gdb
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "gdb-demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50 #include "block.h"
51 #include "addrmap.h"
52 #include "typeprint.h"
53 #include "jv-lang.h"
54 #include "psympriv.h"
55 #include "exceptions.h"
56 #include "gdb_stat.h"
57 #include "completer.h"
58 #include "vec.h"
59 #include "c-lang.h"
60 #include "valprint.h"
61 #include <ctype.h>
62
63 #include <fcntl.h>
64 #include "gdb_string.h"
65 #include "gdb_assert.h"
66 #include <sys/types.h>
67 #ifdef HAVE_ZLIB_H
68 #include <zlib.h>
69 #endif
70 #ifdef HAVE_MMAP
71 #include <sys/mman.h>
72 #ifndef MAP_FAILED
73 #define MAP_FAILED ((void *) -1)
74 #endif
75 #endif
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 #if 0
81 /* .debug_info header for a compilation unit
82 Because of alignment constraints, this structure has padding and cannot
83 be mapped directly onto the beginning of the .debug_info section. */
84 typedef struct comp_unit_header
85 {
86 unsigned int length; /* length of the .debug_info
87 contribution */
88 unsigned short version; /* version number -- 2 for DWARF
89 version 2 */
90 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
91 unsigned char addr_size; /* byte size of an address -- 4 */
92 }
93 _COMP_UNIT_HEADER;
94 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
95 #endif
96
97 /* .debug_line statement program prologue
98 Because of alignment constraints, this structure has padding and cannot
99 be mapped directly onto the beginning of the .debug_info section. */
100 typedef struct statement_prologue
101 {
102 unsigned int total_length; /* byte length of the statement
103 information */
104 unsigned short version; /* version number -- 2 for DWARF
105 version 2 */
106 unsigned int prologue_length; /* # bytes between prologue &
107 stmt program */
108 unsigned char minimum_instruction_length; /* byte size of
109 smallest instr */
110 unsigned char default_is_stmt; /* initial value of is_stmt
111 register */
112 char line_base;
113 unsigned char line_range;
114 unsigned char opcode_base; /* number assigned to first special
115 opcode */
116 unsigned char *standard_opcode_lengths;
117 }
118 _STATEMENT_PROLOGUE;
119
120 /* When non-zero, dump DIEs after they are read in. */
121 static int dwarf2_die_debug = 0;
122
123 /* When non-zero, cross-check physname against demangler. */
124 static int check_physname = 0;
125
126 static int pagesize;
127
128 /* When set, the file that we're processing is known to have debugging
129 info for C++ namespaces. GCC 3.3.x did not produce this information,
130 but later versions do. */
131
132 static int processing_has_namespace_info;
133
134 static const struct objfile_data *dwarf2_objfile_data_key;
135
136 struct dwarf2_section_info
137 {
138 asection *asection;
139 gdb_byte *buffer;
140 bfd_size_type size;
141 /* Not NULL if the section was actually mmapped. */
142 void *map_addr;
143 /* Page aligned size of mmapped area. */
144 bfd_size_type map_len;
145 /* True if we have tried to read this section. */
146 int readin;
147 };
148
149 typedef struct dwarf2_section_info dwarf2_section_info_def;
150 DEF_VEC_O (dwarf2_section_info_def);
151
152 /* All offsets in the index are of this type. It must be
153 architecture-independent. */
154 typedef uint32_t offset_type;
155
156 DEF_VEC_I (offset_type);
157
158 /* A description of the mapped index. The file format is described in
159 a comment by the code that writes the index. */
160 struct mapped_index
161 {
162 /* Index data format version. */
163 int version;
164
165 /* The total length of the buffer. */
166 off_t total_size;
167
168 /* A pointer to the address table data. */
169 const gdb_byte *address_table;
170
171 /* Size of the address table data in bytes. */
172 offset_type address_table_size;
173
174 /* The symbol table, implemented as a hash table. */
175 const offset_type *symbol_table;
176
177 /* Size in slots, each slot is 2 offset_types. */
178 offset_type symbol_table_slots;
179
180 /* A pointer to the constant pool. */
181 const char *constant_pool;
182 };
183
184 struct dwarf2_per_objfile
185 {
186 struct dwarf2_section_info info;
187 struct dwarf2_section_info abbrev;
188 struct dwarf2_section_info line;
189 struct dwarf2_section_info loc;
190 struct dwarf2_section_info macinfo;
191 struct dwarf2_section_info macro;
192 struct dwarf2_section_info str;
193 struct dwarf2_section_info ranges;
194 struct dwarf2_section_info frame;
195 struct dwarf2_section_info eh_frame;
196 struct dwarf2_section_info gdb_index;
197
198 VEC (dwarf2_section_info_def) *types;
199
200 /* Back link. */
201 struct objfile *objfile;
202
203 /* A list of all the compilation units. This is used to locate
204 the target compilation unit of a particular reference. */
205 struct dwarf2_per_cu_data **all_comp_units;
206
207 /* The number of compilation units in ALL_COMP_UNITS. */
208 int n_comp_units;
209
210 /* The number of .debug_types-related CUs. */
211 int n_type_comp_units;
212
213 /* The .debug_types-related CUs. */
214 struct dwarf2_per_cu_data **type_comp_units;
215
216 /* A chain of compilation units that are currently read in, so that
217 they can be freed later. */
218 struct dwarf2_per_cu_data *read_in_chain;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* A flag indicating wether this objfile has a section loaded at a
225 VMA of 0. */
226 int has_section_at_zero;
227
228 /* True if we are using the mapped index,
229 or we are faking it for OBJF_READNOW's sake. */
230 unsigned char using_index;
231
232 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
233 struct mapped_index *index_table;
234
235 /* When using index_table, this keeps track of all quick_file_names entries.
236 TUs can share line table entries with CUs or other TUs, and there can be
237 a lot more TUs than unique line tables, so we maintain a separate table
238 of all line table entries to support the sharing. */
239 htab_t quick_file_names_table;
240
241 /* Set during partial symbol reading, to prevent queueing of full
242 symbols. */
243 int reading_partial_symbols;
244
245 /* Table mapping type .debug_info DIE offsets to types.
246 This is NULL if not allocated yet.
247 It (currently) makes sense to allocate debug_types_type_hash lazily.
248 To keep things simple we allocate both lazily. */
249 htab_t debug_info_type_hash;
250
251 /* Table mapping type .debug_types DIE offsets to types.
252 This is NULL if not allocated yet. */
253 htab_t debug_types_type_hash;
254 };
255
256 static struct dwarf2_per_objfile *dwarf2_per_objfile;
257
258 /* Default names of the debugging sections. */
259
260 /* Note that if the debugging section has been compressed, it might
261 have a name like .zdebug_info. */
262
263 static const struct dwarf2_debug_sections dwarf2_elf_names = {
264 { ".debug_info", ".zdebug_info" },
265 { ".debug_abbrev", ".zdebug_abbrev" },
266 { ".debug_line", ".zdebug_line" },
267 { ".debug_loc", ".zdebug_loc" },
268 { ".debug_macinfo", ".zdebug_macinfo" },
269 { ".debug_macro", ".zdebug_macro" },
270 { ".debug_str", ".zdebug_str" },
271 { ".debug_ranges", ".zdebug_ranges" },
272 { ".debug_types", ".zdebug_types" },
273 { ".debug_frame", ".zdebug_frame" },
274 { ".eh_frame", NULL },
275 { ".gdb_index", ".zgdb_index" },
276 23
277 };
278
279 /* local data types */
280
281 /* We hold several abbreviation tables in memory at the same time. */
282 #ifndef ABBREV_HASH_SIZE
283 #define ABBREV_HASH_SIZE 121
284 #endif
285
286 /* The data in a compilation unit header, after target2host
287 translation, looks like this. */
288 struct comp_unit_head
289 {
290 unsigned int length;
291 short version;
292 unsigned char addr_size;
293 unsigned char signed_addr_p;
294 unsigned int abbrev_offset;
295
296 /* Size of file offsets; either 4 or 8. */
297 unsigned int offset_size;
298
299 /* Size of the length field; either 4 or 12. */
300 unsigned int initial_length_size;
301
302 /* Offset to the first byte of this compilation unit header in the
303 .debug_info section, for resolving relative reference dies. */
304 unsigned int offset;
305
306 /* Offset to first die in this cu from the start of the cu.
307 This will be the first byte following the compilation unit header. */
308 unsigned int first_die_offset;
309 };
310
311 /* Type used for delaying computation of method physnames.
312 See comments for compute_delayed_physnames. */
313 struct delayed_method_info
314 {
315 /* The type to which the method is attached, i.e., its parent class. */
316 struct type *type;
317
318 /* The index of the method in the type's function fieldlists. */
319 int fnfield_index;
320
321 /* The index of the method in the fieldlist. */
322 int index;
323
324 /* The name of the DIE. */
325 const char *name;
326
327 /* The DIE associated with this method. */
328 struct die_info *die;
329 };
330
331 typedef struct delayed_method_info delayed_method_info;
332 DEF_VEC_O (delayed_method_info);
333
334 /* Internal state when decoding a particular compilation unit. */
335 struct dwarf2_cu
336 {
337 /* The objfile containing this compilation unit. */
338 struct objfile *objfile;
339
340 /* The header of the compilation unit. */
341 struct comp_unit_head header;
342
343 /* Base address of this compilation unit. */
344 CORE_ADDR base_address;
345
346 /* Non-zero if base_address has been set. */
347 int base_known;
348
349 struct function_range *first_fn, *last_fn, *cached_fn;
350
351 /* The language we are debugging. */
352 enum language language;
353 const struct language_defn *language_defn;
354
355 const char *producer;
356
357 /* The generic symbol table building routines have separate lists for
358 file scope symbols and all all other scopes (local scopes). So
359 we need to select the right one to pass to add_symbol_to_list().
360 We do it by keeping a pointer to the correct list in list_in_scope.
361
362 FIXME: The original dwarf code just treated the file scope as the
363 first local scope, and all other local scopes as nested local
364 scopes, and worked fine. Check to see if we really need to
365 distinguish these in buildsym.c. */
366 struct pending **list_in_scope;
367
368 /* DWARF abbreviation table associated with this compilation unit. */
369 struct abbrev_info **dwarf2_abbrevs;
370
371 /* Storage for the abbrev table. */
372 struct obstack abbrev_obstack;
373
374 /* Hash table holding all the loaded partial DIEs. */
375 htab_t partial_dies;
376
377 /* Storage for things with the same lifetime as this read-in compilation
378 unit, including partial DIEs. */
379 struct obstack comp_unit_obstack;
380
381 /* When multiple dwarf2_cu structures are living in memory, this field
382 chains them all together, so that they can be released efficiently.
383 We will probably also want a generation counter so that most-recently-used
384 compilation units are cached... */
385 struct dwarf2_per_cu_data *read_in_chain;
386
387 /* Backchain to our per_cu entry if the tree has been built. */
388 struct dwarf2_per_cu_data *per_cu;
389
390 /* How many compilation units ago was this CU last referenced? */
391 int last_used;
392
393 /* A hash table of die offsets for following references. */
394 htab_t die_hash;
395
396 /* Full DIEs if read in. */
397 struct die_info *dies;
398
399 /* A set of pointers to dwarf2_per_cu_data objects for compilation
400 units referenced by this one. Only set during full symbol processing;
401 partial symbol tables do not have dependencies. */
402 htab_t dependencies;
403
404 /* Header data from the line table, during full symbol processing. */
405 struct line_header *line_header;
406
407 /* A list of methods which need to have physnames computed
408 after all type information has been read. */
409 VEC (delayed_method_info) *method_list;
410
411 /* To be copied to symtab->call_site_htab. */
412 htab_t call_site_htab;
413
414 /* Mark used when releasing cached dies. */
415 unsigned int mark : 1;
416
417 /* This flag will be set if this compilation unit might include
418 inter-compilation-unit references. */
419 unsigned int has_form_ref_addr : 1;
420
421 /* This flag will be set if this compilation unit includes any
422 DW_TAG_namespace DIEs. If we know that there are explicit
423 DIEs for namespaces, we don't need to try to infer them
424 from mangled names. */
425 unsigned int has_namespace_info : 1;
426
427 /* This CU references .debug_loc. See the symtab->locations_valid field.
428 This test is imperfect as there may exist optimized debug code not using
429 any location list and still facing inlining issues if handled as
430 unoptimized code. For a future better test see GCC PR other/32998. */
431
432 unsigned int has_loclist : 1;
433 };
434
435 /* Persistent data held for a compilation unit, even when not
436 processing it. We put a pointer to this structure in the
437 read_symtab_private field of the psymtab. If we encounter
438 inter-compilation-unit references, we also maintain a sorted
439 list of all compilation units. */
440
441 struct dwarf2_per_cu_data
442 {
443 /* The start offset and length of this compilation unit. 2**29-1
444 bytes should suffice to store the length of any compilation unit
445 - if it doesn't, GDB will fall over anyway.
446 NOTE: Unlike comp_unit_head.length, this length includes
447 initial_length_size. */
448 unsigned int offset;
449 unsigned int length : 29;
450
451 /* Flag indicating this compilation unit will be read in before
452 any of the current compilation units are processed. */
453 unsigned int queued : 1;
454
455 /* This flag will be set if we need to load absolutely all DIEs
456 for this compilation unit, instead of just the ones we think
457 are interesting. It gets set if we look for a DIE in the
458 hash table and don't find it. */
459 unsigned int load_all_dies : 1;
460
461 /* Non-null if this CU is from .debug_types; in which case it points
462 to the section. Otherwise it's from .debug_info. */
463 struct dwarf2_section_info *debug_type_section;
464
465 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
466 of the CU cache it gets reset to NULL again. */
467 struct dwarf2_cu *cu;
468
469 /* The corresponding objfile. */
470 struct objfile *objfile;
471
472 /* When using partial symbol tables, the 'psymtab' field is active.
473 Otherwise the 'quick' field is active. */
474 union
475 {
476 /* The partial symbol table associated with this compilation unit,
477 or NULL for partial units (which do not have an associated
478 symtab). */
479 struct partial_symtab *psymtab;
480
481 /* Data needed by the "quick" functions. */
482 struct dwarf2_per_cu_quick_data *quick;
483 } v;
484 };
485
486 /* Entry in the signatured_types hash table. */
487
488 struct signatured_type
489 {
490 ULONGEST signature;
491
492 /* Offset in .debug_types of the type defined by this TU. */
493 unsigned int type_offset;
494
495 /* The CU(/TU) of this type. */
496 struct dwarf2_per_cu_data per_cu;
497 };
498
499 /* Struct used to pass misc. parameters to read_die_and_children, et
500 al. which are used for both .debug_info and .debug_types dies.
501 All parameters here are unchanging for the life of the call. This
502 struct exists to abstract away the constant parameters of die
503 reading. */
504
505 struct die_reader_specs
506 {
507 /* The bfd of this objfile. */
508 bfd* abfd;
509
510 /* The CU of the DIE we are parsing. */
511 struct dwarf2_cu *cu;
512
513 /* Pointer to start of section buffer.
514 This is either the start of .debug_info or .debug_types. */
515 const gdb_byte *buffer;
516 };
517
518 /* The line number information for a compilation unit (found in the
519 .debug_line section) begins with a "statement program header",
520 which contains the following information. */
521 struct line_header
522 {
523 unsigned int total_length;
524 unsigned short version;
525 unsigned int header_length;
526 unsigned char minimum_instruction_length;
527 unsigned char maximum_ops_per_instruction;
528 unsigned char default_is_stmt;
529 int line_base;
530 unsigned char line_range;
531 unsigned char opcode_base;
532
533 /* standard_opcode_lengths[i] is the number of operands for the
534 standard opcode whose value is i. This means that
535 standard_opcode_lengths[0] is unused, and the last meaningful
536 element is standard_opcode_lengths[opcode_base - 1]. */
537 unsigned char *standard_opcode_lengths;
538
539 /* The include_directories table. NOTE! These strings are not
540 allocated with xmalloc; instead, they are pointers into
541 debug_line_buffer. If you try to free them, `free' will get
542 indigestion. */
543 unsigned int num_include_dirs, include_dirs_size;
544 char **include_dirs;
545
546 /* The file_names table. NOTE! These strings are not allocated
547 with xmalloc; instead, they are pointers into debug_line_buffer.
548 Don't try to free them directly. */
549 unsigned int num_file_names, file_names_size;
550 struct file_entry
551 {
552 char *name;
553 unsigned int dir_index;
554 unsigned int mod_time;
555 unsigned int length;
556 int included_p; /* Non-zero if referenced by the Line Number Program. */
557 struct symtab *symtab; /* The associated symbol table, if any. */
558 } *file_names;
559
560 /* The start and end of the statement program following this
561 header. These point into dwarf2_per_objfile->line_buffer. */
562 gdb_byte *statement_program_start, *statement_program_end;
563 };
564
565 /* When we construct a partial symbol table entry we only
566 need this much information. */
567 struct partial_die_info
568 {
569 /* Offset of this DIE. */
570 unsigned int offset;
571
572 /* DWARF-2 tag for this DIE. */
573 ENUM_BITFIELD(dwarf_tag) tag : 16;
574
575 /* Assorted flags describing the data found in this DIE. */
576 unsigned int has_children : 1;
577 unsigned int is_external : 1;
578 unsigned int is_declaration : 1;
579 unsigned int has_type : 1;
580 unsigned int has_specification : 1;
581 unsigned int has_pc_info : 1;
582
583 /* Flag set if the SCOPE field of this structure has been
584 computed. */
585 unsigned int scope_set : 1;
586
587 /* Flag set if the DIE has a byte_size attribute. */
588 unsigned int has_byte_size : 1;
589
590 /* Flag set if any of the DIE's children are template arguments. */
591 unsigned int has_template_arguments : 1;
592
593 /* Flag set if fixup_partial_die has been called on this die. */
594 unsigned int fixup_called : 1;
595
596 /* The name of this DIE. Normally the value of DW_AT_name, but
597 sometimes a default name for unnamed DIEs. */
598 char *name;
599
600 /* The linkage name, if present. */
601 const char *linkage_name;
602
603 /* The scope to prepend to our children. This is generally
604 allocated on the comp_unit_obstack, so will disappear
605 when this compilation unit leaves the cache. */
606 char *scope;
607
608 /* The location description associated with this DIE, if any. */
609 struct dwarf_block *locdesc;
610
611 /* If HAS_PC_INFO, the PC range associated with this DIE. */
612 CORE_ADDR lowpc;
613 CORE_ADDR highpc;
614
615 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
616 DW_AT_sibling, if any. */
617 /* NOTE: This member isn't strictly necessary, read_partial_die could
618 return DW_AT_sibling values to its caller load_partial_dies. */
619 gdb_byte *sibling;
620
621 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
622 DW_AT_specification (or DW_AT_abstract_origin or
623 DW_AT_extension). */
624 unsigned int spec_offset;
625
626 /* Pointers to this DIE's parent, first child, and next sibling,
627 if any. */
628 struct partial_die_info *die_parent, *die_child, *die_sibling;
629 };
630
631 /* This data structure holds the information of an abbrev. */
632 struct abbrev_info
633 {
634 unsigned int number; /* number identifying abbrev */
635 enum dwarf_tag tag; /* dwarf tag */
636 unsigned short has_children; /* boolean */
637 unsigned short num_attrs; /* number of attributes */
638 struct attr_abbrev *attrs; /* an array of attribute descriptions */
639 struct abbrev_info *next; /* next in chain */
640 };
641
642 struct attr_abbrev
643 {
644 ENUM_BITFIELD(dwarf_attribute) name : 16;
645 ENUM_BITFIELD(dwarf_form) form : 16;
646 };
647
648 /* Attributes have a name and a value. */
649 struct attribute
650 {
651 ENUM_BITFIELD(dwarf_attribute) name : 16;
652 ENUM_BITFIELD(dwarf_form) form : 15;
653
654 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
655 field should be in u.str (existing only for DW_STRING) but it is kept
656 here for better struct attribute alignment. */
657 unsigned int string_is_canonical : 1;
658
659 union
660 {
661 char *str;
662 struct dwarf_block *blk;
663 ULONGEST unsnd;
664 LONGEST snd;
665 CORE_ADDR addr;
666 struct signatured_type *signatured_type;
667 }
668 u;
669 };
670
671 /* This data structure holds a complete die structure. */
672 struct die_info
673 {
674 /* DWARF-2 tag for this DIE. */
675 ENUM_BITFIELD(dwarf_tag) tag : 16;
676
677 /* Number of attributes */
678 unsigned char num_attrs;
679
680 /* True if we're presently building the full type name for the
681 type derived from this DIE. */
682 unsigned char building_fullname : 1;
683
684 /* Abbrev number */
685 unsigned int abbrev;
686
687 /* Offset in .debug_info or .debug_types section. */
688 unsigned int offset;
689
690 /* The dies in a compilation unit form an n-ary tree. PARENT
691 points to this die's parent; CHILD points to the first child of
692 this node; and all the children of a given node are chained
693 together via their SIBLING fields. */
694 struct die_info *child; /* Its first child, if any. */
695 struct die_info *sibling; /* Its next sibling, if any. */
696 struct die_info *parent; /* Its parent, if any. */
697
698 /* An array of attributes, with NUM_ATTRS elements. There may be
699 zero, but it's not common and zero-sized arrays are not
700 sufficiently portable C. */
701 struct attribute attrs[1];
702 };
703
704 struct function_range
705 {
706 const char *name;
707 CORE_ADDR lowpc, highpc;
708 int seen_line;
709 struct function_range *next;
710 };
711
712 /* Get at parts of an attribute structure. */
713
714 #define DW_STRING(attr) ((attr)->u.str)
715 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
716 #define DW_UNSND(attr) ((attr)->u.unsnd)
717 #define DW_BLOCK(attr) ((attr)->u.blk)
718 #define DW_SND(attr) ((attr)->u.snd)
719 #define DW_ADDR(attr) ((attr)->u.addr)
720 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
721
722 /* Blocks are a bunch of untyped bytes. */
723 struct dwarf_block
724 {
725 unsigned int size;
726
727 /* Valid only if SIZE is not zero. */
728 gdb_byte *data;
729 };
730
731 #ifndef ATTR_ALLOC_CHUNK
732 #define ATTR_ALLOC_CHUNK 4
733 #endif
734
735 /* Allocate fields for structs, unions and enums in this size. */
736 #ifndef DW_FIELD_ALLOC_CHUNK
737 #define DW_FIELD_ALLOC_CHUNK 4
738 #endif
739
740 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
741 but this would require a corresponding change in unpack_field_as_long
742 and friends. */
743 static int bits_per_byte = 8;
744
745 /* The routines that read and process dies for a C struct or C++ class
746 pass lists of data member fields and lists of member function fields
747 in an instance of a field_info structure, as defined below. */
748 struct field_info
749 {
750 /* List of data member and baseclasses fields. */
751 struct nextfield
752 {
753 struct nextfield *next;
754 int accessibility;
755 int virtuality;
756 struct field field;
757 }
758 *fields, *baseclasses;
759
760 /* Number of fields (including baseclasses). */
761 int nfields;
762
763 /* Number of baseclasses. */
764 int nbaseclasses;
765
766 /* Set if the accesibility of one of the fields is not public. */
767 int non_public_fields;
768
769 /* Member function fields array, entries are allocated in the order they
770 are encountered in the object file. */
771 struct nextfnfield
772 {
773 struct nextfnfield *next;
774 struct fn_field fnfield;
775 }
776 *fnfields;
777
778 /* Member function fieldlist array, contains name of possibly overloaded
779 member function, number of overloaded member functions and a pointer
780 to the head of the member function field chain. */
781 struct fnfieldlist
782 {
783 char *name;
784 int length;
785 struct nextfnfield *head;
786 }
787 *fnfieldlists;
788
789 /* Number of entries in the fnfieldlists array. */
790 int nfnfields;
791
792 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
793 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
794 struct typedef_field_list
795 {
796 struct typedef_field field;
797 struct typedef_field_list *next;
798 }
799 *typedef_field_list;
800 unsigned typedef_field_list_count;
801 };
802
803 /* One item on the queue of compilation units to read in full symbols
804 for. */
805 struct dwarf2_queue_item
806 {
807 struct dwarf2_per_cu_data *per_cu;
808 struct dwarf2_queue_item *next;
809 };
810
811 /* The current queue. */
812 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
813
814 /* Loaded secondary compilation units are kept in memory until they
815 have not been referenced for the processing of this many
816 compilation units. Set this to zero to disable caching. Cache
817 sizes of up to at least twenty will improve startup time for
818 typical inter-CU-reference binaries, at an obvious memory cost. */
819 static int dwarf2_max_cache_age = 5;
820 static void
821 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
822 struct cmd_list_element *c, const char *value)
823 {
824 fprintf_filtered (file, _("The upper bound on the age of cached "
825 "dwarf2 compilation units is %s.\n"),
826 value);
827 }
828
829
830 /* Various complaints about symbol reading that don't abort the process. */
831
832 static void
833 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
834 {
835 complaint (&symfile_complaints,
836 _("statement list doesn't fit in .debug_line section"));
837 }
838
839 static void
840 dwarf2_debug_line_missing_file_complaint (void)
841 {
842 complaint (&symfile_complaints,
843 _(".debug_line section has line data without a file"));
844 }
845
846 static void
847 dwarf2_debug_line_missing_end_sequence_complaint (void)
848 {
849 complaint (&symfile_complaints,
850 _(".debug_line section has line "
851 "program sequence without an end"));
852 }
853
854 static void
855 dwarf2_complex_location_expr_complaint (void)
856 {
857 complaint (&symfile_complaints, _("location expression too complex"));
858 }
859
860 static void
861 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
862 int arg3)
863 {
864 complaint (&symfile_complaints,
865 _("const value length mismatch for '%s', got %d, expected %d"),
866 arg1, arg2, arg3);
867 }
868
869 static void
870 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
871 {
872 complaint (&symfile_complaints,
873 _("macro info runs off end of `%s' section"),
874 section->asection->name);
875 }
876
877 static void
878 dwarf2_macro_malformed_definition_complaint (const char *arg1)
879 {
880 complaint (&symfile_complaints,
881 _("macro debug info contains a "
882 "malformed macro definition:\n`%s'"),
883 arg1);
884 }
885
886 static void
887 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
888 {
889 complaint (&symfile_complaints,
890 _("invalid attribute class or form for '%s' in '%s'"),
891 arg1, arg2);
892 }
893
894 /* local function prototypes */
895
896 static void dwarf2_locate_sections (bfd *, asection *, void *);
897
898 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
899 struct objfile *);
900
901 static void dwarf2_find_base_address (struct die_info *die,
902 struct dwarf2_cu *cu);
903
904 static void dwarf2_build_psymtabs_hard (struct objfile *);
905
906 static void scan_partial_symbols (struct partial_die_info *,
907 CORE_ADDR *, CORE_ADDR *,
908 int, struct dwarf2_cu *);
909
910 static void add_partial_symbol (struct partial_die_info *,
911 struct dwarf2_cu *);
912
913 static void add_partial_namespace (struct partial_die_info *pdi,
914 CORE_ADDR *lowpc, CORE_ADDR *highpc,
915 int need_pc, struct dwarf2_cu *cu);
916
917 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
918 CORE_ADDR *highpc, int need_pc,
919 struct dwarf2_cu *cu);
920
921 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
922 struct dwarf2_cu *cu);
923
924 static void add_partial_subprogram (struct partial_die_info *pdi,
925 CORE_ADDR *lowpc, CORE_ADDR *highpc,
926 int need_pc, struct dwarf2_cu *cu);
927
928 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
929 gdb_byte *buffer, gdb_byte *info_ptr,
930 bfd *abfd, struct dwarf2_cu *cu);
931
932 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
933
934 static void psymtab_to_symtab_1 (struct partial_symtab *);
935
936 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
937
938 static void dwarf2_free_abbrev_table (void *);
939
940 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
941
942 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
943 struct dwarf2_cu *);
944
945 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
946 struct dwarf2_cu *);
947
948 static struct partial_die_info *load_partial_dies (bfd *,
949 gdb_byte *, gdb_byte *,
950 int, struct dwarf2_cu *);
951
952 static gdb_byte *read_partial_die (struct partial_die_info *,
953 struct abbrev_info *abbrev,
954 unsigned int, bfd *,
955 gdb_byte *, gdb_byte *,
956 struct dwarf2_cu *);
957
958 static struct partial_die_info *find_partial_die (unsigned int,
959 struct dwarf2_cu *);
960
961 static void fixup_partial_die (struct partial_die_info *,
962 struct dwarf2_cu *);
963
964 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
965 bfd *, gdb_byte *, struct dwarf2_cu *);
966
967 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
968 bfd *, gdb_byte *, struct dwarf2_cu *);
969
970 static unsigned int read_1_byte (bfd *, gdb_byte *);
971
972 static int read_1_signed_byte (bfd *, gdb_byte *);
973
974 static unsigned int read_2_bytes (bfd *, gdb_byte *);
975
976 static unsigned int read_4_bytes (bfd *, gdb_byte *);
977
978 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
979
980 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
981 unsigned int *);
982
983 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
984
985 static LONGEST read_checked_initial_length_and_offset
986 (bfd *, gdb_byte *, const struct comp_unit_head *,
987 unsigned int *, unsigned int *);
988
989 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
990 unsigned int *);
991
992 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
993
994 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
995
996 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
997
998 static char *read_indirect_string (bfd *, gdb_byte *,
999 const struct comp_unit_head *,
1000 unsigned int *);
1001
1002 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1003
1004 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1005
1006 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
1007
1008 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1009
1010 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1011 struct dwarf2_cu *);
1012
1013 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1014 unsigned int,
1015 struct dwarf2_cu *);
1016
1017 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1018 struct dwarf2_cu *cu);
1019
1020 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1021
1022 static struct die_info *die_specification (struct die_info *die,
1023 struct dwarf2_cu **);
1024
1025 static void free_line_header (struct line_header *lh);
1026
1027 static void add_file_name (struct line_header *, char *, unsigned int,
1028 unsigned int, unsigned int);
1029
1030 static struct line_header *(dwarf_decode_line_header
1031 (unsigned int offset,
1032 bfd *abfd, struct dwarf2_cu *cu));
1033
1034 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1035 struct dwarf2_cu *, struct partial_symtab *);
1036
1037 static void dwarf2_start_subfile (char *, const char *, const char *);
1038
1039 static struct symbol *new_symbol (struct die_info *, struct type *,
1040 struct dwarf2_cu *);
1041
1042 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1043 struct dwarf2_cu *, struct symbol *);
1044
1045 static void dwarf2_const_value (struct attribute *, struct symbol *,
1046 struct dwarf2_cu *);
1047
1048 static void dwarf2_const_value_attr (struct attribute *attr,
1049 struct type *type,
1050 const char *name,
1051 struct obstack *obstack,
1052 struct dwarf2_cu *cu, long *value,
1053 gdb_byte **bytes,
1054 struct dwarf2_locexpr_baton **baton);
1055
1056 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1057
1058 static int need_gnat_info (struct dwarf2_cu *);
1059
1060 static struct type *die_descriptive_type (struct die_info *,
1061 struct dwarf2_cu *);
1062
1063 static void set_descriptive_type (struct type *, struct die_info *,
1064 struct dwarf2_cu *);
1065
1066 static struct type *die_containing_type (struct die_info *,
1067 struct dwarf2_cu *);
1068
1069 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1070 struct dwarf2_cu *);
1071
1072 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1073
1074 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1075
1076 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1077
1078 static char *typename_concat (struct obstack *obs, const char *prefix,
1079 const char *suffix, int physname,
1080 struct dwarf2_cu *cu);
1081
1082 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1083
1084 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1085
1086 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1087
1088 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1089
1090 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1091
1092 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1093 struct dwarf2_cu *, struct partial_symtab *);
1094
1095 static int dwarf2_get_pc_bounds (struct die_info *,
1096 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1097 struct partial_symtab *);
1098
1099 static void get_scope_pc_bounds (struct die_info *,
1100 CORE_ADDR *, CORE_ADDR *,
1101 struct dwarf2_cu *);
1102
1103 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1104 CORE_ADDR, struct dwarf2_cu *);
1105
1106 static void dwarf2_add_field (struct field_info *, struct die_info *,
1107 struct dwarf2_cu *);
1108
1109 static void dwarf2_attach_fields_to_type (struct field_info *,
1110 struct type *, struct dwarf2_cu *);
1111
1112 static void dwarf2_add_member_fn (struct field_info *,
1113 struct die_info *, struct type *,
1114 struct dwarf2_cu *);
1115
1116 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1117 struct type *,
1118 struct dwarf2_cu *);
1119
1120 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1121
1122 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1123
1124 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1125
1126 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1127
1128 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1129
1130 static struct type *read_module_type (struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static const char *namespace_name (struct die_info *die,
1134 int *is_anonymous, struct dwarf2_cu *);
1135
1136 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1137
1138 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1139
1140 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1141 struct dwarf2_cu *);
1142
1143 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1144
1145 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1146 gdb_byte *info_ptr,
1147 gdb_byte **new_info_ptr,
1148 struct die_info *parent);
1149
1150 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1151 gdb_byte *info_ptr,
1152 gdb_byte **new_info_ptr,
1153 struct die_info *parent);
1154
1155 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1156 gdb_byte *info_ptr,
1157 gdb_byte **new_info_ptr,
1158 struct die_info *parent);
1159
1160 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1161 struct die_info **, gdb_byte *,
1162 int *);
1163
1164 static void process_die (struct die_info *, struct dwarf2_cu *);
1165
1166 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1167 struct obstack *);
1168
1169 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1170
1171 static const char *dwarf2_full_name (char *name,
1172 struct die_info *die,
1173 struct dwarf2_cu *cu);
1174
1175 static struct die_info *dwarf2_extension (struct die_info *die,
1176 struct dwarf2_cu **);
1177
1178 static char *dwarf_tag_name (unsigned int);
1179
1180 static char *dwarf_attr_name (unsigned int);
1181
1182 static char *dwarf_form_name (unsigned int);
1183
1184 static char *dwarf_bool_name (unsigned int);
1185
1186 static char *dwarf_type_encoding_name (unsigned int);
1187
1188 #if 0
1189 static char *dwarf_cfi_name (unsigned int);
1190 #endif
1191
1192 static struct die_info *sibling_die (struct die_info *);
1193
1194 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1195
1196 static void dump_die_for_error (struct die_info *);
1197
1198 static void dump_die_1 (struct ui_file *, int level, int max_level,
1199 struct die_info *);
1200
1201 /*static*/ void dump_die (struct die_info *, int max_level);
1202
1203 static void store_in_ref_table (struct die_info *,
1204 struct dwarf2_cu *);
1205
1206 static int is_ref_attr (struct attribute *);
1207
1208 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1209
1210 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1211
1212 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1213 struct attribute *,
1214 struct dwarf2_cu **);
1215
1216 static struct die_info *follow_die_ref (struct die_info *,
1217 struct attribute *,
1218 struct dwarf2_cu **);
1219
1220 static struct die_info *follow_die_sig (struct die_info *,
1221 struct attribute *,
1222 struct dwarf2_cu **);
1223
1224 static struct signatured_type *lookup_signatured_type_at_offset
1225 (struct objfile *objfile,
1226 struct dwarf2_section_info *section,
1227 unsigned int offset);
1228
1229 static void read_signatured_type_at_offset (struct objfile *objfile,
1230 struct dwarf2_section_info *sect,
1231 unsigned int offset);
1232
1233 static void read_signatured_type (struct objfile *,
1234 struct signatured_type *type_sig);
1235
1236 /* memory allocation interface */
1237
1238 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1239
1240 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1241
1242 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1243
1244 static void initialize_cu_func_list (struct dwarf2_cu *);
1245
1246 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1247 struct dwarf2_cu *);
1248
1249 static void dwarf_decode_macros (struct line_header *, unsigned int,
1250 char *, bfd *, struct dwarf2_cu *,
1251 struct dwarf2_section_info *,
1252 int);
1253
1254 static int attr_form_is_block (struct attribute *);
1255
1256 static int attr_form_is_section_offset (struct attribute *);
1257
1258 static int attr_form_is_constant (struct attribute *);
1259
1260 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1261 struct dwarf2_loclist_baton *baton,
1262 struct attribute *attr);
1263
1264 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1265 struct symbol *sym,
1266 struct dwarf2_cu *cu);
1267
1268 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1269 struct abbrev_info *abbrev,
1270 struct dwarf2_cu *cu);
1271
1272 static void free_stack_comp_unit (void *);
1273
1274 static hashval_t partial_die_hash (const void *item);
1275
1276 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1277
1278 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1279 (unsigned int offset, struct objfile *objfile);
1280
1281 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1282 (unsigned int offset, struct objfile *objfile);
1283
1284 static void init_one_comp_unit (struct dwarf2_cu *cu,
1285 struct objfile *objfile);
1286
1287 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1288 struct die_info *comp_unit_die);
1289
1290 static void free_one_comp_unit (void *);
1291
1292 static void free_cached_comp_units (void *);
1293
1294 static void age_cached_comp_units (void);
1295
1296 static void free_one_cached_comp_unit (void *);
1297
1298 static struct type *set_die_type (struct die_info *, struct type *,
1299 struct dwarf2_cu *);
1300
1301 static void create_all_comp_units (struct objfile *);
1302
1303 static int create_debug_types_hash_table (struct objfile *objfile);
1304
1305 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1306 struct objfile *);
1307
1308 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1309
1310 static void dwarf2_add_dependence (struct dwarf2_cu *,
1311 struct dwarf2_per_cu_data *);
1312
1313 static void dwarf2_mark (struct dwarf2_cu *);
1314
1315 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1316
1317 static struct type *get_die_type_at_offset (unsigned int,
1318 struct dwarf2_per_cu_data *per_cu);
1319
1320 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1321
1322 static void dwarf2_release_queue (void *dummy);
1323
1324 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1325 struct objfile *objfile);
1326
1327 static void process_queue (struct objfile *objfile);
1328
1329 static void find_file_and_directory (struct die_info *die,
1330 struct dwarf2_cu *cu,
1331 char **name, char **comp_dir);
1332
1333 static char *file_full_name (int file, struct line_header *lh,
1334 const char *comp_dir);
1335
1336 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1337 gdb_byte *info_ptr,
1338 gdb_byte *buffer,
1339 unsigned int buffer_size,
1340 bfd *abfd,
1341 int is_debug_type_section);
1342
1343 static void init_cu_die_reader (struct die_reader_specs *reader,
1344 struct dwarf2_cu *cu);
1345
1346 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1347
1348 #if WORDS_BIGENDIAN
1349
1350 /* Convert VALUE between big- and little-endian. */
1351 static offset_type
1352 byte_swap (offset_type value)
1353 {
1354 offset_type result;
1355
1356 result = (value & 0xff) << 24;
1357 result |= (value & 0xff00) << 8;
1358 result |= (value & 0xff0000) >> 8;
1359 result |= (value & 0xff000000) >> 24;
1360 return result;
1361 }
1362
1363 #define MAYBE_SWAP(V) byte_swap (V)
1364
1365 #else
1366 #define MAYBE_SWAP(V) (V)
1367 #endif /* WORDS_BIGENDIAN */
1368
1369 /* The suffix for an index file. */
1370 #define INDEX_SUFFIX ".gdb-index"
1371
1372 static const char *dwarf2_physname (char *name, struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 /* Try to locate the sections we need for DWARF 2 debugging
1376 information and return true if we have enough to do something.
1377 NAMES points to the dwarf2 section names, or is NULL if the standard
1378 ELF names are used. */
1379
1380 int
1381 dwarf2_has_info (struct objfile *objfile,
1382 const struct dwarf2_debug_sections *names)
1383 {
1384 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1385 if (!dwarf2_per_objfile)
1386 {
1387 /* Initialize per-objfile state. */
1388 struct dwarf2_per_objfile *data
1389 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1390
1391 memset (data, 0, sizeof (*data));
1392 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1393 dwarf2_per_objfile = data;
1394
1395 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1396 (void *) names);
1397 dwarf2_per_objfile->objfile = objfile;
1398 }
1399 return (dwarf2_per_objfile->info.asection != NULL
1400 && dwarf2_per_objfile->abbrev.asection != NULL);
1401 }
1402
1403 /* When loading sections, we look either for uncompressed section or for
1404 compressed section names. */
1405
1406 static int
1407 section_is_p (const char *section_name,
1408 const struct dwarf2_section_names *names)
1409 {
1410 if (names->normal != NULL
1411 && strcmp (section_name, names->normal) == 0)
1412 return 1;
1413 if (names->compressed != NULL
1414 && strcmp (section_name, names->compressed) == 0)
1415 return 1;
1416 return 0;
1417 }
1418
1419 /* This function is mapped across the sections and remembers the
1420 offset and size of each of the debugging sections we are interested
1421 in. */
1422
1423 static void
1424 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1425 {
1426 const struct dwarf2_debug_sections *names;
1427
1428 if (vnames == NULL)
1429 names = &dwarf2_elf_names;
1430 else
1431 names = (const struct dwarf2_debug_sections *) vnames;
1432
1433 if (section_is_p (sectp->name, &names->info))
1434 {
1435 dwarf2_per_objfile->info.asection = sectp;
1436 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1437 }
1438 else if (section_is_p (sectp->name, &names->abbrev))
1439 {
1440 dwarf2_per_objfile->abbrev.asection = sectp;
1441 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1442 }
1443 else if (section_is_p (sectp->name, &names->line))
1444 {
1445 dwarf2_per_objfile->line.asection = sectp;
1446 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1447 }
1448 else if (section_is_p (sectp->name, &names->loc))
1449 {
1450 dwarf2_per_objfile->loc.asection = sectp;
1451 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1452 }
1453 else if (section_is_p (sectp->name, &names->macinfo))
1454 {
1455 dwarf2_per_objfile->macinfo.asection = sectp;
1456 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1457 }
1458 else if (section_is_p (sectp->name, &names->macro))
1459 {
1460 dwarf2_per_objfile->macro.asection = sectp;
1461 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1462 }
1463 else if (section_is_p (sectp->name, &names->str))
1464 {
1465 dwarf2_per_objfile->str.asection = sectp;
1466 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1467 }
1468 else if (section_is_p (sectp->name, &names->frame))
1469 {
1470 dwarf2_per_objfile->frame.asection = sectp;
1471 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1472 }
1473 else if (section_is_p (sectp->name, &names->eh_frame))
1474 {
1475 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1476
1477 if (aflag & SEC_HAS_CONTENTS)
1478 {
1479 dwarf2_per_objfile->eh_frame.asection = sectp;
1480 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1481 }
1482 }
1483 else if (section_is_p (sectp->name, &names->ranges))
1484 {
1485 dwarf2_per_objfile->ranges.asection = sectp;
1486 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1487 }
1488 else if (section_is_p (sectp->name, &names->types))
1489 {
1490 struct dwarf2_section_info type_section;
1491
1492 memset (&type_section, 0, sizeof (type_section));
1493 type_section.asection = sectp;
1494 type_section.size = bfd_get_section_size (sectp);
1495
1496 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1497 &type_section);
1498 }
1499 else if (section_is_p (sectp->name, &names->gdb_index))
1500 {
1501 dwarf2_per_objfile->gdb_index.asection = sectp;
1502 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1503 }
1504
1505 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1506 && bfd_section_vma (abfd, sectp) == 0)
1507 dwarf2_per_objfile->has_section_at_zero = 1;
1508 }
1509
1510 /* Decompress a section that was compressed using zlib. Store the
1511 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1512
1513 static void
1514 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1515 gdb_byte **outbuf, bfd_size_type *outsize)
1516 {
1517 bfd *abfd = objfile->obfd;
1518 #ifndef HAVE_ZLIB_H
1519 error (_("Support for zlib-compressed DWARF data (from '%s') "
1520 "is disabled in this copy of GDB"),
1521 bfd_get_filename (abfd));
1522 #else
1523 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1524 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1525 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1526 bfd_size_type uncompressed_size;
1527 gdb_byte *uncompressed_buffer;
1528 z_stream strm;
1529 int rc;
1530 int header_size = 12;
1531
1532 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1533 || bfd_bread (compressed_buffer,
1534 compressed_size, abfd) != compressed_size)
1535 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1536 bfd_get_filename (abfd));
1537
1538 /* Read the zlib header. In this case, it should be "ZLIB" followed
1539 by the uncompressed section size, 8 bytes in big-endian order. */
1540 if (compressed_size < header_size
1541 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1542 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1543 bfd_get_filename (abfd));
1544 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1545 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1546 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1547 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1548 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1549 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1550 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1551 uncompressed_size += compressed_buffer[11];
1552
1553 /* It is possible the section consists of several compressed
1554 buffers concatenated together, so we uncompress in a loop. */
1555 strm.zalloc = NULL;
1556 strm.zfree = NULL;
1557 strm.opaque = NULL;
1558 strm.avail_in = compressed_size - header_size;
1559 strm.next_in = (Bytef*) compressed_buffer + header_size;
1560 strm.avail_out = uncompressed_size;
1561 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1562 uncompressed_size);
1563 rc = inflateInit (&strm);
1564 while (strm.avail_in > 0)
1565 {
1566 if (rc != Z_OK)
1567 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1568 bfd_get_filename (abfd), rc);
1569 strm.next_out = ((Bytef*) uncompressed_buffer
1570 + (uncompressed_size - strm.avail_out));
1571 rc = inflate (&strm, Z_FINISH);
1572 if (rc != Z_STREAM_END)
1573 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1574 bfd_get_filename (abfd), rc);
1575 rc = inflateReset (&strm);
1576 }
1577 rc = inflateEnd (&strm);
1578 if (rc != Z_OK
1579 || strm.avail_out != 0)
1580 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1581 bfd_get_filename (abfd), rc);
1582
1583 do_cleanups (cleanup);
1584 *outbuf = uncompressed_buffer;
1585 *outsize = uncompressed_size;
1586 #endif
1587 }
1588
1589 /* A helper function that decides whether a section is empty. */
1590
1591 static int
1592 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1593 {
1594 return info->asection == NULL || info->size == 0;
1595 }
1596
1597 /* Read the contents of the section SECTP from object file specified by
1598 OBJFILE, store info about the section into INFO.
1599 If the section is compressed, uncompress it before returning. */
1600
1601 static void
1602 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1603 {
1604 bfd *abfd = objfile->obfd;
1605 asection *sectp = info->asection;
1606 gdb_byte *buf, *retbuf;
1607 unsigned char header[4];
1608
1609 if (info->readin)
1610 return;
1611 info->buffer = NULL;
1612 info->map_addr = NULL;
1613 info->readin = 1;
1614
1615 if (dwarf2_section_empty_p (info))
1616 return;
1617
1618 /* Check if the file has a 4-byte header indicating compression. */
1619 if (info->size > sizeof (header)
1620 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1621 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1622 {
1623 /* Upon decompression, update the buffer and its size. */
1624 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1625 {
1626 zlib_decompress_section (objfile, sectp, &info->buffer,
1627 &info->size);
1628 return;
1629 }
1630 }
1631
1632 #ifdef HAVE_MMAP
1633 if (pagesize == 0)
1634 pagesize = getpagesize ();
1635
1636 /* Only try to mmap sections which are large enough: we don't want to
1637 waste space due to fragmentation. Also, only try mmap for sections
1638 without relocations. */
1639
1640 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1641 {
1642 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1643 MAP_PRIVATE, sectp->filepos,
1644 &info->map_addr, &info->map_len);
1645
1646 if ((caddr_t)info->buffer != MAP_FAILED)
1647 {
1648 #if HAVE_POSIX_MADVISE
1649 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1650 #endif
1651 return;
1652 }
1653 }
1654 #endif
1655
1656 /* If we get here, we are a normal, not-compressed section. */
1657 info->buffer = buf
1658 = obstack_alloc (&objfile->objfile_obstack, info->size);
1659
1660 /* When debugging .o files, we may need to apply relocations; see
1661 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1662 We never compress sections in .o files, so we only need to
1663 try this when the section is not compressed. */
1664 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1665 if (retbuf != NULL)
1666 {
1667 info->buffer = retbuf;
1668 return;
1669 }
1670
1671 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1672 || bfd_bread (buf, info->size, abfd) != info->size)
1673 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1674 bfd_get_filename (abfd));
1675 }
1676
1677 /* A helper function that returns the size of a section in a safe way.
1678 If you are positive that the section has been read before using the
1679 size, then it is safe to refer to the dwarf2_section_info object's
1680 "size" field directly. In other cases, you must call this
1681 function, because for compressed sections the size field is not set
1682 correctly until the section has been read. */
1683
1684 static bfd_size_type
1685 dwarf2_section_size (struct objfile *objfile,
1686 struct dwarf2_section_info *info)
1687 {
1688 if (!info->readin)
1689 dwarf2_read_section (objfile, info);
1690 return info->size;
1691 }
1692
1693 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1694 SECTION_NAME. */
1695
1696 void
1697 dwarf2_get_section_info (struct objfile *objfile,
1698 enum dwarf2_section_enum sect,
1699 asection **sectp, gdb_byte **bufp,
1700 bfd_size_type *sizep)
1701 {
1702 struct dwarf2_per_objfile *data
1703 = objfile_data (objfile, dwarf2_objfile_data_key);
1704 struct dwarf2_section_info *info;
1705
1706 /* We may see an objfile without any DWARF, in which case we just
1707 return nothing. */
1708 if (data == NULL)
1709 {
1710 *sectp = NULL;
1711 *bufp = NULL;
1712 *sizep = 0;
1713 return;
1714 }
1715 switch (sect)
1716 {
1717 case DWARF2_DEBUG_FRAME:
1718 info = &data->frame;
1719 break;
1720 case DWARF2_EH_FRAME:
1721 info = &data->eh_frame;
1722 break;
1723 default:
1724 gdb_assert_not_reached ("unexpected section");
1725 }
1726
1727 dwarf2_read_section (objfile, info);
1728
1729 *sectp = info->asection;
1730 *bufp = info->buffer;
1731 *sizep = info->size;
1732 }
1733
1734 \f
1735 /* DWARF quick_symbols_functions support. */
1736
1737 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1738 unique line tables, so we maintain a separate table of all .debug_line
1739 derived entries to support the sharing.
1740 All the quick functions need is the list of file names. We discard the
1741 line_header when we're done and don't need to record it here. */
1742 struct quick_file_names
1743 {
1744 /* The offset in .debug_line of the line table. We hash on this. */
1745 unsigned int offset;
1746
1747 /* The number of entries in file_names, real_names. */
1748 unsigned int num_file_names;
1749
1750 /* The file names from the line table, after being run through
1751 file_full_name. */
1752 const char **file_names;
1753
1754 /* The file names from the line table after being run through
1755 gdb_realpath. These are computed lazily. */
1756 const char **real_names;
1757 };
1758
1759 /* When using the index (and thus not using psymtabs), each CU has an
1760 object of this type. This is used to hold information needed by
1761 the various "quick" methods. */
1762 struct dwarf2_per_cu_quick_data
1763 {
1764 /* The file table. This can be NULL if there was no file table
1765 or it's currently not read in.
1766 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1767 struct quick_file_names *file_names;
1768
1769 /* The corresponding symbol table. This is NULL if symbols for this
1770 CU have not yet been read. */
1771 struct symtab *symtab;
1772
1773 /* A temporary mark bit used when iterating over all CUs in
1774 expand_symtabs_matching. */
1775 unsigned int mark : 1;
1776
1777 /* True if we've tried to read the file table and found there isn't one.
1778 There will be no point in trying to read it again next time. */
1779 unsigned int no_file_data : 1;
1780 };
1781
1782 /* Hash function for a quick_file_names. */
1783
1784 static hashval_t
1785 hash_file_name_entry (const void *e)
1786 {
1787 const struct quick_file_names *file_data = e;
1788
1789 return file_data->offset;
1790 }
1791
1792 /* Equality function for a quick_file_names. */
1793
1794 static int
1795 eq_file_name_entry (const void *a, const void *b)
1796 {
1797 const struct quick_file_names *ea = a;
1798 const struct quick_file_names *eb = b;
1799
1800 return ea->offset == eb->offset;
1801 }
1802
1803 /* Delete function for a quick_file_names. */
1804
1805 static void
1806 delete_file_name_entry (void *e)
1807 {
1808 struct quick_file_names *file_data = e;
1809 int i;
1810
1811 for (i = 0; i < file_data->num_file_names; ++i)
1812 {
1813 xfree ((void*) file_data->file_names[i]);
1814 if (file_data->real_names)
1815 xfree ((void*) file_data->real_names[i]);
1816 }
1817
1818 /* The space for the struct itself lives on objfile_obstack,
1819 so we don't free it here. */
1820 }
1821
1822 /* Create a quick_file_names hash table. */
1823
1824 static htab_t
1825 create_quick_file_names_table (unsigned int nr_initial_entries)
1826 {
1827 return htab_create_alloc (nr_initial_entries,
1828 hash_file_name_entry, eq_file_name_entry,
1829 delete_file_name_entry, xcalloc, xfree);
1830 }
1831
1832 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1833 have to be created afterwards. You should call age_cached_comp_units after
1834 processing PER_CU->CU. dw2_setup must have been already called. */
1835
1836 static void
1837 load_cu (struct dwarf2_per_cu_data *per_cu)
1838 {
1839 if (per_cu->debug_type_section)
1840 read_signatured_type_at_offset (per_cu->objfile,
1841 per_cu->debug_type_section,
1842 per_cu->offset);
1843 else
1844 load_full_comp_unit (per_cu, per_cu->objfile);
1845
1846 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1847
1848 gdb_assert (per_cu->cu != NULL);
1849 }
1850
1851 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1852 this CU came. */
1853
1854 static void
1855 dw2_do_instantiate_symtab (struct objfile *objfile,
1856 struct dwarf2_per_cu_data *per_cu)
1857 {
1858 struct cleanup *back_to;
1859
1860 back_to = make_cleanup (dwarf2_release_queue, NULL);
1861
1862 queue_comp_unit (per_cu, objfile);
1863
1864 load_cu (per_cu);
1865
1866 process_queue (objfile);
1867
1868 /* Age the cache, releasing compilation units that have not
1869 been used recently. */
1870 age_cached_comp_units ();
1871
1872 do_cleanups (back_to);
1873 }
1874
1875 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1876 the objfile from which this CU came. Returns the resulting symbol
1877 table. */
1878
1879 static struct symtab *
1880 dw2_instantiate_symtab (struct objfile *objfile,
1881 struct dwarf2_per_cu_data *per_cu)
1882 {
1883 if (!per_cu->v.quick->symtab)
1884 {
1885 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1886 increment_reading_symtab ();
1887 dw2_do_instantiate_symtab (objfile, per_cu);
1888 do_cleanups (back_to);
1889 }
1890 return per_cu->v.quick->symtab;
1891 }
1892
1893 /* Return the CU given its index. */
1894
1895 static struct dwarf2_per_cu_data *
1896 dw2_get_cu (int index)
1897 {
1898 if (index >= dwarf2_per_objfile->n_comp_units)
1899 {
1900 index -= dwarf2_per_objfile->n_comp_units;
1901 return dwarf2_per_objfile->type_comp_units[index];
1902 }
1903 return dwarf2_per_objfile->all_comp_units[index];
1904 }
1905
1906 /* A helper function that knows how to read a 64-bit value in a way
1907 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1908 otherwise. */
1909
1910 static int
1911 extract_cu_value (const char *bytes, ULONGEST *result)
1912 {
1913 if (sizeof (ULONGEST) < 8)
1914 {
1915 int i;
1916
1917 /* Ignore the upper 4 bytes if they are all zero. */
1918 for (i = 0; i < 4; ++i)
1919 if (bytes[i + 4] != 0)
1920 return 0;
1921
1922 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1923 }
1924 else
1925 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1926 return 1;
1927 }
1928
1929 /* Read the CU list from the mapped index, and use it to create all
1930 the CU objects for this objfile. Return 0 if something went wrong,
1931 1 if everything went ok. */
1932
1933 static int
1934 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1935 offset_type cu_list_elements)
1936 {
1937 offset_type i;
1938
1939 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1940 dwarf2_per_objfile->all_comp_units
1941 = obstack_alloc (&objfile->objfile_obstack,
1942 dwarf2_per_objfile->n_comp_units
1943 * sizeof (struct dwarf2_per_cu_data *));
1944
1945 for (i = 0; i < cu_list_elements; i += 2)
1946 {
1947 struct dwarf2_per_cu_data *the_cu;
1948 ULONGEST offset, length;
1949
1950 if (!extract_cu_value (cu_list, &offset)
1951 || !extract_cu_value (cu_list + 8, &length))
1952 return 0;
1953 cu_list += 2 * 8;
1954
1955 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1956 struct dwarf2_per_cu_data);
1957 the_cu->offset = offset;
1958 the_cu->length = length;
1959 the_cu->objfile = objfile;
1960 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1961 struct dwarf2_per_cu_quick_data);
1962 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1963 }
1964
1965 return 1;
1966 }
1967
1968 /* Create the signatured type hash table from the index. */
1969
1970 static int
1971 create_signatured_type_table_from_index (struct objfile *objfile,
1972 struct dwarf2_section_info *section,
1973 const gdb_byte *bytes,
1974 offset_type elements)
1975 {
1976 offset_type i;
1977 htab_t sig_types_hash;
1978
1979 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1980 dwarf2_per_objfile->type_comp_units
1981 = obstack_alloc (&objfile->objfile_obstack,
1982 dwarf2_per_objfile->n_type_comp_units
1983 * sizeof (struct dwarf2_per_cu_data *));
1984
1985 sig_types_hash = allocate_signatured_type_table (objfile);
1986
1987 for (i = 0; i < elements; i += 3)
1988 {
1989 struct signatured_type *type_sig;
1990 ULONGEST offset, type_offset, signature;
1991 void **slot;
1992
1993 if (!extract_cu_value (bytes, &offset)
1994 || !extract_cu_value (bytes + 8, &type_offset))
1995 return 0;
1996 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1997 bytes += 3 * 8;
1998
1999 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2000 struct signatured_type);
2001 type_sig->signature = signature;
2002 type_sig->type_offset = type_offset;
2003 type_sig->per_cu.debug_type_section = section;
2004 type_sig->per_cu.offset = offset;
2005 type_sig->per_cu.objfile = objfile;
2006 type_sig->per_cu.v.quick
2007 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2008 struct dwarf2_per_cu_quick_data);
2009
2010 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
2011 *slot = type_sig;
2012
2013 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
2014 }
2015
2016 dwarf2_per_objfile->signatured_types = sig_types_hash;
2017
2018 return 1;
2019 }
2020
2021 /* Read the address map data from the mapped index, and use it to
2022 populate the objfile's psymtabs_addrmap. */
2023
2024 static void
2025 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2026 {
2027 const gdb_byte *iter, *end;
2028 struct obstack temp_obstack;
2029 struct addrmap *mutable_map;
2030 struct cleanup *cleanup;
2031 CORE_ADDR baseaddr;
2032
2033 obstack_init (&temp_obstack);
2034 cleanup = make_cleanup_obstack_free (&temp_obstack);
2035 mutable_map = addrmap_create_mutable (&temp_obstack);
2036
2037 iter = index->address_table;
2038 end = iter + index->address_table_size;
2039
2040 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2041
2042 while (iter < end)
2043 {
2044 ULONGEST hi, lo, cu_index;
2045 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2046 iter += 8;
2047 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2048 iter += 8;
2049 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2050 iter += 4;
2051
2052 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2053 dw2_get_cu (cu_index));
2054 }
2055
2056 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2057 &objfile->objfile_obstack);
2058 do_cleanups (cleanup);
2059 }
2060
2061 /* The hash function for strings in the mapped index. This is the same as
2062 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2063 implementation. This is necessary because the hash function is tied to the
2064 format of the mapped index file. The hash values do not have to match with
2065 SYMBOL_HASH_NEXT.
2066
2067 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2068
2069 static hashval_t
2070 mapped_index_string_hash (int index_version, const void *p)
2071 {
2072 const unsigned char *str = (const unsigned char *) p;
2073 hashval_t r = 0;
2074 unsigned char c;
2075
2076 while ((c = *str++) != 0)
2077 {
2078 if (index_version >= 5)
2079 c = tolower (c);
2080 r = r * 67 + c - 113;
2081 }
2082
2083 return r;
2084 }
2085
2086 /* Find a slot in the mapped index INDEX for the object named NAME.
2087 If NAME is found, set *VEC_OUT to point to the CU vector in the
2088 constant pool and return 1. If NAME cannot be found, return 0. */
2089
2090 static int
2091 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2092 offset_type **vec_out)
2093 {
2094 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2095 offset_type hash;
2096 offset_type slot, step;
2097 int (*cmp) (const char *, const char *);
2098
2099 if (current_language->la_language == language_cplus
2100 || current_language->la_language == language_java
2101 || current_language->la_language == language_fortran)
2102 {
2103 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2104 not contain any. */
2105 const char *paren = strchr (name, '(');
2106
2107 if (paren)
2108 {
2109 char *dup;
2110
2111 dup = xmalloc (paren - name + 1);
2112 memcpy (dup, name, paren - name);
2113 dup[paren - name] = 0;
2114
2115 make_cleanup (xfree, dup);
2116 name = dup;
2117 }
2118 }
2119
2120 /* Index version 4 did not support case insensitive searches. But the
2121 indexes for case insensitive languages are built in lowercase, therefore
2122 simulate our NAME being searched is also lowercased. */
2123 hash = mapped_index_string_hash ((index->version == 4
2124 && case_sensitivity == case_sensitive_off
2125 ? 5 : index->version),
2126 name);
2127
2128 slot = hash & (index->symbol_table_slots - 1);
2129 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2130 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2131
2132 for (;;)
2133 {
2134 /* Convert a slot number to an offset into the table. */
2135 offset_type i = 2 * slot;
2136 const char *str;
2137 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2138 {
2139 do_cleanups (back_to);
2140 return 0;
2141 }
2142
2143 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2144 if (!cmp (name, str))
2145 {
2146 *vec_out = (offset_type *) (index->constant_pool
2147 + MAYBE_SWAP (index->symbol_table[i + 1]));
2148 do_cleanups (back_to);
2149 return 1;
2150 }
2151
2152 slot = (slot + step) & (index->symbol_table_slots - 1);
2153 }
2154 }
2155
2156 /* Read the index file. If everything went ok, initialize the "quick"
2157 elements of all the CUs and return 1. Otherwise, return 0. */
2158
2159 static int
2160 dwarf2_read_index (struct objfile *objfile)
2161 {
2162 char *addr;
2163 struct mapped_index *map;
2164 offset_type *metadata;
2165 const gdb_byte *cu_list;
2166 const gdb_byte *types_list = NULL;
2167 offset_type version, cu_list_elements;
2168 offset_type types_list_elements = 0;
2169 int i;
2170
2171 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2172 return 0;
2173
2174 /* Older elfutils strip versions could keep the section in the main
2175 executable while splitting it for the separate debug info file. */
2176 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2177 & SEC_HAS_CONTENTS) == 0)
2178 return 0;
2179
2180 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2181
2182 addr = dwarf2_per_objfile->gdb_index.buffer;
2183 /* Version check. */
2184 version = MAYBE_SWAP (*(offset_type *) addr);
2185 /* Versions earlier than 3 emitted every copy of a psymbol. This
2186 causes the index to behave very poorly for certain requests. Version 3
2187 contained incomplete addrmap. So, it seems better to just ignore such
2188 indices. Index version 4 uses a different hash function than index
2189 version 5 and later. */
2190 if (version < 4)
2191 return 0;
2192 /* Indexes with higher version than the one supported by GDB may be no
2193 longer backward compatible. */
2194 if (version > 5)
2195 return 0;
2196
2197 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2198 map->version = version;
2199 map->total_size = dwarf2_per_objfile->gdb_index.size;
2200
2201 metadata = (offset_type *) (addr + sizeof (offset_type));
2202
2203 i = 0;
2204 cu_list = addr + MAYBE_SWAP (metadata[i]);
2205 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2206 / 8);
2207 ++i;
2208
2209 types_list = addr + MAYBE_SWAP (metadata[i]);
2210 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2211 - MAYBE_SWAP (metadata[i]))
2212 / 8);
2213 ++i;
2214
2215 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2216 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2217 - MAYBE_SWAP (metadata[i]));
2218 ++i;
2219
2220 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2221 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2222 - MAYBE_SWAP (metadata[i]))
2223 / (2 * sizeof (offset_type)));
2224 ++i;
2225
2226 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2227
2228 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2229 return 0;
2230
2231 if (types_list_elements)
2232 {
2233 struct dwarf2_section_info *section;
2234
2235 /* We can only handle a single .debug_types when we have an
2236 index. */
2237 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2238 return 0;
2239
2240 section = VEC_index (dwarf2_section_info_def,
2241 dwarf2_per_objfile->types, 0);
2242
2243 if (!create_signatured_type_table_from_index (objfile, section,
2244 types_list,
2245 types_list_elements))
2246 return 0;
2247 }
2248
2249 create_addrmap_from_index (objfile, map);
2250
2251 dwarf2_per_objfile->index_table = map;
2252 dwarf2_per_objfile->using_index = 1;
2253 dwarf2_per_objfile->quick_file_names_table =
2254 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2255
2256 return 1;
2257 }
2258
2259 /* A helper for the "quick" functions which sets the global
2260 dwarf2_per_objfile according to OBJFILE. */
2261
2262 static void
2263 dw2_setup (struct objfile *objfile)
2264 {
2265 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2266 gdb_assert (dwarf2_per_objfile);
2267 }
2268
2269 /* A helper for the "quick" functions which attempts to read the line
2270 table for THIS_CU. */
2271
2272 static struct quick_file_names *
2273 dw2_get_file_names (struct objfile *objfile,
2274 struct dwarf2_per_cu_data *this_cu)
2275 {
2276 bfd *abfd = objfile->obfd;
2277 struct line_header *lh;
2278 struct attribute *attr;
2279 struct cleanup *cleanups;
2280 struct die_info *comp_unit_die;
2281 struct dwarf2_section_info* sec;
2282 gdb_byte *info_ptr, *buffer;
2283 int has_children, i;
2284 struct dwarf2_cu cu;
2285 unsigned int bytes_read, buffer_size;
2286 struct die_reader_specs reader_specs;
2287 char *name, *comp_dir;
2288 void **slot;
2289 struct quick_file_names *qfn;
2290 unsigned int line_offset;
2291
2292 if (this_cu->v.quick->file_names != NULL)
2293 return this_cu->v.quick->file_names;
2294 /* If we know there is no line data, no point in looking again. */
2295 if (this_cu->v.quick->no_file_data)
2296 return NULL;
2297
2298 init_one_comp_unit (&cu, objfile);
2299 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2300
2301 if (this_cu->debug_type_section)
2302 sec = this_cu->debug_type_section;
2303 else
2304 sec = &dwarf2_per_objfile->info;
2305 dwarf2_read_section (objfile, sec);
2306 buffer_size = sec->size;
2307 buffer = sec->buffer;
2308 info_ptr = buffer + this_cu->offset;
2309
2310 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2311 buffer, buffer_size,
2312 abfd,
2313 this_cu->debug_type_section != NULL);
2314
2315 /* Skip dummy compilation units. */
2316 if (info_ptr >= buffer + buffer_size
2317 || peek_abbrev_code (abfd, info_ptr) == 0)
2318 {
2319 do_cleanups (cleanups);
2320 return NULL;
2321 }
2322
2323 this_cu->cu = &cu;
2324 cu.per_cu = this_cu;
2325
2326 dwarf2_read_abbrevs (abfd, &cu);
2327 make_cleanup (dwarf2_free_abbrev_table, &cu);
2328
2329 init_cu_die_reader (&reader_specs, &cu);
2330 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2331 &has_children);
2332
2333 lh = NULL;
2334 slot = NULL;
2335 line_offset = 0;
2336 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2337 if (attr)
2338 {
2339 struct quick_file_names find_entry;
2340
2341 line_offset = DW_UNSND (attr);
2342
2343 /* We may have already read in this line header (TU line header sharing).
2344 If we have we're done. */
2345 find_entry.offset = line_offset;
2346 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2347 &find_entry, INSERT);
2348 if (*slot != NULL)
2349 {
2350 do_cleanups (cleanups);
2351 this_cu->v.quick->file_names = *slot;
2352 return *slot;
2353 }
2354
2355 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2356 }
2357 if (lh == NULL)
2358 {
2359 do_cleanups (cleanups);
2360 this_cu->v.quick->no_file_data = 1;
2361 return NULL;
2362 }
2363
2364 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2365 qfn->offset = line_offset;
2366 gdb_assert (slot != NULL);
2367 *slot = qfn;
2368
2369 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2370
2371 qfn->num_file_names = lh->num_file_names;
2372 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2373 lh->num_file_names * sizeof (char *));
2374 for (i = 0; i < lh->num_file_names; ++i)
2375 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2376 qfn->real_names = NULL;
2377
2378 free_line_header (lh);
2379 do_cleanups (cleanups);
2380
2381 this_cu->v.quick->file_names = qfn;
2382 return qfn;
2383 }
2384
2385 /* A helper for the "quick" functions which computes and caches the
2386 real path for a given file name from the line table. */
2387
2388 static const char *
2389 dw2_get_real_path (struct objfile *objfile,
2390 struct quick_file_names *qfn, int index)
2391 {
2392 if (qfn->real_names == NULL)
2393 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2394 qfn->num_file_names, sizeof (char *));
2395
2396 if (qfn->real_names[index] == NULL)
2397 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2398
2399 return qfn->real_names[index];
2400 }
2401
2402 static struct symtab *
2403 dw2_find_last_source_symtab (struct objfile *objfile)
2404 {
2405 int index;
2406
2407 dw2_setup (objfile);
2408 index = dwarf2_per_objfile->n_comp_units - 1;
2409 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2410 }
2411
2412 /* Traversal function for dw2_forget_cached_source_info. */
2413
2414 static int
2415 dw2_free_cached_file_names (void **slot, void *info)
2416 {
2417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2418
2419 if (file_data->real_names)
2420 {
2421 int i;
2422
2423 for (i = 0; i < file_data->num_file_names; ++i)
2424 {
2425 xfree ((void*) file_data->real_names[i]);
2426 file_data->real_names[i] = NULL;
2427 }
2428 }
2429
2430 return 1;
2431 }
2432
2433 static void
2434 dw2_forget_cached_source_info (struct objfile *objfile)
2435 {
2436 dw2_setup (objfile);
2437
2438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2439 dw2_free_cached_file_names, NULL);
2440 }
2441
2442 static int
2443 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2444 const char *full_path, const char *real_path,
2445 struct symtab **result)
2446 {
2447 int i;
2448 const char *name_basename = lbasename (name);
2449 int check_basename = name_basename == name;
2450 struct dwarf2_per_cu_data *base_cu = NULL;
2451
2452 dw2_setup (objfile);
2453
2454 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2455 + dwarf2_per_objfile->n_type_comp_units); ++i)
2456 {
2457 int j;
2458 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2459 struct quick_file_names *file_data;
2460
2461 if (per_cu->v.quick->symtab)
2462 continue;
2463
2464 file_data = dw2_get_file_names (objfile, per_cu);
2465 if (file_data == NULL)
2466 continue;
2467
2468 for (j = 0; j < file_data->num_file_names; ++j)
2469 {
2470 const char *this_name = file_data->file_names[j];
2471
2472 if (FILENAME_CMP (name, this_name) == 0)
2473 {
2474 *result = dw2_instantiate_symtab (objfile, per_cu);
2475 return 1;
2476 }
2477
2478 if (check_basename && ! base_cu
2479 && FILENAME_CMP (lbasename (this_name), name) == 0)
2480 base_cu = per_cu;
2481
2482 /* Before we invoke realpath, which can get expensive when many
2483 files are involved, do a quick comparison of the basenames. */
2484 if (! basenames_may_differ
2485 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2486 continue;
2487
2488 if (full_path != NULL)
2489 {
2490 const char *this_real_name = dw2_get_real_path (objfile,
2491 file_data, j);
2492
2493 if (this_real_name != NULL
2494 && FILENAME_CMP (full_path, this_real_name) == 0)
2495 {
2496 *result = dw2_instantiate_symtab (objfile, per_cu);
2497 return 1;
2498 }
2499 }
2500
2501 if (real_path != NULL)
2502 {
2503 const char *this_real_name = dw2_get_real_path (objfile,
2504 file_data, j);
2505
2506 if (this_real_name != NULL
2507 && FILENAME_CMP (real_path, this_real_name) == 0)
2508 {
2509 *result = dw2_instantiate_symtab (objfile, per_cu);
2510 return 1;
2511 }
2512 }
2513 }
2514 }
2515
2516 if (base_cu)
2517 {
2518 *result = dw2_instantiate_symtab (objfile, base_cu);
2519 return 1;
2520 }
2521
2522 return 0;
2523 }
2524
2525 static struct symtab *
2526 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2527 const char *name, domain_enum domain)
2528 {
2529 /* We do all the work in the pre_expand_symtabs_matching hook
2530 instead. */
2531 return NULL;
2532 }
2533
2534 /* A helper function that expands all symtabs that hold an object
2535 named NAME. */
2536
2537 static void
2538 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2539 {
2540 dw2_setup (objfile);
2541
2542 /* index_table is NULL if OBJF_READNOW. */
2543 if (dwarf2_per_objfile->index_table)
2544 {
2545 offset_type *vec;
2546
2547 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2548 name, &vec))
2549 {
2550 offset_type i, len = MAYBE_SWAP (*vec);
2551 for (i = 0; i < len; ++i)
2552 {
2553 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2554 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2555
2556 dw2_instantiate_symtab (objfile, per_cu);
2557 }
2558 }
2559 }
2560 }
2561
2562 static void
2563 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2564 enum block_enum block_kind, const char *name,
2565 domain_enum domain)
2566 {
2567 dw2_do_expand_symtabs_matching (objfile, name);
2568 }
2569
2570 static void
2571 dw2_print_stats (struct objfile *objfile)
2572 {
2573 int i, count;
2574
2575 dw2_setup (objfile);
2576 count = 0;
2577 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2578 + dwarf2_per_objfile->n_type_comp_units); ++i)
2579 {
2580 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2581
2582 if (!per_cu->v.quick->symtab)
2583 ++count;
2584 }
2585 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2586 }
2587
2588 static void
2589 dw2_dump (struct objfile *objfile)
2590 {
2591 /* Nothing worth printing. */
2592 }
2593
2594 static void
2595 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2596 struct section_offsets *delta)
2597 {
2598 /* There's nothing to relocate here. */
2599 }
2600
2601 static void
2602 dw2_expand_symtabs_for_function (struct objfile *objfile,
2603 const char *func_name)
2604 {
2605 dw2_do_expand_symtabs_matching (objfile, func_name);
2606 }
2607
2608 static void
2609 dw2_expand_all_symtabs (struct objfile *objfile)
2610 {
2611 int i;
2612
2613 dw2_setup (objfile);
2614
2615 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2616 + dwarf2_per_objfile->n_type_comp_units); ++i)
2617 {
2618 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2619
2620 dw2_instantiate_symtab (objfile, per_cu);
2621 }
2622 }
2623
2624 static void
2625 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2626 const char *filename)
2627 {
2628 int i;
2629
2630 dw2_setup (objfile);
2631
2632 /* We don't need to consider type units here.
2633 This is only called for examining code, e.g. expand_line_sal.
2634 There can be an order of magnitude (or more) more type units
2635 than comp units, and we avoid them if we can. */
2636
2637 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2638 {
2639 int j;
2640 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2641 struct quick_file_names *file_data;
2642
2643 if (per_cu->v.quick->symtab)
2644 continue;
2645
2646 file_data = dw2_get_file_names (objfile, per_cu);
2647 if (file_data == NULL)
2648 continue;
2649
2650 for (j = 0; j < file_data->num_file_names; ++j)
2651 {
2652 const char *this_name = file_data->file_names[j];
2653 if (FILENAME_CMP (this_name, filename) == 0)
2654 {
2655 dw2_instantiate_symtab (objfile, per_cu);
2656 break;
2657 }
2658 }
2659 }
2660 }
2661
2662 static const char *
2663 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2664 {
2665 struct dwarf2_per_cu_data *per_cu;
2666 offset_type *vec;
2667 struct quick_file_names *file_data;
2668
2669 dw2_setup (objfile);
2670
2671 /* index_table is NULL if OBJF_READNOW. */
2672 if (!dwarf2_per_objfile->index_table)
2673 {
2674 struct symtab *s;
2675
2676 ALL_OBJFILE_SYMTABS (objfile, s)
2677 if (s->primary)
2678 {
2679 struct blockvector *bv = BLOCKVECTOR (s);
2680 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2681 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2682
2683 if (sym)
2684 return sym->symtab->filename;
2685 }
2686 return NULL;
2687 }
2688
2689 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2690 name, &vec))
2691 return NULL;
2692
2693 /* Note that this just looks at the very first one named NAME -- but
2694 actually we are looking for a function. find_main_filename
2695 should be rewritten so that it doesn't require a custom hook. It
2696 could just use the ordinary symbol tables. */
2697 /* vec[0] is the length, which must always be >0. */
2698 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2699
2700 file_data = dw2_get_file_names (objfile, per_cu);
2701 if (file_data == NULL)
2702 return NULL;
2703
2704 return file_data->file_names[file_data->num_file_names - 1];
2705 }
2706
2707 static void
2708 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2709 struct objfile *objfile, int global,
2710 int (*callback) (struct block *,
2711 struct symbol *, void *),
2712 void *data, symbol_compare_ftype *match,
2713 symbol_compare_ftype *ordered_compare)
2714 {
2715 /* Currently unimplemented; used for Ada. The function can be called if the
2716 current language is Ada for a non-Ada objfile using GNU index. As Ada
2717 does not look for non-Ada symbols this function should just return. */
2718 }
2719
2720 static void
2721 dw2_expand_symtabs_matching (struct objfile *objfile,
2722 int (*file_matcher) (const char *, void *),
2723 int (*name_matcher) (const char *, void *),
2724 enum search_domain kind,
2725 void *data)
2726 {
2727 int i;
2728 offset_type iter;
2729 struct mapped_index *index;
2730
2731 dw2_setup (objfile);
2732
2733 /* index_table is NULL if OBJF_READNOW. */
2734 if (!dwarf2_per_objfile->index_table)
2735 return;
2736 index = dwarf2_per_objfile->index_table;
2737
2738 if (file_matcher != NULL)
2739 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2740 + dwarf2_per_objfile->n_type_comp_units); ++i)
2741 {
2742 int j;
2743 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2744 struct quick_file_names *file_data;
2745
2746 per_cu->v.quick->mark = 0;
2747 if (per_cu->v.quick->symtab)
2748 continue;
2749
2750 file_data = dw2_get_file_names (objfile, per_cu);
2751 if (file_data == NULL)
2752 continue;
2753
2754 for (j = 0; j < file_data->num_file_names; ++j)
2755 {
2756 if (file_matcher (file_data->file_names[j], data))
2757 {
2758 per_cu->v.quick->mark = 1;
2759 break;
2760 }
2761 }
2762 }
2763
2764 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2765 {
2766 offset_type idx = 2 * iter;
2767 const char *name;
2768 offset_type *vec, vec_len, vec_idx;
2769
2770 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2771 continue;
2772
2773 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2774
2775 if (! (*name_matcher) (name, data))
2776 continue;
2777
2778 /* The name was matched, now expand corresponding CUs that were
2779 marked. */
2780 vec = (offset_type *) (index->constant_pool
2781 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2782 vec_len = MAYBE_SWAP (vec[0]);
2783 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2784 {
2785 struct dwarf2_per_cu_data *per_cu;
2786
2787 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2788 if (file_matcher == NULL || per_cu->v.quick->mark)
2789 dw2_instantiate_symtab (objfile, per_cu);
2790 }
2791 }
2792 }
2793
2794 static struct symtab *
2795 dw2_find_pc_sect_symtab (struct objfile *objfile,
2796 struct minimal_symbol *msymbol,
2797 CORE_ADDR pc,
2798 struct obj_section *section,
2799 int warn_if_readin)
2800 {
2801 struct dwarf2_per_cu_data *data;
2802
2803 dw2_setup (objfile);
2804
2805 if (!objfile->psymtabs_addrmap)
2806 return NULL;
2807
2808 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2809 if (!data)
2810 return NULL;
2811
2812 if (warn_if_readin && data->v.quick->symtab)
2813 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2814 paddress (get_objfile_arch (objfile), pc));
2815
2816 return dw2_instantiate_symtab (objfile, data);
2817 }
2818
2819 static void
2820 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2821 void *data, int need_fullname)
2822 {
2823 int i;
2824
2825 dw2_setup (objfile);
2826
2827 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2828 + dwarf2_per_objfile->n_type_comp_units); ++i)
2829 {
2830 int j;
2831 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2832 struct quick_file_names *file_data;
2833
2834 if (per_cu->v.quick->symtab)
2835 continue;
2836
2837 file_data = dw2_get_file_names (objfile, per_cu);
2838 if (file_data == NULL)
2839 continue;
2840
2841 for (j = 0; j < file_data->num_file_names; ++j)
2842 {
2843 const char *this_real_name;
2844
2845 if (need_fullname)
2846 this_real_name = dw2_get_real_path (objfile, file_data, j);
2847 else
2848 this_real_name = NULL;
2849 (*fun) (file_data->file_names[j], this_real_name, data);
2850 }
2851 }
2852 }
2853
2854 static int
2855 dw2_has_symbols (struct objfile *objfile)
2856 {
2857 return 1;
2858 }
2859
2860 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2861 {
2862 dw2_has_symbols,
2863 dw2_find_last_source_symtab,
2864 dw2_forget_cached_source_info,
2865 dw2_lookup_symtab,
2866 dw2_lookup_symbol,
2867 dw2_pre_expand_symtabs_matching,
2868 dw2_print_stats,
2869 dw2_dump,
2870 dw2_relocate,
2871 dw2_expand_symtabs_for_function,
2872 dw2_expand_all_symtabs,
2873 dw2_expand_symtabs_with_filename,
2874 dw2_find_symbol_file,
2875 dw2_map_matching_symbols,
2876 dw2_expand_symtabs_matching,
2877 dw2_find_pc_sect_symtab,
2878 dw2_map_symbol_filenames
2879 };
2880
2881 /* Initialize for reading DWARF for this objfile. Return 0 if this
2882 file will use psymtabs, or 1 if using the GNU index. */
2883
2884 int
2885 dwarf2_initialize_objfile (struct objfile *objfile)
2886 {
2887 /* If we're about to read full symbols, don't bother with the
2888 indices. In this case we also don't care if some other debug
2889 format is making psymtabs, because they are all about to be
2890 expanded anyway. */
2891 if ((objfile->flags & OBJF_READNOW))
2892 {
2893 int i;
2894
2895 dwarf2_per_objfile->using_index = 1;
2896 create_all_comp_units (objfile);
2897 create_debug_types_hash_table (objfile);
2898 dwarf2_per_objfile->quick_file_names_table =
2899 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2900
2901 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2902 + dwarf2_per_objfile->n_type_comp_units); ++i)
2903 {
2904 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2905
2906 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2907 struct dwarf2_per_cu_quick_data);
2908 }
2909
2910 /* Return 1 so that gdb sees the "quick" functions. However,
2911 these functions will be no-ops because we will have expanded
2912 all symtabs. */
2913 return 1;
2914 }
2915
2916 if (dwarf2_read_index (objfile))
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 \f
2923
2924 /* Build a partial symbol table. */
2925
2926 void
2927 dwarf2_build_psymtabs (struct objfile *objfile)
2928 {
2929 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2930 {
2931 init_psymbol_list (objfile, 1024);
2932 }
2933
2934 dwarf2_build_psymtabs_hard (objfile);
2935 }
2936
2937 /* Return TRUE if OFFSET is within CU_HEADER. */
2938
2939 static inline int
2940 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2941 {
2942 unsigned int bottom = cu_header->offset;
2943 unsigned int top = (cu_header->offset
2944 + cu_header->length
2945 + cu_header->initial_length_size);
2946
2947 return (offset >= bottom && offset < top);
2948 }
2949
2950 /* Read in the comp unit header information from the debug_info at info_ptr.
2951 NOTE: This leaves members offset, first_die_offset to be filled in
2952 by the caller. */
2953
2954 static gdb_byte *
2955 read_comp_unit_head (struct comp_unit_head *cu_header,
2956 gdb_byte *info_ptr, bfd *abfd)
2957 {
2958 int signed_addr;
2959 unsigned int bytes_read;
2960
2961 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2962 cu_header->initial_length_size = bytes_read;
2963 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2964 info_ptr += bytes_read;
2965 cu_header->version = read_2_bytes (abfd, info_ptr);
2966 info_ptr += 2;
2967 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2968 &bytes_read);
2969 info_ptr += bytes_read;
2970 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2971 info_ptr += 1;
2972 signed_addr = bfd_get_sign_extend_vma (abfd);
2973 if (signed_addr < 0)
2974 internal_error (__FILE__, __LINE__,
2975 _("read_comp_unit_head: dwarf from non elf file"));
2976 cu_header->signed_addr_p = signed_addr;
2977
2978 return info_ptr;
2979 }
2980
2981 /* Read in a CU header and perform some basic error checking. */
2982
2983 static gdb_byte *
2984 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2985 gdb_byte *buffer, unsigned int buffer_size,
2986 bfd *abfd, int is_debug_type_section)
2987 {
2988 gdb_byte *beg_of_comp_unit = info_ptr;
2989
2990 header->offset = beg_of_comp_unit - buffer;
2991
2992 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2993
2994 /* If we're reading a type unit, skip over the signature and
2995 type_offset fields. */
2996 if (is_debug_type_section)
2997 info_ptr += 8 /*signature*/ + header->offset_size;
2998
2999 header->first_die_offset = info_ptr - beg_of_comp_unit;
3000
3001 if (header->version != 2 && header->version != 3 && header->version != 4)
3002 error (_("Dwarf Error: wrong version in compilation unit header "
3003 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3004 bfd_get_filename (abfd));
3005
3006 if (header->abbrev_offset
3007 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3008 &dwarf2_per_objfile->abbrev))
3009 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3010 "(offset 0x%lx + 6) [in module %s]"),
3011 (long) header->abbrev_offset,
3012 (long) (beg_of_comp_unit - buffer),
3013 bfd_get_filename (abfd));
3014
3015 if (beg_of_comp_unit + header->length + header->initial_length_size
3016 > buffer + buffer_size)
3017 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3018 "(offset 0x%lx + 0) [in module %s]"),
3019 (long) header->length,
3020 (long) (beg_of_comp_unit - buffer),
3021 bfd_get_filename (abfd));
3022
3023 return info_ptr;
3024 }
3025
3026 /* Read in the types comp unit header information from .debug_types entry at
3027 types_ptr. The result is a pointer to one past the end of the header. */
3028
3029 static gdb_byte *
3030 read_type_comp_unit_head (struct comp_unit_head *cu_header,
3031 struct dwarf2_section_info *section,
3032 ULONGEST *signature,
3033 gdb_byte *types_ptr, bfd *abfd)
3034 {
3035 gdb_byte *initial_types_ptr = types_ptr;
3036
3037 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3038 cu_header->offset = types_ptr - section->buffer;
3039
3040 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
3041
3042 *signature = read_8_bytes (abfd, types_ptr);
3043 types_ptr += 8;
3044 types_ptr += cu_header->offset_size;
3045 cu_header->first_die_offset = types_ptr - initial_types_ptr;
3046
3047 return types_ptr;
3048 }
3049
3050 /* Allocate a new partial symtab for file named NAME and mark this new
3051 partial symtab as being an include of PST. */
3052
3053 static void
3054 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3055 struct objfile *objfile)
3056 {
3057 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3058
3059 subpst->section_offsets = pst->section_offsets;
3060 subpst->textlow = 0;
3061 subpst->texthigh = 0;
3062
3063 subpst->dependencies = (struct partial_symtab **)
3064 obstack_alloc (&objfile->objfile_obstack,
3065 sizeof (struct partial_symtab *));
3066 subpst->dependencies[0] = pst;
3067 subpst->number_of_dependencies = 1;
3068
3069 subpst->globals_offset = 0;
3070 subpst->n_global_syms = 0;
3071 subpst->statics_offset = 0;
3072 subpst->n_static_syms = 0;
3073 subpst->symtab = NULL;
3074 subpst->read_symtab = pst->read_symtab;
3075 subpst->readin = 0;
3076
3077 /* No private part is necessary for include psymtabs. This property
3078 can be used to differentiate between such include psymtabs and
3079 the regular ones. */
3080 subpst->read_symtab_private = NULL;
3081 }
3082
3083 /* Read the Line Number Program data and extract the list of files
3084 included by the source file represented by PST. Build an include
3085 partial symtab for each of these included files. */
3086
3087 static void
3088 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3089 struct die_info *die,
3090 struct partial_symtab *pst)
3091 {
3092 struct objfile *objfile = cu->objfile;
3093 bfd *abfd = objfile->obfd;
3094 struct line_header *lh = NULL;
3095 struct attribute *attr;
3096
3097 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3098 if (attr)
3099 {
3100 unsigned int line_offset = DW_UNSND (attr);
3101
3102 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3103 }
3104 if (lh == NULL)
3105 return; /* No linetable, so no includes. */
3106
3107 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3108 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
3109
3110 free_line_header (lh);
3111 }
3112
3113 static hashval_t
3114 hash_type_signature (const void *item)
3115 {
3116 const struct signatured_type *type_sig = item;
3117
3118 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3119 return type_sig->signature;
3120 }
3121
3122 static int
3123 eq_type_signature (const void *item_lhs, const void *item_rhs)
3124 {
3125 const struct signatured_type *lhs = item_lhs;
3126 const struct signatured_type *rhs = item_rhs;
3127
3128 return lhs->signature == rhs->signature;
3129 }
3130
3131 /* Allocate a hash table for signatured types. */
3132
3133 static htab_t
3134 allocate_signatured_type_table (struct objfile *objfile)
3135 {
3136 return htab_create_alloc_ex (41,
3137 hash_type_signature,
3138 eq_type_signature,
3139 NULL,
3140 &objfile->objfile_obstack,
3141 hashtab_obstack_allocate,
3142 dummy_obstack_deallocate);
3143 }
3144
3145 /* A helper function to add a signatured type CU to a list. */
3146
3147 static int
3148 add_signatured_type_cu_to_list (void **slot, void *datum)
3149 {
3150 struct signatured_type *sigt = *slot;
3151 struct dwarf2_per_cu_data ***datap = datum;
3152
3153 **datap = &sigt->per_cu;
3154 ++*datap;
3155
3156 return 1;
3157 }
3158
3159 /* Create the hash table of all entries in the .debug_types section.
3160 The result is zero if there is an error (e.g. missing .debug_types section),
3161 otherwise non-zero. */
3162
3163 static int
3164 create_debug_types_hash_table (struct objfile *objfile)
3165 {
3166 htab_t types_htab = NULL;
3167 struct dwarf2_per_cu_data **iter;
3168 int ix;
3169 struct dwarf2_section_info *section;
3170
3171 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3172 {
3173 dwarf2_per_objfile->signatured_types = NULL;
3174 return 0;
3175 }
3176
3177 for (ix = 0;
3178 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3179 ix, section);
3180 ++ix)
3181 {
3182 gdb_byte *info_ptr, *end_ptr;
3183
3184 dwarf2_read_section (objfile, section);
3185 info_ptr = section->buffer;
3186
3187 if (info_ptr == NULL)
3188 continue;
3189
3190 if (types_htab == NULL)
3191 types_htab = allocate_signatured_type_table (objfile);
3192
3193 if (dwarf2_die_debug)
3194 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3195
3196 end_ptr = info_ptr + section->size;
3197 while (info_ptr < end_ptr)
3198 {
3199 unsigned int offset;
3200 unsigned int offset_size;
3201 unsigned int type_offset;
3202 unsigned int length, initial_length_size;
3203 unsigned short version;
3204 ULONGEST signature;
3205 struct signatured_type *type_sig;
3206 void **slot;
3207 gdb_byte *ptr = info_ptr;
3208
3209 offset = ptr - section->buffer;
3210
3211 /* We need to read the type's signature in order to build the hash
3212 table, but we don't need to read anything else just yet. */
3213
3214 /* Sanity check to ensure entire cu is present. */
3215 length = read_initial_length (objfile->obfd, ptr,
3216 &initial_length_size);
3217 if (ptr + length + initial_length_size > end_ptr)
3218 {
3219 complaint (&symfile_complaints,
3220 _("debug type entry runs off end "
3221 "of `.debug_types' section, ignored"));
3222 break;
3223 }
3224
3225 offset_size = initial_length_size == 4 ? 4 : 8;
3226 ptr += initial_length_size;
3227 version = bfd_get_16 (objfile->obfd, ptr);
3228 ptr += 2;
3229 ptr += offset_size; /* abbrev offset */
3230 ptr += 1; /* address size */
3231 signature = bfd_get_64 (objfile->obfd, ptr);
3232 ptr += 8;
3233 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3234 ptr += offset_size;
3235
3236 /* Skip dummy type units. */
3237 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3238 {
3239 info_ptr = info_ptr + initial_length_size + length;
3240 continue;
3241 }
3242
3243 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3244 memset (type_sig, 0, sizeof (*type_sig));
3245 type_sig->signature = signature;
3246 type_sig->type_offset = type_offset;
3247 type_sig->per_cu.objfile = objfile;
3248 type_sig->per_cu.debug_type_section = section;
3249 type_sig->per_cu.offset = offset;
3250
3251 slot = htab_find_slot (types_htab, type_sig, INSERT);
3252 gdb_assert (slot != NULL);
3253 if (*slot != NULL)
3254 {
3255 const struct signatured_type *dup_sig = *slot;
3256
3257 complaint (&symfile_complaints,
3258 _("debug type entry at offset 0x%x is duplicate to the "
3259 "entry at offset 0x%x, signature 0x%s"),
3260 offset, dup_sig->per_cu.offset,
3261 phex (signature, sizeof (signature)));
3262 gdb_assert (signature == dup_sig->signature);
3263 }
3264 *slot = type_sig;
3265
3266 if (dwarf2_die_debug)
3267 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3268 offset, phex (signature, sizeof (signature)));
3269
3270 info_ptr = info_ptr + initial_length_size + length;
3271 }
3272 }
3273
3274 dwarf2_per_objfile->signatured_types = types_htab;
3275
3276 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3277 dwarf2_per_objfile->type_comp_units
3278 = obstack_alloc (&objfile->objfile_obstack,
3279 dwarf2_per_objfile->n_type_comp_units
3280 * sizeof (struct dwarf2_per_cu_data *));
3281 iter = &dwarf2_per_objfile->type_comp_units[0];
3282 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3283 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3284 == dwarf2_per_objfile->n_type_comp_units);
3285
3286 return 1;
3287 }
3288
3289 /* Lookup a signature based type.
3290 Returns NULL if SIG is not present in the table. */
3291
3292 static struct signatured_type *
3293 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3294 {
3295 struct signatured_type find_entry, *entry;
3296
3297 if (dwarf2_per_objfile->signatured_types == NULL)
3298 {
3299 complaint (&symfile_complaints,
3300 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3301 return 0;
3302 }
3303
3304 find_entry.signature = sig;
3305 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3306 return entry;
3307 }
3308
3309 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3310
3311 static void
3312 init_cu_die_reader (struct die_reader_specs *reader,
3313 struct dwarf2_cu *cu)
3314 {
3315 reader->abfd = cu->objfile->obfd;
3316 reader->cu = cu;
3317 if (cu->per_cu->debug_type_section)
3318 {
3319 gdb_assert (cu->per_cu->debug_type_section->readin);
3320 reader->buffer = cu->per_cu->debug_type_section->buffer;
3321 }
3322 else
3323 {
3324 gdb_assert (dwarf2_per_objfile->info.readin);
3325 reader->buffer = dwarf2_per_objfile->info.buffer;
3326 }
3327 }
3328
3329 /* Find the base address of the compilation unit for range lists and
3330 location lists. It will normally be specified by DW_AT_low_pc.
3331 In DWARF-3 draft 4, the base address could be overridden by
3332 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3333 compilation units with discontinuous ranges. */
3334
3335 static void
3336 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3337 {
3338 struct attribute *attr;
3339
3340 cu->base_known = 0;
3341 cu->base_address = 0;
3342
3343 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3344 if (attr)
3345 {
3346 cu->base_address = DW_ADDR (attr);
3347 cu->base_known = 1;
3348 }
3349 else
3350 {
3351 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3352 if (attr)
3353 {
3354 cu->base_address = DW_ADDR (attr);
3355 cu->base_known = 1;
3356 }
3357 }
3358 }
3359
3360 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3361 to combine the common parts.
3362 Process a compilation unit for a psymtab.
3363 BUFFER is a pointer to the beginning of the dwarf section buffer,
3364 either .debug_info or debug_types.
3365 INFO_PTR is a pointer to the start of the CU.
3366 Returns a pointer to the next CU. */
3367
3368 static gdb_byte *
3369 process_psymtab_comp_unit (struct objfile *objfile,
3370 struct dwarf2_per_cu_data *this_cu,
3371 gdb_byte *buffer, gdb_byte *info_ptr,
3372 unsigned int buffer_size)
3373 {
3374 bfd *abfd = objfile->obfd;
3375 gdb_byte *beg_of_comp_unit = info_ptr;
3376 struct die_info *comp_unit_die;
3377 struct partial_symtab *pst;
3378 CORE_ADDR baseaddr;
3379 struct cleanup *back_to_inner;
3380 struct dwarf2_cu cu;
3381 int has_children, has_pc_info;
3382 struct attribute *attr;
3383 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3384 struct die_reader_specs reader_specs;
3385 const char *filename;
3386
3387 init_one_comp_unit (&cu, objfile);
3388 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3389
3390 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3391 buffer, buffer_size,
3392 abfd,
3393 this_cu->debug_type_section != NULL);
3394
3395 /* Skip dummy compilation units. */
3396 if (info_ptr >= buffer + buffer_size
3397 || peek_abbrev_code (abfd, info_ptr) == 0)
3398 {
3399 info_ptr = (beg_of_comp_unit + cu.header.length
3400 + cu.header.initial_length_size);
3401 do_cleanups (back_to_inner);
3402 return info_ptr;
3403 }
3404
3405 cu.list_in_scope = &file_symbols;
3406
3407 /* If this compilation unit was already read in, free the
3408 cached copy in order to read it in again. This is
3409 necessary because we skipped some symbols when we first
3410 read in the compilation unit (see load_partial_dies).
3411 This problem could be avoided, but the benefit is
3412 unclear. */
3413 if (this_cu->cu != NULL)
3414 free_one_cached_comp_unit (this_cu->cu);
3415
3416 /* Note that this is a pointer to our stack frame, being
3417 added to a global data structure. It will be cleaned up
3418 in free_stack_comp_unit when we finish with this
3419 compilation unit. */
3420 this_cu->cu = &cu;
3421 cu.per_cu = this_cu;
3422
3423 /* Read the abbrevs for this compilation unit into a table. */
3424 dwarf2_read_abbrevs (abfd, &cu);
3425 make_cleanup (dwarf2_free_abbrev_table, &cu);
3426
3427 /* Read the compilation unit die. */
3428 init_cu_die_reader (&reader_specs, &cu);
3429 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3430 &has_children);
3431
3432 if (this_cu->debug_type_section)
3433 {
3434 /* LENGTH has not been set yet for type units. */
3435 gdb_assert (this_cu->offset == cu.header.offset);
3436 this_cu->length = cu.header.length + cu.header.initial_length_size;
3437 }
3438 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3439 {
3440 info_ptr = (beg_of_comp_unit + cu.header.length
3441 + cu.header.initial_length_size);
3442 do_cleanups (back_to_inner);
3443 return info_ptr;
3444 }
3445
3446 prepare_one_comp_unit (&cu, comp_unit_die);
3447
3448 /* Allocate a new partial symbol table structure. */
3449 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3450 if (attr == NULL || !DW_STRING (attr))
3451 filename = "";
3452 else
3453 filename = DW_STRING (attr);
3454 pst = start_psymtab_common (objfile, objfile->section_offsets,
3455 filename,
3456 /* TEXTLOW and TEXTHIGH are set below. */
3457 0,
3458 objfile->global_psymbols.next,
3459 objfile->static_psymbols.next);
3460
3461 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3462 if (attr != NULL)
3463 pst->dirname = DW_STRING (attr);
3464
3465 pst->read_symtab_private = this_cu;
3466
3467 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3468
3469 /* Store the function that reads in the rest of the symbol table. */
3470 pst->read_symtab = dwarf2_psymtab_to_symtab;
3471
3472 this_cu->v.psymtab = pst;
3473
3474 dwarf2_find_base_address (comp_unit_die, &cu);
3475
3476 /* Possibly set the default values of LOWPC and HIGHPC from
3477 `DW_AT_ranges'. */
3478 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3479 &best_highpc, &cu, pst);
3480 if (has_pc_info == 1 && best_lowpc < best_highpc)
3481 /* Store the contiguous range if it is not empty; it can be empty for
3482 CUs with no code. */
3483 addrmap_set_empty (objfile->psymtabs_addrmap,
3484 best_lowpc + baseaddr,
3485 best_highpc + baseaddr - 1, pst);
3486
3487 /* Check if comp unit has_children.
3488 If so, read the rest of the partial symbols from this comp unit.
3489 If not, there's no more debug_info for this comp unit. */
3490 if (has_children)
3491 {
3492 struct partial_die_info *first_die;
3493 CORE_ADDR lowpc, highpc;
3494
3495 lowpc = ((CORE_ADDR) -1);
3496 highpc = ((CORE_ADDR) 0);
3497
3498 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3499
3500 scan_partial_symbols (first_die, &lowpc, &highpc,
3501 ! has_pc_info, &cu);
3502
3503 /* If we didn't find a lowpc, set it to highpc to avoid
3504 complaints from `maint check'. */
3505 if (lowpc == ((CORE_ADDR) -1))
3506 lowpc = highpc;
3507
3508 /* If the compilation unit didn't have an explicit address range,
3509 then use the information extracted from its child dies. */
3510 if (! has_pc_info)
3511 {
3512 best_lowpc = lowpc;
3513 best_highpc = highpc;
3514 }
3515 }
3516 pst->textlow = best_lowpc + baseaddr;
3517 pst->texthigh = best_highpc + baseaddr;
3518
3519 pst->n_global_syms = objfile->global_psymbols.next -
3520 (objfile->global_psymbols.list + pst->globals_offset);
3521 pst->n_static_syms = objfile->static_psymbols.next -
3522 (objfile->static_psymbols.list + pst->statics_offset);
3523 sort_pst_symbols (pst);
3524
3525 info_ptr = (beg_of_comp_unit + cu.header.length
3526 + cu.header.initial_length_size);
3527
3528 if (this_cu->debug_type_section)
3529 {
3530 /* It's not clear we want to do anything with stmt lists here.
3531 Waiting to see what gcc ultimately does. */
3532 }
3533 else
3534 {
3535 /* Get the list of files included in the current compilation unit,
3536 and build a psymtab for each of them. */
3537 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3538 }
3539
3540 do_cleanups (back_to_inner);
3541
3542 return info_ptr;
3543 }
3544
3545 /* Traversal function for htab_traverse_noresize.
3546 Process one .debug_types comp-unit. */
3547
3548 static int
3549 process_type_comp_unit (void **slot, void *info)
3550 {
3551 struct signatured_type *entry = (struct signatured_type *) *slot;
3552 struct objfile *objfile = (struct objfile *) info;
3553 struct dwarf2_per_cu_data *this_cu;
3554
3555 this_cu = &entry->per_cu;
3556
3557 gdb_assert (this_cu->debug_type_section->readin);
3558 process_psymtab_comp_unit (objfile, this_cu,
3559 this_cu->debug_type_section->buffer,
3560 (this_cu->debug_type_section->buffer
3561 + this_cu->offset),
3562 this_cu->debug_type_section->size);
3563
3564 return 1;
3565 }
3566
3567 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3568 Build partial symbol tables for the .debug_types comp-units. */
3569
3570 static void
3571 build_type_psymtabs (struct objfile *objfile)
3572 {
3573 if (! create_debug_types_hash_table (objfile))
3574 return;
3575
3576 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3577 process_type_comp_unit, objfile);
3578 }
3579
3580 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3581
3582 static void
3583 psymtabs_addrmap_cleanup (void *o)
3584 {
3585 struct objfile *objfile = o;
3586
3587 objfile->psymtabs_addrmap = NULL;
3588 }
3589
3590 /* Build the partial symbol table by doing a quick pass through the
3591 .debug_info and .debug_abbrev sections. */
3592
3593 static void
3594 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3595 {
3596 gdb_byte *info_ptr;
3597 struct cleanup *back_to, *addrmap_cleanup;
3598 struct obstack temp_obstack;
3599
3600 dwarf2_per_objfile->reading_partial_symbols = 1;
3601
3602 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3603 info_ptr = dwarf2_per_objfile->info.buffer;
3604
3605 /* Any cached compilation units will be linked by the per-objfile
3606 read_in_chain. Make sure to free them when we're done. */
3607 back_to = make_cleanup (free_cached_comp_units, NULL);
3608
3609 build_type_psymtabs (objfile);
3610
3611 create_all_comp_units (objfile);
3612
3613 /* Create a temporary address map on a temporary obstack. We later
3614 copy this to the final obstack. */
3615 obstack_init (&temp_obstack);
3616 make_cleanup_obstack_free (&temp_obstack);
3617 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3618 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3619
3620 /* Since the objects we're extracting from .debug_info vary in
3621 length, only the individual functions to extract them (like
3622 read_comp_unit_head and load_partial_die) can really know whether
3623 the buffer is large enough to hold another complete object.
3624
3625 At the moment, they don't actually check that. If .debug_info
3626 holds just one extra byte after the last compilation unit's dies,
3627 then read_comp_unit_head will happily read off the end of the
3628 buffer. read_partial_die is similarly casual. Those functions
3629 should be fixed.
3630
3631 For this loop condition, simply checking whether there's any data
3632 left at all should be sufficient. */
3633
3634 while (info_ptr < (dwarf2_per_objfile->info.buffer
3635 + dwarf2_per_objfile->info.size))
3636 {
3637 struct dwarf2_per_cu_data *this_cu;
3638
3639 this_cu = dwarf2_find_comp_unit (info_ptr
3640 - dwarf2_per_objfile->info.buffer,
3641 objfile);
3642
3643 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3644 dwarf2_per_objfile->info.buffer,
3645 info_ptr,
3646 dwarf2_per_objfile->info.size);
3647 }
3648
3649 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3650 &objfile->objfile_obstack);
3651 discard_cleanups (addrmap_cleanup);
3652
3653 do_cleanups (back_to);
3654 }
3655
3656 /* Load the partial DIEs for a secondary CU into memory. */
3657
3658 static void
3659 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3660 struct objfile *objfile)
3661 {
3662 bfd *abfd = objfile->obfd;
3663 gdb_byte *info_ptr;
3664 struct die_info *comp_unit_die;
3665 struct dwarf2_cu *cu;
3666 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3667 int has_children;
3668 struct die_reader_specs reader_specs;
3669 int read_cu = 0;
3670
3671 gdb_assert (! this_cu->debug_type_section);
3672
3673 gdb_assert (dwarf2_per_objfile->info.readin);
3674 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3675
3676 if (this_cu->cu == NULL)
3677 {
3678 cu = xmalloc (sizeof (*cu));
3679 init_one_comp_unit (cu, objfile);
3680
3681 read_cu = 1;
3682
3683 /* If an error occurs while loading, release our storage. */
3684 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3685
3686 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3687 dwarf2_per_objfile->info.buffer,
3688 dwarf2_per_objfile->info.size,
3689 abfd, 0);
3690
3691 /* Skip dummy compilation units. */
3692 if (info_ptr >= (dwarf2_per_objfile->info.buffer
3693 + dwarf2_per_objfile->info.size)
3694 || peek_abbrev_code (abfd, info_ptr) == 0)
3695 {
3696 do_cleanups (free_cu_cleanup);
3697 return;
3698 }
3699
3700 /* Link this compilation unit into the compilation unit tree. */
3701 this_cu->cu = cu;
3702 cu->per_cu = this_cu;
3703
3704 /* Link this CU into read_in_chain. */
3705 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3706 dwarf2_per_objfile->read_in_chain = this_cu;
3707 }
3708 else
3709 {
3710 cu = this_cu->cu;
3711 info_ptr += cu->header.first_die_offset;
3712 }
3713
3714 /* Read the abbrevs for this compilation unit into a table. */
3715 gdb_assert (cu->dwarf2_abbrevs == NULL);
3716 dwarf2_read_abbrevs (abfd, cu);
3717 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3718
3719 /* Read the compilation unit die. */
3720 init_cu_die_reader (&reader_specs, cu);
3721 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3722 &has_children);
3723
3724 prepare_one_comp_unit (cu, comp_unit_die);
3725
3726 /* Check if comp unit has_children.
3727 If so, read the rest of the partial symbols from this comp unit.
3728 If not, there's no more debug_info for this comp unit. */
3729 if (has_children)
3730 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3731
3732 do_cleanups (free_abbrevs_cleanup);
3733
3734 if (read_cu)
3735 {
3736 /* We've successfully allocated this compilation unit. Let our
3737 caller clean it up when finished with it. */
3738 discard_cleanups (free_cu_cleanup);
3739 }
3740 }
3741
3742 /* Create a list of all compilation units in OBJFILE. We do this only
3743 if an inter-comp-unit reference is found; presumably if there is one,
3744 there will be many, and one will occur early in the .debug_info section.
3745 So there's no point in building this list incrementally. */
3746
3747 static void
3748 create_all_comp_units (struct objfile *objfile)
3749 {
3750 int n_allocated;
3751 int n_comp_units;
3752 struct dwarf2_per_cu_data **all_comp_units;
3753 gdb_byte *info_ptr;
3754
3755 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3756 info_ptr = dwarf2_per_objfile->info.buffer;
3757
3758 n_comp_units = 0;
3759 n_allocated = 10;
3760 all_comp_units = xmalloc (n_allocated
3761 * sizeof (struct dwarf2_per_cu_data *));
3762
3763 while (info_ptr < dwarf2_per_objfile->info.buffer
3764 + dwarf2_per_objfile->info.size)
3765 {
3766 unsigned int length, initial_length_size;
3767 struct dwarf2_per_cu_data *this_cu;
3768 unsigned int offset;
3769
3770 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3771
3772 /* Read just enough information to find out where the next
3773 compilation unit is. */
3774 length = read_initial_length (objfile->obfd, info_ptr,
3775 &initial_length_size);
3776
3777 /* Save the compilation unit for later lookup. */
3778 this_cu = obstack_alloc (&objfile->objfile_obstack,
3779 sizeof (struct dwarf2_per_cu_data));
3780 memset (this_cu, 0, sizeof (*this_cu));
3781 this_cu->offset = offset;
3782 this_cu->length = length + initial_length_size;
3783 this_cu->objfile = objfile;
3784
3785 if (n_comp_units == n_allocated)
3786 {
3787 n_allocated *= 2;
3788 all_comp_units = xrealloc (all_comp_units,
3789 n_allocated
3790 * sizeof (struct dwarf2_per_cu_data *));
3791 }
3792 all_comp_units[n_comp_units++] = this_cu;
3793
3794 info_ptr = info_ptr + this_cu->length;
3795 }
3796
3797 dwarf2_per_objfile->all_comp_units
3798 = obstack_alloc (&objfile->objfile_obstack,
3799 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3800 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3801 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3802 xfree (all_comp_units);
3803 dwarf2_per_objfile->n_comp_units = n_comp_units;
3804 }
3805
3806 /* Process all loaded DIEs for compilation unit CU, starting at
3807 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3808 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3809 DW_AT_ranges). If NEED_PC is set, then this function will set
3810 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3811 and record the covered ranges in the addrmap. */
3812
3813 static void
3814 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3815 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3816 {
3817 struct partial_die_info *pdi;
3818
3819 /* Now, march along the PDI's, descending into ones which have
3820 interesting children but skipping the children of the other ones,
3821 until we reach the end of the compilation unit. */
3822
3823 pdi = first_die;
3824
3825 while (pdi != NULL)
3826 {
3827 fixup_partial_die (pdi, cu);
3828
3829 /* Anonymous namespaces or modules have no name but have interesting
3830 children, so we need to look at them. Ditto for anonymous
3831 enums. */
3832
3833 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3834 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3835 {
3836 switch (pdi->tag)
3837 {
3838 case DW_TAG_subprogram:
3839 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3840 break;
3841 case DW_TAG_constant:
3842 case DW_TAG_variable:
3843 case DW_TAG_typedef:
3844 case DW_TAG_union_type:
3845 if (!pdi->is_declaration)
3846 {
3847 add_partial_symbol (pdi, cu);
3848 }
3849 break;
3850 case DW_TAG_class_type:
3851 case DW_TAG_interface_type:
3852 case DW_TAG_structure_type:
3853 if (!pdi->is_declaration)
3854 {
3855 add_partial_symbol (pdi, cu);
3856 }
3857 break;
3858 case DW_TAG_enumeration_type:
3859 if (!pdi->is_declaration)
3860 add_partial_enumeration (pdi, cu);
3861 break;
3862 case DW_TAG_base_type:
3863 case DW_TAG_subrange_type:
3864 /* File scope base type definitions are added to the partial
3865 symbol table. */
3866 add_partial_symbol (pdi, cu);
3867 break;
3868 case DW_TAG_namespace:
3869 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3870 break;
3871 case DW_TAG_module:
3872 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3873 break;
3874 default:
3875 break;
3876 }
3877 }
3878
3879 /* If the die has a sibling, skip to the sibling. */
3880
3881 pdi = pdi->die_sibling;
3882 }
3883 }
3884
3885 /* Functions used to compute the fully scoped name of a partial DIE.
3886
3887 Normally, this is simple. For C++, the parent DIE's fully scoped
3888 name is concatenated with "::" and the partial DIE's name. For
3889 Java, the same thing occurs except that "." is used instead of "::".
3890 Enumerators are an exception; they use the scope of their parent
3891 enumeration type, i.e. the name of the enumeration type is not
3892 prepended to the enumerator.
3893
3894 There are two complexities. One is DW_AT_specification; in this
3895 case "parent" means the parent of the target of the specification,
3896 instead of the direct parent of the DIE. The other is compilers
3897 which do not emit DW_TAG_namespace; in this case we try to guess
3898 the fully qualified name of structure types from their members'
3899 linkage names. This must be done using the DIE's children rather
3900 than the children of any DW_AT_specification target. We only need
3901 to do this for structures at the top level, i.e. if the target of
3902 any DW_AT_specification (if any; otherwise the DIE itself) does not
3903 have a parent. */
3904
3905 /* Compute the scope prefix associated with PDI's parent, in
3906 compilation unit CU. The result will be allocated on CU's
3907 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3908 field. NULL is returned if no prefix is necessary. */
3909 static char *
3910 partial_die_parent_scope (struct partial_die_info *pdi,
3911 struct dwarf2_cu *cu)
3912 {
3913 char *grandparent_scope;
3914 struct partial_die_info *parent, *real_pdi;
3915
3916 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3917 then this means the parent of the specification DIE. */
3918
3919 real_pdi = pdi;
3920 while (real_pdi->has_specification)
3921 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3922
3923 parent = real_pdi->die_parent;
3924 if (parent == NULL)
3925 return NULL;
3926
3927 if (parent->scope_set)
3928 return parent->scope;
3929
3930 fixup_partial_die (parent, cu);
3931
3932 grandparent_scope = partial_die_parent_scope (parent, cu);
3933
3934 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3935 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3936 Work around this problem here. */
3937 if (cu->language == language_cplus
3938 && parent->tag == DW_TAG_namespace
3939 && strcmp (parent->name, "::") == 0
3940 && grandparent_scope == NULL)
3941 {
3942 parent->scope = NULL;
3943 parent->scope_set = 1;
3944 return NULL;
3945 }
3946
3947 if (pdi->tag == DW_TAG_enumerator)
3948 /* Enumerators should not get the name of the enumeration as a prefix. */
3949 parent->scope = grandparent_scope;
3950 else if (parent->tag == DW_TAG_namespace
3951 || parent->tag == DW_TAG_module
3952 || parent->tag == DW_TAG_structure_type
3953 || parent->tag == DW_TAG_class_type
3954 || parent->tag == DW_TAG_interface_type
3955 || parent->tag == DW_TAG_union_type
3956 || parent->tag == DW_TAG_enumeration_type)
3957 {
3958 if (grandparent_scope == NULL)
3959 parent->scope = parent->name;
3960 else
3961 parent->scope = typename_concat (&cu->comp_unit_obstack,
3962 grandparent_scope,
3963 parent->name, 0, cu);
3964 }
3965 else
3966 {
3967 /* FIXME drow/2004-04-01: What should we be doing with
3968 function-local names? For partial symbols, we should probably be
3969 ignoring them. */
3970 complaint (&symfile_complaints,
3971 _("unhandled containing DIE tag %d for DIE at %d"),
3972 parent->tag, pdi->offset);
3973 parent->scope = grandparent_scope;
3974 }
3975
3976 parent->scope_set = 1;
3977 return parent->scope;
3978 }
3979
3980 /* Return the fully scoped name associated with PDI, from compilation unit
3981 CU. The result will be allocated with malloc. */
3982 static char *
3983 partial_die_full_name (struct partial_die_info *pdi,
3984 struct dwarf2_cu *cu)
3985 {
3986 char *parent_scope;
3987
3988 /* If this is a template instantiation, we can not work out the
3989 template arguments from partial DIEs. So, unfortunately, we have
3990 to go through the full DIEs. At least any work we do building
3991 types here will be reused if full symbols are loaded later. */
3992 if (pdi->has_template_arguments)
3993 {
3994 fixup_partial_die (pdi, cu);
3995
3996 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3997 {
3998 struct die_info *die;
3999 struct attribute attr;
4000 struct dwarf2_cu *ref_cu = cu;
4001
4002 attr.name = 0;
4003 attr.form = DW_FORM_ref_addr;
4004 attr.u.addr = pdi->offset;
4005 die = follow_die_ref (NULL, &attr, &ref_cu);
4006
4007 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4008 }
4009 }
4010
4011 parent_scope = partial_die_parent_scope (pdi, cu);
4012 if (parent_scope == NULL)
4013 return NULL;
4014 else
4015 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4016 }
4017
4018 static void
4019 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4020 {
4021 struct objfile *objfile = cu->objfile;
4022 CORE_ADDR addr = 0;
4023 char *actual_name = NULL;
4024 const struct partial_symbol *psym = NULL;
4025 CORE_ADDR baseaddr;
4026 int built_actual_name = 0;
4027
4028 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4029
4030 actual_name = partial_die_full_name (pdi, cu);
4031 if (actual_name)
4032 built_actual_name = 1;
4033
4034 if (actual_name == NULL)
4035 actual_name = pdi->name;
4036
4037 switch (pdi->tag)
4038 {
4039 case DW_TAG_subprogram:
4040 if (pdi->is_external || cu->language == language_ada)
4041 {
4042 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4043 of the global scope. But in Ada, we want to be able to access
4044 nested procedures globally. So all Ada subprograms are stored
4045 in the global scope. */
4046 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4047 mst_text, objfile); */
4048 add_psymbol_to_list (actual_name, strlen (actual_name),
4049 built_actual_name,
4050 VAR_DOMAIN, LOC_BLOCK,
4051 &objfile->global_psymbols,
4052 0, pdi->lowpc + baseaddr,
4053 cu->language, objfile);
4054 }
4055 else
4056 {
4057 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4058 mst_file_text, objfile); */
4059 add_psymbol_to_list (actual_name, strlen (actual_name),
4060 built_actual_name,
4061 VAR_DOMAIN, LOC_BLOCK,
4062 &objfile->static_psymbols,
4063 0, pdi->lowpc + baseaddr,
4064 cu->language, objfile);
4065 }
4066 break;
4067 case DW_TAG_constant:
4068 {
4069 struct psymbol_allocation_list *list;
4070
4071 if (pdi->is_external)
4072 list = &objfile->global_psymbols;
4073 else
4074 list = &objfile->static_psymbols;
4075 add_psymbol_to_list (actual_name, strlen (actual_name),
4076 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4077 list, 0, 0, cu->language, objfile);
4078 }
4079 break;
4080 case DW_TAG_variable:
4081 if (pdi->locdesc)
4082 addr = decode_locdesc (pdi->locdesc, cu);
4083
4084 if (pdi->locdesc
4085 && addr == 0
4086 && !dwarf2_per_objfile->has_section_at_zero)
4087 {
4088 /* A global or static variable may also have been stripped
4089 out by the linker if unused, in which case its address
4090 will be nullified; do not add such variables into partial
4091 symbol table then. */
4092 }
4093 else if (pdi->is_external)
4094 {
4095 /* Global Variable.
4096 Don't enter into the minimal symbol tables as there is
4097 a minimal symbol table entry from the ELF symbols already.
4098 Enter into partial symbol table if it has a location
4099 descriptor or a type.
4100 If the location descriptor is missing, new_symbol will create
4101 a LOC_UNRESOLVED symbol, the address of the variable will then
4102 be determined from the minimal symbol table whenever the variable
4103 is referenced.
4104 The address for the partial symbol table entry is not
4105 used by GDB, but it comes in handy for debugging partial symbol
4106 table building. */
4107
4108 if (pdi->locdesc || pdi->has_type)
4109 add_psymbol_to_list (actual_name, strlen (actual_name),
4110 built_actual_name,
4111 VAR_DOMAIN, LOC_STATIC,
4112 &objfile->global_psymbols,
4113 0, addr + baseaddr,
4114 cu->language, objfile);
4115 }
4116 else
4117 {
4118 /* Static Variable. Skip symbols without location descriptors. */
4119 if (pdi->locdesc == NULL)
4120 {
4121 if (built_actual_name)
4122 xfree (actual_name);
4123 return;
4124 }
4125 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4126 mst_file_data, objfile); */
4127 add_psymbol_to_list (actual_name, strlen (actual_name),
4128 built_actual_name,
4129 VAR_DOMAIN, LOC_STATIC,
4130 &objfile->static_psymbols,
4131 0, addr + baseaddr,
4132 cu->language, objfile);
4133 }
4134 break;
4135 case DW_TAG_typedef:
4136 case DW_TAG_base_type:
4137 case DW_TAG_subrange_type:
4138 add_psymbol_to_list (actual_name, strlen (actual_name),
4139 built_actual_name,
4140 VAR_DOMAIN, LOC_TYPEDEF,
4141 &objfile->static_psymbols,
4142 0, (CORE_ADDR) 0, cu->language, objfile);
4143 break;
4144 case DW_TAG_namespace:
4145 add_psymbol_to_list (actual_name, strlen (actual_name),
4146 built_actual_name,
4147 VAR_DOMAIN, LOC_TYPEDEF,
4148 &objfile->global_psymbols,
4149 0, (CORE_ADDR) 0, cu->language, objfile);
4150 break;
4151 case DW_TAG_class_type:
4152 case DW_TAG_interface_type:
4153 case DW_TAG_structure_type:
4154 case DW_TAG_union_type:
4155 case DW_TAG_enumeration_type:
4156 /* Skip external references. The DWARF standard says in the section
4157 about "Structure, Union, and Class Type Entries": "An incomplete
4158 structure, union or class type is represented by a structure,
4159 union or class entry that does not have a byte size attribute
4160 and that has a DW_AT_declaration attribute." */
4161 if (!pdi->has_byte_size && pdi->is_declaration)
4162 {
4163 if (built_actual_name)
4164 xfree (actual_name);
4165 return;
4166 }
4167
4168 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4169 static vs. global. */
4170 add_psymbol_to_list (actual_name, strlen (actual_name),
4171 built_actual_name,
4172 STRUCT_DOMAIN, LOC_TYPEDEF,
4173 (cu->language == language_cplus
4174 || cu->language == language_java)
4175 ? &objfile->global_psymbols
4176 : &objfile->static_psymbols,
4177 0, (CORE_ADDR) 0, cu->language, objfile);
4178
4179 break;
4180 case DW_TAG_enumerator:
4181 add_psymbol_to_list (actual_name, strlen (actual_name),
4182 built_actual_name,
4183 VAR_DOMAIN, LOC_CONST,
4184 (cu->language == language_cplus
4185 || cu->language == language_java)
4186 ? &objfile->global_psymbols
4187 : &objfile->static_psymbols,
4188 0, (CORE_ADDR) 0, cu->language, objfile);
4189 break;
4190 default:
4191 break;
4192 }
4193
4194 if (built_actual_name)
4195 xfree (actual_name);
4196 }
4197
4198 /* Read a partial die corresponding to a namespace; also, add a symbol
4199 corresponding to that namespace to the symbol table. NAMESPACE is
4200 the name of the enclosing namespace. */
4201
4202 static void
4203 add_partial_namespace (struct partial_die_info *pdi,
4204 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4205 int need_pc, struct dwarf2_cu *cu)
4206 {
4207 /* Add a symbol for the namespace. */
4208
4209 add_partial_symbol (pdi, cu);
4210
4211 /* Now scan partial symbols in that namespace. */
4212
4213 if (pdi->has_children)
4214 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4215 }
4216
4217 /* Read a partial die corresponding to a Fortran module. */
4218
4219 static void
4220 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4221 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4222 {
4223 /* Now scan partial symbols in that module. */
4224
4225 if (pdi->has_children)
4226 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4227 }
4228
4229 /* Read a partial die corresponding to a subprogram and create a partial
4230 symbol for that subprogram. When the CU language allows it, this
4231 routine also defines a partial symbol for each nested subprogram
4232 that this subprogram contains.
4233
4234 DIE my also be a lexical block, in which case we simply search
4235 recursively for suprograms defined inside that lexical block.
4236 Again, this is only performed when the CU language allows this
4237 type of definitions. */
4238
4239 static void
4240 add_partial_subprogram (struct partial_die_info *pdi,
4241 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4242 int need_pc, struct dwarf2_cu *cu)
4243 {
4244 if (pdi->tag == DW_TAG_subprogram)
4245 {
4246 if (pdi->has_pc_info)
4247 {
4248 if (pdi->lowpc < *lowpc)
4249 *lowpc = pdi->lowpc;
4250 if (pdi->highpc > *highpc)
4251 *highpc = pdi->highpc;
4252 if (need_pc)
4253 {
4254 CORE_ADDR baseaddr;
4255 struct objfile *objfile = cu->objfile;
4256
4257 baseaddr = ANOFFSET (objfile->section_offsets,
4258 SECT_OFF_TEXT (objfile));
4259 addrmap_set_empty (objfile->psymtabs_addrmap,
4260 pdi->lowpc + baseaddr,
4261 pdi->highpc - 1 + baseaddr,
4262 cu->per_cu->v.psymtab);
4263 }
4264 if (!pdi->is_declaration)
4265 /* Ignore subprogram DIEs that do not have a name, they are
4266 illegal. Do not emit a complaint at this point, we will
4267 do so when we convert this psymtab into a symtab. */
4268 if (pdi->name)
4269 add_partial_symbol (pdi, cu);
4270 }
4271 }
4272
4273 if (! pdi->has_children)
4274 return;
4275
4276 if (cu->language == language_ada)
4277 {
4278 pdi = pdi->die_child;
4279 while (pdi != NULL)
4280 {
4281 fixup_partial_die (pdi, cu);
4282 if (pdi->tag == DW_TAG_subprogram
4283 || pdi->tag == DW_TAG_lexical_block)
4284 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4285 pdi = pdi->die_sibling;
4286 }
4287 }
4288 }
4289
4290 /* Read a partial die corresponding to an enumeration type. */
4291
4292 static void
4293 add_partial_enumeration (struct partial_die_info *enum_pdi,
4294 struct dwarf2_cu *cu)
4295 {
4296 struct partial_die_info *pdi;
4297
4298 if (enum_pdi->name != NULL)
4299 add_partial_symbol (enum_pdi, cu);
4300
4301 pdi = enum_pdi->die_child;
4302 while (pdi)
4303 {
4304 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4305 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4306 else
4307 add_partial_symbol (pdi, cu);
4308 pdi = pdi->die_sibling;
4309 }
4310 }
4311
4312 /* Return the initial uleb128 in the die at INFO_PTR. */
4313
4314 static unsigned int
4315 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4316 {
4317 unsigned int bytes_read;
4318
4319 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4320 }
4321
4322 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4323 Return the corresponding abbrev, or NULL if the number is zero (indicating
4324 an empty DIE). In either case *BYTES_READ will be set to the length of
4325 the initial number. */
4326
4327 static struct abbrev_info *
4328 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4329 struct dwarf2_cu *cu)
4330 {
4331 bfd *abfd = cu->objfile->obfd;
4332 unsigned int abbrev_number;
4333 struct abbrev_info *abbrev;
4334
4335 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4336
4337 if (abbrev_number == 0)
4338 return NULL;
4339
4340 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4341 if (!abbrev)
4342 {
4343 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4344 abbrev_number, bfd_get_filename (abfd));
4345 }
4346
4347 return abbrev;
4348 }
4349
4350 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4351 Returns a pointer to the end of a series of DIEs, terminated by an empty
4352 DIE. Any children of the skipped DIEs will also be skipped. */
4353
4354 static gdb_byte *
4355 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4356 {
4357 struct abbrev_info *abbrev;
4358 unsigned int bytes_read;
4359
4360 while (1)
4361 {
4362 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4363 if (abbrev == NULL)
4364 return info_ptr + bytes_read;
4365 else
4366 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4367 }
4368 }
4369
4370 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4371 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4372 abbrev corresponding to that skipped uleb128 should be passed in
4373 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4374 children. */
4375
4376 static gdb_byte *
4377 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4378 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4379 {
4380 unsigned int bytes_read;
4381 struct attribute attr;
4382 bfd *abfd = cu->objfile->obfd;
4383 unsigned int form, i;
4384
4385 for (i = 0; i < abbrev->num_attrs; i++)
4386 {
4387 /* The only abbrev we care about is DW_AT_sibling. */
4388 if (abbrev->attrs[i].name == DW_AT_sibling)
4389 {
4390 read_attribute (&attr, &abbrev->attrs[i],
4391 abfd, info_ptr, cu);
4392 if (attr.form == DW_FORM_ref_addr)
4393 complaint (&symfile_complaints,
4394 _("ignoring absolute DW_AT_sibling"));
4395 else
4396 return buffer + dwarf2_get_ref_die_offset (&attr);
4397 }
4398
4399 /* If it isn't DW_AT_sibling, skip this attribute. */
4400 form = abbrev->attrs[i].form;
4401 skip_attribute:
4402 switch (form)
4403 {
4404 case DW_FORM_ref_addr:
4405 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4406 and later it is offset sized. */
4407 if (cu->header.version == 2)
4408 info_ptr += cu->header.addr_size;
4409 else
4410 info_ptr += cu->header.offset_size;
4411 break;
4412 case DW_FORM_addr:
4413 info_ptr += cu->header.addr_size;
4414 break;
4415 case DW_FORM_data1:
4416 case DW_FORM_ref1:
4417 case DW_FORM_flag:
4418 info_ptr += 1;
4419 break;
4420 case DW_FORM_flag_present:
4421 break;
4422 case DW_FORM_data2:
4423 case DW_FORM_ref2:
4424 info_ptr += 2;
4425 break;
4426 case DW_FORM_data4:
4427 case DW_FORM_ref4:
4428 info_ptr += 4;
4429 break;
4430 case DW_FORM_data8:
4431 case DW_FORM_ref8:
4432 case DW_FORM_ref_sig8:
4433 info_ptr += 8;
4434 break;
4435 case DW_FORM_string:
4436 read_direct_string (abfd, info_ptr, &bytes_read);
4437 info_ptr += bytes_read;
4438 break;
4439 case DW_FORM_sec_offset:
4440 case DW_FORM_strp:
4441 info_ptr += cu->header.offset_size;
4442 break;
4443 case DW_FORM_exprloc:
4444 case DW_FORM_block:
4445 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4446 info_ptr += bytes_read;
4447 break;
4448 case DW_FORM_block1:
4449 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4450 break;
4451 case DW_FORM_block2:
4452 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4453 break;
4454 case DW_FORM_block4:
4455 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4456 break;
4457 case DW_FORM_sdata:
4458 case DW_FORM_udata:
4459 case DW_FORM_ref_udata:
4460 info_ptr = skip_leb128 (abfd, info_ptr);
4461 break;
4462 case DW_FORM_indirect:
4463 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4464 info_ptr += bytes_read;
4465 /* We need to continue parsing from here, so just go back to
4466 the top. */
4467 goto skip_attribute;
4468
4469 default:
4470 error (_("Dwarf Error: Cannot handle %s "
4471 "in DWARF reader [in module %s]"),
4472 dwarf_form_name (form),
4473 bfd_get_filename (abfd));
4474 }
4475 }
4476
4477 if (abbrev->has_children)
4478 return skip_children (buffer, info_ptr, cu);
4479 else
4480 return info_ptr;
4481 }
4482
4483 /* Locate ORIG_PDI's sibling.
4484 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4485 in BUFFER. */
4486
4487 static gdb_byte *
4488 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4489 gdb_byte *buffer, gdb_byte *info_ptr,
4490 bfd *abfd, struct dwarf2_cu *cu)
4491 {
4492 /* Do we know the sibling already? */
4493
4494 if (orig_pdi->sibling)
4495 return orig_pdi->sibling;
4496
4497 /* Are there any children to deal with? */
4498
4499 if (!orig_pdi->has_children)
4500 return info_ptr;
4501
4502 /* Skip the children the long way. */
4503
4504 return skip_children (buffer, info_ptr, cu);
4505 }
4506
4507 /* Expand this partial symbol table into a full symbol table. */
4508
4509 static void
4510 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4511 {
4512 if (pst != NULL)
4513 {
4514 if (pst->readin)
4515 {
4516 warning (_("bug: psymtab for %s is already read in."),
4517 pst->filename);
4518 }
4519 else
4520 {
4521 if (info_verbose)
4522 {
4523 printf_filtered (_("Reading in symbols for %s..."),
4524 pst->filename);
4525 gdb_flush (gdb_stdout);
4526 }
4527
4528 /* Restore our global data. */
4529 dwarf2_per_objfile = objfile_data (pst->objfile,
4530 dwarf2_objfile_data_key);
4531
4532 /* If this psymtab is constructed from a debug-only objfile, the
4533 has_section_at_zero flag will not necessarily be correct. We
4534 can get the correct value for this flag by looking at the data
4535 associated with the (presumably stripped) associated objfile. */
4536 if (pst->objfile->separate_debug_objfile_backlink)
4537 {
4538 struct dwarf2_per_objfile *dpo_backlink
4539 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4540 dwarf2_objfile_data_key);
4541
4542 dwarf2_per_objfile->has_section_at_zero
4543 = dpo_backlink->has_section_at_zero;
4544 }
4545
4546 dwarf2_per_objfile->reading_partial_symbols = 0;
4547
4548 psymtab_to_symtab_1 (pst);
4549
4550 /* Finish up the debug error message. */
4551 if (info_verbose)
4552 printf_filtered (_("done.\n"));
4553 }
4554 }
4555 }
4556
4557 /* Add PER_CU to the queue. */
4558
4559 static void
4560 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4561 {
4562 struct dwarf2_queue_item *item;
4563
4564 per_cu->queued = 1;
4565 item = xmalloc (sizeof (*item));
4566 item->per_cu = per_cu;
4567 item->next = NULL;
4568
4569 if (dwarf2_queue == NULL)
4570 dwarf2_queue = item;
4571 else
4572 dwarf2_queue_tail->next = item;
4573
4574 dwarf2_queue_tail = item;
4575 }
4576
4577 /* Process the queue. */
4578
4579 static void
4580 process_queue (struct objfile *objfile)
4581 {
4582 struct dwarf2_queue_item *item, *next_item;
4583
4584 /* The queue starts out with one item, but following a DIE reference
4585 may load a new CU, adding it to the end of the queue. */
4586 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4587 {
4588 if (dwarf2_per_objfile->using_index
4589 ? !item->per_cu->v.quick->symtab
4590 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4591 process_full_comp_unit (item->per_cu);
4592
4593 item->per_cu->queued = 0;
4594 next_item = item->next;
4595 xfree (item);
4596 }
4597
4598 dwarf2_queue_tail = NULL;
4599 }
4600
4601 /* Free all allocated queue entries. This function only releases anything if
4602 an error was thrown; if the queue was processed then it would have been
4603 freed as we went along. */
4604
4605 static void
4606 dwarf2_release_queue (void *dummy)
4607 {
4608 struct dwarf2_queue_item *item, *last;
4609
4610 item = dwarf2_queue;
4611 while (item)
4612 {
4613 /* Anything still marked queued is likely to be in an
4614 inconsistent state, so discard it. */
4615 if (item->per_cu->queued)
4616 {
4617 if (item->per_cu->cu != NULL)
4618 free_one_cached_comp_unit (item->per_cu->cu);
4619 item->per_cu->queued = 0;
4620 }
4621
4622 last = item;
4623 item = item->next;
4624 xfree (last);
4625 }
4626
4627 dwarf2_queue = dwarf2_queue_tail = NULL;
4628 }
4629
4630 /* Read in full symbols for PST, and anything it depends on. */
4631
4632 static void
4633 psymtab_to_symtab_1 (struct partial_symtab *pst)
4634 {
4635 struct dwarf2_per_cu_data *per_cu;
4636 struct cleanup *back_to;
4637 int i;
4638
4639 for (i = 0; i < pst->number_of_dependencies; i++)
4640 if (!pst->dependencies[i]->readin)
4641 {
4642 /* Inform about additional files that need to be read in. */
4643 if (info_verbose)
4644 {
4645 /* FIXME: i18n: Need to make this a single string. */
4646 fputs_filtered (" ", gdb_stdout);
4647 wrap_here ("");
4648 fputs_filtered ("and ", gdb_stdout);
4649 wrap_here ("");
4650 printf_filtered ("%s...", pst->dependencies[i]->filename);
4651 wrap_here (""); /* Flush output. */
4652 gdb_flush (gdb_stdout);
4653 }
4654 psymtab_to_symtab_1 (pst->dependencies[i]);
4655 }
4656
4657 per_cu = pst->read_symtab_private;
4658
4659 if (per_cu == NULL)
4660 {
4661 /* It's an include file, no symbols to read for it.
4662 Everything is in the parent symtab. */
4663 pst->readin = 1;
4664 return;
4665 }
4666
4667 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4668 }
4669
4670 /* Load the DIEs associated with PER_CU into memory. */
4671
4672 static void
4673 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4674 struct objfile *objfile)
4675 {
4676 bfd *abfd = objfile->obfd;
4677 struct dwarf2_cu *cu;
4678 unsigned int offset;
4679 gdb_byte *info_ptr, *beg_of_comp_unit;
4680 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4681 struct attribute *attr;
4682 int read_cu = 0;
4683
4684 gdb_assert (! per_cu->debug_type_section);
4685
4686 /* Set local variables from the partial symbol table info. */
4687 offset = per_cu->offset;
4688
4689 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4690 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4691 beg_of_comp_unit = info_ptr;
4692
4693 if (per_cu->cu == NULL)
4694 {
4695 cu = xmalloc (sizeof (*cu));
4696 init_one_comp_unit (cu, objfile);
4697
4698 read_cu = 1;
4699
4700 /* If an error occurs while loading, release our storage. */
4701 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4702
4703 /* Read in the comp_unit header. */
4704 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4705
4706 /* Skip dummy compilation units. */
4707 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4708 + dwarf2_per_objfile->info.size)
4709 || peek_abbrev_code (abfd, info_ptr) == 0)
4710 {
4711 do_cleanups (free_cu_cleanup);
4712 return;
4713 }
4714
4715 /* Complete the cu_header. */
4716 cu->header.offset = offset;
4717 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4718
4719 /* Read the abbrevs for this compilation unit. */
4720 dwarf2_read_abbrevs (abfd, cu);
4721 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4722
4723 /* Link this compilation unit into the compilation unit tree. */
4724 per_cu->cu = cu;
4725 cu->per_cu = per_cu;
4726
4727 /* Link this CU into read_in_chain. */
4728 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4729 dwarf2_per_objfile->read_in_chain = per_cu;
4730 }
4731 else
4732 {
4733 cu = per_cu->cu;
4734 info_ptr += cu->header.first_die_offset;
4735 }
4736
4737 cu->dies = read_comp_unit (info_ptr, cu);
4738
4739 /* We try not to read any attributes in this function, because not
4740 all objfiles needed for references have been loaded yet, and symbol
4741 table processing isn't initialized. But we have to set the CU language,
4742 or we won't be able to build types correctly. */
4743 prepare_one_comp_unit (cu, cu->dies);
4744
4745 /* Similarly, if we do not read the producer, we can not apply
4746 producer-specific interpretation. */
4747 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4748 if (attr)
4749 cu->producer = DW_STRING (attr);
4750
4751 if (read_cu)
4752 {
4753 do_cleanups (free_abbrevs_cleanup);
4754
4755 /* We've successfully allocated this compilation unit. Let our
4756 caller clean it up when finished with it. */
4757 discard_cleanups (free_cu_cleanup);
4758 }
4759 }
4760
4761 /* Add a DIE to the delayed physname list. */
4762
4763 static void
4764 add_to_method_list (struct type *type, int fnfield_index, int index,
4765 const char *name, struct die_info *die,
4766 struct dwarf2_cu *cu)
4767 {
4768 struct delayed_method_info mi;
4769 mi.type = type;
4770 mi.fnfield_index = fnfield_index;
4771 mi.index = index;
4772 mi.name = name;
4773 mi.die = die;
4774 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4775 }
4776
4777 /* A cleanup for freeing the delayed method list. */
4778
4779 static void
4780 free_delayed_list (void *ptr)
4781 {
4782 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4783 if (cu->method_list != NULL)
4784 {
4785 VEC_free (delayed_method_info, cu->method_list);
4786 cu->method_list = NULL;
4787 }
4788 }
4789
4790 /* Compute the physnames of any methods on the CU's method list.
4791
4792 The computation of method physnames is delayed in order to avoid the
4793 (bad) condition that one of the method's formal parameters is of an as yet
4794 incomplete type. */
4795
4796 static void
4797 compute_delayed_physnames (struct dwarf2_cu *cu)
4798 {
4799 int i;
4800 struct delayed_method_info *mi;
4801 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4802 {
4803 const char *physname;
4804 struct fn_fieldlist *fn_flp
4805 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4806 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4807 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4808 }
4809 }
4810
4811 /* Generate full symbol information for PST and CU, whose DIEs have
4812 already been loaded into memory. */
4813
4814 static void
4815 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4816 {
4817 struct dwarf2_cu *cu = per_cu->cu;
4818 struct objfile *objfile = per_cu->objfile;
4819 CORE_ADDR lowpc, highpc;
4820 struct symtab *symtab;
4821 struct cleanup *back_to, *delayed_list_cleanup;
4822 CORE_ADDR baseaddr;
4823
4824 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4825
4826 buildsym_init ();
4827 back_to = make_cleanup (really_free_pendings, NULL);
4828 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4829
4830 cu->list_in_scope = &file_symbols;
4831
4832 /* Do line number decoding in read_file_scope () */
4833 process_die (cu->dies, cu);
4834
4835 /* Now that we have processed all the DIEs in the CU, all the types
4836 should be complete, and it should now be safe to compute all of the
4837 physnames. */
4838 compute_delayed_physnames (cu);
4839 do_cleanups (delayed_list_cleanup);
4840
4841 /* Some compilers don't define a DW_AT_high_pc attribute for the
4842 compilation unit. If the DW_AT_high_pc is missing, synthesize
4843 it, by scanning the DIE's below the compilation unit. */
4844 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4845
4846 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4847
4848 if (symtab != NULL)
4849 {
4850 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4851
4852 /* Set symtab language to language from DW_AT_language. If the
4853 compilation is from a C file generated by language preprocessors, do
4854 not set the language if it was already deduced by start_subfile. */
4855 if (!(cu->language == language_c && symtab->language != language_c))
4856 symtab->language = cu->language;
4857
4858 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4859 produce DW_AT_location with location lists but it can be possibly
4860 invalid without -fvar-tracking.
4861
4862 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4863 needed, it would be wrong due to missing DW_AT_producer there.
4864
4865 Still one can confuse GDB by using non-standard GCC compilation
4866 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4867 */
4868 if (cu->has_loclist && gcc_4_minor >= 0)
4869 symtab->locations_valid = 1;
4870
4871 if (gcc_4_minor >= 5)
4872 symtab->epilogue_unwind_valid = 1;
4873
4874 symtab->call_site_htab = cu->call_site_htab;
4875 }
4876
4877 if (dwarf2_per_objfile->using_index)
4878 per_cu->v.quick->symtab = symtab;
4879 else
4880 {
4881 struct partial_symtab *pst = per_cu->v.psymtab;
4882 pst->symtab = symtab;
4883 pst->readin = 1;
4884 }
4885
4886 do_cleanups (back_to);
4887 }
4888
4889 /* Process a die and its children. */
4890
4891 static void
4892 process_die (struct die_info *die, struct dwarf2_cu *cu)
4893 {
4894 switch (die->tag)
4895 {
4896 case DW_TAG_padding:
4897 break;
4898 case DW_TAG_compile_unit:
4899 read_file_scope (die, cu);
4900 break;
4901 case DW_TAG_type_unit:
4902 read_type_unit_scope (die, cu);
4903 break;
4904 case DW_TAG_subprogram:
4905 case DW_TAG_inlined_subroutine:
4906 read_func_scope (die, cu);
4907 break;
4908 case DW_TAG_lexical_block:
4909 case DW_TAG_try_block:
4910 case DW_TAG_catch_block:
4911 read_lexical_block_scope (die, cu);
4912 break;
4913 case DW_TAG_GNU_call_site:
4914 read_call_site_scope (die, cu);
4915 break;
4916 case DW_TAG_class_type:
4917 case DW_TAG_interface_type:
4918 case DW_TAG_structure_type:
4919 case DW_TAG_union_type:
4920 process_structure_scope (die, cu);
4921 break;
4922 case DW_TAG_enumeration_type:
4923 process_enumeration_scope (die, cu);
4924 break;
4925
4926 /* These dies have a type, but processing them does not create
4927 a symbol or recurse to process the children. Therefore we can
4928 read them on-demand through read_type_die. */
4929 case DW_TAG_subroutine_type:
4930 case DW_TAG_set_type:
4931 case DW_TAG_array_type:
4932 case DW_TAG_pointer_type:
4933 case DW_TAG_ptr_to_member_type:
4934 case DW_TAG_reference_type:
4935 case DW_TAG_string_type:
4936 break;
4937
4938 case DW_TAG_base_type:
4939 case DW_TAG_subrange_type:
4940 case DW_TAG_typedef:
4941 /* Add a typedef symbol for the type definition, if it has a
4942 DW_AT_name. */
4943 new_symbol (die, read_type_die (die, cu), cu);
4944 break;
4945 case DW_TAG_common_block:
4946 read_common_block (die, cu);
4947 break;
4948 case DW_TAG_common_inclusion:
4949 break;
4950 case DW_TAG_namespace:
4951 processing_has_namespace_info = 1;
4952 read_namespace (die, cu);
4953 break;
4954 case DW_TAG_module:
4955 processing_has_namespace_info = 1;
4956 read_module (die, cu);
4957 break;
4958 case DW_TAG_imported_declaration:
4959 case DW_TAG_imported_module:
4960 processing_has_namespace_info = 1;
4961 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4962 || cu->language != language_fortran))
4963 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4964 dwarf_tag_name (die->tag));
4965 read_import_statement (die, cu);
4966 break;
4967 default:
4968 new_symbol (die, NULL, cu);
4969 break;
4970 }
4971 }
4972
4973 /* A helper function for dwarf2_compute_name which determines whether DIE
4974 needs to have the name of the scope prepended to the name listed in the
4975 die. */
4976
4977 static int
4978 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4979 {
4980 struct attribute *attr;
4981
4982 switch (die->tag)
4983 {
4984 case DW_TAG_namespace:
4985 case DW_TAG_typedef:
4986 case DW_TAG_class_type:
4987 case DW_TAG_interface_type:
4988 case DW_TAG_structure_type:
4989 case DW_TAG_union_type:
4990 case DW_TAG_enumeration_type:
4991 case DW_TAG_enumerator:
4992 case DW_TAG_subprogram:
4993 case DW_TAG_member:
4994 return 1;
4995
4996 case DW_TAG_variable:
4997 case DW_TAG_constant:
4998 /* We only need to prefix "globally" visible variables. These include
4999 any variable marked with DW_AT_external or any variable that
5000 lives in a namespace. [Variables in anonymous namespaces
5001 require prefixing, but they are not DW_AT_external.] */
5002
5003 if (dwarf2_attr (die, DW_AT_specification, cu))
5004 {
5005 struct dwarf2_cu *spec_cu = cu;
5006
5007 return die_needs_namespace (die_specification (die, &spec_cu),
5008 spec_cu);
5009 }
5010
5011 attr = dwarf2_attr (die, DW_AT_external, cu);
5012 if (attr == NULL && die->parent->tag != DW_TAG_namespace
5013 && die->parent->tag != DW_TAG_module)
5014 return 0;
5015 /* A variable in a lexical block of some kind does not need a
5016 namespace, even though in C++ such variables may be external
5017 and have a mangled name. */
5018 if (die->parent->tag == DW_TAG_lexical_block
5019 || die->parent->tag == DW_TAG_try_block
5020 || die->parent->tag == DW_TAG_catch_block
5021 || die->parent->tag == DW_TAG_subprogram)
5022 return 0;
5023 return 1;
5024
5025 default:
5026 return 0;
5027 }
5028 }
5029
5030 /* Retrieve the last character from a mem_file. */
5031
5032 static void
5033 do_ui_file_peek_last (void *object, const char *buffer, long length)
5034 {
5035 char *last_char_p = (char *) object;
5036
5037 if (length > 0)
5038 *last_char_p = buffer[length - 1];
5039 }
5040
5041 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5042 compute the physname for the object, which include a method's
5043 formal parameters (C++/Java) and return type (Java).
5044
5045 For Ada, return the DIE's linkage name rather than the fully qualified
5046 name. PHYSNAME is ignored..
5047
5048 The result is allocated on the objfile_obstack and canonicalized. */
5049
5050 static const char *
5051 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5052 int physname)
5053 {
5054 if (name == NULL)
5055 name = dwarf2_name (die, cu);
5056
5057 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5058 compute it by typename_concat inside GDB. */
5059 if (cu->language == language_ada
5060 || (cu->language == language_fortran && physname))
5061 {
5062 /* For Ada unit, we prefer the linkage name over the name, as
5063 the former contains the exported name, which the user expects
5064 to be able to reference. Ideally, we want the user to be able
5065 to reference this entity using either natural or linkage name,
5066 but we haven't started looking at this enhancement yet. */
5067 struct attribute *attr;
5068
5069 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5070 if (attr == NULL)
5071 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5072 if (attr && DW_STRING (attr))
5073 return DW_STRING (attr);
5074 }
5075
5076 /* These are the only languages we know how to qualify names in. */
5077 if (name != NULL
5078 && (cu->language == language_cplus || cu->language == language_java
5079 || cu->language == language_fortran))
5080 {
5081 if (die_needs_namespace (die, cu))
5082 {
5083 long length;
5084 char *prefix;
5085 struct ui_file *buf;
5086
5087 prefix = determine_prefix (die, cu);
5088 buf = mem_fileopen ();
5089 if (*prefix != '\0')
5090 {
5091 char *prefixed_name = typename_concat (NULL, prefix, name,
5092 physname, cu);
5093
5094 fputs_unfiltered (prefixed_name, buf);
5095 xfree (prefixed_name);
5096 }
5097 else
5098 fputs_unfiltered (name, buf);
5099
5100 /* Template parameters may be specified in the DIE's DW_AT_name, or
5101 as children with DW_TAG_template_type_param or
5102 DW_TAG_value_type_param. If the latter, add them to the name
5103 here. If the name already has template parameters, then
5104 skip this step; some versions of GCC emit both, and
5105 it is more efficient to use the pre-computed name.
5106
5107 Something to keep in mind about this process: it is very
5108 unlikely, or in some cases downright impossible, to produce
5109 something that will match the mangled name of a function.
5110 If the definition of the function has the same debug info,
5111 we should be able to match up with it anyway. But fallbacks
5112 using the minimal symbol, for instance to find a method
5113 implemented in a stripped copy of libstdc++, will not work.
5114 If we do not have debug info for the definition, we will have to
5115 match them up some other way.
5116
5117 When we do name matching there is a related problem with function
5118 templates; two instantiated function templates are allowed to
5119 differ only by their return types, which we do not add here. */
5120
5121 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5122 {
5123 struct attribute *attr;
5124 struct die_info *child;
5125 int first = 1;
5126
5127 die->building_fullname = 1;
5128
5129 for (child = die->child; child != NULL; child = child->sibling)
5130 {
5131 struct type *type;
5132 long value;
5133 gdb_byte *bytes;
5134 struct dwarf2_locexpr_baton *baton;
5135 struct value *v;
5136
5137 if (child->tag != DW_TAG_template_type_param
5138 && child->tag != DW_TAG_template_value_param)
5139 continue;
5140
5141 if (first)
5142 {
5143 fputs_unfiltered ("<", buf);
5144 first = 0;
5145 }
5146 else
5147 fputs_unfiltered (", ", buf);
5148
5149 attr = dwarf2_attr (child, DW_AT_type, cu);
5150 if (attr == NULL)
5151 {
5152 complaint (&symfile_complaints,
5153 _("template parameter missing DW_AT_type"));
5154 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5155 continue;
5156 }
5157 type = die_type (child, cu);
5158
5159 if (child->tag == DW_TAG_template_type_param)
5160 {
5161 c_print_type (type, "", buf, -1, 0);
5162 continue;
5163 }
5164
5165 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5166 if (attr == NULL)
5167 {
5168 complaint (&symfile_complaints,
5169 _("template parameter missing "
5170 "DW_AT_const_value"));
5171 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5172 continue;
5173 }
5174
5175 dwarf2_const_value_attr (attr, type, name,
5176 &cu->comp_unit_obstack, cu,
5177 &value, &bytes, &baton);
5178
5179 if (TYPE_NOSIGN (type))
5180 /* GDB prints characters as NUMBER 'CHAR'. If that's
5181 changed, this can use value_print instead. */
5182 c_printchar (value, type, buf);
5183 else
5184 {
5185 struct value_print_options opts;
5186
5187 if (baton != NULL)
5188 v = dwarf2_evaluate_loc_desc (type, NULL,
5189 baton->data,
5190 baton->size,
5191 baton->per_cu);
5192 else if (bytes != NULL)
5193 {
5194 v = allocate_value (type);
5195 memcpy (value_contents_writeable (v), bytes,
5196 TYPE_LENGTH (type));
5197 }
5198 else
5199 v = value_from_longest (type, value);
5200
5201 /* Specify decimal so that we do not depend on
5202 the radix. */
5203 get_formatted_print_options (&opts, 'd');
5204 opts.raw = 1;
5205 value_print (v, buf, &opts);
5206 release_value (v);
5207 value_free (v);
5208 }
5209 }
5210
5211 die->building_fullname = 0;
5212
5213 if (!first)
5214 {
5215 /* Close the argument list, with a space if necessary
5216 (nested templates). */
5217 char last_char = '\0';
5218 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5219 if (last_char == '>')
5220 fputs_unfiltered (" >", buf);
5221 else
5222 fputs_unfiltered (">", buf);
5223 }
5224 }
5225
5226 /* For Java and C++ methods, append formal parameter type
5227 information, if PHYSNAME. */
5228
5229 if (physname && die->tag == DW_TAG_subprogram
5230 && (cu->language == language_cplus
5231 || cu->language == language_java))
5232 {
5233 struct type *type = read_type_die (die, cu);
5234
5235 c_type_print_args (type, buf, 1, cu->language);
5236
5237 if (cu->language == language_java)
5238 {
5239 /* For java, we must append the return type to method
5240 names. */
5241 if (die->tag == DW_TAG_subprogram)
5242 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5243 0, 0);
5244 }
5245 else if (cu->language == language_cplus)
5246 {
5247 /* Assume that an artificial first parameter is
5248 "this", but do not crash if it is not. RealView
5249 marks unnamed (and thus unused) parameters as
5250 artificial; there is no way to differentiate
5251 the two cases. */
5252 if (TYPE_NFIELDS (type) > 0
5253 && TYPE_FIELD_ARTIFICIAL (type, 0)
5254 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5255 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5256 0))))
5257 fputs_unfiltered (" const", buf);
5258 }
5259 }
5260
5261 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5262 &length);
5263 ui_file_delete (buf);
5264
5265 if (cu->language == language_cplus)
5266 {
5267 char *cname
5268 = dwarf2_canonicalize_name (name, cu,
5269 &cu->objfile->objfile_obstack);
5270
5271 if (cname != NULL)
5272 name = cname;
5273 }
5274 }
5275 }
5276
5277 return name;
5278 }
5279
5280 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5281 If scope qualifiers are appropriate they will be added. The result
5282 will be allocated on the objfile_obstack, or NULL if the DIE does
5283 not have a name. NAME may either be from a previous call to
5284 dwarf2_name or NULL.
5285
5286 The output string will be canonicalized (if C++/Java). */
5287
5288 static const char *
5289 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5290 {
5291 return dwarf2_compute_name (name, die, cu, 0);
5292 }
5293
5294 /* Construct a physname for the given DIE in CU. NAME may either be
5295 from a previous call to dwarf2_name or NULL. The result will be
5296 allocated on the objfile_objstack or NULL if the DIE does not have a
5297 name.
5298
5299 The output string will be canonicalized (if C++/Java). */
5300
5301 static const char *
5302 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5303 {
5304 struct attribute *attr;
5305 const char *retval, *mangled = NULL, *canon = NULL;
5306 struct cleanup *back_to;
5307 int need_copy = 1;
5308
5309 /* In this case dwarf2_compute_name is just a shortcut not building anything
5310 on its own. */
5311 if (!die_needs_namespace (die, cu))
5312 return dwarf2_compute_name (name, die, cu, 1);
5313
5314 back_to = make_cleanup (null_cleanup, NULL);
5315
5316 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5317 if (!attr)
5318 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5319
5320 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5321 has computed. */
5322 if (attr && DW_STRING (attr))
5323 {
5324 char *demangled;
5325
5326 mangled = DW_STRING (attr);
5327
5328 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5329 type. It is easier for GDB users to search for such functions as
5330 `name(params)' than `long name(params)'. In such case the minimal
5331 symbol names do not match the full symbol names but for template
5332 functions there is never a need to look up their definition from their
5333 declaration so the only disadvantage remains the minimal symbol
5334 variant `long name(params)' does not have the proper inferior type.
5335 */
5336
5337 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5338 | (cu->language == language_java
5339 ? DMGL_JAVA | DMGL_RET_POSTFIX
5340 : DMGL_RET_DROP)));
5341 if (demangled)
5342 {
5343 make_cleanup (xfree, demangled);
5344 canon = demangled;
5345 }
5346 else
5347 {
5348 canon = mangled;
5349 need_copy = 0;
5350 }
5351 }
5352
5353 if (canon == NULL || check_physname)
5354 {
5355 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5356
5357 if (canon != NULL && strcmp (physname, canon) != 0)
5358 {
5359 /* It may not mean a bug in GDB. The compiler could also
5360 compute DW_AT_linkage_name incorrectly. But in such case
5361 GDB would need to be bug-to-bug compatible. */
5362
5363 complaint (&symfile_complaints,
5364 _("Computed physname <%s> does not match demangled <%s> "
5365 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5366 physname, canon, mangled, die->offset, cu->objfile->name);
5367
5368 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5369 is available here - over computed PHYSNAME. It is safer
5370 against both buggy GDB and buggy compilers. */
5371
5372 retval = canon;
5373 }
5374 else
5375 {
5376 retval = physname;
5377 need_copy = 0;
5378 }
5379 }
5380 else
5381 retval = canon;
5382
5383 if (need_copy)
5384 retval = obsavestring (retval, strlen (retval),
5385 &cu->objfile->objfile_obstack);
5386
5387 do_cleanups (back_to);
5388 return retval;
5389 }
5390
5391 /* Read the import statement specified by the given die and record it. */
5392
5393 static void
5394 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5395 {
5396 struct attribute *import_attr;
5397 struct die_info *imported_die, *child_die;
5398 struct dwarf2_cu *imported_cu;
5399 const char *imported_name;
5400 const char *imported_name_prefix;
5401 const char *canonical_name;
5402 const char *import_alias;
5403 const char *imported_declaration = NULL;
5404 const char *import_prefix;
5405 VEC (const_char_ptr) *excludes = NULL;
5406 struct cleanup *cleanups;
5407
5408 char *temp;
5409
5410 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5411 if (import_attr == NULL)
5412 {
5413 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5414 dwarf_tag_name (die->tag));
5415 return;
5416 }
5417
5418 imported_cu = cu;
5419 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5420 imported_name = dwarf2_name (imported_die, imported_cu);
5421 if (imported_name == NULL)
5422 {
5423 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5424
5425 The import in the following code:
5426 namespace A
5427 {
5428 typedef int B;
5429 }
5430
5431 int main ()
5432 {
5433 using A::B;
5434 B b;
5435 return b;
5436 }
5437
5438 ...
5439 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5440 <52> DW_AT_decl_file : 1
5441 <53> DW_AT_decl_line : 6
5442 <54> DW_AT_import : <0x75>
5443 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5444 <59> DW_AT_name : B
5445 <5b> DW_AT_decl_file : 1
5446 <5c> DW_AT_decl_line : 2
5447 <5d> DW_AT_type : <0x6e>
5448 ...
5449 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5450 <76> DW_AT_byte_size : 4
5451 <77> DW_AT_encoding : 5 (signed)
5452
5453 imports the wrong die ( 0x75 instead of 0x58 ).
5454 This case will be ignored until the gcc bug is fixed. */
5455 return;
5456 }
5457
5458 /* Figure out the local name after import. */
5459 import_alias = dwarf2_name (die, cu);
5460
5461 /* Figure out where the statement is being imported to. */
5462 import_prefix = determine_prefix (die, cu);
5463
5464 /* Figure out what the scope of the imported die is and prepend it
5465 to the name of the imported die. */
5466 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5467
5468 if (imported_die->tag != DW_TAG_namespace
5469 && imported_die->tag != DW_TAG_module)
5470 {
5471 imported_declaration = imported_name;
5472 canonical_name = imported_name_prefix;
5473 }
5474 else if (strlen (imported_name_prefix) > 0)
5475 {
5476 temp = alloca (strlen (imported_name_prefix)
5477 + 2 + strlen (imported_name) + 1);
5478 strcpy (temp, imported_name_prefix);
5479 strcat (temp, "::");
5480 strcat (temp, imported_name);
5481 canonical_name = temp;
5482 }
5483 else
5484 canonical_name = imported_name;
5485
5486 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5487
5488 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5489 for (child_die = die->child; child_die && child_die->tag;
5490 child_die = sibling_die (child_die))
5491 {
5492 /* DWARF-4: A Fortran use statement with a “rename list” may be
5493 represented by an imported module entry with an import attribute
5494 referring to the module and owned entries corresponding to those
5495 entities that are renamed as part of being imported. */
5496
5497 if (child_die->tag != DW_TAG_imported_declaration)
5498 {
5499 complaint (&symfile_complaints,
5500 _("child DW_TAG_imported_declaration expected "
5501 "- DIE at 0x%x [in module %s]"),
5502 child_die->offset, cu->objfile->name);
5503 continue;
5504 }
5505
5506 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5507 if (import_attr == NULL)
5508 {
5509 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5510 dwarf_tag_name (child_die->tag));
5511 continue;
5512 }
5513
5514 imported_cu = cu;
5515 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5516 &imported_cu);
5517 imported_name = dwarf2_name (imported_die, imported_cu);
5518 if (imported_name == NULL)
5519 {
5520 complaint (&symfile_complaints,
5521 _("child DW_TAG_imported_declaration has unknown "
5522 "imported name - DIE at 0x%x [in module %s]"),
5523 child_die->offset, cu->objfile->name);
5524 continue;
5525 }
5526
5527 VEC_safe_push (const_char_ptr, excludes, imported_name);
5528
5529 process_die (child_die, cu);
5530 }
5531
5532 cp_add_using_directive (import_prefix,
5533 canonical_name,
5534 import_alias,
5535 imported_declaration,
5536 excludes,
5537 &cu->objfile->objfile_obstack);
5538
5539 do_cleanups (cleanups);
5540 }
5541
5542 static void
5543 initialize_cu_func_list (struct dwarf2_cu *cu)
5544 {
5545 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5546 }
5547
5548 /* Cleanup function for read_file_scope. */
5549
5550 static void
5551 free_cu_line_header (void *arg)
5552 {
5553 struct dwarf2_cu *cu = arg;
5554
5555 free_line_header (cu->line_header);
5556 cu->line_header = NULL;
5557 }
5558
5559 static void
5560 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5561 char **name, char **comp_dir)
5562 {
5563 struct attribute *attr;
5564
5565 *name = NULL;
5566 *comp_dir = NULL;
5567
5568 /* Find the filename. Do not use dwarf2_name here, since the filename
5569 is not a source language identifier. */
5570 attr = dwarf2_attr (die, DW_AT_name, cu);
5571 if (attr)
5572 {
5573 *name = DW_STRING (attr);
5574 }
5575
5576 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5577 if (attr)
5578 *comp_dir = DW_STRING (attr);
5579 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5580 {
5581 *comp_dir = ldirname (*name);
5582 if (*comp_dir != NULL)
5583 make_cleanup (xfree, *comp_dir);
5584 }
5585 if (*comp_dir != NULL)
5586 {
5587 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5588 directory, get rid of it. */
5589 char *cp = strchr (*comp_dir, ':');
5590
5591 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5592 *comp_dir = cp + 1;
5593 }
5594
5595 if (*name == NULL)
5596 *name = "<unknown>";
5597 }
5598
5599 /* Handle DW_AT_stmt_list for a compilation unit. */
5600
5601 static void
5602 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5603 const char *comp_dir)
5604 {
5605 struct attribute *attr;
5606 struct objfile *objfile = cu->objfile;
5607 bfd *abfd = objfile->obfd;
5608
5609 /* Decode line number information if present. We do this before
5610 processing child DIEs, so that the line header table is available
5611 for DW_AT_decl_file. */
5612 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5613 if (attr)
5614 {
5615 unsigned int line_offset = DW_UNSND (attr);
5616 struct line_header *line_header
5617 = dwarf_decode_line_header (line_offset, abfd, cu);
5618
5619 if (line_header)
5620 {
5621 cu->line_header = line_header;
5622 make_cleanup (free_cu_line_header, cu);
5623 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5624 }
5625 }
5626 }
5627
5628 /* Process DW_TAG_compile_unit. */
5629
5630 static void
5631 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5632 {
5633 struct objfile *objfile = cu->objfile;
5634 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5635 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5636 CORE_ADDR highpc = ((CORE_ADDR) 0);
5637 struct attribute *attr;
5638 char *name = NULL;
5639 char *comp_dir = NULL;
5640 struct die_info *child_die;
5641 bfd *abfd = objfile->obfd;
5642 CORE_ADDR baseaddr;
5643
5644 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5645
5646 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5647
5648 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5649 from finish_block. */
5650 if (lowpc == ((CORE_ADDR) -1))
5651 lowpc = highpc;
5652 lowpc += baseaddr;
5653 highpc += baseaddr;
5654
5655 find_file_and_directory (die, cu, &name, &comp_dir);
5656
5657 attr = dwarf2_attr (die, DW_AT_language, cu);
5658 if (attr)
5659 {
5660 set_cu_language (DW_UNSND (attr), cu);
5661 }
5662
5663 attr = dwarf2_attr (die, DW_AT_producer, cu);
5664 if (attr)
5665 cu->producer = DW_STRING (attr);
5666
5667 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5668 standardised yet. As a workaround for the language detection we fall
5669 back to the DW_AT_producer string. */
5670 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5671 cu->language = language_opencl;
5672
5673 /* We assume that we're processing GCC output. */
5674 processing_gcc_compilation = 2;
5675
5676 processing_has_namespace_info = 0;
5677
5678 start_symtab (name, comp_dir, lowpc);
5679 record_debugformat ("DWARF 2");
5680 record_producer (cu->producer);
5681
5682 initialize_cu_func_list (cu);
5683
5684 handle_DW_AT_stmt_list (die, cu, comp_dir);
5685
5686 /* Process all dies in compilation unit. */
5687 if (die->child != NULL)
5688 {
5689 child_die = die->child;
5690 while (child_die && child_die->tag)
5691 {
5692 process_die (child_die, cu);
5693 child_die = sibling_die (child_die);
5694 }
5695 }
5696
5697 /* Decode macro information, if present. Dwarf 2 macro information
5698 refers to information in the line number info statement program
5699 header, so we can only read it if we've read the header
5700 successfully. */
5701 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5702 if (attr && cu->line_header)
5703 {
5704 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5705 complaint (&symfile_complaints,
5706 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5707
5708 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5709 comp_dir, abfd, cu,
5710 &dwarf2_per_objfile->macro, 1);
5711 }
5712 else
5713 {
5714 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5715 if (attr && cu->line_header)
5716 {
5717 unsigned int macro_offset = DW_UNSND (attr);
5718
5719 dwarf_decode_macros (cu->line_header, macro_offset,
5720 comp_dir, abfd, cu,
5721 &dwarf2_per_objfile->macinfo, 0);
5722 }
5723 }
5724 do_cleanups (back_to);
5725 }
5726
5727 /* Process DW_TAG_type_unit.
5728 For TUs we want to skip the first top level sibling if it's not the
5729 actual type being defined by this TU. In this case the first top
5730 level sibling is there to provide context only. */
5731
5732 static void
5733 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5734 {
5735 struct objfile *objfile = cu->objfile;
5736 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5737 CORE_ADDR lowpc;
5738 struct attribute *attr;
5739 char *name = NULL;
5740 char *comp_dir = NULL;
5741 struct die_info *child_die;
5742 bfd *abfd = objfile->obfd;
5743
5744 /* start_symtab needs a low pc, but we don't really have one.
5745 Do what read_file_scope would do in the absence of such info. */
5746 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5747
5748 /* Find the filename. Do not use dwarf2_name here, since the filename
5749 is not a source language identifier. */
5750 attr = dwarf2_attr (die, DW_AT_name, cu);
5751 if (attr)
5752 name = DW_STRING (attr);
5753
5754 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5755 if (attr)
5756 comp_dir = DW_STRING (attr);
5757 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5758 {
5759 comp_dir = ldirname (name);
5760 if (comp_dir != NULL)
5761 make_cleanup (xfree, comp_dir);
5762 }
5763
5764 if (name == NULL)
5765 name = "<unknown>";
5766
5767 attr = dwarf2_attr (die, DW_AT_language, cu);
5768 if (attr)
5769 set_cu_language (DW_UNSND (attr), cu);
5770
5771 /* This isn't technically needed today. It is done for symmetry
5772 with read_file_scope. */
5773 attr = dwarf2_attr (die, DW_AT_producer, cu);
5774 if (attr)
5775 cu->producer = DW_STRING (attr);
5776
5777 /* We assume that we're processing GCC output. */
5778 processing_gcc_compilation = 2;
5779
5780 processing_has_namespace_info = 0;
5781
5782 start_symtab (name, comp_dir, lowpc);
5783 record_debugformat ("DWARF 2");
5784 record_producer (cu->producer);
5785
5786 handle_DW_AT_stmt_list (die, cu, comp_dir);
5787
5788 /* Process the dies in the type unit. */
5789 if (die->child == NULL)
5790 {
5791 dump_die_for_error (die);
5792 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5793 bfd_get_filename (abfd));
5794 }
5795
5796 child_die = die->child;
5797
5798 while (child_die && child_die->tag)
5799 {
5800 process_die (child_die, cu);
5801
5802 child_die = sibling_die (child_die);
5803 }
5804
5805 do_cleanups (back_to);
5806 }
5807
5808 static void
5809 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5810 struct dwarf2_cu *cu)
5811 {
5812 struct function_range *thisfn;
5813
5814 thisfn = (struct function_range *)
5815 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5816 thisfn->name = name;
5817 thisfn->lowpc = lowpc;
5818 thisfn->highpc = highpc;
5819 thisfn->seen_line = 0;
5820 thisfn->next = NULL;
5821
5822 if (cu->last_fn == NULL)
5823 cu->first_fn = thisfn;
5824 else
5825 cu->last_fn->next = thisfn;
5826
5827 cu->last_fn = thisfn;
5828 }
5829
5830 /* qsort helper for inherit_abstract_dies. */
5831
5832 static int
5833 unsigned_int_compar (const void *ap, const void *bp)
5834 {
5835 unsigned int a = *(unsigned int *) ap;
5836 unsigned int b = *(unsigned int *) bp;
5837
5838 return (a > b) - (b > a);
5839 }
5840
5841 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5842 Inherit only the children of the DW_AT_abstract_origin DIE not being
5843 already referenced by DW_AT_abstract_origin from the children of the
5844 current DIE. */
5845
5846 static void
5847 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5848 {
5849 struct die_info *child_die;
5850 unsigned die_children_count;
5851 /* CU offsets which were referenced by children of the current DIE. */
5852 unsigned *offsets;
5853 unsigned *offsets_end, *offsetp;
5854 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5855 struct die_info *origin_die;
5856 /* Iterator of the ORIGIN_DIE children. */
5857 struct die_info *origin_child_die;
5858 struct cleanup *cleanups;
5859 struct attribute *attr;
5860 struct dwarf2_cu *origin_cu;
5861 struct pending **origin_previous_list_in_scope;
5862
5863 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5864 if (!attr)
5865 return;
5866
5867 /* Note that following die references may follow to a die in a
5868 different cu. */
5869
5870 origin_cu = cu;
5871 origin_die = follow_die_ref (die, attr, &origin_cu);
5872
5873 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5874 symbols in. */
5875 origin_previous_list_in_scope = origin_cu->list_in_scope;
5876 origin_cu->list_in_scope = cu->list_in_scope;
5877
5878 if (die->tag != origin_die->tag
5879 && !(die->tag == DW_TAG_inlined_subroutine
5880 && origin_die->tag == DW_TAG_subprogram))
5881 complaint (&symfile_complaints,
5882 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5883 die->offset, origin_die->offset);
5884
5885 child_die = die->child;
5886 die_children_count = 0;
5887 while (child_die && child_die->tag)
5888 {
5889 child_die = sibling_die (child_die);
5890 die_children_count++;
5891 }
5892 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5893 cleanups = make_cleanup (xfree, offsets);
5894
5895 offsets_end = offsets;
5896 child_die = die->child;
5897 while (child_die && child_die->tag)
5898 {
5899 /* For each CHILD_DIE, find the corresponding child of
5900 ORIGIN_DIE. If there is more than one layer of
5901 DW_AT_abstract_origin, follow them all; there shouldn't be,
5902 but GCC versions at least through 4.4 generate this (GCC PR
5903 40573). */
5904 struct die_info *child_origin_die = child_die;
5905 struct dwarf2_cu *child_origin_cu = cu;
5906
5907 while (1)
5908 {
5909 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5910 child_origin_cu);
5911 if (attr == NULL)
5912 break;
5913 child_origin_die = follow_die_ref (child_origin_die, attr,
5914 &child_origin_cu);
5915 }
5916
5917 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5918 counterpart may exist. */
5919 if (child_origin_die != child_die)
5920 {
5921 if (child_die->tag != child_origin_die->tag
5922 && !(child_die->tag == DW_TAG_inlined_subroutine
5923 && child_origin_die->tag == DW_TAG_subprogram))
5924 complaint (&symfile_complaints,
5925 _("Child DIE 0x%x and its abstract origin 0x%x have "
5926 "different tags"), child_die->offset,
5927 child_origin_die->offset);
5928 if (child_origin_die->parent != origin_die)
5929 complaint (&symfile_complaints,
5930 _("Child DIE 0x%x and its abstract origin 0x%x have "
5931 "different parents"), child_die->offset,
5932 child_origin_die->offset);
5933 else
5934 *offsets_end++ = child_origin_die->offset;
5935 }
5936 child_die = sibling_die (child_die);
5937 }
5938 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5939 unsigned_int_compar);
5940 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5941 if (offsetp[-1] == *offsetp)
5942 complaint (&symfile_complaints,
5943 _("Multiple children of DIE 0x%x refer "
5944 "to DIE 0x%x as their abstract origin"),
5945 die->offset, *offsetp);
5946
5947 offsetp = offsets;
5948 origin_child_die = origin_die->child;
5949 while (origin_child_die && origin_child_die->tag)
5950 {
5951 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5952 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5953 offsetp++;
5954 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5955 {
5956 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5957 process_die (origin_child_die, origin_cu);
5958 }
5959 origin_child_die = sibling_die (origin_child_die);
5960 }
5961 origin_cu->list_in_scope = origin_previous_list_in_scope;
5962
5963 do_cleanups (cleanups);
5964 }
5965
5966 static void
5967 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5968 {
5969 struct objfile *objfile = cu->objfile;
5970 struct context_stack *new;
5971 CORE_ADDR lowpc;
5972 CORE_ADDR highpc;
5973 struct die_info *child_die;
5974 struct attribute *attr, *call_line, *call_file;
5975 char *name;
5976 CORE_ADDR baseaddr;
5977 struct block *block;
5978 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5979 VEC (symbolp) *template_args = NULL;
5980 struct template_symbol *templ_func = NULL;
5981
5982 if (inlined_func)
5983 {
5984 /* If we do not have call site information, we can't show the
5985 caller of this inlined function. That's too confusing, so
5986 only use the scope for local variables. */
5987 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5988 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5989 if (call_line == NULL || call_file == NULL)
5990 {
5991 read_lexical_block_scope (die, cu);
5992 return;
5993 }
5994 }
5995
5996 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5997
5998 name = dwarf2_name (die, cu);
5999
6000 /* Ignore functions with missing or empty names. These are actually
6001 illegal according to the DWARF standard. */
6002 if (name == NULL)
6003 {
6004 complaint (&symfile_complaints,
6005 _("missing name for subprogram DIE at %d"), die->offset);
6006 return;
6007 }
6008
6009 /* Ignore functions with missing or invalid low and high pc attributes. */
6010 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6011 {
6012 attr = dwarf2_attr (die, DW_AT_external, cu);
6013 if (!attr || !DW_UNSND (attr))
6014 complaint (&symfile_complaints,
6015 _("cannot get low and high bounds "
6016 "for subprogram DIE at %d"),
6017 die->offset);
6018 return;
6019 }
6020
6021 lowpc += baseaddr;
6022 highpc += baseaddr;
6023
6024 /* Record the function range for dwarf_decode_lines. */
6025 add_to_cu_func_list (name, lowpc, highpc, cu);
6026
6027 /* If we have any template arguments, then we must allocate a
6028 different sort of symbol. */
6029 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
6030 {
6031 if (child_die->tag == DW_TAG_template_type_param
6032 || child_die->tag == DW_TAG_template_value_param)
6033 {
6034 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6035 struct template_symbol);
6036 templ_func->base.is_cplus_template_function = 1;
6037 break;
6038 }
6039 }
6040
6041 new = push_context (0, lowpc);
6042 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
6043 (struct symbol *) templ_func);
6044
6045 /* If there is a location expression for DW_AT_frame_base, record
6046 it. */
6047 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6048 if (attr)
6049 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6050 expression is being recorded directly in the function's symbol
6051 and not in a separate frame-base object. I guess this hack is
6052 to avoid adding some sort of frame-base adjunct/annex to the
6053 function's symbol :-(. The problem with doing this is that it
6054 results in a function symbol with a location expression that
6055 has nothing to do with the location of the function, ouch! The
6056 relationship should be: a function's symbol has-a frame base; a
6057 frame-base has-a location expression. */
6058 dwarf2_symbol_mark_computed (attr, new->name, cu);
6059
6060 cu->list_in_scope = &local_symbols;
6061
6062 if (die->child != NULL)
6063 {
6064 child_die = die->child;
6065 while (child_die && child_die->tag)
6066 {
6067 if (child_die->tag == DW_TAG_template_type_param
6068 || child_die->tag == DW_TAG_template_value_param)
6069 {
6070 struct symbol *arg = new_symbol (child_die, NULL, cu);
6071
6072 if (arg != NULL)
6073 VEC_safe_push (symbolp, template_args, arg);
6074 }
6075 else
6076 process_die (child_die, cu);
6077 child_die = sibling_die (child_die);
6078 }
6079 }
6080
6081 inherit_abstract_dies (die, cu);
6082
6083 /* If we have a DW_AT_specification, we might need to import using
6084 directives from the context of the specification DIE. See the
6085 comment in determine_prefix. */
6086 if (cu->language == language_cplus
6087 && dwarf2_attr (die, DW_AT_specification, cu))
6088 {
6089 struct dwarf2_cu *spec_cu = cu;
6090 struct die_info *spec_die = die_specification (die, &spec_cu);
6091
6092 while (spec_die)
6093 {
6094 child_die = spec_die->child;
6095 while (child_die && child_die->tag)
6096 {
6097 if (child_die->tag == DW_TAG_imported_module)
6098 process_die (child_die, spec_cu);
6099 child_die = sibling_die (child_die);
6100 }
6101
6102 /* In some cases, GCC generates specification DIEs that
6103 themselves contain DW_AT_specification attributes. */
6104 spec_die = die_specification (spec_die, &spec_cu);
6105 }
6106 }
6107
6108 new = pop_context ();
6109 /* Make a block for the local symbols within. */
6110 block = finish_block (new->name, &local_symbols, new->old_blocks,
6111 lowpc, highpc, objfile);
6112
6113 /* For C++, set the block's scope. */
6114 if (cu->language == language_cplus || cu->language == language_fortran)
6115 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6116 determine_prefix (die, cu),
6117 processing_has_namespace_info);
6118
6119 /* If we have address ranges, record them. */
6120 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6121
6122 /* Attach template arguments to function. */
6123 if (! VEC_empty (symbolp, template_args))
6124 {
6125 gdb_assert (templ_func != NULL);
6126
6127 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6128 templ_func->template_arguments
6129 = obstack_alloc (&objfile->objfile_obstack,
6130 (templ_func->n_template_arguments
6131 * sizeof (struct symbol *)));
6132 memcpy (templ_func->template_arguments,
6133 VEC_address (symbolp, template_args),
6134 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6135 VEC_free (symbolp, template_args);
6136 }
6137
6138 /* In C++, we can have functions nested inside functions (e.g., when
6139 a function declares a class that has methods). This means that
6140 when we finish processing a function scope, we may need to go
6141 back to building a containing block's symbol lists. */
6142 local_symbols = new->locals;
6143 param_symbols = new->params;
6144 using_directives = new->using_directives;
6145
6146 /* If we've finished processing a top-level function, subsequent
6147 symbols go in the file symbol list. */
6148 if (outermost_context_p ())
6149 cu->list_in_scope = &file_symbols;
6150 }
6151
6152 /* Process all the DIES contained within a lexical block scope. Start
6153 a new scope, process the dies, and then close the scope. */
6154
6155 static void
6156 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6157 {
6158 struct objfile *objfile = cu->objfile;
6159 struct context_stack *new;
6160 CORE_ADDR lowpc, highpc;
6161 struct die_info *child_die;
6162 CORE_ADDR baseaddr;
6163
6164 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6165
6166 /* Ignore blocks with missing or invalid low and high pc attributes. */
6167 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6168 as multiple lexical blocks? Handling children in a sane way would
6169 be nasty. Might be easier to properly extend generic blocks to
6170 describe ranges. */
6171 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6172 return;
6173 lowpc += baseaddr;
6174 highpc += baseaddr;
6175
6176 push_context (0, lowpc);
6177 if (die->child != NULL)
6178 {
6179 child_die = die->child;
6180 while (child_die && child_die->tag)
6181 {
6182 process_die (child_die, cu);
6183 child_die = sibling_die (child_die);
6184 }
6185 }
6186 new = pop_context ();
6187
6188 if (local_symbols != NULL || using_directives != NULL)
6189 {
6190 struct block *block
6191 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6192 highpc, objfile);
6193
6194 /* Note that recording ranges after traversing children, as we
6195 do here, means that recording a parent's ranges entails
6196 walking across all its children's ranges as they appear in
6197 the address map, which is quadratic behavior.
6198
6199 It would be nicer to record the parent's ranges before
6200 traversing its children, simply overriding whatever you find
6201 there. But since we don't even decide whether to create a
6202 block until after we've traversed its children, that's hard
6203 to do. */
6204 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6205 }
6206 local_symbols = new->locals;
6207 using_directives = new->using_directives;
6208 }
6209
6210 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6211
6212 static void
6213 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6214 {
6215 struct objfile *objfile = cu->objfile;
6216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6217 CORE_ADDR pc, baseaddr;
6218 struct attribute *attr;
6219 struct call_site *call_site, call_site_local;
6220 void **slot;
6221 int nparams;
6222 struct die_info *child_die;
6223
6224 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6225
6226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6227 if (!attr)
6228 {
6229 complaint (&symfile_complaints,
6230 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6231 "DIE 0x%x [in module %s]"),
6232 die->offset, cu->objfile->name);
6233 return;
6234 }
6235 pc = DW_ADDR (attr) + baseaddr;
6236
6237 if (cu->call_site_htab == NULL)
6238 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6239 NULL, &objfile->objfile_obstack,
6240 hashtab_obstack_allocate, NULL);
6241 call_site_local.pc = pc;
6242 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6243 if (*slot != NULL)
6244 {
6245 complaint (&symfile_complaints,
6246 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6247 "DIE 0x%x [in module %s]"),
6248 paddress (gdbarch, pc), die->offset, cu->objfile->name);
6249 return;
6250 }
6251
6252 /* Count parameters at the caller. */
6253
6254 nparams = 0;
6255 for (child_die = die->child; child_die && child_die->tag;
6256 child_die = sibling_die (child_die))
6257 {
6258 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6259 {
6260 complaint (&symfile_complaints,
6261 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6262 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6263 child_die->tag, child_die->offset, cu->objfile->name);
6264 continue;
6265 }
6266
6267 nparams++;
6268 }
6269
6270 call_site = obstack_alloc (&objfile->objfile_obstack,
6271 (sizeof (*call_site)
6272 + (sizeof (*call_site->parameter)
6273 * (nparams - 1))));
6274 *slot = call_site;
6275 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6276 call_site->pc = pc;
6277
6278 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6279 {
6280 struct die_info *func_die;
6281
6282 /* Skip also over DW_TAG_inlined_subroutine. */
6283 for (func_die = die->parent;
6284 func_die && func_die->tag != DW_TAG_subprogram
6285 && func_die->tag != DW_TAG_subroutine_type;
6286 func_die = func_die->parent);
6287
6288 /* DW_AT_GNU_all_call_sites is a superset
6289 of DW_AT_GNU_all_tail_call_sites. */
6290 if (func_die
6291 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6292 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6293 {
6294 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6295 not complete. But keep CALL_SITE for look ups via call_site_htab,
6296 both the initial caller containing the real return address PC and
6297 the final callee containing the current PC of a chain of tail
6298 calls do not need to have the tail call list complete. But any
6299 function candidate for a virtual tail call frame searched via
6300 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6301 determined unambiguously. */
6302 }
6303 else
6304 {
6305 struct type *func_type = NULL;
6306
6307 if (func_die)
6308 func_type = get_die_type (func_die, cu);
6309 if (func_type != NULL)
6310 {
6311 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6312
6313 /* Enlist this call site to the function. */
6314 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6315 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6316 }
6317 else
6318 complaint (&symfile_complaints,
6319 _("Cannot find function owning DW_TAG_GNU_call_site "
6320 "DIE 0x%x [in module %s]"),
6321 die->offset, cu->objfile->name);
6322 }
6323 }
6324
6325 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6326 if (attr == NULL)
6327 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6328 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6329 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6330 /* Keep NULL DWARF_BLOCK. */;
6331 else if (attr_form_is_block (attr))
6332 {
6333 struct dwarf2_locexpr_baton *dlbaton;
6334
6335 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6336 dlbaton->data = DW_BLOCK (attr)->data;
6337 dlbaton->size = DW_BLOCK (attr)->size;
6338 dlbaton->per_cu = cu->per_cu;
6339
6340 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6341 }
6342 else if (is_ref_attr (attr))
6343 {
6344 struct objfile *objfile = cu->objfile;
6345 struct dwarf2_cu *target_cu = cu;
6346 struct die_info *target_die;
6347
6348 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6349 gdb_assert (target_cu->objfile == objfile);
6350 if (die_is_declaration (target_die, target_cu))
6351 {
6352 const char *target_physname;
6353
6354 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6355 if (target_physname == NULL)
6356 complaint (&symfile_complaints,
6357 _("DW_AT_GNU_call_site_target target DIE has invalid "
6358 "physname, for referencing DIE 0x%x [in module %s]"),
6359 die->offset, cu->objfile->name);
6360 else
6361 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6362 }
6363 else
6364 {
6365 CORE_ADDR lowpc;
6366
6367 /* DW_AT_entry_pc should be preferred. */
6368 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6369 complaint (&symfile_complaints,
6370 _("DW_AT_GNU_call_site_target target DIE has invalid "
6371 "low pc, for referencing DIE 0x%x [in module %s]"),
6372 die->offset, cu->objfile->name);
6373 else
6374 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6375 }
6376 }
6377 else
6378 complaint (&symfile_complaints,
6379 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6380 "block nor reference, for DIE 0x%x [in module %s]"),
6381 die->offset, cu->objfile->name);
6382
6383 call_site->per_cu = cu->per_cu;
6384
6385 for (child_die = die->child;
6386 child_die && child_die->tag;
6387 child_die = sibling_die (child_die))
6388 {
6389 struct dwarf2_locexpr_baton *dlbaton;
6390 struct call_site_parameter *parameter;
6391
6392 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6393 {
6394 /* Already printed the complaint above. */
6395 continue;
6396 }
6397
6398 gdb_assert (call_site->parameter_count < nparams);
6399 parameter = &call_site->parameter[call_site->parameter_count];
6400
6401 /* DW_AT_location specifies the register number. Value of the data
6402 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6403
6404 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6405 if (!attr || !attr_form_is_block (attr))
6406 {
6407 complaint (&symfile_complaints,
6408 _("No DW_FORM_block* DW_AT_location for "
6409 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6410 child_die->offset, cu->objfile->name);
6411 continue;
6412 }
6413 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6414 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6415 if (parameter->dwarf_reg == -1
6416 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6417 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6418 &parameter->fb_offset))
6419 {
6420 complaint (&symfile_complaints,
6421 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6422 "for DW_FORM_block* DW_AT_location for "
6423 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6424 child_die->offset, cu->objfile->name);
6425 continue;
6426 }
6427
6428 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6429 if (!attr_form_is_block (attr))
6430 {
6431 complaint (&symfile_complaints,
6432 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6433 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6434 child_die->offset, cu->objfile->name);
6435 continue;
6436 }
6437 parameter->value = DW_BLOCK (attr)->data;
6438 parameter->value_size = DW_BLOCK (attr)->size;
6439
6440 /* Parameters are not pre-cleared by memset above. */
6441 parameter->data_value = NULL;
6442 parameter->data_value_size = 0;
6443 call_site->parameter_count++;
6444
6445 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6446 if (attr)
6447 {
6448 if (!attr_form_is_block (attr))
6449 complaint (&symfile_complaints,
6450 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6451 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6452 child_die->offset, cu->objfile->name);
6453 else
6454 {
6455 parameter->data_value = DW_BLOCK (attr)->data;
6456 parameter->data_value_size = DW_BLOCK (attr)->size;
6457 }
6458 }
6459 }
6460 }
6461
6462 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6463 Return 1 if the attributes are present and valid, otherwise, return 0.
6464 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6465
6466 static int
6467 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6468 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6469 struct partial_symtab *ranges_pst)
6470 {
6471 struct objfile *objfile = cu->objfile;
6472 struct comp_unit_head *cu_header = &cu->header;
6473 bfd *obfd = objfile->obfd;
6474 unsigned int addr_size = cu_header->addr_size;
6475 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6476 /* Base address selection entry. */
6477 CORE_ADDR base;
6478 int found_base;
6479 unsigned int dummy;
6480 gdb_byte *buffer;
6481 CORE_ADDR marker;
6482 int low_set;
6483 CORE_ADDR low = 0;
6484 CORE_ADDR high = 0;
6485 CORE_ADDR baseaddr;
6486
6487 found_base = cu->base_known;
6488 base = cu->base_address;
6489
6490 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6491 if (offset >= dwarf2_per_objfile->ranges.size)
6492 {
6493 complaint (&symfile_complaints,
6494 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6495 offset);
6496 return 0;
6497 }
6498 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6499
6500 /* Read in the largest possible address. */
6501 marker = read_address (obfd, buffer, cu, &dummy);
6502 if ((marker & mask) == mask)
6503 {
6504 /* If we found the largest possible address, then
6505 read the base address. */
6506 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6507 buffer += 2 * addr_size;
6508 offset += 2 * addr_size;
6509 found_base = 1;
6510 }
6511
6512 low_set = 0;
6513
6514 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6515
6516 while (1)
6517 {
6518 CORE_ADDR range_beginning, range_end;
6519
6520 range_beginning = read_address (obfd, buffer, cu, &dummy);
6521 buffer += addr_size;
6522 range_end = read_address (obfd, buffer, cu, &dummy);
6523 buffer += addr_size;
6524 offset += 2 * addr_size;
6525
6526 /* An end of list marker is a pair of zero addresses. */
6527 if (range_beginning == 0 && range_end == 0)
6528 /* Found the end of list entry. */
6529 break;
6530
6531 /* Each base address selection entry is a pair of 2 values.
6532 The first is the largest possible address, the second is
6533 the base address. Check for a base address here. */
6534 if ((range_beginning & mask) == mask)
6535 {
6536 /* If we found the largest possible address, then
6537 read the base address. */
6538 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6539 found_base = 1;
6540 continue;
6541 }
6542
6543 if (!found_base)
6544 {
6545 /* We have no valid base address for the ranges
6546 data. */
6547 complaint (&symfile_complaints,
6548 _("Invalid .debug_ranges data (no base address)"));
6549 return 0;
6550 }
6551
6552 if (range_beginning > range_end)
6553 {
6554 /* Inverted range entries are invalid. */
6555 complaint (&symfile_complaints,
6556 _("Invalid .debug_ranges data (inverted range)"));
6557 return 0;
6558 }
6559
6560 /* Empty range entries have no effect. */
6561 if (range_beginning == range_end)
6562 continue;
6563
6564 range_beginning += base;
6565 range_end += base;
6566
6567 if (ranges_pst != NULL)
6568 addrmap_set_empty (objfile->psymtabs_addrmap,
6569 range_beginning + baseaddr,
6570 range_end - 1 + baseaddr,
6571 ranges_pst);
6572
6573 /* FIXME: This is recording everything as a low-high
6574 segment of consecutive addresses. We should have a
6575 data structure for discontiguous block ranges
6576 instead. */
6577 if (! low_set)
6578 {
6579 low = range_beginning;
6580 high = range_end;
6581 low_set = 1;
6582 }
6583 else
6584 {
6585 if (range_beginning < low)
6586 low = range_beginning;
6587 if (range_end > high)
6588 high = range_end;
6589 }
6590 }
6591
6592 if (! low_set)
6593 /* If the first entry is an end-of-list marker, the range
6594 describes an empty scope, i.e. no instructions. */
6595 return 0;
6596
6597 if (low_return)
6598 *low_return = low;
6599 if (high_return)
6600 *high_return = high;
6601 return 1;
6602 }
6603
6604 /* Get low and high pc attributes from a die. Return 1 if the attributes
6605 are present and valid, otherwise, return 0. Return -1 if the range is
6606 discontinuous, i.e. derived from DW_AT_ranges information. */
6607 static int
6608 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6609 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6610 struct partial_symtab *pst)
6611 {
6612 struct attribute *attr;
6613 CORE_ADDR low = 0;
6614 CORE_ADDR high = 0;
6615 int ret = 0;
6616
6617 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6618 if (attr)
6619 {
6620 high = DW_ADDR (attr);
6621 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6622 if (attr)
6623 low = DW_ADDR (attr);
6624 else
6625 /* Found high w/o low attribute. */
6626 return 0;
6627
6628 /* Found consecutive range of addresses. */
6629 ret = 1;
6630 }
6631 else
6632 {
6633 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6634 if (attr != NULL)
6635 {
6636 /* Value of the DW_AT_ranges attribute is the offset in the
6637 .debug_ranges section. */
6638 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6639 return 0;
6640 /* Found discontinuous range of addresses. */
6641 ret = -1;
6642 }
6643 }
6644
6645 /* read_partial_die has also the strict LOW < HIGH requirement. */
6646 if (high <= low)
6647 return 0;
6648
6649 /* When using the GNU linker, .gnu.linkonce. sections are used to
6650 eliminate duplicate copies of functions and vtables and such.
6651 The linker will arbitrarily choose one and discard the others.
6652 The AT_*_pc values for such functions refer to local labels in
6653 these sections. If the section from that file was discarded, the
6654 labels are not in the output, so the relocs get a value of 0.
6655 If this is a discarded function, mark the pc bounds as invalid,
6656 so that GDB will ignore it. */
6657 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6658 return 0;
6659
6660 *lowpc = low;
6661 if (highpc)
6662 *highpc = high;
6663 return ret;
6664 }
6665
6666 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6667 its low and high PC addresses. Do nothing if these addresses could not
6668 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6669 and HIGHPC to the high address if greater than HIGHPC. */
6670
6671 static void
6672 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6673 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6674 struct dwarf2_cu *cu)
6675 {
6676 CORE_ADDR low, high;
6677 struct die_info *child = die->child;
6678
6679 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6680 {
6681 *lowpc = min (*lowpc, low);
6682 *highpc = max (*highpc, high);
6683 }
6684
6685 /* If the language does not allow nested subprograms (either inside
6686 subprograms or lexical blocks), we're done. */
6687 if (cu->language != language_ada)
6688 return;
6689
6690 /* Check all the children of the given DIE. If it contains nested
6691 subprograms, then check their pc bounds. Likewise, we need to
6692 check lexical blocks as well, as they may also contain subprogram
6693 definitions. */
6694 while (child && child->tag)
6695 {
6696 if (child->tag == DW_TAG_subprogram
6697 || child->tag == DW_TAG_lexical_block)
6698 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6699 child = sibling_die (child);
6700 }
6701 }
6702
6703 /* Get the low and high pc's represented by the scope DIE, and store
6704 them in *LOWPC and *HIGHPC. If the correct values can't be
6705 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6706
6707 static void
6708 get_scope_pc_bounds (struct die_info *die,
6709 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6710 struct dwarf2_cu *cu)
6711 {
6712 CORE_ADDR best_low = (CORE_ADDR) -1;
6713 CORE_ADDR best_high = (CORE_ADDR) 0;
6714 CORE_ADDR current_low, current_high;
6715
6716 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6717 {
6718 best_low = current_low;
6719 best_high = current_high;
6720 }
6721 else
6722 {
6723 struct die_info *child = die->child;
6724
6725 while (child && child->tag)
6726 {
6727 switch (child->tag) {
6728 case DW_TAG_subprogram:
6729 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6730 break;
6731 case DW_TAG_namespace:
6732 case DW_TAG_module:
6733 /* FIXME: carlton/2004-01-16: Should we do this for
6734 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6735 that current GCC's always emit the DIEs corresponding
6736 to definitions of methods of classes as children of a
6737 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6738 the DIEs giving the declarations, which could be
6739 anywhere). But I don't see any reason why the
6740 standards says that they have to be there. */
6741 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6742
6743 if (current_low != ((CORE_ADDR) -1))
6744 {
6745 best_low = min (best_low, current_low);
6746 best_high = max (best_high, current_high);
6747 }
6748 break;
6749 default:
6750 /* Ignore. */
6751 break;
6752 }
6753
6754 child = sibling_die (child);
6755 }
6756 }
6757
6758 *lowpc = best_low;
6759 *highpc = best_high;
6760 }
6761
6762 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6763 in DIE. */
6764 static void
6765 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6766 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6767 {
6768 struct attribute *attr;
6769
6770 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6771 if (attr)
6772 {
6773 CORE_ADDR high = DW_ADDR (attr);
6774
6775 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6776 if (attr)
6777 {
6778 CORE_ADDR low = DW_ADDR (attr);
6779
6780 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6781 }
6782 }
6783
6784 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6785 if (attr)
6786 {
6787 bfd *obfd = cu->objfile->obfd;
6788
6789 /* The value of the DW_AT_ranges attribute is the offset of the
6790 address range list in the .debug_ranges section. */
6791 unsigned long offset = DW_UNSND (attr);
6792 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6793
6794 /* For some target architectures, but not others, the
6795 read_address function sign-extends the addresses it returns.
6796 To recognize base address selection entries, we need a
6797 mask. */
6798 unsigned int addr_size = cu->header.addr_size;
6799 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6800
6801 /* The base address, to which the next pair is relative. Note
6802 that this 'base' is a DWARF concept: most entries in a range
6803 list are relative, to reduce the number of relocs against the
6804 debugging information. This is separate from this function's
6805 'baseaddr' argument, which GDB uses to relocate debugging
6806 information from a shared library based on the address at
6807 which the library was loaded. */
6808 CORE_ADDR base = cu->base_address;
6809 int base_known = cu->base_known;
6810
6811 gdb_assert (dwarf2_per_objfile->ranges.readin);
6812 if (offset >= dwarf2_per_objfile->ranges.size)
6813 {
6814 complaint (&symfile_complaints,
6815 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6816 offset);
6817 return;
6818 }
6819
6820 for (;;)
6821 {
6822 unsigned int bytes_read;
6823 CORE_ADDR start, end;
6824
6825 start = read_address (obfd, buffer, cu, &bytes_read);
6826 buffer += bytes_read;
6827 end = read_address (obfd, buffer, cu, &bytes_read);
6828 buffer += bytes_read;
6829
6830 /* Did we find the end of the range list? */
6831 if (start == 0 && end == 0)
6832 break;
6833
6834 /* Did we find a base address selection entry? */
6835 else if ((start & base_select_mask) == base_select_mask)
6836 {
6837 base = end;
6838 base_known = 1;
6839 }
6840
6841 /* We found an ordinary address range. */
6842 else
6843 {
6844 if (!base_known)
6845 {
6846 complaint (&symfile_complaints,
6847 _("Invalid .debug_ranges data "
6848 "(no base address)"));
6849 return;
6850 }
6851
6852 if (start > end)
6853 {
6854 /* Inverted range entries are invalid. */
6855 complaint (&symfile_complaints,
6856 _("Invalid .debug_ranges data "
6857 "(inverted range)"));
6858 return;
6859 }
6860
6861 /* Empty range entries have no effect. */
6862 if (start == end)
6863 continue;
6864
6865 record_block_range (block,
6866 baseaddr + base + start,
6867 baseaddr + base + end - 1);
6868 }
6869 }
6870 }
6871 }
6872
6873 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6874 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6875 during 4.6.0 experimental. */
6876
6877 static int
6878 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6879 {
6880 const char *cs;
6881 int major, minor, release;
6882
6883 if (cu->producer == NULL)
6884 {
6885 /* For unknown compilers expect their behavior is DWARF version
6886 compliant.
6887
6888 GCC started to support .debug_types sections by -gdwarf-4 since
6889 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6890 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6891 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6892 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6893
6894 return 0;
6895 }
6896
6897 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6898
6899 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6900 {
6901 /* For non-GCC compilers expect their behavior is DWARF version
6902 compliant. */
6903
6904 return 0;
6905 }
6906 cs = &cu->producer[strlen ("GNU ")];
6907 while (*cs && !isdigit (*cs))
6908 cs++;
6909 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6910 {
6911 /* Not recognized as GCC. */
6912
6913 return 0;
6914 }
6915
6916 return major < 4 || (major == 4 && minor < 6);
6917 }
6918
6919 /* Return the default accessibility type if it is not overriden by
6920 DW_AT_accessibility. */
6921
6922 static enum dwarf_access_attribute
6923 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6924 {
6925 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6926 {
6927 /* The default DWARF 2 accessibility for members is public, the default
6928 accessibility for inheritance is private. */
6929
6930 if (die->tag != DW_TAG_inheritance)
6931 return DW_ACCESS_public;
6932 else
6933 return DW_ACCESS_private;
6934 }
6935 else
6936 {
6937 /* DWARF 3+ defines the default accessibility a different way. The same
6938 rules apply now for DW_TAG_inheritance as for the members and it only
6939 depends on the container kind. */
6940
6941 if (die->parent->tag == DW_TAG_class_type)
6942 return DW_ACCESS_private;
6943 else
6944 return DW_ACCESS_public;
6945 }
6946 }
6947
6948 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6949 offset. If the attribute was not found return 0, otherwise return
6950 1. If it was found but could not properly be handled, set *OFFSET
6951 to 0. */
6952
6953 static int
6954 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6955 LONGEST *offset)
6956 {
6957 struct attribute *attr;
6958
6959 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6960 if (attr != NULL)
6961 {
6962 *offset = 0;
6963
6964 /* Note that we do not check for a section offset first here.
6965 This is because DW_AT_data_member_location is new in DWARF 4,
6966 so if we see it, we can assume that a constant form is really
6967 a constant and not a section offset. */
6968 if (attr_form_is_constant (attr))
6969 *offset = dwarf2_get_attr_constant_value (attr, 0);
6970 else if (attr_form_is_section_offset (attr))
6971 dwarf2_complex_location_expr_complaint ();
6972 else if (attr_form_is_block (attr))
6973 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6974 else
6975 dwarf2_complex_location_expr_complaint ();
6976
6977 return 1;
6978 }
6979
6980 return 0;
6981 }
6982
6983 /* Add an aggregate field to the field list. */
6984
6985 static void
6986 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6987 struct dwarf2_cu *cu)
6988 {
6989 struct objfile *objfile = cu->objfile;
6990 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6991 struct nextfield *new_field;
6992 struct attribute *attr;
6993 struct field *fp;
6994 char *fieldname = "";
6995
6996 /* Allocate a new field list entry and link it in. */
6997 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6998 make_cleanup (xfree, new_field);
6999 memset (new_field, 0, sizeof (struct nextfield));
7000
7001 if (die->tag == DW_TAG_inheritance)
7002 {
7003 new_field->next = fip->baseclasses;
7004 fip->baseclasses = new_field;
7005 }
7006 else
7007 {
7008 new_field->next = fip->fields;
7009 fip->fields = new_field;
7010 }
7011 fip->nfields++;
7012
7013 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7014 if (attr)
7015 new_field->accessibility = DW_UNSND (attr);
7016 else
7017 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
7018 if (new_field->accessibility != DW_ACCESS_public)
7019 fip->non_public_fields = 1;
7020
7021 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7022 if (attr)
7023 new_field->virtuality = DW_UNSND (attr);
7024 else
7025 new_field->virtuality = DW_VIRTUALITY_none;
7026
7027 fp = &new_field->field;
7028
7029 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
7030 {
7031 LONGEST offset;
7032
7033 /* Data member other than a C++ static data member. */
7034
7035 /* Get type of field. */
7036 fp->type = die_type (die, cu);
7037
7038 SET_FIELD_BITPOS (*fp, 0);
7039
7040 /* Get bit size of field (zero if none). */
7041 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
7042 if (attr)
7043 {
7044 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
7045 }
7046 else
7047 {
7048 FIELD_BITSIZE (*fp) = 0;
7049 }
7050
7051 /* Get bit offset of field. */
7052 if (handle_data_member_location (die, cu, &offset))
7053 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7054 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7055 if (attr)
7056 {
7057 if (gdbarch_bits_big_endian (gdbarch))
7058 {
7059 /* For big endian bits, the DW_AT_bit_offset gives the
7060 additional bit offset from the MSB of the containing
7061 anonymous object to the MSB of the field. We don't
7062 have to do anything special since we don't need to
7063 know the size of the anonymous object. */
7064 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7065 }
7066 else
7067 {
7068 /* For little endian bits, compute the bit offset to the
7069 MSB of the anonymous object, subtract off the number of
7070 bits from the MSB of the field to the MSB of the
7071 object, and then subtract off the number of bits of
7072 the field itself. The result is the bit offset of
7073 the LSB of the field. */
7074 int anonymous_size;
7075 int bit_offset = DW_UNSND (attr);
7076
7077 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7078 if (attr)
7079 {
7080 /* The size of the anonymous object containing
7081 the bit field is explicit, so use the
7082 indicated size (in bytes). */
7083 anonymous_size = DW_UNSND (attr);
7084 }
7085 else
7086 {
7087 /* The size of the anonymous object containing
7088 the bit field must be inferred from the type
7089 attribute of the data member containing the
7090 bit field. */
7091 anonymous_size = TYPE_LENGTH (fp->type);
7092 }
7093 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7094 - bit_offset - FIELD_BITSIZE (*fp);
7095 }
7096 }
7097
7098 /* Get name of field. */
7099 fieldname = dwarf2_name (die, cu);
7100 if (fieldname == NULL)
7101 fieldname = "";
7102
7103 /* The name is already allocated along with this objfile, so we don't
7104 need to duplicate it for the type. */
7105 fp->name = fieldname;
7106
7107 /* Change accessibility for artificial fields (e.g. virtual table
7108 pointer or virtual base class pointer) to private. */
7109 if (dwarf2_attr (die, DW_AT_artificial, cu))
7110 {
7111 FIELD_ARTIFICIAL (*fp) = 1;
7112 new_field->accessibility = DW_ACCESS_private;
7113 fip->non_public_fields = 1;
7114 }
7115 }
7116 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7117 {
7118 /* C++ static member. */
7119
7120 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7121 is a declaration, but all versions of G++ as of this writing
7122 (so through at least 3.2.1) incorrectly generate
7123 DW_TAG_variable tags. */
7124
7125 const char *physname;
7126
7127 /* Get name of field. */
7128 fieldname = dwarf2_name (die, cu);
7129 if (fieldname == NULL)
7130 return;
7131
7132 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7133 if (attr
7134 /* Only create a symbol if this is an external value.
7135 new_symbol checks this and puts the value in the global symbol
7136 table, which we want. If it is not external, new_symbol
7137 will try to put the value in cu->list_in_scope which is wrong. */
7138 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7139 {
7140 /* A static const member, not much different than an enum as far as
7141 we're concerned, except that we can support more types. */
7142 new_symbol (die, NULL, cu);
7143 }
7144
7145 /* Get physical name. */
7146 physname = dwarf2_physname (fieldname, die, cu);
7147
7148 /* The name is already allocated along with this objfile, so we don't
7149 need to duplicate it for the type. */
7150 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7151 FIELD_TYPE (*fp) = die_type (die, cu);
7152 FIELD_NAME (*fp) = fieldname;
7153 }
7154 else if (die->tag == DW_TAG_inheritance)
7155 {
7156 LONGEST offset;
7157
7158 /* C++ base class field. */
7159 if (handle_data_member_location (die, cu, &offset))
7160 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7161 FIELD_BITSIZE (*fp) = 0;
7162 FIELD_TYPE (*fp) = die_type (die, cu);
7163 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7164 fip->nbaseclasses++;
7165 }
7166 }
7167
7168 /* Add a typedef defined in the scope of the FIP's class. */
7169
7170 static void
7171 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7172 struct dwarf2_cu *cu)
7173 {
7174 struct objfile *objfile = cu->objfile;
7175 struct typedef_field_list *new_field;
7176 struct attribute *attr;
7177 struct typedef_field *fp;
7178 char *fieldname = "";
7179
7180 /* Allocate a new field list entry and link it in. */
7181 new_field = xzalloc (sizeof (*new_field));
7182 make_cleanup (xfree, new_field);
7183
7184 gdb_assert (die->tag == DW_TAG_typedef);
7185
7186 fp = &new_field->field;
7187
7188 /* Get name of field. */
7189 fp->name = dwarf2_name (die, cu);
7190 if (fp->name == NULL)
7191 return;
7192
7193 fp->type = read_type_die (die, cu);
7194
7195 new_field->next = fip->typedef_field_list;
7196 fip->typedef_field_list = new_field;
7197 fip->typedef_field_list_count++;
7198 }
7199
7200 /* Create the vector of fields, and attach it to the type. */
7201
7202 static void
7203 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7204 struct dwarf2_cu *cu)
7205 {
7206 int nfields = fip->nfields;
7207
7208 /* Record the field count, allocate space for the array of fields,
7209 and create blank accessibility bitfields if necessary. */
7210 TYPE_NFIELDS (type) = nfields;
7211 TYPE_FIELDS (type) = (struct field *)
7212 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7213 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7214
7215 if (fip->non_public_fields && cu->language != language_ada)
7216 {
7217 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7218
7219 TYPE_FIELD_PRIVATE_BITS (type) =
7220 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7221 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7222
7223 TYPE_FIELD_PROTECTED_BITS (type) =
7224 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7225 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7226
7227 TYPE_FIELD_IGNORE_BITS (type) =
7228 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7229 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7230 }
7231
7232 /* If the type has baseclasses, allocate and clear a bit vector for
7233 TYPE_FIELD_VIRTUAL_BITS. */
7234 if (fip->nbaseclasses && cu->language != language_ada)
7235 {
7236 int num_bytes = B_BYTES (fip->nbaseclasses);
7237 unsigned char *pointer;
7238
7239 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7240 pointer = TYPE_ALLOC (type, num_bytes);
7241 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7242 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7243 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7244 }
7245
7246 /* Copy the saved-up fields into the field vector. Start from the head of
7247 the list, adding to the tail of the field array, so that they end up in
7248 the same order in the array in which they were added to the list. */
7249 while (nfields-- > 0)
7250 {
7251 struct nextfield *fieldp;
7252
7253 if (fip->fields)
7254 {
7255 fieldp = fip->fields;
7256 fip->fields = fieldp->next;
7257 }
7258 else
7259 {
7260 fieldp = fip->baseclasses;
7261 fip->baseclasses = fieldp->next;
7262 }
7263
7264 TYPE_FIELD (type, nfields) = fieldp->field;
7265 switch (fieldp->accessibility)
7266 {
7267 case DW_ACCESS_private:
7268 if (cu->language != language_ada)
7269 SET_TYPE_FIELD_PRIVATE (type, nfields);
7270 break;
7271
7272 case DW_ACCESS_protected:
7273 if (cu->language != language_ada)
7274 SET_TYPE_FIELD_PROTECTED (type, nfields);
7275 break;
7276
7277 case DW_ACCESS_public:
7278 break;
7279
7280 default:
7281 /* Unknown accessibility. Complain and treat it as public. */
7282 {
7283 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7284 fieldp->accessibility);
7285 }
7286 break;
7287 }
7288 if (nfields < fip->nbaseclasses)
7289 {
7290 switch (fieldp->virtuality)
7291 {
7292 case DW_VIRTUALITY_virtual:
7293 case DW_VIRTUALITY_pure_virtual:
7294 if (cu->language == language_ada)
7295 error (_("unexpected virtuality in component of Ada type"));
7296 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7297 break;
7298 }
7299 }
7300 }
7301 }
7302
7303 /* Add a member function to the proper fieldlist. */
7304
7305 static void
7306 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7307 struct type *type, struct dwarf2_cu *cu)
7308 {
7309 struct objfile *objfile = cu->objfile;
7310 struct attribute *attr;
7311 struct fnfieldlist *flp;
7312 int i;
7313 struct fn_field *fnp;
7314 char *fieldname;
7315 struct nextfnfield *new_fnfield;
7316 struct type *this_type;
7317 enum dwarf_access_attribute accessibility;
7318
7319 if (cu->language == language_ada)
7320 error (_("unexpected member function in Ada type"));
7321
7322 /* Get name of member function. */
7323 fieldname = dwarf2_name (die, cu);
7324 if (fieldname == NULL)
7325 return;
7326
7327 /* Look up member function name in fieldlist. */
7328 for (i = 0; i < fip->nfnfields; i++)
7329 {
7330 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7331 break;
7332 }
7333
7334 /* Create new list element if necessary. */
7335 if (i < fip->nfnfields)
7336 flp = &fip->fnfieldlists[i];
7337 else
7338 {
7339 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7340 {
7341 fip->fnfieldlists = (struct fnfieldlist *)
7342 xrealloc (fip->fnfieldlists,
7343 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7344 * sizeof (struct fnfieldlist));
7345 if (fip->nfnfields == 0)
7346 make_cleanup (free_current_contents, &fip->fnfieldlists);
7347 }
7348 flp = &fip->fnfieldlists[fip->nfnfields];
7349 flp->name = fieldname;
7350 flp->length = 0;
7351 flp->head = NULL;
7352 i = fip->nfnfields++;
7353 }
7354
7355 /* Create a new member function field and chain it to the field list
7356 entry. */
7357 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7358 make_cleanup (xfree, new_fnfield);
7359 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7360 new_fnfield->next = flp->head;
7361 flp->head = new_fnfield;
7362 flp->length++;
7363
7364 /* Fill in the member function field info. */
7365 fnp = &new_fnfield->fnfield;
7366
7367 /* Delay processing of the physname until later. */
7368 if (cu->language == language_cplus || cu->language == language_java)
7369 {
7370 add_to_method_list (type, i, flp->length - 1, fieldname,
7371 die, cu);
7372 }
7373 else
7374 {
7375 const char *physname = dwarf2_physname (fieldname, die, cu);
7376 fnp->physname = physname ? physname : "";
7377 }
7378
7379 fnp->type = alloc_type (objfile);
7380 this_type = read_type_die (die, cu);
7381 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7382 {
7383 int nparams = TYPE_NFIELDS (this_type);
7384
7385 /* TYPE is the domain of this method, and THIS_TYPE is the type
7386 of the method itself (TYPE_CODE_METHOD). */
7387 smash_to_method_type (fnp->type, type,
7388 TYPE_TARGET_TYPE (this_type),
7389 TYPE_FIELDS (this_type),
7390 TYPE_NFIELDS (this_type),
7391 TYPE_VARARGS (this_type));
7392
7393 /* Handle static member functions.
7394 Dwarf2 has no clean way to discern C++ static and non-static
7395 member functions. G++ helps GDB by marking the first
7396 parameter for non-static member functions (which is the this
7397 pointer) as artificial. We obtain this information from
7398 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7399 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7400 fnp->voffset = VOFFSET_STATIC;
7401 }
7402 else
7403 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7404 dwarf2_full_name (fieldname, die, cu));
7405
7406 /* Get fcontext from DW_AT_containing_type if present. */
7407 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7408 fnp->fcontext = die_containing_type (die, cu);
7409
7410 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7411 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7412
7413 /* Get accessibility. */
7414 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7415 if (attr)
7416 accessibility = DW_UNSND (attr);
7417 else
7418 accessibility = dwarf2_default_access_attribute (die, cu);
7419 switch (accessibility)
7420 {
7421 case DW_ACCESS_private:
7422 fnp->is_private = 1;
7423 break;
7424 case DW_ACCESS_protected:
7425 fnp->is_protected = 1;
7426 break;
7427 }
7428
7429 /* Check for artificial methods. */
7430 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7431 if (attr && DW_UNSND (attr) != 0)
7432 fnp->is_artificial = 1;
7433
7434 /* Get index in virtual function table if it is a virtual member
7435 function. For older versions of GCC, this is an offset in the
7436 appropriate virtual table, as specified by DW_AT_containing_type.
7437 For everyone else, it is an expression to be evaluated relative
7438 to the object address. */
7439
7440 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7441 if (attr)
7442 {
7443 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7444 {
7445 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7446 {
7447 /* Old-style GCC. */
7448 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7449 }
7450 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7451 || (DW_BLOCK (attr)->size > 1
7452 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7453 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7454 {
7455 struct dwarf_block blk;
7456 int offset;
7457
7458 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7459 ? 1 : 2);
7460 blk.size = DW_BLOCK (attr)->size - offset;
7461 blk.data = DW_BLOCK (attr)->data + offset;
7462 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7463 if ((fnp->voffset % cu->header.addr_size) != 0)
7464 dwarf2_complex_location_expr_complaint ();
7465 else
7466 fnp->voffset /= cu->header.addr_size;
7467 fnp->voffset += 2;
7468 }
7469 else
7470 dwarf2_complex_location_expr_complaint ();
7471
7472 if (!fnp->fcontext)
7473 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7474 }
7475 else if (attr_form_is_section_offset (attr))
7476 {
7477 dwarf2_complex_location_expr_complaint ();
7478 }
7479 else
7480 {
7481 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7482 fieldname);
7483 }
7484 }
7485 else
7486 {
7487 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7488 if (attr && DW_UNSND (attr))
7489 {
7490 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7491 complaint (&symfile_complaints,
7492 _("Member function \"%s\" (offset %d) is virtual "
7493 "but the vtable offset is not specified"),
7494 fieldname, die->offset);
7495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7496 TYPE_CPLUS_DYNAMIC (type) = 1;
7497 }
7498 }
7499 }
7500
7501 /* Create the vector of member function fields, and attach it to the type. */
7502
7503 static void
7504 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7505 struct dwarf2_cu *cu)
7506 {
7507 struct fnfieldlist *flp;
7508 int total_length = 0;
7509 int i;
7510
7511 if (cu->language == language_ada)
7512 error (_("unexpected member functions in Ada type"));
7513
7514 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7515 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7516 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7517
7518 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7519 {
7520 struct nextfnfield *nfp = flp->head;
7521 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7522 int k;
7523
7524 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7525 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7526 fn_flp->fn_fields = (struct fn_field *)
7527 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7528 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7529 fn_flp->fn_fields[k] = nfp->fnfield;
7530
7531 total_length += flp->length;
7532 }
7533
7534 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7535 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
7536 }
7537
7538 /* Returns non-zero if NAME is the name of a vtable member in CU's
7539 language, zero otherwise. */
7540 static int
7541 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7542 {
7543 static const char vptr[] = "_vptr";
7544 static const char vtable[] = "vtable";
7545
7546 /* Look for the C++ and Java forms of the vtable. */
7547 if ((cu->language == language_java
7548 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7549 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7550 && is_cplus_marker (name[sizeof (vptr) - 1])))
7551 return 1;
7552
7553 return 0;
7554 }
7555
7556 /* GCC outputs unnamed structures that are really pointers to member
7557 functions, with the ABI-specified layout. If TYPE describes
7558 such a structure, smash it into a member function type.
7559
7560 GCC shouldn't do this; it should just output pointer to member DIEs.
7561 This is GCC PR debug/28767. */
7562
7563 static void
7564 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7565 {
7566 struct type *pfn_type, *domain_type, *new_type;
7567
7568 /* Check for a structure with no name and two children. */
7569 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7570 return;
7571
7572 /* Check for __pfn and __delta members. */
7573 if (TYPE_FIELD_NAME (type, 0) == NULL
7574 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7575 || TYPE_FIELD_NAME (type, 1) == NULL
7576 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7577 return;
7578
7579 /* Find the type of the method. */
7580 pfn_type = TYPE_FIELD_TYPE (type, 0);
7581 if (pfn_type == NULL
7582 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7583 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7584 return;
7585
7586 /* Look for the "this" argument. */
7587 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7588 if (TYPE_NFIELDS (pfn_type) == 0
7589 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7590 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7591 return;
7592
7593 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7594 new_type = alloc_type (objfile);
7595 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7596 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7597 TYPE_VARARGS (pfn_type));
7598 smash_to_methodptr_type (type, new_type);
7599 }
7600
7601 /* Called when we find the DIE that starts a structure or union scope
7602 (definition) to create a type for the structure or union. Fill in
7603 the type's name and general properties; the members will not be
7604 processed until process_structure_type.
7605
7606 NOTE: we need to call these functions regardless of whether or not the
7607 DIE has a DW_AT_name attribute, since it might be an anonymous
7608 structure or union. This gets the type entered into our set of
7609 user defined types.
7610
7611 However, if the structure is incomplete (an opaque struct/union)
7612 then suppress creating a symbol table entry for it since gdb only
7613 wants to find the one with the complete definition. Note that if
7614 it is complete, we just call new_symbol, which does it's own
7615 checking about whether the struct/union is anonymous or not (and
7616 suppresses creating a symbol table entry itself). */
7617
7618 static struct type *
7619 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7620 {
7621 struct objfile *objfile = cu->objfile;
7622 struct type *type;
7623 struct attribute *attr;
7624 char *name;
7625
7626 /* If the definition of this type lives in .debug_types, read that type.
7627 Don't follow DW_AT_specification though, that will take us back up
7628 the chain and we want to go down. */
7629 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7630 if (attr)
7631 {
7632 struct dwarf2_cu *type_cu = cu;
7633 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7634
7635 /* We could just recurse on read_structure_type, but we need to call
7636 get_die_type to ensure only one type for this DIE is created.
7637 This is important, for example, because for c++ classes we need
7638 TYPE_NAME set which is only done by new_symbol. Blech. */
7639 type = read_type_die (type_die, type_cu);
7640
7641 /* TYPE_CU may not be the same as CU.
7642 Ensure TYPE is recorded in CU's type_hash table. */
7643 return set_die_type (die, type, cu);
7644 }
7645
7646 type = alloc_type (objfile);
7647 INIT_CPLUS_SPECIFIC (type);
7648
7649 name = dwarf2_name (die, cu);
7650 if (name != NULL)
7651 {
7652 if (cu->language == language_cplus
7653 || cu->language == language_java)
7654 {
7655 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7656
7657 /* dwarf2_full_name might have already finished building the DIE's
7658 type. If so, there is no need to continue. */
7659 if (get_die_type (die, cu) != NULL)
7660 return get_die_type (die, cu);
7661
7662 TYPE_TAG_NAME (type) = full_name;
7663 if (die->tag == DW_TAG_structure_type
7664 || die->tag == DW_TAG_class_type)
7665 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7666 }
7667 else
7668 {
7669 /* The name is already allocated along with this objfile, so
7670 we don't need to duplicate it for the type. */
7671 TYPE_TAG_NAME (type) = (char *) name;
7672 if (die->tag == DW_TAG_class_type)
7673 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7674 }
7675 }
7676
7677 if (die->tag == DW_TAG_structure_type)
7678 {
7679 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7680 }
7681 else if (die->tag == DW_TAG_union_type)
7682 {
7683 TYPE_CODE (type) = TYPE_CODE_UNION;
7684 }
7685 else
7686 {
7687 TYPE_CODE (type) = TYPE_CODE_CLASS;
7688 }
7689
7690 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7691 TYPE_DECLARED_CLASS (type) = 1;
7692
7693 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7694 if (attr)
7695 {
7696 TYPE_LENGTH (type) = DW_UNSND (attr);
7697 }
7698 else
7699 {
7700 TYPE_LENGTH (type) = 0;
7701 }
7702
7703 TYPE_STUB_SUPPORTED (type) = 1;
7704 if (die_is_declaration (die, cu))
7705 TYPE_STUB (type) = 1;
7706 else if (attr == NULL && die->child == NULL
7707 && producer_is_realview (cu->producer))
7708 /* RealView does not output the required DW_AT_declaration
7709 on incomplete types. */
7710 TYPE_STUB (type) = 1;
7711
7712 /* We need to add the type field to the die immediately so we don't
7713 infinitely recurse when dealing with pointers to the structure
7714 type within the structure itself. */
7715 set_die_type (die, type, cu);
7716
7717 /* set_die_type should be already done. */
7718 set_descriptive_type (type, die, cu);
7719
7720 return type;
7721 }
7722
7723 /* Finish creating a structure or union type, including filling in
7724 its members and creating a symbol for it. */
7725
7726 static void
7727 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7728 {
7729 struct objfile *objfile = cu->objfile;
7730 struct die_info *child_die = die->child;
7731 struct type *type;
7732
7733 type = get_die_type (die, cu);
7734 if (type == NULL)
7735 type = read_structure_type (die, cu);
7736
7737 if (die->child != NULL && ! die_is_declaration (die, cu))
7738 {
7739 struct field_info fi;
7740 struct die_info *child_die;
7741 VEC (symbolp) *template_args = NULL;
7742 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7743
7744 memset (&fi, 0, sizeof (struct field_info));
7745
7746 child_die = die->child;
7747
7748 while (child_die && child_die->tag)
7749 {
7750 if (child_die->tag == DW_TAG_member
7751 || child_die->tag == DW_TAG_variable)
7752 {
7753 /* NOTE: carlton/2002-11-05: A C++ static data member
7754 should be a DW_TAG_member that is a declaration, but
7755 all versions of G++ as of this writing (so through at
7756 least 3.2.1) incorrectly generate DW_TAG_variable
7757 tags for them instead. */
7758 dwarf2_add_field (&fi, child_die, cu);
7759 }
7760 else if (child_die->tag == DW_TAG_subprogram)
7761 {
7762 /* C++ member function. */
7763 dwarf2_add_member_fn (&fi, child_die, type, cu);
7764 }
7765 else if (child_die->tag == DW_TAG_inheritance)
7766 {
7767 /* C++ base class field. */
7768 dwarf2_add_field (&fi, child_die, cu);
7769 }
7770 else if (child_die->tag == DW_TAG_typedef)
7771 dwarf2_add_typedef (&fi, child_die, cu);
7772 else if (child_die->tag == DW_TAG_template_type_param
7773 || child_die->tag == DW_TAG_template_value_param)
7774 {
7775 struct symbol *arg = new_symbol (child_die, NULL, cu);
7776
7777 if (arg != NULL)
7778 VEC_safe_push (symbolp, template_args, arg);
7779 }
7780
7781 child_die = sibling_die (child_die);
7782 }
7783
7784 /* Attach template arguments to type. */
7785 if (! VEC_empty (symbolp, template_args))
7786 {
7787 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7788 TYPE_N_TEMPLATE_ARGUMENTS (type)
7789 = VEC_length (symbolp, template_args);
7790 TYPE_TEMPLATE_ARGUMENTS (type)
7791 = obstack_alloc (&objfile->objfile_obstack,
7792 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7793 * sizeof (struct symbol *)));
7794 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7795 VEC_address (symbolp, template_args),
7796 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7797 * sizeof (struct symbol *)));
7798 VEC_free (symbolp, template_args);
7799 }
7800
7801 /* Attach fields and member functions to the type. */
7802 if (fi.nfields)
7803 dwarf2_attach_fields_to_type (&fi, type, cu);
7804 if (fi.nfnfields)
7805 {
7806 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7807
7808 /* Get the type which refers to the base class (possibly this
7809 class itself) which contains the vtable pointer for the current
7810 class from the DW_AT_containing_type attribute. This use of
7811 DW_AT_containing_type is a GNU extension. */
7812
7813 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7814 {
7815 struct type *t = die_containing_type (die, cu);
7816
7817 TYPE_VPTR_BASETYPE (type) = t;
7818 if (type == t)
7819 {
7820 int i;
7821
7822 /* Our own class provides vtbl ptr. */
7823 for (i = TYPE_NFIELDS (t) - 1;
7824 i >= TYPE_N_BASECLASSES (t);
7825 --i)
7826 {
7827 char *fieldname = TYPE_FIELD_NAME (t, i);
7828
7829 if (is_vtable_name (fieldname, cu))
7830 {
7831 TYPE_VPTR_FIELDNO (type) = i;
7832 break;
7833 }
7834 }
7835
7836 /* Complain if virtual function table field not found. */
7837 if (i < TYPE_N_BASECLASSES (t))
7838 complaint (&symfile_complaints,
7839 _("virtual function table pointer "
7840 "not found when defining class '%s'"),
7841 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7842 "");
7843 }
7844 else
7845 {
7846 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7847 }
7848 }
7849 else if (cu->producer
7850 && strncmp (cu->producer,
7851 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7852 {
7853 /* The IBM XLC compiler does not provide direct indication
7854 of the containing type, but the vtable pointer is
7855 always named __vfp. */
7856
7857 int i;
7858
7859 for (i = TYPE_NFIELDS (type) - 1;
7860 i >= TYPE_N_BASECLASSES (type);
7861 --i)
7862 {
7863 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7864 {
7865 TYPE_VPTR_FIELDNO (type) = i;
7866 TYPE_VPTR_BASETYPE (type) = type;
7867 break;
7868 }
7869 }
7870 }
7871 }
7872
7873 /* Copy fi.typedef_field_list linked list elements content into the
7874 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7875 if (fi.typedef_field_list)
7876 {
7877 int i = fi.typedef_field_list_count;
7878
7879 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7880 TYPE_TYPEDEF_FIELD_ARRAY (type)
7881 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7882 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7883
7884 /* Reverse the list order to keep the debug info elements order. */
7885 while (--i >= 0)
7886 {
7887 struct typedef_field *dest, *src;
7888
7889 dest = &TYPE_TYPEDEF_FIELD (type, i);
7890 src = &fi.typedef_field_list->field;
7891 fi.typedef_field_list = fi.typedef_field_list->next;
7892 *dest = *src;
7893 }
7894 }
7895
7896 do_cleanups (back_to);
7897
7898 if (HAVE_CPLUS_STRUCT (type))
7899 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7900 }
7901
7902 quirk_gcc_member_function_pointer (type, cu->objfile);
7903
7904 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7905 snapshots) has been known to create a die giving a declaration
7906 for a class that has, as a child, a die giving a definition for a
7907 nested class. So we have to process our children even if the
7908 current die is a declaration. Normally, of course, a declaration
7909 won't have any children at all. */
7910
7911 while (child_die != NULL && child_die->tag)
7912 {
7913 if (child_die->tag == DW_TAG_member
7914 || child_die->tag == DW_TAG_variable
7915 || child_die->tag == DW_TAG_inheritance
7916 || child_die->tag == DW_TAG_template_value_param
7917 || child_die->tag == DW_TAG_template_type_param)
7918 {
7919 /* Do nothing. */
7920 }
7921 else
7922 process_die (child_die, cu);
7923
7924 child_die = sibling_die (child_die);
7925 }
7926
7927 /* Do not consider external references. According to the DWARF standard,
7928 these DIEs are identified by the fact that they have no byte_size
7929 attribute, and a declaration attribute. */
7930 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7931 || !die_is_declaration (die, cu))
7932 new_symbol (die, type, cu);
7933 }
7934
7935 /* Given a DW_AT_enumeration_type die, set its type. We do not
7936 complete the type's fields yet, or create any symbols. */
7937
7938 static struct type *
7939 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7940 {
7941 struct objfile *objfile = cu->objfile;
7942 struct type *type;
7943 struct attribute *attr;
7944 const char *name;
7945
7946 /* If the definition of this type lives in .debug_types, read that type.
7947 Don't follow DW_AT_specification though, that will take us back up
7948 the chain and we want to go down. */
7949 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7950 if (attr)
7951 {
7952 struct dwarf2_cu *type_cu = cu;
7953 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7954
7955 type = read_type_die (type_die, type_cu);
7956
7957 /* TYPE_CU may not be the same as CU.
7958 Ensure TYPE is recorded in CU's type_hash table. */
7959 return set_die_type (die, type, cu);
7960 }
7961
7962 type = alloc_type (objfile);
7963
7964 TYPE_CODE (type) = TYPE_CODE_ENUM;
7965 name = dwarf2_full_name (NULL, die, cu);
7966 if (name != NULL)
7967 TYPE_TAG_NAME (type) = (char *) name;
7968
7969 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7970 if (attr)
7971 {
7972 TYPE_LENGTH (type) = DW_UNSND (attr);
7973 }
7974 else
7975 {
7976 TYPE_LENGTH (type) = 0;
7977 }
7978
7979 /* The enumeration DIE can be incomplete. In Ada, any type can be
7980 declared as private in the package spec, and then defined only
7981 inside the package body. Such types are known as Taft Amendment
7982 Types. When another package uses such a type, an incomplete DIE
7983 may be generated by the compiler. */
7984 if (die_is_declaration (die, cu))
7985 TYPE_STUB (type) = 1;
7986
7987 return set_die_type (die, type, cu);
7988 }
7989
7990 /* Given a pointer to a die which begins an enumeration, process all
7991 the dies that define the members of the enumeration, and create the
7992 symbol for the enumeration type.
7993
7994 NOTE: We reverse the order of the element list. */
7995
7996 static void
7997 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7998 {
7999 struct type *this_type;
8000
8001 this_type = get_die_type (die, cu);
8002 if (this_type == NULL)
8003 this_type = read_enumeration_type (die, cu);
8004
8005 if (die->child != NULL)
8006 {
8007 struct die_info *child_die;
8008 struct symbol *sym;
8009 struct field *fields = NULL;
8010 int num_fields = 0;
8011 int unsigned_enum = 1;
8012 char *name;
8013
8014 child_die = die->child;
8015 while (child_die && child_die->tag)
8016 {
8017 if (child_die->tag != DW_TAG_enumerator)
8018 {
8019 process_die (child_die, cu);
8020 }
8021 else
8022 {
8023 name = dwarf2_name (child_die, cu);
8024 if (name)
8025 {
8026 sym = new_symbol (child_die, this_type, cu);
8027 if (SYMBOL_VALUE (sym) < 0)
8028 unsigned_enum = 0;
8029
8030 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
8031 {
8032 fields = (struct field *)
8033 xrealloc (fields,
8034 (num_fields + DW_FIELD_ALLOC_CHUNK)
8035 * sizeof (struct field));
8036 }
8037
8038 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
8039 FIELD_TYPE (fields[num_fields]) = NULL;
8040 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
8041 FIELD_BITSIZE (fields[num_fields]) = 0;
8042
8043 num_fields++;
8044 }
8045 }
8046
8047 child_die = sibling_die (child_die);
8048 }
8049
8050 if (num_fields)
8051 {
8052 TYPE_NFIELDS (this_type) = num_fields;
8053 TYPE_FIELDS (this_type) = (struct field *)
8054 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8055 memcpy (TYPE_FIELDS (this_type), fields,
8056 sizeof (struct field) * num_fields);
8057 xfree (fields);
8058 }
8059 if (unsigned_enum)
8060 TYPE_UNSIGNED (this_type) = 1;
8061 }
8062
8063 /* If we are reading an enum from a .debug_types unit, and the enum
8064 is a declaration, and the enum is not the signatured type in the
8065 unit, then we do not want to add a symbol for it. Adding a
8066 symbol would in some cases obscure the true definition of the
8067 enum, giving users an incomplete type when the definition is
8068 actually available. Note that we do not want to do this for all
8069 enums which are just declarations, because C++0x allows forward
8070 enum declarations. */
8071 if (cu->per_cu->debug_type_section
8072 && die_is_declaration (die, cu))
8073 {
8074 struct signatured_type *type_sig;
8075
8076 type_sig
8077 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8078 cu->per_cu->debug_type_section,
8079 cu->per_cu->offset);
8080 if (type_sig->type_offset != die->offset)
8081 return;
8082 }
8083
8084 new_symbol (die, this_type, cu);
8085 }
8086
8087 /* Extract all information from a DW_TAG_array_type DIE and put it in
8088 the DIE's type field. For now, this only handles one dimensional
8089 arrays. */
8090
8091 static struct type *
8092 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8093 {
8094 struct objfile *objfile = cu->objfile;
8095 struct die_info *child_die;
8096 struct type *type;
8097 struct type *element_type, *range_type, *index_type;
8098 struct type **range_types = NULL;
8099 struct attribute *attr;
8100 int ndim = 0;
8101 struct cleanup *back_to;
8102 char *name;
8103
8104 element_type = die_type (die, cu);
8105
8106 /* The die_type call above may have already set the type for this DIE. */
8107 type = get_die_type (die, cu);
8108 if (type)
8109 return type;
8110
8111 /* Irix 6.2 native cc creates array types without children for
8112 arrays with unspecified length. */
8113 if (die->child == NULL)
8114 {
8115 index_type = objfile_type (objfile)->builtin_int;
8116 range_type = create_range_type (NULL, index_type, 0, -1);
8117 type = create_array_type (NULL, element_type, range_type);
8118 return set_die_type (die, type, cu);
8119 }
8120
8121 back_to = make_cleanup (null_cleanup, NULL);
8122 child_die = die->child;
8123 while (child_die && child_die->tag)
8124 {
8125 if (child_die->tag == DW_TAG_subrange_type)
8126 {
8127 struct type *child_type = read_type_die (child_die, cu);
8128
8129 if (child_type != NULL)
8130 {
8131 /* The range type was succesfully read. Save it for the
8132 array type creation. */
8133 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8134 {
8135 range_types = (struct type **)
8136 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8137 * sizeof (struct type *));
8138 if (ndim == 0)
8139 make_cleanup (free_current_contents, &range_types);
8140 }
8141 range_types[ndim++] = child_type;
8142 }
8143 }
8144 child_die = sibling_die (child_die);
8145 }
8146
8147 /* Dwarf2 dimensions are output from left to right, create the
8148 necessary array types in backwards order. */
8149
8150 type = element_type;
8151
8152 if (read_array_order (die, cu) == DW_ORD_col_major)
8153 {
8154 int i = 0;
8155
8156 while (i < ndim)
8157 type = create_array_type (NULL, type, range_types[i++]);
8158 }
8159 else
8160 {
8161 while (ndim-- > 0)
8162 type = create_array_type (NULL, type, range_types[ndim]);
8163 }
8164
8165 /* Understand Dwarf2 support for vector types (like they occur on
8166 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8167 array type. This is not part of the Dwarf2/3 standard yet, but a
8168 custom vendor extension. The main difference between a regular
8169 array and the vector variant is that vectors are passed by value
8170 to functions. */
8171 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8172 if (attr)
8173 make_vector_type (type);
8174
8175 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8176 implementation may choose to implement triple vectors using this
8177 attribute. */
8178 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8179 if (attr)
8180 {
8181 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8182 TYPE_LENGTH (type) = DW_UNSND (attr);
8183 else
8184 complaint (&symfile_complaints,
8185 _("DW_AT_byte_size for array type smaller "
8186 "than the total size of elements"));
8187 }
8188
8189 name = dwarf2_name (die, cu);
8190 if (name)
8191 TYPE_NAME (type) = name;
8192
8193 /* Install the type in the die. */
8194 set_die_type (die, type, cu);
8195
8196 /* set_die_type should be already done. */
8197 set_descriptive_type (type, die, cu);
8198
8199 do_cleanups (back_to);
8200
8201 return type;
8202 }
8203
8204 static enum dwarf_array_dim_ordering
8205 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8206 {
8207 struct attribute *attr;
8208
8209 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8210
8211 if (attr) return DW_SND (attr);
8212
8213 /* GNU F77 is a special case, as at 08/2004 array type info is the
8214 opposite order to the dwarf2 specification, but data is still
8215 laid out as per normal fortran.
8216
8217 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8218 version checking. */
8219
8220 if (cu->language == language_fortran
8221 && cu->producer && strstr (cu->producer, "GNU F77"))
8222 {
8223 return DW_ORD_row_major;
8224 }
8225
8226 switch (cu->language_defn->la_array_ordering)
8227 {
8228 case array_column_major:
8229 return DW_ORD_col_major;
8230 case array_row_major:
8231 default:
8232 return DW_ORD_row_major;
8233 };
8234 }
8235
8236 /* Extract all information from a DW_TAG_set_type DIE and put it in
8237 the DIE's type field. */
8238
8239 static struct type *
8240 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8241 {
8242 struct type *domain_type, *set_type;
8243 struct attribute *attr;
8244
8245 domain_type = die_type (die, cu);
8246
8247 /* The die_type call above may have already set the type for this DIE. */
8248 set_type = get_die_type (die, cu);
8249 if (set_type)
8250 return set_type;
8251
8252 set_type = create_set_type (NULL, domain_type);
8253
8254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8255 if (attr)
8256 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8257
8258 return set_die_type (die, set_type, cu);
8259 }
8260
8261 /* First cut: install each common block member as a global variable. */
8262
8263 static void
8264 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8265 {
8266 struct die_info *child_die;
8267 struct attribute *attr;
8268 struct symbol *sym;
8269 CORE_ADDR base = (CORE_ADDR) 0;
8270
8271 attr = dwarf2_attr (die, DW_AT_location, cu);
8272 if (attr)
8273 {
8274 /* Support the .debug_loc offsets. */
8275 if (attr_form_is_block (attr))
8276 {
8277 base = decode_locdesc (DW_BLOCK (attr), cu);
8278 }
8279 else if (attr_form_is_section_offset (attr))
8280 {
8281 dwarf2_complex_location_expr_complaint ();
8282 }
8283 else
8284 {
8285 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8286 "common block member");
8287 }
8288 }
8289 if (die->child != NULL)
8290 {
8291 child_die = die->child;
8292 while (child_die && child_die->tag)
8293 {
8294 LONGEST offset;
8295
8296 sym = new_symbol (child_die, NULL, cu);
8297 if (sym != NULL
8298 && handle_data_member_location (child_die, cu, &offset))
8299 {
8300 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8301 add_symbol_to_list (sym, &global_symbols);
8302 }
8303 child_die = sibling_die (child_die);
8304 }
8305 }
8306 }
8307
8308 /* Create a type for a C++ namespace. */
8309
8310 static struct type *
8311 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8312 {
8313 struct objfile *objfile = cu->objfile;
8314 const char *previous_prefix, *name;
8315 int is_anonymous;
8316 struct type *type;
8317
8318 /* For extensions, reuse the type of the original namespace. */
8319 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8320 {
8321 struct die_info *ext_die;
8322 struct dwarf2_cu *ext_cu = cu;
8323
8324 ext_die = dwarf2_extension (die, &ext_cu);
8325 type = read_type_die (ext_die, ext_cu);
8326
8327 /* EXT_CU may not be the same as CU.
8328 Ensure TYPE is recorded in CU's type_hash table. */
8329 return set_die_type (die, type, cu);
8330 }
8331
8332 name = namespace_name (die, &is_anonymous, cu);
8333
8334 /* Now build the name of the current namespace. */
8335
8336 previous_prefix = determine_prefix (die, cu);
8337 if (previous_prefix[0] != '\0')
8338 name = typename_concat (&objfile->objfile_obstack,
8339 previous_prefix, name, 0, cu);
8340
8341 /* Create the type. */
8342 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8343 objfile);
8344 TYPE_NAME (type) = (char *) name;
8345 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8346
8347 return set_die_type (die, type, cu);
8348 }
8349
8350 /* Read a C++ namespace. */
8351
8352 static void
8353 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 struct objfile *objfile = cu->objfile;
8356 int is_anonymous;
8357
8358 /* Add a symbol associated to this if we haven't seen the namespace
8359 before. Also, add a using directive if it's an anonymous
8360 namespace. */
8361
8362 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8363 {
8364 struct type *type;
8365
8366 type = read_type_die (die, cu);
8367 new_symbol (die, type, cu);
8368
8369 namespace_name (die, &is_anonymous, cu);
8370 if (is_anonymous)
8371 {
8372 const char *previous_prefix = determine_prefix (die, cu);
8373
8374 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8375 NULL, NULL, &objfile->objfile_obstack);
8376 }
8377 }
8378
8379 if (die->child != NULL)
8380 {
8381 struct die_info *child_die = die->child;
8382
8383 while (child_die && child_die->tag)
8384 {
8385 process_die (child_die, cu);
8386 child_die = sibling_die (child_die);
8387 }
8388 }
8389 }
8390
8391 /* Read a Fortran module as type. This DIE can be only a declaration used for
8392 imported module. Still we need that type as local Fortran "use ... only"
8393 declaration imports depend on the created type in determine_prefix. */
8394
8395 static struct type *
8396 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8397 {
8398 struct objfile *objfile = cu->objfile;
8399 char *module_name;
8400 struct type *type;
8401
8402 module_name = dwarf2_name (die, cu);
8403 if (!module_name)
8404 complaint (&symfile_complaints,
8405 _("DW_TAG_module has no name, offset 0x%x"),
8406 die->offset);
8407 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8408
8409 /* determine_prefix uses TYPE_TAG_NAME. */
8410 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8411
8412 return set_die_type (die, type, cu);
8413 }
8414
8415 /* Read a Fortran module. */
8416
8417 static void
8418 read_module (struct die_info *die, struct dwarf2_cu *cu)
8419 {
8420 struct die_info *child_die = die->child;
8421
8422 while (child_die && child_die->tag)
8423 {
8424 process_die (child_die, cu);
8425 child_die = sibling_die (child_die);
8426 }
8427 }
8428
8429 /* Return the name of the namespace represented by DIE. Set
8430 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8431 namespace. */
8432
8433 static const char *
8434 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8435 {
8436 struct die_info *current_die;
8437 const char *name = NULL;
8438
8439 /* Loop through the extensions until we find a name. */
8440
8441 for (current_die = die;
8442 current_die != NULL;
8443 current_die = dwarf2_extension (die, &cu))
8444 {
8445 name = dwarf2_name (current_die, cu);
8446 if (name != NULL)
8447 break;
8448 }
8449
8450 /* Is it an anonymous namespace? */
8451
8452 *is_anonymous = (name == NULL);
8453 if (*is_anonymous)
8454 name = CP_ANONYMOUS_NAMESPACE_STR;
8455
8456 return name;
8457 }
8458
8459 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8460 the user defined type vector. */
8461
8462 static struct type *
8463 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8464 {
8465 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8466 struct comp_unit_head *cu_header = &cu->header;
8467 struct type *type;
8468 struct attribute *attr_byte_size;
8469 struct attribute *attr_address_class;
8470 int byte_size, addr_class;
8471 struct type *target_type;
8472
8473 target_type = die_type (die, cu);
8474
8475 /* The die_type call above may have already set the type for this DIE. */
8476 type = get_die_type (die, cu);
8477 if (type)
8478 return type;
8479
8480 type = lookup_pointer_type (target_type);
8481
8482 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8483 if (attr_byte_size)
8484 byte_size = DW_UNSND (attr_byte_size);
8485 else
8486 byte_size = cu_header->addr_size;
8487
8488 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8489 if (attr_address_class)
8490 addr_class = DW_UNSND (attr_address_class);
8491 else
8492 addr_class = DW_ADDR_none;
8493
8494 /* If the pointer size or address class is different than the
8495 default, create a type variant marked as such and set the
8496 length accordingly. */
8497 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8498 {
8499 if (gdbarch_address_class_type_flags_p (gdbarch))
8500 {
8501 int type_flags;
8502
8503 type_flags = gdbarch_address_class_type_flags
8504 (gdbarch, byte_size, addr_class);
8505 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8506 == 0);
8507 type = make_type_with_address_space (type, type_flags);
8508 }
8509 else if (TYPE_LENGTH (type) != byte_size)
8510 {
8511 complaint (&symfile_complaints,
8512 _("invalid pointer size %d"), byte_size);
8513 }
8514 else
8515 {
8516 /* Should we also complain about unhandled address classes? */
8517 }
8518 }
8519
8520 TYPE_LENGTH (type) = byte_size;
8521 return set_die_type (die, type, cu);
8522 }
8523
8524 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8525 the user defined type vector. */
8526
8527 static struct type *
8528 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8529 {
8530 struct type *type;
8531 struct type *to_type;
8532 struct type *domain;
8533
8534 to_type = die_type (die, cu);
8535 domain = die_containing_type (die, cu);
8536
8537 /* The calls above may have already set the type for this DIE. */
8538 type = get_die_type (die, cu);
8539 if (type)
8540 return type;
8541
8542 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8543 type = lookup_methodptr_type (to_type);
8544 else
8545 type = lookup_memberptr_type (to_type, domain);
8546
8547 return set_die_type (die, type, cu);
8548 }
8549
8550 /* Extract all information from a DW_TAG_reference_type DIE and add to
8551 the user defined type vector. */
8552
8553 static struct type *
8554 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8555 {
8556 struct comp_unit_head *cu_header = &cu->header;
8557 struct type *type, *target_type;
8558 struct attribute *attr;
8559
8560 target_type = die_type (die, cu);
8561
8562 /* The die_type call above may have already set the type for this DIE. */
8563 type = get_die_type (die, cu);
8564 if (type)
8565 return type;
8566
8567 type = lookup_reference_type (target_type);
8568 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8569 if (attr)
8570 {
8571 TYPE_LENGTH (type) = DW_UNSND (attr);
8572 }
8573 else
8574 {
8575 TYPE_LENGTH (type) = cu_header->addr_size;
8576 }
8577 return set_die_type (die, type, cu);
8578 }
8579
8580 static struct type *
8581 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8582 {
8583 struct type *base_type, *cv_type;
8584
8585 base_type = die_type (die, cu);
8586
8587 /* The die_type call above may have already set the type for this DIE. */
8588 cv_type = get_die_type (die, cu);
8589 if (cv_type)
8590 return cv_type;
8591
8592 /* In case the const qualifier is applied to an array type, the element type
8593 is so qualified, not the array type (section 6.7.3 of C99). */
8594 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8595 {
8596 struct type *el_type, *inner_array;
8597
8598 base_type = copy_type (base_type);
8599 inner_array = base_type;
8600
8601 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8602 {
8603 TYPE_TARGET_TYPE (inner_array) =
8604 copy_type (TYPE_TARGET_TYPE (inner_array));
8605 inner_array = TYPE_TARGET_TYPE (inner_array);
8606 }
8607
8608 el_type = TYPE_TARGET_TYPE (inner_array);
8609 TYPE_TARGET_TYPE (inner_array) =
8610 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8611
8612 return set_die_type (die, base_type, cu);
8613 }
8614
8615 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8616 return set_die_type (die, cv_type, cu);
8617 }
8618
8619 static struct type *
8620 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8621 {
8622 struct type *base_type, *cv_type;
8623
8624 base_type = die_type (die, cu);
8625
8626 /* The die_type call above may have already set the type for this DIE. */
8627 cv_type = get_die_type (die, cu);
8628 if (cv_type)
8629 return cv_type;
8630
8631 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8632 return set_die_type (die, cv_type, cu);
8633 }
8634
8635 /* Extract all information from a DW_TAG_string_type DIE and add to
8636 the user defined type vector. It isn't really a user defined type,
8637 but it behaves like one, with other DIE's using an AT_user_def_type
8638 attribute to reference it. */
8639
8640 static struct type *
8641 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8642 {
8643 struct objfile *objfile = cu->objfile;
8644 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8645 struct type *type, *range_type, *index_type, *char_type;
8646 struct attribute *attr;
8647 unsigned int length;
8648
8649 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8650 if (attr)
8651 {
8652 length = DW_UNSND (attr);
8653 }
8654 else
8655 {
8656 /* Check for the DW_AT_byte_size attribute. */
8657 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8658 if (attr)
8659 {
8660 length = DW_UNSND (attr);
8661 }
8662 else
8663 {
8664 length = 1;
8665 }
8666 }
8667
8668 index_type = objfile_type (objfile)->builtin_int;
8669 range_type = create_range_type (NULL, index_type, 1, length);
8670 char_type = language_string_char_type (cu->language_defn, gdbarch);
8671 type = create_string_type (NULL, char_type, range_type);
8672
8673 return set_die_type (die, type, cu);
8674 }
8675
8676 /* Handle DIES due to C code like:
8677
8678 struct foo
8679 {
8680 int (*funcp)(int a, long l);
8681 int b;
8682 };
8683
8684 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8685
8686 static struct type *
8687 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8688 {
8689 struct type *type; /* Type that this function returns. */
8690 struct type *ftype; /* Function that returns above type. */
8691 struct attribute *attr;
8692
8693 type = die_type (die, cu);
8694
8695 /* The die_type call above may have already set the type for this DIE. */
8696 ftype = get_die_type (die, cu);
8697 if (ftype)
8698 return ftype;
8699
8700 ftype = lookup_function_type (type);
8701
8702 /* All functions in C++, Pascal and Java have prototypes. */
8703 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8704 if ((attr && (DW_UNSND (attr) != 0))
8705 || cu->language == language_cplus
8706 || cu->language == language_java
8707 || cu->language == language_pascal)
8708 TYPE_PROTOTYPED (ftype) = 1;
8709 else if (producer_is_realview (cu->producer))
8710 /* RealView does not emit DW_AT_prototyped. We can not
8711 distinguish prototyped and unprototyped functions; default to
8712 prototyped, since that is more common in modern code (and
8713 RealView warns about unprototyped functions). */
8714 TYPE_PROTOTYPED (ftype) = 1;
8715
8716 /* Store the calling convention in the type if it's available in
8717 the subroutine die. Otherwise set the calling convention to
8718 the default value DW_CC_normal. */
8719 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8720 if (attr)
8721 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8722 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8723 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8724 else
8725 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8726
8727 /* We need to add the subroutine type to the die immediately so
8728 we don't infinitely recurse when dealing with parameters
8729 declared as the same subroutine type. */
8730 set_die_type (die, ftype, cu);
8731
8732 if (die->child != NULL)
8733 {
8734 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
8735 struct die_info *child_die;
8736 int nparams, iparams;
8737
8738 /* Count the number of parameters.
8739 FIXME: GDB currently ignores vararg functions, but knows about
8740 vararg member functions. */
8741 nparams = 0;
8742 child_die = die->child;
8743 while (child_die && child_die->tag)
8744 {
8745 if (child_die->tag == DW_TAG_formal_parameter)
8746 nparams++;
8747 else if (child_die->tag == DW_TAG_unspecified_parameters)
8748 TYPE_VARARGS (ftype) = 1;
8749 child_die = sibling_die (child_die);
8750 }
8751
8752 /* Allocate storage for parameters and fill them in. */
8753 TYPE_NFIELDS (ftype) = nparams;
8754 TYPE_FIELDS (ftype) = (struct field *)
8755 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8756
8757 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8758 even if we error out during the parameters reading below. */
8759 for (iparams = 0; iparams < nparams; iparams++)
8760 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8761
8762 iparams = 0;
8763 child_die = die->child;
8764 while (child_die && child_die->tag)
8765 {
8766 if (child_die->tag == DW_TAG_formal_parameter)
8767 {
8768 struct type *arg_type;
8769
8770 /* DWARF version 2 has no clean way to discern C++
8771 static and non-static member functions. G++ helps
8772 GDB by marking the first parameter for non-static
8773 member functions (which is the this pointer) as
8774 artificial. We pass this information to
8775 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8776
8777 DWARF version 3 added DW_AT_object_pointer, which GCC
8778 4.5 does not yet generate. */
8779 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8780 if (attr)
8781 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8782 else
8783 {
8784 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8785
8786 /* GCC/43521: In java, the formal parameter
8787 "this" is sometimes not marked with DW_AT_artificial. */
8788 if (cu->language == language_java)
8789 {
8790 const char *name = dwarf2_name (child_die, cu);
8791
8792 if (name && !strcmp (name, "this"))
8793 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8794 }
8795 }
8796 arg_type = die_type (child_die, cu);
8797
8798 /* RealView does not mark THIS as const, which the testsuite
8799 expects. GCC marks THIS as const in method definitions,
8800 but not in the class specifications (GCC PR 43053). */
8801 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8802 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8803 {
8804 int is_this = 0;
8805 struct dwarf2_cu *arg_cu = cu;
8806 const char *name = dwarf2_name (child_die, cu);
8807
8808 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8809 if (attr)
8810 {
8811 /* If the compiler emits this, use it. */
8812 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8813 is_this = 1;
8814 }
8815 else if (name && strcmp (name, "this") == 0)
8816 /* Function definitions will have the argument names. */
8817 is_this = 1;
8818 else if (name == NULL && iparams == 0)
8819 /* Declarations may not have the names, so like
8820 elsewhere in GDB, assume an artificial first
8821 argument is "this". */
8822 is_this = 1;
8823
8824 if (is_this)
8825 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8826 arg_type, 0);
8827 }
8828
8829 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8830 iparams++;
8831 }
8832 child_die = sibling_die (child_die);
8833 }
8834 }
8835
8836 return ftype;
8837 }
8838
8839 static struct type *
8840 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8841 {
8842 struct objfile *objfile = cu->objfile;
8843 const char *name = NULL;
8844 struct type *this_type;
8845
8846 name = dwarf2_full_name (NULL, die, cu);
8847 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8848 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8849 TYPE_NAME (this_type) = (char *) name;
8850 set_die_type (die, this_type, cu);
8851 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8852 return this_type;
8853 }
8854
8855 /* Find a representation of a given base type and install
8856 it in the TYPE field of the die. */
8857
8858 static struct type *
8859 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8860 {
8861 struct objfile *objfile = cu->objfile;
8862 struct type *type;
8863 struct attribute *attr;
8864 int encoding = 0, size = 0;
8865 char *name;
8866 enum type_code code = TYPE_CODE_INT;
8867 int type_flags = 0;
8868 struct type *target_type = NULL;
8869
8870 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8871 if (attr)
8872 {
8873 encoding = DW_UNSND (attr);
8874 }
8875 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8876 if (attr)
8877 {
8878 size = DW_UNSND (attr);
8879 }
8880 name = dwarf2_name (die, cu);
8881 if (!name)
8882 {
8883 complaint (&symfile_complaints,
8884 _("DW_AT_name missing from DW_TAG_base_type"));
8885 }
8886
8887 switch (encoding)
8888 {
8889 case DW_ATE_address:
8890 /* Turn DW_ATE_address into a void * pointer. */
8891 code = TYPE_CODE_PTR;
8892 type_flags |= TYPE_FLAG_UNSIGNED;
8893 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8894 break;
8895 case DW_ATE_boolean:
8896 code = TYPE_CODE_BOOL;
8897 type_flags |= TYPE_FLAG_UNSIGNED;
8898 break;
8899 case DW_ATE_complex_float:
8900 code = TYPE_CODE_COMPLEX;
8901 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8902 break;
8903 case DW_ATE_decimal_float:
8904 code = TYPE_CODE_DECFLOAT;
8905 break;
8906 case DW_ATE_float:
8907 code = TYPE_CODE_FLT;
8908 break;
8909 case DW_ATE_signed:
8910 break;
8911 case DW_ATE_unsigned:
8912 type_flags |= TYPE_FLAG_UNSIGNED;
8913 if (cu->language == language_fortran
8914 && name
8915 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8916 code = TYPE_CODE_CHAR;
8917 break;
8918 case DW_ATE_signed_char:
8919 if (cu->language == language_ada || cu->language == language_m2
8920 || cu->language == language_pascal
8921 || cu->language == language_fortran)
8922 code = TYPE_CODE_CHAR;
8923 break;
8924 case DW_ATE_unsigned_char:
8925 if (cu->language == language_ada || cu->language == language_m2
8926 || cu->language == language_pascal
8927 || cu->language == language_fortran)
8928 code = TYPE_CODE_CHAR;
8929 type_flags |= TYPE_FLAG_UNSIGNED;
8930 break;
8931 case DW_ATE_UTF:
8932 /* We just treat this as an integer and then recognize the
8933 type by name elsewhere. */
8934 break;
8935
8936 default:
8937 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8938 dwarf_type_encoding_name (encoding));
8939 break;
8940 }
8941
8942 type = init_type (code, size, type_flags, NULL, objfile);
8943 TYPE_NAME (type) = name;
8944 TYPE_TARGET_TYPE (type) = target_type;
8945
8946 if (name && strcmp (name, "char") == 0)
8947 TYPE_NOSIGN (type) = 1;
8948
8949 return set_die_type (die, type, cu);
8950 }
8951
8952 /* Read the given DW_AT_subrange DIE. */
8953
8954 static struct type *
8955 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8956 {
8957 struct type *base_type;
8958 struct type *range_type;
8959 struct attribute *attr;
8960 LONGEST low = 0;
8961 LONGEST high = -1;
8962 char *name;
8963 LONGEST negative_mask;
8964
8965 base_type = die_type (die, cu);
8966 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8967 check_typedef (base_type);
8968
8969 /* The die_type call above may have already set the type for this DIE. */
8970 range_type = get_die_type (die, cu);
8971 if (range_type)
8972 return range_type;
8973
8974 if (cu->language == language_fortran)
8975 {
8976 /* FORTRAN implies a lower bound of 1, if not given. */
8977 low = 1;
8978 }
8979
8980 /* FIXME: For variable sized arrays either of these could be
8981 a variable rather than a constant value. We'll allow it,
8982 but we don't know how to handle it. */
8983 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8984 if (attr)
8985 low = dwarf2_get_attr_constant_value (attr, 0);
8986
8987 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8988 if (attr)
8989 {
8990 if (attr_form_is_block (attr) || is_ref_attr (attr))
8991 {
8992 /* GCC encodes arrays with unspecified or dynamic length
8993 with a DW_FORM_block1 attribute or a reference attribute.
8994 FIXME: GDB does not yet know how to handle dynamic
8995 arrays properly, treat them as arrays with unspecified
8996 length for now.
8997
8998 FIXME: jimb/2003-09-22: GDB does not really know
8999 how to handle arrays of unspecified length
9000 either; we just represent them as zero-length
9001 arrays. Choose an appropriate upper bound given
9002 the lower bound we've computed above. */
9003 high = low - 1;
9004 }
9005 else
9006 high = dwarf2_get_attr_constant_value (attr, 1);
9007 }
9008 else
9009 {
9010 attr = dwarf2_attr (die, DW_AT_count, cu);
9011 if (attr)
9012 {
9013 int count = dwarf2_get_attr_constant_value (attr, 1);
9014 high = low + count - 1;
9015 }
9016 else
9017 {
9018 /* Unspecified array length. */
9019 high = low - 1;
9020 }
9021 }
9022
9023 /* Dwarf-2 specifications explicitly allows to create subrange types
9024 without specifying a base type.
9025 In that case, the base type must be set to the type of
9026 the lower bound, upper bound or count, in that order, if any of these
9027 three attributes references an object that has a type.
9028 If no base type is found, the Dwarf-2 specifications say that
9029 a signed integer type of size equal to the size of an address should
9030 be used.
9031 For the following C code: `extern char gdb_int [];'
9032 GCC produces an empty range DIE.
9033 FIXME: muller/2010-05-28: Possible references to object for low bound,
9034 high bound or count are not yet handled by this code. */
9035 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9036 {
9037 struct objfile *objfile = cu->objfile;
9038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9039 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9040 struct type *int_type = objfile_type (objfile)->builtin_int;
9041
9042 /* Test "int", "long int", and "long long int" objfile types,
9043 and select the first one having a size above or equal to the
9044 architecture address size. */
9045 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9046 base_type = int_type;
9047 else
9048 {
9049 int_type = objfile_type (objfile)->builtin_long;
9050 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9051 base_type = int_type;
9052 else
9053 {
9054 int_type = objfile_type (objfile)->builtin_long_long;
9055 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9056 base_type = int_type;
9057 }
9058 }
9059 }
9060
9061 negative_mask =
9062 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9063 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9064 low |= negative_mask;
9065 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9066 high |= negative_mask;
9067
9068 range_type = create_range_type (NULL, base_type, low, high);
9069
9070 /* Mark arrays with dynamic length at least as an array of unspecified
9071 length. GDB could check the boundary but before it gets implemented at
9072 least allow accessing the array elements. */
9073 if (attr && attr_form_is_block (attr))
9074 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9075
9076 /* Ada expects an empty array on no boundary attributes. */
9077 if (attr == NULL && cu->language != language_ada)
9078 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9079
9080 name = dwarf2_name (die, cu);
9081 if (name)
9082 TYPE_NAME (range_type) = name;
9083
9084 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9085 if (attr)
9086 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9087
9088 set_die_type (die, range_type, cu);
9089
9090 /* set_die_type should be already done. */
9091 set_descriptive_type (range_type, die, cu);
9092
9093 return range_type;
9094 }
9095
9096 static struct type *
9097 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9098 {
9099 struct type *type;
9100
9101 /* For now, we only support the C meaning of an unspecified type: void. */
9102
9103 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9104 TYPE_NAME (type) = dwarf2_name (die, cu);
9105
9106 return set_die_type (die, type, cu);
9107 }
9108
9109 /* Trivial hash function for die_info: the hash value of a DIE
9110 is its offset in .debug_info for this objfile. */
9111
9112 static hashval_t
9113 die_hash (const void *item)
9114 {
9115 const struct die_info *die = item;
9116
9117 return die->offset;
9118 }
9119
9120 /* Trivial comparison function for die_info structures: two DIEs
9121 are equal if they have the same offset. */
9122
9123 static int
9124 die_eq (const void *item_lhs, const void *item_rhs)
9125 {
9126 const struct die_info *die_lhs = item_lhs;
9127 const struct die_info *die_rhs = item_rhs;
9128
9129 return die_lhs->offset == die_rhs->offset;
9130 }
9131
9132 /* Read a whole compilation unit into a linked list of dies. */
9133
9134 static struct die_info *
9135 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9136 {
9137 struct die_reader_specs reader_specs;
9138 int read_abbrevs = 0;
9139 struct cleanup *back_to = NULL;
9140 struct die_info *die;
9141
9142 if (cu->dwarf2_abbrevs == NULL)
9143 {
9144 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
9145 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9146 read_abbrevs = 1;
9147 }
9148
9149 gdb_assert (cu->die_hash == NULL);
9150 cu->die_hash
9151 = htab_create_alloc_ex (cu->header.length / 12,
9152 die_hash,
9153 die_eq,
9154 NULL,
9155 &cu->comp_unit_obstack,
9156 hashtab_obstack_allocate,
9157 dummy_obstack_deallocate);
9158
9159 init_cu_die_reader (&reader_specs, cu);
9160
9161 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9162
9163 if (read_abbrevs)
9164 do_cleanups (back_to);
9165
9166 return die;
9167 }
9168
9169 /* Main entry point for reading a DIE and all children.
9170 Read the DIE and dump it if requested. */
9171
9172 static struct die_info *
9173 read_die_and_children (const struct die_reader_specs *reader,
9174 gdb_byte *info_ptr,
9175 gdb_byte **new_info_ptr,
9176 struct die_info *parent)
9177 {
9178 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9179 new_info_ptr, parent);
9180
9181 if (dwarf2_die_debug)
9182 {
9183 fprintf_unfiltered (gdb_stdlog,
9184 "\nRead die from %s of %s:\n",
9185 (reader->cu->per_cu->debug_type_section
9186 ? ".debug_types"
9187 : ".debug_info"),
9188 reader->abfd->filename);
9189 dump_die (result, dwarf2_die_debug);
9190 }
9191
9192 return result;
9193 }
9194
9195 /* Read a single die and all its descendents. Set the die's sibling
9196 field to NULL; set other fields in the die correctly, and set all
9197 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9198 location of the info_ptr after reading all of those dies. PARENT
9199 is the parent of the die in question. */
9200
9201 static struct die_info *
9202 read_die_and_children_1 (const struct die_reader_specs *reader,
9203 gdb_byte *info_ptr,
9204 gdb_byte **new_info_ptr,
9205 struct die_info *parent)
9206 {
9207 struct die_info *die;
9208 gdb_byte *cur_ptr;
9209 int has_children;
9210
9211 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9212 if (die == NULL)
9213 {
9214 *new_info_ptr = cur_ptr;
9215 return NULL;
9216 }
9217 store_in_ref_table (die, reader->cu);
9218
9219 if (has_children)
9220 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9221 else
9222 {
9223 die->child = NULL;
9224 *new_info_ptr = cur_ptr;
9225 }
9226
9227 die->sibling = NULL;
9228 die->parent = parent;
9229 return die;
9230 }
9231
9232 /* Read a die, all of its descendents, and all of its siblings; set
9233 all of the fields of all of the dies correctly. Arguments are as
9234 in read_die_and_children. */
9235
9236 static struct die_info *
9237 read_die_and_siblings (const struct die_reader_specs *reader,
9238 gdb_byte *info_ptr,
9239 gdb_byte **new_info_ptr,
9240 struct die_info *parent)
9241 {
9242 struct die_info *first_die, *last_sibling;
9243 gdb_byte *cur_ptr;
9244
9245 cur_ptr = info_ptr;
9246 first_die = last_sibling = NULL;
9247
9248 while (1)
9249 {
9250 struct die_info *die
9251 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9252
9253 if (die == NULL)
9254 {
9255 *new_info_ptr = cur_ptr;
9256 return first_die;
9257 }
9258
9259 if (!first_die)
9260 first_die = die;
9261 else
9262 last_sibling->sibling = die;
9263
9264 last_sibling = die;
9265 }
9266 }
9267
9268 /* Read the die from the .debug_info section buffer. Set DIEP to
9269 point to a newly allocated die with its information, except for its
9270 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9271 whether the die has children or not. */
9272
9273 static gdb_byte *
9274 read_full_die (const struct die_reader_specs *reader,
9275 struct die_info **diep, gdb_byte *info_ptr,
9276 int *has_children)
9277 {
9278 unsigned int abbrev_number, bytes_read, i, offset;
9279 struct abbrev_info *abbrev;
9280 struct die_info *die;
9281 struct dwarf2_cu *cu = reader->cu;
9282 bfd *abfd = reader->abfd;
9283
9284 offset = info_ptr - reader->buffer;
9285 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9286 info_ptr += bytes_read;
9287 if (!abbrev_number)
9288 {
9289 *diep = NULL;
9290 *has_children = 0;
9291 return info_ptr;
9292 }
9293
9294 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9295 if (!abbrev)
9296 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9297 abbrev_number,
9298 bfd_get_filename (abfd));
9299
9300 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9301 die->offset = offset;
9302 die->tag = abbrev->tag;
9303 die->abbrev = abbrev_number;
9304
9305 die->num_attrs = abbrev->num_attrs;
9306
9307 for (i = 0; i < abbrev->num_attrs; ++i)
9308 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9309 abfd, info_ptr, cu);
9310
9311 *diep = die;
9312 *has_children = abbrev->has_children;
9313 return info_ptr;
9314 }
9315
9316 /* In DWARF version 2, the description of the debugging information is
9317 stored in a separate .debug_abbrev section. Before we read any
9318 dies from a section we read in all abbreviations and install them
9319 in a hash table. This function also sets flags in CU describing
9320 the data found in the abbrev table. */
9321
9322 static void
9323 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
9324 {
9325 struct comp_unit_head *cu_header = &cu->header;
9326 gdb_byte *abbrev_ptr;
9327 struct abbrev_info *cur_abbrev;
9328 unsigned int abbrev_number, bytes_read, abbrev_name;
9329 unsigned int abbrev_form, hash_number;
9330 struct attr_abbrev *cur_attrs;
9331 unsigned int allocated_attrs;
9332
9333 /* Initialize dwarf2 abbrevs. */
9334 obstack_init (&cu->abbrev_obstack);
9335 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9336 (ABBREV_HASH_SIZE
9337 * sizeof (struct abbrev_info *)));
9338 memset (cu->dwarf2_abbrevs, 0,
9339 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9340
9341 dwarf2_read_section (dwarf2_per_objfile->objfile,
9342 &dwarf2_per_objfile->abbrev);
9343 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9344 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9345 abbrev_ptr += bytes_read;
9346
9347 allocated_attrs = ATTR_ALLOC_CHUNK;
9348 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9349
9350 /* Loop until we reach an abbrev number of 0. */
9351 while (abbrev_number)
9352 {
9353 cur_abbrev = dwarf_alloc_abbrev (cu);
9354
9355 /* read in abbrev header */
9356 cur_abbrev->number = abbrev_number;
9357 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9358 abbrev_ptr += bytes_read;
9359 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9360 abbrev_ptr += 1;
9361
9362 if (cur_abbrev->tag == DW_TAG_namespace)
9363 cu->has_namespace_info = 1;
9364
9365 /* now read in declarations */
9366 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9367 abbrev_ptr += bytes_read;
9368 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9369 abbrev_ptr += bytes_read;
9370 while (abbrev_name)
9371 {
9372 if (cur_abbrev->num_attrs == allocated_attrs)
9373 {
9374 allocated_attrs += ATTR_ALLOC_CHUNK;
9375 cur_attrs
9376 = xrealloc (cur_attrs, (allocated_attrs
9377 * sizeof (struct attr_abbrev)));
9378 }
9379
9380 /* Record whether this compilation unit might have
9381 inter-compilation-unit references. If we don't know what form
9382 this attribute will have, then it might potentially be a
9383 DW_FORM_ref_addr, so we conservatively expect inter-CU
9384 references. */
9385
9386 if (abbrev_form == DW_FORM_ref_addr
9387 || abbrev_form == DW_FORM_indirect)
9388 cu->has_form_ref_addr = 1;
9389
9390 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9391 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9392 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9393 abbrev_ptr += bytes_read;
9394 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9395 abbrev_ptr += bytes_read;
9396 }
9397
9398 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9399 (cur_abbrev->num_attrs
9400 * sizeof (struct attr_abbrev)));
9401 memcpy (cur_abbrev->attrs, cur_attrs,
9402 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9403
9404 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9405 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9406 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9407
9408 /* Get next abbreviation.
9409 Under Irix6 the abbreviations for a compilation unit are not
9410 always properly terminated with an abbrev number of 0.
9411 Exit loop if we encounter an abbreviation which we have
9412 already read (which means we are about to read the abbreviations
9413 for the next compile unit) or if the end of the abbreviation
9414 table is reached. */
9415 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9416 >= dwarf2_per_objfile->abbrev.size)
9417 break;
9418 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9419 abbrev_ptr += bytes_read;
9420 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9421 break;
9422 }
9423
9424 xfree (cur_attrs);
9425 }
9426
9427 /* Release the memory used by the abbrev table for a compilation unit. */
9428
9429 static void
9430 dwarf2_free_abbrev_table (void *ptr_to_cu)
9431 {
9432 struct dwarf2_cu *cu = ptr_to_cu;
9433
9434 obstack_free (&cu->abbrev_obstack, NULL);
9435 cu->dwarf2_abbrevs = NULL;
9436 }
9437
9438 /* Lookup an abbrev_info structure in the abbrev hash table. */
9439
9440 static struct abbrev_info *
9441 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9442 {
9443 unsigned int hash_number;
9444 struct abbrev_info *abbrev;
9445
9446 hash_number = number % ABBREV_HASH_SIZE;
9447 abbrev = cu->dwarf2_abbrevs[hash_number];
9448
9449 while (abbrev)
9450 {
9451 if (abbrev->number == number)
9452 return abbrev;
9453 else
9454 abbrev = abbrev->next;
9455 }
9456 return NULL;
9457 }
9458
9459 /* Returns nonzero if TAG represents a type that we might generate a partial
9460 symbol for. */
9461
9462 static int
9463 is_type_tag_for_partial (int tag)
9464 {
9465 switch (tag)
9466 {
9467 #if 0
9468 /* Some types that would be reasonable to generate partial symbols for,
9469 that we don't at present. */
9470 case DW_TAG_array_type:
9471 case DW_TAG_file_type:
9472 case DW_TAG_ptr_to_member_type:
9473 case DW_TAG_set_type:
9474 case DW_TAG_string_type:
9475 case DW_TAG_subroutine_type:
9476 #endif
9477 case DW_TAG_base_type:
9478 case DW_TAG_class_type:
9479 case DW_TAG_interface_type:
9480 case DW_TAG_enumeration_type:
9481 case DW_TAG_structure_type:
9482 case DW_TAG_subrange_type:
9483 case DW_TAG_typedef:
9484 case DW_TAG_union_type:
9485 return 1;
9486 default:
9487 return 0;
9488 }
9489 }
9490
9491 /* Load all DIEs that are interesting for partial symbols into memory. */
9492
9493 static struct partial_die_info *
9494 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9495 int building_psymtab, struct dwarf2_cu *cu)
9496 {
9497 struct partial_die_info *part_die;
9498 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9499 struct abbrev_info *abbrev;
9500 unsigned int bytes_read;
9501 unsigned int load_all = 0;
9502
9503 int nesting_level = 1;
9504
9505 parent_die = NULL;
9506 last_die = NULL;
9507
9508 if (cu->per_cu && cu->per_cu->load_all_dies)
9509 load_all = 1;
9510
9511 cu->partial_dies
9512 = htab_create_alloc_ex (cu->header.length / 12,
9513 partial_die_hash,
9514 partial_die_eq,
9515 NULL,
9516 &cu->comp_unit_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519
9520 part_die = obstack_alloc (&cu->comp_unit_obstack,
9521 sizeof (struct partial_die_info));
9522
9523 while (1)
9524 {
9525 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9526
9527 /* A NULL abbrev means the end of a series of children. */
9528 if (abbrev == NULL)
9529 {
9530 if (--nesting_level == 0)
9531 {
9532 /* PART_DIE was probably the last thing allocated on the
9533 comp_unit_obstack, so we could call obstack_free
9534 here. We don't do that because the waste is small,
9535 and will be cleaned up when we're done with this
9536 compilation unit. This way, we're also more robust
9537 against other users of the comp_unit_obstack. */
9538 return first_die;
9539 }
9540 info_ptr += bytes_read;
9541 last_die = parent_die;
9542 parent_die = parent_die->die_parent;
9543 continue;
9544 }
9545
9546 /* Check for template arguments. We never save these; if
9547 they're seen, we just mark the parent, and go on our way. */
9548 if (parent_die != NULL
9549 && cu->language == language_cplus
9550 && (abbrev->tag == DW_TAG_template_type_param
9551 || abbrev->tag == DW_TAG_template_value_param))
9552 {
9553 parent_die->has_template_arguments = 1;
9554
9555 if (!load_all)
9556 {
9557 /* We don't need a partial DIE for the template argument. */
9558 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9559 cu);
9560 continue;
9561 }
9562 }
9563
9564 /* We only recurse into subprograms looking for template arguments.
9565 Skip their other children. */
9566 if (!load_all
9567 && cu->language == language_cplus
9568 && parent_die != NULL
9569 && parent_die->tag == DW_TAG_subprogram)
9570 {
9571 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9572 continue;
9573 }
9574
9575 /* Check whether this DIE is interesting enough to save. Normally
9576 we would not be interested in members here, but there may be
9577 later variables referencing them via DW_AT_specification (for
9578 static members). */
9579 if (!load_all
9580 && !is_type_tag_for_partial (abbrev->tag)
9581 && abbrev->tag != DW_TAG_constant
9582 && abbrev->tag != DW_TAG_enumerator
9583 && abbrev->tag != DW_TAG_subprogram
9584 && abbrev->tag != DW_TAG_lexical_block
9585 && abbrev->tag != DW_TAG_variable
9586 && abbrev->tag != DW_TAG_namespace
9587 && abbrev->tag != DW_TAG_module
9588 && abbrev->tag != DW_TAG_member)
9589 {
9590 /* Otherwise we skip to the next sibling, if any. */
9591 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9592 continue;
9593 }
9594
9595 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9596 buffer, info_ptr, cu);
9597
9598 /* This two-pass algorithm for processing partial symbols has a
9599 high cost in cache pressure. Thus, handle some simple cases
9600 here which cover the majority of C partial symbols. DIEs
9601 which neither have specification tags in them, nor could have
9602 specification tags elsewhere pointing at them, can simply be
9603 processed and discarded.
9604
9605 This segment is also optional; scan_partial_symbols and
9606 add_partial_symbol will handle these DIEs if we chain
9607 them in normally. When compilers which do not emit large
9608 quantities of duplicate debug information are more common,
9609 this code can probably be removed. */
9610
9611 /* Any complete simple types at the top level (pretty much all
9612 of them, for a language without namespaces), can be processed
9613 directly. */
9614 if (parent_die == NULL
9615 && part_die->has_specification == 0
9616 && part_die->is_declaration == 0
9617 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9618 || part_die->tag == DW_TAG_base_type
9619 || part_die->tag == DW_TAG_subrange_type))
9620 {
9621 if (building_psymtab && part_die->name != NULL)
9622 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9623 VAR_DOMAIN, LOC_TYPEDEF,
9624 &cu->objfile->static_psymbols,
9625 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9626 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9627 continue;
9628 }
9629
9630 /* The exception for DW_TAG_typedef with has_children above is
9631 a workaround of GCC PR debug/47510. In the case of this complaint
9632 type_name_no_tag_or_error will error on such types later.
9633
9634 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9635 it could not find the child DIEs referenced later, this is checked
9636 above. In correct DWARF DW_TAG_typedef should have no children. */
9637
9638 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9639 complaint (&symfile_complaints,
9640 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9641 "- DIE at 0x%x [in module %s]"),
9642 part_die->offset, cu->objfile->name);
9643
9644 /* If we're at the second level, and we're an enumerator, and
9645 our parent has no specification (meaning possibly lives in a
9646 namespace elsewhere), then we can add the partial symbol now
9647 instead of queueing it. */
9648 if (part_die->tag == DW_TAG_enumerator
9649 && parent_die != NULL
9650 && parent_die->die_parent == NULL
9651 && parent_die->tag == DW_TAG_enumeration_type
9652 && parent_die->has_specification == 0)
9653 {
9654 if (part_die->name == NULL)
9655 complaint (&symfile_complaints,
9656 _("malformed enumerator DIE ignored"));
9657 else if (building_psymtab)
9658 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9659 VAR_DOMAIN, LOC_CONST,
9660 (cu->language == language_cplus
9661 || cu->language == language_java)
9662 ? &cu->objfile->global_psymbols
9663 : &cu->objfile->static_psymbols,
9664 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9665
9666 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9667 continue;
9668 }
9669
9670 /* We'll save this DIE so link it in. */
9671 part_die->die_parent = parent_die;
9672 part_die->die_sibling = NULL;
9673 part_die->die_child = NULL;
9674
9675 if (last_die && last_die == parent_die)
9676 last_die->die_child = part_die;
9677 else if (last_die)
9678 last_die->die_sibling = part_die;
9679
9680 last_die = part_die;
9681
9682 if (first_die == NULL)
9683 first_die = part_die;
9684
9685 /* Maybe add the DIE to the hash table. Not all DIEs that we
9686 find interesting need to be in the hash table, because we
9687 also have the parent/sibling/child chains; only those that we
9688 might refer to by offset later during partial symbol reading.
9689
9690 For now this means things that might have be the target of a
9691 DW_AT_specification, DW_AT_abstract_origin, or
9692 DW_AT_extension. DW_AT_extension will refer only to
9693 namespaces; DW_AT_abstract_origin refers to functions (and
9694 many things under the function DIE, but we do not recurse
9695 into function DIEs during partial symbol reading) and
9696 possibly variables as well; DW_AT_specification refers to
9697 declarations. Declarations ought to have the DW_AT_declaration
9698 flag. It happens that GCC forgets to put it in sometimes, but
9699 only for functions, not for types.
9700
9701 Adding more things than necessary to the hash table is harmless
9702 except for the performance cost. Adding too few will result in
9703 wasted time in find_partial_die, when we reread the compilation
9704 unit with load_all_dies set. */
9705
9706 if (load_all
9707 || abbrev->tag == DW_TAG_constant
9708 || abbrev->tag == DW_TAG_subprogram
9709 || abbrev->tag == DW_TAG_variable
9710 || abbrev->tag == DW_TAG_namespace
9711 || part_die->is_declaration)
9712 {
9713 void **slot;
9714
9715 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9716 part_die->offset, INSERT);
9717 *slot = part_die;
9718 }
9719
9720 part_die = obstack_alloc (&cu->comp_unit_obstack,
9721 sizeof (struct partial_die_info));
9722
9723 /* For some DIEs we want to follow their children (if any). For C
9724 we have no reason to follow the children of structures; for other
9725 languages we have to, so that we can get at method physnames
9726 to infer fully qualified class names, for DW_AT_specification,
9727 and for C++ template arguments. For C++, we also look one level
9728 inside functions to find template arguments (if the name of the
9729 function does not already contain the template arguments).
9730
9731 For Ada, we need to scan the children of subprograms and lexical
9732 blocks as well because Ada allows the definition of nested
9733 entities that could be interesting for the debugger, such as
9734 nested subprograms for instance. */
9735 if (last_die->has_children
9736 && (load_all
9737 || last_die->tag == DW_TAG_namespace
9738 || last_die->tag == DW_TAG_module
9739 || last_die->tag == DW_TAG_enumeration_type
9740 || (cu->language == language_cplus
9741 && last_die->tag == DW_TAG_subprogram
9742 && (last_die->name == NULL
9743 || strchr (last_die->name, '<') == NULL))
9744 || (cu->language != language_c
9745 && (last_die->tag == DW_TAG_class_type
9746 || last_die->tag == DW_TAG_interface_type
9747 || last_die->tag == DW_TAG_structure_type
9748 || last_die->tag == DW_TAG_union_type))
9749 || (cu->language == language_ada
9750 && (last_die->tag == DW_TAG_subprogram
9751 || last_die->tag == DW_TAG_lexical_block))))
9752 {
9753 nesting_level++;
9754 parent_die = last_die;
9755 continue;
9756 }
9757
9758 /* Otherwise we skip to the next sibling, if any. */
9759 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9760
9761 /* Back to the top, do it again. */
9762 }
9763 }
9764
9765 /* Read a minimal amount of information into the minimal die structure. */
9766
9767 static gdb_byte *
9768 read_partial_die (struct partial_die_info *part_die,
9769 struct abbrev_info *abbrev,
9770 unsigned int abbrev_len, bfd *abfd,
9771 gdb_byte *buffer, gdb_byte *info_ptr,
9772 struct dwarf2_cu *cu)
9773 {
9774 unsigned int i;
9775 struct attribute attr;
9776 int has_low_pc_attr = 0;
9777 int has_high_pc_attr = 0;
9778
9779 memset (part_die, 0, sizeof (struct partial_die_info));
9780
9781 part_die->offset = info_ptr - buffer;
9782
9783 info_ptr += abbrev_len;
9784
9785 if (abbrev == NULL)
9786 return info_ptr;
9787
9788 part_die->tag = abbrev->tag;
9789 part_die->has_children = abbrev->has_children;
9790
9791 for (i = 0; i < abbrev->num_attrs; ++i)
9792 {
9793 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9794
9795 /* Store the data if it is of an attribute we want to keep in a
9796 partial symbol table. */
9797 switch (attr.name)
9798 {
9799 case DW_AT_name:
9800 switch (part_die->tag)
9801 {
9802 case DW_TAG_compile_unit:
9803 case DW_TAG_type_unit:
9804 /* Compilation units have a DW_AT_name that is a filename, not
9805 a source language identifier. */
9806 case DW_TAG_enumeration_type:
9807 case DW_TAG_enumerator:
9808 /* These tags always have simple identifiers already; no need
9809 to canonicalize them. */
9810 part_die->name = DW_STRING (&attr);
9811 break;
9812 default:
9813 part_die->name
9814 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9815 &cu->objfile->objfile_obstack);
9816 break;
9817 }
9818 break;
9819 case DW_AT_linkage_name:
9820 case DW_AT_MIPS_linkage_name:
9821 /* Note that both forms of linkage name might appear. We
9822 assume they will be the same, and we only store the last
9823 one we see. */
9824 if (cu->language == language_ada)
9825 part_die->name = DW_STRING (&attr);
9826 part_die->linkage_name = DW_STRING (&attr);
9827 break;
9828 case DW_AT_low_pc:
9829 has_low_pc_attr = 1;
9830 part_die->lowpc = DW_ADDR (&attr);
9831 break;
9832 case DW_AT_high_pc:
9833 has_high_pc_attr = 1;
9834 part_die->highpc = DW_ADDR (&attr);
9835 break;
9836 case DW_AT_location:
9837 /* Support the .debug_loc offsets. */
9838 if (attr_form_is_block (&attr))
9839 {
9840 part_die->locdesc = DW_BLOCK (&attr);
9841 }
9842 else if (attr_form_is_section_offset (&attr))
9843 {
9844 dwarf2_complex_location_expr_complaint ();
9845 }
9846 else
9847 {
9848 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9849 "partial symbol information");
9850 }
9851 break;
9852 case DW_AT_external:
9853 part_die->is_external = DW_UNSND (&attr);
9854 break;
9855 case DW_AT_declaration:
9856 part_die->is_declaration = DW_UNSND (&attr);
9857 break;
9858 case DW_AT_type:
9859 part_die->has_type = 1;
9860 break;
9861 case DW_AT_abstract_origin:
9862 case DW_AT_specification:
9863 case DW_AT_extension:
9864 part_die->has_specification = 1;
9865 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9866 break;
9867 case DW_AT_sibling:
9868 /* Ignore absolute siblings, they might point outside of
9869 the current compile unit. */
9870 if (attr.form == DW_FORM_ref_addr)
9871 complaint (&symfile_complaints,
9872 _("ignoring absolute DW_AT_sibling"));
9873 else
9874 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9875 break;
9876 case DW_AT_byte_size:
9877 part_die->has_byte_size = 1;
9878 break;
9879 case DW_AT_calling_convention:
9880 /* DWARF doesn't provide a way to identify a program's source-level
9881 entry point. DW_AT_calling_convention attributes are only meant
9882 to describe functions' calling conventions.
9883
9884 However, because it's a necessary piece of information in
9885 Fortran, and because DW_CC_program is the only piece of debugging
9886 information whose definition refers to a 'main program' at all,
9887 several compilers have begun marking Fortran main programs with
9888 DW_CC_program --- even when those functions use the standard
9889 calling conventions.
9890
9891 So until DWARF specifies a way to provide this information and
9892 compilers pick up the new representation, we'll support this
9893 practice. */
9894 if (DW_UNSND (&attr) == DW_CC_program
9895 && cu->language == language_fortran)
9896 {
9897 set_main_name (part_die->name);
9898
9899 /* As this DIE has a static linkage the name would be difficult
9900 to look up later. */
9901 language_of_main = language_fortran;
9902 }
9903 break;
9904 default:
9905 break;
9906 }
9907 }
9908
9909 if (has_low_pc_attr && has_high_pc_attr)
9910 {
9911 /* When using the GNU linker, .gnu.linkonce. sections are used to
9912 eliminate duplicate copies of functions and vtables and such.
9913 The linker will arbitrarily choose one and discard the others.
9914 The AT_*_pc values for such functions refer to local labels in
9915 these sections. If the section from that file was discarded, the
9916 labels are not in the output, so the relocs get a value of 0.
9917 If this is a discarded function, mark the pc bounds as invalid,
9918 so that GDB will ignore it. */
9919 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9920 {
9921 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9922
9923 complaint (&symfile_complaints,
9924 _("DW_AT_low_pc %s is zero "
9925 "for DIE at 0x%x [in module %s]"),
9926 paddress (gdbarch, part_die->lowpc),
9927 part_die->offset, cu->objfile->name);
9928 }
9929 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9930 else if (part_die->lowpc >= part_die->highpc)
9931 {
9932 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9933
9934 complaint (&symfile_complaints,
9935 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9936 "for DIE at 0x%x [in module %s]"),
9937 paddress (gdbarch, part_die->lowpc),
9938 paddress (gdbarch, part_die->highpc),
9939 part_die->offset, cu->objfile->name);
9940 }
9941 else
9942 part_die->has_pc_info = 1;
9943 }
9944
9945 return info_ptr;
9946 }
9947
9948 /* Find a cached partial DIE at OFFSET in CU. */
9949
9950 static struct partial_die_info *
9951 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9952 {
9953 struct partial_die_info *lookup_die = NULL;
9954 struct partial_die_info part_die;
9955
9956 part_die.offset = offset;
9957 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9958
9959 return lookup_die;
9960 }
9961
9962 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9963 except in the case of .debug_types DIEs which do not reference
9964 outside their CU (they do however referencing other types via
9965 DW_FORM_ref_sig8). */
9966
9967 static struct partial_die_info *
9968 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9969 {
9970 struct dwarf2_per_cu_data *per_cu = NULL;
9971 struct partial_die_info *pd = NULL;
9972
9973 if (cu->per_cu->debug_type_section)
9974 {
9975 pd = find_partial_die_in_comp_unit (offset, cu);
9976 if (pd != NULL)
9977 return pd;
9978 goto not_found;
9979 }
9980
9981 if (offset_in_cu_p (&cu->header, offset))
9982 {
9983 pd = find_partial_die_in_comp_unit (offset, cu);
9984 if (pd != NULL)
9985 return pd;
9986 }
9987
9988 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9989
9990 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9991 load_partial_comp_unit (per_cu, cu->objfile);
9992
9993 per_cu->cu->last_used = 0;
9994 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9995
9996 if (pd == NULL && per_cu->load_all_dies == 0)
9997 {
9998 struct cleanup *back_to;
9999 struct partial_die_info comp_unit_die;
10000 struct abbrev_info *abbrev;
10001 unsigned int bytes_read;
10002 char *info_ptr;
10003
10004 per_cu->load_all_dies = 1;
10005
10006 /* Re-read the DIEs. */
10007 back_to = make_cleanup (null_cleanup, 0);
10008 if (per_cu->cu->dwarf2_abbrevs == NULL)
10009 {
10010 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
10011 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
10012 }
10013 info_ptr = (dwarf2_per_objfile->info.buffer
10014 + per_cu->cu->header.offset
10015 + per_cu->cu->header.first_die_offset);
10016 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
10017 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
10018 per_cu->cu->objfile->obfd,
10019 dwarf2_per_objfile->info.buffer, info_ptr,
10020 per_cu->cu);
10021 if (comp_unit_die.has_children)
10022 load_partial_dies (per_cu->cu->objfile->obfd,
10023 dwarf2_per_objfile->info.buffer, info_ptr,
10024 0, per_cu->cu);
10025 do_cleanups (back_to);
10026
10027 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
10028 }
10029
10030 not_found:
10031
10032 if (pd == NULL)
10033 internal_error (__FILE__, __LINE__,
10034 _("could not find partial DIE 0x%x "
10035 "in cache [from module %s]\n"),
10036 offset, bfd_get_filename (cu->objfile->obfd));
10037 return pd;
10038 }
10039
10040 /* See if we can figure out if the class lives in a namespace. We do
10041 this by looking for a member function; its demangled name will
10042 contain namespace info, if there is any. */
10043
10044 static void
10045 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10046 struct dwarf2_cu *cu)
10047 {
10048 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10049 what template types look like, because the demangler
10050 frequently doesn't give the same name as the debug info. We
10051 could fix this by only using the demangled name to get the
10052 prefix (but see comment in read_structure_type). */
10053
10054 struct partial_die_info *real_pdi;
10055 struct partial_die_info *child_pdi;
10056
10057 /* If this DIE (this DIE's specification, if any) has a parent, then
10058 we should not do this. We'll prepend the parent's fully qualified
10059 name when we create the partial symbol. */
10060
10061 real_pdi = struct_pdi;
10062 while (real_pdi->has_specification)
10063 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10064
10065 if (real_pdi->die_parent != NULL)
10066 return;
10067
10068 for (child_pdi = struct_pdi->die_child;
10069 child_pdi != NULL;
10070 child_pdi = child_pdi->die_sibling)
10071 {
10072 if (child_pdi->tag == DW_TAG_subprogram
10073 && child_pdi->linkage_name != NULL)
10074 {
10075 char *actual_class_name
10076 = language_class_name_from_physname (cu->language_defn,
10077 child_pdi->linkage_name);
10078 if (actual_class_name != NULL)
10079 {
10080 struct_pdi->name
10081 = obsavestring (actual_class_name,
10082 strlen (actual_class_name),
10083 &cu->objfile->objfile_obstack);
10084 xfree (actual_class_name);
10085 }
10086 break;
10087 }
10088 }
10089 }
10090
10091 /* Adjust PART_DIE before generating a symbol for it. This function
10092 may set the is_external flag or change the DIE's name. */
10093
10094 static void
10095 fixup_partial_die (struct partial_die_info *part_die,
10096 struct dwarf2_cu *cu)
10097 {
10098 /* Once we've fixed up a die, there's no point in doing so again.
10099 This also avoids a memory leak if we were to call
10100 guess_partial_die_structure_name multiple times. */
10101 if (part_die->fixup_called)
10102 return;
10103
10104 /* If we found a reference attribute and the DIE has no name, try
10105 to find a name in the referred to DIE. */
10106
10107 if (part_die->name == NULL && part_die->has_specification)
10108 {
10109 struct partial_die_info *spec_die;
10110
10111 spec_die = find_partial_die (part_die->spec_offset, cu);
10112
10113 fixup_partial_die (spec_die, cu);
10114
10115 if (spec_die->name)
10116 {
10117 part_die->name = spec_die->name;
10118
10119 /* Copy DW_AT_external attribute if it is set. */
10120 if (spec_die->is_external)
10121 part_die->is_external = spec_die->is_external;
10122 }
10123 }
10124
10125 /* Set default names for some unnamed DIEs. */
10126
10127 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10128 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10129
10130 /* If there is no parent die to provide a namespace, and there are
10131 children, see if we can determine the namespace from their linkage
10132 name.
10133 NOTE: We need to do this even if cu->has_namespace_info != 0.
10134 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
10135 if (cu->language == language_cplus
10136 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10137 && part_die->die_parent == NULL
10138 && part_die->has_children
10139 && (part_die->tag == DW_TAG_class_type
10140 || part_die->tag == DW_TAG_structure_type
10141 || part_die->tag == DW_TAG_union_type))
10142 guess_partial_die_structure_name (part_die, cu);
10143
10144 /* GCC might emit a nameless struct or union that has a linkage
10145 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10146 if (part_die->name == NULL
10147 && (part_die->tag == DW_TAG_class_type
10148 || part_die->tag == DW_TAG_interface_type
10149 || part_die->tag == DW_TAG_structure_type
10150 || part_die->tag == DW_TAG_union_type)
10151 && part_die->linkage_name != NULL)
10152 {
10153 char *demangled;
10154
10155 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10156 if (demangled)
10157 {
10158 const char *base;
10159
10160 /* Strip any leading namespaces/classes, keep only the base name.
10161 DW_AT_name for named DIEs does not contain the prefixes. */
10162 base = strrchr (demangled, ':');
10163 if (base && base > demangled && base[-1] == ':')
10164 base++;
10165 else
10166 base = demangled;
10167
10168 part_die->name = obsavestring (base, strlen (base),
10169 &cu->objfile->objfile_obstack);
10170 xfree (demangled);
10171 }
10172 }
10173
10174 part_die->fixup_called = 1;
10175 }
10176
10177 /* Read an attribute value described by an attribute form. */
10178
10179 static gdb_byte *
10180 read_attribute_value (struct attribute *attr, unsigned form,
10181 bfd *abfd, gdb_byte *info_ptr,
10182 struct dwarf2_cu *cu)
10183 {
10184 struct comp_unit_head *cu_header = &cu->header;
10185 unsigned int bytes_read;
10186 struct dwarf_block *blk;
10187
10188 attr->form = form;
10189 switch (form)
10190 {
10191 case DW_FORM_ref_addr:
10192 if (cu->header.version == 2)
10193 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10194 else
10195 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10196 &cu->header, &bytes_read);
10197 info_ptr += bytes_read;
10198 break;
10199 case DW_FORM_addr:
10200 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10201 info_ptr += bytes_read;
10202 break;
10203 case DW_FORM_block2:
10204 blk = dwarf_alloc_block (cu);
10205 blk->size = read_2_bytes (abfd, info_ptr);
10206 info_ptr += 2;
10207 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10208 info_ptr += blk->size;
10209 DW_BLOCK (attr) = blk;
10210 break;
10211 case DW_FORM_block4:
10212 blk = dwarf_alloc_block (cu);
10213 blk->size = read_4_bytes (abfd, info_ptr);
10214 info_ptr += 4;
10215 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10216 info_ptr += blk->size;
10217 DW_BLOCK (attr) = blk;
10218 break;
10219 case DW_FORM_data2:
10220 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10221 info_ptr += 2;
10222 break;
10223 case DW_FORM_data4:
10224 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10225 info_ptr += 4;
10226 break;
10227 case DW_FORM_data8:
10228 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10229 info_ptr += 8;
10230 break;
10231 case DW_FORM_sec_offset:
10232 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10233 info_ptr += bytes_read;
10234 break;
10235 case DW_FORM_string:
10236 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10237 DW_STRING_IS_CANONICAL (attr) = 0;
10238 info_ptr += bytes_read;
10239 break;
10240 case DW_FORM_strp:
10241 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10242 &bytes_read);
10243 DW_STRING_IS_CANONICAL (attr) = 0;
10244 info_ptr += bytes_read;
10245 break;
10246 case DW_FORM_exprloc:
10247 case DW_FORM_block:
10248 blk = dwarf_alloc_block (cu);
10249 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10250 info_ptr += bytes_read;
10251 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10252 info_ptr += blk->size;
10253 DW_BLOCK (attr) = blk;
10254 break;
10255 case DW_FORM_block1:
10256 blk = dwarf_alloc_block (cu);
10257 blk->size = read_1_byte (abfd, info_ptr);
10258 info_ptr += 1;
10259 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10260 info_ptr += blk->size;
10261 DW_BLOCK (attr) = blk;
10262 break;
10263 case DW_FORM_data1:
10264 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10265 info_ptr += 1;
10266 break;
10267 case DW_FORM_flag:
10268 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10269 info_ptr += 1;
10270 break;
10271 case DW_FORM_flag_present:
10272 DW_UNSND (attr) = 1;
10273 break;
10274 case DW_FORM_sdata:
10275 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10276 info_ptr += bytes_read;
10277 break;
10278 case DW_FORM_udata:
10279 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10280 info_ptr += bytes_read;
10281 break;
10282 case DW_FORM_ref1:
10283 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10284 info_ptr += 1;
10285 break;
10286 case DW_FORM_ref2:
10287 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10288 info_ptr += 2;
10289 break;
10290 case DW_FORM_ref4:
10291 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10292 info_ptr += 4;
10293 break;
10294 case DW_FORM_ref8:
10295 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10296 info_ptr += 8;
10297 break;
10298 case DW_FORM_ref_sig8:
10299 /* Convert the signature to something we can record in DW_UNSND
10300 for later lookup.
10301 NOTE: This is NULL if the type wasn't found. */
10302 DW_SIGNATURED_TYPE (attr) =
10303 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10304 info_ptr += 8;
10305 break;
10306 case DW_FORM_ref_udata:
10307 DW_ADDR (attr) = (cu->header.offset
10308 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10309 info_ptr += bytes_read;
10310 break;
10311 case DW_FORM_indirect:
10312 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10313 info_ptr += bytes_read;
10314 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10315 break;
10316 default:
10317 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10318 dwarf_form_name (form),
10319 bfd_get_filename (abfd));
10320 }
10321
10322 /* We have seen instances where the compiler tried to emit a byte
10323 size attribute of -1 which ended up being encoded as an unsigned
10324 0xffffffff. Although 0xffffffff is technically a valid size value,
10325 an object of this size seems pretty unlikely so we can relatively
10326 safely treat these cases as if the size attribute was invalid and
10327 treat them as zero by default. */
10328 if (attr->name == DW_AT_byte_size
10329 && form == DW_FORM_data4
10330 && DW_UNSND (attr) >= 0xffffffff)
10331 {
10332 complaint
10333 (&symfile_complaints,
10334 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10335 hex_string (DW_UNSND (attr)));
10336 DW_UNSND (attr) = 0;
10337 }
10338
10339 return info_ptr;
10340 }
10341
10342 /* Read an attribute described by an abbreviated attribute. */
10343
10344 static gdb_byte *
10345 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10346 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10347 {
10348 attr->name = abbrev->name;
10349 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10350 }
10351
10352 /* Read dwarf information from a buffer. */
10353
10354 static unsigned int
10355 read_1_byte (bfd *abfd, gdb_byte *buf)
10356 {
10357 return bfd_get_8 (abfd, buf);
10358 }
10359
10360 static int
10361 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10362 {
10363 return bfd_get_signed_8 (abfd, buf);
10364 }
10365
10366 static unsigned int
10367 read_2_bytes (bfd *abfd, gdb_byte *buf)
10368 {
10369 return bfd_get_16 (abfd, buf);
10370 }
10371
10372 static int
10373 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10374 {
10375 return bfd_get_signed_16 (abfd, buf);
10376 }
10377
10378 static unsigned int
10379 read_4_bytes (bfd *abfd, gdb_byte *buf)
10380 {
10381 return bfd_get_32 (abfd, buf);
10382 }
10383
10384 static int
10385 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10386 {
10387 return bfd_get_signed_32 (abfd, buf);
10388 }
10389
10390 static ULONGEST
10391 read_8_bytes (bfd *abfd, gdb_byte *buf)
10392 {
10393 return bfd_get_64 (abfd, buf);
10394 }
10395
10396 static CORE_ADDR
10397 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10398 unsigned int *bytes_read)
10399 {
10400 struct comp_unit_head *cu_header = &cu->header;
10401 CORE_ADDR retval = 0;
10402
10403 if (cu_header->signed_addr_p)
10404 {
10405 switch (cu_header->addr_size)
10406 {
10407 case 2:
10408 retval = bfd_get_signed_16 (abfd, buf);
10409 break;
10410 case 4:
10411 retval = bfd_get_signed_32 (abfd, buf);
10412 break;
10413 case 8:
10414 retval = bfd_get_signed_64 (abfd, buf);
10415 break;
10416 default:
10417 internal_error (__FILE__, __LINE__,
10418 _("read_address: bad switch, signed [in module %s]"),
10419 bfd_get_filename (abfd));
10420 }
10421 }
10422 else
10423 {
10424 switch (cu_header->addr_size)
10425 {
10426 case 2:
10427 retval = bfd_get_16 (abfd, buf);
10428 break;
10429 case 4:
10430 retval = bfd_get_32 (abfd, buf);
10431 break;
10432 case 8:
10433 retval = bfd_get_64 (abfd, buf);
10434 break;
10435 default:
10436 internal_error (__FILE__, __LINE__,
10437 _("read_address: bad switch, "
10438 "unsigned [in module %s]"),
10439 bfd_get_filename (abfd));
10440 }
10441 }
10442
10443 *bytes_read = cu_header->addr_size;
10444 return retval;
10445 }
10446
10447 /* Read the initial length from a section. The (draft) DWARF 3
10448 specification allows the initial length to take up either 4 bytes
10449 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10450 bytes describe the length and all offsets will be 8 bytes in length
10451 instead of 4.
10452
10453 An older, non-standard 64-bit format is also handled by this
10454 function. The older format in question stores the initial length
10455 as an 8-byte quantity without an escape value. Lengths greater
10456 than 2^32 aren't very common which means that the initial 4 bytes
10457 is almost always zero. Since a length value of zero doesn't make
10458 sense for the 32-bit format, this initial zero can be considered to
10459 be an escape value which indicates the presence of the older 64-bit
10460 format. As written, the code can't detect (old format) lengths
10461 greater than 4GB. If it becomes necessary to handle lengths
10462 somewhat larger than 4GB, we could allow other small values (such
10463 as the non-sensical values of 1, 2, and 3) to also be used as
10464 escape values indicating the presence of the old format.
10465
10466 The value returned via bytes_read should be used to increment the
10467 relevant pointer after calling read_initial_length().
10468
10469 [ Note: read_initial_length() and read_offset() are based on the
10470 document entitled "DWARF Debugging Information Format", revision
10471 3, draft 8, dated November 19, 2001. This document was obtained
10472 from:
10473
10474 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10475
10476 This document is only a draft and is subject to change. (So beware.)
10477
10478 Details regarding the older, non-standard 64-bit format were
10479 determined empirically by examining 64-bit ELF files produced by
10480 the SGI toolchain on an IRIX 6.5 machine.
10481
10482 - Kevin, July 16, 2002
10483 ] */
10484
10485 static LONGEST
10486 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10487 {
10488 LONGEST length = bfd_get_32 (abfd, buf);
10489
10490 if (length == 0xffffffff)
10491 {
10492 length = bfd_get_64 (abfd, buf + 4);
10493 *bytes_read = 12;
10494 }
10495 else if (length == 0)
10496 {
10497 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10498 length = bfd_get_64 (abfd, buf);
10499 *bytes_read = 8;
10500 }
10501 else
10502 {
10503 *bytes_read = 4;
10504 }
10505
10506 return length;
10507 }
10508
10509 /* Cover function for read_initial_length.
10510 Returns the length of the object at BUF, and stores the size of the
10511 initial length in *BYTES_READ and stores the size that offsets will be in
10512 *OFFSET_SIZE.
10513 If the initial length size is not equivalent to that specified in
10514 CU_HEADER then issue a complaint.
10515 This is useful when reading non-comp-unit headers. */
10516
10517 static LONGEST
10518 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10519 const struct comp_unit_head *cu_header,
10520 unsigned int *bytes_read,
10521 unsigned int *offset_size)
10522 {
10523 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10524
10525 gdb_assert (cu_header->initial_length_size == 4
10526 || cu_header->initial_length_size == 8
10527 || cu_header->initial_length_size == 12);
10528
10529 if (cu_header->initial_length_size != *bytes_read)
10530 complaint (&symfile_complaints,
10531 _("intermixed 32-bit and 64-bit DWARF sections"));
10532
10533 *offset_size = (*bytes_read == 4) ? 4 : 8;
10534 return length;
10535 }
10536
10537 /* Read an offset from the data stream. The size of the offset is
10538 given by cu_header->offset_size. */
10539
10540 static LONGEST
10541 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10542 unsigned int *bytes_read)
10543 {
10544 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10545
10546 *bytes_read = cu_header->offset_size;
10547 return offset;
10548 }
10549
10550 /* Read an offset from the data stream. */
10551
10552 static LONGEST
10553 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10554 {
10555 LONGEST retval = 0;
10556
10557 switch (offset_size)
10558 {
10559 case 4:
10560 retval = bfd_get_32 (abfd, buf);
10561 break;
10562 case 8:
10563 retval = bfd_get_64 (abfd, buf);
10564 break;
10565 default:
10566 internal_error (__FILE__, __LINE__,
10567 _("read_offset_1: bad switch [in module %s]"),
10568 bfd_get_filename (abfd));
10569 }
10570
10571 return retval;
10572 }
10573
10574 static gdb_byte *
10575 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10576 {
10577 /* If the size of a host char is 8 bits, we can return a pointer
10578 to the buffer, otherwise we have to copy the data to a buffer
10579 allocated on the temporary obstack. */
10580 gdb_assert (HOST_CHAR_BIT == 8);
10581 return buf;
10582 }
10583
10584 static char *
10585 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10586 {
10587 /* If the size of a host char is 8 bits, we can return a pointer
10588 to the string, otherwise we have to copy the string to a buffer
10589 allocated on the temporary obstack. */
10590 gdb_assert (HOST_CHAR_BIT == 8);
10591 if (*buf == '\0')
10592 {
10593 *bytes_read_ptr = 1;
10594 return NULL;
10595 }
10596 *bytes_read_ptr = strlen ((char *) buf) + 1;
10597 return (char *) buf;
10598 }
10599
10600 static char *
10601 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10602 {
10603 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10604 if (dwarf2_per_objfile->str.buffer == NULL)
10605 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10606 bfd_get_filename (abfd));
10607 if (str_offset >= dwarf2_per_objfile->str.size)
10608 error (_("DW_FORM_strp pointing outside of "
10609 ".debug_str section [in module %s]"),
10610 bfd_get_filename (abfd));
10611 gdb_assert (HOST_CHAR_BIT == 8);
10612 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10613 return NULL;
10614 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10615 }
10616
10617 static char *
10618 read_indirect_string (bfd *abfd, gdb_byte *buf,
10619 const struct comp_unit_head *cu_header,
10620 unsigned int *bytes_read_ptr)
10621 {
10622 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10623
10624 return read_indirect_string_at_offset (abfd, str_offset);
10625 }
10626
10627 static unsigned long
10628 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10629 {
10630 unsigned long result;
10631 unsigned int num_read;
10632 int i, shift;
10633 unsigned char byte;
10634
10635 result = 0;
10636 shift = 0;
10637 num_read = 0;
10638 i = 0;
10639 while (1)
10640 {
10641 byte = bfd_get_8 (abfd, buf);
10642 buf++;
10643 num_read++;
10644 result |= ((unsigned long)(byte & 127) << shift);
10645 if ((byte & 128) == 0)
10646 {
10647 break;
10648 }
10649 shift += 7;
10650 }
10651 *bytes_read_ptr = num_read;
10652 return result;
10653 }
10654
10655 static long
10656 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10657 {
10658 long result;
10659 int i, shift, num_read;
10660 unsigned char byte;
10661
10662 result = 0;
10663 shift = 0;
10664 num_read = 0;
10665 i = 0;
10666 while (1)
10667 {
10668 byte = bfd_get_8 (abfd, buf);
10669 buf++;
10670 num_read++;
10671 result |= ((long)(byte & 127) << shift);
10672 shift += 7;
10673 if ((byte & 128) == 0)
10674 {
10675 break;
10676 }
10677 }
10678 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10679 result |= -(((long)1) << shift);
10680 *bytes_read_ptr = num_read;
10681 return result;
10682 }
10683
10684 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10685
10686 static gdb_byte *
10687 skip_leb128 (bfd *abfd, gdb_byte *buf)
10688 {
10689 int byte;
10690
10691 while (1)
10692 {
10693 byte = bfd_get_8 (abfd, buf);
10694 buf++;
10695 if ((byte & 128) == 0)
10696 return buf;
10697 }
10698 }
10699
10700 static void
10701 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10702 {
10703 switch (lang)
10704 {
10705 case DW_LANG_C89:
10706 case DW_LANG_C99:
10707 case DW_LANG_C:
10708 cu->language = language_c;
10709 break;
10710 case DW_LANG_C_plus_plus:
10711 cu->language = language_cplus;
10712 break;
10713 case DW_LANG_D:
10714 cu->language = language_d;
10715 break;
10716 case DW_LANG_Fortran77:
10717 case DW_LANG_Fortran90:
10718 case DW_LANG_Fortran95:
10719 cu->language = language_fortran;
10720 break;
10721 case DW_LANG_Mips_Assembler:
10722 cu->language = language_asm;
10723 break;
10724 case DW_LANG_Java:
10725 cu->language = language_java;
10726 break;
10727 case DW_LANG_Ada83:
10728 case DW_LANG_Ada95:
10729 cu->language = language_ada;
10730 break;
10731 case DW_LANG_Modula2:
10732 cu->language = language_m2;
10733 break;
10734 case DW_LANG_Pascal83:
10735 cu->language = language_pascal;
10736 break;
10737 case DW_LANG_ObjC:
10738 cu->language = language_objc;
10739 break;
10740 case DW_LANG_Cobol74:
10741 case DW_LANG_Cobol85:
10742 default:
10743 cu->language = language_minimal;
10744 break;
10745 }
10746 cu->language_defn = language_def (cu->language);
10747 }
10748
10749 /* Return the named attribute or NULL if not there. */
10750
10751 static struct attribute *
10752 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10753 {
10754 unsigned int i;
10755 struct attribute *spec = NULL;
10756
10757 for (i = 0; i < die->num_attrs; ++i)
10758 {
10759 if (die->attrs[i].name == name)
10760 return &die->attrs[i];
10761 if (die->attrs[i].name == DW_AT_specification
10762 || die->attrs[i].name == DW_AT_abstract_origin)
10763 spec = &die->attrs[i];
10764 }
10765
10766 if (spec)
10767 {
10768 die = follow_die_ref (die, spec, &cu);
10769 return dwarf2_attr (die, name, cu);
10770 }
10771
10772 return NULL;
10773 }
10774
10775 /* Return the named attribute or NULL if not there,
10776 but do not follow DW_AT_specification, etc.
10777 This is for use in contexts where we're reading .debug_types dies.
10778 Following DW_AT_specification, DW_AT_abstract_origin will take us
10779 back up the chain, and we want to go down. */
10780
10781 static struct attribute *
10782 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10783 struct dwarf2_cu *cu)
10784 {
10785 unsigned int i;
10786
10787 for (i = 0; i < die->num_attrs; ++i)
10788 if (die->attrs[i].name == name)
10789 return &die->attrs[i];
10790
10791 return NULL;
10792 }
10793
10794 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10795 and holds a non-zero value. This function should only be used for
10796 DW_FORM_flag or DW_FORM_flag_present attributes. */
10797
10798 static int
10799 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10800 {
10801 struct attribute *attr = dwarf2_attr (die, name, cu);
10802
10803 return (attr && DW_UNSND (attr));
10804 }
10805
10806 static int
10807 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10808 {
10809 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10810 which value is non-zero. However, we have to be careful with
10811 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10812 (via dwarf2_flag_true_p) follows this attribute. So we may
10813 end up accidently finding a declaration attribute that belongs
10814 to a different DIE referenced by the specification attribute,
10815 even though the given DIE does not have a declaration attribute. */
10816 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10817 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10818 }
10819
10820 /* Return the die giving the specification for DIE, if there is
10821 one. *SPEC_CU is the CU containing DIE on input, and the CU
10822 containing the return value on output. If there is no
10823 specification, but there is an abstract origin, that is
10824 returned. */
10825
10826 static struct die_info *
10827 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10828 {
10829 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10830 *spec_cu);
10831
10832 if (spec_attr == NULL)
10833 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10834
10835 if (spec_attr == NULL)
10836 return NULL;
10837 else
10838 return follow_die_ref (die, spec_attr, spec_cu);
10839 }
10840
10841 /* Free the line_header structure *LH, and any arrays and strings it
10842 refers to.
10843 NOTE: This is also used as a "cleanup" function. */
10844
10845 static void
10846 free_line_header (struct line_header *lh)
10847 {
10848 if (lh->standard_opcode_lengths)
10849 xfree (lh->standard_opcode_lengths);
10850
10851 /* Remember that all the lh->file_names[i].name pointers are
10852 pointers into debug_line_buffer, and don't need to be freed. */
10853 if (lh->file_names)
10854 xfree (lh->file_names);
10855
10856 /* Similarly for the include directory names. */
10857 if (lh->include_dirs)
10858 xfree (lh->include_dirs);
10859
10860 xfree (lh);
10861 }
10862
10863 /* Add an entry to LH's include directory table. */
10864
10865 static void
10866 add_include_dir (struct line_header *lh, char *include_dir)
10867 {
10868 /* Grow the array if necessary. */
10869 if (lh->include_dirs_size == 0)
10870 {
10871 lh->include_dirs_size = 1; /* for testing */
10872 lh->include_dirs = xmalloc (lh->include_dirs_size
10873 * sizeof (*lh->include_dirs));
10874 }
10875 else if (lh->num_include_dirs >= lh->include_dirs_size)
10876 {
10877 lh->include_dirs_size *= 2;
10878 lh->include_dirs = xrealloc (lh->include_dirs,
10879 (lh->include_dirs_size
10880 * sizeof (*lh->include_dirs)));
10881 }
10882
10883 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10884 }
10885
10886 /* Add an entry to LH's file name table. */
10887
10888 static void
10889 add_file_name (struct line_header *lh,
10890 char *name,
10891 unsigned int dir_index,
10892 unsigned int mod_time,
10893 unsigned int length)
10894 {
10895 struct file_entry *fe;
10896
10897 /* Grow the array if necessary. */
10898 if (lh->file_names_size == 0)
10899 {
10900 lh->file_names_size = 1; /* for testing */
10901 lh->file_names = xmalloc (lh->file_names_size
10902 * sizeof (*lh->file_names));
10903 }
10904 else if (lh->num_file_names >= lh->file_names_size)
10905 {
10906 lh->file_names_size *= 2;
10907 lh->file_names = xrealloc (lh->file_names,
10908 (lh->file_names_size
10909 * sizeof (*lh->file_names)));
10910 }
10911
10912 fe = &lh->file_names[lh->num_file_names++];
10913 fe->name = name;
10914 fe->dir_index = dir_index;
10915 fe->mod_time = mod_time;
10916 fe->length = length;
10917 fe->included_p = 0;
10918 fe->symtab = NULL;
10919 }
10920
10921 /* Read the statement program header starting at OFFSET in
10922 .debug_line, according to the endianness of ABFD. Return a pointer
10923 to a struct line_header, allocated using xmalloc.
10924
10925 NOTE: the strings in the include directory and file name tables of
10926 the returned object point into debug_line_buffer, and must not be
10927 freed. */
10928
10929 static struct line_header *
10930 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10931 struct dwarf2_cu *cu)
10932 {
10933 struct cleanup *back_to;
10934 struct line_header *lh;
10935 gdb_byte *line_ptr;
10936 unsigned int bytes_read, offset_size;
10937 int i;
10938 char *cur_dir, *cur_file;
10939
10940 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10941 if (dwarf2_per_objfile->line.buffer == NULL)
10942 {
10943 complaint (&symfile_complaints, _("missing .debug_line section"));
10944 return 0;
10945 }
10946
10947 /* Make sure that at least there's room for the total_length field.
10948 That could be 12 bytes long, but we're just going to fudge that. */
10949 if (offset + 4 >= dwarf2_per_objfile->line.size)
10950 {
10951 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10952 return 0;
10953 }
10954
10955 lh = xmalloc (sizeof (*lh));
10956 memset (lh, 0, sizeof (*lh));
10957 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10958 (void *) lh);
10959
10960 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10961
10962 /* Read in the header. */
10963 lh->total_length =
10964 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10965 &bytes_read, &offset_size);
10966 line_ptr += bytes_read;
10967 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10968 + dwarf2_per_objfile->line.size))
10969 {
10970 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10971 return 0;
10972 }
10973 lh->statement_program_end = line_ptr + lh->total_length;
10974 lh->version = read_2_bytes (abfd, line_ptr);
10975 line_ptr += 2;
10976 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10977 line_ptr += offset_size;
10978 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10979 line_ptr += 1;
10980 if (lh->version >= 4)
10981 {
10982 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10983 line_ptr += 1;
10984 }
10985 else
10986 lh->maximum_ops_per_instruction = 1;
10987
10988 if (lh->maximum_ops_per_instruction == 0)
10989 {
10990 lh->maximum_ops_per_instruction = 1;
10991 complaint (&symfile_complaints,
10992 _("invalid maximum_ops_per_instruction "
10993 "in `.debug_line' section"));
10994 }
10995
10996 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10997 line_ptr += 1;
10998 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10999 line_ptr += 1;
11000 lh->line_range = read_1_byte (abfd, line_ptr);
11001 line_ptr += 1;
11002 lh->opcode_base = read_1_byte (abfd, line_ptr);
11003 line_ptr += 1;
11004 lh->standard_opcode_lengths
11005 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
11006
11007 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
11008 for (i = 1; i < lh->opcode_base; ++i)
11009 {
11010 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
11011 line_ptr += 1;
11012 }
11013
11014 /* Read directory table. */
11015 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11016 {
11017 line_ptr += bytes_read;
11018 add_include_dir (lh, cur_dir);
11019 }
11020 line_ptr += bytes_read;
11021
11022 /* Read file name table. */
11023 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
11024 {
11025 unsigned int dir_index, mod_time, length;
11026
11027 line_ptr += bytes_read;
11028 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11029 line_ptr += bytes_read;
11030 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11031 line_ptr += bytes_read;
11032 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11033 line_ptr += bytes_read;
11034
11035 add_file_name (lh, cur_file, dir_index, mod_time, length);
11036 }
11037 line_ptr += bytes_read;
11038 lh->statement_program_start = line_ptr;
11039
11040 if (line_ptr > (dwarf2_per_objfile->line.buffer
11041 + dwarf2_per_objfile->line.size))
11042 complaint (&symfile_complaints,
11043 _("line number info header doesn't "
11044 "fit in `.debug_line' section"));
11045
11046 discard_cleanups (back_to);
11047 return lh;
11048 }
11049
11050 /* This function exists to work around a bug in certain compilers
11051 (particularly GCC 2.95), in which the first line number marker of a
11052 function does not show up until after the prologue, right before
11053 the second line number marker. This function shifts ADDRESS down
11054 to the beginning of the function if necessary, and is called on
11055 addresses passed to record_line. */
11056
11057 static CORE_ADDR
11058 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
11059 {
11060 struct function_range *fn;
11061
11062 /* Find the function_range containing address. */
11063 if (!cu->first_fn)
11064 return address;
11065
11066 if (!cu->cached_fn)
11067 cu->cached_fn = cu->first_fn;
11068
11069 fn = cu->cached_fn;
11070 while (fn)
11071 if (fn->lowpc <= address && fn->highpc > address)
11072 goto found;
11073 else
11074 fn = fn->next;
11075
11076 fn = cu->first_fn;
11077 while (fn && fn != cu->cached_fn)
11078 if (fn->lowpc <= address && fn->highpc > address)
11079 goto found;
11080 else
11081 fn = fn->next;
11082
11083 return address;
11084
11085 found:
11086 if (fn->seen_line)
11087 return address;
11088 if (address != fn->lowpc)
11089 complaint (&symfile_complaints,
11090 _("misplaced first line number at 0x%lx for '%s'"),
11091 (unsigned long) address, fn->name);
11092 fn->seen_line = 1;
11093 return fn->lowpc;
11094 }
11095
11096 /* Subroutine of dwarf_decode_lines to simplify it.
11097 Return the file name of the psymtab for included file FILE_INDEX
11098 in line header LH of PST.
11099 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11100 If space for the result is malloc'd, it will be freed by a cleanup.
11101 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11102
11103 static char *
11104 psymtab_include_file_name (const struct line_header *lh, int file_index,
11105 const struct partial_symtab *pst,
11106 const char *comp_dir)
11107 {
11108 const struct file_entry fe = lh->file_names [file_index];
11109 char *include_name = fe.name;
11110 char *include_name_to_compare = include_name;
11111 char *dir_name = NULL;
11112 const char *pst_filename;
11113 char *copied_name = NULL;
11114 int file_is_pst;
11115
11116 if (fe.dir_index)
11117 dir_name = lh->include_dirs[fe.dir_index - 1];
11118
11119 if (!IS_ABSOLUTE_PATH (include_name)
11120 && (dir_name != NULL || comp_dir != NULL))
11121 {
11122 /* Avoid creating a duplicate psymtab for PST.
11123 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11124 Before we do the comparison, however, we need to account
11125 for DIR_NAME and COMP_DIR.
11126 First prepend dir_name (if non-NULL). If we still don't
11127 have an absolute path prepend comp_dir (if non-NULL).
11128 However, the directory we record in the include-file's
11129 psymtab does not contain COMP_DIR (to match the
11130 corresponding symtab(s)).
11131
11132 Example:
11133
11134 bash$ cd /tmp
11135 bash$ gcc -g ./hello.c
11136 include_name = "hello.c"
11137 dir_name = "."
11138 DW_AT_comp_dir = comp_dir = "/tmp"
11139 DW_AT_name = "./hello.c" */
11140
11141 if (dir_name != NULL)
11142 {
11143 include_name = concat (dir_name, SLASH_STRING,
11144 include_name, (char *)NULL);
11145 include_name_to_compare = include_name;
11146 make_cleanup (xfree, include_name);
11147 }
11148 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11149 {
11150 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11151 include_name, (char *)NULL);
11152 }
11153 }
11154
11155 pst_filename = pst->filename;
11156 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11157 {
11158 copied_name = concat (pst->dirname, SLASH_STRING,
11159 pst_filename, (char *)NULL);
11160 pst_filename = copied_name;
11161 }
11162
11163 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11164
11165 if (include_name_to_compare != include_name)
11166 xfree (include_name_to_compare);
11167 if (copied_name != NULL)
11168 xfree (copied_name);
11169
11170 if (file_is_pst)
11171 return NULL;
11172 return include_name;
11173 }
11174
11175 /* Ignore this record_line request. */
11176
11177 static void
11178 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11179 {
11180 return;
11181 }
11182
11183 /* Decode the Line Number Program (LNP) for the given line_header
11184 structure and CU. The actual information extracted and the type
11185 of structures created from the LNP depends on the value of PST.
11186
11187 1. If PST is NULL, then this procedure uses the data from the program
11188 to create all necessary symbol tables, and their linetables.
11189
11190 2. If PST is not NULL, this procedure reads the program to determine
11191 the list of files included by the unit represented by PST, and
11192 builds all the associated partial symbol tables.
11193
11194 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11195 It is used for relative paths in the line table.
11196 NOTE: When processing partial symtabs (pst != NULL),
11197 comp_dir == pst->dirname.
11198
11199 NOTE: It is important that psymtabs have the same file name (via strcmp)
11200 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11201 symtab we don't use it in the name of the psymtabs we create.
11202 E.g. expand_line_sal requires this when finding psymtabs to expand.
11203 A good testcase for this is mb-inline.exp. */
11204
11205 static void
11206 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
11207 struct dwarf2_cu *cu, struct partial_symtab *pst)
11208 {
11209 gdb_byte *line_ptr, *extended_end;
11210 gdb_byte *line_end;
11211 unsigned int bytes_read, extended_len;
11212 unsigned char op_code, extended_op, adj_opcode;
11213 CORE_ADDR baseaddr;
11214 struct objfile *objfile = cu->objfile;
11215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11216 const int decode_for_pst_p = (pst != NULL);
11217 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
11218 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11219 = record_line;
11220
11221 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11222
11223 line_ptr = lh->statement_program_start;
11224 line_end = lh->statement_program_end;
11225
11226 /* Read the statement sequences until there's nothing left. */
11227 while (line_ptr < line_end)
11228 {
11229 /* state machine registers */
11230 CORE_ADDR address = 0;
11231 unsigned int file = 1;
11232 unsigned int line = 1;
11233 unsigned int column = 0;
11234 int is_stmt = lh->default_is_stmt;
11235 int basic_block = 0;
11236 int end_sequence = 0;
11237 CORE_ADDR addr;
11238 unsigned char op_index = 0;
11239
11240 if (!decode_for_pst_p && lh->num_file_names >= file)
11241 {
11242 /* Start a subfile for the current file of the state machine. */
11243 /* lh->include_dirs and lh->file_names are 0-based, but the
11244 directory and file name numbers in the statement program
11245 are 1-based. */
11246 struct file_entry *fe = &lh->file_names[file - 1];
11247 char *dir = NULL;
11248
11249 if (fe->dir_index)
11250 dir = lh->include_dirs[fe->dir_index - 1];
11251
11252 dwarf2_start_subfile (fe->name, dir, comp_dir);
11253 }
11254
11255 /* Decode the table. */
11256 while (!end_sequence)
11257 {
11258 op_code = read_1_byte (abfd, line_ptr);
11259 line_ptr += 1;
11260 if (line_ptr > line_end)
11261 {
11262 dwarf2_debug_line_missing_end_sequence_complaint ();
11263 break;
11264 }
11265
11266 if (op_code >= lh->opcode_base)
11267 {
11268 /* Special operand. */
11269 adj_opcode = op_code - lh->opcode_base;
11270 address += (((op_index + (adj_opcode / lh->line_range))
11271 / lh->maximum_ops_per_instruction)
11272 * lh->minimum_instruction_length);
11273 op_index = ((op_index + (adj_opcode / lh->line_range))
11274 % lh->maximum_ops_per_instruction);
11275 line += lh->line_base + (adj_opcode % lh->line_range);
11276 if (lh->num_file_names < file || file == 0)
11277 dwarf2_debug_line_missing_file_complaint ();
11278 /* For now we ignore lines not starting on an
11279 instruction boundary. */
11280 else if (op_index == 0)
11281 {
11282 lh->file_names[file - 1].included_p = 1;
11283 if (!decode_for_pst_p && is_stmt)
11284 {
11285 if (last_subfile != current_subfile)
11286 {
11287 addr = gdbarch_addr_bits_remove (gdbarch, address);
11288 if (last_subfile)
11289 (*p_record_line) (last_subfile, 0, addr);
11290 last_subfile = current_subfile;
11291 }
11292 /* Append row to matrix using current values. */
11293 addr = check_cu_functions (address, cu);
11294 addr = gdbarch_addr_bits_remove (gdbarch, addr);
11295 (*p_record_line) (current_subfile, line, addr);
11296 }
11297 }
11298 basic_block = 0;
11299 }
11300 else switch (op_code)
11301 {
11302 case DW_LNS_extended_op:
11303 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11304 &bytes_read);
11305 line_ptr += bytes_read;
11306 extended_end = line_ptr + extended_len;
11307 extended_op = read_1_byte (abfd, line_ptr);
11308 line_ptr += 1;
11309 switch (extended_op)
11310 {
11311 case DW_LNE_end_sequence:
11312 p_record_line = record_line;
11313 end_sequence = 1;
11314 break;
11315 case DW_LNE_set_address:
11316 address = read_address (abfd, line_ptr, cu, &bytes_read);
11317
11318 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11319 {
11320 /* This line table is for a function which has been
11321 GCd by the linker. Ignore it. PR gdb/12528 */
11322
11323 long line_offset
11324 = line_ptr - dwarf2_per_objfile->line.buffer;
11325
11326 complaint (&symfile_complaints,
11327 _(".debug_line address at offset 0x%lx is 0 "
11328 "[in module %s]"),
11329 line_offset, cu->objfile->name);
11330 p_record_line = noop_record_line;
11331 }
11332
11333 op_index = 0;
11334 line_ptr += bytes_read;
11335 address += baseaddr;
11336 break;
11337 case DW_LNE_define_file:
11338 {
11339 char *cur_file;
11340 unsigned int dir_index, mod_time, length;
11341
11342 cur_file = read_direct_string (abfd, line_ptr,
11343 &bytes_read);
11344 line_ptr += bytes_read;
11345 dir_index =
11346 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11347 line_ptr += bytes_read;
11348 mod_time =
11349 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11350 line_ptr += bytes_read;
11351 length =
11352 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11353 line_ptr += bytes_read;
11354 add_file_name (lh, cur_file, dir_index, mod_time, length);
11355 }
11356 break;
11357 case DW_LNE_set_discriminator:
11358 /* The discriminator is not interesting to the debugger;
11359 just ignore it. */
11360 line_ptr = extended_end;
11361 break;
11362 default:
11363 complaint (&symfile_complaints,
11364 _("mangled .debug_line section"));
11365 return;
11366 }
11367 /* Make sure that we parsed the extended op correctly. If e.g.
11368 we expected a different address size than the producer used,
11369 we may have read the wrong number of bytes. */
11370 if (line_ptr != extended_end)
11371 {
11372 complaint (&symfile_complaints,
11373 _("mangled .debug_line section"));
11374 return;
11375 }
11376 break;
11377 case DW_LNS_copy:
11378 if (lh->num_file_names < file || file == 0)
11379 dwarf2_debug_line_missing_file_complaint ();
11380 else
11381 {
11382 lh->file_names[file - 1].included_p = 1;
11383 if (!decode_for_pst_p && is_stmt)
11384 {
11385 if (last_subfile != current_subfile)
11386 {
11387 addr = gdbarch_addr_bits_remove (gdbarch, address);
11388 if (last_subfile)
11389 (*p_record_line) (last_subfile, 0, addr);
11390 last_subfile = current_subfile;
11391 }
11392 addr = check_cu_functions (address, cu);
11393 addr = gdbarch_addr_bits_remove (gdbarch, addr);
11394 (*p_record_line) (current_subfile, line, addr);
11395 }
11396 }
11397 basic_block = 0;
11398 break;
11399 case DW_LNS_advance_pc:
11400 {
11401 CORE_ADDR adjust
11402 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11403
11404 address += (((op_index + adjust)
11405 / lh->maximum_ops_per_instruction)
11406 * lh->minimum_instruction_length);
11407 op_index = ((op_index + adjust)
11408 % lh->maximum_ops_per_instruction);
11409 line_ptr += bytes_read;
11410 }
11411 break;
11412 case DW_LNS_advance_line:
11413 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11414 line_ptr += bytes_read;
11415 break;
11416 case DW_LNS_set_file:
11417 {
11418 /* The arrays lh->include_dirs and lh->file_names are
11419 0-based, but the directory and file name numbers in
11420 the statement program are 1-based. */
11421 struct file_entry *fe;
11422 char *dir = NULL;
11423
11424 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11425 line_ptr += bytes_read;
11426 if (lh->num_file_names < file || file == 0)
11427 dwarf2_debug_line_missing_file_complaint ();
11428 else
11429 {
11430 fe = &lh->file_names[file - 1];
11431 if (fe->dir_index)
11432 dir = lh->include_dirs[fe->dir_index - 1];
11433 if (!decode_for_pst_p)
11434 {
11435 last_subfile = current_subfile;
11436 dwarf2_start_subfile (fe->name, dir, comp_dir);
11437 }
11438 }
11439 }
11440 break;
11441 case DW_LNS_set_column:
11442 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11443 line_ptr += bytes_read;
11444 break;
11445 case DW_LNS_negate_stmt:
11446 is_stmt = (!is_stmt);
11447 break;
11448 case DW_LNS_set_basic_block:
11449 basic_block = 1;
11450 break;
11451 /* Add to the address register of the state machine the
11452 address increment value corresponding to special opcode
11453 255. I.e., this value is scaled by the minimum
11454 instruction length since special opcode 255 would have
11455 scaled the increment. */
11456 case DW_LNS_const_add_pc:
11457 {
11458 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11459
11460 address += (((op_index + adjust)
11461 / lh->maximum_ops_per_instruction)
11462 * lh->minimum_instruction_length);
11463 op_index = ((op_index + adjust)
11464 % lh->maximum_ops_per_instruction);
11465 }
11466 break;
11467 case DW_LNS_fixed_advance_pc:
11468 address += read_2_bytes (abfd, line_ptr);
11469 op_index = 0;
11470 line_ptr += 2;
11471 break;
11472 default:
11473 {
11474 /* Unknown standard opcode, ignore it. */
11475 int i;
11476
11477 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11478 {
11479 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11480 line_ptr += bytes_read;
11481 }
11482 }
11483 }
11484 }
11485 if (lh->num_file_names < file || file == 0)
11486 dwarf2_debug_line_missing_file_complaint ();
11487 else
11488 {
11489 lh->file_names[file - 1].included_p = 1;
11490 if (!decode_for_pst_p)
11491 {
11492 addr = gdbarch_addr_bits_remove (gdbarch, address);
11493 (*p_record_line) (current_subfile, 0, addr);
11494 }
11495 }
11496 }
11497
11498 if (decode_for_pst_p)
11499 {
11500 int file_index;
11501
11502 /* Now that we're done scanning the Line Header Program, we can
11503 create the psymtab of each included file. */
11504 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11505 if (lh->file_names[file_index].included_p == 1)
11506 {
11507 char *include_name =
11508 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11509 if (include_name != NULL)
11510 dwarf2_create_include_psymtab (include_name, pst, objfile);
11511 }
11512 }
11513 else
11514 {
11515 /* Make sure a symtab is created for every file, even files
11516 which contain only variables (i.e. no code with associated
11517 line numbers). */
11518
11519 int i;
11520 struct file_entry *fe;
11521
11522 for (i = 0; i < lh->num_file_names; i++)
11523 {
11524 char *dir = NULL;
11525
11526 fe = &lh->file_names[i];
11527 if (fe->dir_index)
11528 dir = lh->include_dirs[fe->dir_index - 1];
11529 dwarf2_start_subfile (fe->name, dir, comp_dir);
11530
11531 /* Skip the main file; we don't need it, and it must be
11532 allocated last, so that it will show up before the
11533 non-primary symtabs in the objfile's symtab list. */
11534 if (current_subfile == first_subfile)
11535 continue;
11536
11537 if (current_subfile->symtab == NULL)
11538 current_subfile->symtab = allocate_symtab (current_subfile->name,
11539 cu->objfile);
11540 fe->symtab = current_subfile->symtab;
11541 }
11542 }
11543 }
11544
11545 /* Start a subfile for DWARF. FILENAME is the name of the file and
11546 DIRNAME the name of the source directory which contains FILENAME
11547 or NULL if not known. COMP_DIR is the compilation directory for the
11548 linetable's compilation unit or NULL if not known.
11549 This routine tries to keep line numbers from identical absolute and
11550 relative file names in a common subfile.
11551
11552 Using the `list' example from the GDB testsuite, which resides in
11553 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11554 of /srcdir/list0.c yields the following debugging information for list0.c:
11555
11556 DW_AT_name: /srcdir/list0.c
11557 DW_AT_comp_dir: /compdir
11558 files.files[0].name: list0.h
11559 files.files[0].dir: /srcdir
11560 files.files[1].name: list0.c
11561 files.files[1].dir: /srcdir
11562
11563 The line number information for list0.c has to end up in a single
11564 subfile, so that `break /srcdir/list0.c:1' works as expected.
11565 start_subfile will ensure that this happens provided that we pass the
11566 concatenation of files.files[1].dir and files.files[1].name as the
11567 subfile's name. */
11568
11569 static void
11570 dwarf2_start_subfile (char *filename, const char *dirname,
11571 const char *comp_dir)
11572 {
11573 char *fullname;
11574
11575 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11576 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11577 second argument to start_subfile. To be consistent, we do the
11578 same here. In order not to lose the line information directory,
11579 we concatenate it to the filename when it makes sense.
11580 Note that the Dwarf3 standard says (speaking of filenames in line
11581 information): ``The directory index is ignored for file names
11582 that represent full path names''. Thus ignoring dirname in the
11583 `else' branch below isn't an issue. */
11584
11585 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11586 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11587 else
11588 fullname = filename;
11589
11590 start_subfile (fullname, comp_dir);
11591
11592 if (fullname != filename)
11593 xfree (fullname);
11594 }
11595
11596 static void
11597 var_decode_location (struct attribute *attr, struct symbol *sym,
11598 struct dwarf2_cu *cu)
11599 {
11600 struct objfile *objfile = cu->objfile;
11601 struct comp_unit_head *cu_header = &cu->header;
11602
11603 /* NOTE drow/2003-01-30: There used to be a comment and some special
11604 code here to turn a symbol with DW_AT_external and a
11605 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11606 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11607 with some versions of binutils) where shared libraries could have
11608 relocations against symbols in their debug information - the
11609 minimal symbol would have the right address, but the debug info
11610 would not. It's no longer necessary, because we will explicitly
11611 apply relocations when we read in the debug information now. */
11612
11613 /* A DW_AT_location attribute with no contents indicates that a
11614 variable has been optimized away. */
11615 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11616 {
11617 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11618 return;
11619 }
11620
11621 /* Handle one degenerate form of location expression specially, to
11622 preserve GDB's previous behavior when section offsets are
11623 specified. If this is just a DW_OP_addr then mark this symbol
11624 as LOC_STATIC. */
11625
11626 if (attr_form_is_block (attr)
11627 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11628 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11629 {
11630 unsigned int dummy;
11631
11632 SYMBOL_VALUE_ADDRESS (sym) =
11633 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11634 SYMBOL_CLASS (sym) = LOC_STATIC;
11635 fixup_symbol_section (sym, objfile);
11636 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11637 SYMBOL_SECTION (sym));
11638 return;
11639 }
11640
11641 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11642 expression evaluator, and use LOC_COMPUTED only when necessary
11643 (i.e. when the value of a register or memory location is
11644 referenced, or a thread-local block, etc.). Then again, it might
11645 not be worthwhile. I'm assuming that it isn't unless performance
11646 or memory numbers show me otherwise. */
11647
11648 dwarf2_symbol_mark_computed (attr, sym, cu);
11649 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11650
11651 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11652 cu->has_loclist = 1;
11653 }
11654
11655 /* Given a pointer to a DWARF information entry, figure out if we need
11656 to make a symbol table entry for it, and if so, create a new entry
11657 and return a pointer to it.
11658 If TYPE is NULL, determine symbol type from the die, otherwise
11659 used the passed type.
11660 If SPACE is not NULL, use it to hold the new symbol. If it is
11661 NULL, allocate a new symbol on the objfile's obstack. */
11662
11663 static struct symbol *
11664 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11665 struct symbol *space)
11666 {
11667 struct objfile *objfile = cu->objfile;
11668 struct symbol *sym = NULL;
11669 char *name;
11670 struct attribute *attr = NULL;
11671 struct attribute *attr2 = NULL;
11672 CORE_ADDR baseaddr;
11673 struct pending **list_to_add = NULL;
11674
11675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11676
11677 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11678
11679 name = dwarf2_name (die, cu);
11680 if (name)
11681 {
11682 const char *linkagename;
11683 int suppress_add = 0;
11684
11685 if (space)
11686 sym = space;
11687 else
11688 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11689 OBJSTAT (objfile, n_syms++);
11690
11691 /* Cache this symbol's name and the name's demangled form (if any). */
11692 SYMBOL_SET_LANGUAGE (sym, cu->language);
11693 linkagename = dwarf2_physname (name, die, cu);
11694 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11695
11696 /* Fortran does not have mangling standard and the mangling does differ
11697 between gfortran, iFort etc. */
11698 if (cu->language == language_fortran
11699 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11700 symbol_set_demangled_name (&(sym->ginfo),
11701 (char *) dwarf2_full_name (name, die, cu),
11702 NULL);
11703
11704 /* Default assumptions.
11705 Use the passed type or decode it from the die. */
11706 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11707 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11708 if (type != NULL)
11709 SYMBOL_TYPE (sym) = type;
11710 else
11711 SYMBOL_TYPE (sym) = die_type (die, cu);
11712 attr = dwarf2_attr (die,
11713 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11714 cu);
11715 if (attr)
11716 {
11717 SYMBOL_LINE (sym) = DW_UNSND (attr);
11718 }
11719
11720 attr = dwarf2_attr (die,
11721 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11722 cu);
11723 if (attr)
11724 {
11725 int file_index = DW_UNSND (attr);
11726
11727 if (cu->line_header == NULL
11728 || file_index > cu->line_header->num_file_names)
11729 complaint (&symfile_complaints,
11730 _("file index out of range"));
11731 else if (file_index > 0)
11732 {
11733 struct file_entry *fe;
11734
11735 fe = &cu->line_header->file_names[file_index - 1];
11736 SYMBOL_SYMTAB (sym) = fe->symtab;
11737 }
11738 }
11739
11740 switch (die->tag)
11741 {
11742 case DW_TAG_label:
11743 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11744 if (attr)
11745 {
11746 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11747 }
11748 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11749 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11750 SYMBOL_CLASS (sym) = LOC_LABEL;
11751 add_symbol_to_list (sym, cu->list_in_scope);
11752 break;
11753 case DW_TAG_subprogram:
11754 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11755 finish_block. */
11756 SYMBOL_CLASS (sym) = LOC_BLOCK;
11757 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11758 if ((attr2 && (DW_UNSND (attr2) != 0))
11759 || cu->language == language_ada)
11760 {
11761 /* Subprograms marked external are stored as a global symbol.
11762 Ada subprograms, whether marked external or not, are always
11763 stored as a global symbol, because we want to be able to
11764 access them globally. For instance, we want to be able
11765 to break on a nested subprogram without having to
11766 specify the context. */
11767 list_to_add = &global_symbols;
11768 }
11769 else
11770 {
11771 list_to_add = cu->list_in_scope;
11772 }
11773 break;
11774 case DW_TAG_inlined_subroutine:
11775 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11776 finish_block. */
11777 SYMBOL_CLASS (sym) = LOC_BLOCK;
11778 SYMBOL_INLINED (sym) = 1;
11779 /* Do not add the symbol to any lists. It will be found via
11780 BLOCK_FUNCTION from the blockvector. */
11781 break;
11782 case DW_TAG_template_value_param:
11783 suppress_add = 1;
11784 /* Fall through. */
11785 case DW_TAG_constant:
11786 case DW_TAG_variable:
11787 case DW_TAG_member:
11788 /* Compilation with minimal debug info may result in
11789 variables with missing type entries. Change the
11790 misleading `void' type to something sensible. */
11791 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11792 SYMBOL_TYPE (sym)
11793 = objfile_type (objfile)->nodebug_data_symbol;
11794
11795 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11796 /* In the case of DW_TAG_member, we should only be called for
11797 static const members. */
11798 if (die->tag == DW_TAG_member)
11799 {
11800 /* dwarf2_add_field uses die_is_declaration,
11801 so we do the same. */
11802 gdb_assert (die_is_declaration (die, cu));
11803 gdb_assert (attr);
11804 }
11805 if (attr)
11806 {
11807 dwarf2_const_value (attr, sym, cu);
11808 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11809 if (!suppress_add)
11810 {
11811 if (attr2 && (DW_UNSND (attr2) != 0))
11812 list_to_add = &global_symbols;
11813 else
11814 list_to_add = cu->list_in_scope;
11815 }
11816 break;
11817 }
11818 attr = dwarf2_attr (die, DW_AT_location, cu);
11819 if (attr)
11820 {
11821 var_decode_location (attr, sym, cu);
11822 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11823 if (SYMBOL_CLASS (sym) == LOC_STATIC
11824 && SYMBOL_VALUE_ADDRESS (sym) == 0
11825 && !dwarf2_per_objfile->has_section_at_zero)
11826 {
11827 /* When a static variable is eliminated by the linker,
11828 the corresponding debug information is not stripped
11829 out, but the variable address is set to null;
11830 do not add such variables into symbol table. */
11831 }
11832 else if (attr2 && (DW_UNSND (attr2) != 0))
11833 {
11834 /* Workaround gfortran PR debug/40040 - it uses
11835 DW_AT_location for variables in -fPIC libraries which may
11836 get overriden by other libraries/executable and get
11837 a different address. Resolve it by the minimal symbol
11838 which may come from inferior's executable using copy
11839 relocation. Make this workaround only for gfortran as for
11840 other compilers GDB cannot guess the minimal symbol
11841 Fortran mangling kind. */
11842 if (cu->language == language_fortran && die->parent
11843 && die->parent->tag == DW_TAG_module
11844 && cu->producer
11845 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11846 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11847
11848 /* A variable with DW_AT_external is never static,
11849 but it may be block-scoped. */
11850 list_to_add = (cu->list_in_scope == &file_symbols
11851 ? &global_symbols : cu->list_in_scope);
11852 }
11853 else
11854 list_to_add = cu->list_in_scope;
11855 }
11856 else
11857 {
11858 /* We do not know the address of this symbol.
11859 If it is an external symbol and we have type information
11860 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11861 The address of the variable will then be determined from
11862 the minimal symbol table whenever the variable is
11863 referenced. */
11864 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11865 if (attr2 && (DW_UNSND (attr2) != 0)
11866 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11867 {
11868 /* A variable with DW_AT_external is never static, but it
11869 may be block-scoped. */
11870 list_to_add = (cu->list_in_scope == &file_symbols
11871 ? &global_symbols : cu->list_in_scope);
11872
11873 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11874 }
11875 else if (!die_is_declaration (die, cu))
11876 {
11877 /* Use the default LOC_OPTIMIZED_OUT class. */
11878 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11879 if (!suppress_add)
11880 list_to_add = cu->list_in_scope;
11881 }
11882 }
11883 break;
11884 case DW_TAG_formal_parameter:
11885 /* If we are inside a function, mark this as an argument. If
11886 not, we might be looking at an argument to an inlined function
11887 when we do not have enough information to show inlined frames;
11888 pretend it's a local variable in that case so that the user can
11889 still see it. */
11890 if (context_stack_depth > 0
11891 && context_stack[context_stack_depth - 1].name != NULL)
11892 SYMBOL_IS_ARGUMENT (sym) = 1;
11893 attr = dwarf2_attr (die, DW_AT_location, cu);
11894 if (attr)
11895 {
11896 var_decode_location (attr, sym, cu);
11897 }
11898 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11899 if (attr)
11900 {
11901 dwarf2_const_value (attr, sym, cu);
11902 }
11903
11904 list_to_add = cu->list_in_scope;
11905 break;
11906 case DW_TAG_unspecified_parameters:
11907 /* From varargs functions; gdb doesn't seem to have any
11908 interest in this information, so just ignore it for now.
11909 (FIXME?) */
11910 break;
11911 case DW_TAG_template_type_param:
11912 suppress_add = 1;
11913 /* Fall through. */
11914 case DW_TAG_class_type:
11915 case DW_TAG_interface_type:
11916 case DW_TAG_structure_type:
11917 case DW_TAG_union_type:
11918 case DW_TAG_set_type:
11919 case DW_TAG_enumeration_type:
11920 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11921 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11922
11923 {
11924 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11925 really ever be static objects: otherwise, if you try
11926 to, say, break of a class's method and you're in a file
11927 which doesn't mention that class, it won't work unless
11928 the check for all static symbols in lookup_symbol_aux
11929 saves you. See the OtherFileClass tests in
11930 gdb.c++/namespace.exp. */
11931
11932 if (!suppress_add)
11933 {
11934 list_to_add = (cu->list_in_scope == &file_symbols
11935 && (cu->language == language_cplus
11936 || cu->language == language_java)
11937 ? &global_symbols : cu->list_in_scope);
11938
11939 /* The semantics of C++ state that "struct foo {
11940 ... }" also defines a typedef for "foo". A Java
11941 class declaration also defines a typedef for the
11942 class. */
11943 if (cu->language == language_cplus
11944 || cu->language == language_java
11945 || cu->language == language_ada)
11946 {
11947 /* The symbol's name is already allocated along
11948 with this objfile, so we don't need to
11949 duplicate it for the type. */
11950 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11951 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11952 }
11953 }
11954 }
11955 break;
11956 case DW_TAG_typedef:
11957 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11958 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11959 list_to_add = cu->list_in_scope;
11960 break;
11961 case DW_TAG_base_type:
11962 case DW_TAG_subrange_type:
11963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11964 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11965 list_to_add = cu->list_in_scope;
11966 break;
11967 case DW_TAG_enumerator:
11968 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11969 if (attr)
11970 {
11971 dwarf2_const_value (attr, sym, cu);
11972 }
11973 {
11974 /* NOTE: carlton/2003-11-10: See comment above in the
11975 DW_TAG_class_type, etc. block. */
11976
11977 list_to_add = (cu->list_in_scope == &file_symbols
11978 && (cu->language == language_cplus
11979 || cu->language == language_java)
11980 ? &global_symbols : cu->list_in_scope);
11981 }
11982 break;
11983 case DW_TAG_namespace:
11984 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11985 list_to_add = &global_symbols;
11986 break;
11987 default:
11988 /* Not a tag we recognize. Hopefully we aren't processing
11989 trash data, but since we must specifically ignore things
11990 we don't recognize, there is nothing else we should do at
11991 this point. */
11992 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11993 dwarf_tag_name (die->tag));
11994 break;
11995 }
11996
11997 if (suppress_add)
11998 {
11999 sym->hash_next = objfile->template_symbols;
12000 objfile->template_symbols = sym;
12001 list_to_add = NULL;
12002 }
12003
12004 if (list_to_add != NULL)
12005 add_symbol_to_list (sym, list_to_add);
12006
12007 /* For the benefit of old versions of GCC, check for anonymous
12008 namespaces based on the demangled name. */
12009 if (!processing_has_namespace_info
12010 && cu->language == language_cplus)
12011 cp_scan_for_anonymous_namespaces (sym, objfile);
12012 }
12013 return (sym);
12014 }
12015
12016 /* A wrapper for new_symbol_full that always allocates a new symbol. */
12017
12018 static struct symbol *
12019 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12020 {
12021 return new_symbol_full (die, type, cu, NULL);
12022 }
12023
12024 /* Given an attr with a DW_FORM_dataN value in host byte order,
12025 zero-extend it as appropriate for the symbol's type. The DWARF
12026 standard (v4) is not entirely clear about the meaning of using
12027 DW_FORM_dataN for a constant with a signed type, where the type is
12028 wider than the data. The conclusion of a discussion on the DWARF
12029 list was that this is unspecified. We choose to always zero-extend
12030 because that is the interpretation long in use by GCC. */
12031
12032 static gdb_byte *
12033 dwarf2_const_value_data (struct attribute *attr, struct type *type,
12034 const char *name, struct obstack *obstack,
12035 struct dwarf2_cu *cu, long *value, int bits)
12036 {
12037 struct objfile *objfile = cu->objfile;
12038 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
12039 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
12040 LONGEST l = DW_UNSND (attr);
12041
12042 if (bits < sizeof (*value) * 8)
12043 {
12044 l &= ((LONGEST) 1 << bits) - 1;
12045 *value = l;
12046 }
12047 else if (bits == sizeof (*value) * 8)
12048 *value = l;
12049 else
12050 {
12051 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
12052 store_unsigned_integer (bytes, bits / 8, byte_order, l);
12053 return bytes;
12054 }
12055
12056 return NULL;
12057 }
12058
12059 /* Read a constant value from an attribute. Either set *VALUE, or if
12060 the value does not fit in *VALUE, set *BYTES - either already
12061 allocated on the objfile obstack, or newly allocated on OBSTACK,
12062 or, set *BATON, if we translated the constant to a location
12063 expression. */
12064
12065 static void
12066 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
12067 const char *name, struct obstack *obstack,
12068 struct dwarf2_cu *cu,
12069 long *value, gdb_byte **bytes,
12070 struct dwarf2_locexpr_baton **baton)
12071 {
12072 struct objfile *objfile = cu->objfile;
12073 struct comp_unit_head *cu_header = &cu->header;
12074 struct dwarf_block *blk;
12075 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12076 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12077
12078 *value = 0;
12079 *bytes = NULL;
12080 *baton = NULL;
12081
12082 switch (attr->form)
12083 {
12084 case DW_FORM_addr:
12085 {
12086 gdb_byte *data;
12087
12088 if (TYPE_LENGTH (type) != cu_header->addr_size)
12089 dwarf2_const_value_length_mismatch_complaint (name,
12090 cu_header->addr_size,
12091 TYPE_LENGTH (type));
12092 /* Symbols of this form are reasonably rare, so we just
12093 piggyback on the existing location code rather than writing
12094 a new implementation of symbol_computed_ops. */
12095 *baton = obstack_alloc (&objfile->objfile_obstack,
12096 sizeof (struct dwarf2_locexpr_baton));
12097 (*baton)->per_cu = cu->per_cu;
12098 gdb_assert ((*baton)->per_cu);
12099
12100 (*baton)->size = 2 + cu_header->addr_size;
12101 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12102 (*baton)->data = data;
12103
12104 data[0] = DW_OP_addr;
12105 store_unsigned_integer (&data[1], cu_header->addr_size,
12106 byte_order, DW_ADDR (attr));
12107 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12108 }
12109 break;
12110 case DW_FORM_string:
12111 case DW_FORM_strp:
12112 /* DW_STRING is already allocated on the objfile obstack, point
12113 directly to it. */
12114 *bytes = (gdb_byte *) DW_STRING (attr);
12115 break;
12116 case DW_FORM_block1:
12117 case DW_FORM_block2:
12118 case DW_FORM_block4:
12119 case DW_FORM_block:
12120 case DW_FORM_exprloc:
12121 blk = DW_BLOCK (attr);
12122 if (TYPE_LENGTH (type) != blk->size)
12123 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12124 TYPE_LENGTH (type));
12125 *bytes = blk->data;
12126 break;
12127
12128 /* The DW_AT_const_value attributes are supposed to carry the
12129 symbol's value "represented as it would be on the target
12130 architecture." By the time we get here, it's already been
12131 converted to host endianness, so we just need to sign- or
12132 zero-extend it as appropriate. */
12133 case DW_FORM_data1:
12134 *bytes = dwarf2_const_value_data (attr, type, name,
12135 obstack, cu, value, 8);
12136 break;
12137 case DW_FORM_data2:
12138 *bytes = dwarf2_const_value_data (attr, type, name,
12139 obstack, cu, value, 16);
12140 break;
12141 case DW_FORM_data4:
12142 *bytes = dwarf2_const_value_data (attr, type, name,
12143 obstack, cu, value, 32);
12144 break;
12145 case DW_FORM_data8:
12146 *bytes = dwarf2_const_value_data (attr, type, name,
12147 obstack, cu, value, 64);
12148 break;
12149
12150 case DW_FORM_sdata:
12151 *value = DW_SND (attr);
12152 break;
12153
12154 case DW_FORM_udata:
12155 *value = DW_UNSND (attr);
12156 break;
12157
12158 default:
12159 complaint (&symfile_complaints,
12160 _("unsupported const value attribute form: '%s'"),
12161 dwarf_form_name (attr->form));
12162 *value = 0;
12163 break;
12164 }
12165 }
12166
12167
12168 /* Copy constant value from an attribute to a symbol. */
12169
12170 static void
12171 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12172 struct dwarf2_cu *cu)
12173 {
12174 struct objfile *objfile = cu->objfile;
12175 struct comp_unit_head *cu_header = &cu->header;
12176 long value;
12177 gdb_byte *bytes;
12178 struct dwarf2_locexpr_baton *baton;
12179
12180 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12181 SYMBOL_PRINT_NAME (sym),
12182 &objfile->objfile_obstack, cu,
12183 &value, &bytes, &baton);
12184
12185 if (baton != NULL)
12186 {
12187 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12188 SYMBOL_LOCATION_BATON (sym) = baton;
12189 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12190 }
12191 else if (bytes != NULL)
12192 {
12193 SYMBOL_VALUE_BYTES (sym) = bytes;
12194 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12195 }
12196 else
12197 {
12198 SYMBOL_VALUE (sym) = value;
12199 SYMBOL_CLASS (sym) = LOC_CONST;
12200 }
12201 }
12202
12203 /* Return the type of the die in question using its DW_AT_type attribute. */
12204
12205 static struct type *
12206 die_type (struct die_info *die, struct dwarf2_cu *cu)
12207 {
12208 struct attribute *type_attr;
12209
12210 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12211 if (!type_attr)
12212 {
12213 /* A missing DW_AT_type represents a void type. */
12214 return objfile_type (cu->objfile)->builtin_void;
12215 }
12216
12217 return lookup_die_type (die, type_attr, cu);
12218 }
12219
12220 /* True iff CU's producer generates GNAT Ada auxiliary information
12221 that allows to find parallel types through that information instead
12222 of having to do expensive parallel lookups by type name. */
12223
12224 static int
12225 need_gnat_info (struct dwarf2_cu *cu)
12226 {
12227 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12228 of GNAT produces this auxiliary information, without any indication
12229 that it is produced. Part of enhancing the FSF version of GNAT
12230 to produce that information will be to put in place an indicator
12231 that we can use in order to determine whether the descriptive type
12232 info is available or not. One suggestion that has been made is
12233 to use a new attribute, attached to the CU die. For now, assume
12234 that the descriptive type info is not available. */
12235 return 0;
12236 }
12237
12238 /* Return the auxiliary type of the die in question using its
12239 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12240 attribute is not present. */
12241
12242 static struct type *
12243 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12244 {
12245 struct attribute *type_attr;
12246
12247 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12248 if (!type_attr)
12249 return NULL;
12250
12251 return lookup_die_type (die, type_attr, cu);
12252 }
12253
12254 /* If DIE has a descriptive_type attribute, then set the TYPE's
12255 descriptive type accordingly. */
12256
12257 static void
12258 set_descriptive_type (struct type *type, struct die_info *die,
12259 struct dwarf2_cu *cu)
12260 {
12261 struct type *descriptive_type = die_descriptive_type (die, cu);
12262
12263 if (descriptive_type)
12264 {
12265 ALLOCATE_GNAT_AUX_TYPE (type);
12266 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12267 }
12268 }
12269
12270 /* Return the containing type of the die in question using its
12271 DW_AT_containing_type attribute. */
12272
12273 static struct type *
12274 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12275 {
12276 struct attribute *type_attr;
12277
12278 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12279 if (!type_attr)
12280 error (_("Dwarf Error: Problem turning containing type into gdb type "
12281 "[in module %s]"), cu->objfile->name);
12282
12283 return lookup_die_type (die, type_attr, cu);
12284 }
12285
12286 /* Look up the type of DIE in CU using its type attribute ATTR.
12287 If there is no type substitute an error marker. */
12288
12289 static struct type *
12290 lookup_die_type (struct die_info *die, struct attribute *attr,
12291 struct dwarf2_cu *cu)
12292 {
12293 struct type *this_type;
12294
12295 /* First see if we have it cached. */
12296
12297 if (is_ref_attr (attr))
12298 {
12299 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12300
12301 this_type = get_die_type_at_offset (offset, cu->per_cu);
12302 }
12303 else if (attr->form == DW_FORM_ref_sig8)
12304 {
12305 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12306 struct dwarf2_cu *sig_cu;
12307 unsigned int offset;
12308
12309 /* sig_type will be NULL if the signatured type is missing from
12310 the debug info. */
12311 if (sig_type == NULL)
12312 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12313 "at 0x%x [in module %s]"),
12314 die->offset, cu->objfile->name);
12315
12316 gdb_assert (sig_type->per_cu.debug_type_section);
12317 offset = sig_type->per_cu.offset + sig_type->type_offset;
12318 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12319 }
12320 else
12321 {
12322 dump_die_for_error (die);
12323 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12324 dwarf_attr_name (attr->name), cu->objfile->name);
12325 }
12326
12327 /* If not cached we need to read it in. */
12328
12329 if (this_type == NULL)
12330 {
12331 struct die_info *type_die;
12332 struct dwarf2_cu *type_cu = cu;
12333
12334 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12335 /* If the type is cached, we should have found it above. */
12336 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12337 this_type = read_type_die_1 (type_die, type_cu);
12338 }
12339
12340 /* If we still don't have a type use an error marker. */
12341
12342 if (this_type == NULL)
12343 {
12344 char *message, *saved;
12345
12346 /* read_type_die already issued a complaint. */
12347 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12348 cu->objfile->name,
12349 cu->header.offset,
12350 die->offset);
12351 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
12352 message, strlen (message));
12353 xfree (message);
12354
12355 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
12356 }
12357
12358 return this_type;
12359 }
12360
12361 /* Return the type in DIE, CU.
12362 Returns NULL for invalid types.
12363
12364 This first does a lookup in the appropriate type_hash table,
12365 and only reads the die in if necessary.
12366
12367 NOTE: This can be called when reading in partial or full symbols. */
12368
12369 static struct type *
12370 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12371 {
12372 struct type *this_type;
12373
12374 this_type = get_die_type (die, cu);
12375 if (this_type)
12376 return this_type;
12377
12378 return read_type_die_1 (die, cu);
12379 }
12380
12381 /* Read the type in DIE, CU.
12382 Returns NULL for invalid types. */
12383
12384 static struct type *
12385 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12386 {
12387 struct type *this_type = NULL;
12388
12389 switch (die->tag)
12390 {
12391 case DW_TAG_class_type:
12392 case DW_TAG_interface_type:
12393 case DW_TAG_structure_type:
12394 case DW_TAG_union_type:
12395 this_type = read_structure_type (die, cu);
12396 break;
12397 case DW_TAG_enumeration_type:
12398 this_type = read_enumeration_type (die, cu);
12399 break;
12400 case DW_TAG_subprogram:
12401 case DW_TAG_subroutine_type:
12402 case DW_TAG_inlined_subroutine:
12403 this_type = read_subroutine_type (die, cu);
12404 break;
12405 case DW_TAG_array_type:
12406 this_type = read_array_type (die, cu);
12407 break;
12408 case DW_TAG_set_type:
12409 this_type = read_set_type (die, cu);
12410 break;
12411 case DW_TAG_pointer_type:
12412 this_type = read_tag_pointer_type (die, cu);
12413 break;
12414 case DW_TAG_ptr_to_member_type:
12415 this_type = read_tag_ptr_to_member_type (die, cu);
12416 break;
12417 case DW_TAG_reference_type:
12418 this_type = read_tag_reference_type (die, cu);
12419 break;
12420 case DW_TAG_const_type:
12421 this_type = read_tag_const_type (die, cu);
12422 break;
12423 case DW_TAG_volatile_type:
12424 this_type = read_tag_volatile_type (die, cu);
12425 break;
12426 case DW_TAG_string_type:
12427 this_type = read_tag_string_type (die, cu);
12428 break;
12429 case DW_TAG_typedef:
12430 this_type = read_typedef (die, cu);
12431 break;
12432 case DW_TAG_subrange_type:
12433 this_type = read_subrange_type (die, cu);
12434 break;
12435 case DW_TAG_base_type:
12436 this_type = read_base_type (die, cu);
12437 break;
12438 case DW_TAG_unspecified_type:
12439 this_type = read_unspecified_type (die, cu);
12440 break;
12441 case DW_TAG_namespace:
12442 this_type = read_namespace_type (die, cu);
12443 break;
12444 case DW_TAG_module:
12445 this_type = read_module_type (die, cu);
12446 break;
12447 default:
12448 complaint (&symfile_complaints,
12449 _("unexpected tag in read_type_die: '%s'"),
12450 dwarf_tag_name (die->tag));
12451 break;
12452 }
12453
12454 return this_type;
12455 }
12456
12457 /* See if we can figure out if the class lives in a namespace. We do
12458 this by looking for a member function; its demangled name will
12459 contain namespace info, if there is any.
12460 Return the computed name or NULL.
12461 Space for the result is allocated on the objfile's obstack.
12462 This is the full-die version of guess_partial_die_structure_name.
12463 In this case we know DIE has no useful parent. */
12464
12465 static char *
12466 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12467 {
12468 struct die_info *spec_die;
12469 struct dwarf2_cu *spec_cu;
12470 struct die_info *child;
12471
12472 spec_cu = cu;
12473 spec_die = die_specification (die, &spec_cu);
12474 if (spec_die != NULL)
12475 {
12476 die = spec_die;
12477 cu = spec_cu;
12478 }
12479
12480 for (child = die->child;
12481 child != NULL;
12482 child = child->sibling)
12483 {
12484 if (child->tag == DW_TAG_subprogram)
12485 {
12486 struct attribute *attr;
12487
12488 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12489 if (attr == NULL)
12490 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12491 if (attr != NULL)
12492 {
12493 char *actual_name
12494 = language_class_name_from_physname (cu->language_defn,
12495 DW_STRING (attr));
12496 char *name = NULL;
12497
12498 if (actual_name != NULL)
12499 {
12500 char *die_name = dwarf2_name (die, cu);
12501
12502 if (die_name != NULL
12503 && strcmp (die_name, actual_name) != 0)
12504 {
12505 /* Strip off the class name from the full name.
12506 We want the prefix. */
12507 int die_name_len = strlen (die_name);
12508 int actual_name_len = strlen (actual_name);
12509
12510 /* Test for '::' as a sanity check. */
12511 if (actual_name_len > die_name_len + 2
12512 && actual_name[actual_name_len
12513 - die_name_len - 1] == ':')
12514 name =
12515 obsavestring (actual_name,
12516 actual_name_len - die_name_len - 2,
12517 &cu->objfile->objfile_obstack);
12518 }
12519 }
12520 xfree (actual_name);
12521 return name;
12522 }
12523 }
12524 }
12525
12526 return NULL;
12527 }
12528
12529 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12530 prefix part in such case. See
12531 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12532
12533 static char *
12534 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12535 {
12536 struct attribute *attr;
12537 char *base;
12538
12539 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12540 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12541 return NULL;
12542
12543 attr = dwarf2_attr (die, DW_AT_name, cu);
12544 if (attr != NULL && DW_STRING (attr) != NULL)
12545 return NULL;
12546
12547 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12548 if (attr == NULL)
12549 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12550 if (attr == NULL || DW_STRING (attr) == NULL)
12551 return NULL;
12552
12553 /* dwarf2_name had to be already called. */
12554 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12555
12556 /* Strip the base name, keep any leading namespaces/classes. */
12557 base = strrchr (DW_STRING (attr), ':');
12558 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12559 return "";
12560
12561 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12562 &cu->objfile->objfile_obstack);
12563 }
12564
12565 /* Return the name of the namespace/class that DIE is defined within,
12566 or "" if we can't tell. The caller should not xfree the result.
12567
12568 For example, if we're within the method foo() in the following
12569 code:
12570
12571 namespace N {
12572 class C {
12573 void foo () {
12574 }
12575 };
12576 }
12577
12578 then determine_prefix on foo's die will return "N::C". */
12579
12580 static char *
12581 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12582 {
12583 struct die_info *parent, *spec_die;
12584 struct dwarf2_cu *spec_cu;
12585 struct type *parent_type;
12586 char *retval;
12587
12588 if (cu->language != language_cplus && cu->language != language_java
12589 && cu->language != language_fortran)
12590 return "";
12591
12592 retval = anonymous_struct_prefix (die, cu);
12593 if (retval)
12594 return retval;
12595
12596 /* We have to be careful in the presence of DW_AT_specification.
12597 For example, with GCC 3.4, given the code
12598
12599 namespace N {
12600 void foo() {
12601 // Definition of N::foo.
12602 }
12603 }
12604
12605 then we'll have a tree of DIEs like this:
12606
12607 1: DW_TAG_compile_unit
12608 2: DW_TAG_namespace // N
12609 3: DW_TAG_subprogram // declaration of N::foo
12610 4: DW_TAG_subprogram // definition of N::foo
12611 DW_AT_specification // refers to die #3
12612
12613 Thus, when processing die #4, we have to pretend that we're in
12614 the context of its DW_AT_specification, namely the contex of die
12615 #3. */
12616 spec_cu = cu;
12617 spec_die = die_specification (die, &spec_cu);
12618 if (spec_die == NULL)
12619 parent = die->parent;
12620 else
12621 {
12622 parent = spec_die->parent;
12623 cu = spec_cu;
12624 }
12625
12626 if (parent == NULL)
12627 return "";
12628 else if (parent->building_fullname)
12629 {
12630 const char *name;
12631 const char *parent_name;
12632
12633 /* It has been seen on RealView 2.2 built binaries,
12634 DW_TAG_template_type_param types actually _defined_ as
12635 children of the parent class:
12636
12637 enum E {};
12638 template class <class Enum> Class{};
12639 Class<enum E> class_e;
12640
12641 1: DW_TAG_class_type (Class)
12642 2: DW_TAG_enumeration_type (E)
12643 3: DW_TAG_enumerator (enum1:0)
12644 3: DW_TAG_enumerator (enum2:1)
12645 ...
12646 2: DW_TAG_template_type_param
12647 DW_AT_type DW_FORM_ref_udata (E)
12648
12649 Besides being broken debug info, it can put GDB into an
12650 infinite loop. Consider:
12651
12652 When we're building the full name for Class<E>, we'll start
12653 at Class, and go look over its template type parameters,
12654 finding E. We'll then try to build the full name of E, and
12655 reach here. We're now trying to build the full name of E,
12656 and look over the parent DIE for containing scope. In the
12657 broken case, if we followed the parent DIE of E, we'd again
12658 find Class, and once again go look at its template type
12659 arguments, etc., etc. Simply don't consider such parent die
12660 as source-level parent of this die (it can't be, the language
12661 doesn't allow it), and break the loop here. */
12662 name = dwarf2_name (die, cu);
12663 parent_name = dwarf2_name (parent, cu);
12664 complaint (&symfile_complaints,
12665 _("template param type '%s' defined within parent '%s'"),
12666 name ? name : "<unknown>",
12667 parent_name ? parent_name : "<unknown>");
12668 return "";
12669 }
12670 else
12671 switch (parent->tag)
12672 {
12673 case DW_TAG_namespace:
12674 parent_type = read_type_die (parent, cu);
12675 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12676 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12677 Work around this problem here. */
12678 if (cu->language == language_cplus
12679 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12680 return "";
12681 /* We give a name to even anonymous namespaces. */
12682 return TYPE_TAG_NAME (parent_type);
12683 case DW_TAG_class_type:
12684 case DW_TAG_interface_type:
12685 case DW_TAG_structure_type:
12686 case DW_TAG_union_type:
12687 case DW_TAG_module:
12688 parent_type = read_type_die (parent, cu);
12689 if (TYPE_TAG_NAME (parent_type) != NULL)
12690 return TYPE_TAG_NAME (parent_type);
12691 else
12692 /* An anonymous structure is only allowed non-static data
12693 members; no typedefs, no member functions, et cetera.
12694 So it does not need a prefix. */
12695 return "";
12696 case DW_TAG_compile_unit:
12697 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12698 if (cu->language == language_cplus
12699 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12700 && die->child != NULL
12701 && (die->tag == DW_TAG_class_type
12702 || die->tag == DW_TAG_structure_type
12703 || die->tag == DW_TAG_union_type))
12704 {
12705 char *name = guess_full_die_structure_name (die, cu);
12706 if (name != NULL)
12707 return name;
12708 }
12709 return "";
12710 default:
12711 return determine_prefix (parent, cu);
12712 }
12713 }
12714
12715 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12716 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12717 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12718 an obconcat, otherwise allocate storage for the result. The CU argument is
12719 used to determine the language and hence, the appropriate separator. */
12720
12721 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12722
12723 static char *
12724 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12725 int physname, struct dwarf2_cu *cu)
12726 {
12727 const char *lead = "";
12728 const char *sep;
12729
12730 if (suffix == NULL || suffix[0] == '\0'
12731 || prefix == NULL || prefix[0] == '\0')
12732 sep = "";
12733 else if (cu->language == language_java)
12734 sep = ".";
12735 else if (cu->language == language_fortran && physname)
12736 {
12737 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12738 DW_AT_MIPS_linkage_name is preferred and used instead. */
12739
12740 lead = "__";
12741 sep = "_MOD_";
12742 }
12743 else
12744 sep = "::";
12745
12746 if (prefix == NULL)
12747 prefix = "";
12748 if (suffix == NULL)
12749 suffix = "";
12750
12751 if (obs == NULL)
12752 {
12753 char *retval
12754 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12755
12756 strcpy (retval, lead);
12757 strcat (retval, prefix);
12758 strcat (retval, sep);
12759 strcat (retval, suffix);
12760 return retval;
12761 }
12762 else
12763 {
12764 /* We have an obstack. */
12765 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12766 }
12767 }
12768
12769 /* Return sibling of die, NULL if no sibling. */
12770
12771 static struct die_info *
12772 sibling_die (struct die_info *die)
12773 {
12774 return die->sibling;
12775 }
12776
12777 /* Get name of a die, return NULL if not found. */
12778
12779 static char *
12780 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12781 struct obstack *obstack)
12782 {
12783 if (name && cu->language == language_cplus)
12784 {
12785 char *canon_name = cp_canonicalize_string (name);
12786
12787 if (canon_name != NULL)
12788 {
12789 if (strcmp (canon_name, name) != 0)
12790 name = obsavestring (canon_name, strlen (canon_name),
12791 obstack);
12792 xfree (canon_name);
12793 }
12794 }
12795
12796 return name;
12797 }
12798
12799 /* Get name of a die, return NULL if not found. */
12800
12801 static char *
12802 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12803 {
12804 struct attribute *attr;
12805
12806 attr = dwarf2_attr (die, DW_AT_name, cu);
12807 if ((!attr || !DW_STRING (attr))
12808 && die->tag != DW_TAG_class_type
12809 && die->tag != DW_TAG_interface_type
12810 && die->tag != DW_TAG_structure_type
12811 && die->tag != DW_TAG_union_type)
12812 return NULL;
12813
12814 switch (die->tag)
12815 {
12816 case DW_TAG_compile_unit:
12817 /* Compilation units have a DW_AT_name that is a filename, not
12818 a source language identifier. */
12819 case DW_TAG_enumeration_type:
12820 case DW_TAG_enumerator:
12821 /* These tags always have simple identifiers already; no need
12822 to canonicalize them. */
12823 return DW_STRING (attr);
12824
12825 case DW_TAG_subprogram:
12826 /* Java constructors will all be named "<init>", so return
12827 the class name when we see this special case. */
12828 if (cu->language == language_java
12829 && DW_STRING (attr) != NULL
12830 && strcmp (DW_STRING (attr), "<init>") == 0)
12831 {
12832 struct dwarf2_cu *spec_cu = cu;
12833 struct die_info *spec_die;
12834
12835 /* GCJ will output '<init>' for Java constructor names.
12836 For this special case, return the name of the parent class. */
12837
12838 /* GCJ may output suprogram DIEs with AT_specification set.
12839 If so, use the name of the specified DIE. */
12840 spec_die = die_specification (die, &spec_cu);
12841 if (spec_die != NULL)
12842 return dwarf2_name (spec_die, spec_cu);
12843
12844 do
12845 {
12846 die = die->parent;
12847 if (die->tag == DW_TAG_class_type)
12848 return dwarf2_name (die, cu);
12849 }
12850 while (die->tag != DW_TAG_compile_unit);
12851 }
12852 break;
12853
12854 case DW_TAG_class_type:
12855 case DW_TAG_interface_type:
12856 case DW_TAG_structure_type:
12857 case DW_TAG_union_type:
12858 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12859 structures or unions. These were of the form "._%d" in GCC 4.1,
12860 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12861 and GCC 4.4. We work around this problem by ignoring these. */
12862 if (attr && DW_STRING (attr)
12863 && (strncmp (DW_STRING (attr), "._", 2) == 0
12864 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12865 return NULL;
12866
12867 /* GCC might emit a nameless typedef that has a linkage name. See
12868 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12869 if (!attr || DW_STRING (attr) == NULL)
12870 {
12871 char *demangled = NULL;
12872
12873 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12874 if (attr == NULL)
12875 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12876
12877 if (attr == NULL || DW_STRING (attr) == NULL)
12878 return NULL;
12879
12880 /* Avoid demangling DW_STRING (attr) the second time on a second
12881 call for the same DIE. */
12882 if (!DW_STRING_IS_CANONICAL (attr))
12883 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12884
12885 if (demangled)
12886 {
12887 char *base;
12888
12889 /* FIXME: we already did this for the partial symbol... */
12890 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12891 &cu->objfile->objfile_obstack);
12892 DW_STRING_IS_CANONICAL (attr) = 1;
12893 xfree (demangled);
12894
12895 /* Strip any leading namespaces/classes, keep only the base name.
12896 DW_AT_name for named DIEs does not contain the prefixes. */
12897 base = strrchr (DW_STRING (attr), ':');
12898 if (base && base > DW_STRING (attr) && base[-1] == ':')
12899 return &base[1];
12900 else
12901 return DW_STRING (attr);
12902 }
12903 }
12904 break;
12905
12906 default:
12907 break;
12908 }
12909
12910 if (!DW_STRING_IS_CANONICAL (attr))
12911 {
12912 DW_STRING (attr)
12913 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12914 &cu->objfile->objfile_obstack);
12915 DW_STRING_IS_CANONICAL (attr) = 1;
12916 }
12917 return DW_STRING (attr);
12918 }
12919
12920 /* Return the die that this die in an extension of, or NULL if there
12921 is none. *EXT_CU is the CU containing DIE on input, and the CU
12922 containing the return value on output. */
12923
12924 static struct die_info *
12925 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12926 {
12927 struct attribute *attr;
12928
12929 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12930 if (attr == NULL)
12931 return NULL;
12932
12933 return follow_die_ref (die, attr, ext_cu);
12934 }
12935
12936 /* Convert a DIE tag into its string name. */
12937
12938 static char *
12939 dwarf_tag_name (unsigned tag)
12940 {
12941 switch (tag)
12942 {
12943 case DW_TAG_padding:
12944 return "DW_TAG_padding";
12945 case DW_TAG_array_type:
12946 return "DW_TAG_array_type";
12947 case DW_TAG_class_type:
12948 return "DW_TAG_class_type";
12949 case DW_TAG_entry_point:
12950 return "DW_TAG_entry_point";
12951 case DW_TAG_enumeration_type:
12952 return "DW_TAG_enumeration_type";
12953 case DW_TAG_formal_parameter:
12954 return "DW_TAG_formal_parameter";
12955 case DW_TAG_imported_declaration:
12956 return "DW_TAG_imported_declaration";
12957 case DW_TAG_label:
12958 return "DW_TAG_label";
12959 case DW_TAG_lexical_block:
12960 return "DW_TAG_lexical_block";
12961 case DW_TAG_member:
12962 return "DW_TAG_member";
12963 case DW_TAG_pointer_type:
12964 return "DW_TAG_pointer_type";
12965 case DW_TAG_reference_type:
12966 return "DW_TAG_reference_type";
12967 case DW_TAG_compile_unit:
12968 return "DW_TAG_compile_unit";
12969 case DW_TAG_string_type:
12970 return "DW_TAG_string_type";
12971 case DW_TAG_structure_type:
12972 return "DW_TAG_structure_type";
12973 case DW_TAG_subroutine_type:
12974 return "DW_TAG_subroutine_type";
12975 case DW_TAG_typedef:
12976 return "DW_TAG_typedef";
12977 case DW_TAG_union_type:
12978 return "DW_TAG_union_type";
12979 case DW_TAG_unspecified_parameters:
12980 return "DW_TAG_unspecified_parameters";
12981 case DW_TAG_variant:
12982 return "DW_TAG_variant";
12983 case DW_TAG_common_block:
12984 return "DW_TAG_common_block";
12985 case DW_TAG_common_inclusion:
12986 return "DW_TAG_common_inclusion";
12987 case DW_TAG_inheritance:
12988 return "DW_TAG_inheritance";
12989 case DW_TAG_inlined_subroutine:
12990 return "DW_TAG_inlined_subroutine";
12991 case DW_TAG_module:
12992 return "DW_TAG_module";
12993 case DW_TAG_ptr_to_member_type:
12994 return "DW_TAG_ptr_to_member_type";
12995 case DW_TAG_set_type:
12996 return "DW_TAG_set_type";
12997 case DW_TAG_subrange_type:
12998 return "DW_TAG_subrange_type";
12999 case DW_TAG_with_stmt:
13000 return "DW_TAG_with_stmt";
13001 case DW_TAG_access_declaration:
13002 return "DW_TAG_access_declaration";
13003 case DW_TAG_base_type:
13004 return "DW_TAG_base_type";
13005 case DW_TAG_catch_block:
13006 return "DW_TAG_catch_block";
13007 case DW_TAG_const_type:
13008 return "DW_TAG_const_type";
13009 case DW_TAG_constant:
13010 return "DW_TAG_constant";
13011 case DW_TAG_enumerator:
13012 return "DW_TAG_enumerator";
13013 case DW_TAG_file_type:
13014 return "DW_TAG_file_type";
13015 case DW_TAG_friend:
13016 return "DW_TAG_friend";
13017 case DW_TAG_namelist:
13018 return "DW_TAG_namelist";
13019 case DW_TAG_namelist_item:
13020 return "DW_TAG_namelist_item";
13021 case DW_TAG_packed_type:
13022 return "DW_TAG_packed_type";
13023 case DW_TAG_subprogram:
13024 return "DW_TAG_subprogram";
13025 case DW_TAG_template_type_param:
13026 return "DW_TAG_template_type_param";
13027 case DW_TAG_template_value_param:
13028 return "DW_TAG_template_value_param";
13029 case DW_TAG_thrown_type:
13030 return "DW_TAG_thrown_type";
13031 case DW_TAG_try_block:
13032 return "DW_TAG_try_block";
13033 case DW_TAG_variant_part:
13034 return "DW_TAG_variant_part";
13035 case DW_TAG_variable:
13036 return "DW_TAG_variable";
13037 case DW_TAG_volatile_type:
13038 return "DW_TAG_volatile_type";
13039 case DW_TAG_dwarf_procedure:
13040 return "DW_TAG_dwarf_procedure";
13041 case DW_TAG_restrict_type:
13042 return "DW_TAG_restrict_type";
13043 case DW_TAG_interface_type:
13044 return "DW_TAG_interface_type";
13045 case DW_TAG_namespace:
13046 return "DW_TAG_namespace";
13047 case DW_TAG_imported_module:
13048 return "DW_TAG_imported_module";
13049 case DW_TAG_unspecified_type:
13050 return "DW_TAG_unspecified_type";
13051 case DW_TAG_partial_unit:
13052 return "DW_TAG_partial_unit";
13053 case DW_TAG_imported_unit:
13054 return "DW_TAG_imported_unit";
13055 case DW_TAG_condition:
13056 return "DW_TAG_condition";
13057 case DW_TAG_shared_type:
13058 return "DW_TAG_shared_type";
13059 case DW_TAG_type_unit:
13060 return "DW_TAG_type_unit";
13061 case DW_TAG_MIPS_loop:
13062 return "DW_TAG_MIPS_loop";
13063 case DW_TAG_HP_array_descriptor:
13064 return "DW_TAG_HP_array_descriptor";
13065 case DW_TAG_format_label:
13066 return "DW_TAG_format_label";
13067 case DW_TAG_function_template:
13068 return "DW_TAG_function_template";
13069 case DW_TAG_class_template:
13070 return "DW_TAG_class_template";
13071 case DW_TAG_GNU_BINCL:
13072 return "DW_TAG_GNU_BINCL";
13073 case DW_TAG_GNU_EINCL:
13074 return "DW_TAG_GNU_EINCL";
13075 case DW_TAG_upc_shared_type:
13076 return "DW_TAG_upc_shared_type";
13077 case DW_TAG_upc_strict_type:
13078 return "DW_TAG_upc_strict_type";
13079 case DW_TAG_upc_relaxed_type:
13080 return "DW_TAG_upc_relaxed_type";
13081 case DW_TAG_PGI_kanji_type:
13082 return "DW_TAG_PGI_kanji_type";
13083 case DW_TAG_PGI_interface_block:
13084 return "DW_TAG_PGI_interface_block";
13085 case DW_TAG_GNU_call_site:
13086 return "DW_TAG_GNU_call_site";
13087 default:
13088 return "DW_TAG_<unknown>";
13089 }
13090 }
13091
13092 /* Convert a DWARF attribute code into its string name. */
13093
13094 static char *
13095 dwarf_attr_name (unsigned attr)
13096 {
13097 switch (attr)
13098 {
13099 case DW_AT_sibling:
13100 return "DW_AT_sibling";
13101 case DW_AT_location:
13102 return "DW_AT_location";
13103 case DW_AT_name:
13104 return "DW_AT_name";
13105 case DW_AT_ordering:
13106 return "DW_AT_ordering";
13107 case DW_AT_subscr_data:
13108 return "DW_AT_subscr_data";
13109 case DW_AT_byte_size:
13110 return "DW_AT_byte_size";
13111 case DW_AT_bit_offset:
13112 return "DW_AT_bit_offset";
13113 case DW_AT_bit_size:
13114 return "DW_AT_bit_size";
13115 case DW_AT_element_list:
13116 return "DW_AT_element_list";
13117 case DW_AT_stmt_list:
13118 return "DW_AT_stmt_list";
13119 case DW_AT_low_pc:
13120 return "DW_AT_low_pc";
13121 case DW_AT_high_pc:
13122 return "DW_AT_high_pc";
13123 case DW_AT_language:
13124 return "DW_AT_language";
13125 case DW_AT_member:
13126 return "DW_AT_member";
13127 case DW_AT_discr:
13128 return "DW_AT_discr";
13129 case DW_AT_discr_value:
13130 return "DW_AT_discr_value";
13131 case DW_AT_visibility:
13132 return "DW_AT_visibility";
13133 case DW_AT_import:
13134 return "DW_AT_import";
13135 case DW_AT_string_length:
13136 return "DW_AT_string_length";
13137 case DW_AT_common_reference:
13138 return "DW_AT_common_reference";
13139 case DW_AT_comp_dir:
13140 return "DW_AT_comp_dir";
13141 case DW_AT_const_value:
13142 return "DW_AT_const_value";
13143 case DW_AT_containing_type:
13144 return "DW_AT_containing_type";
13145 case DW_AT_default_value:
13146 return "DW_AT_default_value";
13147 case DW_AT_inline:
13148 return "DW_AT_inline";
13149 case DW_AT_is_optional:
13150 return "DW_AT_is_optional";
13151 case DW_AT_lower_bound:
13152 return "DW_AT_lower_bound";
13153 case DW_AT_producer:
13154 return "DW_AT_producer";
13155 case DW_AT_prototyped:
13156 return "DW_AT_prototyped";
13157 case DW_AT_return_addr:
13158 return "DW_AT_return_addr";
13159 case DW_AT_start_scope:
13160 return "DW_AT_start_scope";
13161 case DW_AT_bit_stride:
13162 return "DW_AT_bit_stride";
13163 case DW_AT_upper_bound:
13164 return "DW_AT_upper_bound";
13165 case DW_AT_abstract_origin:
13166 return "DW_AT_abstract_origin";
13167 case DW_AT_accessibility:
13168 return "DW_AT_accessibility";
13169 case DW_AT_address_class:
13170 return "DW_AT_address_class";
13171 case DW_AT_artificial:
13172 return "DW_AT_artificial";
13173 case DW_AT_base_types:
13174 return "DW_AT_base_types";
13175 case DW_AT_calling_convention:
13176 return "DW_AT_calling_convention";
13177 case DW_AT_count:
13178 return "DW_AT_count";
13179 case DW_AT_data_member_location:
13180 return "DW_AT_data_member_location";
13181 case DW_AT_decl_column:
13182 return "DW_AT_decl_column";
13183 case DW_AT_decl_file:
13184 return "DW_AT_decl_file";
13185 case DW_AT_decl_line:
13186 return "DW_AT_decl_line";
13187 case DW_AT_declaration:
13188 return "DW_AT_declaration";
13189 case DW_AT_discr_list:
13190 return "DW_AT_discr_list";
13191 case DW_AT_encoding:
13192 return "DW_AT_encoding";
13193 case DW_AT_external:
13194 return "DW_AT_external";
13195 case DW_AT_frame_base:
13196 return "DW_AT_frame_base";
13197 case DW_AT_friend:
13198 return "DW_AT_friend";
13199 case DW_AT_identifier_case:
13200 return "DW_AT_identifier_case";
13201 case DW_AT_macro_info:
13202 return "DW_AT_macro_info";
13203 case DW_AT_namelist_items:
13204 return "DW_AT_namelist_items";
13205 case DW_AT_priority:
13206 return "DW_AT_priority";
13207 case DW_AT_segment:
13208 return "DW_AT_segment";
13209 case DW_AT_specification:
13210 return "DW_AT_specification";
13211 case DW_AT_static_link:
13212 return "DW_AT_static_link";
13213 case DW_AT_type:
13214 return "DW_AT_type";
13215 case DW_AT_use_location:
13216 return "DW_AT_use_location";
13217 case DW_AT_variable_parameter:
13218 return "DW_AT_variable_parameter";
13219 case DW_AT_virtuality:
13220 return "DW_AT_virtuality";
13221 case DW_AT_vtable_elem_location:
13222 return "DW_AT_vtable_elem_location";
13223 /* DWARF 3 values. */
13224 case DW_AT_allocated:
13225 return "DW_AT_allocated";
13226 case DW_AT_associated:
13227 return "DW_AT_associated";
13228 case DW_AT_data_location:
13229 return "DW_AT_data_location";
13230 case DW_AT_byte_stride:
13231 return "DW_AT_byte_stride";
13232 case DW_AT_entry_pc:
13233 return "DW_AT_entry_pc";
13234 case DW_AT_use_UTF8:
13235 return "DW_AT_use_UTF8";
13236 case DW_AT_extension:
13237 return "DW_AT_extension";
13238 case DW_AT_ranges:
13239 return "DW_AT_ranges";
13240 case DW_AT_trampoline:
13241 return "DW_AT_trampoline";
13242 case DW_AT_call_column:
13243 return "DW_AT_call_column";
13244 case DW_AT_call_file:
13245 return "DW_AT_call_file";
13246 case DW_AT_call_line:
13247 return "DW_AT_call_line";
13248 case DW_AT_description:
13249 return "DW_AT_description";
13250 case DW_AT_binary_scale:
13251 return "DW_AT_binary_scale";
13252 case DW_AT_decimal_scale:
13253 return "DW_AT_decimal_scale";
13254 case DW_AT_small:
13255 return "DW_AT_small";
13256 case DW_AT_decimal_sign:
13257 return "DW_AT_decimal_sign";
13258 case DW_AT_digit_count:
13259 return "DW_AT_digit_count";
13260 case DW_AT_picture_string:
13261 return "DW_AT_picture_string";
13262 case DW_AT_mutable:
13263 return "DW_AT_mutable";
13264 case DW_AT_threads_scaled:
13265 return "DW_AT_threads_scaled";
13266 case DW_AT_explicit:
13267 return "DW_AT_explicit";
13268 case DW_AT_object_pointer:
13269 return "DW_AT_object_pointer";
13270 case DW_AT_endianity:
13271 return "DW_AT_endianity";
13272 case DW_AT_elemental:
13273 return "DW_AT_elemental";
13274 case DW_AT_pure:
13275 return "DW_AT_pure";
13276 case DW_AT_recursive:
13277 return "DW_AT_recursive";
13278 /* DWARF 4 values. */
13279 case DW_AT_signature:
13280 return "DW_AT_signature";
13281 case DW_AT_linkage_name:
13282 return "DW_AT_linkage_name";
13283 /* SGI/MIPS extensions. */
13284 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13285 case DW_AT_MIPS_fde:
13286 return "DW_AT_MIPS_fde";
13287 #endif
13288 case DW_AT_MIPS_loop_begin:
13289 return "DW_AT_MIPS_loop_begin";
13290 case DW_AT_MIPS_tail_loop_begin:
13291 return "DW_AT_MIPS_tail_loop_begin";
13292 case DW_AT_MIPS_epilog_begin:
13293 return "DW_AT_MIPS_epilog_begin";
13294 case DW_AT_MIPS_loop_unroll_factor:
13295 return "DW_AT_MIPS_loop_unroll_factor";
13296 case DW_AT_MIPS_software_pipeline_depth:
13297 return "DW_AT_MIPS_software_pipeline_depth";
13298 case DW_AT_MIPS_linkage_name:
13299 return "DW_AT_MIPS_linkage_name";
13300 case DW_AT_MIPS_stride:
13301 return "DW_AT_MIPS_stride";
13302 case DW_AT_MIPS_abstract_name:
13303 return "DW_AT_MIPS_abstract_name";
13304 case DW_AT_MIPS_clone_origin:
13305 return "DW_AT_MIPS_clone_origin";
13306 case DW_AT_MIPS_has_inlines:
13307 return "DW_AT_MIPS_has_inlines";
13308 /* HP extensions. */
13309 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13310 case DW_AT_HP_block_index:
13311 return "DW_AT_HP_block_index";
13312 #endif
13313 case DW_AT_HP_unmodifiable:
13314 return "DW_AT_HP_unmodifiable";
13315 case DW_AT_HP_actuals_stmt_list:
13316 return "DW_AT_HP_actuals_stmt_list";
13317 case DW_AT_HP_proc_per_section:
13318 return "DW_AT_HP_proc_per_section";
13319 case DW_AT_HP_raw_data_ptr:
13320 return "DW_AT_HP_raw_data_ptr";
13321 case DW_AT_HP_pass_by_reference:
13322 return "DW_AT_HP_pass_by_reference";
13323 case DW_AT_HP_opt_level:
13324 return "DW_AT_HP_opt_level";
13325 case DW_AT_HP_prof_version_id:
13326 return "DW_AT_HP_prof_version_id";
13327 case DW_AT_HP_opt_flags:
13328 return "DW_AT_HP_opt_flags";
13329 case DW_AT_HP_cold_region_low_pc:
13330 return "DW_AT_HP_cold_region_low_pc";
13331 case DW_AT_HP_cold_region_high_pc:
13332 return "DW_AT_HP_cold_region_high_pc";
13333 case DW_AT_HP_all_variables_modifiable:
13334 return "DW_AT_HP_all_variables_modifiable";
13335 case DW_AT_HP_linkage_name:
13336 return "DW_AT_HP_linkage_name";
13337 case DW_AT_HP_prof_flags:
13338 return "DW_AT_HP_prof_flags";
13339 /* GNU extensions. */
13340 case DW_AT_sf_names:
13341 return "DW_AT_sf_names";
13342 case DW_AT_src_info:
13343 return "DW_AT_src_info";
13344 case DW_AT_mac_info:
13345 return "DW_AT_mac_info";
13346 case DW_AT_src_coords:
13347 return "DW_AT_src_coords";
13348 case DW_AT_body_begin:
13349 return "DW_AT_body_begin";
13350 case DW_AT_body_end:
13351 return "DW_AT_body_end";
13352 case DW_AT_GNU_vector:
13353 return "DW_AT_GNU_vector";
13354 case DW_AT_GNU_odr_signature:
13355 return "DW_AT_GNU_odr_signature";
13356 /* VMS extensions. */
13357 case DW_AT_VMS_rtnbeg_pd_address:
13358 return "DW_AT_VMS_rtnbeg_pd_address";
13359 /* UPC extension. */
13360 case DW_AT_upc_threads_scaled:
13361 return "DW_AT_upc_threads_scaled";
13362 /* PGI (STMicroelectronics) extensions. */
13363 case DW_AT_PGI_lbase:
13364 return "DW_AT_PGI_lbase";
13365 case DW_AT_PGI_soffset:
13366 return "DW_AT_PGI_soffset";
13367 case DW_AT_PGI_lstride:
13368 return "DW_AT_PGI_lstride";
13369 default:
13370 return "DW_AT_<unknown>";
13371 }
13372 }
13373
13374 /* Convert a DWARF value form code into its string name. */
13375
13376 static char *
13377 dwarf_form_name (unsigned form)
13378 {
13379 switch (form)
13380 {
13381 case DW_FORM_addr:
13382 return "DW_FORM_addr";
13383 case DW_FORM_block2:
13384 return "DW_FORM_block2";
13385 case DW_FORM_block4:
13386 return "DW_FORM_block4";
13387 case DW_FORM_data2:
13388 return "DW_FORM_data2";
13389 case DW_FORM_data4:
13390 return "DW_FORM_data4";
13391 case DW_FORM_data8:
13392 return "DW_FORM_data8";
13393 case DW_FORM_string:
13394 return "DW_FORM_string";
13395 case DW_FORM_block:
13396 return "DW_FORM_block";
13397 case DW_FORM_block1:
13398 return "DW_FORM_block1";
13399 case DW_FORM_data1:
13400 return "DW_FORM_data1";
13401 case DW_FORM_flag:
13402 return "DW_FORM_flag";
13403 case DW_FORM_sdata:
13404 return "DW_FORM_sdata";
13405 case DW_FORM_strp:
13406 return "DW_FORM_strp";
13407 case DW_FORM_udata:
13408 return "DW_FORM_udata";
13409 case DW_FORM_ref_addr:
13410 return "DW_FORM_ref_addr";
13411 case DW_FORM_ref1:
13412 return "DW_FORM_ref1";
13413 case DW_FORM_ref2:
13414 return "DW_FORM_ref2";
13415 case DW_FORM_ref4:
13416 return "DW_FORM_ref4";
13417 case DW_FORM_ref8:
13418 return "DW_FORM_ref8";
13419 case DW_FORM_ref_udata:
13420 return "DW_FORM_ref_udata";
13421 case DW_FORM_indirect:
13422 return "DW_FORM_indirect";
13423 case DW_FORM_sec_offset:
13424 return "DW_FORM_sec_offset";
13425 case DW_FORM_exprloc:
13426 return "DW_FORM_exprloc";
13427 case DW_FORM_flag_present:
13428 return "DW_FORM_flag_present";
13429 case DW_FORM_ref_sig8:
13430 return "DW_FORM_ref_sig8";
13431 default:
13432 return "DW_FORM_<unknown>";
13433 }
13434 }
13435
13436 /* Convert a DWARF stack opcode into its string name. */
13437
13438 const char *
13439 dwarf_stack_op_name (unsigned op)
13440 {
13441 switch (op)
13442 {
13443 case DW_OP_addr:
13444 return "DW_OP_addr";
13445 case DW_OP_deref:
13446 return "DW_OP_deref";
13447 case DW_OP_const1u:
13448 return "DW_OP_const1u";
13449 case DW_OP_const1s:
13450 return "DW_OP_const1s";
13451 case DW_OP_const2u:
13452 return "DW_OP_const2u";
13453 case DW_OP_const2s:
13454 return "DW_OP_const2s";
13455 case DW_OP_const4u:
13456 return "DW_OP_const4u";
13457 case DW_OP_const4s:
13458 return "DW_OP_const4s";
13459 case DW_OP_const8u:
13460 return "DW_OP_const8u";
13461 case DW_OP_const8s:
13462 return "DW_OP_const8s";
13463 case DW_OP_constu:
13464 return "DW_OP_constu";
13465 case DW_OP_consts:
13466 return "DW_OP_consts";
13467 case DW_OP_dup:
13468 return "DW_OP_dup";
13469 case DW_OP_drop:
13470 return "DW_OP_drop";
13471 case DW_OP_over:
13472 return "DW_OP_over";
13473 case DW_OP_pick:
13474 return "DW_OP_pick";
13475 case DW_OP_swap:
13476 return "DW_OP_swap";
13477 case DW_OP_rot:
13478 return "DW_OP_rot";
13479 case DW_OP_xderef:
13480 return "DW_OP_xderef";
13481 case DW_OP_abs:
13482 return "DW_OP_abs";
13483 case DW_OP_and:
13484 return "DW_OP_and";
13485 case DW_OP_div:
13486 return "DW_OP_div";
13487 case DW_OP_minus:
13488 return "DW_OP_minus";
13489 case DW_OP_mod:
13490 return "DW_OP_mod";
13491 case DW_OP_mul:
13492 return "DW_OP_mul";
13493 case DW_OP_neg:
13494 return "DW_OP_neg";
13495 case DW_OP_not:
13496 return "DW_OP_not";
13497 case DW_OP_or:
13498 return "DW_OP_or";
13499 case DW_OP_plus:
13500 return "DW_OP_plus";
13501 case DW_OP_plus_uconst:
13502 return "DW_OP_plus_uconst";
13503 case DW_OP_shl:
13504 return "DW_OP_shl";
13505 case DW_OP_shr:
13506 return "DW_OP_shr";
13507 case DW_OP_shra:
13508 return "DW_OP_shra";
13509 case DW_OP_xor:
13510 return "DW_OP_xor";
13511 case DW_OP_bra:
13512 return "DW_OP_bra";
13513 case DW_OP_eq:
13514 return "DW_OP_eq";
13515 case DW_OP_ge:
13516 return "DW_OP_ge";
13517 case DW_OP_gt:
13518 return "DW_OP_gt";
13519 case DW_OP_le:
13520 return "DW_OP_le";
13521 case DW_OP_lt:
13522 return "DW_OP_lt";
13523 case DW_OP_ne:
13524 return "DW_OP_ne";
13525 case DW_OP_skip:
13526 return "DW_OP_skip";
13527 case DW_OP_lit0:
13528 return "DW_OP_lit0";
13529 case DW_OP_lit1:
13530 return "DW_OP_lit1";
13531 case DW_OP_lit2:
13532 return "DW_OP_lit2";
13533 case DW_OP_lit3:
13534 return "DW_OP_lit3";
13535 case DW_OP_lit4:
13536 return "DW_OP_lit4";
13537 case DW_OP_lit5:
13538 return "DW_OP_lit5";
13539 case DW_OP_lit6:
13540 return "DW_OP_lit6";
13541 case DW_OP_lit7:
13542 return "DW_OP_lit7";
13543 case DW_OP_lit8:
13544 return "DW_OP_lit8";
13545 case DW_OP_lit9:
13546 return "DW_OP_lit9";
13547 case DW_OP_lit10:
13548 return "DW_OP_lit10";
13549 case DW_OP_lit11:
13550 return "DW_OP_lit11";
13551 case DW_OP_lit12:
13552 return "DW_OP_lit12";
13553 case DW_OP_lit13:
13554 return "DW_OP_lit13";
13555 case DW_OP_lit14:
13556 return "DW_OP_lit14";
13557 case DW_OP_lit15:
13558 return "DW_OP_lit15";
13559 case DW_OP_lit16:
13560 return "DW_OP_lit16";
13561 case DW_OP_lit17:
13562 return "DW_OP_lit17";
13563 case DW_OP_lit18:
13564 return "DW_OP_lit18";
13565 case DW_OP_lit19:
13566 return "DW_OP_lit19";
13567 case DW_OP_lit20:
13568 return "DW_OP_lit20";
13569 case DW_OP_lit21:
13570 return "DW_OP_lit21";
13571 case DW_OP_lit22:
13572 return "DW_OP_lit22";
13573 case DW_OP_lit23:
13574 return "DW_OP_lit23";
13575 case DW_OP_lit24:
13576 return "DW_OP_lit24";
13577 case DW_OP_lit25:
13578 return "DW_OP_lit25";
13579 case DW_OP_lit26:
13580 return "DW_OP_lit26";
13581 case DW_OP_lit27:
13582 return "DW_OP_lit27";
13583 case DW_OP_lit28:
13584 return "DW_OP_lit28";
13585 case DW_OP_lit29:
13586 return "DW_OP_lit29";
13587 case DW_OP_lit30:
13588 return "DW_OP_lit30";
13589 case DW_OP_lit31:
13590 return "DW_OP_lit31";
13591 case DW_OP_reg0:
13592 return "DW_OP_reg0";
13593 case DW_OP_reg1:
13594 return "DW_OP_reg1";
13595 case DW_OP_reg2:
13596 return "DW_OP_reg2";
13597 case DW_OP_reg3:
13598 return "DW_OP_reg3";
13599 case DW_OP_reg4:
13600 return "DW_OP_reg4";
13601 case DW_OP_reg5:
13602 return "DW_OP_reg5";
13603 case DW_OP_reg6:
13604 return "DW_OP_reg6";
13605 case DW_OP_reg7:
13606 return "DW_OP_reg7";
13607 case DW_OP_reg8:
13608 return "DW_OP_reg8";
13609 case DW_OP_reg9:
13610 return "DW_OP_reg9";
13611 case DW_OP_reg10:
13612 return "DW_OP_reg10";
13613 case DW_OP_reg11:
13614 return "DW_OP_reg11";
13615 case DW_OP_reg12:
13616 return "DW_OP_reg12";
13617 case DW_OP_reg13:
13618 return "DW_OP_reg13";
13619 case DW_OP_reg14:
13620 return "DW_OP_reg14";
13621 case DW_OP_reg15:
13622 return "DW_OP_reg15";
13623 case DW_OP_reg16:
13624 return "DW_OP_reg16";
13625 case DW_OP_reg17:
13626 return "DW_OP_reg17";
13627 case DW_OP_reg18:
13628 return "DW_OP_reg18";
13629 case DW_OP_reg19:
13630 return "DW_OP_reg19";
13631 case DW_OP_reg20:
13632 return "DW_OP_reg20";
13633 case DW_OP_reg21:
13634 return "DW_OP_reg21";
13635 case DW_OP_reg22:
13636 return "DW_OP_reg22";
13637 case DW_OP_reg23:
13638 return "DW_OP_reg23";
13639 case DW_OP_reg24:
13640 return "DW_OP_reg24";
13641 case DW_OP_reg25:
13642 return "DW_OP_reg25";
13643 case DW_OP_reg26:
13644 return "DW_OP_reg26";
13645 case DW_OP_reg27:
13646 return "DW_OP_reg27";
13647 case DW_OP_reg28:
13648 return "DW_OP_reg28";
13649 case DW_OP_reg29:
13650 return "DW_OP_reg29";
13651 case DW_OP_reg30:
13652 return "DW_OP_reg30";
13653 case DW_OP_reg31:
13654 return "DW_OP_reg31";
13655 case DW_OP_breg0:
13656 return "DW_OP_breg0";
13657 case DW_OP_breg1:
13658 return "DW_OP_breg1";
13659 case DW_OP_breg2:
13660 return "DW_OP_breg2";
13661 case DW_OP_breg3:
13662 return "DW_OP_breg3";
13663 case DW_OP_breg4:
13664 return "DW_OP_breg4";
13665 case DW_OP_breg5:
13666 return "DW_OP_breg5";
13667 case DW_OP_breg6:
13668 return "DW_OP_breg6";
13669 case DW_OP_breg7:
13670 return "DW_OP_breg7";
13671 case DW_OP_breg8:
13672 return "DW_OP_breg8";
13673 case DW_OP_breg9:
13674 return "DW_OP_breg9";
13675 case DW_OP_breg10:
13676 return "DW_OP_breg10";
13677 case DW_OP_breg11:
13678 return "DW_OP_breg11";
13679 case DW_OP_breg12:
13680 return "DW_OP_breg12";
13681 case DW_OP_breg13:
13682 return "DW_OP_breg13";
13683 case DW_OP_breg14:
13684 return "DW_OP_breg14";
13685 case DW_OP_breg15:
13686 return "DW_OP_breg15";
13687 case DW_OP_breg16:
13688 return "DW_OP_breg16";
13689 case DW_OP_breg17:
13690 return "DW_OP_breg17";
13691 case DW_OP_breg18:
13692 return "DW_OP_breg18";
13693 case DW_OP_breg19:
13694 return "DW_OP_breg19";
13695 case DW_OP_breg20:
13696 return "DW_OP_breg20";
13697 case DW_OP_breg21:
13698 return "DW_OP_breg21";
13699 case DW_OP_breg22:
13700 return "DW_OP_breg22";
13701 case DW_OP_breg23:
13702 return "DW_OP_breg23";
13703 case DW_OP_breg24:
13704 return "DW_OP_breg24";
13705 case DW_OP_breg25:
13706 return "DW_OP_breg25";
13707 case DW_OP_breg26:
13708 return "DW_OP_breg26";
13709 case DW_OP_breg27:
13710 return "DW_OP_breg27";
13711 case DW_OP_breg28:
13712 return "DW_OP_breg28";
13713 case DW_OP_breg29:
13714 return "DW_OP_breg29";
13715 case DW_OP_breg30:
13716 return "DW_OP_breg30";
13717 case DW_OP_breg31:
13718 return "DW_OP_breg31";
13719 case DW_OP_regx:
13720 return "DW_OP_regx";
13721 case DW_OP_fbreg:
13722 return "DW_OP_fbreg";
13723 case DW_OP_bregx:
13724 return "DW_OP_bregx";
13725 case DW_OP_piece:
13726 return "DW_OP_piece";
13727 case DW_OP_deref_size:
13728 return "DW_OP_deref_size";
13729 case DW_OP_xderef_size:
13730 return "DW_OP_xderef_size";
13731 case DW_OP_nop:
13732 return "DW_OP_nop";
13733 /* DWARF 3 extensions. */
13734 case DW_OP_push_object_address:
13735 return "DW_OP_push_object_address";
13736 case DW_OP_call2:
13737 return "DW_OP_call2";
13738 case DW_OP_call4:
13739 return "DW_OP_call4";
13740 case DW_OP_call_ref:
13741 return "DW_OP_call_ref";
13742 case DW_OP_form_tls_address:
13743 return "DW_OP_form_tls_address";
13744 case DW_OP_call_frame_cfa:
13745 return "DW_OP_call_frame_cfa";
13746 case DW_OP_bit_piece:
13747 return "DW_OP_bit_piece";
13748 /* DWARF 4 extensions. */
13749 case DW_OP_implicit_value:
13750 return "DW_OP_implicit_value";
13751 case DW_OP_stack_value:
13752 return "DW_OP_stack_value";
13753 /* GNU extensions. */
13754 case DW_OP_GNU_push_tls_address:
13755 return "DW_OP_GNU_push_tls_address";
13756 case DW_OP_GNU_uninit:
13757 return "DW_OP_GNU_uninit";
13758 case DW_OP_GNU_implicit_pointer:
13759 return "DW_OP_GNU_implicit_pointer";
13760 case DW_OP_GNU_entry_value:
13761 return "DW_OP_GNU_entry_value";
13762 case DW_OP_GNU_const_type:
13763 return "DW_OP_GNU_const_type";
13764 case DW_OP_GNU_regval_type:
13765 return "DW_OP_GNU_regval_type";
13766 case DW_OP_GNU_deref_type:
13767 return "DW_OP_GNU_deref_type";
13768 case DW_OP_GNU_convert:
13769 return "DW_OP_GNU_convert";
13770 case DW_OP_GNU_reinterpret:
13771 return "DW_OP_GNU_reinterpret";
13772 default:
13773 return NULL;
13774 }
13775 }
13776
13777 static char *
13778 dwarf_bool_name (unsigned mybool)
13779 {
13780 if (mybool)
13781 return "TRUE";
13782 else
13783 return "FALSE";
13784 }
13785
13786 /* Convert a DWARF type code into its string name. */
13787
13788 static char *
13789 dwarf_type_encoding_name (unsigned enc)
13790 {
13791 switch (enc)
13792 {
13793 case DW_ATE_void:
13794 return "DW_ATE_void";
13795 case DW_ATE_address:
13796 return "DW_ATE_address";
13797 case DW_ATE_boolean:
13798 return "DW_ATE_boolean";
13799 case DW_ATE_complex_float:
13800 return "DW_ATE_complex_float";
13801 case DW_ATE_float:
13802 return "DW_ATE_float";
13803 case DW_ATE_signed:
13804 return "DW_ATE_signed";
13805 case DW_ATE_signed_char:
13806 return "DW_ATE_signed_char";
13807 case DW_ATE_unsigned:
13808 return "DW_ATE_unsigned";
13809 case DW_ATE_unsigned_char:
13810 return "DW_ATE_unsigned_char";
13811 /* DWARF 3. */
13812 case DW_ATE_imaginary_float:
13813 return "DW_ATE_imaginary_float";
13814 case DW_ATE_packed_decimal:
13815 return "DW_ATE_packed_decimal";
13816 case DW_ATE_numeric_string:
13817 return "DW_ATE_numeric_string";
13818 case DW_ATE_edited:
13819 return "DW_ATE_edited";
13820 case DW_ATE_signed_fixed:
13821 return "DW_ATE_signed_fixed";
13822 case DW_ATE_unsigned_fixed:
13823 return "DW_ATE_unsigned_fixed";
13824 case DW_ATE_decimal_float:
13825 return "DW_ATE_decimal_float";
13826 /* DWARF 4. */
13827 case DW_ATE_UTF:
13828 return "DW_ATE_UTF";
13829 /* HP extensions. */
13830 case DW_ATE_HP_float80:
13831 return "DW_ATE_HP_float80";
13832 case DW_ATE_HP_complex_float80:
13833 return "DW_ATE_HP_complex_float80";
13834 case DW_ATE_HP_float128:
13835 return "DW_ATE_HP_float128";
13836 case DW_ATE_HP_complex_float128:
13837 return "DW_ATE_HP_complex_float128";
13838 case DW_ATE_HP_floathpintel:
13839 return "DW_ATE_HP_floathpintel";
13840 case DW_ATE_HP_imaginary_float80:
13841 return "DW_ATE_HP_imaginary_float80";
13842 case DW_ATE_HP_imaginary_float128:
13843 return "DW_ATE_HP_imaginary_float128";
13844 default:
13845 return "DW_ATE_<unknown>";
13846 }
13847 }
13848
13849 /* Convert a DWARF call frame info operation to its string name. */
13850
13851 #if 0
13852 static char *
13853 dwarf_cfi_name (unsigned cfi_opc)
13854 {
13855 switch (cfi_opc)
13856 {
13857 case DW_CFA_advance_loc:
13858 return "DW_CFA_advance_loc";
13859 case DW_CFA_offset:
13860 return "DW_CFA_offset";
13861 case DW_CFA_restore:
13862 return "DW_CFA_restore";
13863 case DW_CFA_nop:
13864 return "DW_CFA_nop";
13865 case DW_CFA_set_loc:
13866 return "DW_CFA_set_loc";
13867 case DW_CFA_advance_loc1:
13868 return "DW_CFA_advance_loc1";
13869 case DW_CFA_advance_loc2:
13870 return "DW_CFA_advance_loc2";
13871 case DW_CFA_advance_loc4:
13872 return "DW_CFA_advance_loc4";
13873 case DW_CFA_offset_extended:
13874 return "DW_CFA_offset_extended";
13875 case DW_CFA_restore_extended:
13876 return "DW_CFA_restore_extended";
13877 case DW_CFA_undefined:
13878 return "DW_CFA_undefined";
13879 case DW_CFA_same_value:
13880 return "DW_CFA_same_value";
13881 case DW_CFA_register:
13882 return "DW_CFA_register";
13883 case DW_CFA_remember_state:
13884 return "DW_CFA_remember_state";
13885 case DW_CFA_restore_state:
13886 return "DW_CFA_restore_state";
13887 case DW_CFA_def_cfa:
13888 return "DW_CFA_def_cfa";
13889 case DW_CFA_def_cfa_register:
13890 return "DW_CFA_def_cfa_register";
13891 case DW_CFA_def_cfa_offset:
13892 return "DW_CFA_def_cfa_offset";
13893 /* DWARF 3. */
13894 case DW_CFA_def_cfa_expression:
13895 return "DW_CFA_def_cfa_expression";
13896 case DW_CFA_expression:
13897 return "DW_CFA_expression";
13898 case DW_CFA_offset_extended_sf:
13899 return "DW_CFA_offset_extended_sf";
13900 case DW_CFA_def_cfa_sf:
13901 return "DW_CFA_def_cfa_sf";
13902 case DW_CFA_def_cfa_offset_sf:
13903 return "DW_CFA_def_cfa_offset_sf";
13904 case DW_CFA_val_offset:
13905 return "DW_CFA_val_offset";
13906 case DW_CFA_val_offset_sf:
13907 return "DW_CFA_val_offset_sf";
13908 case DW_CFA_val_expression:
13909 return "DW_CFA_val_expression";
13910 /* SGI/MIPS specific. */
13911 case DW_CFA_MIPS_advance_loc8:
13912 return "DW_CFA_MIPS_advance_loc8";
13913 /* GNU extensions. */
13914 case DW_CFA_GNU_window_save:
13915 return "DW_CFA_GNU_window_save";
13916 case DW_CFA_GNU_args_size:
13917 return "DW_CFA_GNU_args_size";
13918 case DW_CFA_GNU_negative_offset_extended:
13919 return "DW_CFA_GNU_negative_offset_extended";
13920 default:
13921 return "DW_CFA_<unknown>";
13922 }
13923 }
13924 #endif
13925
13926 static void
13927 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13928 {
13929 unsigned int i;
13930
13931 print_spaces (indent, f);
13932 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13933 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13934
13935 if (die->parent != NULL)
13936 {
13937 print_spaces (indent, f);
13938 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13939 die->parent->offset);
13940 }
13941
13942 print_spaces (indent, f);
13943 fprintf_unfiltered (f, " has children: %s\n",
13944 dwarf_bool_name (die->child != NULL));
13945
13946 print_spaces (indent, f);
13947 fprintf_unfiltered (f, " attributes:\n");
13948
13949 for (i = 0; i < die->num_attrs; ++i)
13950 {
13951 print_spaces (indent, f);
13952 fprintf_unfiltered (f, " %s (%s) ",
13953 dwarf_attr_name (die->attrs[i].name),
13954 dwarf_form_name (die->attrs[i].form));
13955
13956 switch (die->attrs[i].form)
13957 {
13958 case DW_FORM_ref_addr:
13959 case DW_FORM_addr:
13960 fprintf_unfiltered (f, "address: ");
13961 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13962 break;
13963 case DW_FORM_block2:
13964 case DW_FORM_block4:
13965 case DW_FORM_block:
13966 case DW_FORM_block1:
13967 fprintf_unfiltered (f, "block: size %d",
13968 DW_BLOCK (&die->attrs[i])->size);
13969 break;
13970 case DW_FORM_exprloc:
13971 fprintf_unfiltered (f, "expression: size %u",
13972 DW_BLOCK (&die->attrs[i])->size);
13973 break;
13974 case DW_FORM_ref1:
13975 case DW_FORM_ref2:
13976 case DW_FORM_ref4:
13977 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13978 (long) (DW_ADDR (&die->attrs[i])));
13979 break;
13980 case DW_FORM_data1:
13981 case DW_FORM_data2:
13982 case DW_FORM_data4:
13983 case DW_FORM_data8:
13984 case DW_FORM_udata:
13985 case DW_FORM_sdata:
13986 fprintf_unfiltered (f, "constant: %s",
13987 pulongest (DW_UNSND (&die->attrs[i])));
13988 break;
13989 case DW_FORM_sec_offset:
13990 fprintf_unfiltered (f, "section offset: %s",
13991 pulongest (DW_UNSND (&die->attrs[i])));
13992 break;
13993 case DW_FORM_ref_sig8:
13994 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13995 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13996 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
13997 else
13998 fprintf_unfiltered (f, "signatured type, offset: unknown");
13999 break;
14000 case DW_FORM_string:
14001 case DW_FORM_strp:
14002 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
14003 DW_STRING (&die->attrs[i])
14004 ? DW_STRING (&die->attrs[i]) : "",
14005 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
14006 break;
14007 case DW_FORM_flag:
14008 if (DW_UNSND (&die->attrs[i]))
14009 fprintf_unfiltered (f, "flag: TRUE");
14010 else
14011 fprintf_unfiltered (f, "flag: FALSE");
14012 break;
14013 case DW_FORM_flag_present:
14014 fprintf_unfiltered (f, "flag: TRUE");
14015 break;
14016 case DW_FORM_indirect:
14017 /* The reader will have reduced the indirect form to
14018 the "base form" so this form should not occur. */
14019 fprintf_unfiltered (f,
14020 "unexpected attribute form: DW_FORM_indirect");
14021 break;
14022 default:
14023 fprintf_unfiltered (f, "unsupported attribute form: %d.",
14024 die->attrs[i].form);
14025 break;
14026 }
14027 fprintf_unfiltered (f, "\n");
14028 }
14029 }
14030
14031 static void
14032 dump_die_for_error (struct die_info *die)
14033 {
14034 dump_die_shallow (gdb_stderr, 0, die);
14035 }
14036
14037 static void
14038 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14039 {
14040 int indent = level * 4;
14041
14042 gdb_assert (die != NULL);
14043
14044 if (level >= max_level)
14045 return;
14046
14047 dump_die_shallow (f, indent, die);
14048
14049 if (die->child != NULL)
14050 {
14051 print_spaces (indent, f);
14052 fprintf_unfiltered (f, " Children:");
14053 if (level + 1 < max_level)
14054 {
14055 fprintf_unfiltered (f, "\n");
14056 dump_die_1 (f, level + 1, max_level, die->child);
14057 }
14058 else
14059 {
14060 fprintf_unfiltered (f,
14061 " [not printed, max nesting level reached]\n");
14062 }
14063 }
14064
14065 if (die->sibling != NULL && level > 0)
14066 {
14067 dump_die_1 (f, level, max_level, die->sibling);
14068 }
14069 }
14070
14071 /* This is called from the pdie macro in gdbinit.in.
14072 It's not static so gcc will keep a copy callable from gdb. */
14073
14074 void
14075 dump_die (struct die_info *die, int max_level)
14076 {
14077 dump_die_1 (gdb_stdlog, 0, max_level, die);
14078 }
14079
14080 static void
14081 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14082 {
14083 void **slot;
14084
14085 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
14086
14087 *slot = die;
14088 }
14089
14090 static int
14091 is_ref_attr (struct attribute *attr)
14092 {
14093 switch (attr->form)
14094 {
14095 case DW_FORM_ref_addr:
14096 case DW_FORM_ref1:
14097 case DW_FORM_ref2:
14098 case DW_FORM_ref4:
14099 case DW_FORM_ref8:
14100 case DW_FORM_ref_udata:
14101 return 1;
14102 default:
14103 return 0;
14104 }
14105 }
14106
14107 static unsigned int
14108 dwarf2_get_ref_die_offset (struct attribute *attr)
14109 {
14110 if (is_ref_attr (attr))
14111 return DW_ADDR (attr);
14112
14113 complaint (&symfile_complaints,
14114 _("unsupported die ref attribute form: '%s'"),
14115 dwarf_form_name (attr->form));
14116 return 0;
14117 }
14118
14119 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14120 * the value held by the attribute is not constant. */
14121
14122 static LONGEST
14123 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14124 {
14125 if (attr->form == DW_FORM_sdata)
14126 return DW_SND (attr);
14127 else if (attr->form == DW_FORM_udata
14128 || attr->form == DW_FORM_data1
14129 || attr->form == DW_FORM_data2
14130 || attr->form == DW_FORM_data4
14131 || attr->form == DW_FORM_data8)
14132 return DW_UNSND (attr);
14133 else
14134 {
14135 complaint (&symfile_complaints,
14136 _("Attribute value is not a constant (%s)"),
14137 dwarf_form_name (attr->form));
14138 return default_value;
14139 }
14140 }
14141
14142 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14143 unit and add it to our queue.
14144 The result is non-zero if PER_CU was queued, otherwise the result is zero
14145 meaning either PER_CU is already queued or it is already loaded. */
14146
14147 static int
14148 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14149 struct dwarf2_per_cu_data *per_cu)
14150 {
14151 /* We may arrive here during partial symbol reading, if we need full
14152 DIEs to process an unusual case (e.g. template arguments). Do
14153 not queue PER_CU, just tell our caller to load its DIEs. */
14154 if (dwarf2_per_objfile->reading_partial_symbols)
14155 {
14156 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14157 return 1;
14158 return 0;
14159 }
14160
14161 /* Mark the dependence relation so that we don't flush PER_CU
14162 too early. */
14163 dwarf2_add_dependence (this_cu, per_cu);
14164
14165 /* If it's already on the queue, we have nothing to do. */
14166 if (per_cu->queued)
14167 return 0;
14168
14169 /* If the compilation unit is already loaded, just mark it as
14170 used. */
14171 if (per_cu->cu != NULL)
14172 {
14173 per_cu->cu->last_used = 0;
14174 return 0;
14175 }
14176
14177 /* Add it to the queue. */
14178 queue_comp_unit (per_cu, this_cu->objfile);
14179
14180 return 1;
14181 }
14182
14183 /* Follow reference or signature attribute ATTR of SRC_DIE.
14184 On entry *REF_CU is the CU of SRC_DIE.
14185 On exit *REF_CU is the CU of the result. */
14186
14187 static struct die_info *
14188 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14189 struct dwarf2_cu **ref_cu)
14190 {
14191 struct die_info *die;
14192
14193 if (is_ref_attr (attr))
14194 die = follow_die_ref (src_die, attr, ref_cu);
14195 else if (attr->form == DW_FORM_ref_sig8)
14196 die = follow_die_sig (src_die, attr, ref_cu);
14197 else
14198 {
14199 dump_die_for_error (src_die);
14200 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14201 (*ref_cu)->objfile->name);
14202 }
14203
14204 return die;
14205 }
14206
14207 /* Follow reference OFFSET.
14208 On entry *REF_CU is the CU of the source die referencing OFFSET.
14209 On exit *REF_CU is the CU of the result.
14210 Returns NULL if OFFSET is invalid. */
14211
14212 static struct die_info *
14213 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14214 {
14215 struct die_info temp_die;
14216 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14217
14218 gdb_assert (cu->per_cu != NULL);
14219
14220 target_cu = cu;
14221
14222 if (cu->per_cu->debug_type_section)
14223 {
14224 /* .debug_types CUs cannot reference anything outside their CU.
14225 If they need to, they have to reference a signatured type via
14226 DW_FORM_ref_sig8. */
14227 if (! offset_in_cu_p (&cu->header, offset))
14228 return NULL;
14229 }
14230 else if (! offset_in_cu_p (&cu->header, offset))
14231 {
14232 struct dwarf2_per_cu_data *per_cu;
14233
14234 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14235
14236 /* If necessary, add it to the queue and load its DIEs. */
14237 if (maybe_queue_comp_unit (cu, per_cu))
14238 load_full_comp_unit (per_cu, cu->objfile);
14239
14240 target_cu = per_cu->cu;
14241 }
14242 else if (cu->dies == NULL)
14243 {
14244 /* We're loading full DIEs during partial symbol reading. */
14245 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14246 load_full_comp_unit (cu->per_cu, cu->objfile);
14247 }
14248
14249 *ref_cu = target_cu;
14250 temp_die.offset = offset;
14251 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14252 }
14253
14254 /* Follow reference attribute ATTR of SRC_DIE.
14255 On entry *REF_CU is the CU of SRC_DIE.
14256 On exit *REF_CU is the CU of the result. */
14257
14258 static struct die_info *
14259 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14260 struct dwarf2_cu **ref_cu)
14261 {
14262 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14263 struct dwarf2_cu *cu = *ref_cu;
14264 struct die_info *die;
14265
14266 die = follow_die_offset (offset, ref_cu);
14267 if (!die)
14268 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14269 "at 0x%x [in module %s]"),
14270 offset, src_die->offset, cu->objfile->name);
14271
14272 return die;
14273 }
14274
14275 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14276 Returned value is intended for DW_OP_call*. Returned
14277 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14278
14279 struct dwarf2_locexpr_baton
14280 dwarf2_fetch_die_location_block (unsigned int offset,
14281 struct dwarf2_per_cu_data *per_cu,
14282 CORE_ADDR (*get_frame_pc) (void *baton),
14283 void *baton)
14284 {
14285 struct dwarf2_cu *cu;
14286 struct die_info *die;
14287 struct attribute *attr;
14288 struct dwarf2_locexpr_baton retval;
14289
14290 dw2_setup (per_cu->objfile);
14291
14292 if (per_cu->cu == NULL)
14293 load_cu (per_cu);
14294 cu = per_cu->cu;
14295
14296 die = follow_die_offset (offset, &cu);
14297 if (!die)
14298 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14299 offset, per_cu->cu->objfile->name);
14300
14301 attr = dwarf2_attr (die, DW_AT_location, cu);
14302 if (!attr)
14303 {
14304 /* DWARF: "If there is no such attribute, then there is no effect.".
14305 DATA is ignored if SIZE is 0. */
14306
14307 retval.data = NULL;
14308 retval.size = 0;
14309 }
14310 else if (attr_form_is_section_offset (attr))
14311 {
14312 struct dwarf2_loclist_baton loclist_baton;
14313 CORE_ADDR pc = (*get_frame_pc) (baton);
14314 size_t size;
14315
14316 fill_in_loclist_baton (cu, &loclist_baton, attr);
14317
14318 retval.data = dwarf2_find_location_expression (&loclist_baton,
14319 &size, pc);
14320 retval.size = size;
14321 }
14322 else
14323 {
14324 if (!attr_form_is_block (attr))
14325 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14326 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14327 offset, per_cu->cu->objfile->name);
14328
14329 retval.data = DW_BLOCK (attr)->data;
14330 retval.size = DW_BLOCK (attr)->size;
14331 }
14332 retval.per_cu = cu->per_cu;
14333
14334 age_cached_comp_units ();
14335
14336 return retval;
14337 }
14338
14339 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14340 PER_CU. */
14341
14342 struct type *
14343 dwarf2_get_die_type (unsigned int die_offset,
14344 struct dwarf2_per_cu_data *per_cu)
14345 {
14346 dw2_setup (per_cu->objfile);
14347 return get_die_type_at_offset (die_offset, per_cu);
14348 }
14349
14350 /* Follow the signature attribute ATTR in SRC_DIE.
14351 On entry *REF_CU is the CU of SRC_DIE.
14352 On exit *REF_CU is the CU of the result. */
14353
14354 static struct die_info *
14355 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14356 struct dwarf2_cu **ref_cu)
14357 {
14358 struct objfile *objfile = (*ref_cu)->objfile;
14359 struct die_info temp_die;
14360 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14361 struct dwarf2_cu *sig_cu;
14362 struct die_info *die;
14363
14364 /* sig_type will be NULL if the signatured type is missing from
14365 the debug info. */
14366 if (sig_type == NULL)
14367 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14368 "at 0x%x [in module %s]"),
14369 src_die->offset, objfile->name);
14370
14371 /* If necessary, add it to the queue and load its DIEs. */
14372
14373 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14374 read_signatured_type (objfile, sig_type);
14375
14376 gdb_assert (sig_type->per_cu.cu != NULL);
14377
14378 sig_cu = sig_type->per_cu.cu;
14379 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14380 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14381 if (die)
14382 {
14383 *ref_cu = sig_cu;
14384 return die;
14385 }
14386
14387 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14388 "from DIE at 0x%x [in module %s]"),
14389 sig_type->type_offset, src_die->offset, objfile->name);
14390 }
14391
14392 /* Given an offset of a signatured type, return its signatured_type. */
14393
14394 static struct signatured_type *
14395 lookup_signatured_type_at_offset (struct objfile *objfile,
14396 struct dwarf2_section_info *section,
14397 unsigned int offset)
14398 {
14399 gdb_byte *info_ptr = section->buffer + offset;
14400 unsigned int length, initial_length_size;
14401 unsigned int sig_offset;
14402 struct signatured_type find_entry, *type_sig;
14403
14404 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14405 sig_offset = (initial_length_size
14406 + 2 /*version*/
14407 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14408 + 1 /*address_size*/);
14409 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14410 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14411
14412 /* This is only used to lookup previously recorded types.
14413 If we didn't find it, it's our bug. */
14414 gdb_assert (type_sig != NULL);
14415 gdb_assert (offset == type_sig->per_cu.offset);
14416
14417 return type_sig;
14418 }
14419
14420 /* Read in signatured type at OFFSET and build its CU and die(s). */
14421
14422 static void
14423 read_signatured_type_at_offset (struct objfile *objfile,
14424 struct dwarf2_section_info *sect,
14425 unsigned int offset)
14426 {
14427 struct signatured_type *type_sig;
14428
14429 dwarf2_read_section (objfile, sect);
14430
14431 /* We have the section offset, but we need the signature to do the
14432 hash table lookup. */
14433 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14434
14435 gdb_assert (type_sig->per_cu.cu == NULL);
14436
14437 read_signatured_type (objfile, type_sig);
14438
14439 gdb_assert (type_sig->per_cu.cu != NULL);
14440 }
14441
14442 /* Read in a signatured type and build its CU and DIEs. */
14443
14444 static void
14445 read_signatured_type (struct objfile *objfile,
14446 struct signatured_type *type_sig)
14447 {
14448 gdb_byte *types_ptr;
14449 struct die_reader_specs reader_specs;
14450 struct dwarf2_cu *cu;
14451 ULONGEST signature;
14452 struct cleanup *back_to, *free_cu_cleanup;
14453 struct dwarf2_section_info *section = type_sig->per_cu.debug_type_section;
14454
14455 dwarf2_read_section (objfile, section);
14456 types_ptr = section->buffer + type_sig->per_cu.offset;
14457
14458 gdb_assert (type_sig->per_cu.cu == NULL);
14459
14460 cu = xmalloc (sizeof (*cu));
14461 init_one_comp_unit (cu, objfile);
14462
14463 type_sig->per_cu.cu = cu;
14464 cu->per_cu = &type_sig->per_cu;
14465
14466 /* If an error occurs while loading, release our storage. */
14467 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
14468
14469 types_ptr = read_type_comp_unit_head (&cu->header, section, &signature,
14470 types_ptr, objfile->obfd);
14471 gdb_assert (signature == type_sig->signature);
14472
14473 cu->die_hash
14474 = htab_create_alloc_ex (cu->header.length / 12,
14475 die_hash,
14476 die_eq,
14477 NULL,
14478 &cu->comp_unit_obstack,
14479 hashtab_obstack_allocate,
14480 dummy_obstack_deallocate);
14481
14482 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
14483 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14484
14485 init_cu_die_reader (&reader_specs, cu);
14486
14487 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14488 NULL /*parent*/);
14489
14490 /* We try not to read any attributes in this function, because not
14491 all objfiles needed for references have been loaded yet, and symbol
14492 table processing isn't initialized. But we have to set the CU language,
14493 or we won't be able to build types correctly. */
14494 prepare_one_comp_unit (cu, cu->dies);
14495
14496 do_cleanups (back_to);
14497
14498 /* We've successfully allocated this compilation unit. Let our caller
14499 clean it up when finished with it. */
14500 discard_cleanups (free_cu_cleanup);
14501
14502 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14503 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14504 }
14505
14506 /* Decode simple location descriptions.
14507 Given a pointer to a dwarf block that defines a location, compute
14508 the location and return the value.
14509
14510 NOTE drow/2003-11-18: This function is called in two situations
14511 now: for the address of static or global variables (partial symbols
14512 only) and for offsets into structures which are expected to be
14513 (more or less) constant. The partial symbol case should go away,
14514 and only the constant case should remain. That will let this
14515 function complain more accurately. A few special modes are allowed
14516 without complaint for global variables (for instance, global
14517 register values and thread-local values).
14518
14519 A location description containing no operations indicates that the
14520 object is optimized out. The return value is 0 for that case.
14521 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14522 callers will only want a very basic result and this can become a
14523 complaint.
14524
14525 Note that stack[0] is unused except as a default error return. */
14526
14527 static CORE_ADDR
14528 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14529 {
14530 struct objfile *objfile = cu->objfile;
14531 int i;
14532 int size = blk->size;
14533 gdb_byte *data = blk->data;
14534 CORE_ADDR stack[64];
14535 int stacki;
14536 unsigned int bytes_read, unsnd;
14537 gdb_byte op;
14538
14539 i = 0;
14540 stacki = 0;
14541 stack[stacki] = 0;
14542 stack[++stacki] = 0;
14543
14544 while (i < size)
14545 {
14546 op = data[i++];
14547 switch (op)
14548 {
14549 case DW_OP_lit0:
14550 case DW_OP_lit1:
14551 case DW_OP_lit2:
14552 case DW_OP_lit3:
14553 case DW_OP_lit4:
14554 case DW_OP_lit5:
14555 case DW_OP_lit6:
14556 case DW_OP_lit7:
14557 case DW_OP_lit8:
14558 case DW_OP_lit9:
14559 case DW_OP_lit10:
14560 case DW_OP_lit11:
14561 case DW_OP_lit12:
14562 case DW_OP_lit13:
14563 case DW_OP_lit14:
14564 case DW_OP_lit15:
14565 case DW_OP_lit16:
14566 case DW_OP_lit17:
14567 case DW_OP_lit18:
14568 case DW_OP_lit19:
14569 case DW_OP_lit20:
14570 case DW_OP_lit21:
14571 case DW_OP_lit22:
14572 case DW_OP_lit23:
14573 case DW_OP_lit24:
14574 case DW_OP_lit25:
14575 case DW_OP_lit26:
14576 case DW_OP_lit27:
14577 case DW_OP_lit28:
14578 case DW_OP_lit29:
14579 case DW_OP_lit30:
14580 case DW_OP_lit31:
14581 stack[++stacki] = op - DW_OP_lit0;
14582 break;
14583
14584 case DW_OP_reg0:
14585 case DW_OP_reg1:
14586 case DW_OP_reg2:
14587 case DW_OP_reg3:
14588 case DW_OP_reg4:
14589 case DW_OP_reg5:
14590 case DW_OP_reg6:
14591 case DW_OP_reg7:
14592 case DW_OP_reg8:
14593 case DW_OP_reg9:
14594 case DW_OP_reg10:
14595 case DW_OP_reg11:
14596 case DW_OP_reg12:
14597 case DW_OP_reg13:
14598 case DW_OP_reg14:
14599 case DW_OP_reg15:
14600 case DW_OP_reg16:
14601 case DW_OP_reg17:
14602 case DW_OP_reg18:
14603 case DW_OP_reg19:
14604 case DW_OP_reg20:
14605 case DW_OP_reg21:
14606 case DW_OP_reg22:
14607 case DW_OP_reg23:
14608 case DW_OP_reg24:
14609 case DW_OP_reg25:
14610 case DW_OP_reg26:
14611 case DW_OP_reg27:
14612 case DW_OP_reg28:
14613 case DW_OP_reg29:
14614 case DW_OP_reg30:
14615 case DW_OP_reg31:
14616 stack[++stacki] = op - DW_OP_reg0;
14617 if (i < size)
14618 dwarf2_complex_location_expr_complaint ();
14619 break;
14620
14621 case DW_OP_regx:
14622 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14623 i += bytes_read;
14624 stack[++stacki] = unsnd;
14625 if (i < size)
14626 dwarf2_complex_location_expr_complaint ();
14627 break;
14628
14629 case DW_OP_addr:
14630 stack[++stacki] = read_address (objfile->obfd, &data[i],
14631 cu, &bytes_read);
14632 i += bytes_read;
14633 break;
14634
14635 case DW_OP_const1u:
14636 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14637 i += 1;
14638 break;
14639
14640 case DW_OP_const1s:
14641 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14642 i += 1;
14643 break;
14644
14645 case DW_OP_const2u:
14646 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14647 i += 2;
14648 break;
14649
14650 case DW_OP_const2s:
14651 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14652 i += 2;
14653 break;
14654
14655 case DW_OP_const4u:
14656 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14657 i += 4;
14658 break;
14659
14660 case DW_OP_const4s:
14661 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14662 i += 4;
14663 break;
14664
14665 case DW_OP_constu:
14666 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14667 &bytes_read);
14668 i += bytes_read;
14669 break;
14670
14671 case DW_OP_consts:
14672 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14673 i += bytes_read;
14674 break;
14675
14676 case DW_OP_dup:
14677 stack[stacki + 1] = stack[stacki];
14678 stacki++;
14679 break;
14680
14681 case DW_OP_plus:
14682 stack[stacki - 1] += stack[stacki];
14683 stacki--;
14684 break;
14685
14686 case DW_OP_plus_uconst:
14687 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14688 &bytes_read);
14689 i += bytes_read;
14690 break;
14691
14692 case DW_OP_minus:
14693 stack[stacki - 1] -= stack[stacki];
14694 stacki--;
14695 break;
14696
14697 case DW_OP_deref:
14698 /* If we're not the last op, then we definitely can't encode
14699 this using GDB's address_class enum. This is valid for partial
14700 global symbols, although the variable's address will be bogus
14701 in the psymtab. */
14702 if (i < size)
14703 dwarf2_complex_location_expr_complaint ();
14704 break;
14705
14706 case DW_OP_GNU_push_tls_address:
14707 /* The top of the stack has the offset from the beginning
14708 of the thread control block at which the variable is located. */
14709 /* Nothing should follow this operator, so the top of stack would
14710 be returned. */
14711 /* This is valid for partial global symbols, but the variable's
14712 address will be bogus in the psymtab. */
14713 if (i < size)
14714 dwarf2_complex_location_expr_complaint ();
14715 break;
14716
14717 case DW_OP_GNU_uninit:
14718 break;
14719
14720 default:
14721 {
14722 const char *name = dwarf_stack_op_name (op);
14723
14724 if (name)
14725 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14726 name);
14727 else
14728 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14729 op);
14730 }
14731
14732 return (stack[stacki]);
14733 }
14734
14735 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14736 outside of the allocated space. Also enforce minimum>0. */
14737 if (stacki >= ARRAY_SIZE (stack) - 1)
14738 {
14739 complaint (&symfile_complaints,
14740 _("location description stack overflow"));
14741 return 0;
14742 }
14743
14744 if (stacki <= 0)
14745 {
14746 complaint (&symfile_complaints,
14747 _("location description stack underflow"));
14748 return 0;
14749 }
14750 }
14751 return (stack[stacki]);
14752 }
14753
14754 /* memory allocation interface */
14755
14756 static struct dwarf_block *
14757 dwarf_alloc_block (struct dwarf2_cu *cu)
14758 {
14759 struct dwarf_block *blk;
14760
14761 blk = (struct dwarf_block *)
14762 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14763 return (blk);
14764 }
14765
14766 static struct abbrev_info *
14767 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14768 {
14769 struct abbrev_info *abbrev;
14770
14771 abbrev = (struct abbrev_info *)
14772 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14773 memset (abbrev, 0, sizeof (struct abbrev_info));
14774 return (abbrev);
14775 }
14776
14777 static struct die_info *
14778 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14779 {
14780 struct die_info *die;
14781 size_t size = sizeof (struct die_info);
14782
14783 if (num_attrs > 1)
14784 size += (num_attrs - 1) * sizeof (struct attribute);
14785
14786 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14787 memset (die, 0, sizeof (struct die_info));
14788 return (die);
14789 }
14790
14791 \f
14792 /* Macro support. */
14793
14794 /* Return the full name of file number I in *LH's file name table.
14795 Use COMP_DIR as the name of the current directory of the
14796 compilation. The result is allocated using xmalloc; the caller is
14797 responsible for freeing it. */
14798 static char *
14799 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14800 {
14801 /* Is the file number a valid index into the line header's file name
14802 table? Remember that file numbers start with one, not zero. */
14803 if (1 <= file && file <= lh->num_file_names)
14804 {
14805 struct file_entry *fe = &lh->file_names[file - 1];
14806
14807 if (IS_ABSOLUTE_PATH (fe->name))
14808 return xstrdup (fe->name);
14809 else
14810 {
14811 const char *dir;
14812 int dir_len;
14813 char *full_name;
14814
14815 if (fe->dir_index)
14816 dir = lh->include_dirs[fe->dir_index - 1];
14817 else
14818 dir = comp_dir;
14819
14820 if (dir)
14821 {
14822 dir_len = strlen (dir);
14823 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14824 strcpy (full_name, dir);
14825 full_name[dir_len] = '/';
14826 strcpy (full_name + dir_len + 1, fe->name);
14827 return full_name;
14828 }
14829 else
14830 return xstrdup (fe->name);
14831 }
14832 }
14833 else
14834 {
14835 /* The compiler produced a bogus file number. We can at least
14836 record the macro definitions made in the file, even if we
14837 won't be able to find the file by name. */
14838 char fake_name[80];
14839
14840 sprintf (fake_name, "<bad macro file number %d>", file);
14841
14842 complaint (&symfile_complaints,
14843 _("bad file number in macro information (%d)"),
14844 file);
14845
14846 return xstrdup (fake_name);
14847 }
14848 }
14849
14850
14851 static struct macro_source_file *
14852 macro_start_file (int file, int line,
14853 struct macro_source_file *current_file,
14854 const char *comp_dir,
14855 struct line_header *lh, struct objfile *objfile)
14856 {
14857 /* The full name of this source file. */
14858 char *full_name = file_full_name (file, lh, comp_dir);
14859
14860 /* We don't create a macro table for this compilation unit
14861 at all until we actually get a filename. */
14862 if (! pending_macros)
14863 pending_macros = new_macro_table (&objfile->objfile_obstack,
14864 objfile->macro_cache);
14865
14866 if (! current_file)
14867 /* If we have no current file, then this must be the start_file
14868 directive for the compilation unit's main source file. */
14869 current_file = macro_set_main (pending_macros, full_name);
14870 else
14871 current_file = macro_include (current_file, line, full_name);
14872
14873 xfree (full_name);
14874
14875 return current_file;
14876 }
14877
14878
14879 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14880 followed by a null byte. */
14881 static char *
14882 copy_string (const char *buf, int len)
14883 {
14884 char *s = xmalloc (len + 1);
14885
14886 memcpy (s, buf, len);
14887 s[len] = '\0';
14888 return s;
14889 }
14890
14891
14892 static const char *
14893 consume_improper_spaces (const char *p, const char *body)
14894 {
14895 if (*p == ' ')
14896 {
14897 complaint (&symfile_complaints,
14898 _("macro definition contains spaces "
14899 "in formal argument list:\n`%s'"),
14900 body);
14901
14902 while (*p == ' ')
14903 p++;
14904 }
14905
14906 return p;
14907 }
14908
14909
14910 static void
14911 parse_macro_definition (struct macro_source_file *file, int line,
14912 const char *body)
14913 {
14914 const char *p;
14915
14916 /* The body string takes one of two forms. For object-like macro
14917 definitions, it should be:
14918
14919 <macro name> " " <definition>
14920
14921 For function-like macro definitions, it should be:
14922
14923 <macro name> "() " <definition>
14924 or
14925 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14926
14927 Spaces may appear only where explicitly indicated, and in the
14928 <definition>.
14929
14930 The Dwarf 2 spec says that an object-like macro's name is always
14931 followed by a space, but versions of GCC around March 2002 omit
14932 the space when the macro's definition is the empty string.
14933
14934 The Dwarf 2 spec says that there should be no spaces between the
14935 formal arguments in a function-like macro's formal argument list,
14936 but versions of GCC around March 2002 include spaces after the
14937 commas. */
14938
14939
14940 /* Find the extent of the macro name. The macro name is terminated
14941 by either a space or null character (for an object-like macro) or
14942 an opening paren (for a function-like macro). */
14943 for (p = body; *p; p++)
14944 if (*p == ' ' || *p == '(')
14945 break;
14946
14947 if (*p == ' ' || *p == '\0')
14948 {
14949 /* It's an object-like macro. */
14950 int name_len = p - body;
14951 char *name = copy_string (body, name_len);
14952 const char *replacement;
14953
14954 if (*p == ' ')
14955 replacement = body + name_len + 1;
14956 else
14957 {
14958 dwarf2_macro_malformed_definition_complaint (body);
14959 replacement = body + name_len;
14960 }
14961
14962 macro_define_object (file, line, name, replacement);
14963
14964 xfree (name);
14965 }
14966 else if (*p == '(')
14967 {
14968 /* It's a function-like macro. */
14969 char *name = copy_string (body, p - body);
14970 int argc = 0;
14971 int argv_size = 1;
14972 char **argv = xmalloc (argv_size * sizeof (*argv));
14973
14974 p++;
14975
14976 p = consume_improper_spaces (p, body);
14977
14978 /* Parse the formal argument list. */
14979 while (*p && *p != ')')
14980 {
14981 /* Find the extent of the current argument name. */
14982 const char *arg_start = p;
14983
14984 while (*p && *p != ',' && *p != ')' && *p != ' ')
14985 p++;
14986
14987 if (! *p || p == arg_start)
14988 dwarf2_macro_malformed_definition_complaint (body);
14989 else
14990 {
14991 /* Make sure argv has room for the new argument. */
14992 if (argc >= argv_size)
14993 {
14994 argv_size *= 2;
14995 argv = xrealloc (argv, argv_size * sizeof (*argv));
14996 }
14997
14998 argv[argc++] = copy_string (arg_start, p - arg_start);
14999 }
15000
15001 p = consume_improper_spaces (p, body);
15002
15003 /* Consume the comma, if present. */
15004 if (*p == ',')
15005 {
15006 p++;
15007
15008 p = consume_improper_spaces (p, body);
15009 }
15010 }
15011
15012 if (*p == ')')
15013 {
15014 p++;
15015
15016 if (*p == ' ')
15017 /* Perfectly formed definition, no complaints. */
15018 macro_define_function (file, line, name,
15019 argc, (const char **) argv,
15020 p + 1);
15021 else if (*p == '\0')
15022 {
15023 /* Complain, but do define it. */
15024 dwarf2_macro_malformed_definition_complaint (body);
15025 macro_define_function (file, line, name,
15026 argc, (const char **) argv,
15027 p);
15028 }
15029 else
15030 /* Just complain. */
15031 dwarf2_macro_malformed_definition_complaint (body);
15032 }
15033 else
15034 /* Just complain. */
15035 dwarf2_macro_malformed_definition_complaint (body);
15036
15037 xfree (name);
15038 {
15039 int i;
15040
15041 for (i = 0; i < argc; i++)
15042 xfree (argv[i]);
15043 }
15044 xfree (argv);
15045 }
15046 else
15047 dwarf2_macro_malformed_definition_complaint (body);
15048 }
15049
15050 /* Skip some bytes from BYTES according to the form given in FORM.
15051 Returns the new pointer. */
15052
15053 static gdb_byte *
15054 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
15055 enum dwarf_form form,
15056 unsigned int offset_size,
15057 struct dwarf2_section_info *section)
15058 {
15059 unsigned int bytes_read;
15060
15061 switch (form)
15062 {
15063 case DW_FORM_data1:
15064 case DW_FORM_flag:
15065 ++bytes;
15066 break;
15067
15068 case DW_FORM_data2:
15069 bytes += 2;
15070 break;
15071
15072 case DW_FORM_data4:
15073 bytes += 4;
15074 break;
15075
15076 case DW_FORM_data8:
15077 bytes += 8;
15078 break;
15079
15080 case DW_FORM_string:
15081 read_direct_string (abfd, bytes, &bytes_read);
15082 bytes += bytes_read;
15083 break;
15084
15085 case DW_FORM_sec_offset:
15086 case DW_FORM_strp:
15087 bytes += offset_size;
15088 break;
15089
15090 case DW_FORM_block:
15091 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15092 bytes += bytes_read;
15093 break;
15094
15095 case DW_FORM_block1:
15096 bytes += 1 + read_1_byte (abfd, bytes);
15097 break;
15098 case DW_FORM_block2:
15099 bytes += 2 + read_2_bytes (abfd, bytes);
15100 break;
15101 case DW_FORM_block4:
15102 bytes += 4 + read_4_bytes (abfd, bytes);
15103 break;
15104
15105 case DW_FORM_sdata:
15106 case DW_FORM_udata:
15107 bytes = skip_leb128 (abfd, bytes);
15108 break;
15109
15110 default:
15111 {
15112 complain:
15113 complaint (&symfile_complaints,
15114 _("invalid form 0x%x in `%s'"),
15115 form,
15116 section->asection->name);
15117 return NULL;
15118 }
15119 }
15120
15121 return bytes;
15122 }
15123
15124 /* A helper for dwarf_decode_macros that handles skipping an unknown
15125 opcode. Returns an updated pointer to the macro data buffer; or,
15126 on error, issues a complaint and returns NULL. */
15127
15128 static gdb_byte *
15129 skip_unknown_opcode (unsigned int opcode,
15130 gdb_byte **opcode_definitions,
15131 gdb_byte *mac_ptr,
15132 bfd *abfd,
15133 unsigned int offset_size,
15134 struct dwarf2_section_info *section)
15135 {
15136 unsigned int bytes_read, i;
15137 unsigned long arg;
15138 gdb_byte *defn;
15139
15140 if (opcode_definitions[opcode] == NULL)
15141 {
15142 complaint (&symfile_complaints,
15143 _("unrecognized DW_MACFINO opcode 0x%x"),
15144 opcode);
15145 return NULL;
15146 }
15147
15148 defn = opcode_definitions[opcode];
15149 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15150 defn += bytes_read;
15151
15152 for (i = 0; i < arg; ++i)
15153 {
15154 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15155 if (mac_ptr == NULL)
15156 {
15157 /* skip_form_bytes already issued the complaint. */
15158 return NULL;
15159 }
15160 }
15161
15162 return mac_ptr;
15163 }
15164
15165 /* A helper function which parses the header of a macro section.
15166 If the macro section is the extended (for now called "GNU") type,
15167 then this updates *OFFSET_SIZE. Returns a pointer to just after
15168 the header, or issues a complaint and returns NULL on error. */
15169
15170 static gdb_byte *
15171 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15172 bfd *abfd,
15173 gdb_byte *mac_ptr,
15174 unsigned int *offset_size,
15175 int section_is_gnu)
15176 {
15177 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15178
15179 if (section_is_gnu)
15180 {
15181 unsigned int version, flags;
15182
15183 version = read_2_bytes (abfd, mac_ptr);
15184 if (version != 4)
15185 {
15186 complaint (&symfile_complaints,
15187 _("unrecognized version `%d' in .debug_macro section"),
15188 version);
15189 return NULL;
15190 }
15191 mac_ptr += 2;
15192
15193 flags = read_1_byte (abfd, mac_ptr);
15194 ++mac_ptr;
15195 *offset_size = (flags & 1) ? 8 : 4;
15196
15197 if ((flags & 2) != 0)
15198 /* We don't need the line table offset. */
15199 mac_ptr += *offset_size;
15200
15201 /* Vendor opcode descriptions. */
15202 if ((flags & 4) != 0)
15203 {
15204 unsigned int i, count;
15205
15206 count = read_1_byte (abfd, mac_ptr);
15207 ++mac_ptr;
15208 for (i = 0; i < count; ++i)
15209 {
15210 unsigned int opcode, bytes_read;
15211 unsigned long arg;
15212
15213 opcode = read_1_byte (abfd, mac_ptr);
15214 ++mac_ptr;
15215 opcode_definitions[opcode] = mac_ptr;
15216 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15217 mac_ptr += bytes_read;
15218 mac_ptr += arg;
15219 }
15220 }
15221 }
15222
15223 return mac_ptr;
15224 }
15225
15226 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15227 including DW_GNU_MACINFO_transparent_include. */
15228
15229 static void
15230 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15231 struct macro_source_file *current_file,
15232 struct line_header *lh, char *comp_dir,
15233 struct dwarf2_section_info *section,
15234 int section_is_gnu,
15235 unsigned int offset_size,
15236 struct objfile *objfile)
15237 {
15238 enum dwarf_macro_record_type macinfo_type;
15239 int at_commandline;
15240 gdb_byte *opcode_definitions[256];
15241
15242 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15243 &offset_size, section_is_gnu);
15244 if (mac_ptr == NULL)
15245 {
15246 /* We already issued a complaint. */
15247 return;
15248 }
15249
15250 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15251 GDB is still reading the definitions from command line. First
15252 DW_MACINFO_start_file will need to be ignored as it was already executed
15253 to create CURRENT_FILE for the main source holding also the command line
15254 definitions. On first met DW_MACINFO_start_file this flag is reset to
15255 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15256
15257 at_commandline = 1;
15258
15259 do
15260 {
15261 /* Do we at least have room for a macinfo type byte? */
15262 if (mac_ptr >= mac_end)
15263 {
15264 dwarf2_macros_too_long_complaint (section);
15265 break;
15266 }
15267
15268 macinfo_type = read_1_byte (abfd, mac_ptr);
15269 mac_ptr++;
15270
15271 /* Note that we rely on the fact that the corresponding GNU and
15272 DWARF constants are the same. */
15273 switch (macinfo_type)
15274 {
15275 /* A zero macinfo type indicates the end of the macro
15276 information. */
15277 case 0:
15278 break;
15279
15280 case DW_MACRO_GNU_define:
15281 case DW_MACRO_GNU_undef:
15282 case DW_MACRO_GNU_define_indirect:
15283 case DW_MACRO_GNU_undef_indirect:
15284 {
15285 unsigned int bytes_read;
15286 int line;
15287 char *body;
15288 int is_define;
15289
15290 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15291 mac_ptr += bytes_read;
15292
15293 if (macinfo_type == DW_MACRO_GNU_define
15294 || macinfo_type == DW_MACRO_GNU_undef)
15295 {
15296 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15297 mac_ptr += bytes_read;
15298 }
15299 else
15300 {
15301 LONGEST str_offset;
15302
15303 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15304 mac_ptr += offset_size;
15305
15306 body = read_indirect_string_at_offset (abfd, str_offset);
15307 }
15308
15309 is_define = (macinfo_type == DW_MACRO_GNU_define
15310 || macinfo_type == DW_MACRO_GNU_define_indirect);
15311 if (! current_file)
15312 {
15313 /* DWARF violation as no main source is present. */
15314 complaint (&symfile_complaints,
15315 _("debug info with no main source gives macro %s "
15316 "on line %d: %s"),
15317 is_define ? _("definition") : _("undefinition"),
15318 line, body);
15319 break;
15320 }
15321 if ((line == 0 && !at_commandline)
15322 || (line != 0 && at_commandline))
15323 complaint (&symfile_complaints,
15324 _("debug info gives %s macro %s with %s line %d: %s"),
15325 at_commandline ? _("command-line") : _("in-file"),
15326 is_define ? _("definition") : _("undefinition"),
15327 line == 0 ? _("zero") : _("non-zero"), line, body);
15328
15329 if (is_define)
15330 parse_macro_definition (current_file, line, body);
15331 else
15332 {
15333 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15334 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15335 macro_undef (current_file, line, body);
15336 }
15337 }
15338 break;
15339
15340 case DW_MACRO_GNU_start_file:
15341 {
15342 unsigned int bytes_read;
15343 int line, file;
15344
15345 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15346 mac_ptr += bytes_read;
15347 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15348 mac_ptr += bytes_read;
15349
15350 if ((line == 0 && !at_commandline)
15351 || (line != 0 && at_commandline))
15352 complaint (&symfile_complaints,
15353 _("debug info gives source %d included "
15354 "from %s at %s line %d"),
15355 file, at_commandline ? _("command-line") : _("file"),
15356 line == 0 ? _("zero") : _("non-zero"), line);
15357
15358 if (at_commandline)
15359 {
15360 /* This DW_MACRO_GNU_start_file was executed in the
15361 pass one. */
15362 at_commandline = 0;
15363 }
15364 else
15365 current_file = macro_start_file (file, line,
15366 current_file, comp_dir,
15367 lh, objfile);
15368 }
15369 break;
15370
15371 case DW_MACRO_GNU_end_file:
15372 if (! current_file)
15373 complaint (&symfile_complaints,
15374 _("macro debug info has an unmatched "
15375 "`close_file' directive"));
15376 else
15377 {
15378 current_file = current_file->included_by;
15379 if (! current_file)
15380 {
15381 enum dwarf_macro_record_type next_type;
15382
15383 /* GCC circa March 2002 doesn't produce the zero
15384 type byte marking the end of the compilation
15385 unit. Complain if it's not there, but exit no
15386 matter what. */
15387
15388 /* Do we at least have room for a macinfo type byte? */
15389 if (mac_ptr >= mac_end)
15390 {
15391 dwarf2_macros_too_long_complaint (section);
15392 return;
15393 }
15394
15395 /* We don't increment mac_ptr here, so this is just
15396 a look-ahead. */
15397 next_type = read_1_byte (abfd, mac_ptr);
15398 if (next_type != 0)
15399 complaint (&symfile_complaints,
15400 _("no terminating 0-type entry for "
15401 "macros in `.debug_macinfo' section"));
15402
15403 return;
15404 }
15405 }
15406 break;
15407
15408 case DW_MACRO_GNU_transparent_include:
15409 {
15410 LONGEST offset;
15411
15412 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15413 mac_ptr += offset_size;
15414
15415 dwarf_decode_macro_bytes (abfd,
15416 section->buffer + offset,
15417 mac_end, current_file,
15418 lh, comp_dir,
15419 section, section_is_gnu,
15420 offset_size, objfile);
15421 }
15422 break;
15423
15424 case DW_MACINFO_vendor_ext:
15425 if (!section_is_gnu)
15426 {
15427 unsigned int bytes_read;
15428 int constant;
15429
15430 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15431 mac_ptr += bytes_read;
15432 read_direct_string (abfd, mac_ptr, &bytes_read);
15433 mac_ptr += bytes_read;
15434
15435 /* We don't recognize any vendor extensions. */
15436 break;
15437 }
15438 /* FALLTHROUGH */
15439
15440 default:
15441 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15442 mac_ptr, abfd, offset_size,
15443 section);
15444 if (mac_ptr == NULL)
15445 return;
15446 break;
15447 }
15448 } while (macinfo_type != 0);
15449 }
15450
15451 static void
15452 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15453 char *comp_dir, bfd *abfd,
15454 struct dwarf2_cu *cu,
15455 struct dwarf2_section_info *section,
15456 int section_is_gnu)
15457 {
15458 gdb_byte *mac_ptr, *mac_end;
15459 struct macro_source_file *current_file = 0;
15460 enum dwarf_macro_record_type macinfo_type;
15461 unsigned int offset_size = cu->header.offset_size;
15462 gdb_byte *opcode_definitions[256];
15463
15464 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15465 if (section->buffer == NULL)
15466 {
15467 complaint (&symfile_complaints, _("missing %s section"),
15468 section->asection->name);
15469 return;
15470 }
15471
15472 /* First pass: Find the name of the base filename.
15473 This filename is needed in order to process all macros whose definition
15474 (or undefinition) comes from the command line. These macros are defined
15475 before the first DW_MACINFO_start_file entry, and yet still need to be
15476 associated to the base file.
15477
15478 To determine the base file name, we scan the macro definitions until we
15479 reach the first DW_MACINFO_start_file entry. We then initialize
15480 CURRENT_FILE accordingly so that any macro definition found before the
15481 first DW_MACINFO_start_file can still be associated to the base file. */
15482
15483 mac_ptr = section->buffer + offset;
15484 mac_end = section->buffer + section->size;
15485
15486 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15487 &offset_size, section_is_gnu);
15488 if (mac_ptr == NULL)
15489 {
15490 /* We already issued a complaint. */
15491 return;
15492 }
15493
15494 do
15495 {
15496 /* Do we at least have room for a macinfo type byte? */
15497 if (mac_ptr >= mac_end)
15498 {
15499 /* Complaint is printed during the second pass as GDB will probably
15500 stop the first pass earlier upon finding
15501 DW_MACINFO_start_file. */
15502 break;
15503 }
15504
15505 macinfo_type = read_1_byte (abfd, mac_ptr);
15506 mac_ptr++;
15507
15508 /* Note that we rely on the fact that the corresponding GNU and
15509 DWARF constants are the same. */
15510 switch (macinfo_type)
15511 {
15512 /* A zero macinfo type indicates the end of the macro
15513 information. */
15514 case 0:
15515 break;
15516
15517 case DW_MACRO_GNU_define:
15518 case DW_MACRO_GNU_undef:
15519 /* Only skip the data by MAC_PTR. */
15520 {
15521 unsigned int bytes_read;
15522
15523 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15524 mac_ptr += bytes_read;
15525 read_direct_string (abfd, mac_ptr, &bytes_read);
15526 mac_ptr += bytes_read;
15527 }
15528 break;
15529
15530 case DW_MACRO_GNU_start_file:
15531 {
15532 unsigned int bytes_read;
15533 int line, file;
15534
15535 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15536 mac_ptr += bytes_read;
15537 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15538 mac_ptr += bytes_read;
15539
15540 current_file = macro_start_file (file, line, current_file,
15541 comp_dir, lh, cu->objfile);
15542 }
15543 break;
15544
15545 case DW_MACRO_GNU_end_file:
15546 /* No data to skip by MAC_PTR. */
15547 break;
15548
15549 case DW_MACRO_GNU_define_indirect:
15550 case DW_MACRO_GNU_undef_indirect:
15551 {
15552 unsigned int bytes_read;
15553
15554 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15555 mac_ptr += bytes_read;
15556 mac_ptr += offset_size;
15557 }
15558 break;
15559
15560 case DW_MACRO_GNU_transparent_include:
15561 /* Note that, according to the spec, a transparent include
15562 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15563 skip this opcode. */
15564 mac_ptr += offset_size;
15565 break;
15566
15567 case DW_MACINFO_vendor_ext:
15568 /* Only skip the data by MAC_PTR. */
15569 if (!section_is_gnu)
15570 {
15571 unsigned int bytes_read;
15572
15573 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15574 mac_ptr += bytes_read;
15575 read_direct_string (abfd, mac_ptr, &bytes_read);
15576 mac_ptr += bytes_read;
15577 }
15578 /* FALLTHROUGH */
15579
15580 default:
15581 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15582 mac_ptr, abfd, offset_size,
15583 section);
15584 if (mac_ptr == NULL)
15585 return;
15586 break;
15587 }
15588 } while (macinfo_type != 0 && current_file == NULL);
15589
15590 /* Second pass: Process all entries.
15591
15592 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15593 command-line macro definitions/undefinitions. This flag is unset when we
15594 reach the first DW_MACINFO_start_file entry. */
15595
15596 dwarf_decode_macro_bytes (abfd, section->buffer + offset, mac_end,
15597 current_file, lh, comp_dir, section, section_is_gnu,
15598 offset_size, cu->objfile);
15599 }
15600
15601 /* Check if the attribute's form is a DW_FORM_block*
15602 if so return true else false. */
15603 static int
15604 attr_form_is_block (struct attribute *attr)
15605 {
15606 return (attr == NULL ? 0 :
15607 attr->form == DW_FORM_block1
15608 || attr->form == DW_FORM_block2
15609 || attr->form == DW_FORM_block4
15610 || attr->form == DW_FORM_block
15611 || attr->form == DW_FORM_exprloc);
15612 }
15613
15614 /* Return non-zero if ATTR's value is a section offset --- classes
15615 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15616 You may use DW_UNSND (attr) to retrieve such offsets.
15617
15618 Section 7.5.4, "Attribute Encodings", explains that no attribute
15619 may have a value that belongs to more than one of these classes; it
15620 would be ambiguous if we did, because we use the same forms for all
15621 of them. */
15622 static int
15623 attr_form_is_section_offset (struct attribute *attr)
15624 {
15625 return (attr->form == DW_FORM_data4
15626 || attr->form == DW_FORM_data8
15627 || attr->form == DW_FORM_sec_offset);
15628 }
15629
15630
15631 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15632 zero otherwise. When this function returns true, you can apply
15633 dwarf2_get_attr_constant_value to it.
15634
15635 However, note that for some attributes you must check
15636 attr_form_is_section_offset before using this test. DW_FORM_data4
15637 and DW_FORM_data8 are members of both the constant class, and of
15638 the classes that contain offsets into other debug sections
15639 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15640 that, if an attribute's can be either a constant or one of the
15641 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15642 taken as section offsets, not constants. */
15643 static int
15644 attr_form_is_constant (struct attribute *attr)
15645 {
15646 switch (attr->form)
15647 {
15648 case DW_FORM_sdata:
15649 case DW_FORM_udata:
15650 case DW_FORM_data1:
15651 case DW_FORM_data2:
15652 case DW_FORM_data4:
15653 case DW_FORM_data8:
15654 return 1;
15655 default:
15656 return 0;
15657 }
15658 }
15659
15660 /* A helper function that fills in a dwarf2_loclist_baton. */
15661
15662 static void
15663 fill_in_loclist_baton (struct dwarf2_cu *cu,
15664 struct dwarf2_loclist_baton *baton,
15665 struct attribute *attr)
15666 {
15667 dwarf2_read_section (dwarf2_per_objfile->objfile,
15668 &dwarf2_per_objfile->loc);
15669
15670 baton->per_cu = cu->per_cu;
15671 gdb_assert (baton->per_cu);
15672 /* We don't know how long the location list is, but make sure we
15673 don't run off the edge of the section. */
15674 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15675 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15676 baton->base_address = cu->base_address;
15677 }
15678
15679 static void
15680 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15681 struct dwarf2_cu *cu)
15682 {
15683 if (attr_form_is_section_offset (attr)
15684 /* ".debug_loc" may not exist at all, or the offset may be outside
15685 the section. If so, fall through to the complaint in the
15686 other branch. */
15687 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
15688 &dwarf2_per_objfile->loc))
15689 {
15690 struct dwarf2_loclist_baton *baton;
15691
15692 baton = obstack_alloc (&cu->objfile->objfile_obstack,
15693 sizeof (struct dwarf2_loclist_baton));
15694
15695 fill_in_loclist_baton (cu, baton, attr);
15696
15697 if (cu->base_known == 0)
15698 complaint (&symfile_complaints,
15699 _("Location list used without "
15700 "specifying the CU base address."));
15701
15702 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15703 SYMBOL_LOCATION_BATON (sym) = baton;
15704 }
15705 else
15706 {
15707 struct dwarf2_locexpr_baton *baton;
15708
15709 baton = obstack_alloc (&cu->objfile->objfile_obstack,
15710 sizeof (struct dwarf2_locexpr_baton));
15711 baton->per_cu = cu->per_cu;
15712 gdb_assert (baton->per_cu);
15713
15714 if (attr_form_is_block (attr))
15715 {
15716 /* Note that we're just copying the block's data pointer
15717 here, not the actual data. We're still pointing into the
15718 info_buffer for SYM's objfile; right now we never release
15719 that buffer, but when we do clean up properly this may
15720 need to change. */
15721 baton->size = DW_BLOCK (attr)->size;
15722 baton->data = DW_BLOCK (attr)->data;
15723 }
15724 else
15725 {
15726 dwarf2_invalid_attrib_class_complaint ("location description",
15727 SYMBOL_NATURAL_NAME (sym));
15728 baton->size = 0;
15729 }
15730
15731 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15732 SYMBOL_LOCATION_BATON (sym) = baton;
15733 }
15734 }
15735
15736 /* Return the OBJFILE associated with the compilation unit CU. If CU
15737 came from a separate debuginfo file, then the master objfile is
15738 returned. */
15739
15740 struct objfile *
15741 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15742 {
15743 struct objfile *objfile = per_cu->objfile;
15744
15745 /* Return the master objfile, so that we can report and look up the
15746 correct file containing this variable. */
15747 if (objfile->separate_debug_objfile_backlink)
15748 objfile = objfile->separate_debug_objfile_backlink;
15749
15750 return objfile;
15751 }
15752
15753 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15754 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15755 CU_HEADERP first. */
15756
15757 static const struct comp_unit_head *
15758 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15759 struct dwarf2_per_cu_data *per_cu)
15760 {
15761 struct objfile *objfile;
15762 struct dwarf2_per_objfile *per_objfile;
15763 gdb_byte *info_ptr;
15764
15765 if (per_cu->cu)
15766 return &per_cu->cu->header;
15767
15768 objfile = per_cu->objfile;
15769 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15770 info_ptr = per_objfile->info.buffer + per_cu->offset;
15771
15772 memset (cu_headerp, 0, sizeof (*cu_headerp));
15773 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15774
15775 return cu_headerp;
15776 }
15777
15778 /* Return the address size given in the compilation unit header for CU. */
15779
15780 CORE_ADDR
15781 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15782 {
15783 struct comp_unit_head cu_header_local;
15784 const struct comp_unit_head *cu_headerp;
15785
15786 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15787
15788 return cu_headerp->addr_size;
15789 }
15790
15791 /* Return the offset size given in the compilation unit header for CU. */
15792
15793 int
15794 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15795 {
15796 struct comp_unit_head cu_header_local;
15797 const struct comp_unit_head *cu_headerp;
15798
15799 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15800
15801 return cu_headerp->offset_size;
15802 }
15803
15804 /* See its dwarf2loc.h declaration. */
15805
15806 int
15807 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15808 {
15809 struct comp_unit_head cu_header_local;
15810 const struct comp_unit_head *cu_headerp;
15811
15812 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15813
15814 if (cu_headerp->version == 2)
15815 return cu_headerp->addr_size;
15816 else
15817 return cu_headerp->offset_size;
15818 }
15819
15820 /* Return the text offset of the CU. The returned offset comes from
15821 this CU's objfile. If this objfile came from a separate debuginfo
15822 file, then the offset may be different from the corresponding
15823 offset in the parent objfile. */
15824
15825 CORE_ADDR
15826 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15827 {
15828 struct objfile *objfile = per_cu->objfile;
15829
15830 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15831 }
15832
15833 /* Locate the .debug_info compilation unit from CU's objfile which contains
15834 the DIE at OFFSET. Raises an error on failure. */
15835
15836 static struct dwarf2_per_cu_data *
15837 dwarf2_find_containing_comp_unit (unsigned int offset,
15838 struct objfile *objfile)
15839 {
15840 struct dwarf2_per_cu_data *this_cu;
15841 int low, high;
15842
15843 low = 0;
15844 high = dwarf2_per_objfile->n_comp_units - 1;
15845 while (high > low)
15846 {
15847 int mid = low + (high - low) / 2;
15848
15849 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15850 high = mid;
15851 else
15852 low = mid + 1;
15853 }
15854 gdb_assert (low == high);
15855 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15856 {
15857 if (low == 0)
15858 error (_("Dwarf Error: could not find partial DIE containing "
15859 "offset 0x%lx [in module %s]"),
15860 (long) offset, bfd_get_filename (objfile->obfd));
15861
15862 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15863 return dwarf2_per_objfile->all_comp_units[low-1];
15864 }
15865 else
15866 {
15867 this_cu = dwarf2_per_objfile->all_comp_units[low];
15868 if (low == dwarf2_per_objfile->n_comp_units - 1
15869 && offset >= this_cu->offset + this_cu->length)
15870 error (_("invalid dwarf2 offset %u"), offset);
15871 gdb_assert (offset < this_cu->offset + this_cu->length);
15872 return this_cu;
15873 }
15874 }
15875
15876 /* Locate the compilation unit from OBJFILE which is located at exactly
15877 OFFSET. Raises an error on failure. */
15878
15879 static struct dwarf2_per_cu_data *
15880 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
15881 {
15882 struct dwarf2_per_cu_data *this_cu;
15883
15884 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
15885 if (this_cu->offset != offset)
15886 error (_("no compilation unit with offset %u."), offset);
15887 return this_cu;
15888 }
15889
15890 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
15891
15892 static void
15893 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
15894 {
15895 memset (cu, 0, sizeof (*cu));
15896 cu->objfile = objfile;
15897 obstack_init (&cu->comp_unit_obstack);
15898 }
15899
15900 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15901
15902 static void
15903 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15904 {
15905 struct attribute *attr;
15906
15907 /* Set the language we're debugging. */
15908 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15909 if (attr)
15910 set_cu_language (DW_UNSND (attr), cu);
15911 else
15912 {
15913 cu->language = language_minimal;
15914 cu->language_defn = language_def (cu->language);
15915 }
15916 }
15917
15918 /* Release one cached compilation unit, CU. We unlink it from the tree
15919 of compilation units, but we don't remove it from the read_in_chain;
15920 the caller is responsible for that.
15921 NOTE: DATA is a void * because this function is also used as a
15922 cleanup routine. */
15923
15924 static void
15925 free_one_comp_unit (void *data)
15926 {
15927 struct dwarf2_cu *cu = data;
15928
15929 if (cu->per_cu != NULL)
15930 cu->per_cu->cu = NULL;
15931 cu->per_cu = NULL;
15932
15933 obstack_free (&cu->comp_unit_obstack, NULL);
15934
15935 xfree (cu);
15936 }
15937
15938 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15939 when we're finished with it. We can't free the pointer itself, but be
15940 sure to unlink it from the cache. Also release any associated storage
15941 and perform cache maintenance.
15942
15943 Only used during partial symbol parsing. */
15944
15945 static void
15946 free_stack_comp_unit (void *data)
15947 {
15948 struct dwarf2_cu *cu = data;
15949
15950 obstack_free (&cu->comp_unit_obstack, NULL);
15951 cu->partial_dies = NULL;
15952
15953 if (cu->per_cu != NULL)
15954 {
15955 /* This compilation unit is on the stack in our caller, so we
15956 should not xfree it. Just unlink it. */
15957 cu->per_cu->cu = NULL;
15958 cu->per_cu = NULL;
15959
15960 /* If we had a per-cu pointer, then we may have other compilation
15961 units loaded, so age them now. */
15962 age_cached_comp_units ();
15963 }
15964 }
15965
15966 /* Free all cached compilation units. */
15967
15968 static void
15969 free_cached_comp_units (void *data)
15970 {
15971 struct dwarf2_per_cu_data *per_cu, **last_chain;
15972
15973 per_cu = dwarf2_per_objfile->read_in_chain;
15974 last_chain = &dwarf2_per_objfile->read_in_chain;
15975 while (per_cu != NULL)
15976 {
15977 struct dwarf2_per_cu_data *next_cu;
15978
15979 next_cu = per_cu->cu->read_in_chain;
15980
15981 free_one_comp_unit (per_cu->cu);
15982 *last_chain = next_cu;
15983
15984 per_cu = next_cu;
15985 }
15986 }
15987
15988 /* Increase the age counter on each cached compilation unit, and free
15989 any that are too old. */
15990
15991 static void
15992 age_cached_comp_units (void)
15993 {
15994 struct dwarf2_per_cu_data *per_cu, **last_chain;
15995
15996 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15997 per_cu = dwarf2_per_objfile->read_in_chain;
15998 while (per_cu != NULL)
15999 {
16000 per_cu->cu->last_used ++;
16001 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16002 dwarf2_mark (per_cu->cu);
16003 per_cu = per_cu->cu->read_in_chain;
16004 }
16005
16006 per_cu = dwarf2_per_objfile->read_in_chain;
16007 last_chain = &dwarf2_per_objfile->read_in_chain;
16008 while (per_cu != NULL)
16009 {
16010 struct dwarf2_per_cu_data *next_cu;
16011
16012 next_cu = per_cu->cu->read_in_chain;
16013
16014 if (!per_cu->cu->mark)
16015 {
16016 free_one_comp_unit (per_cu->cu);
16017 *last_chain = next_cu;
16018 }
16019 else
16020 last_chain = &per_cu->cu->read_in_chain;
16021
16022 per_cu = next_cu;
16023 }
16024 }
16025
16026 /* Remove a single compilation unit from the cache. */
16027
16028 static void
16029 free_one_cached_comp_unit (void *target_cu)
16030 {
16031 struct dwarf2_per_cu_data *per_cu, **last_chain;
16032
16033 per_cu = dwarf2_per_objfile->read_in_chain;
16034 last_chain = &dwarf2_per_objfile->read_in_chain;
16035 while (per_cu != NULL)
16036 {
16037 struct dwarf2_per_cu_data *next_cu;
16038
16039 next_cu = per_cu->cu->read_in_chain;
16040
16041 if (per_cu->cu == target_cu)
16042 {
16043 free_one_comp_unit (per_cu->cu);
16044 *last_chain = next_cu;
16045 break;
16046 }
16047 else
16048 last_chain = &per_cu->cu->read_in_chain;
16049
16050 per_cu = next_cu;
16051 }
16052 }
16053
16054 /* Release all extra memory associated with OBJFILE. */
16055
16056 void
16057 dwarf2_free_objfile (struct objfile *objfile)
16058 {
16059 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16060
16061 if (dwarf2_per_objfile == NULL)
16062 return;
16063
16064 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16065 free_cached_comp_units (NULL);
16066
16067 if (dwarf2_per_objfile->quick_file_names_table)
16068 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16069
16070 /* Everything else should be on the objfile obstack. */
16071 }
16072
16073 /* A pair of DIE offset and GDB type pointer. We store these
16074 in a hash table separate from the DIEs, and preserve them
16075 when the DIEs are flushed out of cache. */
16076
16077 struct dwarf2_offset_and_type
16078 {
16079 unsigned int offset;
16080 struct type *type;
16081 };
16082
16083 /* Hash function for a dwarf2_offset_and_type. */
16084
16085 static hashval_t
16086 offset_and_type_hash (const void *item)
16087 {
16088 const struct dwarf2_offset_and_type *ofs = item;
16089
16090 return ofs->offset;
16091 }
16092
16093 /* Equality function for a dwarf2_offset_and_type. */
16094
16095 static int
16096 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16097 {
16098 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16099 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16100
16101 return ofs_lhs->offset == ofs_rhs->offset;
16102 }
16103
16104 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16105 table if necessary. For convenience, return TYPE.
16106
16107 The DIEs reading must have careful ordering to:
16108 * Not cause infite loops trying to read in DIEs as a prerequisite for
16109 reading current DIE.
16110 * Not trying to dereference contents of still incompletely read in types
16111 while reading in other DIEs.
16112 * Enable referencing still incompletely read in types just by a pointer to
16113 the type without accessing its fields.
16114
16115 Therefore caller should follow these rules:
16116 * Try to fetch any prerequisite types we may need to build this DIE type
16117 before building the type and calling set_die_type.
16118 * After building type call set_die_type for current DIE as soon as
16119 possible before fetching more types to complete the current type.
16120 * Make the type as complete as possible before fetching more types. */
16121
16122 static struct type *
16123 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16124 {
16125 struct dwarf2_offset_and_type **slot, ofs;
16126 struct objfile *objfile = cu->objfile;
16127 htab_t *type_hash_ptr;
16128
16129 /* For Ada types, make sure that the gnat-specific data is always
16130 initialized (if not already set). There are a few types where
16131 we should not be doing so, because the type-specific area is
16132 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16133 where the type-specific area is used to store the floatformat).
16134 But this is not a problem, because the gnat-specific information
16135 is actually not needed for these types. */
16136 if (need_gnat_info (cu)
16137 && TYPE_CODE (type) != TYPE_CODE_FUNC
16138 && TYPE_CODE (type) != TYPE_CODE_FLT
16139 && !HAVE_GNAT_AUX_INFO (type))
16140 INIT_GNAT_SPECIFIC (type);
16141
16142 if (cu->per_cu->debug_type_section)
16143 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16144 else
16145 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16146
16147 if (*type_hash_ptr == NULL)
16148 {
16149 *type_hash_ptr
16150 = htab_create_alloc_ex (127,
16151 offset_and_type_hash,
16152 offset_and_type_eq,
16153 NULL,
16154 &objfile->objfile_obstack,
16155 hashtab_obstack_allocate,
16156 dummy_obstack_deallocate);
16157 }
16158
16159 ofs.offset = die->offset;
16160 ofs.type = type;
16161 slot = (struct dwarf2_offset_and_type **)
16162 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16163 if (*slot)
16164 complaint (&symfile_complaints,
16165 _("A problem internal to GDB: DIE 0x%x has type already set"),
16166 die->offset);
16167 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16168 **slot = ofs;
16169 return type;
16170 }
16171
16172 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16173 table, or return NULL if the die does not have a saved type. */
16174
16175 static struct type *
16176 get_die_type_at_offset (unsigned int offset,
16177 struct dwarf2_per_cu_data *per_cu)
16178 {
16179 struct dwarf2_offset_and_type *slot, ofs;
16180 htab_t type_hash;
16181
16182 if (per_cu->debug_type_section)
16183 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16184 else
16185 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16186 if (type_hash == NULL)
16187 return NULL;
16188
16189 ofs.offset = offset;
16190 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16191 if (slot)
16192 return slot->type;
16193 else
16194 return NULL;
16195 }
16196
16197 /* Look up the type for DIE in the appropriate type_hash table,
16198 or return NULL if DIE does not have a saved type. */
16199
16200 static struct type *
16201 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16202 {
16203 return get_die_type_at_offset (die->offset, cu->per_cu);
16204 }
16205
16206 /* Add a dependence relationship from CU to REF_PER_CU. */
16207
16208 static void
16209 dwarf2_add_dependence (struct dwarf2_cu *cu,
16210 struct dwarf2_per_cu_data *ref_per_cu)
16211 {
16212 void **slot;
16213
16214 if (cu->dependencies == NULL)
16215 cu->dependencies
16216 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16217 NULL, &cu->comp_unit_obstack,
16218 hashtab_obstack_allocate,
16219 dummy_obstack_deallocate);
16220
16221 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16222 if (*slot == NULL)
16223 *slot = ref_per_cu;
16224 }
16225
16226 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16227 Set the mark field in every compilation unit in the
16228 cache that we must keep because we are keeping CU. */
16229
16230 static int
16231 dwarf2_mark_helper (void **slot, void *data)
16232 {
16233 struct dwarf2_per_cu_data *per_cu;
16234
16235 per_cu = (struct dwarf2_per_cu_data *) *slot;
16236
16237 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16238 reading of the chain. As such dependencies remain valid it is not much
16239 useful to track and undo them during QUIT cleanups. */
16240 if (per_cu->cu == NULL)
16241 return 1;
16242
16243 if (per_cu->cu->mark)
16244 return 1;
16245 per_cu->cu->mark = 1;
16246
16247 if (per_cu->cu->dependencies != NULL)
16248 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16249
16250 return 1;
16251 }
16252
16253 /* Set the mark field in CU and in every other compilation unit in the
16254 cache that we must keep because we are keeping CU. */
16255
16256 static void
16257 dwarf2_mark (struct dwarf2_cu *cu)
16258 {
16259 if (cu->mark)
16260 return;
16261 cu->mark = 1;
16262 if (cu->dependencies != NULL)
16263 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16264 }
16265
16266 static void
16267 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16268 {
16269 while (per_cu)
16270 {
16271 per_cu->cu->mark = 0;
16272 per_cu = per_cu->cu->read_in_chain;
16273 }
16274 }
16275
16276 /* Trivial hash function for partial_die_info: the hash value of a DIE
16277 is its offset in .debug_info for this objfile. */
16278
16279 static hashval_t
16280 partial_die_hash (const void *item)
16281 {
16282 const struct partial_die_info *part_die = item;
16283
16284 return part_die->offset;
16285 }
16286
16287 /* Trivial comparison function for partial_die_info structures: two DIEs
16288 are equal if they have the same offset. */
16289
16290 static int
16291 partial_die_eq (const void *item_lhs, const void *item_rhs)
16292 {
16293 const struct partial_die_info *part_die_lhs = item_lhs;
16294 const struct partial_die_info *part_die_rhs = item_rhs;
16295
16296 return part_die_lhs->offset == part_die_rhs->offset;
16297 }
16298
16299 static struct cmd_list_element *set_dwarf2_cmdlist;
16300 static struct cmd_list_element *show_dwarf2_cmdlist;
16301
16302 static void
16303 set_dwarf2_cmd (char *args, int from_tty)
16304 {
16305 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16306 }
16307
16308 static void
16309 show_dwarf2_cmd (char *args, int from_tty)
16310 {
16311 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16312 }
16313
16314 /* If section described by INFO was mmapped, munmap it now. */
16315
16316 static void
16317 munmap_section_buffer (struct dwarf2_section_info *info)
16318 {
16319 if (info->map_addr != NULL)
16320 {
16321 #ifdef HAVE_MMAP
16322 int res;
16323
16324 res = munmap (info->map_addr, info->map_len);
16325 gdb_assert (res == 0);
16326 #else
16327 /* Without HAVE_MMAP, we should never be here to begin with. */
16328 gdb_assert_not_reached ("no mmap support");
16329 #endif
16330 }
16331 }
16332
16333 /* munmap debug sections for OBJFILE, if necessary. */
16334
16335 static void
16336 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16337 {
16338 struct dwarf2_per_objfile *data = d;
16339 int ix;
16340 struct dwarf2_section_info *section;
16341
16342 /* This is sorted according to the order they're defined in to make it easier
16343 to keep in sync. */
16344 munmap_section_buffer (&data->info);
16345 munmap_section_buffer (&data->abbrev);
16346 munmap_section_buffer (&data->line);
16347 munmap_section_buffer (&data->loc);
16348 munmap_section_buffer (&data->macinfo);
16349 munmap_section_buffer (&data->macro);
16350 munmap_section_buffer (&data->str);
16351 munmap_section_buffer (&data->ranges);
16352 munmap_section_buffer (&data->frame);
16353 munmap_section_buffer (&data->eh_frame);
16354 munmap_section_buffer (&data->gdb_index);
16355
16356 for (ix = 0;
16357 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16358 ++ix)
16359 munmap_section_buffer (section);
16360
16361 VEC_free (dwarf2_section_info_def, data->types);
16362 }
16363
16364 \f
16365 /* The "save gdb-index" command. */
16366
16367 /* The contents of the hash table we create when building the string
16368 table. */
16369 struct strtab_entry
16370 {
16371 offset_type offset;
16372 const char *str;
16373 };
16374
16375 /* Hash function for a strtab_entry.
16376
16377 Function is used only during write_hash_table so no index format backward
16378 compatibility is needed. */
16379
16380 static hashval_t
16381 hash_strtab_entry (const void *e)
16382 {
16383 const struct strtab_entry *entry = e;
16384 return mapped_index_string_hash (INT_MAX, entry->str);
16385 }
16386
16387 /* Equality function for a strtab_entry. */
16388
16389 static int
16390 eq_strtab_entry (const void *a, const void *b)
16391 {
16392 const struct strtab_entry *ea = a;
16393 const struct strtab_entry *eb = b;
16394 return !strcmp (ea->str, eb->str);
16395 }
16396
16397 /* Create a strtab_entry hash table. */
16398
16399 static htab_t
16400 create_strtab (void)
16401 {
16402 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16403 xfree, xcalloc, xfree);
16404 }
16405
16406 /* Add a string to the constant pool. Return the string's offset in
16407 host order. */
16408
16409 static offset_type
16410 add_string (htab_t table, struct obstack *cpool, const char *str)
16411 {
16412 void **slot;
16413 struct strtab_entry entry;
16414 struct strtab_entry *result;
16415
16416 entry.str = str;
16417 slot = htab_find_slot (table, &entry, INSERT);
16418 if (*slot)
16419 result = *slot;
16420 else
16421 {
16422 result = XNEW (struct strtab_entry);
16423 result->offset = obstack_object_size (cpool);
16424 result->str = str;
16425 obstack_grow_str0 (cpool, str);
16426 *slot = result;
16427 }
16428 return result->offset;
16429 }
16430
16431 /* An entry in the symbol table. */
16432 struct symtab_index_entry
16433 {
16434 /* The name of the symbol. */
16435 const char *name;
16436 /* The offset of the name in the constant pool. */
16437 offset_type index_offset;
16438 /* A sorted vector of the indices of all the CUs that hold an object
16439 of this name. */
16440 VEC (offset_type) *cu_indices;
16441 };
16442
16443 /* The symbol table. This is a power-of-2-sized hash table. */
16444 struct mapped_symtab
16445 {
16446 offset_type n_elements;
16447 offset_type size;
16448 struct symtab_index_entry **data;
16449 };
16450
16451 /* Hash function for a symtab_index_entry. */
16452
16453 static hashval_t
16454 hash_symtab_entry (const void *e)
16455 {
16456 const struct symtab_index_entry *entry = e;
16457 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16458 sizeof (offset_type) * VEC_length (offset_type,
16459 entry->cu_indices),
16460 0);
16461 }
16462
16463 /* Equality function for a symtab_index_entry. */
16464
16465 static int
16466 eq_symtab_entry (const void *a, const void *b)
16467 {
16468 const struct symtab_index_entry *ea = a;
16469 const struct symtab_index_entry *eb = b;
16470 int len = VEC_length (offset_type, ea->cu_indices);
16471 if (len != VEC_length (offset_type, eb->cu_indices))
16472 return 0;
16473 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16474 VEC_address (offset_type, eb->cu_indices),
16475 sizeof (offset_type) * len);
16476 }
16477
16478 /* Destroy a symtab_index_entry. */
16479
16480 static void
16481 delete_symtab_entry (void *p)
16482 {
16483 struct symtab_index_entry *entry = p;
16484 VEC_free (offset_type, entry->cu_indices);
16485 xfree (entry);
16486 }
16487
16488 /* Create a hash table holding symtab_index_entry objects. */
16489
16490 static htab_t
16491 create_symbol_hash_table (void)
16492 {
16493 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16494 delete_symtab_entry, xcalloc, xfree);
16495 }
16496
16497 /* Create a new mapped symtab object. */
16498
16499 static struct mapped_symtab *
16500 create_mapped_symtab (void)
16501 {
16502 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16503 symtab->n_elements = 0;
16504 symtab->size = 1024;
16505 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16506 return symtab;
16507 }
16508
16509 /* Destroy a mapped_symtab. */
16510
16511 static void
16512 cleanup_mapped_symtab (void *p)
16513 {
16514 struct mapped_symtab *symtab = p;
16515 /* The contents of the array are freed when the other hash table is
16516 destroyed. */
16517 xfree (symtab->data);
16518 xfree (symtab);
16519 }
16520
16521 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16522 the slot.
16523
16524 Function is used only during write_hash_table so no index format backward
16525 compatibility is needed. */
16526
16527 static struct symtab_index_entry **
16528 find_slot (struct mapped_symtab *symtab, const char *name)
16529 {
16530 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16531
16532 index = hash & (symtab->size - 1);
16533 step = ((hash * 17) & (symtab->size - 1)) | 1;
16534
16535 for (;;)
16536 {
16537 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16538 return &symtab->data[index];
16539 index = (index + step) & (symtab->size - 1);
16540 }
16541 }
16542
16543 /* Expand SYMTAB's hash table. */
16544
16545 static void
16546 hash_expand (struct mapped_symtab *symtab)
16547 {
16548 offset_type old_size = symtab->size;
16549 offset_type i;
16550 struct symtab_index_entry **old_entries = symtab->data;
16551
16552 symtab->size *= 2;
16553 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16554
16555 for (i = 0; i < old_size; ++i)
16556 {
16557 if (old_entries[i])
16558 {
16559 struct symtab_index_entry **slot = find_slot (symtab,
16560 old_entries[i]->name);
16561 *slot = old_entries[i];
16562 }
16563 }
16564
16565 xfree (old_entries);
16566 }
16567
16568 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16569 is the index of the CU in which the symbol appears. */
16570
16571 static void
16572 add_index_entry (struct mapped_symtab *symtab, const char *name,
16573 offset_type cu_index)
16574 {
16575 struct symtab_index_entry **slot;
16576
16577 ++symtab->n_elements;
16578 if (4 * symtab->n_elements / 3 >= symtab->size)
16579 hash_expand (symtab);
16580
16581 slot = find_slot (symtab, name);
16582 if (!*slot)
16583 {
16584 *slot = XNEW (struct symtab_index_entry);
16585 (*slot)->name = name;
16586 (*slot)->cu_indices = NULL;
16587 }
16588 /* Don't push an index twice. Due to how we add entries we only
16589 have to check the last one. */
16590 if (VEC_empty (offset_type, (*slot)->cu_indices)
16591 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16592 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16593 }
16594
16595 /* Add a vector of indices to the constant pool. */
16596
16597 static offset_type
16598 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16599 struct symtab_index_entry *entry)
16600 {
16601 void **slot;
16602
16603 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16604 if (!*slot)
16605 {
16606 offset_type len = VEC_length (offset_type, entry->cu_indices);
16607 offset_type val = MAYBE_SWAP (len);
16608 offset_type iter;
16609 int i;
16610
16611 *slot = entry;
16612 entry->index_offset = obstack_object_size (cpool);
16613
16614 obstack_grow (cpool, &val, sizeof (val));
16615 for (i = 0;
16616 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16617 ++i)
16618 {
16619 val = MAYBE_SWAP (iter);
16620 obstack_grow (cpool, &val, sizeof (val));
16621 }
16622 }
16623 else
16624 {
16625 struct symtab_index_entry *old_entry = *slot;
16626 entry->index_offset = old_entry->index_offset;
16627 entry = old_entry;
16628 }
16629 return entry->index_offset;
16630 }
16631
16632 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16633 constant pool entries going into the obstack CPOOL. */
16634
16635 static void
16636 write_hash_table (struct mapped_symtab *symtab,
16637 struct obstack *output, struct obstack *cpool)
16638 {
16639 offset_type i;
16640 htab_t symbol_hash_table;
16641 htab_t str_table;
16642
16643 symbol_hash_table = create_symbol_hash_table ();
16644 str_table = create_strtab ();
16645
16646 /* We add all the index vectors to the constant pool first, to
16647 ensure alignment is ok. */
16648 for (i = 0; i < symtab->size; ++i)
16649 {
16650 if (symtab->data[i])
16651 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16652 }
16653
16654 /* Now write out the hash table. */
16655 for (i = 0; i < symtab->size; ++i)
16656 {
16657 offset_type str_off, vec_off;
16658
16659 if (symtab->data[i])
16660 {
16661 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16662 vec_off = symtab->data[i]->index_offset;
16663 }
16664 else
16665 {
16666 /* While 0 is a valid constant pool index, it is not valid
16667 to have 0 for both offsets. */
16668 str_off = 0;
16669 vec_off = 0;
16670 }
16671
16672 str_off = MAYBE_SWAP (str_off);
16673 vec_off = MAYBE_SWAP (vec_off);
16674
16675 obstack_grow (output, &str_off, sizeof (str_off));
16676 obstack_grow (output, &vec_off, sizeof (vec_off));
16677 }
16678
16679 htab_delete (str_table);
16680 htab_delete (symbol_hash_table);
16681 }
16682
16683 /* Struct to map psymtab to CU index in the index file. */
16684 struct psymtab_cu_index_map
16685 {
16686 struct partial_symtab *psymtab;
16687 unsigned int cu_index;
16688 };
16689
16690 static hashval_t
16691 hash_psymtab_cu_index (const void *item)
16692 {
16693 const struct psymtab_cu_index_map *map = item;
16694
16695 return htab_hash_pointer (map->psymtab);
16696 }
16697
16698 static int
16699 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16700 {
16701 const struct psymtab_cu_index_map *lhs = item_lhs;
16702 const struct psymtab_cu_index_map *rhs = item_rhs;
16703
16704 return lhs->psymtab == rhs->psymtab;
16705 }
16706
16707 /* Helper struct for building the address table. */
16708 struct addrmap_index_data
16709 {
16710 struct objfile *objfile;
16711 struct obstack *addr_obstack;
16712 htab_t cu_index_htab;
16713
16714 /* Non-zero if the previous_* fields are valid.
16715 We can't write an entry until we see the next entry (since it is only then
16716 that we know the end of the entry). */
16717 int previous_valid;
16718 /* Index of the CU in the table of all CUs in the index file. */
16719 unsigned int previous_cu_index;
16720 /* Start address of the CU. */
16721 CORE_ADDR previous_cu_start;
16722 };
16723
16724 /* Write an address entry to OBSTACK. */
16725
16726 static void
16727 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16728 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16729 {
16730 offset_type cu_index_to_write;
16731 char addr[8];
16732 CORE_ADDR baseaddr;
16733
16734 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16735
16736 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16737 obstack_grow (obstack, addr, 8);
16738 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16739 obstack_grow (obstack, addr, 8);
16740 cu_index_to_write = MAYBE_SWAP (cu_index);
16741 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16742 }
16743
16744 /* Worker function for traversing an addrmap to build the address table. */
16745
16746 static int
16747 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16748 {
16749 struct addrmap_index_data *data = datap;
16750 struct partial_symtab *pst = obj;
16751 offset_type cu_index;
16752 void **slot;
16753
16754 if (data->previous_valid)
16755 add_address_entry (data->objfile, data->addr_obstack,
16756 data->previous_cu_start, start_addr,
16757 data->previous_cu_index);
16758
16759 data->previous_cu_start = start_addr;
16760 if (pst != NULL)
16761 {
16762 struct psymtab_cu_index_map find_map, *map;
16763 find_map.psymtab = pst;
16764 map = htab_find (data->cu_index_htab, &find_map);
16765 gdb_assert (map != NULL);
16766 data->previous_cu_index = map->cu_index;
16767 data->previous_valid = 1;
16768 }
16769 else
16770 data->previous_valid = 0;
16771
16772 return 0;
16773 }
16774
16775 /* Write OBJFILE's address map to OBSTACK.
16776 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16777 in the index file. */
16778
16779 static void
16780 write_address_map (struct objfile *objfile, struct obstack *obstack,
16781 htab_t cu_index_htab)
16782 {
16783 struct addrmap_index_data addrmap_index_data;
16784
16785 /* When writing the address table, we have to cope with the fact that
16786 the addrmap iterator only provides the start of a region; we have to
16787 wait until the next invocation to get the start of the next region. */
16788
16789 addrmap_index_data.objfile = objfile;
16790 addrmap_index_data.addr_obstack = obstack;
16791 addrmap_index_data.cu_index_htab = cu_index_htab;
16792 addrmap_index_data.previous_valid = 0;
16793
16794 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16795 &addrmap_index_data);
16796
16797 /* It's highly unlikely the last entry (end address = 0xff...ff)
16798 is valid, but we should still handle it.
16799 The end address is recorded as the start of the next region, but that
16800 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16801 anyway. */
16802 if (addrmap_index_data.previous_valid)
16803 add_address_entry (objfile, obstack,
16804 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16805 addrmap_index_data.previous_cu_index);
16806 }
16807
16808 /* Add a list of partial symbols to SYMTAB. */
16809
16810 static void
16811 write_psymbols (struct mapped_symtab *symtab,
16812 htab_t psyms_seen,
16813 struct partial_symbol **psymp,
16814 int count,
16815 offset_type cu_index,
16816 int is_static)
16817 {
16818 for (; count-- > 0; ++psymp)
16819 {
16820 void **slot, *lookup;
16821
16822 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16823 error (_("Ada is not currently supported by the index"));
16824
16825 /* We only want to add a given psymbol once. However, we also
16826 want to account for whether it is global or static. So, we
16827 may add it twice, using slightly different values. */
16828 if (is_static)
16829 {
16830 uintptr_t val = 1 | (uintptr_t) *psymp;
16831
16832 lookup = (void *) val;
16833 }
16834 else
16835 lookup = *psymp;
16836
16837 /* Only add a given psymbol once. */
16838 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16839 if (!*slot)
16840 {
16841 *slot = lookup;
16842 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
16843 }
16844 }
16845 }
16846
16847 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16848 exception if there is an error. */
16849
16850 static void
16851 write_obstack (FILE *file, struct obstack *obstack)
16852 {
16853 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16854 file)
16855 != obstack_object_size (obstack))
16856 error (_("couldn't data write to file"));
16857 }
16858
16859 /* Unlink a file if the argument is not NULL. */
16860
16861 static void
16862 unlink_if_set (void *p)
16863 {
16864 char **filename = p;
16865 if (*filename)
16866 unlink (*filename);
16867 }
16868
16869 /* A helper struct used when iterating over debug_types. */
16870 struct signatured_type_index_data
16871 {
16872 struct objfile *objfile;
16873 struct mapped_symtab *symtab;
16874 struct obstack *types_list;
16875 htab_t psyms_seen;
16876 int cu_index;
16877 };
16878
16879 /* A helper function that writes a single signatured_type to an
16880 obstack. */
16881
16882 static int
16883 write_one_signatured_type (void **slot, void *d)
16884 {
16885 struct signatured_type_index_data *info = d;
16886 struct signatured_type *entry = (struct signatured_type *) *slot;
16887 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16888 struct partial_symtab *psymtab = per_cu->v.psymtab;
16889 gdb_byte val[8];
16890
16891 write_psymbols (info->symtab,
16892 info->psyms_seen,
16893 info->objfile->global_psymbols.list
16894 + psymtab->globals_offset,
16895 psymtab->n_global_syms, info->cu_index,
16896 0);
16897 write_psymbols (info->symtab,
16898 info->psyms_seen,
16899 info->objfile->static_psymbols.list
16900 + psymtab->statics_offset,
16901 psymtab->n_static_syms, info->cu_index,
16902 1);
16903
16904 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16905 obstack_grow (info->types_list, val, 8);
16906 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16907 obstack_grow (info->types_list, val, 8);
16908 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16909 obstack_grow (info->types_list, val, 8);
16910
16911 ++info->cu_index;
16912
16913 return 1;
16914 }
16915
16916 /* Create an index file for OBJFILE in the directory DIR. */
16917
16918 static void
16919 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16920 {
16921 struct cleanup *cleanup;
16922 char *filename, *cleanup_filename;
16923 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16924 struct obstack cu_list, types_cu_list;
16925 int i;
16926 FILE *out_file;
16927 struct mapped_symtab *symtab;
16928 offset_type val, size_of_contents, total_len;
16929 struct stat st;
16930 char buf[8];
16931 htab_t psyms_seen;
16932 htab_t cu_index_htab;
16933 struct psymtab_cu_index_map *psymtab_cu_index_map;
16934
16935 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16936 return;
16937
16938 if (dwarf2_per_objfile->using_index)
16939 error (_("Cannot use an index to create the index"));
16940
16941 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16942 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16943
16944 if (stat (objfile->name, &st) < 0)
16945 perror_with_name (objfile->name);
16946
16947 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16948 INDEX_SUFFIX, (char *) NULL);
16949 cleanup = make_cleanup (xfree, filename);
16950
16951 out_file = fopen (filename, "wb");
16952 if (!out_file)
16953 error (_("Can't open `%s' for writing"), filename);
16954
16955 cleanup_filename = filename;
16956 make_cleanup (unlink_if_set, &cleanup_filename);
16957
16958 symtab = create_mapped_symtab ();
16959 make_cleanup (cleanup_mapped_symtab, symtab);
16960
16961 obstack_init (&addr_obstack);
16962 make_cleanup_obstack_free (&addr_obstack);
16963
16964 obstack_init (&cu_list);
16965 make_cleanup_obstack_free (&cu_list);
16966
16967 obstack_init (&types_cu_list);
16968 make_cleanup_obstack_free (&types_cu_list);
16969
16970 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16971 NULL, xcalloc, xfree);
16972 make_cleanup_htab_delete (psyms_seen);
16973
16974 /* While we're scanning CU's create a table that maps a psymtab pointer
16975 (which is what addrmap records) to its index (which is what is recorded
16976 in the index file). This will later be needed to write the address
16977 table. */
16978 cu_index_htab = htab_create_alloc (100,
16979 hash_psymtab_cu_index,
16980 eq_psymtab_cu_index,
16981 NULL, xcalloc, xfree);
16982 make_cleanup_htab_delete (cu_index_htab);
16983 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16984 xmalloc (sizeof (struct psymtab_cu_index_map)
16985 * dwarf2_per_objfile->n_comp_units);
16986 make_cleanup (xfree, psymtab_cu_index_map);
16987
16988 /* The CU list is already sorted, so we don't need to do additional
16989 work here. Also, the debug_types entries do not appear in
16990 all_comp_units, but only in their own hash table. */
16991 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16992 {
16993 struct dwarf2_per_cu_data *per_cu
16994 = dwarf2_per_objfile->all_comp_units[i];
16995 struct partial_symtab *psymtab = per_cu->v.psymtab;
16996 gdb_byte val[8];
16997 struct psymtab_cu_index_map *map;
16998 void **slot;
16999
17000 write_psymbols (symtab,
17001 psyms_seen,
17002 objfile->global_psymbols.list + psymtab->globals_offset,
17003 psymtab->n_global_syms, i,
17004 0);
17005 write_psymbols (symtab,
17006 psyms_seen,
17007 objfile->static_psymbols.list + psymtab->statics_offset,
17008 psymtab->n_static_syms, i,
17009 1);
17010
17011 map = &psymtab_cu_index_map[i];
17012 map->psymtab = psymtab;
17013 map->cu_index = i;
17014 slot = htab_find_slot (cu_index_htab, map, INSERT);
17015 gdb_assert (slot != NULL);
17016 gdb_assert (*slot == NULL);
17017 *slot = map;
17018
17019 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
17020 obstack_grow (&cu_list, val, 8);
17021 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17022 obstack_grow (&cu_list, val, 8);
17023 }
17024
17025 /* Dump the address map. */
17026 write_address_map (objfile, &addr_obstack, cu_index_htab);
17027
17028 /* Write out the .debug_type entries, if any. */
17029 if (dwarf2_per_objfile->signatured_types)
17030 {
17031 struct signatured_type_index_data sig_data;
17032
17033 sig_data.objfile = objfile;
17034 sig_data.symtab = symtab;
17035 sig_data.types_list = &types_cu_list;
17036 sig_data.psyms_seen = psyms_seen;
17037 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17038 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17039 write_one_signatured_type, &sig_data);
17040 }
17041
17042 obstack_init (&constant_pool);
17043 make_cleanup_obstack_free (&constant_pool);
17044 obstack_init (&symtab_obstack);
17045 make_cleanup_obstack_free (&symtab_obstack);
17046 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17047
17048 obstack_init (&contents);
17049 make_cleanup_obstack_free (&contents);
17050 size_of_contents = 6 * sizeof (offset_type);
17051 total_len = size_of_contents;
17052
17053 /* The version number. */
17054 val = MAYBE_SWAP (5);
17055 obstack_grow (&contents, &val, sizeof (val));
17056
17057 /* The offset of the CU list from the start of the file. */
17058 val = MAYBE_SWAP (total_len);
17059 obstack_grow (&contents, &val, sizeof (val));
17060 total_len += obstack_object_size (&cu_list);
17061
17062 /* The offset of the types CU list from the start of the file. */
17063 val = MAYBE_SWAP (total_len);
17064 obstack_grow (&contents, &val, sizeof (val));
17065 total_len += obstack_object_size (&types_cu_list);
17066
17067 /* The offset of the address table from the start of the file. */
17068 val = MAYBE_SWAP (total_len);
17069 obstack_grow (&contents, &val, sizeof (val));
17070 total_len += obstack_object_size (&addr_obstack);
17071
17072 /* The offset of the symbol table from the start of the file. */
17073 val = MAYBE_SWAP (total_len);
17074 obstack_grow (&contents, &val, sizeof (val));
17075 total_len += obstack_object_size (&symtab_obstack);
17076
17077 /* The offset of the constant pool from the start of the file. */
17078 val = MAYBE_SWAP (total_len);
17079 obstack_grow (&contents, &val, sizeof (val));
17080 total_len += obstack_object_size (&constant_pool);
17081
17082 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17083
17084 write_obstack (out_file, &contents);
17085 write_obstack (out_file, &cu_list);
17086 write_obstack (out_file, &types_cu_list);
17087 write_obstack (out_file, &addr_obstack);
17088 write_obstack (out_file, &symtab_obstack);
17089 write_obstack (out_file, &constant_pool);
17090
17091 fclose (out_file);
17092
17093 /* We want to keep the file, so we set cleanup_filename to NULL
17094 here. See unlink_if_set. */
17095 cleanup_filename = NULL;
17096
17097 do_cleanups (cleanup);
17098 }
17099
17100 /* Implementation of the `save gdb-index' command.
17101
17102 Note that the file format used by this command is documented in the
17103 GDB manual. Any changes here must be documented there. */
17104
17105 static void
17106 save_gdb_index_command (char *arg, int from_tty)
17107 {
17108 struct objfile *objfile;
17109
17110 if (!arg || !*arg)
17111 error (_("usage: save gdb-index DIRECTORY"));
17112
17113 ALL_OBJFILES (objfile)
17114 {
17115 struct stat st;
17116
17117 /* If the objfile does not correspond to an actual file, skip it. */
17118 if (stat (objfile->name, &st) < 0)
17119 continue;
17120
17121 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17122 if (dwarf2_per_objfile)
17123 {
17124 volatile struct gdb_exception except;
17125
17126 TRY_CATCH (except, RETURN_MASK_ERROR)
17127 {
17128 write_psymtabs_to_index (objfile, arg);
17129 }
17130 if (except.reason < 0)
17131 exception_fprintf (gdb_stderr, except,
17132 _("Error while writing index for `%s': "),
17133 objfile->name);
17134 }
17135 }
17136 }
17137
17138 \f
17139
17140 int dwarf2_always_disassemble;
17141
17142 static void
17143 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17144 struct cmd_list_element *c, const char *value)
17145 {
17146 fprintf_filtered (file,
17147 _("Whether to always disassemble "
17148 "DWARF expressions is %s.\n"),
17149 value);
17150 }
17151
17152 static void
17153 show_check_physname (struct ui_file *file, int from_tty,
17154 struct cmd_list_element *c, const char *value)
17155 {
17156 fprintf_filtered (file,
17157 _("Whether to check \"physname\" is %s.\n"),
17158 value);
17159 }
17160
17161 void _initialize_dwarf2_read (void);
17162
17163 void
17164 _initialize_dwarf2_read (void)
17165 {
17166 struct cmd_list_element *c;
17167
17168 dwarf2_objfile_data_key
17169 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17170
17171 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17172 Set DWARF 2 specific variables.\n\
17173 Configure DWARF 2 variables such as the cache size"),
17174 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17175 0/*allow-unknown*/, &maintenance_set_cmdlist);
17176
17177 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17178 Show DWARF 2 specific variables\n\
17179 Show DWARF 2 variables such as the cache size"),
17180 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17181 0/*allow-unknown*/, &maintenance_show_cmdlist);
17182
17183 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17184 &dwarf2_max_cache_age, _("\
17185 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17186 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17187 A higher limit means that cached compilation units will be stored\n\
17188 in memory longer, and more total memory will be used. Zero disables\n\
17189 caching, which can slow down startup."),
17190 NULL,
17191 show_dwarf2_max_cache_age,
17192 &set_dwarf2_cmdlist,
17193 &show_dwarf2_cmdlist);
17194
17195 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17196 &dwarf2_always_disassemble, _("\
17197 Set whether `info address' always disassembles DWARF expressions."), _("\
17198 Show whether `info address' always disassembles DWARF expressions."), _("\
17199 When enabled, DWARF expressions are always printed in an assembly-like\n\
17200 syntax. When disabled, expressions will be printed in a more\n\
17201 conversational style, when possible."),
17202 NULL,
17203 show_dwarf2_always_disassemble,
17204 &set_dwarf2_cmdlist,
17205 &show_dwarf2_cmdlist);
17206
17207 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17208 Set debugging of the dwarf2 DIE reader."), _("\
17209 Show debugging of the dwarf2 DIE reader."), _("\
17210 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17211 The value is the maximum depth to print."),
17212 NULL,
17213 NULL,
17214 &setdebuglist, &showdebuglist);
17215
17216 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17217 Set cross-checking of \"physname\" code against demangler."), _("\
17218 Show cross-checking of \"physname\" code against demangler."), _("\
17219 When enabled, GDB's internal \"physname\" code is checked against\n\
17220 the demangler."),
17221 NULL, show_check_physname,
17222 &setdebuglist, &showdebuglist);
17223
17224 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17225 _("\
17226 Save a gdb-index file.\n\
17227 Usage: save gdb-index DIRECTORY"),
17228 &save_cmdlist);
17229 set_cmd_completer (c, filename_completer);
17230 }
This page took 0.392803 seconds and 4 git commands to generate.