_type = int_type;
13625 }
13626 }
13627 }
13628
13629 negative_mask =
13630 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13631 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13632 low |= negative_mask;
13633 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13634 high |= negative_mask;
13635
13636 range_type = create_range_type (NULL, orig_base_type, low, high);
13637
13638 /* Mark arrays with dynamic length at least as an array of unspecified
13639 length. GDB could check the boundary but before it gets implemented at
13640 least allow accessing the array elements. */
13641 if (attr && attr_form_is_block (attr))
13642 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13643
13644 /* Ada expects an empty array on no boundary attributes. */
13645 if (attr == NULL && cu->language != language_ada)
13646 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13647
13648 name = dwarf2_name (die, cu);
13649 if (name)
13650 TYPE_NAME (range_type) = name;
13651
13652 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13653 if (attr)
13654 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13655
13656 set_die_type (die, range_type, cu);
13657
13658 /* set_die_type should be already done. */
13659 set_descriptive_type (range_type, die, cu);
13660
13661 return range_type;
13662 }
13663
13664 static struct type *
13665 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13666 {
13667 struct type *type;
13668
13669 /* For now, we only support the C meaning of an unspecified type: void. */
13670
13671 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13672 TYPE_NAME (type) = dwarf2_name (die, cu);
13673
13674 return set_die_type (die, type, cu);
13675 }
13676
13677 /* Read a single die and all its descendents. Set the die's sibling
13678 field to NULL; set other fields in the die correctly, and set all
13679 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13680 location of the info_ptr after reading all of those dies. PARENT
13681 is the parent of the die in question. */
13682
13683 static struct die_info *
13684 read_die_and_children (const struct die_reader_specs *reader,
13685 const gdb_byte *info_ptr,
13686 const gdb_byte **new_info_ptr,
13687 struct die_info *parent)
13688 {
13689 struct die_info *die;
13690 const gdb_byte *cur_ptr;
13691 int has_children;
13692
13693 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13694 if (die == NULL)
13695 {
13696 *new_info_ptr = cur_ptr;
13697 return NULL;
13698 }
13699 store_in_ref_table (die, reader->cu);
13700
13701 if (has_children)
13702 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13703 else
13704 {
13705 die->child = NULL;
13706 *new_info_ptr = cur_ptr;
13707 }
13708
13709 die->sibling = NULL;
13710 die->parent = parent;
13711 return die;
13712 }
13713
13714 /* Read a die, all of its descendents, and all of its siblings; set
13715 all of the fields of all of the dies correctly. Arguments are as
13716 in read_die_and_children. */
13717
13718 static struct die_info *
13719 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13720 const gdb_byte *info_ptr,
13721 const gdb_byte **new_info_ptr,
13722 struct die_info *parent)
13723 {
13724 struct die_info *first_die, *last_sibling;
13725 const gdb_byte *cur_ptr;
13726
13727 cur_ptr = info_ptr;
13728 first_die = last_sibling = NULL;
13729
13730 while (1)
13731 {
13732 struct die_info *die
13733 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13734
13735 if (die == NULL)
13736 {
13737 *new_info_ptr = cur_ptr;
13738 return first_die;
13739 }
13740
13741 if (!first_die)
13742 first_die = die;
13743 else
13744 last_sibling->sibling = die;
13745
13746 last_sibling = die;
13747 }
13748 }
13749
13750 /* Read a die, all of its descendents, and all of its siblings; set
13751 all of the fields of all of the dies correctly. Arguments are as
13752 in read_die_and_children.
13753 This the main entry point for reading a DIE and all its children. */
13754
13755 static struct die_info *
13756 read_die_and_siblings (const struct die_reader_specs *reader,
13757 const gdb_byte *info_ptr,
13758 const gdb_byte **new_info_ptr,
13759 struct die_info *parent)
13760 {
13761 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13762 new_info_ptr, parent);
13763
13764 if (dwarf2_die_debug)
13765 {
13766 fprintf_unfiltered (gdb_stdlog,
13767 "Read die from %s@0x%x of %s:\n",
13768 get_section_name (reader->die_section),
13769 (unsigned) (info_ptr - reader->die_section->buffer),
13770 bfd_get_filename (reader->abfd));
13771 dump_die (die, dwarf2_die_debug);
13772 }
13773
13774 return die;
13775 }
13776
13777 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13778 attributes.
13779 The caller is responsible for filling in the extra attributes
13780 and updating (*DIEP)->num_attrs.
13781 Set DIEP to point to a newly allocated die with its information,
13782 except for its child, sibling, and parent fields.
13783 Set HAS_CHILDREN to tell whether the die has children or not. */
13784
13785 static const gdb_byte *
13786 read_full_die_1 (const struct die_reader_specs *reader,
13787 struct die_info **diep, const gdb_byte *info_ptr,
13788 int *has_children, int num_extra_attrs)
13789 {
13790 unsigned int abbrev_number, bytes_read, i;
13791 sect_offset offset;
13792 struct abbrev_info *abbrev;
13793 struct die_info *die;
13794 struct dwarf2_cu *cu = reader->cu;
13795 bfd *abfd = reader->abfd;
13796
13797 offset.sect_off = info_ptr - reader->buffer;
13798 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13799 info_ptr += bytes_read;
13800 if (!abbrev_number)
13801 {
13802 *diep = NULL;
13803 *has_children = 0;
13804 return info_ptr;
13805 }
13806
13807 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13808 if (!abbrev)
13809 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13810 abbrev_number,
13811 bfd_get_filename (abfd));
13812
13813 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13814 die->offset = offset;
13815 die->tag = abbrev->tag;
13816 die->abbrev = abbrev_number;
13817
13818 /* Make the result usable.
13819 The caller needs to update num_attrs after adding the extra
13820 attributes. */
13821 die->num_attrs = abbrev->num_attrs;
13822
13823 for (i = 0; i < abbrev->num_attrs; ++i)
13824 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13825 info_ptr);
13826
13827 *diep = die;
13828 *has_children = abbrev->has_children;
13829 return info_ptr;
13830 }
13831
13832 /* Read a die and all its attributes.
13833 Set DIEP to point to a newly allocated die with its information,
13834 except for its child, sibling, and parent fields.
13835 Set HAS_CHILDREN to tell whether the die has children or not. */
13836
13837 static const gdb_byte *
13838 read_full_die (const struct die_reader_specs *reader,
13839 struct die_info **diep, const gdb_byte *info_ptr,
13840 int *has_children)
13841 {
13842 const gdb_byte *result;
13843
13844 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13845
13846 if (dwarf2_die_debug)
13847 {
13848 fprintf_unfiltered (gdb_stdlog,
13849 "Read die from %s@0x%x of %s:\n",
13850 get_section_name (reader->die_section),
13851 (unsigned) (info_ptr - reader->die_section->buffer),
13852 bfd_get_filename (reader->abfd));
13853 dump_die (*diep, dwarf2_die_debug);
13854 }
13855
13856 return result;
13857 }
13858 \f
13859 /* Abbreviation tables.
13860
13861 In DWARF version 2, the description of the debugging information is
13862 stored in a separate .debug_abbrev section. Before we read any
13863 dies from a section we read in all abbreviations and install them
13864 in a hash table. */
13865
13866 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13867
13868 static struct abbrev_info *
13869 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13870 {
13871 struct abbrev_info *abbrev;
13872
13873 abbrev = (struct abbrev_info *)
13874 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13875 memset (abbrev, 0, sizeof (struct abbrev_info));
13876 return abbrev;
13877 }
13878
13879 /* Add an abbreviation to the table. */
13880
13881 static void
13882 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13883 unsigned int abbrev_number,
13884 struct abbrev_info *abbrev)
13885 {
13886 unsigned int hash_number;
13887
13888 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13889 abbrev->next = abbrev_table->abbrevs[hash_number];
13890 abbrev_table->abbrevs[hash_number] = abbrev;
13891 }
13892
13893 /* Look up an abbrev in the table.
13894 Returns NULL if the abbrev is not found. */
13895
13896 static struct abbrev_info *
13897 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13898 unsigned int abbrev_number)
13899 {
13900 unsigned int hash_number;
13901 struct abbrev_info *abbrev;
13902
13903 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13904 abbrev = abbrev_table->abbrevs[hash_number];
13905
13906 while (abbrev)
13907 {
13908 if (abbrev->number == abbrev_number)
13909 return abbrev;
13910 abbrev = abbrev->next;
13911 }
13912 return NULL;
13913 }
13914
13915 /* Read in an abbrev table. */
13916
13917 static struct abbrev_table *
13918 abbrev_table_read_table (struct dwarf2_section_info *section,
13919 sect_offset offset)
13920 {
13921 struct objfile *objfile = dwarf2_per_objfile->objfile;
13922 bfd *abfd = get_section_bfd_owner (section);
13923 struct abbrev_table *abbrev_table;
13924 const gdb_byte *abbrev_ptr;
13925 struct abbrev_info *cur_abbrev;
13926 unsigned int abbrev_number, bytes_read, abbrev_name;
13927 unsigned int abbrev_form;
13928 struct attr_abbrev *cur_attrs;
13929 unsigned int allocated_attrs;
13930
13931 abbrev_table = XMALLOC (struct abbrev_table);
13932 abbrev_table->offset = offset;
13933 obstack_init (&abbrev_table->abbrev_obstack);
13934 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13935 (ABBREV_HASH_SIZE
13936 * sizeof (struct abbrev_info *)));
13937 memset (abbrev_table->abbrevs, 0,
13938 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13939
13940 dwarf2_read_section (objfile, section);
13941 abbrev_ptr = section->buffer + offset.sect_off;
13942 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13943 abbrev_ptr += bytes_read;
13944
13945 allocated_attrs = ATTR_ALLOC_CHUNK;
13946 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13947
13948 /* Loop until we reach an abbrev number of 0. */
13949 while (abbrev_number)
13950 {
13951 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13952
13953 /* read in abbrev header */
13954 cur_abbrev->number = abbrev_number;
13955 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13956 abbrev_ptr += bytes_read;
13957 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13958 abbrev_ptr += 1;
13959
13960 /* now read in declarations */
13961 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13962 abbrev_ptr += bytes_read;
13963 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13964 abbrev_ptr += bytes_read;
13965 while (abbrev_name)
13966 {
13967 if (cur_abbrev->num_attrs == allocated_attrs)
13968 {
13969 allocated_attrs += ATTR_ALLOC_CHUNK;
13970 cur_attrs
13971 = xrealloc (cur_attrs, (allocated_attrs
13972 * sizeof (struct attr_abbrev)));
13973 }
13974
13975 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13976 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13977 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13978 abbrev_ptr += bytes_read;
13979 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13980 abbrev_ptr += bytes_read;
13981 }
13982
13983 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13984 (cur_abbrev->num_attrs
13985 * sizeof (struct attr_abbrev)));
13986 memcpy (cur_abbrev->attrs, cur_attrs,
13987 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13988
13989 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13990
13991 /* Get next abbreviation.
13992 Under Irix6 the abbreviations for a compilation unit are not
13993 always properly terminated with an abbrev number of 0.
13994 Exit loop if we encounter an abbreviation which we have
13995 already read (which means we are about to read the abbreviations
13996 for the next compile unit) or if the end of the abbreviation
13997 table is reached. */
13998 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13999 break;
14000 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14001 abbrev_ptr += bytes_read;
14002 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14003 break;
14004 }
14005
14006 xfree (cur_attrs);
14007 return abbrev_table;
14008 }
14009
14010 /* Free the resources held by ABBREV_TABLE. */
14011
14012 static void
14013 abbrev_table_free (struct abbrev_table *abbrev_table)
14014 {
14015 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14016 xfree (abbrev_table);
14017 }
14018
14019 /* Same as abbrev_table_free but as a cleanup.
14020 We pass in a pointer to the pointer to the table so that we can
14021 set the pointer to NULL when we're done. It also simplifies
14022 build_type_unit_groups. */
14023
14024 static void
14025 abbrev_table_free_cleanup (void *table_ptr)
14026 {
14027 struct abbrev_table **abbrev_table_ptr = table_ptr;
14028
14029 if (*abbrev_table_ptr != NULL)
14030 abbrev_table_free (*abbrev_table_ptr);
14031 *abbrev_table_ptr = NULL;
14032 }
14033
14034 /* Read the abbrev table for CU from ABBREV_SECTION. */
14035
14036 static void
14037 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14038 struct dwarf2_section_info *abbrev_section)
14039 {
14040 cu->abbrev_table =
14041 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14042 }
14043
14044 /* Release the memory used by the abbrev table for a compilation unit. */
14045
14046 static void
14047 dwarf2_free_abbrev_table (void *ptr_to_cu)
14048 {
14049 struct dwarf2_cu *cu = ptr_to_cu;
14050
14051 if (cu->abbrev_table != NULL)
14052 abbrev_table_free (cu->abbrev_table);
14053 /* Set this to NULL so that we SEGV if we try to read it later,
14054 and also because free_comp_unit verifies this is NULL. */
14055 cu->abbrev_table = NULL;
14056 }
14057 \f
14058 /* Returns nonzero if TAG represents a type that we might generate a partial
14059 symbol for. */
14060
14061 static int
14062 is_type_tag_for_partial (int tag)
14063 {
14064 switch (tag)
14065 {
14066 #if 0
14067 /* Some types that would be reasonable to generate partial symbols for,
14068 that we don't at present. */
14069 case DW_TAG_array_type:
14070 case DW_TAG_file_type:
14071 case DW_TAG_ptr_to_member_type:
14072 case DW_TAG_set_type:
14073 case DW_TAG_string_type:
14074 case DW_TAG_subroutine_type:
14075 #endif
14076 case DW_TAG_base_type:
14077 case DW_TAG_class_type:
14078 case DW_TAG_interface_type:
14079 case DW_TAG_enumeration_type:
14080 case DW_TAG_structure_type:
14081 case DW_TAG_subrange_type:
14082 case DW_TAG_typedef:
14083 case DW_TAG_union_type:
14084 return 1;
14085 default:
14086 return 0;
14087 }
14088 }
14089
14090 /* Load all DIEs that are interesting for partial symbols into memory. */
14091
14092 static struct partial_die_info *
14093 load_partial_dies (const struct die_reader_specs *reader,
14094 const gdb_byte *info_ptr, int building_psymtab)
14095 {
14096 struct dwarf2_cu *cu = reader->cu;
14097 struct objfile *objfile = cu->objfile;
14098 struct partial_die_info *part_die;
14099 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14100 struct abbrev_info *abbrev;
14101 unsigned int bytes_read;
14102 unsigned int load_all = 0;
14103 int nesting_level = 1;
14104
14105 parent_die = NULL;
14106 last_die = NULL;
14107
14108 gdb_assert (cu->per_cu != NULL);
14109 if (cu->per_cu->load_all_dies)
14110 load_all = 1;
14111
14112 cu->partial_dies
14113 = htab_create_alloc_ex (cu->header.length / 12,
14114 partial_die_hash,
14115 partial_die_eq,
14116 NULL,
14117 &cu->comp_unit_obstack,
14118 hashtab_obstack_allocate,
14119 dummy_obstack_deallocate);
14120
14121 part_die = obstack_alloc (&cu->comp_unit_obstack,
14122 sizeof (struct partial_die_info));
14123
14124 while (1)
14125 {
14126 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14127
14128 /* A NULL abbrev means the end of a series of children. */
14129 if (abbrev == NULL)
14130 {
14131 if (--nesting_level == 0)
14132 {
14133 /* PART_DIE was probably the last thing allocated on the
14134 comp_unit_obstack, so we could call obstack_free
14135 here. We don't do that because the waste is small,
14136 and will be cleaned up when we're done with this
14137 compilation unit. This way, we're also more robust
14138 against other users of the comp_unit_obstack. */
14139 return first_die;
14140 }
14141 info_ptr += bytes_read;
14142 last_die = parent_die;
14143 parent_die = parent_die->die_parent;
14144 continue;
14145 }
14146
14147 /* Check for template arguments. We never save these; if
14148 they're seen, we just mark the parent, and go on our way. */
14149 if (parent_die != NULL
14150 && cu->language == language_cplus
14151 && (abbrev->tag == DW_TAG_template_type_param
14152 || abbrev->tag == DW_TAG_template_value_param))
14153 {
14154 parent_die->has_template_arguments = 1;
14155
14156 if (!load_all)
14157 {
14158 /* We don't need a partial DIE for the template argument. */
14159 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14160 continue;
14161 }
14162 }
14163
14164 /* We only recurse into c++ subprograms looking for template arguments.
14165 Skip their other children. */
14166 if (!load_all
14167 && cu->language == language_cplus
14168 && parent_die != NULL
14169 && parent_die->tag == DW_TAG_subprogram)
14170 {
14171 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14172 continue;
14173 }
14174
14175 /* Check whether this DIE is interesting enough to save. Normally
14176 we would not be interested in members here, but there may be
14177 later variables referencing them via DW_AT_specification (for
14178 static members). */
14179 if (!load_all
14180 && !is_type_tag_for_partial (abbrev->tag)
14181 && abbrev->tag != DW_TAG_constant
14182 && abbrev->tag != DW_TAG_enumerator
14183 && abbrev->tag != DW_TAG_subprogram
14184 && abbrev->tag != DW_TAG_lexical_block
14185 && abbrev->tag != DW_TAG_variable
14186 && abbrev->tag != DW_TAG_namespace
14187 && abbrev->tag != DW_TAG_module
14188 && abbrev->tag != DW_TAG_member
14189 && abbrev->tag != DW_TAG_imported_unit)
14190 {
14191 /* Otherwise we skip to the next sibling, if any. */
14192 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14193 continue;
14194 }
14195
14196 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14197 info_ptr);
14198
14199 /* This two-pass algorithm for processing partial symbols has a
14200 high cost in cache pressure. Thus, handle some simple cases
14201 here which cover the majority of C partial symbols. DIEs
14202 which neither have specification tags in them, nor could have
14203 specification tags elsewhere pointing at them, can simply be
14204 processed and discarded.
14205
14206 This segment is also optional; scan_partial_symbols and
14207 add_partial_symbol will handle these DIEs if we chain
14208 them in normally. When compilers which do not emit large
14209 quantities of duplicate debug information are more common,
14210 this code can probably be removed. */
14211
14212 /* Any complete simple types at the top level (pretty much all
14213 of them, for a language without namespaces), can be processed
14214 directly. */
14215 if (parent_die == NULL
14216 && part_die->has_specification == 0
14217 && part_die->is_declaration == 0
14218 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14219 || part_die->tag == DW_TAG_base_type
14220 || part_die->tag == DW_TAG_subrange_type))
14221 {
14222 if (building_psymtab && part_die->name != NULL)
14223 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14224 VAR_DOMAIN, LOC_TYPEDEF,
14225 &objfile->static_psymbols,
14226 0, (CORE_ADDR) 0, cu->language, objfile);
14227 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14228 continue;
14229 }
14230
14231 /* The exception for DW_TAG_typedef with has_children above is
14232 a workaround of GCC PR debug/47510. In the case of this complaint
14233 type_name_no_tag_or_error will error on such types later.
14234
14235 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14236 it could not find the child DIEs referenced later, this is checked
14237 above. In correct DWARF DW_TAG_typedef should have no children. */
14238
14239 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14240 complaint (&symfile_complaints,
14241 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14242 "- DIE at 0x%x [in module %s]"),
14243 part_die->offset.sect_off, objfile_name (objfile));
14244
14245 /* If we're at the second level, and we're an enumerator, and
14246 our parent has no specification (meaning possibly lives in a
14247 namespace elsewhere), then we can add the partial symbol now
14248 instead of queueing it. */
14249 if (part_die->tag == DW_TAG_enumerator
14250 && parent_die != NULL
14251 && parent_die->die_parent == NULL
14252 && parent_die->tag == DW_TAG_enumeration_type
14253 && parent_die->has_specification == 0)
14254 {
14255 if (part_die->name == NULL)
14256 complaint (&symfile_complaints,
14257 _("malformed enumerator DIE ignored"));
14258 else if (building_psymtab)
14259 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14260 VAR_DOMAIN, LOC_CONST,
14261 (cu->language == language_cplus
14262 || cu->language == language_java)
14263 ? &objfile->global_psymbols
14264 : &objfile->static_psymbols,
14265 0, (CORE_ADDR) 0, cu->language, objfile);
14266
14267 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14268 continue;
14269 }
14270
14271 /* We'll save this DIE so link it in. */
14272 part_die->die_parent = parent_die;
14273 part_die->die_sibling = NULL;
14274 part_die->die_child = NULL;
14275
14276 if (last_die && last_die == parent_die)
14277 last_die->die_child = part_die;
14278 else if (last_die)
14279 last_die->die_sibling = part_die;
14280
14281 last_die = part_die;
14282
14283 if (first_die == NULL)
14284 first_die = part_die;
14285
14286 /* Maybe add the DIE to the hash table. Not all DIEs that we
14287 find interesting need to be in the hash table, because we
14288 also have the parent/sibling/child chains; only those that we
14289 might refer to by offset later during partial symbol reading.
14290
14291 For now this means things that might have be the target of a
14292 DW_AT_specification, DW_AT_abstract_origin, or
14293 DW_AT_extension. DW_AT_extension will refer only to
14294 namespaces; DW_AT_abstract_origin refers to functions (and
14295 many things under the function DIE, but we do not recurse
14296 into function DIEs during partial symbol reading) and
14297 possibly variables as well; DW_AT_specification refers to
14298 declarations. Declarations ought to have the DW_AT_declaration
14299 flag. It happens that GCC forgets to put it in sometimes, but
14300 only for functions, not for types.
14301
14302 Adding more things than necessary to the hash table is harmless
14303 except for the performance cost. Adding too few will result in
14304 wasted time in find_partial_die, when we reread the compilation
14305 unit with load_all_dies set. */
14306
14307 if (load_all
14308 || abbrev->tag == DW_TAG_constant
14309 || abbrev->tag == DW_TAG_subprogram
14310 || abbrev->tag == DW_TAG_variable
14311 || abbrev->tag == DW_TAG_namespace
14312 || part_die->is_declaration)
14313 {
14314 void **slot;
14315
14316 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14317 part_die->offset.sect_off, INSERT);
14318 *slot = part_die;
14319 }
14320
14321 part_die = obstack_alloc (&cu->comp_unit_obstack,
14322 sizeof (struct partial_die_info));
14323
14324 /* For some DIEs we want to follow their children (if any). For C
14325 we have no reason to follow the children of structures; for other
14326 languages we have to, so that we can get at method physnames
14327 to infer fully qualified class names, for DW_AT_specification,
14328 and for C++ template arguments. For C++, we also look one level
14329 inside functions to find template arguments (if the name of the
14330 function does not already contain the template arguments).
14331
14332 For Ada, we need to scan the children of subprograms and lexical
14333 blocks as well because Ada allows the definition of nested
14334 entities that could be interesting for the debugger, such as
14335 nested subprograms for instance. */
14336 if (last_die->has_children
14337 && (load_all
14338 || last_die->tag == DW_TAG_namespace
14339 || last_die->tag == DW_TAG_module
14340 || last_die->tag == DW_TAG_enumeration_type
14341 || (cu->language == language_cplus
14342 && last_die->tag == DW_TAG_subprogram
14343 && (last_die->name == NULL
14344 || strchr (last_die->name, '<') == NULL))
14345 || (cu->language != language_c
14346 && (last_die->tag == DW_TAG_class_type
14347 || last_die->tag == DW_TAG_interface_type
14348 || last_die->tag == DW_TAG_structure_type
14349 || last_die->tag == DW_TAG_union_type))
14350 || (cu->language == language_ada
14351 && (last_die->tag == DW_TAG_subprogram
14352 || last_die->tag == DW_TAG_lexical_block))))
14353 {
14354 nesting_level++;
14355 parent_die = last_die;
14356 continue;
14357 }
14358
14359 /* Otherwise we skip to the next sibling, if any. */
14360 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14361
14362 /* Back to the top, do it again. */
14363 }
14364 }
14365
14366 /* Read a minimal amount of information into the minimal die structure. */
14367
14368 static const gdb_byte *
14369 read_partial_die (const struct die_reader_specs *reader,
14370 struct partial_die_info *part_die,
14371 struct abbrev_info *abbrev, unsigned int abbrev_len,
14372 const gdb_byte *info_ptr)
14373 {
14374 struct dwarf2_cu *cu = reader->cu;
14375 struct objfile *objfile = cu->objfile;
14376 const gdb_byte *buffer = reader->buffer;
14377 unsigned int i;
14378 struct attribute attr;
14379 int has_low_pc_attr = 0;
14380 int has_high_pc_attr = 0;
14381 int high_pc_relative = 0;
14382
14383 memset (part_die, 0, sizeof (struct partial_die_info));
14384
14385 part_die->offset.sect_off = info_ptr - buffer;
14386
14387 info_ptr += abbrev_len;
14388
14389 if (abbrev == NULL)
14390 return info_ptr;
14391
14392 part_die->tag = abbrev->tag;
14393 part_die->has_children = abbrev->has_children;
14394
14395 for (i = 0; i < abbrev->num_attrs; ++i)
14396 {
14397 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14398
14399 /* Store the data if it is of an attribute we want to keep in a
14400 partial symbol table. */
14401 switch (attr.name)
14402 {
14403 case DW_AT_name:
14404 switch (part_die->tag)
14405 {
14406 case DW_TAG_compile_unit:
14407 case DW_TAG_partial_unit:
14408 case DW_TAG_type_unit:
14409 /* Compilation units have a DW_AT_name that is a filename, not
14410 a source language identifier. */
14411 case DW_TAG_enumeration_type:
14412 case DW_TAG_enumerator:
14413 /* These tags always have simple identifiers already; no need
14414 to canonicalize them. */
14415 part_die->name = DW_STRING (&attr);
14416 break;
14417 default:
14418 part_die->name
14419 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14420 &objfile->objfile_obstack);
14421 break;
14422 }
14423 break;
14424 case DW_AT_linkage_name:
14425 case DW_AT_MIPS_linkage_name:
14426 /* Note that both forms of linkage name might appear. We
14427 assume they will be the same, and we only store the last
14428 one we see. */
14429 if (cu->language == language_ada)
14430 part_die->name = DW_STRING (&attr);
14431 part_die->linkage_name = DW_STRING (&attr);
14432 break;
14433 case DW_AT_low_pc:
14434 has_low_pc_attr = 1;
14435 part_die->lowpc = DW_ADDR (&attr);
14436 break;
14437 case DW_AT_high_pc:
14438 has_high_pc_attr = 1;
14439 if (attr.form == DW_FORM_addr
14440 || attr.form == DW_FORM_GNU_addr_index)
14441 part_die->highpc = DW_ADDR (&attr);
14442 else
14443 {
14444 high_pc_relative = 1;
14445 part_die->highpc = DW_UNSND (&attr);
14446 }
14447 break;
14448 case DW_AT_location:
14449 /* Support the .debug_loc offsets. */
14450 if (attr_form_is_block (&attr))
14451 {
14452 part_die->d.locdesc = DW_BLOCK (&attr);
14453 }
14454 else if (attr_form_is_section_offset (&attr))
14455 {
14456 dwarf2_complex_location_expr_complaint ();
14457 }
14458 else
14459 {
14460 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14461 "partial symbol information");
14462 }
14463 break;
14464 case DW_AT_external:
14465 part_die->is_external = DW_UNSND (&attr);
14466 break;
14467 case DW_AT_declaration:
14468 part_die->is_declaration = DW_UNSND (&attr);
14469 break;
14470 case DW_AT_type:
14471 part_die->has_type = 1;
14472 break;
14473 case DW_AT_abstract_origin:
14474 case DW_AT_specification:
14475 case DW_AT_extension:
14476 part_die->has_specification = 1;
14477 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14478 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14479 || cu->per_cu->is_dwz);
14480 break;
14481 case DW_AT_sibling:
14482 /* Ignore absolute siblings, they might point outside of
14483 the current compile unit. */
14484 if (attr.form == DW_FORM_ref_addr)
14485 complaint (&symfile_complaints,
14486 _("ignoring absolute DW_AT_sibling"));
14487 else
14488 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14489 break;
14490 case DW_AT_byte_size:
14491 part_die->has_byte_size = 1;
14492 break;
14493 case DW_AT_calling_convention:
14494 /* DWARF doesn't provide a way to identify a program's source-level
14495 entry point. DW_AT_calling_convention attributes are only meant
14496 to describe functions' calling conventions.
14497
14498 However, because it's a necessary piece of information in
14499 Fortran, and because DW_CC_program is the only piece of debugging
14500 information whose definition refers to a 'main program' at all,
14501 several compilers have begun marking Fortran main programs with
14502 DW_CC_program --- even when those functions use the standard
14503 calling conventions.
14504
14505 So until DWARF specifies a way to provide this information and
14506 compilers pick up the new representation, we'll support this
14507 practice. */
14508 if (DW_UNSND (&attr) == DW_CC_program
14509 && cu->language == language_fortran)
14510 {
14511 set_main_name (part_die->name);
14512
14513 /* As this DIE has a static linkage the name would be difficult
14514 to look up later. */
14515 language_of_main = language_fortran;
14516 }
14517 break;
14518 case DW_AT_inline:
14519 if (DW_UNSND (&attr) == DW_INL_inlined
14520 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14521 part_die->may_be_inlined = 1;
14522 break;
14523
14524 case DW_AT_import:
14525 if (part_die->tag == DW_TAG_imported_unit)
14526 {
14527 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14528 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14529 || cu->per_cu->is_dwz);
14530 }
14531 break;
14532
14533 default:
14534 break;
14535 }
14536 }
14537
14538 if (high_pc_relative)
14539 part_die->highpc += part_die->lowpc;
14540
14541 if (has_low_pc_attr && has_high_pc_attr)
14542 {
14543 /* When using the GNU linker, .gnu.linkonce. sections are used to
14544 eliminate duplicate copies of functions and vtables and such.
14545 The linker will arbitrarily choose one and discard the others.
14546 The AT_*_pc values for such functions refer to local labels in
14547 these sections. If the section from that file was discarded, the
14548 labels are not in the output, so the relocs get a value of 0.
14549 If this is a discarded function, mark the pc bounds as invalid,
14550 so that GDB will ignore it. */
14551 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14552 {
14553 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14554
14555 complaint (&symfile_complaints,
14556 _("DW_AT_low_pc %s is zero "
14557 "for DIE at 0x%x [in module %s]"),
14558 paddress (gdbarch, part_die->lowpc),
14559 part_die->offset.sect_off, objfile_name (objfile));
14560 }
14561 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14562 else if (part_die->lowpc >= part_die->highpc)
14563 {
14564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14565
14566 complaint (&symfile_complaints,
14567 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14568 "for DIE at 0x%x [in module %s]"),
14569 paddress (gdbarch, part_die->lowpc),
14570 paddress (gdbarch, part_die->highpc),
14571 part_die->offset.sect_off, objfile_name (objfile));
14572 }
14573 else
14574 part_die->has_pc_info = 1;
14575 }
14576
14577 return info_ptr;
14578 }
14579
14580 /* Find a cached partial DIE at OFFSET in CU. */
14581
14582 static struct partial_die_info *
14583 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14584 {
14585 struct partial_die_info *lookup_die = NULL;
14586 struct partial_die_info part_die;
14587
14588 part_die.offset = offset;
14589 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14590 offset.sect_off);
14591
14592 return lookup_die;
14593 }
14594
14595 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14596 except in the case of .debug_types DIEs which do not reference
14597 outside their CU (they do however referencing other types via
14598 DW_FORM_ref_sig8). */
14599
14600 static struct partial_die_info *
14601 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14602 {
14603 struct objfile *objfile = cu->objfile;
14604 struct dwarf2_per_cu_data *per_cu = NULL;
14605 struct partial_die_info *pd = NULL;
14606
14607 if (offset_in_dwz == cu->per_cu->is_dwz
14608 && offset_in_cu_p (&cu->header, offset))
14609 {
14610 pd = find_partial_die_in_comp_unit (offset, cu);
14611 if (pd != NULL)
14612 return pd;
14613 /* We missed recording what we needed.
14614 Load all dies and try again. */
14615 per_cu = cu->per_cu;
14616 }
14617 else
14618 {
14619 /* TUs don't reference other CUs/TUs (except via type signatures). */
14620 if (cu->per_cu->is_debug_types)
14621 {
14622 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14623 " external reference to offset 0x%lx [in module %s].\n"),
14624 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14625 bfd_get_filename (objfile->obfd));
14626 }
14627 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14628 objfile);
14629
14630 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14631 load_partial_comp_unit (per_cu);
14632
14633 per_cu->cu->last_used = 0;
14634 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14635 }
14636
14637 /* If we didn't find it, and not all dies have been loaded,
14638 load them all and try again. */
14639
14640 if (pd == NULL && per_cu->load_all_dies == 0)
14641 {
14642 per_cu->load_all_dies = 1;
14643
14644 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14645 THIS_CU->cu may already be in use. So we can't just free it and
14646 replace its DIEs with the ones we read in. Instead, we leave those
14647 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14648 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14649 set. */
14650 load_partial_comp_unit (per_cu);
14651
14652 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14653 }
14654
14655 if (pd == NULL)
14656 internal_error (__FILE__, __LINE__,
14657 _("could not find partial DIE 0x%x "
14658 "in cache [from module %s]\n"),
14659 offset.sect_off, bfd_get_filename (objfile->obfd));
14660 return pd;
14661 }
14662
14663 /* See if we can figure out if the class lives in a namespace. We do
14664 this by looking for a member function; its demangled name will
14665 contain namespace info, if there is any. */
14666
14667 static void
14668 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14669 struct dwarf2_cu *cu)
14670 {
14671 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14672 what template types look like, because the demangler
14673 frequently doesn't give the same name as the debug info. We
14674 could fix this by only using the demangled name to get the
14675 prefix (but see comment in read_structure_type). */
14676
14677 struct partial_die_info *real_pdi;
14678 struct partial_die_info *child_pdi;
14679
14680 /* If this DIE (this DIE's specification, if any) has a parent, then
14681 we should not do this. We'll prepend the parent's fully qualified
14682 name when we create the partial symbol. */
14683
14684 real_pdi = struct_pdi;
14685 while (real_pdi->has_specification)
14686 real_pdi = find_partial_die (real_pdi->spec_offset,
14687 real_pdi->spec_is_dwz, cu);
14688
14689 if (real_pdi->die_parent != NULL)
14690 return;
14691
14692 for (child_pdi = struct_pdi->die_child;
14693 child_pdi != NULL;
14694 child_pdi = child_pdi->die_sibling)
14695 {
14696 if (child_pdi->tag == DW_TAG_subprogram
14697 && child_pdi->linkage_name != NULL)
14698 {
14699 char *actual_class_name
14700 = language_class_name_from_physname (cu->language_defn,
14701 child_pdi->linkage_name);
14702 if (actual_class_name != NULL)
14703 {
14704 struct_pdi->name
14705 = obstack_copy0 (&cu->objfile->objfile_obstack,
14706 actual_class_name,
14707 strlen (actual_class_name));
14708 xfree (actual_class_name);
14709 }
14710 break;
14711 }
14712 }
14713 }
14714
14715 /* Adjust PART_DIE before generating a symbol for it. This function
14716 may set the is_external flag or change the DIE's name. */
14717
14718 static void
14719 fixup_partial_die (struct partial_die_info *part_die,
14720 struct dwarf2_cu *cu)
14721 {
14722 /* Once we've fixed up a die, there's no point in doing so again.
14723 This also avoids a memory leak if we were to call
14724 guess_partial_die_structure_name multiple times. */
14725 if (part_die->fixup_called)
14726 return;
14727
14728 /* If we found a reference attribute and the DIE has no name, try
14729 to find a name in the referred to DIE. */
14730
14731 if (part_die->name == NULL && part_die->has_specification)
14732 {
14733 struct partial_die_info *spec_die;
14734
14735 spec_die = find_partial_die (part_die->spec_offset,
14736 part_die->spec_is_dwz, cu);
14737
14738 fixup_partial_die (spec_die, cu);
14739
14740 if (spec_die->name)
14741 {
14742 part_die->name = spec_die->name;
14743
14744 /* Copy DW_AT_external attribute if it is set. */
14745 if (spec_die->is_external)
14746 part_die->is_external = spec_die->is_external;
14747 }
14748 }
14749
14750 /* Set default names for some unnamed DIEs. */
14751
14752 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14753 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14754
14755 /* If there is no parent die to provide a namespace, and there are
14756 children, see if we can determine the namespace from their linkage
14757 name. */
14758 if (cu->language == language_cplus
14759 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14760 && part_die->die_parent == NULL
14761 && part_die->has_children
14762 && (part_die->tag == DW_TAG_class_type
14763 || part_die->tag == DW_TAG_structure_type
14764 || part_die->tag == DW_TAG_union_type))
14765 guess_partial_die_structure_name (part_die, cu);
14766
14767 /* GCC might emit a nameless struct or union that has a linkage
14768 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14769 if (part_die->name == NULL
14770 && (part_die->tag == DW_TAG_class_type
14771 || part_die->tag == DW_TAG_interface_type
14772 || part_die->tag == DW_TAG_structure_type
14773 || part_die->tag == DW_TAG_union_type)
14774 && part_die->linkage_name != NULL)
14775 {
14776 char *demangled;
14777
14778 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14779 if (demangled)
14780 {
14781 const char *base;
14782
14783 /* Strip any leading namespaces/classes, keep only the base name.
14784 DW_AT_name for named DIEs does not contain the prefixes. */
14785 base = strrchr (demangled, ':');
14786 if (base && base > demangled && base[-1] == ':')
14787 base++;
14788 else
14789 base = demangled;
14790
14791 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14792 base, strlen (base));
14793 xfree (demangled);
14794 }
14795 }
14796
14797 part_die->fixup_called = 1;
14798 }
14799
14800 /* Read an attribute value described by an attribute form. */
14801
14802 static const gdb_byte *
14803 read_attribute_value (const struct die_reader_specs *reader,
14804 struct attribute *attr, unsigned form,
14805 const gdb_byte *info_ptr)
14806 {
14807 struct dwarf2_cu *cu = reader->cu;
14808 bfd *abfd = reader->abfd;
14809 struct comp_unit_head *cu_header = &cu->header;
14810 unsigned int bytes_read;
14811 struct dwarf_block *blk;
14812
14813 attr->form = form;
14814 switch (form)
14815 {
14816 case DW_FORM_ref_addr:
14817 if (cu->header.version == 2)
14818 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14819 else
14820 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14821 &cu->header, &bytes_read);
14822 info_ptr += bytes_read;
14823 break;
14824 case DW_FORM_GNU_ref_alt:
14825 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14826 info_ptr += bytes_read;
14827 break;
14828 case DW_FORM_addr:
14829 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14830 info_ptr += bytes_read;
14831 break;
14832 case DW_FORM_block2:
14833 blk = dwarf_alloc_block (cu);
14834 blk->size = read_2_bytes (abfd, info_ptr);
14835 info_ptr += 2;
14836 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14837 info_ptr += blk->size;
14838 DW_BLOCK (attr) = blk;
14839 break;
14840 case DW_FORM_block4:
14841 blk = dwarf_alloc_block (cu);
14842 blk->size = read_4_bytes (abfd, info_ptr);
14843 info_ptr += 4;
14844 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14845 info_ptr += blk->size;
14846 DW_BLOCK (attr) = blk;
14847 break;
14848 case DW_FORM_data2:
14849 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14850 info_ptr += 2;
14851 break;
14852 case DW_FORM_data4:
14853 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14854 info_ptr += 4;
14855 break;
14856 case DW_FORM_data8:
14857 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14858 info_ptr += 8;
14859 break;
14860 case DW_FORM_sec_offset:
14861 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14862 info_ptr += bytes_read;
14863 break;
14864 case DW_FORM_string:
14865 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14866 DW_STRING_IS_CANONICAL (attr) = 0;
14867 info_ptr += bytes_read;
14868 break;
14869 case DW_FORM_strp:
14870 if (!cu->per_cu->is_dwz)
14871 {
14872 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14873 &bytes_read);
14874 DW_STRING_IS_CANONICAL (attr) = 0;
14875 info_ptr += bytes_read;
14876 break;
14877 }
14878 /* FALLTHROUGH */
14879 case DW_FORM_GNU_strp_alt:
14880 {
14881 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14882 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14883 &bytes_read);
14884
14885 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14886 DW_STRING_IS_CANONICAL (attr) = 0;
14887 info_ptr += bytes_read;
14888 }
14889 break;
14890 case DW_FORM_exprloc:
14891 case DW_FORM_block:
14892 blk = dwarf_alloc_block (cu);
14893 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14894 info_ptr += bytes_read;
14895 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14896 info_ptr += blk->size;
14897 DW_BLOCK (attr) = blk;
14898 break;
14899 case DW_FORM_block1:
14900 blk = dwarf_alloc_block (cu);
14901 blk->size = read_1_byte (abfd, info_ptr);
14902 info_ptr += 1;
14903 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14904 info_ptr += blk->size;
14905 DW_BLOCK (attr) = blk;
14906 break;
14907 case DW_FORM_data1:
14908 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14909 info_ptr += 1;
14910 break;
14911 case DW_FORM_flag:
14912 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14913 info_ptr += 1;
14914 break;
14915 case DW_FORM_flag_present:
14916 DW_UNSND (attr) = 1;
14917 break;
14918 case DW_FORM_sdata:
14919 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14920 info_ptr += bytes_read;
14921 break;
14922 case DW_FORM_udata:
14923 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14924 info_ptr += bytes_read;
14925 break;
14926 case DW_FORM_ref1:
14927 DW_UNSND (attr) = (cu->header.offset.sect_off
14928 + read_1_byte (abfd, info_ptr));
14929 info_ptr += 1;
14930 break;
14931 case DW_FORM_ref2:
14932 DW_UNSND (attr) = (cu->header.offset.sect_off
14933 + read_2_bytes (abfd, info_ptr));
14934 info_ptr += 2;
14935 break;
14936 case DW_FORM_ref4:
14937 DW_UNSND (attr) = (cu->header.offset.sect_off
14938 + read_4_bytes (abfd, info_ptr));
14939 info_ptr += 4;
14940 break;
14941 case DW_FORM_ref8:
14942 DW_UNSND (attr) = (cu->header.offset.sect_off
14943 + read_8_bytes (abfd, info_ptr));
14944 info_ptr += 8;
14945 break;
14946 case DW_FORM_ref_sig8:
14947 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14948 info_ptr += 8;
14949 break;
14950 case DW_FORM_ref_udata:
14951 DW_UNSND (attr) = (cu->header.offset.sect_off
14952 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14953 info_ptr += bytes_read;
14954 break;
14955 case DW_FORM_indirect:
14956 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14957 info_ptr += bytes_read;
14958 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14959 break;
14960 case DW_FORM_GNU_addr_index:
14961 if (reader->dwo_file == NULL)
14962 {
14963 /* For now flag a hard error.
14964 Later we can turn this into a complaint. */
14965 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14966 dwarf_form_name (form),
14967 bfd_get_filename (abfd));
14968 }
14969 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14970 info_ptr += bytes_read;
14971 break;
14972 case DW_FORM_GNU_str_index:
14973 if (reader->dwo_file == NULL)
14974 {
14975 /* For now flag a hard error.
14976 Later we can turn this into a complaint if warranted. */
14977 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14978 dwarf_form_name (form),
14979 bfd_get_filename (abfd));
14980 }
14981 {
14982 ULONGEST str_index =
14983 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14984
14985 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14986 DW_STRING_IS_CANONICAL (attr) = 0;
14987 info_ptr += bytes_read;
14988 }
14989 break;
14990 default:
14991 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14992 dwarf_form_name (form),
14993 bfd_get_filename (abfd));
14994 }
14995
14996 /* Super hack. */
14997 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
14998 attr->form = DW_FORM_GNU_ref_alt;
14999
15000 /* We have seen instances where the compiler tried to emit a byte
15001 size attribute of -1 which ended up being encoded as an unsigned
15002 0xffffffff. Although 0xffffffff is technically a valid size value,
15003 an object of this size seems pretty unlikely so we can relatively
15004 safely treat these cases as if the size attribute was invalid and
15005 treat them as zero by default. */
15006 if (attr->name == DW_AT_byte_size
15007 && form == DW_FORM_data4
15008 && DW_UNSND (attr) >= 0xffffffff)
15009 {
15010 complaint
15011 (&symfile_complaints,
15012 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15013 hex_string (DW_UNSND (attr)));
15014 DW_UNSND (attr) = 0;
15015 }
15016
15017 return info_ptr;
15018 }
15019
15020 /* Read an attribute described by an abbreviated attribute. */
15021
15022 static const gdb_byte *
15023 read_attribute (const struct die_reader_specs *reader,
15024 struct attribute *attr, struct attr_abbrev *abbrev,
15025 const gdb_byte *info_ptr)
15026 {
15027 attr->name = abbrev->name;
15028 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15029 }
15030
15031 /* Read dwarf information from a buffer. */
15032
15033 static unsigned int
15034 read_1_byte (bfd *abfd, const gdb_byte *buf)
15035 {
15036 return bfd_get_8 (abfd, buf);
15037 }
15038
15039 static int
15040 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15041 {
15042 return bfd_get_signed_8 (abfd, buf);
15043 }
15044
15045 static unsigned int
15046 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15047 {
15048 return bfd_get_16 (abfd, buf);
15049 }
15050
15051 static int
15052 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15053 {
15054 return bfd_get_signed_16 (abfd, buf);
15055 }
15056
15057 static unsigned int
15058 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15059 {
15060 return bfd_get_32 (abfd, buf);
15061 }
15062
15063 static int
15064 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15065 {
15066 return bfd_get_signed_32 (abfd, buf);
15067 }
15068
15069 static ULONGEST
15070 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15071 {
15072 return bfd_get_64 (abfd, buf);
15073 }
15074
15075 static CORE_ADDR
15076 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15077 unsigned int *bytes_read)
15078 {
15079 struct comp_unit_head *cu_header = &cu->header;
15080 CORE_ADDR retval = 0;
15081
15082 if (cu_header->signed_addr_p)
15083 {
15084 switch (cu_header->addr_size)
15085 {
15086 case 2:
15087 retval = bfd_get_signed_16 (abfd, buf);
15088 break;
15089 case 4:
15090 retval = bfd_get_signed_32 (abfd, buf);
15091 break;
15092 case 8:
15093 retval = bfd_get_signed_64 (abfd, buf);
15094 break;
15095 default:
15096 internal_error (__FILE__, __LINE__,
15097 _("read_address: bad switch, signed [in module %s]"),
15098 bfd_get_filename (abfd));
15099 }
15100 }
15101 else
15102 {
15103 switch (cu_header->addr_size)
15104 {
15105 case 2:
15106 retval = bfd_get_16 (abfd, buf);
15107 break;
15108 case 4:
15109 retval = bfd_get_32 (abfd, buf);
15110 break;
15111 case 8:
15112 retval = bfd_get_64 (abfd, buf);
15113 break;
15114 default:
15115 internal_error (__FILE__, __LINE__,
15116 _("read_address: bad switch, "
15117 "unsigned [in module %s]"),
15118 bfd_get_filename (abfd));
15119 }
15120 }
15121
15122 *bytes_read = cu_header->addr_size;
15123 return retval;
15124 }
15125
15126 /* Read the initial length from a section. The (draft) DWARF 3
15127 specification allows the initial length to take up either 4 bytes
15128 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15129 bytes describe the length and all offsets will be 8 bytes in length
15130 instead of 4.
15131
15132 An older, non-standard 64-bit format is also handled by this
15133 function. The older format in question stores the initial length
15134 as an 8-byte quantity without an escape value. Lengths greater
15135 than 2^32 aren't very common which means that the initial 4 bytes
15136 is almost always zero. Since a length value of zero doesn't make
15137 sense for the 32-bit format, this initial zero can be considered to
15138 be an escape value which indicates the presence of the older 64-bit
15139 format. As written, the code can't detect (old format) lengths
15140 greater than 4GB. If it becomes necessary to handle lengths
15141 somewhat larger than 4GB, we could allow other small values (such
15142 as the non-sensical values of 1, 2, and 3) to also be used as
15143 escape values indicating the presence of the old format.
15144
15145 The value returned via bytes_read should be used to increment the
15146 relevant pointer after calling read_initial_length().
15147
15148 [ Note: read_initial_length() and read_offset() are based on the
15149 document entitled "DWARF Debugging Information Format", revision
15150 3, draft 8, dated November 19, 2001. This document was obtained
15151 from:
15152
15153 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15154
15155 This document is only a draft and is subject to change. (So beware.)
15156
15157 Details regarding the older, non-standard 64-bit format were
15158 determined empirically by examining 64-bit ELF files produced by
15159 the SGI toolchain on an IRIX 6.5 machine.
15160
15161 - Kevin, July 16, 2002
15162 ] */
15163
15164 static LONGEST
15165 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15166 {
15167 LONGEST length = bfd_get_32 (abfd, buf);
15168
15169 if (length == 0xffffffff)
15170 {
15171 length = bfd_get_64 (abfd, buf + 4);
15172 *bytes_read = 12;
15173 }
15174 else if (length == 0)
15175 {
15176 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15177 length = bfd_get_64 (abfd, buf);
15178 *bytes_read = 8;
15179 }
15180 else
15181 {
15182 *bytes_read = 4;
15183 }
15184
15185 return length;
15186 }
15187
15188 /* Cover function for read_initial_length.
15189 Returns the length of the object at BUF, and stores the size of the
15190 initial length in *BYTES_READ and stores the size that offsets will be in
15191 *OFFSET_SIZE.
15192 If the initial length size is not equivalent to that specified in
15193 CU_HEADER then issue a complaint.
15194 This is useful when reading non-comp-unit headers. */
15195
15196 static LONGEST
15197 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15198 const struct comp_unit_head *cu_header,
15199 unsigned int *bytes_read,
15200 unsigned int *offset_size)
15201 {
15202 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15203
15204 gdb_assert (cu_header->initial_length_size == 4
15205 || cu_header->initial_length_size == 8
15206 || cu_header->initial_length_size == 12);
15207
15208 if (cu_header->initial_length_size != *bytes_read)
15209 complaint (&symfile_complaints,
15210 _("intermixed 32-bit and 64-bit DWARF sections"));
15211
15212 *offset_size = (*bytes_read == 4) ? 4 : 8;
15213 return length;
15214 }
15215
15216 /* Read an offset from the data stream. The size of the offset is
15217 given by cu_header->offset_size. */
15218
15219 static LONGEST
15220 read_offset (bfd *abfd, const gdb_byte *buf,
15221 const struct comp_unit_head *cu_header,
15222 unsigned int *bytes_read)
15223 {
15224 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15225
15226 *bytes_read = cu_header->offset_size;
15227 return offset;
15228 }
15229
15230 /* Read an offset from the data stream. */
15231
15232 static LONGEST
15233 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15234 {
15235 LONGEST retval = 0;
15236
15237 switch (offset_size)
15238 {
15239 case 4:
15240 retval = bfd_get_32 (abfd, buf);
15241 break;
15242 case 8:
15243 retval = bfd_get_64 (abfd, buf);
15244 break;
15245 default:
15246 internal_error (__FILE__, __LINE__,
15247 _("read_offset_1: bad switch [in module %s]"),
15248 bfd_get_filename (abfd));
15249 }
15250
15251 return retval;
15252 }
15253
15254 static const gdb_byte *
15255 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15256 {
15257 /* If the size of a host char is 8 bits, we can return a pointer
15258 to the buffer, otherwise we have to copy the data to a buffer
15259 allocated on the temporary obstack. */
15260 gdb_assert (HOST_CHAR_BIT == 8);
15261 return buf;
15262 }
15263
15264 static const char *
15265 read_direct_string (bfd *abfd, const gdb_byte *buf,
15266 unsigned int *bytes_read_ptr)
15267 {
15268 /* If the size of a host char is 8 bits, we can return a pointer
15269 to the string, otherwise we have to copy the string to a buffer
15270 allocated on the temporary obstack. */
15271 gdb_assert (HOST_CHAR_BIT == 8);
15272 if (*buf == '\0')
15273 {
15274 *bytes_read_ptr = 1;
15275 return NULL;
15276 }
15277 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15278 return (const char *) buf;
15279 }
15280
15281 static const char *
15282 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15283 {
15284 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15285 if (dwarf2_per_objfile->str.buffer == NULL)
15286 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15287 bfd_get_filename (abfd));
15288 if (str_offset >= dwarf2_per_objfile->str.size)
15289 error (_("DW_FORM_strp pointing outside of "
15290 ".debug_str section [in module %s]"),
15291 bfd_get_filename (abfd));
15292 gdb_assert (HOST_CHAR_BIT == 8);
15293 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15294 return NULL;
15295 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15296 }
15297
15298 /* Read a string at offset STR_OFFSET in the .debug_str section from
15299 the .dwz file DWZ. Throw an error if the offset is too large. If
15300 the string consists of a single NUL byte, return NULL; otherwise
15301 return a pointer to the string. */
15302
15303 static const char *
15304 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15305 {
15306 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15307
15308 if (dwz->str.buffer == NULL)
15309 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15310 "section [in module %s]"),
15311 bfd_get_filename (dwz->dwz_bfd));
15312 if (str_offset >= dwz->str.size)
15313 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15314 ".debug_str section [in module %s]"),
15315 bfd_get_filename (dwz->dwz_bfd));
15316 gdb_assert (HOST_CHAR_BIT == 8);
15317 if (dwz->str.buffer[str_offset] == '\0')
15318 return NULL;
15319 return (const char *) (dwz->str.buffer + str_offset);
15320 }
15321
15322 static const char *
15323 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15324 const struct comp_unit_head *cu_header,
15325 unsigned int *bytes_read_ptr)
15326 {
15327 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15328
15329 return read_indirect_string_at_offset (abfd, str_offset);
15330 }
15331
15332 static ULONGEST
15333 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15334 unsigned int *bytes_read_ptr)
15335 {
15336 ULONGEST result;
15337 unsigned int num_read;
15338 int i, shift;
15339 unsigned char byte;
15340
15341 result = 0;
15342 shift = 0;
15343 num_read = 0;
15344 i = 0;
15345 while (1)
15346 {
15347 byte = bfd_get_8 (abfd, buf);
15348 buf++;
15349 num_read++;
15350 result |= ((ULONGEST) (byte & 127) << shift);
15351 if ((byte & 128) == 0)
15352 {
15353 break;
15354 }
15355 shift += 7;
15356 }
15357 *bytes_read_ptr = num_read;
15358 return result;
15359 }
15360
15361 static LONGEST
15362 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15363 unsigned int *bytes_read_ptr)
15364 {
15365 LONGEST result;
15366 int i, shift, num_read;
15367 unsigned char byte;
15368
15369 result = 0;
15370 shift = 0;
15371 num_read = 0;
15372 i = 0;
15373 while (1)
15374 {
15375 byte = bfd_get_8 (abfd, buf);
15376 buf++;
15377 num_read++;
15378 result |= ((LONGEST) (byte & 127) << shift);
15379 shift += 7;
15380 if ((byte & 128) == 0)
15381 {
15382 break;
15383 }
15384 }
15385 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15386 result |= -(((LONGEST) 1) << shift);
15387 *bytes_read_ptr = num_read;
15388 return result;
15389 }
15390
15391 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15392 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15393 ADDR_SIZE is the size of addresses from the CU header. */
15394
15395 static CORE_ADDR
15396 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15397 {
15398 struct objfile *objfile = dwarf2_per_objfile->objfile;
15399 bfd *abfd = objfile->obfd;
15400 const gdb_byte *info_ptr;
15401
15402 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15403 if (dwarf2_per_objfile->addr.buffer == NULL)
15404 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15405 objfile_name (objfile));
15406 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15407 error (_("DW_FORM_addr_index pointing outside of "
15408 ".debug_addr section [in module %s]"),
15409 objfile_name (objfile));
15410 info_ptr = (dwarf2_per_objfile->addr.buffer
15411 + addr_base + addr_index * addr_size);
15412 if (addr_size == 4)
15413 return bfd_get_32 (abfd, info_ptr);
15414 else
15415 return bfd_get_64 (abfd, info_ptr);
15416 }
15417
15418 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15419
15420 static CORE_ADDR
15421 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15422 {
15423 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15424 }
15425
15426 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15427
15428 static CORE_ADDR
15429 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15430 unsigned int *bytes_read)
15431 {
15432 bfd *abfd = cu->objfile->obfd;
15433 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15434
15435 return read_addr_index (cu, addr_index);
15436 }
15437
15438 /* Data structure to pass results from dwarf2_read_addr_index_reader
15439 back to dwarf2_read_addr_index. */
15440
15441 struct dwarf2_read_addr_index_data
15442 {
15443 ULONGEST addr_base;
15444 int addr_size;
15445 };
15446
15447 /* die_reader_func for dwarf2_read_addr_index. */
15448
15449 static void
15450 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15451 const gdb_byte *info_ptr,
15452 struct die_info *comp_unit_die,
15453 int has_children,
15454 void *data)
15455 {
15456 struct dwarf2_cu *cu = reader->cu;
15457 struct dwarf2_read_addr_index_data *aidata =
15458 (struct dwarf2_read_addr_index_data *) data;
15459
15460 aidata->addr_base = cu->addr_base;
15461 aidata->addr_size = cu->header.addr_size;
15462 }
15463
15464 /* Given an index in .debug_addr, fetch the value.
15465 NOTE: This can be called during dwarf expression evaluation,
15466 long after the debug information has been read, and thus per_cu->cu
15467 may no longer exist. */
15468
15469 CORE_ADDR
15470 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15471 unsigned int addr_index)
15472 {
15473 struct objfile *objfile = per_cu->objfile;
15474 struct dwarf2_cu *cu = per_cu->cu;
15475 ULONGEST addr_base;
15476 int addr_size;
15477
15478 /* This is intended to be called from outside this file. */
15479 dw2_setup (objfile);
15480
15481 /* We need addr_base and addr_size.
15482 If we don't have PER_CU->cu, we have to get it.
15483 Nasty, but the alternative is storing the needed info in PER_CU,
15484 which at this point doesn't seem justified: it's not clear how frequently
15485 it would get used and it would increase the size of every PER_CU.
15486 Entry points like dwarf2_per_cu_addr_size do a similar thing
15487 so we're not in uncharted territory here.
15488 Alas we need to be a bit more complicated as addr_base is contained
15489 in the DIE.
15490
15491 We don't need to read the entire CU(/TU).
15492 We just need the header and top level die.
15493
15494 IWBN to use the aging mechanism to let us lazily later discard the CU.
15495 For now we skip this optimization. */
15496
15497 if (cu != NULL)
15498 {
15499 addr_base = cu->addr_base;
15500 addr_size = cu->header.addr_size;
15501 }
15502 else
15503 {
15504 struct dwarf2_read_addr_index_data aidata;
15505
15506 /* Note: We can't use init_cutu_and_read_dies_simple here,
15507 we need addr_base. */
15508 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15509 dwarf2_read_addr_index_reader, &aidata);
15510 addr_base = aidata.addr_base;
15511 addr_size = aidata.addr_size;
15512 }
15513
15514 return read_addr_index_1 (addr_index, addr_base, addr_size);
15515 }
15516
15517 /* Given a DW_FORM_GNU_str_index, fetch the string.
15518 This is only used by the Fission support. */
15519
15520 static const char *
15521 read_str_index (const struct die_reader_specs *reader,
15522 struct dwarf2_cu *cu, ULONGEST str_index)
15523 {
15524 struct objfile *objfile = dwarf2_per_objfile->objfile;
15525 const char *dwo_name = objfile_name (objfile);
15526 bfd *abfd = objfile->obfd;
15527 struct dwo_sections *sections = &reader->dwo_file->sections;
15528 const gdb_byte *info_ptr;
15529 ULONGEST str_offset;
15530 static const char form_name[] = "DW_FORM_GNU_str_index";
15531
15532 dwarf2_read_section (objfile, &sections->str);
15533 dwarf2_read_section (objfile, &sections->str_offsets);
15534 if (sections->str.buffer == NULL)
15535 error (_("%s used without .debug_str.dwo section"
15536 " in CU at offset 0x%lx [in module %s]"),
15537 form_name, (long) cu->header.offset.sect_off, dwo_name);
15538 if (sections->str_offsets.buffer == NULL)
15539 error (_("%s used without .debug_str_offsets.dwo section"
15540 " in CU at offset 0x%lx [in module %s]"),
15541 form_name, (long) cu->header.offset.sect_off, dwo_name);
15542 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15543 error (_("%s pointing outside of .debug_str_offsets.dwo"
15544 " section in CU at offset 0x%lx [in module %s]"),
15545 form_name, (long) cu->header.offset.sect_off, dwo_name);
15546 info_ptr = (sections->str_offsets.buffer
15547 + str_index * cu->header.offset_size);
15548 if (cu->header.offset_size == 4)
15549 str_offset = bfd_get_32 (abfd, info_ptr);
15550 else
15551 str_offset = bfd_get_64 (abfd, info_ptr);
15552 if (str_offset >= sections->str.size)
15553 error (_("Offset from %s pointing outside of"
15554 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15555 form_name, (long) cu->header.offset.sect_off, dwo_name);
15556 return (const char *) (sections->str.buffer + str_offset);
15557 }
15558
15559 /* Return the length of an LEB128 number in BUF. */
15560
15561 static int
15562 leb128_size (const gdb_byte *buf)
15563 {
15564 const gdb_byte *begin = buf;
15565 gdb_byte byte;
15566
15567 while (1)
15568 {
15569 byte = *buf++;
15570 if ((byte & 128) == 0)
15571 return buf - begin;
15572 }
15573 }
15574
15575 static void
15576 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15577 {
15578 switch (lang)
15579 {
15580 case DW_LANG_C89:
15581 case DW_LANG_C99:
15582 case DW_LANG_C:
15583 case DW_LANG_UPC:
15584 cu->language = language_c;
15585 break;
15586 case DW_LANG_C_plus_plus:
15587 cu->language = language_cplus;
15588 break;
15589 case DW_LANG_D:
15590 cu->language = language_d;
15591 break;
15592 case DW_LANG_Fortran77:
15593 case DW_LANG_Fortran90:
15594 case DW_LANG_Fortran95:
15595 cu->language = language_fortran;
15596 break;
15597 case DW_LANG_Go:
15598 cu->language = language_go;
15599 break;
15600 case DW_LANG_Mips_Assembler:
15601 cu->language = language_asm;
15602 break;
15603 case DW_LANG_Java:
15604 cu->language = language_java;
15605 break;
15606 case DW_LANG_Ada83:
15607 case DW_LANG_Ada95:
15608 cu->language = language_ada;
15609 break;
15610 case DW_LANG_Modula2:
15611 cu->language = language_m2;
15612 break;
15613 case DW_LANG_Pascal83:
15614 cu->language = language_pascal;
15615 break;
15616 case DW_LANG_ObjC:
15617 cu->language = language_objc;
15618 break;
15619 case DW_LANG_Cobol74:
15620 case DW_LANG_Cobol85:
15621 default:
15622 cu->language = language_minimal;
15623 break;
15624 }
15625 cu->language_defn = language_def (cu->language);
15626 }
15627
15628 /* Return the named attribute or NULL if not there. */
15629
15630 static struct attribute *
15631 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15632 {
15633 for (;;)
15634 {
15635 unsigned int i;
15636 struct attribute *spec = NULL;
15637
15638 for (i = 0; i < die->num_attrs; ++i)
15639 {
15640 if (die->attrs[i].name == name)
15641 return &die->attrs[i];
15642 if (die->attrs[i].name == DW_AT_specification
15643 || die->attrs[i].name == DW_AT_abstract_origin)
15644 spec = &die->attrs[i];
15645 }
15646
15647 if (!spec)
15648 break;
15649
15650 die = follow_die_ref (die, spec, &cu);
15651 }
15652
15653 return NULL;
15654 }
15655
15656 /* Return the named attribute or NULL if not there,
15657 but do not follow DW_AT_specification, etc.
15658 This is for use in contexts where we're reading .debug_types dies.
15659 Following DW_AT_specification, DW_AT_abstract_origin will take us
15660 back up the chain, and we want to go down. */
15661
15662 static struct attribute *
15663 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15664 {
15665 unsigned int i;
15666
15667 for (i = 0; i < die->num_attrs; ++i)
15668 if (die->attrs[i].name == name)
15669 return &die->attrs[i];
15670
15671 return NULL;
15672 }
15673
15674 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15675 and holds a non-zero value. This function should only be used for
15676 DW_FORM_flag or DW_FORM_flag_present attributes. */
15677
15678 static int
15679 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15680 {
15681 struct attribute *attr = dwarf2_attr (die, name, cu);
15682
15683 return (attr && DW_UNSND (attr));
15684 }
15685
15686 static int
15687 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15688 {
15689 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15690 which value is non-zero. However, we have to be careful with
15691 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15692 (via dwarf2_flag_true_p) follows this attribute. So we may
15693 end up accidently finding a declaration attribute that belongs
15694 to a different DIE referenced by the specification attribute,
15695 even though the given DIE does not have a declaration attribute. */
15696 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15697 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15698 }
15699
15700 /* Return the die giving the specification for DIE, if there is
15701 one. *SPEC_CU is the CU containing DIE on input, and the CU
15702 containing the return value on output. If there is no
15703 specification, but there is an abstract origin, that is
15704 returned. */
15705
15706 static struct die_info *
15707 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15708 {
15709 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15710 *spec_cu);
15711
15712 if (spec_attr == NULL)
15713 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15714
15715 if (spec_attr == NULL)
15716 return NULL;
15717 else
15718 return follow_die_ref (die, spec_attr, spec_cu);
15719 }
15720
15721 /* Free the line_header structure *LH, and any arrays and strings it
15722 refers to.
15723 NOTE: This is also used as a "cleanup" function. */
15724
15725 static void
15726 free_line_header (struct line_header *lh)
15727 {
15728 if (lh->standard_opcode_lengths)
15729 xfree (lh->standard_opcode_lengths);
15730
15731 /* Remember that all the lh->file_names[i].name pointers are
15732 pointers into debug_line_buffer, and don't need to be freed. */
15733 if (lh->file_names)
15734 xfree (lh->file_names);
15735
15736 /* Similarly for the include directory names. */
15737 if (lh->include_dirs)
15738 xfree (lh->include_dirs);
15739
15740 xfree (lh);
15741 }
15742
15743 /* Add an entry to LH's include directory table. */
15744
15745 static void
15746 add_include_dir (struct line_header *lh, const char *include_dir)
15747 {
15748 /* Grow the array if necessary. */
15749 if (lh->include_dirs_size == 0)
15750 {
15751 lh->include_dirs_size = 1; /* for testing */
15752 lh->include_dirs = xmalloc (lh->include_dirs_size
15753 * sizeof (*lh->include_dirs));
15754 }
15755 else if (lh->num_include_dirs >= lh->include_dirs_size)
15756 {
15757 lh->include_dirs_size *= 2;
15758 lh->include_dirs = xrealloc (lh->include_dirs,
15759 (lh->include_dirs_size
15760 * sizeof (*lh->include_dirs)));
15761 }
15762
15763 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15764 }
15765
15766 /* Add an entry to LH's file name table. */
15767
15768 static void
15769 add_file_name (struct line_header *lh,
15770 const char *name,
15771 unsigned int dir_index,
15772 unsigned int mod_time,
15773 unsigned int length)
15774 {
15775 struct file_entry *fe;
15776
15777 /* Grow the array if necessary. */
15778 if (lh->file_names_size == 0)
15779 {
15780 lh->file_names_size = 1; /* for testing */
15781 lh->file_names = xmalloc (lh->file_names_size
15782 * sizeof (*lh->file_names));
15783 }
15784 else if (lh->num_file_names >= lh->file_names_size)
15785 {
15786 lh->file_names_size *= 2;
15787 lh->file_names = xrealloc (lh->file_names,
15788 (lh->file_names_size
15789 * sizeof (*lh->file_names)));
15790 }
15791
15792 fe = &lh->file_names[lh->num_file_names++];
15793 fe->name = name;
15794 fe->dir_index = dir_index;
15795 fe->mod_time = mod_time;
15796 fe->length = length;
15797 fe->included_p = 0;
15798 fe->symtab = NULL;
15799 }
15800
15801 /* A convenience function to find the proper .debug_line section for a
15802 CU. */
15803
15804 static struct dwarf2_section_info *
15805 get_debug_line_section (struct dwarf2_cu *cu)
15806 {
15807 struct dwarf2_section_info *section;
15808
15809 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15810 DWO file. */
15811 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15812 section = &cu->dwo_unit->dwo_file->sections.line;
15813 else if (cu->per_cu->is_dwz)
15814 {
15815 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15816
15817 section = &dwz->line;
15818 }
15819 else
15820 section = &dwarf2_per_objfile->line;
15821
15822 return section;
15823 }
15824
15825 /* Read the statement program header starting at OFFSET in
15826 .debug_line, or .debug_line.dwo. Return a pointer
15827 to a struct line_header, allocated using xmalloc.
15828
15829 NOTE: the strings in the include directory and file name tables of
15830 the returned object point into the dwarf line section buffer,
15831 and must not be freed. */
15832
15833 static struct line_header *
15834 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15835 {
15836 struct cleanup *back_to;
15837 struct line_header *lh;
15838 const gdb_byte *line_ptr;
15839 unsigned int bytes_read, offset_size;
15840 int i;
15841 const char *cur_dir, *cur_file;
15842 struct dwarf2_section_info *section;
15843 bfd *abfd;
15844
15845 section = get_debug_line_section (cu);
15846 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15847 if (section->buffer == NULL)
15848 {
15849 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15850 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15851 else
15852 complaint (&symfile_complaints, _("missing .debug_line section"));
15853 return 0;
15854 }
15855
15856 /* We can't do this until we know the section is non-empty.
15857 Only then do we know we have such a section. */
15858 abfd = get_section_bfd_owner (section);
15859
15860 /* Make sure that at least there's room for the total_length field.
15861 That could be 12 bytes long, but we're just going to fudge that. */
15862 if (offset + 4 >= section->size)
15863 {
15864 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15865 return 0;
15866 }
15867
15868 lh = xmalloc (sizeof (*lh));
15869 memset (lh, 0, sizeof (*lh));
15870 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15871 (void *) lh);
15872
15873 line_ptr = section->buffer + offset;
15874
15875 /* Read in the header. */
15876 lh->total_length =
15877 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15878 &bytes_read, &offset_size);
15879 line_ptr += bytes_read;
15880 if (line_ptr + lh->total_length > (section->buffer + section->size))
15881 {
15882 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15883 do_cleanups (back_to);
15884 return 0;
15885 }
15886 lh->statement_program_end = line_ptr + lh->total_length;
15887 lh->version = read_2_bytes (abfd, line_ptr);
15888 line_ptr += 2;
15889 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15890 line_ptr += offset_size;
15891 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15892 line_ptr += 1;
15893 if (lh->version >= 4)
15894 {
15895 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15896 line_ptr += 1;
15897 }
15898 else
15899 lh->maximum_ops_per_instruction = 1;
15900
15901 if (lh->maximum_ops_per_instruction == 0)
15902 {
15903 lh->maximum_ops_per_instruction = 1;
15904 complaint (&symfile_complaints,
15905 _("invalid maximum_ops_per_instruction "
15906 "in `.debug_line' section"));
15907 }
15908
15909 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15910 line_ptr += 1;
15911 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15912 line_ptr += 1;
15913 lh->line_range = read_1_byte (abfd, line_ptr);
15914 line_ptr += 1;
15915 lh->opcode_base = read_1_byte (abfd, line_ptr);
15916 line_ptr += 1;
15917 lh->standard_opcode_lengths
15918 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15919
15920 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15921 for (i = 1; i < lh->opcode_base; ++i)
15922 {
15923 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15924 line_ptr += 1;
15925 }
15926
15927 /* Read directory table. */
15928 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15929 {
15930 line_ptr += bytes_read;
15931 add_include_dir (lh, cur_dir);
15932 }
15933 line_ptr += bytes_read;
15934
15935 /* Read file name table. */
15936 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15937 {
15938 unsigned int dir_index, mod_time, length;
15939
15940 line_ptr += bytes_read;
15941 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15942 line_ptr += bytes_read;
15943 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15944 line_ptr += bytes_read;
15945 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15946 line_ptr += bytes_read;
15947
15948 add_file_name (lh, cur_file, dir_index, mod_time, length);
15949 }
15950 line_ptr += bytes_read;
15951 lh->statement_program_start = line_ptr;
15952
15953 if (line_ptr > (section->buffer + section->size))
15954 complaint (&symfile_complaints,
15955 _("line number info header doesn't "
15956 "fit in `.debug_line' section"));
15957
15958 discard_cleanups (back_to);
15959 return lh;
15960 }
15961
15962 /* Subroutine of dwarf_decode_lines to simplify it.
15963 Return the file name of the psymtab for included file FILE_INDEX
15964 in line header LH of PST.
15965 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15966 If space for the result is malloc'd, it will be freed by a cleanup.
15967 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15968
15969 The function creates dangling cleanup registration. */
15970
15971 static const char *
15972 psymtab_include_file_name (const struct line_header *lh, int file_index,
15973 const struct partial_symtab *pst,
15974 const char *comp_dir)
15975 {
15976 const struct file_entry fe = lh->file_names [file_index];
15977 const char *include_name = fe.name;
15978 const char *include_name_to_compare = include_name;
15979 const char *dir_name = NULL;
15980 const char *pst_filename;
15981 char *copied_name = NULL;
15982 int file_is_pst;
15983
15984 if (fe.dir_index)
15985 dir_name = lh->include_dirs[fe.dir_index - 1];
15986
15987 if (!IS_ABSOLUTE_PATH (include_name)
15988 && (dir_name != NULL || comp_dir != NULL))
15989 {
15990 /* Avoid creating a duplicate psymtab for PST.
15991 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15992 Before we do the comparison, however, we need to account
15993 for DIR_NAME and COMP_DIR.
15994 First prepend dir_name (if non-NULL). If we still don't
15995 have an absolute path prepend comp_dir (if non-NULL).
15996 However, the directory we record in the include-file's
15997 psymtab does not contain COMP_DIR (to match the
15998 corresponding symtab(s)).
15999
16000 Example:
16001
16002 bash$ cd /tmp
16003 bash$ gcc -g ./hello.c
16004 include_name = "hello.c"
16005 dir_name = "."
16006 DW_AT_comp_dir = comp_dir = "/tmp"
16007 DW_AT_name = "./hello.c" */
16008
16009 if (dir_name != NULL)
16010 {
16011 char *tem = concat (dir_name, SLASH_STRING,
16012 include_name, (char *)NULL);
16013
16014 make_cleanup (xfree, tem);
16015 include_name = tem;
16016 include_name_to_compare = include_name;
16017 }
16018 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16019 {
16020 char *tem = concat (comp_dir, SLASH_STRING,
16021 include_name, (char *)NULL);
16022
16023 make_cleanup (xfree, tem);
16024 include_name_to_compare = tem;
16025 }
16026 }
16027
16028 pst_filename = pst->filename;
16029 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16030 {
16031 copied_name = concat (pst->dirname, SLASH_STRING,
16032 pst_filename, (char *)NULL);
16033 pst_filename = copied_name;
16034 }
16035
16036 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16037
16038 if (copied_name != NULL)
16039 xfree (copied_name);
16040
16041 if (file_is_pst)
16042 return NULL;
16043 return include_name;
16044 }
16045
16046 /* Ignore this record_line request. */
16047
16048 static void
16049 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16050 {
16051 return;
16052 }
16053
16054 /* Subroutine of dwarf_decode_lines to simplify it.
16055 Process the line number information in LH. */
16056
16057 static void
16058 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16059 struct dwarf2_cu *cu, struct partial_symtab *pst)
16060 {
16061 const gdb_byte *line_ptr, *extended_end;
16062 const gdb_byte *line_end;
16063 unsigned int bytes_read, extended_len;
16064 unsigned char op_code, extended_op, adj_opcode;
16065 CORE_ADDR baseaddr;
16066 struct objfile *objfile = cu->objfile;
16067 bfd *abfd = objfile->obfd;
16068 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16069 const int decode_for_pst_p = (pst != NULL);
16070 struct subfile *last_subfile = NULL;
16071 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16072 = record_line;
16073
16074 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16075
16076 line_ptr = lh->statement_program_start;
16077 line_end = lh->statement_program_end;
16078
16079 /* Read the statement sequences until there's nothing left. */
16080 while (line_ptr < line_end)
16081 {
16082 /* state machine registers */
16083 CORE_ADDR address = 0;
16084 unsigned int file = 1;
16085 unsigned int line = 1;
16086 unsigned int column = 0;
16087 int is_stmt = lh->default_is_stmt;
16088 int basic_block = 0;
16089 int end_sequence = 0;
16090 CORE_ADDR addr;
16091 unsigned char op_index = 0;
16092
16093 if (!decode_for_pst_p && lh->num_file_names >= file)
16094 {
16095 /* Start a subfile for the current file of the state machine. */
16096 /* lh->include_dirs and lh->file_names are 0-based, but the
16097 directory and file name numbers in the statement program
16098 are 1-based. */
16099 struct file_entry *fe = &lh->file_names[file - 1];
16100 const char *dir = NULL;
16101
16102 if (fe->dir_index)
16103 dir = lh->include_dirs[fe->dir_index - 1];
16104
16105 dwarf2_start_subfile (fe->name, dir, comp_dir);
16106 }
16107
16108 /* Decode the table. */
16109 while (!end_sequence)
16110 {
16111 op_code = read_1_byte (abfd, line_ptr);
16112 line_ptr += 1;
16113 if (line_ptr > line_end)
16114 {
16115 dwarf2_debug_line_missing_end_sequence_complaint ();
16116 break;
16117 }
16118
16119 if (op_code >= lh->opcode_base)
16120 {
16121 /* Special operand. */
16122 adj_opcode = op_code - lh->opcode_base;
16123 address += (((op_index + (adj_opcode / lh->line_range))
16124 / lh->maximum_ops_per_instruction)
16125 * lh->minimum_instruction_length);
16126 op_index = ((op_index + (adj_opcode / lh->line_range))
16127 % lh->maximum_ops_per_instruction);
16128 line += lh->line_base + (adj_opcode % lh->line_range);
16129 if (lh->num_file_names < file || file == 0)
16130 dwarf2_debug_line_missing_file_complaint ();
16131 /* For now we ignore lines not starting on an
16132 instruction boundary. */
16133 else if (op_index == 0)
16134 {
16135 lh->file_names[file - 1].included_p = 1;
16136 if (!decode_for_pst_p && is_stmt)
16137 {
16138 if (last_subfile != current_subfile)
16139 {
16140 addr = gdbarch_addr_bits_remove (gdbarch, address);
16141 if (last_subfile)
16142 (*p_record_line) (last_subfile, 0, addr);
16143 last_subfile = current_subfile;
16144 }
16145 /* Append row to matrix using current values. */
16146 addr = gdbarch_addr_bits_remove (gdbarch, address);
16147 (*p_record_line) (current_subfile, line, addr);
16148 }
16149 }
16150 basic_block = 0;
16151 }
16152 else switch (op_code)
16153 {
16154 case DW_LNS_extended_op:
16155 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16156 &bytes_read);
16157 line_ptr += bytes_read;
16158 extended_end = line_ptr + extended_len;
16159 extended_op = read_1_byte (abfd, line_ptr);
16160 line_ptr += 1;
16161 switch (extended_op)
16162 {
16163 case DW_LNE_end_sequence:
16164 p_record_line = record_line;
16165 end_sequence = 1;
16166 break;
16167 case DW_LNE_set_address:
16168 address = read_address (abfd, line_ptr, cu, &bytes_read);
16169
16170 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16171 {
16172 /* This line table is for a function which has been
16173 GCd by the linker. Ignore it. PR gdb/12528 */
16174
16175 long line_offset
16176 = line_ptr - get_debug_line_section (cu)->buffer;
16177
16178 complaint (&symfile_complaints,
16179 _(".debug_line address at offset 0x%lx is 0 "
16180 "[in module %s]"),
16181 line_offset, objfile_name (objfile));
16182 p_record_line = noop_record_line;
16183 }
16184
16185 op_index = 0;
16186 line_ptr += bytes_read;
16187 address += baseaddr;
16188 break;
16189 case DW_LNE_define_file:
16190 {
16191 const char *cur_file;
16192 unsigned int dir_index, mod_time, length;
16193
16194 cur_file = read_direct_string (abfd, line_ptr,
16195 &bytes_read);
16196 line_ptr += bytes_read;
16197 dir_index =
16198 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16199 line_ptr += bytes_read;
16200 mod_time =
16201 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16202 line_ptr += bytes_read;
16203 length =
16204 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16205 line_ptr += bytes_read;
16206 add_file_name (lh, cur_file, dir_index, mod_time, length);
16207 }
16208 break;
16209 case DW_LNE_set_discriminator:
16210 /* The discriminator is not interesting to the debugger;
16211 just ignore it. */
16212 line_ptr = extended_end;
16213 break;
16214 default:
16215 complaint (&symfile_complaints,
16216 _("mangled .debug_line section"));
16217 return;
16218 }
16219 /* Make sure that we parsed the extended op correctly. If e.g.
16220 we expected a different address size than the producer used,
16221 we may have read the wrong number of bytes. */
16222 if (line_ptr != extended_end)
16223 {
16224 complaint (&symfile_complaints,
16225 _("mangled .debug_line section"));
16226 return;
16227 }
16228 break;
16229 case DW_LNS_copy:
16230 if (lh->num_file_names < file || file == 0)
16231 dwarf2_debug_line_missing_file_complaint ();
16232 else
16233 {
16234 lh->file_names[file - 1].included_p = 1;
16235 if (!decode_for_pst_p && is_stmt)
16236 {
16237 if (last_subfile != current_subfile)
16238 {
16239 addr = gdbarch_addr_bits_remove (gdbarch, address);
16240 if (last_subfile)
16241 (*p_record_line) (last_subfile, 0, addr);
16242 last_subfile = current_subfile;
16243 }
16244 addr = gdbarch_addr_bits_remove (gdbarch, address);
16245 (*p_record_line) (current_subfile, line, addr);
16246 }
16247 }
16248 basic_block = 0;
16249 break;
16250 case DW_LNS_advance_pc:
16251 {
16252 CORE_ADDR adjust
16253 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16254
16255 address += (((op_index + adjust)
16256 / lh->maximum_ops_per_instruction)
16257 * lh->minimum_instruction_length);
16258 op_index = ((op_index + adjust)
16259 % lh->maximum_ops_per_instruction);
16260 line_ptr += bytes_read;
16261 }
16262 break;
16263 case DW_LNS_advance_line:
16264 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16265 line_ptr += bytes_read;
16266 break;
16267 case DW_LNS_set_file:
16268 {
16269 /* The arrays lh->include_dirs and lh->file_names are
16270 0-based, but the directory and file name numbers in
16271 the statement program are 1-based. */
16272 struct file_entry *fe;
16273 const char *dir = NULL;
16274
16275 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16276 line_ptr += bytes_read;
16277 if (lh->num_file_names < file || file == 0)
16278 dwarf2_debug_line_missing_file_complaint ();
16279 else
16280 {
16281 fe = &lh->file_names[file - 1];
16282 if (fe->dir_index)
16283 dir = lh->include_dirs[fe->dir_index - 1];
16284 if (!decode_for_pst_p)
16285 {
16286 last_subfile = current_subfile;
16287 dwarf2_start_subfile (fe->name, dir, comp_dir);
16288 }
16289 }
16290 }
16291 break;
16292 case DW_LNS_set_column:
16293 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16294 line_ptr += bytes_read;
16295 break;
16296 case DW_LNS_negate_stmt:
16297 is_stmt = (!is_stmt);
16298 break;
16299 case DW_LNS_set_basic_block:
16300 basic_block = 1;
16301 break;
16302 /* Add to the address register of the state machine the
16303 address increment value corresponding to special opcode
16304 255. I.e., this value is scaled by the minimum
16305 instruction length since special opcode 255 would have
16306 scaled the increment. */
16307 case DW_LNS_const_add_pc:
16308 {
16309 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16310
16311 address += (((op_index + adjust)
16312 / lh->maximum_ops_per_instruction)
16313 * lh->minimum_instruction_length);
16314 op_index = ((op_index + adjust)
16315 % lh->maximum_ops_per_instruction);
16316 }
16317 break;
16318 case DW_LNS_fixed_advance_pc:
16319 address += read_2_bytes (abfd, line_ptr);
16320 op_index = 0;
16321 line_ptr += 2;
16322 break;
16323 default:
16324 {
16325 /* Unknown standard opcode, ignore it. */
16326 int i;
16327
16328 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16329 {
16330 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16331 line_ptr += bytes_read;
16332 }
16333 }
16334 }
16335 }
16336 if (lh->num_file_names < file || file == 0)
16337 dwarf2_debug_line_missing_file_complaint ();
16338 else
16339 {
16340 lh->file_names[file - 1].included_p = 1;
16341 if (!decode_for_pst_p)
16342 {
16343 addr = gdbarch_addr_bits_remove (gdbarch, address);
16344 (*p_record_line) (current_subfile, 0, addr);
16345 }
16346 }
16347 }
16348 }
16349
16350 /* Decode the Line Number Program (LNP) for the given line_header
16351 structure and CU. The actual information extracted and the type
16352 of structures created from the LNP depends on the value of PST.
16353
16354 1. If PST is NULL, then this procedure uses the data from the program
16355 to create all necessary symbol tables, and their linetables.
16356
16357 2. If PST is not NULL, this procedure reads the program to determine
16358 the list of files included by the unit represented by PST, and
16359 builds all the associated partial symbol tables.
16360
16361 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16362 It is used for relative paths in the line table.
16363 NOTE: When processing partial symtabs (pst != NULL),
16364 comp_dir == pst->dirname.
16365
16366 NOTE: It is important that psymtabs have the same file name (via strcmp)
16367 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16368 symtab we don't use it in the name of the psymtabs we create.
16369 E.g. expand_line_sal requires this when finding psymtabs to expand.
16370 A good testcase for this is mb-inline.exp. */
16371
16372 static void
16373 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16374 struct dwarf2_cu *cu, struct partial_symtab *pst,
16375 int want_line_info)
16376 {
16377 struct objfile *objfile = cu->objfile;
16378 const int decode_for_pst_p = (pst != NULL);
16379 struct subfile *first_subfile = current_subfile;
16380
16381 if (want_line_info)
16382 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16383
16384 if (decode_for_pst_p)
16385 {
16386 int file_index;
16387
16388 /* Now that we're done scanning the Line Header Program, we can
16389 create the psymtab of each included file. */
16390 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16391 if (lh->file_names[file_index].included_p == 1)
16392 {
16393 const char *include_name =
16394 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16395 if (include_name != NULL)
16396 dwarf2_create_include_psymtab (include_name, pst, objfile);
16397 }
16398 }
16399 else
16400 {
16401 /* Make sure a symtab is created for every file, even files
16402 which contain only variables (i.e. no code with associated
16403 line numbers). */
16404 int i;
16405
16406 for (i = 0; i < lh->num_file_names; i++)
16407 {
16408 const char *dir = NULL;
16409 struct file_entry *fe;
16410
16411 fe = &lh->file_names[i];
16412 if (fe->dir_index)
16413 dir = lh->include_dirs[fe->dir_index - 1];
16414 dwarf2_start_subfile (fe->name, dir, comp_dir);
16415
16416 /* Skip the main file; we don't need it, and it must be
16417 allocated last, so that it will show up before the
16418 non-primary symtabs in the objfile's symtab list. */
16419 if (current_subfile == first_subfile)
16420 continue;
16421
16422 if (current_subfile->symtab == NULL)
16423 current_subfile->symtab = allocate_symtab (current_subfile->name,
16424 objfile);
16425 fe->symtab = current_subfile->symtab;
16426 }
16427 }
16428 }
16429
16430 /* Start a subfile for DWARF. FILENAME is the name of the file and
16431 DIRNAME the name of the source directory which contains FILENAME
16432 or NULL if not known. COMP_DIR is the compilation directory for the
16433 linetable's compilation unit or NULL if not known.
16434 This routine tries to keep line numbers from identical absolute and
16435 relative file names in a common subfile.
16436
16437 Using the `list' example from the GDB testsuite, which resides in
16438 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16439 of /srcdir/list0.c yields the following debugging information for list0.c:
16440
16441 DW_AT_name: /srcdir/list0.c
16442 DW_AT_comp_dir: /compdir
16443 files.files[0].name: list0.h
16444 files.files[0].dir: /srcdir
16445 files.files[1].name: list0.c
16446 files.files[1].dir: /srcdir
16447
16448 The line number information for list0.c has to end up in a single
16449 subfile, so that `break /srcdir/list0.c:1' works as expected.
16450 start_subfile will ensure that this happens provided that we pass the
16451 concatenation of files.files[1].dir and files.files[1].name as the
16452 subfile's name. */
16453
16454 static void
16455 dwarf2_start_subfile (const char *filename, const char *dirname,
16456 const char *comp_dir)
16457 {
16458 char *copy = NULL;
16459
16460 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16461 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16462 second argument to start_subfile. To be consistent, we do the
16463 same here. In order not to lose the line information directory,
16464 we concatenate it to the filename when it makes sense.
16465 Note that the Dwarf3 standard says (speaking of filenames in line
16466 information): ``The directory index is ignored for file names
16467 that represent full path names''. Thus ignoring dirname in the
16468 `else' branch below isn't an issue. */
16469
16470 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16471 {
16472 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16473 filename = copy;
16474 }
16475
16476 start_subfile (filename, comp_dir);
16477
16478 if (copy != NULL)
16479 xfree (copy);
16480 }
16481
16482 /* Start a symtab for DWARF.
16483 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16484
16485 static void
16486 dwarf2_start_symtab (struct dwarf2_cu *cu,
16487 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16488 {
16489 start_symtab (name, comp_dir, low_pc);
16490 record_debugformat ("DWARF 2");
16491 record_producer (cu->producer);
16492
16493 /* We assume that we're processing GCC output. */
16494 processing_gcc_compilation = 2;
16495
16496 cu->processing_has_namespace_info = 0;
16497 }
16498
16499 static void
16500 var_decode_location (struct attribute *attr, struct symbol *sym,
16501 struct dwarf2_cu *cu)
16502 {
16503 struct objfile *objfile = cu->objfile;
16504 struct comp_unit_head *cu_header = &cu->header;
16505
16506 /* NOTE drow/2003-01-30: There used to be a comment and some special
16507 code here to turn a symbol with DW_AT_external and a
16508 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16509 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16510 with some versions of binutils) where shared libraries could have
16511 relocations against symbols in their debug information - the
16512 minimal symbol would have the right address, but the debug info
16513 would not. It's no longer necessary, because we will explicitly
16514 apply relocations when we read in the debug information now. */
16515
16516 /* A DW_AT_location attribute with no contents indicates that a
16517 variable has been optimized away. */
16518 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16519 {
16520 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16521 return;
16522 }
16523
16524 /* Handle one degenerate form of location expression specially, to
16525 preserve GDB's previous behavior when section offsets are
16526 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16527 then mark this symbol as LOC_STATIC. */
16528
16529 if (attr_form_is_block (attr)
16530 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16531 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16532 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16533 && (DW_BLOCK (attr)->size
16534 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16535 {
16536 unsigned int dummy;
16537
16538 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16539 SYMBOL_VALUE_ADDRESS (sym) =
16540 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16541 else
16542 SYMBOL_VALUE_ADDRESS (sym) =
16543 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16544 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16545 fixup_symbol_section (sym, objfile);
16546 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16547 SYMBOL_SECTION (sym));
16548 return;
16549 }
16550
16551 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16552 expression evaluator, and use LOC_COMPUTED only when necessary
16553 (i.e. when the value of a register or memory location is
16554 referenced, or a thread-local block, etc.). Then again, it might
16555 not be worthwhile. I'm assuming that it isn't unless performance
16556 or memory numbers show me otherwise. */
16557
16558 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16559
16560 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16561 cu->has_loclist = 1;
16562 }
16563
16564 /* Given a pointer to a DWARF information entry, figure out if we need
16565 to make a symbol table entry for it, and if so, create a new entry
16566 and return a pointer to it.
16567 If TYPE is NULL, determine symbol type from the die, otherwise
16568 used the passed type.
16569 If SPACE is not NULL, use it to hold the new symbol. If it is
16570 NULL, allocate a new symbol on the objfile's obstack. */
16571
16572 static struct symbol *
16573 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16574 struct symbol *space)
16575 {
16576 struct objfile *objfile = cu->objfile;
16577 struct symbol *sym = NULL;
16578 const char *name;
16579 struct attribute *attr = NULL;
16580 struct attribute *attr2 = NULL;
16581 CORE_ADDR baseaddr;
16582 struct pending **list_to_add = NULL;
16583
16584 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16585
16586 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16587
16588 name = dwarf2_name (die, cu);
16589 if (name)
16590 {
16591 const char *linkagename;
16592 int suppress_add = 0;
16593
16594 if (space)
16595 sym = space;
16596 else
16597 sym = allocate_symbol (objfile);
16598 OBJSTAT (objfile, n_syms++);
16599
16600 /* Cache this symbol's name and the name's demangled form (if any). */
16601 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16602 linkagename = dwarf2_physname (name, die, cu);
16603 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16604
16605 /* Fortran does not have mangling standard and the mangling does differ
16606 between gfortran, iFort etc. */
16607 if (cu->language == language_fortran
16608 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16609 symbol_set_demangled_name (&(sym->ginfo),
16610 dwarf2_full_name (name, die, cu),
16611 NULL);
16612
16613 /* Default assumptions.
16614 Use the passed type or decode it from the die. */
16615 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16616 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16617 if (type != NULL)
16618 SYMBOL_TYPE (sym) = type;
16619 else
16620 SYMBOL_TYPE (sym) = die_type (die, cu);
16621 attr = dwarf2_attr (die,
16622 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16623 cu);
16624 if (attr)
16625 {
16626 SYMBOL_LINE (sym) = DW_UNSND (attr);
16627 }
16628
16629 attr = dwarf2_attr (die,
16630 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16631 cu);
16632 if (attr)
16633 {
16634 int file_index = DW_UNSND (attr);
16635
16636 if (cu->line_header == NULL
16637 || file_index > cu->line_header->num_file_names)
16638 complaint (&symfile_complaints,
16639 _("file index out of range"));
16640 else if (file_index > 0)
16641 {
16642 struct file_entry *fe;
16643
16644 fe = &cu->line_header->file_names[file_index - 1];
16645 SYMBOL_SYMTAB (sym) = fe->symtab;
16646 }
16647 }
16648
16649 switch (die->tag)
16650 {
16651 case DW_TAG_label:
16652 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16653 if (attr)
16654 {
16655 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16656 }
16657 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16658 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16659 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16660 add_symbol_to_list (sym, cu->list_in_scope);
16661 break;
16662 case DW_TAG_subprogram:
16663 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16664 finish_block. */
16665 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16666 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16667 if ((attr2 && (DW_UNSND (attr2) != 0))
16668 || cu->language == language_ada)
16669 {
16670 /* Subprograms marked external are stored as a global symbol.
16671 Ada subprograms, whether marked external or not, are always
16672 stored as a global symbol, because we want to be able to
16673 access them globally. For instance, we want to be able
16674 to break on a nested subprogram without having to
16675 specify the context. */
16676 list_to_add = &global_symbols;
16677 }
16678 else
16679 {
16680 list_to_add = cu->list_in_scope;
16681 }
16682 break;
16683 case DW_TAG_inlined_subroutine:
16684 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16685 finish_block. */
16686 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16687 SYMBOL_INLINED (sym) = 1;
16688 list_to_add = cu->list_in_scope;
16689 break;
16690 case DW_TAG_template_value_param:
16691 suppress_add = 1;
16692 /* Fall through. */
16693 case DW_TAG_constant:
16694 case DW_TAG_variable:
16695 case DW_TAG_member:
16696 /* Compilation with minimal debug info may result in
16697 variables with missing type entries. Change the
16698 misleading `void' type to something sensible. */
16699 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16700 SYMBOL_TYPE (sym)
16701 = objfile_type (objfile)->nodebug_data_symbol;
16702
16703 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16704 /* In the case of DW_TAG_member, we should only be called for
16705 static const members. */
16706 if (die->tag == DW_TAG_member)
16707 {
16708 /* dwarf2_add_field uses die_is_declaration,
16709 so we do the same. */
16710 gdb_assert (die_is_declaration (die, cu));
16711 gdb_assert (attr);
16712 }
16713 if (attr)
16714 {
16715 dwarf2_const_value (attr, sym, cu);
16716 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16717 if (!suppress_add)
16718 {
16719 if (attr2 && (DW_UNSND (attr2) != 0))
16720 list_to_add = &global_symbols;
16721 else
16722 list_to_add = cu->list_in_scope;
16723 }
16724 break;
16725 }
16726 attr = dwarf2_attr (die, DW_AT_location, cu);
16727 if (attr)
16728 {
16729 var_decode_location (attr, sym, cu);
16730 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16731
16732 /* Fortran explicitly imports any global symbols to the local
16733 scope by DW_TAG_common_block. */
16734 if (cu->language == language_fortran && die->parent
16735 && die->parent->tag == DW_TAG_common_block)
16736 attr2 = NULL;
16737
16738 if (SYMBOL_CLASS (sym) == LOC_STATIC
16739 && SYMBOL_VALUE_ADDRESS (sym) == 0
16740 && !dwarf2_per_objfile->has_section_at_zero)
16741 {
16742 /* When a static variable is eliminated by the linker,
16743 the corresponding debug information is not stripped
16744 out, but the variable address is set to null;
16745 do not add such variables into symbol table. */
16746 }
16747 else if (attr2 && (DW_UNSND (attr2) != 0))
16748 {
16749 /* Workaround gfortran PR debug/40040 - it uses
16750 DW_AT_location for variables in -fPIC libraries which may
16751 get overriden by other libraries/executable and get
16752 a different address. Resolve it by the minimal symbol
16753 which may come from inferior's executable using copy
16754 relocation. Make this workaround only for gfortran as for
16755 other compilers GDB cannot guess the minimal symbol
16756 Fortran mangling kind. */
16757 if (cu->language == language_fortran && die->parent
16758 && die->parent->tag == DW_TAG_module
16759 && cu->producer
16760 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16761 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16762
16763 /* A variable with DW_AT_external is never static,
16764 but it may be block-scoped. */
16765 list_to_add = (cu->list_in_scope == &file_symbols
16766 ? &global_symbols : cu->list_in_scope);
16767 }
16768 else
16769 list_to_add = cu->list_in_scope;
16770 }
16771 else
16772 {
16773 /* We do not know the address of this symbol.
16774 If it is an external symbol and we have type information
16775 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16776 The address of the variable will then be determined from
16777 the minimal symbol table whenever the variable is
16778 referenced. */
16779 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16780
16781 /* Fortran explicitly imports any global symbols to the local
16782 scope by DW_TAG_common_block. */
16783 if (cu->language == language_fortran && die->parent
16784 && die->parent->tag == DW_TAG_common_block)
16785 {
16786 /* SYMBOL_CLASS doesn't matter here because
16787 read_common_block is going to reset it. */
16788 if (!suppress_add)
16789 list_to_add = cu->list_in_scope;
16790 }
16791 else if (attr2 && (DW_UNSND (attr2) != 0)
16792 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16793 {
16794 /* A variable with DW_AT_external is never static, but it
16795 may be block-scoped. */
16796 list_to_add = (cu->list_in_scope == &file_symbols
16797 ? &global_symbols : cu->list_in_scope);
16798
16799 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16800 }
16801 else if (!die_is_declaration (die, cu))
16802 {
16803 /* Use the default LOC_OPTIMIZED_OUT class. */
16804 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16805 if (!suppress_add)
16806 list_to_add = cu->list_in_scope;
16807 }
16808 }
16809 break;
16810 case DW_TAG_formal_parameter:
16811 /* If we are inside a function, mark this as an argument. If
16812 not, we might be looking at an argument to an inlined function
16813 when we do not have enough information to show inlined frames;
16814 pretend it's a local variable in that case so that the user can
16815 still see it. */
16816 if (context_stack_depth > 0
16817 && context_stack[context_stack_depth - 1].name != NULL)
16818 SYMBOL_IS_ARGUMENT (sym) = 1;
16819 attr = dwarf2_attr (die, DW_AT_location, cu);
16820 if (attr)
16821 {
16822 var_decode_location (attr, sym, cu);
16823 }
16824 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16825 if (attr)
16826 {
16827 dwarf2_const_value (attr, sym, cu);
16828 }
16829
16830 list_to_add = cu->list_in_scope;
16831 break;
16832 case DW_TAG_unspecified_parameters:
16833 /* From varargs functions; gdb doesn't seem to have any
16834 interest in this information, so just ignore it for now.
16835 (FIXME?) */
16836 break;
16837 case DW_TAG_template_type_param:
16838 suppress_add = 1;
16839 /* Fall through. */
16840 case DW_TAG_class_type:
16841 case DW_TAG_interface_type:
16842 case DW_TAG_structure_type:
16843 case DW_TAG_union_type:
16844 case DW_TAG_set_type:
16845 case DW_TAG_enumeration_type:
16846 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16847 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16848
16849 {
16850 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16851 really ever be static objects: otherwise, if you try
16852 to, say, break of a class's method and you're in a file
16853 which doesn't mention that class, it won't work unless
16854 the check for all static symbols in lookup_symbol_aux
16855 saves you. See the OtherFileClass tests in
16856 gdb.c++/namespace.exp. */
16857
16858 if (!suppress_add)
16859 {
16860 list_to_add = (cu->list_in_scope == &file_symbols
16861 && (cu->language == language_cplus
16862 || cu->language == language_java)
16863 ? &global_symbols : cu->list_in_scope);
16864
16865 /* The semantics of C++ state that "struct foo {
16866 ... }" also defines a typedef for "foo". A Java
16867 class declaration also defines a typedef for the
16868 class. */
16869 if (cu->language == language_cplus
16870 || cu->language == language_java
16871 || cu->language == language_ada)
16872 {
16873 /* The symbol's name is already allocated along
16874 with this objfile, so we don't need to
16875 duplicate it for the type. */
16876 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16877 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16878 }
16879 }
16880 }
16881 break;
16882 case DW_TAG_typedef:
16883 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16884 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16885 list_to_add = cu->list_in_scope;
16886 break;
16887 case DW_TAG_base_type:
16888 case DW_TAG_subrange_type:
16889 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16890 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16891 list_to_add = cu->list_in_scope;
16892 break;
16893 case DW_TAG_enumerator:
16894 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16895 if (attr)
16896 {
16897 dwarf2_const_value (attr, sym, cu);
16898 }
16899 {
16900 /* NOTE: carlton/2003-11-10: See comment above in the
16901 DW_TAG_class_type, etc. block. */
16902
16903 list_to_add = (cu->list_in_scope == &file_symbols
16904 && (cu->language == language_cplus
16905 || cu->language == language_java)
16906 ? &global_symbols : cu->list_in_scope);
16907 }
16908 break;
16909 case DW_TAG_namespace:
16910 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16911 list_to_add = &global_symbols;
16912 break;
16913 case DW_TAG_common_block:
16914 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16915 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16916 add_symbol_to_list (sym, cu->list_in_scope);
16917 break;
16918 default:
16919 /* Not a tag we recognize. Hopefully we aren't processing
16920 trash data, but since we must specifically ignore things
16921 we don't recognize, there is nothing else we should do at
16922 this point. */
16923 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16924 dwarf_tag_name (die->tag));
16925 break;
16926 }
16927
16928 if (suppress_add)
16929 {
16930 sym->hash_next = objfile->template_symbols;
16931 objfile->template_symbols = sym;
16932 list_to_add = NULL;
16933 }
16934
16935 if (list_to_add != NULL)
16936 add_symbol_to_list (sym, list_to_add);
16937
16938 /* For the benefit of old versions of GCC, check for anonymous
16939 namespaces based on the demangled name. */
16940 if (!cu->processing_has_namespace_info
16941 && cu->language == language_cplus)
16942 cp_scan_for_anonymous_namespaces (sym, objfile);
16943 }
16944 return (sym);
16945 }
16946
16947 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16948
16949 static struct symbol *
16950 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16951 {
16952 return new_symbol_full (die, type, cu, NULL);
16953 }
16954
16955 /* Given an attr with a DW_FORM_dataN value in host byte order,
16956 zero-extend it as appropriate for the symbol's type. The DWARF
16957 standard (v4) is not entirely clear about the meaning of using
16958 DW_FORM_dataN for a constant with a signed type, where the type is
16959 wider than the data. The conclusion of a discussion on the DWARF
16960 list was that this is unspecified. We choose to always zero-extend
16961 because that is the interpretation long in use by GCC. */
16962
16963 static gdb_byte *
16964 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
16965 struct dwarf2_cu *cu, LONGEST *value, int bits)
16966 {
16967 struct objfile *objfile = cu->objfile;
16968 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16969 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16970 LONGEST l = DW_UNSND (attr);
16971
16972 if (bits < sizeof (*value) * 8)
16973 {
16974 l &= ((LONGEST) 1 << bits) - 1;
16975 *value = l;
16976 }
16977 else if (bits == sizeof (*value) * 8)
16978 *value = l;
16979 else
16980 {
16981 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16982 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16983 return bytes;
16984 }
16985
16986 return NULL;
16987 }
16988
16989 /* Read a constant value from an attribute. Either set *VALUE, or if
16990 the value does not fit in *VALUE, set *BYTES - either already
16991 allocated on the objfile obstack, or newly allocated on OBSTACK,
16992 or, set *BATON, if we translated the constant to a location
16993 expression. */
16994
16995 static void
16996 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
16997 const char *name, struct obstack *obstack,
16998 struct dwarf2_cu *cu,
16999 LONGEST *value, const gdb_byte **bytes,
17000 struct dwarf2_locexpr_baton **baton)
17001 {
17002 struct objfile *objfile = cu->objfile;
17003 struct comp_unit_head *cu_header = &cu->header;
17004 struct dwarf_block *blk;
17005 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17006 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17007
17008 *value = 0;
17009 *bytes = NULL;
17010 *baton = NULL;
17011
17012 switch (attr->form)
17013 {
17014 case DW_FORM_addr:
17015 case DW_FORM_GNU_addr_index:
17016 {
17017 gdb_byte *data;
17018
17019 if (TYPE_LENGTH (type) != cu_header->addr_size)
17020 dwarf2_const_value_length_mismatch_complaint (name,
17021 cu_header->addr_size,
17022 TYPE_LENGTH (type));
17023 /* Symbols of this form are reasonably rare, so we just
17024 piggyback on the existing location code rather than writing
17025 a new implementation of symbol_computed_ops. */
17026 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17027 (*baton)->per_cu = cu->per_cu;
17028 gdb_assert ((*baton)->per_cu);
17029
17030 (*baton)->size = 2 + cu_header->addr_size;
17031 data = obstack_alloc (obstack, (*baton)->size);
17032 (*baton)->data = data;
17033
17034 data[0] = DW_OP_addr;
17035 store_unsigned_integer (&data[1], cu_header->addr_size,
17036 byte_order, DW_ADDR (attr));
17037 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17038 }
17039 break;
17040 case DW_FORM_string:
17041 case DW_FORM_strp:
17042 case DW_FORM_GNU_str_index:
17043 case DW_FORM_GNU_strp_alt:
17044 /* DW_STRING is already allocated on the objfile obstack, point
17045 directly to it. */
17046 *bytes = (const gdb_byte *) DW_STRING (attr);
17047 break;
17048 case DW_FORM_block1:
17049 case DW_FORM_block2:
17050 case DW_FORM_block4:
17051 case DW_FORM_block:
17052 case DW_FORM_exprloc:
17053 blk = DW_BLOCK (attr);
17054 if (TYPE_LENGTH (type) != blk->size)
17055 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17056 TYPE_LENGTH (type));
17057 *bytes = blk->data;
17058 break;
17059
17060 /* The DW_AT_const_value attributes are supposed to carry the
17061 symbol's value "represented as it would be on the target
17062 architecture." By the time we get here, it's already been
17063 converted to host endianness, so we just need to sign- or
17064 zero-extend it as appropriate. */
17065 case DW_FORM_data1:
17066 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17067 break;
17068 case DW_FORM_data2:
17069 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17070 break;
17071 case DW_FORM_data4:
17072 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17073 break;
17074 case DW_FORM_data8:
17075 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17076 break;
17077
17078 case DW_FORM_sdata:
17079 *value = DW_SND (attr);
17080 break;
17081
17082 case DW_FORM_udata:
17083 *value = DW_UNSND (attr);
17084 break;
17085
17086 default:
17087 complaint (&symfile_complaints,
17088 _("unsupported const value attribute form: '%s'"),
17089 dwarf_form_name (attr->form));
17090 *value = 0;
17091 break;
17092 }
17093 }
17094
17095
17096 /* Copy constant value from an attribute to a symbol. */
17097
17098 static void
17099 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17100 struct dwarf2_cu *cu)
17101 {
17102 struct objfile *objfile = cu->objfile;
17103 struct comp_unit_head *cu_header = &cu->header;
17104 LONGEST value;
17105 const gdb_byte *bytes;
17106 struct dwarf2_locexpr_baton *baton;
17107
17108 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17109 SYMBOL_PRINT_NAME (sym),
17110 &objfile->objfile_obstack, cu,
17111 &value, &bytes, &baton);
17112
17113 if (baton != NULL)
17114 {
17115 SYMBOL_LOCATION_BATON (sym) = baton;
17116 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17117 }
17118 else if (bytes != NULL)
17119 {
17120 SYMBOL_VALUE_BYTES (sym) = bytes;
17121 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17122 }
17123 else
17124 {
17125 SYMBOL_VALUE (sym) = value;
17126 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17127 }
17128 }
17129
17130 /* Return the type of the die in question using its DW_AT_type attribute. */
17131
17132 static struct type *
17133 die_type (struct die_info *die, struct dwarf2_cu *cu)
17134 {
17135 struct attribute *type_attr;
17136
17137 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17138 if (!type_attr)
17139 {
17140 /* A missing DW_AT_type represents a void type. */
17141 return objfile_type (cu->objfile)->builtin_void;
17142 }
17143
17144 return lookup_die_type (die, type_attr, cu);
17145 }
17146
17147 /* True iff CU's producer generates GNAT Ada auxiliary information
17148 that allows to find parallel types through that information instead
17149 of having to do expensive parallel lookups by type name. */
17150
17151 static int
17152 need_gnat_info (struct dwarf2_cu *cu)
17153 {
17154 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17155 of GNAT produces this auxiliary information, without any indication
17156 that it is produced. Part of enhancing the FSF version of GNAT
17157 to produce that information will be to put in place an indicator
17158 that we can use in order to determine whether the descriptive type
17159 info is available or not. One suggestion that has been made is
17160 to use a new attribute, attached to the CU die. For now, assume
17161 that the descriptive type info is not available. */
17162 return 0;
17163 }
17164
17165 /* Return the auxiliary type of the die in question using its
17166 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17167 attribute is not present. */
17168
17169 static struct type *
17170 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17171 {
17172 struct attribute *type_attr;
17173
17174 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17175 if (!type_attr)
17176 return NULL;
17177
17178 return lookup_die_type (die, type_attr, cu);
17179 }
17180
17181 /* If DIE has a descriptive_type attribute, then set the TYPE's
17182 descriptive type accordingly. */
17183
17184 static void
17185 set_descriptive_type (struct type *type, struct die_info *die,
17186 struct dwarf2_cu *cu)
17187 {
17188 struct type *descriptive_type = die_descriptive_type (die, cu);
17189
17190 if (descriptive_type)
17191 {
17192 ALLOCATE_GNAT_AUX_TYPE (type);
17193 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17194 }
17195 }
17196
17197 /* Return the containing type of the die in question using its
17198 DW_AT_containing_type attribute. */
17199
17200 static struct type *
17201 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17202 {
17203 struct attribute *type_attr;
17204
17205 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17206 if (!type_attr)
17207 error (_("Dwarf Error: Problem turning containing type into gdb type "
17208 "[in module %s]"), objfile_name (cu->objfile));
17209
17210 return lookup_die_type (die, type_attr, cu);
17211 }
17212
17213 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17214
17215 static struct type *
17216 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17217 {
17218 struct objfile *objfile = dwarf2_per_objfile->objfile;
17219 char *message, *saved;
17220
17221 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17222 objfile_name (objfile),
17223 cu->header.offset.sect_off,
17224 die->offset.sect_off);
17225 saved = obstack_copy0 (&objfile->objfile_obstack,
17226 message, strlen (message));
17227 xfree (message);
17228
17229 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17230 }
17231
17232 /* Look up the type of DIE in CU using its type attribute ATTR.
17233 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17234 DW_AT_containing_type.
17235 If there is no type substitute an error marker. */
17236
17237 static struct type *
17238 lookup_die_type (struct die_info *die, const struct attribute *attr,
17239 struct dwarf2_cu *cu)
17240 {
17241 struct objfile *objfile = cu->objfile;
17242 struct type *this_type;
17243
17244 gdb_assert (attr->name == DW_AT_type
17245 || attr->name == DW_AT_GNAT_descriptive_type
17246 || attr->name == DW_AT_containing_type);
17247
17248 /* First see if we have it cached. */
17249
17250 if (attr->form == DW_FORM_GNU_ref_alt)
17251 {
17252 struct dwarf2_per_cu_data *per_cu;
17253 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17254
17255 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17256 this_type = get_die_type_at_offset (offset, per_cu);
17257 }
17258 else if (attr_form_is_ref (attr))
17259 {
17260 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17261
17262 this_type = get_die_type_at_offset (offset, cu->per_cu);
17263 }
17264 else if (attr->form == DW_FORM_ref_sig8)
17265 {
17266 ULONGEST signature = DW_SIGNATURE (attr);
17267
17268 return get_signatured_type (die, signature, cu);
17269 }
17270 else
17271 {
17272 complaint (&symfile_complaints,
17273 _("Dwarf Error: Bad type attribute %s in DIE"
17274 " at 0x%x [in module %s]"),
17275 dwarf_attr_name (attr->name), die->offset.sect_off,
17276 objfile_name (objfile));
17277 return build_error_marker_type (cu, die);
17278 }
17279
17280 /* If not cached we need to read it in. */
17281
17282 if (this_type == NULL)
17283 {
17284 struct die_info *type_die = NULL;
17285 struct dwarf2_cu *type_cu = cu;
17286
17287 if (attr_form_is_ref (attr))
17288 type_die = follow_die_ref (die, attr, &type_cu);
17289 if (type_die == NULL)
17290 return build_error_marker_type (cu, die);
17291 /* If we find the type now, it's probably because the type came
17292 from an inter-CU reference and the type's CU got expanded before
17293 ours. */
17294 this_type = read_type_die (type_die, type_cu);
17295 }
17296
17297 /* If we still don't have a type use an error marker. */
17298
17299 if (this_type == NULL)
17300 return build_error_marker_type (cu, die);
17301
17302 return this_type;
17303 }
17304
17305 /* Return the type in DIE, CU.
17306 Returns NULL for invalid types.
17307
17308 This first does a lookup in die_type_hash,
17309 and only reads the die in if necessary.
17310
17311 NOTE: This can be called when reading in partial or full symbols. */
17312
17313 static struct type *
17314 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17315 {
17316 struct type *this_type;
17317
17318 this_type = get_die_type (die, cu);
17319 if (this_type)
17320 return this_type;
17321
17322 return read_type_die_1 (die, cu);
17323 }
17324
17325 /* Read the type in DIE, CU.
17326 Returns NULL for invalid types. */
17327
17328 static struct type *
17329 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17330 {
17331 struct type *this_type = NULL;
17332
17333 switch (die->tag)
17334 {
17335 case DW_TAG_class_type:
17336 case DW_TAG_interface_type:
17337 case DW_TAG_structure_type:
17338 case DW_TAG_union_type:
17339 this_type = read_structure_type (die, cu);
17340 break;
17341 case DW_TAG_enumeration_type:
17342 this_type = read_enumeration_type (die, cu);
17343 break;
17344 case DW_TAG_subprogram:
17345 case DW_TAG_subroutine_type:
17346 case DW_TAG_inlined_subroutine:
17347 this_type = read_subroutine_type (die, cu);
17348 break;
17349 case DW_TAG_array_type:
17350 this_type = read_array_type (die, cu);
17351 break;
17352 case DW_TAG_set_type:
17353 this_type = read_set_type (die, cu);
17354 break;
17355 case DW_TAG_pointer_type:
17356 this_type = read_tag_pointer_type (die, cu);
17357 break;
17358 case DW_TAG_ptr_to_member_type:
17359 this_type = read_tag_ptr_to_member_type (die, cu);
17360 break;
17361 case DW_TAG_reference_type:
17362 this_type = read_tag_reference_type (die, cu);
17363 break;
17364 case DW_TAG_const_type:
17365 this_type = read_tag_const_type (die, cu);
17366 break;
17367 case DW_TAG_volatile_type:
17368 this_type = read_tag_volatile_type (die, cu);
17369 break;
17370 case DW_TAG_restrict_type:
17371 this_type = read_tag_restrict_type (die, cu);
17372 break;
17373 case DW_TAG_string_type:
17374 this_type = read_tag_string_type (die, cu);
17375 break;
17376 case DW_TAG_typedef:
17377 this_type = read_typedef (die, cu);
17378 break;
17379 case DW_TAG_subrange_type:
17380 this_type = read_subrange_type (die, cu);
17381 break;
17382 case DW_TAG_base_type:
17383 this_type = read_base_type (die, cu);
17384 break;
17385 case DW_TAG_unspecified_type:
17386 this_type = read_unspecified_type (die, cu);
17387 break;
17388 case DW_TAG_namespace:
17389 this_type = read_namespace_type (die, cu);
17390 break;
17391 case DW_TAG_module:
17392 this_type = read_module_type (die, cu);
17393 break;
17394 default:
17395 complaint (&symfile_complaints,
17396 _("unexpected tag in read_type_die: '%s'"),
17397 dwarf_tag_name (die->tag));
17398 break;
17399 }
17400
17401 return this_type;
17402 }
17403
17404 /* See if we can figure out if the class lives in a namespace. We do
17405 this by looking for a member function; its demangled name will
17406 contain namespace info, if there is any.
17407 Return the computed name or NULL.
17408 Space for the result is allocated on the objfile's obstack.
17409 This is the full-die version of guess_partial_die_structure_name.
17410 In this case we know DIE has no useful parent. */
17411
17412 static char *
17413 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17414 {
17415 struct die_info *spec_die;
17416 struct dwarf2_cu *spec_cu;
17417 struct die_info *child;
17418
17419 spec_cu = cu;
17420 spec_die = die_specification (die, &spec_cu);
17421 if (spec_die != NULL)
17422 {
17423 die = spec_die;
17424 cu = spec_cu;
17425 }
17426
17427 for (child = die->child;
17428 child != NULL;
17429 child = child->sibling)
17430 {
17431 if (child->tag == DW_TAG_subprogram)
17432 {
17433 struct attribute *attr;
17434
17435 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17436 if (attr == NULL)
17437 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17438 if (attr != NULL)
17439 {
17440 char *actual_name
17441 = language_class_name_from_physname (cu->language_defn,
17442 DW_STRING (attr));
17443 char *name = NULL;
17444
17445 if (actual_name != NULL)
17446 {
17447 const char *die_name = dwarf2_name (die, cu);
17448
17449 if (die_name != NULL
17450 && strcmp (die_name, actual_name) != 0)
17451 {
17452 /* Strip off the class name from the full name.
17453 We want the prefix. */
17454 int die_name_len = strlen (die_name);
17455 int actual_name_len = strlen (actual_name);
17456
17457 /* Test for '::' as a sanity check. */
17458 if (actual_name_len > die_name_len + 2
17459 && actual_name[actual_name_len
17460 - die_name_len - 1] == ':')
17461 name =
17462 obstack_copy0 (&cu->objfile->objfile_obstack,
17463 actual_name,
17464 actual_name_len - die_name_len - 2);
17465 }
17466 }
17467 xfree (actual_name);
17468 return name;
17469 }
17470 }
17471 }
17472
17473 return NULL;
17474 }
17475
17476 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17477 prefix part in such case. See
17478 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17479
17480 static char *
17481 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17482 {
17483 struct attribute *attr;
17484 char *base;
17485
17486 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17487 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17488 return NULL;
17489
17490 attr = dwarf2_attr (die, DW_AT_name, cu);
17491 if (attr != NULL && DW_STRING (attr) != NULL)
17492 return NULL;
17493
17494 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17495 if (attr == NULL)
17496 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17497 if (attr == NULL || DW_STRING (attr) == NULL)
17498 return NULL;
17499
17500 /* dwarf2_name had to be already called. */
17501 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17502
17503 /* Strip the base name, keep any leading namespaces/classes. */
17504 base = strrchr (DW_STRING (attr), ':');
17505 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17506 return "";
17507
17508 return obstack_copy0 (&cu->objfile->objfile_obstack,
17509 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17510 }
17511
17512 /* Return the name of the namespace/class that DIE is defined within,
17513 or "" if we can't tell. The caller should not xfree the result.
17514
17515 For example, if we're within the method foo() in the following
17516 code:
17517
17518 namespace N {
17519 class C {
17520 void foo () {
17521 }
17522 };
17523 }
17524
17525 then determine_prefix on foo's die will return "N::C". */
17526
17527 static const char *
17528 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17529 {
17530 struct die_info *parent, *spec_die;
17531 struct dwarf2_cu *spec_cu;
17532 struct type *parent_type;
17533 char *retval;
17534
17535 if (cu->language != language_cplus && cu->language != language_java
17536 && cu->language != language_fortran)
17537 return "";
17538
17539 retval = anonymous_struct_prefix (die, cu);
17540 if (retval)
17541 return retval;
17542
17543 /* We have to be careful in the presence of DW_AT_specification.
17544 For example, with GCC 3.4, given the code
17545
17546 namespace N {
17547 void foo() {
17548 // Definition of N::foo.
17549 }
17550 }
17551
17552 then we'll have a tree of DIEs like this:
17553
17554 1: DW_TAG_compile_unit
17555 2: DW_TAG_namespace // N
17556 3: DW_TAG_subprogram // declaration of N::foo
17557 4: DW_TAG_subprogram // definition of N::foo
17558 DW_AT_specification // refers to die #3
17559
17560 Thus, when processing die #4, we have to pretend that we're in
17561 the context of its DW_AT_specification, namely the contex of die
17562 #3. */
17563 spec_cu = cu;
17564 spec_die = die_specification (die, &spec_cu);
17565 if (spec_die == NULL)
17566 parent = die->parent;
17567 else
17568 {
17569 parent = spec_die->parent;
17570 cu = spec_cu;
17571 }
17572
17573 if (parent == NULL)
17574 return "";
17575 else if (parent->building_fullname)
17576 {
17577 const char *name;
17578 const char *parent_name;
17579
17580 /* It has been seen on RealView 2.2 built binaries,
17581 DW_TAG_template_type_param types actually _defined_ as
17582 children of the parent class:
17583
17584 enum E {};
17585 template class <class Enum> Class{};
17586 Class<enum E> class_e;
17587
17588 1: DW_TAG_class_type (Class)
17589 2: DW_TAG_enumeration_type (E)
17590 3: DW_TAG_enumerator (enum1:0)
17591 3: DW_TAG_enumerator (enum2:1)
17592 ...
17593 2: DW_TAG_template_type_param
17594 DW_AT_type DW_FORM_ref_udata (E)
17595
17596 Besides being broken debug info, it can put GDB into an
17597 infinite loop. Consider:
17598
17599 When we're building the full name for Class<E>, we'll start
17600 at Class, and go look over its template type parameters,
17601 finding E. We'll then try to build the full name of E, and
17602 reach here. We're now trying to build the full name of E,
17603 and look over the parent DIE for containing scope. In the
17604 broken case, if we followed the parent DIE of E, we'd again
17605 find Class, and once again go look at its template type
17606 arguments, etc., etc. Simply don't consider such parent die
17607 as source-level parent of this die (it can't be, the language
17608 doesn't allow it), and break the loop here. */
17609 name = dwarf2_name (die, cu);
17610 parent_name = dwarf2_name (parent, cu);
17611 complaint (&symfile_complaints,
17612 _("template param type '%s' defined within parent '%s'"),
17613 name ? name : "<unknown>",
17614 parent_name ? parent_name : "<unknown>");
17615 return "";
17616 }
17617 else
17618 switch (parent->tag)
17619 {
17620 case DW_TAG_namespace:
17621 parent_type = read_type_die (parent, cu);
17622 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17623 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17624 Work around this problem here. */
17625 if (cu->language == language_cplus
17626 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17627 return "";
17628 /* We give a name to even anonymous namespaces. */
17629 return TYPE_TAG_NAME (parent_type);
17630 case DW_TAG_class_type:
17631 case DW_TAG_interface_type:
17632 case DW_TAG_structure_type:
17633 case DW_TAG_union_type:
17634 case DW_TAG_module:
17635 parent_type = read_type_die (parent, cu);
17636 if (TYPE_TAG_NAME (parent_type) != NULL)
17637 return TYPE_TAG_NAME (parent_type);
17638 else
17639 /* An anonymous structure is only allowed non-static data
17640 members; no typedefs, no member functions, et cetera.
17641 So it does not need a prefix. */
17642 return "";
17643 case DW_TAG_compile_unit:
17644 case DW_TAG_partial_unit:
17645 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17646 if (cu->language == language_cplus
17647 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17648 && die->child != NULL
17649 && (die->tag == DW_TAG_class_type
17650 || die->tag == DW_TAG_structure_type
17651 || die->tag == DW_TAG_union_type))
17652 {
17653 char *name = guess_full_die_structure_name (die, cu);
17654 if (name != NULL)
17655 return name;
17656 }
17657 return "";
17658 default:
17659 return determine_prefix (parent, cu);
17660 }
17661 }
17662
17663 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17664 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17665 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17666 an obconcat, otherwise allocate storage for the result. The CU argument is
17667 used to determine the language and hence, the appropriate separator. */
17668
17669 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17670
17671 static char *
17672 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17673 int physname, struct dwarf2_cu *cu)
17674 {
17675 const char *lead = "";
17676 const char *sep;
17677
17678 if (suffix == NULL || suffix[0] == '\0'
17679 || prefix == NULL || prefix[0] == '\0')
17680 sep = "";
17681 else if (cu->language == language_java)
17682 sep = ".";
17683 else if (cu->language == language_fortran && physname)
17684 {
17685 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17686 DW_AT_MIPS_linkage_name is preferred and used instead. */
17687
17688 lead = "__";
17689 sep = "_MOD_";
17690 }
17691 else
17692 sep = "::";
17693
17694 if (prefix == NULL)
17695 prefix = "";
17696 if (suffix == NULL)
17697 suffix = "";
17698
17699 if (obs == NULL)
17700 {
17701 char *retval
17702 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17703
17704 strcpy (retval, lead);
17705 strcat (retval, prefix);
17706 strcat (retval, sep);
17707 strcat (retval, suffix);
17708 return retval;
17709 }
17710 else
17711 {
17712 /* We have an obstack. */
17713 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17714 }
17715 }
17716
17717 /* Return sibling of die, NULL if no sibling. */
17718
17719 static struct die_info *
17720 sibling_die (struct die_info *die)
17721 {
17722 return die->sibling;
17723 }
17724
17725 /* Get name of a die, return NULL if not found. */
17726
17727 static const char *
17728 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17729 struct obstack *obstack)
17730 {
17731 if (name && cu->language == language_cplus)
17732 {
17733 char *canon_name = cp_canonicalize_string (name);
17734
17735 if (canon_name != NULL)
17736 {
17737 if (strcmp (canon_name, name) != 0)
17738 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17739 xfree (canon_name);
17740 }
17741 }
17742
17743 return name;
17744 }
17745
17746 /* Get name of a die, return NULL if not found. */
17747
17748 static const char *
17749 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17750 {
17751 struct attribute *attr;
17752
17753 attr = dwarf2_attr (die, DW_AT_name, cu);
17754 if ((!attr || !DW_STRING (attr))
17755 && die->tag != DW_TAG_class_type
17756 && die->tag != DW_TAG_interface_type
17757 && die->tag != DW_TAG_structure_type
17758 && die->tag != DW_TAG_union_type)
17759 return NULL;
17760
17761 switch (die->tag)
17762 {
17763 case DW_TAG_compile_unit:
17764 case DW_TAG_partial_unit:
17765 /* Compilation units have a DW_AT_name that is a filename, not
17766 a source language identifier. */
17767 case DW_TAG_enumeration_type:
17768 case DW_TAG_enumerator:
17769 /* These tags always have simple identifiers already; no need
17770 to canonicalize them. */
17771 return DW_STRING (attr);
17772
17773 case DW_TAG_subprogram:
17774 /* Java constructors will all be named "<init>", so return
17775 the class name when we see this special case. */
17776 if (cu->language == language_java
17777 && DW_STRING (attr) != NULL
17778 && strcmp (DW_STRING (attr), "<init>") == 0)
17779 {
17780 struct dwarf2_cu *spec_cu = cu;
17781 struct die_info *spec_die;
17782
17783 /* GCJ will output '<init>' for Java constructor names.
17784 For this special case, return the name of the parent class. */
17785
17786 /* GCJ may output suprogram DIEs with AT_specification set.
17787 If so, use the name of the specified DIE. */
17788 spec_die = die_specification (die, &spec_cu);
17789 if (spec_die != NULL)
17790 return dwarf2_name (spec_die, spec_cu);
17791
17792 do
17793 {
17794 die = die->parent;
17795 if (die->tag == DW_TAG_class_type)
17796 return dwarf2_name (die, cu);
17797 }
17798 while (die->tag != DW_TAG_compile_unit
17799 && die->tag != DW_TAG_partial_unit);
17800 }
17801 break;
17802
17803 case DW_TAG_class_type:
17804 case DW_TAG_interface_type:
17805 case DW_TAG_structure_type:
17806 case DW_TAG_union_type:
17807 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17808 structures or unions. These were of the form "._%d" in GCC 4.1,
17809 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17810 and GCC 4.4. We work around this problem by ignoring these. */
17811 if (attr && DW_STRING (attr)
17812 && (strncmp (DW_STRING (attr), "._", 2) == 0
17813 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17814 return NULL;
17815
17816 /* GCC might emit a nameless typedef that has a linkage name. See
17817 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17818 if (!attr || DW_STRING (attr) == NULL)
17819 {
17820 char *demangled = NULL;
17821
17822 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17823 if (attr == NULL)
17824 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17825
17826 if (attr == NULL || DW_STRING (attr) == NULL)
17827 return NULL;
17828
17829 /* Avoid demangling DW_STRING (attr) the second time on a second
17830 call for the same DIE. */
17831 if (!DW_STRING_IS_CANONICAL (attr))
17832 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17833
17834 if (demangled)
17835 {
17836 char *base;
17837
17838 /* FIXME: we already did this for the partial symbol... */
17839 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17840 demangled, strlen (demangled));
17841 DW_STRING_IS_CANONICAL (attr) = 1;
17842 xfree (demangled);
17843
17844 /* Strip any leading namespaces/classes, keep only the base name.
17845 DW_AT_name for named DIEs does not contain the prefixes. */
17846 base = strrchr (DW_STRING (attr), ':');
17847 if (base && base > DW_STRING (attr) && base[-1] == ':')
17848 return &base[1];
17849 else
17850 return DW_STRING (attr);
17851 }
17852 }
17853 break;
17854
17855 default:
17856 break;
17857 }
17858
17859 if (!DW_STRING_IS_CANONICAL (attr))
17860 {
17861 DW_STRING (attr)
17862 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17863 &cu->objfile->objfile_obstack);
17864 DW_STRING_IS_CANONICAL (attr) = 1;
17865 }
17866 return DW_STRING (attr);
17867 }
17868
17869 /* Return the die that this die in an extension of, or NULL if there
17870 is none. *EXT_CU is the CU containing DIE on input, and the CU
17871 containing the return value on output. */
17872
17873 static struct die_info *
17874 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17875 {
17876 struct attribute *attr;
17877
17878 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17879 if (attr == NULL)
17880 return NULL;
17881
17882 return follow_die_ref (die, attr, ext_cu);
17883 }
17884
17885 /* Convert a DIE tag into its string name. */
17886
17887 static const char *
17888 dwarf_tag_name (unsigned tag)
17889 {
17890 const char *name = get_DW_TAG_name (tag);
17891
17892 if (name == NULL)
17893 return "DW_TAG_<unknown>";
17894
17895 return name;
17896 }
17897
17898 /* Convert a DWARF attribute code into its string name. */
17899
17900 static const char *
17901 dwarf_attr_name (unsigned attr)
17902 {
17903 const char *name;
17904
17905 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17906 if (attr == DW_AT_MIPS_fde)
17907 return "DW_AT_MIPS_fde";
17908 #else
17909 if (attr == DW_AT_HP_block_index)
17910 return "DW_AT_HP_block_index";
17911 #endif
17912
17913 name = get_DW_AT_name (attr);
17914
17915 if (name == NULL)
17916 return "DW_AT_<unknown>";
17917
17918 return name;
17919 }
17920
17921 /* Convert a DWARF value form code into its string name. */
17922
17923 static const char *
17924 dwarf_form_name (unsigned form)
17925 {
17926 const char *name = get_DW_FORM_name (form);
17927
17928 if (name == NULL)
17929 return "DW_FORM_<unknown>";
17930
17931 return name;
17932 }
17933
17934 static char *
17935 dwarf_bool_name (unsigned mybool)
17936 {
17937 if (mybool)
17938 return "TRUE";
17939 else
17940 return "FALSE";
17941 }
17942
17943 /* Convert a DWARF type code into its string name. */
17944
17945 static const char *
17946 dwarf_type_encoding_name (unsigned enc)
17947 {
17948 const char *name = get_DW_ATE_name (enc);
17949
17950 if (name == NULL)
17951 return "DW_ATE_<unknown>";
17952
17953 return name;
17954 }
17955
17956 static void
17957 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17958 {
17959 unsigned int i;
17960
17961 print_spaces (indent, f);
17962 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17963 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17964
17965 if (die->parent != NULL)
17966 {
17967 print_spaces (indent, f);
17968 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17969 die->parent->offset.sect_off);
17970 }
17971
17972 print_spaces (indent, f);
17973 fprintf_unfiltered (f, " has children: %s\n",
17974 dwarf_bool_name (die->child != NULL));
17975
17976 print_spaces (indent, f);
17977 fprintf_unfiltered (f, " attributes:\n");
17978
17979 for (i = 0; i < die->num_attrs; ++i)
17980 {
17981 print_spaces (indent, f);
17982 fprintf_unfiltered (f, " %s (%s) ",
17983 dwarf_attr_name (die->attrs[i].name),
17984 dwarf_form_name (die->attrs[i].form));
17985
17986 switch (die->attrs[i].form)
17987 {
17988 case DW_FORM_addr:
17989 case DW_FORM_GNU_addr_index:
17990 fprintf_unfiltered (f, "address: ");
17991 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17992 break;
17993 case DW_FORM_block2:
17994 case DW_FORM_block4:
17995 case DW_FORM_block:
17996 case DW_FORM_block1:
17997 fprintf_unfiltered (f, "block: size %s",
17998 pulongest (DW_BLOCK (&die->attrs[i])->size));
17999 break;
18000 case DW_FORM_exprloc:
18001 fprintf_unfiltered (f, "expression: size %s",
18002 pulongest (DW_BLOCK (&die->attrs[i])->size));
18003 break;
18004 case DW_FORM_ref_addr:
18005 fprintf_unfiltered (f, "ref address: ");
18006 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18007 break;
18008 case DW_FORM_GNU_ref_alt:
18009 fprintf_unfiltered (f, "alt ref address: ");
18010 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18011 break;
18012 case DW_FORM_ref1:
18013 case DW_FORM_ref2:
18014 case DW_FORM_ref4:
18015 case DW_FORM_ref8:
18016 case DW_FORM_ref_udata:
18017 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18018 (long) (DW_UNSND (&die->attrs[i])));
18019 break;
18020 case DW_FORM_data1:
18021 case DW_FORM_data2:
18022 case DW_FORM_data4:
18023 case DW_FORM_data8:
18024 case DW_FORM_udata:
18025 case DW_FORM_sdata:
18026 fprintf_unfiltered (f, "constant: %s",
18027 pulongest (DW_UNSND (&die->attrs[i])));
18028 break;
18029 case DW_FORM_sec_offset:
18030 fprintf_unfiltered (f, "section offset: %s",
18031 pulongest (DW_UNSND (&die->attrs[i])));
18032 break;
18033 case DW_FORM_ref_sig8:
18034 fprintf_unfiltered (f, "signature: %s",
18035 hex_string (DW_SIGNATURE (&die->attrs[i])));
18036 break;
18037 case DW_FORM_string:
18038 case DW_FORM_strp:
18039 case DW_FORM_GNU_str_index:
18040 case DW_FORM_GNU_strp_alt:
18041 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18042 DW_STRING (&die->attrs[i])
18043 ? DW_STRING (&die->attrs[i]) : "",
18044 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18045 break;
18046 case DW_FORM_flag:
18047 if (DW_UNSND (&die->attrs[i]))
18048 fprintf_unfiltered (f, "flag: TRUE");
18049 else
18050 fprintf_unfiltered (f, "flag: FALSE");
18051 break;
18052 case DW_FORM_flag_present:
18053 fprintf_unfiltered (f, "flag: TRUE");
18054 break;
18055 case DW_FORM_indirect:
18056 /* The reader will have reduced the indirect form to
18057 the "base form" so this form should not occur. */
18058 fprintf_unfiltered (f,
18059 "unexpected attribute form: DW_FORM_indirect");
18060 break;
18061 default:
18062 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18063 die->attrs[i].form);
18064 break;
18065 }
18066 fprintf_unfiltered (f, "\n");
18067 }
18068 }
18069
18070 static void
18071 dump_die_for_error (struct die_info *die)
18072 {
18073 dump_die_shallow (gdb_stderr, 0, die);
18074 }
18075
18076 static void
18077 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18078 {
18079 int indent = level * 4;
18080
18081 gdb_assert (die != NULL);
18082
18083 if (level >= max_level)
18084 return;
18085
18086 dump_die_shallow (f, indent, die);
18087
18088 if (die->child != NULL)
18089 {
18090 print_spaces (indent, f);
18091 fprintf_unfiltered (f, " Children:");
18092 if (level + 1 < max_level)
18093 {
18094 fprintf_unfiltered (f, "\n");
18095 dump_die_1 (f, level + 1, max_level, die->child);
18096 }
18097 else
18098 {
18099 fprintf_unfiltered (f,
18100 " [not printed, max nesting level reached]\n");
18101 }
18102 }
18103
18104 if (die->sibling != NULL && level > 0)
18105 {
18106 dump_die_1 (f, level, max_level, die->sibling);
18107 }
18108 }
18109
18110 /* This is called from the pdie macro in gdbinit.in.
18111 It's not static so gcc will keep a copy callable from gdb. */
18112
18113 void
18114 dump_die (struct die_info *die, int max_level)
18115 {
18116 dump_die_1 (gdb_stdlog, 0, max_level, die);
18117 }
18118
18119 static void
18120 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18121 {
18122 void **slot;
18123
18124 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18125 INSERT);
18126
18127 *slot = die;
18128 }
18129
18130 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18131 required kind. */
18132
18133 static sect_offset
18134 dwarf2_get_ref_die_offset (const struct attribute *attr)
18135 {
18136 sect_offset retval = { DW_UNSND (attr) };
18137
18138 if (attr_form_is_ref (attr))
18139 return retval;
18140
18141 retval.sect_off = 0;
18142 complaint (&symfile_complaints,
18143 _("unsupported die ref attribute form: '%s'"),
18144 dwarf_form_name (attr->form));
18145 return retval;
18146 }
18147
18148 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18149 * the value held by the attribute is not constant. */
18150
18151 static LONGEST
18152 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18153 {
18154 if (attr->form == DW_FORM_sdata)
18155 return DW_SND (attr);
18156 else if (attr->form == DW_FORM_udata
18157 || attr->form == DW_FORM_data1
18158 || attr->form == DW_FORM_data2
18159 || attr->form == DW_FORM_data4
18160 || attr->form == DW_FORM_data8)
18161 return DW_UNSND (attr);
18162 else
18163 {
18164 complaint (&symfile_complaints,
18165 _("Attribute value is not a constant (%s)"),
18166 dwarf_form_name (attr->form));
18167 return default_value;
18168 }
18169 }
18170
18171 /* Follow reference or signature attribute ATTR of SRC_DIE.
18172 On entry *REF_CU is the CU of SRC_DIE.
18173 On exit *REF_CU is the CU of the result. */
18174
18175 static struct die_info *
18176 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18177 struct dwarf2_cu **ref_cu)
18178 {
18179 struct die_info *die;
18180
18181 if (attr_form_is_ref (attr))
18182 die = follow_die_ref (src_die, attr, ref_cu);
18183 else if (attr->form == DW_FORM_ref_sig8)
18184 die = follow_die_sig (src_die, attr, ref_cu);
18185 else
18186 {
18187 dump_die_for_error (src_die);
18188 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18189 objfile_name ((*ref_cu)->objfile));
18190 }
18191
18192 return die;
18193 }
18194
18195 /* Follow reference OFFSET.
18196 On entry *REF_CU is the CU of the source die referencing OFFSET.
18197 On exit *REF_CU is the CU of the result.
18198 Returns NULL if OFFSET is invalid. */
18199
18200 static struct die_info *
18201 follow_die_offset (sect_offset offset, int offset_in_dwz,
18202 struct dwarf2_cu **ref_cu)
18203 {
18204 struct die_info temp_die;
18205 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18206
18207 gdb_assert (cu->per_cu != NULL);
18208
18209 target_cu = cu;
18210
18211 if (cu->per_cu->is_debug_types)
18212 {
18213 /* .debug_types CUs cannot reference anything outside their CU.
18214 If they need to, they have to reference a signatured type via
18215 DW_FORM_ref_sig8. */
18216 if (! offset_in_cu_p (&cu->header, offset))
18217 return NULL;
18218 }
18219 else if (offset_in_dwz != cu->per_cu->is_dwz
18220 || ! offset_in_cu_p (&cu->header, offset))
18221 {
18222 struct dwarf2_per_cu_data *per_cu;
18223
18224 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18225 cu->objfile);
18226
18227 /* If necessary, add it to the queue and load its DIEs. */
18228 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18229 load_full_comp_unit (per_cu, cu->language);
18230
18231 target_cu = per_cu->cu;
18232 }
18233 else if (cu->dies == NULL)
18234 {
18235 /* We're loading full DIEs during partial symbol reading. */
18236 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18237 load_full_comp_unit (cu->per_cu, language_minimal);
18238 }
18239
18240 *ref_cu = target_cu;
18241 temp_die.offset = offset;
18242 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18243 }
18244
18245 /* Follow reference attribute ATTR of SRC_DIE.
18246 On entry *REF_CU is the CU of SRC_DIE.
18247 On exit *REF_CU is the CU of the result. */
18248
18249 static struct die_info *
18250 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18251 struct dwarf2_cu **ref_cu)
18252 {
18253 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18254 struct dwarf2_cu *cu = *ref_cu;
18255 struct die_info *die;
18256
18257 die = follow_die_offset (offset,
18258 (attr->form == DW_FORM_GNU_ref_alt
18259 || cu->per_cu->is_dwz),
18260 ref_cu);
18261 if (!die)
18262 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18263 "at 0x%x [in module %s]"),
18264 offset.sect_off, src_die->offset.sect_off,
18265 objfile_name (cu->objfile));
18266
18267 return die;
18268 }
18269
18270 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18271 Returned value is intended for DW_OP_call*. Returned
18272 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18273
18274 struct dwarf2_locexpr_baton
18275 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18276 struct dwarf2_per_cu_data *per_cu,
18277 CORE_ADDR (*get_frame_pc) (void *baton),
18278 void *baton)
18279 {
18280 struct dwarf2_cu *cu;
18281 struct die_info *die;
18282 struct attribute *attr;
18283 struct dwarf2_locexpr_baton retval;
18284
18285 dw2_setup (per_cu->objfile);
18286
18287 if (per_cu->cu == NULL)
18288 load_cu (per_cu);
18289 cu = per_cu->cu;
18290
18291 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18292 if (!die)
18293 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18294 offset.sect_off, objfile_name (per_cu->objfile));
18295
18296 attr = dwarf2_attr (die, DW_AT_location, cu);
18297 if (!attr)
18298 {
18299 /* DWARF: "If there is no such attribute, then there is no effect.".
18300 DATA is ignored if SIZE is 0. */
18301
18302 retval.data = NULL;
18303 retval.size = 0;
18304 }
18305 else if (attr_form_is_section_offset (attr))
18306 {
18307 struct dwarf2_loclist_baton loclist_baton;
18308 CORE_ADDR pc = (*get_frame_pc) (baton);
18309 size_t size;
18310
18311 fill_in_loclist_baton (cu, &loclist_baton, attr);
18312
18313 retval.data = dwarf2_find_location_expression (&loclist_baton,
18314 &size, pc);
18315 retval.size = size;
18316 }
18317 else
18318 {
18319 if (!attr_form_is_block (attr))
18320 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18321 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18322 offset.sect_off, objfile_name (per_cu->objfile));
18323
18324 retval.data = DW_BLOCK (attr)->data;
18325 retval.size = DW_BLOCK (attr)->size;
18326 }
18327 retval.per_cu = cu->per_cu;
18328
18329 age_cached_comp_units ();
18330
18331 return retval;
18332 }
18333
18334 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18335 offset. */
18336
18337 struct dwarf2_locexpr_baton
18338 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18339 struct dwarf2_per_cu_data *per_cu,
18340 CORE_ADDR (*get_frame_pc) (void *baton),
18341 void *baton)
18342 {
18343 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18344
18345 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18346 }
18347
18348 /* Write a constant of a given type as target-ordered bytes into
18349 OBSTACK. */
18350
18351 static const gdb_byte *
18352 write_constant_as_bytes (struct obstack *obstack,
18353 enum bfd_endian byte_order,
18354 struct type *type,
18355 ULONGEST value,
18356 LONGEST *len)
18357 {
18358 gdb_byte *result;
18359
18360 *len = TYPE_LENGTH (type);
18361 result = obstack_alloc (obstack, *len);
18362 store_unsigned_integer (result, *len, byte_order, value);
18363
18364 return result;
18365 }
18366
18367 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18368 pointer to the constant bytes and set LEN to the length of the
18369 data. If memory is needed, allocate it on OBSTACK. If the DIE
18370 does not have a DW_AT_const_value, return NULL. */
18371
18372 const gdb_byte *
18373 dwarf2_fetch_constant_bytes (sect_offset offset,
18374 struct dwarf2_per_cu_data *per_cu,
18375 struct obstack *obstack,
18376 LONGEST *len)
18377 {
18378 struct dwarf2_cu *cu;
18379 struct die_info *die;
18380 struct attribute *attr;
18381 const gdb_byte *result = NULL;
18382 struct type *type;
18383 LONGEST value;
18384 enum bfd_endian byte_order;
18385
18386 dw2_setup (per_cu->objfile);
18387
18388 if (per_cu->cu == NULL)
18389 load_cu (per_cu);
18390 cu = per_cu->cu;
18391
18392 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18393 if (!die)
18394 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18395 offset.sect_off, objfile_name (per_cu->objfile));
18396
18397
18398 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18399 if (attr == NULL)
18400 return NULL;
18401
18402 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18403 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18404
18405 switch (attr->form)
18406 {
18407 case DW_FORM_addr:
18408 case DW_FORM_GNU_addr_index:
18409 {
18410 gdb_byte *tem;
18411
18412 *len = cu->header.addr_size;
18413 tem = obstack_alloc (obstack, *len);
18414 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18415 result = tem;
18416 }
18417 break;
18418 case DW_FORM_string:
18419 case DW_FORM_strp:
18420 case DW_FORM_GNU_str_index:
18421 case DW_FORM_GNU_strp_alt:
18422 /* DW_STRING is already allocated on the objfile obstack, point
18423 directly to it. */
18424 result = (const gdb_byte *) DW_STRING (attr);
18425 *len = strlen (DW_STRING (attr));
18426 break;
18427 case DW_FORM_block1:
18428 case DW_FORM_block2:
18429 case DW_FORM_block4:
18430 case DW_FORM_block:
18431 case DW_FORM_exprloc:
18432 result = DW_BLOCK (attr)->data;
18433 *len = DW_BLOCK (attr)->size;
18434 break;
18435
18436 /* The DW_AT_const_value attributes are supposed to carry the
18437 symbol's value "represented as it would be on the target
18438 architecture." By the time we get here, it's already been
18439 converted to host endianness, so we just need to sign- or
18440 zero-extend it as appropriate. */
18441 case DW_FORM_data1:
18442 type = die_type (die, cu);
18443 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18444 if (result == NULL)
18445 result = write_constant_as_bytes (obstack, byte_order,
18446 type, value, len);
18447 break;
18448 case DW_FORM_data2:
18449 type = die_type (die, cu);
18450 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18451 if (result == NULL)
18452 result = write_constant_as_bytes (obstack, byte_order,
18453 type, value, len);
18454 break;
18455 case DW_FORM_data4:
18456 type = die_type (die, cu);
18457 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18458 if (result == NULL)
18459 result = write_constant_as_bytes (obstack, byte_order,
18460 type, value, len);
18461 break;
18462 case DW_FORM_data8:
18463 type = die_type (die, cu);
18464 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18465 if (result == NULL)
18466 result = write_constant_as_bytes (obstack, byte_order,
18467 type, value, len);
18468 break;
18469
18470 case DW_FORM_sdata:
18471 type = die_type (die, cu);
18472 result = write_constant_as_bytes (obstack, byte_order,
18473 type, DW_SND (attr), len);
18474 break;
18475
18476 case DW_FORM_udata:
18477 type = die_type (die, cu);
18478 result = write_constant_as_bytes (obstack, byte_order,
18479 type, DW_UNSND (attr), len);
18480 break;
18481
18482 default:
18483 complaint (&symfile_complaints,
18484 _("unsupported const value attribute form: '%s'"),
18485 dwarf_form_name (attr->form));
18486 break;
18487 }
18488
18489 return result;
18490 }
18491
18492 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18493 PER_CU. */
18494
18495 struct type *
18496 dwarf2_get_die_type (cu_offset die_offset,
18497 struct dwarf2_per_cu_data *per_cu)
18498 {
18499 sect_offset die_offset_sect;
18500
18501 dw2_setup (per_cu->objfile);
18502
18503 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18504 return get_die_type_at_offset (die_offset_sect, per_cu);
18505 }
18506
18507 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18508 On entry *REF_CU is the CU of SRC_DIE.
18509 On exit *REF_CU is the CU of the result.
18510 Returns NULL if the referenced DIE isn't found. */
18511
18512 static struct die_info *
18513 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18514 struct dwarf2_cu **ref_cu)
18515 {
18516 struct objfile *objfile = (*ref_cu)->objfile;
18517 struct die_info temp_die;
18518 struct dwarf2_cu *sig_cu;
18519 struct die_info *die;
18520
18521 /* While it might be nice to assert sig_type->type == NULL here,
18522 we can get here for DW_AT_imported_declaration where we need
18523 the DIE not the type. */
18524
18525 /* If necessary, add it to the queue and load its DIEs. */
18526
18527 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18528 read_signatured_type (sig_type);
18529
18530 sig_cu = sig_type->per_cu.cu;
18531 gdb_assert (sig_cu != NULL);
18532 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18533 temp_die.offset = sig_type->type_offset_in_section;
18534 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18535 temp_die.offset.sect_off);
18536 if (die)
18537 {
18538 /* For .gdb_index version 7 keep track of included TUs.
18539 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18540 if (dwarf2_per_objfile->index_table != NULL
18541 && dwarf2_per_objfile->index_table->version <= 7)
18542 {
18543 VEC_safe_push (dwarf2_per_cu_ptr,
18544 (*ref_cu)->per_cu->imported_symtabs,
18545 sig_cu->per_cu);
18546 }
18547
18548 *ref_cu = sig_cu;
18549 return die;
18550 }
18551
18552 return NULL;
18553 }
18554
18555 /* Follow signatured type referenced by ATTR in SRC_DIE.
18556 On entry *REF_CU is the CU of SRC_DIE.
18557 On exit *REF_CU is the CU of the result.
18558 The result is the DIE of the type.
18559 If the referenced type cannot be found an error is thrown. */
18560
18561 static struct die_info *
18562 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
18563 struct dwarf2_cu **ref_cu)
18564 {
18565 ULONGEST signature = DW_SIGNATURE (attr);
18566 struct signatured_type *sig_type;
18567 struct die_info *die;
18568
18569 gdb_assert (attr->form == DW_FORM_ref_sig8);
18570
18571 sig_type = lookup_signatured_type (*ref_cu, signature);
18572 /* sig_type will be NULL if the signatured type is missing from
18573 the debug info. */
18574 if (sig_type == NULL)
18575 {
18576 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18577 " from DIE at 0x%x [in module %s]"),
18578 hex_string (signature), src_die->offset.sect_off,
18579 objfile_name ((*ref_cu)->objfile));
18580 }
18581
18582 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18583 if (die == NULL)
18584 {
18585 dump_die_for_error (src_die);
18586 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18587 " from DIE at 0x%x [in module %s]"),
18588 hex_string (signature), src_die->offset.sect_off,
18589 objfile_name ((*ref_cu)->objfile));
18590 }
18591
18592 return die;
18593 }
18594
18595 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18596 reading in and processing the type unit if necessary. */
18597
18598 static struct type *
18599 get_signatured_type (struct die_info *die, ULONGEST signature,
18600 struct dwarf2_cu *cu)
18601 {
18602 struct signatured_type *sig_type;
18603 struct dwarf2_cu *type_cu;
18604 struct die_info *type_die;
18605 struct type *type;
18606
18607 sig_type = lookup_signatured_type (cu, signature);
18608 /* sig_type will be NULL if the signatured type is missing from
18609 the debug info. */
18610 if (sig_type == NULL)
18611 {
18612 complaint (&symfile_complaints,
18613 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18614 " from DIE at 0x%x [in module %s]"),
18615 hex_string (signature), die->offset.sect_off,
18616 objfile_name (dwarf2_per_objfile->objfile));
18617 return build_error_marker_type (cu, die);
18618 }
18619
18620 /* If we already know the type we're done. */
18621 if (sig_type->type != NULL)
18622 return sig_type->type;
18623
18624 type_cu = cu;
18625 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18626 if (type_die != NULL)
18627 {
18628 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18629 is created. This is important, for example, because for c++ classes
18630 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18631 type = read_type_die (type_die, type_cu);
18632 if (type == NULL)
18633 {
18634 complaint (&symfile_complaints,
18635 _("Dwarf Error: Cannot build signatured type %s"
18636 " referenced from DIE at 0x%x [in module %s]"),
18637 hex_string (signature), die->offset.sect_off,
18638 objfile_name (dwarf2_per_objfile->objfile));
18639 type = build_error_marker_type (cu, die);
18640 }
18641 }
18642 else
18643 {
18644 complaint (&symfile_complaints,
18645 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18646 " from DIE at 0x%x [in module %s]"),
18647 hex_string (signature), die->offset.sect_off,
18648 objfile_name (dwarf2_per_objfile->objfile));
18649 type = build_error_marker_type (cu, die);
18650 }
18651 sig_type->type = type;
18652
18653 return type;
18654 }
18655
18656 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18657 reading in and processing the type unit if necessary. */
18658
18659 static struct type *
18660 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
18661 struct dwarf2_cu *cu) /* ARI: editCase function */
18662 {
18663 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18664 if (attr_form_is_ref (attr))
18665 {
18666 struct dwarf2_cu *type_cu = cu;
18667 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18668
18669 return read_type_die (type_die, type_cu);
18670 }
18671 else if (attr->form == DW_FORM_ref_sig8)
18672 {
18673 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18674 }
18675 else
18676 {
18677 complaint (&symfile_complaints,
18678 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18679 " at 0x%x [in module %s]"),
18680 dwarf_form_name (attr->form), die->offset.sect_off,
18681 objfile_name (dwarf2_per_objfile->objfile));
18682 return build_error_marker_type (cu, die);
18683 }
18684 }
18685
18686 /* Load the DIEs associated with type unit PER_CU into memory. */
18687
18688 static void
18689 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18690 {
18691 struct signatured_type *sig_type;
18692
18693 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18694 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18695
18696 /* We have the per_cu, but we need the signatured_type.
18697 Fortunately this is an easy translation. */
18698 gdb_assert (per_cu->is_debug_types);
18699 sig_type = (struct signatured_type *) per_cu;
18700
18701 gdb_assert (per_cu->cu == NULL);
18702
18703 read_signatured_type (sig_type);
18704
18705 gdb_assert (per_cu->cu != NULL);
18706 }
18707
18708 /* die_reader_func for read_signatured_type.
18709 This is identical to load_full_comp_unit_reader,
18710 but is kept separate for now. */
18711
18712 static void
18713 read_signatured_type_reader (const struct die_reader_specs *reader,
18714 const gdb_byte *info_ptr,
18715 struct die_info *comp_unit_die,
18716 int has_children,
18717 void *data)
18718 {
18719 struct dwarf2_cu *cu = reader->cu;
18720
18721 gdb_assert (cu->die_hash == NULL);
18722 cu->die_hash =
18723 htab_create_alloc_ex (cu->header.length / 12,
18724 die_hash,
18725 die_eq,
18726 NULL,
18727 &cu->comp_unit_obstack,
18728 hashtab_obstack_allocate,
18729 dummy_obstack_deallocate);
18730
18731 if (has_children)
18732 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18733 &info_ptr, comp_unit_die);
18734 cu->dies = comp_unit_die;
18735 /* comp_unit_die is not stored in die_hash, no need. */
18736
18737 /* We try not to read any attributes in this function, because not
18738 all CUs needed for references have been loaded yet, and symbol
18739 table processing isn't initialized. But we have to set the CU language,
18740 or we won't be able to build types correctly.
18741 Similarly, if we do not read the producer, we can not apply
18742 producer-specific interpretation. */
18743 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18744 }
18745
18746 /* Read in a signatured type and build its CU and DIEs.
18747 If the type is a stub for the real type in a DWO file,
18748 read in the real type from the DWO file as well. */
18749
18750 static void
18751 read_signatured_type (struct signatured_type *sig_type)
18752 {
18753 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18754
18755 gdb_assert (per_cu->is_debug_types);
18756 gdb_assert (per_cu->cu == NULL);
18757
18758 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18759 read_signatured_type_reader, NULL);
18760 sig_type->per_cu.tu_read = 1;
18761 }
18762
18763 /* Decode simple location descriptions.
18764 Given a pointer to a dwarf block that defines a location, compute
18765 the location and return the value.
18766
18767 NOTE drow/2003-11-18: This function is called in two situations
18768 now: for the address of static or global variables (partial symbols
18769 only) and for offsets into structures which are expected to be
18770 (more or less) constant. The partial symbol case should go away,
18771 and only the constant case should remain. That will let this
18772 function complain more accurately. A few special modes are allowed
18773 without complaint for global variables (for instance, global
18774 register values and thread-local values).
18775
18776 A location description containing no operations indicates that the
18777 object is optimized out. The return value is 0 for that case.
18778 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18779 callers will only want a very basic result and this can become a
18780 complaint.
18781
18782 Note that stack[0] is unused except as a default error return. */
18783
18784 static CORE_ADDR
18785 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18786 {
18787 struct objfile *objfile = cu->objfile;
18788 size_t i;
18789 size_t size = blk->size;
18790 const gdb_byte *data = blk->data;
18791 CORE_ADDR stack[64];
18792 int stacki;
18793 unsigned int bytes_read, unsnd;
18794 gdb_byte op;
18795
18796 i = 0;
18797 stacki = 0;
18798 stack[stacki] = 0;
18799 stack[++stacki] = 0;
18800
18801 while (i < size)
18802 {
18803 op = data[i++];
18804 switch (op)
18805 {
18806 case DW_OP_lit0:
18807 case DW_OP_lit1:
18808 case DW_OP_lit2:
18809 case DW_OP_lit3:
18810 case DW_OP_lit4:
18811 case DW_OP_lit5:
18812 case DW_OP_lit6:
18813 case DW_OP_lit7:
18814 case DW_OP_lit8:
18815 case DW_OP_lit9:
18816 case DW_OP_lit10:
18817 case DW_OP_lit11:
18818 case DW_OP_lit12:
18819 case DW_OP_lit13:
18820 case DW_OP_lit14:
18821 case DW_OP_lit15:
18822 case DW_OP_lit16:
18823 case DW_OP_lit17:
18824 case DW_OP_lit18:
18825 case DW_OP_lit19:
18826 case DW_OP_lit20:
18827 case DW_OP_lit21:
18828 case DW_OP_lit22:
18829 case DW_OP_lit23:
18830 case DW_OP_lit24:
18831 case DW_OP_lit25:
18832 case DW_OP_lit26:
18833 case DW_OP_lit27:
18834 case DW_OP_lit28:
18835 case DW_OP_lit29:
18836 case DW_OP_lit30:
18837 case DW_OP_lit31:
18838 stack[++stacki] = op - DW_OP_lit0;
18839 break;
18840
18841 case DW_OP_reg0:
18842 case DW_OP_reg1:
18843 case DW_OP_reg2:
18844 case DW_OP_reg3:
18845 case DW_OP_reg4:
18846 case DW_OP_reg5:
18847 case DW_OP_reg6:
18848 case DW_OP_reg7:
18849 case DW_OP_reg8:
18850 case DW_OP_reg9:
18851 case DW_OP_reg10:
18852 case DW_OP_reg11:
18853 case DW_OP_reg12:
18854 case DW_OP_reg13:
18855 case DW_OP_reg14:
18856 case DW_OP_reg15:
18857 case DW_OP_reg16:
18858 case DW_OP_reg17:
18859 case DW_OP_reg18:
18860 case DW_OP_reg19:
18861 case DW_OP_reg20:
18862 case DW_OP_reg21:
18863 case DW_OP_reg22:
18864 case DW_OP_reg23:
18865 case DW_OP_reg24:
18866 case DW_OP_reg25:
18867 case DW_OP_reg26:
18868 case DW_OP_reg27:
18869 case DW_OP_reg28:
18870 case DW_OP_reg29:
18871 case DW_OP_reg30:
18872 case DW_OP_reg31:
18873 stack[++stacki] = op - DW_OP_reg0;
18874 if (i < size)
18875 dwarf2_complex_location_expr_complaint ();
18876 break;
18877
18878 case DW_OP_regx:
18879 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18880 i += bytes_read;
18881 stack[++stacki] = unsnd;
18882 if (i < size)
18883 dwarf2_complex_location_expr_complaint ();
18884 break;
18885
18886 case DW_OP_addr:
18887 stack[++stacki] = read_address (objfile->obfd, &data[i],
18888 cu, &bytes_read);
18889 i += bytes_read;
18890 break;
18891
18892 case DW_OP_const1u:
18893 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18894 i += 1;
18895 break;
18896
18897 case DW_OP_const1s:
18898 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18899 i += 1;
18900 break;
18901
18902 case DW_OP_const2u:
18903 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18904 i += 2;
18905 break;
18906
18907 case DW_OP_const2s:
18908 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18909 i += 2;
18910 break;
18911
18912 case DW_OP_const4u:
18913 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18914 i += 4;
18915 break;
18916
18917 case DW_OP_const4s:
18918 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18919 i += 4;
18920 break;
18921
18922 case DW_OP_const8u:
18923 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18924 i += 8;
18925 break;
18926
18927 case DW_OP_constu:
18928 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18929 &bytes_read);
18930 i += bytes_read;
18931 break;
18932
18933 case DW_OP_consts:
18934 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18935 i += bytes_read;
18936 break;
18937
18938 case DW_OP_dup:
18939 stack[stacki + 1] = stack[stacki];
18940 stacki++;
18941 break;
18942
18943 case DW_OP_plus:
18944 stack[stacki - 1] += stack[stacki];
18945 stacki--;
18946 break;
18947
18948 case DW_OP_plus_uconst:
18949 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18950 &bytes_read);
18951 i += bytes_read;
18952 break;
18953
18954 case DW_OP_minus:
18955 stack[stacki - 1] -= stack[stacki];
18956 stacki--;
18957 break;
18958
18959 case DW_OP_deref:
18960 /* If we're not the last op, then we definitely can't encode
18961 this using GDB's address_class enum. This is valid for partial
18962 global symbols, although the variable's address will be bogus
18963 in the psymtab. */
18964 if (i < size)
18965 dwarf2_complex_location_expr_complaint ();
18966 break;
18967
18968 case DW_OP_GNU_push_tls_address:
18969 /* The top of the stack has the offset from the beginning
18970 of the thread control block at which the variable is located. */
18971 /* Nothing should follow this operator, so the top of stack would
18972 be returned. */
18973 /* This is valid for partial global symbols, but the variable's
18974 address will be bogus in the psymtab. Make it always at least
18975 non-zero to not look as a variable garbage collected by linker
18976 which have DW_OP_addr 0. */
18977 if (i < size)
18978 dwarf2_complex_location_expr_complaint ();
18979 stack[stacki]++;
18980 break;
18981
18982 case DW_OP_GNU_uninit:
18983 break;
18984
18985 case DW_OP_GNU_addr_index:
18986 case DW_OP_GNU_const_index:
18987 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18988 &bytes_read);
18989 i += bytes_read;
18990 break;
18991
18992 default:
18993 {
18994 const char *name = get_DW_OP_name (op);
18995
18996 if (name)
18997 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18998 name);
18999 else
19000 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19001 op);
19002 }
19003
19004 return (stack[stacki]);
19005 }
19006
19007 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19008 outside of the allocated space. Also enforce minimum>0. */
19009 if (stacki >= ARRAY_SIZE (stack) - 1)
19010 {
19011 complaint (&symfile_complaints,
19012 _("location description stack overflow"));
19013 return 0;
19014 }
19015
19016 if (stacki <= 0)
19017 {
19018 complaint (&symfile_complaints,
19019 _("location description stack underflow"));
19020 return 0;
19021 }
19022 }
19023 return (stack[stacki]);
19024 }
19025
19026 /* memory allocation interface */
19027
19028 static struct dwarf_block *
19029 dwarf_alloc_block (struct dwarf2_cu *cu)
19030 {
19031 struct dwarf_block *blk;
19032
19033 blk = (struct dwarf_block *)
19034 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19035 return (blk);
19036 }
19037
19038 static struct die_info *
19039 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19040 {
19041 struct die_info *die;
19042 size_t size = sizeof (struct die_info);
19043
19044 if (num_attrs > 1)
19045 size += (num_attrs - 1) * sizeof (struct attribute);
19046
19047 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19048 memset (die, 0, sizeof (struct die_info));
19049 return (die);
19050 }
19051
19052 \f
19053 /* Macro support. */
19054
19055 /* Return file name relative to the compilation directory of file number I in
19056 *LH's file name table. The result is allocated using xmalloc; the caller is
19057 responsible for freeing it. */
19058
19059 static char *
19060 file_file_name (int file, struct line_header *lh)
19061 {
19062 /* Is the file number a valid index into the line header's file name
19063 table? Remember that file numbers start with one, not zero. */
19064 if (1 <= file && file <= lh->num_file_names)
19065 {
19066 struct file_entry *fe = &lh->file_names[file - 1];
19067
19068 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19069 return xstrdup (fe->name);
19070 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19071 fe->name, NULL);
19072 }
19073 else
19074 {
19075 /* The compiler produced a bogus file number. We can at least
19076 record the macro definitions made in the file, even if we
19077 won't be able to find the file by name. */
19078 char fake_name[80];
19079
19080 xsnprintf (fake_name, sizeof (fake_name),
19081 "<bad macro file number %d>", file);
19082
19083 complaint (&symfile_complaints,
19084 _("bad file number in macro information (%d)"),
19085 file);
19086
19087 return xstrdup (fake_name);
19088 }
19089 }
19090
19091 /* Return the full name of file number I in *LH's file name table.
19092 Use COMP_DIR as the name of the current directory of the
19093 compilation. The result is allocated using xmalloc; the caller is
19094 responsible for freeing it. */
19095 static char *
19096 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19097 {
19098 /* Is the file number a valid index into the line header's file name
19099 table? Remember that file numbers start with one, not zero. */
19100 if (1 <= file && file <= lh->num_file_names)
19101 {
19102 char *relative = file_file_name (file, lh);
19103
19104 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19105 return relative;
19106 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19107 }
19108 else
19109 return file_file_name (file, lh);
19110 }
19111
19112
19113 static struct macro_source_file *
19114 macro_start_file (int file, int line,
19115 struct macro_source_file *current_file,
19116 const char *comp_dir,
19117 struct line_header *lh, struct objfile *objfile)
19118 {
19119 /* File name relative to the compilation directory of this source file. */
19120 char *file_name = file_file_name (file, lh);
19121
19122 if (! current_file)
19123 {
19124 /* Note: We don't create a macro table for this compilation unit
19125 at all until we actually get a filename. */
19126 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19127
19128 /* If we have no current file, then this must be the start_file
19129 directive for the compilation unit's main source file. */
19130 current_file = macro_set_main (macro_table, file_name);
19131 macro_define_special (macro_table);
19132 }
19133 else
19134 current_file = macro_include (current_file, line, file_name);
19135
19136 xfree (file_name);
19137
19138 return current_file;
19139 }
19140
19141
19142 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19143 followed by a null byte. */
19144 static char *
19145 copy_string (const char *buf, int len)
19146 {
19147 char *s = xmalloc (len + 1);
19148
19149 memcpy (s, buf, len);
19150 s[len] = '\0';
19151 return s;
19152 }
19153
19154
19155 static const char *
19156 consume_improper_spaces (const char *p, const char *body)
19157 {
19158 if (*p == ' ')
19159 {
19160 complaint (&symfile_complaints,
19161 _("macro definition contains spaces "
19162 "in formal argument list:\n`%s'"),
19163 body);
19164
19165 while (*p == ' ')
19166 p++;
19167 }
19168
19169 return p;
19170 }
19171
19172
19173 static void
19174 parse_macro_definition (struct macro_source_file *file, int line,
19175 const char *body)
19176 {
19177 const char *p;
19178
19179 /* The body string takes one of two forms. For object-like macro
19180 definitions, it should be:
19181
19182 <macro name> " " <definition>
19183
19184 For function-like macro definitions, it should be:
19185
19186 <macro name> "() " <definition>
19187 or
19188 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19189
19190 Spaces may appear only where explicitly indicated, and in the
19191 <definition>.
19192
19193 The Dwarf 2 spec says that an object-like macro's name is always
19194 followed by a space, but versions of GCC around March 2002 omit
19195 the space when the macro's definition is the empty string.
19196
19197 The Dwarf 2 spec says that there should be no spaces between the
19198 formal arguments in a function-like macro's formal argument list,
19199 but versions of GCC around March 2002 include spaces after the
19200 commas. */
19201
19202
19203 /* Find the extent of the macro name. The macro name is terminated
19204 by either a space or null character (for an object-like macro) or
19205 an opening paren (for a function-like macro). */
19206 for (p = body; *p; p++)
19207 if (*p == ' ' || *p == '(')
19208 break;
19209
19210 if (*p == ' ' || *p == '\0')
19211 {
19212 /* It's an object-like macro. */
19213 int name_len = p - body;
19214 char *name = copy_string (body, name_len);
19215 const char *replacement;
19216
19217 if (*p == ' ')
19218 replacement = body + name_len + 1;
19219 else
19220 {
19221 dwarf2_macro_malformed_definition_complaint (body);
19222 replacement = body + name_len;
19223 }
19224
19225 macro_define_object (file, line, name, replacement);
19226
19227 xfree (name);
19228 }
19229 else if (*p == '(')
19230 {
19231 /* It's a function-like macro. */
19232 char *name = copy_string (body, p - body);
19233 int argc = 0;
19234 int argv_size = 1;
19235 char **argv = xmalloc (argv_size * sizeof (*argv));
19236
19237 p++;
19238
19239 p = consume_improper_spaces (p, body);
19240
19241 /* Parse the formal argument list. */
19242 while (*p && *p != ')')
19243 {
19244 /* Find the extent of the current argument name. */
19245 const char *arg_start = p;
19246
19247 while (*p && *p != ',' && *p != ')' && *p != ' ')
19248 p++;
19249
19250 if (! *p || p == arg_start)
19251 dwarf2_macro_malformed_definition_complaint (body);
19252 else
19253 {
19254 /* Make sure argv has room for the new argument. */
19255 if (argc >= argv_size)
19256 {
19257 argv_size *= 2;
19258 argv = xrealloc (argv, argv_size * sizeof (*argv));
19259 }
19260
19261 argv[argc++] = copy_string (arg_start, p - arg_start);
19262 }
19263
19264 p = consume_improper_spaces (p, body);
19265
19266 /* Consume the comma, if present. */
19267 if (*p == ',')
19268 {
19269 p++;
19270
19271 p = consume_improper_spaces (p, body);
19272 }
19273 }
19274
19275 if (*p == ')')
19276 {
19277 p++;
19278
19279 if (*p == ' ')
19280 /* Perfectly formed definition, no complaints. */
19281 macro_define_function (file, line, name,
19282 argc, (const char **) argv,
19283 p + 1);
19284 else if (*p == '\0')
19285 {
19286 /* Complain, but do define it. */
19287 dwarf2_macro_malformed_definition_complaint (body);
19288 macro_define_function (file, line, name,
19289 argc, (const char **) argv,
19290 p);
19291 }
19292 else
19293 /* Just complain. */
19294 dwarf2_macro_malformed_definition_complaint (body);
19295 }
19296 else
19297 /* Just complain. */
19298 dwarf2_macro_malformed_definition_complaint (body);
19299
19300 xfree (name);
19301 {
19302 int i;
19303
19304 for (i = 0; i < argc; i++)
19305 xfree (argv[i]);
19306 }
19307 xfree (argv);
19308 }
19309 else
19310 dwarf2_macro_malformed_definition_complaint (body);
19311 }
19312
19313 /* Skip some bytes from BYTES according to the form given in FORM.
19314 Returns the new pointer. */
19315
19316 static const gdb_byte *
19317 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19318 enum dwarf_form form,
19319 unsigned int offset_size,
19320 struct dwarf2_section_info *section)
19321 {
19322 unsigned int bytes_read;
19323
19324 switch (form)
19325 {
19326 case DW_FORM_data1:
19327 case DW_FORM_flag:
19328 ++bytes;
19329 break;
19330
19331 case DW_FORM_data2:
19332 bytes += 2;
19333 break;
19334
19335 case DW_FORM_data4:
19336 bytes += 4;
19337 break;
19338
19339 case DW_FORM_data8:
19340 bytes += 8;
19341 break;
19342
19343 case DW_FORM_string:
19344 read_direct_string (abfd, bytes, &bytes_read);
19345 bytes += bytes_read;
19346 break;
19347
19348 case DW_FORM_sec_offset:
19349 case DW_FORM_strp:
19350 case DW_FORM_GNU_strp_alt:
19351 bytes += offset_size;
19352 break;
19353
19354 case DW_FORM_block:
19355 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19356 bytes += bytes_read;
19357 break;
19358
19359 case DW_FORM_block1:
19360 bytes += 1 + read_1_byte (abfd, bytes);
19361 break;
19362 case DW_FORM_block2:
19363 bytes += 2 + read_2_bytes (abfd, bytes);
19364 break;
19365 case DW_FORM_block4:
19366 bytes += 4 + read_4_bytes (abfd, bytes);
19367 break;
19368
19369 case DW_FORM_sdata:
19370 case DW_FORM_udata:
19371 case DW_FORM_GNU_addr_index:
19372 case DW_FORM_GNU_str_index:
19373 bytes = gdb_skip_leb128 (bytes, buffer_end);
19374 if (bytes == NULL)
19375 {
19376 dwarf2_section_buffer_overflow_complaint (section);
19377 return NULL;
19378 }
19379 break;
19380
19381 default:
19382 {
19383 complain:
19384 complaint (&symfile_complaints,
19385 _("invalid form 0x%x in `%s'"),
19386 form, get_section_name (section));
19387 return NULL;
19388 }
19389 }
19390
19391 return bytes;
19392 }
19393
19394 /* A helper for dwarf_decode_macros that handles skipping an unknown
19395 opcode. Returns an updated pointer to the macro data buffer; or,
19396 on error, issues a complaint and returns NULL. */
19397
19398 static const gdb_byte *
19399 skip_unknown_opcode (unsigned int opcode,
19400 const gdb_byte **opcode_definitions,
19401 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19402 bfd *abfd,
19403 unsigned int offset_size,
19404 struct dwarf2_section_info *section)
19405 {
19406 unsigned int bytes_read, i;
19407 unsigned long arg;
19408 const gdb_byte *defn;
19409
19410 if (opcode_definitions[opcode] == NULL)
19411 {
19412 complaint (&symfile_complaints,
19413 _("unrecognized DW_MACFINO opcode 0x%x"),
19414 opcode);
19415 return NULL;
19416 }
19417
19418 defn = opcode_definitions[opcode];
19419 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19420 defn += bytes_read;
19421
19422 for (i = 0; i < arg; ++i)
19423 {
19424 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19425 section);
19426 if (mac_ptr == NULL)
19427 {
19428 /* skip_form_bytes already issued the complaint. */
19429 return NULL;
19430 }
19431 }
19432
19433 return mac_ptr;
19434 }
19435
19436 /* A helper function which parses the header of a macro section.
19437 If the macro section is the extended (for now called "GNU") type,
19438 then this updates *OFFSET_SIZE. Returns a pointer to just after
19439 the header, or issues a complaint and returns NULL on error. */
19440
19441 static const gdb_byte *
19442 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19443 bfd *abfd,
19444 const gdb_byte *mac_ptr,
19445 unsigned int *offset_size,
19446 int section_is_gnu)
19447 {
19448 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19449
19450 if (section_is_gnu)
19451 {
19452 unsigned int version, flags;
19453
19454 version = read_2_bytes (abfd, mac_ptr);
19455 if (version != 4)
19456 {
19457 complaint (&symfile_complaints,
19458 _("unrecognized version `%d' in .debug_macro section"),
19459 version);
19460 return NULL;
19461 }
19462 mac_ptr += 2;
19463
19464 flags = read_1_byte (abfd, mac_ptr);
19465 ++mac_ptr;
19466 *offset_size = (flags & 1) ? 8 : 4;
19467
19468 if ((flags & 2) != 0)
19469 /* We don't need the line table offset. */
19470 mac_ptr += *offset_size;
19471
19472 /* Vendor opcode descriptions. */
19473 if ((flags & 4) != 0)
19474 {
19475 unsigned int i, count;
19476
19477 count = read_1_byte (abfd, mac_ptr);
19478 ++mac_ptr;
19479 for (i = 0; i < count; ++i)
19480 {
19481 unsigned int opcode, bytes_read;
19482 unsigned long arg;
19483
19484 opcode = read_1_byte (abfd, mac_ptr);
19485 ++mac_ptr;
19486 opcode_definitions[opcode] = mac_ptr;
19487 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19488 mac_ptr += bytes_read;
19489 mac_ptr += arg;
19490 }
19491 }
19492 }
19493
19494 return mac_ptr;
19495 }
19496
19497 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19498 including DW_MACRO_GNU_transparent_include. */
19499
19500 static void
19501 dwarf_decode_macro_bytes (bfd *abfd,
19502 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19503 struct macro_source_file *current_file,
19504 struct line_header *lh, const char *comp_dir,
19505 struct dwarf2_section_info *section,
19506 int section_is_gnu, int section_is_dwz,
19507 unsigned int offset_size,
19508 struct objfile *objfile,
19509 htab_t include_hash)
19510 {
19511 enum dwarf_macro_record_type macinfo_type;
19512 int at_commandline;
19513 const gdb_byte *opcode_definitions[256];
19514
19515 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19516 &offset_size, section_is_gnu);
19517 if (mac_ptr == NULL)
19518 {
19519 /* We already issued a complaint. */
19520 return;
19521 }
19522
19523 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19524 GDB is still reading the definitions from command line. First
19525 DW_MACINFO_start_file will need to be ignored as it was already executed
19526 to create CURRENT_FILE for the main source holding also the command line
19527 definitions. On first met DW_MACINFO_start_file this flag is reset to
19528 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19529
19530 at_commandline = 1;
19531
19532 do
19533 {
19534 /* Do we at least have room for a macinfo type byte? */
19535 if (mac_ptr >= mac_end)
19536 {
19537 dwarf2_section_buffer_overflow_complaint (section);
19538 break;
19539 }
19540
19541 macinfo_type = read_1_byte (abfd, mac_ptr);
19542 mac_ptr++;
19543
19544 /* Note that we rely on the fact that the corresponding GNU and
19545 DWARF constants are the same. */
19546 switch (macinfo_type)
19547 {
19548 /* A zero macinfo type indicates the end of the macro
19549 information. */
19550 case 0:
19551 break;
19552
19553 case DW_MACRO_GNU_define:
19554 case DW_MACRO_GNU_undef:
19555 case DW_MACRO_GNU_define_indirect:
19556 case DW_MACRO_GNU_undef_indirect:
19557 case DW_MACRO_GNU_define_indirect_alt:
19558 case DW_MACRO_GNU_undef_indirect_alt:
19559 {
19560 unsigned int bytes_read;
19561 int line;
19562 const char *body;
19563 int is_define;
19564
19565 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19566 mac_ptr += bytes_read;
19567
19568 if (macinfo_type == DW_MACRO_GNU_define
19569 || macinfo_type == DW_MACRO_GNU_undef)
19570 {
19571 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19572 mac_ptr += bytes_read;
19573 }
19574 else
19575 {
19576 LONGEST str_offset;
19577
19578 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19579 mac_ptr += offset_size;
19580
19581 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19582 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19583 || section_is_dwz)
19584 {
19585 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19586
19587 body = read_indirect_string_from_dwz (dwz, str_offset);
19588 }
19589 else
19590 body = read_indirect_string_at_offset (abfd, str_offset);
19591 }
19592
19593 is_define = (macinfo_type == DW_MACRO_GNU_define
19594 || macinfo_type == DW_MACRO_GNU_define_indirect
19595 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19596 if (! current_file)
19597 {
19598 /* DWARF violation as no main source is present. */
19599 complaint (&symfile_complaints,
19600 _("debug info with no main source gives macro %s "
19601 "on line %d: %s"),
19602 is_define ? _("definition") : _("undefinition"),
19603 line, body);
19604 break;
19605 }
19606 if ((line == 0 && !at_commandline)
19607 || (line != 0 && at_commandline))
19608 complaint (&symfile_complaints,
19609 _("debug info gives %s macro %s with %s line %d: %s"),
19610 at_commandline ? _("command-line") : _("in-file"),
19611 is_define ? _("definition") : _("undefinition"),
19612 line == 0 ? _("zero") : _("non-zero"), line, body);
19613
19614 if (is_define)
19615 parse_macro_definition (current_file, line, body);
19616 else
19617 {
19618 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19619 || macinfo_type == DW_MACRO_GNU_undef_indirect
19620 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19621 macro_undef (current_file, line, body);
19622 }
19623 }
19624 break;
19625
19626 case DW_MACRO_GNU_start_file:
19627 {
19628 unsigned int bytes_read;
19629 int line, file;
19630
19631 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19632 mac_ptr += bytes_read;
19633 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19634 mac_ptr += bytes_read;
19635
19636 if ((line == 0 && !at_commandline)
19637 || (line != 0 && at_commandline))
19638 complaint (&symfile_complaints,
19639 _("debug info gives source %d included "
19640 "from %s at %s line %d"),
19641 file, at_commandline ? _("command-line") : _("file"),
19642 line == 0 ? _("zero") : _("non-zero"), line);
19643
19644 if (at_commandline)
19645 {
19646 /* This DW_MACRO_GNU_start_file was executed in the
19647 pass one. */
19648 at_commandline = 0;
19649 }
19650 else
19651 current_file = macro_start_file (file, line,
19652 current_file, comp_dir,
19653 lh, objfile);
19654 }
19655 break;
19656
19657 case DW_MACRO_GNU_end_file:
19658 if (! current_file)
19659 complaint (&symfile_complaints,
19660 _("macro debug info has an unmatched "
19661 "`close_file' directive"));
19662 else
19663 {
19664 current_file = current_file->included_by;
19665 if (! current_file)
19666 {
19667 enum dwarf_macro_record_type next_type;
19668
19669 /* GCC circa March 2002 doesn't produce the zero
19670 type byte marking the end of the compilation
19671 unit. Complain if it's not there, but exit no
19672 matter what. */
19673
19674 /* Do we at least have room for a macinfo type byte? */
19675 if (mac_ptr >= mac_end)
19676 {
19677 dwarf2_section_buffer_overflow_complaint (section);
19678 return;
19679 }
19680
19681 /* We don't increment mac_ptr here, so this is just
19682 a look-ahead. */
19683 next_type = read_1_byte (abfd, mac_ptr);
19684 if (next_type != 0)
19685 complaint (&symfile_complaints,
19686 _("no terminating 0-type entry for "
19687 "macros in `.debug_macinfo' section"));
19688
19689 return;
19690 }
19691 }
19692 break;
19693
19694 case DW_MACRO_GNU_transparent_include:
19695 case DW_MACRO_GNU_transparent_include_alt:
19696 {
19697 LONGEST offset;
19698 void **slot;
19699 bfd *include_bfd = abfd;
19700 struct dwarf2_section_info *include_section = section;
19701 struct dwarf2_section_info alt_section;
19702 const gdb_byte *include_mac_end = mac_end;
19703 int is_dwz = section_is_dwz;
19704 const gdb_byte *new_mac_ptr;
19705
19706 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19707 mac_ptr += offset_size;
19708
19709 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19710 {
19711 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19712
19713 dwarf2_read_section (dwarf2_per_objfile->objfile,
19714 &dwz->macro);
19715
19716 include_section = &dwz->macro;
19717 include_bfd = get_section_bfd_owner (include_section);
19718 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19719 is_dwz = 1;
19720 }
19721
19722 new_mac_ptr = include_section->buffer + offset;
19723 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19724
19725 if (*slot != NULL)
19726 {
19727 /* This has actually happened; see
19728 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19729 complaint (&symfile_complaints,
19730 _("recursive DW_MACRO_GNU_transparent_include in "
19731 ".debug_macro section"));
19732 }
19733 else
19734 {
19735 *slot = (void *) new_mac_ptr;
19736
19737 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19738 include_mac_end, current_file,
19739 lh, comp_dir,
19740 section, section_is_gnu, is_dwz,
19741 offset_size, objfile, include_hash);
19742
19743 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19744 }
19745 }
19746 break;
19747
19748 case DW_MACINFO_vendor_ext:
19749 if (!section_is_gnu)
19750 {
19751 unsigned int bytes_read;
19752 int constant;
19753
19754 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19755 mac_ptr += bytes_read;
19756 read_direct_string (abfd, mac_ptr, &bytes_read);
19757 mac_ptr += bytes_read;
19758
19759 /* We don't recognize any vendor extensions. */
19760 break;
19761 }
19762 /* FALLTHROUGH */
19763
19764 default:
19765 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19766 mac_ptr, mac_end, abfd, offset_size,
19767 section);
19768 if (mac_ptr == NULL)
19769 return;
19770 break;
19771 }
19772 } while (macinfo_type != 0);
19773 }
19774
19775 static void
19776 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19777 const char *comp_dir, int section_is_gnu)
19778 {
19779 struct objfile *objfile = dwarf2_per_objfile->objfile;
19780 struct line_header *lh = cu->line_header;
19781 bfd *abfd;
19782 const gdb_byte *mac_ptr, *mac_end;
19783 struct macro_source_file *current_file = 0;
19784 enum dwarf_macro_record_type macinfo_type;
19785 unsigned int offset_size = cu->header.offset_size;
19786 const gdb_byte *opcode_definitions[256];
19787 struct cleanup *cleanup;
19788 htab_t include_hash;
19789 void **slot;
19790 struct dwarf2_section_info *section;
19791 const char *section_name;
19792
19793 if (cu->dwo_unit != NULL)
19794 {
19795 if (section_is_gnu)
19796 {
19797 section = &cu->dwo_unit->dwo_file->sections.macro;
19798 section_name = ".debug_macro.dwo";
19799 }
19800 else
19801 {
19802 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19803 section_name = ".debug_macinfo.dwo";
19804 }
19805 }
19806 else
19807 {
19808 if (section_is_gnu)
19809 {
19810 section = &dwarf2_per_objfile->macro;
19811 section_name = ".debug_macro";
19812 }
19813 else
19814 {
19815 section = &dwarf2_per_objfile->macinfo;
19816 section_name = ".debug_macinfo";
19817 }
19818 }
19819
19820 dwarf2_read_section (objfile, section);
19821 if (section->buffer == NULL)
19822 {
19823 complaint (&symfile_complaints, _("missing %s section"), section_name);
19824 return;
19825 }
19826 abfd = get_section_bfd_owner (section);
19827
19828 /* First pass: Find the name of the base filename.
19829 This filename is needed in order to process all macros whose definition
19830 (or undefinition) comes from the command line. These macros are defined
19831 before the first DW_MACINFO_start_file entry, and yet still need to be
19832 associated to the base file.
19833
19834 To determine the base file name, we scan the macro definitions until we
19835 reach the first DW_MACINFO_start_file entry. We then initialize
19836 CURRENT_FILE accordingly so that any macro definition found before the
19837 first DW_MACINFO_start_file can still be associated to the base file. */
19838
19839 mac_ptr = section->buffer + offset;
19840 mac_end = section->buffer + section->size;
19841
19842 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19843 &offset_size, section_is_gnu);
19844 if (mac_ptr == NULL)
19845 {
19846 /* We already issued a complaint. */
19847 return;
19848 }
19849
19850 do
19851 {
19852 /* Do we at least have room for a macinfo type byte? */
19853 if (mac_ptr >= mac_end)
19854 {
19855 /* Complaint is printed during the second pass as GDB will probably
19856 stop the first pass earlier upon finding
19857 DW_MACINFO_start_file. */
19858 break;
19859 }
19860
19861 macinfo_type = read_1_byte (abfd, mac_ptr);
19862 mac_ptr++;
19863
19864 /* Note that we rely on the fact that the corresponding GNU and
19865 DWARF constants are the same. */
19866 switch (macinfo_type)
19867 {
19868 /* A zero macinfo type indicates the end of the macro
19869 information. */
19870 case 0:
19871 break;
19872
19873 case DW_MACRO_GNU_define:
19874 case DW_MACRO_GNU_undef:
19875 /* Only skip the data by MAC_PTR. */
19876 {
19877 unsigned int bytes_read;
19878
19879 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19880 mac_ptr += bytes_read;
19881 read_direct_string (abfd, mac_ptr, &bytes_read);
19882 mac_ptr += bytes_read;
19883 }
19884 break;
19885
19886 case DW_MACRO_GNU_start_file:
19887 {
19888 unsigned int bytes_read;
19889 int line, file;
19890
19891 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19892 mac_ptr += bytes_read;
19893 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19894 mac_ptr += bytes_read;
19895
19896 current_file = macro_start_file (file, line, current_file,
19897 comp_dir, lh, objfile);
19898 }
19899 break;
19900
19901 case DW_MACRO_GNU_end_file:
19902 /* No data to skip by MAC_PTR. */
19903 break;
19904
19905 case DW_MACRO_GNU_define_indirect:
19906 case DW_MACRO_GNU_undef_indirect:
19907 case DW_MACRO_GNU_define_indirect_alt:
19908 case DW_MACRO_GNU_undef_indirect_alt:
19909 {
19910 unsigned int bytes_read;
19911
19912 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19913 mac_ptr += bytes_read;
19914 mac_ptr += offset_size;
19915 }
19916 break;
19917
19918 case DW_MACRO_GNU_transparent_include:
19919 case DW_MACRO_GNU_transparent_include_alt:
19920 /* Note that, according to the spec, a transparent include
19921 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19922 skip this opcode. */
19923 mac_ptr += offset_size;
19924 break;
19925
19926 case DW_MACINFO_vendor_ext:
19927 /* Only skip the data by MAC_PTR. */
19928 if (!section_is_gnu)
19929 {
19930 unsigned int bytes_read;
19931
19932 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19933 mac_ptr += bytes_read;
19934 read_direct_string (abfd, mac_ptr, &bytes_read);
19935 mac_ptr += bytes_read;
19936 }
19937 /* FALLTHROUGH */
19938
19939 default:
19940 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19941 mac_ptr, mac_end, abfd, offset_size,
19942 section);
19943 if (mac_ptr == NULL)
19944 return;
19945 break;
19946 }
19947 } while (macinfo_type != 0 && current_file == NULL);
19948
19949 /* Second pass: Process all entries.
19950
19951 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19952 command-line macro definitions/undefinitions. This flag is unset when we
19953 reach the first DW_MACINFO_start_file entry. */
19954
19955 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19956 NULL, xcalloc, xfree);
19957 cleanup = make_cleanup_htab_delete (include_hash);
19958 mac_ptr = section->buffer + offset;
19959 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19960 *slot = (void *) mac_ptr;
19961 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19962 current_file, lh, comp_dir, section,
19963 section_is_gnu, 0,
19964 offset_size, objfile, include_hash);
19965 do_cleanups (cleanup);
19966 }
19967
19968 /* Check if the attribute's form is a DW_FORM_block*
19969 if so return true else false. */
19970
19971 static int
19972 attr_form_is_block (const struct attribute *attr)
19973 {
19974 return (attr == NULL ? 0 :
19975 attr->form == DW_FORM_block1
19976 || attr->form == DW_FORM_block2
19977 || attr->form == DW_FORM_block4
19978 || attr->form == DW_FORM_block
19979 || attr->form == DW_FORM_exprloc);
19980 }
19981
19982 /* Return non-zero if ATTR's value is a section offset --- classes
19983 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19984 You may use DW_UNSND (attr) to retrieve such offsets.
19985
19986 Section 7.5.4, "Attribute Encodings", explains that no attribute
19987 may have a value that belongs to more than one of these classes; it
19988 would be ambiguous if we did, because we use the same forms for all
19989 of them. */
19990
19991 static int
19992 attr_form_is_section_offset (const struct attribute *attr)
19993 {
19994 return (attr->form == DW_FORM_data4
19995 || attr->form == DW_FORM_data8
19996 || attr->form == DW_FORM_sec_offset);
19997 }
19998
19999 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20000 zero otherwise. When this function returns true, you can apply
20001 dwarf2_get_attr_constant_value to it.
20002
20003 However, note that for some attributes you must check
20004 attr_form_is_section_offset before using this test. DW_FORM_data4
20005 and DW_FORM_data8 are members of both the constant class, and of
20006 the classes that contain offsets into other debug sections
20007 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20008 that, if an attribute's can be either a constant or one of the
20009 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20010 taken as section offsets, not constants. */
20011
20012 static int
20013 attr_form_is_constant (const struct attribute *attr)
20014 {
20015 switch (attr->form)
20016 {
20017 case DW_FORM_sdata:
20018 case DW_FORM_udata:
20019 case DW_FORM_data1:
20020 case DW_FORM_data2:
20021 case DW_FORM_data4:
20022 case DW_FORM_data8:
20023 return 1;
20024 default:
20025 return 0;
20026 }
20027 }
20028
20029
20030 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20031 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20032
20033 static int
20034 attr_form_is_ref (const struct attribute *attr)
20035 {
20036 switch (attr->form)
20037 {
20038 case DW_FORM_ref_addr:
20039 case DW_FORM_ref1:
20040 case DW_FORM_ref2:
20041 case DW_FORM_ref4:
20042 case DW_FORM_ref8:
20043 case DW_FORM_ref_udata:
20044 case DW_FORM_GNU_ref_alt:
20045 return 1;
20046 default:
20047 return 0;
20048 }
20049 }
20050
20051 /* Return the .debug_loc section to use for CU.
20052 For DWO files use .debug_loc.dwo. */
20053
20054 static struct dwarf2_section_info *
20055 cu_debug_loc_section (struct dwarf2_cu *cu)
20056 {
20057 if (cu->dwo_unit)
20058 return &cu->dwo_unit->dwo_file->sections.loc;
20059 return &dwarf2_per_objfile->loc;
20060 }
20061
20062 /* A helper function that fills in a dwarf2_loclist_baton. */
20063
20064 static void
20065 fill_in_loclist_baton (struct dwarf2_cu *cu,
20066 struct dwarf2_loclist_baton *baton,
20067 const struct attribute *attr)
20068 {
20069 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20070
20071 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20072
20073 baton->per_cu = cu->per_cu;
20074 gdb_assert (baton->per_cu);
20075 /* We don't know how long the location list is, but make sure we
20076 don't run off the edge of the section. */
20077 baton->size = section->size - DW_UNSND (attr);
20078 baton->data = section->buffer + DW_UNSND (attr);
20079 baton->base_address = cu->base_address;
20080 baton->from_dwo = cu->dwo_unit != NULL;
20081 }
20082
20083 static void
20084 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20085 struct dwarf2_cu *cu, int is_block)
20086 {
20087 struct objfile *objfile = dwarf2_per_objfile->objfile;
20088 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20089
20090 if (attr_form_is_section_offset (attr)
20091 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20092 the section. If so, fall through to the complaint in the
20093 other branch. */
20094 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20095 {
20096 struct dwarf2_loclist_baton *baton;
20097
20098 baton = obstack_alloc (&objfile->objfile_obstack,
20099 sizeof (struct dwarf2_loclist_baton));
20100
20101 fill_in_loclist_baton (cu, baton, attr);
20102
20103 if (cu->base_known == 0)
20104 complaint (&symfile_complaints,
20105 _("Location list used without "
20106 "specifying the CU base address."));
20107
20108 SYMBOL_ACLASS_INDEX (sym) = (is_block
20109 ? dwarf2_loclist_block_index
20110 : dwarf2_loclist_index);
20111 SYMBOL_LOCATION_BATON (sym) = baton;
20112 }
20113 else
20114 {
20115 struct dwarf2_locexpr_baton *baton;
20116
20117 baton = obstack_alloc (&objfile->objfile_obstack,
20118 sizeof (struct dwarf2_locexpr_baton));
20119 baton->per_cu = cu->per_cu;
20120 gdb_assert (baton->per_cu);
20121
20122 if (attr_form_is_block (attr))
20123 {
20124 /* Note that we're just copying the block's data pointer
20125 here, not the actual data. We're still pointing into the
20126 info_buffer for SYM's objfile; right now we never release
20127 that buffer, but when we do clean up properly this may
20128 need to change. */
20129 baton->size = DW_BLOCK (attr)->size;
20130 baton->data = DW_BLOCK (attr)->data;
20131 }
20132 else
20133 {
20134 dwarf2_invalid_attrib_class_complaint ("location description",
20135 SYMBOL_NATURAL_NAME (sym));
20136 baton->size = 0;
20137 }
20138
20139 SYMBOL_ACLASS_INDEX (sym) = (is_block
20140 ? dwarf2_locexpr_block_index
20141 : dwarf2_locexpr_index);
20142 SYMBOL_LOCATION_BATON (sym) = baton;
20143 }
20144 }
20145
20146 /* Return the OBJFILE associated with the compilation unit CU. If CU
20147 came from a separate debuginfo file, then the master objfile is
20148 returned. */
20149
20150 struct objfile *
20151 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20152 {
20153 struct objfile *objfile = per_cu->objfile;
20154
20155 /* Return the master objfile, so that we can report and look up the
20156 correct file containing this variable. */
20157 if (objfile->separate_debug_objfile_backlink)
20158 objfile = objfile->separate_debug_objfile_backlink;
20159
20160 return objfile;
20161 }
20162
20163 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20164 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20165 CU_HEADERP first. */
20166
20167 static const struct comp_unit_head *
20168 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20169 struct dwarf2_per_cu_data *per_cu)
20170 {
20171 const gdb_byte *info_ptr;
20172
20173 if (per_cu->cu)
20174 return &per_cu->cu->header;
20175
20176 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20177
20178 memset (cu_headerp, 0, sizeof (*cu_headerp));
20179 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20180
20181 return cu_headerp;
20182 }
20183
20184 /* Return the address size given in the compilation unit header for CU. */
20185
20186 int
20187 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20188 {
20189 struct comp_unit_head cu_header_local;
20190 const struct comp_unit_head *cu_headerp;
20191
20192 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20193
20194 return cu_headerp->addr_size;
20195 }
20196
20197 /* Return the offset size given in the compilation unit header for CU. */
20198
20199 int
20200 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20201 {
20202 struct comp_unit_head cu_header_local;
20203 const struct comp_unit_head *cu_headerp;
20204
20205 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20206
20207 return cu_headerp->offset_size;
20208 }
20209
20210 /* See its dwarf2loc.h declaration. */
20211
20212 int
20213 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20214 {
20215 struct comp_unit_head cu_header_local;
20216 const struct comp_unit_head *cu_headerp;
20217
20218 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20219
20220 if (cu_headerp->version == 2)
20221 return cu_headerp->addr_size;
20222 else
20223 return cu_headerp->offset_size;
20224 }
20225
20226 /* Return the text offset of the CU. The returned offset comes from
20227 this CU's objfile. If this objfile came from a separate debuginfo
20228 file, then the offset may be different from the corresponding
20229 offset in the parent objfile. */
20230
20231 CORE_ADDR
20232 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20233 {
20234 struct objfile *objfile = per_cu->objfile;
20235
20236 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20237 }
20238
20239 /* Locate the .debug_info compilation unit from CU's objfile which contains
20240 the DIE at OFFSET. Raises an error on failure. */
20241
20242 static struct dwarf2_per_cu_data *
20243 dwarf2_find_containing_comp_unit (sect_offset offset,
20244 unsigned int offset_in_dwz,
20245 struct objfile *objfile)
20246 {
20247 struct dwarf2_per_cu_data *this_cu;
20248 int low, high;
20249 const sect_offset *cu_off;
20250
20251 low = 0;
20252 high = dwarf2_per_objfile->n_comp_units - 1;
20253 while (high > low)
20254 {
20255 struct dwarf2_per_cu_data *mid_cu;
20256 int mid = low + (high - low) / 2;
20257
20258 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20259 cu_off = &mid_cu->offset;
20260 if (mid_cu->is_dwz > offset_in_dwz
20261 || (mid_cu->is_dwz == offset_in_dwz
20262 && cu_off->sect_off >= offset.sect_off))
20263 high = mid;
20264 else
20265 low = mid + 1;
20266 }
20267 gdb_assert (low == high);
20268 this_cu = dwarf2_per_objfile->all_comp_units[low];
20269 cu_off = &this_cu->offset;
20270 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20271 {
20272 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20273 error (_("Dwarf Error: could not find partial DIE containing "
20274 "offset 0x%lx [in module %s]"),
20275 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20276
20277 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20278 <= offset.sect_off);
20279 return dwarf2_per_objfile->all_comp_units[low-1];
20280 }
20281 else
20282 {
20283 this_cu = dwarf2_per_objfile->all_comp_units[low];
20284 if (low == dwarf2_per_objfile->n_comp_units - 1
20285 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20286 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20287 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20288 return this_cu;
20289 }
20290 }
20291
20292 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20293
20294 static void
20295 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20296 {
20297 memset (cu, 0, sizeof (*cu));
20298 per_cu->cu = cu;
20299 cu->per_cu = per_cu;
20300 cu->objfile = per_cu->objfile;
20301 obstack_init (&cu->comp_unit_obstack);
20302 }
20303
20304 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20305
20306 static void
20307 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20308 enum language pretend_language)
20309 {
20310 struct attribute *attr;
20311
20312 /* Set the language we're debugging. */
20313 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20314 if (attr)
20315 set_cu_language (DW_UNSND (attr), cu);
20316 else
20317 {
20318 cu->language = pretend_language;
20319 cu->language_defn = language_def (cu->language);
20320 }
20321
20322 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20323 if (attr)
20324 cu->producer = DW_STRING (attr);
20325 }
20326
20327 /* Release one cached compilation unit, CU. We unlink it from the tree
20328 of compilation units, but we don't remove it from the read_in_chain;
20329 the caller is responsible for that.
20330 NOTE: DATA is a void * because this function is also used as a
20331 cleanup routine. */
20332
20333 static void
20334 free_heap_comp_unit (void *data)
20335 {
20336 struct dwarf2_cu *cu = data;
20337
20338 gdb_assert (cu->per_cu != NULL);
20339 cu->per_cu->cu = NULL;
20340 cu->per_cu = NULL;
20341
20342 obstack_free (&cu->comp_unit_obstack, NULL);
20343
20344 xfree (cu);
20345 }
20346
20347 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20348 when we're finished with it. We can't free the pointer itself, but be
20349 sure to unlink it from the cache. Also release any associated storage. */
20350
20351 static void
20352 free_stack_comp_unit (void *data)
20353 {
20354 struct dwarf2_cu *cu = data;
20355
20356 gdb_assert (cu->per_cu != NULL);
20357 cu->per_cu->cu = NULL;
20358 cu->per_cu = NULL;
20359
20360 obstack_free (&cu->comp_unit_obstack, NULL);
20361 cu->partial_dies = NULL;
20362 }
20363
20364 /* Free all cached compilation units. */
20365
20366 static void
20367 free_cached_comp_units (void *data)
20368 {
20369 struct dwarf2_per_cu_data *per_cu, **last_chain;
20370
20371 per_cu = dwarf2_per_objfile->read_in_chain;
20372 last_chain = &dwarf2_per_objfile->read_in_chain;
20373 while (per_cu != NULL)
20374 {
20375 struct dwarf2_per_cu_data *next_cu;
20376
20377 next_cu = per_cu->cu->read_in_chain;
20378
20379 free_heap_comp_unit (per_cu->cu);
20380 *last_chain = next_cu;
20381
20382 per_cu = next_cu;
20383 }
20384 }
20385
20386 /* Increase the age counter on each cached compilation unit, and free
20387 any that are too old. */
20388
20389 static void
20390 age_cached_comp_units (void)
20391 {
20392 struct dwarf2_per_cu_data *per_cu, **last_chain;
20393
20394 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20395 per_cu = dwarf2_per_objfile->read_in_chain;
20396 while (per_cu != NULL)
20397 {
20398 per_cu->cu->last_used ++;
20399 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20400 dwarf2_mark (per_cu->cu);
20401 per_cu = per_cu->cu->read_in_chain;
20402 }
20403
20404 per_cu = dwarf2_per_objfile->read_in_chain;
20405 last_chain = &dwarf2_per_objfile->read_in_chain;
20406 while (per_cu != NULL)
20407 {
20408 struct dwarf2_per_cu_data *next_cu;
20409
20410 next_cu = per_cu->cu->read_in_chain;
20411
20412 if (!per_cu->cu->mark)
20413 {
20414 free_heap_comp_unit (per_cu->cu);
20415 *last_chain = next_cu;
20416 }
20417 else
20418 last_chain = &per_cu->cu->read_in_chain;
20419
20420 per_cu = next_cu;
20421 }
20422 }
20423
20424 /* Remove a single compilation unit from the cache. */
20425
20426 static void
20427 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20428 {
20429 struct dwarf2_per_cu_data *per_cu, **last_chain;
20430
20431 per_cu = dwarf2_per_objfile->read_in_chain;
20432 last_chain = &dwarf2_per_objfile->read_in_chain;
20433 while (per_cu != NULL)
20434 {
20435 struct dwarf2_per_cu_data *next_cu;
20436
20437 next_cu = per_cu->cu->read_in_chain;
20438
20439 if (per_cu == target_per_cu)
20440 {
20441 free_heap_comp_unit (per_cu->cu);
20442 per_cu->cu = NULL;
20443 *last_chain = next_cu;
20444 break;
20445 }
20446 else
20447 last_chain = &per_cu->cu->read_in_chain;
20448
20449 per_cu = next_cu;
20450 }
20451 }
20452
20453 /* Release all extra memory associated with OBJFILE. */
20454
20455 void
20456 dwarf2_free_objfile (struct objfile *objfile)
20457 {
20458 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20459
20460 if (dwarf2_per_objfile == NULL)
20461 return;
20462
20463 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20464 free_cached_comp_units (NULL);
20465
20466 if (dwarf2_per_objfile->quick_file_names_table)
20467 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20468
20469 /* Everything else should be on the objfile obstack. */
20470 }
20471
20472 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20473 We store these in a hash table separate from the DIEs, and preserve them
20474 when the DIEs are flushed out of cache.
20475
20476 The CU "per_cu" pointer is needed because offset alone is not enough to
20477 uniquely identify the type. A file may have multiple .debug_types sections,
20478 or the type may come from a DWO file. Furthermore, while it's more logical
20479 to use per_cu->section+offset, with Fission the section with the data is in
20480 the DWO file but we don't know that section at the point we need it.
20481 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20482 because we can enter the lookup routine, get_die_type_at_offset, from
20483 outside this file, and thus won't necessarily have PER_CU->cu.
20484 Fortunately, PER_CU is stable for the life of the objfile. */
20485
20486 struct dwarf2_per_cu_offset_and_type
20487 {
20488 const struct dwarf2_per_cu_data *per_cu;
20489 sect_offset offset;
20490 struct type *type;
20491 };
20492
20493 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20494
20495 static hashval_t
20496 per_cu_offset_and_type_hash (const void *item)
20497 {
20498 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20499
20500 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20501 }
20502
20503 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20504
20505 static int
20506 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20507 {
20508 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20509 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20510
20511 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20512 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20513 }
20514
20515 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20516 table if necessary. For convenience, return TYPE.
20517
20518 The DIEs reading must have careful ordering to:
20519 * Not cause infite loops trying to read in DIEs as a prerequisite for
20520 reading current DIE.
20521 * Not trying to dereference contents of still incompletely read in types
20522 while reading in other DIEs.
20523 * Enable referencing still incompletely read in types just by a pointer to
20524 the type without accessing its fields.
20525
20526 Therefore caller should follow these rules:
20527 * Try to fetch any prerequisite types we may need to build this DIE type
20528 before building the type and calling set_die_type.
20529 * After building type call set_die_type for current DIE as soon as
20530 possible before fetching more types to complete the current type.
20531 * Make the type as complete as possible before fetching more types. */
20532
20533 static struct type *
20534 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20535 {
20536 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20537 struct objfile *objfile = cu->objfile;
20538
20539 /* For Ada types, make sure that the gnat-specific data is always
20540 initialized (if not already set). There are a few types where
20541 we should not be doing so, because the type-specific area is
20542 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20543 where the type-specific area is used to store the floatformat).
20544 But this is not a problem, because the gnat-specific information
20545 is actually not needed for these types. */
20546 if (need_gnat_info (cu)
20547 && TYPE_CODE (type) != TYPE_CODE_FUNC
20548 && TYPE_CODE (type) != TYPE_CODE_FLT
20549 && !HAVE_GNAT_AUX_INFO (type))
20550 INIT_GNAT_SPECIFIC (type);
20551
20552 if (dwarf2_per_objfile->die_type_hash == NULL)
20553 {
20554 dwarf2_per_objfile->die_type_hash =
20555 htab_create_alloc_ex (127,
20556 per_cu_offset_and_type_hash,
20557 per_cu_offset_and_type_eq,
20558 NULL,
20559 &objfile->objfile_obstack,
20560 hashtab_obstack_allocate,
20561 dummy_obstack_deallocate);
20562 }
20563
20564 ofs.per_cu = cu->per_cu;
20565 ofs.offset = die->offset;
20566 ofs.type = type;
20567 slot = (struct dwarf2_per_cu_offset_and_type **)
20568 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20569 if (*slot)
20570 complaint (&symfile_complaints,
20571 _("A problem internal to GDB: DIE 0x%x has type already set"),
20572 die->offset.sect_off);
20573 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20574 **slot = ofs;
20575 return type;
20576 }
20577
20578 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20579 or return NULL if the die does not have a saved type. */
20580
20581 static struct type *
20582 get_die_type_at_offset (sect_offset offset,
20583 struct dwarf2_per_cu_data *per_cu)
20584 {
20585 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20586
20587 if (dwarf2_per_objfile->die_type_hash == NULL)
20588 return NULL;
20589
20590 ofs.per_cu = per_cu;
20591 ofs.offset = offset;
20592 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20593 if (slot)
20594 return slot->type;
20595 else
20596 return NULL;
20597 }
20598
20599 /* Look up the type for DIE in CU in die_type_hash,
20600 or return NULL if DIE does not have a saved type. */
20601
20602 static struct type *
20603 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20604 {
20605 return get_die_type_at_offset (die->offset, cu->per_cu);
20606 }
20607
20608 /* Add a dependence relationship from CU to REF_PER_CU. */
20609
20610 static void
20611 dwarf2_add_dependence (struct dwarf2_cu *cu,
20612 struct dwarf2_per_cu_data *ref_per_cu)
20613 {
20614 void **slot;
20615
20616 if (cu->dependencies == NULL)
20617 cu->dependencies
20618 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20619 NULL, &cu->comp_unit_obstack,
20620 hashtab_obstack_allocate,
20621 dummy_obstack_deallocate);
20622
20623 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20624 if (*slot == NULL)
20625 *slot = ref_per_cu;
20626 }
20627
20628 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20629 Set the mark field in every compilation unit in the
20630 cache that we must keep because we are keeping CU. */
20631
20632 static int
20633 dwarf2_mark_helper (void **slot, void *data)
20634 {
20635 struct dwarf2_per_cu_data *per_cu;
20636
20637 per_cu = (struct dwarf2_per_cu_data *) *slot;
20638
20639 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20640 reading of the chain. As such dependencies remain valid it is not much
20641 useful to track and undo them during QUIT cleanups. */
20642 if (per_cu->cu == NULL)
20643 return 1;
20644
20645 if (per_cu->cu->mark)
20646 return 1;
20647 per_cu->cu->mark = 1;
20648
20649 if (per_cu->cu->dependencies != NULL)
20650 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20651
20652 return 1;
20653 }
20654
20655 /* Set the mark field in CU and in every other compilation unit in the
20656 cache that we must keep because we are keeping CU. */
20657
20658 static void
20659 dwarf2_mark (struct dwarf2_cu *cu)
20660 {
20661 if (cu->mark)
20662 return;
20663 cu->mark = 1;
20664 if (cu->dependencies != NULL)
20665 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20666 }
20667
20668 static void
20669 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20670 {
20671 while (per_cu)
20672 {
20673 per_cu->cu->mark = 0;
20674 per_cu = per_cu->cu->read_in_chain;
20675 }
20676 }
20677
20678 /* Trivial hash function for partial_die_info: the hash value of a DIE
20679 is its offset in .debug_info for this objfile. */
20680
20681 static hashval_t
20682 partial_die_hash (const void *item)
20683 {
20684 const struct partial_die_info *part_die = item;
20685
20686 return part_die->offset.sect_off;
20687 }
20688
20689 /* Trivial comparison function for partial_die_info structures: two DIEs
20690 are equal if they have the same offset. */
20691
20692 static int
20693 partial_die_eq (const void *item_lhs, const void *item_rhs)
20694 {
20695 const struct partial_die_info *part_die_lhs = item_lhs;
20696 const struct partial_die_info *part_die_rhs = item_rhs;
20697
20698 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20699 }
20700
20701 static struct cmd_list_element *set_dwarf2_cmdlist;
20702 static struct cmd_list_element *show_dwarf2_cmdlist;
20703
20704 static void
20705 set_dwarf2_cmd (char *args, int from_tty)
20706 {
20707 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20708 }
20709
20710 static void
20711 show_dwarf2_cmd (char *args, int from_tty)
20712 {
20713 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20714 }
20715
20716 /* Free data associated with OBJFILE, if necessary. */
20717
20718 static void
20719 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20720 {
20721 struct dwarf2_per_objfile *data = d;
20722 int ix;
20723
20724 /* Make sure we don't accidentally use dwarf2_per_objfile while
20725 cleaning up. */
20726 dwarf2_per_objfile = NULL;
20727
20728 for (ix = 0; ix < data->n_comp_units; ++ix)
20729 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20730
20731 for (ix = 0; ix < data->n_type_units; ++ix)
20732 VEC_free (dwarf2_per_cu_ptr,
20733 data->all_type_units[ix]->per_cu.imported_symtabs);
20734 xfree (data->all_type_units);
20735
20736 VEC_free (dwarf2_section_info_def, data->types);
20737
20738 if (data->dwo_files)
20739 free_dwo_files (data->dwo_files, objfile);
20740 if (data->dwp_file)
20741 gdb_bfd_unref (data->dwp_file->dbfd);
20742
20743 if (data->dwz_file && data->dwz_file->dwz_bfd)
20744 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20745 }
20746
20747 \f
20748 /* The "save gdb-index" command. */
20749
20750 /* The contents of the hash table we create when building the string
20751 table. */
20752 struct strtab_entry
20753 {
20754 offset_type offset;
20755 const char *str;
20756 };
20757
20758 /* Hash function for a strtab_entry.
20759
20760 Function is used only during write_hash_table so no index format backward
20761 compatibility is needed. */
20762
20763 static hashval_t
20764 hash_strtab_entry (const void *e)
20765 {
20766 const struct strtab_entry *entry = e;
20767 return mapped_index_string_hash (INT_MAX, entry->str);
20768 }
20769
20770 /* Equality function for a strtab_entry. */
20771
20772 static int
20773 eq_strtab_entry (const void *a, const void *b)
20774 {
20775 const struct strtab_entry *ea = a;
20776 const struct strtab_entry *eb = b;
20777 return !strcmp (ea->str, eb->str);
20778 }
20779
20780 /* Create a strtab_entry hash table. */
20781
20782 static htab_t
20783 create_strtab (void)
20784 {
20785 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20786 xfree, xcalloc, xfree);
20787 }
20788
20789 /* Add a string to the constant pool. Return the string's offset in
20790 host order. */
20791
20792 static offset_type
20793 add_string (htab_t table, struct obstack *cpool, const char *str)
20794 {
20795 void **slot;
20796 struct strtab_entry entry;
20797 struct strtab_entry *result;
20798
20799 entry.str = str;
20800 slot = htab_find_slot (table, &entry, INSERT);
20801 if (*slot)
20802 result = *slot;
20803 else
20804 {
20805 result = XNEW (struct strtab_entry);
20806 result->offset = obstack_object_size (cpool);
20807 result->str = str;
20808 obstack_grow_str0 (cpool, str);
20809 *slot = result;
20810 }
20811 return result->offset;
20812 }
20813
20814 /* An entry in the symbol table. */
20815 struct symtab_index_entry
20816 {
20817 /* The name of the symbol. */
20818 const char *name;
20819 /* The offset of the name in the constant pool. */
20820 offset_type index_offset;
20821 /* A sorted vector of the indices of all the CUs that hold an object
20822 of this name. */
20823 VEC (offset_type) *cu_indices;
20824 };
20825
20826 /* The symbol table. This is a power-of-2-sized hash table. */
20827 struct mapped_symtab
20828 {
20829 offset_type n_elements;
20830 offset_type size;
20831 struct symtab_index_entry **data;
20832 };
20833
20834 /* Hash function for a symtab_index_entry. */
20835
20836 static hashval_t
20837 hash_symtab_entry (const void *e)
20838 {
20839 const struct symtab_index_entry *entry = e;
20840 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20841 sizeof (offset_type) * VEC_length (offset_type,
20842 entry->cu_indices),
20843 0);
20844 }
20845
20846 /* Equality function for a symtab_index_entry. */
20847
20848 static int
20849 eq_symtab_entry (const void *a, const void *b)
20850 {
20851 const struct symtab_index_entry *ea = a;
20852 const struct symtab_index_entry *eb = b;
20853 int len = VEC_length (offset_type, ea->cu_indices);
20854 if (len != VEC_length (offset_type, eb->cu_indices))
20855 return 0;
20856 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20857 VEC_address (offset_type, eb->cu_indices),
20858 sizeof (offset_type) * len);
20859 }
20860
20861 /* Destroy a symtab_index_entry. */
20862
20863 static void
20864 delete_symtab_entry (void *p)
20865 {
20866 struct symtab_index_entry *entry = p;
20867 VEC_free (offset_type, entry->cu_indices);
20868 xfree (entry);
20869 }
20870
20871 /* Create a hash table holding symtab_index_entry objects. */
20872
20873 static htab_t
20874 create_symbol_hash_table (void)
20875 {
20876 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20877 delete_symtab_entry, xcalloc, xfree);
20878 }
20879
20880 /* Create a new mapped symtab object. */
20881
20882 static struct mapped_symtab *
20883 create_mapped_symtab (void)
20884 {
20885 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20886 symtab->n_elements = 0;
20887 symtab->size = 1024;
20888 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20889 return symtab;
20890 }
20891
20892 /* Destroy a mapped_symtab. */
20893
20894 static void
20895 cleanup_mapped_symtab (void *p)
20896 {
20897 struct mapped_symtab *symtab = p;
20898 /* The contents of the array are freed when the other hash table is
20899 destroyed. */
20900 xfree (symtab->data);
20901 xfree (symtab);
20902 }
20903
20904 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20905 the slot.
20906
20907 Function is used only during write_hash_table so no index format backward
20908 compatibility is needed. */
20909
20910 static struct symtab_index_entry **
20911 find_slot (struct mapped_symtab *symtab, const char *name)
20912 {
20913 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20914
20915 index = hash & (symtab->size - 1);
20916 step = ((hash * 17) & (symtab->size - 1)) | 1;
20917
20918 for (;;)
20919 {
20920 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20921 return &symtab->data[index];
20922 index = (index + step) & (symtab->size - 1);
20923 }
20924 }
20925
20926 /* Expand SYMTAB's hash table. */
20927
20928 static void
20929 hash_expand (struct mapped_symtab *symtab)
20930 {
20931 offset_type old_size = symtab->size;
20932 offset_type i;
20933 struct symtab_index_entry **old_entries = symtab->data;
20934
20935 symtab->size *= 2;
20936 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20937
20938 for (i = 0; i < old_size; ++i)
20939 {
20940 if (old_entries[i])
20941 {
20942 struct symtab_index_entry **slot = find_slot (symtab,
20943 old_entries[i]->name);
20944 *slot = old_entries[i];
20945 }
20946 }
20947
20948 xfree (old_entries);
20949 }
20950
20951 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20952 CU_INDEX is the index of the CU in which the symbol appears.
20953 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20954
20955 static void
20956 add_index_entry (struct mapped_symtab *symtab, const char *name,
20957 int is_static, gdb_index_symbol_kind kind,
20958 offset_type cu_index)
20959 {
20960 struct symtab_index_entry **slot;
20961 offset_type cu_index_and_attrs;
20962
20963 ++symtab->n_elements;
20964 if (4 * symtab->n_elements / 3 >= symtab->size)
20965 hash_expand (symtab);
20966
20967 slot = find_slot (symtab, name);
20968 if (!*slot)
20969 {
20970 *slot = XNEW (struct symtab_index_entry);
20971 (*slot)->name = name;
20972 /* index_offset is set later. */
20973 (*slot)->cu_indices = NULL;
20974 }
20975
20976 cu_index_and_attrs = 0;
20977 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20978 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20979 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20980
20981 /* We don't want to record an index value twice as we want to avoid the
20982 duplication.
20983 We process all global symbols and then all static symbols
20984 (which would allow us to avoid the duplication by only having to check
20985 the last entry pushed), but a symbol could have multiple kinds in one CU.
20986 To keep things simple we don't worry about the duplication here and
20987 sort and uniqufy the list after we've processed all symbols. */
20988 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20989 }
20990
20991 /* qsort helper routine for uniquify_cu_indices. */
20992
20993 static int
20994 offset_type_compare (const void *ap, const void *bp)
20995 {
20996 offset_type a = *(offset_type *) ap;
20997 offset_type b = *(offset_type *) bp;
20998
20999 return (a > b) - (b > a);
21000 }
21001
21002 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21003
21004 static void
21005 uniquify_cu_indices (struct mapped_symtab *symtab)
21006 {
21007 int i;
21008
21009 for (i = 0; i < symtab->size; ++i)
21010 {
21011 struct symtab_index_entry *entry = symtab->data[i];
21012
21013 if (entry
21014 && entry->cu_indices != NULL)
21015 {
21016 unsigned int next_to_insert, next_to_check;
21017 offset_type last_value;
21018
21019 qsort (VEC_address (offset_type, entry->cu_indices),
21020 VEC_length (offset_type, entry->cu_indices),
21021 sizeof (offset_type), offset_type_compare);
21022
21023 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21024 next_to_insert = 1;
21025 for (next_to_check = 1;
21026 next_to_check < VEC_length (offset_type, entry->cu_indices);
21027 ++next_to_check)
21028 {
21029 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21030 != last_value)
21031 {
21032 last_value = VEC_index (offset_type, entry->cu_indices,
21033 next_to_check);
21034 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21035 last_value);
21036 ++next_to_insert;
21037 }
21038 }
21039 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21040 }
21041 }
21042 }
21043
21044 /* Add a vector of indices to the constant pool. */
21045
21046 static offset_type
21047 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21048 struct symtab_index_entry *entry)
21049 {
21050 void **slot;
21051
21052 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21053 if (!*slot)
21054 {
21055 offset_type len = VEC_length (offset_type, entry->cu_indices);
21056 offset_type val = MAYBE_SWAP (len);
21057 offset_type iter;
21058 int i;
21059
21060 *slot = entry;
21061 entry->index_offset = obstack_object_size (cpool);
21062
21063 obstack_grow (cpool, &val, sizeof (val));
21064 for (i = 0;
21065 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21066 ++i)
21067 {
21068 val = MAYBE_SWAP (iter);
21069 obstack_grow (cpool, &val, sizeof (val));
21070 }
21071 }
21072 else
21073 {
21074 struct symtab_index_entry *old_entry = *slot;
21075 entry->index_offset = old_entry->index_offset;
21076 entry = old_entry;
21077 }
21078 return entry->index_offset;
21079 }
21080
21081 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21082 constant pool entries going into the obstack CPOOL. */
21083
21084 static void
21085 write_hash_table (struct mapped_symtab *symtab,
21086 struct obstack *output, struct obstack *cpool)
21087 {
21088 offset_type i;
21089 htab_t symbol_hash_table;
21090 htab_t str_table;
21091
21092 symbol_hash_table = create_symbol_hash_table ();
21093 str_table = create_strtab ();
21094
21095 /* We add all the index vectors to the constant pool first, to
21096 ensure alignment is ok. */
21097 for (i = 0; i < symtab->size; ++i)
21098 {
21099 if (symtab->data[i])
21100 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21101 }
21102
21103 /* Now write out the hash table. */
21104 for (i = 0; i < symtab->size; ++i)
21105 {
21106 offset_type str_off, vec_off;
21107
21108 if (symtab->data[i])
21109 {
21110 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21111 vec_off = symtab->data[i]->index_offset;
21112 }
21113 else
21114 {
21115 /* While 0 is a valid constant pool index, it is not valid
21116 to have 0 for both offsets. */
21117 str_off = 0;
21118 vec_off = 0;
21119 }
21120
21121 str_off = MAYBE_SWAP (str_off);
21122 vec_off = MAYBE_SWAP (vec_off);
21123
21124 obstack_grow (output, &str_off, sizeof (str_off));
21125 obstack_grow (output, &vec_off, sizeof (vec_off));
21126 }
21127
21128 htab_delete (str_table);
21129 htab_delete (symbol_hash_table);
21130 }
21131
21132 /* Struct to map psymtab to CU index in the index file. */
21133 struct psymtab_cu_index_map
21134 {
21135 struct partial_symtab *psymtab;
21136 unsigned int cu_index;
21137 };
21138
21139 static hashval_t
21140 hash_psymtab_cu_index (const void *item)
21141 {
21142 const struct psymtab_cu_index_map *map = item;
21143
21144 return htab_hash_pointer (map->psymtab);
21145 }
21146
21147 static int
21148 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21149 {
21150 const struct psymtab_cu_index_map *lhs = item_lhs;
21151 const struct psymtab_cu_index_map *rhs = item_rhs;
21152
21153 return lhs->psymtab == rhs->psymtab;
21154 }
21155
21156 /* Helper struct for building the address table. */
21157 struct addrmap_index_data
21158 {
21159 struct objfile *objfile;
21160 struct obstack *addr_obstack;
21161 htab_t cu_index_htab;
21162
21163 /* Non-zero if the previous_* fields are valid.
21164 We can't write an entry until we see the next entry (since it is only then
21165 that we know the end of the entry). */
21166 int previous_valid;
21167 /* Index of the CU in the table of all CUs in the index file. */
21168 unsigned int previous_cu_index;
21169 /* Start address of the CU. */
21170 CORE_ADDR previous_cu_start;
21171 };
21172
21173 /* Write an address entry to OBSTACK. */
21174
21175 static void
21176 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21177 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21178 {
21179 offset_type cu_index_to_write;
21180 gdb_byte addr[8];
21181 CORE_ADDR baseaddr;
21182
21183 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21184
21185 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21186 obstack_grow (obstack, addr, 8);
21187 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21188 obstack_grow (obstack, addr, 8);
21189 cu_index_to_write = MAYBE_SWAP (cu_index);
21190 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21191 }
21192
21193 /* Worker function for traversing an addrmap to build the address table. */
21194
21195 static int
21196 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21197 {
21198 struct addrmap_index_data *data = datap;
21199 struct partial_symtab *pst = obj;
21200
21201 if (data->previous_valid)
21202 add_address_entry (data->objfile, data->addr_obstack,
21203 data->previous_cu_start, start_addr,
21204 data->previous_cu_index);
21205
21206 data->previous_cu_start = start_addr;
21207 if (pst != NULL)
21208 {
21209 struct psymtab_cu_index_map find_map, *map;
21210 find_map.psymtab = pst;
21211 map = htab_find (data->cu_index_htab, &find_map);
21212 gdb_assert (map != NULL);
21213 data->previous_cu_index = map->cu_index;
21214 data->previous_valid = 1;
21215 }
21216 else
21217 data->previous_valid = 0;
21218
21219 return 0;
21220 }
21221
21222 /* Write OBJFILE's address map to OBSTACK.
21223 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21224 in the index file. */
21225
21226 static void
21227 write_address_map (struct objfile *objfile, struct obstack *obstack,
21228 htab_t cu_index_htab)
21229 {
21230 struct addrmap_index_data addrmap_index_data;
21231
21232 /* When writing the address table, we have to cope with the fact that
21233 the addrmap iterator only provides the start of a region; we have to
21234 wait until the next invocation to get the start of the next region. */
21235
21236 addrmap_index_data.objfile = objfile;
21237 addrmap_index_data.addr_obstack = obstack;
21238 addrmap_index_data.cu_index_htab = cu_index_htab;
21239 addrmap_index_data.previous_valid = 0;
21240
21241 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21242 &addrmap_index_data);
21243
21244 /* It's highly unlikely the last entry (end address = 0xff...ff)
21245 is valid, but we should still handle it.
21246 The end address is recorded as the start of the next region, but that
21247 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21248 anyway. */
21249 if (addrmap_index_data.previous_valid)
21250 add_address_entry (objfile, obstack,
21251 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21252 addrmap_index_data.previous_cu_index);
21253 }
21254
21255 /* Return the symbol kind of PSYM. */
21256
21257 static gdb_index_symbol_kind
21258 symbol_kind (struct partial_symbol *psym)
21259 {
21260 domain_enum domain = PSYMBOL_DOMAIN (psym);
21261 enum address_class aclass = PSYMBOL_CLASS (psym);
21262
21263 switch (domain)
21264 {
21265 case VAR_DOMAIN:
21266 switch (aclass)
21267 {
21268 case LOC_BLOCK:
21269 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21270 case LOC_TYPEDEF:
21271 return GDB_INDEX_SYMBOL_KIND_TYPE;
21272 case LOC_COMPUTED:
21273 case LOC_CONST_BYTES:
21274 case LOC_OPTIMIZED_OUT:
21275 case LOC_STATIC:
21276 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21277 case LOC_CONST:
21278 /* Note: It's currently impossible to recognize psyms as enum values
21279 short of reading the type info. For now punt. */
21280 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21281 default:
21282 /* There are other LOC_FOO values that one might want to classify
21283 as variables, but dwarf2read.c doesn't currently use them. */
21284 return GDB_INDEX_SYMBOL_KIND_OTHER;
21285 }
21286 case STRUCT_DOMAIN:
21287 return GDB_INDEX_SYMBOL_KIND_TYPE;
21288 default:
21289 return GDB_INDEX_SYMBOL_KIND_OTHER;
21290 }
21291 }
21292
21293 /* Add a list of partial symbols to SYMTAB. */
21294
21295 static void
21296 write_psymbols (struct mapped_symtab *symtab,
21297 htab_t psyms_seen,
21298 struct partial_symbol **psymp,
21299 int count,
21300 offset_type cu_index,
21301 int is_static)
21302 {
21303 for (; count-- > 0; ++psymp)
21304 {
21305 struct partial_symbol *psym = *psymp;
21306 void **slot;
21307
21308 if (SYMBOL_LANGUAGE (psym) == language_ada)
21309 error (_("Ada is not currently supported by the index"));
21310
21311 /* Only add a given psymbol once. */
21312 slot = htab_find_slot (psyms_seen, psym, INSERT);
21313 if (!*slot)
21314 {
21315 gdb_index_symbol_kind kind = symbol_kind (psym);
21316
21317 *slot = psym;
21318 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21319 is_static, kind, cu_index);
21320 }
21321 }
21322 }
21323
21324 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21325 exception if there is an error. */
21326
21327 static void
21328 write_obstack (FILE *file, struct obstack *obstack)
21329 {
21330 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21331 file)
21332 != obstack_object_size (obstack))
21333 error (_("couldn't data write to file"));
21334 }
21335
21336 /* Unlink a file if the argument is not NULL. */
21337
21338 static void
21339 unlink_if_set (void *p)
21340 {
21341 char **filename = p;
21342 if (*filename)
21343 unlink (*filename);
21344 }
21345
21346 /* A helper struct used when iterating over debug_types. */
21347 struct signatured_type_index_data
21348 {
21349 struct objfile *objfile;
21350 struct mapped_symtab *symtab;
21351 struct obstack *types_list;
21352 htab_t psyms_seen;
21353 int cu_index;
21354 };
21355
21356 /* A helper function that writes a single signatured_type to an
21357 obstack. */
21358
21359 static int
21360 write_one_signatured_type (void **slot, void *d)
21361 {
21362 struct signatured_type_index_data *info = d;
21363 struct signatured_type *entry = (struct signatured_type *) *slot;
21364 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21365 gdb_byte val[8];
21366
21367 write_psymbols (info->symtab,
21368 info->psyms_seen,
21369 info->objfile->global_psymbols.list
21370 + psymtab->globals_offset,
21371 psymtab->n_global_syms, info->cu_index,
21372 0);
21373 write_psymbols (info->symtab,
21374 info->psyms_seen,
21375 info->objfile->static_psymbols.list
21376 + psymtab->statics_offset,
21377 psymtab->n_static_syms, info->cu_index,
21378 1);
21379
21380 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21381 entry->per_cu.offset.sect_off);
21382 obstack_grow (info->types_list, val, 8);
21383 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21384 entry->type_offset_in_tu.cu_off);
21385 obstack_grow (info->types_list, val, 8);
21386 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21387 obstack_grow (info->types_list, val, 8);
21388
21389 ++info->cu_index;
21390
21391 return 1;
21392 }
21393
21394 /* Recurse into all "included" dependencies and write their symbols as
21395 if they appeared in this psymtab. */
21396
21397 static void
21398 recursively_write_psymbols (struct objfile *objfile,
21399 struct partial_symtab *psymtab,
21400 struct mapped_symtab *symtab,
21401 htab_t psyms_seen,
21402 offset_type cu_index)
21403 {
21404 int i;
21405
21406 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21407 if (psymtab->dependencies[i]->user != NULL)
21408 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21409 symtab, psyms_seen, cu_index);
21410
21411 write_psymbols (symtab,
21412 psyms_seen,
21413 objfile->global_psymbols.list + psymtab->globals_offset,
21414 psymtab->n_global_syms, cu_index,
21415 0);
21416 write_psymbols (symtab,
21417 psyms_seen,
21418 objfile->static_psymbols.list + psymtab->statics_offset,
21419 psymtab->n_static_syms, cu_index,
21420 1);
21421 }
21422
21423 /* Create an index file for OBJFILE in the directory DIR. */
21424
21425 static void
21426 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21427 {
21428 struct cleanup *cleanup;
21429 char *filename, *cleanup_filename;
21430 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21431 struct obstack cu_list, types_cu_list;
21432 int i;
21433 FILE *out_file;
21434 struct mapped_symtab *symtab;
21435 offset_type val, size_of_contents, total_len;
21436 struct stat st;
21437 htab_t psyms_seen;
21438 htab_t cu_index_htab;
21439 struct psymtab_cu_index_map *psymtab_cu_index_map;
21440
21441 if (dwarf2_per_objfile->using_index)
21442 error (_("Cannot use an index to create the index"));
21443
21444 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21445 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21446
21447 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21448 return;
21449
21450 if (stat (objfile_name (objfile), &st) < 0)
21451 perror_with_name (objfile_name (objfile));
21452
21453 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
21454 INDEX_SUFFIX, (char *) NULL);
21455 cleanup = make_cleanup (xfree, filename);
21456
21457 out_file = gdb_fopen_cloexec (filename, "wb");
21458 if (!out_file)
21459 error (_("Can't open `%s' for writing"), filename);
21460
21461 cleanup_filename = filename;
21462 make_cleanup (unlink_if_set, &cleanup_filename);
21463
21464 symtab = create_mapped_symtab ();
21465 make_cleanup (cleanup_mapped_symtab, symtab);
21466
21467 obstack_init (&addr_obstack);
21468 make_cleanup_obstack_free (&addr_obstack);
21469
21470 obstack_init (&cu_list);
21471 make_cleanup_obstack_free (&cu_list);
21472
21473 obstack_init (&types_cu_list);
21474 make_cleanup_obstack_free (&types_cu_list);
21475
21476 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21477 NULL, xcalloc, xfree);
21478 make_cleanup_htab_delete (psyms_seen);
21479
21480 /* While we're scanning CU's create a table that maps a psymtab pointer
21481 (which is what addrmap records) to its index (which is what is recorded
21482 in the index file). This will later be needed to write the address
21483 table. */
21484 cu_index_htab = htab_create_alloc (100,
21485 hash_psymtab_cu_index,
21486 eq_psymtab_cu_index,
21487 NULL, xcalloc, xfree);
21488 make_cleanup_htab_delete (cu_index_htab);
21489 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21490 xmalloc (sizeof (struct psymtab_cu_index_map)
21491 * dwarf2_per_objfile->n_comp_units);
21492 make_cleanup (xfree, psymtab_cu_index_map);
21493
21494 /* The CU list is already sorted, so we don't need to do additional
21495 work here. Also, the debug_types entries do not appear in
21496 all_comp_units, but only in their own hash table. */
21497 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21498 {
21499 struct dwarf2_per_cu_data *per_cu
21500 = dwarf2_per_objfile->all_comp_units[i];
21501 struct partial_symtab *psymtab = per_cu->v.psymtab;
21502 gdb_byte val[8];
21503 struct psymtab_cu_index_map *map;
21504 void **slot;
21505
21506 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21507 It may be referenced from a local scope but in such case it does not
21508 need to be present in .gdb_index. */
21509 if (psymtab == NULL)
21510 continue;
21511
21512 if (psymtab->user == NULL)
21513 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21514
21515 map = &psymtab_cu_index_map[i];
21516 map->psymtab = psymtab;
21517 map->cu_index = i;
21518 slot = htab_find_slot (cu_index_htab, map, INSERT);
21519 gdb_assert (slot != NULL);
21520 gdb_assert (*slot == NULL);
21521 *slot = map;
21522
21523 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21524 per_cu->offset.sect_off);
21525 obstack_grow (&cu_list, val, 8);
21526 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21527 obstack_grow (&cu_list, val, 8);
21528 }
21529
21530 /* Dump the address map. */
21531 write_address_map (objfile, &addr_obstack, cu_index_htab);
21532
21533 /* Write out the .debug_type entries, if any. */
21534 if (dwarf2_per_objfile->signatured_types)
21535 {
21536 struct signatured_type_index_data sig_data;
21537
21538 sig_data.objfile = objfile;
21539 sig_data.symtab = symtab;
21540 sig_data.types_list = &types_cu_list;
21541 sig_data.psyms_seen = psyms_seen;
21542 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21543 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21544 write_one_signatured_type, &sig_data);
21545 }
21546
21547 /* Now that we've processed all symbols we can shrink their cu_indices
21548 lists. */
21549 uniquify_cu_indices (symtab);
21550
21551 obstack_init (&constant_pool);
21552 make_cleanup_obstack_free (&constant_pool);
21553 obstack_init (&symtab_obstack);
21554 make_cleanup_obstack_free (&symtab_obstack);
21555 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21556
21557 obstack_init (&contents);
21558 make_cleanup_obstack_free (&contents);
21559 size_of_contents = 6 * sizeof (offset_type);
21560 total_len = size_of_contents;
21561
21562 /* The version number. */
21563 val = MAYBE_SWAP (8);
21564 obstack_grow (&contents, &val, sizeof (val));
21565
21566 /* The offset of the CU list from the start of the file. */
21567 val = MAYBE_SWAP (total_len);
21568 obstack_grow (&contents, &val, sizeof (val));
21569 total_len += obstack_object_size (&cu_list);
21570
21571 /* The offset of the types CU list from the start of the file. */
21572 val = MAYBE_SWAP (total_len);
21573 obstack_grow (&contents, &val, sizeof (val));
21574 total_len += obstack_object_size (&types_cu_list);
21575
21576 /* The offset of the address table from the start of the file. */
21577 val = MAYBE_SWAP (total_len);
21578 obstack_grow (&contents, &val, sizeof (val));
21579 total_len += obstack_object_size (&addr_obstack);
21580
21581 /* The offset of the symbol table from the start of the file. */
21582 val = MAYBE_SWAP (total_len);
21583 obstack_grow (&contents, &val, sizeof (val));
21584 total_len += obstack_object_size (&symtab_obstack);
21585
21586 /* The offset of the constant pool from the start of the file. */
21587 val = MAYBE_SWAP (total_len);
21588 obstack_grow (&contents, &val, sizeof (val));
21589 total_len += obstack_object_size (&constant_pool);
21590
21591 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21592
21593 write_obstack (out_file, &contents);
21594 write_obstack (out_file, &cu_list);
21595 write_obstack (out_file, &types_cu_list);
21596 write_obstack (out_file, &addr_obstack);
21597 write_obstack (out_file, &symtab_obstack);
21598 write_obstack (out_file, &constant_pool);
21599
21600 fclose (out_file);
21601
21602 /* We want to keep the file, so we set cleanup_filename to NULL
21603 here. See unlink_if_set. */
21604 cleanup_filename = NULL;
21605
21606 do_cleanups (cleanup);
21607 }
21608
21609 /* Implementation of the `save gdb-index' command.
21610
21611 Note that the file format used by this command is documented in the
21612 GDB manual. Any changes here must be documented there. */
21613
21614 static void
21615 save_gdb_index_command (char *arg, int from_tty)
21616 {
21617 struct objfile *objfile;
21618
21619 if (!arg || !*arg)
21620 error (_("usage: save gdb-index DIRECTORY"));
21621
21622 ALL_OBJFILES (objfile)
21623 {
21624 struct stat st;
21625
21626 /* If the objfile does not correspond to an actual file, skip it. */
21627 if (stat (objfile_name (objfile), &st) < 0)
21628 continue;
21629
21630 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21631 if (dwarf2_per_objfile)
21632 {
21633 volatile struct gdb_exception except;
21634
21635 TRY_CATCH (except, RETURN_MASK_ERROR)
21636 {
21637 write_psymtabs_to_index (objfile, arg);
21638 }
21639 if (except.reason < 0)
21640 exception_fprintf (gdb_stderr, except,
21641 _("Error while writing index for `%s': "),
21642 objfile_name (objfile));
21643 }
21644 }
21645 }
21646
21647 \f
21648
21649 int dwarf2_always_disassemble;
21650
21651 static void
21652 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21653 struct cmd_list_element *c, const char *value)
21654 {
21655 fprintf_filtered (file,
21656 _("Whether to always disassemble "
21657 "DWARF expressions is %s.\n"),
21658 value);
21659 }
21660
21661 static void
21662 show_check_physname (struct ui_file *file, int from_tty,
21663 struct cmd_list_element *c, const char *value)
21664 {
21665 fprintf_filtered (file,
21666 _("Whether to check \"physname\" is %s.\n"),
21667 value);
21668 }
21669
21670 void _initialize_dwarf2_read (void);
21671
21672 void
21673 _initialize_dwarf2_read (void)
21674 {
21675 struct cmd_list_element *c;
21676
21677 dwarf2_objfile_data_key
21678 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21679
21680 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21681 Set DWARF 2 specific variables.\n\
21682 Configure DWARF 2 variables such as the cache size"),
21683 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21684 0/*allow-unknown*/, &maintenance_set_cmdlist);
21685
21686 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21687 Show DWARF 2 specific variables\n\
21688 Show DWARF 2 variables such as the cache size"),
21689 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21690 0/*allow-unknown*/, &maintenance_show_cmdlist);
21691
21692 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21693 &dwarf2_max_cache_age, _("\
21694 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21695 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21696 A higher limit means that cached compilation units will be stored\n\
21697 in memory longer, and more total memory will be used. Zero disables\n\
21698 caching, which can slow down startup."),
21699 NULL,
21700 show_dwarf2_max_cache_age,
21701 &set_dwarf2_cmdlist,
21702 &show_dwarf2_cmdlist);
21703
21704 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21705 &dwarf2_always_disassemble, _("\
21706 Set whether `info address' always disassembles DWARF expressions."), _("\
21707 Show whether `info address' always disassembles DWARF expressions."), _("\
21708 When enabled, DWARF expressions are always printed in an assembly-like\n\
21709 syntax. When disabled, expressions will be printed in a more\n\
21710 conversational style, when possible."),
21711 NULL,
21712 show_dwarf2_always_disassemble,
21713 &set_dwarf2_cmdlist,
21714 &show_dwarf2_cmdlist);
21715
21716 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21717 Set debugging of the dwarf2 reader."), _("\
21718 Show debugging of the dwarf2 reader."), _("\
21719 When enabled, debugging messages are printed during dwarf2 reading\n\
21720 and symtab expansion."),
21721 NULL,
21722 NULL,
21723 &setdebuglist, &showdebuglist);
21724
21725 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21726 Set debugging of the dwarf2 DIE reader."), _("\
21727 Show debugging of the dwarf2 DIE reader."), _("\
21728 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21729 The value is the maximum depth to print."),
21730 NULL,
21731 NULL,
21732 &setdebuglist, &showdebuglist);
21733
21734 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21735 Set cross-checking of \"physname\" code against demangler."), _("\
21736 Show cross-checking of \"physname\" code against demangler."), _("\
21737 When enabled, GDB's internal \"physname\" code is checked against\n\
21738 the demangler."),
21739 NULL, show_check_physname,
21740 &setdebuglist, &showdebuglist);
21741
21742 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21743 no_class, &use_deprecated_index_sections, _("\
21744 Set whether to use deprecated gdb_index sections."), _("\
21745 Show whether to use deprecated gdb_index sections."), _("\
21746 When enabled, deprecated .gdb_index sections are used anyway.\n\
21747 Normally they are ignored either because of a missing feature or\n\
21748 performance issue.\n\
21749 Warning: This option must be enabled before gdb reads the file."),
21750 NULL,
21751 NULL,
21752 &setlist, &showlist);
21753
21754 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21755 _("\
21756 Save a gdb-index file.\n\
21757 Usage: save gdb-index DIRECTORY"),
21758 &save_cmdlist);
21759 set_cmd_completer (c, filename_completer);
21760
21761 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21762 &dwarf2_locexpr_funcs);
21763 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21764 &dwarf2_loclist_funcs);
21765
21766 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21767 &dwarf2_block_frame_base_locexpr_funcs);
21768 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21769 &dwarf2_block_frame_base_loclist_funcs);
21770 }
This page took 0.539449 seconds and 4 git commands to generate.