common/filestuff.c (make_cleanup_close): Update comment.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = (const struct line_header *) item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2053
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2057
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2066 }
2067
2068 /* Return the containing section of virtual section SECTION. */
2069
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2072 {
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2075 }
2076
2077 /* Return the bfd owner of SECTION. */
2078
2079 static struct bfd *
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2081 {
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
2087 return section->s.section->owner;
2088 }
2089
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093 static asection *
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2095 {
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
2101 return section->s.section;
2102 }
2103
2104 /* Return the name of SECTION. */
2105
2106 static const char *
2107 get_section_name (const struct dwarf2_section_info *section)
2108 {
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113 }
2114
2115 /* Return the name of the file SECTION is in. */
2116
2117 static const char *
2118 get_section_file_name (const struct dwarf2_section_info *section)
2119 {
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123 }
2124
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128 static int
2129 get_section_id (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136 }
2137
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2140
2141 static int
2142 get_section_flags (const struct dwarf2_section_info *section)
2143 {
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148 }
2149
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2152
2153 static int
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2156 {
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
2164 }
2165
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170 static void
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2172 {
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
2185 {
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->abbrev))
2190 {
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->line))
2195 {
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->loc))
2200 {
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->macinfo))
2205 {
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->str))
2215 {
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->frame))
2225 {
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2228 }
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2230 {
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2233 }
2234 else if (section_is_p (sectp->name, &names->ranges))
2235 {
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2238 }
2239 else if (section_is_p (sectp->name, &names->types))
2240 {
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
2249 }
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2251 {
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
2255
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2259 }
2260
2261 /* A helper function that decides whether a section is empty,
2262 or not present. */
2263
2264 static int
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2270 }
2271
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
2276 If the section is compressed, uncompress it before returning. */
2277
2278 static void
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2280 {
2281 asection *sectp;
2282 bfd *abfd;
2283 gdb_byte *buf, *retbuf;
2284
2285 if (info->readin)
2286 return;
2287 info->buffer = NULL;
2288 info->readin = 1;
2289
2290 if (dwarf2_section_empty_p (info))
2291 return;
2292
2293 sectp = get_section_bfd_section (info);
2294
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2323 {
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2325 return;
2326 }
2327
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2329 info->buffer = buf;
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
2352 }
2353
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364 {
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368 }
2369
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2371 SECTION_NAME. */
2372
2373 void
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2378 {
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
2404
2405 dwarf2_read_section (objfile, info);
2406
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410 }
2411
2412 /* A helper function to find the sections for a .dwz file. */
2413
2414 static void
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416 {
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
2451 }
2452
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2456
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2459 {
2460 bfd *dwz_bfd;
2461 char *data;
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2466 size_t buildid_len;
2467 bfd_byte *buildid;
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2484
2485 buildid_len = (size_t) buildid_len_arg;
2486
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2506 {
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
2512 }
2513
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2531 return result;
2532 }
2533 \f
2534 /* DWARF quick_symbols_functions support. */
2535
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2542 {
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556 };
2557
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2562 {
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579 };
2580
2581 /* Utility hash function for a stmt_list_hash. */
2582
2583 static hashval_t
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585 {
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592 }
2593
2594 /* Utility equality function for a stmt_list_hash. */
2595
2596 static int
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599 {
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607 }
2608
2609 /* Hash function for a quick_file_names. */
2610
2611 static hashval_t
2612 hash_file_name_entry (const void *e)
2613 {
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2616
2617 return hash_stmt_list_entry (&file_data->hash);
2618 }
2619
2620 /* Equality function for a quick_file_names. */
2621
2622 static int
2623 eq_file_name_entry (const void *a, const void *b)
2624 {
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2627
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2629 }
2630
2631 /* Delete function for a quick_file_names. */
2632
2633 static void
2634 delete_file_name_entry (void *e)
2635 {
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648 }
2649
2650 /* Create a quick_file_names hash table. */
2651
2652 static htab_t
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2654 {
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658 }
2659
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664 static void
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2666 {
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2669 else
2670 load_full_comp_unit (per_cu, language_minimal);
2671
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2676 }
2677
2678 /* Read in the symbols for PER_CU. */
2679
2680 static void
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2682 {
2683 struct cleanup *back_to;
2684
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2710 }
2711
2712 process_queue ();
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719 }
2720
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2724
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2727 {
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2736 }
2737
2738 return per_cu->v.quick->compunit_symtab;
2739 }
2740
2741 /* Return the CU/TU given its index.
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2749
2750 ...;
2751 }
2752 */
2753
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2756 {
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765 }
2766
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
2770
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2773 {
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2775
2776 return dwarf2_per_objfile->all_comp_units[index];
2777 }
2778
2779 /* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2781
2782 static void
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
2788 {
2789 offset_type i;
2790
2791 for (i = 0; i < n_elements; i += 2)
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2811 }
2812 }
2813
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2816
2817 static void
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821 {
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2828
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2831
2832 if (dwz_elements == 0)
2833 return;
2834
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2838 }
2839
2840 /* Create the signatured type hash table from the index. */
2841
2842 static void
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2847 {
2848 offset_type i;
2849 htab_t sig_types_hash;
2850
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2856
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2863 void **slot;
2864
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
2886
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2888 }
2889
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2891 }
2892
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2895
2896 static void
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898 {
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
2924
2925 if (lo > hi)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2930 continue;
2931 }
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2938 continue;
2939 }
2940
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949 }
2950
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2958
2959 static hashval_t
2960 mapped_index_string_hash (int index_version, const void *p)
2961 {
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
2972
2973 return r;
2974 }
2975
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2979
2980 static int
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983 {
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2988
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
2996
2997 if (strchr (name, '(') != NULL)
2998 {
2999 char *without_params = cp_remove_params (name);
3000
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
3006 }
3007 }
3008
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
3031
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3038 return 1;
3039 }
3040
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3042 }
3043 }
3044
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
3055
3056 static int
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3066 {
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3070 int i;
3071
3072 if (dwarf2_section_empty_p (section))
3073 return 0;
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3078 return 0;
3079
3080 dwarf2_read_section (objfile, section);
3081
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3088 indices. */
3089 if (version < 4)
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3095 filename);
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("\
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3117 filename);
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3129
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3132 if (version > 8)
3133 return 0;
3134
3135 map->version = version;
3136 map->total_size = section->size;
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3139
3140 i = 0;
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
3144 ++i;
3145
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
3150 ++i;
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3161 ++i;
3162
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3164
3165 return 1;
3166 }
3167
3168
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172 static int
3173 dwarf2_read_index (struct objfile *objfile)
3174 {
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3179
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3189 return 0;
3190
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
3195 {
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
3215
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3230 }
3231
3232 create_addrmap_from_index (objfile, &local_map);
3233
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3235 *map = local_map;
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3241
3242 return 1;
3243 }
3244
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3247
3248 static void
3249 dw2_setup (struct objfile *objfile)
3250 {
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3254 }
3255
3256 /* die_reader_func for dw2_get_file_names. */
3257
3258 static void
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
3264 {
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3271 int i;
3272 const char *name, *comp_dir;
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3276
3277 gdb_assert (! this_cu->is_debug_types);
3278
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 lh_cu = this_cu;
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3293 if (attr)
3294 {
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3308 return;
3309 }
3310
3311 lh = dwarf_decode_line_header (line_offset, cu);
3312 }
3313 if (lh == NULL)
3314 {
3315 lh_cu->v.quick->no_file_data = 1;
3316 return;
3317 }
3318
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
3324
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3326
3327 qfn->num_file_names = lh->num_file_names;
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3333
3334 free_line_header (lh);
3335
3336 lh_cu->v.quick->file_names = qfn;
3337 }
3338
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3344 {
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3349
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
3361 }
3362
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3365
3366 static const char *
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3369 {
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3373
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3376
3377 return qfn->real_names[index];
3378 }
3379
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3382 {
3383 struct compunit_symtab *cust;
3384 int index;
3385
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
3392 }
3393
3394 /* Traversal function for dw2_forget_cached_source_info. */
3395
3396 static int
3397 dw2_free_cached_file_names (void **slot, void *info)
3398 {
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3400
3401 if (file_data->real_names)
3402 {
3403 int i;
3404
3405 for (i = 0; i < file_data->num_file_names; ++i)
3406 {
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3409 }
3410 }
3411
3412 return 1;
3413 }
3414
3415 static void
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3417 {
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3422 }
3423
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427 static int
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433 {
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3435
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
3442 dw2_instantiate_symtab (per_cu);
3443
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3446 }
3447
3448 /* Implementation of the map_symtabs_matching_filename method. */
3449
3450 static int
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
3455 {
3456 int i;
3457 const char *name_basename = lbasename (name);
3458
3459 dw2_setup (objfile);
3460
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3463
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3465 {
3466 int j;
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3469
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3472 continue;
3473
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3476 continue;
3477
3478 for (j = 0; j < file_data->num_file_names; ++j)
3479 {
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3482
3483 if (compare_filenames_for_search (this_name, name))
3484 {
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3486 callback, data))
3487 return 1;
3488 continue;
3489 }
3490
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3499 {
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
3503 continue;
3504 }
3505
3506 if (real_path != NULL)
3507 {
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3512 {
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3514 callback, data))
3515 return 1;
3516 continue;
3517 }
3518 }
3519 }
3520 }
3521
3522 return 0;
3523 }
3524
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527 struct dw2_symtab_iterator
3528 {
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
3550 };
3551
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3555
3556 static void
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563 {
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
3569 iter->global_seen = 0;
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578 }
3579
3580 /* Return the next matching CU or NULL if there are no more. */
3581
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584 {
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3612 continue;
3613 }
3614
3615 per_cu = dw2_get_cutu (cu_index);
3616
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3619 continue;
3620
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3669 {
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3672
3673 dw2_setup (objfile);
3674
3675 index = dwarf2_per_objfile->index_table;
3676
3677 /* index is NULL if OBJF_READNOW. */
3678 if (index)
3679 {
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3684
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3686 {
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3691
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3699
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
3706
3707 /* Keep looking through other CUs. */
3708 }
3709 }
3710
3711 return stab_best;
3712 }
3713
3714 static void
3715 dw2_print_stats (struct objfile *objfile)
3716 {
3717 int i, total, count;
3718
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3721 count = 0;
3722 for (i = 0; i < total; ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 if (!per_cu->v.quick->compunit_symtab)
3727 ++count;
3728 }
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731 }
3732
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
3738 static void
3739 dw2_dump (struct objfile *objfile)
3740 {
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3752 }
3753
3754 static void
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3758 {
3759 /* There's nothing to relocate here. */
3760 }
3761
3762 static void
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765 {
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3789 {
3790 int i;
3791
3792 dw2_setup (objfile);
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3796 {
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3798
3799 dw2_instantiate_symtab (per_cu);
3800 }
3801 }
3802
3803 static void
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3821
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
3835 {
3836 dw2_instantiate_symtab (per_cu);
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 static void
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3846 int global,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3851 {
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3864 void *data)
3865 {
3866 int i;
3867 offset_type iter;
3868 struct mapped_index *index;
3869
3870 dw2_setup (objfile);
3871
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
3875 index = dwarf2_per_objfile->index_table;
3876
3877 if (file_matcher != NULL)
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3895 {
3896 int j;
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3899 void **slot;
3900
3901 QUIT;
3902
3903 per_cu->v.quick->mark = 0;
3904
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3907 continue;
3908
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3911 continue;
3912
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
3923 const char *this_real_name;
3924
3925 if (file_matcher (file_data->file_names[j], data, 0))
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
3955
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3962
3963 QUIT;
3964
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3966 continue;
3967
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3969
3970 if (! (*symbol_matcher) (name, data))
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4033 continue;
4034 }
4035
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
4052 }
4053 }
4054 }
4055
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4057 symtab. */
4058
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
4062 {
4063 int i;
4064
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
4068
4069 if (cust->includes == NULL)
4070 return NULL;
4071
4072 for (i = 0; cust->includes[i]; ++i)
4073 {
4074 struct compunit_symtab *s = cust->includes[i];
4075
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
4090 {
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
4101 if (!data)
4102 return NULL;
4103
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4107
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
4111 gdb_assert (result != NULL);
4112 return result;
4113 }
4114
4115 static void
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4118 {
4119 int i;
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4123
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4126
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4130
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 if (per_cu->v.quick->compunit_symtab)
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4145 {
4146 int j;
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4149 void **slot;
4150
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4153 continue;
4154
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4157 continue;
4158
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
4167 for (j = 0; j < file_data->num_file_names; ++j)
4168 {
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4176 }
4177 }
4178
4179 do_cleanups (cleanup);
4180 }
4181
4182 static int
4183 dw2_has_symbols (struct objfile *objfile)
4184 {
4185 return 1;
4186 }
4187
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189 {
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4194 dw2_lookup_symbol,
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4205 };
4206
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210 int
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4212 {
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4226
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4229 {
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4231
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 \f
4249
4250 /* Build a partial symbol table. */
4251
4252 void
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4254 {
4255
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
4261 TRY
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
4276 }
4277
4278 /* Return the total length of the CU described by HEADER. */
4279
4280 static unsigned int
4281 get_cu_length (const struct comp_unit_head *header)
4282 {
4283 return header->initial_length_size + header->length;
4284 }
4285
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288 static inline int
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4290 {
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4293
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4295 }
4296
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303 static void
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305 {
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
4314 cu->base_address = attr_value_as_address (attr);
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
4322 cu->base_address = attr_value_as_address (attr);
4323 cu->base_known = 1;
4324 }
4325 }
4326 }
4327
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
4331
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4335 {
4336 int signed_addr;
4337 unsigned int bytes_read;
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4355
4356 return info_ptr;
4357 }
4358
4359 /* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364 {
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373 }
4374
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379 static void
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4383 {
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
4392 if (header->abbrev_offset.sect_off
4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
4405 (long) header->length, (long) header->offset.sect_off,
4406 filename);
4407 }
4408
4409 /* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
4412
4413 static const gdb_byte *
4414 read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4416 struct dwarf2_section_info *abbrev_section,
4417 const gdb_byte *info_ptr,
4418 int is_debug_types_section)
4419 {
4420 const gdb_byte *beg_of_comp_unit = info_ptr;
4421 bfd *abfd = get_section_bfd_owner (section);
4422
4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4424
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
4429 if (is_debug_types_section)
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4433
4434 error_check_comp_unit_head (header, section, abbrev_section);
4435
4436 return info_ptr;
4437 }
4438
4439 /* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
4442 static const gdb_byte *
4443 read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4445 struct dwarf2_section_info *abbrev_section,
4446 const gdb_byte *info_ptr,
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
4449 {
4450 const gdb_byte *beg_of_comp_unit = info_ptr;
4451 bfd *abfd = get_section_bfd_owner (section);
4452
4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4454
4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4456
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
4465 info_ptr += header->offset_size;
4466
4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4468
4469 error_check_comp_unit_head (header, section, abbrev_section);
4470
4471 return info_ptr;
4472 }
4473
4474 /* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476 static sect_offset
4477 read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479 {
4480 bfd *abfd = get_section_bfd_owner (section);
4481 const gdb_byte *info_ptr;
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492 }
4493
4494 /* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497 static void
4498 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4499 struct objfile *objfile)
4500 {
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
4521 subpst->compunit_symtab = NULL;
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
4527 the regular ones. */
4528 subpst->read_symtab_private = NULL;
4529 }
4530
4531 /* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
4533 partial symtab for each of these included files. */
4534
4535 static void
4536 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4537 struct die_info *die,
4538 struct partial_symtab *pst)
4539 {
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
4542
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4551
4552 free_line_header (lh);
4553 }
4554
4555 static hashval_t
4556 hash_signatured_type (const void *item)
4557 {
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
4560
4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4562 return sig_type->signature;
4563 }
4564
4565 static int
4566 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4567 {
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4570
4571 return lhs->signature == rhs->signature;
4572 }
4573
4574 /* Allocate a hash table for signatured types. */
4575
4576 static htab_t
4577 allocate_signatured_type_table (struct objfile *objfile)
4578 {
4579 return htab_create_alloc_ex (41,
4580 hash_signatured_type,
4581 eq_signatured_type,
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586 }
4587
4588 /* A helper function to add a signatured type CU to a table. */
4589
4590 static int
4591 add_signatured_type_cu_to_table (void **slot, void *datum)
4592 {
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
4595
4596 **datap = sigt;
4597 ++*datap;
4598
4599 return 1;
4600 }
4601
4602 /* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
4610
4611 static htab_t
4612 create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
4614 {
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 htab_t types_htab = NULL;
4617 int ix;
4618 struct dwarf2_section_info *section;
4619 struct dwarf2_section_info *abbrev_section;
4620
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
4623
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
4628 if (dwarf_read_debug)
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
4631 get_section_file_name (abbrev_section));
4632
4633 for (ix = 0;
4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4635 ++ix)
4636 {
4637 bfd *abfd;
4638 const gdb_byte *info_ptr, *end_ptr;
4639
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
4642
4643 if (info_ptr == NULL)
4644 continue;
4645
4646 /* We can't set abfd until now because the section may be empty or
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
4649
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
4657 sect_offset offset;
4658 cu_offset type_offset_in_tu;
4659 ULONGEST signature;
4660 struct signatured_type *sig_type;
4661 struct dwo_unit *dwo_tu;
4662 void **slot;
4663 const gdb_byte *ptr = info_ptr;
4664 struct comp_unit_head header;
4665 unsigned int length;
4666
4667 offset.sect_off = ptr - section->buffer;
4668
4669 /* We need to read the type's signature in order to build the hash
4670 table, but we don't need anything else just yet. */
4671
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
4674 &signature, &type_offset_in_tu);
4675
4676 length = get_cu_length (&header);
4677
4678 /* Skip dummy type units. */
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
4681 {
4682 info_ptr += length;
4683 continue;
4684 }
4685
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4702 dwo_tu->section = section;
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
4717 sig_type->per_cu.section = section;
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
4721
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
4744
4745 complaint (&symfile_complaints,
4746 _("debug type entry at offset 0x%x is duplicate to"
4747 " the entry at offset 0x%x, signature %s"),
4748 offset.sect_off, dup_offset.sect_off,
4749 hex_string (signature));
4750 }
4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4752
4753 if (dwarf_read_debug > 1)
4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4755 offset.sect_off,
4756 hex_string (signature));
4757
4758 info_ptr += length;
4759 }
4760 }
4761
4762 return types_htab;
4763 }
4764
4765 /* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770 static int
4771 create_all_type_units (struct objfile *objfile)
4772 {
4773 htab_t types_htab;
4774 struct signatured_type **iter;
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
4794
4795 return 1;
4796 }
4797
4798 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802 static struct signatured_type *
4803 add_type_unit (ULONGEST sig, void **slot)
4804 {
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845 }
4846
4847 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850 static void
4851 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854 {
4855 /* Make sure we're not clobbering something we don't expect to. */
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877 }
4878
4879 /* Subroutine of lookup_signatured_type.
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891 static struct signatured_type *
4892 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893 {
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
4898 void **slot;
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
4909
4910 /* We only ever need to read in one copy of a signatured type.
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
4915
4916 find_sig_entry.signature = sig;
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
4919 sig_entry = (struct signatured_type *) *slot;
4920
4921 /* We can get here with the TU already read, *or* in the process of being
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4931 return sig_entry;
4932
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4950 sig_entry->per_cu.tu_read = 1;
4951 return sig_entry;
4952 }
4953
4954 /* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
4958
4959 static struct signatured_type *
4960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961 {
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
4966 void **slot;
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
4974 {
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
4977 }
4978
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
4982 sig_entry = (struct signatured_type *) *slot;
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
4990 if (dwp_file->tus == NULL)
4991 return NULL;
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
4997 sig_entry = add_type_unit (sig, slot);
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
5000 return sig_entry;
5001 }
5002
5003 /* Lookup a signature based type for DW_FORM_ref_sig8.
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
5006
5007 static struct signatured_type *
5008 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5009 {
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
5023
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5029 return entry;
5030 }
5031 }
5032 \f
5033 /* Low level DIE reading support. */
5034
5035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037 static void
5038 init_cu_die_reader (struct die_reader_specs *reader,
5039 struct dwarf2_cu *cu,
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
5042 {
5043 gdb_assert (section->readin && section->buffer != NULL);
5044 reader->abfd = get_section_bfd_owner (section);
5045 reader->cu = cu;
5046 reader->dwo_file = dwo_file;
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
5049 reader->buffer_end = section->buffer + section->size;
5050 reader->comp_dir = NULL;
5051 }
5052
5053 /* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070 static int
5071 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
5075 const char *stub_comp_dir,
5076 struct die_reader_specs *result_reader,
5077 const gdb_byte **result_info_ptr,
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080 {
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
5085 const gdb_byte *begin_info_ptr, *info_ptr;
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5095
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
5149 abfd = get_section_bfd_owner (section);
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5204 /* Ensure the DWO abbrev table gets freed. */
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5211 /* Leave any existing abbrev table cleanup as is. */
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
5241 if (dwarf_die_debug)
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
5245 get_section_name (section),
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
5248 dump_die (comp_unit_die, dwarf_die_debug);
5249 }
5250
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265 }
5266
5267 /* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5269 Returns NULL if the specified DWO unit cannot be found. */
5270
5271 static struct dwo_unit *
5272 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274 {
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
5281 gdb_assert (cu != NULL);
5282
5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
5305 dwo_name, objfile_name (this_cu->objfile));
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
5311 return dwo_unit;
5312 }
5313
5314 /* Subroutine of init_cutu_and_read_dies to simplify it.
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
5322
5323 static void
5324 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328 {
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
5356 cu = XNEW (struct dwarf2_cu);
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
5381 /* This duplicates the code in init_cutu_and_read_dies,
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
5385 if (free_cu_cleanup != NULL)
5386 {
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
5392
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
5396
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
5403 }
5404
5405 do_cleanups (cleanups);
5406 }
5407
5408 /* Initialize a CU (or TU) and read its DIEs.
5409 If the CU defers to a DWO file, read the DWO file as well.
5410
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5422 linker) then DIE_READER_FUNC will not get called. */
5423
5424 static void
5425 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5426 struct abbrev_table *abbrev_table,
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
5430 {
5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
5432 struct dwarf2_section_info *section = this_cu->section;
5433 bfd *abfd = get_section_bfd_owner (section);
5434 struct dwarf2_cu *cu;
5435 const gdb_byte *begin_info_ptr, *info_ptr;
5436 struct die_reader_specs reader;
5437 struct die_info *comp_unit_die;
5438 int has_children;
5439 struct attribute *attr;
5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5441 struct signatured_type *sig_type = NULL;
5442 struct dwarf2_section_info *abbrev_section;
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
5446 int rereading_dwo_cu = 0;
5447
5448 if (dwarf_die_debug)
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
5453 if (use_existing_cu)
5454 gdb_assert (keep);
5455
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
5465 return;
5466 }
5467
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
5493 cu = XNEW (struct dwarf2_cu);
5494 init_one_comp_unit (cu, this_cu);
5495 /* If an error occurs while loading, release our storage. */
5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5497 }
5498
5499 /* Get the header. */
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
5507 if (this_cu->is_debug_types)
5508 {
5509 ULONGEST signature;
5510 cu_offset type_offset_in_tu;
5511
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
5514 &signature,
5515 &type_offset_in_tu);
5516
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
5527 this_cu->length = get_cu_length (&cu->header);
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5532 }
5533 else
5534 {
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5541 }
5542 }
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
5565 {
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
5574
5575 /* Read the top level CU/TU die. */
5576 init_cu_die_reader (&reader, cu, section, NULL);
5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5578
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
5586 struct dwo_unit *dwo_unit;
5587 struct die_info *dwo_comp_unit_die;
5588
5589 if (has_children)
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5597 if (dwo_unit != NULL)
5598 {
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
5601 comp_unit_die, NULL,
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
5618 }
5619 }
5620
5621 /* All of the above is setup for this call. Yikes. */
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
5624 /* Done, clean up. */
5625 if (free_cu_cleanup != NULL)
5626 {
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
5632
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
5636
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
5643 }
5644
5645 do_cleanups (cleanups);
5646 }
5647
5648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5653 THIS_CU->is_debug_types, but nothing else.
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
5663
5664 static void
5665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5666 struct dwo_file *dwo_file,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669 {
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_section_info *abbrev_section;
5674 struct dwarf2_cu cu;
5675 const gdb_byte *begin_info_ptr, *info_ptr;
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
5681 if (dwarf_die_debug)
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
5686 gdb_assert (this_cu->cu == NULL);
5687
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
5702 this_cu->is_debug_types);
5703
5704 this_cu->length = get_cu_length (&cu.header);
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
5709 {
5710 do_cleanups (cleanups);
5711 return;
5712 }
5713
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723 }
5724
5725 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
5728
5729 THIS_CU->cu is always freed when done.
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
5733
5734 static void
5735 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738 {
5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5740 }
5741 \f
5742 /* Type Unit Groups.
5743
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
5749
5750 static hashval_t
5751 hash_type_unit_group (const void *item)
5752 {
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
5755
5756 return hash_stmt_list_entry (&tu_group->hash);
5757 }
5758
5759 static int
5760 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5761 {
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5764
5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5766 }
5767
5768 /* Allocate a hash table for type unit groups. */
5769
5770 static htab_t
5771 allocate_type_unit_groups_table (void)
5772 {
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780 }
5781
5782 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5787
5788 /* Helper routine for get_type_unit_group.
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791 static struct type_unit_group *
5792 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5793 {
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
5795 struct dwarf2_per_cu_data *per_cu;
5796 struct type_unit_group *tu_group;
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
5800 per_cu = &tu_group->per_cu;
5801 per_cu->objfile = objfile;
5802
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
5823
5824 xfree (name);
5825 }
5826
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
5829
5830 return tu_group;
5831 }
5832
5833 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
5835
5836 static struct type_unit_group *
5837 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5838 {
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
5877 tu_group = (struct type_unit_group *) *slot;
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
5885 tu_group = create_type_unit_group (cu, line_offset_struct);
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891 }
5892 \f
5893 /* Partial symbol tables. */
5894
5895 /* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900 static struct partial_symtab *
5901 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902 {
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
5906 pst = start_psymtab_common (objfile, name, 0,
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918 }
5919
5920 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923 struct process_psymtab_comp_unit_data
5924 {
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933 };
5934
5935 /* die_reader_func for process_psymtab_comp_unit. */
5936
5937 static void
5938 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5939 const gdb_byte *info_ptr,
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943 {
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
5955
5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
5968 filename = "";
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6024
6025 end_psymtab_common (objfile, pst);
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
6051 if (dwarf_read_debug)
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064 }
6065
6066 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069 static void
6070 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6071 int want_partial_unit,
6072 enum language pretend_language)
6073 {
6074 struct process_psymtab_comp_unit_data info;
6075
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
6089 &info);
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093 }
6094
6095 /* Reader function for build_type_psymtabs. */
6096
6097 static void
6098 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6099 const gdb_byte *info_ptr,
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103 {
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6107 struct signatured_type *sig_type;
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6122 tu_group = get_type_unit_group (cu, attr);
6123
6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
6137 end_psymtab_common (objfile, pst);
6138 }
6139
6140 /* Struct used to sort TUs by their abbreviation table offset. */
6141
6142 struct tu_abbrev_offset
6143 {
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146 };
6147
6148 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150 static int
6151 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152 {
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161 }
6162
6163 /* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181 static void
6182 build_type_psymtabs_1 (void)
6183 {
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
6218 if (dwarf_read_debug)
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
6268 do_cleanups (cleanups);
6269 }
6270
6271 /* Print collected type unit statistics. */
6272
6273 static void
6274 print_tu_stats (void)
6275 {
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
6291 }
6292
6293 /* Traversal function for build_type_psymtabs. */
6294
6295 static int
6296 build_type_psymtab_dependencies (void **slot, void *info)
6297 {
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6301 struct partial_symtab *pst = per_cu->v.psymtab;
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
6304 int i;
6305
6306 gdb_assert (len > 0);
6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6308
6309 pst->number_of_dependencies = len;
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6312 for (i = 0;
6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6314 ++i)
6315 {
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
6318 iter->type_unit_group = tu_group;
6319 }
6320
6321 VEC_free (sig_type_ptr, tu_group->tus);
6322
6323 return 1;
6324 }
6325
6326 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329 static void
6330 build_type_psymtabs (struct objfile *objfile)
6331 {
6332 if (! create_all_type_units (objfile))
6333 return;
6334
6335 build_type_psymtabs_1 ();
6336 }
6337
6338 /* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341 static int
6342 process_skeletonless_type_unit (void **slot, void *info)
6343 {
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6345 struct objfile *objfile = (struct objfile *) info;
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375 }
6376
6377 /* Traversal function for process_skeletonless_type_units. */
6378
6379 static int
6380 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381 {
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391 }
6392
6393 /* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397 static void
6398 process_skeletonless_type_units (struct objfile *objfile)
6399 {
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
6408 }
6409
6410 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412 static void
6413 psymtabs_addrmap_cleanup (void *o)
6414 {
6415 struct objfile *objfile = (struct objfile *) o;
6416
6417 objfile->psymtabs_addrmap = NULL;
6418 }
6419
6420 /* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422 static void
6423 set_partial_user (struct objfile *objfile)
6424 {
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
6433 if (pst == NULL)
6434 continue;
6435
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443 }
6444
6445 /* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
6447
6448 static void
6449 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6450 {
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
6453 int i;
6454
6455 if (dwarf_read_debug)
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6458 objfile_name (objfile));
6459 }
6460
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6464
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
6468
6469 build_type_psymtabs (objfile);
6470
6471 create_all_comp_units (objfile);
6472
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6479
6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6481 {
6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6483
6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6485 }
6486
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
6497 if (dwarf_read_debug)
6498 print_tu_stats ();
6499
6500 set_partial_user (objfile);
6501
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
6504 discard_cleanups (addrmap_cleanup);
6505
6506 do_cleanups (back_to);
6507
6508 if (dwarf_read_debug)
6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6510 objfile_name (objfile));
6511 }
6512
6513 /* die_reader_func for load_partial_comp_unit. */
6514
6515 static void
6516 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6517 const gdb_byte *info_ptr,
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
6521 {
6522 struct dwarf2_cu *cu = reader->cu;
6523
6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6525
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
6528 If not, there's no more debug_info for this comp unit. */
6529 if (has_children)
6530 load_partial_dies (reader, info_ptr, 0);
6531 }
6532
6533 /* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
6535
6536 static void
6537 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538 {
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
6541 }
6542
6543 static void
6544 read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
6550 {
6551 const gdb_byte *info_ptr;
6552 bfd *abfd = get_section_bfd_owner (section);
6553
6554 if (dwarf_read_debug)
6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6556 get_section_name (section),
6557 get_section_file_name (section));
6558
6559 dwarf2_read_section (objfile, section);
6560
6561 info_ptr = section->buffer;
6562
6563 while (info_ptr < section->buffer + section->size)
6564 {
6565 unsigned int length, initial_length_size;
6566 struct dwarf2_per_cu_data *this_cu;
6567 sect_offset offset;
6568
6569 offset.sect_off = info_ptr - section->buffer;
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6574
6575 /* Save the compilation unit for later lookup. */
6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
6579 this_cu->length = length + initial_length_size;
6580 this_cu->is_dwz = is_dwz;
6581 this_cu->objfile = objfile;
6582 this_cu->section = section;
6583
6584 if (*n_comp_units == *n_allocated)
6585 {
6586 *n_allocated *= 2;
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
6589 }
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
6595 }
6596
6597 /* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600 static void
6601 create_all_comp_units (struct objfile *objfile)
6602 {
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
6606 struct dwz_file *dwz;
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
6620
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
6628 }
6629
6630 /* Process all loaded DIEs for compilation unit CU, starting at
6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6635
6636 static void
6637 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
6640 {
6641 struct partial_die_info *pdi;
6642
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
6646
6647 pdi = first_die;
6648
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 /* Anonymous namespaces or modules have no name but have interesting
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
6656
6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
6660 {
6661 switch (pdi->tag)
6662 {
6663 case DW_TAG_subprogram:
6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6665 break;
6666 case DW_TAG_constant:
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
6669 case DW_TAG_union_type:
6670 if (!pdi->is_declaration)
6671 {
6672 add_partial_symbol (pdi, cu);
6673 }
6674 break;
6675 case DW_TAG_class_type:
6676 case DW_TAG_interface_type:
6677 case DW_TAG_structure_type:
6678 if (!pdi->is_declaration)
6679 {
6680 add_partial_symbol (pdi, cu);
6681 }
6682 break;
6683 case DW_TAG_enumeration_type:
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
6686 break;
6687 case DW_TAG_base_type:
6688 case DW_TAG_subrange_type:
6689 /* File scope base type definitions are added to the partial
6690 symbol table. */
6691 add_partial_symbol (pdi, cu);
6692 break;
6693 case DW_TAG_namespace:
6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6695 break;
6696 case DW_TAG_module:
6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6698 break;
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
6708 objfile_name (cu->objfile));
6709 }
6710
6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6712 pdi->is_dwz,
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
6718
6719 VEC_safe_push (dwarf2_per_cu_ptr,
6720 cu->per_cu->imported_symtabs, per_cu);
6721 }
6722 break;
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
6726 default:
6727 break;
6728 }
6729 }
6730
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735 }
6736
6737 /* Functions used to compute the fully scoped name of a partial DIE.
6738
6739 Normally, this is simple. For C++, the parent DIE's fully scoped
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
6745
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757 /* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
6761 static const char *
6762 partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764 {
6765 const char *grandparent_scope;
6766 struct partial_die_info *parent, *real_pdi;
6767
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
6772 while (real_pdi->has_specification)
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
6785 grandparent_scope = partial_die_parent_scope (parent, cu);
6786
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6791 && parent->tag == DW_TAG_namespace
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
6804 || parent->tag == DW_TAG_module
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
6807 || parent->tag == DW_TAG_interface_type
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
6816 parent->name, 0, cu);
6817 }
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
6824 _("unhandled containing DIE tag %d for DIE at %d"),
6825 parent->tag, pdi->offset.sect_off);
6826 parent->scope = grandparent_scope;
6827 }
6828
6829 parent->scope_set = 1;
6830 return parent->scope;
6831 }
6832
6833 /* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
6835
6836 static char *
6837 partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839 {
6840 const char *parent_scope;
6841
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
6856 /* DW_FORM_ref_addr is using section offset. */
6857 attr.name = 0;
6858 attr.form = DW_FORM_ref_addr;
6859 attr.u.unsnd = pdi->offset.sect_off;
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6871 }
6872
6873 static void
6874 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6875 {
6876 struct objfile *objfile = cu->objfile;
6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6878 CORE_ADDR addr = 0;
6879 const char *actual_name = NULL;
6880 CORE_ADDR baseaddr;
6881 char *built_actual_name;
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6884
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
6888
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6896 if (pdi->is_external || cu->language == language_ada)
6897 {
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 addr, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, cu->language, objfile);
6928 }
6929 break;
6930 case DW_TAG_variable:
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6933
6934 if (pdi->d.locdesc
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6963 addr + baseaddr,
6964 cu->language, objfile);
6965 }
6966 else
6967 {
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6973 {
6974 xfree (built_actual_name);
6975 return;
6976 }
6977
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6983 cu->language, objfile);
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
6988 case DW_TAG_subrange_type:
6989 add_psymbol_to_list (actual_name, strlen (actual_name),
6990 built_actual_name != NULL,
6991 VAR_DOMAIN, LOC_TYPEDEF,
6992 &objfile->static_psymbols,
6993 0, cu->language, objfile);
6994 break;
6995 case DW_TAG_imported_declaration:
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
6998 built_actual_name != NULL,
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
7001 0, cu->language, objfile);
7002 break;
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
7008 0, cu->language, objfile);
7009 break;
7010 case DW_TAG_class_type:
7011 case DW_TAG_interface_type:
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
7021 {
7022 xfree (built_actual_name);
7023 return;
7024 }
7025
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
7028 add_psymbol_to_list (actual_name, strlen (actual_name),
7029 built_actual_name != NULL,
7030 STRUCT_DOMAIN, LOC_TYPEDEF,
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
7035 0, cu->language, objfile);
7036
7037 break;
7038 case DW_TAG_enumerator:
7039 add_psymbol_to_list (actual_name, strlen (actual_name),
7040 built_actual_name != NULL,
7041 VAR_DOMAIN, LOC_CONST,
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
7046 0, cu->language, objfile);
7047 break;
7048 default:
7049 break;
7050 }
7051
7052 xfree (built_actual_name);
7053 }
7054
7055 /* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
7058
7059 static void
7060 add_partial_namespace (struct partial_die_info *pdi,
7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7062 int set_addrmap, struct dwarf2_cu *cu)
7063 {
7064 /* Add a symbol for the namespace. */
7065
7066 add_partial_symbol (pdi, cu);
7067
7068 /* Now scan partial symbols in that namespace. */
7069
7070 if (pdi->has_children)
7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7072 }
7073
7074 /* Read a partial die corresponding to a Fortran module. */
7075
7076 static void
7077 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7079 {
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
7084 /* Now scan partial symbols in that module. */
7085
7086 if (pdi->has_children)
7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7088 }
7089
7090 /* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
7093 that this subprogram contains. If SET_ADDRMAP is true, record the
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
7096
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102 static void
7103 add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7105 int set_addrmap, struct dwarf2_cu *cu)
7106 {
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
7115 if (set_addrmap)
7116 {
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7130 cu->per_cu->v.psymtab);
7131 }
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
7136 if (!pdi->is_declaration)
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
7142 }
7143 }
7144
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160 }
7161
7162 /* Read a partial die corresponding to an enumeration type. */
7163
7164 static void
7165 add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
7167 {
7168 struct partial_die_info *pdi;
7169
7170 if (enum_pdi->name != NULL)
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
7175 {
7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7178 else
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
7181 }
7182 }
7183
7184 /* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186 static unsigned int
7187 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7188 {
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192 }
7193
7194 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199 static struct abbrev_info *
7200 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7201 struct dwarf2_cu *cu)
7202 {
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7213 if (!abbrev)
7214 {
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
7219 }
7220
7221 return abbrev;
7222 }
7223
7224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
7228 static const gdb_byte *
7229 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7230 {
7231 struct dwarf2_cu *cu = reader->cu;
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7242 }
7243 }
7244
7245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
7251 static const gdb_byte *
7252 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7253 struct abbrev_info *abbrev)
7254 {
7255 unsigned int bytes_read;
7256 struct attribute attr;
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
7259 const gdb_byte *buffer = reader->buffer;
7260 const gdb_byte *buffer_end = reader->buffer_end;
7261 const gdb_byte *start_info_ptr = info_ptr;
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7270 if (attr.form == DW_FORM_ref_addr)
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
7273 else
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7283 else
7284 return sibling_ptr;
7285 }
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
7293 case DW_FORM_ref_addr:
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
7304 case DW_FORM_addr:
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
7312 case DW_FORM_flag_present:
7313 break;
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
7324 case DW_FORM_ref_sig8:
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
7328 read_direct_string (abfd, info_ptr, &bytes_read);
7329 info_ptr += bytes_read;
7330 break;
7331 case DW_FORM_sec_offset:
7332 case DW_FORM_strp:
7333 case DW_FORM_GNU_strp_alt:
7334 info_ptr += cu->header.offset_size;
7335 break;
7336 case DW_FORM_exprloc:
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
7373 return skip_children (reader, info_ptr);
7374 else
7375 return info_ptr;
7376 }
7377
7378 /* Locate ORIG_PDI's sibling.
7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7380
7381 static const gdb_byte *
7382 locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
7384 const gdb_byte *info_ptr)
7385 {
7386 /* Do we know the sibling already? */
7387
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
7396 /* Skip the children the long way. */
7397
7398 return skip_children (reader, info_ptr);
7399 }
7400
7401 /* Expand this partial symbol table into a full symbol table. SELF is
7402 not NULL. */
7403
7404 static void
7405 dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
7407 {
7408 if (self->readin)
7409 {
7410 warning (_("bug: psymtab for %s is already read in."),
7411 self->filename);
7412 }
7413 else
7414 {
7415 if (info_verbose)
7416 {
7417 printf_filtered (_("Reading in symbols for %s..."),
7418 self->filename);
7419 gdb_flush (gdb_stdout);
7420 }
7421
7422 /* Restore our global data. */
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
7426
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
7437
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
7441
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7443
7444 psymtab_to_symtab_1 (self);
7445
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
7449 }
7450
7451 process_cu_includes ();
7452 }
7453 \f
7454 /* Reading in full CUs. */
7455
7456 /* Add PER_CU to the queue. */
7457
7458 static void
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7461 {
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
7465 item = XNEW (struct dwarf2_queue_item);
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476 }
7477
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7486
7487 static int
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491 {
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523 }
7524
7525 /* Process the queue. */
7526
7527 static void
7528 process_queue (void)
7529 {
7530 struct dwarf2_queue_item *item, *next_item;
7531
7532 if (dwarf_read_debug)
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7537 }
7538
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7550 unsigned int debug_print_threshold;
7551 char buf[100];
7552
7553 if (per_cu->is_debug_types)
7554 {
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
7564 }
7565 else
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
7570
7571 if (dwarf_read_debug >= debug_print_threshold)
7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
7579 if (dwarf_read_debug >= debug_print_threshold)
7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7581 }
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
7589
7590 if (dwarf_read_debug)
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7593 objfile_name (dwarf2_per_objfile->objfile));
7594 }
7595 }
7596
7597 /* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601 static void
7602 dwarf2_release_queue (void *dummy)
7603 {
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
7614 free_one_cached_comp_unit (item->per_cu);
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624 }
7625
7626 /* Read in full symbols for PST, and anything it depends on. */
7627
7628 static void
7629 psymtab_to_symtab_1 (struct partial_symtab *pst)
7630 {
7631 struct dwarf2_per_cu_data *per_cu;
7632 int i;
7633
7634 if (pst->readin)
7635 return;
7636
7637 for (i = 0; i < pst->number_of_dependencies; i++)
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
7644 /* FIXME: i18n: Need to make this a single string. */
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
7650 wrap_here (""); /* Flush output. */
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7657
7658 if (per_cu == NULL)
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
7665
7666 dw2_do_instantiate_symtab (per_cu);
7667 }
7668
7669 /* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
7671
7672 static hashval_t
7673 die_hash (const void *item)
7674 {
7675 const struct die_info *die = (const struct die_info *) item;
7676
7677 return die->offset.sect_off;
7678 }
7679
7680 /* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
7682
7683 static int
7684 die_eq (const void *item_lhs, const void *item_rhs)
7685 {
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7688
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690 }
7691
7692 /* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
7695
7696 static void
7697 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7698 const gdb_byte *info_ptr,
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702 {
7703 struct dwarf2_cu *cu = reader->cu;
7704 enum language *language_ptr = (enum language *) data;
7705
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
7715
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
7721
7722 /* We try not to read any attributes in this function, because not
7723 all CUs needed for references have been loaded yet, and symbol
7724 table processing isn't initialized. But we have to set the CU language,
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7729 }
7730
7731 /* Load the DIEs associated with PER_CU into memory. */
7732
7733 static void
7734 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
7736 {
7737 gdb_assert (! this_cu->is_debug_types);
7738
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
7741 }
7742
7743 /* Add a DIE to the delayed physname list. */
7744
7745 static void
7746 add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749 {
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757 }
7758
7759 /* A cleanup for freeing the delayed method list. */
7760
7761 static void
7762 free_delayed_list (void *ptr)
7763 {
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770 }
7771
7772 /* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778 static void
7779 compute_delayed_physnames (struct dwarf2_cu *cu)
7780 {
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
7785 const char *physname;
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7788 physname = dwarf2_physname (mi->name, mi->die, cu);
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
7791 }
7792 }
7793
7794 /* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805 static void
7806 fixup_go_packaging (struct dwarf2_cu *cu)
7807 {
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
7835 : objfile_name (cu->objfile)),
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
7846 const char *saved_package_name
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7851 saved_package_name, objfile);
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
7856 sym = allocate_symbol (objfile);
7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870 }
7871
7872 /* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
7875 static struct compunit_symtab *
7876 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7877 {
7878 return (dwarf2_per_objfile->using_index
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
7881 }
7882
7883 /* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886 static void
7887 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7888 htab_t all_children, htab_t all_type_symtabs,
7889 struct dwarf2_per_cu_data *per_cu,
7890 struct compunit_symtab *immediate_parent)
7891 {
7892 void **slot;
7893 int ix;
7894 struct compunit_symtab *cust;
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7914 if (*slot == NULL)
7915 {
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
7920 }
7921 }
7922 else
7923 {
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
7927 }
7928 }
7929
7930 for (ix = 0;
7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7932 ++ix)
7933 {
7934 recursively_compute_inclusions (result, all_children,
7935 all_type_symtabs, iter, cust);
7936 }
7937 }
7938
7939 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7940 PER_CU. */
7941
7942 static void
7943 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7944 {
7945 gdb_assert (! per_cu->is_debug_types);
7946
7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7948 {
7949 int ix, len;
7950 struct dwarf2_per_cu_data *per_cu_iter;
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7953 htab_t all_children, all_type_symtabs;
7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7955
7956 /* If we don't have a symtab, we can just skip this case. */
7957 if (cust == NULL)
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7964
7965 for (ix = 0;
7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7967 ix, per_cu_iter);
7968 ++ix)
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
7971 all_type_symtabs, per_cu_iter,
7972 cust);
7973 }
7974
7975 /* Now we have a transitive closure of all the included symtabs. */
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
7980 for (ix = 0;
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
7983 ++ix)
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
7986
7987 VEC_free (compunit_symtab_ptr, result_symtabs);
7988 htab_delete (all_children);
7989 htab_delete (all_type_symtabs);
7990 }
7991 }
7992
7993 /* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996 static void
7997 process_cu_includes (void)
7998 {
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
8006 {
8007 if (! iter->is_debug_types)
8008 compute_compunit_symtab_includes (iter);
8009 }
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012 }
8013
8014 /* Generate full symbol information for PER_CU, whose DIEs have
8015 already been loaded into memory. */
8016
8017 static void
8018 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8020 {
8021 struct dwarf2_cu *cu = per_cu->cu;
8022 struct objfile *objfile = per_cu->objfile;
8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8024 CORE_ADDR lowpc, highpc;
8025 struct compunit_symtab *cust;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 CORE_ADDR baseaddr;
8028 struct block *static_block;
8029 CORE_ADDR addr;
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* Do line number decoding in read_file_scope () */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8059
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
8072
8073 if (cust != NULL)
8074 {
8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8076
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
8096 if (cu->has_loclist && gcc_4_minor >= 5)
8097 cust->locations_valid = 1;
8098
8099 if (gcc_4_minor >= 5)
8100 cust->epilogue_unwind_valid = 1;
8101
8102 cust->call_site_htab = cu->call_site_htab;
8103 }
8104
8105 if (dwarf2_per_objfile->using_index)
8106 per_cu->v.quick->compunit_symtab = cust;
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
8110 pst->compunit_symtab = cust;
8111 pst->readin = 1;
8112 }
8113
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
8117 do_cleanups (back_to);
8118 }
8119
8120 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123 static void
8124 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126 {
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
8129 struct compunit_symtab *cust;
8130 struct cleanup *back_to, *delayed_list_cleanup;
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
8163 {
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
8166
8167 if (cust != NULL)
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176 }
8177 }
8178 else
8179 {
8180 augment_type_symtab ();
8181 cust = sig_type->type_unit_group->compunit_symtab;
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
8185 per_cu->v.quick->compunit_symtab = cust;
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
8189 pst->compunit_symtab = cust;
8190 pst->readin = 1;
8191 }
8192
8193 do_cleanups (back_to);
8194 }
8195
8196 /* Process an imported unit DIE. */
8197
8198 static void
8199 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200 {
8201 struct attribute *attr;
8202
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
8208 objfile_name (cu->objfile));
8209 }
8210
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
8217 int is_dwz;
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8222
8223 /* If necessary, add it to the queue and load its DIEs. */
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8228 per_cu);
8229 }
8230 }
8231
8232 /* Reset the in_process bit of a die. */
8233
8234 static void
8235 reset_die_in_process (void *arg)
8236 {
8237 struct die_info *die = (struct die_info *) arg;
8238
8239 die->in_process = 0;
8240 }
8241
8242 /* Process a die and its children. */
8243
8244 static void
8245 process_die (struct die_info *die, struct dwarf2_cu *cu)
8246 {
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
8260 case DW_TAG_partial_unit:
8261 read_file_scope (die, cu);
8262 break;
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
8266 case DW_TAG_subprogram:
8267 case DW_TAG_inlined_subroutine:
8268 read_func_scope (die, cu);
8269 break;
8270 case DW_TAG_lexical_block:
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
8273 read_lexical_block_scope (die, cu);
8274 break;
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
8278 case DW_TAG_class_type:
8279 case DW_TAG_interface_type:
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
8282 process_structure_scope (die, cu);
8283 break;
8284 case DW_TAG_enumeration_type:
8285 process_enumeration_scope (die, cu);
8286 break;
8287
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
8291 case DW_TAG_subroutine_type:
8292 case DW_TAG_set_type:
8293 case DW_TAG_array_type:
8294 case DW_TAG_pointer_type:
8295 case DW_TAG_ptr_to_member_type:
8296 case DW_TAG_reference_type:
8297 case DW_TAG_string_type:
8298 break;
8299
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 case DW_TAG_typedef:
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
8305 new_symbol (die, read_type_die (die, cu), cu);
8306 break;
8307 case DW_TAG_common_block:
8308 read_common_block (die, cu);
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
8312 case DW_TAG_namespace:
8313 cu->processing_has_namespace_info = 1;
8314 read_namespace (die, cu);
8315 break;
8316 case DW_TAG_module:
8317 cu->processing_has_namespace_info = 1;
8318 read_module (die, cu);
8319 break;
8320 case DW_TAG_imported_declaration:
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
8325 case DW_TAG_imported_module:
8326 cu->processing_has_namespace_info = 1;
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
8332 break;
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
8338 default:
8339 new_symbol (die, NULL, cu);
8340 break;
8341 }
8342
8343 do_cleanups (in_process);
8344 }
8345 \f
8346 /* DWARF name computation. */
8347
8348 /* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352 static int
8353 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 struct attribute *attr;
8356
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
8368 case DW_TAG_inlined_subroutine:
8369 case DW_TAG_member:
8370 case DW_TAG_imported_declaration:
8371 return 1;
8372
8373 case DW_TAG_variable:
8374 case DW_TAG_constant:
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
8383
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
8388 attr = dwarf2_attr (die, DW_AT_external, cu);
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
8399 return 0;
8400 return 1;
8401
8402 default:
8403 return 0;
8404 }
8405 }
8406
8407 /* Retrieve the last character from a mem_file. */
8408
8409 static void
8410 do_ui_file_peek_last (void *object, const char *buffer, long length)
8411 {
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
8427
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433 static const char *
8434 dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
8436 int physname)
8437 {
8438 struct objfile *objfile = cu->objfile;
8439
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
8458 const char *linkage_name;
8459
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
8465 }
8466
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
8469 && (cu->language == language_cplus || cu->language == language_java
8470 || cu->language == language_fortran || cu->language == language_d))
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
8475 const char *prefix;
8476 struct ui_file *buf;
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
8486
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
8491 fputs_unfiltered (name, buf);
8492
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
8525 LONGEST value;
8526 const gdb_byte *bytes;
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
8621
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
8634 names. */
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8637 0, 0, &type_print_raw_options);
8638 }
8639 else if (cu->language == language_cplus)
8640 {
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
8655 intermediate_name = ui_file_xstrdup (buf, &length);
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
8671 else
8672 name = canonical_name;
8673
8674 xfree (intermediate_name);
8675 }
8676 }
8677
8678 return name;
8679 }
8680
8681 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
8683 will be allocated on the storage_obstack, or NULL if the DIE does
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
8687 The output string will be canonicalized (if C++/Java). */
8688
8689 static const char *
8690 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8691 {
8692 return dwarf2_compute_name (name, die, cu, 0);
8693 }
8694
8695 /* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
8699
8700 The output string will be canonicalized (if C++/Java). */
8701
8702 static const char *
8703 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8704 {
8705 struct objfile *objfile = cu->objfile;
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
8724 if (mangled != NULL)
8725 {
8726 char *demangled;
8727
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
8751 }
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
8799
8800 do_cleanups (back_to);
8801 return retval;
8802 }
8803
8804 /* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809 static int
8810 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811 {
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862 }
8863
8864 /* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873 static struct using_direct **
8874 using_directives (enum language language)
8875 {
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880 }
8881
8882 /* Read the import statement specified by the given die and record it. */
8883
8884 static void
8885 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886 {
8887 struct objfile *objfile = cu->objfile;
8888 struct attribute *import_attr;
8889 struct die_info *imported_die, *child_die;
8890 struct dwarf2_cu *imported_cu;
8891 const char *imported_name;
8892 const char *imported_name_prefix;
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
8896 const char *import_prefix;
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
8899
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
8950
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8957
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
8960 {
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
8963 }
8964 else if (strlen (imported_name_prefix) > 0)
8965 canonical_name = obconcat (&objfile->objfile_obstack,
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
8969 else
8970 canonical_name = imported_name;
8971
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
8988 child_die->offset.sect_off, objfile_name (objfile));
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
9009 child_die->offset.sect_off, objfile_name (objfile));
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
9026
9027 do_cleanups (cleanups);
9028 }
9029
9030 /* Cleanup function for handle_DW_AT_stmt_list. */
9031
9032 static void
9033 free_cu_line_header (void *arg)
9034 {
9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039 }
9040
9041 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045 static int
9046 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047 {
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052 }
9053
9054 static void
9055 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9056 const char **name, const char **comp_dir)
9057 {
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9062
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9066 {
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
9077 char *cp = strchr (*comp_dir, ':');
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085 }
9086
9087 /* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9091
9092 static void
9093 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9095 {
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 struct attribute *attr;
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
9104
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
9121 {
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
9130
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9144 {
9145 gdb_assert (*slot != NULL);
9146 cu->line_header = (struct line_header *) *slot;
9147 return;
9148 }
9149 }
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
9185 }
9186
9187 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9188
9189 static void
9190 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9191 {
9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
9202 CORE_ADDR baseaddr;
9203
9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9205
9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
9210 if (lowpc == ((CORE_ADDR) -1))
9211 lowpc = highpc;
9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9213
9214 find_file_and_directory (die, cu, &name, &comp_dir);
9215
9216 prepare_one_comp_unit (cu, die, cu->language);
9217
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
9266 dwarf_decode_macros (cu, macro_offset, 0);
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271 }
9272
9273 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
9278
9279 static void
9280 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9281 {
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
9287 struct attribute *attr;
9288 unsigned int i, line_offset;
9289 struct signatured_type *sig_type;
9290
9291 gdb_assert (per_cu->is_debug_types);
9292 sig_type = (struct signatured_type *) per_cu;
9293
9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9295
9296 /* If we're using .gdb_index (includes -readnow) then
9297 per_cu->type_unit_group may not have been set up yet. */
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
9306 first_time = tu_group->compunit_symtab == NULL;
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
9312 {
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
9323 restart_symtab (tu_group->compunit_symtab, "", 0);
9324 }
9325 return;
9326 }
9327
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
9330
9331 if (first_time)
9332 {
9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9334
9335 tu_group->num_symtabs = lh->num_file_names;
9336 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9337
9338 for (i = 0; i < lh->num_file_names; ++i)
9339 {
9340 const char *dir = NULL;
9341 struct file_entry *fe = &lh->file_names[i];
9342
9343 if (fe->dir_index && lh->include_dirs != NULL)
9344 dir = lh->include_dirs[fe->dir_index - 1];
9345 dwarf2_start_subfile (fe->name, dir);
9346
9347 if (current_subfile->symtab == NULL)
9348 {
9349 /* NOTE: start_subfile will recognize when it's been passed
9350 a file it has already seen. So we can't assume there's a
9351 simple mapping from lh->file_names to subfiles, plus
9352 lh->file_names may contain dups. */
9353 current_subfile->symtab
9354 = allocate_symtab (cust, current_subfile->name);
9355 }
9356
9357 fe->symtab = current_subfile->symtab;
9358 tu_group->symtabs[i] = fe->symtab;
9359 }
9360 }
9361 else
9362 {
9363 restart_symtab (tu_group->compunit_symtab, "", 0);
9364
9365 for (i = 0; i < lh->num_file_names; ++i)
9366 {
9367 struct file_entry *fe = &lh->file_names[i];
9368
9369 fe->symtab = tu_group->symtabs[i];
9370 }
9371 }
9372
9373 /* The main symtab is allocated last. Type units don't have DW_AT_name
9374 so they don't have a "real" (so to speak) symtab anyway.
9375 There is later code that will assign the main symtab to all symbols
9376 that don't have one. We need to handle the case of a symbol with a
9377 missing symtab (DW_AT_decl_file) anyway. */
9378 }
9379
9380 /* Process DW_TAG_type_unit.
9381 For TUs we want to skip the first top level sibling if it's not the
9382 actual type being defined by this TU. In this case the first top
9383 level sibling is there to provide context only. */
9384
9385 static void
9386 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9387 {
9388 struct die_info *child_die;
9389
9390 prepare_one_comp_unit (cu, die, language_minimal);
9391
9392 /* Initialize (or reinitialize) the machinery for building symtabs.
9393 We do this before processing child DIEs, so that the line header table
9394 is available for DW_AT_decl_file. */
9395 setup_type_unit_groups (die, cu);
9396
9397 if (die->child != NULL)
9398 {
9399 child_die = die->child;
9400 while (child_die && child_die->tag)
9401 {
9402 process_die (child_die, cu);
9403 child_die = sibling_die (child_die);
9404 }
9405 }
9406 }
9407 \f
9408 /* DWO/DWP files.
9409
9410 http://gcc.gnu.org/wiki/DebugFission
9411 http://gcc.gnu.org/wiki/DebugFissionDWP
9412
9413 To simplify handling of both DWO files ("object" files with the DWARF info)
9414 and DWP files (a file with the DWOs packaged up into one file), we treat
9415 DWP files as having a collection of virtual DWO files. */
9416
9417 static hashval_t
9418 hash_dwo_file (const void *item)
9419 {
9420 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9421 hashval_t hash;
9422
9423 hash = htab_hash_string (dwo_file->dwo_name);
9424 if (dwo_file->comp_dir != NULL)
9425 hash += htab_hash_string (dwo_file->comp_dir);
9426 return hash;
9427 }
9428
9429 static int
9430 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9431 {
9432 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9433 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9434
9435 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9436 return 0;
9437 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9438 return lhs->comp_dir == rhs->comp_dir;
9439 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9440 }
9441
9442 /* Allocate a hash table for DWO files. */
9443
9444 static htab_t
9445 allocate_dwo_file_hash_table (void)
9446 {
9447 struct objfile *objfile = dwarf2_per_objfile->objfile;
9448
9449 return htab_create_alloc_ex (41,
9450 hash_dwo_file,
9451 eq_dwo_file,
9452 NULL,
9453 &objfile->objfile_obstack,
9454 hashtab_obstack_allocate,
9455 dummy_obstack_deallocate);
9456 }
9457
9458 /* Lookup DWO file DWO_NAME. */
9459
9460 static void **
9461 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9462 {
9463 struct dwo_file find_entry;
9464 void **slot;
9465
9466 if (dwarf2_per_objfile->dwo_files == NULL)
9467 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9468
9469 memset (&find_entry, 0, sizeof (find_entry));
9470 find_entry.dwo_name = dwo_name;
9471 find_entry.comp_dir = comp_dir;
9472 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9473
9474 return slot;
9475 }
9476
9477 static hashval_t
9478 hash_dwo_unit (const void *item)
9479 {
9480 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9481
9482 /* This drops the top 32 bits of the id, but is ok for a hash. */
9483 return dwo_unit->signature;
9484 }
9485
9486 static int
9487 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9488 {
9489 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9490 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9491
9492 /* The signature is assumed to be unique within the DWO file.
9493 So while object file CU dwo_id's always have the value zero,
9494 that's OK, assuming each object file DWO file has only one CU,
9495 and that's the rule for now. */
9496 return lhs->signature == rhs->signature;
9497 }
9498
9499 /* Allocate a hash table for DWO CUs,TUs.
9500 There is one of these tables for each of CUs,TUs for each DWO file. */
9501
9502 static htab_t
9503 allocate_dwo_unit_table (struct objfile *objfile)
9504 {
9505 /* Start out with a pretty small number.
9506 Generally DWO files contain only one CU and maybe some TUs. */
9507 return htab_create_alloc_ex (3,
9508 hash_dwo_unit,
9509 eq_dwo_unit,
9510 NULL,
9511 &objfile->objfile_obstack,
9512 hashtab_obstack_allocate,
9513 dummy_obstack_deallocate);
9514 }
9515
9516 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9517
9518 struct create_dwo_cu_data
9519 {
9520 struct dwo_file *dwo_file;
9521 struct dwo_unit dwo_unit;
9522 };
9523
9524 /* die_reader_func for create_dwo_cu. */
9525
9526 static void
9527 create_dwo_cu_reader (const struct die_reader_specs *reader,
9528 const gdb_byte *info_ptr,
9529 struct die_info *comp_unit_die,
9530 int has_children,
9531 void *datap)
9532 {
9533 struct dwarf2_cu *cu = reader->cu;
9534 struct objfile *objfile = dwarf2_per_objfile->objfile;
9535 sect_offset offset = cu->per_cu->offset;
9536 struct dwarf2_section_info *section = cu->per_cu->section;
9537 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9538 struct dwo_file *dwo_file = data->dwo_file;
9539 struct dwo_unit *dwo_unit = &data->dwo_unit;
9540 struct attribute *attr;
9541
9542 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9543 if (attr == NULL)
9544 {
9545 complaint (&symfile_complaints,
9546 _("Dwarf Error: debug entry at offset 0x%x is missing"
9547 " its dwo_id [in module %s]"),
9548 offset.sect_off, dwo_file->dwo_name);
9549 return;
9550 }
9551
9552 dwo_unit->dwo_file = dwo_file;
9553 dwo_unit->signature = DW_UNSND (attr);
9554 dwo_unit->section = section;
9555 dwo_unit->offset = offset;
9556 dwo_unit->length = cu->per_cu->length;
9557
9558 if (dwarf_read_debug)
9559 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9560 offset.sect_off, hex_string (dwo_unit->signature));
9561 }
9562
9563 /* Create the dwo_unit for the lone CU in DWO_FILE.
9564 Note: This function processes DWO files only, not DWP files. */
9565
9566 static struct dwo_unit *
9567 create_dwo_cu (struct dwo_file *dwo_file)
9568 {
9569 struct objfile *objfile = dwarf2_per_objfile->objfile;
9570 struct dwarf2_section_info *section = &dwo_file->sections.info;
9571 bfd *abfd;
9572 htab_t cu_htab;
9573 const gdb_byte *info_ptr, *end_ptr;
9574 struct create_dwo_cu_data create_dwo_cu_data;
9575 struct dwo_unit *dwo_unit;
9576
9577 dwarf2_read_section (objfile, section);
9578 info_ptr = section->buffer;
9579
9580 if (info_ptr == NULL)
9581 return NULL;
9582
9583 /* We can't set abfd until now because the section may be empty or
9584 not present, in which case section->asection will be NULL. */
9585 abfd = get_section_bfd_owner (section);
9586
9587 if (dwarf_read_debug)
9588 {
9589 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9590 get_section_name (section),
9591 get_section_file_name (section));
9592 }
9593
9594 create_dwo_cu_data.dwo_file = dwo_file;
9595 dwo_unit = NULL;
9596
9597 end_ptr = info_ptr + section->size;
9598 while (info_ptr < end_ptr)
9599 {
9600 struct dwarf2_per_cu_data per_cu;
9601
9602 memset (&create_dwo_cu_data.dwo_unit, 0,
9603 sizeof (create_dwo_cu_data.dwo_unit));
9604 memset (&per_cu, 0, sizeof (per_cu));
9605 per_cu.objfile = objfile;
9606 per_cu.is_debug_types = 0;
9607 per_cu.offset.sect_off = info_ptr - section->buffer;
9608 per_cu.section = section;
9609
9610 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9611 create_dwo_cu_reader,
9612 &create_dwo_cu_data);
9613
9614 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9615 {
9616 /* If we've already found one, complain. We only support one
9617 because having more than one requires hacking the dwo_name of
9618 each to match, which is highly unlikely to happen. */
9619 if (dwo_unit != NULL)
9620 {
9621 complaint (&symfile_complaints,
9622 _("Multiple CUs in DWO file %s [in module %s]"),
9623 dwo_file->dwo_name, objfile_name (objfile));
9624 break;
9625 }
9626
9627 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9628 *dwo_unit = create_dwo_cu_data.dwo_unit;
9629 }
9630
9631 info_ptr += per_cu.length;
9632 }
9633
9634 return dwo_unit;
9635 }
9636
9637 /* DWP file .debug_{cu,tu}_index section format:
9638 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9639
9640 DWP Version 1:
9641
9642 Both index sections have the same format, and serve to map a 64-bit
9643 signature to a set of section numbers. Each section begins with a header,
9644 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9645 indexes, and a pool of 32-bit section numbers. The index sections will be
9646 aligned at 8-byte boundaries in the file.
9647
9648 The index section header consists of:
9649
9650 V, 32 bit version number
9651 -, 32 bits unused
9652 N, 32 bit number of compilation units or type units in the index
9653 M, 32 bit number of slots in the hash table
9654
9655 Numbers are recorded using the byte order of the application binary.
9656
9657 The hash table begins at offset 16 in the section, and consists of an array
9658 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9659 order of the application binary). Unused slots in the hash table are 0.
9660 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9661
9662 The parallel table begins immediately after the hash table
9663 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9664 array of 32-bit indexes (using the byte order of the application binary),
9665 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9666 table contains a 32-bit index into the pool of section numbers. For unused
9667 hash table slots, the corresponding entry in the parallel table will be 0.
9668
9669 The pool of section numbers begins immediately following the hash table
9670 (at offset 16 + 12 * M from the beginning of the section). The pool of
9671 section numbers consists of an array of 32-bit words (using the byte order
9672 of the application binary). Each item in the array is indexed starting
9673 from 0. The hash table entry provides the index of the first section
9674 number in the set. Additional section numbers in the set follow, and the
9675 set is terminated by a 0 entry (section number 0 is not used in ELF).
9676
9677 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9678 section must be the first entry in the set, and the .debug_abbrev.dwo must
9679 be the second entry. Other members of the set may follow in any order.
9680
9681 ---
9682
9683 DWP Version 2:
9684
9685 DWP Version 2 combines all the .debug_info, etc. sections into one,
9686 and the entries in the index tables are now offsets into these sections.
9687 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9688 section.
9689
9690 Index Section Contents:
9691 Header
9692 Hash Table of Signatures dwp_hash_table.hash_table
9693 Parallel Table of Indices dwp_hash_table.unit_table
9694 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9695 Table of Section Sizes dwp_hash_table.v2.sizes
9696
9697 The index section header consists of:
9698
9699 V, 32 bit version number
9700 L, 32 bit number of columns in the table of section offsets
9701 N, 32 bit number of compilation units or type units in the index
9702 M, 32 bit number of slots in the hash table
9703
9704 Numbers are recorded using the byte order of the application binary.
9705
9706 The hash table has the same format as version 1.
9707 The parallel table of indices has the same format as version 1,
9708 except that the entries are origin-1 indices into the table of sections
9709 offsets and the table of section sizes.
9710
9711 The table of offsets begins immediately following the parallel table
9712 (at offset 16 + 12 * M from the beginning of the section). The table is
9713 a two-dimensional array of 32-bit words (using the byte order of the
9714 application binary), with L columns and N+1 rows, in row-major order.
9715 Each row in the array is indexed starting from 0. The first row provides
9716 a key to the remaining rows: each column in this row provides an identifier
9717 for a debug section, and the offsets in the same column of subsequent rows
9718 refer to that section. The section identifiers are:
9719
9720 DW_SECT_INFO 1 .debug_info.dwo
9721 DW_SECT_TYPES 2 .debug_types.dwo
9722 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9723 DW_SECT_LINE 4 .debug_line.dwo
9724 DW_SECT_LOC 5 .debug_loc.dwo
9725 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9726 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9727 DW_SECT_MACRO 8 .debug_macro.dwo
9728
9729 The offsets provided by the CU and TU index sections are the base offsets
9730 for the contributions made by each CU or TU to the corresponding section
9731 in the package file. Each CU and TU header contains an abbrev_offset
9732 field, used to find the abbreviations table for that CU or TU within the
9733 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9734 be interpreted as relative to the base offset given in the index section.
9735 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9736 should be interpreted as relative to the base offset for .debug_line.dwo,
9737 and offsets into other debug sections obtained from DWARF attributes should
9738 also be interpreted as relative to the corresponding base offset.
9739
9740 The table of sizes begins immediately following the table of offsets.
9741 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9742 with L columns and N rows, in row-major order. Each row in the array is
9743 indexed starting from 1 (row 0 is shared by the two tables).
9744
9745 ---
9746
9747 Hash table lookup is handled the same in version 1 and 2:
9748
9749 We assume that N and M will not exceed 2^32 - 1.
9750 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9751
9752 Given a 64-bit compilation unit signature or a type signature S, an entry
9753 in the hash table is located as follows:
9754
9755 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9756 the low-order k bits all set to 1.
9757
9758 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9759
9760 3) If the hash table entry at index H matches the signature, use that
9761 entry. If the hash table entry at index H is unused (all zeroes),
9762 terminate the search: the signature is not present in the table.
9763
9764 4) Let H = (H + H') modulo M. Repeat at Step 3.
9765
9766 Because M > N and H' and M are relatively prime, the search is guaranteed
9767 to stop at an unused slot or find the match. */
9768
9769 /* Create a hash table to map DWO IDs to their CU/TU entry in
9770 .debug_{info,types}.dwo in DWP_FILE.
9771 Returns NULL if there isn't one.
9772 Note: This function processes DWP files only, not DWO files. */
9773
9774 static struct dwp_hash_table *
9775 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9776 {
9777 struct objfile *objfile = dwarf2_per_objfile->objfile;
9778 bfd *dbfd = dwp_file->dbfd;
9779 const gdb_byte *index_ptr, *index_end;
9780 struct dwarf2_section_info *index;
9781 uint32_t version, nr_columns, nr_units, nr_slots;
9782 struct dwp_hash_table *htab;
9783
9784 if (is_debug_types)
9785 index = &dwp_file->sections.tu_index;
9786 else
9787 index = &dwp_file->sections.cu_index;
9788
9789 if (dwarf2_section_empty_p (index))
9790 return NULL;
9791 dwarf2_read_section (objfile, index);
9792
9793 index_ptr = index->buffer;
9794 index_end = index_ptr + index->size;
9795
9796 version = read_4_bytes (dbfd, index_ptr);
9797 index_ptr += 4;
9798 if (version == 2)
9799 nr_columns = read_4_bytes (dbfd, index_ptr);
9800 else
9801 nr_columns = 0;
9802 index_ptr += 4;
9803 nr_units = read_4_bytes (dbfd, index_ptr);
9804 index_ptr += 4;
9805 nr_slots = read_4_bytes (dbfd, index_ptr);
9806 index_ptr += 4;
9807
9808 if (version != 1 && version != 2)
9809 {
9810 error (_("Dwarf Error: unsupported DWP file version (%s)"
9811 " [in module %s]"),
9812 pulongest (version), dwp_file->name);
9813 }
9814 if (nr_slots != (nr_slots & -nr_slots))
9815 {
9816 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9817 " is not power of 2 [in module %s]"),
9818 pulongest (nr_slots), dwp_file->name);
9819 }
9820
9821 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9822 htab->version = version;
9823 htab->nr_columns = nr_columns;
9824 htab->nr_units = nr_units;
9825 htab->nr_slots = nr_slots;
9826 htab->hash_table = index_ptr;
9827 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9828
9829 /* Exit early if the table is empty. */
9830 if (nr_slots == 0 || nr_units == 0
9831 || (version == 2 && nr_columns == 0))
9832 {
9833 /* All must be zero. */
9834 if (nr_slots != 0 || nr_units != 0
9835 || (version == 2 && nr_columns != 0))
9836 {
9837 complaint (&symfile_complaints,
9838 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9839 " all zero [in modules %s]"),
9840 dwp_file->name);
9841 }
9842 return htab;
9843 }
9844
9845 if (version == 1)
9846 {
9847 htab->section_pool.v1.indices =
9848 htab->unit_table + sizeof (uint32_t) * nr_slots;
9849 /* It's harder to decide whether the section is too small in v1.
9850 V1 is deprecated anyway so we punt. */
9851 }
9852 else
9853 {
9854 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9855 int *ids = htab->section_pool.v2.section_ids;
9856 /* Reverse map for error checking. */
9857 int ids_seen[DW_SECT_MAX + 1];
9858 int i;
9859
9860 if (nr_columns < 2)
9861 {
9862 error (_("Dwarf Error: bad DWP hash table, too few columns"
9863 " in section table [in module %s]"),
9864 dwp_file->name);
9865 }
9866 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9867 {
9868 error (_("Dwarf Error: bad DWP hash table, too many columns"
9869 " in section table [in module %s]"),
9870 dwp_file->name);
9871 }
9872 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9873 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9874 for (i = 0; i < nr_columns; ++i)
9875 {
9876 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9877
9878 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9879 {
9880 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9881 " in section table [in module %s]"),
9882 id, dwp_file->name);
9883 }
9884 if (ids_seen[id] != -1)
9885 {
9886 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9887 " id %d in section table [in module %s]"),
9888 id, dwp_file->name);
9889 }
9890 ids_seen[id] = i;
9891 ids[i] = id;
9892 }
9893 /* Must have exactly one info or types section. */
9894 if (((ids_seen[DW_SECT_INFO] != -1)
9895 + (ids_seen[DW_SECT_TYPES] != -1))
9896 != 1)
9897 {
9898 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9899 " DWO info/types section [in module %s]"),
9900 dwp_file->name);
9901 }
9902 /* Must have an abbrev section. */
9903 if (ids_seen[DW_SECT_ABBREV] == -1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9906 " section [in module %s]"),
9907 dwp_file->name);
9908 }
9909 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9910 htab->section_pool.v2.sizes =
9911 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9912 * nr_units * nr_columns);
9913 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9914 * nr_units * nr_columns))
9915 > index_end)
9916 {
9917 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9918 " [in module %s]"),
9919 dwp_file->name);
9920 }
9921 }
9922
9923 return htab;
9924 }
9925
9926 /* Update SECTIONS with the data from SECTP.
9927
9928 This function is like the other "locate" section routines that are
9929 passed to bfd_map_over_sections, but in this context the sections to
9930 read comes from the DWP V1 hash table, not the full ELF section table.
9931
9932 The result is non-zero for success, or zero if an error was found. */
9933
9934 static int
9935 locate_v1_virtual_dwo_sections (asection *sectp,
9936 struct virtual_v1_dwo_sections *sections)
9937 {
9938 const struct dwop_section_names *names = &dwop_section_names;
9939
9940 if (section_is_p (sectp->name, &names->abbrev_dwo))
9941 {
9942 /* There can be only one. */
9943 if (sections->abbrev.s.section != NULL)
9944 return 0;
9945 sections->abbrev.s.section = sectp;
9946 sections->abbrev.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->info_dwo)
9949 || section_is_p (sectp->name, &names->types_dwo))
9950 {
9951 /* There can be only one. */
9952 if (sections->info_or_types.s.section != NULL)
9953 return 0;
9954 sections->info_or_types.s.section = sectp;
9955 sections->info_or_types.size = bfd_get_section_size (sectp);
9956 }
9957 else if (section_is_p (sectp->name, &names->line_dwo))
9958 {
9959 /* There can be only one. */
9960 if (sections->line.s.section != NULL)
9961 return 0;
9962 sections->line.s.section = sectp;
9963 sections->line.size = bfd_get_section_size (sectp);
9964 }
9965 else if (section_is_p (sectp->name, &names->loc_dwo))
9966 {
9967 /* There can be only one. */
9968 if (sections->loc.s.section != NULL)
9969 return 0;
9970 sections->loc.s.section = sectp;
9971 sections->loc.size = bfd_get_section_size (sectp);
9972 }
9973 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9974 {
9975 /* There can be only one. */
9976 if (sections->macinfo.s.section != NULL)
9977 return 0;
9978 sections->macinfo.s.section = sectp;
9979 sections->macinfo.size = bfd_get_section_size (sectp);
9980 }
9981 else if (section_is_p (sectp->name, &names->macro_dwo))
9982 {
9983 /* There can be only one. */
9984 if (sections->macro.s.section != NULL)
9985 return 0;
9986 sections->macro.s.section = sectp;
9987 sections->macro.size = bfd_get_section_size (sectp);
9988 }
9989 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9990 {
9991 /* There can be only one. */
9992 if (sections->str_offsets.s.section != NULL)
9993 return 0;
9994 sections->str_offsets.s.section = sectp;
9995 sections->str_offsets.size = bfd_get_section_size (sectp);
9996 }
9997 else
9998 {
9999 /* No other kind of section is valid. */
10000 return 0;
10001 }
10002
10003 return 1;
10004 }
10005
10006 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10007 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10008 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10009 This is for DWP version 1 files. */
10010
10011 static struct dwo_unit *
10012 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10013 uint32_t unit_index,
10014 const char *comp_dir,
10015 ULONGEST signature, int is_debug_types)
10016 {
10017 struct objfile *objfile = dwarf2_per_objfile->objfile;
10018 const struct dwp_hash_table *dwp_htab =
10019 is_debug_types ? dwp_file->tus : dwp_file->cus;
10020 bfd *dbfd = dwp_file->dbfd;
10021 const char *kind = is_debug_types ? "TU" : "CU";
10022 struct dwo_file *dwo_file;
10023 struct dwo_unit *dwo_unit;
10024 struct virtual_v1_dwo_sections sections;
10025 void **dwo_file_slot;
10026 char *virtual_dwo_name;
10027 struct dwarf2_section_info *cutu;
10028 struct cleanup *cleanups;
10029 int i;
10030
10031 gdb_assert (dwp_file->version == 1);
10032
10033 if (dwarf_read_debug)
10034 {
10035 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10036 kind,
10037 pulongest (unit_index), hex_string (signature),
10038 dwp_file->name);
10039 }
10040
10041 /* Fetch the sections of this DWO unit.
10042 Put a limit on the number of sections we look for so that bad data
10043 doesn't cause us to loop forever. */
10044
10045 #define MAX_NR_V1_DWO_SECTIONS \
10046 (1 /* .debug_info or .debug_types */ \
10047 + 1 /* .debug_abbrev */ \
10048 + 1 /* .debug_line */ \
10049 + 1 /* .debug_loc */ \
10050 + 1 /* .debug_str_offsets */ \
10051 + 1 /* .debug_macro or .debug_macinfo */ \
10052 + 1 /* trailing zero */)
10053
10054 memset (&sections, 0, sizeof (sections));
10055 cleanups = make_cleanup (null_cleanup, 0);
10056
10057 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10058 {
10059 asection *sectp;
10060 uint32_t section_nr =
10061 read_4_bytes (dbfd,
10062 dwp_htab->section_pool.v1.indices
10063 + (unit_index + i) * sizeof (uint32_t));
10064
10065 if (section_nr == 0)
10066 break;
10067 if (section_nr >= dwp_file->num_sections)
10068 {
10069 error (_("Dwarf Error: bad DWP hash table, section number too large"
10070 " [in module %s]"),
10071 dwp_file->name);
10072 }
10073
10074 sectp = dwp_file->elf_sections[section_nr];
10075 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10076 {
10077 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10078 " [in module %s]"),
10079 dwp_file->name);
10080 }
10081 }
10082
10083 if (i < 2
10084 || dwarf2_section_empty_p (&sections.info_or_types)
10085 || dwarf2_section_empty_p (&sections.abbrev))
10086 {
10087 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10088 " [in module %s]"),
10089 dwp_file->name);
10090 }
10091 if (i == MAX_NR_V1_DWO_SECTIONS)
10092 {
10093 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10094 " [in module %s]"),
10095 dwp_file->name);
10096 }
10097
10098 /* It's easier for the rest of the code if we fake a struct dwo_file and
10099 have dwo_unit "live" in that. At least for now.
10100
10101 The DWP file can be made up of a random collection of CUs and TUs.
10102 However, for each CU + set of TUs that came from the same original DWO
10103 file, we can combine them back into a virtual DWO file to save space
10104 (fewer struct dwo_file objects to allocate). Remember that for really
10105 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10106
10107 virtual_dwo_name =
10108 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10109 get_section_id (&sections.abbrev),
10110 get_section_id (&sections.line),
10111 get_section_id (&sections.loc),
10112 get_section_id (&sections.str_offsets));
10113 make_cleanup (xfree, virtual_dwo_name);
10114 /* Can we use an existing virtual DWO file? */
10115 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10116 /* Create one if necessary. */
10117 if (*dwo_file_slot == NULL)
10118 {
10119 if (dwarf_read_debug)
10120 {
10121 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10122 virtual_dwo_name);
10123 }
10124 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10125 dwo_file->dwo_name
10126 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10127 virtual_dwo_name,
10128 strlen (virtual_dwo_name));
10129 dwo_file->comp_dir = comp_dir;
10130 dwo_file->sections.abbrev = sections.abbrev;
10131 dwo_file->sections.line = sections.line;
10132 dwo_file->sections.loc = sections.loc;
10133 dwo_file->sections.macinfo = sections.macinfo;
10134 dwo_file->sections.macro = sections.macro;
10135 dwo_file->sections.str_offsets = sections.str_offsets;
10136 /* The "str" section is global to the entire DWP file. */
10137 dwo_file->sections.str = dwp_file->sections.str;
10138 /* The info or types section is assigned below to dwo_unit,
10139 there's no need to record it in dwo_file.
10140 Also, we can't simply record type sections in dwo_file because
10141 we record a pointer into the vector in dwo_unit. As we collect more
10142 types we'll grow the vector and eventually have to reallocate space
10143 for it, invalidating all copies of pointers into the previous
10144 contents. */
10145 *dwo_file_slot = dwo_file;
10146 }
10147 else
10148 {
10149 if (dwarf_read_debug)
10150 {
10151 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10152 virtual_dwo_name);
10153 }
10154 dwo_file = (struct dwo_file *) *dwo_file_slot;
10155 }
10156 do_cleanups (cleanups);
10157
10158 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10159 dwo_unit->dwo_file = dwo_file;
10160 dwo_unit->signature = signature;
10161 dwo_unit->section =
10162 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10163 *dwo_unit->section = sections.info_or_types;
10164 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10165
10166 return dwo_unit;
10167 }
10168
10169 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10170 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10171 piece within that section used by a TU/CU, return a virtual section
10172 of just that piece. */
10173
10174 static struct dwarf2_section_info
10175 create_dwp_v2_section (struct dwarf2_section_info *section,
10176 bfd_size_type offset, bfd_size_type size)
10177 {
10178 struct dwarf2_section_info result;
10179 asection *sectp;
10180
10181 gdb_assert (section != NULL);
10182 gdb_assert (!section->is_virtual);
10183
10184 memset (&result, 0, sizeof (result));
10185 result.s.containing_section = section;
10186 result.is_virtual = 1;
10187
10188 if (size == 0)
10189 return result;
10190
10191 sectp = get_section_bfd_section (section);
10192
10193 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10194 bounds of the real section. This is a pretty-rare event, so just
10195 flag an error (easier) instead of a warning and trying to cope. */
10196 if (sectp == NULL
10197 || offset + size > bfd_get_section_size (sectp))
10198 {
10199 bfd *abfd = sectp->owner;
10200
10201 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10202 " in section %s [in module %s]"),
10203 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10204 objfile_name (dwarf2_per_objfile->objfile));
10205 }
10206
10207 result.virtual_offset = offset;
10208 result.size = size;
10209 return result;
10210 }
10211
10212 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10213 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10214 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10215 This is for DWP version 2 files. */
10216
10217 static struct dwo_unit *
10218 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10219 uint32_t unit_index,
10220 const char *comp_dir,
10221 ULONGEST signature, int is_debug_types)
10222 {
10223 struct objfile *objfile = dwarf2_per_objfile->objfile;
10224 const struct dwp_hash_table *dwp_htab =
10225 is_debug_types ? dwp_file->tus : dwp_file->cus;
10226 bfd *dbfd = dwp_file->dbfd;
10227 const char *kind = is_debug_types ? "TU" : "CU";
10228 struct dwo_file *dwo_file;
10229 struct dwo_unit *dwo_unit;
10230 struct virtual_v2_dwo_sections sections;
10231 void **dwo_file_slot;
10232 char *virtual_dwo_name;
10233 struct dwarf2_section_info *cutu;
10234 struct cleanup *cleanups;
10235 int i;
10236
10237 gdb_assert (dwp_file->version == 2);
10238
10239 if (dwarf_read_debug)
10240 {
10241 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10242 kind,
10243 pulongest (unit_index), hex_string (signature),
10244 dwp_file->name);
10245 }
10246
10247 /* Fetch the section offsets of this DWO unit. */
10248
10249 memset (&sections, 0, sizeof (sections));
10250 cleanups = make_cleanup (null_cleanup, 0);
10251
10252 for (i = 0; i < dwp_htab->nr_columns; ++i)
10253 {
10254 uint32_t offset = read_4_bytes (dbfd,
10255 dwp_htab->section_pool.v2.offsets
10256 + (((unit_index - 1) * dwp_htab->nr_columns
10257 + i)
10258 * sizeof (uint32_t)));
10259 uint32_t size = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.sizes
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264
10265 switch (dwp_htab->section_pool.v2.section_ids[i])
10266 {
10267 case DW_SECT_INFO:
10268 case DW_SECT_TYPES:
10269 sections.info_or_types_offset = offset;
10270 sections.info_or_types_size = size;
10271 break;
10272 case DW_SECT_ABBREV:
10273 sections.abbrev_offset = offset;
10274 sections.abbrev_size = size;
10275 break;
10276 case DW_SECT_LINE:
10277 sections.line_offset = offset;
10278 sections.line_size = size;
10279 break;
10280 case DW_SECT_LOC:
10281 sections.loc_offset = offset;
10282 sections.loc_size = size;
10283 break;
10284 case DW_SECT_STR_OFFSETS:
10285 sections.str_offsets_offset = offset;
10286 sections.str_offsets_size = size;
10287 break;
10288 case DW_SECT_MACINFO:
10289 sections.macinfo_offset = offset;
10290 sections.macinfo_size = size;
10291 break;
10292 case DW_SECT_MACRO:
10293 sections.macro_offset = offset;
10294 sections.macro_size = size;
10295 break;
10296 }
10297 }
10298
10299 /* It's easier for the rest of the code if we fake a struct dwo_file and
10300 have dwo_unit "live" in that. At least for now.
10301
10302 The DWP file can be made up of a random collection of CUs and TUs.
10303 However, for each CU + set of TUs that came from the same original DWO
10304 file, we can combine them back into a virtual DWO file to save space
10305 (fewer struct dwo_file objects to allocate). Remember that for really
10306 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10307
10308 virtual_dwo_name =
10309 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10310 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10311 (long) (sections.line_size ? sections.line_offset : 0),
10312 (long) (sections.loc_size ? sections.loc_offset : 0),
10313 (long) (sections.str_offsets_size
10314 ? sections.str_offsets_offset : 0));
10315 make_cleanup (xfree, virtual_dwo_name);
10316 /* Can we use an existing virtual DWO file? */
10317 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10318 /* Create one if necessary. */
10319 if (*dwo_file_slot == NULL)
10320 {
10321 if (dwarf_read_debug)
10322 {
10323 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10324 virtual_dwo_name);
10325 }
10326 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10327 dwo_file->dwo_name
10328 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10329 virtual_dwo_name,
10330 strlen (virtual_dwo_name));
10331 dwo_file->comp_dir = comp_dir;
10332 dwo_file->sections.abbrev =
10333 create_dwp_v2_section (&dwp_file->sections.abbrev,
10334 sections.abbrev_offset, sections.abbrev_size);
10335 dwo_file->sections.line =
10336 create_dwp_v2_section (&dwp_file->sections.line,
10337 sections.line_offset, sections.line_size);
10338 dwo_file->sections.loc =
10339 create_dwp_v2_section (&dwp_file->sections.loc,
10340 sections.loc_offset, sections.loc_size);
10341 dwo_file->sections.macinfo =
10342 create_dwp_v2_section (&dwp_file->sections.macinfo,
10343 sections.macinfo_offset, sections.macinfo_size);
10344 dwo_file->sections.macro =
10345 create_dwp_v2_section (&dwp_file->sections.macro,
10346 sections.macro_offset, sections.macro_size);
10347 dwo_file->sections.str_offsets =
10348 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10349 sections.str_offsets_offset,
10350 sections.str_offsets_size);
10351 /* The "str" section is global to the entire DWP file. */
10352 dwo_file->sections.str = dwp_file->sections.str;
10353 /* The info or types section is assigned below to dwo_unit,
10354 there's no need to record it in dwo_file.
10355 Also, we can't simply record type sections in dwo_file because
10356 we record a pointer into the vector in dwo_unit. As we collect more
10357 types we'll grow the vector and eventually have to reallocate space
10358 for it, invalidating all copies of pointers into the previous
10359 contents. */
10360 *dwo_file_slot = dwo_file;
10361 }
10362 else
10363 {
10364 if (dwarf_read_debug)
10365 {
10366 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10367 virtual_dwo_name);
10368 }
10369 dwo_file = (struct dwo_file *) *dwo_file_slot;
10370 }
10371 do_cleanups (cleanups);
10372
10373 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10374 dwo_unit->dwo_file = dwo_file;
10375 dwo_unit->signature = signature;
10376 dwo_unit->section =
10377 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10378 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10379 ? &dwp_file->sections.types
10380 : &dwp_file->sections.info,
10381 sections.info_or_types_offset,
10382 sections.info_or_types_size);
10383 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10384
10385 return dwo_unit;
10386 }
10387
10388 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10389 Returns NULL if the signature isn't found. */
10390
10391 static struct dwo_unit *
10392 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10393 ULONGEST signature, int is_debug_types)
10394 {
10395 const struct dwp_hash_table *dwp_htab =
10396 is_debug_types ? dwp_file->tus : dwp_file->cus;
10397 bfd *dbfd = dwp_file->dbfd;
10398 uint32_t mask = dwp_htab->nr_slots - 1;
10399 uint32_t hash = signature & mask;
10400 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10401 unsigned int i;
10402 void **slot;
10403 struct dwo_unit find_dwo_cu, *dwo_cu;
10404
10405 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10406 find_dwo_cu.signature = signature;
10407 slot = htab_find_slot (is_debug_types
10408 ? dwp_file->loaded_tus
10409 : dwp_file->loaded_cus,
10410 &find_dwo_cu, INSERT);
10411
10412 if (*slot != NULL)
10413 return (struct dwo_unit *) *slot;
10414
10415 /* Use a for loop so that we don't loop forever on bad debug info. */
10416 for (i = 0; i < dwp_htab->nr_slots; ++i)
10417 {
10418 ULONGEST signature_in_table;
10419
10420 signature_in_table =
10421 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10422 if (signature_in_table == signature)
10423 {
10424 uint32_t unit_index =
10425 read_4_bytes (dbfd,
10426 dwp_htab->unit_table + hash * sizeof (uint32_t));
10427
10428 if (dwp_file->version == 1)
10429 {
10430 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10431 comp_dir, signature,
10432 is_debug_types);
10433 }
10434 else
10435 {
10436 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10437 comp_dir, signature,
10438 is_debug_types);
10439 }
10440 return (struct dwo_unit *) *slot;
10441 }
10442 if (signature_in_table == 0)
10443 return NULL;
10444 hash = (hash + hash2) & mask;
10445 }
10446
10447 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10448 " [in module %s]"),
10449 dwp_file->name);
10450 }
10451
10452 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10453 Open the file specified by FILE_NAME and hand it off to BFD for
10454 preliminary analysis. Return a newly initialized bfd *, which
10455 includes a canonicalized copy of FILE_NAME.
10456 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10457 SEARCH_CWD is true if the current directory is to be searched.
10458 It will be searched before debug-file-directory.
10459 If successful, the file is added to the bfd include table of the
10460 objfile's bfd (see gdb_bfd_record_inclusion).
10461 If unable to find/open the file, return NULL.
10462 NOTE: This function is derived from symfile_bfd_open. */
10463
10464 static bfd *
10465 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10466 {
10467 bfd *sym_bfd;
10468 int desc, flags;
10469 char *absolute_name;
10470 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10471 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10472 to debug_file_directory. */
10473 char *search_path;
10474 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10475
10476 if (search_cwd)
10477 {
10478 if (*debug_file_directory != '\0')
10479 search_path = concat (".", dirname_separator_string,
10480 debug_file_directory, NULL);
10481 else
10482 search_path = xstrdup (".");
10483 }
10484 else
10485 search_path = xstrdup (debug_file_directory);
10486
10487 flags = OPF_RETURN_REALPATH;
10488 if (is_dwp)
10489 flags |= OPF_SEARCH_IN_PATH;
10490 desc = openp (search_path, flags, file_name,
10491 O_RDONLY | O_BINARY, &absolute_name);
10492 xfree (search_path);
10493 if (desc < 0)
10494 return NULL;
10495
10496 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10497 xfree (absolute_name);
10498 if (sym_bfd == NULL)
10499 return NULL;
10500 bfd_set_cacheable (sym_bfd, 1);
10501
10502 if (!bfd_check_format (sym_bfd, bfd_object))
10503 {
10504 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10505 return NULL;
10506 }
10507
10508 /* Success. Record the bfd as having been included by the objfile's bfd.
10509 This is important because things like demangled_names_hash lives in the
10510 objfile's per_bfd space and may have references to things like symbol
10511 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10512 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10513
10514 return sym_bfd;
10515 }
10516
10517 /* Try to open DWO file FILE_NAME.
10518 COMP_DIR is the DW_AT_comp_dir attribute.
10519 The result is the bfd handle of the file.
10520 If there is a problem finding or opening the file, return NULL.
10521 Upon success, the canonicalized path of the file is stored in the bfd,
10522 same as symfile_bfd_open. */
10523
10524 static bfd *
10525 open_dwo_file (const char *file_name, const char *comp_dir)
10526 {
10527 bfd *abfd;
10528
10529 if (IS_ABSOLUTE_PATH (file_name))
10530 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10531
10532 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10533
10534 if (comp_dir != NULL)
10535 {
10536 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10537
10538 /* NOTE: If comp_dir is a relative path, this will also try the
10539 search path, which seems useful. */
10540 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10541 xfree (path_to_try);
10542 if (abfd != NULL)
10543 return abfd;
10544 }
10545
10546 /* That didn't work, try debug-file-directory, which, despite its name,
10547 is a list of paths. */
10548
10549 if (*debug_file_directory == '\0')
10550 return NULL;
10551
10552 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10553 }
10554
10555 /* This function is mapped across the sections and remembers the offset and
10556 size of each of the DWO debugging sections we are interested in. */
10557
10558 static void
10559 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10560 {
10561 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10562 const struct dwop_section_names *names = &dwop_section_names;
10563
10564 if (section_is_p (sectp->name, &names->abbrev_dwo))
10565 {
10566 dwo_sections->abbrev.s.section = sectp;
10567 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->info_dwo))
10570 {
10571 dwo_sections->info.s.section = sectp;
10572 dwo_sections->info.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->line_dwo))
10575 {
10576 dwo_sections->line.s.section = sectp;
10577 dwo_sections->line.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->loc_dwo))
10580 {
10581 dwo_sections->loc.s.section = sectp;
10582 dwo_sections->loc.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10585 {
10586 dwo_sections->macinfo.s.section = sectp;
10587 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macro_dwo))
10590 {
10591 dwo_sections->macro.s.section = sectp;
10592 dwo_sections->macro.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->str_dwo))
10595 {
10596 dwo_sections->str.s.section = sectp;
10597 dwo_sections->str.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10600 {
10601 dwo_sections->str_offsets.s.section = sectp;
10602 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->types_dwo))
10605 {
10606 struct dwarf2_section_info type_section;
10607
10608 memset (&type_section, 0, sizeof (type_section));
10609 type_section.s.section = sectp;
10610 type_section.size = bfd_get_section_size (sectp);
10611 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10612 &type_section);
10613 }
10614 }
10615
10616 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10617 by PER_CU. This is for the non-DWP case.
10618 The result is NULL if DWO_NAME can't be found. */
10619
10620 static struct dwo_file *
10621 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10622 const char *dwo_name, const char *comp_dir)
10623 {
10624 struct objfile *objfile = dwarf2_per_objfile->objfile;
10625 struct dwo_file *dwo_file;
10626 bfd *dbfd;
10627 struct cleanup *cleanups;
10628
10629 dbfd = open_dwo_file (dwo_name, comp_dir);
10630 if (dbfd == NULL)
10631 {
10632 if (dwarf_read_debug)
10633 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10634 return NULL;
10635 }
10636 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10637 dwo_file->dwo_name = dwo_name;
10638 dwo_file->comp_dir = comp_dir;
10639 dwo_file->dbfd = dbfd;
10640
10641 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10642
10643 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10644
10645 dwo_file->cu = create_dwo_cu (dwo_file);
10646
10647 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10648 dwo_file->sections.types);
10649
10650 discard_cleanups (cleanups);
10651
10652 if (dwarf_read_debug)
10653 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10654
10655 return dwo_file;
10656 }
10657
10658 /* This function is mapped across the sections and remembers the offset and
10659 size of each of the DWP debugging sections common to version 1 and 2 that
10660 we are interested in. */
10661
10662 static void
10663 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10664 void *dwp_file_ptr)
10665 {
10666 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10667 const struct dwop_section_names *names = &dwop_section_names;
10668 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10669
10670 /* Record the ELF section number for later lookup: this is what the
10671 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10672 gdb_assert (elf_section_nr < dwp_file->num_sections);
10673 dwp_file->elf_sections[elf_section_nr] = sectp;
10674
10675 /* Look for specific sections that we need. */
10676 if (section_is_p (sectp->name, &names->str_dwo))
10677 {
10678 dwp_file->sections.str.s.section = sectp;
10679 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10680 }
10681 else if (section_is_p (sectp->name, &names->cu_index))
10682 {
10683 dwp_file->sections.cu_index.s.section = sectp;
10684 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->tu_index))
10687 {
10688 dwp_file->sections.tu_index.s.section = sectp;
10689 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10690 }
10691 }
10692
10693 /* This function is mapped across the sections and remembers the offset and
10694 size of each of the DWP version 2 debugging sections that we are interested
10695 in. This is split into a separate function because we don't know if we
10696 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10697
10698 static void
10699 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10700 {
10701 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10702 const struct dwop_section_names *names = &dwop_section_names;
10703 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10704
10705 /* Record the ELF section number for later lookup: this is what the
10706 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10707 gdb_assert (elf_section_nr < dwp_file->num_sections);
10708 dwp_file->elf_sections[elf_section_nr] = sectp;
10709
10710 /* Look for specific sections that we need. */
10711 if (section_is_p (sectp->name, &names->abbrev_dwo))
10712 {
10713 dwp_file->sections.abbrev.s.section = sectp;
10714 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10715 }
10716 else if (section_is_p (sectp->name, &names->info_dwo))
10717 {
10718 dwp_file->sections.info.s.section = sectp;
10719 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->line_dwo))
10722 {
10723 dwp_file->sections.line.s.section = sectp;
10724 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->loc_dwo))
10727 {
10728 dwp_file->sections.loc.s.section = sectp;
10729 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10732 {
10733 dwp_file->sections.macinfo.s.section = sectp;
10734 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macro_dwo))
10737 {
10738 dwp_file->sections.macro.s.section = sectp;
10739 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10742 {
10743 dwp_file->sections.str_offsets.s.section = sectp;
10744 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->types_dwo))
10747 {
10748 dwp_file->sections.types.s.section = sectp;
10749 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10750 }
10751 }
10752
10753 /* Hash function for dwp_file loaded CUs/TUs. */
10754
10755 static hashval_t
10756 hash_dwp_loaded_cutus (const void *item)
10757 {
10758 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10759
10760 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10761 return dwo_unit->signature;
10762 }
10763
10764 /* Equality function for dwp_file loaded CUs/TUs. */
10765
10766 static int
10767 eq_dwp_loaded_cutus (const void *a, const void *b)
10768 {
10769 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10770 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10771
10772 return dua->signature == dub->signature;
10773 }
10774
10775 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10776
10777 static htab_t
10778 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10779 {
10780 return htab_create_alloc_ex (3,
10781 hash_dwp_loaded_cutus,
10782 eq_dwp_loaded_cutus,
10783 NULL,
10784 &objfile->objfile_obstack,
10785 hashtab_obstack_allocate,
10786 dummy_obstack_deallocate);
10787 }
10788
10789 /* Try to open DWP file FILE_NAME.
10790 The result is the bfd handle of the file.
10791 If there is a problem finding or opening the file, return NULL.
10792 Upon success, the canonicalized path of the file is stored in the bfd,
10793 same as symfile_bfd_open. */
10794
10795 static bfd *
10796 open_dwp_file (const char *file_name)
10797 {
10798 bfd *abfd;
10799
10800 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10801 if (abfd != NULL)
10802 return abfd;
10803
10804 /* Work around upstream bug 15652.
10805 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10806 [Whether that's a "bug" is debatable, but it is getting in our way.]
10807 We have no real idea where the dwp file is, because gdb's realpath-ing
10808 of the executable's path may have discarded the needed info.
10809 [IWBN if the dwp file name was recorded in the executable, akin to
10810 .gnu_debuglink, but that doesn't exist yet.]
10811 Strip the directory from FILE_NAME and search again. */
10812 if (*debug_file_directory != '\0')
10813 {
10814 /* Don't implicitly search the current directory here.
10815 If the user wants to search "." to handle this case,
10816 it must be added to debug-file-directory. */
10817 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10818 0 /*search_cwd*/);
10819 }
10820
10821 return NULL;
10822 }
10823
10824 /* Initialize the use of the DWP file for the current objfile.
10825 By convention the name of the DWP file is ${objfile}.dwp.
10826 The result is NULL if it can't be found. */
10827
10828 static struct dwp_file *
10829 open_and_init_dwp_file (void)
10830 {
10831 struct objfile *objfile = dwarf2_per_objfile->objfile;
10832 struct dwp_file *dwp_file;
10833 char *dwp_name;
10834 bfd *dbfd;
10835 struct cleanup *cleanups;
10836
10837 /* Try to find first .dwp for the binary file before any symbolic links
10838 resolving. */
10839 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10840 cleanups = make_cleanup (xfree, dwp_name);
10841
10842 dbfd = open_dwp_file (dwp_name);
10843 if (dbfd == NULL
10844 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10845 {
10846 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10847 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10848 make_cleanup (xfree, dwp_name);
10849 dbfd = open_dwp_file (dwp_name);
10850 }
10851
10852 if (dbfd == NULL)
10853 {
10854 if (dwarf_read_debug)
10855 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10856 do_cleanups (cleanups);
10857 return NULL;
10858 }
10859 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10860 dwp_file->name = bfd_get_filename (dbfd);
10861 dwp_file->dbfd = dbfd;
10862 do_cleanups (cleanups);
10863
10864 /* +1: section 0 is unused */
10865 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10866 dwp_file->elf_sections =
10867 OBSTACK_CALLOC (&objfile->objfile_obstack,
10868 dwp_file->num_sections, asection *);
10869
10870 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10871
10872 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10873
10874 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10875
10876 /* The DWP file version is stored in the hash table. Oh well. */
10877 if (dwp_file->cus->version != dwp_file->tus->version)
10878 {
10879 /* Technically speaking, we should try to limp along, but this is
10880 pretty bizarre. We use pulongest here because that's the established
10881 portability solution (e.g, we cannot use %u for uint32_t). */
10882 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10883 " TU version %s [in DWP file %s]"),
10884 pulongest (dwp_file->cus->version),
10885 pulongest (dwp_file->tus->version), dwp_name);
10886 }
10887 dwp_file->version = dwp_file->cus->version;
10888
10889 if (dwp_file->version == 2)
10890 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10891
10892 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10893 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10894
10895 if (dwarf_read_debug)
10896 {
10897 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10898 fprintf_unfiltered (gdb_stdlog,
10899 " %s CUs, %s TUs\n",
10900 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10901 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10902 }
10903
10904 return dwp_file;
10905 }
10906
10907 /* Wrapper around open_and_init_dwp_file, only open it once. */
10908
10909 static struct dwp_file *
10910 get_dwp_file (void)
10911 {
10912 if (! dwarf2_per_objfile->dwp_checked)
10913 {
10914 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10915 dwarf2_per_objfile->dwp_checked = 1;
10916 }
10917 return dwarf2_per_objfile->dwp_file;
10918 }
10919
10920 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10921 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10922 or in the DWP file for the objfile, referenced by THIS_UNIT.
10923 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10924 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10925
10926 This is called, for example, when wanting to read a variable with a
10927 complex location. Therefore we don't want to do file i/o for every call.
10928 Therefore we don't want to look for a DWO file on every call.
10929 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10930 then we check if we've already seen DWO_NAME, and only THEN do we check
10931 for a DWO file.
10932
10933 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10934 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10935
10936 static struct dwo_unit *
10937 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10938 const char *dwo_name, const char *comp_dir,
10939 ULONGEST signature, int is_debug_types)
10940 {
10941 struct objfile *objfile = dwarf2_per_objfile->objfile;
10942 const char *kind = is_debug_types ? "TU" : "CU";
10943 void **dwo_file_slot;
10944 struct dwo_file *dwo_file;
10945 struct dwp_file *dwp_file;
10946
10947 /* First see if there's a DWP file.
10948 If we have a DWP file but didn't find the DWO inside it, don't
10949 look for the original DWO file. It makes gdb behave differently
10950 depending on whether one is debugging in the build tree. */
10951
10952 dwp_file = get_dwp_file ();
10953 if (dwp_file != NULL)
10954 {
10955 const struct dwp_hash_table *dwp_htab =
10956 is_debug_types ? dwp_file->tus : dwp_file->cus;
10957
10958 if (dwp_htab != NULL)
10959 {
10960 struct dwo_unit *dwo_cutu =
10961 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10962 signature, is_debug_types);
10963
10964 if (dwo_cutu != NULL)
10965 {
10966 if (dwarf_read_debug)
10967 {
10968 fprintf_unfiltered (gdb_stdlog,
10969 "Virtual DWO %s %s found: @%s\n",
10970 kind, hex_string (signature),
10971 host_address_to_string (dwo_cutu));
10972 }
10973 return dwo_cutu;
10974 }
10975 }
10976 }
10977 else
10978 {
10979 /* No DWP file, look for the DWO file. */
10980
10981 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10982 if (*dwo_file_slot == NULL)
10983 {
10984 /* Read in the file and build a table of the CUs/TUs it contains. */
10985 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10986 }
10987 /* NOTE: This will be NULL if unable to open the file. */
10988 dwo_file = (struct dwo_file *) *dwo_file_slot;
10989
10990 if (dwo_file != NULL)
10991 {
10992 struct dwo_unit *dwo_cutu = NULL;
10993
10994 if (is_debug_types && dwo_file->tus)
10995 {
10996 struct dwo_unit find_dwo_cutu;
10997
10998 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10999 find_dwo_cutu.signature = signature;
11000 dwo_cutu
11001 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11002 }
11003 else if (!is_debug_types && dwo_file->cu)
11004 {
11005 if (signature == dwo_file->cu->signature)
11006 dwo_cutu = dwo_file->cu;
11007 }
11008
11009 if (dwo_cutu != NULL)
11010 {
11011 if (dwarf_read_debug)
11012 {
11013 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11014 kind, dwo_name, hex_string (signature),
11015 host_address_to_string (dwo_cutu));
11016 }
11017 return dwo_cutu;
11018 }
11019 }
11020 }
11021
11022 /* We didn't find it. This could mean a dwo_id mismatch, or
11023 someone deleted the DWO/DWP file, or the search path isn't set up
11024 correctly to find the file. */
11025
11026 if (dwarf_read_debug)
11027 {
11028 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11029 kind, dwo_name, hex_string (signature));
11030 }
11031
11032 /* This is a warning and not a complaint because it can be caused by
11033 pilot error (e.g., user accidentally deleting the DWO). */
11034 {
11035 /* Print the name of the DWP file if we looked there, helps the user
11036 better diagnose the problem. */
11037 char *dwp_text = NULL;
11038 struct cleanup *cleanups;
11039
11040 if (dwp_file != NULL)
11041 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11042 cleanups = make_cleanup (xfree, dwp_text);
11043
11044 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11045 " [in module %s]"),
11046 kind, dwo_name, hex_string (signature),
11047 dwp_text != NULL ? dwp_text : "",
11048 this_unit->is_debug_types ? "TU" : "CU",
11049 this_unit->offset.sect_off, objfile_name (objfile));
11050
11051 do_cleanups (cleanups);
11052 }
11053 return NULL;
11054 }
11055
11056 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11057 See lookup_dwo_cutu_unit for details. */
11058
11059 static struct dwo_unit *
11060 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11061 const char *dwo_name, const char *comp_dir,
11062 ULONGEST signature)
11063 {
11064 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11065 }
11066
11067 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11068 See lookup_dwo_cutu_unit for details. */
11069
11070 static struct dwo_unit *
11071 lookup_dwo_type_unit (struct signatured_type *this_tu,
11072 const char *dwo_name, const char *comp_dir)
11073 {
11074 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11075 }
11076
11077 /* Traversal function for queue_and_load_all_dwo_tus. */
11078
11079 static int
11080 queue_and_load_dwo_tu (void **slot, void *info)
11081 {
11082 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11083 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11084 ULONGEST signature = dwo_unit->signature;
11085 struct signatured_type *sig_type =
11086 lookup_dwo_signatured_type (per_cu->cu, signature);
11087
11088 if (sig_type != NULL)
11089 {
11090 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11091
11092 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11093 a real dependency of PER_CU on SIG_TYPE. That is detected later
11094 while processing PER_CU. */
11095 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11096 load_full_type_unit (sig_cu);
11097 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11098 }
11099
11100 return 1;
11101 }
11102
11103 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11104 The DWO may have the only definition of the type, though it may not be
11105 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11106 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11107
11108 static void
11109 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11110 {
11111 struct dwo_unit *dwo_unit;
11112 struct dwo_file *dwo_file;
11113
11114 gdb_assert (!per_cu->is_debug_types);
11115 gdb_assert (get_dwp_file () == NULL);
11116 gdb_assert (per_cu->cu != NULL);
11117
11118 dwo_unit = per_cu->cu->dwo_unit;
11119 gdb_assert (dwo_unit != NULL);
11120
11121 dwo_file = dwo_unit->dwo_file;
11122 if (dwo_file->tus != NULL)
11123 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11124 }
11125
11126 /* Free all resources associated with DWO_FILE.
11127 Close the DWO file and munmap the sections.
11128 All memory should be on the objfile obstack. */
11129
11130 static void
11131 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11132 {
11133 int ix;
11134 struct dwarf2_section_info *section;
11135
11136 /* Note: dbfd is NULL for virtual DWO files. */
11137 gdb_bfd_unref (dwo_file->dbfd);
11138
11139 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11140 }
11141
11142 /* Wrapper for free_dwo_file for use in cleanups. */
11143
11144 static void
11145 free_dwo_file_cleanup (void *arg)
11146 {
11147 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11148 struct objfile *objfile = dwarf2_per_objfile->objfile;
11149
11150 free_dwo_file (dwo_file, objfile);
11151 }
11152
11153 /* Traversal function for free_dwo_files. */
11154
11155 static int
11156 free_dwo_file_from_slot (void **slot, void *info)
11157 {
11158 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11159 struct objfile *objfile = (struct objfile *) info;
11160
11161 free_dwo_file (dwo_file, objfile);
11162
11163 return 1;
11164 }
11165
11166 /* Free all resources associated with DWO_FILES. */
11167
11168 static void
11169 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11170 {
11171 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11172 }
11173 \f
11174 /* Read in various DIEs. */
11175
11176 /* qsort helper for inherit_abstract_dies. */
11177
11178 static int
11179 unsigned_int_compar (const void *ap, const void *bp)
11180 {
11181 unsigned int a = *(unsigned int *) ap;
11182 unsigned int b = *(unsigned int *) bp;
11183
11184 return (a > b) - (b > a);
11185 }
11186
11187 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11188 Inherit only the children of the DW_AT_abstract_origin DIE not being
11189 already referenced by DW_AT_abstract_origin from the children of the
11190 current DIE. */
11191
11192 static void
11193 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11194 {
11195 struct die_info *child_die;
11196 unsigned die_children_count;
11197 /* CU offsets which were referenced by children of the current DIE. */
11198 sect_offset *offsets;
11199 sect_offset *offsets_end, *offsetp;
11200 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11201 struct die_info *origin_die;
11202 /* Iterator of the ORIGIN_DIE children. */
11203 struct die_info *origin_child_die;
11204 struct cleanup *cleanups;
11205 struct attribute *attr;
11206 struct dwarf2_cu *origin_cu;
11207 struct pending **origin_previous_list_in_scope;
11208
11209 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11210 if (!attr)
11211 return;
11212
11213 /* Note that following die references may follow to a die in a
11214 different cu. */
11215
11216 origin_cu = cu;
11217 origin_die = follow_die_ref (die, attr, &origin_cu);
11218
11219 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11220 symbols in. */
11221 origin_previous_list_in_scope = origin_cu->list_in_scope;
11222 origin_cu->list_in_scope = cu->list_in_scope;
11223
11224 if (die->tag != origin_die->tag
11225 && !(die->tag == DW_TAG_inlined_subroutine
11226 && origin_die->tag == DW_TAG_subprogram))
11227 complaint (&symfile_complaints,
11228 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11229 die->offset.sect_off, origin_die->offset.sect_off);
11230
11231 child_die = die->child;
11232 die_children_count = 0;
11233 while (child_die && child_die->tag)
11234 {
11235 child_die = sibling_die (child_die);
11236 die_children_count++;
11237 }
11238 offsets = XNEWVEC (sect_offset, die_children_count);
11239 cleanups = make_cleanup (xfree, offsets);
11240
11241 offsets_end = offsets;
11242 for (child_die = die->child;
11243 child_die && child_die->tag;
11244 child_die = sibling_die (child_die))
11245 {
11246 struct die_info *child_origin_die;
11247 struct dwarf2_cu *child_origin_cu;
11248
11249 /* We are trying to process concrete instance entries:
11250 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11251 it's not relevant to our analysis here. i.e. detecting DIEs that are
11252 present in the abstract instance but not referenced in the concrete
11253 one. */
11254 if (child_die->tag == DW_TAG_GNU_call_site)
11255 continue;
11256
11257 /* For each CHILD_DIE, find the corresponding child of
11258 ORIGIN_DIE. If there is more than one layer of
11259 DW_AT_abstract_origin, follow them all; there shouldn't be,
11260 but GCC versions at least through 4.4 generate this (GCC PR
11261 40573). */
11262 child_origin_die = child_die;
11263 child_origin_cu = cu;
11264 while (1)
11265 {
11266 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11267 child_origin_cu);
11268 if (attr == NULL)
11269 break;
11270 child_origin_die = follow_die_ref (child_origin_die, attr,
11271 &child_origin_cu);
11272 }
11273
11274 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11275 counterpart may exist. */
11276 if (child_origin_die != child_die)
11277 {
11278 if (child_die->tag != child_origin_die->tag
11279 && !(child_die->tag == DW_TAG_inlined_subroutine
11280 && child_origin_die->tag == DW_TAG_subprogram))
11281 complaint (&symfile_complaints,
11282 _("Child DIE 0x%x and its abstract origin 0x%x have "
11283 "different tags"), child_die->offset.sect_off,
11284 child_origin_die->offset.sect_off);
11285 if (child_origin_die->parent != origin_die)
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
11288 "different parents"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
11290 else
11291 *offsets_end++ = child_origin_die->offset;
11292 }
11293 }
11294 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11295 unsigned_int_compar);
11296 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11297 if (offsetp[-1].sect_off == offsetp->sect_off)
11298 complaint (&symfile_complaints,
11299 _("Multiple children of DIE 0x%x refer "
11300 "to DIE 0x%x as their abstract origin"),
11301 die->offset.sect_off, offsetp->sect_off);
11302
11303 offsetp = offsets;
11304 origin_child_die = origin_die->child;
11305 while (origin_child_die && origin_child_die->tag)
11306 {
11307 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11308 while (offsetp < offsets_end
11309 && offsetp->sect_off < origin_child_die->offset.sect_off)
11310 offsetp++;
11311 if (offsetp >= offsets_end
11312 || offsetp->sect_off > origin_child_die->offset.sect_off)
11313 {
11314 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11315 Check whether we're already processing ORIGIN_CHILD_DIE.
11316 This can happen with mutually referenced abstract_origins.
11317 PR 16581. */
11318 if (!origin_child_die->in_process)
11319 process_die (origin_child_die, origin_cu);
11320 }
11321 origin_child_die = sibling_die (origin_child_die);
11322 }
11323 origin_cu->list_in_scope = origin_previous_list_in_scope;
11324
11325 do_cleanups (cleanups);
11326 }
11327
11328 static void
11329 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11330 {
11331 struct objfile *objfile = cu->objfile;
11332 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11333 struct context_stack *newobj;
11334 CORE_ADDR lowpc;
11335 CORE_ADDR highpc;
11336 struct die_info *child_die;
11337 struct attribute *attr, *call_line, *call_file;
11338 const char *name;
11339 CORE_ADDR baseaddr;
11340 struct block *block;
11341 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11342 VEC (symbolp) *template_args = NULL;
11343 struct template_symbol *templ_func = NULL;
11344
11345 if (inlined_func)
11346 {
11347 /* If we do not have call site information, we can't show the
11348 caller of this inlined function. That's too confusing, so
11349 only use the scope for local variables. */
11350 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11351 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11352 if (call_line == NULL || call_file == NULL)
11353 {
11354 read_lexical_block_scope (die, cu);
11355 return;
11356 }
11357 }
11358
11359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11360
11361 name = dwarf2_name (die, cu);
11362
11363 /* Ignore functions with missing or empty names. These are actually
11364 illegal according to the DWARF standard. */
11365 if (name == NULL)
11366 {
11367 complaint (&symfile_complaints,
11368 _("missing name for subprogram DIE at %d"),
11369 die->offset.sect_off);
11370 return;
11371 }
11372
11373 /* Ignore functions with missing or invalid low and high pc attributes. */
11374 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11375 {
11376 attr = dwarf2_attr (die, DW_AT_external, cu);
11377 if (!attr || !DW_UNSND (attr))
11378 complaint (&symfile_complaints,
11379 _("cannot get low and high bounds "
11380 "for subprogram DIE at %d"),
11381 die->offset.sect_off);
11382 return;
11383 }
11384
11385 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11386 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11387
11388 /* If we have any template arguments, then we must allocate a
11389 different sort of symbol. */
11390 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11391 {
11392 if (child_die->tag == DW_TAG_template_type_param
11393 || child_die->tag == DW_TAG_template_value_param)
11394 {
11395 templ_func = allocate_template_symbol (objfile);
11396 templ_func->base.is_cplus_template_function = 1;
11397 break;
11398 }
11399 }
11400
11401 newobj = push_context (0, lowpc);
11402 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11403 (struct symbol *) templ_func);
11404
11405 /* If there is a location expression for DW_AT_frame_base, record
11406 it. */
11407 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11408 if (attr)
11409 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11410
11411 /* If there is a location for the static link, record it. */
11412 newobj->static_link = NULL;
11413 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11414 if (attr)
11415 {
11416 newobj->static_link
11417 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11418 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11419 }
11420
11421 cu->list_in_scope = &local_symbols;
11422
11423 if (die->child != NULL)
11424 {
11425 child_die = die->child;
11426 while (child_die && child_die->tag)
11427 {
11428 if (child_die->tag == DW_TAG_template_type_param
11429 || child_die->tag == DW_TAG_template_value_param)
11430 {
11431 struct symbol *arg = new_symbol (child_die, NULL, cu);
11432
11433 if (arg != NULL)
11434 VEC_safe_push (symbolp, template_args, arg);
11435 }
11436 else
11437 process_die (child_die, cu);
11438 child_die = sibling_die (child_die);
11439 }
11440 }
11441
11442 inherit_abstract_dies (die, cu);
11443
11444 /* If we have a DW_AT_specification, we might need to import using
11445 directives from the context of the specification DIE. See the
11446 comment in determine_prefix. */
11447 if (cu->language == language_cplus
11448 && dwarf2_attr (die, DW_AT_specification, cu))
11449 {
11450 struct dwarf2_cu *spec_cu = cu;
11451 struct die_info *spec_die = die_specification (die, &spec_cu);
11452
11453 while (spec_die)
11454 {
11455 child_die = spec_die->child;
11456 while (child_die && child_die->tag)
11457 {
11458 if (child_die->tag == DW_TAG_imported_module)
11459 process_die (child_die, spec_cu);
11460 child_die = sibling_die (child_die);
11461 }
11462
11463 /* In some cases, GCC generates specification DIEs that
11464 themselves contain DW_AT_specification attributes. */
11465 spec_die = die_specification (spec_die, &spec_cu);
11466 }
11467 }
11468
11469 newobj = pop_context ();
11470 /* Make a block for the local symbols within. */
11471 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11472 newobj->static_link, lowpc, highpc);
11473
11474 /* For C++, set the block's scope. */
11475 if ((cu->language == language_cplus
11476 || cu->language == language_fortran
11477 || cu->language == language_d)
11478 && cu->processing_has_namespace_info)
11479 block_set_scope (block, determine_prefix (die, cu),
11480 &objfile->objfile_obstack);
11481
11482 /* If we have address ranges, record them. */
11483 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11484
11485 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11486
11487 /* Attach template arguments to function. */
11488 if (! VEC_empty (symbolp, template_args))
11489 {
11490 gdb_assert (templ_func != NULL);
11491
11492 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11493 templ_func->template_arguments
11494 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11495 templ_func->n_template_arguments);
11496 memcpy (templ_func->template_arguments,
11497 VEC_address (symbolp, template_args),
11498 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11499 VEC_free (symbolp, template_args);
11500 }
11501
11502 /* In C++, we can have functions nested inside functions (e.g., when
11503 a function declares a class that has methods). This means that
11504 when we finish processing a function scope, we may need to go
11505 back to building a containing block's symbol lists. */
11506 local_symbols = newobj->locals;
11507 local_using_directives = newobj->local_using_directives;
11508
11509 /* If we've finished processing a top-level function, subsequent
11510 symbols go in the file symbol list. */
11511 if (outermost_context_p ())
11512 cu->list_in_scope = &file_symbols;
11513 }
11514
11515 /* Process all the DIES contained within a lexical block scope. Start
11516 a new scope, process the dies, and then close the scope. */
11517
11518 static void
11519 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11520 {
11521 struct objfile *objfile = cu->objfile;
11522 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11523 struct context_stack *newobj;
11524 CORE_ADDR lowpc, highpc;
11525 struct die_info *child_die;
11526 CORE_ADDR baseaddr;
11527
11528 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11529
11530 /* Ignore blocks with missing or invalid low and high pc attributes. */
11531 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11532 as multiple lexical blocks? Handling children in a sane way would
11533 be nasty. Might be easier to properly extend generic blocks to
11534 describe ranges. */
11535 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11536 return;
11537 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11538 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11539
11540 push_context (0, lowpc);
11541 if (die->child != NULL)
11542 {
11543 child_die = die->child;
11544 while (child_die && child_die->tag)
11545 {
11546 process_die (child_die, cu);
11547 child_die = sibling_die (child_die);
11548 }
11549 }
11550 inherit_abstract_dies (die, cu);
11551 newobj = pop_context ();
11552
11553 if (local_symbols != NULL || local_using_directives != NULL)
11554 {
11555 struct block *block
11556 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11557 newobj->start_addr, highpc);
11558
11559 /* Note that recording ranges after traversing children, as we
11560 do here, means that recording a parent's ranges entails
11561 walking across all its children's ranges as they appear in
11562 the address map, which is quadratic behavior.
11563
11564 It would be nicer to record the parent's ranges before
11565 traversing its children, simply overriding whatever you find
11566 there. But since we don't even decide whether to create a
11567 block until after we've traversed its children, that's hard
11568 to do. */
11569 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11570 }
11571 local_symbols = newobj->locals;
11572 local_using_directives = newobj->local_using_directives;
11573 }
11574
11575 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11576
11577 static void
11578 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11579 {
11580 struct objfile *objfile = cu->objfile;
11581 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11582 CORE_ADDR pc, baseaddr;
11583 struct attribute *attr;
11584 struct call_site *call_site, call_site_local;
11585 void **slot;
11586 int nparams;
11587 struct die_info *child_die;
11588
11589 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11590
11591 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11592 if (!attr)
11593 {
11594 complaint (&symfile_complaints,
11595 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11596 "DIE 0x%x [in module %s]"),
11597 die->offset.sect_off, objfile_name (objfile));
11598 return;
11599 }
11600 pc = attr_value_as_address (attr) + baseaddr;
11601 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11602
11603 if (cu->call_site_htab == NULL)
11604 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11605 NULL, &objfile->objfile_obstack,
11606 hashtab_obstack_allocate, NULL);
11607 call_site_local.pc = pc;
11608 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11609 if (*slot != NULL)
11610 {
11611 complaint (&symfile_complaints,
11612 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11613 "DIE 0x%x [in module %s]"),
11614 paddress (gdbarch, pc), die->offset.sect_off,
11615 objfile_name (objfile));
11616 return;
11617 }
11618
11619 /* Count parameters at the caller. */
11620
11621 nparams = 0;
11622 for (child_die = die->child; child_die && child_die->tag;
11623 child_die = sibling_die (child_die))
11624 {
11625 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11626 {
11627 complaint (&symfile_complaints,
11628 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11629 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11630 child_die->tag, child_die->offset.sect_off,
11631 objfile_name (objfile));
11632 continue;
11633 }
11634
11635 nparams++;
11636 }
11637
11638 call_site
11639 = ((struct call_site *)
11640 obstack_alloc (&objfile->objfile_obstack,
11641 sizeof (*call_site)
11642 + (sizeof (*call_site->parameter) * (nparams - 1))));
11643 *slot = call_site;
11644 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11645 call_site->pc = pc;
11646
11647 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11648 {
11649 struct die_info *func_die;
11650
11651 /* Skip also over DW_TAG_inlined_subroutine. */
11652 for (func_die = die->parent;
11653 func_die && func_die->tag != DW_TAG_subprogram
11654 && func_die->tag != DW_TAG_subroutine_type;
11655 func_die = func_die->parent);
11656
11657 /* DW_AT_GNU_all_call_sites is a superset
11658 of DW_AT_GNU_all_tail_call_sites. */
11659 if (func_die
11660 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11661 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11662 {
11663 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11664 not complete. But keep CALL_SITE for look ups via call_site_htab,
11665 both the initial caller containing the real return address PC and
11666 the final callee containing the current PC of a chain of tail
11667 calls do not need to have the tail call list complete. But any
11668 function candidate for a virtual tail call frame searched via
11669 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11670 determined unambiguously. */
11671 }
11672 else
11673 {
11674 struct type *func_type = NULL;
11675
11676 if (func_die)
11677 func_type = get_die_type (func_die, cu);
11678 if (func_type != NULL)
11679 {
11680 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11681
11682 /* Enlist this call site to the function. */
11683 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11684 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11685 }
11686 else
11687 complaint (&symfile_complaints,
11688 _("Cannot find function owning DW_TAG_GNU_call_site "
11689 "DIE 0x%x [in module %s]"),
11690 die->offset.sect_off, objfile_name (objfile));
11691 }
11692 }
11693
11694 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11695 if (attr == NULL)
11696 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11697 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11698 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11699 /* Keep NULL DWARF_BLOCK. */;
11700 else if (attr_form_is_block (attr))
11701 {
11702 struct dwarf2_locexpr_baton *dlbaton;
11703
11704 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11705 dlbaton->data = DW_BLOCK (attr)->data;
11706 dlbaton->size = DW_BLOCK (attr)->size;
11707 dlbaton->per_cu = cu->per_cu;
11708
11709 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11710 }
11711 else if (attr_form_is_ref (attr))
11712 {
11713 struct dwarf2_cu *target_cu = cu;
11714 struct die_info *target_die;
11715
11716 target_die = follow_die_ref (die, attr, &target_cu);
11717 gdb_assert (target_cu->objfile == objfile);
11718 if (die_is_declaration (target_die, target_cu))
11719 {
11720 const char *target_physname;
11721
11722 /* Prefer the mangled name; otherwise compute the demangled one. */
11723 target_physname = dwarf2_string_attr (target_die,
11724 DW_AT_linkage_name,
11725 target_cu);
11726 if (target_physname == NULL)
11727 target_physname = dwarf2_string_attr (target_die,
11728 DW_AT_MIPS_linkage_name,
11729 target_cu);
11730 if (target_physname == NULL)
11731 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11732 if (target_physname == NULL)
11733 complaint (&symfile_complaints,
11734 _("DW_AT_GNU_call_site_target target DIE has invalid "
11735 "physname, for referencing DIE 0x%x [in module %s]"),
11736 die->offset.sect_off, objfile_name (objfile));
11737 else
11738 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11739 }
11740 else
11741 {
11742 CORE_ADDR lowpc;
11743
11744 /* DW_AT_entry_pc should be preferred. */
11745 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11746 complaint (&symfile_complaints,
11747 _("DW_AT_GNU_call_site_target target DIE has invalid "
11748 "low pc, for referencing DIE 0x%x [in module %s]"),
11749 die->offset.sect_off, objfile_name (objfile));
11750 else
11751 {
11752 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11753 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11754 }
11755 }
11756 }
11757 else
11758 complaint (&symfile_complaints,
11759 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11760 "block nor reference, for DIE 0x%x [in module %s]"),
11761 die->offset.sect_off, objfile_name (objfile));
11762
11763 call_site->per_cu = cu->per_cu;
11764
11765 for (child_die = die->child;
11766 child_die && child_die->tag;
11767 child_die = sibling_die (child_die))
11768 {
11769 struct call_site_parameter *parameter;
11770 struct attribute *loc, *origin;
11771
11772 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11773 {
11774 /* Already printed the complaint above. */
11775 continue;
11776 }
11777
11778 gdb_assert (call_site->parameter_count < nparams);
11779 parameter = &call_site->parameter[call_site->parameter_count];
11780
11781 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11782 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11783 register is contained in DW_AT_GNU_call_site_value. */
11784
11785 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11786 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11787 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11788 {
11789 sect_offset offset;
11790
11791 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11792 offset = dwarf2_get_ref_die_offset (origin);
11793 if (!offset_in_cu_p (&cu->header, offset))
11794 {
11795 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11796 binding can be done only inside one CU. Such referenced DIE
11797 therefore cannot be even moved to DW_TAG_partial_unit. */
11798 complaint (&symfile_complaints,
11799 _("DW_AT_abstract_origin offset is not in CU for "
11800 "DW_TAG_GNU_call_site child DIE 0x%x "
11801 "[in module %s]"),
11802 child_die->offset.sect_off, objfile_name (objfile));
11803 continue;
11804 }
11805 parameter->u.param_offset.cu_off = (offset.sect_off
11806 - cu->header.offset.sect_off);
11807 }
11808 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11809 {
11810 complaint (&symfile_complaints,
11811 _("No DW_FORM_block* DW_AT_location for "
11812 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11813 child_die->offset.sect_off, objfile_name (objfile));
11814 continue;
11815 }
11816 else
11817 {
11818 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11819 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11820 if (parameter->u.dwarf_reg != -1)
11821 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11822 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11823 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11824 &parameter->u.fb_offset))
11825 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11826 else
11827 {
11828 complaint (&symfile_complaints,
11829 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11830 "for DW_FORM_block* DW_AT_location is supported for "
11831 "DW_TAG_GNU_call_site child DIE 0x%x "
11832 "[in module %s]"),
11833 child_die->offset.sect_off, objfile_name (objfile));
11834 continue;
11835 }
11836 }
11837
11838 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11839 if (!attr_form_is_block (attr))
11840 {
11841 complaint (&symfile_complaints,
11842 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11843 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11844 child_die->offset.sect_off, objfile_name (objfile));
11845 continue;
11846 }
11847 parameter->value = DW_BLOCK (attr)->data;
11848 parameter->value_size = DW_BLOCK (attr)->size;
11849
11850 /* Parameters are not pre-cleared by memset above. */
11851 parameter->data_value = NULL;
11852 parameter->data_value_size = 0;
11853 call_site->parameter_count++;
11854
11855 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11856 if (attr)
11857 {
11858 if (!attr_form_is_block (attr))
11859 complaint (&symfile_complaints,
11860 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11861 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11862 child_die->offset.sect_off, objfile_name (objfile));
11863 else
11864 {
11865 parameter->data_value = DW_BLOCK (attr)->data;
11866 parameter->data_value_size = DW_BLOCK (attr)->size;
11867 }
11868 }
11869 }
11870 }
11871
11872 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11873 Return 1 if the attributes are present and valid, otherwise, return 0.
11874 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11875
11876 static int
11877 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11878 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11879 struct partial_symtab *ranges_pst)
11880 {
11881 struct objfile *objfile = cu->objfile;
11882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11883 struct comp_unit_head *cu_header = &cu->header;
11884 bfd *obfd = objfile->obfd;
11885 unsigned int addr_size = cu_header->addr_size;
11886 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11887 /* Base address selection entry. */
11888 CORE_ADDR base;
11889 int found_base;
11890 unsigned int dummy;
11891 const gdb_byte *buffer;
11892 CORE_ADDR marker;
11893 int low_set;
11894 CORE_ADDR low = 0;
11895 CORE_ADDR high = 0;
11896 CORE_ADDR baseaddr;
11897
11898 found_base = cu->base_known;
11899 base = cu->base_address;
11900
11901 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11902 if (offset >= dwarf2_per_objfile->ranges.size)
11903 {
11904 complaint (&symfile_complaints,
11905 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11906 offset);
11907 return 0;
11908 }
11909 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11910
11911 /* Read in the largest possible address. */
11912 marker = read_address (obfd, buffer, cu, &dummy);
11913 if ((marker & mask) == mask)
11914 {
11915 /* If we found the largest possible address, then
11916 read the base address. */
11917 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11918 buffer += 2 * addr_size;
11919 offset += 2 * addr_size;
11920 found_base = 1;
11921 }
11922
11923 low_set = 0;
11924
11925 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11926
11927 while (1)
11928 {
11929 CORE_ADDR range_beginning, range_end;
11930
11931 range_beginning = read_address (obfd, buffer, cu, &dummy);
11932 buffer += addr_size;
11933 range_end = read_address (obfd, buffer, cu, &dummy);
11934 buffer += addr_size;
11935 offset += 2 * addr_size;
11936
11937 /* An end of list marker is a pair of zero addresses. */
11938 if (range_beginning == 0 && range_end == 0)
11939 /* Found the end of list entry. */
11940 break;
11941
11942 /* Each base address selection entry is a pair of 2 values.
11943 The first is the largest possible address, the second is
11944 the base address. Check for a base address here. */
11945 if ((range_beginning & mask) == mask)
11946 {
11947 /* If we found the largest possible address, then
11948 read the base address. */
11949 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11950 found_base = 1;
11951 continue;
11952 }
11953
11954 if (!found_base)
11955 {
11956 /* We have no valid base address for the ranges
11957 data. */
11958 complaint (&symfile_complaints,
11959 _("Invalid .debug_ranges data (no base address)"));
11960 return 0;
11961 }
11962
11963 if (range_beginning > range_end)
11964 {
11965 /* Inverted range entries are invalid. */
11966 complaint (&symfile_complaints,
11967 _("Invalid .debug_ranges data (inverted range)"));
11968 return 0;
11969 }
11970
11971 /* Empty range entries have no effect. */
11972 if (range_beginning == range_end)
11973 continue;
11974
11975 range_beginning += base;
11976 range_end += base;
11977
11978 /* A not-uncommon case of bad debug info.
11979 Don't pollute the addrmap with bad data. */
11980 if (range_beginning + baseaddr == 0
11981 && !dwarf2_per_objfile->has_section_at_zero)
11982 {
11983 complaint (&symfile_complaints,
11984 _(".debug_ranges entry has start address of zero"
11985 " [in module %s]"), objfile_name (objfile));
11986 continue;
11987 }
11988
11989 if (ranges_pst != NULL)
11990 {
11991 CORE_ADDR lowpc;
11992 CORE_ADDR highpc;
11993
11994 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11995 range_beginning + baseaddr);
11996 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11997 range_end + baseaddr);
11998 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11999 ranges_pst);
12000 }
12001
12002 /* FIXME: This is recording everything as a low-high
12003 segment of consecutive addresses. We should have a
12004 data structure for discontiguous block ranges
12005 instead. */
12006 if (! low_set)
12007 {
12008 low = range_beginning;
12009 high = range_end;
12010 low_set = 1;
12011 }
12012 else
12013 {
12014 if (range_beginning < low)
12015 low = range_beginning;
12016 if (range_end > high)
12017 high = range_end;
12018 }
12019 }
12020
12021 if (! low_set)
12022 /* If the first entry is an end-of-list marker, the range
12023 describes an empty scope, i.e. no instructions. */
12024 return 0;
12025
12026 if (low_return)
12027 *low_return = low;
12028 if (high_return)
12029 *high_return = high;
12030 return 1;
12031 }
12032
12033 /* Get low and high pc attributes from a die. Return 1 if the attributes
12034 are present and valid, otherwise, return 0. Return -1 if the range is
12035 discontinuous, i.e. derived from DW_AT_ranges information. */
12036
12037 static int
12038 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12039 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12040 struct partial_symtab *pst)
12041 {
12042 struct attribute *attr;
12043 struct attribute *attr_high;
12044 CORE_ADDR low = 0;
12045 CORE_ADDR high = 0;
12046 int ret = 0;
12047
12048 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12049 if (attr_high)
12050 {
12051 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12052 if (attr)
12053 {
12054 low = attr_value_as_address (attr);
12055 high = attr_value_as_address (attr_high);
12056 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12057 high += low;
12058 }
12059 else
12060 /* Found high w/o low attribute. */
12061 return 0;
12062
12063 /* Found consecutive range of addresses. */
12064 ret = 1;
12065 }
12066 else
12067 {
12068 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12069 if (attr != NULL)
12070 {
12071 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12072 We take advantage of the fact that DW_AT_ranges does not appear
12073 in DW_TAG_compile_unit of DWO files. */
12074 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12075 unsigned int ranges_offset = (DW_UNSND (attr)
12076 + (need_ranges_base
12077 ? cu->ranges_base
12078 : 0));
12079
12080 /* Value of the DW_AT_ranges attribute is the offset in the
12081 .debug_ranges section. */
12082 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12083 return 0;
12084 /* Found discontinuous range of addresses. */
12085 ret = -1;
12086 }
12087 }
12088
12089 /* read_partial_die has also the strict LOW < HIGH requirement. */
12090 if (high <= low)
12091 return 0;
12092
12093 /* When using the GNU linker, .gnu.linkonce. sections are used to
12094 eliminate duplicate copies of functions and vtables and such.
12095 The linker will arbitrarily choose one and discard the others.
12096 The AT_*_pc values for such functions refer to local labels in
12097 these sections. If the section from that file was discarded, the
12098 labels are not in the output, so the relocs get a value of 0.
12099 If this is a discarded function, mark the pc bounds as invalid,
12100 so that GDB will ignore it. */
12101 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12102 return 0;
12103
12104 *lowpc = low;
12105 if (highpc)
12106 *highpc = high;
12107 return ret;
12108 }
12109
12110 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12111 its low and high PC addresses. Do nothing if these addresses could not
12112 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12113 and HIGHPC to the high address if greater than HIGHPC. */
12114
12115 static void
12116 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12118 struct dwarf2_cu *cu)
12119 {
12120 CORE_ADDR low, high;
12121 struct die_info *child = die->child;
12122
12123 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12124 {
12125 *lowpc = min (*lowpc, low);
12126 *highpc = max (*highpc, high);
12127 }
12128
12129 /* If the language does not allow nested subprograms (either inside
12130 subprograms or lexical blocks), we're done. */
12131 if (cu->language != language_ada)
12132 return;
12133
12134 /* Check all the children of the given DIE. If it contains nested
12135 subprograms, then check their pc bounds. Likewise, we need to
12136 check lexical blocks as well, as they may also contain subprogram
12137 definitions. */
12138 while (child && child->tag)
12139 {
12140 if (child->tag == DW_TAG_subprogram
12141 || child->tag == DW_TAG_lexical_block)
12142 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12143 child = sibling_die (child);
12144 }
12145 }
12146
12147 /* Get the low and high pc's represented by the scope DIE, and store
12148 them in *LOWPC and *HIGHPC. If the correct values can't be
12149 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12150
12151 static void
12152 get_scope_pc_bounds (struct die_info *die,
12153 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12154 struct dwarf2_cu *cu)
12155 {
12156 CORE_ADDR best_low = (CORE_ADDR) -1;
12157 CORE_ADDR best_high = (CORE_ADDR) 0;
12158 CORE_ADDR current_low, current_high;
12159
12160 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12161 {
12162 best_low = current_low;
12163 best_high = current_high;
12164 }
12165 else
12166 {
12167 struct die_info *child = die->child;
12168
12169 while (child && child->tag)
12170 {
12171 switch (child->tag) {
12172 case DW_TAG_subprogram:
12173 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12174 break;
12175 case DW_TAG_namespace:
12176 case DW_TAG_module:
12177 /* FIXME: carlton/2004-01-16: Should we do this for
12178 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12179 that current GCC's always emit the DIEs corresponding
12180 to definitions of methods of classes as children of a
12181 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12182 the DIEs giving the declarations, which could be
12183 anywhere). But I don't see any reason why the
12184 standards says that they have to be there. */
12185 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12186
12187 if (current_low != ((CORE_ADDR) -1))
12188 {
12189 best_low = min (best_low, current_low);
12190 best_high = max (best_high, current_high);
12191 }
12192 break;
12193 default:
12194 /* Ignore. */
12195 break;
12196 }
12197
12198 child = sibling_die (child);
12199 }
12200 }
12201
12202 *lowpc = best_low;
12203 *highpc = best_high;
12204 }
12205
12206 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12207 in DIE. */
12208
12209 static void
12210 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12211 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12212 {
12213 struct objfile *objfile = cu->objfile;
12214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12215 struct attribute *attr;
12216 struct attribute *attr_high;
12217
12218 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12219 if (attr_high)
12220 {
12221 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12222 if (attr)
12223 {
12224 CORE_ADDR low = attr_value_as_address (attr);
12225 CORE_ADDR high = attr_value_as_address (attr_high);
12226
12227 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12228 high += low;
12229
12230 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12231 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12232 record_block_range (block, low, high - 1);
12233 }
12234 }
12235
12236 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12237 if (attr)
12238 {
12239 bfd *obfd = objfile->obfd;
12240 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12241 We take advantage of the fact that DW_AT_ranges does not appear
12242 in DW_TAG_compile_unit of DWO files. */
12243 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12244
12245 /* The value of the DW_AT_ranges attribute is the offset of the
12246 address range list in the .debug_ranges section. */
12247 unsigned long offset = (DW_UNSND (attr)
12248 + (need_ranges_base ? cu->ranges_base : 0));
12249 const gdb_byte *buffer;
12250
12251 /* For some target architectures, but not others, the
12252 read_address function sign-extends the addresses it returns.
12253 To recognize base address selection entries, we need a
12254 mask. */
12255 unsigned int addr_size = cu->header.addr_size;
12256 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12257
12258 /* The base address, to which the next pair is relative. Note
12259 that this 'base' is a DWARF concept: most entries in a range
12260 list are relative, to reduce the number of relocs against the
12261 debugging information. This is separate from this function's
12262 'baseaddr' argument, which GDB uses to relocate debugging
12263 information from a shared library based on the address at
12264 which the library was loaded. */
12265 CORE_ADDR base = cu->base_address;
12266 int base_known = cu->base_known;
12267
12268 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12269 if (offset >= dwarf2_per_objfile->ranges.size)
12270 {
12271 complaint (&symfile_complaints,
12272 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12273 offset);
12274 return;
12275 }
12276 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12277
12278 for (;;)
12279 {
12280 unsigned int bytes_read;
12281 CORE_ADDR start, end;
12282
12283 start = read_address (obfd, buffer, cu, &bytes_read);
12284 buffer += bytes_read;
12285 end = read_address (obfd, buffer, cu, &bytes_read);
12286 buffer += bytes_read;
12287
12288 /* Did we find the end of the range list? */
12289 if (start == 0 && end == 0)
12290 break;
12291
12292 /* Did we find a base address selection entry? */
12293 else if ((start & base_select_mask) == base_select_mask)
12294 {
12295 base = end;
12296 base_known = 1;
12297 }
12298
12299 /* We found an ordinary address range. */
12300 else
12301 {
12302 if (!base_known)
12303 {
12304 complaint (&symfile_complaints,
12305 _("Invalid .debug_ranges data "
12306 "(no base address)"));
12307 return;
12308 }
12309
12310 if (start > end)
12311 {
12312 /* Inverted range entries are invalid. */
12313 complaint (&symfile_complaints,
12314 _("Invalid .debug_ranges data "
12315 "(inverted range)"));
12316 return;
12317 }
12318
12319 /* Empty range entries have no effect. */
12320 if (start == end)
12321 continue;
12322
12323 start += base + baseaddr;
12324 end += base + baseaddr;
12325
12326 /* A not-uncommon case of bad debug info.
12327 Don't pollute the addrmap with bad data. */
12328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12329 {
12330 complaint (&symfile_complaints,
12331 _(".debug_ranges entry has start address of zero"
12332 " [in module %s]"), objfile_name (objfile));
12333 continue;
12334 }
12335
12336 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12337 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12338 record_block_range (block, start, end - 1);
12339 }
12340 }
12341 }
12342 }
12343
12344 /* Check whether the producer field indicates either of GCC < 4.6, or the
12345 Intel C/C++ compiler, and cache the result in CU. */
12346
12347 static void
12348 check_producer (struct dwarf2_cu *cu)
12349 {
12350 const char *cs;
12351 int major, minor;
12352
12353 if (cu->producer == NULL)
12354 {
12355 /* For unknown compilers expect their behavior is DWARF version
12356 compliant.
12357
12358 GCC started to support .debug_types sections by -gdwarf-4 since
12359 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12360 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12361 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12362 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12363 }
12364 else if (producer_is_gcc (cu->producer, &major, &minor))
12365 {
12366 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12367 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12368 }
12369 else if (startswith (cu->producer, "Intel(R) C"))
12370 cu->producer_is_icc = 1;
12371 else
12372 {
12373 /* For other non-GCC compilers, expect their behavior is DWARF version
12374 compliant. */
12375 }
12376
12377 cu->checked_producer = 1;
12378 }
12379
12380 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12381 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12382 during 4.6.0 experimental. */
12383
12384 static int
12385 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12386 {
12387 if (!cu->checked_producer)
12388 check_producer (cu);
12389
12390 return cu->producer_is_gxx_lt_4_6;
12391 }
12392
12393 /* Return the default accessibility type if it is not overriden by
12394 DW_AT_accessibility. */
12395
12396 static enum dwarf_access_attribute
12397 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12398 {
12399 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12400 {
12401 /* The default DWARF 2 accessibility for members is public, the default
12402 accessibility for inheritance is private. */
12403
12404 if (die->tag != DW_TAG_inheritance)
12405 return DW_ACCESS_public;
12406 else
12407 return DW_ACCESS_private;
12408 }
12409 else
12410 {
12411 /* DWARF 3+ defines the default accessibility a different way. The same
12412 rules apply now for DW_TAG_inheritance as for the members and it only
12413 depends on the container kind. */
12414
12415 if (die->parent->tag == DW_TAG_class_type)
12416 return DW_ACCESS_private;
12417 else
12418 return DW_ACCESS_public;
12419 }
12420 }
12421
12422 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12423 offset. If the attribute was not found return 0, otherwise return
12424 1. If it was found but could not properly be handled, set *OFFSET
12425 to 0. */
12426
12427 static int
12428 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12429 LONGEST *offset)
12430 {
12431 struct attribute *attr;
12432
12433 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12434 if (attr != NULL)
12435 {
12436 *offset = 0;
12437
12438 /* Note that we do not check for a section offset first here.
12439 This is because DW_AT_data_member_location is new in DWARF 4,
12440 so if we see it, we can assume that a constant form is really
12441 a constant and not a section offset. */
12442 if (attr_form_is_constant (attr))
12443 *offset = dwarf2_get_attr_constant_value (attr, 0);
12444 else if (attr_form_is_section_offset (attr))
12445 dwarf2_complex_location_expr_complaint ();
12446 else if (attr_form_is_block (attr))
12447 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12448 else
12449 dwarf2_complex_location_expr_complaint ();
12450
12451 return 1;
12452 }
12453
12454 return 0;
12455 }
12456
12457 /* Add an aggregate field to the field list. */
12458
12459 static void
12460 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12461 struct dwarf2_cu *cu)
12462 {
12463 struct objfile *objfile = cu->objfile;
12464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12465 struct nextfield *new_field;
12466 struct attribute *attr;
12467 struct field *fp;
12468 const char *fieldname = "";
12469
12470 /* Allocate a new field list entry and link it in. */
12471 new_field = XNEW (struct nextfield);
12472 make_cleanup (xfree, new_field);
12473 memset (new_field, 0, sizeof (struct nextfield));
12474
12475 if (die->tag == DW_TAG_inheritance)
12476 {
12477 new_field->next = fip->baseclasses;
12478 fip->baseclasses = new_field;
12479 }
12480 else
12481 {
12482 new_field->next = fip->fields;
12483 fip->fields = new_field;
12484 }
12485 fip->nfields++;
12486
12487 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12488 if (attr)
12489 new_field->accessibility = DW_UNSND (attr);
12490 else
12491 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12492 if (new_field->accessibility != DW_ACCESS_public)
12493 fip->non_public_fields = 1;
12494
12495 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12496 if (attr)
12497 new_field->virtuality = DW_UNSND (attr);
12498 else
12499 new_field->virtuality = DW_VIRTUALITY_none;
12500
12501 fp = &new_field->field;
12502
12503 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12504 {
12505 LONGEST offset;
12506
12507 /* Data member other than a C++ static data member. */
12508
12509 /* Get type of field. */
12510 fp->type = die_type (die, cu);
12511
12512 SET_FIELD_BITPOS (*fp, 0);
12513
12514 /* Get bit size of field (zero if none). */
12515 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12516 if (attr)
12517 {
12518 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12519 }
12520 else
12521 {
12522 FIELD_BITSIZE (*fp) = 0;
12523 }
12524
12525 /* Get bit offset of field. */
12526 if (handle_data_member_location (die, cu, &offset))
12527 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12528 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12529 if (attr)
12530 {
12531 if (gdbarch_bits_big_endian (gdbarch))
12532 {
12533 /* For big endian bits, the DW_AT_bit_offset gives the
12534 additional bit offset from the MSB of the containing
12535 anonymous object to the MSB of the field. We don't
12536 have to do anything special since we don't need to
12537 know the size of the anonymous object. */
12538 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12539 }
12540 else
12541 {
12542 /* For little endian bits, compute the bit offset to the
12543 MSB of the anonymous object, subtract off the number of
12544 bits from the MSB of the field to the MSB of the
12545 object, and then subtract off the number of bits of
12546 the field itself. The result is the bit offset of
12547 the LSB of the field. */
12548 int anonymous_size;
12549 int bit_offset = DW_UNSND (attr);
12550
12551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12552 if (attr)
12553 {
12554 /* The size of the anonymous object containing
12555 the bit field is explicit, so use the
12556 indicated size (in bytes). */
12557 anonymous_size = DW_UNSND (attr);
12558 }
12559 else
12560 {
12561 /* The size of the anonymous object containing
12562 the bit field must be inferred from the type
12563 attribute of the data member containing the
12564 bit field. */
12565 anonymous_size = TYPE_LENGTH (fp->type);
12566 }
12567 SET_FIELD_BITPOS (*fp,
12568 (FIELD_BITPOS (*fp)
12569 + anonymous_size * bits_per_byte
12570 - bit_offset - FIELD_BITSIZE (*fp)));
12571 }
12572 }
12573
12574 /* Get name of field. */
12575 fieldname = dwarf2_name (die, cu);
12576 if (fieldname == NULL)
12577 fieldname = "";
12578
12579 /* The name is already allocated along with this objfile, so we don't
12580 need to duplicate it for the type. */
12581 fp->name = fieldname;
12582
12583 /* Change accessibility for artificial fields (e.g. virtual table
12584 pointer or virtual base class pointer) to private. */
12585 if (dwarf2_attr (die, DW_AT_artificial, cu))
12586 {
12587 FIELD_ARTIFICIAL (*fp) = 1;
12588 new_field->accessibility = DW_ACCESS_private;
12589 fip->non_public_fields = 1;
12590 }
12591 }
12592 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12593 {
12594 /* C++ static member. */
12595
12596 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12597 is a declaration, but all versions of G++ as of this writing
12598 (so through at least 3.2.1) incorrectly generate
12599 DW_TAG_variable tags. */
12600
12601 const char *physname;
12602
12603 /* Get name of field. */
12604 fieldname = dwarf2_name (die, cu);
12605 if (fieldname == NULL)
12606 return;
12607
12608 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12609 if (attr
12610 /* Only create a symbol if this is an external value.
12611 new_symbol checks this and puts the value in the global symbol
12612 table, which we want. If it is not external, new_symbol
12613 will try to put the value in cu->list_in_scope which is wrong. */
12614 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12615 {
12616 /* A static const member, not much different than an enum as far as
12617 we're concerned, except that we can support more types. */
12618 new_symbol (die, NULL, cu);
12619 }
12620
12621 /* Get physical name. */
12622 physname = dwarf2_physname (fieldname, die, cu);
12623
12624 /* The name is already allocated along with this objfile, so we don't
12625 need to duplicate it for the type. */
12626 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12627 FIELD_TYPE (*fp) = die_type (die, cu);
12628 FIELD_NAME (*fp) = fieldname;
12629 }
12630 else if (die->tag == DW_TAG_inheritance)
12631 {
12632 LONGEST offset;
12633
12634 /* C++ base class field. */
12635 if (handle_data_member_location (die, cu, &offset))
12636 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12637 FIELD_BITSIZE (*fp) = 0;
12638 FIELD_TYPE (*fp) = die_type (die, cu);
12639 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12640 fip->nbaseclasses++;
12641 }
12642 }
12643
12644 /* Add a typedef defined in the scope of the FIP's class. */
12645
12646 static void
12647 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12648 struct dwarf2_cu *cu)
12649 {
12650 struct objfile *objfile = cu->objfile;
12651 struct typedef_field_list *new_field;
12652 struct attribute *attr;
12653 struct typedef_field *fp;
12654 char *fieldname = "";
12655
12656 /* Allocate a new field list entry and link it in. */
12657 new_field = XCNEW (struct typedef_field_list);
12658 make_cleanup (xfree, new_field);
12659
12660 gdb_assert (die->tag == DW_TAG_typedef);
12661
12662 fp = &new_field->field;
12663
12664 /* Get name of field. */
12665 fp->name = dwarf2_name (die, cu);
12666 if (fp->name == NULL)
12667 return;
12668
12669 fp->type = read_type_die (die, cu);
12670
12671 new_field->next = fip->typedef_field_list;
12672 fip->typedef_field_list = new_field;
12673 fip->typedef_field_list_count++;
12674 }
12675
12676 /* Create the vector of fields, and attach it to the type. */
12677
12678 static void
12679 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12680 struct dwarf2_cu *cu)
12681 {
12682 int nfields = fip->nfields;
12683
12684 /* Record the field count, allocate space for the array of fields,
12685 and create blank accessibility bitfields if necessary. */
12686 TYPE_NFIELDS (type) = nfields;
12687 TYPE_FIELDS (type) = (struct field *)
12688 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12689 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12690
12691 if (fip->non_public_fields && cu->language != language_ada)
12692 {
12693 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12694
12695 TYPE_FIELD_PRIVATE_BITS (type) =
12696 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12697 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12698
12699 TYPE_FIELD_PROTECTED_BITS (type) =
12700 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12701 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12702
12703 TYPE_FIELD_IGNORE_BITS (type) =
12704 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12705 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12706 }
12707
12708 /* If the type has baseclasses, allocate and clear a bit vector for
12709 TYPE_FIELD_VIRTUAL_BITS. */
12710 if (fip->nbaseclasses && cu->language != language_ada)
12711 {
12712 int num_bytes = B_BYTES (fip->nbaseclasses);
12713 unsigned char *pointer;
12714
12715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12716 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12717 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12718 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12719 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12720 }
12721
12722 /* Copy the saved-up fields into the field vector. Start from the head of
12723 the list, adding to the tail of the field array, so that they end up in
12724 the same order in the array in which they were added to the list. */
12725 while (nfields-- > 0)
12726 {
12727 struct nextfield *fieldp;
12728
12729 if (fip->fields)
12730 {
12731 fieldp = fip->fields;
12732 fip->fields = fieldp->next;
12733 }
12734 else
12735 {
12736 fieldp = fip->baseclasses;
12737 fip->baseclasses = fieldp->next;
12738 }
12739
12740 TYPE_FIELD (type, nfields) = fieldp->field;
12741 switch (fieldp->accessibility)
12742 {
12743 case DW_ACCESS_private:
12744 if (cu->language != language_ada)
12745 SET_TYPE_FIELD_PRIVATE (type, nfields);
12746 break;
12747
12748 case DW_ACCESS_protected:
12749 if (cu->language != language_ada)
12750 SET_TYPE_FIELD_PROTECTED (type, nfields);
12751 break;
12752
12753 case DW_ACCESS_public:
12754 break;
12755
12756 default:
12757 /* Unknown accessibility. Complain and treat it as public. */
12758 {
12759 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12760 fieldp->accessibility);
12761 }
12762 break;
12763 }
12764 if (nfields < fip->nbaseclasses)
12765 {
12766 switch (fieldp->virtuality)
12767 {
12768 case DW_VIRTUALITY_virtual:
12769 case DW_VIRTUALITY_pure_virtual:
12770 if (cu->language == language_ada)
12771 error (_("unexpected virtuality in component of Ada type"));
12772 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12773 break;
12774 }
12775 }
12776 }
12777 }
12778
12779 /* Return true if this member function is a constructor, false
12780 otherwise. */
12781
12782 static int
12783 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12784 {
12785 const char *fieldname;
12786 const char *type_name;
12787 int len;
12788
12789 if (die->parent == NULL)
12790 return 0;
12791
12792 if (die->parent->tag != DW_TAG_structure_type
12793 && die->parent->tag != DW_TAG_union_type
12794 && die->parent->tag != DW_TAG_class_type)
12795 return 0;
12796
12797 fieldname = dwarf2_name (die, cu);
12798 type_name = dwarf2_name (die->parent, cu);
12799 if (fieldname == NULL || type_name == NULL)
12800 return 0;
12801
12802 len = strlen (fieldname);
12803 return (strncmp (fieldname, type_name, len) == 0
12804 && (type_name[len] == '\0' || type_name[len] == '<'));
12805 }
12806
12807 /* Add a member function to the proper fieldlist. */
12808
12809 static void
12810 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12811 struct type *type, struct dwarf2_cu *cu)
12812 {
12813 struct objfile *objfile = cu->objfile;
12814 struct attribute *attr;
12815 struct fnfieldlist *flp;
12816 int i;
12817 struct fn_field *fnp;
12818 const char *fieldname;
12819 struct nextfnfield *new_fnfield;
12820 struct type *this_type;
12821 enum dwarf_access_attribute accessibility;
12822
12823 if (cu->language == language_ada)
12824 error (_("unexpected member function in Ada type"));
12825
12826 /* Get name of member function. */
12827 fieldname = dwarf2_name (die, cu);
12828 if (fieldname == NULL)
12829 return;
12830
12831 /* Look up member function name in fieldlist. */
12832 for (i = 0; i < fip->nfnfields; i++)
12833 {
12834 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12835 break;
12836 }
12837
12838 /* Create new list element if necessary. */
12839 if (i < fip->nfnfields)
12840 flp = &fip->fnfieldlists[i];
12841 else
12842 {
12843 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12844 {
12845 fip->fnfieldlists = (struct fnfieldlist *)
12846 xrealloc (fip->fnfieldlists,
12847 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12848 * sizeof (struct fnfieldlist));
12849 if (fip->nfnfields == 0)
12850 make_cleanup (free_current_contents, &fip->fnfieldlists);
12851 }
12852 flp = &fip->fnfieldlists[fip->nfnfields];
12853 flp->name = fieldname;
12854 flp->length = 0;
12855 flp->head = NULL;
12856 i = fip->nfnfields++;
12857 }
12858
12859 /* Create a new member function field and chain it to the field list
12860 entry. */
12861 new_fnfield = XNEW (struct nextfnfield);
12862 make_cleanup (xfree, new_fnfield);
12863 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12864 new_fnfield->next = flp->head;
12865 flp->head = new_fnfield;
12866 flp->length++;
12867
12868 /* Fill in the member function field info. */
12869 fnp = &new_fnfield->fnfield;
12870
12871 /* Delay processing of the physname until later. */
12872 if (cu->language == language_cplus || cu->language == language_java)
12873 {
12874 add_to_method_list (type, i, flp->length - 1, fieldname,
12875 die, cu);
12876 }
12877 else
12878 {
12879 const char *physname = dwarf2_physname (fieldname, die, cu);
12880 fnp->physname = physname ? physname : "";
12881 }
12882
12883 fnp->type = alloc_type (objfile);
12884 this_type = read_type_die (die, cu);
12885 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12886 {
12887 int nparams = TYPE_NFIELDS (this_type);
12888
12889 /* TYPE is the domain of this method, and THIS_TYPE is the type
12890 of the method itself (TYPE_CODE_METHOD). */
12891 smash_to_method_type (fnp->type, type,
12892 TYPE_TARGET_TYPE (this_type),
12893 TYPE_FIELDS (this_type),
12894 TYPE_NFIELDS (this_type),
12895 TYPE_VARARGS (this_type));
12896
12897 /* Handle static member functions.
12898 Dwarf2 has no clean way to discern C++ static and non-static
12899 member functions. G++ helps GDB by marking the first
12900 parameter for non-static member functions (which is the this
12901 pointer) as artificial. We obtain this information from
12902 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12903 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12904 fnp->voffset = VOFFSET_STATIC;
12905 }
12906 else
12907 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12908 dwarf2_full_name (fieldname, die, cu));
12909
12910 /* Get fcontext from DW_AT_containing_type if present. */
12911 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12912 fnp->fcontext = die_containing_type (die, cu);
12913
12914 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12915 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12916
12917 /* Get accessibility. */
12918 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12919 if (attr)
12920 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12921 else
12922 accessibility = dwarf2_default_access_attribute (die, cu);
12923 switch (accessibility)
12924 {
12925 case DW_ACCESS_private:
12926 fnp->is_private = 1;
12927 break;
12928 case DW_ACCESS_protected:
12929 fnp->is_protected = 1;
12930 break;
12931 }
12932
12933 /* Check for artificial methods. */
12934 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12935 if (attr && DW_UNSND (attr) != 0)
12936 fnp->is_artificial = 1;
12937
12938 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12939
12940 /* Get index in virtual function table if it is a virtual member
12941 function. For older versions of GCC, this is an offset in the
12942 appropriate virtual table, as specified by DW_AT_containing_type.
12943 For everyone else, it is an expression to be evaluated relative
12944 to the object address. */
12945
12946 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12947 if (attr)
12948 {
12949 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12950 {
12951 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12952 {
12953 /* Old-style GCC. */
12954 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12955 }
12956 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12957 || (DW_BLOCK (attr)->size > 1
12958 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12959 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12960 {
12961 struct dwarf_block blk;
12962 int offset;
12963
12964 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12965 ? 1 : 2);
12966 blk.size = DW_BLOCK (attr)->size - offset;
12967 blk.data = DW_BLOCK (attr)->data + offset;
12968 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12969 if ((fnp->voffset % cu->header.addr_size) != 0)
12970 dwarf2_complex_location_expr_complaint ();
12971 else
12972 fnp->voffset /= cu->header.addr_size;
12973 fnp->voffset += 2;
12974 }
12975 else
12976 dwarf2_complex_location_expr_complaint ();
12977
12978 if (!fnp->fcontext)
12979 {
12980 /* If there is no `this' field and no DW_AT_containing_type,
12981 we cannot actually find a base class context for the
12982 vtable! */
12983 if (TYPE_NFIELDS (this_type) == 0
12984 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12985 {
12986 complaint (&symfile_complaints,
12987 _("cannot determine context for virtual member "
12988 "function \"%s\" (offset %d)"),
12989 fieldname, die->offset.sect_off);
12990 }
12991 else
12992 {
12993 fnp->fcontext
12994 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12995 }
12996 }
12997 }
12998 else if (attr_form_is_section_offset (attr))
12999 {
13000 dwarf2_complex_location_expr_complaint ();
13001 }
13002 else
13003 {
13004 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13005 fieldname);
13006 }
13007 }
13008 else
13009 {
13010 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13011 if (attr && DW_UNSND (attr))
13012 {
13013 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13014 complaint (&symfile_complaints,
13015 _("Member function \"%s\" (offset %d) is virtual "
13016 "but the vtable offset is not specified"),
13017 fieldname, die->offset.sect_off);
13018 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13019 TYPE_CPLUS_DYNAMIC (type) = 1;
13020 }
13021 }
13022 }
13023
13024 /* Create the vector of member function fields, and attach it to the type. */
13025
13026 static void
13027 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13028 struct dwarf2_cu *cu)
13029 {
13030 struct fnfieldlist *flp;
13031 int i;
13032
13033 if (cu->language == language_ada)
13034 error (_("unexpected member functions in Ada type"));
13035
13036 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13037 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13038 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13039
13040 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13041 {
13042 struct nextfnfield *nfp = flp->head;
13043 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13044 int k;
13045
13046 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13047 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13048 fn_flp->fn_fields = (struct fn_field *)
13049 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13050 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13051 fn_flp->fn_fields[k] = nfp->fnfield;
13052 }
13053
13054 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13055 }
13056
13057 /* Returns non-zero if NAME is the name of a vtable member in CU's
13058 language, zero otherwise. */
13059 static int
13060 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13061 {
13062 static const char vptr[] = "_vptr";
13063 static const char vtable[] = "vtable";
13064
13065 /* Look for the C++ and Java forms of the vtable. */
13066 if ((cu->language == language_java
13067 && startswith (name, vtable))
13068 || (startswith (name, vptr)
13069 && is_cplus_marker (name[sizeof (vptr) - 1])))
13070 return 1;
13071
13072 return 0;
13073 }
13074
13075 /* GCC outputs unnamed structures that are really pointers to member
13076 functions, with the ABI-specified layout. If TYPE describes
13077 such a structure, smash it into a member function type.
13078
13079 GCC shouldn't do this; it should just output pointer to member DIEs.
13080 This is GCC PR debug/28767. */
13081
13082 static void
13083 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13084 {
13085 struct type *pfn_type, *self_type, *new_type;
13086
13087 /* Check for a structure with no name and two children. */
13088 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13089 return;
13090
13091 /* Check for __pfn and __delta members. */
13092 if (TYPE_FIELD_NAME (type, 0) == NULL
13093 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13094 || TYPE_FIELD_NAME (type, 1) == NULL
13095 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13096 return;
13097
13098 /* Find the type of the method. */
13099 pfn_type = TYPE_FIELD_TYPE (type, 0);
13100 if (pfn_type == NULL
13101 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13102 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13103 return;
13104
13105 /* Look for the "this" argument. */
13106 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13107 if (TYPE_NFIELDS (pfn_type) == 0
13108 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13109 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13110 return;
13111
13112 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13113 new_type = alloc_type (objfile);
13114 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13115 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13116 TYPE_VARARGS (pfn_type));
13117 smash_to_methodptr_type (type, new_type);
13118 }
13119
13120 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13121 (icc). */
13122
13123 static int
13124 producer_is_icc (struct dwarf2_cu *cu)
13125 {
13126 if (!cu->checked_producer)
13127 check_producer (cu);
13128
13129 return cu->producer_is_icc;
13130 }
13131
13132 /* Called when we find the DIE that starts a structure or union scope
13133 (definition) to create a type for the structure or union. Fill in
13134 the type's name and general properties; the members will not be
13135 processed until process_structure_scope. A symbol table entry for
13136 the type will also not be done until process_structure_scope (assuming
13137 the type has a name).
13138
13139 NOTE: we need to call these functions regardless of whether or not the
13140 DIE has a DW_AT_name attribute, since it might be an anonymous
13141 structure or union. This gets the type entered into our set of
13142 user defined types. */
13143
13144 static struct type *
13145 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13146 {
13147 struct objfile *objfile = cu->objfile;
13148 struct type *type;
13149 struct attribute *attr;
13150 const char *name;
13151
13152 /* If the definition of this type lives in .debug_types, read that type.
13153 Don't follow DW_AT_specification though, that will take us back up
13154 the chain and we want to go down. */
13155 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13156 if (attr)
13157 {
13158 type = get_DW_AT_signature_type (die, attr, cu);
13159
13160 /* The type's CU may not be the same as CU.
13161 Ensure TYPE is recorded with CU in die_type_hash. */
13162 return set_die_type (die, type, cu);
13163 }
13164
13165 type = alloc_type (objfile);
13166 INIT_CPLUS_SPECIFIC (type);
13167
13168 name = dwarf2_name (die, cu);
13169 if (name != NULL)
13170 {
13171 if (cu->language == language_cplus
13172 || cu->language == language_java
13173 || cu->language == language_d)
13174 {
13175 const char *full_name = dwarf2_full_name (name, die, cu);
13176
13177 /* dwarf2_full_name might have already finished building the DIE's
13178 type. If so, there is no need to continue. */
13179 if (get_die_type (die, cu) != NULL)
13180 return get_die_type (die, cu);
13181
13182 TYPE_TAG_NAME (type) = full_name;
13183 if (die->tag == DW_TAG_structure_type
13184 || die->tag == DW_TAG_class_type)
13185 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13186 }
13187 else
13188 {
13189 /* The name is already allocated along with this objfile, so
13190 we don't need to duplicate it for the type. */
13191 TYPE_TAG_NAME (type) = name;
13192 if (die->tag == DW_TAG_class_type)
13193 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13194 }
13195 }
13196
13197 if (die->tag == DW_TAG_structure_type)
13198 {
13199 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13200 }
13201 else if (die->tag == DW_TAG_union_type)
13202 {
13203 TYPE_CODE (type) = TYPE_CODE_UNION;
13204 }
13205 else
13206 {
13207 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13208 }
13209
13210 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13211 TYPE_DECLARED_CLASS (type) = 1;
13212
13213 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13214 if (attr)
13215 {
13216 TYPE_LENGTH (type) = DW_UNSND (attr);
13217 }
13218 else
13219 {
13220 TYPE_LENGTH (type) = 0;
13221 }
13222
13223 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13224 {
13225 /* ICC does not output the required DW_AT_declaration
13226 on incomplete types, but gives them a size of zero. */
13227 TYPE_STUB (type) = 1;
13228 }
13229 else
13230 TYPE_STUB_SUPPORTED (type) = 1;
13231
13232 if (die_is_declaration (die, cu))
13233 TYPE_STUB (type) = 1;
13234 else if (attr == NULL && die->child == NULL
13235 && producer_is_realview (cu->producer))
13236 /* RealView does not output the required DW_AT_declaration
13237 on incomplete types. */
13238 TYPE_STUB (type) = 1;
13239
13240 /* We need to add the type field to the die immediately so we don't
13241 infinitely recurse when dealing with pointers to the structure
13242 type within the structure itself. */
13243 set_die_type (die, type, cu);
13244
13245 /* set_die_type should be already done. */
13246 set_descriptive_type (type, die, cu);
13247
13248 return type;
13249 }
13250
13251 /* Finish creating a structure or union type, including filling in
13252 its members and creating a symbol for it. */
13253
13254 static void
13255 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13256 {
13257 struct objfile *objfile = cu->objfile;
13258 struct die_info *child_die;
13259 struct type *type;
13260
13261 type = get_die_type (die, cu);
13262 if (type == NULL)
13263 type = read_structure_type (die, cu);
13264
13265 if (die->child != NULL && ! die_is_declaration (die, cu))
13266 {
13267 struct field_info fi;
13268 VEC (symbolp) *template_args = NULL;
13269 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13270
13271 memset (&fi, 0, sizeof (struct field_info));
13272
13273 child_die = die->child;
13274
13275 while (child_die && child_die->tag)
13276 {
13277 if (child_die->tag == DW_TAG_member
13278 || child_die->tag == DW_TAG_variable)
13279 {
13280 /* NOTE: carlton/2002-11-05: A C++ static data member
13281 should be a DW_TAG_member that is a declaration, but
13282 all versions of G++ as of this writing (so through at
13283 least 3.2.1) incorrectly generate DW_TAG_variable
13284 tags for them instead. */
13285 dwarf2_add_field (&fi, child_die, cu);
13286 }
13287 else if (child_die->tag == DW_TAG_subprogram)
13288 {
13289 /* C++ member function. */
13290 dwarf2_add_member_fn (&fi, child_die, type, cu);
13291 }
13292 else if (child_die->tag == DW_TAG_inheritance)
13293 {
13294 /* C++ base class field. */
13295 dwarf2_add_field (&fi, child_die, cu);
13296 }
13297 else if (child_die->tag == DW_TAG_typedef)
13298 dwarf2_add_typedef (&fi, child_die, cu);
13299 else if (child_die->tag == DW_TAG_template_type_param
13300 || child_die->tag == DW_TAG_template_value_param)
13301 {
13302 struct symbol *arg = new_symbol (child_die, NULL, cu);
13303
13304 if (arg != NULL)
13305 VEC_safe_push (symbolp, template_args, arg);
13306 }
13307
13308 child_die = sibling_die (child_die);
13309 }
13310
13311 /* Attach template arguments to type. */
13312 if (! VEC_empty (symbolp, template_args))
13313 {
13314 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13315 TYPE_N_TEMPLATE_ARGUMENTS (type)
13316 = VEC_length (symbolp, template_args);
13317 TYPE_TEMPLATE_ARGUMENTS (type)
13318 = XOBNEWVEC (&objfile->objfile_obstack,
13319 struct symbol *,
13320 TYPE_N_TEMPLATE_ARGUMENTS (type));
13321 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13322 VEC_address (symbolp, template_args),
13323 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13324 * sizeof (struct symbol *)));
13325 VEC_free (symbolp, template_args);
13326 }
13327
13328 /* Attach fields and member functions to the type. */
13329 if (fi.nfields)
13330 dwarf2_attach_fields_to_type (&fi, type, cu);
13331 if (fi.nfnfields)
13332 {
13333 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13334
13335 /* Get the type which refers to the base class (possibly this
13336 class itself) which contains the vtable pointer for the current
13337 class from the DW_AT_containing_type attribute. This use of
13338 DW_AT_containing_type is a GNU extension. */
13339
13340 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13341 {
13342 struct type *t = die_containing_type (die, cu);
13343
13344 set_type_vptr_basetype (type, t);
13345 if (type == t)
13346 {
13347 int i;
13348
13349 /* Our own class provides vtbl ptr. */
13350 for (i = TYPE_NFIELDS (t) - 1;
13351 i >= TYPE_N_BASECLASSES (t);
13352 --i)
13353 {
13354 const char *fieldname = TYPE_FIELD_NAME (t, i);
13355
13356 if (is_vtable_name (fieldname, cu))
13357 {
13358 set_type_vptr_fieldno (type, i);
13359 break;
13360 }
13361 }
13362
13363 /* Complain if virtual function table field not found. */
13364 if (i < TYPE_N_BASECLASSES (t))
13365 complaint (&symfile_complaints,
13366 _("virtual function table pointer "
13367 "not found when defining class '%s'"),
13368 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13369 "");
13370 }
13371 else
13372 {
13373 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13374 }
13375 }
13376 else if (cu->producer
13377 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13378 {
13379 /* The IBM XLC compiler does not provide direct indication
13380 of the containing type, but the vtable pointer is
13381 always named __vfp. */
13382
13383 int i;
13384
13385 for (i = TYPE_NFIELDS (type) - 1;
13386 i >= TYPE_N_BASECLASSES (type);
13387 --i)
13388 {
13389 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13390 {
13391 set_type_vptr_fieldno (type, i);
13392 set_type_vptr_basetype (type, type);
13393 break;
13394 }
13395 }
13396 }
13397 }
13398
13399 /* Copy fi.typedef_field_list linked list elements content into the
13400 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13401 if (fi.typedef_field_list)
13402 {
13403 int i = fi.typedef_field_list_count;
13404
13405 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13406 TYPE_TYPEDEF_FIELD_ARRAY (type)
13407 = ((struct typedef_field *)
13408 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13409 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13410
13411 /* Reverse the list order to keep the debug info elements order. */
13412 while (--i >= 0)
13413 {
13414 struct typedef_field *dest, *src;
13415
13416 dest = &TYPE_TYPEDEF_FIELD (type, i);
13417 src = &fi.typedef_field_list->field;
13418 fi.typedef_field_list = fi.typedef_field_list->next;
13419 *dest = *src;
13420 }
13421 }
13422
13423 do_cleanups (back_to);
13424
13425 if (HAVE_CPLUS_STRUCT (type))
13426 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13427 }
13428
13429 quirk_gcc_member_function_pointer (type, objfile);
13430
13431 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13432 snapshots) has been known to create a die giving a declaration
13433 for a class that has, as a child, a die giving a definition for a
13434 nested class. So we have to process our children even if the
13435 current die is a declaration. Normally, of course, a declaration
13436 won't have any children at all. */
13437
13438 child_die = die->child;
13439
13440 while (child_die != NULL && child_die->tag)
13441 {
13442 if (child_die->tag == DW_TAG_member
13443 || child_die->tag == DW_TAG_variable
13444 || child_die->tag == DW_TAG_inheritance
13445 || child_die->tag == DW_TAG_template_value_param
13446 || child_die->tag == DW_TAG_template_type_param)
13447 {
13448 /* Do nothing. */
13449 }
13450 else
13451 process_die (child_die, cu);
13452
13453 child_die = sibling_die (child_die);
13454 }
13455
13456 /* Do not consider external references. According to the DWARF standard,
13457 these DIEs are identified by the fact that they have no byte_size
13458 attribute, and a declaration attribute. */
13459 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13460 || !die_is_declaration (die, cu))
13461 new_symbol (die, type, cu);
13462 }
13463
13464 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13465 update TYPE using some information only available in DIE's children. */
13466
13467 static void
13468 update_enumeration_type_from_children (struct die_info *die,
13469 struct type *type,
13470 struct dwarf2_cu *cu)
13471 {
13472 struct obstack obstack;
13473 struct die_info *child_die;
13474 int unsigned_enum = 1;
13475 int flag_enum = 1;
13476 ULONGEST mask = 0;
13477 struct cleanup *old_chain;
13478
13479 obstack_init (&obstack);
13480 old_chain = make_cleanup_obstack_free (&obstack);
13481
13482 for (child_die = die->child;
13483 child_die != NULL && child_die->tag;
13484 child_die = sibling_die (child_die))
13485 {
13486 struct attribute *attr;
13487 LONGEST value;
13488 const gdb_byte *bytes;
13489 struct dwarf2_locexpr_baton *baton;
13490 const char *name;
13491
13492 if (child_die->tag != DW_TAG_enumerator)
13493 continue;
13494
13495 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13496 if (attr == NULL)
13497 continue;
13498
13499 name = dwarf2_name (child_die, cu);
13500 if (name == NULL)
13501 name = "<anonymous enumerator>";
13502
13503 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13504 &value, &bytes, &baton);
13505 if (value < 0)
13506 {
13507 unsigned_enum = 0;
13508 flag_enum = 0;
13509 }
13510 else if ((mask & value) != 0)
13511 flag_enum = 0;
13512 else
13513 mask |= value;
13514
13515 /* If we already know that the enum type is neither unsigned, nor
13516 a flag type, no need to look at the rest of the enumerates. */
13517 if (!unsigned_enum && !flag_enum)
13518 break;
13519 }
13520
13521 if (unsigned_enum)
13522 TYPE_UNSIGNED (type) = 1;
13523 if (flag_enum)
13524 TYPE_FLAG_ENUM (type) = 1;
13525
13526 do_cleanups (old_chain);
13527 }
13528
13529 /* Given a DW_AT_enumeration_type die, set its type. We do not
13530 complete the type's fields yet, or create any symbols. */
13531
13532 static struct type *
13533 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13534 {
13535 struct objfile *objfile = cu->objfile;
13536 struct type *type;
13537 struct attribute *attr;
13538 const char *name;
13539
13540 /* If the definition of this type lives in .debug_types, read that type.
13541 Don't follow DW_AT_specification though, that will take us back up
13542 the chain and we want to go down. */
13543 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13544 if (attr)
13545 {
13546 type = get_DW_AT_signature_type (die, attr, cu);
13547
13548 /* The type's CU may not be the same as CU.
13549 Ensure TYPE is recorded with CU in die_type_hash. */
13550 return set_die_type (die, type, cu);
13551 }
13552
13553 type = alloc_type (objfile);
13554
13555 TYPE_CODE (type) = TYPE_CODE_ENUM;
13556 name = dwarf2_full_name (NULL, die, cu);
13557 if (name != NULL)
13558 TYPE_TAG_NAME (type) = name;
13559
13560 attr = dwarf2_attr (die, DW_AT_type, cu);
13561 if (attr != NULL)
13562 {
13563 struct type *underlying_type = die_type (die, cu);
13564
13565 TYPE_TARGET_TYPE (type) = underlying_type;
13566 }
13567
13568 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13569 if (attr)
13570 {
13571 TYPE_LENGTH (type) = DW_UNSND (attr);
13572 }
13573 else
13574 {
13575 TYPE_LENGTH (type) = 0;
13576 }
13577
13578 /* The enumeration DIE can be incomplete. In Ada, any type can be
13579 declared as private in the package spec, and then defined only
13580 inside the package body. Such types are known as Taft Amendment
13581 Types. When another package uses such a type, an incomplete DIE
13582 may be generated by the compiler. */
13583 if (die_is_declaration (die, cu))
13584 TYPE_STUB (type) = 1;
13585
13586 /* Finish the creation of this type by using the enum's children.
13587 We must call this even when the underlying type has been provided
13588 so that we can determine if we're looking at a "flag" enum. */
13589 update_enumeration_type_from_children (die, type, cu);
13590
13591 /* If this type has an underlying type that is not a stub, then we
13592 may use its attributes. We always use the "unsigned" attribute
13593 in this situation, because ordinarily we guess whether the type
13594 is unsigned -- but the guess can be wrong and the underlying type
13595 can tell us the reality. However, we defer to a local size
13596 attribute if one exists, because this lets the compiler override
13597 the underlying type if needed. */
13598 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13599 {
13600 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13601 if (TYPE_LENGTH (type) == 0)
13602 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13603 }
13604
13605 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13606
13607 return set_die_type (die, type, cu);
13608 }
13609
13610 /* Given a pointer to a die which begins an enumeration, process all
13611 the dies that define the members of the enumeration, and create the
13612 symbol for the enumeration type.
13613
13614 NOTE: We reverse the order of the element list. */
13615
13616 static void
13617 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13618 {
13619 struct type *this_type;
13620
13621 this_type = get_die_type (die, cu);
13622 if (this_type == NULL)
13623 this_type = read_enumeration_type (die, cu);
13624
13625 if (die->child != NULL)
13626 {
13627 struct die_info *child_die;
13628 struct symbol *sym;
13629 struct field *fields = NULL;
13630 int num_fields = 0;
13631 const char *name;
13632
13633 child_die = die->child;
13634 while (child_die && child_die->tag)
13635 {
13636 if (child_die->tag != DW_TAG_enumerator)
13637 {
13638 process_die (child_die, cu);
13639 }
13640 else
13641 {
13642 name = dwarf2_name (child_die, cu);
13643 if (name)
13644 {
13645 sym = new_symbol (child_die, this_type, cu);
13646
13647 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13648 {
13649 fields = (struct field *)
13650 xrealloc (fields,
13651 (num_fields + DW_FIELD_ALLOC_CHUNK)
13652 * sizeof (struct field));
13653 }
13654
13655 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13656 FIELD_TYPE (fields[num_fields]) = NULL;
13657 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13658 FIELD_BITSIZE (fields[num_fields]) = 0;
13659
13660 num_fields++;
13661 }
13662 }
13663
13664 child_die = sibling_die (child_die);
13665 }
13666
13667 if (num_fields)
13668 {
13669 TYPE_NFIELDS (this_type) = num_fields;
13670 TYPE_FIELDS (this_type) = (struct field *)
13671 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13672 memcpy (TYPE_FIELDS (this_type), fields,
13673 sizeof (struct field) * num_fields);
13674 xfree (fields);
13675 }
13676 }
13677
13678 /* If we are reading an enum from a .debug_types unit, and the enum
13679 is a declaration, and the enum is not the signatured type in the
13680 unit, then we do not want to add a symbol for it. Adding a
13681 symbol would in some cases obscure the true definition of the
13682 enum, giving users an incomplete type when the definition is
13683 actually available. Note that we do not want to do this for all
13684 enums which are just declarations, because C++0x allows forward
13685 enum declarations. */
13686 if (cu->per_cu->is_debug_types
13687 && die_is_declaration (die, cu))
13688 {
13689 struct signatured_type *sig_type;
13690
13691 sig_type = (struct signatured_type *) cu->per_cu;
13692 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13693 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13694 return;
13695 }
13696
13697 new_symbol (die, this_type, cu);
13698 }
13699
13700 /* Extract all information from a DW_TAG_array_type DIE and put it in
13701 the DIE's type field. For now, this only handles one dimensional
13702 arrays. */
13703
13704 static struct type *
13705 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13706 {
13707 struct objfile *objfile = cu->objfile;
13708 struct die_info *child_die;
13709 struct type *type;
13710 struct type *element_type, *range_type, *index_type;
13711 struct type **range_types = NULL;
13712 struct attribute *attr;
13713 int ndim = 0;
13714 struct cleanup *back_to;
13715 const char *name;
13716 unsigned int bit_stride = 0;
13717
13718 element_type = die_type (die, cu);
13719
13720 /* The die_type call above may have already set the type for this DIE. */
13721 type = get_die_type (die, cu);
13722 if (type)
13723 return type;
13724
13725 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13726 if (attr != NULL)
13727 bit_stride = DW_UNSND (attr) * 8;
13728
13729 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13730 if (attr != NULL)
13731 bit_stride = DW_UNSND (attr);
13732
13733 /* Irix 6.2 native cc creates array types without children for
13734 arrays with unspecified length. */
13735 if (die->child == NULL)
13736 {
13737 index_type = objfile_type (objfile)->builtin_int;
13738 range_type = create_static_range_type (NULL, index_type, 0, -1);
13739 type = create_array_type_with_stride (NULL, element_type, range_type,
13740 bit_stride);
13741 return set_die_type (die, type, cu);
13742 }
13743
13744 back_to = make_cleanup (null_cleanup, NULL);
13745 child_die = die->child;
13746 while (child_die && child_die->tag)
13747 {
13748 if (child_die->tag == DW_TAG_subrange_type)
13749 {
13750 struct type *child_type = read_type_die (child_die, cu);
13751
13752 if (child_type != NULL)
13753 {
13754 /* The range type was succesfully read. Save it for the
13755 array type creation. */
13756 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13757 {
13758 range_types = (struct type **)
13759 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13760 * sizeof (struct type *));
13761 if (ndim == 0)
13762 make_cleanup (free_current_contents, &range_types);
13763 }
13764 range_types[ndim++] = child_type;
13765 }
13766 }
13767 child_die = sibling_die (child_die);
13768 }
13769
13770 /* Dwarf2 dimensions are output from left to right, create the
13771 necessary array types in backwards order. */
13772
13773 type = element_type;
13774
13775 if (read_array_order (die, cu) == DW_ORD_col_major)
13776 {
13777 int i = 0;
13778
13779 while (i < ndim)
13780 type = create_array_type_with_stride (NULL, type, range_types[i++],
13781 bit_stride);
13782 }
13783 else
13784 {
13785 while (ndim-- > 0)
13786 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13787 bit_stride);
13788 }
13789
13790 /* Understand Dwarf2 support for vector types (like they occur on
13791 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13792 array type. This is not part of the Dwarf2/3 standard yet, but a
13793 custom vendor extension. The main difference between a regular
13794 array and the vector variant is that vectors are passed by value
13795 to functions. */
13796 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13797 if (attr)
13798 make_vector_type (type);
13799
13800 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13801 implementation may choose to implement triple vectors using this
13802 attribute. */
13803 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13804 if (attr)
13805 {
13806 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13807 TYPE_LENGTH (type) = DW_UNSND (attr);
13808 else
13809 complaint (&symfile_complaints,
13810 _("DW_AT_byte_size for array type smaller "
13811 "than the total size of elements"));
13812 }
13813
13814 name = dwarf2_name (die, cu);
13815 if (name)
13816 TYPE_NAME (type) = name;
13817
13818 /* Install the type in the die. */
13819 set_die_type (die, type, cu);
13820
13821 /* set_die_type should be already done. */
13822 set_descriptive_type (type, die, cu);
13823
13824 do_cleanups (back_to);
13825
13826 return type;
13827 }
13828
13829 static enum dwarf_array_dim_ordering
13830 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13831 {
13832 struct attribute *attr;
13833
13834 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13835
13836 if (attr)
13837 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13838
13839 /* GNU F77 is a special case, as at 08/2004 array type info is the
13840 opposite order to the dwarf2 specification, but data is still
13841 laid out as per normal fortran.
13842
13843 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13844 version checking. */
13845
13846 if (cu->language == language_fortran
13847 && cu->producer && strstr (cu->producer, "GNU F77"))
13848 {
13849 return DW_ORD_row_major;
13850 }
13851
13852 switch (cu->language_defn->la_array_ordering)
13853 {
13854 case array_column_major:
13855 return DW_ORD_col_major;
13856 case array_row_major:
13857 default:
13858 return DW_ORD_row_major;
13859 };
13860 }
13861
13862 /* Extract all information from a DW_TAG_set_type DIE and put it in
13863 the DIE's type field. */
13864
13865 static struct type *
13866 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13867 {
13868 struct type *domain_type, *set_type;
13869 struct attribute *attr;
13870
13871 domain_type = die_type (die, cu);
13872
13873 /* The die_type call above may have already set the type for this DIE. */
13874 set_type = get_die_type (die, cu);
13875 if (set_type)
13876 return set_type;
13877
13878 set_type = create_set_type (NULL, domain_type);
13879
13880 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13881 if (attr)
13882 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13883
13884 return set_die_type (die, set_type, cu);
13885 }
13886
13887 /* A helper for read_common_block that creates a locexpr baton.
13888 SYM is the symbol which we are marking as computed.
13889 COMMON_DIE is the DIE for the common block.
13890 COMMON_LOC is the location expression attribute for the common
13891 block itself.
13892 MEMBER_LOC is the location expression attribute for the particular
13893 member of the common block that we are processing.
13894 CU is the CU from which the above come. */
13895
13896 static void
13897 mark_common_block_symbol_computed (struct symbol *sym,
13898 struct die_info *common_die,
13899 struct attribute *common_loc,
13900 struct attribute *member_loc,
13901 struct dwarf2_cu *cu)
13902 {
13903 struct objfile *objfile = dwarf2_per_objfile->objfile;
13904 struct dwarf2_locexpr_baton *baton;
13905 gdb_byte *ptr;
13906 unsigned int cu_off;
13907 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13908 LONGEST offset = 0;
13909
13910 gdb_assert (common_loc && member_loc);
13911 gdb_assert (attr_form_is_block (common_loc));
13912 gdb_assert (attr_form_is_block (member_loc)
13913 || attr_form_is_constant (member_loc));
13914
13915 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13916 baton->per_cu = cu->per_cu;
13917 gdb_assert (baton->per_cu);
13918
13919 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13920
13921 if (attr_form_is_constant (member_loc))
13922 {
13923 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13924 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13925 }
13926 else
13927 baton->size += DW_BLOCK (member_loc)->size;
13928
13929 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13930 baton->data = ptr;
13931
13932 *ptr++ = DW_OP_call4;
13933 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13934 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13935 ptr += 4;
13936
13937 if (attr_form_is_constant (member_loc))
13938 {
13939 *ptr++ = DW_OP_addr;
13940 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13941 ptr += cu->header.addr_size;
13942 }
13943 else
13944 {
13945 /* We have to copy the data here, because DW_OP_call4 will only
13946 use a DW_AT_location attribute. */
13947 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13948 ptr += DW_BLOCK (member_loc)->size;
13949 }
13950
13951 *ptr++ = DW_OP_plus;
13952 gdb_assert (ptr - baton->data == baton->size);
13953
13954 SYMBOL_LOCATION_BATON (sym) = baton;
13955 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13956 }
13957
13958 /* Create appropriate locally-scoped variables for all the
13959 DW_TAG_common_block entries. Also create a struct common_block
13960 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13961 is used to sepate the common blocks name namespace from regular
13962 variable names. */
13963
13964 static void
13965 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13966 {
13967 struct attribute *attr;
13968
13969 attr = dwarf2_attr (die, DW_AT_location, cu);
13970 if (attr)
13971 {
13972 /* Support the .debug_loc offsets. */
13973 if (attr_form_is_block (attr))
13974 {
13975 /* Ok. */
13976 }
13977 else if (attr_form_is_section_offset (attr))
13978 {
13979 dwarf2_complex_location_expr_complaint ();
13980 attr = NULL;
13981 }
13982 else
13983 {
13984 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13985 "common block member");
13986 attr = NULL;
13987 }
13988 }
13989
13990 if (die->child != NULL)
13991 {
13992 struct objfile *objfile = cu->objfile;
13993 struct die_info *child_die;
13994 size_t n_entries = 0, size;
13995 struct common_block *common_block;
13996 struct symbol *sym;
13997
13998 for (child_die = die->child;
13999 child_die && child_die->tag;
14000 child_die = sibling_die (child_die))
14001 ++n_entries;
14002
14003 size = (sizeof (struct common_block)
14004 + (n_entries - 1) * sizeof (struct symbol *));
14005 common_block
14006 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14007 size);
14008 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14009 common_block->n_entries = 0;
14010
14011 for (child_die = die->child;
14012 child_die && child_die->tag;
14013 child_die = sibling_die (child_die))
14014 {
14015 /* Create the symbol in the DW_TAG_common_block block in the current
14016 symbol scope. */
14017 sym = new_symbol (child_die, NULL, cu);
14018 if (sym != NULL)
14019 {
14020 struct attribute *member_loc;
14021
14022 common_block->contents[common_block->n_entries++] = sym;
14023
14024 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14025 cu);
14026 if (member_loc)
14027 {
14028 /* GDB has handled this for a long time, but it is
14029 not specified by DWARF. It seems to have been
14030 emitted by gfortran at least as recently as:
14031 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14032 complaint (&symfile_complaints,
14033 _("Variable in common block has "
14034 "DW_AT_data_member_location "
14035 "- DIE at 0x%x [in module %s]"),
14036 child_die->offset.sect_off,
14037 objfile_name (cu->objfile));
14038
14039 if (attr_form_is_section_offset (member_loc))
14040 dwarf2_complex_location_expr_complaint ();
14041 else if (attr_form_is_constant (member_loc)
14042 || attr_form_is_block (member_loc))
14043 {
14044 if (attr)
14045 mark_common_block_symbol_computed (sym, die, attr,
14046 member_loc, cu);
14047 }
14048 else
14049 dwarf2_complex_location_expr_complaint ();
14050 }
14051 }
14052 }
14053
14054 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14055 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14056 }
14057 }
14058
14059 /* Create a type for a C++ namespace. */
14060
14061 static struct type *
14062 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14063 {
14064 struct objfile *objfile = cu->objfile;
14065 const char *previous_prefix, *name;
14066 int is_anonymous;
14067 struct type *type;
14068
14069 /* For extensions, reuse the type of the original namespace. */
14070 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14071 {
14072 struct die_info *ext_die;
14073 struct dwarf2_cu *ext_cu = cu;
14074
14075 ext_die = dwarf2_extension (die, &ext_cu);
14076 type = read_type_die (ext_die, ext_cu);
14077
14078 /* EXT_CU may not be the same as CU.
14079 Ensure TYPE is recorded with CU in die_type_hash. */
14080 return set_die_type (die, type, cu);
14081 }
14082
14083 name = namespace_name (die, &is_anonymous, cu);
14084
14085 /* Now build the name of the current namespace. */
14086
14087 previous_prefix = determine_prefix (die, cu);
14088 if (previous_prefix[0] != '\0')
14089 name = typename_concat (&objfile->objfile_obstack,
14090 previous_prefix, name, 0, cu);
14091
14092 /* Create the type. */
14093 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14094 objfile);
14095 TYPE_NAME (type) = name;
14096 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14097
14098 return set_die_type (die, type, cu);
14099 }
14100
14101 /* Read a namespace scope. */
14102
14103 static void
14104 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14105 {
14106 struct objfile *objfile = cu->objfile;
14107 int is_anonymous;
14108
14109 /* Add a symbol associated to this if we haven't seen the namespace
14110 before. Also, add a using directive if it's an anonymous
14111 namespace. */
14112
14113 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14114 {
14115 struct type *type;
14116
14117 type = read_type_die (die, cu);
14118 new_symbol (die, type, cu);
14119
14120 namespace_name (die, &is_anonymous, cu);
14121 if (is_anonymous)
14122 {
14123 const char *previous_prefix = determine_prefix (die, cu);
14124
14125 add_using_directive (using_directives (cu->language),
14126 previous_prefix, TYPE_NAME (type), NULL,
14127 NULL, NULL, 0, &objfile->objfile_obstack);
14128 }
14129 }
14130
14131 if (die->child != NULL)
14132 {
14133 struct die_info *child_die = die->child;
14134
14135 while (child_die && child_die->tag)
14136 {
14137 process_die (child_die, cu);
14138 child_die = sibling_die (child_die);
14139 }
14140 }
14141 }
14142
14143 /* Read a Fortran module as type. This DIE can be only a declaration used for
14144 imported module. Still we need that type as local Fortran "use ... only"
14145 declaration imports depend on the created type in determine_prefix. */
14146
14147 static struct type *
14148 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14149 {
14150 struct objfile *objfile = cu->objfile;
14151 const char *module_name;
14152 struct type *type;
14153
14154 module_name = dwarf2_name (die, cu);
14155 if (!module_name)
14156 complaint (&symfile_complaints,
14157 _("DW_TAG_module has no name, offset 0x%x"),
14158 die->offset.sect_off);
14159 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14160
14161 /* determine_prefix uses TYPE_TAG_NAME. */
14162 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14163
14164 return set_die_type (die, type, cu);
14165 }
14166
14167 /* Read a Fortran module. */
14168
14169 static void
14170 read_module (struct die_info *die, struct dwarf2_cu *cu)
14171 {
14172 struct die_info *child_die = die->child;
14173 struct type *type;
14174
14175 type = read_type_die (die, cu);
14176 new_symbol (die, type, cu);
14177
14178 while (child_die && child_die->tag)
14179 {
14180 process_die (child_die, cu);
14181 child_die = sibling_die (child_die);
14182 }
14183 }
14184
14185 /* Return the name of the namespace represented by DIE. Set
14186 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14187 namespace. */
14188
14189 static const char *
14190 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14191 {
14192 struct die_info *current_die;
14193 const char *name = NULL;
14194
14195 /* Loop through the extensions until we find a name. */
14196
14197 for (current_die = die;
14198 current_die != NULL;
14199 current_die = dwarf2_extension (die, &cu))
14200 {
14201 /* We don't use dwarf2_name here so that we can detect the absence
14202 of a name -> anonymous namespace. */
14203 name = dwarf2_string_attr (die, DW_AT_name, cu);
14204
14205 if (name != NULL)
14206 break;
14207 }
14208
14209 /* Is it an anonymous namespace? */
14210
14211 *is_anonymous = (name == NULL);
14212 if (*is_anonymous)
14213 name = CP_ANONYMOUS_NAMESPACE_STR;
14214
14215 return name;
14216 }
14217
14218 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14219 the user defined type vector. */
14220
14221 static struct type *
14222 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14223 {
14224 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14225 struct comp_unit_head *cu_header = &cu->header;
14226 struct type *type;
14227 struct attribute *attr_byte_size;
14228 struct attribute *attr_address_class;
14229 int byte_size, addr_class;
14230 struct type *target_type;
14231
14232 target_type = die_type (die, cu);
14233
14234 /* The die_type call above may have already set the type for this DIE. */
14235 type = get_die_type (die, cu);
14236 if (type)
14237 return type;
14238
14239 type = lookup_pointer_type (target_type);
14240
14241 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14242 if (attr_byte_size)
14243 byte_size = DW_UNSND (attr_byte_size);
14244 else
14245 byte_size = cu_header->addr_size;
14246
14247 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14248 if (attr_address_class)
14249 addr_class = DW_UNSND (attr_address_class);
14250 else
14251 addr_class = DW_ADDR_none;
14252
14253 /* If the pointer size or address class is different than the
14254 default, create a type variant marked as such and set the
14255 length accordingly. */
14256 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14257 {
14258 if (gdbarch_address_class_type_flags_p (gdbarch))
14259 {
14260 int type_flags;
14261
14262 type_flags = gdbarch_address_class_type_flags
14263 (gdbarch, byte_size, addr_class);
14264 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14265 == 0);
14266 type = make_type_with_address_space (type, type_flags);
14267 }
14268 else if (TYPE_LENGTH (type) != byte_size)
14269 {
14270 complaint (&symfile_complaints,
14271 _("invalid pointer size %d"), byte_size);
14272 }
14273 else
14274 {
14275 /* Should we also complain about unhandled address classes? */
14276 }
14277 }
14278
14279 TYPE_LENGTH (type) = byte_size;
14280 return set_die_type (die, type, cu);
14281 }
14282
14283 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14284 the user defined type vector. */
14285
14286 static struct type *
14287 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14288 {
14289 struct type *type;
14290 struct type *to_type;
14291 struct type *domain;
14292
14293 to_type = die_type (die, cu);
14294 domain = die_containing_type (die, cu);
14295
14296 /* The calls above may have already set the type for this DIE. */
14297 type = get_die_type (die, cu);
14298 if (type)
14299 return type;
14300
14301 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14302 type = lookup_methodptr_type (to_type);
14303 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14304 {
14305 struct type *new_type = alloc_type (cu->objfile);
14306
14307 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14308 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14309 TYPE_VARARGS (to_type));
14310 type = lookup_methodptr_type (new_type);
14311 }
14312 else
14313 type = lookup_memberptr_type (to_type, domain);
14314
14315 return set_die_type (die, type, cu);
14316 }
14317
14318 /* Extract all information from a DW_TAG_reference_type DIE and add to
14319 the user defined type vector. */
14320
14321 static struct type *
14322 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14323 {
14324 struct comp_unit_head *cu_header = &cu->header;
14325 struct type *type, *target_type;
14326 struct attribute *attr;
14327
14328 target_type = die_type (die, cu);
14329
14330 /* The die_type call above may have already set the type for this DIE. */
14331 type = get_die_type (die, cu);
14332 if (type)
14333 return type;
14334
14335 type = lookup_reference_type (target_type);
14336 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14337 if (attr)
14338 {
14339 TYPE_LENGTH (type) = DW_UNSND (attr);
14340 }
14341 else
14342 {
14343 TYPE_LENGTH (type) = cu_header->addr_size;
14344 }
14345 return set_die_type (die, type, cu);
14346 }
14347
14348 /* Add the given cv-qualifiers to the element type of the array. GCC
14349 outputs DWARF type qualifiers that apply to an array, not the
14350 element type. But GDB relies on the array element type to carry
14351 the cv-qualifiers. This mimics section 6.7.3 of the C99
14352 specification. */
14353
14354 static struct type *
14355 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14356 struct type *base_type, int cnst, int voltl)
14357 {
14358 struct type *el_type, *inner_array;
14359
14360 base_type = copy_type (base_type);
14361 inner_array = base_type;
14362
14363 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14364 {
14365 TYPE_TARGET_TYPE (inner_array) =
14366 copy_type (TYPE_TARGET_TYPE (inner_array));
14367 inner_array = TYPE_TARGET_TYPE (inner_array);
14368 }
14369
14370 el_type = TYPE_TARGET_TYPE (inner_array);
14371 cnst |= TYPE_CONST (el_type);
14372 voltl |= TYPE_VOLATILE (el_type);
14373 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14374
14375 return set_die_type (die, base_type, cu);
14376 }
14377
14378 static struct type *
14379 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14380 {
14381 struct type *base_type, *cv_type;
14382
14383 base_type = die_type (die, cu);
14384
14385 /* The die_type call above may have already set the type for this DIE. */
14386 cv_type = get_die_type (die, cu);
14387 if (cv_type)
14388 return cv_type;
14389
14390 /* In case the const qualifier is applied to an array type, the element type
14391 is so qualified, not the array type (section 6.7.3 of C99). */
14392 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14393 return add_array_cv_type (die, cu, base_type, 1, 0);
14394
14395 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14396 return set_die_type (die, cv_type, cu);
14397 }
14398
14399 static struct type *
14400 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14401 {
14402 struct type *base_type, *cv_type;
14403
14404 base_type = die_type (die, cu);
14405
14406 /* The die_type call above may have already set the type for this DIE. */
14407 cv_type = get_die_type (die, cu);
14408 if (cv_type)
14409 return cv_type;
14410
14411 /* In case the volatile qualifier is applied to an array type, the
14412 element type is so qualified, not the array type (section 6.7.3
14413 of C99). */
14414 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14415 return add_array_cv_type (die, cu, base_type, 0, 1);
14416
14417 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14418 return set_die_type (die, cv_type, cu);
14419 }
14420
14421 /* Handle DW_TAG_restrict_type. */
14422
14423 static struct type *
14424 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14425 {
14426 struct type *base_type, *cv_type;
14427
14428 base_type = die_type (die, cu);
14429
14430 /* The die_type call above may have already set the type for this DIE. */
14431 cv_type = get_die_type (die, cu);
14432 if (cv_type)
14433 return cv_type;
14434
14435 cv_type = make_restrict_type (base_type);
14436 return set_die_type (die, cv_type, cu);
14437 }
14438
14439 /* Handle DW_TAG_atomic_type. */
14440
14441 static struct type *
14442 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14443 {
14444 struct type *base_type, *cv_type;
14445
14446 base_type = die_type (die, cu);
14447
14448 /* The die_type call above may have already set the type for this DIE. */
14449 cv_type = get_die_type (die, cu);
14450 if (cv_type)
14451 return cv_type;
14452
14453 cv_type = make_atomic_type (base_type);
14454 return set_die_type (die, cv_type, cu);
14455 }
14456
14457 /* Extract all information from a DW_TAG_string_type DIE and add to
14458 the user defined type vector. It isn't really a user defined type,
14459 but it behaves like one, with other DIE's using an AT_user_def_type
14460 attribute to reference it. */
14461
14462 static struct type *
14463 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14464 {
14465 struct objfile *objfile = cu->objfile;
14466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14467 struct type *type, *range_type, *index_type, *char_type;
14468 struct attribute *attr;
14469 unsigned int length;
14470
14471 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14472 if (attr)
14473 {
14474 length = DW_UNSND (attr);
14475 }
14476 else
14477 {
14478 /* Check for the DW_AT_byte_size attribute. */
14479 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14480 if (attr)
14481 {
14482 length = DW_UNSND (attr);
14483 }
14484 else
14485 {
14486 length = 1;
14487 }
14488 }
14489
14490 index_type = objfile_type (objfile)->builtin_int;
14491 range_type = create_static_range_type (NULL, index_type, 1, length);
14492 char_type = language_string_char_type (cu->language_defn, gdbarch);
14493 type = create_string_type (NULL, char_type, range_type);
14494
14495 return set_die_type (die, type, cu);
14496 }
14497
14498 /* Assuming that DIE corresponds to a function, returns nonzero
14499 if the function is prototyped. */
14500
14501 static int
14502 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14503 {
14504 struct attribute *attr;
14505
14506 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14507 if (attr && (DW_UNSND (attr) != 0))
14508 return 1;
14509
14510 /* The DWARF standard implies that the DW_AT_prototyped attribute
14511 is only meaninful for C, but the concept also extends to other
14512 languages that allow unprototyped functions (Eg: Objective C).
14513 For all other languages, assume that functions are always
14514 prototyped. */
14515 if (cu->language != language_c
14516 && cu->language != language_objc
14517 && cu->language != language_opencl)
14518 return 1;
14519
14520 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14521 prototyped and unprototyped functions; default to prototyped,
14522 since that is more common in modern code (and RealView warns
14523 about unprototyped functions). */
14524 if (producer_is_realview (cu->producer))
14525 return 1;
14526
14527 return 0;
14528 }
14529
14530 /* Handle DIES due to C code like:
14531
14532 struct foo
14533 {
14534 int (*funcp)(int a, long l);
14535 int b;
14536 };
14537
14538 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14539
14540 static struct type *
14541 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14542 {
14543 struct objfile *objfile = cu->objfile;
14544 struct type *type; /* Type that this function returns. */
14545 struct type *ftype; /* Function that returns above type. */
14546 struct attribute *attr;
14547
14548 type = die_type (die, cu);
14549
14550 /* The die_type call above may have already set the type for this DIE. */
14551 ftype = get_die_type (die, cu);
14552 if (ftype)
14553 return ftype;
14554
14555 ftype = lookup_function_type (type);
14556
14557 if (prototyped_function_p (die, cu))
14558 TYPE_PROTOTYPED (ftype) = 1;
14559
14560 /* Store the calling convention in the type if it's available in
14561 the subroutine die. Otherwise set the calling convention to
14562 the default value DW_CC_normal. */
14563 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14564 if (attr)
14565 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14566 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14567 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14568 else
14569 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14570
14571 /* Record whether the function returns normally to its caller or not
14572 if the DWARF producer set that information. */
14573 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14574 if (attr && (DW_UNSND (attr) != 0))
14575 TYPE_NO_RETURN (ftype) = 1;
14576
14577 /* We need to add the subroutine type to the die immediately so
14578 we don't infinitely recurse when dealing with parameters
14579 declared as the same subroutine type. */
14580 set_die_type (die, ftype, cu);
14581
14582 if (die->child != NULL)
14583 {
14584 struct type *void_type = objfile_type (objfile)->builtin_void;
14585 struct die_info *child_die;
14586 int nparams, iparams;
14587
14588 /* Count the number of parameters.
14589 FIXME: GDB currently ignores vararg functions, but knows about
14590 vararg member functions. */
14591 nparams = 0;
14592 child_die = die->child;
14593 while (child_die && child_die->tag)
14594 {
14595 if (child_die->tag == DW_TAG_formal_parameter)
14596 nparams++;
14597 else if (child_die->tag == DW_TAG_unspecified_parameters)
14598 TYPE_VARARGS (ftype) = 1;
14599 child_die = sibling_die (child_die);
14600 }
14601
14602 /* Allocate storage for parameters and fill them in. */
14603 TYPE_NFIELDS (ftype) = nparams;
14604 TYPE_FIELDS (ftype) = (struct field *)
14605 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14606
14607 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14608 even if we error out during the parameters reading below. */
14609 for (iparams = 0; iparams < nparams; iparams++)
14610 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14611
14612 iparams = 0;
14613 child_die = die->child;
14614 while (child_die && child_die->tag)
14615 {
14616 if (child_die->tag == DW_TAG_formal_parameter)
14617 {
14618 struct type *arg_type;
14619
14620 /* DWARF version 2 has no clean way to discern C++
14621 static and non-static member functions. G++ helps
14622 GDB by marking the first parameter for non-static
14623 member functions (which is the this pointer) as
14624 artificial. We pass this information to
14625 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14626
14627 DWARF version 3 added DW_AT_object_pointer, which GCC
14628 4.5 does not yet generate. */
14629 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14630 if (attr)
14631 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14632 else
14633 {
14634 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14635
14636 /* GCC/43521: In java, the formal parameter
14637 "this" is sometimes not marked with DW_AT_artificial. */
14638 if (cu->language == language_java)
14639 {
14640 const char *name = dwarf2_name (child_die, cu);
14641
14642 if (name && !strcmp (name, "this"))
14643 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14644 }
14645 }
14646 arg_type = die_type (child_die, cu);
14647
14648 /* RealView does not mark THIS as const, which the testsuite
14649 expects. GCC marks THIS as const in method definitions,
14650 but not in the class specifications (GCC PR 43053). */
14651 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14652 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14653 {
14654 int is_this = 0;
14655 struct dwarf2_cu *arg_cu = cu;
14656 const char *name = dwarf2_name (child_die, cu);
14657
14658 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14659 if (attr)
14660 {
14661 /* If the compiler emits this, use it. */
14662 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14663 is_this = 1;
14664 }
14665 else if (name && strcmp (name, "this") == 0)
14666 /* Function definitions will have the argument names. */
14667 is_this = 1;
14668 else if (name == NULL && iparams == 0)
14669 /* Declarations may not have the names, so like
14670 elsewhere in GDB, assume an artificial first
14671 argument is "this". */
14672 is_this = 1;
14673
14674 if (is_this)
14675 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14676 arg_type, 0);
14677 }
14678
14679 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14680 iparams++;
14681 }
14682 child_die = sibling_die (child_die);
14683 }
14684 }
14685
14686 return ftype;
14687 }
14688
14689 static struct type *
14690 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14691 {
14692 struct objfile *objfile = cu->objfile;
14693 const char *name = NULL;
14694 struct type *this_type, *target_type;
14695
14696 name = dwarf2_full_name (NULL, die, cu);
14697 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14698 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14699 TYPE_NAME (this_type) = name;
14700 set_die_type (die, this_type, cu);
14701 target_type = die_type (die, cu);
14702 if (target_type != this_type)
14703 TYPE_TARGET_TYPE (this_type) = target_type;
14704 else
14705 {
14706 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14707 spec and cause infinite loops in GDB. */
14708 complaint (&symfile_complaints,
14709 _("Self-referential DW_TAG_typedef "
14710 "- DIE at 0x%x [in module %s]"),
14711 die->offset.sect_off, objfile_name (objfile));
14712 TYPE_TARGET_TYPE (this_type) = NULL;
14713 }
14714 return this_type;
14715 }
14716
14717 /* Find a representation of a given base type and install
14718 it in the TYPE field of the die. */
14719
14720 static struct type *
14721 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14722 {
14723 struct objfile *objfile = cu->objfile;
14724 struct type *type;
14725 struct attribute *attr;
14726 int encoding = 0, size = 0;
14727 const char *name;
14728 enum type_code code = TYPE_CODE_INT;
14729 int type_flags = 0;
14730 struct type *target_type = NULL;
14731
14732 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14733 if (attr)
14734 {
14735 encoding = DW_UNSND (attr);
14736 }
14737 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14738 if (attr)
14739 {
14740 size = DW_UNSND (attr);
14741 }
14742 name = dwarf2_name (die, cu);
14743 if (!name)
14744 {
14745 complaint (&symfile_complaints,
14746 _("DW_AT_name missing from DW_TAG_base_type"));
14747 }
14748
14749 switch (encoding)
14750 {
14751 case DW_ATE_address:
14752 /* Turn DW_ATE_address into a void * pointer. */
14753 code = TYPE_CODE_PTR;
14754 type_flags |= TYPE_FLAG_UNSIGNED;
14755 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14756 break;
14757 case DW_ATE_boolean:
14758 code = TYPE_CODE_BOOL;
14759 type_flags |= TYPE_FLAG_UNSIGNED;
14760 break;
14761 case DW_ATE_complex_float:
14762 code = TYPE_CODE_COMPLEX;
14763 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14764 break;
14765 case DW_ATE_decimal_float:
14766 code = TYPE_CODE_DECFLOAT;
14767 break;
14768 case DW_ATE_float:
14769 code = TYPE_CODE_FLT;
14770 break;
14771 case DW_ATE_signed:
14772 break;
14773 case DW_ATE_unsigned:
14774 type_flags |= TYPE_FLAG_UNSIGNED;
14775 if (cu->language == language_fortran
14776 && name
14777 && startswith (name, "character("))
14778 code = TYPE_CODE_CHAR;
14779 break;
14780 case DW_ATE_signed_char:
14781 if (cu->language == language_ada || cu->language == language_m2
14782 || cu->language == language_pascal
14783 || cu->language == language_fortran)
14784 code = TYPE_CODE_CHAR;
14785 break;
14786 case DW_ATE_unsigned_char:
14787 if (cu->language == language_ada || cu->language == language_m2
14788 || cu->language == language_pascal
14789 || cu->language == language_fortran)
14790 code = TYPE_CODE_CHAR;
14791 type_flags |= TYPE_FLAG_UNSIGNED;
14792 break;
14793 case DW_ATE_UTF:
14794 /* We just treat this as an integer and then recognize the
14795 type by name elsewhere. */
14796 break;
14797
14798 default:
14799 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14800 dwarf_type_encoding_name (encoding));
14801 break;
14802 }
14803
14804 type = init_type (code, size, type_flags, NULL, objfile);
14805 TYPE_NAME (type) = name;
14806 TYPE_TARGET_TYPE (type) = target_type;
14807
14808 if (name && strcmp (name, "char") == 0)
14809 TYPE_NOSIGN (type) = 1;
14810
14811 return set_die_type (die, type, cu);
14812 }
14813
14814 /* Parse dwarf attribute if it's a block, reference or constant and put the
14815 resulting value of the attribute into struct bound_prop.
14816 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14817
14818 static int
14819 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14820 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14821 {
14822 struct dwarf2_property_baton *baton;
14823 struct obstack *obstack = &cu->objfile->objfile_obstack;
14824
14825 if (attr == NULL || prop == NULL)
14826 return 0;
14827
14828 if (attr_form_is_block (attr))
14829 {
14830 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14831 baton->referenced_type = NULL;
14832 baton->locexpr.per_cu = cu->per_cu;
14833 baton->locexpr.size = DW_BLOCK (attr)->size;
14834 baton->locexpr.data = DW_BLOCK (attr)->data;
14835 prop->data.baton = baton;
14836 prop->kind = PROP_LOCEXPR;
14837 gdb_assert (prop->data.baton != NULL);
14838 }
14839 else if (attr_form_is_ref (attr))
14840 {
14841 struct dwarf2_cu *target_cu = cu;
14842 struct die_info *target_die;
14843 struct attribute *target_attr;
14844
14845 target_die = follow_die_ref (die, attr, &target_cu);
14846 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14847 if (target_attr == NULL)
14848 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14849 target_cu);
14850 if (target_attr == NULL)
14851 return 0;
14852
14853 switch (target_attr->name)
14854 {
14855 case DW_AT_location:
14856 if (attr_form_is_section_offset (target_attr))
14857 {
14858 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14859 baton->referenced_type = die_type (target_die, target_cu);
14860 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14861 prop->data.baton = baton;
14862 prop->kind = PROP_LOCLIST;
14863 gdb_assert (prop->data.baton != NULL);
14864 }
14865 else if (attr_form_is_block (target_attr))
14866 {
14867 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14868 baton->referenced_type = die_type (target_die, target_cu);
14869 baton->locexpr.per_cu = cu->per_cu;
14870 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14871 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14872 prop->data.baton = baton;
14873 prop->kind = PROP_LOCEXPR;
14874 gdb_assert (prop->data.baton != NULL);
14875 }
14876 else
14877 {
14878 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14879 "dynamic property");
14880 return 0;
14881 }
14882 break;
14883 case DW_AT_data_member_location:
14884 {
14885 LONGEST offset;
14886
14887 if (!handle_data_member_location (target_die, target_cu,
14888 &offset))
14889 return 0;
14890
14891 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14892 baton->referenced_type = read_type_die (target_die->parent,
14893 target_cu);
14894 baton->offset_info.offset = offset;
14895 baton->offset_info.type = die_type (target_die, target_cu);
14896 prop->data.baton = baton;
14897 prop->kind = PROP_ADDR_OFFSET;
14898 break;
14899 }
14900 }
14901 }
14902 else if (attr_form_is_constant (attr))
14903 {
14904 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14905 prop->kind = PROP_CONST;
14906 }
14907 else
14908 {
14909 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14910 dwarf2_name (die, cu));
14911 return 0;
14912 }
14913
14914 return 1;
14915 }
14916
14917 /* Read the given DW_AT_subrange DIE. */
14918
14919 static struct type *
14920 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14921 {
14922 struct type *base_type, *orig_base_type;
14923 struct type *range_type;
14924 struct attribute *attr;
14925 struct dynamic_prop low, high;
14926 int low_default_is_valid;
14927 int high_bound_is_count = 0;
14928 const char *name;
14929 LONGEST negative_mask;
14930
14931 orig_base_type = die_type (die, cu);
14932 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14933 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14934 creating the range type, but we use the result of check_typedef
14935 when examining properties of the type. */
14936 base_type = check_typedef (orig_base_type);
14937
14938 /* The die_type call above may have already set the type for this DIE. */
14939 range_type = get_die_type (die, cu);
14940 if (range_type)
14941 return range_type;
14942
14943 low.kind = PROP_CONST;
14944 high.kind = PROP_CONST;
14945 high.data.const_val = 0;
14946
14947 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14948 omitting DW_AT_lower_bound. */
14949 switch (cu->language)
14950 {
14951 case language_c:
14952 case language_cplus:
14953 low.data.const_val = 0;
14954 low_default_is_valid = 1;
14955 break;
14956 case language_fortran:
14957 low.data.const_val = 1;
14958 low_default_is_valid = 1;
14959 break;
14960 case language_d:
14961 case language_java:
14962 case language_objc:
14963 low.data.const_val = 0;
14964 low_default_is_valid = (cu->header.version >= 4);
14965 break;
14966 case language_ada:
14967 case language_m2:
14968 case language_pascal:
14969 low.data.const_val = 1;
14970 low_default_is_valid = (cu->header.version >= 4);
14971 break;
14972 default:
14973 low.data.const_val = 0;
14974 low_default_is_valid = 0;
14975 break;
14976 }
14977
14978 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14979 if (attr)
14980 attr_to_dynamic_prop (attr, die, cu, &low);
14981 else if (!low_default_is_valid)
14982 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14983 "- DIE at 0x%x [in module %s]"),
14984 die->offset.sect_off, objfile_name (cu->objfile));
14985
14986 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14987 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14988 {
14989 attr = dwarf2_attr (die, DW_AT_count, cu);
14990 if (attr_to_dynamic_prop (attr, die, cu, &high))
14991 {
14992 /* If bounds are constant do the final calculation here. */
14993 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14994 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14995 else
14996 high_bound_is_count = 1;
14997 }
14998 }
14999
15000 /* Dwarf-2 specifications explicitly allows to create subrange types
15001 without specifying a base type.
15002 In that case, the base type must be set to the type of
15003 the lower bound, upper bound or count, in that order, if any of these
15004 three attributes references an object that has a type.
15005 If no base type is found, the Dwarf-2 specifications say that
15006 a signed integer type of size equal to the size of an address should
15007 be used.
15008 For the following C code: `extern char gdb_int [];'
15009 GCC produces an empty range DIE.
15010 FIXME: muller/2010-05-28: Possible references to object for low bound,
15011 high bound or count are not yet handled by this code. */
15012 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15013 {
15014 struct objfile *objfile = cu->objfile;
15015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15016 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15017 struct type *int_type = objfile_type (objfile)->builtin_int;
15018
15019 /* Test "int", "long int", and "long long int" objfile types,
15020 and select the first one having a size above or equal to the
15021 architecture address size. */
15022 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15023 base_type = int_type;
15024 else
15025 {
15026 int_type = objfile_type (objfile)->builtin_long;
15027 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15028 base_type = int_type;
15029 else
15030 {
15031 int_type = objfile_type (objfile)->builtin_long_long;
15032 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15033 base_type = int_type;
15034 }
15035 }
15036 }
15037
15038 /* Normally, the DWARF producers are expected to use a signed
15039 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15040 But this is unfortunately not always the case, as witnessed
15041 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15042 is used instead. To work around that ambiguity, we treat
15043 the bounds as signed, and thus sign-extend their values, when
15044 the base type is signed. */
15045 negative_mask =
15046 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15047 if (low.kind == PROP_CONST
15048 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15049 low.data.const_val |= negative_mask;
15050 if (high.kind == PROP_CONST
15051 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15052 high.data.const_val |= negative_mask;
15053
15054 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15055
15056 if (high_bound_is_count)
15057 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15058
15059 /* Ada expects an empty array on no boundary attributes. */
15060 if (attr == NULL && cu->language != language_ada)
15061 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15062
15063 name = dwarf2_name (die, cu);
15064 if (name)
15065 TYPE_NAME (range_type) = name;
15066
15067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15068 if (attr)
15069 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15070
15071 set_die_type (die, range_type, cu);
15072
15073 /* set_die_type should be already done. */
15074 set_descriptive_type (range_type, die, cu);
15075
15076 return range_type;
15077 }
15078
15079 static struct type *
15080 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15081 {
15082 struct type *type;
15083
15084 /* For now, we only support the C meaning of an unspecified type: void. */
15085
15086 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15087 TYPE_NAME (type) = dwarf2_name (die, cu);
15088
15089 return set_die_type (die, type, cu);
15090 }
15091
15092 /* Read a single die and all its descendents. Set the die's sibling
15093 field to NULL; set other fields in the die correctly, and set all
15094 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15095 location of the info_ptr after reading all of those dies. PARENT
15096 is the parent of the die in question. */
15097
15098 static struct die_info *
15099 read_die_and_children (const struct die_reader_specs *reader,
15100 const gdb_byte *info_ptr,
15101 const gdb_byte **new_info_ptr,
15102 struct die_info *parent)
15103 {
15104 struct die_info *die;
15105 const gdb_byte *cur_ptr;
15106 int has_children;
15107
15108 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15109 if (die == NULL)
15110 {
15111 *new_info_ptr = cur_ptr;
15112 return NULL;
15113 }
15114 store_in_ref_table (die, reader->cu);
15115
15116 if (has_children)
15117 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15118 else
15119 {
15120 die->child = NULL;
15121 *new_info_ptr = cur_ptr;
15122 }
15123
15124 die->sibling = NULL;
15125 die->parent = parent;
15126 return die;
15127 }
15128
15129 /* Read a die, all of its descendents, and all of its siblings; set
15130 all of the fields of all of the dies correctly. Arguments are as
15131 in read_die_and_children. */
15132
15133 static struct die_info *
15134 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15135 const gdb_byte *info_ptr,
15136 const gdb_byte **new_info_ptr,
15137 struct die_info *parent)
15138 {
15139 struct die_info *first_die, *last_sibling;
15140 const gdb_byte *cur_ptr;
15141
15142 cur_ptr = info_ptr;
15143 first_die = last_sibling = NULL;
15144
15145 while (1)
15146 {
15147 struct die_info *die
15148 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15149
15150 if (die == NULL)
15151 {
15152 *new_info_ptr = cur_ptr;
15153 return first_die;
15154 }
15155
15156 if (!first_die)
15157 first_die = die;
15158 else
15159 last_sibling->sibling = die;
15160
15161 last_sibling = die;
15162 }
15163 }
15164
15165 /* Read a die, all of its descendents, and all of its siblings; set
15166 all of the fields of all of the dies correctly. Arguments are as
15167 in read_die_and_children.
15168 This the main entry point for reading a DIE and all its children. */
15169
15170 static struct die_info *
15171 read_die_and_siblings (const struct die_reader_specs *reader,
15172 const gdb_byte *info_ptr,
15173 const gdb_byte **new_info_ptr,
15174 struct die_info *parent)
15175 {
15176 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15177 new_info_ptr, parent);
15178
15179 if (dwarf_die_debug)
15180 {
15181 fprintf_unfiltered (gdb_stdlog,
15182 "Read die from %s@0x%x of %s:\n",
15183 get_section_name (reader->die_section),
15184 (unsigned) (info_ptr - reader->die_section->buffer),
15185 bfd_get_filename (reader->abfd));
15186 dump_die (die, dwarf_die_debug);
15187 }
15188
15189 return die;
15190 }
15191
15192 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15193 attributes.
15194 The caller is responsible for filling in the extra attributes
15195 and updating (*DIEP)->num_attrs.
15196 Set DIEP to point to a newly allocated die with its information,
15197 except for its child, sibling, and parent fields.
15198 Set HAS_CHILDREN to tell whether the die has children or not. */
15199
15200 static const gdb_byte *
15201 read_full_die_1 (const struct die_reader_specs *reader,
15202 struct die_info **diep, const gdb_byte *info_ptr,
15203 int *has_children, int num_extra_attrs)
15204 {
15205 unsigned int abbrev_number, bytes_read, i;
15206 sect_offset offset;
15207 struct abbrev_info *abbrev;
15208 struct die_info *die;
15209 struct dwarf2_cu *cu = reader->cu;
15210 bfd *abfd = reader->abfd;
15211
15212 offset.sect_off = info_ptr - reader->buffer;
15213 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15214 info_ptr += bytes_read;
15215 if (!abbrev_number)
15216 {
15217 *diep = NULL;
15218 *has_children = 0;
15219 return info_ptr;
15220 }
15221
15222 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15223 if (!abbrev)
15224 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15225 abbrev_number,
15226 bfd_get_filename (abfd));
15227
15228 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15229 die->offset = offset;
15230 die->tag = abbrev->tag;
15231 die->abbrev = abbrev_number;
15232
15233 /* Make the result usable.
15234 The caller needs to update num_attrs after adding the extra
15235 attributes. */
15236 die->num_attrs = abbrev->num_attrs;
15237
15238 for (i = 0; i < abbrev->num_attrs; ++i)
15239 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15240 info_ptr);
15241
15242 *diep = die;
15243 *has_children = abbrev->has_children;
15244 return info_ptr;
15245 }
15246
15247 /* Read a die and all its attributes.
15248 Set DIEP to point to a newly allocated die with its information,
15249 except for its child, sibling, and parent fields.
15250 Set HAS_CHILDREN to tell whether the die has children or not. */
15251
15252 static const gdb_byte *
15253 read_full_die (const struct die_reader_specs *reader,
15254 struct die_info **diep, const gdb_byte *info_ptr,
15255 int *has_children)
15256 {
15257 const gdb_byte *result;
15258
15259 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15260
15261 if (dwarf_die_debug)
15262 {
15263 fprintf_unfiltered (gdb_stdlog,
15264 "Read die from %s@0x%x of %s:\n",
15265 get_section_name (reader->die_section),
15266 (unsigned) (info_ptr - reader->die_section->buffer),
15267 bfd_get_filename (reader->abfd));
15268 dump_die (*diep, dwarf_die_debug);
15269 }
15270
15271 return result;
15272 }
15273 \f
15274 /* Abbreviation tables.
15275
15276 In DWARF version 2, the description of the debugging information is
15277 stored in a separate .debug_abbrev section. Before we read any
15278 dies from a section we read in all abbreviations and install them
15279 in a hash table. */
15280
15281 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15282
15283 static struct abbrev_info *
15284 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15285 {
15286 struct abbrev_info *abbrev;
15287
15288 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15289 memset (abbrev, 0, sizeof (struct abbrev_info));
15290
15291 return abbrev;
15292 }
15293
15294 /* Add an abbreviation to the table. */
15295
15296 static void
15297 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15298 unsigned int abbrev_number,
15299 struct abbrev_info *abbrev)
15300 {
15301 unsigned int hash_number;
15302
15303 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15304 abbrev->next = abbrev_table->abbrevs[hash_number];
15305 abbrev_table->abbrevs[hash_number] = abbrev;
15306 }
15307
15308 /* Look up an abbrev in the table.
15309 Returns NULL if the abbrev is not found. */
15310
15311 static struct abbrev_info *
15312 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15313 unsigned int abbrev_number)
15314 {
15315 unsigned int hash_number;
15316 struct abbrev_info *abbrev;
15317
15318 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15319 abbrev = abbrev_table->abbrevs[hash_number];
15320
15321 while (abbrev)
15322 {
15323 if (abbrev->number == abbrev_number)
15324 return abbrev;
15325 abbrev = abbrev->next;
15326 }
15327 return NULL;
15328 }
15329
15330 /* Read in an abbrev table. */
15331
15332 static struct abbrev_table *
15333 abbrev_table_read_table (struct dwarf2_section_info *section,
15334 sect_offset offset)
15335 {
15336 struct objfile *objfile = dwarf2_per_objfile->objfile;
15337 bfd *abfd = get_section_bfd_owner (section);
15338 struct abbrev_table *abbrev_table;
15339 const gdb_byte *abbrev_ptr;
15340 struct abbrev_info *cur_abbrev;
15341 unsigned int abbrev_number, bytes_read, abbrev_name;
15342 unsigned int abbrev_form;
15343 struct attr_abbrev *cur_attrs;
15344 unsigned int allocated_attrs;
15345
15346 abbrev_table = XNEW (struct abbrev_table);
15347 abbrev_table->offset = offset;
15348 obstack_init (&abbrev_table->abbrev_obstack);
15349 abbrev_table->abbrevs =
15350 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15351 ABBREV_HASH_SIZE);
15352 memset (abbrev_table->abbrevs, 0,
15353 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15354
15355 dwarf2_read_section (objfile, section);
15356 abbrev_ptr = section->buffer + offset.sect_off;
15357 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15358 abbrev_ptr += bytes_read;
15359
15360 allocated_attrs = ATTR_ALLOC_CHUNK;
15361 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15362
15363 /* Loop until we reach an abbrev number of 0. */
15364 while (abbrev_number)
15365 {
15366 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15367
15368 /* read in abbrev header */
15369 cur_abbrev->number = abbrev_number;
15370 cur_abbrev->tag
15371 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15372 abbrev_ptr += bytes_read;
15373 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15374 abbrev_ptr += 1;
15375
15376 /* now read in declarations */
15377 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 while (abbrev_name)
15382 {
15383 if (cur_abbrev->num_attrs == allocated_attrs)
15384 {
15385 allocated_attrs += ATTR_ALLOC_CHUNK;
15386 cur_attrs
15387 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15388 }
15389
15390 cur_attrs[cur_abbrev->num_attrs].name
15391 = (enum dwarf_attribute) abbrev_name;
15392 cur_attrs[cur_abbrev->num_attrs++].form
15393 = (enum dwarf_form) abbrev_form;
15394 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15395 abbrev_ptr += bytes_read;
15396 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15397 abbrev_ptr += bytes_read;
15398 }
15399
15400 cur_abbrev->attrs =
15401 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15402 cur_abbrev->num_attrs);
15403 memcpy (cur_abbrev->attrs, cur_attrs,
15404 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15405
15406 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15407
15408 /* Get next abbreviation.
15409 Under Irix6 the abbreviations for a compilation unit are not
15410 always properly terminated with an abbrev number of 0.
15411 Exit loop if we encounter an abbreviation which we have
15412 already read (which means we are about to read the abbreviations
15413 for the next compile unit) or if the end of the abbreviation
15414 table is reached. */
15415 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15416 break;
15417 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15418 abbrev_ptr += bytes_read;
15419 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15420 break;
15421 }
15422
15423 xfree (cur_attrs);
15424 return abbrev_table;
15425 }
15426
15427 /* Free the resources held by ABBREV_TABLE. */
15428
15429 static void
15430 abbrev_table_free (struct abbrev_table *abbrev_table)
15431 {
15432 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15433 xfree (abbrev_table);
15434 }
15435
15436 /* Same as abbrev_table_free but as a cleanup.
15437 We pass in a pointer to the pointer to the table so that we can
15438 set the pointer to NULL when we're done. It also simplifies
15439 build_type_psymtabs_1. */
15440
15441 static void
15442 abbrev_table_free_cleanup (void *table_ptr)
15443 {
15444 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15445
15446 if (*abbrev_table_ptr != NULL)
15447 abbrev_table_free (*abbrev_table_ptr);
15448 *abbrev_table_ptr = NULL;
15449 }
15450
15451 /* Read the abbrev table for CU from ABBREV_SECTION. */
15452
15453 static void
15454 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15455 struct dwarf2_section_info *abbrev_section)
15456 {
15457 cu->abbrev_table =
15458 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15459 }
15460
15461 /* Release the memory used by the abbrev table for a compilation unit. */
15462
15463 static void
15464 dwarf2_free_abbrev_table (void *ptr_to_cu)
15465 {
15466 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15467
15468 if (cu->abbrev_table != NULL)
15469 abbrev_table_free (cu->abbrev_table);
15470 /* Set this to NULL so that we SEGV if we try to read it later,
15471 and also because free_comp_unit verifies this is NULL. */
15472 cu->abbrev_table = NULL;
15473 }
15474 \f
15475 /* Returns nonzero if TAG represents a type that we might generate a partial
15476 symbol for. */
15477
15478 static int
15479 is_type_tag_for_partial (int tag)
15480 {
15481 switch (tag)
15482 {
15483 #if 0
15484 /* Some types that would be reasonable to generate partial symbols for,
15485 that we don't at present. */
15486 case DW_TAG_array_type:
15487 case DW_TAG_file_type:
15488 case DW_TAG_ptr_to_member_type:
15489 case DW_TAG_set_type:
15490 case DW_TAG_string_type:
15491 case DW_TAG_subroutine_type:
15492 #endif
15493 case DW_TAG_base_type:
15494 case DW_TAG_class_type:
15495 case DW_TAG_interface_type:
15496 case DW_TAG_enumeration_type:
15497 case DW_TAG_structure_type:
15498 case DW_TAG_subrange_type:
15499 case DW_TAG_typedef:
15500 case DW_TAG_union_type:
15501 return 1;
15502 default:
15503 return 0;
15504 }
15505 }
15506
15507 /* Load all DIEs that are interesting for partial symbols into memory. */
15508
15509 static struct partial_die_info *
15510 load_partial_dies (const struct die_reader_specs *reader,
15511 const gdb_byte *info_ptr, int building_psymtab)
15512 {
15513 struct dwarf2_cu *cu = reader->cu;
15514 struct objfile *objfile = cu->objfile;
15515 struct partial_die_info *part_die;
15516 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15517 struct abbrev_info *abbrev;
15518 unsigned int bytes_read;
15519 unsigned int load_all = 0;
15520 int nesting_level = 1;
15521
15522 parent_die = NULL;
15523 last_die = NULL;
15524
15525 gdb_assert (cu->per_cu != NULL);
15526 if (cu->per_cu->load_all_dies)
15527 load_all = 1;
15528
15529 cu->partial_dies
15530 = htab_create_alloc_ex (cu->header.length / 12,
15531 partial_die_hash,
15532 partial_die_eq,
15533 NULL,
15534 &cu->comp_unit_obstack,
15535 hashtab_obstack_allocate,
15536 dummy_obstack_deallocate);
15537
15538 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15539
15540 while (1)
15541 {
15542 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15543
15544 /* A NULL abbrev means the end of a series of children. */
15545 if (abbrev == NULL)
15546 {
15547 if (--nesting_level == 0)
15548 {
15549 /* PART_DIE was probably the last thing allocated on the
15550 comp_unit_obstack, so we could call obstack_free
15551 here. We don't do that because the waste is small,
15552 and will be cleaned up when we're done with this
15553 compilation unit. This way, we're also more robust
15554 against other users of the comp_unit_obstack. */
15555 return first_die;
15556 }
15557 info_ptr += bytes_read;
15558 last_die = parent_die;
15559 parent_die = parent_die->die_parent;
15560 continue;
15561 }
15562
15563 /* Check for template arguments. We never save these; if
15564 they're seen, we just mark the parent, and go on our way. */
15565 if (parent_die != NULL
15566 && cu->language == language_cplus
15567 && (abbrev->tag == DW_TAG_template_type_param
15568 || abbrev->tag == DW_TAG_template_value_param))
15569 {
15570 parent_die->has_template_arguments = 1;
15571
15572 if (!load_all)
15573 {
15574 /* We don't need a partial DIE for the template argument. */
15575 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15576 continue;
15577 }
15578 }
15579
15580 /* We only recurse into c++ subprograms looking for template arguments.
15581 Skip their other children. */
15582 if (!load_all
15583 && cu->language == language_cplus
15584 && parent_die != NULL
15585 && parent_die->tag == DW_TAG_subprogram)
15586 {
15587 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15588 continue;
15589 }
15590
15591 /* Check whether this DIE is interesting enough to save. Normally
15592 we would not be interested in members here, but there may be
15593 later variables referencing them via DW_AT_specification (for
15594 static members). */
15595 if (!load_all
15596 && !is_type_tag_for_partial (abbrev->tag)
15597 && abbrev->tag != DW_TAG_constant
15598 && abbrev->tag != DW_TAG_enumerator
15599 && abbrev->tag != DW_TAG_subprogram
15600 && abbrev->tag != DW_TAG_lexical_block
15601 && abbrev->tag != DW_TAG_variable
15602 && abbrev->tag != DW_TAG_namespace
15603 && abbrev->tag != DW_TAG_module
15604 && abbrev->tag != DW_TAG_member
15605 && abbrev->tag != DW_TAG_imported_unit
15606 && abbrev->tag != DW_TAG_imported_declaration)
15607 {
15608 /* Otherwise we skip to the next sibling, if any. */
15609 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15610 continue;
15611 }
15612
15613 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15614 info_ptr);
15615
15616 /* This two-pass algorithm for processing partial symbols has a
15617 high cost in cache pressure. Thus, handle some simple cases
15618 here which cover the majority of C partial symbols. DIEs
15619 which neither have specification tags in them, nor could have
15620 specification tags elsewhere pointing at them, can simply be
15621 processed and discarded.
15622
15623 This segment is also optional; scan_partial_symbols and
15624 add_partial_symbol will handle these DIEs if we chain
15625 them in normally. When compilers which do not emit large
15626 quantities of duplicate debug information are more common,
15627 this code can probably be removed. */
15628
15629 /* Any complete simple types at the top level (pretty much all
15630 of them, for a language without namespaces), can be processed
15631 directly. */
15632 if (parent_die == NULL
15633 && part_die->has_specification == 0
15634 && part_die->is_declaration == 0
15635 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15636 || part_die->tag == DW_TAG_base_type
15637 || part_die->tag == DW_TAG_subrange_type))
15638 {
15639 if (building_psymtab && part_die->name != NULL)
15640 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15641 VAR_DOMAIN, LOC_TYPEDEF,
15642 &objfile->static_psymbols,
15643 0, cu->language, objfile);
15644 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15645 continue;
15646 }
15647
15648 /* The exception for DW_TAG_typedef with has_children above is
15649 a workaround of GCC PR debug/47510. In the case of this complaint
15650 type_name_no_tag_or_error will error on such types later.
15651
15652 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15653 it could not find the child DIEs referenced later, this is checked
15654 above. In correct DWARF DW_TAG_typedef should have no children. */
15655
15656 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15657 complaint (&symfile_complaints,
15658 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15659 "- DIE at 0x%x [in module %s]"),
15660 part_die->offset.sect_off, objfile_name (objfile));
15661
15662 /* If we're at the second level, and we're an enumerator, and
15663 our parent has no specification (meaning possibly lives in a
15664 namespace elsewhere), then we can add the partial symbol now
15665 instead of queueing it. */
15666 if (part_die->tag == DW_TAG_enumerator
15667 && parent_die != NULL
15668 && parent_die->die_parent == NULL
15669 && parent_die->tag == DW_TAG_enumeration_type
15670 && parent_die->has_specification == 0)
15671 {
15672 if (part_die->name == NULL)
15673 complaint (&symfile_complaints,
15674 _("malformed enumerator DIE ignored"));
15675 else if (building_psymtab)
15676 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15677 VAR_DOMAIN, LOC_CONST,
15678 (cu->language == language_cplus
15679 || cu->language == language_java)
15680 ? &objfile->global_psymbols
15681 : &objfile->static_psymbols,
15682 0, cu->language, objfile);
15683
15684 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15685 continue;
15686 }
15687
15688 /* We'll save this DIE so link it in. */
15689 part_die->die_parent = parent_die;
15690 part_die->die_sibling = NULL;
15691 part_die->die_child = NULL;
15692
15693 if (last_die && last_die == parent_die)
15694 last_die->die_child = part_die;
15695 else if (last_die)
15696 last_die->die_sibling = part_die;
15697
15698 last_die = part_die;
15699
15700 if (first_die == NULL)
15701 first_die = part_die;
15702
15703 /* Maybe add the DIE to the hash table. Not all DIEs that we
15704 find interesting need to be in the hash table, because we
15705 also have the parent/sibling/child chains; only those that we
15706 might refer to by offset later during partial symbol reading.
15707
15708 For now this means things that might have be the target of a
15709 DW_AT_specification, DW_AT_abstract_origin, or
15710 DW_AT_extension. DW_AT_extension will refer only to
15711 namespaces; DW_AT_abstract_origin refers to functions (and
15712 many things under the function DIE, but we do not recurse
15713 into function DIEs during partial symbol reading) and
15714 possibly variables as well; DW_AT_specification refers to
15715 declarations. Declarations ought to have the DW_AT_declaration
15716 flag. It happens that GCC forgets to put it in sometimes, but
15717 only for functions, not for types.
15718
15719 Adding more things than necessary to the hash table is harmless
15720 except for the performance cost. Adding too few will result in
15721 wasted time in find_partial_die, when we reread the compilation
15722 unit with load_all_dies set. */
15723
15724 if (load_all
15725 || abbrev->tag == DW_TAG_constant
15726 || abbrev->tag == DW_TAG_subprogram
15727 || abbrev->tag == DW_TAG_variable
15728 || abbrev->tag == DW_TAG_namespace
15729 || part_die->is_declaration)
15730 {
15731 void **slot;
15732
15733 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15734 part_die->offset.sect_off, INSERT);
15735 *slot = part_die;
15736 }
15737
15738 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15739
15740 /* For some DIEs we want to follow their children (if any). For C
15741 we have no reason to follow the children of structures; for other
15742 languages we have to, so that we can get at method physnames
15743 to infer fully qualified class names, for DW_AT_specification,
15744 and for C++ template arguments. For C++, we also look one level
15745 inside functions to find template arguments (if the name of the
15746 function does not already contain the template arguments).
15747
15748 For Ada, we need to scan the children of subprograms and lexical
15749 blocks as well because Ada allows the definition of nested
15750 entities that could be interesting for the debugger, such as
15751 nested subprograms for instance. */
15752 if (last_die->has_children
15753 && (load_all
15754 || last_die->tag == DW_TAG_namespace
15755 || last_die->tag == DW_TAG_module
15756 || last_die->tag == DW_TAG_enumeration_type
15757 || (cu->language == language_cplus
15758 && last_die->tag == DW_TAG_subprogram
15759 && (last_die->name == NULL
15760 || strchr (last_die->name, '<') == NULL))
15761 || (cu->language != language_c
15762 && (last_die->tag == DW_TAG_class_type
15763 || last_die->tag == DW_TAG_interface_type
15764 || last_die->tag == DW_TAG_structure_type
15765 || last_die->tag == DW_TAG_union_type))
15766 || (cu->language == language_ada
15767 && (last_die->tag == DW_TAG_subprogram
15768 || last_die->tag == DW_TAG_lexical_block))))
15769 {
15770 nesting_level++;
15771 parent_die = last_die;
15772 continue;
15773 }
15774
15775 /* Otherwise we skip to the next sibling, if any. */
15776 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15777
15778 /* Back to the top, do it again. */
15779 }
15780 }
15781
15782 /* Read a minimal amount of information into the minimal die structure. */
15783
15784 static const gdb_byte *
15785 read_partial_die (const struct die_reader_specs *reader,
15786 struct partial_die_info *part_die,
15787 struct abbrev_info *abbrev, unsigned int abbrev_len,
15788 const gdb_byte *info_ptr)
15789 {
15790 struct dwarf2_cu *cu = reader->cu;
15791 struct objfile *objfile = cu->objfile;
15792 const gdb_byte *buffer = reader->buffer;
15793 unsigned int i;
15794 struct attribute attr;
15795 int has_low_pc_attr = 0;
15796 int has_high_pc_attr = 0;
15797 int high_pc_relative = 0;
15798
15799 memset (part_die, 0, sizeof (struct partial_die_info));
15800
15801 part_die->offset.sect_off = info_ptr - buffer;
15802
15803 info_ptr += abbrev_len;
15804
15805 if (abbrev == NULL)
15806 return info_ptr;
15807
15808 part_die->tag = abbrev->tag;
15809 part_die->has_children = abbrev->has_children;
15810
15811 for (i = 0; i < abbrev->num_attrs; ++i)
15812 {
15813 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15814
15815 /* Store the data if it is of an attribute we want to keep in a
15816 partial symbol table. */
15817 switch (attr.name)
15818 {
15819 case DW_AT_name:
15820 switch (part_die->tag)
15821 {
15822 case DW_TAG_compile_unit:
15823 case DW_TAG_partial_unit:
15824 case DW_TAG_type_unit:
15825 /* Compilation units have a DW_AT_name that is a filename, not
15826 a source language identifier. */
15827 case DW_TAG_enumeration_type:
15828 case DW_TAG_enumerator:
15829 /* These tags always have simple identifiers already; no need
15830 to canonicalize them. */
15831 part_die->name = DW_STRING (&attr);
15832 break;
15833 default:
15834 part_die->name
15835 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15836 &objfile->per_bfd->storage_obstack);
15837 break;
15838 }
15839 break;
15840 case DW_AT_linkage_name:
15841 case DW_AT_MIPS_linkage_name:
15842 /* Note that both forms of linkage name might appear. We
15843 assume they will be the same, and we only store the last
15844 one we see. */
15845 if (cu->language == language_ada)
15846 part_die->name = DW_STRING (&attr);
15847 part_die->linkage_name = DW_STRING (&attr);
15848 break;
15849 case DW_AT_low_pc:
15850 has_low_pc_attr = 1;
15851 part_die->lowpc = attr_value_as_address (&attr);
15852 break;
15853 case DW_AT_high_pc:
15854 has_high_pc_attr = 1;
15855 part_die->highpc = attr_value_as_address (&attr);
15856 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15857 high_pc_relative = 1;
15858 break;
15859 case DW_AT_location:
15860 /* Support the .debug_loc offsets. */
15861 if (attr_form_is_block (&attr))
15862 {
15863 part_die->d.locdesc = DW_BLOCK (&attr);
15864 }
15865 else if (attr_form_is_section_offset (&attr))
15866 {
15867 dwarf2_complex_location_expr_complaint ();
15868 }
15869 else
15870 {
15871 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15872 "partial symbol information");
15873 }
15874 break;
15875 case DW_AT_external:
15876 part_die->is_external = DW_UNSND (&attr);
15877 break;
15878 case DW_AT_declaration:
15879 part_die->is_declaration = DW_UNSND (&attr);
15880 break;
15881 case DW_AT_type:
15882 part_die->has_type = 1;
15883 break;
15884 case DW_AT_abstract_origin:
15885 case DW_AT_specification:
15886 case DW_AT_extension:
15887 part_die->has_specification = 1;
15888 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15889 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15890 || cu->per_cu->is_dwz);
15891 break;
15892 case DW_AT_sibling:
15893 /* Ignore absolute siblings, they might point outside of
15894 the current compile unit. */
15895 if (attr.form == DW_FORM_ref_addr)
15896 complaint (&symfile_complaints,
15897 _("ignoring absolute DW_AT_sibling"));
15898 else
15899 {
15900 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15901 const gdb_byte *sibling_ptr = buffer + off;
15902
15903 if (sibling_ptr < info_ptr)
15904 complaint (&symfile_complaints,
15905 _("DW_AT_sibling points backwards"));
15906 else if (sibling_ptr > reader->buffer_end)
15907 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15908 else
15909 part_die->sibling = sibling_ptr;
15910 }
15911 break;
15912 case DW_AT_byte_size:
15913 part_die->has_byte_size = 1;
15914 break;
15915 case DW_AT_const_value:
15916 part_die->has_const_value = 1;
15917 break;
15918 case DW_AT_calling_convention:
15919 /* DWARF doesn't provide a way to identify a program's source-level
15920 entry point. DW_AT_calling_convention attributes are only meant
15921 to describe functions' calling conventions.
15922
15923 However, because it's a necessary piece of information in
15924 Fortran, and because DW_CC_program is the only piece of debugging
15925 information whose definition refers to a 'main program' at all,
15926 several compilers have begun marking Fortran main programs with
15927 DW_CC_program --- even when those functions use the standard
15928 calling conventions.
15929
15930 So until DWARF specifies a way to provide this information and
15931 compilers pick up the new representation, we'll support this
15932 practice. */
15933 if (DW_UNSND (&attr) == DW_CC_program
15934 && cu->language == language_fortran)
15935 set_objfile_main_name (objfile, part_die->name, language_fortran);
15936 break;
15937 case DW_AT_inline:
15938 if (DW_UNSND (&attr) == DW_INL_inlined
15939 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15940 part_die->may_be_inlined = 1;
15941 break;
15942
15943 case DW_AT_import:
15944 if (part_die->tag == DW_TAG_imported_unit)
15945 {
15946 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15947 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15948 || cu->per_cu->is_dwz);
15949 }
15950 break;
15951
15952 default:
15953 break;
15954 }
15955 }
15956
15957 if (high_pc_relative)
15958 part_die->highpc += part_die->lowpc;
15959
15960 if (has_low_pc_attr && has_high_pc_attr)
15961 {
15962 /* When using the GNU linker, .gnu.linkonce. sections are used to
15963 eliminate duplicate copies of functions and vtables and such.
15964 The linker will arbitrarily choose one and discard the others.
15965 The AT_*_pc values for such functions refer to local labels in
15966 these sections. If the section from that file was discarded, the
15967 labels are not in the output, so the relocs get a value of 0.
15968 If this is a discarded function, mark the pc bounds as invalid,
15969 so that GDB will ignore it. */
15970 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15971 {
15972 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15973
15974 complaint (&symfile_complaints,
15975 _("DW_AT_low_pc %s is zero "
15976 "for DIE at 0x%x [in module %s]"),
15977 paddress (gdbarch, part_die->lowpc),
15978 part_die->offset.sect_off, objfile_name (objfile));
15979 }
15980 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15981 else if (part_die->lowpc >= part_die->highpc)
15982 {
15983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15984
15985 complaint (&symfile_complaints,
15986 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15987 "for DIE at 0x%x [in module %s]"),
15988 paddress (gdbarch, part_die->lowpc),
15989 paddress (gdbarch, part_die->highpc),
15990 part_die->offset.sect_off, objfile_name (objfile));
15991 }
15992 else
15993 part_die->has_pc_info = 1;
15994 }
15995
15996 return info_ptr;
15997 }
15998
15999 /* Find a cached partial DIE at OFFSET in CU. */
16000
16001 static struct partial_die_info *
16002 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16003 {
16004 struct partial_die_info *lookup_die = NULL;
16005 struct partial_die_info part_die;
16006
16007 part_die.offset = offset;
16008 lookup_die = ((struct partial_die_info *)
16009 htab_find_with_hash (cu->partial_dies, &part_die,
16010 offset.sect_off));
16011
16012 return lookup_die;
16013 }
16014
16015 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16016 except in the case of .debug_types DIEs which do not reference
16017 outside their CU (they do however referencing other types via
16018 DW_FORM_ref_sig8). */
16019
16020 static struct partial_die_info *
16021 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16022 {
16023 struct objfile *objfile = cu->objfile;
16024 struct dwarf2_per_cu_data *per_cu = NULL;
16025 struct partial_die_info *pd = NULL;
16026
16027 if (offset_in_dwz == cu->per_cu->is_dwz
16028 && offset_in_cu_p (&cu->header, offset))
16029 {
16030 pd = find_partial_die_in_comp_unit (offset, cu);
16031 if (pd != NULL)
16032 return pd;
16033 /* We missed recording what we needed.
16034 Load all dies and try again. */
16035 per_cu = cu->per_cu;
16036 }
16037 else
16038 {
16039 /* TUs don't reference other CUs/TUs (except via type signatures). */
16040 if (cu->per_cu->is_debug_types)
16041 {
16042 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16043 " external reference to offset 0x%lx [in module %s].\n"),
16044 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16045 bfd_get_filename (objfile->obfd));
16046 }
16047 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16048 objfile);
16049
16050 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16051 load_partial_comp_unit (per_cu);
16052
16053 per_cu->cu->last_used = 0;
16054 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16055 }
16056
16057 /* If we didn't find it, and not all dies have been loaded,
16058 load them all and try again. */
16059
16060 if (pd == NULL && per_cu->load_all_dies == 0)
16061 {
16062 per_cu->load_all_dies = 1;
16063
16064 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16065 THIS_CU->cu may already be in use. So we can't just free it and
16066 replace its DIEs with the ones we read in. Instead, we leave those
16067 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16068 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16069 set. */
16070 load_partial_comp_unit (per_cu);
16071
16072 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16073 }
16074
16075 if (pd == NULL)
16076 internal_error (__FILE__, __LINE__,
16077 _("could not find partial DIE 0x%x "
16078 "in cache [from module %s]\n"),
16079 offset.sect_off, bfd_get_filename (objfile->obfd));
16080 return pd;
16081 }
16082
16083 /* See if we can figure out if the class lives in a namespace. We do
16084 this by looking for a member function; its demangled name will
16085 contain namespace info, if there is any. */
16086
16087 static void
16088 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16089 struct dwarf2_cu *cu)
16090 {
16091 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16092 what template types look like, because the demangler
16093 frequently doesn't give the same name as the debug info. We
16094 could fix this by only using the demangled name to get the
16095 prefix (but see comment in read_structure_type). */
16096
16097 struct partial_die_info *real_pdi;
16098 struct partial_die_info *child_pdi;
16099
16100 /* If this DIE (this DIE's specification, if any) has a parent, then
16101 we should not do this. We'll prepend the parent's fully qualified
16102 name when we create the partial symbol. */
16103
16104 real_pdi = struct_pdi;
16105 while (real_pdi->has_specification)
16106 real_pdi = find_partial_die (real_pdi->spec_offset,
16107 real_pdi->spec_is_dwz, cu);
16108
16109 if (real_pdi->die_parent != NULL)
16110 return;
16111
16112 for (child_pdi = struct_pdi->die_child;
16113 child_pdi != NULL;
16114 child_pdi = child_pdi->die_sibling)
16115 {
16116 if (child_pdi->tag == DW_TAG_subprogram
16117 && child_pdi->linkage_name != NULL)
16118 {
16119 char *actual_class_name
16120 = language_class_name_from_physname (cu->language_defn,
16121 child_pdi->linkage_name);
16122 if (actual_class_name != NULL)
16123 {
16124 struct_pdi->name
16125 = ((const char *)
16126 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16127 actual_class_name,
16128 strlen (actual_class_name)));
16129 xfree (actual_class_name);
16130 }
16131 break;
16132 }
16133 }
16134 }
16135
16136 /* Adjust PART_DIE before generating a symbol for it. This function
16137 may set the is_external flag or change the DIE's name. */
16138
16139 static void
16140 fixup_partial_die (struct partial_die_info *part_die,
16141 struct dwarf2_cu *cu)
16142 {
16143 /* Once we've fixed up a die, there's no point in doing so again.
16144 This also avoids a memory leak if we were to call
16145 guess_partial_die_structure_name multiple times. */
16146 if (part_die->fixup_called)
16147 return;
16148
16149 /* If we found a reference attribute and the DIE has no name, try
16150 to find a name in the referred to DIE. */
16151
16152 if (part_die->name == NULL && part_die->has_specification)
16153 {
16154 struct partial_die_info *spec_die;
16155
16156 spec_die = find_partial_die (part_die->spec_offset,
16157 part_die->spec_is_dwz, cu);
16158
16159 fixup_partial_die (spec_die, cu);
16160
16161 if (spec_die->name)
16162 {
16163 part_die->name = spec_die->name;
16164
16165 /* Copy DW_AT_external attribute if it is set. */
16166 if (spec_die->is_external)
16167 part_die->is_external = spec_die->is_external;
16168 }
16169 }
16170
16171 /* Set default names for some unnamed DIEs. */
16172
16173 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16174 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16175
16176 /* If there is no parent die to provide a namespace, and there are
16177 children, see if we can determine the namespace from their linkage
16178 name. */
16179 if (cu->language == language_cplus
16180 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16181 && part_die->die_parent == NULL
16182 && part_die->has_children
16183 && (part_die->tag == DW_TAG_class_type
16184 || part_die->tag == DW_TAG_structure_type
16185 || part_die->tag == DW_TAG_union_type))
16186 guess_partial_die_structure_name (part_die, cu);
16187
16188 /* GCC might emit a nameless struct or union that has a linkage
16189 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16190 if (part_die->name == NULL
16191 && (part_die->tag == DW_TAG_class_type
16192 || part_die->tag == DW_TAG_interface_type
16193 || part_die->tag == DW_TAG_structure_type
16194 || part_die->tag == DW_TAG_union_type)
16195 && part_die->linkage_name != NULL)
16196 {
16197 char *demangled;
16198
16199 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16200 if (demangled)
16201 {
16202 const char *base;
16203
16204 /* Strip any leading namespaces/classes, keep only the base name.
16205 DW_AT_name for named DIEs does not contain the prefixes. */
16206 base = strrchr (demangled, ':');
16207 if (base && base > demangled && base[-1] == ':')
16208 base++;
16209 else
16210 base = demangled;
16211
16212 part_die->name
16213 = ((const char *)
16214 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16215 base, strlen (base)));
16216 xfree (demangled);
16217 }
16218 }
16219
16220 part_die->fixup_called = 1;
16221 }
16222
16223 /* Read an attribute value described by an attribute form. */
16224
16225 static const gdb_byte *
16226 read_attribute_value (const struct die_reader_specs *reader,
16227 struct attribute *attr, unsigned form,
16228 const gdb_byte *info_ptr)
16229 {
16230 struct dwarf2_cu *cu = reader->cu;
16231 struct objfile *objfile = cu->objfile;
16232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16233 bfd *abfd = reader->abfd;
16234 struct comp_unit_head *cu_header = &cu->header;
16235 unsigned int bytes_read;
16236 struct dwarf_block *blk;
16237
16238 attr->form = (enum dwarf_form) form;
16239 switch (form)
16240 {
16241 case DW_FORM_ref_addr:
16242 if (cu->header.version == 2)
16243 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16244 else
16245 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16246 &cu->header, &bytes_read);
16247 info_ptr += bytes_read;
16248 break;
16249 case DW_FORM_GNU_ref_alt:
16250 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16251 info_ptr += bytes_read;
16252 break;
16253 case DW_FORM_addr:
16254 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16255 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16256 info_ptr += bytes_read;
16257 break;
16258 case DW_FORM_block2:
16259 blk = dwarf_alloc_block (cu);
16260 blk->size = read_2_bytes (abfd, info_ptr);
16261 info_ptr += 2;
16262 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16263 info_ptr += blk->size;
16264 DW_BLOCK (attr) = blk;
16265 break;
16266 case DW_FORM_block4:
16267 blk = dwarf_alloc_block (cu);
16268 blk->size = read_4_bytes (abfd, info_ptr);
16269 info_ptr += 4;
16270 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16271 info_ptr += blk->size;
16272 DW_BLOCK (attr) = blk;
16273 break;
16274 case DW_FORM_data2:
16275 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16276 info_ptr += 2;
16277 break;
16278 case DW_FORM_data4:
16279 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16280 info_ptr += 4;
16281 break;
16282 case DW_FORM_data8:
16283 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16284 info_ptr += 8;
16285 break;
16286 case DW_FORM_sec_offset:
16287 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16288 info_ptr += bytes_read;
16289 break;
16290 case DW_FORM_string:
16291 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16292 DW_STRING_IS_CANONICAL (attr) = 0;
16293 info_ptr += bytes_read;
16294 break;
16295 case DW_FORM_strp:
16296 if (!cu->per_cu->is_dwz)
16297 {
16298 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16299 &bytes_read);
16300 DW_STRING_IS_CANONICAL (attr) = 0;
16301 info_ptr += bytes_read;
16302 break;
16303 }
16304 /* FALLTHROUGH */
16305 case DW_FORM_GNU_strp_alt:
16306 {
16307 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16308 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16309 &bytes_read);
16310
16311 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16312 DW_STRING_IS_CANONICAL (attr) = 0;
16313 info_ptr += bytes_read;
16314 }
16315 break;
16316 case DW_FORM_exprloc:
16317 case DW_FORM_block:
16318 blk = dwarf_alloc_block (cu);
16319 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16320 info_ptr += bytes_read;
16321 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16322 info_ptr += blk->size;
16323 DW_BLOCK (attr) = blk;
16324 break;
16325 case DW_FORM_block1:
16326 blk = dwarf_alloc_block (cu);
16327 blk->size = read_1_byte (abfd, info_ptr);
16328 info_ptr += 1;
16329 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16330 info_ptr += blk->size;
16331 DW_BLOCK (attr) = blk;
16332 break;
16333 case DW_FORM_data1:
16334 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16335 info_ptr += 1;
16336 break;
16337 case DW_FORM_flag:
16338 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16339 info_ptr += 1;
16340 break;
16341 case DW_FORM_flag_present:
16342 DW_UNSND (attr) = 1;
16343 break;
16344 case DW_FORM_sdata:
16345 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16346 info_ptr += bytes_read;
16347 break;
16348 case DW_FORM_udata:
16349 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16350 info_ptr += bytes_read;
16351 break;
16352 case DW_FORM_ref1:
16353 DW_UNSND (attr) = (cu->header.offset.sect_off
16354 + read_1_byte (abfd, info_ptr));
16355 info_ptr += 1;
16356 break;
16357 case DW_FORM_ref2:
16358 DW_UNSND (attr) = (cu->header.offset.sect_off
16359 + read_2_bytes (abfd, info_ptr));
16360 info_ptr += 2;
16361 break;
16362 case DW_FORM_ref4:
16363 DW_UNSND (attr) = (cu->header.offset.sect_off
16364 + read_4_bytes (abfd, info_ptr));
16365 info_ptr += 4;
16366 break;
16367 case DW_FORM_ref8:
16368 DW_UNSND (attr) = (cu->header.offset.sect_off
16369 + read_8_bytes (abfd, info_ptr));
16370 info_ptr += 8;
16371 break;
16372 case DW_FORM_ref_sig8:
16373 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16374 info_ptr += 8;
16375 break;
16376 case DW_FORM_ref_udata:
16377 DW_UNSND (attr) = (cu->header.offset.sect_off
16378 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16379 info_ptr += bytes_read;
16380 break;
16381 case DW_FORM_indirect:
16382 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16383 info_ptr += bytes_read;
16384 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16385 break;
16386 case DW_FORM_GNU_addr_index:
16387 if (reader->dwo_file == NULL)
16388 {
16389 /* For now flag a hard error.
16390 Later we can turn this into a complaint. */
16391 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16392 dwarf_form_name (form),
16393 bfd_get_filename (abfd));
16394 }
16395 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16396 info_ptr += bytes_read;
16397 break;
16398 case DW_FORM_GNU_str_index:
16399 if (reader->dwo_file == NULL)
16400 {
16401 /* For now flag a hard error.
16402 Later we can turn this into a complaint if warranted. */
16403 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16404 dwarf_form_name (form),
16405 bfd_get_filename (abfd));
16406 }
16407 {
16408 ULONGEST str_index =
16409 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16410
16411 DW_STRING (attr) = read_str_index (reader, str_index);
16412 DW_STRING_IS_CANONICAL (attr) = 0;
16413 info_ptr += bytes_read;
16414 }
16415 break;
16416 default:
16417 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16418 dwarf_form_name (form),
16419 bfd_get_filename (abfd));
16420 }
16421
16422 /* Super hack. */
16423 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16424 attr->form = DW_FORM_GNU_ref_alt;
16425
16426 /* We have seen instances where the compiler tried to emit a byte
16427 size attribute of -1 which ended up being encoded as an unsigned
16428 0xffffffff. Although 0xffffffff is technically a valid size value,
16429 an object of this size seems pretty unlikely so we can relatively
16430 safely treat these cases as if the size attribute was invalid and
16431 treat them as zero by default. */
16432 if (attr->name == DW_AT_byte_size
16433 && form == DW_FORM_data4
16434 && DW_UNSND (attr) >= 0xffffffff)
16435 {
16436 complaint
16437 (&symfile_complaints,
16438 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16439 hex_string (DW_UNSND (attr)));
16440 DW_UNSND (attr) = 0;
16441 }
16442
16443 return info_ptr;
16444 }
16445
16446 /* Read an attribute described by an abbreviated attribute. */
16447
16448 static const gdb_byte *
16449 read_attribute (const struct die_reader_specs *reader,
16450 struct attribute *attr, struct attr_abbrev *abbrev,
16451 const gdb_byte *info_ptr)
16452 {
16453 attr->name = abbrev->name;
16454 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16455 }
16456
16457 /* Read dwarf information from a buffer. */
16458
16459 static unsigned int
16460 read_1_byte (bfd *abfd, const gdb_byte *buf)
16461 {
16462 return bfd_get_8 (abfd, buf);
16463 }
16464
16465 static int
16466 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16467 {
16468 return bfd_get_signed_8 (abfd, buf);
16469 }
16470
16471 static unsigned int
16472 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16473 {
16474 return bfd_get_16 (abfd, buf);
16475 }
16476
16477 static int
16478 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16479 {
16480 return bfd_get_signed_16 (abfd, buf);
16481 }
16482
16483 static unsigned int
16484 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16485 {
16486 return bfd_get_32 (abfd, buf);
16487 }
16488
16489 static int
16490 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16491 {
16492 return bfd_get_signed_32 (abfd, buf);
16493 }
16494
16495 static ULONGEST
16496 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16497 {
16498 return bfd_get_64 (abfd, buf);
16499 }
16500
16501 static CORE_ADDR
16502 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16503 unsigned int *bytes_read)
16504 {
16505 struct comp_unit_head *cu_header = &cu->header;
16506 CORE_ADDR retval = 0;
16507
16508 if (cu_header->signed_addr_p)
16509 {
16510 switch (cu_header->addr_size)
16511 {
16512 case 2:
16513 retval = bfd_get_signed_16 (abfd, buf);
16514 break;
16515 case 4:
16516 retval = bfd_get_signed_32 (abfd, buf);
16517 break;
16518 case 8:
16519 retval = bfd_get_signed_64 (abfd, buf);
16520 break;
16521 default:
16522 internal_error (__FILE__, __LINE__,
16523 _("read_address: bad switch, signed [in module %s]"),
16524 bfd_get_filename (abfd));
16525 }
16526 }
16527 else
16528 {
16529 switch (cu_header->addr_size)
16530 {
16531 case 2:
16532 retval = bfd_get_16 (abfd, buf);
16533 break;
16534 case 4:
16535 retval = bfd_get_32 (abfd, buf);
16536 break;
16537 case 8:
16538 retval = bfd_get_64 (abfd, buf);
16539 break;
16540 default:
16541 internal_error (__FILE__, __LINE__,
16542 _("read_address: bad switch, "
16543 "unsigned [in module %s]"),
16544 bfd_get_filename (abfd));
16545 }
16546 }
16547
16548 *bytes_read = cu_header->addr_size;
16549 return retval;
16550 }
16551
16552 /* Read the initial length from a section. The (draft) DWARF 3
16553 specification allows the initial length to take up either 4 bytes
16554 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16555 bytes describe the length and all offsets will be 8 bytes in length
16556 instead of 4.
16557
16558 An older, non-standard 64-bit format is also handled by this
16559 function. The older format in question stores the initial length
16560 as an 8-byte quantity without an escape value. Lengths greater
16561 than 2^32 aren't very common which means that the initial 4 bytes
16562 is almost always zero. Since a length value of zero doesn't make
16563 sense for the 32-bit format, this initial zero can be considered to
16564 be an escape value which indicates the presence of the older 64-bit
16565 format. As written, the code can't detect (old format) lengths
16566 greater than 4GB. If it becomes necessary to handle lengths
16567 somewhat larger than 4GB, we could allow other small values (such
16568 as the non-sensical values of 1, 2, and 3) to also be used as
16569 escape values indicating the presence of the old format.
16570
16571 The value returned via bytes_read should be used to increment the
16572 relevant pointer after calling read_initial_length().
16573
16574 [ Note: read_initial_length() and read_offset() are based on the
16575 document entitled "DWARF Debugging Information Format", revision
16576 3, draft 8, dated November 19, 2001. This document was obtained
16577 from:
16578
16579 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16580
16581 This document is only a draft and is subject to change. (So beware.)
16582
16583 Details regarding the older, non-standard 64-bit format were
16584 determined empirically by examining 64-bit ELF files produced by
16585 the SGI toolchain on an IRIX 6.5 machine.
16586
16587 - Kevin, July 16, 2002
16588 ] */
16589
16590 static LONGEST
16591 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16592 {
16593 LONGEST length = bfd_get_32 (abfd, buf);
16594
16595 if (length == 0xffffffff)
16596 {
16597 length = bfd_get_64 (abfd, buf + 4);
16598 *bytes_read = 12;
16599 }
16600 else if (length == 0)
16601 {
16602 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16603 length = bfd_get_64 (abfd, buf);
16604 *bytes_read = 8;
16605 }
16606 else
16607 {
16608 *bytes_read = 4;
16609 }
16610
16611 return length;
16612 }
16613
16614 /* Cover function for read_initial_length.
16615 Returns the length of the object at BUF, and stores the size of the
16616 initial length in *BYTES_READ and stores the size that offsets will be in
16617 *OFFSET_SIZE.
16618 If the initial length size is not equivalent to that specified in
16619 CU_HEADER then issue a complaint.
16620 This is useful when reading non-comp-unit headers. */
16621
16622 static LONGEST
16623 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16624 const struct comp_unit_head *cu_header,
16625 unsigned int *bytes_read,
16626 unsigned int *offset_size)
16627 {
16628 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16629
16630 gdb_assert (cu_header->initial_length_size == 4
16631 || cu_header->initial_length_size == 8
16632 || cu_header->initial_length_size == 12);
16633
16634 if (cu_header->initial_length_size != *bytes_read)
16635 complaint (&symfile_complaints,
16636 _("intermixed 32-bit and 64-bit DWARF sections"));
16637
16638 *offset_size = (*bytes_read == 4) ? 4 : 8;
16639 return length;
16640 }
16641
16642 /* Read an offset from the data stream. The size of the offset is
16643 given by cu_header->offset_size. */
16644
16645 static LONGEST
16646 read_offset (bfd *abfd, const gdb_byte *buf,
16647 const struct comp_unit_head *cu_header,
16648 unsigned int *bytes_read)
16649 {
16650 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16651
16652 *bytes_read = cu_header->offset_size;
16653 return offset;
16654 }
16655
16656 /* Read an offset from the data stream. */
16657
16658 static LONGEST
16659 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16660 {
16661 LONGEST retval = 0;
16662
16663 switch (offset_size)
16664 {
16665 case 4:
16666 retval = bfd_get_32 (abfd, buf);
16667 break;
16668 case 8:
16669 retval = bfd_get_64 (abfd, buf);
16670 break;
16671 default:
16672 internal_error (__FILE__, __LINE__,
16673 _("read_offset_1: bad switch [in module %s]"),
16674 bfd_get_filename (abfd));
16675 }
16676
16677 return retval;
16678 }
16679
16680 static const gdb_byte *
16681 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16682 {
16683 /* If the size of a host char is 8 bits, we can return a pointer
16684 to the buffer, otherwise we have to copy the data to a buffer
16685 allocated on the temporary obstack. */
16686 gdb_assert (HOST_CHAR_BIT == 8);
16687 return buf;
16688 }
16689
16690 static const char *
16691 read_direct_string (bfd *abfd, const gdb_byte *buf,
16692 unsigned int *bytes_read_ptr)
16693 {
16694 /* If the size of a host char is 8 bits, we can return a pointer
16695 to the string, otherwise we have to copy the string to a buffer
16696 allocated on the temporary obstack. */
16697 gdb_assert (HOST_CHAR_BIT == 8);
16698 if (*buf == '\0')
16699 {
16700 *bytes_read_ptr = 1;
16701 return NULL;
16702 }
16703 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16704 return (const char *) buf;
16705 }
16706
16707 static const char *
16708 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16709 {
16710 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16711 if (dwarf2_per_objfile->str.buffer == NULL)
16712 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16713 bfd_get_filename (abfd));
16714 if (str_offset >= dwarf2_per_objfile->str.size)
16715 error (_("DW_FORM_strp pointing outside of "
16716 ".debug_str section [in module %s]"),
16717 bfd_get_filename (abfd));
16718 gdb_assert (HOST_CHAR_BIT == 8);
16719 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16720 return NULL;
16721 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16722 }
16723
16724 /* Read a string at offset STR_OFFSET in the .debug_str section from
16725 the .dwz file DWZ. Throw an error if the offset is too large. If
16726 the string consists of a single NUL byte, return NULL; otherwise
16727 return a pointer to the string. */
16728
16729 static const char *
16730 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16731 {
16732 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16733
16734 if (dwz->str.buffer == NULL)
16735 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16736 "section [in module %s]"),
16737 bfd_get_filename (dwz->dwz_bfd));
16738 if (str_offset >= dwz->str.size)
16739 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16740 ".debug_str section [in module %s]"),
16741 bfd_get_filename (dwz->dwz_bfd));
16742 gdb_assert (HOST_CHAR_BIT == 8);
16743 if (dwz->str.buffer[str_offset] == '\0')
16744 return NULL;
16745 return (const char *) (dwz->str.buffer + str_offset);
16746 }
16747
16748 static const char *
16749 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16750 const struct comp_unit_head *cu_header,
16751 unsigned int *bytes_read_ptr)
16752 {
16753 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16754
16755 return read_indirect_string_at_offset (abfd, str_offset);
16756 }
16757
16758 static ULONGEST
16759 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16760 unsigned int *bytes_read_ptr)
16761 {
16762 ULONGEST result;
16763 unsigned int num_read;
16764 int i, shift;
16765 unsigned char byte;
16766
16767 result = 0;
16768 shift = 0;
16769 num_read = 0;
16770 i = 0;
16771 while (1)
16772 {
16773 byte = bfd_get_8 (abfd, buf);
16774 buf++;
16775 num_read++;
16776 result |= ((ULONGEST) (byte & 127) << shift);
16777 if ((byte & 128) == 0)
16778 {
16779 break;
16780 }
16781 shift += 7;
16782 }
16783 *bytes_read_ptr = num_read;
16784 return result;
16785 }
16786
16787 static LONGEST
16788 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16789 unsigned int *bytes_read_ptr)
16790 {
16791 LONGEST result;
16792 int i, shift, num_read;
16793 unsigned char byte;
16794
16795 result = 0;
16796 shift = 0;
16797 num_read = 0;
16798 i = 0;
16799 while (1)
16800 {
16801 byte = bfd_get_8 (abfd, buf);
16802 buf++;
16803 num_read++;
16804 result |= ((LONGEST) (byte & 127) << shift);
16805 shift += 7;
16806 if ((byte & 128) == 0)
16807 {
16808 break;
16809 }
16810 }
16811 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16812 result |= -(((LONGEST) 1) << shift);
16813 *bytes_read_ptr = num_read;
16814 return result;
16815 }
16816
16817 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16818 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16819 ADDR_SIZE is the size of addresses from the CU header. */
16820
16821 static CORE_ADDR
16822 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16823 {
16824 struct objfile *objfile = dwarf2_per_objfile->objfile;
16825 bfd *abfd = objfile->obfd;
16826 const gdb_byte *info_ptr;
16827
16828 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16829 if (dwarf2_per_objfile->addr.buffer == NULL)
16830 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16831 objfile_name (objfile));
16832 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16833 error (_("DW_FORM_addr_index pointing outside of "
16834 ".debug_addr section [in module %s]"),
16835 objfile_name (objfile));
16836 info_ptr = (dwarf2_per_objfile->addr.buffer
16837 + addr_base + addr_index * addr_size);
16838 if (addr_size == 4)
16839 return bfd_get_32 (abfd, info_ptr);
16840 else
16841 return bfd_get_64 (abfd, info_ptr);
16842 }
16843
16844 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16845
16846 static CORE_ADDR
16847 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16848 {
16849 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16850 }
16851
16852 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16853
16854 static CORE_ADDR
16855 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16856 unsigned int *bytes_read)
16857 {
16858 bfd *abfd = cu->objfile->obfd;
16859 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16860
16861 return read_addr_index (cu, addr_index);
16862 }
16863
16864 /* Data structure to pass results from dwarf2_read_addr_index_reader
16865 back to dwarf2_read_addr_index. */
16866
16867 struct dwarf2_read_addr_index_data
16868 {
16869 ULONGEST addr_base;
16870 int addr_size;
16871 };
16872
16873 /* die_reader_func for dwarf2_read_addr_index. */
16874
16875 static void
16876 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16877 const gdb_byte *info_ptr,
16878 struct die_info *comp_unit_die,
16879 int has_children,
16880 void *data)
16881 {
16882 struct dwarf2_cu *cu = reader->cu;
16883 struct dwarf2_read_addr_index_data *aidata =
16884 (struct dwarf2_read_addr_index_data *) data;
16885
16886 aidata->addr_base = cu->addr_base;
16887 aidata->addr_size = cu->header.addr_size;
16888 }
16889
16890 /* Given an index in .debug_addr, fetch the value.
16891 NOTE: This can be called during dwarf expression evaluation,
16892 long after the debug information has been read, and thus per_cu->cu
16893 may no longer exist. */
16894
16895 CORE_ADDR
16896 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16897 unsigned int addr_index)
16898 {
16899 struct objfile *objfile = per_cu->objfile;
16900 struct dwarf2_cu *cu = per_cu->cu;
16901 ULONGEST addr_base;
16902 int addr_size;
16903
16904 /* This is intended to be called from outside this file. */
16905 dw2_setup (objfile);
16906
16907 /* We need addr_base and addr_size.
16908 If we don't have PER_CU->cu, we have to get it.
16909 Nasty, but the alternative is storing the needed info in PER_CU,
16910 which at this point doesn't seem justified: it's not clear how frequently
16911 it would get used and it would increase the size of every PER_CU.
16912 Entry points like dwarf2_per_cu_addr_size do a similar thing
16913 so we're not in uncharted territory here.
16914 Alas we need to be a bit more complicated as addr_base is contained
16915 in the DIE.
16916
16917 We don't need to read the entire CU(/TU).
16918 We just need the header and top level die.
16919
16920 IWBN to use the aging mechanism to let us lazily later discard the CU.
16921 For now we skip this optimization. */
16922
16923 if (cu != NULL)
16924 {
16925 addr_base = cu->addr_base;
16926 addr_size = cu->header.addr_size;
16927 }
16928 else
16929 {
16930 struct dwarf2_read_addr_index_data aidata;
16931
16932 /* Note: We can't use init_cutu_and_read_dies_simple here,
16933 we need addr_base. */
16934 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16935 dwarf2_read_addr_index_reader, &aidata);
16936 addr_base = aidata.addr_base;
16937 addr_size = aidata.addr_size;
16938 }
16939
16940 return read_addr_index_1 (addr_index, addr_base, addr_size);
16941 }
16942
16943 /* Given a DW_FORM_GNU_str_index, fetch the string.
16944 This is only used by the Fission support. */
16945
16946 static const char *
16947 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16948 {
16949 struct objfile *objfile = dwarf2_per_objfile->objfile;
16950 const char *objf_name = objfile_name (objfile);
16951 bfd *abfd = objfile->obfd;
16952 struct dwarf2_cu *cu = reader->cu;
16953 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16954 struct dwarf2_section_info *str_offsets_section =
16955 &reader->dwo_file->sections.str_offsets;
16956 const gdb_byte *info_ptr;
16957 ULONGEST str_offset;
16958 static const char form_name[] = "DW_FORM_GNU_str_index";
16959
16960 dwarf2_read_section (objfile, str_section);
16961 dwarf2_read_section (objfile, str_offsets_section);
16962 if (str_section->buffer == NULL)
16963 error (_("%s used without .debug_str.dwo section"
16964 " in CU at offset 0x%lx [in module %s]"),
16965 form_name, (long) cu->header.offset.sect_off, objf_name);
16966 if (str_offsets_section->buffer == NULL)
16967 error (_("%s used without .debug_str_offsets.dwo section"
16968 " in CU at offset 0x%lx [in module %s]"),
16969 form_name, (long) cu->header.offset.sect_off, objf_name);
16970 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16971 error (_("%s pointing outside of .debug_str_offsets.dwo"
16972 " section in CU at offset 0x%lx [in module %s]"),
16973 form_name, (long) cu->header.offset.sect_off, objf_name);
16974 info_ptr = (str_offsets_section->buffer
16975 + str_index * cu->header.offset_size);
16976 if (cu->header.offset_size == 4)
16977 str_offset = bfd_get_32 (abfd, info_ptr);
16978 else
16979 str_offset = bfd_get_64 (abfd, info_ptr);
16980 if (str_offset >= str_section->size)
16981 error (_("Offset from %s pointing outside of"
16982 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16983 form_name, (long) cu->header.offset.sect_off, objf_name);
16984 return (const char *) (str_section->buffer + str_offset);
16985 }
16986
16987 /* Return the length of an LEB128 number in BUF. */
16988
16989 static int
16990 leb128_size (const gdb_byte *buf)
16991 {
16992 const gdb_byte *begin = buf;
16993 gdb_byte byte;
16994
16995 while (1)
16996 {
16997 byte = *buf++;
16998 if ((byte & 128) == 0)
16999 return buf - begin;
17000 }
17001 }
17002
17003 static void
17004 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17005 {
17006 switch (lang)
17007 {
17008 case DW_LANG_C89:
17009 case DW_LANG_C99:
17010 case DW_LANG_C11:
17011 case DW_LANG_C:
17012 case DW_LANG_UPC:
17013 cu->language = language_c;
17014 break;
17015 case DW_LANG_C_plus_plus:
17016 case DW_LANG_C_plus_plus_11:
17017 case DW_LANG_C_plus_plus_14:
17018 cu->language = language_cplus;
17019 break;
17020 case DW_LANG_D:
17021 cu->language = language_d;
17022 break;
17023 case DW_LANG_Fortran77:
17024 case DW_LANG_Fortran90:
17025 case DW_LANG_Fortran95:
17026 case DW_LANG_Fortran03:
17027 case DW_LANG_Fortran08:
17028 cu->language = language_fortran;
17029 break;
17030 case DW_LANG_Go:
17031 cu->language = language_go;
17032 break;
17033 case DW_LANG_Mips_Assembler:
17034 cu->language = language_asm;
17035 break;
17036 case DW_LANG_Java:
17037 cu->language = language_java;
17038 break;
17039 case DW_LANG_Ada83:
17040 case DW_LANG_Ada95:
17041 cu->language = language_ada;
17042 break;
17043 case DW_LANG_Modula2:
17044 cu->language = language_m2;
17045 break;
17046 case DW_LANG_Pascal83:
17047 cu->language = language_pascal;
17048 break;
17049 case DW_LANG_ObjC:
17050 cu->language = language_objc;
17051 break;
17052 case DW_LANG_Cobol74:
17053 case DW_LANG_Cobol85:
17054 default:
17055 cu->language = language_minimal;
17056 break;
17057 }
17058 cu->language_defn = language_def (cu->language);
17059 }
17060
17061 /* Return the named attribute or NULL if not there. */
17062
17063 static struct attribute *
17064 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17065 {
17066 for (;;)
17067 {
17068 unsigned int i;
17069 struct attribute *spec = NULL;
17070
17071 for (i = 0; i < die->num_attrs; ++i)
17072 {
17073 if (die->attrs[i].name == name)
17074 return &die->attrs[i];
17075 if (die->attrs[i].name == DW_AT_specification
17076 || die->attrs[i].name == DW_AT_abstract_origin)
17077 spec = &die->attrs[i];
17078 }
17079
17080 if (!spec)
17081 break;
17082
17083 die = follow_die_ref (die, spec, &cu);
17084 }
17085
17086 return NULL;
17087 }
17088
17089 /* Return the named attribute or NULL if not there,
17090 but do not follow DW_AT_specification, etc.
17091 This is for use in contexts where we're reading .debug_types dies.
17092 Following DW_AT_specification, DW_AT_abstract_origin will take us
17093 back up the chain, and we want to go down. */
17094
17095 static struct attribute *
17096 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17097 {
17098 unsigned int i;
17099
17100 for (i = 0; i < die->num_attrs; ++i)
17101 if (die->attrs[i].name == name)
17102 return &die->attrs[i];
17103
17104 return NULL;
17105 }
17106
17107 /* Return the string associated with a string-typed attribute, or NULL if it
17108 is either not found or is of an incorrect type. */
17109
17110 static const char *
17111 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17112 {
17113 struct attribute *attr;
17114 const char *str = NULL;
17115
17116 attr = dwarf2_attr (die, name, cu);
17117
17118 if (attr != NULL)
17119 {
17120 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17121 || attr->form == DW_FORM_GNU_strp_alt)
17122 str = DW_STRING (attr);
17123 else
17124 complaint (&symfile_complaints,
17125 _("string type expected for attribute %s for "
17126 "DIE at 0x%x in module %s"),
17127 dwarf_attr_name (name), die->offset.sect_off,
17128 objfile_name (cu->objfile));
17129 }
17130
17131 return str;
17132 }
17133
17134 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17135 and holds a non-zero value. This function should only be used for
17136 DW_FORM_flag or DW_FORM_flag_present attributes. */
17137
17138 static int
17139 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17140 {
17141 struct attribute *attr = dwarf2_attr (die, name, cu);
17142
17143 return (attr && DW_UNSND (attr));
17144 }
17145
17146 static int
17147 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17148 {
17149 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17150 which value is non-zero. However, we have to be careful with
17151 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17152 (via dwarf2_flag_true_p) follows this attribute. So we may
17153 end up accidently finding a declaration attribute that belongs
17154 to a different DIE referenced by the specification attribute,
17155 even though the given DIE does not have a declaration attribute. */
17156 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17157 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17158 }
17159
17160 /* Return the die giving the specification for DIE, if there is
17161 one. *SPEC_CU is the CU containing DIE on input, and the CU
17162 containing the return value on output. If there is no
17163 specification, but there is an abstract origin, that is
17164 returned. */
17165
17166 static struct die_info *
17167 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17168 {
17169 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17170 *spec_cu);
17171
17172 if (spec_attr == NULL)
17173 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17174
17175 if (spec_attr == NULL)
17176 return NULL;
17177 else
17178 return follow_die_ref (die, spec_attr, spec_cu);
17179 }
17180
17181 /* Free the line_header structure *LH, and any arrays and strings it
17182 refers to.
17183 NOTE: This is also used as a "cleanup" function. */
17184
17185 static void
17186 free_line_header (struct line_header *lh)
17187 {
17188 if (lh->standard_opcode_lengths)
17189 xfree (lh->standard_opcode_lengths);
17190
17191 /* Remember that all the lh->file_names[i].name pointers are
17192 pointers into debug_line_buffer, and don't need to be freed. */
17193 if (lh->file_names)
17194 xfree (lh->file_names);
17195
17196 /* Similarly for the include directory names. */
17197 if (lh->include_dirs)
17198 xfree (lh->include_dirs);
17199
17200 xfree (lh);
17201 }
17202
17203 /* Stub for free_line_header to match void * callback types. */
17204
17205 static void
17206 free_line_header_voidp (void *arg)
17207 {
17208 struct line_header *lh = (struct line_header *) arg;
17209
17210 free_line_header (lh);
17211 }
17212
17213 /* Add an entry to LH's include directory table. */
17214
17215 static void
17216 add_include_dir (struct line_header *lh, const char *include_dir)
17217 {
17218 if (dwarf_line_debug >= 2)
17219 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17220 lh->num_include_dirs + 1, include_dir);
17221
17222 /* Grow the array if necessary. */
17223 if (lh->include_dirs_size == 0)
17224 {
17225 lh->include_dirs_size = 1; /* for testing */
17226 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17227 }
17228 else if (lh->num_include_dirs >= lh->include_dirs_size)
17229 {
17230 lh->include_dirs_size *= 2;
17231 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17232 lh->include_dirs_size);
17233 }
17234
17235 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17236 }
17237
17238 /* Add an entry to LH's file name table. */
17239
17240 static void
17241 add_file_name (struct line_header *lh,
17242 const char *name,
17243 unsigned int dir_index,
17244 unsigned int mod_time,
17245 unsigned int length)
17246 {
17247 struct file_entry *fe;
17248
17249 if (dwarf_line_debug >= 2)
17250 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17251 lh->num_file_names + 1, name);
17252
17253 /* Grow the array if necessary. */
17254 if (lh->file_names_size == 0)
17255 {
17256 lh->file_names_size = 1; /* for testing */
17257 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17258 }
17259 else if (lh->num_file_names >= lh->file_names_size)
17260 {
17261 lh->file_names_size *= 2;
17262 lh->file_names
17263 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17264 }
17265
17266 fe = &lh->file_names[lh->num_file_names++];
17267 fe->name = name;
17268 fe->dir_index = dir_index;
17269 fe->mod_time = mod_time;
17270 fe->length = length;
17271 fe->included_p = 0;
17272 fe->symtab = NULL;
17273 }
17274
17275 /* A convenience function to find the proper .debug_line section for a CU. */
17276
17277 static struct dwarf2_section_info *
17278 get_debug_line_section (struct dwarf2_cu *cu)
17279 {
17280 struct dwarf2_section_info *section;
17281
17282 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17283 DWO file. */
17284 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17285 section = &cu->dwo_unit->dwo_file->sections.line;
17286 else if (cu->per_cu->is_dwz)
17287 {
17288 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17289
17290 section = &dwz->line;
17291 }
17292 else
17293 section = &dwarf2_per_objfile->line;
17294
17295 return section;
17296 }
17297
17298 /* Read the statement program header starting at OFFSET in
17299 .debug_line, or .debug_line.dwo. Return a pointer
17300 to a struct line_header, allocated using xmalloc.
17301 Returns NULL if there is a problem reading the header, e.g., if it
17302 has a version we don't understand.
17303
17304 NOTE: the strings in the include directory and file name tables of
17305 the returned object point into the dwarf line section buffer,
17306 and must not be freed. */
17307
17308 static struct line_header *
17309 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17310 {
17311 struct cleanup *back_to;
17312 struct line_header *lh;
17313 const gdb_byte *line_ptr;
17314 unsigned int bytes_read, offset_size;
17315 int i;
17316 const char *cur_dir, *cur_file;
17317 struct dwarf2_section_info *section;
17318 bfd *abfd;
17319
17320 section = get_debug_line_section (cu);
17321 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17322 if (section->buffer == NULL)
17323 {
17324 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17325 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17326 else
17327 complaint (&symfile_complaints, _("missing .debug_line section"));
17328 return 0;
17329 }
17330
17331 /* We can't do this until we know the section is non-empty.
17332 Only then do we know we have such a section. */
17333 abfd = get_section_bfd_owner (section);
17334
17335 /* Make sure that at least there's room for the total_length field.
17336 That could be 12 bytes long, but we're just going to fudge that. */
17337 if (offset + 4 >= section->size)
17338 {
17339 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17340 return 0;
17341 }
17342
17343 lh = XNEW (struct line_header);
17344 memset (lh, 0, sizeof (*lh));
17345 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17346 (void *) lh);
17347
17348 lh->offset.sect_off = offset;
17349 lh->offset_in_dwz = cu->per_cu->is_dwz;
17350
17351 line_ptr = section->buffer + offset;
17352
17353 /* Read in the header. */
17354 lh->total_length =
17355 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17356 &bytes_read, &offset_size);
17357 line_ptr += bytes_read;
17358 if (line_ptr + lh->total_length > (section->buffer + section->size))
17359 {
17360 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17361 do_cleanups (back_to);
17362 return 0;
17363 }
17364 lh->statement_program_end = line_ptr + lh->total_length;
17365 lh->version = read_2_bytes (abfd, line_ptr);
17366 line_ptr += 2;
17367 if (lh->version > 4)
17368 {
17369 /* This is a version we don't understand. The format could have
17370 changed in ways we don't handle properly so just punt. */
17371 complaint (&symfile_complaints,
17372 _("unsupported version in .debug_line section"));
17373 return NULL;
17374 }
17375 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17376 line_ptr += offset_size;
17377 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17378 line_ptr += 1;
17379 if (lh->version >= 4)
17380 {
17381 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17382 line_ptr += 1;
17383 }
17384 else
17385 lh->maximum_ops_per_instruction = 1;
17386
17387 if (lh->maximum_ops_per_instruction == 0)
17388 {
17389 lh->maximum_ops_per_instruction = 1;
17390 complaint (&symfile_complaints,
17391 _("invalid maximum_ops_per_instruction "
17392 "in `.debug_line' section"));
17393 }
17394
17395 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17396 line_ptr += 1;
17397 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17398 line_ptr += 1;
17399 lh->line_range = read_1_byte (abfd, line_ptr);
17400 line_ptr += 1;
17401 lh->opcode_base = read_1_byte (abfd, line_ptr);
17402 line_ptr += 1;
17403 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17404
17405 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17406 for (i = 1; i < lh->opcode_base; ++i)
17407 {
17408 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17409 line_ptr += 1;
17410 }
17411
17412 /* Read directory table. */
17413 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17414 {
17415 line_ptr += bytes_read;
17416 add_include_dir (lh, cur_dir);
17417 }
17418 line_ptr += bytes_read;
17419
17420 /* Read file name table. */
17421 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17422 {
17423 unsigned int dir_index, mod_time, length;
17424
17425 line_ptr += bytes_read;
17426 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17427 line_ptr += bytes_read;
17428 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17429 line_ptr += bytes_read;
17430 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17431 line_ptr += bytes_read;
17432
17433 add_file_name (lh, cur_file, dir_index, mod_time, length);
17434 }
17435 line_ptr += bytes_read;
17436 lh->statement_program_start = line_ptr;
17437
17438 if (line_ptr > (section->buffer + section->size))
17439 complaint (&symfile_complaints,
17440 _("line number info header doesn't "
17441 "fit in `.debug_line' section"));
17442
17443 discard_cleanups (back_to);
17444 return lh;
17445 }
17446
17447 /* Subroutine of dwarf_decode_lines to simplify it.
17448 Return the file name of the psymtab for included file FILE_INDEX
17449 in line header LH of PST.
17450 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17451 If space for the result is malloc'd, it will be freed by a cleanup.
17452 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17453
17454 The function creates dangling cleanup registration. */
17455
17456 static const char *
17457 psymtab_include_file_name (const struct line_header *lh, int file_index,
17458 const struct partial_symtab *pst,
17459 const char *comp_dir)
17460 {
17461 const struct file_entry fe = lh->file_names [file_index];
17462 const char *include_name = fe.name;
17463 const char *include_name_to_compare = include_name;
17464 const char *dir_name = NULL;
17465 const char *pst_filename;
17466 char *copied_name = NULL;
17467 int file_is_pst;
17468
17469 if (fe.dir_index && lh->include_dirs != NULL)
17470 dir_name = lh->include_dirs[fe.dir_index - 1];
17471
17472 if (!IS_ABSOLUTE_PATH (include_name)
17473 && (dir_name != NULL || comp_dir != NULL))
17474 {
17475 /* Avoid creating a duplicate psymtab for PST.
17476 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17477 Before we do the comparison, however, we need to account
17478 for DIR_NAME and COMP_DIR.
17479 First prepend dir_name (if non-NULL). If we still don't
17480 have an absolute path prepend comp_dir (if non-NULL).
17481 However, the directory we record in the include-file's
17482 psymtab does not contain COMP_DIR (to match the
17483 corresponding symtab(s)).
17484
17485 Example:
17486
17487 bash$ cd /tmp
17488 bash$ gcc -g ./hello.c
17489 include_name = "hello.c"
17490 dir_name = "."
17491 DW_AT_comp_dir = comp_dir = "/tmp"
17492 DW_AT_name = "./hello.c"
17493
17494 */
17495
17496 if (dir_name != NULL)
17497 {
17498 char *tem = concat (dir_name, SLASH_STRING,
17499 include_name, (char *)NULL);
17500
17501 make_cleanup (xfree, tem);
17502 include_name = tem;
17503 include_name_to_compare = include_name;
17504 }
17505 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17506 {
17507 char *tem = concat (comp_dir, SLASH_STRING,
17508 include_name, (char *)NULL);
17509
17510 make_cleanup (xfree, tem);
17511 include_name_to_compare = tem;
17512 }
17513 }
17514
17515 pst_filename = pst->filename;
17516 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17517 {
17518 copied_name = concat (pst->dirname, SLASH_STRING,
17519 pst_filename, (char *)NULL);
17520 pst_filename = copied_name;
17521 }
17522
17523 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17524
17525 if (copied_name != NULL)
17526 xfree (copied_name);
17527
17528 if (file_is_pst)
17529 return NULL;
17530 return include_name;
17531 }
17532
17533 /* State machine to track the state of the line number program. */
17534
17535 typedef struct
17536 {
17537 /* These are part of the standard DWARF line number state machine. */
17538
17539 unsigned char op_index;
17540 unsigned int file;
17541 unsigned int line;
17542 CORE_ADDR address;
17543 int is_stmt;
17544 unsigned int discriminator;
17545
17546 /* Additional bits of state we need to track. */
17547
17548 /* The last file that we called dwarf2_start_subfile for.
17549 This is only used for TLLs. */
17550 unsigned int last_file;
17551 /* The last file a line number was recorded for. */
17552 struct subfile *last_subfile;
17553
17554 /* The function to call to record a line. */
17555 record_line_ftype *record_line;
17556
17557 /* The last line number that was recorded, used to coalesce
17558 consecutive entries for the same line. This can happen, for
17559 example, when discriminators are present. PR 17276. */
17560 unsigned int last_line;
17561 int line_has_non_zero_discriminator;
17562 } lnp_state_machine;
17563
17564 /* There's a lot of static state to pass to dwarf_record_line.
17565 This keeps it all together. */
17566
17567 typedef struct
17568 {
17569 /* The gdbarch. */
17570 struct gdbarch *gdbarch;
17571
17572 /* The line number header. */
17573 struct line_header *line_header;
17574
17575 /* Non-zero if we're recording lines.
17576 Otherwise we're building partial symtabs and are just interested in
17577 finding include files mentioned by the line number program. */
17578 int record_lines_p;
17579 } lnp_reader_state;
17580
17581 /* Ignore this record_line request. */
17582
17583 static void
17584 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17585 {
17586 return;
17587 }
17588
17589 /* Return non-zero if we should add LINE to the line number table.
17590 LINE is the line to add, LAST_LINE is the last line that was added,
17591 LAST_SUBFILE is the subfile for LAST_LINE.
17592 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17593 had a non-zero discriminator.
17594
17595 We have to be careful in the presence of discriminators.
17596 E.g., for this line:
17597
17598 for (i = 0; i < 100000; i++);
17599
17600 clang can emit four line number entries for that one line,
17601 each with a different discriminator.
17602 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17603
17604 However, we want gdb to coalesce all four entries into one.
17605 Otherwise the user could stepi into the middle of the line and
17606 gdb would get confused about whether the pc really was in the
17607 middle of the line.
17608
17609 Things are further complicated by the fact that two consecutive
17610 line number entries for the same line is a heuristic used by gcc
17611 to denote the end of the prologue. So we can't just discard duplicate
17612 entries, we have to be selective about it. The heuristic we use is
17613 that we only collapse consecutive entries for the same line if at least
17614 one of those entries has a non-zero discriminator. PR 17276.
17615
17616 Note: Addresses in the line number state machine can never go backwards
17617 within one sequence, thus this coalescing is ok. */
17618
17619 static int
17620 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17621 int line_has_non_zero_discriminator,
17622 struct subfile *last_subfile)
17623 {
17624 if (current_subfile != last_subfile)
17625 return 1;
17626 if (line != last_line)
17627 return 1;
17628 /* Same line for the same file that we've seen already.
17629 As a last check, for pr 17276, only record the line if the line
17630 has never had a non-zero discriminator. */
17631 if (!line_has_non_zero_discriminator)
17632 return 1;
17633 return 0;
17634 }
17635
17636 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17637 in the line table of subfile SUBFILE. */
17638
17639 static void
17640 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17641 unsigned int line, CORE_ADDR address,
17642 record_line_ftype p_record_line)
17643 {
17644 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17645
17646 if (dwarf_line_debug)
17647 {
17648 fprintf_unfiltered (gdb_stdlog,
17649 "Recording line %u, file %s, address %s\n",
17650 line, lbasename (subfile->name),
17651 paddress (gdbarch, address));
17652 }
17653
17654 (*p_record_line) (subfile, line, addr);
17655 }
17656
17657 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17658 Mark the end of a set of line number records.
17659 The arguments are the same as for dwarf_record_line_1.
17660 If SUBFILE is NULL the request is ignored. */
17661
17662 static void
17663 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17664 CORE_ADDR address, record_line_ftype p_record_line)
17665 {
17666 if (subfile == NULL)
17667 return;
17668
17669 if (dwarf_line_debug)
17670 {
17671 fprintf_unfiltered (gdb_stdlog,
17672 "Finishing current line, file %s, address %s\n",
17673 lbasename (subfile->name),
17674 paddress (gdbarch, address));
17675 }
17676
17677 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17678 }
17679
17680 /* Record the line in STATE.
17681 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17682
17683 static void
17684 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17685 int end_sequence)
17686 {
17687 const struct line_header *lh = reader->line_header;
17688 unsigned int file, line, discriminator;
17689 int is_stmt;
17690
17691 file = state->file;
17692 line = state->line;
17693 is_stmt = state->is_stmt;
17694 discriminator = state->discriminator;
17695
17696 if (dwarf_line_debug)
17697 {
17698 fprintf_unfiltered (gdb_stdlog,
17699 "Processing actual line %u: file %u,"
17700 " address %s, is_stmt %u, discrim %u\n",
17701 line, file,
17702 paddress (reader->gdbarch, state->address),
17703 is_stmt, discriminator);
17704 }
17705
17706 if (file == 0 || file - 1 >= lh->num_file_names)
17707 dwarf2_debug_line_missing_file_complaint ();
17708 /* For now we ignore lines not starting on an instruction boundary.
17709 But not when processing end_sequence for compatibility with the
17710 previous version of the code. */
17711 else if (state->op_index == 0 || end_sequence)
17712 {
17713 lh->file_names[file - 1].included_p = 1;
17714 if (reader->record_lines_p && is_stmt)
17715 {
17716 if (state->last_subfile != current_subfile || end_sequence)
17717 {
17718 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17719 state->address, state->record_line);
17720 }
17721
17722 if (!end_sequence)
17723 {
17724 if (dwarf_record_line_p (line, state->last_line,
17725 state->line_has_non_zero_discriminator,
17726 state->last_subfile))
17727 {
17728 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17729 line, state->address,
17730 state->record_line);
17731 }
17732 state->last_subfile = current_subfile;
17733 state->last_line = line;
17734 }
17735 }
17736 }
17737 }
17738
17739 /* Initialize STATE for the start of a line number program. */
17740
17741 static void
17742 init_lnp_state_machine (lnp_state_machine *state,
17743 const lnp_reader_state *reader)
17744 {
17745 memset (state, 0, sizeof (*state));
17746
17747 /* Just starting, there is no "last file". */
17748 state->last_file = 0;
17749 state->last_subfile = NULL;
17750
17751 state->record_line = record_line;
17752
17753 state->last_line = 0;
17754 state->line_has_non_zero_discriminator = 0;
17755
17756 /* Initialize these according to the DWARF spec. */
17757 state->op_index = 0;
17758 state->file = 1;
17759 state->line = 1;
17760 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17761 was a line entry for it so that the backend has a chance to adjust it
17762 and also record it in case it needs it. This is currently used by MIPS
17763 code, cf. `mips_adjust_dwarf2_line'. */
17764 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17765 state->is_stmt = reader->line_header->default_is_stmt;
17766 state->discriminator = 0;
17767 }
17768
17769 /* Check address and if invalid nop-out the rest of the lines in this
17770 sequence. */
17771
17772 static void
17773 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17774 const gdb_byte *line_ptr,
17775 CORE_ADDR lowpc, CORE_ADDR address)
17776 {
17777 /* If address < lowpc then it's not a usable value, it's outside the
17778 pc range of the CU. However, we restrict the test to only address
17779 values of zero to preserve GDB's previous behaviour which is to
17780 handle the specific case of a function being GC'd by the linker. */
17781
17782 if (address == 0 && address < lowpc)
17783 {
17784 /* This line table is for a function which has been
17785 GCd by the linker. Ignore it. PR gdb/12528 */
17786
17787 struct objfile *objfile = cu->objfile;
17788 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17789
17790 complaint (&symfile_complaints,
17791 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17792 line_offset, objfile_name (objfile));
17793 state->record_line = noop_record_line;
17794 /* Note: sm.record_line is left as noop_record_line
17795 until we see DW_LNE_end_sequence. */
17796 }
17797 }
17798
17799 /* Subroutine of dwarf_decode_lines to simplify it.
17800 Process the line number information in LH.
17801 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17802 program in order to set included_p for every referenced header. */
17803
17804 static void
17805 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17806 const int decode_for_pst_p, CORE_ADDR lowpc)
17807 {
17808 const gdb_byte *line_ptr, *extended_end;
17809 const gdb_byte *line_end;
17810 unsigned int bytes_read, extended_len;
17811 unsigned char op_code, extended_op;
17812 CORE_ADDR baseaddr;
17813 struct objfile *objfile = cu->objfile;
17814 bfd *abfd = objfile->obfd;
17815 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17816 /* Non-zero if we're recording line info (as opposed to building partial
17817 symtabs). */
17818 int record_lines_p = !decode_for_pst_p;
17819 /* A collection of things we need to pass to dwarf_record_line. */
17820 lnp_reader_state reader_state;
17821
17822 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17823
17824 line_ptr = lh->statement_program_start;
17825 line_end = lh->statement_program_end;
17826
17827 reader_state.gdbarch = gdbarch;
17828 reader_state.line_header = lh;
17829 reader_state.record_lines_p = record_lines_p;
17830
17831 /* Read the statement sequences until there's nothing left. */
17832 while (line_ptr < line_end)
17833 {
17834 /* The DWARF line number program state machine. */
17835 lnp_state_machine state_machine;
17836 int end_sequence = 0;
17837
17838 /* Reset the state machine at the start of each sequence. */
17839 init_lnp_state_machine (&state_machine, &reader_state);
17840
17841 if (record_lines_p && lh->num_file_names >= state_machine.file)
17842 {
17843 /* Start a subfile for the current file of the state machine. */
17844 /* lh->include_dirs and lh->file_names are 0-based, but the
17845 directory and file name numbers in the statement program
17846 are 1-based. */
17847 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17848 const char *dir = NULL;
17849
17850 if (fe->dir_index && lh->include_dirs != NULL)
17851 dir = lh->include_dirs[fe->dir_index - 1];
17852
17853 dwarf2_start_subfile (fe->name, dir);
17854 }
17855
17856 /* Decode the table. */
17857 while (line_ptr < line_end && !end_sequence)
17858 {
17859 op_code = read_1_byte (abfd, line_ptr);
17860 line_ptr += 1;
17861
17862 if (op_code >= lh->opcode_base)
17863 {
17864 /* Special opcode. */
17865 unsigned char adj_opcode;
17866 CORE_ADDR addr_adj;
17867 int line_delta;
17868
17869 adj_opcode = op_code - lh->opcode_base;
17870 addr_adj = (((state_machine.op_index
17871 + (adj_opcode / lh->line_range))
17872 / lh->maximum_ops_per_instruction)
17873 * lh->minimum_instruction_length);
17874 state_machine.address
17875 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17876 state_machine.op_index = ((state_machine.op_index
17877 + (adj_opcode / lh->line_range))
17878 % lh->maximum_ops_per_instruction);
17879 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17880 state_machine.line += line_delta;
17881 if (line_delta != 0)
17882 state_machine.line_has_non_zero_discriminator
17883 = state_machine.discriminator != 0;
17884
17885 dwarf_record_line (&reader_state, &state_machine, 0);
17886 state_machine.discriminator = 0;
17887 }
17888 else switch (op_code)
17889 {
17890 case DW_LNS_extended_op:
17891 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17892 &bytes_read);
17893 line_ptr += bytes_read;
17894 extended_end = line_ptr + extended_len;
17895 extended_op = read_1_byte (abfd, line_ptr);
17896 line_ptr += 1;
17897 switch (extended_op)
17898 {
17899 case DW_LNE_end_sequence:
17900 state_machine.record_line = record_line;
17901 end_sequence = 1;
17902 break;
17903 case DW_LNE_set_address:
17904 {
17905 CORE_ADDR address
17906 = read_address (abfd, line_ptr, cu, &bytes_read);
17907
17908 line_ptr += bytes_read;
17909 check_line_address (cu, &state_machine, line_ptr,
17910 lowpc, address);
17911 state_machine.op_index = 0;
17912 address += baseaddr;
17913 state_machine.address
17914 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17915 }
17916 break;
17917 case DW_LNE_define_file:
17918 {
17919 const char *cur_file;
17920 unsigned int dir_index, mod_time, length;
17921
17922 cur_file = read_direct_string (abfd, line_ptr,
17923 &bytes_read);
17924 line_ptr += bytes_read;
17925 dir_index =
17926 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17927 line_ptr += bytes_read;
17928 mod_time =
17929 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17930 line_ptr += bytes_read;
17931 length =
17932 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17933 line_ptr += bytes_read;
17934 add_file_name (lh, cur_file, dir_index, mod_time, length);
17935 }
17936 break;
17937 case DW_LNE_set_discriminator:
17938 /* The discriminator is not interesting to the debugger;
17939 just ignore it. We still need to check its value though:
17940 if there are consecutive entries for the same
17941 (non-prologue) line we want to coalesce them.
17942 PR 17276. */
17943 state_machine.discriminator
17944 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17945 state_machine.line_has_non_zero_discriminator
17946 |= state_machine.discriminator != 0;
17947 line_ptr += bytes_read;
17948 break;
17949 default:
17950 complaint (&symfile_complaints,
17951 _("mangled .debug_line section"));
17952 return;
17953 }
17954 /* Make sure that we parsed the extended op correctly. If e.g.
17955 we expected a different address size than the producer used,
17956 we may have read the wrong number of bytes. */
17957 if (line_ptr != extended_end)
17958 {
17959 complaint (&symfile_complaints,
17960 _("mangled .debug_line section"));
17961 return;
17962 }
17963 break;
17964 case DW_LNS_copy:
17965 dwarf_record_line (&reader_state, &state_machine, 0);
17966 state_machine.discriminator = 0;
17967 break;
17968 case DW_LNS_advance_pc:
17969 {
17970 CORE_ADDR adjust
17971 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17972 CORE_ADDR addr_adj;
17973
17974 addr_adj = (((state_machine.op_index + adjust)
17975 / lh->maximum_ops_per_instruction)
17976 * lh->minimum_instruction_length);
17977 state_machine.address
17978 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17979 state_machine.op_index = ((state_machine.op_index + adjust)
17980 % lh->maximum_ops_per_instruction);
17981 line_ptr += bytes_read;
17982 }
17983 break;
17984 case DW_LNS_advance_line:
17985 {
17986 int line_delta
17987 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17988
17989 state_machine.line += line_delta;
17990 if (line_delta != 0)
17991 state_machine.line_has_non_zero_discriminator
17992 = state_machine.discriminator != 0;
17993 line_ptr += bytes_read;
17994 }
17995 break;
17996 case DW_LNS_set_file:
17997 {
17998 /* The arrays lh->include_dirs and lh->file_names are
17999 0-based, but the directory and file name numbers in
18000 the statement program are 1-based. */
18001 struct file_entry *fe;
18002 const char *dir = NULL;
18003
18004 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18005 &bytes_read);
18006 line_ptr += bytes_read;
18007 if (state_machine.file == 0
18008 || state_machine.file - 1 >= lh->num_file_names)
18009 dwarf2_debug_line_missing_file_complaint ();
18010 else
18011 {
18012 fe = &lh->file_names[state_machine.file - 1];
18013 if (fe->dir_index && lh->include_dirs != NULL)
18014 dir = lh->include_dirs[fe->dir_index - 1];
18015 if (record_lines_p)
18016 {
18017 state_machine.last_subfile = current_subfile;
18018 state_machine.line_has_non_zero_discriminator
18019 = state_machine.discriminator != 0;
18020 dwarf2_start_subfile (fe->name, dir);
18021 }
18022 }
18023 }
18024 break;
18025 case DW_LNS_set_column:
18026 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18027 line_ptr += bytes_read;
18028 break;
18029 case DW_LNS_negate_stmt:
18030 state_machine.is_stmt = (!state_machine.is_stmt);
18031 break;
18032 case DW_LNS_set_basic_block:
18033 break;
18034 /* Add to the address register of the state machine the
18035 address increment value corresponding to special opcode
18036 255. I.e., this value is scaled by the minimum
18037 instruction length since special opcode 255 would have
18038 scaled the increment. */
18039 case DW_LNS_const_add_pc:
18040 {
18041 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18042 CORE_ADDR addr_adj;
18043
18044 addr_adj = (((state_machine.op_index + adjust)
18045 / lh->maximum_ops_per_instruction)
18046 * lh->minimum_instruction_length);
18047 state_machine.address
18048 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18049 state_machine.op_index = ((state_machine.op_index + adjust)
18050 % lh->maximum_ops_per_instruction);
18051 }
18052 break;
18053 case DW_LNS_fixed_advance_pc:
18054 {
18055 CORE_ADDR addr_adj;
18056
18057 addr_adj = read_2_bytes (abfd, line_ptr);
18058 state_machine.address
18059 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18060 state_machine.op_index = 0;
18061 line_ptr += 2;
18062 }
18063 break;
18064 default:
18065 {
18066 /* Unknown standard opcode, ignore it. */
18067 int i;
18068
18069 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18070 {
18071 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18072 line_ptr += bytes_read;
18073 }
18074 }
18075 }
18076 }
18077
18078 if (!end_sequence)
18079 dwarf2_debug_line_missing_end_sequence_complaint ();
18080
18081 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18082 in which case we still finish recording the last line). */
18083 dwarf_record_line (&reader_state, &state_machine, 1);
18084 }
18085 }
18086
18087 /* Decode the Line Number Program (LNP) for the given line_header
18088 structure and CU. The actual information extracted and the type
18089 of structures created from the LNP depends on the value of PST.
18090
18091 1. If PST is NULL, then this procedure uses the data from the program
18092 to create all necessary symbol tables, and their linetables.
18093
18094 2. If PST is not NULL, this procedure reads the program to determine
18095 the list of files included by the unit represented by PST, and
18096 builds all the associated partial symbol tables.
18097
18098 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18099 It is used for relative paths in the line table.
18100 NOTE: When processing partial symtabs (pst != NULL),
18101 comp_dir == pst->dirname.
18102
18103 NOTE: It is important that psymtabs have the same file name (via strcmp)
18104 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18105 symtab we don't use it in the name of the psymtabs we create.
18106 E.g. expand_line_sal requires this when finding psymtabs to expand.
18107 A good testcase for this is mb-inline.exp.
18108
18109 LOWPC is the lowest address in CU (or 0 if not known).
18110
18111 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18112 for its PC<->lines mapping information. Otherwise only the filename
18113 table is read in. */
18114
18115 static void
18116 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18117 struct dwarf2_cu *cu, struct partial_symtab *pst,
18118 CORE_ADDR lowpc, int decode_mapping)
18119 {
18120 struct objfile *objfile = cu->objfile;
18121 const int decode_for_pst_p = (pst != NULL);
18122
18123 if (decode_mapping)
18124 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18125
18126 if (decode_for_pst_p)
18127 {
18128 int file_index;
18129
18130 /* Now that we're done scanning the Line Header Program, we can
18131 create the psymtab of each included file. */
18132 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18133 if (lh->file_names[file_index].included_p == 1)
18134 {
18135 const char *include_name =
18136 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18137 if (include_name != NULL)
18138 dwarf2_create_include_psymtab (include_name, pst, objfile);
18139 }
18140 }
18141 else
18142 {
18143 /* Make sure a symtab is created for every file, even files
18144 which contain only variables (i.e. no code with associated
18145 line numbers). */
18146 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18147 int i;
18148
18149 for (i = 0; i < lh->num_file_names; i++)
18150 {
18151 const char *dir = NULL;
18152 struct file_entry *fe;
18153
18154 fe = &lh->file_names[i];
18155 if (fe->dir_index && lh->include_dirs != NULL)
18156 dir = lh->include_dirs[fe->dir_index - 1];
18157 dwarf2_start_subfile (fe->name, dir);
18158
18159 if (current_subfile->symtab == NULL)
18160 {
18161 current_subfile->symtab
18162 = allocate_symtab (cust, current_subfile->name);
18163 }
18164 fe->symtab = current_subfile->symtab;
18165 }
18166 }
18167 }
18168
18169 /* Start a subfile for DWARF. FILENAME is the name of the file and
18170 DIRNAME the name of the source directory which contains FILENAME
18171 or NULL if not known.
18172 This routine tries to keep line numbers from identical absolute and
18173 relative file names in a common subfile.
18174
18175 Using the `list' example from the GDB testsuite, which resides in
18176 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18177 of /srcdir/list0.c yields the following debugging information for list0.c:
18178
18179 DW_AT_name: /srcdir/list0.c
18180 DW_AT_comp_dir: /compdir
18181 files.files[0].name: list0.h
18182 files.files[0].dir: /srcdir
18183 files.files[1].name: list0.c
18184 files.files[1].dir: /srcdir
18185
18186 The line number information for list0.c has to end up in a single
18187 subfile, so that `break /srcdir/list0.c:1' works as expected.
18188 start_subfile will ensure that this happens provided that we pass the
18189 concatenation of files.files[1].dir and files.files[1].name as the
18190 subfile's name. */
18191
18192 static void
18193 dwarf2_start_subfile (const char *filename, const char *dirname)
18194 {
18195 char *copy = NULL;
18196
18197 /* In order not to lose the line information directory,
18198 we concatenate it to the filename when it makes sense.
18199 Note that the Dwarf3 standard says (speaking of filenames in line
18200 information): ``The directory index is ignored for file names
18201 that represent full path names''. Thus ignoring dirname in the
18202 `else' branch below isn't an issue. */
18203
18204 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18205 {
18206 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18207 filename = copy;
18208 }
18209
18210 start_subfile (filename);
18211
18212 if (copy != NULL)
18213 xfree (copy);
18214 }
18215
18216 /* Start a symtab for DWARF.
18217 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18218
18219 static struct compunit_symtab *
18220 dwarf2_start_symtab (struct dwarf2_cu *cu,
18221 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18222 {
18223 struct compunit_symtab *cust
18224 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18225
18226 record_debugformat ("DWARF 2");
18227 record_producer (cu->producer);
18228
18229 /* We assume that we're processing GCC output. */
18230 processing_gcc_compilation = 2;
18231
18232 cu->processing_has_namespace_info = 0;
18233
18234 return cust;
18235 }
18236
18237 static void
18238 var_decode_location (struct attribute *attr, struct symbol *sym,
18239 struct dwarf2_cu *cu)
18240 {
18241 struct objfile *objfile = cu->objfile;
18242 struct comp_unit_head *cu_header = &cu->header;
18243
18244 /* NOTE drow/2003-01-30: There used to be a comment and some special
18245 code here to turn a symbol with DW_AT_external and a
18246 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18247 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18248 with some versions of binutils) where shared libraries could have
18249 relocations against symbols in their debug information - the
18250 minimal symbol would have the right address, but the debug info
18251 would not. It's no longer necessary, because we will explicitly
18252 apply relocations when we read in the debug information now. */
18253
18254 /* A DW_AT_location attribute with no contents indicates that a
18255 variable has been optimized away. */
18256 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18257 {
18258 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18259 return;
18260 }
18261
18262 /* Handle one degenerate form of location expression specially, to
18263 preserve GDB's previous behavior when section offsets are
18264 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18265 then mark this symbol as LOC_STATIC. */
18266
18267 if (attr_form_is_block (attr)
18268 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18269 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18270 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18271 && (DW_BLOCK (attr)->size
18272 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18273 {
18274 unsigned int dummy;
18275
18276 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18277 SYMBOL_VALUE_ADDRESS (sym) =
18278 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18279 else
18280 SYMBOL_VALUE_ADDRESS (sym) =
18281 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18282 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18283 fixup_symbol_section (sym, objfile);
18284 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18285 SYMBOL_SECTION (sym));
18286 return;
18287 }
18288
18289 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18290 expression evaluator, and use LOC_COMPUTED only when necessary
18291 (i.e. when the value of a register or memory location is
18292 referenced, or a thread-local block, etc.). Then again, it might
18293 not be worthwhile. I'm assuming that it isn't unless performance
18294 or memory numbers show me otherwise. */
18295
18296 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18297
18298 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18299 cu->has_loclist = 1;
18300 }
18301
18302 /* Given a pointer to a DWARF information entry, figure out if we need
18303 to make a symbol table entry for it, and if so, create a new entry
18304 and return a pointer to it.
18305 If TYPE is NULL, determine symbol type from the die, otherwise
18306 used the passed type.
18307 If SPACE is not NULL, use it to hold the new symbol. If it is
18308 NULL, allocate a new symbol on the objfile's obstack. */
18309
18310 static struct symbol *
18311 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18312 struct symbol *space)
18313 {
18314 struct objfile *objfile = cu->objfile;
18315 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18316 struct symbol *sym = NULL;
18317 const char *name;
18318 struct attribute *attr = NULL;
18319 struct attribute *attr2 = NULL;
18320 CORE_ADDR baseaddr;
18321 struct pending **list_to_add = NULL;
18322
18323 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18324
18325 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18326
18327 name = dwarf2_name (die, cu);
18328 if (name)
18329 {
18330 const char *linkagename;
18331 int suppress_add = 0;
18332
18333 if (space)
18334 sym = space;
18335 else
18336 sym = allocate_symbol (objfile);
18337 OBJSTAT (objfile, n_syms++);
18338
18339 /* Cache this symbol's name and the name's demangled form (if any). */
18340 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18341 linkagename = dwarf2_physname (name, die, cu);
18342 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18343
18344 /* Fortran does not have mangling standard and the mangling does differ
18345 between gfortran, iFort etc. */
18346 if (cu->language == language_fortran
18347 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18348 symbol_set_demangled_name (&(sym->ginfo),
18349 dwarf2_full_name (name, die, cu),
18350 NULL);
18351
18352 /* Default assumptions.
18353 Use the passed type or decode it from the die. */
18354 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18355 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18356 if (type != NULL)
18357 SYMBOL_TYPE (sym) = type;
18358 else
18359 SYMBOL_TYPE (sym) = die_type (die, cu);
18360 attr = dwarf2_attr (die,
18361 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18362 cu);
18363 if (attr)
18364 {
18365 SYMBOL_LINE (sym) = DW_UNSND (attr);
18366 }
18367
18368 attr = dwarf2_attr (die,
18369 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18370 cu);
18371 if (attr)
18372 {
18373 int file_index = DW_UNSND (attr);
18374
18375 if (cu->line_header == NULL
18376 || file_index > cu->line_header->num_file_names)
18377 complaint (&symfile_complaints,
18378 _("file index out of range"));
18379 else if (file_index > 0)
18380 {
18381 struct file_entry *fe;
18382
18383 fe = &cu->line_header->file_names[file_index - 1];
18384 symbol_set_symtab (sym, fe->symtab);
18385 }
18386 }
18387
18388 switch (die->tag)
18389 {
18390 case DW_TAG_label:
18391 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18392 if (attr)
18393 {
18394 CORE_ADDR addr;
18395
18396 addr = attr_value_as_address (attr);
18397 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18398 SYMBOL_VALUE_ADDRESS (sym) = addr;
18399 }
18400 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18401 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18402 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18403 add_symbol_to_list (sym, cu->list_in_scope);
18404 break;
18405 case DW_TAG_subprogram:
18406 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18407 finish_block. */
18408 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18409 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18410 if ((attr2 && (DW_UNSND (attr2) != 0))
18411 || cu->language == language_ada)
18412 {
18413 /* Subprograms marked external are stored as a global symbol.
18414 Ada subprograms, whether marked external or not, are always
18415 stored as a global symbol, because we want to be able to
18416 access them globally. For instance, we want to be able
18417 to break on a nested subprogram without having to
18418 specify the context. */
18419 list_to_add = &global_symbols;
18420 }
18421 else
18422 {
18423 list_to_add = cu->list_in_scope;
18424 }
18425 break;
18426 case DW_TAG_inlined_subroutine:
18427 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18428 finish_block. */
18429 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18430 SYMBOL_INLINED (sym) = 1;
18431 list_to_add = cu->list_in_scope;
18432 break;
18433 case DW_TAG_template_value_param:
18434 suppress_add = 1;
18435 /* Fall through. */
18436 case DW_TAG_constant:
18437 case DW_TAG_variable:
18438 case DW_TAG_member:
18439 /* Compilation with minimal debug info may result in
18440 variables with missing type entries. Change the
18441 misleading `void' type to something sensible. */
18442 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18443 SYMBOL_TYPE (sym)
18444 = objfile_type (objfile)->nodebug_data_symbol;
18445
18446 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18447 /* In the case of DW_TAG_member, we should only be called for
18448 static const members. */
18449 if (die->tag == DW_TAG_member)
18450 {
18451 /* dwarf2_add_field uses die_is_declaration,
18452 so we do the same. */
18453 gdb_assert (die_is_declaration (die, cu));
18454 gdb_assert (attr);
18455 }
18456 if (attr)
18457 {
18458 dwarf2_const_value (attr, sym, cu);
18459 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18460 if (!suppress_add)
18461 {
18462 if (attr2 && (DW_UNSND (attr2) != 0))
18463 list_to_add = &global_symbols;
18464 else
18465 list_to_add = cu->list_in_scope;
18466 }
18467 break;
18468 }
18469 attr = dwarf2_attr (die, DW_AT_location, cu);
18470 if (attr)
18471 {
18472 var_decode_location (attr, sym, cu);
18473 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18474
18475 /* Fortran explicitly imports any global symbols to the local
18476 scope by DW_TAG_common_block. */
18477 if (cu->language == language_fortran && die->parent
18478 && die->parent->tag == DW_TAG_common_block)
18479 attr2 = NULL;
18480
18481 if (SYMBOL_CLASS (sym) == LOC_STATIC
18482 && SYMBOL_VALUE_ADDRESS (sym) == 0
18483 && !dwarf2_per_objfile->has_section_at_zero)
18484 {
18485 /* When a static variable is eliminated by the linker,
18486 the corresponding debug information is not stripped
18487 out, but the variable address is set to null;
18488 do not add such variables into symbol table. */
18489 }
18490 else if (attr2 && (DW_UNSND (attr2) != 0))
18491 {
18492 /* Workaround gfortran PR debug/40040 - it uses
18493 DW_AT_location for variables in -fPIC libraries which may
18494 get overriden by other libraries/executable and get
18495 a different address. Resolve it by the minimal symbol
18496 which may come from inferior's executable using copy
18497 relocation. Make this workaround only for gfortran as for
18498 other compilers GDB cannot guess the minimal symbol
18499 Fortran mangling kind. */
18500 if (cu->language == language_fortran && die->parent
18501 && die->parent->tag == DW_TAG_module
18502 && cu->producer
18503 && startswith (cu->producer, "GNU Fortran "))
18504 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18505
18506 /* A variable with DW_AT_external is never static,
18507 but it may be block-scoped. */
18508 list_to_add = (cu->list_in_scope == &file_symbols
18509 ? &global_symbols : cu->list_in_scope);
18510 }
18511 else
18512 list_to_add = cu->list_in_scope;
18513 }
18514 else
18515 {
18516 /* We do not know the address of this symbol.
18517 If it is an external symbol and we have type information
18518 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18519 The address of the variable will then be determined from
18520 the minimal symbol table whenever the variable is
18521 referenced. */
18522 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18523
18524 /* Fortran explicitly imports any global symbols to the local
18525 scope by DW_TAG_common_block. */
18526 if (cu->language == language_fortran && die->parent
18527 && die->parent->tag == DW_TAG_common_block)
18528 {
18529 /* SYMBOL_CLASS doesn't matter here because
18530 read_common_block is going to reset it. */
18531 if (!suppress_add)
18532 list_to_add = cu->list_in_scope;
18533 }
18534 else if (attr2 && (DW_UNSND (attr2) != 0)
18535 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18536 {
18537 /* A variable with DW_AT_external is never static, but it
18538 may be block-scoped. */
18539 list_to_add = (cu->list_in_scope == &file_symbols
18540 ? &global_symbols : cu->list_in_scope);
18541
18542 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18543 }
18544 else if (!die_is_declaration (die, cu))
18545 {
18546 /* Use the default LOC_OPTIMIZED_OUT class. */
18547 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18548 if (!suppress_add)
18549 list_to_add = cu->list_in_scope;
18550 }
18551 }
18552 break;
18553 case DW_TAG_formal_parameter:
18554 /* If we are inside a function, mark this as an argument. If
18555 not, we might be looking at an argument to an inlined function
18556 when we do not have enough information to show inlined frames;
18557 pretend it's a local variable in that case so that the user can
18558 still see it. */
18559 if (context_stack_depth > 0
18560 && context_stack[context_stack_depth - 1].name != NULL)
18561 SYMBOL_IS_ARGUMENT (sym) = 1;
18562 attr = dwarf2_attr (die, DW_AT_location, cu);
18563 if (attr)
18564 {
18565 var_decode_location (attr, sym, cu);
18566 }
18567 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18568 if (attr)
18569 {
18570 dwarf2_const_value (attr, sym, cu);
18571 }
18572
18573 list_to_add = cu->list_in_scope;
18574 break;
18575 case DW_TAG_unspecified_parameters:
18576 /* From varargs functions; gdb doesn't seem to have any
18577 interest in this information, so just ignore it for now.
18578 (FIXME?) */
18579 break;
18580 case DW_TAG_template_type_param:
18581 suppress_add = 1;
18582 /* Fall through. */
18583 case DW_TAG_class_type:
18584 case DW_TAG_interface_type:
18585 case DW_TAG_structure_type:
18586 case DW_TAG_union_type:
18587 case DW_TAG_set_type:
18588 case DW_TAG_enumeration_type:
18589 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18590 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18591
18592 {
18593 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18594 really ever be static objects: otherwise, if you try
18595 to, say, break of a class's method and you're in a file
18596 which doesn't mention that class, it won't work unless
18597 the check for all static symbols in lookup_symbol_aux
18598 saves you. See the OtherFileClass tests in
18599 gdb.c++/namespace.exp. */
18600
18601 if (!suppress_add)
18602 {
18603 list_to_add = (cu->list_in_scope == &file_symbols
18604 && (cu->language == language_cplus
18605 || cu->language == language_java)
18606 ? &global_symbols : cu->list_in_scope);
18607
18608 /* The semantics of C++ state that "struct foo {
18609 ... }" also defines a typedef for "foo". A Java
18610 class declaration also defines a typedef for the
18611 class. */
18612 if (cu->language == language_cplus
18613 || cu->language == language_java
18614 || cu->language == language_ada
18615 || cu->language == language_d)
18616 {
18617 /* The symbol's name is already allocated along
18618 with this objfile, so we don't need to
18619 duplicate it for the type. */
18620 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18621 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18622 }
18623 }
18624 }
18625 break;
18626 case DW_TAG_typedef:
18627 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18628 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18629 list_to_add = cu->list_in_scope;
18630 break;
18631 case DW_TAG_base_type:
18632 case DW_TAG_subrange_type:
18633 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18634 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18635 list_to_add = cu->list_in_scope;
18636 break;
18637 case DW_TAG_enumerator:
18638 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18639 if (attr)
18640 {
18641 dwarf2_const_value (attr, sym, cu);
18642 }
18643 {
18644 /* NOTE: carlton/2003-11-10: See comment above in the
18645 DW_TAG_class_type, etc. block. */
18646
18647 list_to_add = (cu->list_in_scope == &file_symbols
18648 && (cu->language == language_cplus
18649 || cu->language == language_java)
18650 ? &global_symbols : cu->list_in_scope);
18651 }
18652 break;
18653 case DW_TAG_imported_declaration:
18654 case DW_TAG_namespace:
18655 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18656 list_to_add = &global_symbols;
18657 break;
18658 case DW_TAG_module:
18659 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18660 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18661 list_to_add = &global_symbols;
18662 break;
18663 case DW_TAG_common_block:
18664 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18665 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18666 add_symbol_to_list (sym, cu->list_in_scope);
18667 break;
18668 default:
18669 /* Not a tag we recognize. Hopefully we aren't processing
18670 trash data, but since we must specifically ignore things
18671 we don't recognize, there is nothing else we should do at
18672 this point. */
18673 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18674 dwarf_tag_name (die->tag));
18675 break;
18676 }
18677
18678 if (suppress_add)
18679 {
18680 sym->hash_next = objfile->template_symbols;
18681 objfile->template_symbols = sym;
18682 list_to_add = NULL;
18683 }
18684
18685 if (list_to_add != NULL)
18686 add_symbol_to_list (sym, list_to_add);
18687
18688 /* For the benefit of old versions of GCC, check for anonymous
18689 namespaces based on the demangled name. */
18690 if (!cu->processing_has_namespace_info
18691 && cu->language == language_cplus)
18692 cp_scan_for_anonymous_namespaces (sym, objfile);
18693 }
18694 return (sym);
18695 }
18696
18697 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18698
18699 static struct symbol *
18700 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18701 {
18702 return new_symbol_full (die, type, cu, NULL);
18703 }
18704
18705 /* Given an attr with a DW_FORM_dataN value in host byte order,
18706 zero-extend it as appropriate for the symbol's type. The DWARF
18707 standard (v4) is not entirely clear about the meaning of using
18708 DW_FORM_dataN for a constant with a signed type, where the type is
18709 wider than the data. The conclusion of a discussion on the DWARF
18710 list was that this is unspecified. We choose to always zero-extend
18711 because that is the interpretation long in use by GCC. */
18712
18713 static gdb_byte *
18714 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18715 struct dwarf2_cu *cu, LONGEST *value, int bits)
18716 {
18717 struct objfile *objfile = cu->objfile;
18718 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18719 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18720 LONGEST l = DW_UNSND (attr);
18721
18722 if (bits < sizeof (*value) * 8)
18723 {
18724 l &= ((LONGEST) 1 << bits) - 1;
18725 *value = l;
18726 }
18727 else if (bits == sizeof (*value) * 8)
18728 *value = l;
18729 else
18730 {
18731 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18732 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18733 return bytes;
18734 }
18735
18736 return NULL;
18737 }
18738
18739 /* Read a constant value from an attribute. Either set *VALUE, or if
18740 the value does not fit in *VALUE, set *BYTES - either already
18741 allocated on the objfile obstack, or newly allocated on OBSTACK,
18742 or, set *BATON, if we translated the constant to a location
18743 expression. */
18744
18745 static void
18746 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18747 const char *name, struct obstack *obstack,
18748 struct dwarf2_cu *cu,
18749 LONGEST *value, const gdb_byte **bytes,
18750 struct dwarf2_locexpr_baton **baton)
18751 {
18752 struct objfile *objfile = cu->objfile;
18753 struct comp_unit_head *cu_header = &cu->header;
18754 struct dwarf_block *blk;
18755 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18756 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18757
18758 *value = 0;
18759 *bytes = NULL;
18760 *baton = NULL;
18761
18762 switch (attr->form)
18763 {
18764 case DW_FORM_addr:
18765 case DW_FORM_GNU_addr_index:
18766 {
18767 gdb_byte *data;
18768
18769 if (TYPE_LENGTH (type) != cu_header->addr_size)
18770 dwarf2_const_value_length_mismatch_complaint (name,
18771 cu_header->addr_size,
18772 TYPE_LENGTH (type));
18773 /* Symbols of this form are reasonably rare, so we just
18774 piggyback on the existing location code rather than writing
18775 a new implementation of symbol_computed_ops. */
18776 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18777 (*baton)->per_cu = cu->per_cu;
18778 gdb_assert ((*baton)->per_cu);
18779
18780 (*baton)->size = 2 + cu_header->addr_size;
18781 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18782 (*baton)->data = data;
18783
18784 data[0] = DW_OP_addr;
18785 store_unsigned_integer (&data[1], cu_header->addr_size,
18786 byte_order, DW_ADDR (attr));
18787 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18788 }
18789 break;
18790 case DW_FORM_string:
18791 case DW_FORM_strp:
18792 case DW_FORM_GNU_str_index:
18793 case DW_FORM_GNU_strp_alt:
18794 /* DW_STRING is already allocated on the objfile obstack, point
18795 directly to it. */
18796 *bytes = (const gdb_byte *) DW_STRING (attr);
18797 break;
18798 case DW_FORM_block1:
18799 case DW_FORM_block2:
18800 case DW_FORM_block4:
18801 case DW_FORM_block:
18802 case DW_FORM_exprloc:
18803 blk = DW_BLOCK (attr);
18804 if (TYPE_LENGTH (type) != blk->size)
18805 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18806 TYPE_LENGTH (type));
18807 *bytes = blk->data;
18808 break;
18809
18810 /* The DW_AT_const_value attributes are supposed to carry the
18811 symbol's value "represented as it would be on the target
18812 architecture." By the time we get here, it's already been
18813 converted to host endianness, so we just need to sign- or
18814 zero-extend it as appropriate. */
18815 case DW_FORM_data1:
18816 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18817 break;
18818 case DW_FORM_data2:
18819 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18820 break;
18821 case DW_FORM_data4:
18822 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18823 break;
18824 case DW_FORM_data8:
18825 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18826 break;
18827
18828 case DW_FORM_sdata:
18829 *value = DW_SND (attr);
18830 break;
18831
18832 case DW_FORM_udata:
18833 *value = DW_UNSND (attr);
18834 break;
18835
18836 default:
18837 complaint (&symfile_complaints,
18838 _("unsupported const value attribute form: '%s'"),
18839 dwarf_form_name (attr->form));
18840 *value = 0;
18841 break;
18842 }
18843 }
18844
18845
18846 /* Copy constant value from an attribute to a symbol. */
18847
18848 static void
18849 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18850 struct dwarf2_cu *cu)
18851 {
18852 struct objfile *objfile = cu->objfile;
18853 struct comp_unit_head *cu_header = &cu->header;
18854 LONGEST value;
18855 const gdb_byte *bytes;
18856 struct dwarf2_locexpr_baton *baton;
18857
18858 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18859 SYMBOL_PRINT_NAME (sym),
18860 &objfile->objfile_obstack, cu,
18861 &value, &bytes, &baton);
18862
18863 if (baton != NULL)
18864 {
18865 SYMBOL_LOCATION_BATON (sym) = baton;
18866 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18867 }
18868 else if (bytes != NULL)
18869 {
18870 SYMBOL_VALUE_BYTES (sym) = bytes;
18871 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18872 }
18873 else
18874 {
18875 SYMBOL_VALUE (sym) = value;
18876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18877 }
18878 }
18879
18880 /* Return the type of the die in question using its DW_AT_type attribute. */
18881
18882 static struct type *
18883 die_type (struct die_info *die, struct dwarf2_cu *cu)
18884 {
18885 struct attribute *type_attr;
18886
18887 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18888 if (!type_attr)
18889 {
18890 /* A missing DW_AT_type represents a void type. */
18891 return objfile_type (cu->objfile)->builtin_void;
18892 }
18893
18894 return lookup_die_type (die, type_attr, cu);
18895 }
18896
18897 /* True iff CU's producer generates GNAT Ada auxiliary information
18898 that allows to find parallel types through that information instead
18899 of having to do expensive parallel lookups by type name. */
18900
18901 static int
18902 need_gnat_info (struct dwarf2_cu *cu)
18903 {
18904 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18905 of GNAT produces this auxiliary information, without any indication
18906 that it is produced. Part of enhancing the FSF version of GNAT
18907 to produce that information will be to put in place an indicator
18908 that we can use in order to determine whether the descriptive type
18909 info is available or not. One suggestion that has been made is
18910 to use a new attribute, attached to the CU die. For now, assume
18911 that the descriptive type info is not available. */
18912 return 0;
18913 }
18914
18915 /* Return the auxiliary type of the die in question using its
18916 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18917 attribute is not present. */
18918
18919 static struct type *
18920 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18921 {
18922 struct attribute *type_attr;
18923
18924 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18925 if (!type_attr)
18926 return NULL;
18927
18928 return lookup_die_type (die, type_attr, cu);
18929 }
18930
18931 /* If DIE has a descriptive_type attribute, then set the TYPE's
18932 descriptive type accordingly. */
18933
18934 static void
18935 set_descriptive_type (struct type *type, struct die_info *die,
18936 struct dwarf2_cu *cu)
18937 {
18938 struct type *descriptive_type = die_descriptive_type (die, cu);
18939
18940 if (descriptive_type)
18941 {
18942 ALLOCATE_GNAT_AUX_TYPE (type);
18943 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18944 }
18945 }
18946
18947 /* Return the containing type of the die in question using its
18948 DW_AT_containing_type attribute. */
18949
18950 static struct type *
18951 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18952 {
18953 struct attribute *type_attr;
18954
18955 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18956 if (!type_attr)
18957 error (_("Dwarf Error: Problem turning containing type into gdb type "
18958 "[in module %s]"), objfile_name (cu->objfile));
18959
18960 return lookup_die_type (die, type_attr, cu);
18961 }
18962
18963 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18964
18965 static struct type *
18966 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18967 {
18968 struct objfile *objfile = dwarf2_per_objfile->objfile;
18969 char *message, *saved;
18970
18971 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18972 objfile_name (objfile),
18973 cu->header.offset.sect_off,
18974 die->offset.sect_off);
18975 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18976 message, strlen (message));
18977 xfree (message);
18978
18979 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18980 }
18981
18982 /* Look up the type of DIE in CU using its type attribute ATTR.
18983 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18984 DW_AT_containing_type.
18985 If there is no type substitute an error marker. */
18986
18987 static struct type *
18988 lookup_die_type (struct die_info *die, const struct attribute *attr,
18989 struct dwarf2_cu *cu)
18990 {
18991 struct objfile *objfile = cu->objfile;
18992 struct type *this_type;
18993
18994 gdb_assert (attr->name == DW_AT_type
18995 || attr->name == DW_AT_GNAT_descriptive_type
18996 || attr->name == DW_AT_containing_type);
18997
18998 /* First see if we have it cached. */
18999
19000 if (attr->form == DW_FORM_GNU_ref_alt)
19001 {
19002 struct dwarf2_per_cu_data *per_cu;
19003 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19004
19005 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19006 this_type = get_die_type_at_offset (offset, per_cu);
19007 }
19008 else if (attr_form_is_ref (attr))
19009 {
19010 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19011
19012 this_type = get_die_type_at_offset (offset, cu->per_cu);
19013 }
19014 else if (attr->form == DW_FORM_ref_sig8)
19015 {
19016 ULONGEST signature = DW_SIGNATURE (attr);
19017
19018 return get_signatured_type (die, signature, cu);
19019 }
19020 else
19021 {
19022 complaint (&symfile_complaints,
19023 _("Dwarf Error: Bad type attribute %s in DIE"
19024 " at 0x%x [in module %s]"),
19025 dwarf_attr_name (attr->name), die->offset.sect_off,
19026 objfile_name (objfile));
19027 return build_error_marker_type (cu, die);
19028 }
19029
19030 /* If not cached we need to read it in. */
19031
19032 if (this_type == NULL)
19033 {
19034 struct die_info *type_die = NULL;
19035 struct dwarf2_cu *type_cu = cu;
19036
19037 if (attr_form_is_ref (attr))
19038 type_die = follow_die_ref (die, attr, &type_cu);
19039 if (type_die == NULL)
19040 return build_error_marker_type (cu, die);
19041 /* If we find the type now, it's probably because the type came
19042 from an inter-CU reference and the type's CU got expanded before
19043 ours. */
19044 this_type = read_type_die (type_die, type_cu);
19045 }
19046
19047 /* If we still don't have a type use an error marker. */
19048
19049 if (this_type == NULL)
19050 return build_error_marker_type (cu, die);
19051
19052 return this_type;
19053 }
19054
19055 /* Return the type in DIE, CU.
19056 Returns NULL for invalid types.
19057
19058 This first does a lookup in die_type_hash,
19059 and only reads the die in if necessary.
19060
19061 NOTE: This can be called when reading in partial or full symbols. */
19062
19063 static struct type *
19064 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19065 {
19066 struct type *this_type;
19067
19068 this_type = get_die_type (die, cu);
19069 if (this_type)
19070 return this_type;
19071
19072 return read_type_die_1 (die, cu);
19073 }
19074
19075 /* Read the type in DIE, CU.
19076 Returns NULL for invalid types. */
19077
19078 static struct type *
19079 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19080 {
19081 struct type *this_type = NULL;
19082
19083 switch (die->tag)
19084 {
19085 case DW_TAG_class_type:
19086 case DW_TAG_interface_type:
19087 case DW_TAG_structure_type:
19088 case DW_TAG_union_type:
19089 this_type = read_structure_type (die, cu);
19090 break;
19091 case DW_TAG_enumeration_type:
19092 this_type = read_enumeration_type (die, cu);
19093 break;
19094 case DW_TAG_subprogram:
19095 case DW_TAG_subroutine_type:
19096 case DW_TAG_inlined_subroutine:
19097 this_type = read_subroutine_type (die, cu);
19098 break;
19099 case DW_TAG_array_type:
19100 this_type = read_array_type (die, cu);
19101 break;
19102 case DW_TAG_set_type:
19103 this_type = read_set_type (die, cu);
19104 break;
19105 case DW_TAG_pointer_type:
19106 this_type = read_tag_pointer_type (die, cu);
19107 break;
19108 case DW_TAG_ptr_to_member_type:
19109 this_type = read_tag_ptr_to_member_type (die, cu);
19110 break;
19111 case DW_TAG_reference_type:
19112 this_type = read_tag_reference_type (die, cu);
19113 break;
19114 case DW_TAG_const_type:
19115 this_type = read_tag_const_type (die, cu);
19116 break;
19117 case DW_TAG_volatile_type:
19118 this_type = read_tag_volatile_type (die, cu);
19119 break;
19120 case DW_TAG_restrict_type:
19121 this_type = read_tag_restrict_type (die, cu);
19122 break;
19123 case DW_TAG_string_type:
19124 this_type = read_tag_string_type (die, cu);
19125 break;
19126 case DW_TAG_typedef:
19127 this_type = read_typedef (die, cu);
19128 break;
19129 case DW_TAG_subrange_type:
19130 this_type = read_subrange_type (die, cu);
19131 break;
19132 case DW_TAG_base_type:
19133 this_type = read_base_type (die, cu);
19134 break;
19135 case DW_TAG_unspecified_type:
19136 this_type = read_unspecified_type (die, cu);
19137 break;
19138 case DW_TAG_namespace:
19139 this_type = read_namespace_type (die, cu);
19140 break;
19141 case DW_TAG_module:
19142 this_type = read_module_type (die, cu);
19143 break;
19144 case DW_TAG_atomic_type:
19145 this_type = read_tag_atomic_type (die, cu);
19146 break;
19147 default:
19148 complaint (&symfile_complaints,
19149 _("unexpected tag in read_type_die: '%s'"),
19150 dwarf_tag_name (die->tag));
19151 break;
19152 }
19153
19154 return this_type;
19155 }
19156
19157 /* See if we can figure out if the class lives in a namespace. We do
19158 this by looking for a member function; its demangled name will
19159 contain namespace info, if there is any.
19160 Return the computed name or NULL.
19161 Space for the result is allocated on the objfile's obstack.
19162 This is the full-die version of guess_partial_die_structure_name.
19163 In this case we know DIE has no useful parent. */
19164
19165 static char *
19166 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19167 {
19168 struct die_info *spec_die;
19169 struct dwarf2_cu *spec_cu;
19170 struct die_info *child;
19171
19172 spec_cu = cu;
19173 spec_die = die_specification (die, &spec_cu);
19174 if (spec_die != NULL)
19175 {
19176 die = spec_die;
19177 cu = spec_cu;
19178 }
19179
19180 for (child = die->child;
19181 child != NULL;
19182 child = child->sibling)
19183 {
19184 if (child->tag == DW_TAG_subprogram)
19185 {
19186 const char *linkage_name;
19187
19188 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19189 if (linkage_name == NULL)
19190 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19191 cu);
19192 if (linkage_name != NULL)
19193 {
19194 char *actual_name
19195 = language_class_name_from_physname (cu->language_defn,
19196 linkage_name);
19197 char *name = NULL;
19198
19199 if (actual_name != NULL)
19200 {
19201 const char *die_name = dwarf2_name (die, cu);
19202
19203 if (die_name != NULL
19204 && strcmp (die_name, actual_name) != 0)
19205 {
19206 /* Strip off the class name from the full name.
19207 We want the prefix. */
19208 int die_name_len = strlen (die_name);
19209 int actual_name_len = strlen (actual_name);
19210
19211 /* Test for '::' as a sanity check. */
19212 if (actual_name_len > die_name_len + 2
19213 && actual_name[actual_name_len
19214 - die_name_len - 1] == ':')
19215 name = (char *) obstack_copy0 (
19216 &cu->objfile->per_bfd->storage_obstack,
19217 actual_name, actual_name_len - die_name_len - 2);
19218 }
19219 }
19220 xfree (actual_name);
19221 return name;
19222 }
19223 }
19224 }
19225
19226 return NULL;
19227 }
19228
19229 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19230 prefix part in such case. See
19231 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19232
19233 static char *
19234 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19235 {
19236 struct attribute *attr;
19237 char *base;
19238
19239 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19240 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19241 return NULL;
19242
19243 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19244 return NULL;
19245
19246 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19247 if (attr == NULL)
19248 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19249 if (attr == NULL || DW_STRING (attr) == NULL)
19250 return NULL;
19251
19252 /* dwarf2_name had to be already called. */
19253 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19254
19255 /* Strip the base name, keep any leading namespaces/classes. */
19256 base = strrchr (DW_STRING (attr), ':');
19257 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19258 return "";
19259
19260 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19261 DW_STRING (attr),
19262 &base[-1] - DW_STRING (attr));
19263 }
19264
19265 /* Return the name of the namespace/class that DIE is defined within,
19266 or "" if we can't tell. The caller should not xfree the result.
19267
19268 For example, if we're within the method foo() in the following
19269 code:
19270
19271 namespace N {
19272 class C {
19273 void foo () {
19274 }
19275 };
19276 }
19277
19278 then determine_prefix on foo's die will return "N::C". */
19279
19280 static const char *
19281 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19282 {
19283 struct die_info *parent, *spec_die;
19284 struct dwarf2_cu *spec_cu;
19285 struct type *parent_type;
19286 char *retval;
19287
19288 if (cu->language != language_cplus && cu->language != language_java
19289 && cu->language != language_fortran && cu->language != language_d)
19290 return "";
19291
19292 retval = anonymous_struct_prefix (die, cu);
19293 if (retval)
19294 return retval;
19295
19296 /* We have to be careful in the presence of DW_AT_specification.
19297 For example, with GCC 3.4, given the code
19298
19299 namespace N {
19300 void foo() {
19301 // Definition of N::foo.
19302 }
19303 }
19304
19305 then we'll have a tree of DIEs like this:
19306
19307 1: DW_TAG_compile_unit
19308 2: DW_TAG_namespace // N
19309 3: DW_TAG_subprogram // declaration of N::foo
19310 4: DW_TAG_subprogram // definition of N::foo
19311 DW_AT_specification // refers to die #3
19312
19313 Thus, when processing die #4, we have to pretend that we're in
19314 the context of its DW_AT_specification, namely the contex of die
19315 #3. */
19316 spec_cu = cu;
19317 spec_die = die_specification (die, &spec_cu);
19318 if (spec_die == NULL)
19319 parent = die->parent;
19320 else
19321 {
19322 parent = spec_die->parent;
19323 cu = spec_cu;
19324 }
19325
19326 if (parent == NULL)
19327 return "";
19328 else if (parent->building_fullname)
19329 {
19330 const char *name;
19331 const char *parent_name;
19332
19333 /* It has been seen on RealView 2.2 built binaries,
19334 DW_TAG_template_type_param types actually _defined_ as
19335 children of the parent class:
19336
19337 enum E {};
19338 template class <class Enum> Class{};
19339 Class<enum E> class_e;
19340
19341 1: DW_TAG_class_type (Class)
19342 2: DW_TAG_enumeration_type (E)
19343 3: DW_TAG_enumerator (enum1:0)
19344 3: DW_TAG_enumerator (enum2:1)
19345 ...
19346 2: DW_TAG_template_type_param
19347 DW_AT_type DW_FORM_ref_udata (E)
19348
19349 Besides being broken debug info, it can put GDB into an
19350 infinite loop. Consider:
19351
19352 When we're building the full name for Class<E>, we'll start
19353 at Class, and go look over its template type parameters,
19354 finding E. We'll then try to build the full name of E, and
19355 reach here. We're now trying to build the full name of E,
19356 and look over the parent DIE for containing scope. In the
19357 broken case, if we followed the parent DIE of E, we'd again
19358 find Class, and once again go look at its template type
19359 arguments, etc., etc. Simply don't consider such parent die
19360 as source-level parent of this die (it can't be, the language
19361 doesn't allow it), and break the loop here. */
19362 name = dwarf2_name (die, cu);
19363 parent_name = dwarf2_name (parent, cu);
19364 complaint (&symfile_complaints,
19365 _("template param type '%s' defined within parent '%s'"),
19366 name ? name : "<unknown>",
19367 parent_name ? parent_name : "<unknown>");
19368 return "";
19369 }
19370 else
19371 switch (parent->tag)
19372 {
19373 case DW_TAG_namespace:
19374 parent_type = read_type_die (parent, cu);
19375 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19376 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19377 Work around this problem here. */
19378 if (cu->language == language_cplus
19379 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19380 return "";
19381 /* We give a name to even anonymous namespaces. */
19382 return TYPE_TAG_NAME (parent_type);
19383 case DW_TAG_class_type:
19384 case DW_TAG_interface_type:
19385 case DW_TAG_structure_type:
19386 case DW_TAG_union_type:
19387 case DW_TAG_module:
19388 parent_type = read_type_die (parent, cu);
19389 if (TYPE_TAG_NAME (parent_type) != NULL)
19390 return TYPE_TAG_NAME (parent_type);
19391 else
19392 /* An anonymous structure is only allowed non-static data
19393 members; no typedefs, no member functions, et cetera.
19394 So it does not need a prefix. */
19395 return "";
19396 case DW_TAG_compile_unit:
19397 case DW_TAG_partial_unit:
19398 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19399 if (cu->language == language_cplus
19400 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19401 && die->child != NULL
19402 && (die->tag == DW_TAG_class_type
19403 || die->tag == DW_TAG_structure_type
19404 || die->tag == DW_TAG_union_type))
19405 {
19406 char *name = guess_full_die_structure_name (die, cu);
19407 if (name != NULL)
19408 return name;
19409 }
19410 return "";
19411 case DW_TAG_enumeration_type:
19412 parent_type = read_type_die (parent, cu);
19413 if (TYPE_DECLARED_CLASS (parent_type))
19414 {
19415 if (TYPE_TAG_NAME (parent_type) != NULL)
19416 return TYPE_TAG_NAME (parent_type);
19417 return "";
19418 }
19419 /* Fall through. */
19420 default:
19421 return determine_prefix (parent, cu);
19422 }
19423 }
19424
19425 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19426 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19427 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19428 an obconcat, otherwise allocate storage for the result. The CU argument is
19429 used to determine the language and hence, the appropriate separator. */
19430
19431 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19432
19433 static char *
19434 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19435 int physname, struct dwarf2_cu *cu)
19436 {
19437 const char *lead = "";
19438 const char *sep;
19439
19440 if (suffix == NULL || suffix[0] == '\0'
19441 || prefix == NULL || prefix[0] == '\0')
19442 sep = "";
19443 else if (cu->language == language_java)
19444 sep = ".";
19445 else if (cu->language == language_d)
19446 {
19447 /* For D, the 'main' function could be defined in any module, but it
19448 should never be prefixed. */
19449 if (strcmp (suffix, "D main") == 0)
19450 {
19451 prefix = "";
19452 sep = "";
19453 }
19454 else
19455 sep = ".";
19456 }
19457 else if (cu->language == language_fortran && physname)
19458 {
19459 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19460 DW_AT_MIPS_linkage_name is preferred and used instead. */
19461
19462 lead = "__";
19463 sep = "_MOD_";
19464 }
19465 else
19466 sep = "::";
19467
19468 if (prefix == NULL)
19469 prefix = "";
19470 if (suffix == NULL)
19471 suffix = "";
19472
19473 if (obs == NULL)
19474 {
19475 char *retval
19476 = ((char *)
19477 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19478
19479 strcpy (retval, lead);
19480 strcat (retval, prefix);
19481 strcat (retval, sep);
19482 strcat (retval, suffix);
19483 return retval;
19484 }
19485 else
19486 {
19487 /* We have an obstack. */
19488 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19489 }
19490 }
19491
19492 /* Return sibling of die, NULL if no sibling. */
19493
19494 static struct die_info *
19495 sibling_die (struct die_info *die)
19496 {
19497 return die->sibling;
19498 }
19499
19500 /* Get name of a die, return NULL if not found. */
19501
19502 static const char *
19503 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19504 struct obstack *obstack)
19505 {
19506 if (name && cu->language == language_cplus)
19507 {
19508 char *canon_name = cp_canonicalize_string (name);
19509
19510 if (canon_name != NULL)
19511 {
19512 if (strcmp (canon_name, name) != 0)
19513 name = (const char *) obstack_copy0 (obstack, canon_name,
19514 strlen (canon_name));
19515 xfree (canon_name);
19516 }
19517 }
19518
19519 return name;
19520 }
19521
19522 /* Get name of a die, return NULL if not found.
19523 Anonymous namespaces are converted to their magic string. */
19524
19525 static const char *
19526 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19527 {
19528 struct attribute *attr;
19529
19530 attr = dwarf2_attr (die, DW_AT_name, cu);
19531 if ((!attr || !DW_STRING (attr))
19532 && die->tag != DW_TAG_namespace
19533 && die->tag != DW_TAG_class_type
19534 && die->tag != DW_TAG_interface_type
19535 && die->tag != DW_TAG_structure_type
19536 && die->tag != DW_TAG_union_type)
19537 return NULL;
19538
19539 switch (die->tag)
19540 {
19541 case DW_TAG_compile_unit:
19542 case DW_TAG_partial_unit:
19543 /* Compilation units have a DW_AT_name that is a filename, not
19544 a source language identifier. */
19545 case DW_TAG_enumeration_type:
19546 case DW_TAG_enumerator:
19547 /* These tags always have simple identifiers already; no need
19548 to canonicalize them. */
19549 return DW_STRING (attr);
19550
19551 case DW_TAG_namespace:
19552 if (attr != NULL && DW_STRING (attr) != NULL)
19553 return DW_STRING (attr);
19554 return CP_ANONYMOUS_NAMESPACE_STR;
19555
19556 case DW_TAG_subprogram:
19557 /* Java constructors will all be named "<init>", so return
19558 the class name when we see this special case. */
19559 if (cu->language == language_java
19560 && DW_STRING (attr) != NULL
19561 && strcmp (DW_STRING (attr), "<init>") == 0)
19562 {
19563 struct dwarf2_cu *spec_cu = cu;
19564 struct die_info *spec_die;
19565
19566 /* GCJ will output '<init>' for Java constructor names.
19567 For this special case, return the name of the parent class. */
19568
19569 /* GCJ may output subprogram DIEs with AT_specification set.
19570 If so, use the name of the specified DIE. */
19571 spec_die = die_specification (die, &spec_cu);
19572 if (spec_die != NULL)
19573 return dwarf2_name (spec_die, spec_cu);
19574
19575 do
19576 {
19577 die = die->parent;
19578 if (die->tag == DW_TAG_class_type)
19579 return dwarf2_name (die, cu);
19580 }
19581 while (die->tag != DW_TAG_compile_unit
19582 && die->tag != DW_TAG_partial_unit);
19583 }
19584 break;
19585
19586 case DW_TAG_class_type:
19587 case DW_TAG_interface_type:
19588 case DW_TAG_structure_type:
19589 case DW_TAG_union_type:
19590 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19591 structures or unions. These were of the form "._%d" in GCC 4.1,
19592 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19593 and GCC 4.4. We work around this problem by ignoring these. */
19594 if (attr && DW_STRING (attr)
19595 && (startswith (DW_STRING (attr), "._")
19596 || startswith (DW_STRING (attr), "<anonymous")))
19597 return NULL;
19598
19599 /* GCC might emit a nameless typedef that has a linkage name. See
19600 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19601 if (!attr || DW_STRING (attr) == NULL)
19602 {
19603 char *demangled = NULL;
19604
19605 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19606 if (attr == NULL)
19607 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19608
19609 if (attr == NULL || DW_STRING (attr) == NULL)
19610 return NULL;
19611
19612 /* Avoid demangling DW_STRING (attr) the second time on a second
19613 call for the same DIE. */
19614 if (!DW_STRING_IS_CANONICAL (attr))
19615 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19616
19617 if (demangled)
19618 {
19619 char *base;
19620
19621 /* FIXME: we already did this for the partial symbol... */
19622 DW_STRING (attr)
19623 = ((const char *)
19624 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19625 demangled, strlen (demangled)));
19626 DW_STRING_IS_CANONICAL (attr) = 1;
19627 xfree (demangled);
19628
19629 /* Strip any leading namespaces/classes, keep only the base name.
19630 DW_AT_name for named DIEs does not contain the prefixes. */
19631 base = strrchr (DW_STRING (attr), ':');
19632 if (base && base > DW_STRING (attr) && base[-1] == ':')
19633 return &base[1];
19634 else
19635 return DW_STRING (attr);
19636 }
19637 }
19638 break;
19639
19640 default:
19641 break;
19642 }
19643
19644 if (!DW_STRING_IS_CANONICAL (attr))
19645 {
19646 DW_STRING (attr)
19647 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19648 &cu->objfile->per_bfd->storage_obstack);
19649 DW_STRING_IS_CANONICAL (attr) = 1;
19650 }
19651 return DW_STRING (attr);
19652 }
19653
19654 /* Return the die that this die in an extension of, or NULL if there
19655 is none. *EXT_CU is the CU containing DIE on input, and the CU
19656 containing the return value on output. */
19657
19658 static struct die_info *
19659 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19660 {
19661 struct attribute *attr;
19662
19663 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19664 if (attr == NULL)
19665 return NULL;
19666
19667 return follow_die_ref (die, attr, ext_cu);
19668 }
19669
19670 /* Convert a DIE tag into its string name. */
19671
19672 static const char *
19673 dwarf_tag_name (unsigned tag)
19674 {
19675 const char *name = get_DW_TAG_name (tag);
19676
19677 if (name == NULL)
19678 return "DW_TAG_<unknown>";
19679
19680 return name;
19681 }
19682
19683 /* Convert a DWARF attribute code into its string name. */
19684
19685 static const char *
19686 dwarf_attr_name (unsigned attr)
19687 {
19688 const char *name;
19689
19690 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19691 if (attr == DW_AT_MIPS_fde)
19692 return "DW_AT_MIPS_fde";
19693 #else
19694 if (attr == DW_AT_HP_block_index)
19695 return "DW_AT_HP_block_index";
19696 #endif
19697
19698 name = get_DW_AT_name (attr);
19699
19700 if (name == NULL)
19701 return "DW_AT_<unknown>";
19702
19703 return name;
19704 }
19705
19706 /* Convert a DWARF value form code into its string name. */
19707
19708 static const char *
19709 dwarf_form_name (unsigned form)
19710 {
19711 const char *name = get_DW_FORM_name (form);
19712
19713 if (name == NULL)
19714 return "DW_FORM_<unknown>";
19715
19716 return name;
19717 }
19718
19719 static char *
19720 dwarf_bool_name (unsigned mybool)
19721 {
19722 if (mybool)
19723 return "TRUE";
19724 else
19725 return "FALSE";
19726 }
19727
19728 /* Convert a DWARF type code into its string name. */
19729
19730 static const char *
19731 dwarf_type_encoding_name (unsigned enc)
19732 {
19733 const char *name = get_DW_ATE_name (enc);
19734
19735 if (name == NULL)
19736 return "DW_ATE_<unknown>";
19737
19738 return name;
19739 }
19740
19741 static void
19742 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19743 {
19744 unsigned int i;
19745
19746 print_spaces (indent, f);
19747 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19748 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19749
19750 if (die->parent != NULL)
19751 {
19752 print_spaces (indent, f);
19753 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19754 die->parent->offset.sect_off);
19755 }
19756
19757 print_spaces (indent, f);
19758 fprintf_unfiltered (f, " has children: %s\n",
19759 dwarf_bool_name (die->child != NULL));
19760
19761 print_spaces (indent, f);
19762 fprintf_unfiltered (f, " attributes:\n");
19763
19764 for (i = 0; i < die->num_attrs; ++i)
19765 {
19766 print_spaces (indent, f);
19767 fprintf_unfiltered (f, " %s (%s) ",
19768 dwarf_attr_name (die->attrs[i].name),
19769 dwarf_form_name (die->attrs[i].form));
19770
19771 switch (die->attrs[i].form)
19772 {
19773 case DW_FORM_addr:
19774 case DW_FORM_GNU_addr_index:
19775 fprintf_unfiltered (f, "address: ");
19776 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19777 break;
19778 case DW_FORM_block2:
19779 case DW_FORM_block4:
19780 case DW_FORM_block:
19781 case DW_FORM_block1:
19782 fprintf_unfiltered (f, "block: size %s",
19783 pulongest (DW_BLOCK (&die->attrs[i])->size));
19784 break;
19785 case DW_FORM_exprloc:
19786 fprintf_unfiltered (f, "expression: size %s",
19787 pulongest (DW_BLOCK (&die->attrs[i])->size));
19788 break;
19789 case DW_FORM_ref_addr:
19790 fprintf_unfiltered (f, "ref address: ");
19791 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19792 break;
19793 case DW_FORM_GNU_ref_alt:
19794 fprintf_unfiltered (f, "alt ref address: ");
19795 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19796 break;
19797 case DW_FORM_ref1:
19798 case DW_FORM_ref2:
19799 case DW_FORM_ref4:
19800 case DW_FORM_ref8:
19801 case DW_FORM_ref_udata:
19802 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19803 (long) (DW_UNSND (&die->attrs[i])));
19804 break;
19805 case DW_FORM_data1:
19806 case DW_FORM_data2:
19807 case DW_FORM_data4:
19808 case DW_FORM_data8:
19809 case DW_FORM_udata:
19810 case DW_FORM_sdata:
19811 fprintf_unfiltered (f, "constant: %s",
19812 pulongest (DW_UNSND (&die->attrs[i])));
19813 break;
19814 case DW_FORM_sec_offset:
19815 fprintf_unfiltered (f, "section offset: %s",
19816 pulongest (DW_UNSND (&die->attrs[i])));
19817 break;
19818 case DW_FORM_ref_sig8:
19819 fprintf_unfiltered (f, "signature: %s",
19820 hex_string (DW_SIGNATURE (&die->attrs[i])));
19821 break;
19822 case DW_FORM_string:
19823 case DW_FORM_strp:
19824 case DW_FORM_GNU_str_index:
19825 case DW_FORM_GNU_strp_alt:
19826 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19827 DW_STRING (&die->attrs[i])
19828 ? DW_STRING (&die->attrs[i]) : "",
19829 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19830 break;
19831 case DW_FORM_flag:
19832 if (DW_UNSND (&die->attrs[i]))
19833 fprintf_unfiltered (f, "flag: TRUE");
19834 else
19835 fprintf_unfiltered (f, "flag: FALSE");
19836 break;
19837 case DW_FORM_flag_present:
19838 fprintf_unfiltered (f, "flag: TRUE");
19839 break;
19840 case DW_FORM_indirect:
19841 /* The reader will have reduced the indirect form to
19842 the "base form" so this form should not occur. */
19843 fprintf_unfiltered (f,
19844 "unexpected attribute form: DW_FORM_indirect");
19845 break;
19846 default:
19847 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19848 die->attrs[i].form);
19849 break;
19850 }
19851 fprintf_unfiltered (f, "\n");
19852 }
19853 }
19854
19855 static void
19856 dump_die_for_error (struct die_info *die)
19857 {
19858 dump_die_shallow (gdb_stderr, 0, die);
19859 }
19860
19861 static void
19862 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19863 {
19864 int indent = level * 4;
19865
19866 gdb_assert (die != NULL);
19867
19868 if (level >= max_level)
19869 return;
19870
19871 dump_die_shallow (f, indent, die);
19872
19873 if (die->child != NULL)
19874 {
19875 print_spaces (indent, f);
19876 fprintf_unfiltered (f, " Children:");
19877 if (level + 1 < max_level)
19878 {
19879 fprintf_unfiltered (f, "\n");
19880 dump_die_1 (f, level + 1, max_level, die->child);
19881 }
19882 else
19883 {
19884 fprintf_unfiltered (f,
19885 " [not printed, max nesting level reached]\n");
19886 }
19887 }
19888
19889 if (die->sibling != NULL && level > 0)
19890 {
19891 dump_die_1 (f, level, max_level, die->sibling);
19892 }
19893 }
19894
19895 /* This is called from the pdie macro in gdbinit.in.
19896 It's not static so gcc will keep a copy callable from gdb. */
19897
19898 void
19899 dump_die (struct die_info *die, int max_level)
19900 {
19901 dump_die_1 (gdb_stdlog, 0, max_level, die);
19902 }
19903
19904 static void
19905 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19906 {
19907 void **slot;
19908
19909 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19910 INSERT);
19911
19912 *slot = die;
19913 }
19914
19915 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19916 required kind. */
19917
19918 static sect_offset
19919 dwarf2_get_ref_die_offset (const struct attribute *attr)
19920 {
19921 sect_offset retval = { DW_UNSND (attr) };
19922
19923 if (attr_form_is_ref (attr))
19924 return retval;
19925
19926 retval.sect_off = 0;
19927 complaint (&symfile_complaints,
19928 _("unsupported die ref attribute form: '%s'"),
19929 dwarf_form_name (attr->form));
19930 return retval;
19931 }
19932
19933 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19934 * the value held by the attribute is not constant. */
19935
19936 static LONGEST
19937 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19938 {
19939 if (attr->form == DW_FORM_sdata)
19940 return DW_SND (attr);
19941 else if (attr->form == DW_FORM_udata
19942 || attr->form == DW_FORM_data1
19943 || attr->form == DW_FORM_data2
19944 || attr->form == DW_FORM_data4
19945 || attr->form == DW_FORM_data8)
19946 return DW_UNSND (attr);
19947 else
19948 {
19949 complaint (&symfile_complaints,
19950 _("Attribute value is not a constant (%s)"),
19951 dwarf_form_name (attr->form));
19952 return default_value;
19953 }
19954 }
19955
19956 /* Follow reference or signature attribute ATTR of SRC_DIE.
19957 On entry *REF_CU is the CU of SRC_DIE.
19958 On exit *REF_CU is the CU of the result. */
19959
19960 static struct die_info *
19961 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19962 struct dwarf2_cu **ref_cu)
19963 {
19964 struct die_info *die;
19965
19966 if (attr_form_is_ref (attr))
19967 die = follow_die_ref (src_die, attr, ref_cu);
19968 else if (attr->form == DW_FORM_ref_sig8)
19969 die = follow_die_sig (src_die, attr, ref_cu);
19970 else
19971 {
19972 dump_die_for_error (src_die);
19973 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19974 objfile_name ((*ref_cu)->objfile));
19975 }
19976
19977 return die;
19978 }
19979
19980 /* Follow reference OFFSET.
19981 On entry *REF_CU is the CU of the source die referencing OFFSET.
19982 On exit *REF_CU is the CU of the result.
19983 Returns NULL if OFFSET is invalid. */
19984
19985 static struct die_info *
19986 follow_die_offset (sect_offset offset, int offset_in_dwz,
19987 struct dwarf2_cu **ref_cu)
19988 {
19989 struct die_info temp_die;
19990 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19991
19992 gdb_assert (cu->per_cu != NULL);
19993
19994 target_cu = cu;
19995
19996 if (cu->per_cu->is_debug_types)
19997 {
19998 /* .debug_types CUs cannot reference anything outside their CU.
19999 If they need to, they have to reference a signatured type via
20000 DW_FORM_ref_sig8. */
20001 if (! offset_in_cu_p (&cu->header, offset))
20002 return NULL;
20003 }
20004 else if (offset_in_dwz != cu->per_cu->is_dwz
20005 || ! offset_in_cu_p (&cu->header, offset))
20006 {
20007 struct dwarf2_per_cu_data *per_cu;
20008
20009 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20010 cu->objfile);
20011
20012 /* If necessary, add it to the queue and load its DIEs. */
20013 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20014 load_full_comp_unit (per_cu, cu->language);
20015
20016 target_cu = per_cu->cu;
20017 }
20018 else if (cu->dies == NULL)
20019 {
20020 /* We're loading full DIEs during partial symbol reading. */
20021 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20022 load_full_comp_unit (cu->per_cu, language_minimal);
20023 }
20024
20025 *ref_cu = target_cu;
20026 temp_die.offset = offset;
20027 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20028 &temp_die, offset.sect_off);
20029 }
20030
20031 /* Follow reference attribute ATTR of SRC_DIE.
20032 On entry *REF_CU is the CU of SRC_DIE.
20033 On exit *REF_CU is the CU of the result. */
20034
20035 static struct die_info *
20036 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20037 struct dwarf2_cu **ref_cu)
20038 {
20039 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20040 struct dwarf2_cu *cu = *ref_cu;
20041 struct die_info *die;
20042
20043 die = follow_die_offset (offset,
20044 (attr->form == DW_FORM_GNU_ref_alt
20045 || cu->per_cu->is_dwz),
20046 ref_cu);
20047 if (!die)
20048 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20049 "at 0x%x [in module %s]"),
20050 offset.sect_off, src_die->offset.sect_off,
20051 objfile_name (cu->objfile));
20052
20053 return die;
20054 }
20055
20056 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20057 Returned value is intended for DW_OP_call*. Returned
20058 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20059
20060 struct dwarf2_locexpr_baton
20061 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20062 struct dwarf2_per_cu_data *per_cu,
20063 CORE_ADDR (*get_frame_pc) (void *baton),
20064 void *baton)
20065 {
20066 struct dwarf2_cu *cu;
20067 struct die_info *die;
20068 struct attribute *attr;
20069 struct dwarf2_locexpr_baton retval;
20070
20071 dw2_setup (per_cu->objfile);
20072
20073 if (per_cu->cu == NULL)
20074 load_cu (per_cu);
20075 cu = per_cu->cu;
20076 if (cu == NULL)
20077 {
20078 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20079 Instead just throw an error, not much else we can do. */
20080 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20081 offset.sect_off, objfile_name (per_cu->objfile));
20082 }
20083
20084 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20085 if (!die)
20086 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20087 offset.sect_off, objfile_name (per_cu->objfile));
20088
20089 attr = dwarf2_attr (die, DW_AT_location, cu);
20090 if (!attr)
20091 {
20092 /* DWARF: "If there is no such attribute, then there is no effect.".
20093 DATA is ignored if SIZE is 0. */
20094
20095 retval.data = NULL;
20096 retval.size = 0;
20097 }
20098 else if (attr_form_is_section_offset (attr))
20099 {
20100 struct dwarf2_loclist_baton loclist_baton;
20101 CORE_ADDR pc = (*get_frame_pc) (baton);
20102 size_t size;
20103
20104 fill_in_loclist_baton (cu, &loclist_baton, attr);
20105
20106 retval.data = dwarf2_find_location_expression (&loclist_baton,
20107 &size, pc);
20108 retval.size = size;
20109 }
20110 else
20111 {
20112 if (!attr_form_is_block (attr))
20113 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20114 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20115 offset.sect_off, objfile_name (per_cu->objfile));
20116
20117 retval.data = DW_BLOCK (attr)->data;
20118 retval.size = DW_BLOCK (attr)->size;
20119 }
20120 retval.per_cu = cu->per_cu;
20121
20122 age_cached_comp_units ();
20123
20124 return retval;
20125 }
20126
20127 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20128 offset. */
20129
20130 struct dwarf2_locexpr_baton
20131 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20132 struct dwarf2_per_cu_data *per_cu,
20133 CORE_ADDR (*get_frame_pc) (void *baton),
20134 void *baton)
20135 {
20136 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20137
20138 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20139 }
20140
20141 /* Write a constant of a given type as target-ordered bytes into
20142 OBSTACK. */
20143
20144 static const gdb_byte *
20145 write_constant_as_bytes (struct obstack *obstack,
20146 enum bfd_endian byte_order,
20147 struct type *type,
20148 ULONGEST value,
20149 LONGEST *len)
20150 {
20151 gdb_byte *result;
20152
20153 *len = TYPE_LENGTH (type);
20154 result = (gdb_byte *) obstack_alloc (obstack, *len);
20155 store_unsigned_integer (result, *len, byte_order, value);
20156
20157 return result;
20158 }
20159
20160 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20161 pointer to the constant bytes and set LEN to the length of the
20162 data. If memory is needed, allocate it on OBSTACK. If the DIE
20163 does not have a DW_AT_const_value, return NULL. */
20164
20165 const gdb_byte *
20166 dwarf2_fetch_constant_bytes (sect_offset offset,
20167 struct dwarf2_per_cu_data *per_cu,
20168 struct obstack *obstack,
20169 LONGEST *len)
20170 {
20171 struct dwarf2_cu *cu;
20172 struct die_info *die;
20173 struct attribute *attr;
20174 const gdb_byte *result = NULL;
20175 struct type *type;
20176 LONGEST value;
20177 enum bfd_endian byte_order;
20178
20179 dw2_setup (per_cu->objfile);
20180
20181 if (per_cu->cu == NULL)
20182 load_cu (per_cu);
20183 cu = per_cu->cu;
20184 if (cu == NULL)
20185 {
20186 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20187 Instead just throw an error, not much else we can do. */
20188 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20189 offset.sect_off, objfile_name (per_cu->objfile));
20190 }
20191
20192 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20193 if (!die)
20194 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20195 offset.sect_off, objfile_name (per_cu->objfile));
20196
20197
20198 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20199 if (attr == NULL)
20200 return NULL;
20201
20202 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20203 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20204
20205 switch (attr->form)
20206 {
20207 case DW_FORM_addr:
20208 case DW_FORM_GNU_addr_index:
20209 {
20210 gdb_byte *tem;
20211
20212 *len = cu->header.addr_size;
20213 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20214 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20215 result = tem;
20216 }
20217 break;
20218 case DW_FORM_string:
20219 case DW_FORM_strp:
20220 case DW_FORM_GNU_str_index:
20221 case DW_FORM_GNU_strp_alt:
20222 /* DW_STRING is already allocated on the objfile obstack, point
20223 directly to it. */
20224 result = (const gdb_byte *) DW_STRING (attr);
20225 *len = strlen (DW_STRING (attr));
20226 break;
20227 case DW_FORM_block1:
20228 case DW_FORM_block2:
20229 case DW_FORM_block4:
20230 case DW_FORM_block:
20231 case DW_FORM_exprloc:
20232 result = DW_BLOCK (attr)->data;
20233 *len = DW_BLOCK (attr)->size;
20234 break;
20235
20236 /* The DW_AT_const_value attributes are supposed to carry the
20237 symbol's value "represented as it would be on the target
20238 architecture." By the time we get here, it's already been
20239 converted to host endianness, so we just need to sign- or
20240 zero-extend it as appropriate. */
20241 case DW_FORM_data1:
20242 type = die_type (die, cu);
20243 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20244 if (result == NULL)
20245 result = write_constant_as_bytes (obstack, byte_order,
20246 type, value, len);
20247 break;
20248 case DW_FORM_data2:
20249 type = die_type (die, cu);
20250 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20251 if (result == NULL)
20252 result = write_constant_as_bytes (obstack, byte_order,
20253 type, value, len);
20254 break;
20255 case DW_FORM_data4:
20256 type = die_type (die, cu);
20257 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20258 if (result == NULL)
20259 result = write_constant_as_bytes (obstack, byte_order,
20260 type, value, len);
20261 break;
20262 case DW_FORM_data8:
20263 type = die_type (die, cu);
20264 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20265 if (result == NULL)
20266 result = write_constant_as_bytes (obstack, byte_order,
20267 type, value, len);
20268 break;
20269
20270 case DW_FORM_sdata:
20271 type = die_type (die, cu);
20272 result = write_constant_as_bytes (obstack, byte_order,
20273 type, DW_SND (attr), len);
20274 break;
20275
20276 case DW_FORM_udata:
20277 type = die_type (die, cu);
20278 result = write_constant_as_bytes (obstack, byte_order,
20279 type, DW_UNSND (attr), len);
20280 break;
20281
20282 default:
20283 complaint (&symfile_complaints,
20284 _("unsupported const value attribute form: '%s'"),
20285 dwarf_form_name (attr->form));
20286 break;
20287 }
20288
20289 return result;
20290 }
20291
20292 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20293 PER_CU. */
20294
20295 struct type *
20296 dwarf2_get_die_type (cu_offset die_offset,
20297 struct dwarf2_per_cu_data *per_cu)
20298 {
20299 sect_offset die_offset_sect;
20300
20301 dw2_setup (per_cu->objfile);
20302
20303 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20304 return get_die_type_at_offset (die_offset_sect, per_cu);
20305 }
20306
20307 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20308 On entry *REF_CU is the CU of SRC_DIE.
20309 On exit *REF_CU is the CU of the result.
20310 Returns NULL if the referenced DIE isn't found. */
20311
20312 static struct die_info *
20313 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20314 struct dwarf2_cu **ref_cu)
20315 {
20316 struct objfile *objfile = (*ref_cu)->objfile;
20317 struct die_info temp_die;
20318 struct dwarf2_cu *sig_cu;
20319 struct die_info *die;
20320
20321 /* While it might be nice to assert sig_type->type == NULL here,
20322 we can get here for DW_AT_imported_declaration where we need
20323 the DIE not the type. */
20324
20325 /* If necessary, add it to the queue and load its DIEs. */
20326
20327 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20328 read_signatured_type (sig_type);
20329
20330 sig_cu = sig_type->per_cu.cu;
20331 gdb_assert (sig_cu != NULL);
20332 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20333 temp_die.offset = sig_type->type_offset_in_section;
20334 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20335 temp_die.offset.sect_off);
20336 if (die)
20337 {
20338 /* For .gdb_index version 7 keep track of included TUs.
20339 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20340 if (dwarf2_per_objfile->index_table != NULL
20341 && dwarf2_per_objfile->index_table->version <= 7)
20342 {
20343 VEC_safe_push (dwarf2_per_cu_ptr,
20344 (*ref_cu)->per_cu->imported_symtabs,
20345 sig_cu->per_cu);
20346 }
20347
20348 *ref_cu = sig_cu;
20349 return die;
20350 }
20351
20352 return NULL;
20353 }
20354
20355 /* Follow signatured type referenced by ATTR in SRC_DIE.
20356 On entry *REF_CU is the CU of SRC_DIE.
20357 On exit *REF_CU is the CU of the result.
20358 The result is the DIE of the type.
20359 If the referenced type cannot be found an error is thrown. */
20360
20361 static struct die_info *
20362 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20363 struct dwarf2_cu **ref_cu)
20364 {
20365 ULONGEST signature = DW_SIGNATURE (attr);
20366 struct signatured_type *sig_type;
20367 struct die_info *die;
20368
20369 gdb_assert (attr->form == DW_FORM_ref_sig8);
20370
20371 sig_type = lookup_signatured_type (*ref_cu, signature);
20372 /* sig_type will be NULL if the signatured type is missing from
20373 the debug info. */
20374 if (sig_type == NULL)
20375 {
20376 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20377 " from DIE at 0x%x [in module %s]"),
20378 hex_string (signature), src_die->offset.sect_off,
20379 objfile_name ((*ref_cu)->objfile));
20380 }
20381
20382 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20383 if (die == NULL)
20384 {
20385 dump_die_for_error (src_die);
20386 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20387 " from DIE at 0x%x [in module %s]"),
20388 hex_string (signature), src_die->offset.sect_off,
20389 objfile_name ((*ref_cu)->objfile));
20390 }
20391
20392 return die;
20393 }
20394
20395 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20396 reading in and processing the type unit if necessary. */
20397
20398 static struct type *
20399 get_signatured_type (struct die_info *die, ULONGEST signature,
20400 struct dwarf2_cu *cu)
20401 {
20402 struct signatured_type *sig_type;
20403 struct dwarf2_cu *type_cu;
20404 struct die_info *type_die;
20405 struct type *type;
20406
20407 sig_type = lookup_signatured_type (cu, signature);
20408 /* sig_type will be NULL if the signatured type is missing from
20409 the debug info. */
20410 if (sig_type == NULL)
20411 {
20412 complaint (&symfile_complaints,
20413 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20414 " from DIE at 0x%x [in module %s]"),
20415 hex_string (signature), die->offset.sect_off,
20416 objfile_name (dwarf2_per_objfile->objfile));
20417 return build_error_marker_type (cu, die);
20418 }
20419
20420 /* If we already know the type we're done. */
20421 if (sig_type->type != NULL)
20422 return sig_type->type;
20423
20424 type_cu = cu;
20425 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20426 if (type_die != NULL)
20427 {
20428 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20429 is created. This is important, for example, because for c++ classes
20430 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20431 type = read_type_die (type_die, type_cu);
20432 if (type == NULL)
20433 {
20434 complaint (&symfile_complaints,
20435 _("Dwarf Error: Cannot build signatured type %s"
20436 " referenced from DIE at 0x%x [in module %s]"),
20437 hex_string (signature), die->offset.sect_off,
20438 objfile_name (dwarf2_per_objfile->objfile));
20439 type = build_error_marker_type (cu, die);
20440 }
20441 }
20442 else
20443 {
20444 complaint (&symfile_complaints,
20445 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20446 " from DIE at 0x%x [in module %s]"),
20447 hex_string (signature), die->offset.sect_off,
20448 objfile_name (dwarf2_per_objfile->objfile));
20449 type = build_error_marker_type (cu, die);
20450 }
20451 sig_type->type = type;
20452
20453 return type;
20454 }
20455
20456 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20457 reading in and processing the type unit if necessary. */
20458
20459 static struct type *
20460 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20461 struct dwarf2_cu *cu) /* ARI: editCase function */
20462 {
20463 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20464 if (attr_form_is_ref (attr))
20465 {
20466 struct dwarf2_cu *type_cu = cu;
20467 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20468
20469 return read_type_die (type_die, type_cu);
20470 }
20471 else if (attr->form == DW_FORM_ref_sig8)
20472 {
20473 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20474 }
20475 else
20476 {
20477 complaint (&symfile_complaints,
20478 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20479 " at 0x%x [in module %s]"),
20480 dwarf_form_name (attr->form), die->offset.sect_off,
20481 objfile_name (dwarf2_per_objfile->objfile));
20482 return build_error_marker_type (cu, die);
20483 }
20484 }
20485
20486 /* Load the DIEs associated with type unit PER_CU into memory. */
20487
20488 static void
20489 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20490 {
20491 struct signatured_type *sig_type;
20492
20493 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20494 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20495
20496 /* We have the per_cu, but we need the signatured_type.
20497 Fortunately this is an easy translation. */
20498 gdb_assert (per_cu->is_debug_types);
20499 sig_type = (struct signatured_type *) per_cu;
20500
20501 gdb_assert (per_cu->cu == NULL);
20502
20503 read_signatured_type (sig_type);
20504
20505 gdb_assert (per_cu->cu != NULL);
20506 }
20507
20508 /* die_reader_func for read_signatured_type.
20509 This is identical to load_full_comp_unit_reader,
20510 but is kept separate for now. */
20511
20512 static void
20513 read_signatured_type_reader (const struct die_reader_specs *reader,
20514 const gdb_byte *info_ptr,
20515 struct die_info *comp_unit_die,
20516 int has_children,
20517 void *data)
20518 {
20519 struct dwarf2_cu *cu = reader->cu;
20520
20521 gdb_assert (cu->die_hash == NULL);
20522 cu->die_hash =
20523 htab_create_alloc_ex (cu->header.length / 12,
20524 die_hash,
20525 die_eq,
20526 NULL,
20527 &cu->comp_unit_obstack,
20528 hashtab_obstack_allocate,
20529 dummy_obstack_deallocate);
20530
20531 if (has_children)
20532 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20533 &info_ptr, comp_unit_die);
20534 cu->dies = comp_unit_die;
20535 /* comp_unit_die is not stored in die_hash, no need. */
20536
20537 /* We try not to read any attributes in this function, because not
20538 all CUs needed for references have been loaded yet, and symbol
20539 table processing isn't initialized. But we have to set the CU language,
20540 or we won't be able to build types correctly.
20541 Similarly, if we do not read the producer, we can not apply
20542 producer-specific interpretation. */
20543 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20544 }
20545
20546 /* Read in a signatured type and build its CU and DIEs.
20547 If the type is a stub for the real type in a DWO file,
20548 read in the real type from the DWO file as well. */
20549
20550 static void
20551 read_signatured_type (struct signatured_type *sig_type)
20552 {
20553 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20554
20555 gdb_assert (per_cu->is_debug_types);
20556 gdb_assert (per_cu->cu == NULL);
20557
20558 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20559 read_signatured_type_reader, NULL);
20560 sig_type->per_cu.tu_read = 1;
20561 }
20562
20563 /* Decode simple location descriptions.
20564 Given a pointer to a dwarf block that defines a location, compute
20565 the location and return the value.
20566
20567 NOTE drow/2003-11-18: This function is called in two situations
20568 now: for the address of static or global variables (partial symbols
20569 only) and for offsets into structures which are expected to be
20570 (more or less) constant. The partial symbol case should go away,
20571 and only the constant case should remain. That will let this
20572 function complain more accurately. A few special modes are allowed
20573 without complaint for global variables (for instance, global
20574 register values and thread-local values).
20575
20576 A location description containing no operations indicates that the
20577 object is optimized out. The return value is 0 for that case.
20578 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20579 callers will only want a very basic result and this can become a
20580 complaint.
20581
20582 Note that stack[0] is unused except as a default error return. */
20583
20584 static CORE_ADDR
20585 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20586 {
20587 struct objfile *objfile = cu->objfile;
20588 size_t i;
20589 size_t size = blk->size;
20590 const gdb_byte *data = blk->data;
20591 CORE_ADDR stack[64];
20592 int stacki;
20593 unsigned int bytes_read, unsnd;
20594 gdb_byte op;
20595
20596 i = 0;
20597 stacki = 0;
20598 stack[stacki] = 0;
20599 stack[++stacki] = 0;
20600
20601 while (i < size)
20602 {
20603 op = data[i++];
20604 switch (op)
20605 {
20606 case DW_OP_lit0:
20607 case DW_OP_lit1:
20608 case DW_OP_lit2:
20609 case DW_OP_lit3:
20610 case DW_OP_lit4:
20611 case DW_OP_lit5:
20612 case DW_OP_lit6:
20613 case DW_OP_lit7:
20614 case DW_OP_lit8:
20615 case DW_OP_lit9:
20616 case DW_OP_lit10:
20617 case DW_OP_lit11:
20618 case DW_OP_lit12:
20619 case DW_OP_lit13:
20620 case DW_OP_lit14:
20621 case DW_OP_lit15:
20622 case DW_OP_lit16:
20623 case DW_OP_lit17:
20624 case DW_OP_lit18:
20625 case DW_OP_lit19:
20626 case DW_OP_lit20:
20627 case DW_OP_lit21:
20628 case DW_OP_lit22:
20629 case DW_OP_lit23:
20630 case DW_OP_lit24:
20631 case DW_OP_lit25:
20632 case DW_OP_lit26:
20633 case DW_OP_lit27:
20634 case DW_OP_lit28:
20635 case DW_OP_lit29:
20636 case DW_OP_lit30:
20637 case DW_OP_lit31:
20638 stack[++stacki] = op - DW_OP_lit0;
20639 break;
20640
20641 case DW_OP_reg0:
20642 case DW_OP_reg1:
20643 case DW_OP_reg2:
20644 case DW_OP_reg3:
20645 case DW_OP_reg4:
20646 case DW_OP_reg5:
20647 case DW_OP_reg6:
20648 case DW_OP_reg7:
20649 case DW_OP_reg8:
20650 case DW_OP_reg9:
20651 case DW_OP_reg10:
20652 case DW_OP_reg11:
20653 case DW_OP_reg12:
20654 case DW_OP_reg13:
20655 case DW_OP_reg14:
20656 case DW_OP_reg15:
20657 case DW_OP_reg16:
20658 case DW_OP_reg17:
20659 case DW_OP_reg18:
20660 case DW_OP_reg19:
20661 case DW_OP_reg20:
20662 case DW_OP_reg21:
20663 case DW_OP_reg22:
20664 case DW_OP_reg23:
20665 case DW_OP_reg24:
20666 case DW_OP_reg25:
20667 case DW_OP_reg26:
20668 case DW_OP_reg27:
20669 case DW_OP_reg28:
20670 case DW_OP_reg29:
20671 case DW_OP_reg30:
20672 case DW_OP_reg31:
20673 stack[++stacki] = op - DW_OP_reg0;
20674 if (i < size)
20675 dwarf2_complex_location_expr_complaint ();
20676 break;
20677
20678 case DW_OP_regx:
20679 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20680 i += bytes_read;
20681 stack[++stacki] = unsnd;
20682 if (i < size)
20683 dwarf2_complex_location_expr_complaint ();
20684 break;
20685
20686 case DW_OP_addr:
20687 stack[++stacki] = read_address (objfile->obfd, &data[i],
20688 cu, &bytes_read);
20689 i += bytes_read;
20690 break;
20691
20692 case DW_OP_const1u:
20693 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20694 i += 1;
20695 break;
20696
20697 case DW_OP_const1s:
20698 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20699 i += 1;
20700 break;
20701
20702 case DW_OP_const2u:
20703 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20704 i += 2;
20705 break;
20706
20707 case DW_OP_const2s:
20708 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20709 i += 2;
20710 break;
20711
20712 case DW_OP_const4u:
20713 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20714 i += 4;
20715 break;
20716
20717 case DW_OP_const4s:
20718 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20719 i += 4;
20720 break;
20721
20722 case DW_OP_const8u:
20723 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20724 i += 8;
20725 break;
20726
20727 case DW_OP_constu:
20728 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20729 &bytes_read);
20730 i += bytes_read;
20731 break;
20732
20733 case DW_OP_consts:
20734 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20735 i += bytes_read;
20736 break;
20737
20738 case DW_OP_dup:
20739 stack[stacki + 1] = stack[stacki];
20740 stacki++;
20741 break;
20742
20743 case DW_OP_plus:
20744 stack[stacki - 1] += stack[stacki];
20745 stacki--;
20746 break;
20747
20748 case DW_OP_plus_uconst:
20749 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20750 &bytes_read);
20751 i += bytes_read;
20752 break;
20753
20754 case DW_OP_minus:
20755 stack[stacki - 1] -= stack[stacki];
20756 stacki--;
20757 break;
20758
20759 case DW_OP_deref:
20760 /* If we're not the last op, then we definitely can't encode
20761 this using GDB's address_class enum. This is valid for partial
20762 global symbols, although the variable's address will be bogus
20763 in the psymtab. */
20764 if (i < size)
20765 dwarf2_complex_location_expr_complaint ();
20766 break;
20767
20768 case DW_OP_GNU_push_tls_address:
20769 /* The top of the stack has the offset from the beginning
20770 of the thread control block at which the variable is located. */
20771 /* Nothing should follow this operator, so the top of stack would
20772 be returned. */
20773 /* This is valid for partial global symbols, but the variable's
20774 address will be bogus in the psymtab. Make it always at least
20775 non-zero to not look as a variable garbage collected by linker
20776 which have DW_OP_addr 0. */
20777 if (i < size)
20778 dwarf2_complex_location_expr_complaint ();
20779 stack[stacki]++;
20780 break;
20781
20782 case DW_OP_GNU_uninit:
20783 break;
20784
20785 case DW_OP_GNU_addr_index:
20786 case DW_OP_GNU_const_index:
20787 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20788 &bytes_read);
20789 i += bytes_read;
20790 break;
20791
20792 default:
20793 {
20794 const char *name = get_DW_OP_name (op);
20795
20796 if (name)
20797 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20798 name);
20799 else
20800 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20801 op);
20802 }
20803
20804 return (stack[stacki]);
20805 }
20806
20807 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20808 outside of the allocated space. Also enforce minimum>0. */
20809 if (stacki >= ARRAY_SIZE (stack) - 1)
20810 {
20811 complaint (&symfile_complaints,
20812 _("location description stack overflow"));
20813 return 0;
20814 }
20815
20816 if (stacki <= 0)
20817 {
20818 complaint (&symfile_complaints,
20819 _("location description stack underflow"));
20820 return 0;
20821 }
20822 }
20823 return (stack[stacki]);
20824 }
20825
20826 /* memory allocation interface */
20827
20828 static struct dwarf_block *
20829 dwarf_alloc_block (struct dwarf2_cu *cu)
20830 {
20831 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20832 }
20833
20834 static struct die_info *
20835 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20836 {
20837 struct die_info *die;
20838 size_t size = sizeof (struct die_info);
20839
20840 if (num_attrs > 1)
20841 size += (num_attrs - 1) * sizeof (struct attribute);
20842
20843 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20844 memset (die, 0, sizeof (struct die_info));
20845 return (die);
20846 }
20847
20848 \f
20849 /* Macro support. */
20850
20851 /* Return file name relative to the compilation directory of file number I in
20852 *LH's file name table. The result is allocated using xmalloc; the caller is
20853 responsible for freeing it. */
20854
20855 static char *
20856 file_file_name (int file, struct line_header *lh)
20857 {
20858 /* Is the file number a valid index into the line header's file name
20859 table? Remember that file numbers start with one, not zero. */
20860 if (1 <= file && file <= lh->num_file_names)
20861 {
20862 struct file_entry *fe = &lh->file_names[file - 1];
20863
20864 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20865 || lh->include_dirs == NULL)
20866 return xstrdup (fe->name);
20867 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20868 fe->name, NULL);
20869 }
20870 else
20871 {
20872 /* The compiler produced a bogus file number. We can at least
20873 record the macro definitions made in the file, even if we
20874 won't be able to find the file by name. */
20875 char fake_name[80];
20876
20877 xsnprintf (fake_name, sizeof (fake_name),
20878 "<bad macro file number %d>", file);
20879
20880 complaint (&symfile_complaints,
20881 _("bad file number in macro information (%d)"),
20882 file);
20883
20884 return xstrdup (fake_name);
20885 }
20886 }
20887
20888 /* Return the full name of file number I in *LH's file name table.
20889 Use COMP_DIR as the name of the current directory of the
20890 compilation. The result is allocated using xmalloc; the caller is
20891 responsible for freeing it. */
20892 static char *
20893 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20894 {
20895 /* Is the file number a valid index into the line header's file name
20896 table? Remember that file numbers start with one, not zero. */
20897 if (1 <= file && file <= lh->num_file_names)
20898 {
20899 char *relative = file_file_name (file, lh);
20900
20901 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20902 return relative;
20903 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20904 }
20905 else
20906 return file_file_name (file, lh);
20907 }
20908
20909
20910 static struct macro_source_file *
20911 macro_start_file (int file, int line,
20912 struct macro_source_file *current_file,
20913 struct line_header *lh)
20914 {
20915 /* File name relative to the compilation directory of this source file. */
20916 char *file_name = file_file_name (file, lh);
20917
20918 if (! current_file)
20919 {
20920 /* Note: We don't create a macro table for this compilation unit
20921 at all until we actually get a filename. */
20922 struct macro_table *macro_table = get_macro_table ();
20923
20924 /* If we have no current file, then this must be the start_file
20925 directive for the compilation unit's main source file. */
20926 current_file = macro_set_main (macro_table, file_name);
20927 macro_define_special (macro_table);
20928 }
20929 else
20930 current_file = macro_include (current_file, line, file_name);
20931
20932 xfree (file_name);
20933
20934 return current_file;
20935 }
20936
20937
20938 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20939 followed by a null byte. */
20940 static char *
20941 copy_string (const char *buf, int len)
20942 {
20943 char *s = (char *) xmalloc (len + 1);
20944
20945 memcpy (s, buf, len);
20946 s[len] = '\0';
20947 return s;
20948 }
20949
20950
20951 static const char *
20952 consume_improper_spaces (const char *p, const char *body)
20953 {
20954 if (*p == ' ')
20955 {
20956 complaint (&symfile_complaints,
20957 _("macro definition contains spaces "
20958 "in formal argument list:\n`%s'"),
20959 body);
20960
20961 while (*p == ' ')
20962 p++;
20963 }
20964
20965 return p;
20966 }
20967
20968
20969 static void
20970 parse_macro_definition (struct macro_source_file *file, int line,
20971 const char *body)
20972 {
20973 const char *p;
20974
20975 /* The body string takes one of two forms. For object-like macro
20976 definitions, it should be:
20977
20978 <macro name> " " <definition>
20979
20980 For function-like macro definitions, it should be:
20981
20982 <macro name> "() " <definition>
20983 or
20984 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20985
20986 Spaces may appear only where explicitly indicated, and in the
20987 <definition>.
20988
20989 The Dwarf 2 spec says that an object-like macro's name is always
20990 followed by a space, but versions of GCC around March 2002 omit
20991 the space when the macro's definition is the empty string.
20992
20993 The Dwarf 2 spec says that there should be no spaces between the
20994 formal arguments in a function-like macro's formal argument list,
20995 but versions of GCC around March 2002 include spaces after the
20996 commas. */
20997
20998
20999 /* Find the extent of the macro name. The macro name is terminated
21000 by either a space or null character (for an object-like macro) or
21001 an opening paren (for a function-like macro). */
21002 for (p = body; *p; p++)
21003 if (*p == ' ' || *p == '(')
21004 break;
21005
21006 if (*p == ' ' || *p == '\0')
21007 {
21008 /* It's an object-like macro. */
21009 int name_len = p - body;
21010 char *name = copy_string (body, name_len);
21011 const char *replacement;
21012
21013 if (*p == ' ')
21014 replacement = body + name_len + 1;
21015 else
21016 {
21017 dwarf2_macro_malformed_definition_complaint (body);
21018 replacement = body + name_len;
21019 }
21020
21021 macro_define_object (file, line, name, replacement);
21022
21023 xfree (name);
21024 }
21025 else if (*p == '(')
21026 {
21027 /* It's a function-like macro. */
21028 char *name = copy_string (body, p - body);
21029 int argc = 0;
21030 int argv_size = 1;
21031 char **argv = XNEWVEC (char *, argv_size);
21032
21033 p++;
21034
21035 p = consume_improper_spaces (p, body);
21036
21037 /* Parse the formal argument list. */
21038 while (*p && *p != ')')
21039 {
21040 /* Find the extent of the current argument name. */
21041 const char *arg_start = p;
21042
21043 while (*p && *p != ',' && *p != ')' && *p != ' ')
21044 p++;
21045
21046 if (! *p || p == arg_start)
21047 dwarf2_macro_malformed_definition_complaint (body);
21048 else
21049 {
21050 /* Make sure argv has room for the new argument. */
21051 if (argc >= argv_size)
21052 {
21053 argv_size *= 2;
21054 argv = XRESIZEVEC (char *, argv, argv_size);
21055 }
21056
21057 argv[argc++] = copy_string (arg_start, p - arg_start);
21058 }
21059
21060 p = consume_improper_spaces (p, body);
21061
21062 /* Consume the comma, if present. */
21063 if (*p == ',')
21064 {
21065 p++;
21066
21067 p = consume_improper_spaces (p, body);
21068 }
21069 }
21070
21071 if (*p == ')')
21072 {
21073 p++;
21074
21075 if (*p == ' ')
21076 /* Perfectly formed definition, no complaints. */
21077 macro_define_function (file, line, name,
21078 argc, (const char **) argv,
21079 p + 1);
21080 else if (*p == '\0')
21081 {
21082 /* Complain, but do define it. */
21083 dwarf2_macro_malformed_definition_complaint (body);
21084 macro_define_function (file, line, name,
21085 argc, (const char **) argv,
21086 p);
21087 }
21088 else
21089 /* Just complain. */
21090 dwarf2_macro_malformed_definition_complaint (body);
21091 }
21092 else
21093 /* Just complain. */
21094 dwarf2_macro_malformed_definition_complaint (body);
21095
21096 xfree (name);
21097 {
21098 int i;
21099
21100 for (i = 0; i < argc; i++)
21101 xfree (argv[i]);
21102 }
21103 xfree (argv);
21104 }
21105 else
21106 dwarf2_macro_malformed_definition_complaint (body);
21107 }
21108
21109 /* Skip some bytes from BYTES according to the form given in FORM.
21110 Returns the new pointer. */
21111
21112 static const gdb_byte *
21113 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21114 enum dwarf_form form,
21115 unsigned int offset_size,
21116 struct dwarf2_section_info *section)
21117 {
21118 unsigned int bytes_read;
21119
21120 switch (form)
21121 {
21122 case DW_FORM_data1:
21123 case DW_FORM_flag:
21124 ++bytes;
21125 break;
21126
21127 case DW_FORM_data2:
21128 bytes += 2;
21129 break;
21130
21131 case DW_FORM_data4:
21132 bytes += 4;
21133 break;
21134
21135 case DW_FORM_data8:
21136 bytes += 8;
21137 break;
21138
21139 case DW_FORM_string:
21140 read_direct_string (abfd, bytes, &bytes_read);
21141 bytes += bytes_read;
21142 break;
21143
21144 case DW_FORM_sec_offset:
21145 case DW_FORM_strp:
21146 case DW_FORM_GNU_strp_alt:
21147 bytes += offset_size;
21148 break;
21149
21150 case DW_FORM_block:
21151 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21152 bytes += bytes_read;
21153 break;
21154
21155 case DW_FORM_block1:
21156 bytes += 1 + read_1_byte (abfd, bytes);
21157 break;
21158 case DW_FORM_block2:
21159 bytes += 2 + read_2_bytes (abfd, bytes);
21160 break;
21161 case DW_FORM_block4:
21162 bytes += 4 + read_4_bytes (abfd, bytes);
21163 break;
21164
21165 case DW_FORM_sdata:
21166 case DW_FORM_udata:
21167 case DW_FORM_GNU_addr_index:
21168 case DW_FORM_GNU_str_index:
21169 bytes = gdb_skip_leb128 (bytes, buffer_end);
21170 if (bytes == NULL)
21171 {
21172 dwarf2_section_buffer_overflow_complaint (section);
21173 return NULL;
21174 }
21175 break;
21176
21177 default:
21178 {
21179 complain:
21180 complaint (&symfile_complaints,
21181 _("invalid form 0x%x in `%s'"),
21182 form, get_section_name (section));
21183 return NULL;
21184 }
21185 }
21186
21187 return bytes;
21188 }
21189
21190 /* A helper for dwarf_decode_macros that handles skipping an unknown
21191 opcode. Returns an updated pointer to the macro data buffer; or,
21192 on error, issues a complaint and returns NULL. */
21193
21194 static const gdb_byte *
21195 skip_unknown_opcode (unsigned int opcode,
21196 const gdb_byte **opcode_definitions,
21197 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21198 bfd *abfd,
21199 unsigned int offset_size,
21200 struct dwarf2_section_info *section)
21201 {
21202 unsigned int bytes_read, i;
21203 unsigned long arg;
21204 const gdb_byte *defn;
21205
21206 if (opcode_definitions[opcode] == NULL)
21207 {
21208 complaint (&symfile_complaints,
21209 _("unrecognized DW_MACFINO opcode 0x%x"),
21210 opcode);
21211 return NULL;
21212 }
21213
21214 defn = opcode_definitions[opcode];
21215 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21216 defn += bytes_read;
21217
21218 for (i = 0; i < arg; ++i)
21219 {
21220 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21221 (enum dwarf_form) defn[i], offset_size,
21222 section);
21223 if (mac_ptr == NULL)
21224 {
21225 /* skip_form_bytes already issued the complaint. */
21226 return NULL;
21227 }
21228 }
21229
21230 return mac_ptr;
21231 }
21232
21233 /* A helper function which parses the header of a macro section.
21234 If the macro section is the extended (for now called "GNU") type,
21235 then this updates *OFFSET_SIZE. Returns a pointer to just after
21236 the header, or issues a complaint and returns NULL on error. */
21237
21238 static const gdb_byte *
21239 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21240 bfd *abfd,
21241 const gdb_byte *mac_ptr,
21242 unsigned int *offset_size,
21243 int section_is_gnu)
21244 {
21245 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21246
21247 if (section_is_gnu)
21248 {
21249 unsigned int version, flags;
21250
21251 version = read_2_bytes (abfd, mac_ptr);
21252 if (version != 4)
21253 {
21254 complaint (&symfile_complaints,
21255 _("unrecognized version `%d' in .debug_macro section"),
21256 version);
21257 return NULL;
21258 }
21259 mac_ptr += 2;
21260
21261 flags = read_1_byte (abfd, mac_ptr);
21262 ++mac_ptr;
21263 *offset_size = (flags & 1) ? 8 : 4;
21264
21265 if ((flags & 2) != 0)
21266 /* We don't need the line table offset. */
21267 mac_ptr += *offset_size;
21268
21269 /* Vendor opcode descriptions. */
21270 if ((flags & 4) != 0)
21271 {
21272 unsigned int i, count;
21273
21274 count = read_1_byte (abfd, mac_ptr);
21275 ++mac_ptr;
21276 for (i = 0; i < count; ++i)
21277 {
21278 unsigned int opcode, bytes_read;
21279 unsigned long arg;
21280
21281 opcode = read_1_byte (abfd, mac_ptr);
21282 ++mac_ptr;
21283 opcode_definitions[opcode] = mac_ptr;
21284 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21285 mac_ptr += bytes_read;
21286 mac_ptr += arg;
21287 }
21288 }
21289 }
21290
21291 return mac_ptr;
21292 }
21293
21294 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21295 including DW_MACRO_GNU_transparent_include. */
21296
21297 static void
21298 dwarf_decode_macro_bytes (bfd *abfd,
21299 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21300 struct macro_source_file *current_file,
21301 struct line_header *lh,
21302 struct dwarf2_section_info *section,
21303 int section_is_gnu, int section_is_dwz,
21304 unsigned int offset_size,
21305 htab_t include_hash)
21306 {
21307 struct objfile *objfile = dwarf2_per_objfile->objfile;
21308 enum dwarf_macro_record_type macinfo_type;
21309 int at_commandline;
21310 const gdb_byte *opcode_definitions[256];
21311
21312 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21313 &offset_size, section_is_gnu);
21314 if (mac_ptr == NULL)
21315 {
21316 /* We already issued a complaint. */
21317 return;
21318 }
21319
21320 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21321 GDB is still reading the definitions from command line. First
21322 DW_MACINFO_start_file will need to be ignored as it was already executed
21323 to create CURRENT_FILE for the main source holding also the command line
21324 definitions. On first met DW_MACINFO_start_file this flag is reset to
21325 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21326
21327 at_commandline = 1;
21328
21329 do
21330 {
21331 /* Do we at least have room for a macinfo type byte? */
21332 if (mac_ptr >= mac_end)
21333 {
21334 dwarf2_section_buffer_overflow_complaint (section);
21335 break;
21336 }
21337
21338 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21339 mac_ptr++;
21340
21341 /* Note that we rely on the fact that the corresponding GNU and
21342 DWARF constants are the same. */
21343 switch (macinfo_type)
21344 {
21345 /* A zero macinfo type indicates the end of the macro
21346 information. */
21347 case 0:
21348 break;
21349
21350 case DW_MACRO_GNU_define:
21351 case DW_MACRO_GNU_undef:
21352 case DW_MACRO_GNU_define_indirect:
21353 case DW_MACRO_GNU_undef_indirect:
21354 case DW_MACRO_GNU_define_indirect_alt:
21355 case DW_MACRO_GNU_undef_indirect_alt:
21356 {
21357 unsigned int bytes_read;
21358 int line;
21359 const char *body;
21360 int is_define;
21361
21362 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21363 mac_ptr += bytes_read;
21364
21365 if (macinfo_type == DW_MACRO_GNU_define
21366 || macinfo_type == DW_MACRO_GNU_undef)
21367 {
21368 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21369 mac_ptr += bytes_read;
21370 }
21371 else
21372 {
21373 LONGEST str_offset;
21374
21375 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21376 mac_ptr += offset_size;
21377
21378 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21379 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21380 || section_is_dwz)
21381 {
21382 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21383
21384 body = read_indirect_string_from_dwz (dwz, str_offset);
21385 }
21386 else
21387 body = read_indirect_string_at_offset (abfd, str_offset);
21388 }
21389
21390 is_define = (macinfo_type == DW_MACRO_GNU_define
21391 || macinfo_type == DW_MACRO_GNU_define_indirect
21392 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21393 if (! current_file)
21394 {
21395 /* DWARF violation as no main source is present. */
21396 complaint (&symfile_complaints,
21397 _("debug info with no main source gives macro %s "
21398 "on line %d: %s"),
21399 is_define ? _("definition") : _("undefinition"),
21400 line, body);
21401 break;
21402 }
21403 if ((line == 0 && !at_commandline)
21404 || (line != 0 && at_commandline))
21405 complaint (&symfile_complaints,
21406 _("debug info gives %s macro %s with %s line %d: %s"),
21407 at_commandline ? _("command-line") : _("in-file"),
21408 is_define ? _("definition") : _("undefinition"),
21409 line == 0 ? _("zero") : _("non-zero"), line, body);
21410
21411 if (is_define)
21412 parse_macro_definition (current_file, line, body);
21413 else
21414 {
21415 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21416 || macinfo_type == DW_MACRO_GNU_undef_indirect
21417 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21418 macro_undef (current_file, line, body);
21419 }
21420 }
21421 break;
21422
21423 case DW_MACRO_GNU_start_file:
21424 {
21425 unsigned int bytes_read;
21426 int line, file;
21427
21428 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21429 mac_ptr += bytes_read;
21430 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21431 mac_ptr += bytes_read;
21432
21433 if ((line == 0 && !at_commandline)
21434 || (line != 0 && at_commandline))
21435 complaint (&symfile_complaints,
21436 _("debug info gives source %d included "
21437 "from %s at %s line %d"),
21438 file, at_commandline ? _("command-line") : _("file"),
21439 line == 0 ? _("zero") : _("non-zero"), line);
21440
21441 if (at_commandline)
21442 {
21443 /* This DW_MACRO_GNU_start_file was executed in the
21444 pass one. */
21445 at_commandline = 0;
21446 }
21447 else
21448 current_file = macro_start_file (file, line, current_file, lh);
21449 }
21450 break;
21451
21452 case DW_MACRO_GNU_end_file:
21453 if (! current_file)
21454 complaint (&symfile_complaints,
21455 _("macro debug info has an unmatched "
21456 "`close_file' directive"));
21457 else
21458 {
21459 current_file = current_file->included_by;
21460 if (! current_file)
21461 {
21462 enum dwarf_macro_record_type next_type;
21463
21464 /* GCC circa March 2002 doesn't produce the zero
21465 type byte marking the end of the compilation
21466 unit. Complain if it's not there, but exit no
21467 matter what. */
21468
21469 /* Do we at least have room for a macinfo type byte? */
21470 if (mac_ptr >= mac_end)
21471 {
21472 dwarf2_section_buffer_overflow_complaint (section);
21473 return;
21474 }
21475
21476 /* We don't increment mac_ptr here, so this is just
21477 a look-ahead. */
21478 next_type
21479 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21480 mac_ptr);
21481 if (next_type != 0)
21482 complaint (&symfile_complaints,
21483 _("no terminating 0-type entry for "
21484 "macros in `.debug_macinfo' section"));
21485
21486 return;
21487 }
21488 }
21489 break;
21490
21491 case DW_MACRO_GNU_transparent_include:
21492 case DW_MACRO_GNU_transparent_include_alt:
21493 {
21494 LONGEST offset;
21495 void **slot;
21496 bfd *include_bfd = abfd;
21497 struct dwarf2_section_info *include_section = section;
21498 struct dwarf2_section_info alt_section;
21499 const gdb_byte *include_mac_end = mac_end;
21500 int is_dwz = section_is_dwz;
21501 const gdb_byte *new_mac_ptr;
21502
21503 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21504 mac_ptr += offset_size;
21505
21506 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21507 {
21508 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21509
21510 dwarf2_read_section (objfile, &dwz->macro);
21511
21512 include_section = &dwz->macro;
21513 include_bfd = get_section_bfd_owner (include_section);
21514 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21515 is_dwz = 1;
21516 }
21517
21518 new_mac_ptr = include_section->buffer + offset;
21519 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21520
21521 if (*slot != NULL)
21522 {
21523 /* This has actually happened; see
21524 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21525 complaint (&symfile_complaints,
21526 _("recursive DW_MACRO_GNU_transparent_include in "
21527 ".debug_macro section"));
21528 }
21529 else
21530 {
21531 *slot = (void *) new_mac_ptr;
21532
21533 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21534 include_mac_end, current_file, lh,
21535 section, section_is_gnu, is_dwz,
21536 offset_size, include_hash);
21537
21538 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21539 }
21540 }
21541 break;
21542
21543 case DW_MACINFO_vendor_ext:
21544 if (!section_is_gnu)
21545 {
21546 unsigned int bytes_read;
21547 int constant;
21548
21549 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21550 mac_ptr += bytes_read;
21551 read_direct_string (abfd, mac_ptr, &bytes_read);
21552 mac_ptr += bytes_read;
21553
21554 /* We don't recognize any vendor extensions. */
21555 break;
21556 }
21557 /* FALLTHROUGH */
21558
21559 default:
21560 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21561 mac_ptr, mac_end, abfd, offset_size,
21562 section);
21563 if (mac_ptr == NULL)
21564 return;
21565 break;
21566 }
21567 } while (macinfo_type != 0);
21568 }
21569
21570 static void
21571 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21572 int section_is_gnu)
21573 {
21574 struct objfile *objfile = dwarf2_per_objfile->objfile;
21575 struct line_header *lh = cu->line_header;
21576 bfd *abfd;
21577 const gdb_byte *mac_ptr, *mac_end;
21578 struct macro_source_file *current_file = 0;
21579 enum dwarf_macro_record_type macinfo_type;
21580 unsigned int offset_size = cu->header.offset_size;
21581 const gdb_byte *opcode_definitions[256];
21582 struct cleanup *cleanup;
21583 htab_t include_hash;
21584 void **slot;
21585 struct dwarf2_section_info *section;
21586 const char *section_name;
21587
21588 if (cu->dwo_unit != NULL)
21589 {
21590 if (section_is_gnu)
21591 {
21592 section = &cu->dwo_unit->dwo_file->sections.macro;
21593 section_name = ".debug_macro.dwo";
21594 }
21595 else
21596 {
21597 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21598 section_name = ".debug_macinfo.dwo";
21599 }
21600 }
21601 else
21602 {
21603 if (section_is_gnu)
21604 {
21605 section = &dwarf2_per_objfile->macro;
21606 section_name = ".debug_macro";
21607 }
21608 else
21609 {
21610 section = &dwarf2_per_objfile->macinfo;
21611 section_name = ".debug_macinfo";
21612 }
21613 }
21614
21615 dwarf2_read_section (objfile, section);
21616 if (section->buffer == NULL)
21617 {
21618 complaint (&symfile_complaints, _("missing %s section"), section_name);
21619 return;
21620 }
21621 abfd = get_section_bfd_owner (section);
21622
21623 /* First pass: Find the name of the base filename.
21624 This filename is needed in order to process all macros whose definition
21625 (or undefinition) comes from the command line. These macros are defined
21626 before the first DW_MACINFO_start_file entry, and yet still need to be
21627 associated to the base file.
21628
21629 To determine the base file name, we scan the macro definitions until we
21630 reach the first DW_MACINFO_start_file entry. We then initialize
21631 CURRENT_FILE accordingly so that any macro definition found before the
21632 first DW_MACINFO_start_file can still be associated to the base file. */
21633
21634 mac_ptr = section->buffer + offset;
21635 mac_end = section->buffer + section->size;
21636
21637 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21638 &offset_size, section_is_gnu);
21639 if (mac_ptr == NULL)
21640 {
21641 /* We already issued a complaint. */
21642 return;
21643 }
21644
21645 do
21646 {
21647 /* Do we at least have room for a macinfo type byte? */
21648 if (mac_ptr >= mac_end)
21649 {
21650 /* Complaint is printed during the second pass as GDB will probably
21651 stop the first pass earlier upon finding
21652 DW_MACINFO_start_file. */
21653 break;
21654 }
21655
21656 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21657 mac_ptr++;
21658
21659 /* Note that we rely on the fact that the corresponding GNU and
21660 DWARF constants are the same. */
21661 switch (macinfo_type)
21662 {
21663 /* A zero macinfo type indicates the end of the macro
21664 information. */
21665 case 0:
21666 break;
21667
21668 case DW_MACRO_GNU_define:
21669 case DW_MACRO_GNU_undef:
21670 /* Only skip the data by MAC_PTR. */
21671 {
21672 unsigned int bytes_read;
21673
21674 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21675 mac_ptr += bytes_read;
21676 read_direct_string (abfd, mac_ptr, &bytes_read);
21677 mac_ptr += bytes_read;
21678 }
21679 break;
21680
21681 case DW_MACRO_GNU_start_file:
21682 {
21683 unsigned int bytes_read;
21684 int line, file;
21685
21686 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21687 mac_ptr += bytes_read;
21688 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21689 mac_ptr += bytes_read;
21690
21691 current_file = macro_start_file (file, line, current_file, lh);
21692 }
21693 break;
21694
21695 case DW_MACRO_GNU_end_file:
21696 /* No data to skip by MAC_PTR. */
21697 break;
21698
21699 case DW_MACRO_GNU_define_indirect:
21700 case DW_MACRO_GNU_undef_indirect:
21701 case DW_MACRO_GNU_define_indirect_alt:
21702 case DW_MACRO_GNU_undef_indirect_alt:
21703 {
21704 unsigned int bytes_read;
21705
21706 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21707 mac_ptr += bytes_read;
21708 mac_ptr += offset_size;
21709 }
21710 break;
21711
21712 case DW_MACRO_GNU_transparent_include:
21713 case DW_MACRO_GNU_transparent_include_alt:
21714 /* Note that, according to the spec, a transparent include
21715 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21716 skip this opcode. */
21717 mac_ptr += offset_size;
21718 break;
21719
21720 case DW_MACINFO_vendor_ext:
21721 /* Only skip the data by MAC_PTR. */
21722 if (!section_is_gnu)
21723 {
21724 unsigned int bytes_read;
21725
21726 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21727 mac_ptr += bytes_read;
21728 read_direct_string (abfd, mac_ptr, &bytes_read);
21729 mac_ptr += bytes_read;
21730 }
21731 /* FALLTHROUGH */
21732
21733 default:
21734 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21735 mac_ptr, mac_end, abfd, offset_size,
21736 section);
21737 if (mac_ptr == NULL)
21738 return;
21739 break;
21740 }
21741 } while (macinfo_type != 0 && current_file == NULL);
21742
21743 /* Second pass: Process all entries.
21744
21745 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21746 command-line macro definitions/undefinitions. This flag is unset when we
21747 reach the first DW_MACINFO_start_file entry. */
21748
21749 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21750 NULL, xcalloc, xfree);
21751 cleanup = make_cleanup_htab_delete (include_hash);
21752 mac_ptr = section->buffer + offset;
21753 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21754 *slot = (void *) mac_ptr;
21755 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21756 current_file, lh, section,
21757 section_is_gnu, 0, offset_size, include_hash);
21758 do_cleanups (cleanup);
21759 }
21760
21761 /* Check if the attribute's form is a DW_FORM_block*
21762 if so return true else false. */
21763
21764 static int
21765 attr_form_is_block (const struct attribute *attr)
21766 {
21767 return (attr == NULL ? 0 :
21768 attr->form == DW_FORM_block1
21769 || attr->form == DW_FORM_block2
21770 || attr->form == DW_FORM_block4
21771 || attr->form == DW_FORM_block
21772 || attr->form == DW_FORM_exprloc);
21773 }
21774
21775 /* Return non-zero if ATTR's value is a section offset --- classes
21776 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21777 You may use DW_UNSND (attr) to retrieve such offsets.
21778
21779 Section 7.5.4, "Attribute Encodings", explains that no attribute
21780 may have a value that belongs to more than one of these classes; it
21781 would be ambiguous if we did, because we use the same forms for all
21782 of them. */
21783
21784 static int
21785 attr_form_is_section_offset (const struct attribute *attr)
21786 {
21787 return (attr->form == DW_FORM_data4
21788 || attr->form == DW_FORM_data8
21789 || attr->form == DW_FORM_sec_offset);
21790 }
21791
21792 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21793 zero otherwise. When this function returns true, you can apply
21794 dwarf2_get_attr_constant_value to it.
21795
21796 However, note that for some attributes you must check
21797 attr_form_is_section_offset before using this test. DW_FORM_data4
21798 and DW_FORM_data8 are members of both the constant class, and of
21799 the classes that contain offsets into other debug sections
21800 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21801 that, if an attribute's can be either a constant or one of the
21802 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21803 taken as section offsets, not constants. */
21804
21805 static int
21806 attr_form_is_constant (const struct attribute *attr)
21807 {
21808 switch (attr->form)
21809 {
21810 case DW_FORM_sdata:
21811 case DW_FORM_udata:
21812 case DW_FORM_data1:
21813 case DW_FORM_data2:
21814 case DW_FORM_data4:
21815 case DW_FORM_data8:
21816 return 1;
21817 default:
21818 return 0;
21819 }
21820 }
21821
21822
21823 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21824 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21825
21826 static int
21827 attr_form_is_ref (const struct attribute *attr)
21828 {
21829 switch (attr->form)
21830 {
21831 case DW_FORM_ref_addr:
21832 case DW_FORM_ref1:
21833 case DW_FORM_ref2:
21834 case DW_FORM_ref4:
21835 case DW_FORM_ref8:
21836 case DW_FORM_ref_udata:
21837 case DW_FORM_GNU_ref_alt:
21838 return 1;
21839 default:
21840 return 0;
21841 }
21842 }
21843
21844 /* Return the .debug_loc section to use for CU.
21845 For DWO files use .debug_loc.dwo. */
21846
21847 static struct dwarf2_section_info *
21848 cu_debug_loc_section (struct dwarf2_cu *cu)
21849 {
21850 if (cu->dwo_unit)
21851 return &cu->dwo_unit->dwo_file->sections.loc;
21852 return &dwarf2_per_objfile->loc;
21853 }
21854
21855 /* A helper function that fills in a dwarf2_loclist_baton. */
21856
21857 static void
21858 fill_in_loclist_baton (struct dwarf2_cu *cu,
21859 struct dwarf2_loclist_baton *baton,
21860 const struct attribute *attr)
21861 {
21862 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21863
21864 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21865
21866 baton->per_cu = cu->per_cu;
21867 gdb_assert (baton->per_cu);
21868 /* We don't know how long the location list is, but make sure we
21869 don't run off the edge of the section. */
21870 baton->size = section->size - DW_UNSND (attr);
21871 baton->data = section->buffer + DW_UNSND (attr);
21872 baton->base_address = cu->base_address;
21873 baton->from_dwo = cu->dwo_unit != NULL;
21874 }
21875
21876 static void
21877 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21878 struct dwarf2_cu *cu, int is_block)
21879 {
21880 struct objfile *objfile = dwarf2_per_objfile->objfile;
21881 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21882
21883 if (attr_form_is_section_offset (attr)
21884 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21885 the section. If so, fall through to the complaint in the
21886 other branch. */
21887 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21888 {
21889 struct dwarf2_loclist_baton *baton;
21890
21891 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21892
21893 fill_in_loclist_baton (cu, baton, attr);
21894
21895 if (cu->base_known == 0)
21896 complaint (&symfile_complaints,
21897 _("Location list used without "
21898 "specifying the CU base address."));
21899
21900 SYMBOL_ACLASS_INDEX (sym) = (is_block
21901 ? dwarf2_loclist_block_index
21902 : dwarf2_loclist_index);
21903 SYMBOL_LOCATION_BATON (sym) = baton;
21904 }
21905 else
21906 {
21907 struct dwarf2_locexpr_baton *baton;
21908
21909 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21910 baton->per_cu = cu->per_cu;
21911 gdb_assert (baton->per_cu);
21912
21913 if (attr_form_is_block (attr))
21914 {
21915 /* Note that we're just copying the block's data pointer
21916 here, not the actual data. We're still pointing into the
21917 info_buffer for SYM's objfile; right now we never release
21918 that buffer, but when we do clean up properly this may
21919 need to change. */
21920 baton->size = DW_BLOCK (attr)->size;
21921 baton->data = DW_BLOCK (attr)->data;
21922 }
21923 else
21924 {
21925 dwarf2_invalid_attrib_class_complaint ("location description",
21926 SYMBOL_NATURAL_NAME (sym));
21927 baton->size = 0;
21928 }
21929
21930 SYMBOL_ACLASS_INDEX (sym) = (is_block
21931 ? dwarf2_locexpr_block_index
21932 : dwarf2_locexpr_index);
21933 SYMBOL_LOCATION_BATON (sym) = baton;
21934 }
21935 }
21936
21937 /* Return the OBJFILE associated with the compilation unit CU. If CU
21938 came from a separate debuginfo file, then the master objfile is
21939 returned. */
21940
21941 struct objfile *
21942 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21943 {
21944 struct objfile *objfile = per_cu->objfile;
21945
21946 /* Return the master objfile, so that we can report and look up the
21947 correct file containing this variable. */
21948 if (objfile->separate_debug_objfile_backlink)
21949 objfile = objfile->separate_debug_objfile_backlink;
21950
21951 return objfile;
21952 }
21953
21954 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21955 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21956 CU_HEADERP first. */
21957
21958 static const struct comp_unit_head *
21959 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21960 struct dwarf2_per_cu_data *per_cu)
21961 {
21962 const gdb_byte *info_ptr;
21963
21964 if (per_cu->cu)
21965 return &per_cu->cu->header;
21966
21967 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21968
21969 memset (cu_headerp, 0, sizeof (*cu_headerp));
21970 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21971
21972 return cu_headerp;
21973 }
21974
21975 /* Return the address size given in the compilation unit header for CU. */
21976
21977 int
21978 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21979 {
21980 struct comp_unit_head cu_header_local;
21981 const struct comp_unit_head *cu_headerp;
21982
21983 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21984
21985 return cu_headerp->addr_size;
21986 }
21987
21988 /* Return the offset size given in the compilation unit header for CU. */
21989
21990 int
21991 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21992 {
21993 struct comp_unit_head cu_header_local;
21994 const struct comp_unit_head *cu_headerp;
21995
21996 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21997
21998 return cu_headerp->offset_size;
21999 }
22000
22001 /* See its dwarf2loc.h declaration. */
22002
22003 int
22004 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22005 {
22006 struct comp_unit_head cu_header_local;
22007 const struct comp_unit_head *cu_headerp;
22008
22009 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22010
22011 if (cu_headerp->version == 2)
22012 return cu_headerp->addr_size;
22013 else
22014 return cu_headerp->offset_size;
22015 }
22016
22017 /* Return the text offset of the CU. The returned offset comes from
22018 this CU's objfile. If this objfile came from a separate debuginfo
22019 file, then the offset may be different from the corresponding
22020 offset in the parent objfile. */
22021
22022 CORE_ADDR
22023 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22024 {
22025 struct objfile *objfile = per_cu->objfile;
22026
22027 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22028 }
22029
22030 /* Locate the .debug_info compilation unit from CU's objfile which contains
22031 the DIE at OFFSET. Raises an error on failure. */
22032
22033 static struct dwarf2_per_cu_data *
22034 dwarf2_find_containing_comp_unit (sect_offset offset,
22035 unsigned int offset_in_dwz,
22036 struct objfile *objfile)
22037 {
22038 struct dwarf2_per_cu_data *this_cu;
22039 int low, high;
22040 const sect_offset *cu_off;
22041
22042 low = 0;
22043 high = dwarf2_per_objfile->n_comp_units - 1;
22044 while (high > low)
22045 {
22046 struct dwarf2_per_cu_data *mid_cu;
22047 int mid = low + (high - low) / 2;
22048
22049 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22050 cu_off = &mid_cu->offset;
22051 if (mid_cu->is_dwz > offset_in_dwz
22052 || (mid_cu->is_dwz == offset_in_dwz
22053 && cu_off->sect_off >= offset.sect_off))
22054 high = mid;
22055 else
22056 low = mid + 1;
22057 }
22058 gdb_assert (low == high);
22059 this_cu = dwarf2_per_objfile->all_comp_units[low];
22060 cu_off = &this_cu->offset;
22061 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22062 {
22063 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22064 error (_("Dwarf Error: could not find partial DIE containing "
22065 "offset 0x%lx [in module %s]"),
22066 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22067
22068 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22069 <= offset.sect_off);
22070 return dwarf2_per_objfile->all_comp_units[low-1];
22071 }
22072 else
22073 {
22074 this_cu = dwarf2_per_objfile->all_comp_units[low];
22075 if (low == dwarf2_per_objfile->n_comp_units - 1
22076 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22077 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22078 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22079 return this_cu;
22080 }
22081 }
22082
22083 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22084
22085 static void
22086 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22087 {
22088 memset (cu, 0, sizeof (*cu));
22089 per_cu->cu = cu;
22090 cu->per_cu = per_cu;
22091 cu->objfile = per_cu->objfile;
22092 obstack_init (&cu->comp_unit_obstack);
22093 }
22094
22095 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22096
22097 static void
22098 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22099 enum language pretend_language)
22100 {
22101 struct attribute *attr;
22102
22103 /* Set the language we're debugging. */
22104 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22105 if (attr)
22106 set_cu_language (DW_UNSND (attr), cu);
22107 else
22108 {
22109 cu->language = pretend_language;
22110 cu->language_defn = language_def (cu->language);
22111 }
22112
22113 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22114 }
22115
22116 /* Release one cached compilation unit, CU. We unlink it from the tree
22117 of compilation units, but we don't remove it from the read_in_chain;
22118 the caller is responsible for that.
22119 NOTE: DATA is a void * because this function is also used as a
22120 cleanup routine. */
22121
22122 static void
22123 free_heap_comp_unit (void *data)
22124 {
22125 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22126
22127 gdb_assert (cu->per_cu != NULL);
22128 cu->per_cu->cu = NULL;
22129 cu->per_cu = NULL;
22130
22131 obstack_free (&cu->comp_unit_obstack, NULL);
22132
22133 xfree (cu);
22134 }
22135
22136 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22137 when we're finished with it. We can't free the pointer itself, but be
22138 sure to unlink it from the cache. Also release any associated storage. */
22139
22140 static void
22141 free_stack_comp_unit (void *data)
22142 {
22143 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22144
22145 gdb_assert (cu->per_cu != NULL);
22146 cu->per_cu->cu = NULL;
22147 cu->per_cu = NULL;
22148
22149 obstack_free (&cu->comp_unit_obstack, NULL);
22150 cu->partial_dies = NULL;
22151 }
22152
22153 /* Free all cached compilation units. */
22154
22155 static void
22156 free_cached_comp_units (void *data)
22157 {
22158 struct dwarf2_per_cu_data *per_cu, **last_chain;
22159
22160 per_cu = dwarf2_per_objfile->read_in_chain;
22161 last_chain = &dwarf2_per_objfile->read_in_chain;
22162 while (per_cu != NULL)
22163 {
22164 struct dwarf2_per_cu_data *next_cu;
22165
22166 next_cu = per_cu->cu->read_in_chain;
22167
22168 free_heap_comp_unit (per_cu->cu);
22169 *last_chain = next_cu;
22170
22171 per_cu = next_cu;
22172 }
22173 }
22174
22175 /* Increase the age counter on each cached compilation unit, and free
22176 any that are too old. */
22177
22178 static void
22179 age_cached_comp_units (void)
22180 {
22181 struct dwarf2_per_cu_data *per_cu, **last_chain;
22182
22183 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22184 per_cu = dwarf2_per_objfile->read_in_chain;
22185 while (per_cu != NULL)
22186 {
22187 per_cu->cu->last_used ++;
22188 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22189 dwarf2_mark (per_cu->cu);
22190 per_cu = per_cu->cu->read_in_chain;
22191 }
22192
22193 per_cu = dwarf2_per_objfile->read_in_chain;
22194 last_chain = &dwarf2_per_objfile->read_in_chain;
22195 while (per_cu != NULL)
22196 {
22197 struct dwarf2_per_cu_data *next_cu;
22198
22199 next_cu = per_cu->cu->read_in_chain;
22200
22201 if (!per_cu->cu->mark)
22202 {
22203 free_heap_comp_unit (per_cu->cu);
22204 *last_chain = next_cu;
22205 }
22206 else
22207 last_chain = &per_cu->cu->read_in_chain;
22208
22209 per_cu = next_cu;
22210 }
22211 }
22212
22213 /* Remove a single compilation unit from the cache. */
22214
22215 static void
22216 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22217 {
22218 struct dwarf2_per_cu_data *per_cu, **last_chain;
22219
22220 per_cu = dwarf2_per_objfile->read_in_chain;
22221 last_chain = &dwarf2_per_objfile->read_in_chain;
22222 while (per_cu != NULL)
22223 {
22224 struct dwarf2_per_cu_data *next_cu;
22225
22226 next_cu = per_cu->cu->read_in_chain;
22227
22228 if (per_cu == target_per_cu)
22229 {
22230 free_heap_comp_unit (per_cu->cu);
22231 per_cu->cu = NULL;
22232 *last_chain = next_cu;
22233 break;
22234 }
22235 else
22236 last_chain = &per_cu->cu->read_in_chain;
22237
22238 per_cu = next_cu;
22239 }
22240 }
22241
22242 /* Release all extra memory associated with OBJFILE. */
22243
22244 void
22245 dwarf2_free_objfile (struct objfile *objfile)
22246 {
22247 dwarf2_per_objfile
22248 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22249 dwarf2_objfile_data_key);
22250
22251 if (dwarf2_per_objfile == NULL)
22252 return;
22253
22254 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22255 free_cached_comp_units (NULL);
22256
22257 if (dwarf2_per_objfile->quick_file_names_table)
22258 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22259
22260 if (dwarf2_per_objfile->line_header_hash)
22261 htab_delete (dwarf2_per_objfile->line_header_hash);
22262
22263 /* Everything else should be on the objfile obstack. */
22264 }
22265
22266 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22267 We store these in a hash table separate from the DIEs, and preserve them
22268 when the DIEs are flushed out of cache.
22269
22270 The CU "per_cu" pointer is needed because offset alone is not enough to
22271 uniquely identify the type. A file may have multiple .debug_types sections,
22272 or the type may come from a DWO file. Furthermore, while it's more logical
22273 to use per_cu->section+offset, with Fission the section with the data is in
22274 the DWO file but we don't know that section at the point we need it.
22275 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22276 because we can enter the lookup routine, get_die_type_at_offset, from
22277 outside this file, and thus won't necessarily have PER_CU->cu.
22278 Fortunately, PER_CU is stable for the life of the objfile. */
22279
22280 struct dwarf2_per_cu_offset_and_type
22281 {
22282 const struct dwarf2_per_cu_data *per_cu;
22283 sect_offset offset;
22284 struct type *type;
22285 };
22286
22287 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22288
22289 static hashval_t
22290 per_cu_offset_and_type_hash (const void *item)
22291 {
22292 const struct dwarf2_per_cu_offset_and_type *ofs
22293 = (const struct dwarf2_per_cu_offset_and_type *) item;
22294
22295 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22296 }
22297
22298 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22299
22300 static int
22301 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22302 {
22303 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22304 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22305 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22306 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22307
22308 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22309 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22310 }
22311
22312 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22313 table if necessary. For convenience, return TYPE.
22314
22315 The DIEs reading must have careful ordering to:
22316 * Not cause infite loops trying to read in DIEs as a prerequisite for
22317 reading current DIE.
22318 * Not trying to dereference contents of still incompletely read in types
22319 while reading in other DIEs.
22320 * Enable referencing still incompletely read in types just by a pointer to
22321 the type without accessing its fields.
22322
22323 Therefore caller should follow these rules:
22324 * Try to fetch any prerequisite types we may need to build this DIE type
22325 before building the type and calling set_die_type.
22326 * After building type call set_die_type for current DIE as soon as
22327 possible before fetching more types to complete the current type.
22328 * Make the type as complete as possible before fetching more types. */
22329
22330 static struct type *
22331 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22332 {
22333 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22334 struct objfile *objfile = cu->objfile;
22335 struct attribute *attr;
22336 struct dynamic_prop prop;
22337
22338 /* For Ada types, make sure that the gnat-specific data is always
22339 initialized (if not already set). There are a few types where
22340 we should not be doing so, because the type-specific area is
22341 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22342 where the type-specific area is used to store the floatformat).
22343 But this is not a problem, because the gnat-specific information
22344 is actually not needed for these types. */
22345 if (need_gnat_info (cu)
22346 && TYPE_CODE (type) != TYPE_CODE_FUNC
22347 && TYPE_CODE (type) != TYPE_CODE_FLT
22348 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22349 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22350 && TYPE_CODE (type) != TYPE_CODE_METHOD
22351 && !HAVE_GNAT_AUX_INFO (type))
22352 INIT_GNAT_SPECIFIC (type);
22353
22354 /* Read DW_AT_data_location and set in type. */
22355 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22356 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22357 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22358
22359 if (dwarf2_per_objfile->die_type_hash == NULL)
22360 {
22361 dwarf2_per_objfile->die_type_hash =
22362 htab_create_alloc_ex (127,
22363 per_cu_offset_and_type_hash,
22364 per_cu_offset_and_type_eq,
22365 NULL,
22366 &objfile->objfile_obstack,
22367 hashtab_obstack_allocate,
22368 dummy_obstack_deallocate);
22369 }
22370
22371 ofs.per_cu = cu->per_cu;
22372 ofs.offset = die->offset;
22373 ofs.type = type;
22374 slot = (struct dwarf2_per_cu_offset_and_type **)
22375 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22376 if (*slot)
22377 complaint (&symfile_complaints,
22378 _("A problem internal to GDB: DIE 0x%x has type already set"),
22379 die->offset.sect_off);
22380 *slot = XOBNEW (&objfile->objfile_obstack,
22381 struct dwarf2_per_cu_offset_and_type);
22382 **slot = ofs;
22383 return type;
22384 }
22385
22386 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22387 or return NULL if the die does not have a saved type. */
22388
22389 static struct type *
22390 get_die_type_at_offset (sect_offset offset,
22391 struct dwarf2_per_cu_data *per_cu)
22392 {
22393 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22394
22395 if (dwarf2_per_objfile->die_type_hash == NULL)
22396 return NULL;
22397
22398 ofs.per_cu = per_cu;
22399 ofs.offset = offset;
22400 slot = ((struct dwarf2_per_cu_offset_and_type *)
22401 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22402 if (slot)
22403 return slot->type;
22404 else
22405 return NULL;
22406 }
22407
22408 /* Look up the type for DIE in CU in die_type_hash,
22409 or return NULL if DIE does not have a saved type. */
22410
22411 static struct type *
22412 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22413 {
22414 return get_die_type_at_offset (die->offset, cu->per_cu);
22415 }
22416
22417 /* Add a dependence relationship from CU to REF_PER_CU. */
22418
22419 static void
22420 dwarf2_add_dependence (struct dwarf2_cu *cu,
22421 struct dwarf2_per_cu_data *ref_per_cu)
22422 {
22423 void **slot;
22424
22425 if (cu->dependencies == NULL)
22426 cu->dependencies
22427 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22428 NULL, &cu->comp_unit_obstack,
22429 hashtab_obstack_allocate,
22430 dummy_obstack_deallocate);
22431
22432 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22433 if (*slot == NULL)
22434 *slot = ref_per_cu;
22435 }
22436
22437 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22438 Set the mark field in every compilation unit in the
22439 cache that we must keep because we are keeping CU. */
22440
22441 static int
22442 dwarf2_mark_helper (void **slot, void *data)
22443 {
22444 struct dwarf2_per_cu_data *per_cu;
22445
22446 per_cu = (struct dwarf2_per_cu_data *) *slot;
22447
22448 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22449 reading of the chain. As such dependencies remain valid it is not much
22450 useful to track and undo them during QUIT cleanups. */
22451 if (per_cu->cu == NULL)
22452 return 1;
22453
22454 if (per_cu->cu->mark)
22455 return 1;
22456 per_cu->cu->mark = 1;
22457
22458 if (per_cu->cu->dependencies != NULL)
22459 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22460
22461 return 1;
22462 }
22463
22464 /* Set the mark field in CU and in every other compilation unit in the
22465 cache that we must keep because we are keeping CU. */
22466
22467 static void
22468 dwarf2_mark (struct dwarf2_cu *cu)
22469 {
22470 if (cu->mark)
22471 return;
22472 cu->mark = 1;
22473 if (cu->dependencies != NULL)
22474 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22475 }
22476
22477 static void
22478 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22479 {
22480 while (per_cu)
22481 {
22482 per_cu->cu->mark = 0;
22483 per_cu = per_cu->cu->read_in_chain;
22484 }
22485 }
22486
22487 /* Trivial hash function for partial_die_info: the hash value of a DIE
22488 is its offset in .debug_info for this objfile. */
22489
22490 static hashval_t
22491 partial_die_hash (const void *item)
22492 {
22493 const struct partial_die_info *part_die
22494 = (const struct partial_die_info *) item;
22495
22496 return part_die->offset.sect_off;
22497 }
22498
22499 /* Trivial comparison function for partial_die_info structures: two DIEs
22500 are equal if they have the same offset. */
22501
22502 static int
22503 partial_die_eq (const void *item_lhs, const void *item_rhs)
22504 {
22505 const struct partial_die_info *part_die_lhs
22506 = (const struct partial_die_info *) item_lhs;
22507 const struct partial_die_info *part_die_rhs
22508 = (const struct partial_die_info *) item_rhs;
22509
22510 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22511 }
22512
22513 static struct cmd_list_element *set_dwarf_cmdlist;
22514 static struct cmd_list_element *show_dwarf_cmdlist;
22515
22516 static void
22517 set_dwarf_cmd (char *args, int from_tty)
22518 {
22519 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22520 gdb_stdout);
22521 }
22522
22523 static void
22524 show_dwarf_cmd (char *args, int from_tty)
22525 {
22526 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22527 }
22528
22529 /* Free data associated with OBJFILE, if necessary. */
22530
22531 static void
22532 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22533 {
22534 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22535 int ix;
22536
22537 /* Make sure we don't accidentally use dwarf2_per_objfile while
22538 cleaning up. */
22539 dwarf2_per_objfile = NULL;
22540
22541 for (ix = 0; ix < data->n_comp_units; ++ix)
22542 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22543
22544 for (ix = 0; ix < data->n_type_units; ++ix)
22545 VEC_free (dwarf2_per_cu_ptr,
22546 data->all_type_units[ix]->per_cu.imported_symtabs);
22547 xfree (data->all_type_units);
22548
22549 VEC_free (dwarf2_section_info_def, data->types);
22550
22551 if (data->dwo_files)
22552 free_dwo_files (data->dwo_files, objfile);
22553 if (data->dwp_file)
22554 gdb_bfd_unref (data->dwp_file->dbfd);
22555
22556 if (data->dwz_file && data->dwz_file->dwz_bfd)
22557 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22558 }
22559
22560 \f
22561 /* The "save gdb-index" command. */
22562
22563 /* The contents of the hash table we create when building the string
22564 table. */
22565 struct strtab_entry
22566 {
22567 offset_type offset;
22568 const char *str;
22569 };
22570
22571 /* Hash function for a strtab_entry.
22572
22573 Function is used only during write_hash_table so no index format backward
22574 compatibility is needed. */
22575
22576 static hashval_t
22577 hash_strtab_entry (const void *e)
22578 {
22579 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22580 return mapped_index_string_hash (INT_MAX, entry->str);
22581 }
22582
22583 /* Equality function for a strtab_entry. */
22584
22585 static int
22586 eq_strtab_entry (const void *a, const void *b)
22587 {
22588 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22589 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22590 return !strcmp (ea->str, eb->str);
22591 }
22592
22593 /* Create a strtab_entry hash table. */
22594
22595 static htab_t
22596 create_strtab (void)
22597 {
22598 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22599 xfree, xcalloc, xfree);
22600 }
22601
22602 /* Add a string to the constant pool. Return the string's offset in
22603 host order. */
22604
22605 static offset_type
22606 add_string (htab_t table, struct obstack *cpool, const char *str)
22607 {
22608 void **slot;
22609 struct strtab_entry entry;
22610 struct strtab_entry *result;
22611
22612 entry.str = str;
22613 slot = htab_find_slot (table, &entry, INSERT);
22614 if (*slot)
22615 result = (struct strtab_entry *) *slot;
22616 else
22617 {
22618 result = XNEW (struct strtab_entry);
22619 result->offset = obstack_object_size (cpool);
22620 result->str = str;
22621 obstack_grow_str0 (cpool, str);
22622 *slot = result;
22623 }
22624 return result->offset;
22625 }
22626
22627 /* An entry in the symbol table. */
22628 struct symtab_index_entry
22629 {
22630 /* The name of the symbol. */
22631 const char *name;
22632 /* The offset of the name in the constant pool. */
22633 offset_type index_offset;
22634 /* A sorted vector of the indices of all the CUs that hold an object
22635 of this name. */
22636 VEC (offset_type) *cu_indices;
22637 };
22638
22639 /* The symbol table. This is a power-of-2-sized hash table. */
22640 struct mapped_symtab
22641 {
22642 offset_type n_elements;
22643 offset_type size;
22644 struct symtab_index_entry **data;
22645 };
22646
22647 /* Hash function for a symtab_index_entry. */
22648
22649 static hashval_t
22650 hash_symtab_entry (const void *e)
22651 {
22652 const struct symtab_index_entry *entry
22653 = (const struct symtab_index_entry *) e;
22654 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22655 sizeof (offset_type) * VEC_length (offset_type,
22656 entry->cu_indices),
22657 0);
22658 }
22659
22660 /* Equality function for a symtab_index_entry. */
22661
22662 static int
22663 eq_symtab_entry (const void *a, const void *b)
22664 {
22665 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22666 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22667 int len = VEC_length (offset_type, ea->cu_indices);
22668 if (len != VEC_length (offset_type, eb->cu_indices))
22669 return 0;
22670 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22671 VEC_address (offset_type, eb->cu_indices),
22672 sizeof (offset_type) * len);
22673 }
22674
22675 /* Destroy a symtab_index_entry. */
22676
22677 static void
22678 delete_symtab_entry (void *p)
22679 {
22680 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22681 VEC_free (offset_type, entry->cu_indices);
22682 xfree (entry);
22683 }
22684
22685 /* Create a hash table holding symtab_index_entry objects. */
22686
22687 static htab_t
22688 create_symbol_hash_table (void)
22689 {
22690 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22691 delete_symtab_entry, xcalloc, xfree);
22692 }
22693
22694 /* Create a new mapped symtab object. */
22695
22696 static struct mapped_symtab *
22697 create_mapped_symtab (void)
22698 {
22699 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22700 symtab->n_elements = 0;
22701 symtab->size = 1024;
22702 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22703 return symtab;
22704 }
22705
22706 /* Destroy a mapped_symtab. */
22707
22708 static void
22709 cleanup_mapped_symtab (void *p)
22710 {
22711 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22712 /* The contents of the array are freed when the other hash table is
22713 destroyed. */
22714 xfree (symtab->data);
22715 xfree (symtab);
22716 }
22717
22718 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22719 the slot.
22720
22721 Function is used only during write_hash_table so no index format backward
22722 compatibility is needed. */
22723
22724 static struct symtab_index_entry **
22725 find_slot (struct mapped_symtab *symtab, const char *name)
22726 {
22727 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22728
22729 index = hash & (symtab->size - 1);
22730 step = ((hash * 17) & (symtab->size - 1)) | 1;
22731
22732 for (;;)
22733 {
22734 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22735 return &symtab->data[index];
22736 index = (index + step) & (symtab->size - 1);
22737 }
22738 }
22739
22740 /* Expand SYMTAB's hash table. */
22741
22742 static void
22743 hash_expand (struct mapped_symtab *symtab)
22744 {
22745 offset_type old_size = symtab->size;
22746 offset_type i;
22747 struct symtab_index_entry **old_entries = symtab->data;
22748
22749 symtab->size *= 2;
22750 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22751
22752 for (i = 0; i < old_size; ++i)
22753 {
22754 if (old_entries[i])
22755 {
22756 struct symtab_index_entry **slot = find_slot (symtab,
22757 old_entries[i]->name);
22758 *slot = old_entries[i];
22759 }
22760 }
22761
22762 xfree (old_entries);
22763 }
22764
22765 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22766 CU_INDEX is the index of the CU in which the symbol appears.
22767 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22768
22769 static void
22770 add_index_entry (struct mapped_symtab *symtab, const char *name,
22771 int is_static, gdb_index_symbol_kind kind,
22772 offset_type cu_index)
22773 {
22774 struct symtab_index_entry **slot;
22775 offset_type cu_index_and_attrs;
22776
22777 ++symtab->n_elements;
22778 if (4 * symtab->n_elements / 3 >= symtab->size)
22779 hash_expand (symtab);
22780
22781 slot = find_slot (symtab, name);
22782 if (!*slot)
22783 {
22784 *slot = XNEW (struct symtab_index_entry);
22785 (*slot)->name = name;
22786 /* index_offset is set later. */
22787 (*slot)->cu_indices = NULL;
22788 }
22789
22790 cu_index_and_attrs = 0;
22791 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22792 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22793 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22794
22795 /* We don't want to record an index value twice as we want to avoid the
22796 duplication.
22797 We process all global symbols and then all static symbols
22798 (which would allow us to avoid the duplication by only having to check
22799 the last entry pushed), but a symbol could have multiple kinds in one CU.
22800 To keep things simple we don't worry about the duplication here and
22801 sort and uniqufy the list after we've processed all symbols. */
22802 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22803 }
22804
22805 /* qsort helper routine for uniquify_cu_indices. */
22806
22807 static int
22808 offset_type_compare (const void *ap, const void *bp)
22809 {
22810 offset_type a = *(offset_type *) ap;
22811 offset_type b = *(offset_type *) bp;
22812
22813 return (a > b) - (b > a);
22814 }
22815
22816 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22817
22818 static void
22819 uniquify_cu_indices (struct mapped_symtab *symtab)
22820 {
22821 int i;
22822
22823 for (i = 0; i < symtab->size; ++i)
22824 {
22825 struct symtab_index_entry *entry = symtab->data[i];
22826
22827 if (entry
22828 && entry->cu_indices != NULL)
22829 {
22830 unsigned int next_to_insert, next_to_check;
22831 offset_type last_value;
22832
22833 qsort (VEC_address (offset_type, entry->cu_indices),
22834 VEC_length (offset_type, entry->cu_indices),
22835 sizeof (offset_type), offset_type_compare);
22836
22837 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22838 next_to_insert = 1;
22839 for (next_to_check = 1;
22840 next_to_check < VEC_length (offset_type, entry->cu_indices);
22841 ++next_to_check)
22842 {
22843 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22844 != last_value)
22845 {
22846 last_value = VEC_index (offset_type, entry->cu_indices,
22847 next_to_check);
22848 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22849 last_value);
22850 ++next_to_insert;
22851 }
22852 }
22853 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22854 }
22855 }
22856 }
22857
22858 /* Add a vector of indices to the constant pool. */
22859
22860 static offset_type
22861 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22862 struct symtab_index_entry *entry)
22863 {
22864 void **slot;
22865
22866 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22867 if (!*slot)
22868 {
22869 offset_type len = VEC_length (offset_type, entry->cu_indices);
22870 offset_type val = MAYBE_SWAP (len);
22871 offset_type iter;
22872 int i;
22873
22874 *slot = entry;
22875 entry->index_offset = obstack_object_size (cpool);
22876
22877 obstack_grow (cpool, &val, sizeof (val));
22878 for (i = 0;
22879 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22880 ++i)
22881 {
22882 val = MAYBE_SWAP (iter);
22883 obstack_grow (cpool, &val, sizeof (val));
22884 }
22885 }
22886 else
22887 {
22888 struct symtab_index_entry *old_entry
22889 = (struct symtab_index_entry *) *slot;
22890 entry->index_offset = old_entry->index_offset;
22891 entry = old_entry;
22892 }
22893 return entry->index_offset;
22894 }
22895
22896 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22897 constant pool entries going into the obstack CPOOL. */
22898
22899 static void
22900 write_hash_table (struct mapped_symtab *symtab,
22901 struct obstack *output, struct obstack *cpool)
22902 {
22903 offset_type i;
22904 htab_t symbol_hash_table;
22905 htab_t str_table;
22906
22907 symbol_hash_table = create_symbol_hash_table ();
22908 str_table = create_strtab ();
22909
22910 /* We add all the index vectors to the constant pool first, to
22911 ensure alignment is ok. */
22912 for (i = 0; i < symtab->size; ++i)
22913 {
22914 if (symtab->data[i])
22915 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22916 }
22917
22918 /* Now write out the hash table. */
22919 for (i = 0; i < symtab->size; ++i)
22920 {
22921 offset_type str_off, vec_off;
22922
22923 if (symtab->data[i])
22924 {
22925 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22926 vec_off = symtab->data[i]->index_offset;
22927 }
22928 else
22929 {
22930 /* While 0 is a valid constant pool index, it is not valid
22931 to have 0 for both offsets. */
22932 str_off = 0;
22933 vec_off = 0;
22934 }
22935
22936 str_off = MAYBE_SWAP (str_off);
22937 vec_off = MAYBE_SWAP (vec_off);
22938
22939 obstack_grow (output, &str_off, sizeof (str_off));
22940 obstack_grow (output, &vec_off, sizeof (vec_off));
22941 }
22942
22943 htab_delete (str_table);
22944 htab_delete (symbol_hash_table);
22945 }
22946
22947 /* Struct to map psymtab to CU index in the index file. */
22948 struct psymtab_cu_index_map
22949 {
22950 struct partial_symtab *psymtab;
22951 unsigned int cu_index;
22952 };
22953
22954 static hashval_t
22955 hash_psymtab_cu_index (const void *item)
22956 {
22957 const struct psymtab_cu_index_map *map
22958 = (const struct psymtab_cu_index_map *) item;
22959
22960 return htab_hash_pointer (map->psymtab);
22961 }
22962
22963 static int
22964 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22965 {
22966 const struct psymtab_cu_index_map *lhs
22967 = (const struct psymtab_cu_index_map *) item_lhs;
22968 const struct psymtab_cu_index_map *rhs
22969 = (const struct psymtab_cu_index_map *) item_rhs;
22970
22971 return lhs->psymtab == rhs->psymtab;
22972 }
22973
22974 /* Helper struct for building the address table. */
22975 struct addrmap_index_data
22976 {
22977 struct objfile *objfile;
22978 struct obstack *addr_obstack;
22979 htab_t cu_index_htab;
22980
22981 /* Non-zero if the previous_* fields are valid.
22982 We can't write an entry until we see the next entry (since it is only then
22983 that we know the end of the entry). */
22984 int previous_valid;
22985 /* Index of the CU in the table of all CUs in the index file. */
22986 unsigned int previous_cu_index;
22987 /* Start address of the CU. */
22988 CORE_ADDR previous_cu_start;
22989 };
22990
22991 /* Write an address entry to OBSTACK. */
22992
22993 static void
22994 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22995 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22996 {
22997 offset_type cu_index_to_write;
22998 gdb_byte addr[8];
22999 CORE_ADDR baseaddr;
23000
23001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23002
23003 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23004 obstack_grow (obstack, addr, 8);
23005 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23006 obstack_grow (obstack, addr, 8);
23007 cu_index_to_write = MAYBE_SWAP (cu_index);
23008 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23009 }
23010
23011 /* Worker function for traversing an addrmap to build the address table. */
23012
23013 static int
23014 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23015 {
23016 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23017 struct partial_symtab *pst = (struct partial_symtab *) obj;
23018
23019 if (data->previous_valid)
23020 add_address_entry (data->objfile, data->addr_obstack,
23021 data->previous_cu_start, start_addr,
23022 data->previous_cu_index);
23023
23024 data->previous_cu_start = start_addr;
23025 if (pst != NULL)
23026 {
23027 struct psymtab_cu_index_map find_map, *map;
23028 find_map.psymtab = pst;
23029 map = ((struct psymtab_cu_index_map *)
23030 htab_find (data->cu_index_htab, &find_map));
23031 gdb_assert (map != NULL);
23032 data->previous_cu_index = map->cu_index;
23033 data->previous_valid = 1;
23034 }
23035 else
23036 data->previous_valid = 0;
23037
23038 return 0;
23039 }
23040
23041 /* Write OBJFILE's address map to OBSTACK.
23042 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23043 in the index file. */
23044
23045 static void
23046 write_address_map (struct objfile *objfile, struct obstack *obstack,
23047 htab_t cu_index_htab)
23048 {
23049 struct addrmap_index_data addrmap_index_data;
23050
23051 /* When writing the address table, we have to cope with the fact that
23052 the addrmap iterator only provides the start of a region; we have to
23053 wait until the next invocation to get the start of the next region. */
23054
23055 addrmap_index_data.objfile = objfile;
23056 addrmap_index_data.addr_obstack = obstack;
23057 addrmap_index_data.cu_index_htab = cu_index_htab;
23058 addrmap_index_data.previous_valid = 0;
23059
23060 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23061 &addrmap_index_data);
23062
23063 /* It's highly unlikely the last entry (end address = 0xff...ff)
23064 is valid, but we should still handle it.
23065 The end address is recorded as the start of the next region, but that
23066 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23067 anyway. */
23068 if (addrmap_index_data.previous_valid)
23069 add_address_entry (objfile, obstack,
23070 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23071 addrmap_index_data.previous_cu_index);
23072 }
23073
23074 /* Return the symbol kind of PSYM. */
23075
23076 static gdb_index_symbol_kind
23077 symbol_kind (struct partial_symbol *psym)
23078 {
23079 domain_enum domain = PSYMBOL_DOMAIN (psym);
23080 enum address_class aclass = PSYMBOL_CLASS (psym);
23081
23082 switch (domain)
23083 {
23084 case VAR_DOMAIN:
23085 switch (aclass)
23086 {
23087 case LOC_BLOCK:
23088 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23089 case LOC_TYPEDEF:
23090 return GDB_INDEX_SYMBOL_KIND_TYPE;
23091 case LOC_COMPUTED:
23092 case LOC_CONST_BYTES:
23093 case LOC_OPTIMIZED_OUT:
23094 case LOC_STATIC:
23095 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23096 case LOC_CONST:
23097 /* Note: It's currently impossible to recognize psyms as enum values
23098 short of reading the type info. For now punt. */
23099 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23100 default:
23101 /* There are other LOC_FOO values that one might want to classify
23102 as variables, but dwarf2read.c doesn't currently use them. */
23103 return GDB_INDEX_SYMBOL_KIND_OTHER;
23104 }
23105 case STRUCT_DOMAIN:
23106 return GDB_INDEX_SYMBOL_KIND_TYPE;
23107 default:
23108 return GDB_INDEX_SYMBOL_KIND_OTHER;
23109 }
23110 }
23111
23112 /* Add a list of partial symbols to SYMTAB. */
23113
23114 static void
23115 write_psymbols (struct mapped_symtab *symtab,
23116 htab_t psyms_seen,
23117 struct partial_symbol **psymp,
23118 int count,
23119 offset_type cu_index,
23120 int is_static)
23121 {
23122 for (; count-- > 0; ++psymp)
23123 {
23124 struct partial_symbol *psym = *psymp;
23125 void **slot;
23126
23127 if (SYMBOL_LANGUAGE (psym) == language_ada)
23128 error (_("Ada is not currently supported by the index"));
23129
23130 /* Only add a given psymbol once. */
23131 slot = htab_find_slot (psyms_seen, psym, INSERT);
23132 if (!*slot)
23133 {
23134 gdb_index_symbol_kind kind = symbol_kind (psym);
23135
23136 *slot = psym;
23137 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23138 is_static, kind, cu_index);
23139 }
23140 }
23141 }
23142
23143 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23144 exception if there is an error. */
23145
23146 static void
23147 write_obstack (FILE *file, struct obstack *obstack)
23148 {
23149 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23150 file)
23151 != obstack_object_size (obstack))
23152 error (_("couldn't data write to file"));
23153 }
23154
23155 /* Unlink a file if the argument is not NULL. */
23156
23157 static void
23158 unlink_if_set (void *p)
23159 {
23160 char **filename = (char **) p;
23161 if (*filename)
23162 unlink (*filename);
23163 }
23164
23165 /* A helper struct used when iterating over debug_types. */
23166 struct signatured_type_index_data
23167 {
23168 struct objfile *objfile;
23169 struct mapped_symtab *symtab;
23170 struct obstack *types_list;
23171 htab_t psyms_seen;
23172 int cu_index;
23173 };
23174
23175 /* A helper function that writes a single signatured_type to an
23176 obstack. */
23177
23178 static int
23179 write_one_signatured_type (void **slot, void *d)
23180 {
23181 struct signatured_type_index_data *info
23182 = (struct signatured_type_index_data *) d;
23183 struct signatured_type *entry = (struct signatured_type *) *slot;
23184 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23185 gdb_byte val[8];
23186
23187 write_psymbols (info->symtab,
23188 info->psyms_seen,
23189 info->objfile->global_psymbols.list
23190 + psymtab->globals_offset,
23191 psymtab->n_global_syms, info->cu_index,
23192 0);
23193 write_psymbols (info->symtab,
23194 info->psyms_seen,
23195 info->objfile->static_psymbols.list
23196 + psymtab->statics_offset,
23197 psymtab->n_static_syms, info->cu_index,
23198 1);
23199
23200 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23201 entry->per_cu.offset.sect_off);
23202 obstack_grow (info->types_list, val, 8);
23203 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23204 entry->type_offset_in_tu.cu_off);
23205 obstack_grow (info->types_list, val, 8);
23206 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23207 obstack_grow (info->types_list, val, 8);
23208
23209 ++info->cu_index;
23210
23211 return 1;
23212 }
23213
23214 /* Recurse into all "included" dependencies and write their symbols as
23215 if they appeared in this psymtab. */
23216
23217 static void
23218 recursively_write_psymbols (struct objfile *objfile,
23219 struct partial_symtab *psymtab,
23220 struct mapped_symtab *symtab,
23221 htab_t psyms_seen,
23222 offset_type cu_index)
23223 {
23224 int i;
23225
23226 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23227 if (psymtab->dependencies[i]->user != NULL)
23228 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23229 symtab, psyms_seen, cu_index);
23230
23231 write_psymbols (symtab,
23232 psyms_seen,
23233 objfile->global_psymbols.list + psymtab->globals_offset,
23234 psymtab->n_global_syms, cu_index,
23235 0);
23236 write_psymbols (symtab,
23237 psyms_seen,
23238 objfile->static_psymbols.list + psymtab->statics_offset,
23239 psymtab->n_static_syms, cu_index,
23240 1);
23241 }
23242
23243 /* Create an index file for OBJFILE in the directory DIR. */
23244
23245 static void
23246 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23247 {
23248 struct cleanup *cleanup;
23249 char *filename, *cleanup_filename;
23250 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23251 struct obstack cu_list, types_cu_list;
23252 int i;
23253 FILE *out_file;
23254 struct mapped_symtab *symtab;
23255 offset_type val, size_of_contents, total_len;
23256 struct stat st;
23257 htab_t psyms_seen;
23258 htab_t cu_index_htab;
23259 struct psymtab_cu_index_map *psymtab_cu_index_map;
23260
23261 if (dwarf2_per_objfile->using_index)
23262 error (_("Cannot use an index to create the index"));
23263
23264 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23265 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23266
23267 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23268 return;
23269
23270 if (stat (objfile_name (objfile), &st) < 0)
23271 perror_with_name (objfile_name (objfile));
23272
23273 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23274 INDEX_SUFFIX, (char *) NULL);
23275 cleanup = make_cleanup (xfree, filename);
23276
23277 out_file = gdb_fopen_cloexec (filename, "wb");
23278 if (!out_file)
23279 error (_("Can't open `%s' for writing"), filename);
23280
23281 cleanup_filename = filename;
23282 make_cleanup (unlink_if_set, &cleanup_filename);
23283
23284 symtab = create_mapped_symtab ();
23285 make_cleanup (cleanup_mapped_symtab, symtab);
23286
23287 obstack_init (&addr_obstack);
23288 make_cleanup_obstack_free (&addr_obstack);
23289
23290 obstack_init (&cu_list);
23291 make_cleanup_obstack_free (&cu_list);
23292
23293 obstack_init (&types_cu_list);
23294 make_cleanup_obstack_free (&types_cu_list);
23295
23296 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23297 NULL, xcalloc, xfree);
23298 make_cleanup_htab_delete (psyms_seen);
23299
23300 /* While we're scanning CU's create a table that maps a psymtab pointer
23301 (which is what addrmap records) to its index (which is what is recorded
23302 in the index file). This will later be needed to write the address
23303 table. */
23304 cu_index_htab = htab_create_alloc (100,
23305 hash_psymtab_cu_index,
23306 eq_psymtab_cu_index,
23307 NULL, xcalloc, xfree);
23308 make_cleanup_htab_delete (cu_index_htab);
23309 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23310 dwarf2_per_objfile->n_comp_units);
23311 make_cleanup (xfree, psymtab_cu_index_map);
23312
23313 /* The CU list is already sorted, so we don't need to do additional
23314 work here. Also, the debug_types entries do not appear in
23315 all_comp_units, but only in their own hash table. */
23316 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23317 {
23318 struct dwarf2_per_cu_data *per_cu
23319 = dwarf2_per_objfile->all_comp_units[i];
23320 struct partial_symtab *psymtab = per_cu->v.psymtab;
23321 gdb_byte val[8];
23322 struct psymtab_cu_index_map *map;
23323 void **slot;
23324
23325 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23326 It may be referenced from a local scope but in such case it does not
23327 need to be present in .gdb_index. */
23328 if (psymtab == NULL)
23329 continue;
23330
23331 if (psymtab->user == NULL)
23332 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23333
23334 map = &psymtab_cu_index_map[i];
23335 map->psymtab = psymtab;
23336 map->cu_index = i;
23337 slot = htab_find_slot (cu_index_htab, map, INSERT);
23338 gdb_assert (slot != NULL);
23339 gdb_assert (*slot == NULL);
23340 *slot = map;
23341
23342 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23343 per_cu->offset.sect_off);
23344 obstack_grow (&cu_list, val, 8);
23345 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23346 obstack_grow (&cu_list, val, 8);
23347 }
23348
23349 /* Dump the address map. */
23350 write_address_map (objfile, &addr_obstack, cu_index_htab);
23351
23352 /* Write out the .debug_type entries, if any. */
23353 if (dwarf2_per_objfile->signatured_types)
23354 {
23355 struct signatured_type_index_data sig_data;
23356
23357 sig_data.objfile = objfile;
23358 sig_data.symtab = symtab;
23359 sig_data.types_list = &types_cu_list;
23360 sig_data.psyms_seen = psyms_seen;
23361 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23362 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23363 write_one_signatured_type, &sig_data);
23364 }
23365
23366 /* Now that we've processed all symbols we can shrink their cu_indices
23367 lists. */
23368 uniquify_cu_indices (symtab);
23369
23370 obstack_init (&constant_pool);
23371 make_cleanup_obstack_free (&constant_pool);
23372 obstack_init (&symtab_obstack);
23373 make_cleanup_obstack_free (&symtab_obstack);
23374 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23375
23376 obstack_init (&contents);
23377 make_cleanup_obstack_free (&contents);
23378 size_of_contents = 6 * sizeof (offset_type);
23379 total_len = size_of_contents;
23380
23381 /* The version number. */
23382 val = MAYBE_SWAP (8);
23383 obstack_grow (&contents, &val, sizeof (val));
23384
23385 /* The offset of the CU list from the start of the file. */
23386 val = MAYBE_SWAP (total_len);
23387 obstack_grow (&contents, &val, sizeof (val));
23388 total_len += obstack_object_size (&cu_list);
23389
23390 /* The offset of the types CU list from the start of the file. */
23391 val = MAYBE_SWAP (total_len);
23392 obstack_grow (&contents, &val, sizeof (val));
23393 total_len += obstack_object_size (&types_cu_list);
23394
23395 /* The offset of the address table from the start of the file. */
23396 val = MAYBE_SWAP (total_len);
23397 obstack_grow (&contents, &val, sizeof (val));
23398 total_len += obstack_object_size (&addr_obstack);
23399
23400 /* The offset of the symbol table from the start of the file. */
23401 val = MAYBE_SWAP (total_len);
23402 obstack_grow (&contents, &val, sizeof (val));
23403 total_len += obstack_object_size (&symtab_obstack);
23404
23405 /* The offset of the constant pool from the start of the file. */
23406 val = MAYBE_SWAP (total_len);
23407 obstack_grow (&contents, &val, sizeof (val));
23408 total_len += obstack_object_size (&constant_pool);
23409
23410 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23411
23412 write_obstack (out_file, &contents);
23413 write_obstack (out_file, &cu_list);
23414 write_obstack (out_file, &types_cu_list);
23415 write_obstack (out_file, &addr_obstack);
23416 write_obstack (out_file, &symtab_obstack);
23417 write_obstack (out_file, &constant_pool);
23418
23419 fclose (out_file);
23420
23421 /* We want to keep the file, so we set cleanup_filename to NULL
23422 here. See unlink_if_set. */
23423 cleanup_filename = NULL;
23424
23425 do_cleanups (cleanup);
23426 }
23427
23428 /* Implementation of the `save gdb-index' command.
23429
23430 Note that the file format used by this command is documented in the
23431 GDB manual. Any changes here must be documented there. */
23432
23433 static void
23434 save_gdb_index_command (char *arg, int from_tty)
23435 {
23436 struct objfile *objfile;
23437
23438 if (!arg || !*arg)
23439 error (_("usage: save gdb-index DIRECTORY"));
23440
23441 ALL_OBJFILES (objfile)
23442 {
23443 struct stat st;
23444
23445 /* If the objfile does not correspond to an actual file, skip it. */
23446 if (stat (objfile_name (objfile), &st) < 0)
23447 continue;
23448
23449 dwarf2_per_objfile
23450 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23451 dwarf2_objfile_data_key);
23452 if (dwarf2_per_objfile)
23453 {
23454
23455 TRY
23456 {
23457 write_psymtabs_to_index (objfile, arg);
23458 }
23459 CATCH (except, RETURN_MASK_ERROR)
23460 {
23461 exception_fprintf (gdb_stderr, except,
23462 _("Error while writing index for `%s': "),
23463 objfile_name (objfile));
23464 }
23465 END_CATCH
23466 }
23467 }
23468 }
23469
23470 \f
23471
23472 int dwarf_always_disassemble;
23473
23474 static void
23475 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23476 struct cmd_list_element *c, const char *value)
23477 {
23478 fprintf_filtered (file,
23479 _("Whether to always disassemble "
23480 "DWARF expressions is %s.\n"),
23481 value);
23482 }
23483
23484 static void
23485 show_check_physname (struct ui_file *file, int from_tty,
23486 struct cmd_list_element *c, const char *value)
23487 {
23488 fprintf_filtered (file,
23489 _("Whether to check \"physname\" is %s.\n"),
23490 value);
23491 }
23492
23493 void _initialize_dwarf2_read (void);
23494
23495 void
23496 _initialize_dwarf2_read (void)
23497 {
23498 struct cmd_list_element *c;
23499
23500 dwarf2_objfile_data_key
23501 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23502
23503 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23504 Set DWARF specific variables.\n\
23505 Configure DWARF variables such as the cache size"),
23506 &set_dwarf_cmdlist, "maintenance set dwarf ",
23507 0/*allow-unknown*/, &maintenance_set_cmdlist);
23508
23509 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23510 Show DWARF specific variables\n\
23511 Show DWARF variables such as the cache size"),
23512 &show_dwarf_cmdlist, "maintenance show dwarf ",
23513 0/*allow-unknown*/, &maintenance_show_cmdlist);
23514
23515 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23516 &dwarf_max_cache_age, _("\
23517 Set the upper bound on the age of cached DWARF compilation units."), _("\
23518 Show the upper bound on the age of cached DWARF compilation units."), _("\
23519 A higher limit means that cached compilation units will be stored\n\
23520 in memory longer, and more total memory will be used. Zero disables\n\
23521 caching, which can slow down startup."),
23522 NULL,
23523 show_dwarf_max_cache_age,
23524 &set_dwarf_cmdlist,
23525 &show_dwarf_cmdlist);
23526
23527 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23528 &dwarf_always_disassemble, _("\
23529 Set whether `info address' always disassembles DWARF expressions."), _("\
23530 Show whether `info address' always disassembles DWARF expressions."), _("\
23531 When enabled, DWARF expressions are always printed in an assembly-like\n\
23532 syntax. When disabled, expressions will be printed in a more\n\
23533 conversational style, when possible."),
23534 NULL,
23535 show_dwarf_always_disassemble,
23536 &set_dwarf_cmdlist,
23537 &show_dwarf_cmdlist);
23538
23539 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23540 Set debugging of the DWARF reader."), _("\
23541 Show debugging of the DWARF reader."), _("\
23542 When enabled (non-zero), debugging messages are printed during DWARF\n\
23543 reading and symtab expansion. A value of 1 (one) provides basic\n\
23544 information. A value greater than 1 provides more verbose information."),
23545 NULL,
23546 NULL,
23547 &setdebuglist, &showdebuglist);
23548
23549 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23550 Set debugging of the DWARF DIE reader."), _("\
23551 Show debugging of the DWARF DIE reader."), _("\
23552 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23553 The value is the maximum depth to print."),
23554 NULL,
23555 NULL,
23556 &setdebuglist, &showdebuglist);
23557
23558 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23559 Set debugging of the dwarf line reader."), _("\
23560 Show debugging of the dwarf line reader."), _("\
23561 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23562 A value of 1 (one) provides basic information.\n\
23563 A value greater than 1 provides more verbose information."),
23564 NULL,
23565 NULL,
23566 &setdebuglist, &showdebuglist);
23567
23568 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23569 Set cross-checking of \"physname\" code against demangler."), _("\
23570 Show cross-checking of \"physname\" code against demangler."), _("\
23571 When enabled, GDB's internal \"physname\" code is checked against\n\
23572 the demangler."),
23573 NULL, show_check_physname,
23574 &setdebuglist, &showdebuglist);
23575
23576 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23577 no_class, &use_deprecated_index_sections, _("\
23578 Set whether to use deprecated gdb_index sections."), _("\
23579 Show whether to use deprecated gdb_index sections."), _("\
23580 When enabled, deprecated .gdb_index sections are used anyway.\n\
23581 Normally they are ignored either because of a missing feature or\n\
23582 performance issue.\n\
23583 Warning: This option must be enabled before gdb reads the file."),
23584 NULL,
23585 NULL,
23586 &setlist, &showlist);
23587
23588 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23589 _("\
23590 Save a gdb-index file.\n\
23591 Usage: save gdb-index DIRECTORY"),
23592 &save_cmdlist);
23593 set_cmd_completer (c, filename_completer);
23594
23595 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23596 &dwarf2_locexpr_funcs);
23597 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23598 &dwarf2_loclist_funcs);
23599
23600 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23601 &dwarf2_block_frame_base_locexpr_funcs);
23602 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23603 &dwarf2_block_frame_base_loclist_funcs);
23604 }
This page took 0.987697 seconds and 4 git commands to generate.