(dwarf2_section_info): Comment tweaks missed in previous checkin.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 /* A descriptor for dwarf sections.
104
105 S.ASECTION, SIZE are typically initialized when the objfile is first
106 scanned. BUFFER, READIN are filled in later when the section is read.
107 If the section contained compressed data then SIZE is updated to record
108 the uncompressed size of the section.
109
110 DWP file format V2 introduces a wrinkle that is easiest to handle by
111 creating the concept of virtual sections contained within a real section.
112 In DWP V2 the sections of the input DWO files are concatenated together
113 into one section, but section offsets are kept relative to the original
114 input section.
115 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
116 the real section this "virtual" section is contained in, and BUFFER,SIZE
117 describe the virtual section. */
118
119 struct dwarf2_section_info
120 {
121 union
122 {
123 /* If this is a real section, the bfd section. */
124 asection *asection;
125 /* If this is a virtual section, pointer to the containing ("real")
126 section. */
127 struct dwarf2_section_info *containing_section;
128 } s;
129 /* Pointer to section data, only valid if readin. */
130 const gdb_byte *buffer;
131 /* The size of the section, real or virtual. */
132 bfd_size_type size;
133 /* If this is a virtual section, the offset in the real section.
134 Only valid if is_virtual. */
135 bfd_size_type virtual_offset;
136 /* True if we have tried to read this section. */
137 char readin;
138 /* True if this is a virtual section, False otherwise.
139 This specifies which of s.asection and s.containing_section to use. */
140 char is_virtual;
141 };
142
143 typedef struct dwarf2_section_info dwarf2_section_info_def;
144 DEF_VEC_O (dwarf2_section_info_def);
145
146 /* All offsets in the index are of this type. It must be
147 architecture-independent. */
148 typedef uint32_t offset_type;
149
150 DEF_VEC_I (offset_type);
151
152 /* Ensure only legit values are used. */
153 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 do { \
155 gdb_assert ((unsigned int) (value) <= 1); \
156 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
157 } while (0)
158
159 /* Ensure only legit values are used. */
160 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 do { \
162 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
163 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
164 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
165 } while (0)
166
167 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
168 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
171 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
174 /* A description of the mapped index. The file format is described in
175 a comment by the code that writes the index. */
176 struct mapped_index
177 {
178 /* Index data format version. */
179 int version;
180
181 /* The total length of the buffer. */
182 off_t total_size;
183
184 /* A pointer to the address table data. */
185 const gdb_byte *address_table;
186
187 /* Size of the address table data in bytes. */
188 offset_type address_table_size;
189
190 /* The symbol table, implemented as a hash table. */
191 const offset_type *symbol_table;
192
193 /* Size in slots, each slot is 2 offset_types. */
194 offset_type symbol_table_slots;
195
196 /* A pointer to the constant pool. */
197 const char *constant_pool;
198 };
199
200 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
201 DEF_VEC_P (dwarf2_per_cu_ptr);
202
203 /* Collection of data recorded per objfile.
204 This hangs off of dwarf2_objfile_data_key. */
205
206 struct dwarf2_per_objfile
207 {
208 struct dwarf2_section_info info;
209 struct dwarf2_section_info abbrev;
210 struct dwarf2_section_info line;
211 struct dwarf2_section_info loc;
212 struct dwarf2_section_info macinfo;
213 struct dwarf2_section_info macro;
214 struct dwarf2_section_info str;
215 struct dwarf2_section_info ranges;
216 struct dwarf2_section_info addr;
217 struct dwarf2_section_info frame;
218 struct dwarf2_section_info eh_frame;
219 struct dwarf2_section_info gdb_index;
220
221 VEC (dwarf2_section_info_def) *types;
222
223 /* Back link. */
224 struct objfile *objfile;
225
226 /* Table of all the compilation units. This is used to locate
227 the target compilation unit of a particular reference. */
228 struct dwarf2_per_cu_data **all_comp_units;
229
230 /* The number of compilation units in ALL_COMP_UNITS. */
231 int n_comp_units;
232
233 /* The number of .debug_types-related CUs. */
234 int n_type_units;
235
236 /* The .debug_types-related CUs (TUs).
237 This is stored in malloc space because we may realloc it. */
238 struct signatured_type **all_type_units;
239
240 /* The number of entries in all_type_unit_groups. */
241 int n_type_unit_groups;
242
243 /* Table of type unit groups.
244 This exists to make it easy to iterate over all CUs and TU groups. */
245 struct type_unit_group **all_type_unit_groups;
246
247 /* Table of struct type_unit_group objects.
248 The hash key is the DW_AT_stmt_list value. */
249 htab_t type_unit_groups;
250
251 /* A table mapping .debug_types signatures to its signatured_type entry.
252 This is NULL if the .debug_types section hasn't been read in yet. */
253 htab_t signatured_types;
254
255 /* Type unit statistics, to see how well the scaling improvements
256 are doing. */
257 struct tu_stats
258 {
259 int nr_uniq_abbrev_tables;
260 int nr_symtabs;
261 int nr_symtab_sharers;
262 int nr_stmt_less_type_units;
263 } tu_stats;
264
265 /* A chain of compilation units that are currently read in, so that
266 they can be freed later. */
267 struct dwarf2_per_cu_data *read_in_chain;
268
269 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
270 This is NULL if the table hasn't been allocated yet. */
271 htab_t dwo_files;
272
273 /* Non-zero if we've check for whether there is a DWP file. */
274 int dwp_checked;
275
276 /* The DWP file if there is one, or NULL. */
277 struct dwp_file *dwp_file;
278
279 /* The shared '.dwz' file, if one exists. This is used when the
280 original data was compressed using 'dwz -m'. */
281 struct dwz_file *dwz_file;
282
283 /* A flag indicating wether this objfile has a section loaded at a
284 VMA of 0. */
285 int has_section_at_zero;
286
287 /* True if we are using the mapped index,
288 or we are faking it for OBJF_READNOW's sake. */
289 unsigned char using_index;
290
291 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
292 struct mapped_index *index_table;
293
294 /* When using index_table, this keeps track of all quick_file_names entries.
295 TUs typically share line table entries with a CU, so we maintain a
296 separate table of all line table entries to support the sharing.
297 Note that while there can be way more TUs than CUs, we've already
298 sorted all the TUs into "type unit groups", grouped by their
299 DW_AT_stmt_list value. Therefore the only sharing done here is with a
300 CU and its associated TU group if there is one. */
301 htab_t quick_file_names_table;
302
303 /* Set during partial symbol reading, to prevent queueing of full
304 symbols. */
305 int reading_partial_symbols;
306
307 /* Table mapping type DIEs to their struct type *.
308 This is NULL if not allocated yet.
309 The mapping is done via (CU/TU + DIE offset) -> type. */
310 htab_t die_type_hash;
311
312 /* The CUs we recently read. */
313 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 };
315
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
317
318 /* Default names of the debugging sections. */
319
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
324 {
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
338 23
339 };
340
341 /* List of DWO/DWP sections. */
342
343 static const struct dwop_section_names
344 {
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
356 }
357 dwop_section_names =
358 {
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
370 };
371
372 /* local data types */
373
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
377 {
378 unsigned int length;
379 short version;
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
383
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
386
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
389
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
392 sect_offset offset;
393
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
421
422 /* Internal state when decoding a particular compilation unit. */
423 struct dwarf2_cu
424 {
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
441 const char *producer;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
458
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
481 htab_t die_hash;
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the stub CU/TU's DIE. */
515 ULONGEST addr_base;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
528
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
537
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
552 };
553
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
557
558 struct dwarf2_per_cu_data
559 {
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
565 sect_offset offset;
566 unsigned int length;
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
571
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
581 unsigned int is_debug_types : 1;
582
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
605 struct dwarf2_section_info *section;
606
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
610
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
615
616 /* When using partial symbol tables, the 'psymtab' field is active.
617 Otherwise the 'quick' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
627
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 };
648
649 /* Entry in the signatured_types hash table. */
650
651 struct signatured_type
652 {
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
659 /* The type's signature. */
660 ULONGEST signature;
661
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
686 };
687
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
690
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694 struct stmt_list_hash
695 {
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701 };
702
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706 struct type_unit_group
707 {
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
715
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
720
721 /* The primary symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the primary symtab. */
724 struct symtab *primary_symtab;
725
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742 };
743
744 /* These sections are what may appear in a (real or virtual) DWO file. */
745
746 struct dwo_sections
747 {
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
758 };
759
760 /* CUs/TUs in DWP/DWO files. */
761
762 struct dwo_unit
763 {
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
774
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781 };
782
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787 enum dwp_v2_section_ids
788 {
789 DW_SECT_MIN = 1
790 };
791
792 /* Data for one DWO file.
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
802
803 struct dwo_file
804 {
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
813
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
817
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
822
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833 };
834
835 /* These sections are what may appear in a DWP file. */
836
837 struct dwp_sections
838 {
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
860 };
861
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
864
865 struct virtual_v1_dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
876 };
877
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883 struct virtual_v2_dwo_sections
884 {
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907 };
908
909 /* Contents of DWP hash tables. */
910
911 struct dwp_hash_table
912 {
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
938 };
939
940 /* Data for one DWP file. */
941
942 struct dwp_file
943 {
944 /* Name of the file. */
945 const char *name;
946
947 /* File format version. */
948 int version;
949
950 /* The bfd. */
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
965
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
970 };
971
972 /* This represents a '.dwz' file. */
973
974 struct dwz_file
975 {
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986 };
987
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
992
993 struct die_reader_specs
994 {
995 /* The bfd of die_section. */
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1003
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1016 };
1017
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028 struct line_header
1029 {
1030 unsigned int total_length;
1031 unsigned short version;
1032 unsigned int header_length;
1033 unsigned char minimum_instruction_length;
1034 unsigned char maximum_ops_per_instruction;
1035 unsigned char default_is_stmt;
1036 int line_base;
1037 unsigned char line_range;
1038 unsigned char opcode_base;
1039
1040 /* standard_opcode_lengths[i] is the number of operands for the
1041 standard opcode whose value is i. This means that
1042 standard_opcode_lengths[0] is unused, and the last meaningful
1043 element is standard_opcode_lengths[opcode_base - 1]. */
1044 unsigned char *standard_opcode_lengths;
1045
1046 /* The include_directories table. NOTE! These strings are not
1047 allocated with xmalloc; instead, they are pointers into
1048 debug_line_buffer. If you try to free them, `free' will get
1049 indigestion. */
1050 unsigned int num_include_dirs, include_dirs_size;
1051 const char **include_dirs;
1052
1053 /* The file_names table. NOTE! These strings are not allocated
1054 with xmalloc; instead, they are pointers into debug_line_buffer.
1055 Don't try to free them directly. */
1056 unsigned int num_file_names, file_names_size;
1057 struct file_entry
1058 {
1059 const char *name;
1060 unsigned int dir_index;
1061 unsigned int mod_time;
1062 unsigned int length;
1063 int included_p; /* Non-zero if referenced by the Line Number Program. */
1064 struct symtab *symtab; /* The associated symbol table, if any. */
1065 } *file_names;
1066
1067 /* The start and end of the statement program following this
1068 header. These point into dwarf2_per_objfile->line_buffer. */
1069 const gdb_byte *statement_program_start, *statement_program_end;
1070 };
1071
1072 /* When we construct a partial symbol table entry we only
1073 need this much information. */
1074 struct partial_die_info
1075 {
1076 /* Offset of this DIE. */
1077 sect_offset offset;
1078
1079 /* DWARF-2 tag for this DIE. */
1080 ENUM_BITFIELD(dwarf_tag) tag : 16;
1081
1082 /* Assorted flags describing the data found in this DIE. */
1083 unsigned int has_children : 1;
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* Flag set if the SCOPE field of this structure has been
1092 computed. */
1093 unsigned int scope_set : 1;
1094
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1097
1098 /* Flag set if any of the DIE's children are template arguments. */
1099 unsigned int has_template_arguments : 1;
1100
1101 /* Flag set if fixup_partial_die has been called on this die. */
1102 unsigned int fixup_called : 1;
1103
1104 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1105 unsigned int is_dwz : 1;
1106
1107 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1108 unsigned int spec_is_dwz : 1;
1109
1110 /* The name of this DIE. Normally the value of DW_AT_name, but
1111 sometimes a default name for unnamed DIEs. */
1112 const char *name;
1113
1114 /* The linkage name, if present. */
1115 const char *linkage_name;
1116
1117 /* The scope to prepend to our children. This is generally
1118 allocated on the comp_unit_obstack, so will disappear
1119 when this compilation unit leaves the cache. */
1120 const char *scope;
1121
1122 /* Some data associated with the partial DIE. The tag determines
1123 which field is live. */
1124 union
1125 {
1126 /* The location description associated with this DIE, if any. */
1127 struct dwarf_block *locdesc;
1128 /* The offset of an import, for DW_TAG_imported_unit. */
1129 sect_offset offset;
1130 } d;
1131
1132 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1133 CORE_ADDR lowpc;
1134 CORE_ADDR highpc;
1135
1136 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1137 DW_AT_sibling, if any. */
1138 /* NOTE: This member isn't strictly necessary, read_partial_die could
1139 return DW_AT_sibling values to its caller load_partial_dies. */
1140 const gdb_byte *sibling;
1141
1142 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1143 DW_AT_specification (or DW_AT_abstract_origin or
1144 DW_AT_extension). */
1145 sect_offset spec_offset;
1146
1147 /* Pointers to this DIE's parent, first child, and next sibling,
1148 if any. */
1149 struct partial_die_info *die_parent, *die_child, *die_sibling;
1150 };
1151
1152 /* This data structure holds the information of an abbrev. */
1153 struct abbrev_info
1154 {
1155 unsigned int number; /* number identifying abbrev */
1156 enum dwarf_tag tag; /* dwarf tag */
1157 unsigned short has_children; /* boolean */
1158 unsigned short num_attrs; /* number of attributes */
1159 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1160 struct abbrev_info *next; /* next in chain */
1161 };
1162
1163 struct attr_abbrev
1164 {
1165 ENUM_BITFIELD(dwarf_attribute) name : 16;
1166 ENUM_BITFIELD(dwarf_form) form : 16;
1167 };
1168
1169 /* Size of abbrev_table.abbrev_hash_table. */
1170 #define ABBREV_HASH_SIZE 121
1171
1172 /* Top level data structure to contain an abbreviation table. */
1173
1174 struct abbrev_table
1175 {
1176 /* Where the abbrev table came from.
1177 This is used as a sanity check when the table is used. */
1178 sect_offset offset;
1179
1180 /* Storage for the abbrev table. */
1181 struct obstack abbrev_obstack;
1182
1183 /* Hash table of abbrevs.
1184 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1185 It could be statically allocated, but the previous code didn't so we
1186 don't either. */
1187 struct abbrev_info **abbrevs;
1188 };
1189
1190 /* Attributes have a name and a value. */
1191 struct attribute
1192 {
1193 ENUM_BITFIELD(dwarf_attribute) name : 16;
1194 ENUM_BITFIELD(dwarf_form) form : 15;
1195
1196 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1197 field should be in u.str (existing only for DW_STRING) but it is kept
1198 here for better struct attribute alignment. */
1199 unsigned int string_is_canonical : 1;
1200
1201 union
1202 {
1203 const char *str;
1204 struct dwarf_block *blk;
1205 ULONGEST unsnd;
1206 LONGEST snd;
1207 CORE_ADDR addr;
1208 ULONGEST signature;
1209 }
1210 u;
1211 };
1212
1213 /* This data structure holds a complete die structure. */
1214 struct die_info
1215 {
1216 /* DWARF-2 tag for this DIE. */
1217 ENUM_BITFIELD(dwarf_tag) tag : 16;
1218
1219 /* Number of attributes */
1220 unsigned char num_attrs;
1221
1222 /* True if we're presently building the full type name for the
1223 type derived from this DIE. */
1224 unsigned char building_fullname : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int need_pc, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int need_pc,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 struct dwarf2_cu *cu, ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 int);
1516
1517 static void dwarf2_start_subfile (const char *, const char *, const char *);
1518
1519 static void dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *, CORE_ADDR);
1521
1522 static struct symbol *new_symbol (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1524
1525 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1526 struct dwarf2_cu *, struct symbol *);
1527
1528 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1529 struct dwarf2_cu *);
1530
1531 static void dwarf2_const_value_attr (const struct attribute *attr,
1532 struct type *type,
1533 const char *name,
1534 struct obstack *obstack,
1535 struct dwarf2_cu *cu, LONGEST *value,
1536 const gdb_byte **bytes,
1537 struct dwarf2_locexpr_baton **baton);
1538
1539 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1540
1541 static int need_gnat_info (struct dwarf2_cu *);
1542
1543 static struct type *die_descriptive_type (struct die_info *,
1544 struct dwarf2_cu *);
1545
1546 static void set_descriptive_type (struct type *, struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static struct type *die_containing_type (struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1556
1557 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1558
1559 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1560
1561 static char *typename_concat (struct obstack *obs, const char *prefix,
1562 const char *suffix, int physname,
1563 struct dwarf2_cu *cu);
1564
1565 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1566
1567 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1572
1573 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1574
1575 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1576 struct dwarf2_cu *, struct partial_symtab *);
1577
1578 static int dwarf2_get_pc_bounds (struct die_info *,
1579 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1580 struct partial_symtab *);
1581
1582 static void get_scope_pc_bounds (struct die_info *,
1583 CORE_ADDR *, CORE_ADDR *,
1584 struct dwarf2_cu *);
1585
1586 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1587 CORE_ADDR, struct dwarf2_cu *);
1588
1589 static void dwarf2_add_field (struct field_info *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_attach_fields_to_type (struct field_info *,
1593 struct type *, struct dwarf2_cu *);
1594
1595 static void dwarf2_add_member_fn (struct field_info *,
1596 struct die_info *, struct type *,
1597 struct dwarf2_cu *);
1598
1599 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1600 struct type *,
1601 struct dwarf2_cu *);
1602
1603 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1608
1609 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1610
1611 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1612
1613 static struct type *read_module_type (struct die_info *die,
1614 struct dwarf2_cu *cu);
1615
1616 static const char *namespace_name (struct die_info *die,
1617 int *is_anonymous, struct dwarf2_cu *);
1618
1619 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1622
1623 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1624 struct dwarf2_cu *);
1625
1626 static struct die_info *read_die_and_siblings_1
1627 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1628 struct die_info *);
1629
1630 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1631 const gdb_byte *info_ptr,
1632 const gdb_byte **new_info_ptr,
1633 struct die_info *parent);
1634
1635 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1636 struct die_info **, const gdb_byte *,
1637 int *, int);
1638
1639 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *);
1642
1643 static void process_die (struct die_info *, struct dwarf2_cu *);
1644
1645 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1646 struct obstack *);
1647
1648 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1649
1650 static const char *dwarf2_full_name (const char *name,
1651 struct die_info *die,
1652 struct dwarf2_cu *cu);
1653
1654 static const char *dwarf2_physname (const char *name, struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657 static struct die_info *dwarf2_extension (struct die_info *die,
1658 struct dwarf2_cu **);
1659
1660 static const char *dwarf_tag_name (unsigned int);
1661
1662 static const char *dwarf_attr_name (unsigned int);
1663
1664 static const char *dwarf_form_name (unsigned int);
1665
1666 static char *dwarf_bool_name (unsigned int);
1667
1668 static const char *dwarf_type_encoding_name (unsigned int);
1669
1670 static struct die_info *sibling_die (struct die_info *);
1671
1672 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1673
1674 static void dump_die_for_error (struct die_info *);
1675
1676 static void dump_die_1 (struct ui_file *, int level, int max_level,
1677 struct die_info *);
1678
1679 /*static*/ void dump_die (struct die_info *, int max_level);
1680
1681 static void store_in_ref_table (struct die_info *,
1682 struct dwarf2_cu *);
1683
1684 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1685
1686 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1687
1688 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1689 const struct attribute *,
1690 struct dwarf2_cu **);
1691
1692 static struct die_info *follow_die_ref (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_sig (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1701 struct dwarf2_cu *);
1702
1703 static struct type *get_DW_AT_signature_type (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu *);
1706
1707 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1708
1709 static void read_signatured_type (struct signatured_type *);
1710
1711 static struct type_unit_group *get_type_unit_group
1712 (struct dwarf2_cu *, const struct attribute *);
1713
1714 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1715
1716 /* memory allocation interface */
1717
1718 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1719
1720 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1721
1722 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1723 const char *, int);
1724
1725 static int attr_form_is_block (const struct attribute *);
1726
1727 static int attr_form_is_section_offset (const struct attribute *);
1728
1729 static int attr_form_is_constant (const struct attribute *);
1730
1731 static int attr_form_is_ref (const struct attribute *);
1732
1733 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1734 struct dwarf2_loclist_baton *baton,
1735 const struct attribute *attr);
1736
1737 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1738 struct symbol *sym,
1739 struct dwarf2_cu *cu,
1740 int is_block);
1741
1742 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1743 const gdb_byte *info_ptr,
1744 struct abbrev_info *abbrev);
1745
1746 static void free_stack_comp_unit (void *);
1747
1748 static hashval_t partial_die_hash (const void *item);
1749
1750 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1751
1752 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1753 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1754
1755 static void init_one_comp_unit (struct dwarf2_cu *cu,
1756 struct dwarf2_per_cu_data *per_cu);
1757
1758 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1759 struct die_info *comp_unit_die,
1760 enum language pretend_language);
1761
1762 static void free_heap_comp_unit (void *);
1763
1764 static void free_cached_comp_units (void *);
1765
1766 static void age_cached_comp_units (void);
1767
1768 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1769
1770 static struct type *set_die_type (struct die_info *, struct type *,
1771 struct dwarf2_cu *);
1772
1773 static void create_all_comp_units (struct objfile *);
1774
1775 static int create_all_type_units (struct objfile *);
1776
1777 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
1786 static void dwarf2_add_dependence (struct dwarf2_cu *,
1787 struct dwarf2_per_cu_data *);
1788
1789 static void dwarf2_mark (struct dwarf2_cu *);
1790
1791 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type_at_offset (sect_offset,
1794 struct dwarf2_per_cu_data *);
1795
1796 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1797
1798 static void dwarf2_release_queue (void *dummy);
1799
1800 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1801 enum language pretend_language);
1802
1803 static void process_queue (void);
1804
1805 static void find_file_and_directory (struct die_info *die,
1806 struct dwarf2_cu *cu,
1807 const char **name, const char **comp_dir);
1808
1809 static char *file_full_name (int file, struct line_header *lh,
1810 const char *comp_dir);
1811
1812 static const gdb_byte *read_and_check_comp_unit_head
1813 (struct comp_unit_head *header,
1814 struct dwarf2_section_info *section,
1815 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1816 int is_debug_types_section);
1817
1818 static void init_cutu_and_read_dies
1819 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1820 int use_existing_cu, int keep,
1821 die_reader_func_ftype *die_reader_func, void *data);
1822
1823 static void init_cutu_and_read_dies_simple
1824 (struct dwarf2_per_cu_data *this_cu,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1828
1829 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1830
1831 static struct dwo_unit *lookup_dwo_unit_in_dwp
1832 (struct dwp_file *dwp_file, const char *comp_dir,
1833 ULONGEST signature, int is_debug_types);
1834
1835 static struct dwp_file *get_dwp_file (void);
1836
1837 static struct dwo_unit *lookup_dwo_comp_unit
1838 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1839
1840 static struct dwo_unit *lookup_dwo_type_unit
1841 (struct signatured_type *, const char *, const char *);
1842
1843 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1844
1845 static void free_dwo_file_cleanup (void *);
1846
1847 static void process_cu_includes (void);
1848
1849 static void check_producer (struct dwarf2_cu *cu);
1850 \f
1851 /* Various complaints about symbol reading that don't abort the process. */
1852
1853 static void
1854 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1855 {
1856 complaint (&symfile_complaints,
1857 _("statement list doesn't fit in .debug_line section"));
1858 }
1859
1860 static void
1861 dwarf2_debug_line_missing_file_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _(".debug_line section has line data without a file"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_end_sequence_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line "
1872 "program sequence without an end"));
1873 }
1874
1875 static void
1876 dwarf2_complex_location_expr_complaint (void)
1877 {
1878 complaint (&symfile_complaints, _("location expression too complex"));
1879 }
1880
1881 static void
1882 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1883 int arg3)
1884 {
1885 complaint (&symfile_complaints,
1886 _("const value length mismatch for '%s', got %d, expected %d"),
1887 arg1, arg2, arg3);
1888 }
1889
1890 static void
1891 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1892 {
1893 complaint (&symfile_complaints,
1894 _("debug info runs off end of %s section"
1895 " [in module %s]"),
1896 get_section_name (section),
1897 get_section_file_name (section));
1898 }
1899
1900 static void
1901 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1902 {
1903 complaint (&symfile_complaints,
1904 _("macro debug info contains a "
1905 "malformed macro definition:\n`%s'"),
1906 arg1);
1907 }
1908
1909 static void
1910 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1911 {
1912 complaint (&symfile_complaints,
1913 _("invalid attribute class or form for '%s' in '%s'"),
1914 arg1, arg2);
1915 }
1916 \f
1917 #if WORDS_BIGENDIAN
1918
1919 /* Convert VALUE between big- and little-endian. */
1920 static offset_type
1921 byte_swap (offset_type value)
1922 {
1923 offset_type result;
1924
1925 result = (value & 0xff) << 24;
1926 result |= (value & 0xff00) << 8;
1927 result |= (value & 0xff0000) >> 8;
1928 result |= (value & 0xff000000) >> 24;
1929 return result;
1930 }
1931
1932 #define MAYBE_SWAP(V) byte_swap (V)
1933
1934 #else
1935 #define MAYBE_SWAP(V) (V)
1936 #endif /* WORDS_BIGENDIAN */
1937
1938 /* The suffix for an index file. */
1939 #define INDEX_SUFFIX ".gdb-index"
1940
1941 /* Try to locate the sections we need for DWARF 2 debugging
1942 information and return true if we have enough to do something.
1943 NAMES points to the dwarf2 section names, or is NULL if the standard
1944 ELF names are used. */
1945
1946 int
1947 dwarf2_has_info (struct objfile *objfile,
1948 const struct dwarf2_debug_sections *names)
1949 {
1950 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1951 if (!dwarf2_per_objfile)
1952 {
1953 /* Initialize per-objfile state. */
1954 struct dwarf2_per_objfile *data
1955 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1956
1957 memset (data, 0, sizeof (*data));
1958 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1959 dwarf2_per_objfile = data;
1960
1961 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1962 (void *) names);
1963 dwarf2_per_objfile->objfile = objfile;
1964 }
1965 return (!dwarf2_per_objfile->info.is_virtual
1966 && dwarf2_per_objfile->info.s.asection != NULL
1967 && !dwarf2_per_objfile->abbrev.is_virtual
1968 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1969 }
1970
1971 /* Return the containing section of virtual section SECTION. */
1972
1973 static struct dwarf2_section_info *
1974 get_containing_section (const struct dwarf2_section_info *section)
1975 {
1976 gdb_assert (section->is_virtual);
1977 return section->s.containing_section;
1978 }
1979
1980 /* Return the bfd owner of SECTION. */
1981
1982 static struct bfd *
1983 get_section_bfd_owner (const struct dwarf2_section_info *section)
1984 {
1985 if (section->is_virtual)
1986 {
1987 section = get_containing_section (section);
1988 gdb_assert (!section->is_virtual);
1989 }
1990 return section->s.asection->owner;
1991 }
1992
1993 /* Return the bfd section of SECTION.
1994 Returns NULL if the section is not present. */
1995
1996 static asection *
1997 get_section_bfd_section (const struct dwarf2_section_info *section)
1998 {
1999 if (section->is_virtual)
2000 {
2001 section = get_containing_section (section);
2002 gdb_assert (!section->is_virtual);
2003 }
2004 return section->s.asection;
2005 }
2006
2007 /* Return the name of SECTION. */
2008
2009 static const char *
2010 get_section_name (const struct dwarf2_section_info *section)
2011 {
2012 asection *sectp = get_section_bfd_section (section);
2013
2014 gdb_assert (sectp != NULL);
2015 return bfd_section_name (get_section_bfd_owner (section), sectp);
2016 }
2017
2018 /* Return the name of the file SECTION is in. */
2019
2020 static const char *
2021 get_section_file_name (const struct dwarf2_section_info *section)
2022 {
2023 bfd *abfd = get_section_bfd_owner (section);
2024
2025 return bfd_get_filename (abfd);
2026 }
2027
2028 /* Return the id of SECTION.
2029 Returns 0 if SECTION doesn't exist. */
2030
2031 static int
2032 get_section_id (const struct dwarf2_section_info *section)
2033 {
2034 asection *sectp = get_section_bfd_section (section);
2035
2036 if (sectp == NULL)
2037 return 0;
2038 return sectp->id;
2039 }
2040
2041 /* Return the flags of SECTION.
2042 SECTION (or containing section if this is a virtual section) must exist. */
2043
2044 static int
2045 get_section_flags (const struct dwarf2_section_info *section)
2046 {
2047 asection *sectp = get_section_bfd_section (section);
2048
2049 gdb_assert (sectp != NULL);
2050 return bfd_get_section_flags (sectp->owner, sectp);
2051 }
2052
2053 /* When loading sections, we look either for uncompressed section or for
2054 compressed section names. */
2055
2056 static int
2057 section_is_p (const char *section_name,
2058 const struct dwarf2_section_names *names)
2059 {
2060 if (names->normal != NULL
2061 && strcmp (section_name, names->normal) == 0)
2062 return 1;
2063 if (names->compressed != NULL
2064 && strcmp (section_name, names->compressed) == 0)
2065 return 1;
2066 return 0;
2067 }
2068
2069 /* This function is mapped across the sections and remembers the
2070 offset and size of each of the debugging sections we are interested
2071 in. */
2072
2073 static void
2074 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2075 {
2076 const struct dwarf2_debug_sections *names;
2077 flagword aflag = bfd_get_section_flags (abfd, sectp);
2078
2079 if (vnames == NULL)
2080 names = &dwarf2_elf_names;
2081 else
2082 names = (const struct dwarf2_debug_sections *) vnames;
2083
2084 if ((aflag & SEC_HAS_CONTENTS) == 0)
2085 {
2086 }
2087 else if (section_is_p (sectp->name, &names->info))
2088 {
2089 dwarf2_per_objfile->info.s.asection = sectp;
2090 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2091 }
2092 else if (section_is_p (sectp->name, &names->abbrev))
2093 {
2094 dwarf2_per_objfile->abbrev.s.asection = sectp;
2095 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2096 }
2097 else if (section_is_p (sectp->name, &names->line))
2098 {
2099 dwarf2_per_objfile->line.s.asection = sectp;
2100 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2101 }
2102 else if (section_is_p (sectp->name, &names->loc))
2103 {
2104 dwarf2_per_objfile->loc.s.asection = sectp;
2105 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2106 }
2107 else if (section_is_p (sectp->name, &names->macinfo))
2108 {
2109 dwarf2_per_objfile->macinfo.s.asection = sectp;
2110 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2111 }
2112 else if (section_is_p (sectp->name, &names->macro))
2113 {
2114 dwarf2_per_objfile->macro.s.asection = sectp;
2115 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2116 }
2117 else if (section_is_p (sectp->name, &names->str))
2118 {
2119 dwarf2_per_objfile->str.s.asection = sectp;
2120 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2121 }
2122 else if (section_is_p (sectp->name, &names->addr))
2123 {
2124 dwarf2_per_objfile->addr.s.asection = sectp;
2125 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2126 }
2127 else if (section_is_p (sectp->name, &names->frame))
2128 {
2129 dwarf2_per_objfile->frame.s.asection = sectp;
2130 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2131 }
2132 else if (section_is_p (sectp->name, &names->eh_frame))
2133 {
2134 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2135 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2136 }
2137 else if (section_is_p (sectp->name, &names->ranges))
2138 {
2139 dwarf2_per_objfile->ranges.s.asection = sectp;
2140 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2141 }
2142 else if (section_is_p (sectp->name, &names->types))
2143 {
2144 struct dwarf2_section_info type_section;
2145
2146 memset (&type_section, 0, sizeof (type_section));
2147 type_section.s.asection = sectp;
2148 type_section.size = bfd_get_section_size (sectp);
2149
2150 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2151 &type_section);
2152 }
2153 else if (section_is_p (sectp->name, &names->gdb_index))
2154 {
2155 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2156 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2157 }
2158
2159 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2160 && bfd_section_vma (abfd, sectp) == 0)
2161 dwarf2_per_objfile->has_section_at_zero = 1;
2162 }
2163
2164 /* A helper function that decides whether a section is empty,
2165 or not present. */
2166
2167 static int
2168 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2169 {
2170 if (section->is_virtual)
2171 return section->size == 0;
2172 return section->s.asection == NULL || section->size == 0;
2173 }
2174
2175 /* Read the contents of the section INFO.
2176 OBJFILE is the main object file, but not necessarily the file where
2177 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2178 of the DWO file.
2179 If the section is compressed, uncompress it before returning. */
2180
2181 static void
2182 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2183 {
2184 asection *sectp;
2185 bfd *abfd;
2186 gdb_byte *buf, *retbuf;
2187
2188 if (info->readin)
2189 return;
2190 info->buffer = NULL;
2191 info->readin = 1;
2192
2193 if (dwarf2_section_empty_p (info))
2194 return;
2195
2196 sectp = get_section_bfd_section (info);
2197
2198 /* If this is a virtual section we need to read in the real one first. */
2199 if (info->is_virtual)
2200 {
2201 struct dwarf2_section_info *containing_section =
2202 get_containing_section (info);
2203
2204 gdb_assert (sectp != NULL);
2205 if ((sectp->flags & SEC_RELOC) != 0)
2206 {
2207 error (_("Dwarf Error: DWP format V2 with relocations is not"
2208 " supported in section %s [in module %s]"),
2209 get_section_name (info), get_section_file_name (info));
2210 }
2211 dwarf2_read_section (objfile, containing_section);
2212 /* Other code should have already caught virtual sections that don't
2213 fit. */
2214 gdb_assert (info->virtual_offset + info->size
2215 <= containing_section->size);
2216 /* If the real section is empty or there was a problem reading the
2217 section we shouldn't get here. */
2218 gdb_assert (containing_section->buffer != NULL);
2219 info->buffer = containing_section->buffer + info->virtual_offset;
2220 return;
2221 }
2222
2223 /* If the section has relocations, we must read it ourselves.
2224 Otherwise we attach it to the BFD. */
2225 if ((sectp->flags & SEC_RELOC) == 0)
2226 {
2227 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2228 return;
2229 }
2230
2231 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2232 info->buffer = buf;
2233
2234 /* When debugging .o files, we may need to apply relocations; see
2235 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2236 We never compress sections in .o files, so we only need to
2237 try this when the section is not compressed. */
2238 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2239 if (retbuf != NULL)
2240 {
2241 info->buffer = retbuf;
2242 return;
2243 }
2244
2245 abfd = get_section_bfd_owner (info);
2246 gdb_assert (abfd != NULL);
2247
2248 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2249 || bfd_bread (buf, info->size, abfd) != info->size)
2250 {
2251 error (_("Dwarf Error: Can't read DWARF data"
2252 " in section %s [in module %s]"),
2253 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2254 }
2255 }
2256
2257 /* A helper function that returns the size of a section in a safe way.
2258 If you are positive that the section has been read before using the
2259 size, then it is safe to refer to the dwarf2_section_info object's
2260 "size" field directly. In other cases, you must call this
2261 function, because for compressed sections the size field is not set
2262 correctly until the section has been read. */
2263
2264 static bfd_size_type
2265 dwarf2_section_size (struct objfile *objfile,
2266 struct dwarf2_section_info *info)
2267 {
2268 if (!info->readin)
2269 dwarf2_read_section (objfile, info);
2270 return info->size;
2271 }
2272
2273 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2274 SECTION_NAME. */
2275
2276 void
2277 dwarf2_get_section_info (struct objfile *objfile,
2278 enum dwarf2_section_enum sect,
2279 asection **sectp, const gdb_byte **bufp,
2280 bfd_size_type *sizep)
2281 {
2282 struct dwarf2_per_objfile *data
2283 = objfile_data (objfile, dwarf2_objfile_data_key);
2284 struct dwarf2_section_info *info;
2285
2286 /* We may see an objfile without any DWARF, in which case we just
2287 return nothing. */
2288 if (data == NULL)
2289 {
2290 *sectp = NULL;
2291 *bufp = NULL;
2292 *sizep = 0;
2293 return;
2294 }
2295 switch (sect)
2296 {
2297 case DWARF2_DEBUG_FRAME:
2298 info = &data->frame;
2299 break;
2300 case DWARF2_EH_FRAME:
2301 info = &data->eh_frame;
2302 break;
2303 default:
2304 gdb_assert_not_reached ("unexpected section");
2305 }
2306
2307 dwarf2_read_section (objfile, info);
2308
2309 *sectp = get_section_bfd_section (info);
2310 *bufp = info->buffer;
2311 *sizep = info->size;
2312 }
2313
2314 /* A helper function to find the sections for a .dwz file. */
2315
2316 static void
2317 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2318 {
2319 struct dwz_file *dwz_file = arg;
2320
2321 /* Note that we only support the standard ELF names, because .dwz
2322 is ELF-only (at the time of writing). */
2323 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2324 {
2325 dwz_file->abbrev.s.asection = sectp;
2326 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2327 }
2328 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2329 {
2330 dwz_file->info.s.asection = sectp;
2331 dwz_file->info.size = bfd_get_section_size (sectp);
2332 }
2333 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2334 {
2335 dwz_file->str.s.asection = sectp;
2336 dwz_file->str.size = bfd_get_section_size (sectp);
2337 }
2338 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2339 {
2340 dwz_file->line.s.asection = sectp;
2341 dwz_file->line.size = bfd_get_section_size (sectp);
2342 }
2343 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2344 {
2345 dwz_file->macro.s.asection = sectp;
2346 dwz_file->macro.size = bfd_get_section_size (sectp);
2347 }
2348 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2349 {
2350 dwz_file->gdb_index.s.asection = sectp;
2351 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2352 }
2353 }
2354
2355 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2356 there is no .gnu_debugaltlink section in the file. Error if there
2357 is such a section but the file cannot be found. */
2358
2359 static struct dwz_file *
2360 dwarf2_get_dwz_file (void)
2361 {
2362 bfd *dwz_bfd;
2363 char *data;
2364 struct cleanup *cleanup;
2365 const char *filename;
2366 struct dwz_file *result;
2367 unsigned long buildid;
2368
2369 if (dwarf2_per_objfile->dwz_file != NULL)
2370 return dwarf2_per_objfile->dwz_file;
2371
2372 bfd_set_error (bfd_error_no_error);
2373 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2374 &buildid);
2375 if (data == NULL)
2376 {
2377 if (bfd_get_error () == bfd_error_no_error)
2378 return NULL;
2379 error (_("could not read '.gnu_debugaltlink' section: %s"),
2380 bfd_errmsg (bfd_get_error ()));
2381 }
2382 cleanup = make_cleanup (xfree, data);
2383
2384 filename = (const char *) data;
2385 if (!IS_ABSOLUTE_PATH (filename))
2386 {
2387 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2388 char *rel;
2389
2390 make_cleanup (xfree, abs);
2391 abs = ldirname (abs);
2392 make_cleanup (xfree, abs);
2393
2394 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2395 make_cleanup (xfree, rel);
2396 filename = rel;
2397 }
2398
2399 /* The format is just a NUL-terminated file name, followed by the
2400 build-id. For now, though, we ignore the build-id. */
2401 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2402 if (dwz_bfd == NULL)
2403 error (_("could not read '%s': %s"), filename,
2404 bfd_errmsg (bfd_get_error ()));
2405
2406 if (!bfd_check_format (dwz_bfd, bfd_object))
2407 {
2408 gdb_bfd_unref (dwz_bfd);
2409 error (_("file '%s' was not usable: %s"), filename,
2410 bfd_errmsg (bfd_get_error ()));
2411 }
2412
2413 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2414 struct dwz_file);
2415 result->dwz_bfd = dwz_bfd;
2416
2417 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2418
2419 do_cleanups (cleanup);
2420
2421 dwarf2_per_objfile->dwz_file = result;
2422 return result;
2423 }
2424 \f
2425 /* DWARF quick_symbols_functions support. */
2426
2427 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2428 unique line tables, so we maintain a separate table of all .debug_line
2429 derived entries to support the sharing.
2430 All the quick functions need is the list of file names. We discard the
2431 line_header when we're done and don't need to record it here. */
2432 struct quick_file_names
2433 {
2434 /* The data used to construct the hash key. */
2435 struct stmt_list_hash hash;
2436
2437 /* The number of entries in file_names, real_names. */
2438 unsigned int num_file_names;
2439
2440 /* The file names from the line table, after being run through
2441 file_full_name. */
2442 const char **file_names;
2443
2444 /* The file names from the line table after being run through
2445 gdb_realpath. These are computed lazily. */
2446 const char **real_names;
2447 };
2448
2449 /* When using the index (and thus not using psymtabs), each CU has an
2450 object of this type. This is used to hold information needed by
2451 the various "quick" methods. */
2452 struct dwarf2_per_cu_quick_data
2453 {
2454 /* The file table. This can be NULL if there was no file table
2455 or it's currently not read in.
2456 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2457 struct quick_file_names *file_names;
2458
2459 /* The corresponding symbol table. This is NULL if symbols for this
2460 CU have not yet been read. */
2461 struct symtab *symtab;
2462
2463 /* A temporary mark bit used when iterating over all CUs in
2464 expand_symtabs_matching. */
2465 unsigned int mark : 1;
2466
2467 /* True if we've tried to read the file table and found there isn't one.
2468 There will be no point in trying to read it again next time. */
2469 unsigned int no_file_data : 1;
2470 };
2471
2472 /* Utility hash function for a stmt_list_hash. */
2473
2474 static hashval_t
2475 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2476 {
2477 hashval_t v = 0;
2478
2479 if (stmt_list_hash->dwo_unit != NULL)
2480 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2481 v += stmt_list_hash->line_offset.sect_off;
2482 return v;
2483 }
2484
2485 /* Utility equality function for a stmt_list_hash. */
2486
2487 static int
2488 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2489 const struct stmt_list_hash *rhs)
2490 {
2491 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2492 return 0;
2493 if (lhs->dwo_unit != NULL
2494 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2495 return 0;
2496
2497 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2498 }
2499
2500 /* Hash function for a quick_file_names. */
2501
2502 static hashval_t
2503 hash_file_name_entry (const void *e)
2504 {
2505 const struct quick_file_names *file_data = e;
2506
2507 return hash_stmt_list_entry (&file_data->hash);
2508 }
2509
2510 /* Equality function for a quick_file_names. */
2511
2512 static int
2513 eq_file_name_entry (const void *a, const void *b)
2514 {
2515 const struct quick_file_names *ea = a;
2516 const struct quick_file_names *eb = b;
2517
2518 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2519 }
2520
2521 /* Delete function for a quick_file_names. */
2522
2523 static void
2524 delete_file_name_entry (void *e)
2525 {
2526 struct quick_file_names *file_data = e;
2527 int i;
2528
2529 for (i = 0; i < file_data->num_file_names; ++i)
2530 {
2531 xfree ((void*) file_data->file_names[i]);
2532 if (file_data->real_names)
2533 xfree ((void*) file_data->real_names[i]);
2534 }
2535
2536 /* The space for the struct itself lives on objfile_obstack,
2537 so we don't free it here. */
2538 }
2539
2540 /* Create a quick_file_names hash table. */
2541
2542 static htab_t
2543 create_quick_file_names_table (unsigned int nr_initial_entries)
2544 {
2545 return htab_create_alloc (nr_initial_entries,
2546 hash_file_name_entry, eq_file_name_entry,
2547 delete_file_name_entry, xcalloc, xfree);
2548 }
2549
2550 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2551 have to be created afterwards. You should call age_cached_comp_units after
2552 processing PER_CU->CU. dw2_setup must have been already called. */
2553
2554 static void
2555 load_cu (struct dwarf2_per_cu_data *per_cu)
2556 {
2557 if (per_cu->is_debug_types)
2558 load_full_type_unit (per_cu);
2559 else
2560 load_full_comp_unit (per_cu, language_minimal);
2561
2562 gdb_assert (per_cu->cu != NULL);
2563
2564 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2565 }
2566
2567 /* Read in the symbols for PER_CU. */
2568
2569 static void
2570 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2571 {
2572 struct cleanup *back_to;
2573
2574 /* Skip type_unit_groups, reading the type units they contain
2575 is handled elsewhere. */
2576 if (IS_TYPE_UNIT_GROUP (per_cu))
2577 return;
2578
2579 back_to = make_cleanup (dwarf2_release_queue, NULL);
2580
2581 if (dwarf2_per_objfile->using_index
2582 ? per_cu->v.quick->symtab == NULL
2583 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2584 {
2585 queue_comp_unit (per_cu, language_minimal);
2586 load_cu (per_cu);
2587
2588 /* If we just loaded a CU from a DWO, and we're working with an index
2589 that may badly handle TUs, load all the TUs in that DWO as well.
2590 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2591 if (!per_cu->is_debug_types
2592 && per_cu->cu->dwo_unit != NULL
2593 && dwarf2_per_objfile->index_table != NULL
2594 && dwarf2_per_objfile->index_table->version <= 7
2595 /* DWP files aren't supported yet. */
2596 && get_dwp_file () == NULL)
2597 queue_and_load_all_dwo_tus (per_cu);
2598 }
2599
2600 process_queue ();
2601
2602 /* Age the cache, releasing compilation units that have not
2603 been used recently. */
2604 age_cached_comp_units ();
2605
2606 do_cleanups (back_to);
2607 }
2608
2609 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2610 the objfile from which this CU came. Returns the resulting symbol
2611 table. */
2612
2613 static struct symtab *
2614 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2615 {
2616 gdb_assert (dwarf2_per_objfile->using_index);
2617 if (!per_cu->v.quick->symtab)
2618 {
2619 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2620 increment_reading_symtab ();
2621 dw2_do_instantiate_symtab (per_cu);
2622 process_cu_includes ();
2623 do_cleanups (back_to);
2624 }
2625 return per_cu->v.quick->symtab;
2626 }
2627
2628 /* Return the CU given its index.
2629
2630 This is intended for loops like:
2631
2632 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2633 + dwarf2_per_objfile->n_type_units); ++i)
2634 {
2635 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2636
2637 ...;
2638 }
2639 */
2640
2641 static struct dwarf2_per_cu_data *
2642 dw2_get_cu (int index)
2643 {
2644 if (index >= dwarf2_per_objfile->n_comp_units)
2645 {
2646 index -= dwarf2_per_objfile->n_comp_units;
2647 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2648 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2649 }
2650
2651 return dwarf2_per_objfile->all_comp_units[index];
2652 }
2653
2654 /* Return the primary CU given its index.
2655 The difference between this function and dw2_get_cu is in the handling
2656 of type units (TUs). Here we return the type_unit_group object.
2657
2658 This is intended for loops like:
2659
2660 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2661 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2662 {
2663 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2664
2665 ...;
2666 }
2667 */
2668
2669 static struct dwarf2_per_cu_data *
2670 dw2_get_primary_cu (int index)
2671 {
2672 if (index >= dwarf2_per_objfile->n_comp_units)
2673 {
2674 index -= dwarf2_per_objfile->n_comp_units;
2675 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2676 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2677 }
2678
2679 return dwarf2_per_objfile->all_comp_units[index];
2680 }
2681
2682 /* A helper for create_cus_from_index that handles a given list of
2683 CUs. */
2684
2685 static void
2686 create_cus_from_index_list (struct objfile *objfile,
2687 const gdb_byte *cu_list, offset_type n_elements,
2688 struct dwarf2_section_info *section,
2689 int is_dwz,
2690 int base_offset)
2691 {
2692 offset_type i;
2693
2694 for (i = 0; i < n_elements; i += 2)
2695 {
2696 struct dwarf2_per_cu_data *the_cu;
2697 ULONGEST offset, length;
2698
2699 gdb_static_assert (sizeof (ULONGEST) >= 8);
2700 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2701 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2702 cu_list += 2 * 8;
2703
2704 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2705 struct dwarf2_per_cu_data);
2706 the_cu->offset.sect_off = offset;
2707 the_cu->length = length;
2708 the_cu->objfile = objfile;
2709 the_cu->section = section;
2710 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2711 struct dwarf2_per_cu_quick_data);
2712 the_cu->is_dwz = is_dwz;
2713 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2714 }
2715 }
2716
2717 /* Read the CU list from the mapped index, and use it to create all
2718 the CU objects for this objfile. */
2719
2720 static void
2721 create_cus_from_index (struct objfile *objfile,
2722 const gdb_byte *cu_list, offset_type cu_list_elements,
2723 const gdb_byte *dwz_list, offset_type dwz_elements)
2724 {
2725 struct dwz_file *dwz;
2726
2727 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2728 dwarf2_per_objfile->all_comp_units
2729 = obstack_alloc (&objfile->objfile_obstack,
2730 dwarf2_per_objfile->n_comp_units
2731 * sizeof (struct dwarf2_per_cu_data *));
2732
2733 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2734 &dwarf2_per_objfile->info, 0, 0);
2735
2736 if (dwz_elements == 0)
2737 return;
2738
2739 dwz = dwarf2_get_dwz_file ();
2740 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2741 cu_list_elements / 2);
2742 }
2743
2744 /* Create the signatured type hash table from the index. */
2745
2746 static void
2747 create_signatured_type_table_from_index (struct objfile *objfile,
2748 struct dwarf2_section_info *section,
2749 const gdb_byte *bytes,
2750 offset_type elements)
2751 {
2752 offset_type i;
2753 htab_t sig_types_hash;
2754
2755 dwarf2_per_objfile->n_type_units = elements / 3;
2756 dwarf2_per_objfile->all_type_units
2757 = xmalloc (dwarf2_per_objfile->n_type_units
2758 * sizeof (struct signatured_type *));
2759
2760 sig_types_hash = allocate_signatured_type_table (objfile);
2761
2762 for (i = 0; i < elements; i += 3)
2763 {
2764 struct signatured_type *sig_type;
2765 ULONGEST offset, type_offset_in_tu, signature;
2766 void **slot;
2767
2768 gdb_static_assert (sizeof (ULONGEST) >= 8);
2769 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2770 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2771 BFD_ENDIAN_LITTLE);
2772 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2773 bytes += 3 * 8;
2774
2775 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2776 struct signatured_type);
2777 sig_type->signature = signature;
2778 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2779 sig_type->per_cu.is_debug_types = 1;
2780 sig_type->per_cu.section = section;
2781 sig_type->per_cu.offset.sect_off = offset;
2782 sig_type->per_cu.objfile = objfile;
2783 sig_type->per_cu.v.quick
2784 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2785 struct dwarf2_per_cu_quick_data);
2786
2787 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2788 *slot = sig_type;
2789
2790 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2791 }
2792
2793 dwarf2_per_objfile->signatured_types = sig_types_hash;
2794 }
2795
2796 /* Read the address map data from the mapped index, and use it to
2797 populate the objfile's psymtabs_addrmap. */
2798
2799 static void
2800 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2801 {
2802 const gdb_byte *iter, *end;
2803 struct obstack temp_obstack;
2804 struct addrmap *mutable_map;
2805 struct cleanup *cleanup;
2806 CORE_ADDR baseaddr;
2807
2808 obstack_init (&temp_obstack);
2809 cleanup = make_cleanup_obstack_free (&temp_obstack);
2810 mutable_map = addrmap_create_mutable (&temp_obstack);
2811
2812 iter = index->address_table;
2813 end = iter + index->address_table_size;
2814
2815 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2816
2817 while (iter < end)
2818 {
2819 ULONGEST hi, lo, cu_index;
2820 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2821 iter += 8;
2822 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2823 iter += 8;
2824 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2825 iter += 4;
2826
2827 if (lo > hi)
2828 {
2829 complaint (&symfile_complaints,
2830 _(".gdb_index address table has invalid range (%s - %s)"),
2831 hex_string (lo), hex_string (hi));
2832 continue;
2833 }
2834
2835 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2836 {
2837 complaint (&symfile_complaints,
2838 _(".gdb_index address table has invalid CU number %u"),
2839 (unsigned) cu_index);
2840 continue;
2841 }
2842
2843 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2844 dw2_get_cu (cu_index));
2845 }
2846
2847 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2848 &objfile->objfile_obstack);
2849 do_cleanups (cleanup);
2850 }
2851
2852 /* The hash function for strings in the mapped index. This is the same as
2853 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2854 implementation. This is necessary because the hash function is tied to the
2855 format of the mapped index file. The hash values do not have to match with
2856 SYMBOL_HASH_NEXT.
2857
2858 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2859
2860 static hashval_t
2861 mapped_index_string_hash (int index_version, const void *p)
2862 {
2863 const unsigned char *str = (const unsigned char *) p;
2864 hashval_t r = 0;
2865 unsigned char c;
2866
2867 while ((c = *str++) != 0)
2868 {
2869 if (index_version >= 5)
2870 c = tolower (c);
2871 r = r * 67 + c - 113;
2872 }
2873
2874 return r;
2875 }
2876
2877 /* Find a slot in the mapped index INDEX for the object named NAME.
2878 If NAME is found, set *VEC_OUT to point to the CU vector in the
2879 constant pool and return 1. If NAME cannot be found, return 0. */
2880
2881 static int
2882 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2883 offset_type **vec_out)
2884 {
2885 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2886 offset_type hash;
2887 offset_type slot, step;
2888 int (*cmp) (const char *, const char *);
2889
2890 if (current_language->la_language == language_cplus
2891 || current_language->la_language == language_java
2892 || current_language->la_language == language_fortran)
2893 {
2894 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2895 not contain any. */
2896 const char *paren = strchr (name, '(');
2897
2898 if (paren)
2899 {
2900 char *dup;
2901
2902 dup = xmalloc (paren - name + 1);
2903 memcpy (dup, name, paren - name);
2904 dup[paren - name] = 0;
2905
2906 make_cleanup (xfree, dup);
2907 name = dup;
2908 }
2909 }
2910
2911 /* Index version 4 did not support case insensitive searches. But the
2912 indices for case insensitive languages are built in lowercase, therefore
2913 simulate our NAME being searched is also lowercased. */
2914 hash = mapped_index_string_hash ((index->version == 4
2915 && case_sensitivity == case_sensitive_off
2916 ? 5 : index->version),
2917 name);
2918
2919 slot = hash & (index->symbol_table_slots - 1);
2920 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2921 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2922
2923 for (;;)
2924 {
2925 /* Convert a slot number to an offset into the table. */
2926 offset_type i = 2 * slot;
2927 const char *str;
2928 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2929 {
2930 do_cleanups (back_to);
2931 return 0;
2932 }
2933
2934 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2935 if (!cmp (name, str))
2936 {
2937 *vec_out = (offset_type *) (index->constant_pool
2938 + MAYBE_SWAP (index->symbol_table[i + 1]));
2939 do_cleanups (back_to);
2940 return 1;
2941 }
2942
2943 slot = (slot + step) & (index->symbol_table_slots - 1);
2944 }
2945 }
2946
2947 /* A helper function that reads the .gdb_index from SECTION and fills
2948 in MAP. FILENAME is the name of the file containing the section;
2949 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2950 ok to use deprecated sections.
2951
2952 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2953 out parameters that are filled in with information about the CU and
2954 TU lists in the section.
2955
2956 Returns 1 if all went well, 0 otherwise. */
2957
2958 static int
2959 read_index_from_section (struct objfile *objfile,
2960 const char *filename,
2961 int deprecated_ok,
2962 struct dwarf2_section_info *section,
2963 struct mapped_index *map,
2964 const gdb_byte **cu_list,
2965 offset_type *cu_list_elements,
2966 const gdb_byte **types_list,
2967 offset_type *types_list_elements)
2968 {
2969 const gdb_byte *addr;
2970 offset_type version;
2971 offset_type *metadata;
2972 int i;
2973
2974 if (dwarf2_section_empty_p (section))
2975 return 0;
2976
2977 /* Older elfutils strip versions could keep the section in the main
2978 executable while splitting it for the separate debug info file. */
2979 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2980 return 0;
2981
2982 dwarf2_read_section (objfile, section);
2983
2984 addr = section->buffer;
2985 /* Version check. */
2986 version = MAYBE_SWAP (*(offset_type *) addr);
2987 /* Versions earlier than 3 emitted every copy of a psymbol. This
2988 causes the index to behave very poorly for certain requests. Version 3
2989 contained incomplete addrmap. So, it seems better to just ignore such
2990 indices. */
2991 if (version < 4)
2992 {
2993 static int warning_printed = 0;
2994 if (!warning_printed)
2995 {
2996 warning (_("Skipping obsolete .gdb_index section in %s."),
2997 filename);
2998 warning_printed = 1;
2999 }
3000 return 0;
3001 }
3002 /* Index version 4 uses a different hash function than index version
3003 5 and later.
3004
3005 Versions earlier than 6 did not emit psymbols for inlined
3006 functions. Using these files will cause GDB not to be able to
3007 set breakpoints on inlined functions by name, so we ignore these
3008 indices unless the user has done
3009 "set use-deprecated-index-sections on". */
3010 if (version < 6 && !deprecated_ok)
3011 {
3012 static int warning_printed = 0;
3013 if (!warning_printed)
3014 {
3015 warning (_("\
3016 Skipping deprecated .gdb_index section in %s.\n\
3017 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3018 to use the section anyway."),
3019 filename);
3020 warning_printed = 1;
3021 }
3022 return 0;
3023 }
3024 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3025 of the TU (for symbols coming from TUs). It's just a performance bug, and
3026 we can't distinguish gdb-generated indices from gold-generated ones, so
3027 nothing to do here. */
3028
3029 /* Indexes with higher version than the one supported by GDB may be no
3030 longer backward compatible. */
3031 if (version > 8)
3032 return 0;
3033
3034 map->version = version;
3035 map->total_size = section->size;
3036
3037 metadata = (offset_type *) (addr + sizeof (offset_type));
3038
3039 i = 0;
3040 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3041 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3042 / 8);
3043 ++i;
3044
3045 *types_list = addr + MAYBE_SWAP (metadata[i]);
3046 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3047 - MAYBE_SWAP (metadata[i]))
3048 / 8);
3049 ++i;
3050
3051 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3052 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3053 - MAYBE_SWAP (metadata[i]));
3054 ++i;
3055
3056 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3057 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3058 - MAYBE_SWAP (metadata[i]))
3059 / (2 * sizeof (offset_type)));
3060 ++i;
3061
3062 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3063
3064 return 1;
3065 }
3066
3067
3068 /* Read the index file. If everything went ok, initialize the "quick"
3069 elements of all the CUs and return 1. Otherwise, return 0. */
3070
3071 static int
3072 dwarf2_read_index (struct objfile *objfile)
3073 {
3074 struct mapped_index local_map, *map;
3075 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3076 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3077 struct dwz_file *dwz;
3078
3079 if (!read_index_from_section (objfile, objfile_name (objfile),
3080 use_deprecated_index_sections,
3081 &dwarf2_per_objfile->gdb_index, &local_map,
3082 &cu_list, &cu_list_elements,
3083 &types_list, &types_list_elements))
3084 return 0;
3085
3086 /* Don't use the index if it's empty. */
3087 if (local_map.symbol_table_slots == 0)
3088 return 0;
3089
3090 /* If there is a .dwz file, read it so we can get its CU list as
3091 well. */
3092 dwz = dwarf2_get_dwz_file ();
3093 if (dwz != NULL)
3094 {
3095 struct mapped_index dwz_map;
3096 const gdb_byte *dwz_types_ignore;
3097 offset_type dwz_types_elements_ignore;
3098
3099 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3100 1,
3101 &dwz->gdb_index, &dwz_map,
3102 &dwz_list, &dwz_list_elements,
3103 &dwz_types_ignore,
3104 &dwz_types_elements_ignore))
3105 {
3106 warning (_("could not read '.gdb_index' section from %s; skipping"),
3107 bfd_get_filename (dwz->dwz_bfd));
3108 return 0;
3109 }
3110 }
3111
3112 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3113 dwz_list_elements);
3114
3115 if (types_list_elements)
3116 {
3117 struct dwarf2_section_info *section;
3118
3119 /* We can only handle a single .debug_types when we have an
3120 index. */
3121 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3122 return 0;
3123
3124 section = VEC_index (dwarf2_section_info_def,
3125 dwarf2_per_objfile->types, 0);
3126
3127 create_signatured_type_table_from_index (objfile, section, types_list,
3128 types_list_elements);
3129 }
3130
3131 create_addrmap_from_index (objfile, &local_map);
3132
3133 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3134 *map = local_map;
3135
3136 dwarf2_per_objfile->index_table = map;
3137 dwarf2_per_objfile->using_index = 1;
3138 dwarf2_per_objfile->quick_file_names_table =
3139 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3140
3141 return 1;
3142 }
3143
3144 /* A helper for the "quick" functions which sets the global
3145 dwarf2_per_objfile according to OBJFILE. */
3146
3147 static void
3148 dw2_setup (struct objfile *objfile)
3149 {
3150 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3151 gdb_assert (dwarf2_per_objfile);
3152 }
3153
3154 /* die_reader_func for dw2_get_file_names. */
3155
3156 static void
3157 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3158 const gdb_byte *info_ptr,
3159 struct die_info *comp_unit_die,
3160 int has_children,
3161 void *data)
3162 {
3163 struct dwarf2_cu *cu = reader->cu;
3164 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3165 struct objfile *objfile = dwarf2_per_objfile->objfile;
3166 struct dwarf2_per_cu_data *lh_cu;
3167 struct line_header *lh;
3168 struct attribute *attr;
3169 int i;
3170 const char *name, *comp_dir;
3171 void **slot;
3172 struct quick_file_names *qfn;
3173 unsigned int line_offset;
3174
3175 gdb_assert (! this_cu->is_debug_types);
3176
3177 /* Our callers never want to match partial units -- instead they
3178 will match the enclosing full CU. */
3179 if (comp_unit_die->tag == DW_TAG_partial_unit)
3180 {
3181 this_cu->v.quick->no_file_data = 1;
3182 return;
3183 }
3184
3185 lh_cu = this_cu;
3186 lh = NULL;
3187 slot = NULL;
3188 line_offset = 0;
3189
3190 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3191 if (attr)
3192 {
3193 struct quick_file_names find_entry;
3194
3195 line_offset = DW_UNSND (attr);
3196
3197 /* We may have already read in this line header (TU line header sharing).
3198 If we have we're done. */
3199 find_entry.hash.dwo_unit = cu->dwo_unit;
3200 find_entry.hash.line_offset.sect_off = line_offset;
3201 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3202 &find_entry, INSERT);
3203 if (*slot != NULL)
3204 {
3205 lh_cu->v.quick->file_names = *slot;
3206 return;
3207 }
3208
3209 lh = dwarf_decode_line_header (line_offset, cu);
3210 }
3211 if (lh == NULL)
3212 {
3213 lh_cu->v.quick->no_file_data = 1;
3214 return;
3215 }
3216
3217 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3218 qfn->hash.dwo_unit = cu->dwo_unit;
3219 qfn->hash.line_offset.sect_off = line_offset;
3220 gdb_assert (slot != NULL);
3221 *slot = qfn;
3222
3223 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3224
3225 qfn->num_file_names = lh->num_file_names;
3226 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3227 lh->num_file_names * sizeof (char *));
3228 for (i = 0; i < lh->num_file_names; ++i)
3229 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3230 qfn->real_names = NULL;
3231
3232 free_line_header (lh);
3233
3234 lh_cu->v.quick->file_names = qfn;
3235 }
3236
3237 /* A helper for the "quick" functions which attempts to read the line
3238 table for THIS_CU. */
3239
3240 static struct quick_file_names *
3241 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3242 {
3243 /* This should never be called for TUs. */
3244 gdb_assert (! this_cu->is_debug_types);
3245 /* Nor type unit groups. */
3246 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3247
3248 if (this_cu->v.quick->file_names != NULL)
3249 return this_cu->v.quick->file_names;
3250 /* If we know there is no line data, no point in looking again. */
3251 if (this_cu->v.quick->no_file_data)
3252 return NULL;
3253
3254 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3255
3256 if (this_cu->v.quick->no_file_data)
3257 return NULL;
3258 return this_cu->v.quick->file_names;
3259 }
3260
3261 /* A helper for the "quick" functions which computes and caches the
3262 real path for a given file name from the line table. */
3263
3264 static const char *
3265 dw2_get_real_path (struct objfile *objfile,
3266 struct quick_file_names *qfn, int index)
3267 {
3268 if (qfn->real_names == NULL)
3269 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3270 qfn->num_file_names, sizeof (char *));
3271
3272 if (qfn->real_names[index] == NULL)
3273 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3274
3275 return qfn->real_names[index];
3276 }
3277
3278 static struct symtab *
3279 dw2_find_last_source_symtab (struct objfile *objfile)
3280 {
3281 int index;
3282
3283 dw2_setup (objfile);
3284 index = dwarf2_per_objfile->n_comp_units - 1;
3285 return dw2_instantiate_symtab (dw2_get_cu (index));
3286 }
3287
3288 /* Traversal function for dw2_forget_cached_source_info. */
3289
3290 static int
3291 dw2_free_cached_file_names (void **slot, void *info)
3292 {
3293 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3294
3295 if (file_data->real_names)
3296 {
3297 int i;
3298
3299 for (i = 0; i < file_data->num_file_names; ++i)
3300 {
3301 xfree ((void*) file_data->real_names[i]);
3302 file_data->real_names[i] = NULL;
3303 }
3304 }
3305
3306 return 1;
3307 }
3308
3309 static void
3310 dw2_forget_cached_source_info (struct objfile *objfile)
3311 {
3312 dw2_setup (objfile);
3313
3314 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3315 dw2_free_cached_file_names, NULL);
3316 }
3317
3318 /* Helper function for dw2_map_symtabs_matching_filename that expands
3319 the symtabs and calls the iterator. */
3320
3321 static int
3322 dw2_map_expand_apply (struct objfile *objfile,
3323 struct dwarf2_per_cu_data *per_cu,
3324 const char *name, const char *real_path,
3325 int (*callback) (struct symtab *, void *),
3326 void *data)
3327 {
3328 struct symtab *last_made = objfile->symtabs;
3329
3330 /* Don't visit already-expanded CUs. */
3331 if (per_cu->v.quick->symtab)
3332 return 0;
3333
3334 /* This may expand more than one symtab, and we want to iterate over
3335 all of them. */
3336 dw2_instantiate_symtab (per_cu);
3337
3338 return iterate_over_some_symtabs (name, real_path, callback, data,
3339 objfile->symtabs, last_made);
3340 }
3341
3342 /* Implementation of the map_symtabs_matching_filename method. */
3343
3344 static int
3345 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3346 const char *real_path,
3347 int (*callback) (struct symtab *, void *),
3348 void *data)
3349 {
3350 int i;
3351 const char *name_basename = lbasename (name);
3352
3353 dw2_setup (objfile);
3354
3355 /* The rule is CUs specify all the files, including those used by
3356 any TU, so there's no need to scan TUs here. */
3357
3358 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3359 {
3360 int j;
3361 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3362 struct quick_file_names *file_data;
3363
3364 /* We only need to look at symtabs not already expanded. */
3365 if (per_cu->v.quick->symtab)
3366 continue;
3367
3368 file_data = dw2_get_file_names (per_cu);
3369 if (file_data == NULL)
3370 continue;
3371
3372 for (j = 0; j < file_data->num_file_names; ++j)
3373 {
3374 const char *this_name = file_data->file_names[j];
3375 const char *this_real_name;
3376
3377 if (compare_filenames_for_search (this_name, name))
3378 {
3379 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3380 callback, data))
3381 return 1;
3382 continue;
3383 }
3384
3385 /* Before we invoke realpath, which can get expensive when many
3386 files are involved, do a quick comparison of the basenames. */
3387 if (! basenames_may_differ
3388 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3389 continue;
3390
3391 this_real_name = dw2_get_real_path (objfile, file_data, j);
3392 if (compare_filenames_for_search (this_real_name, name))
3393 {
3394 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3395 callback, data))
3396 return 1;
3397 continue;
3398 }
3399
3400 if (real_path != NULL)
3401 {
3402 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3403 gdb_assert (IS_ABSOLUTE_PATH (name));
3404 if (this_real_name != NULL
3405 && FILENAME_CMP (real_path, this_real_name) == 0)
3406 {
3407 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3408 callback, data))
3409 return 1;
3410 continue;
3411 }
3412 }
3413 }
3414 }
3415
3416 return 0;
3417 }
3418
3419 /* Struct used to manage iterating over all CUs looking for a symbol. */
3420
3421 struct dw2_symtab_iterator
3422 {
3423 /* The internalized form of .gdb_index. */
3424 struct mapped_index *index;
3425 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3426 int want_specific_block;
3427 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3428 Unused if !WANT_SPECIFIC_BLOCK. */
3429 int block_index;
3430 /* The kind of symbol we're looking for. */
3431 domain_enum domain;
3432 /* The list of CUs from the index entry of the symbol,
3433 or NULL if not found. */
3434 offset_type *vec;
3435 /* The next element in VEC to look at. */
3436 int next;
3437 /* The number of elements in VEC, or zero if there is no match. */
3438 int length;
3439 };
3440
3441 /* Initialize the index symtab iterator ITER.
3442 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3443 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3444
3445 static void
3446 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3447 struct mapped_index *index,
3448 int want_specific_block,
3449 int block_index,
3450 domain_enum domain,
3451 const char *name)
3452 {
3453 iter->index = index;
3454 iter->want_specific_block = want_specific_block;
3455 iter->block_index = block_index;
3456 iter->domain = domain;
3457 iter->next = 0;
3458
3459 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3460 iter->length = MAYBE_SWAP (*iter->vec);
3461 else
3462 {
3463 iter->vec = NULL;
3464 iter->length = 0;
3465 }
3466 }
3467
3468 /* Return the next matching CU or NULL if there are no more. */
3469
3470 static struct dwarf2_per_cu_data *
3471 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3472 {
3473 for ( ; iter->next < iter->length; ++iter->next)
3474 {
3475 offset_type cu_index_and_attrs =
3476 MAYBE_SWAP (iter->vec[iter->next + 1]);
3477 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3478 struct dwarf2_per_cu_data *per_cu;
3479 int want_static = iter->block_index != GLOBAL_BLOCK;
3480 /* This value is only valid for index versions >= 7. */
3481 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3482 gdb_index_symbol_kind symbol_kind =
3483 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3484 /* Only check the symbol attributes if they're present.
3485 Indices prior to version 7 don't record them,
3486 and indices >= 7 may elide them for certain symbols
3487 (gold does this). */
3488 int attrs_valid =
3489 (iter->index->version >= 7
3490 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3491
3492 /* Don't crash on bad data. */
3493 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3494 + dwarf2_per_objfile->n_type_units))
3495 {
3496 complaint (&symfile_complaints,
3497 _(".gdb_index entry has bad CU index"
3498 " [in module %s]"),
3499 objfile_name (dwarf2_per_objfile->objfile));
3500 continue;
3501 }
3502
3503 per_cu = dw2_get_cu (cu_index);
3504
3505 /* Skip if already read in. */
3506 if (per_cu->v.quick->symtab)
3507 continue;
3508
3509 if (attrs_valid
3510 && iter->want_specific_block
3511 && want_static != is_static)
3512 continue;
3513
3514 /* Only check the symbol's kind if it has one. */
3515 if (attrs_valid)
3516 {
3517 switch (iter->domain)
3518 {
3519 case VAR_DOMAIN:
3520 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3521 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3522 /* Some types are also in VAR_DOMAIN. */
3523 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3524 continue;
3525 break;
3526 case STRUCT_DOMAIN:
3527 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3528 continue;
3529 break;
3530 case LABEL_DOMAIN:
3531 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3532 continue;
3533 break;
3534 default:
3535 break;
3536 }
3537 }
3538
3539 ++iter->next;
3540 return per_cu;
3541 }
3542
3543 return NULL;
3544 }
3545
3546 static struct symtab *
3547 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3548 const char *name, domain_enum domain)
3549 {
3550 struct symtab *stab_best = NULL;
3551 struct mapped_index *index;
3552
3553 dw2_setup (objfile);
3554
3555 index = dwarf2_per_objfile->index_table;
3556
3557 /* index is NULL if OBJF_READNOW. */
3558 if (index)
3559 {
3560 struct dw2_symtab_iterator iter;
3561 struct dwarf2_per_cu_data *per_cu;
3562
3563 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3564
3565 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3566 {
3567 struct symbol *sym = NULL;
3568 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3569
3570 /* Some caution must be observed with overloaded functions
3571 and methods, since the index will not contain any overload
3572 information (but NAME might contain it). */
3573 if (stab->primary)
3574 {
3575 struct blockvector *bv = BLOCKVECTOR (stab);
3576 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3577
3578 sym = lookup_block_symbol (block, name, domain);
3579 }
3580
3581 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3582 {
3583 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3584 return stab;
3585
3586 stab_best = stab;
3587 }
3588
3589 /* Keep looking through other CUs. */
3590 }
3591 }
3592
3593 return stab_best;
3594 }
3595
3596 static void
3597 dw2_print_stats (struct objfile *objfile)
3598 {
3599 int i, total, count;
3600
3601 dw2_setup (objfile);
3602 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3603 count = 0;
3604 for (i = 0; i < total; ++i)
3605 {
3606 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3607
3608 if (!per_cu->v.quick->symtab)
3609 ++count;
3610 }
3611 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3612 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3613 }
3614
3615 /* This dumps minimal information about the index.
3616 It is called via "mt print objfiles".
3617 One use is to verify .gdb_index has been loaded by the
3618 gdb.dwarf2/gdb-index.exp testcase. */
3619
3620 static void
3621 dw2_dump (struct objfile *objfile)
3622 {
3623 dw2_setup (objfile);
3624 gdb_assert (dwarf2_per_objfile->using_index);
3625 printf_filtered (".gdb_index:");
3626 if (dwarf2_per_objfile->index_table != NULL)
3627 {
3628 printf_filtered (" version %d\n",
3629 dwarf2_per_objfile->index_table->version);
3630 }
3631 else
3632 printf_filtered (" faked for \"readnow\"\n");
3633 printf_filtered ("\n");
3634 }
3635
3636 static void
3637 dw2_relocate (struct objfile *objfile,
3638 const struct section_offsets *new_offsets,
3639 const struct section_offsets *delta)
3640 {
3641 /* There's nothing to relocate here. */
3642 }
3643
3644 static void
3645 dw2_expand_symtabs_for_function (struct objfile *objfile,
3646 const char *func_name)
3647 {
3648 struct mapped_index *index;
3649
3650 dw2_setup (objfile);
3651
3652 index = dwarf2_per_objfile->index_table;
3653
3654 /* index is NULL if OBJF_READNOW. */
3655 if (index)
3656 {
3657 struct dw2_symtab_iterator iter;
3658 struct dwarf2_per_cu_data *per_cu;
3659
3660 /* Note: It doesn't matter what we pass for block_index here. */
3661 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3662 func_name);
3663
3664 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3665 dw2_instantiate_symtab (per_cu);
3666 }
3667 }
3668
3669 static void
3670 dw2_expand_all_symtabs (struct objfile *objfile)
3671 {
3672 int i;
3673
3674 dw2_setup (objfile);
3675
3676 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3677 + dwarf2_per_objfile->n_type_units); ++i)
3678 {
3679 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3680
3681 dw2_instantiate_symtab (per_cu);
3682 }
3683 }
3684
3685 static void
3686 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3687 const char *fullname)
3688 {
3689 int i;
3690
3691 dw2_setup (objfile);
3692
3693 /* We don't need to consider type units here.
3694 This is only called for examining code, e.g. expand_line_sal.
3695 There can be an order of magnitude (or more) more type units
3696 than comp units, and we avoid them if we can. */
3697
3698 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3699 {
3700 int j;
3701 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3702 struct quick_file_names *file_data;
3703
3704 /* We only need to look at symtabs not already expanded. */
3705 if (per_cu->v.quick->symtab)
3706 continue;
3707
3708 file_data = dw2_get_file_names (per_cu);
3709 if (file_data == NULL)
3710 continue;
3711
3712 for (j = 0; j < file_data->num_file_names; ++j)
3713 {
3714 const char *this_fullname = file_data->file_names[j];
3715
3716 if (filename_cmp (this_fullname, fullname) == 0)
3717 {
3718 dw2_instantiate_symtab (per_cu);
3719 break;
3720 }
3721 }
3722 }
3723 }
3724
3725 static void
3726 dw2_map_matching_symbols (struct objfile *objfile,
3727 const char * name, domain_enum namespace,
3728 int global,
3729 int (*callback) (struct block *,
3730 struct symbol *, void *),
3731 void *data, symbol_compare_ftype *match,
3732 symbol_compare_ftype *ordered_compare)
3733 {
3734 /* Currently unimplemented; used for Ada. The function can be called if the
3735 current language is Ada for a non-Ada objfile using GNU index. As Ada
3736 does not look for non-Ada symbols this function should just return. */
3737 }
3738
3739 static void
3740 dw2_expand_symtabs_matching
3741 (struct objfile *objfile,
3742 int (*file_matcher) (const char *, void *, int basenames),
3743 int (*name_matcher) (const char *, void *),
3744 enum search_domain kind,
3745 void *data)
3746 {
3747 int i;
3748 offset_type iter;
3749 struct mapped_index *index;
3750
3751 dw2_setup (objfile);
3752
3753 /* index_table is NULL if OBJF_READNOW. */
3754 if (!dwarf2_per_objfile->index_table)
3755 return;
3756 index = dwarf2_per_objfile->index_table;
3757
3758 if (file_matcher != NULL)
3759 {
3760 struct cleanup *cleanup;
3761 htab_t visited_found, visited_not_found;
3762
3763 visited_found = htab_create_alloc (10,
3764 htab_hash_pointer, htab_eq_pointer,
3765 NULL, xcalloc, xfree);
3766 cleanup = make_cleanup_htab_delete (visited_found);
3767 visited_not_found = htab_create_alloc (10,
3768 htab_hash_pointer, htab_eq_pointer,
3769 NULL, xcalloc, xfree);
3770 make_cleanup_htab_delete (visited_not_found);
3771
3772 /* The rule is CUs specify all the files, including those used by
3773 any TU, so there's no need to scan TUs here. */
3774
3775 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3776 {
3777 int j;
3778 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3779 struct quick_file_names *file_data;
3780 void **slot;
3781
3782 per_cu->v.quick->mark = 0;
3783
3784 /* We only need to look at symtabs not already expanded. */
3785 if (per_cu->v.quick->symtab)
3786 continue;
3787
3788 file_data = dw2_get_file_names (per_cu);
3789 if (file_data == NULL)
3790 continue;
3791
3792 if (htab_find (visited_not_found, file_data) != NULL)
3793 continue;
3794 else if (htab_find (visited_found, file_data) != NULL)
3795 {
3796 per_cu->v.quick->mark = 1;
3797 continue;
3798 }
3799
3800 for (j = 0; j < file_data->num_file_names; ++j)
3801 {
3802 const char *this_real_name;
3803
3804 if (file_matcher (file_data->file_names[j], data, 0))
3805 {
3806 per_cu->v.quick->mark = 1;
3807 break;
3808 }
3809
3810 /* Before we invoke realpath, which can get expensive when many
3811 files are involved, do a quick comparison of the basenames. */
3812 if (!basenames_may_differ
3813 && !file_matcher (lbasename (file_data->file_names[j]),
3814 data, 1))
3815 continue;
3816
3817 this_real_name = dw2_get_real_path (objfile, file_data, j);
3818 if (file_matcher (this_real_name, data, 0))
3819 {
3820 per_cu->v.quick->mark = 1;
3821 break;
3822 }
3823 }
3824
3825 slot = htab_find_slot (per_cu->v.quick->mark
3826 ? visited_found
3827 : visited_not_found,
3828 file_data, INSERT);
3829 *slot = file_data;
3830 }
3831
3832 do_cleanups (cleanup);
3833 }
3834
3835 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3836 {
3837 offset_type idx = 2 * iter;
3838 const char *name;
3839 offset_type *vec, vec_len, vec_idx;
3840
3841 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3842 continue;
3843
3844 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3845
3846 if (! (*name_matcher) (name, data))
3847 continue;
3848
3849 /* The name was matched, now expand corresponding CUs that were
3850 marked. */
3851 vec = (offset_type *) (index->constant_pool
3852 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3853 vec_len = MAYBE_SWAP (vec[0]);
3854 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3855 {
3856 struct dwarf2_per_cu_data *per_cu;
3857 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3858 gdb_index_symbol_kind symbol_kind =
3859 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3860 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3861 /* Only check the symbol attributes if they're present.
3862 Indices prior to version 7 don't record them,
3863 and indices >= 7 may elide them for certain symbols
3864 (gold does this). */
3865 int attrs_valid =
3866 (index->version >= 7
3867 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3868
3869 /* Only check the symbol's kind if it has one. */
3870 if (attrs_valid)
3871 {
3872 switch (kind)
3873 {
3874 case VARIABLES_DOMAIN:
3875 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3876 continue;
3877 break;
3878 case FUNCTIONS_DOMAIN:
3879 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3880 continue;
3881 break;
3882 case TYPES_DOMAIN:
3883 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3884 continue;
3885 break;
3886 default:
3887 break;
3888 }
3889 }
3890
3891 /* Don't crash on bad data. */
3892 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3893 + dwarf2_per_objfile->n_type_units))
3894 {
3895 complaint (&symfile_complaints,
3896 _(".gdb_index entry has bad CU index"
3897 " [in module %s]"), objfile_name (objfile));
3898 continue;
3899 }
3900
3901 per_cu = dw2_get_cu (cu_index);
3902 if (file_matcher == NULL || per_cu->v.quick->mark)
3903 dw2_instantiate_symtab (per_cu);
3904 }
3905 }
3906 }
3907
3908 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3909 symtab. */
3910
3911 static struct symtab *
3912 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3913 {
3914 int i;
3915
3916 if (BLOCKVECTOR (symtab) != NULL
3917 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3918 return symtab;
3919
3920 if (symtab->includes == NULL)
3921 return NULL;
3922
3923 for (i = 0; symtab->includes[i]; ++i)
3924 {
3925 struct symtab *s = symtab->includes[i];
3926
3927 s = recursively_find_pc_sect_symtab (s, pc);
3928 if (s != NULL)
3929 return s;
3930 }
3931
3932 return NULL;
3933 }
3934
3935 static struct symtab *
3936 dw2_find_pc_sect_symtab (struct objfile *objfile,
3937 struct minimal_symbol *msymbol,
3938 CORE_ADDR pc,
3939 struct obj_section *section,
3940 int warn_if_readin)
3941 {
3942 struct dwarf2_per_cu_data *data;
3943 struct symtab *result;
3944
3945 dw2_setup (objfile);
3946
3947 if (!objfile->psymtabs_addrmap)
3948 return NULL;
3949
3950 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3951 if (!data)
3952 return NULL;
3953
3954 if (warn_if_readin && data->v.quick->symtab)
3955 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3956 paddress (get_objfile_arch (objfile), pc));
3957
3958 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3959 gdb_assert (result != NULL);
3960 return result;
3961 }
3962
3963 static void
3964 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3965 void *data, int need_fullname)
3966 {
3967 int i;
3968 struct cleanup *cleanup;
3969 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3970 NULL, xcalloc, xfree);
3971
3972 cleanup = make_cleanup_htab_delete (visited);
3973 dw2_setup (objfile);
3974
3975 /* The rule is CUs specify all the files, including those used by
3976 any TU, so there's no need to scan TUs here.
3977 We can ignore file names coming from already-expanded CUs. */
3978
3979 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3980 {
3981 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3982
3983 if (per_cu->v.quick->symtab)
3984 {
3985 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3986 INSERT);
3987
3988 *slot = per_cu->v.quick->file_names;
3989 }
3990 }
3991
3992 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3993 {
3994 int j;
3995 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3996 struct quick_file_names *file_data;
3997 void **slot;
3998
3999 /* We only need to look at symtabs not already expanded. */
4000 if (per_cu->v.quick->symtab)
4001 continue;
4002
4003 file_data = dw2_get_file_names (per_cu);
4004 if (file_data == NULL)
4005 continue;
4006
4007 slot = htab_find_slot (visited, file_data, INSERT);
4008 if (*slot)
4009 {
4010 /* Already visited. */
4011 continue;
4012 }
4013 *slot = file_data;
4014
4015 for (j = 0; j < file_data->num_file_names; ++j)
4016 {
4017 const char *this_real_name;
4018
4019 if (need_fullname)
4020 this_real_name = dw2_get_real_path (objfile, file_data, j);
4021 else
4022 this_real_name = NULL;
4023 (*fun) (file_data->file_names[j], this_real_name, data);
4024 }
4025 }
4026
4027 do_cleanups (cleanup);
4028 }
4029
4030 static int
4031 dw2_has_symbols (struct objfile *objfile)
4032 {
4033 return 1;
4034 }
4035
4036 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4037 {
4038 dw2_has_symbols,
4039 dw2_find_last_source_symtab,
4040 dw2_forget_cached_source_info,
4041 dw2_map_symtabs_matching_filename,
4042 dw2_lookup_symbol,
4043 dw2_print_stats,
4044 dw2_dump,
4045 dw2_relocate,
4046 dw2_expand_symtabs_for_function,
4047 dw2_expand_all_symtabs,
4048 dw2_expand_symtabs_with_fullname,
4049 dw2_map_matching_symbols,
4050 dw2_expand_symtabs_matching,
4051 dw2_find_pc_sect_symtab,
4052 dw2_map_symbol_filenames
4053 };
4054
4055 /* Initialize for reading DWARF for this objfile. Return 0 if this
4056 file will use psymtabs, or 1 if using the GNU index. */
4057
4058 int
4059 dwarf2_initialize_objfile (struct objfile *objfile)
4060 {
4061 /* If we're about to read full symbols, don't bother with the
4062 indices. In this case we also don't care if some other debug
4063 format is making psymtabs, because they are all about to be
4064 expanded anyway. */
4065 if ((objfile->flags & OBJF_READNOW))
4066 {
4067 int i;
4068
4069 dwarf2_per_objfile->using_index = 1;
4070 create_all_comp_units (objfile);
4071 create_all_type_units (objfile);
4072 dwarf2_per_objfile->quick_file_names_table =
4073 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4074
4075 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4076 + dwarf2_per_objfile->n_type_units); ++i)
4077 {
4078 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4079
4080 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4081 struct dwarf2_per_cu_quick_data);
4082 }
4083
4084 /* Return 1 so that gdb sees the "quick" functions. However,
4085 these functions will be no-ops because we will have expanded
4086 all symtabs. */
4087 return 1;
4088 }
4089
4090 if (dwarf2_read_index (objfile))
4091 return 1;
4092
4093 return 0;
4094 }
4095
4096 \f
4097
4098 /* Build a partial symbol table. */
4099
4100 void
4101 dwarf2_build_psymtabs (struct objfile *objfile)
4102 {
4103 volatile struct gdb_exception except;
4104
4105 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4106 {
4107 init_psymbol_list (objfile, 1024);
4108 }
4109
4110 TRY_CATCH (except, RETURN_MASK_ERROR)
4111 {
4112 /* This isn't really ideal: all the data we allocate on the
4113 objfile's obstack is still uselessly kept around. However,
4114 freeing it seems unsafe. */
4115 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4116
4117 dwarf2_build_psymtabs_hard (objfile);
4118 discard_cleanups (cleanups);
4119 }
4120 if (except.reason < 0)
4121 exception_print (gdb_stderr, except);
4122 }
4123
4124 /* Return the total length of the CU described by HEADER. */
4125
4126 static unsigned int
4127 get_cu_length (const struct comp_unit_head *header)
4128 {
4129 return header->initial_length_size + header->length;
4130 }
4131
4132 /* Return TRUE if OFFSET is within CU_HEADER. */
4133
4134 static inline int
4135 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4136 {
4137 sect_offset bottom = { cu_header->offset.sect_off };
4138 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4139
4140 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4141 }
4142
4143 /* Find the base address of the compilation unit for range lists and
4144 location lists. It will normally be specified by DW_AT_low_pc.
4145 In DWARF-3 draft 4, the base address could be overridden by
4146 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4147 compilation units with discontinuous ranges. */
4148
4149 static void
4150 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4151 {
4152 struct attribute *attr;
4153
4154 cu->base_known = 0;
4155 cu->base_address = 0;
4156
4157 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4158 if (attr)
4159 {
4160 cu->base_address = DW_ADDR (attr);
4161 cu->base_known = 1;
4162 }
4163 else
4164 {
4165 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4166 if (attr)
4167 {
4168 cu->base_address = DW_ADDR (attr);
4169 cu->base_known = 1;
4170 }
4171 }
4172 }
4173
4174 /* Read in the comp unit header information from the debug_info at info_ptr.
4175 NOTE: This leaves members offset, first_die_offset to be filled in
4176 by the caller. */
4177
4178 static const gdb_byte *
4179 read_comp_unit_head (struct comp_unit_head *cu_header,
4180 const gdb_byte *info_ptr, bfd *abfd)
4181 {
4182 int signed_addr;
4183 unsigned int bytes_read;
4184
4185 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4186 cu_header->initial_length_size = bytes_read;
4187 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4188 info_ptr += bytes_read;
4189 cu_header->version = read_2_bytes (abfd, info_ptr);
4190 info_ptr += 2;
4191 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4192 &bytes_read);
4193 info_ptr += bytes_read;
4194 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4195 info_ptr += 1;
4196 signed_addr = bfd_get_sign_extend_vma (abfd);
4197 if (signed_addr < 0)
4198 internal_error (__FILE__, __LINE__,
4199 _("read_comp_unit_head: dwarf from non elf file"));
4200 cu_header->signed_addr_p = signed_addr;
4201
4202 return info_ptr;
4203 }
4204
4205 /* Helper function that returns the proper abbrev section for
4206 THIS_CU. */
4207
4208 static struct dwarf2_section_info *
4209 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4210 {
4211 struct dwarf2_section_info *abbrev;
4212
4213 if (this_cu->is_dwz)
4214 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4215 else
4216 abbrev = &dwarf2_per_objfile->abbrev;
4217
4218 return abbrev;
4219 }
4220
4221 /* Subroutine of read_and_check_comp_unit_head and
4222 read_and_check_type_unit_head to simplify them.
4223 Perform various error checking on the header. */
4224
4225 static void
4226 error_check_comp_unit_head (struct comp_unit_head *header,
4227 struct dwarf2_section_info *section,
4228 struct dwarf2_section_info *abbrev_section)
4229 {
4230 bfd *abfd = get_section_bfd_owner (section);
4231 const char *filename = get_section_file_name (section);
4232
4233 if (header->version != 2 && header->version != 3 && header->version != 4)
4234 error (_("Dwarf Error: wrong version in compilation unit header "
4235 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4236 filename);
4237
4238 if (header->abbrev_offset.sect_off
4239 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4240 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4241 "(offset 0x%lx + 6) [in module %s]"),
4242 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4243 filename);
4244
4245 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4246 avoid potential 32-bit overflow. */
4247 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4248 > section->size)
4249 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4250 "(offset 0x%lx + 0) [in module %s]"),
4251 (long) header->length, (long) header->offset.sect_off,
4252 filename);
4253 }
4254
4255 /* Read in a CU/TU header and perform some basic error checking.
4256 The contents of the header are stored in HEADER.
4257 The result is a pointer to the start of the first DIE. */
4258
4259 static const gdb_byte *
4260 read_and_check_comp_unit_head (struct comp_unit_head *header,
4261 struct dwarf2_section_info *section,
4262 struct dwarf2_section_info *abbrev_section,
4263 const gdb_byte *info_ptr,
4264 int is_debug_types_section)
4265 {
4266 const gdb_byte *beg_of_comp_unit = info_ptr;
4267 bfd *abfd = get_section_bfd_owner (section);
4268
4269 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4270
4271 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4272
4273 /* If we're reading a type unit, skip over the signature and
4274 type_offset fields. */
4275 if (is_debug_types_section)
4276 info_ptr += 8 /*signature*/ + header->offset_size;
4277
4278 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4279
4280 error_check_comp_unit_head (header, section, abbrev_section);
4281
4282 return info_ptr;
4283 }
4284
4285 /* Read in the types comp unit header information from .debug_types entry at
4286 types_ptr. The result is a pointer to one past the end of the header. */
4287
4288 static const gdb_byte *
4289 read_and_check_type_unit_head (struct comp_unit_head *header,
4290 struct dwarf2_section_info *section,
4291 struct dwarf2_section_info *abbrev_section,
4292 const gdb_byte *info_ptr,
4293 ULONGEST *signature,
4294 cu_offset *type_offset_in_tu)
4295 {
4296 const gdb_byte *beg_of_comp_unit = info_ptr;
4297 bfd *abfd = get_section_bfd_owner (section);
4298
4299 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4300
4301 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4302
4303 /* If we're reading a type unit, skip over the signature and
4304 type_offset fields. */
4305 if (signature != NULL)
4306 *signature = read_8_bytes (abfd, info_ptr);
4307 info_ptr += 8;
4308 if (type_offset_in_tu != NULL)
4309 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4310 header->offset_size);
4311 info_ptr += header->offset_size;
4312
4313 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4314
4315 error_check_comp_unit_head (header, section, abbrev_section);
4316
4317 return info_ptr;
4318 }
4319
4320 /* Fetch the abbreviation table offset from a comp or type unit header. */
4321
4322 static sect_offset
4323 read_abbrev_offset (struct dwarf2_section_info *section,
4324 sect_offset offset)
4325 {
4326 bfd *abfd = get_section_bfd_owner (section);
4327 const gdb_byte *info_ptr;
4328 unsigned int length, initial_length_size, offset_size;
4329 sect_offset abbrev_offset;
4330
4331 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4332 info_ptr = section->buffer + offset.sect_off;
4333 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4334 offset_size = initial_length_size == 4 ? 4 : 8;
4335 info_ptr += initial_length_size + 2 /*version*/;
4336 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4337 return abbrev_offset;
4338 }
4339
4340 /* Allocate a new partial symtab for file named NAME and mark this new
4341 partial symtab as being an include of PST. */
4342
4343 static void
4344 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4345 struct objfile *objfile)
4346 {
4347 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4348
4349 if (!IS_ABSOLUTE_PATH (subpst->filename))
4350 {
4351 /* It shares objfile->objfile_obstack. */
4352 subpst->dirname = pst->dirname;
4353 }
4354
4355 subpst->section_offsets = pst->section_offsets;
4356 subpst->textlow = 0;
4357 subpst->texthigh = 0;
4358
4359 subpst->dependencies = (struct partial_symtab **)
4360 obstack_alloc (&objfile->objfile_obstack,
4361 sizeof (struct partial_symtab *));
4362 subpst->dependencies[0] = pst;
4363 subpst->number_of_dependencies = 1;
4364
4365 subpst->globals_offset = 0;
4366 subpst->n_global_syms = 0;
4367 subpst->statics_offset = 0;
4368 subpst->n_static_syms = 0;
4369 subpst->symtab = NULL;
4370 subpst->read_symtab = pst->read_symtab;
4371 subpst->readin = 0;
4372
4373 /* No private part is necessary for include psymtabs. This property
4374 can be used to differentiate between such include psymtabs and
4375 the regular ones. */
4376 subpst->read_symtab_private = NULL;
4377 }
4378
4379 /* Read the Line Number Program data and extract the list of files
4380 included by the source file represented by PST. Build an include
4381 partial symtab for each of these included files. */
4382
4383 static void
4384 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4385 struct die_info *die,
4386 struct partial_symtab *pst)
4387 {
4388 struct line_header *lh = NULL;
4389 struct attribute *attr;
4390
4391 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4392 if (attr)
4393 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4394 if (lh == NULL)
4395 return; /* No linetable, so no includes. */
4396
4397 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4398 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4399
4400 free_line_header (lh);
4401 }
4402
4403 static hashval_t
4404 hash_signatured_type (const void *item)
4405 {
4406 const struct signatured_type *sig_type = item;
4407
4408 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4409 return sig_type->signature;
4410 }
4411
4412 static int
4413 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4414 {
4415 const struct signatured_type *lhs = item_lhs;
4416 const struct signatured_type *rhs = item_rhs;
4417
4418 return lhs->signature == rhs->signature;
4419 }
4420
4421 /* Allocate a hash table for signatured types. */
4422
4423 static htab_t
4424 allocate_signatured_type_table (struct objfile *objfile)
4425 {
4426 return htab_create_alloc_ex (41,
4427 hash_signatured_type,
4428 eq_signatured_type,
4429 NULL,
4430 &objfile->objfile_obstack,
4431 hashtab_obstack_allocate,
4432 dummy_obstack_deallocate);
4433 }
4434
4435 /* A helper function to add a signatured type CU to a table. */
4436
4437 static int
4438 add_signatured_type_cu_to_table (void **slot, void *datum)
4439 {
4440 struct signatured_type *sigt = *slot;
4441 struct signatured_type ***datap = datum;
4442
4443 **datap = sigt;
4444 ++*datap;
4445
4446 return 1;
4447 }
4448
4449 /* Create the hash table of all entries in the .debug_types
4450 (or .debug_types.dwo) section(s).
4451 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4452 otherwise it is NULL.
4453
4454 The result is a pointer to the hash table or NULL if there are no types.
4455
4456 Note: This function processes DWO files only, not DWP files. */
4457
4458 static htab_t
4459 create_debug_types_hash_table (struct dwo_file *dwo_file,
4460 VEC (dwarf2_section_info_def) *types)
4461 {
4462 struct objfile *objfile = dwarf2_per_objfile->objfile;
4463 htab_t types_htab = NULL;
4464 int ix;
4465 struct dwarf2_section_info *section;
4466 struct dwarf2_section_info *abbrev_section;
4467
4468 if (VEC_empty (dwarf2_section_info_def, types))
4469 return NULL;
4470
4471 abbrev_section = (dwo_file != NULL
4472 ? &dwo_file->sections.abbrev
4473 : &dwarf2_per_objfile->abbrev);
4474
4475 if (dwarf2_read_debug)
4476 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4477 dwo_file ? ".dwo" : "",
4478 get_section_file_name (abbrev_section));
4479
4480 for (ix = 0;
4481 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4482 ++ix)
4483 {
4484 bfd *abfd;
4485 const gdb_byte *info_ptr, *end_ptr;
4486
4487 dwarf2_read_section (objfile, section);
4488 info_ptr = section->buffer;
4489
4490 if (info_ptr == NULL)
4491 continue;
4492
4493 /* We can't set abfd until now because the section may be empty or
4494 not present, in which case the bfd is unknown. */
4495 abfd = get_section_bfd_owner (section);
4496
4497 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4498 because we don't need to read any dies: the signature is in the
4499 header. */
4500
4501 end_ptr = info_ptr + section->size;
4502 while (info_ptr < end_ptr)
4503 {
4504 sect_offset offset;
4505 cu_offset type_offset_in_tu;
4506 ULONGEST signature;
4507 struct signatured_type *sig_type;
4508 struct dwo_unit *dwo_tu;
4509 void **slot;
4510 const gdb_byte *ptr = info_ptr;
4511 struct comp_unit_head header;
4512 unsigned int length;
4513
4514 offset.sect_off = ptr - section->buffer;
4515
4516 /* We need to read the type's signature in order to build the hash
4517 table, but we don't need anything else just yet. */
4518
4519 ptr = read_and_check_type_unit_head (&header, section,
4520 abbrev_section, ptr,
4521 &signature, &type_offset_in_tu);
4522
4523 length = get_cu_length (&header);
4524
4525 /* Skip dummy type units. */
4526 if (ptr >= info_ptr + length
4527 || peek_abbrev_code (abfd, ptr) == 0)
4528 {
4529 info_ptr += length;
4530 continue;
4531 }
4532
4533 if (types_htab == NULL)
4534 {
4535 if (dwo_file)
4536 types_htab = allocate_dwo_unit_table (objfile);
4537 else
4538 types_htab = allocate_signatured_type_table (objfile);
4539 }
4540
4541 if (dwo_file)
4542 {
4543 sig_type = NULL;
4544 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4545 struct dwo_unit);
4546 dwo_tu->dwo_file = dwo_file;
4547 dwo_tu->signature = signature;
4548 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4549 dwo_tu->section = section;
4550 dwo_tu->offset = offset;
4551 dwo_tu->length = length;
4552 }
4553 else
4554 {
4555 /* N.B.: type_offset is not usable if this type uses a DWO file.
4556 The real type_offset is in the DWO file. */
4557 dwo_tu = NULL;
4558 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4559 struct signatured_type);
4560 sig_type->signature = signature;
4561 sig_type->type_offset_in_tu = type_offset_in_tu;
4562 sig_type->per_cu.objfile = objfile;
4563 sig_type->per_cu.is_debug_types = 1;
4564 sig_type->per_cu.section = section;
4565 sig_type->per_cu.offset = offset;
4566 sig_type->per_cu.length = length;
4567 }
4568
4569 slot = htab_find_slot (types_htab,
4570 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4571 INSERT);
4572 gdb_assert (slot != NULL);
4573 if (*slot != NULL)
4574 {
4575 sect_offset dup_offset;
4576
4577 if (dwo_file)
4578 {
4579 const struct dwo_unit *dup_tu = *slot;
4580
4581 dup_offset = dup_tu->offset;
4582 }
4583 else
4584 {
4585 const struct signatured_type *dup_tu = *slot;
4586
4587 dup_offset = dup_tu->per_cu.offset;
4588 }
4589
4590 complaint (&symfile_complaints,
4591 _("debug type entry at offset 0x%x is duplicate to"
4592 " the entry at offset 0x%x, signature %s"),
4593 offset.sect_off, dup_offset.sect_off,
4594 hex_string (signature));
4595 }
4596 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4597
4598 if (dwarf2_read_debug)
4599 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4600 offset.sect_off,
4601 hex_string (signature));
4602
4603 info_ptr += length;
4604 }
4605 }
4606
4607 return types_htab;
4608 }
4609
4610 /* Create the hash table of all entries in the .debug_types section,
4611 and initialize all_type_units.
4612 The result is zero if there is an error (e.g. missing .debug_types section),
4613 otherwise non-zero. */
4614
4615 static int
4616 create_all_type_units (struct objfile *objfile)
4617 {
4618 htab_t types_htab;
4619 struct signatured_type **iter;
4620
4621 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4622 if (types_htab == NULL)
4623 {
4624 dwarf2_per_objfile->signatured_types = NULL;
4625 return 0;
4626 }
4627
4628 dwarf2_per_objfile->signatured_types = types_htab;
4629
4630 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4631 dwarf2_per_objfile->all_type_units
4632 = xmalloc (dwarf2_per_objfile->n_type_units
4633 * sizeof (struct signatured_type *));
4634 iter = &dwarf2_per_objfile->all_type_units[0];
4635 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4636 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4637 == dwarf2_per_objfile->n_type_units);
4638
4639 return 1;
4640 }
4641
4642 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4643 Fill in SIG_ENTRY with DWO_ENTRY. */
4644
4645 static void
4646 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4647 struct signatured_type *sig_entry,
4648 struct dwo_unit *dwo_entry)
4649 {
4650 /* Make sure we're not clobbering something we don't expect to. */
4651 gdb_assert (! sig_entry->per_cu.queued);
4652 gdb_assert (sig_entry->per_cu.cu == NULL);
4653 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4654 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4655 gdb_assert (sig_entry->signature == dwo_entry->signature);
4656 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4657 gdb_assert (sig_entry->type_unit_group == NULL);
4658 gdb_assert (sig_entry->dwo_unit == NULL);
4659
4660 sig_entry->per_cu.section = dwo_entry->section;
4661 sig_entry->per_cu.offset = dwo_entry->offset;
4662 sig_entry->per_cu.length = dwo_entry->length;
4663 sig_entry->per_cu.reading_dwo_directly = 1;
4664 sig_entry->per_cu.objfile = objfile;
4665 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4666 sig_entry->dwo_unit = dwo_entry;
4667 }
4668
4669 /* Subroutine of lookup_signatured_type.
4670 If we haven't read the TU yet, create the signatured_type data structure
4671 for a TU to be read in directly from a DWO file, bypassing the stub.
4672 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4673 using .gdb_index, then when reading a CU we want to stay in the DWO file
4674 containing that CU. Otherwise we could end up reading several other DWO
4675 files (due to comdat folding) to process the transitive closure of all the
4676 mentioned TUs, and that can be slow. The current DWO file will have every
4677 type signature that it needs.
4678 We only do this for .gdb_index because in the psymtab case we already have
4679 to read all the DWOs to build the type unit groups. */
4680
4681 static struct signatured_type *
4682 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4683 {
4684 struct objfile *objfile = dwarf2_per_objfile->objfile;
4685 struct dwo_file *dwo_file;
4686 struct dwo_unit find_dwo_entry, *dwo_entry;
4687 struct signatured_type find_sig_entry, *sig_entry;
4688
4689 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4690
4691 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4692 dwo_unit of the TU itself. */
4693 dwo_file = cu->dwo_unit->dwo_file;
4694
4695 /* We only ever need to read in one copy of a signatured type.
4696 Just use the global signatured_types array. If this is the first time
4697 we're reading this type, replace the recorded data from .gdb_index with
4698 this TU. */
4699
4700 if (dwarf2_per_objfile->signatured_types == NULL)
4701 return NULL;
4702 find_sig_entry.signature = sig;
4703 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4704 if (sig_entry == NULL)
4705 return NULL;
4706
4707 /* We can get here with the TU already read, *or* in the process of being
4708 read. Don't reassign it if that's the case. Also note that if the TU is
4709 already being read, it may not have come from a DWO, the program may be
4710 a mix of Fission-compiled code and non-Fission-compiled code. */
4711 /* Have we already tried to read this TU? */
4712 if (sig_entry->per_cu.tu_read)
4713 return sig_entry;
4714
4715 /* Ok, this is the first time we're reading this TU. */
4716 if (dwo_file->tus == NULL)
4717 return NULL;
4718 find_dwo_entry.signature = sig;
4719 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4720 if (dwo_entry == NULL)
4721 return NULL;
4722
4723 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4724 sig_entry->per_cu.tu_read = 1;
4725 return sig_entry;
4726 }
4727
4728 /* Subroutine of lookup_dwp_signatured_type.
4729 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4730
4731 static struct signatured_type *
4732 add_type_unit (ULONGEST sig)
4733 {
4734 struct objfile *objfile = dwarf2_per_objfile->objfile;
4735 int n_type_units = dwarf2_per_objfile->n_type_units;
4736 struct signatured_type *sig_type;
4737 void **slot;
4738
4739 ++n_type_units;
4740 dwarf2_per_objfile->all_type_units =
4741 xrealloc (dwarf2_per_objfile->all_type_units,
4742 n_type_units * sizeof (struct signatured_type *));
4743 dwarf2_per_objfile->n_type_units = n_type_units;
4744 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4745 struct signatured_type);
4746 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4747 sig_type->signature = sig;
4748 sig_type->per_cu.is_debug_types = 1;
4749 sig_type->per_cu.v.quick =
4750 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4751 struct dwarf2_per_cu_quick_data);
4752 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4753 sig_type, INSERT);
4754 gdb_assert (*slot == NULL);
4755 *slot = sig_type;
4756 /* The rest of sig_type must be filled in by the caller. */
4757 return sig_type;
4758 }
4759
4760 /* Subroutine of lookup_signatured_type.
4761 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4762 then try the DWP file.
4763 Normally this "can't happen", but if there's a bug in signature
4764 generation and/or the DWP file is built incorrectly, it can happen.
4765 Using the type directly from the DWP file means we don't have the stub
4766 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4767 not critical. [Eventually the stub may go away for type units anyway.] */
4768
4769 static struct signatured_type *
4770 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4771 {
4772 struct objfile *objfile = dwarf2_per_objfile->objfile;
4773 struct dwp_file *dwp_file = get_dwp_file ();
4774 struct dwo_unit *dwo_entry;
4775 struct signatured_type find_sig_entry, *sig_entry;
4776
4777 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4778 gdb_assert (dwp_file != NULL);
4779
4780 if (dwarf2_per_objfile->signatured_types != NULL)
4781 {
4782 find_sig_entry.signature = sig;
4783 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4784 &find_sig_entry);
4785 if (sig_entry != NULL)
4786 return sig_entry;
4787 }
4788
4789 /* This is the "shouldn't happen" case.
4790 Try the DWP file and hope for the best. */
4791 if (dwp_file->tus == NULL)
4792 return NULL;
4793 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4794 sig, 1 /* is_debug_types */);
4795 if (dwo_entry == NULL)
4796 return NULL;
4797
4798 sig_entry = add_type_unit (sig);
4799 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4800
4801 /* The caller will signal a complaint if we return NULL.
4802 Here we don't return NULL but we still want to complain. */
4803 complaint (&symfile_complaints,
4804 _("Bad type signature %s referenced by %s at 0x%x,"
4805 " coping by using copy in DWP [in module %s]"),
4806 hex_string (sig),
4807 cu->per_cu->is_debug_types ? "TU" : "CU",
4808 cu->per_cu->offset.sect_off,
4809 objfile_name (objfile));
4810
4811 return sig_entry;
4812 }
4813
4814 /* Lookup a signature based type for DW_FORM_ref_sig8.
4815 Returns NULL if signature SIG is not present in the table.
4816 It is up to the caller to complain about this. */
4817
4818 static struct signatured_type *
4819 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4820 {
4821 if (cu->dwo_unit
4822 && dwarf2_per_objfile->using_index)
4823 {
4824 /* We're in a DWO/DWP file, and we're using .gdb_index.
4825 These cases require special processing. */
4826 if (get_dwp_file () == NULL)
4827 return lookup_dwo_signatured_type (cu, sig);
4828 else
4829 return lookup_dwp_signatured_type (cu, sig);
4830 }
4831 else
4832 {
4833 struct signatured_type find_entry, *entry;
4834
4835 if (dwarf2_per_objfile->signatured_types == NULL)
4836 return NULL;
4837 find_entry.signature = sig;
4838 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4839 return entry;
4840 }
4841 }
4842 \f
4843 /* Low level DIE reading support. */
4844
4845 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4846
4847 static void
4848 init_cu_die_reader (struct die_reader_specs *reader,
4849 struct dwarf2_cu *cu,
4850 struct dwarf2_section_info *section,
4851 struct dwo_file *dwo_file)
4852 {
4853 gdb_assert (section->readin && section->buffer != NULL);
4854 reader->abfd = get_section_bfd_owner (section);
4855 reader->cu = cu;
4856 reader->dwo_file = dwo_file;
4857 reader->die_section = section;
4858 reader->buffer = section->buffer;
4859 reader->buffer_end = section->buffer + section->size;
4860 reader->comp_dir = NULL;
4861 }
4862
4863 /* Subroutine of init_cutu_and_read_dies to simplify it.
4864 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4865 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4866 already.
4867
4868 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4869 from it to the DIE in the DWO. If NULL we are skipping the stub.
4870 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4871 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4872 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4873 COMP_DIR must be non-NULL.
4874 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4875 are filled in with the info of the DIE from the DWO file.
4876 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4877 provided an abbrev table to use.
4878 The result is non-zero if a valid (non-dummy) DIE was found. */
4879
4880 static int
4881 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4882 struct dwo_unit *dwo_unit,
4883 int abbrev_table_provided,
4884 struct die_info *stub_comp_unit_die,
4885 const char *stub_comp_dir,
4886 struct die_reader_specs *result_reader,
4887 const gdb_byte **result_info_ptr,
4888 struct die_info **result_comp_unit_die,
4889 int *result_has_children)
4890 {
4891 struct objfile *objfile = dwarf2_per_objfile->objfile;
4892 struct dwarf2_cu *cu = this_cu->cu;
4893 struct dwarf2_section_info *section;
4894 bfd *abfd;
4895 const gdb_byte *begin_info_ptr, *info_ptr;
4896 const char *comp_dir_string;
4897 ULONGEST signature; /* Or dwo_id. */
4898 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4899 int i,num_extra_attrs;
4900 struct dwarf2_section_info *dwo_abbrev_section;
4901 struct attribute *attr;
4902 struct attribute comp_dir_attr;
4903 struct die_info *comp_unit_die;
4904
4905 /* Both can't be provided. */
4906 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4907
4908 /* These attributes aren't processed until later:
4909 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4910 However, the attribute is found in the stub which we won't have later.
4911 In order to not impose this complication on the rest of the code,
4912 we read them here and copy them to the DWO CU/TU die. */
4913
4914 stmt_list = NULL;
4915 low_pc = NULL;
4916 high_pc = NULL;
4917 ranges = NULL;
4918 comp_dir = NULL;
4919
4920 if (stub_comp_unit_die != NULL)
4921 {
4922 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4923 DWO file. */
4924 if (! this_cu->is_debug_types)
4925 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4926 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4927 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4928 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4929 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4930
4931 /* There should be a DW_AT_addr_base attribute here (if needed).
4932 We need the value before we can process DW_FORM_GNU_addr_index. */
4933 cu->addr_base = 0;
4934 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4935 if (attr)
4936 cu->addr_base = DW_UNSND (attr);
4937
4938 /* There should be a DW_AT_ranges_base attribute here (if needed).
4939 We need the value before we can process DW_AT_ranges. */
4940 cu->ranges_base = 0;
4941 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4942 if (attr)
4943 cu->ranges_base = DW_UNSND (attr);
4944 }
4945 else if (stub_comp_dir != NULL)
4946 {
4947 /* Reconstruct the comp_dir attribute to simplify the code below. */
4948 comp_dir = (struct attribute *)
4949 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4950 comp_dir->name = DW_AT_comp_dir;
4951 comp_dir->form = DW_FORM_string;
4952 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4953 DW_STRING (comp_dir) = stub_comp_dir;
4954 }
4955
4956 /* Set up for reading the DWO CU/TU. */
4957 cu->dwo_unit = dwo_unit;
4958 section = dwo_unit->section;
4959 dwarf2_read_section (objfile, section);
4960 abfd = get_section_bfd_owner (section);
4961 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4962 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4963 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4964
4965 if (this_cu->is_debug_types)
4966 {
4967 ULONGEST header_signature;
4968 cu_offset type_offset_in_tu;
4969 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4970
4971 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4972 dwo_abbrev_section,
4973 info_ptr,
4974 &header_signature,
4975 &type_offset_in_tu);
4976 /* This is not an assert because it can be caused by bad debug info. */
4977 if (sig_type->signature != header_signature)
4978 {
4979 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4980 " TU at offset 0x%x [in module %s]"),
4981 hex_string (sig_type->signature),
4982 hex_string (header_signature),
4983 dwo_unit->offset.sect_off,
4984 bfd_get_filename (abfd));
4985 }
4986 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4987 /* For DWOs coming from DWP files, we don't know the CU length
4988 nor the type's offset in the TU until now. */
4989 dwo_unit->length = get_cu_length (&cu->header);
4990 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4991
4992 /* Establish the type offset that can be used to lookup the type.
4993 For DWO files, we don't know it until now. */
4994 sig_type->type_offset_in_section.sect_off =
4995 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4996 }
4997 else
4998 {
4999 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5000 dwo_abbrev_section,
5001 info_ptr, 0);
5002 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5003 /* For DWOs coming from DWP files, we don't know the CU length
5004 until now. */
5005 dwo_unit->length = get_cu_length (&cu->header);
5006 }
5007
5008 /* Replace the CU's original abbrev table with the DWO's.
5009 Reminder: We can't read the abbrev table until we've read the header. */
5010 if (abbrev_table_provided)
5011 {
5012 /* Don't free the provided abbrev table, the caller of
5013 init_cutu_and_read_dies owns it. */
5014 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5015 /* Ensure the DWO abbrev table gets freed. */
5016 make_cleanup (dwarf2_free_abbrev_table, cu);
5017 }
5018 else
5019 {
5020 dwarf2_free_abbrev_table (cu);
5021 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5022 /* Leave any existing abbrev table cleanup as is. */
5023 }
5024
5025 /* Read in the die, but leave space to copy over the attributes
5026 from the stub. This has the benefit of simplifying the rest of
5027 the code - all the work to maintain the illusion of a single
5028 DW_TAG_{compile,type}_unit DIE is done here. */
5029 num_extra_attrs = ((stmt_list != NULL)
5030 + (low_pc != NULL)
5031 + (high_pc != NULL)
5032 + (ranges != NULL)
5033 + (comp_dir != NULL));
5034 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5035 result_has_children, num_extra_attrs);
5036
5037 /* Copy over the attributes from the stub to the DIE we just read in. */
5038 comp_unit_die = *result_comp_unit_die;
5039 i = comp_unit_die->num_attrs;
5040 if (stmt_list != NULL)
5041 comp_unit_die->attrs[i++] = *stmt_list;
5042 if (low_pc != NULL)
5043 comp_unit_die->attrs[i++] = *low_pc;
5044 if (high_pc != NULL)
5045 comp_unit_die->attrs[i++] = *high_pc;
5046 if (ranges != NULL)
5047 comp_unit_die->attrs[i++] = *ranges;
5048 if (comp_dir != NULL)
5049 comp_unit_die->attrs[i++] = *comp_dir;
5050 comp_unit_die->num_attrs += num_extra_attrs;
5051
5052 if (dwarf2_die_debug)
5053 {
5054 fprintf_unfiltered (gdb_stdlog,
5055 "Read die from %s@0x%x of %s:\n",
5056 get_section_name (section),
5057 (unsigned) (begin_info_ptr - section->buffer),
5058 bfd_get_filename (abfd));
5059 dump_die (comp_unit_die, dwarf2_die_debug);
5060 }
5061
5062 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5063 TUs by skipping the stub and going directly to the entry in the DWO file.
5064 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5065 to get it via circuitous means. Blech. */
5066 if (comp_dir != NULL)
5067 result_reader->comp_dir = DW_STRING (comp_dir);
5068
5069 /* Skip dummy compilation units. */
5070 if (info_ptr >= begin_info_ptr + dwo_unit->length
5071 || peek_abbrev_code (abfd, info_ptr) == 0)
5072 return 0;
5073
5074 *result_info_ptr = info_ptr;
5075 return 1;
5076 }
5077
5078 /* Subroutine of init_cutu_and_read_dies to simplify it.
5079 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5080 Returns NULL if the specified DWO unit cannot be found. */
5081
5082 static struct dwo_unit *
5083 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5084 struct die_info *comp_unit_die)
5085 {
5086 struct dwarf2_cu *cu = this_cu->cu;
5087 struct attribute *attr;
5088 ULONGEST signature;
5089 struct dwo_unit *dwo_unit;
5090 const char *comp_dir, *dwo_name;
5091
5092 gdb_assert (cu != NULL);
5093
5094 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5095 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5096 gdb_assert (attr != NULL);
5097 dwo_name = DW_STRING (attr);
5098 comp_dir = NULL;
5099 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5100 if (attr)
5101 comp_dir = DW_STRING (attr);
5102
5103 if (this_cu->is_debug_types)
5104 {
5105 struct signatured_type *sig_type;
5106
5107 /* Since this_cu is the first member of struct signatured_type,
5108 we can go from a pointer to one to a pointer to the other. */
5109 sig_type = (struct signatured_type *) this_cu;
5110 signature = sig_type->signature;
5111 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5112 }
5113 else
5114 {
5115 struct attribute *attr;
5116
5117 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5118 if (! attr)
5119 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5120 " [in module %s]"),
5121 dwo_name, objfile_name (this_cu->objfile));
5122 signature = DW_UNSND (attr);
5123 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5124 signature);
5125 }
5126
5127 return dwo_unit;
5128 }
5129
5130 /* Subroutine of init_cutu_and_read_dies to simplify it.
5131 Read a TU directly from a DWO file, bypassing the stub. */
5132
5133 static void
5134 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5135 die_reader_func_ftype *die_reader_func,
5136 void *data)
5137 {
5138 struct dwarf2_cu *cu;
5139 struct signatured_type *sig_type;
5140 struct cleanup *cleanups, *free_cu_cleanup;
5141 struct die_reader_specs reader;
5142 const gdb_byte *info_ptr;
5143 struct die_info *comp_unit_die;
5144 int has_children;
5145
5146 /* Verify we can do the following downcast, and that we have the
5147 data we need. */
5148 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5149 sig_type = (struct signatured_type *) this_cu;
5150 gdb_assert (sig_type->dwo_unit != NULL);
5151
5152 cleanups = make_cleanup (null_cleanup, NULL);
5153
5154 gdb_assert (this_cu->cu == NULL);
5155 cu = xmalloc (sizeof (*cu));
5156 init_one_comp_unit (cu, this_cu);
5157 /* If an error occurs while loading, release our storage. */
5158 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5159
5160 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5161 0 /* abbrev_table_provided */,
5162 NULL /* stub_comp_unit_die */,
5163 sig_type->dwo_unit->dwo_file->comp_dir,
5164 &reader, &info_ptr,
5165 &comp_unit_die, &has_children) == 0)
5166 {
5167 /* Dummy die. */
5168 do_cleanups (cleanups);
5169 return;
5170 }
5171
5172 /* All the "real" work is done here. */
5173 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5174
5175 /* This duplicates some code in init_cutu_and_read_dies,
5176 but the alternative is making the latter more complex.
5177 This function is only for the special case of using DWO files directly:
5178 no point in overly complicating the general case just to handle this. */
5179 if (keep)
5180 {
5181 /* We've successfully allocated this compilation unit. Let our
5182 caller clean it up when finished with it. */
5183 discard_cleanups (free_cu_cleanup);
5184
5185 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5186 So we have to manually free the abbrev table. */
5187 dwarf2_free_abbrev_table (cu);
5188
5189 /* Link this CU into read_in_chain. */
5190 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5191 dwarf2_per_objfile->read_in_chain = this_cu;
5192 }
5193 else
5194 do_cleanups (free_cu_cleanup);
5195
5196 do_cleanups (cleanups);
5197 }
5198
5199 /* Initialize a CU (or TU) and read its DIEs.
5200 If the CU defers to a DWO file, read the DWO file as well.
5201
5202 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5203 Otherwise the table specified in the comp unit header is read in and used.
5204 This is an optimization for when we already have the abbrev table.
5205
5206 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5207 Otherwise, a new CU is allocated with xmalloc.
5208
5209 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5210 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5211
5212 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5213 linker) then DIE_READER_FUNC will not get called. */
5214
5215 static void
5216 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5217 struct abbrev_table *abbrev_table,
5218 int use_existing_cu, int keep,
5219 die_reader_func_ftype *die_reader_func,
5220 void *data)
5221 {
5222 struct objfile *objfile = dwarf2_per_objfile->objfile;
5223 struct dwarf2_section_info *section = this_cu->section;
5224 bfd *abfd = get_section_bfd_owner (section);
5225 struct dwarf2_cu *cu;
5226 const gdb_byte *begin_info_ptr, *info_ptr;
5227 struct die_reader_specs reader;
5228 struct die_info *comp_unit_die;
5229 int has_children;
5230 struct attribute *attr;
5231 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5232 struct signatured_type *sig_type = NULL;
5233 struct dwarf2_section_info *abbrev_section;
5234 /* Non-zero if CU currently points to a DWO file and we need to
5235 reread it. When this happens we need to reread the skeleton die
5236 before we can reread the DWO file (this only applies to CUs, not TUs). */
5237 int rereading_dwo_cu = 0;
5238
5239 if (dwarf2_die_debug)
5240 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5241 this_cu->is_debug_types ? "type" : "comp",
5242 this_cu->offset.sect_off);
5243
5244 if (use_existing_cu)
5245 gdb_assert (keep);
5246
5247 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5248 file (instead of going through the stub), short-circuit all of this. */
5249 if (this_cu->reading_dwo_directly)
5250 {
5251 /* Narrow down the scope of possibilities to have to understand. */
5252 gdb_assert (this_cu->is_debug_types);
5253 gdb_assert (abbrev_table == NULL);
5254 gdb_assert (!use_existing_cu);
5255 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5256 return;
5257 }
5258
5259 cleanups = make_cleanup (null_cleanup, NULL);
5260
5261 /* This is cheap if the section is already read in. */
5262 dwarf2_read_section (objfile, section);
5263
5264 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5265
5266 abbrev_section = get_abbrev_section_for_cu (this_cu);
5267
5268 if (use_existing_cu && this_cu->cu != NULL)
5269 {
5270 cu = this_cu->cu;
5271
5272 /* If this CU is from a DWO file we need to start over, we need to
5273 refetch the attributes from the skeleton CU.
5274 This could be optimized by retrieving those attributes from when we
5275 were here the first time: the previous comp_unit_die was stored in
5276 comp_unit_obstack. But there's no data yet that we need this
5277 optimization. */
5278 if (cu->dwo_unit != NULL)
5279 rereading_dwo_cu = 1;
5280 }
5281 else
5282 {
5283 /* If !use_existing_cu, this_cu->cu must be NULL. */
5284 gdb_assert (this_cu->cu == NULL);
5285
5286 cu = xmalloc (sizeof (*cu));
5287 init_one_comp_unit (cu, this_cu);
5288
5289 /* If an error occurs while loading, release our storage. */
5290 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5291 }
5292
5293 /* Get the header. */
5294 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5295 {
5296 /* We already have the header, there's no need to read it in again. */
5297 info_ptr += cu->header.first_die_offset.cu_off;
5298 }
5299 else
5300 {
5301 if (this_cu->is_debug_types)
5302 {
5303 ULONGEST signature;
5304 cu_offset type_offset_in_tu;
5305
5306 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5307 abbrev_section, info_ptr,
5308 &signature,
5309 &type_offset_in_tu);
5310
5311 /* Since per_cu is the first member of struct signatured_type,
5312 we can go from a pointer to one to a pointer to the other. */
5313 sig_type = (struct signatured_type *) this_cu;
5314 gdb_assert (sig_type->signature == signature);
5315 gdb_assert (sig_type->type_offset_in_tu.cu_off
5316 == type_offset_in_tu.cu_off);
5317 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5318
5319 /* LENGTH has not been set yet for type units if we're
5320 using .gdb_index. */
5321 this_cu->length = get_cu_length (&cu->header);
5322
5323 /* Establish the type offset that can be used to lookup the type. */
5324 sig_type->type_offset_in_section.sect_off =
5325 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5326 }
5327 else
5328 {
5329 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5330 abbrev_section,
5331 info_ptr, 0);
5332
5333 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5334 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5335 }
5336 }
5337
5338 /* Skip dummy compilation units. */
5339 if (info_ptr >= begin_info_ptr + this_cu->length
5340 || peek_abbrev_code (abfd, info_ptr) == 0)
5341 {
5342 do_cleanups (cleanups);
5343 return;
5344 }
5345
5346 /* If we don't have them yet, read the abbrevs for this compilation unit.
5347 And if we need to read them now, make sure they're freed when we're
5348 done. Note that it's important that if the CU had an abbrev table
5349 on entry we don't free it when we're done: Somewhere up the call stack
5350 it may be in use. */
5351 if (abbrev_table != NULL)
5352 {
5353 gdb_assert (cu->abbrev_table == NULL);
5354 gdb_assert (cu->header.abbrev_offset.sect_off
5355 == abbrev_table->offset.sect_off);
5356 cu->abbrev_table = abbrev_table;
5357 }
5358 else if (cu->abbrev_table == NULL)
5359 {
5360 dwarf2_read_abbrevs (cu, abbrev_section);
5361 make_cleanup (dwarf2_free_abbrev_table, cu);
5362 }
5363 else if (rereading_dwo_cu)
5364 {
5365 dwarf2_free_abbrev_table (cu);
5366 dwarf2_read_abbrevs (cu, abbrev_section);
5367 }
5368
5369 /* Read the top level CU/TU die. */
5370 init_cu_die_reader (&reader, cu, section, NULL);
5371 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5372
5373 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5374 from the DWO file.
5375 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5376 DWO CU, that this test will fail (the attribute will not be present). */
5377 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5378 if (attr)
5379 {
5380 struct dwo_unit *dwo_unit;
5381 struct die_info *dwo_comp_unit_die;
5382
5383 if (has_children)
5384 {
5385 complaint (&symfile_complaints,
5386 _("compilation unit with DW_AT_GNU_dwo_name"
5387 " has children (offset 0x%x) [in module %s]"),
5388 this_cu->offset.sect_off, bfd_get_filename (abfd));
5389 }
5390 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5391 if (dwo_unit != NULL)
5392 {
5393 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5394 abbrev_table != NULL,
5395 comp_unit_die, NULL,
5396 &reader, &info_ptr,
5397 &dwo_comp_unit_die, &has_children) == 0)
5398 {
5399 /* Dummy die. */
5400 do_cleanups (cleanups);
5401 return;
5402 }
5403 comp_unit_die = dwo_comp_unit_die;
5404 }
5405 else
5406 {
5407 /* Yikes, we couldn't find the rest of the DIE, we only have
5408 the stub. A complaint has already been logged. There's
5409 not much more we can do except pass on the stub DIE to
5410 die_reader_func. We don't want to throw an error on bad
5411 debug info. */
5412 }
5413 }
5414
5415 /* All of the above is setup for this call. Yikes. */
5416 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5417
5418 /* Done, clean up. */
5419 if (free_cu_cleanup != NULL)
5420 {
5421 if (keep)
5422 {
5423 /* We've successfully allocated this compilation unit. Let our
5424 caller clean it up when finished with it. */
5425 discard_cleanups (free_cu_cleanup);
5426
5427 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5428 So we have to manually free the abbrev table. */
5429 dwarf2_free_abbrev_table (cu);
5430
5431 /* Link this CU into read_in_chain. */
5432 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5433 dwarf2_per_objfile->read_in_chain = this_cu;
5434 }
5435 else
5436 do_cleanups (free_cu_cleanup);
5437 }
5438
5439 do_cleanups (cleanups);
5440 }
5441
5442 /* Read CU/TU THIS_CU in section SECTION,
5443 but do not follow DW_AT_GNU_dwo_name if present.
5444 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5445 to have already done the lookup to find the DWO/DWP file).
5446
5447 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5448 THIS_CU->is_debug_types, but nothing else.
5449
5450 We fill in THIS_CU->length.
5451
5452 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5453 linker) then DIE_READER_FUNC will not get called.
5454
5455 THIS_CU->cu is always freed when done.
5456 This is done in order to not leave THIS_CU->cu in a state where we have
5457 to care whether it refers to the "main" CU or the DWO CU. */
5458
5459 static void
5460 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5461 struct dwarf2_section_info *abbrev_section,
5462 struct dwo_file *dwo_file,
5463 die_reader_func_ftype *die_reader_func,
5464 void *data)
5465 {
5466 struct objfile *objfile = dwarf2_per_objfile->objfile;
5467 struct dwarf2_section_info *section = this_cu->section;
5468 bfd *abfd = get_section_bfd_owner (section);
5469 struct dwarf2_cu cu;
5470 const gdb_byte *begin_info_ptr, *info_ptr;
5471 struct die_reader_specs reader;
5472 struct cleanup *cleanups;
5473 struct die_info *comp_unit_die;
5474 int has_children;
5475
5476 if (dwarf2_die_debug)
5477 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5478 this_cu->is_debug_types ? "type" : "comp",
5479 this_cu->offset.sect_off);
5480
5481 gdb_assert (this_cu->cu == NULL);
5482
5483 /* This is cheap if the section is already read in. */
5484 dwarf2_read_section (objfile, section);
5485
5486 init_one_comp_unit (&cu, this_cu);
5487
5488 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5489
5490 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5491 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5492 abbrev_section, info_ptr,
5493 this_cu->is_debug_types);
5494
5495 this_cu->length = get_cu_length (&cu.header);
5496
5497 /* Skip dummy compilation units. */
5498 if (info_ptr >= begin_info_ptr + this_cu->length
5499 || peek_abbrev_code (abfd, info_ptr) == 0)
5500 {
5501 do_cleanups (cleanups);
5502 return;
5503 }
5504
5505 dwarf2_read_abbrevs (&cu, abbrev_section);
5506 make_cleanup (dwarf2_free_abbrev_table, &cu);
5507
5508 init_cu_die_reader (&reader, &cu, section, dwo_file);
5509 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5510
5511 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5512
5513 do_cleanups (cleanups);
5514 }
5515
5516 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5517 does not lookup the specified DWO file.
5518 This cannot be used to read DWO files.
5519
5520 THIS_CU->cu is always freed when done.
5521 This is done in order to not leave THIS_CU->cu in a state where we have
5522 to care whether it refers to the "main" CU or the DWO CU.
5523 We can revisit this if the data shows there's a performance issue. */
5524
5525 static void
5526 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5527 die_reader_func_ftype *die_reader_func,
5528 void *data)
5529 {
5530 init_cutu_and_read_dies_no_follow (this_cu,
5531 get_abbrev_section_for_cu (this_cu),
5532 NULL,
5533 die_reader_func, data);
5534 }
5535 \f
5536 /* Type Unit Groups.
5537
5538 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5539 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5540 so that all types coming from the same compilation (.o file) are grouped
5541 together. A future step could be to put the types in the same symtab as
5542 the CU the types ultimately came from. */
5543
5544 static hashval_t
5545 hash_type_unit_group (const void *item)
5546 {
5547 const struct type_unit_group *tu_group = item;
5548
5549 return hash_stmt_list_entry (&tu_group->hash);
5550 }
5551
5552 static int
5553 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5554 {
5555 const struct type_unit_group *lhs = item_lhs;
5556 const struct type_unit_group *rhs = item_rhs;
5557
5558 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5559 }
5560
5561 /* Allocate a hash table for type unit groups. */
5562
5563 static htab_t
5564 allocate_type_unit_groups_table (void)
5565 {
5566 return htab_create_alloc_ex (3,
5567 hash_type_unit_group,
5568 eq_type_unit_group,
5569 NULL,
5570 &dwarf2_per_objfile->objfile->objfile_obstack,
5571 hashtab_obstack_allocate,
5572 dummy_obstack_deallocate);
5573 }
5574
5575 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5576 partial symtabs. We combine several TUs per psymtab to not let the size
5577 of any one psymtab grow too big. */
5578 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5579 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5580
5581 /* Helper routine for get_type_unit_group.
5582 Create the type_unit_group object used to hold one or more TUs. */
5583
5584 static struct type_unit_group *
5585 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5586 {
5587 struct objfile *objfile = dwarf2_per_objfile->objfile;
5588 struct dwarf2_per_cu_data *per_cu;
5589 struct type_unit_group *tu_group;
5590
5591 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5592 struct type_unit_group);
5593 per_cu = &tu_group->per_cu;
5594 per_cu->objfile = objfile;
5595
5596 if (dwarf2_per_objfile->using_index)
5597 {
5598 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5599 struct dwarf2_per_cu_quick_data);
5600 }
5601 else
5602 {
5603 unsigned int line_offset = line_offset_struct.sect_off;
5604 struct partial_symtab *pst;
5605 char *name;
5606
5607 /* Give the symtab a useful name for debug purposes. */
5608 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5609 name = xstrprintf ("<type_units_%d>",
5610 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5611 else
5612 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5613
5614 pst = create_partial_symtab (per_cu, name);
5615 pst->anonymous = 1;
5616
5617 xfree (name);
5618 }
5619
5620 tu_group->hash.dwo_unit = cu->dwo_unit;
5621 tu_group->hash.line_offset = line_offset_struct;
5622
5623 return tu_group;
5624 }
5625
5626 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5627 STMT_LIST is a DW_AT_stmt_list attribute. */
5628
5629 static struct type_unit_group *
5630 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5631 {
5632 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5633 struct type_unit_group *tu_group;
5634 void **slot;
5635 unsigned int line_offset;
5636 struct type_unit_group type_unit_group_for_lookup;
5637
5638 if (dwarf2_per_objfile->type_unit_groups == NULL)
5639 {
5640 dwarf2_per_objfile->type_unit_groups =
5641 allocate_type_unit_groups_table ();
5642 }
5643
5644 /* Do we need to create a new group, or can we use an existing one? */
5645
5646 if (stmt_list)
5647 {
5648 line_offset = DW_UNSND (stmt_list);
5649 ++tu_stats->nr_symtab_sharers;
5650 }
5651 else
5652 {
5653 /* Ugh, no stmt_list. Rare, but we have to handle it.
5654 We can do various things here like create one group per TU or
5655 spread them over multiple groups to split up the expansion work.
5656 To avoid worst case scenarios (too many groups or too large groups)
5657 we, umm, group them in bunches. */
5658 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5659 | (tu_stats->nr_stmt_less_type_units
5660 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5661 ++tu_stats->nr_stmt_less_type_units;
5662 }
5663
5664 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5665 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5666 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5667 &type_unit_group_for_lookup, INSERT);
5668 if (*slot != NULL)
5669 {
5670 tu_group = *slot;
5671 gdb_assert (tu_group != NULL);
5672 }
5673 else
5674 {
5675 sect_offset line_offset_struct;
5676
5677 line_offset_struct.sect_off = line_offset;
5678 tu_group = create_type_unit_group (cu, line_offset_struct);
5679 *slot = tu_group;
5680 ++tu_stats->nr_symtabs;
5681 }
5682
5683 return tu_group;
5684 }
5685
5686 /* Struct used to sort TUs by their abbreviation table offset. */
5687
5688 struct tu_abbrev_offset
5689 {
5690 struct signatured_type *sig_type;
5691 sect_offset abbrev_offset;
5692 };
5693
5694 /* Helper routine for build_type_unit_groups, passed to qsort. */
5695
5696 static int
5697 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5698 {
5699 const struct tu_abbrev_offset * const *a = ap;
5700 const struct tu_abbrev_offset * const *b = bp;
5701 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5702 unsigned int boff = (*b)->abbrev_offset.sect_off;
5703
5704 return (aoff > boff) - (aoff < boff);
5705 }
5706
5707 /* A helper function to add a type_unit_group to a table. */
5708
5709 static int
5710 add_type_unit_group_to_table (void **slot, void *datum)
5711 {
5712 struct type_unit_group *tu_group = *slot;
5713 struct type_unit_group ***datap = datum;
5714
5715 **datap = tu_group;
5716 ++*datap;
5717
5718 return 1;
5719 }
5720
5721 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5722 each one passing FUNC,DATA.
5723
5724 The efficiency is because we sort TUs by the abbrev table they use and
5725 only read each abbrev table once. In one program there are 200K TUs
5726 sharing 8K abbrev tables.
5727
5728 The main purpose of this function is to support building the
5729 dwarf2_per_objfile->type_unit_groups table.
5730 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5731 can collapse the search space by grouping them by stmt_list.
5732 The savings can be significant, in the same program from above the 200K TUs
5733 share 8K stmt_list tables.
5734
5735 FUNC is expected to call get_type_unit_group, which will create the
5736 struct type_unit_group if necessary and add it to
5737 dwarf2_per_objfile->type_unit_groups. */
5738
5739 static void
5740 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5741 {
5742 struct objfile *objfile = dwarf2_per_objfile->objfile;
5743 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5744 struct cleanup *cleanups;
5745 struct abbrev_table *abbrev_table;
5746 sect_offset abbrev_offset;
5747 struct tu_abbrev_offset *sorted_by_abbrev;
5748 struct type_unit_group **iter;
5749 int i;
5750
5751 /* It's up to the caller to not call us multiple times. */
5752 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5753
5754 if (dwarf2_per_objfile->n_type_units == 0)
5755 return;
5756
5757 /* TUs typically share abbrev tables, and there can be way more TUs than
5758 abbrev tables. Sort by abbrev table to reduce the number of times we
5759 read each abbrev table in.
5760 Alternatives are to punt or to maintain a cache of abbrev tables.
5761 This is simpler and efficient enough for now.
5762
5763 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5764 symtab to use). Typically TUs with the same abbrev offset have the same
5765 stmt_list value too so in practice this should work well.
5766
5767 The basic algorithm here is:
5768
5769 sort TUs by abbrev table
5770 for each TU with same abbrev table:
5771 read abbrev table if first user
5772 read TU top level DIE
5773 [IWBN if DWO skeletons had DW_AT_stmt_list]
5774 call FUNC */
5775
5776 if (dwarf2_read_debug)
5777 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5778
5779 /* Sort in a separate table to maintain the order of all_type_units
5780 for .gdb_index: TU indices directly index all_type_units. */
5781 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5782 dwarf2_per_objfile->n_type_units);
5783 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5784 {
5785 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5786
5787 sorted_by_abbrev[i].sig_type = sig_type;
5788 sorted_by_abbrev[i].abbrev_offset =
5789 read_abbrev_offset (sig_type->per_cu.section,
5790 sig_type->per_cu.offset);
5791 }
5792 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5793 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5794 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5795
5796 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5797 called any number of times, so we don't reset tu_stats here. */
5798
5799 abbrev_offset.sect_off = ~(unsigned) 0;
5800 abbrev_table = NULL;
5801 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5802
5803 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5804 {
5805 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5806
5807 /* Switch to the next abbrev table if necessary. */
5808 if (abbrev_table == NULL
5809 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5810 {
5811 if (abbrev_table != NULL)
5812 {
5813 abbrev_table_free (abbrev_table);
5814 /* Reset to NULL in case abbrev_table_read_table throws
5815 an error: abbrev_table_free_cleanup will get called. */
5816 abbrev_table = NULL;
5817 }
5818 abbrev_offset = tu->abbrev_offset;
5819 abbrev_table =
5820 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5821 abbrev_offset);
5822 ++tu_stats->nr_uniq_abbrev_tables;
5823 }
5824
5825 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5826 func, data);
5827 }
5828
5829 /* type_unit_groups can be NULL if there is an error in the debug info.
5830 Just create an empty table so the rest of gdb doesn't have to watch
5831 for this error case. */
5832 if (dwarf2_per_objfile->type_unit_groups == NULL)
5833 {
5834 dwarf2_per_objfile->type_unit_groups =
5835 allocate_type_unit_groups_table ();
5836 dwarf2_per_objfile->n_type_unit_groups = 0;
5837 }
5838
5839 /* Create a vector of pointers to primary type units to make it easy to
5840 iterate over them and CUs. See dw2_get_primary_cu. */
5841 dwarf2_per_objfile->n_type_unit_groups =
5842 htab_elements (dwarf2_per_objfile->type_unit_groups);
5843 dwarf2_per_objfile->all_type_unit_groups =
5844 obstack_alloc (&objfile->objfile_obstack,
5845 dwarf2_per_objfile->n_type_unit_groups
5846 * sizeof (struct type_unit_group *));
5847 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5848 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5849 add_type_unit_group_to_table, &iter);
5850 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5851 == dwarf2_per_objfile->n_type_unit_groups);
5852
5853 do_cleanups (cleanups);
5854
5855 if (dwarf2_read_debug)
5856 {
5857 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5858 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5859 dwarf2_per_objfile->n_type_units);
5860 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5861 tu_stats->nr_uniq_abbrev_tables);
5862 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5863 tu_stats->nr_symtabs);
5864 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5865 tu_stats->nr_symtab_sharers);
5866 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5867 tu_stats->nr_stmt_less_type_units);
5868 }
5869 }
5870 \f
5871 /* Partial symbol tables. */
5872
5873 /* Create a psymtab named NAME and assign it to PER_CU.
5874
5875 The caller must fill in the following details:
5876 dirname, textlow, texthigh. */
5877
5878 static struct partial_symtab *
5879 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5880 {
5881 struct objfile *objfile = per_cu->objfile;
5882 struct partial_symtab *pst;
5883
5884 pst = start_psymtab_common (objfile, objfile->section_offsets,
5885 name, 0,
5886 objfile->global_psymbols.next,
5887 objfile->static_psymbols.next);
5888
5889 pst->psymtabs_addrmap_supported = 1;
5890
5891 /* This is the glue that links PST into GDB's symbol API. */
5892 pst->read_symtab_private = per_cu;
5893 pst->read_symtab = dwarf2_read_symtab;
5894 per_cu->v.psymtab = pst;
5895
5896 return pst;
5897 }
5898
5899 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5900 type. */
5901
5902 struct process_psymtab_comp_unit_data
5903 {
5904 /* True if we are reading a DW_TAG_partial_unit. */
5905
5906 int want_partial_unit;
5907
5908 /* The "pretend" language that is used if the CU doesn't declare a
5909 language. */
5910
5911 enum language pretend_language;
5912 };
5913
5914 /* die_reader_func for process_psymtab_comp_unit. */
5915
5916 static void
5917 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5918 const gdb_byte *info_ptr,
5919 struct die_info *comp_unit_die,
5920 int has_children,
5921 void *data)
5922 {
5923 struct dwarf2_cu *cu = reader->cu;
5924 struct objfile *objfile = cu->objfile;
5925 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5926 struct attribute *attr;
5927 CORE_ADDR baseaddr;
5928 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5929 struct partial_symtab *pst;
5930 int has_pc_info;
5931 const char *filename;
5932 struct process_psymtab_comp_unit_data *info = data;
5933
5934 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5935 return;
5936
5937 gdb_assert (! per_cu->is_debug_types);
5938
5939 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5940
5941 cu->list_in_scope = &file_symbols;
5942
5943 /* Allocate a new partial symbol table structure. */
5944 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5945 if (attr == NULL || !DW_STRING (attr))
5946 filename = "";
5947 else
5948 filename = DW_STRING (attr);
5949
5950 pst = create_partial_symtab (per_cu, filename);
5951
5952 /* This must be done before calling dwarf2_build_include_psymtabs. */
5953 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5954 if (attr != NULL)
5955 pst->dirname = DW_STRING (attr);
5956
5957 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5958
5959 dwarf2_find_base_address (comp_unit_die, cu);
5960
5961 /* Possibly set the default values of LOWPC and HIGHPC from
5962 `DW_AT_ranges'. */
5963 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5964 &best_highpc, cu, pst);
5965 if (has_pc_info == 1 && best_lowpc < best_highpc)
5966 /* Store the contiguous range if it is not empty; it can be empty for
5967 CUs with no code. */
5968 addrmap_set_empty (objfile->psymtabs_addrmap,
5969 best_lowpc + baseaddr,
5970 best_highpc + baseaddr - 1, pst);
5971
5972 /* Check if comp unit has_children.
5973 If so, read the rest of the partial symbols from this comp unit.
5974 If not, there's no more debug_info for this comp unit. */
5975 if (has_children)
5976 {
5977 struct partial_die_info *first_die;
5978 CORE_ADDR lowpc, highpc;
5979
5980 lowpc = ((CORE_ADDR) -1);
5981 highpc = ((CORE_ADDR) 0);
5982
5983 first_die = load_partial_dies (reader, info_ptr, 1);
5984
5985 scan_partial_symbols (first_die, &lowpc, &highpc,
5986 ! has_pc_info, cu);
5987
5988 /* If we didn't find a lowpc, set it to highpc to avoid
5989 complaints from `maint check'. */
5990 if (lowpc == ((CORE_ADDR) -1))
5991 lowpc = highpc;
5992
5993 /* If the compilation unit didn't have an explicit address range,
5994 then use the information extracted from its child dies. */
5995 if (! has_pc_info)
5996 {
5997 best_lowpc = lowpc;
5998 best_highpc = highpc;
5999 }
6000 }
6001 pst->textlow = best_lowpc + baseaddr;
6002 pst->texthigh = best_highpc + baseaddr;
6003
6004 pst->n_global_syms = objfile->global_psymbols.next -
6005 (objfile->global_psymbols.list + pst->globals_offset);
6006 pst->n_static_syms = objfile->static_psymbols.next -
6007 (objfile->static_psymbols.list + pst->statics_offset);
6008 sort_pst_symbols (objfile, pst);
6009
6010 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6011 {
6012 int i;
6013 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6014 struct dwarf2_per_cu_data *iter;
6015
6016 /* Fill in 'dependencies' here; we fill in 'users' in a
6017 post-pass. */
6018 pst->number_of_dependencies = len;
6019 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6020 len * sizeof (struct symtab *));
6021 for (i = 0;
6022 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6023 i, iter);
6024 ++i)
6025 pst->dependencies[i] = iter->v.psymtab;
6026
6027 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6028 }
6029
6030 /* Get the list of files included in the current compilation unit,
6031 and build a psymtab for each of them. */
6032 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6033
6034 if (dwarf2_read_debug)
6035 {
6036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6037
6038 fprintf_unfiltered (gdb_stdlog,
6039 "Psymtab for %s unit @0x%x: %s - %s"
6040 ", %d global, %d static syms\n",
6041 per_cu->is_debug_types ? "type" : "comp",
6042 per_cu->offset.sect_off,
6043 paddress (gdbarch, pst->textlow),
6044 paddress (gdbarch, pst->texthigh),
6045 pst->n_global_syms, pst->n_static_syms);
6046 }
6047 }
6048
6049 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6050 Process compilation unit THIS_CU for a psymtab. */
6051
6052 static void
6053 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6054 int want_partial_unit,
6055 enum language pretend_language)
6056 {
6057 struct process_psymtab_comp_unit_data info;
6058
6059 /* If this compilation unit was already read in, free the
6060 cached copy in order to read it in again. This is
6061 necessary because we skipped some symbols when we first
6062 read in the compilation unit (see load_partial_dies).
6063 This problem could be avoided, but the benefit is unclear. */
6064 if (this_cu->cu != NULL)
6065 free_one_cached_comp_unit (this_cu);
6066
6067 gdb_assert (! this_cu->is_debug_types);
6068 info.want_partial_unit = want_partial_unit;
6069 info.pretend_language = pretend_language;
6070 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6071 process_psymtab_comp_unit_reader,
6072 &info);
6073
6074 /* Age out any secondary CUs. */
6075 age_cached_comp_units ();
6076 }
6077
6078 /* Reader function for build_type_psymtabs. */
6079
6080 static void
6081 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6082 const gdb_byte *info_ptr,
6083 struct die_info *type_unit_die,
6084 int has_children,
6085 void *data)
6086 {
6087 struct objfile *objfile = dwarf2_per_objfile->objfile;
6088 struct dwarf2_cu *cu = reader->cu;
6089 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6090 struct signatured_type *sig_type;
6091 struct type_unit_group *tu_group;
6092 struct attribute *attr;
6093 struct partial_die_info *first_die;
6094 CORE_ADDR lowpc, highpc;
6095 struct partial_symtab *pst;
6096
6097 gdb_assert (data == NULL);
6098 gdb_assert (per_cu->is_debug_types);
6099 sig_type = (struct signatured_type *) per_cu;
6100
6101 if (! has_children)
6102 return;
6103
6104 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6105 tu_group = get_type_unit_group (cu, attr);
6106
6107 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6108
6109 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6110 cu->list_in_scope = &file_symbols;
6111 pst = create_partial_symtab (per_cu, "");
6112 pst->anonymous = 1;
6113
6114 first_die = load_partial_dies (reader, info_ptr, 1);
6115
6116 lowpc = (CORE_ADDR) -1;
6117 highpc = (CORE_ADDR) 0;
6118 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6119
6120 pst->n_global_syms = objfile->global_psymbols.next -
6121 (objfile->global_psymbols.list + pst->globals_offset);
6122 pst->n_static_syms = objfile->static_psymbols.next -
6123 (objfile->static_psymbols.list + pst->statics_offset);
6124 sort_pst_symbols (objfile, pst);
6125 }
6126
6127 /* Traversal function for build_type_psymtabs. */
6128
6129 static int
6130 build_type_psymtab_dependencies (void **slot, void *info)
6131 {
6132 struct objfile *objfile = dwarf2_per_objfile->objfile;
6133 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6134 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6135 struct partial_symtab *pst = per_cu->v.psymtab;
6136 int len = VEC_length (sig_type_ptr, tu_group->tus);
6137 struct signatured_type *iter;
6138 int i;
6139
6140 gdb_assert (len > 0);
6141 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6142
6143 pst->number_of_dependencies = len;
6144 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6145 len * sizeof (struct psymtab *));
6146 for (i = 0;
6147 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6148 ++i)
6149 {
6150 gdb_assert (iter->per_cu.is_debug_types);
6151 pst->dependencies[i] = iter->per_cu.v.psymtab;
6152 iter->type_unit_group = tu_group;
6153 }
6154
6155 VEC_free (sig_type_ptr, tu_group->tus);
6156
6157 return 1;
6158 }
6159
6160 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6161 Build partial symbol tables for the .debug_types comp-units. */
6162
6163 static void
6164 build_type_psymtabs (struct objfile *objfile)
6165 {
6166 if (! create_all_type_units (objfile))
6167 return;
6168
6169 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6170
6171 /* Now that all TUs have been processed we can fill in the dependencies. */
6172 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6173 build_type_psymtab_dependencies, NULL);
6174 }
6175
6176 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6177
6178 static void
6179 psymtabs_addrmap_cleanup (void *o)
6180 {
6181 struct objfile *objfile = o;
6182
6183 objfile->psymtabs_addrmap = NULL;
6184 }
6185
6186 /* Compute the 'user' field for each psymtab in OBJFILE. */
6187
6188 static void
6189 set_partial_user (struct objfile *objfile)
6190 {
6191 int i;
6192
6193 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6194 {
6195 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6196 struct partial_symtab *pst = per_cu->v.psymtab;
6197 int j;
6198
6199 if (pst == NULL)
6200 continue;
6201
6202 for (j = 0; j < pst->number_of_dependencies; ++j)
6203 {
6204 /* Set the 'user' field only if it is not already set. */
6205 if (pst->dependencies[j]->user == NULL)
6206 pst->dependencies[j]->user = pst;
6207 }
6208 }
6209 }
6210
6211 /* Build the partial symbol table by doing a quick pass through the
6212 .debug_info and .debug_abbrev sections. */
6213
6214 static void
6215 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6216 {
6217 struct cleanup *back_to, *addrmap_cleanup;
6218 struct obstack temp_obstack;
6219 int i;
6220
6221 if (dwarf2_read_debug)
6222 {
6223 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6224 objfile_name (objfile));
6225 }
6226
6227 dwarf2_per_objfile->reading_partial_symbols = 1;
6228
6229 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6230
6231 /* Any cached compilation units will be linked by the per-objfile
6232 read_in_chain. Make sure to free them when we're done. */
6233 back_to = make_cleanup (free_cached_comp_units, NULL);
6234
6235 build_type_psymtabs (objfile);
6236
6237 create_all_comp_units (objfile);
6238
6239 /* Create a temporary address map on a temporary obstack. We later
6240 copy this to the final obstack. */
6241 obstack_init (&temp_obstack);
6242 make_cleanup_obstack_free (&temp_obstack);
6243 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6244 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6245
6246 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6247 {
6248 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6249
6250 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6251 }
6252
6253 set_partial_user (objfile);
6254
6255 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6256 &objfile->objfile_obstack);
6257 discard_cleanups (addrmap_cleanup);
6258
6259 do_cleanups (back_to);
6260
6261 if (dwarf2_read_debug)
6262 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6263 objfile_name (objfile));
6264 }
6265
6266 /* die_reader_func for load_partial_comp_unit. */
6267
6268 static void
6269 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6270 const gdb_byte *info_ptr,
6271 struct die_info *comp_unit_die,
6272 int has_children,
6273 void *data)
6274 {
6275 struct dwarf2_cu *cu = reader->cu;
6276
6277 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6278
6279 /* Check if comp unit has_children.
6280 If so, read the rest of the partial symbols from this comp unit.
6281 If not, there's no more debug_info for this comp unit. */
6282 if (has_children)
6283 load_partial_dies (reader, info_ptr, 0);
6284 }
6285
6286 /* Load the partial DIEs for a secondary CU into memory.
6287 This is also used when rereading a primary CU with load_all_dies. */
6288
6289 static void
6290 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6291 {
6292 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6293 load_partial_comp_unit_reader, NULL);
6294 }
6295
6296 static void
6297 read_comp_units_from_section (struct objfile *objfile,
6298 struct dwarf2_section_info *section,
6299 unsigned int is_dwz,
6300 int *n_allocated,
6301 int *n_comp_units,
6302 struct dwarf2_per_cu_data ***all_comp_units)
6303 {
6304 const gdb_byte *info_ptr;
6305 bfd *abfd = get_section_bfd_owner (section);
6306
6307 if (dwarf2_read_debug)
6308 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6309 get_section_name (section),
6310 get_section_file_name (section));
6311
6312 dwarf2_read_section (objfile, section);
6313
6314 info_ptr = section->buffer;
6315
6316 while (info_ptr < section->buffer + section->size)
6317 {
6318 unsigned int length, initial_length_size;
6319 struct dwarf2_per_cu_data *this_cu;
6320 sect_offset offset;
6321
6322 offset.sect_off = info_ptr - section->buffer;
6323
6324 /* Read just enough information to find out where the next
6325 compilation unit is. */
6326 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6327
6328 /* Save the compilation unit for later lookup. */
6329 this_cu = obstack_alloc (&objfile->objfile_obstack,
6330 sizeof (struct dwarf2_per_cu_data));
6331 memset (this_cu, 0, sizeof (*this_cu));
6332 this_cu->offset = offset;
6333 this_cu->length = length + initial_length_size;
6334 this_cu->is_dwz = is_dwz;
6335 this_cu->objfile = objfile;
6336 this_cu->section = section;
6337
6338 if (*n_comp_units == *n_allocated)
6339 {
6340 *n_allocated *= 2;
6341 *all_comp_units = xrealloc (*all_comp_units,
6342 *n_allocated
6343 * sizeof (struct dwarf2_per_cu_data *));
6344 }
6345 (*all_comp_units)[*n_comp_units] = this_cu;
6346 ++*n_comp_units;
6347
6348 info_ptr = info_ptr + this_cu->length;
6349 }
6350 }
6351
6352 /* Create a list of all compilation units in OBJFILE.
6353 This is only done for -readnow and building partial symtabs. */
6354
6355 static void
6356 create_all_comp_units (struct objfile *objfile)
6357 {
6358 int n_allocated;
6359 int n_comp_units;
6360 struct dwarf2_per_cu_data **all_comp_units;
6361 struct dwz_file *dwz;
6362
6363 n_comp_units = 0;
6364 n_allocated = 10;
6365 all_comp_units = xmalloc (n_allocated
6366 * sizeof (struct dwarf2_per_cu_data *));
6367
6368 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6369 &n_allocated, &n_comp_units, &all_comp_units);
6370
6371 dwz = dwarf2_get_dwz_file ();
6372 if (dwz != NULL)
6373 read_comp_units_from_section (objfile, &dwz->info, 1,
6374 &n_allocated, &n_comp_units,
6375 &all_comp_units);
6376
6377 dwarf2_per_objfile->all_comp_units
6378 = obstack_alloc (&objfile->objfile_obstack,
6379 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6380 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6381 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6382 xfree (all_comp_units);
6383 dwarf2_per_objfile->n_comp_units = n_comp_units;
6384 }
6385
6386 /* Process all loaded DIEs for compilation unit CU, starting at
6387 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6388 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6389 DW_AT_ranges). If NEED_PC is set, then this function will set
6390 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6391 and record the covered ranges in the addrmap. */
6392
6393 static void
6394 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6395 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6396 {
6397 struct partial_die_info *pdi;
6398
6399 /* Now, march along the PDI's, descending into ones which have
6400 interesting children but skipping the children of the other ones,
6401 until we reach the end of the compilation unit. */
6402
6403 pdi = first_die;
6404
6405 while (pdi != NULL)
6406 {
6407 fixup_partial_die (pdi, cu);
6408
6409 /* Anonymous namespaces or modules have no name but have interesting
6410 children, so we need to look at them. Ditto for anonymous
6411 enums. */
6412
6413 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6414 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6415 || pdi->tag == DW_TAG_imported_unit)
6416 {
6417 switch (pdi->tag)
6418 {
6419 case DW_TAG_subprogram:
6420 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6421 break;
6422 case DW_TAG_constant:
6423 case DW_TAG_variable:
6424 case DW_TAG_typedef:
6425 case DW_TAG_union_type:
6426 if (!pdi->is_declaration)
6427 {
6428 add_partial_symbol (pdi, cu);
6429 }
6430 break;
6431 case DW_TAG_class_type:
6432 case DW_TAG_interface_type:
6433 case DW_TAG_structure_type:
6434 if (!pdi->is_declaration)
6435 {
6436 add_partial_symbol (pdi, cu);
6437 }
6438 break;
6439 case DW_TAG_enumeration_type:
6440 if (!pdi->is_declaration)
6441 add_partial_enumeration (pdi, cu);
6442 break;
6443 case DW_TAG_base_type:
6444 case DW_TAG_subrange_type:
6445 /* File scope base type definitions are added to the partial
6446 symbol table. */
6447 add_partial_symbol (pdi, cu);
6448 break;
6449 case DW_TAG_namespace:
6450 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6451 break;
6452 case DW_TAG_module:
6453 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6454 break;
6455 case DW_TAG_imported_unit:
6456 {
6457 struct dwarf2_per_cu_data *per_cu;
6458
6459 /* For now we don't handle imported units in type units. */
6460 if (cu->per_cu->is_debug_types)
6461 {
6462 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6463 " supported in type units [in module %s]"),
6464 objfile_name (cu->objfile));
6465 }
6466
6467 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6468 pdi->is_dwz,
6469 cu->objfile);
6470
6471 /* Go read the partial unit, if needed. */
6472 if (per_cu->v.psymtab == NULL)
6473 process_psymtab_comp_unit (per_cu, 1, cu->language);
6474
6475 VEC_safe_push (dwarf2_per_cu_ptr,
6476 cu->per_cu->imported_symtabs, per_cu);
6477 }
6478 break;
6479 default:
6480 break;
6481 }
6482 }
6483
6484 /* If the die has a sibling, skip to the sibling. */
6485
6486 pdi = pdi->die_sibling;
6487 }
6488 }
6489
6490 /* Functions used to compute the fully scoped name of a partial DIE.
6491
6492 Normally, this is simple. For C++, the parent DIE's fully scoped
6493 name is concatenated with "::" and the partial DIE's name. For
6494 Java, the same thing occurs except that "." is used instead of "::".
6495 Enumerators are an exception; they use the scope of their parent
6496 enumeration type, i.e. the name of the enumeration type is not
6497 prepended to the enumerator.
6498
6499 There are two complexities. One is DW_AT_specification; in this
6500 case "parent" means the parent of the target of the specification,
6501 instead of the direct parent of the DIE. The other is compilers
6502 which do not emit DW_TAG_namespace; in this case we try to guess
6503 the fully qualified name of structure types from their members'
6504 linkage names. This must be done using the DIE's children rather
6505 than the children of any DW_AT_specification target. We only need
6506 to do this for structures at the top level, i.e. if the target of
6507 any DW_AT_specification (if any; otherwise the DIE itself) does not
6508 have a parent. */
6509
6510 /* Compute the scope prefix associated with PDI's parent, in
6511 compilation unit CU. The result will be allocated on CU's
6512 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6513 field. NULL is returned if no prefix is necessary. */
6514 static const char *
6515 partial_die_parent_scope (struct partial_die_info *pdi,
6516 struct dwarf2_cu *cu)
6517 {
6518 const char *grandparent_scope;
6519 struct partial_die_info *parent, *real_pdi;
6520
6521 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6522 then this means the parent of the specification DIE. */
6523
6524 real_pdi = pdi;
6525 while (real_pdi->has_specification)
6526 real_pdi = find_partial_die (real_pdi->spec_offset,
6527 real_pdi->spec_is_dwz, cu);
6528
6529 parent = real_pdi->die_parent;
6530 if (parent == NULL)
6531 return NULL;
6532
6533 if (parent->scope_set)
6534 return parent->scope;
6535
6536 fixup_partial_die (parent, cu);
6537
6538 grandparent_scope = partial_die_parent_scope (parent, cu);
6539
6540 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6541 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6542 Work around this problem here. */
6543 if (cu->language == language_cplus
6544 && parent->tag == DW_TAG_namespace
6545 && strcmp (parent->name, "::") == 0
6546 && grandparent_scope == NULL)
6547 {
6548 parent->scope = NULL;
6549 parent->scope_set = 1;
6550 return NULL;
6551 }
6552
6553 if (pdi->tag == DW_TAG_enumerator)
6554 /* Enumerators should not get the name of the enumeration as a prefix. */
6555 parent->scope = grandparent_scope;
6556 else if (parent->tag == DW_TAG_namespace
6557 || parent->tag == DW_TAG_module
6558 || parent->tag == DW_TAG_structure_type
6559 || parent->tag == DW_TAG_class_type
6560 || parent->tag == DW_TAG_interface_type
6561 || parent->tag == DW_TAG_union_type
6562 || parent->tag == DW_TAG_enumeration_type)
6563 {
6564 if (grandparent_scope == NULL)
6565 parent->scope = parent->name;
6566 else
6567 parent->scope = typename_concat (&cu->comp_unit_obstack,
6568 grandparent_scope,
6569 parent->name, 0, cu);
6570 }
6571 else
6572 {
6573 /* FIXME drow/2004-04-01: What should we be doing with
6574 function-local names? For partial symbols, we should probably be
6575 ignoring them. */
6576 complaint (&symfile_complaints,
6577 _("unhandled containing DIE tag %d for DIE at %d"),
6578 parent->tag, pdi->offset.sect_off);
6579 parent->scope = grandparent_scope;
6580 }
6581
6582 parent->scope_set = 1;
6583 return parent->scope;
6584 }
6585
6586 /* Return the fully scoped name associated with PDI, from compilation unit
6587 CU. The result will be allocated with malloc. */
6588
6589 static char *
6590 partial_die_full_name (struct partial_die_info *pdi,
6591 struct dwarf2_cu *cu)
6592 {
6593 const char *parent_scope;
6594
6595 /* If this is a template instantiation, we can not work out the
6596 template arguments from partial DIEs. So, unfortunately, we have
6597 to go through the full DIEs. At least any work we do building
6598 types here will be reused if full symbols are loaded later. */
6599 if (pdi->has_template_arguments)
6600 {
6601 fixup_partial_die (pdi, cu);
6602
6603 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6604 {
6605 struct die_info *die;
6606 struct attribute attr;
6607 struct dwarf2_cu *ref_cu = cu;
6608
6609 /* DW_FORM_ref_addr is using section offset. */
6610 attr.name = 0;
6611 attr.form = DW_FORM_ref_addr;
6612 attr.u.unsnd = pdi->offset.sect_off;
6613 die = follow_die_ref (NULL, &attr, &ref_cu);
6614
6615 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6616 }
6617 }
6618
6619 parent_scope = partial_die_parent_scope (pdi, cu);
6620 if (parent_scope == NULL)
6621 return NULL;
6622 else
6623 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6624 }
6625
6626 static void
6627 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6628 {
6629 struct objfile *objfile = cu->objfile;
6630 CORE_ADDR addr = 0;
6631 const char *actual_name = NULL;
6632 CORE_ADDR baseaddr;
6633 char *built_actual_name;
6634
6635 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6636
6637 built_actual_name = partial_die_full_name (pdi, cu);
6638 if (built_actual_name != NULL)
6639 actual_name = built_actual_name;
6640
6641 if (actual_name == NULL)
6642 actual_name = pdi->name;
6643
6644 switch (pdi->tag)
6645 {
6646 case DW_TAG_subprogram:
6647 if (pdi->is_external || cu->language == language_ada)
6648 {
6649 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6650 of the global scope. But in Ada, we want to be able to access
6651 nested procedures globally. So all Ada subprograms are stored
6652 in the global scope. */
6653 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6654 mst_text, objfile); */
6655 add_psymbol_to_list (actual_name, strlen (actual_name),
6656 built_actual_name != NULL,
6657 VAR_DOMAIN, LOC_BLOCK,
6658 &objfile->global_psymbols,
6659 0, pdi->lowpc + baseaddr,
6660 cu->language, objfile);
6661 }
6662 else
6663 {
6664 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6665 mst_file_text, objfile); */
6666 add_psymbol_to_list (actual_name, strlen (actual_name),
6667 built_actual_name != NULL,
6668 VAR_DOMAIN, LOC_BLOCK,
6669 &objfile->static_psymbols,
6670 0, pdi->lowpc + baseaddr,
6671 cu->language, objfile);
6672 }
6673 break;
6674 case DW_TAG_constant:
6675 {
6676 struct psymbol_allocation_list *list;
6677
6678 if (pdi->is_external)
6679 list = &objfile->global_psymbols;
6680 else
6681 list = &objfile->static_psymbols;
6682 add_psymbol_to_list (actual_name, strlen (actual_name),
6683 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6684 list, 0, 0, cu->language, objfile);
6685 }
6686 break;
6687 case DW_TAG_variable:
6688 if (pdi->d.locdesc)
6689 addr = decode_locdesc (pdi->d.locdesc, cu);
6690
6691 if (pdi->d.locdesc
6692 && addr == 0
6693 && !dwarf2_per_objfile->has_section_at_zero)
6694 {
6695 /* A global or static variable may also have been stripped
6696 out by the linker if unused, in which case its address
6697 will be nullified; do not add such variables into partial
6698 symbol table then. */
6699 }
6700 else if (pdi->is_external)
6701 {
6702 /* Global Variable.
6703 Don't enter into the minimal symbol tables as there is
6704 a minimal symbol table entry from the ELF symbols already.
6705 Enter into partial symbol table if it has a location
6706 descriptor or a type.
6707 If the location descriptor is missing, new_symbol will create
6708 a LOC_UNRESOLVED symbol, the address of the variable will then
6709 be determined from the minimal symbol table whenever the variable
6710 is referenced.
6711 The address for the partial symbol table entry is not
6712 used by GDB, but it comes in handy for debugging partial symbol
6713 table building. */
6714
6715 if (pdi->d.locdesc || pdi->has_type)
6716 add_psymbol_to_list (actual_name, strlen (actual_name),
6717 built_actual_name != NULL,
6718 VAR_DOMAIN, LOC_STATIC,
6719 &objfile->global_psymbols,
6720 0, addr + baseaddr,
6721 cu->language, objfile);
6722 }
6723 else
6724 {
6725 /* Static Variable. Skip symbols without location descriptors. */
6726 if (pdi->d.locdesc == NULL)
6727 {
6728 xfree (built_actual_name);
6729 return;
6730 }
6731 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6732 mst_file_data, objfile); */
6733 add_psymbol_to_list (actual_name, strlen (actual_name),
6734 built_actual_name != NULL,
6735 VAR_DOMAIN, LOC_STATIC,
6736 &objfile->static_psymbols,
6737 0, addr + baseaddr,
6738 cu->language, objfile);
6739 }
6740 break;
6741 case DW_TAG_typedef:
6742 case DW_TAG_base_type:
6743 case DW_TAG_subrange_type:
6744 add_psymbol_to_list (actual_name, strlen (actual_name),
6745 built_actual_name != NULL,
6746 VAR_DOMAIN, LOC_TYPEDEF,
6747 &objfile->static_psymbols,
6748 0, (CORE_ADDR) 0, cu->language, objfile);
6749 break;
6750 case DW_TAG_namespace:
6751 add_psymbol_to_list (actual_name, strlen (actual_name),
6752 built_actual_name != NULL,
6753 VAR_DOMAIN, LOC_TYPEDEF,
6754 &objfile->global_psymbols,
6755 0, (CORE_ADDR) 0, cu->language, objfile);
6756 break;
6757 case DW_TAG_class_type:
6758 case DW_TAG_interface_type:
6759 case DW_TAG_structure_type:
6760 case DW_TAG_union_type:
6761 case DW_TAG_enumeration_type:
6762 /* Skip external references. The DWARF standard says in the section
6763 about "Structure, Union, and Class Type Entries": "An incomplete
6764 structure, union or class type is represented by a structure,
6765 union or class entry that does not have a byte size attribute
6766 and that has a DW_AT_declaration attribute." */
6767 if (!pdi->has_byte_size && pdi->is_declaration)
6768 {
6769 xfree (built_actual_name);
6770 return;
6771 }
6772
6773 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6774 static vs. global. */
6775 add_psymbol_to_list (actual_name, strlen (actual_name),
6776 built_actual_name != NULL,
6777 STRUCT_DOMAIN, LOC_TYPEDEF,
6778 (cu->language == language_cplus
6779 || cu->language == language_java)
6780 ? &objfile->global_psymbols
6781 : &objfile->static_psymbols,
6782 0, (CORE_ADDR) 0, cu->language, objfile);
6783
6784 break;
6785 case DW_TAG_enumerator:
6786 add_psymbol_to_list (actual_name, strlen (actual_name),
6787 built_actual_name != NULL,
6788 VAR_DOMAIN, LOC_CONST,
6789 (cu->language == language_cplus
6790 || cu->language == language_java)
6791 ? &objfile->global_psymbols
6792 : &objfile->static_psymbols,
6793 0, (CORE_ADDR) 0, cu->language, objfile);
6794 break;
6795 default:
6796 break;
6797 }
6798
6799 xfree (built_actual_name);
6800 }
6801
6802 /* Read a partial die corresponding to a namespace; also, add a symbol
6803 corresponding to that namespace to the symbol table. NAMESPACE is
6804 the name of the enclosing namespace. */
6805
6806 static void
6807 add_partial_namespace (struct partial_die_info *pdi,
6808 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6809 int need_pc, struct dwarf2_cu *cu)
6810 {
6811 /* Add a symbol for the namespace. */
6812
6813 add_partial_symbol (pdi, cu);
6814
6815 /* Now scan partial symbols in that namespace. */
6816
6817 if (pdi->has_children)
6818 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6819 }
6820
6821 /* Read a partial die corresponding to a Fortran module. */
6822
6823 static void
6824 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6825 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6826 {
6827 /* Now scan partial symbols in that module. */
6828
6829 if (pdi->has_children)
6830 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6831 }
6832
6833 /* Read a partial die corresponding to a subprogram and create a partial
6834 symbol for that subprogram. When the CU language allows it, this
6835 routine also defines a partial symbol for each nested subprogram
6836 that this subprogram contains.
6837
6838 DIE my also be a lexical block, in which case we simply search
6839 recursively for suprograms defined inside that lexical block.
6840 Again, this is only performed when the CU language allows this
6841 type of definitions. */
6842
6843 static void
6844 add_partial_subprogram (struct partial_die_info *pdi,
6845 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6846 int need_pc, struct dwarf2_cu *cu)
6847 {
6848 if (pdi->tag == DW_TAG_subprogram)
6849 {
6850 if (pdi->has_pc_info)
6851 {
6852 if (pdi->lowpc < *lowpc)
6853 *lowpc = pdi->lowpc;
6854 if (pdi->highpc > *highpc)
6855 *highpc = pdi->highpc;
6856 if (need_pc)
6857 {
6858 CORE_ADDR baseaddr;
6859 struct objfile *objfile = cu->objfile;
6860
6861 baseaddr = ANOFFSET (objfile->section_offsets,
6862 SECT_OFF_TEXT (objfile));
6863 addrmap_set_empty (objfile->psymtabs_addrmap,
6864 pdi->lowpc + baseaddr,
6865 pdi->highpc - 1 + baseaddr,
6866 cu->per_cu->v.psymtab);
6867 }
6868 }
6869
6870 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6871 {
6872 if (!pdi->is_declaration)
6873 /* Ignore subprogram DIEs that do not have a name, they are
6874 illegal. Do not emit a complaint at this point, we will
6875 do so when we convert this psymtab into a symtab. */
6876 if (pdi->name)
6877 add_partial_symbol (pdi, cu);
6878 }
6879 }
6880
6881 if (! pdi->has_children)
6882 return;
6883
6884 if (cu->language == language_ada)
6885 {
6886 pdi = pdi->die_child;
6887 while (pdi != NULL)
6888 {
6889 fixup_partial_die (pdi, cu);
6890 if (pdi->tag == DW_TAG_subprogram
6891 || pdi->tag == DW_TAG_lexical_block)
6892 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6893 pdi = pdi->die_sibling;
6894 }
6895 }
6896 }
6897
6898 /* Read a partial die corresponding to an enumeration type. */
6899
6900 static void
6901 add_partial_enumeration (struct partial_die_info *enum_pdi,
6902 struct dwarf2_cu *cu)
6903 {
6904 struct partial_die_info *pdi;
6905
6906 if (enum_pdi->name != NULL)
6907 add_partial_symbol (enum_pdi, cu);
6908
6909 pdi = enum_pdi->die_child;
6910 while (pdi)
6911 {
6912 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6913 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6914 else
6915 add_partial_symbol (pdi, cu);
6916 pdi = pdi->die_sibling;
6917 }
6918 }
6919
6920 /* Return the initial uleb128 in the die at INFO_PTR. */
6921
6922 static unsigned int
6923 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6924 {
6925 unsigned int bytes_read;
6926
6927 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6928 }
6929
6930 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6931 Return the corresponding abbrev, or NULL if the number is zero (indicating
6932 an empty DIE). In either case *BYTES_READ will be set to the length of
6933 the initial number. */
6934
6935 static struct abbrev_info *
6936 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6937 struct dwarf2_cu *cu)
6938 {
6939 bfd *abfd = cu->objfile->obfd;
6940 unsigned int abbrev_number;
6941 struct abbrev_info *abbrev;
6942
6943 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6944
6945 if (abbrev_number == 0)
6946 return NULL;
6947
6948 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6949 if (!abbrev)
6950 {
6951 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6952 abbrev_number, bfd_get_filename (abfd));
6953 }
6954
6955 return abbrev;
6956 }
6957
6958 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6959 Returns a pointer to the end of a series of DIEs, terminated by an empty
6960 DIE. Any children of the skipped DIEs will also be skipped. */
6961
6962 static const gdb_byte *
6963 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6964 {
6965 struct dwarf2_cu *cu = reader->cu;
6966 struct abbrev_info *abbrev;
6967 unsigned int bytes_read;
6968
6969 while (1)
6970 {
6971 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6972 if (abbrev == NULL)
6973 return info_ptr + bytes_read;
6974 else
6975 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6976 }
6977 }
6978
6979 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6980 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6981 abbrev corresponding to that skipped uleb128 should be passed in
6982 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6983 children. */
6984
6985 static const gdb_byte *
6986 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6987 struct abbrev_info *abbrev)
6988 {
6989 unsigned int bytes_read;
6990 struct attribute attr;
6991 bfd *abfd = reader->abfd;
6992 struct dwarf2_cu *cu = reader->cu;
6993 const gdb_byte *buffer = reader->buffer;
6994 const gdb_byte *buffer_end = reader->buffer_end;
6995 const gdb_byte *start_info_ptr = info_ptr;
6996 unsigned int form, i;
6997
6998 for (i = 0; i < abbrev->num_attrs; i++)
6999 {
7000 /* The only abbrev we care about is DW_AT_sibling. */
7001 if (abbrev->attrs[i].name == DW_AT_sibling)
7002 {
7003 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7004 if (attr.form == DW_FORM_ref_addr)
7005 complaint (&symfile_complaints,
7006 _("ignoring absolute DW_AT_sibling"));
7007 else
7008 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
7009 }
7010
7011 /* If it isn't DW_AT_sibling, skip this attribute. */
7012 form = abbrev->attrs[i].form;
7013 skip_attribute:
7014 switch (form)
7015 {
7016 case DW_FORM_ref_addr:
7017 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7018 and later it is offset sized. */
7019 if (cu->header.version == 2)
7020 info_ptr += cu->header.addr_size;
7021 else
7022 info_ptr += cu->header.offset_size;
7023 break;
7024 case DW_FORM_GNU_ref_alt:
7025 info_ptr += cu->header.offset_size;
7026 break;
7027 case DW_FORM_addr:
7028 info_ptr += cu->header.addr_size;
7029 break;
7030 case DW_FORM_data1:
7031 case DW_FORM_ref1:
7032 case DW_FORM_flag:
7033 info_ptr += 1;
7034 break;
7035 case DW_FORM_flag_present:
7036 break;
7037 case DW_FORM_data2:
7038 case DW_FORM_ref2:
7039 info_ptr += 2;
7040 break;
7041 case DW_FORM_data4:
7042 case DW_FORM_ref4:
7043 info_ptr += 4;
7044 break;
7045 case DW_FORM_data8:
7046 case DW_FORM_ref8:
7047 case DW_FORM_ref_sig8:
7048 info_ptr += 8;
7049 break;
7050 case DW_FORM_string:
7051 read_direct_string (abfd, info_ptr, &bytes_read);
7052 info_ptr += bytes_read;
7053 break;
7054 case DW_FORM_sec_offset:
7055 case DW_FORM_strp:
7056 case DW_FORM_GNU_strp_alt:
7057 info_ptr += cu->header.offset_size;
7058 break;
7059 case DW_FORM_exprloc:
7060 case DW_FORM_block:
7061 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7062 info_ptr += bytes_read;
7063 break;
7064 case DW_FORM_block1:
7065 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7066 break;
7067 case DW_FORM_block2:
7068 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7069 break;
7070 case DW_FORM_block4:
7071 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7072 break;
7073 case DW_FORM_sdata:
7074 case DW_FORM_udata:
7075 case DW_FORM_ref_udata:
7076 case DW_FORM_GNU_addr_index:
7077 case DW_FORM_GNU_str_index:
7078 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7079 break;
7080 case DW_FORM_indirect:
7081 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7082 info_ptr += bytes_read;
7083 /* We need to continue parsing from here, so just go back to
7084 the top. */
7085 goto skip_attribute;
7086
7087 default:
7088 error (_("Dwarf Error: Cannot handle %s "
7089 "in DWARF reader [in module %s]"),
7090 dwarf_form_name (form),
7091 bfd_get_filename (abfd));
7092 }
7093 }
7094
7095 if (abbrev->has_children)
7096 return skip_children (reader, info_ptr);
7097 else
7098 return info_ptr;
7099 }
7100
7101 /* Locate ORIG_PDI's sibling.
7102 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7103
7104 static const gdb_byte *
7105 locate_pdi_sibling (const struct die_reader_specs *reader,
7106 struct partial_die_info *orig_pdi,
7107 const gdb_byte *info_ptr)
7108 {
7109 /* Do we know the sibling already? */
7110
7111 if (orig_pdi->sibling)
7112 return orig_pdi->sibling;
7113
7114 /* Are there any children to deal with? */
7115
7116 if (!orig_pdi->has_children)
7117 return info_ptr;
7118
7119 /* Skip the children the long way. */
7120
7121 return skip_children (reader, info_ptr);
7122 }
7123
7124 /* Expand this partial symbol table into a full symbol table. SELF is
7125 not NULL. */
7126
7127 static void
7128 dwarf2_read_symtab (struct partial_symtab *self,
7129 struct objfile *objfile)
7130 {
7131 if (self->readin)
7132 {
7133 warning (_("bug: psymtab for %s is already read in."),
7134 self->filename);
7135 }
7136 else
7137 {
7138 if (info_verbose)
7139 {
7140 printf_filtered (_("Reading in symbols for %s..."),
7141 self->filename);
7142 gdb_flush (gdb_stdout);
7143 }
7144
7145 /* Restore our global data. */
7146 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7147
7148 /* If this psymtab is constructed from a debug-only objfile, the
7149 has_section_at_zero flag will not necessarily be correct. We
7150 can get the correct value for this flag by looking at the data
7151 associated with the (presumably stripped) associated objfile. */
7152 if (objfile->separate_debug_objfile_backlink)
7153 {
7154 struct dwarf2_per_objfile *dpo_backlink
7155 = objfile_data (objfile->separate_debug_objfile_backlink,
7156 dwarf2_objfile_data_key);
7157
7158 dwarf2_per_objfile->has_section_at_zero
7159 = dpo_backlink->has_section_at_zero;
7160 }
7161
7162 dwarf2_per_objfile->reading_partial_symbols = 0;
7163
7164 psymtab_to_symtab_1 (self);
7165
7166 /* Finish up the debug error message. */
7167 if (info_verbose)
7168 printf_filtered (_("done.\n"));
7169 }
7170
7171 process_cu_includes ();
7172 }
7173 \f
7174 /* Reading in full CUs. */
7175
7176 /* Add PER_CU to the queue. */
7177
7178 static void
7179 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7180 enum language pretend_language)
7181 {
7182 struct dwarf2_queue_item *item;
7183
7184 per_cu->queued = 1;
7185 item = xmalloc (sizeof (*item));
7186 item->per_cu = per_cu;
7187 item->pretend_language = pretend_language;
7188 item->next = NULL;
7189
7190 if (dwarf2_queue == NULL)
7191 dwarf2_queue = item;
7192 else
7193 dwarf2_queue_tail->next = item;
7194
7195 dwarf2_queue_tail = item;
7196 }
7197
7198 /* If PER_CU is not yet queued, add it to the queue.
7199 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7200 dependency.
7201 The result is non-zero if PER_CU was queued, otherwise the result is zero
7202 meaning either PER_CU is already queued or it is already loaded.
7203
7204 N.B. There is an invariant here that if a CU is queued then it is loaded.
7205 The caller is required to load PER_CU if we return non-zero. */
7206
7207 static int
7208 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7209 struct dwarf2_per_cu_data *per_cu,
7210 enum language pretend_language)
7211 {
7212 /* We may arrive here during partial symbol reading, if we need full
7213 DIEs to process an unusual case (e.g. template arguments). Do
7214 not queue PER_CU, just tell our caller to load its DIEs. */
7215 if (dwarf2_per_objfile->reading_partial_symbols)
7216 {
7217 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7218 return 1;
7219 return 0;
7220 }
7221
7222 /* Mark the dependence relation so that we don't flush PER_CU
7223 too early. */
7224 if (dependent_cu != NULL)
7225 dwarf2_add_dependence (dependent_cu, per_cu);
7226
7227 /* If it's already on the queue, we have nothing to do. */
7228 if (per_cu->queued)
7229 return 0;
7230
7231 /* If the compilation unit is already loaded, just mark it as
7232 used. */
7233 if (per_cu->cu != NULL)
7234 {
7235 per_cu->cu->last_used = 0;
7236 return 0;
7237 }
7238
7239 /* Add it to the queue. */
7240 queue_comp_unit (per_cu, pretend_language);
7241
7242 return 1;
7243 }
7244
7245 /* Process the queue. */
7246
7247 static void
7248 process_queue (void)
7249 {
7250 struct dwarf2_queue_item *item, *next_item;
7251
7252 if (dwarf2_read_debug)
7253 {
7254 fprintf_unfiltered (gdb_stdlog,
7255 "Expanding one or more symtabs of objfile %s ...\n",
7256 objfile_name (dwarf2_per_objfile->objfile));
7257 }
7258
7259 /* The queue starts out with one item, but following a DIE reference
7260 may load a new CU, adding it to the end of the queue. */
7261 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7262 {
7263 if (dwarf2_per_objfile->using_index
7264 ? !item->per_cu->v.quick->symtab
7265 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7266 {
7267 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7268 char buf[100];
7269
7270 if (per_cu->is_debug_types)
7271 {
7272 struct signatured_type *sig_type =
7273 (struct signatured_type *) per_cu;
7274
7275 sprintf (buf, "TU %s at offset 0x%x",
7276 hex_string (sig_type->signature), per_cu->offset.sect_off);
7277 }
7278 else
7279 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7280
7281 if (dwarf2_read_debug)
7282 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7283
7284 if (per_cu->is_debug_types)
7285 process_full_type_unit (per_cu, item->pretend_language);
7286 else
7287 process_full_comp_unit (per_cu, item->pretend_language);
7288
7289 if (dwarf2_read_debug)
7290 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7291 }
7292
7293 item->per_cu->queued = 0;
7294 next_item = item->next;
7295 xfree (item);
7296 }
7297
7298 dwarf2_queue_tail = NULL;
7299
7300 if (dwarf2_read_debug)
7301 {
7302 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7303 objfile_name (dwarf2_per_objfile->objfile));
7304 }
7305 }
7306
7307 /* Free all allocated queue entries. This function only releases anything if
7308 an error was thrown; if the queue was processed then it would have been
7309 freed as we went along. */
7310
7311 static void
7312 dwarf2_release_queue (void *dummy)
7313 {
7314 struct dwarf2_queue_item *item, *last;
7315
7316 item = dwarf2_queue;
7317 while (item)
7318 {
7319 /* Anything still marked queued is likely to be in an
7320 inconsistent state, so discard it. */
7321 if (item->per_cu->queued)
7322 {
7323 if (item->per_cu->cu != NULL)
7324 free_one_cached_comp_unit (item->per_cu);
7325 item->per_cu->queued = 0;
7326 }
7327
7328 last = item;
7329 item = item->next;
7330 xfree (last);
7331 }
7332
7333 dwarf2_queue = dwarf2_queue_tail = NULL;
7334 }
7335
7336 /* Read in full symbols for PST, and anything it depends on. */
7337
7338 static void
7339 psymtab_to_symtab_1 (struct partial_symtab *pst)
7340 {
7341 struct dwarf2_per_cu_data *per_cu;
7342 int i;
7343
7344 if (pst->readin)
7345 return;
7346
7347 for (i = 0; i < pst->number_of_dependencies; i++)
7348 if (!pst->dependencies[i]->readin
7349 && pst->dependencies[i]->user == NULL)
7350 {
7351 /* Inform about additional files that need to be read in. */
7352 if (info_verbose)
7353 {
7354 /* FIXME: i18n: Need to make this a single string. */
7355 fputs_filtered (" ", gdb_stdout);
7356 wrap_here ("");
7357 fputs_filtered ("and ", gdb_stdout);
7358 wrap_here ("");
7359 printf_filtered ("%s...", pst->dependencies[i]->filename);
7360 wrap_here (""); /* Flush output. */
7361 gdb_flush (gdb_stdout);
7362 }
7363 psymtab_to_symtab_1 (pst->dependencies[i]);
7364 }
7365
7366 per_cu = pst->read_symtab_private;
7367
7368 if (per_cu == NULL)
7369 {
7370 /* It's an include file, no symbols to read for it.
7371 Everything is in the parent symtab. */
7372 pst->readin = 1;
7373 return;
7374 }
7375
7376 dw2_do_instantiate_symtab (per_cu);
7377 }
7378
7379 /* Trivial hash function for die_info: the hash value of a DIE
7380 is its offset in .debug_info for this objfile. */
7381
7382 static hashval_t
7383 die_hash (const void *item)
7384 {
7385 const struct die_info *die = item;
7386
7387 return die->offset.sect_off;
7388 }
7389
7390 /* Trivial comparison function for die_info structures: two DIEs
7391 are equal if they have the same offset. */
7392
7393 static int
7394 die_eq (const void *item_lhs, const void *item_rhs)
7395 {
7396 const struct die_info *die_lhs = item_lhs;
7397 const struct die_info *die_rhs = item_rhs;
7398
7399 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7400 }
7401
7402 /* die_reader_func for load_full_comp_unit.
7403 This is identical to read_signatured_type_reader,
7404 but is kept separate for now. */
7405
7406 static void
7407 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7408 const gdb_byte *info_ptr,
7409 struct die_info *comp_unit_die,
7410 int has_children,
7411 void *data)
7412 {
7413 struct dwarf2_cu *cu = reader->cu;
7414 enum language *language_ptr = data;
7415
7416 gdb_assert (cu->die_hash == NULL);
7417 cu->die_hash =
7418 htab_create_alloc_ex (cu->header.length / 12,
7419 die_hash,
7420 die_eq,
7421 NULL,
7422 &cu->comp_unit_obstack,
7423 hashtab_obstack_allocate,
7424 dummy_obstack_deallocate);
7425
7426 if (has_children)
7427 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7428 &info_ptr, comp_unit_die);
7429 cu->dies = comp_unit_die;
7430 /* comp_unit_die is not stored in die_hash, no need. */
7431
7432 /* We try not to read any attributes in this function, because not
7433 all CUs needed for references have been loaded yet, and symbol
7434 table processing isn't initialized. But we have to set the CU language,
7435 or we won't be able to build types correctly.
7436 Similarly, if we do not read the producer, we can not apply
7437 producer-specific interpretation. */
7438 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7439 }
7440
7441 /* Load the DIEs associated with PER_CU into memory. */
7442
7443 static void
7444 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7445 enum language pretend_language)
7446 {
7447 gdb_assert (! this_cu->is_debug_types);
7448
7449 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7450 load_full_comp_unit_reader, &pretend_language);
7451 }
7452
7453 /* Add a DIE to the delayed physname list. */
7454
7455 static void
7456 add_to_method_list (struct type *type, int fnfield_index, int index,
7457 const char *name, struct die_info *die,
7458 struct dwarf2_cu *cu)
7459 {
7460 struct delayed_method_info mi;
7461 mi.type = type;
7462 mi.fnfield_index = fnfield_index;
7463 mi.index = index;
7464 mi.name = name;
7465 mi.die = die;
7466 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7467 }
7468
7469 /* A cleanup for freeing the delayed method list. */
7470
7471 static void
7472 free_delayed_list (void *ptr)
7473 {
7474 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7475 if (cu->method_list != NULL)
7476 {
7477 VEC_free (delayed_method_info, cu->method_list);
7478 cu->method_list = NULL;
7479 }
7480 }
7481
7482 /* Compute the physnames of any methods on the CU's method list.
7483
7484 The computation of method physnames is delayed in order to avoid the
7485 (bad) condition that one of the method's formal parameters is of an as yet
7486 incomplete type. */
7487
7488 static void
7489 compute_delayed_physnames (struct dwarf2_cu *cu)
7490 {
7491 int i;
7492 struct delayed_method_info *mi;
7493 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7494 {
7495 const char *physname;
7496 struct fn_fieldlist *fn_flp
7497 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7498 physname = dwarf2_physname (mi->name, mi->die, cu);
7499 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7500 }
7501 }
7502
7503 /* Go objects should be embedded in a DW_TAG_module DIE,
7504 and it's not clear if/how imported objects will appear.
7505 To keep Go support simple until that's worked out,
7506 go back through what we've read and create something usable.
7507 We could do this while processing each DIE, and feels kinda cleaner,
7508 but that way is more invasive.
7509 This is to, for example, allow the user to type "p var" or "b main"
7510 without having to specify the package name, and allow lookups
7511 of module.object to work in contexts that use the expression
7512 parser. */
7513
7514 static void
7515 fixup_go_packaging (struct dwarf2_cu *cu)
7516 {
7517 char *package_name = NULL;
7518 struct pending *list;
7519 int i;
7520
7521 for (list = global_symbols; list != NULL; list = list->next)
7522 {
7523 for (i = 0; i < list->nsyms; ++i)
7524 {
7525 struct symbol *sym = list->symbol[i];
7526
7527 if (SYMBOL_LANGUAGE (sym) == language_go
7528 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7529 {
7530 char *this_package_name = go_symbol_package_name (sym);
7531
7532 if (this_package_name == NULL)
7533 continue;
7534 if (package_name == NULL)
7535 package_name = this_package_name;
7536 else
7537 {
7538 if (strcmp (package_name, this_package_name) != 0)
7539 complaint (&symfile_complaints,
7540 _("Symtab %s has objects from two different Go packages: %s and %s"),
7541 (SYMBOL_SYMTAB (sym)
7542 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7543 : objfile_name (cu->objfile)),
7544 this_package_name, package_name);
7545 xfree (this_package_name);
7546 }
7547 }
7548 }
7549 }
7550
7551 if (package_name != NULL)
7552 {
7553 struct objfile *objfile = cu->objfile;
7554 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7555 package_name,
7556 strlen (package_name));
7557 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7558 saved_package_name, objfile);
7559 struct symbol *sym;
7560
7561 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7562
7563 sym = allocate_symbol (objfile);
7564 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7565 SYMBOL_SET_NAMES (sym, saved_package_name,
7566 strlen (saved_package_name), 0, objfile);
7567 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7568 e.g., "main" finds the "main" module and not C's main(). */
7569 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7570 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7571 SYMBOL_TYPE (sym) = type;
7572
7573 add_symbol_to_list (sym, &global_symbols);
7574
7575 xfree (package_name);
7576 }
7577 }
7578
7579 /* Return the symtab for PER_CU. This works properly regardless of
7580 whether we're using the index or psymtabs. */
7581
7582 static struct symtab *
7583 get_symtab (struct dwarf2_per_cu_data *per_cu)
7584 {
7585 return (dwarf2_per_objfile->using_index
7586 ? per_cu->v.quick->symtab
7587 : per_cu->v.psymtab->symtab);
7588 }
7589
7590 /* A helper function for computing the list of all symbol tables
7591 included by PER_CU. */
7592
7593 static void
7594 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7595 htab_t all_children, htab_t all_type_symtabs,
7596 struct dwarf2_per_cu_data *per_cu,
7597 struct symtab *immediate_parent)
7598 {
7599 void **slot;
7600 int ix;
7601 struct symtab *symtab;
7602 struct dwarf2_per_cu_data *iter;
7603
7604 slot = htab_find_slot (all_children, per_cu, INSERT);
7605 if (*slot != NULL)
7606 {
7607 /* This inclusion and its children have been processed. */
7608 return;
7609 }
7610
7611 *slot = per_cu;
7612 /* Only add a CU if it has a symbol table. */
7613 symtab = get_symtab (per_cu);
7614 if (symtab != NULL)
7615 {
7616 /* If this is a type unit only add its symbol table if we haven't
7617 seen it yet (type unit per_cu's can share symtabs). */
7618 if (per_cu->is_debug_types)
7619 {
7620 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7621 if (*slot == NULL)
7622 {
7623 *slot = symtab;
7624 VEC_safe_push (symtab_ptr, *result, symtab);
7625 if (symtab->user == NULL)
7626 symtab->user = immediate_parent;
7627 }
7628 }
7629 else
7630 {
7631 VEC_safe_push (symtab_ptr, *result, symtab);
7632 if (symtab->user == NULL)
7633 symtab->user = immediate_parent;
7634 }
7635 }
7636
7637 for (ix = 0;
7638 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7639 ++ix)
7640 {
7641 recursively_compute_inclusions (result, all_children,
7642 all_type_symtabs, iter, symtab);
7643 }
7644 }
7645
7646 /* Compute the symtab 'includes' fields for the symtab related to
7647 PER_CU. */
7648
7649 static void
7650 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7651 {
7652 gdb_assert (! per_cu->is_debug_types);
7653
7654 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7655 {
7656 int ix, len;
7657 struct dwarf2_per_cu_data *per_cu_iter;
7658 struct symtab *symtab_iter;
7659 VEC (symtab_ptr) *result_symtabs = NULL;
7660 htab_t all_children, all_type_symtabs;
7661 struct symtab *symtab = get_symtab (per_cu);
7662
7663 /* If we don't have a symtab, we can just skip this case. */
7664 if (symtab == NULL)
7665 return;
7666
7667 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7668 NULL, xcalloc, xfree);
7669 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7670 NULL, xcalloc, xfree);
7671
7672 for (ix = 0;
7673 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7674 ix, per_cu_iter);
7675 ++ix)
7676 {
7677 recursively_compute_inclusions (&result_symtabs, all_children,
7678 all_type_symtabs, per_cu_iter,
7679 symtab);
7680 }
7681
7682 /* Now we have a transitive closure of all the included symtabs. */
7683 len = VEC_length (symtab_ptr, result_symtabs);
7684 symtab->includes
7685 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7686 (len + 1) * sizeof (struct symtab *));
7687 for (ix = 0;
7688 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7689 ++ix)
7690 symtab->includes[ix] = symtab_iter;
7691 symtab->includes[len] = NULL;
7692
7693 VEC_free (symtab_ptr, result_symtabs);
7694 htab_delete (all_children);
7695 htab_delete (all_type_symtabs);
7696 }
7697 }
7698
7699 /* Compute the 'includes' field for the symtabs of all the CUs we just
7700 read. */
7701
7702 static void
7703 process_cu_includes (void)
7704 {
7705 int ix;
7706 struct dwarf2_per_cu_data *iter;
7707
7708 for (ix = 0;
7709 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7710 ix, iter);
7711 ++ix)
7712 {
7713 if (! iter->is_debug_types)
7714 compute_symtab_includes (iter);
7715 }
7716
7717 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7718 }
7719
7720 /* Generate full symbol information for PER_CU, whose DIEs have
7721 already been loaded into memory. */
7722
7723 static void
7724 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7725 enum language pretend_language)
7726 {
7727 struct dwarf2_cu *cu = per_cu->cu;
7728 struct objfile *objfile = per_cu->objfile;
7729 CORE_ADDR lowpc, highpc;
7730 struct symtab *symtab;
7731 struct cleanup *back_to, *delayed_list_cleanup;
7732 CORE_ADDR baseaddr;
7733 struct block *static_block;
7734
7735 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7736
7737 buildsym_init ();
7738 back_to = make_cleanup (really_free_pendings, NULL);
7739 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7740
7741 cu->list_in_scope = &file_symbols;
7742
7743 cu->language = pretend_language;
7744 cu->language_defn = language_def (cu->language);
7745
7746 /* Do line number decoding in read_file_scope () */
7747 process_die (cu->dies, cu);
7748
7749 /* For now fudge the Go package. */
7750 if (cu->language == language_go)
7751 fixup_go_packaging (cu);
7752
7753 /* Now that we have processed all the DIEs in the CU, all the types
7754 should be complete, and it should now be safe to compute all of the
7755 physnames. */
7756 compute_delayed_physnames (cu);
7757 do_cleanups (delayed_list_cleanup);
7758
7759 /* Some compilers don't define a DW_AT_high_pc attribute for the
7760 compilation unit. If the DW_AT_high_pc is missing, synthesize
7761 it, by scanning the DIE's below the compilation unit. */
7762 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7763
7764 static_block
7765 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7766
7767 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7768 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7769 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7770 addrmap to help ensure it has an accurate map of pc values belonging to
7771 this comp unit. */
7772 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7773
7774 symtab = end_symtab_from_static_block (static_block, objfile,
7775 SECT_OFF_TEXT (objfile), 0);
7776
7777 if (symtab != NULL)
7778 {
7779 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7780
7781 /* Set symtab language to language from DW_AT_language. If the
7782 compilation is from a C file generated by language preprocessors, do
7783 not set the language if it was already deduced by start_subfile. */
7784 if (!(cu->language == language_c && symtab->language != language_c))
7785 symtab->language = cu->language;
7786
7787 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7788 produce DW_AT_location with location lists but it can be possibly
7789 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7790 there were bugs in prologue debug info, fixed later in GCC-4.5
7791 by "unwind info for epilogues" patch (which is not directly related).
7792
7793 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7794 needed, it would be wrong due to missing DW_AT_producer there.
7795
7796 Still one can confuse GDB by using non-standard GCC compilation
7797 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7798 */
7799 if (cu->has_loclist && gcc_4_minor >= 5)
7800 symtab->locations_valid = 1;
7801
7802 if (gcc_4_minor >= 5)
7803 symtab->epilogue_unwind_valid = 1;
7804
7805 symtab->call_site_htab = cu->call_site_htab;
7806 }
7807
7808 if (dwarf2_per_objfile->using_index)
7809 per_cu->v.quick->symtab = symtab;
7810 else
7811 {
7812 struct partial_symtab *pst = per_cu->v.psymtab;
7813 pst->symtab = symtab;
7814 pst->readin = 1;
7815 }
7816
7817 /* Push it for inclusion processing later. */
7818 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7819
7820 do_cleanups (back_to);
7821 }
7822
7823 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7824 already been loaded into memory. */
7825
7826 static void
7827 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7828 enum language pretend_language)
7829 {
7830 struct dwarf2_cu *cu = per_cu->cu;
7831 struct objfile *objfile = per_cu->objfile;
7832 struct symtab *symtab;
7833 struct cleanup *back_to, *delayed_list_cleanup;
7834 struct signatured_type *sig_type;
7835
7836 gdb_assert (per_cu->is_debug_types);
7837 sig_type = (struct signatured_type *) per_cu;
7838
7839 buildsym_init ();
7840 back_to = make_cleanup (really_free_pendings, NULL);
7841 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7842
7843 cu->list_in_scope = &file_symbols;
7844
7845 cu->language = pretend_language;
7846 cu->language_defn = language_def (cu->language);
7847
7848 /* The symbol tables are set up in read_type_unit_scope. */
7849 process_die (cu->dies, cu);
7850
7851 /* For now fudge the Go package. */
7852 if (cu->language == language_go)
7853 fixup_go_packaging (cu);
7854
7855 /* Now that we have processed all the DIEs in the CU, all the types
7856 should be complete, and it should now be safe to compute all of the
7857 physnames. */
7858 compute_delayed_physnames (cu);
7859 do_cleanups (delayed_list_cleanup);
7860
7861 /* TUs share symbol tables.
7862 If this is the first TU to use this symtab, complete the construction
7863 of it with end_expandable_symtab. Otherwise, complete the addition of
7864 this TU's symbols to the existing symtab. */
7865 if (sig_type->type_unit_group->primary_symtab == NULL)
7866 {
7867 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7868 sig_type->type_unit_group->primary_symtab = symtab;
7869
7870 if (symtab != NULL)
7871 {
7872 /* Set symtab language to language from DW_AT_language. If the
7873 compilation is from a C file generated by language preprocessors,
7874 do not set the language if it was already deduced by
7875 start_subfile. */
7876 if (!(cu->language == language_c && symtab->language != language_c))
7877 symtab->language = cu->language;
7878 }
7879 }
7880 else
7881 {
7882 augment_type_symtab (objfile,
7883 sig_type->type_unit_group->primary_symtab);
7884 symtab = sig_type->type_unit_group->primary_symtab;
7885 }
7886
7887 if (dwarf2_per_objfile->using_index)
7888 per_cu->v.quick->symtab = symtab;
7889 else
7890 {
7891 struct partial_symtab *pst = per_cu->v.psymtab;
7892 pst->symtab = symtab;
7893 pst->readin = 1;
7894 }
7895
7896 do_cleanups (back_to);
7897 }
7898
7899 /* Process an imported unit DIE. */
7900
7901 static void
7902 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7903 {
7904 struct attribute *attr;
7905
7906 /* For now we don't handle imported units in type units. */
7907 if (cu->per_cu->is_debug_types)
7908 {
7909 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7910 " supported in type units [in module %s]"),
7911 objfile_name (cu->objfile));
7912 }
7913
7914 attr = dwarf2_attr (die, DW_AT_import, cu);
7915 if (attr != NULL)
7916 {
7917 struct dwarf2_per_cu_data *per_cu;
7918 struct symtab *imported_symtab;
7919 sect_offset offset;
7920 int is_dwz;
7921
7922 offset = dwarf2_get_ref_die_offset (attr);
7923 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7924 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7925
7926 /* If necessary, add it to the queue and load its DIEs. */
7927 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7928 load_full_comp_unit (per_cu, cu->language);
7929
7930 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7931 per_cu);
7932 }
7933 }
7934
7935 /* Process a die and its children. */
7936
7937 static void
7938 process_die (struct die_info *die, struct dwarf2_cu *cu)
7939 {
7940 switch (die->tag)
7941 {
7942 case DW_TAG_padding:
7943 break;
7944 case DW_TAG_compile_unit:
7945 case DW_TAG_partial_unit:
7946 read_file_scope (die, cu);
7947 break;
7948 case DW_TAG_type_unit:
7949 read_type_unit_scope (die, cu);
7950 break;
7951 case DW_TAG_subprogram:
7952 case DW_TAG_inlined_subroutine:
7953 read_func_scope (die, cu);
7954 break;
7955 case DW_TAG_lexical_block:
7956 case DW_TAG_try_block:
7957 case DW_TAG_catch_block:
7958 read_lexical_block_scope (die, cu);
7959 break;
7960 case DW_TAG_GNU_call_site:
7961 read_call_site_scope (die, cu);
7962 break;
7963 case DW_TAG_class_type:
7964 case DW_TAG_interface_type:
7965 case DW_TAG_structure_type:
7966 case DW_TAG_union_type:
7967 process_structure_scope (die, cu);
7968 break;
7969 case DW_TAG_enumeration_type:
7970 process_enumeration_scope (die, cu);
7971 break;
7972
7973 /* These dies have a type, but processing them does not create
7974 a symbol or recurse to process the children. Therefore we can
7975 read them on-demand through read_type_die. */
7976 case DW_TAG_subroutine_type:
7977 case DW_TAG_set_type:
7978 case DW_TAG_array_type:
7979 case DW_TAG_pointer_type:
7980 case DW_TAG_ptr_to_member_type:
7981 case DW_TAG_reference_type:
7982 case DW_TAG_string_type:
7983 break;
7984
7985 case DW_TAG_base_type:
7986 case DW_TAG_subrange_type:
7987 case DW_TAG_typedef:
7988 /* Add a typedef symbol for the type definition, if it has a
7989 DW_AT_name. */
7990 new_symbol (die, read_type_die (die, cu), cu);
7991 break;
7992 case DW_TAG_common_block:
7993 read_common_block (die, cu);
7994 break;
7995 case DW_TAG_common_inclusion:
7996 break;
7997 case DW_TAG_namespace:
7998 cu->processing_has_namespace_info = 1;
7999 read_namespace (die, cu);
8000 break;
8001 case DW_TAG_module:
8002 cu->processing_has_namespace_info = 1;
8003 read_module (die, cu);
8004 break;
8005 case DW_TAG_imported_declaration:
8006 case DW_TAG_imported_module:
8007 cu->processing_has_namespace_info = 1;
8008 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8009 || cu->language != language_fortran))
8010 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8011 dwarf_tag_name (die->tag));
8012 read_import_statement (die, cu);
8013 break;
8014
8015 case DW_TAG_imported_unit:
8016 process_imported_unit_die (die, cu);
8017 break;
8018
8019 default:
8020 new_symbol (die, NULL, cu);
8021 break;
8022 }
8023 }
8024 \f
8025 /* DWARF name computation. */
8026
8027 /* A helper function for dwarf2_compute_name which determines whether DIE
8028 needs to have the name of the scope prepended to the name listed in the
8029 die. */
8030
8031 static int
8032 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8033 {
8034 struct attribute *attr;
8035
8036 switch (die->tag)
8037 {
8038 case DW_TAG_namespace:
8039 case DW_TAG_typedef:
8040 case DW_TAG_class_type:
8041 case DW_TAG_interface_type:
8042 case DW_TAG_structure_type:
8043 case DW_TAG_union_type:
8044 case DW_TAG_enumeration_type:
8045 case DW_TAG_enumerator:
8046 case DW_TAG_subprogram:
8047 case DW_TAG_member:
8048 return 1;
8049
8050 case DW_TAG_variable:
8051 case DW_TAG_constant:
8052 /* We only need to prefix "globally" visible variables. These include
8053 any variable marked with DW_AT_external or any variable that
8054 lives in a namespace. [Variables in anonymous namespaces
8055 require prefixing, but they are not DW_AT_external.] */
8056
8057 if (dwarf2_attr (die, DW_AT_specification, cu))
8058 {
8059 struct dwarf2_cu *spec_cu = cu;
8060
8061 return die_needs_namespace (die_specification (die, &spec_cu),
8062 spec_cu);
8063 }
8064
8065 attr = dwarf2_attr (die, DW_AT_external, cu);
8066 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8067 && die->parent->tag != DW_TAG_module)
8068 return 0;
8069 /* A variable in a lexical block of some kind does not need a
8070 namespace, even though in C++ such variables may be external
8071 and have a mangled name. */
8072 if (die->parent->tag == DW_TAG_lexical_block
8073 || die->parent->tag == DW_TAG_try_block
8074 || die->parent->tag == DW_TAG_catch_block
8075 || die->parent->tag == DW_TAG_subprogram)
8076 return 0;
8077 return 1;
8078
8079 default:
8080 return 0;
8081 }
8082 }
8083
8084 /* Retrieve the last character from a mem_file. */
8085
8086 static void
8087 do_ui_file_peek_last (void *object, const char *buffer, long length)
8088 {
8089 char *last_char_p = (char *) object;
8090
8091 if (length > 0)
8092 *last_char_p = buffer[length - 1];
8093 }
8094
8095 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8096 compute the physname for the object, which include a method's:
8097 - formal parameters (C++/Java),
8098 - receiver type (Go),
8099 - return type (Java).
8100
8101 The term "physname" is a bit confusing.
8102 For C++, for example, it is the demangled name.
8103 For Go, for example, it's the mangled name.
8104
8105 For Ada, return the DIE's linkage name rather than the fully qualified
8106 name. PHYSNAME is ignored..
8107
8108 The result is allocated on the objfile_obstack and canonicalized. */
8109
8110 static const char *
8111 dwarf2_compute_name (const char *name,
8112 struct die_info *die, struct dwarf2_cu *cu,
8113 int physname)
8114 {
8115 struct objfile *objfile = cu->objfile;
8116
8117 if (name == NULL)
8118 name = dwarf2_name (die, cu);
8119
8120 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8121 compute it by typename_concat inside GDB. */
8122 if (cu->language == language_ada
8123 || (cu->language == language_fortran && physname))
8124 {
8125 /* For Ada unit, we prefer the linkage name over the name, as
8126 the former contains the exported name, which the user expects
8127 to be able to reference. Ideally, we want the user to be able
8128 to reference this entity using either natural or linkage name,
8129 but we haven't started looking at this enhancement yet. */
8130 struct attribute *attr;
8131
8132 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8133 if (attr == NULL)
8134 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8135 if (attr && DW_STRING (attr))
8136 return DW_STRING (attr);
8137 }
8138
8139 /* These are the only languages we know how to qualify names in. */
8140 if (name != NULL
8141 && (cu->language == language_cplus || cu->language == language_java
8142 || cu->language == language_fortran))
8143 {
8144 if (die_needs_namespace (die, cu))
8145 {
8146 long length;
8147 const char *prefix;
8148 struct ui_file *buf;
8149
8150 prefix = determine_prefix (die, cu);
8151 buf = mem_fileopen ();
8152 if (*prefix != '\0')
8153 {
8154 char *prefixed_name = typename_concat (NULL, prefix, name,
8155 physname, cu);
8156
8157 fputs_unfiltered (prefixed_name, buf);
8158 xfree (prefixed_name);
8159 }
8160 else
8161 fputs_unfiltered (name, buf);
8162
8163 /* Template parameters may be specified in the DIE's DW_AT_name, or
8164 as children with DW_TAG_template_type_param or
8165 DW_TAG_value_type_param. If the latter, add them to the name
8166 here. If the name already has template parameters, then
8167 skip this step; some versions of GCC emit both, and
8168 it is more efficient to use the pre-computed name.
8169
8170 Something to keep in mind about this process: it is very
8171 unlikely, or in some cases downright impossible, to produce
8172 something that will match the mangled name of a function.
8173 If the definition of the function has the same debug info,
8174 we should be able to match up with it anyway. But fallbacks
8175 using the minimal symbol, for instance to find a method
8176 implemented in a stripped copy of libstdc++, will not work.
8177 If we do not have debug info for the definition, we will have to
8178 match them up some other way.
8179
8180 When we do name matching there is a related problem with function
8181 templates; two instantiated function templates are allowed to
8182 differ only by their return types, which we do not add here. */
8183
8184 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8185 {
8186 struct attribute *attr;
8187 struct die_info *child;
8188 int first = 1;
8189
8190 die->building_fullname = 1;
8191
8192 for (child = die->child; child != NULL; child = child->sibling)
8193 {
8194 struct type *type;
8195 LONGEST value;
8196 const gdb_byte *bytes;
8197 struct dwarf2_locexpr_baton *baton;
8198 struct value *v;
8199
8200 if (child->tag != DW_TAG_template_type_param
8201 && child->tag != DW_TAG_template_value_param)
8202 continue;
8203
8204 if (first)
8205 {
8206 fputs_unfiltered ("<", buf);
8207 first = 0;
8208 }
8209 else
8210 fputs_unfiltered (", ", buf);
8211
8212 attr = dwarf2_attr (child, DW_AT_type, cu);
8213 if (attr == NULL)
8214 {
8215 complaint (&symfile_complaints,
8216 _("template parameter missing DW_AT_type"));
8217 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8218 continue;
8219 }
8220 type = die_type (child, cu);
8221
8222 if (child->tag == DW_TAG_template_type_param)
8223 {
8224 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8225 continue;
8226 }
8227
8228 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8229 if (attr == NULL)
8230 {
8231 complaint (&symfile_complaints,
8232 _("template parameter missing "
8233 "DW_AT_const_value"));
8234 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8235 continue;
8236 }
8237
8238 dwarf2_const_value_attr (attr, type, name,
8239 &cu->comp_unit_obstack, cu,
8240 &value, &bytes, &baton);
8241
8242 if (TYPE_NOSIGN (type))
8243 /* GDB prints characters as NUMBER 'CHAR'. If that's
8244 changed, this can use value_print instead. */
8245 c_printchar (value, type, buf);
8246 else
8247 {
8248 struct value_print_options opts;
8249
8250 if (baton != NULL)
8251 v = dwarf2_evaluate_loc_desc (type, NULL,
8252 baton->data,
8253 baton->size,
8254 baton->per_cu);
8255 else if (bytes != NULL)
8256 {
8257 v = allocate_value (type);
8258 memcpy (value_contents_writeable (v), bytes,
8259 TYPE_LENGTH (type));
8260 }
8261 else
8262 v = value_from_longest (type, value);
8263
8264 /* Specify decimal so that we do not depend on
8265 the radix. */
8266 get_formatted_print_options (&opts, 'd');
8267 opts.raw = 1;
8268 value_print (v, buf, &opts);
8269 release_value (v);
8270 value_free (v);
8271 }
8272 }
8273
8274 die->building_fullname = 0;
8275
8276 if (!first)
8277 {
8278 /* Close the argument list, with a space if necessary
8279 (nested templates). */
8280 char last_char = '\0';
8281 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8282 if (last_char == '>')
8283 fputs_unfiltered (" >", buf);
8284 else
8285 fputs_unfiltered (">", buf);
8286 }
8287 }
8288
8289 /* For Java and C++ methods, append formal parameter type
8290 information, if PHYSNAME. */
8291
8292 if (physname && die->tag == DW_TAG_subprogram
8293 && (cu->language == language_cplus
8294 || cu->language == language_java))
8295 {
8296 struct type *type = read_type_die (die, cu);
8297
8298 c_type_print_args (type, buf, 1, cu->language,
8299 &type_print_raw_options);
8300
8301 if (cu->language == language_java)
8302 {
8303 /* For java, we must append the return type to method
8304 names. */
8305 if (die->tag == DW_TAG_subprogram)
8306 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8307 0, 0, &type_print_raw_options);
8308 }
8309 else if (cu->language == language_cplus)
8310 {
8311 /* Assume that an artificial first parameter is
8312 "this", but do not crash if it is not. RealView
8313 marks unnamed (and thus unused) parameters as
8314 artificial; there is no way to differentiate
8315 the two cases. */
8316 if (TYPE_NFIELDS (type) > 0
8317 && TYPE_FIELD_ARTIFICIAL (type, 0)
8318 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8319 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8320 0))))
8321 fputs_unfiltered (" const", buf);
8322 }
8323 }
8324
8325 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8326 &length);
8327 ui_file_delete (buf);
8328
8329 if (cu->language == language_cplus)
8330 {
8331 const char *cname
8332 = dwarf2_canonicalize_name (name, cu,
8333 &objfile->objfile_obstack);
8334
8335 if (cname != NULL)
8336 name = cname;
8337 }
8338 }
8339 }
8340
8341 return name;
8342 }
8343
8344 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8345 If scope qualifiers are appropriate they will be added. The result
8346 will be allocated on the objfile_obstack, or NULL if the DIE does
8347 not have a name. NAME may either be from a previous call to
8348 dwarf2_name or NULL.
8349
8350 The output string will be canonicalized (if C++/Java). */
8351
8352 static const char *
8353 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 return dwarf2_compute_name (name, die, cu, 0);
8356 }
8357
8358 /* Construct a physname for the given DIE in CU. NAME may either be
8359 from a previous call to dwarf2_name or NULL. The result will be
8360 allocated on the objfile_objstack or NULL if the DIE does not have a
8361 name.
8362
8363 The output string will be canonicalized (if C++/Java). */
8364
8365 static const char *
8366 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8367 {
8368 struct objfile *objfile = cu->objfile;
8369 struct attribute *attr;
8370 const char *retval, *mangled = NULL, *canon = NULL;
8371 struct cleanup *back_to;
8372 int need_copy = 1;
8373
8374 /* In this case dwarf2_compute_name is just a shortcut not building anything
8375 on its own. */
8376 if (!die_needs_namespace (die, cu))
8377 return dwarf2_compute_name (name, die, cu, 1);
8378
8379 back_to = make_cleanup (null_cleanup, NULL);
8380
8381 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8382 if (!attr)
8383 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8384
8385 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8386 has computed. */
8387 if (attr && DW_STRING (attr))
8388 {
8389 char *demangled;
8390
8391 mangled = DW_STRING (attr);
8392
8393 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8394 type. It is easier for GDB users to search for such functions as
8395 `name(params)' than `long name(params)'. In such case the minimal
8396 symbol names do not match the full symbol names but for template
8397 functions there is never a need to look up their definition from their
8398 declaration so the only disadvantage remains the minimal symbol
8399 variant `long name(params)' does not have the proper inferior type.
8400 */
8401
8402 if (cu->language == language_go)
8403 {
8404 /* This is a lie, but we already lie to the caller new_symbol_full.
8405 new_symbol_full assumes we return the mangled name.
8406 This just undoes that lie until things are cleaned up. */
8407 demangled = NULL;
8408 }
8409 else
8410 {
8411 demangled = gdb_demangle (mangled,
8412 (DMGL_PARAMS | DMGL_ANSI
8413 | (cu->language == language_java
8414 ? DMGL_JAVA | DMGL_RET_POSTFIX
8415 : DMGL_RET_DROP)));
8416 }
8417 if (demangled)
8418 {
8419 make_cleanup (xfree, demangled);
8420 canon = demangled;
8421 }
8422 else
8423 {
8424 canon = mangled;
8425 need_copy = 0;
8426 }
8427 }
8428
8429 if (canon == NULL || check_physname)
8430 {
8431 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8432
8433 if (canon != NULL && strcmp (physname, canon) != 0)
8434 {
8435 /* It may not mean a bug in GDB. The compiler could also
8436 compute DW_AT_linkage_name incorrectly. But in such case
8437 GDB would need to be bug-to-bug compatible. */
8438
8439 complaint (&symfile_complaints,
8440 _("Computed physname <%s> does not match demangled <%s> "
8441 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8442 physname, canon, mangled, die->offset.sect_off,
8443 objfile_name (objfile));
8444
8445 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8446 is available here - over computed PHYSNAME. It is safer
8447 against both buggy GDB and buggy compilers. */
8448
8449 retval = canon;
8450 }
8451 else
8452 {
8453 retval = physname;
8454 need_copy = 0;
8455 }
8456 }
8457 else
8458 retval = canon;
8459
8460 if (need_copy)
8461 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8462
8463 do_cleanups (back_to);
8464 return retval;
8465 }
8466
8467 /* Read the import statement specified by the given die and record it. */
8468
8469 static void
8470 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8471 {
8472 struct objfile *objfile = cu->objfile;
8473 struct attribute *import_attr;
8474 struct die_info *imported_die, *child_die;
8475 struct dwarf2_cu *imported_cu;
8476 const char *imported_name;
8477 const char *imported_name_prefix;
8478 const char *canonical_name;
8479 const char *import_alias;
8480 const char *imported_declaration = NULL;
8481 const char *import_prefix;
8482 VEC (const_char_ptr) *excludes = NULL;
8483 struct cleanup *cleanups;
8484
8485 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8486 if (import_attr == NULL)
8487 {
8488 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8489 dwarf_tag_name (die->tag));
8490 return;
8491 }
8492
8493 imported_cu = cu;
8494 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8495 imported_name = dwarf2_name (imported_die, imported_cu);
8496 if (imported_name == NULL)
8497 {
8498 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8499
8500 The import in the following code:
8501 namespace A
8502 {
8503 typedef int B;
8504 }
8505
8506 int main ()
8507 {
8508 using A::B;
8509 B b;
8510 return b;
8511 }
8512
8513 ...
8514 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8515 <52> DW_AT_decl_file : 1
8516 <53> DW_AT_decl_line : 6
8517 <54> DW_AT_import : <0x75>
8518 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8519 <59> DW_AT_name : B
8520 <5b> DW_AT_decl_file : 1
8521 <5c> DW_AT_decl_line : 2
8522 <5d> DW_AT_type : <0x6e>
8523 ...
8524 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8525 <76> DW_AT_byte_size : 4
8526 <77> DW_AT_encoding : 5 (signed)
8527
8528 imports the wrong die ( 0x75 instead of 0x58 ).
8529 This case will be ignored until the gcc bug is fixed. */
8530 return;
8531 }
8532
8533 /* Figure out the local name after import. */
8534 import_alias = dwarf2_name (die, cu);
8535
8536 /* Figure out where the statement is being imported to. */
8537 import_prefix = determine_prefix (die, cu);
8538
8539 /* Figure out what the scope of the imported die is and prepend it
8540 to the name of the imported die. */
8541 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8542
8543 if (imported_die->tag != DW_TAG_namespace
8544 && imported_die->tag != DW_TAG_module)
8545 {
8546 imported_declaration = imported_name;
8547 canonical_name = imported_name_prefix;
8548 }
8549 else if (strlen (imported_name_prefix) > 0)
8550 canonical_name = obconcat (&objfile->objfile_obstack,
8551 imported_name_prefix, "::", imported_name,
8552 (char *) NULL);
8553 else
8554 canonical_name = imported_name;
8555
8556 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8557
8558 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8559 for (child_die = die->child; child_die && child_die->tag;
8560 child_die = sibling_die (child_die))
8561 {
8562 /* DWARF-4: A Fortran use statement with a “rename list” may be
8563 represented by an imported module entry with an import attribute
8564 referring to the module and owned entries corresponding to those
8565 entities that are renamed as part of being imported. */
8566
8567 if (child_die->tag != DW_TAG_imported_declaration)
8568 {
8569 complaint (&symfile_complaints,
8570 _("child DW_TAG_imported_declaration expected "
8571 "- DIE at 0x%x [in module %s]"),
8572 child_die->offset.sect_off, objfile_name (objfile));
8573 continue;
8574 }
8575
8576 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8577 if (import_attr == NULL)
8578 {
8579 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8580 dwarf_tag_name (child_die->tag));
8581 continue;
8582 }
8583
8584 imported_cu = cu;
8585 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8586 &imported_cu);
8587 imported_name = dwarf2_name (imported_die, imported_cu);
8588 if (imported_name == NULL)
8589 {
8590 complaint (&symfile_complaints,
8591 _("child DW_TAG_imported_declaration has unknown "
8592 "imported name - DIE at 0x%x [in module %s]"),
8593 child_die->offset.sect_off, objfile_name (objfile));
8594 continue;
8595 }
8596
8597 VEC_safe_push (const_char_ptr, excludes, imported_name);
8598
8599 process_die (child_die, cu);
8600 }
8601
8602 cp_add_using_directive (import_prefix,
8603 canonical_name,
8604 import_alias,
8605 imported_declaration,
8606 excludes,
8607 0,
8608 &objfile->objfile_obstack);
8609
8610 do_cleanups (cleanups);
8611 }
8612
8613 /* Cleanup function for handle_DW_AT_stmt_list. */
8614
8615 static void
8616 free_cu_line_header (void *arg)
8617 {
8618 struct dwarf2_cu *cu = arg;
8619
8620 free_line_header (cu->line_header);
8621 cu->line_header = NULL;
8622 }
8623
8624 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8625 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8626 this, it was first present in GCC release 4.3.0. */
8627
8628 static int
8629 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8630 {
8631 if (!cu->checked_producer)
8632 check_producer (cu);
8633
8634 return cu->producer_is_gcc_lt_4_3;
8635 }
8636
8637 static void
8638 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8639 const char **name, const char **comp_dir)
8640 {
8641 struct attribute *attr;
8642
8643 *name = NULL;
8644 *comp_dir = NULL;
8645
8646 /* Find the filename. Do not use dwarf2_name here, since the filename
8647 is not a source language identifier. */
8648 attr = dwarf2_attr (die, DW_AT_name, cu);
8649 if (attr)
8650 {
8651 *name = DW_STRING (attr);
8652 }
8653
8654 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8655 if (attr)
8656 *comp_dir = DW_STRING (attr);
8657 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8658 && IS_ABSOLUTE_PATH (*name))
8659 {
8660 char *d = ldirname (*name);
8661
8662 *comp_dir = d;
8663 if (d != NULL)
8664 make_cleanup (xfree, d);
8665 }
8666 if (*comp_dir != NULL)
8667 {
8668 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8669 directory, get rid of it. */
8670 char *cp = strchr (*comp_dir, ':');
8671
8672 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8673 *comp_dir = cp + 1;
8674 }
8675
8676 if (*name == NULL)
8677 *name = "<unknown>";
8678 }
8679
8680 /* Handle DW_AT_stmt_list for a compilation unit.
8681 DIE is the DW_TAG_compile_unit die for CU.
8682 COMP_DIR is the compilation directory.
8683 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8684
8685 static void
8686 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8687 const char *comp_dir) /* ARI: editCase function */
8688 {
8689 struct attribute *attr;
8690
8691 gdb_assert (! cu->per_cu->is_debug_types);
8692
8693 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8694 if (attr)
8695 {
8696 unsigned int line_offset = DW_UNSND (attr);
8697 struct line_header *line_header
8698 = dwarf_decode_line_header (line_offset, cu);
8699
8700 if (line_header)
8701 {
8702 cu->line_header = line_header;
8703 make_cleanup (free_cu_line_header, cu);
8704 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8705 }
8706 }
8707 }
8708
8709 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8710
8711 static void
8712 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8713 {
8714 struct objfile *objfile = dwarf2_per_objfile->objfile;
8715 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8716 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8717 CORE_ADDR highpc = ((CORE_ADDR) 0);
8718 struct attribute *attr;
8719 const char *name = NULL;
8720 const char *comp_dir = NULL;
8721 struct die_info *child_die;
8722 bfd *abfd = objfile->obfd;
8723 CORE_ADDR baseaddr;
8724
8725 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8726
8727 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8728
8729 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8730 from finish_block. */
8731 if (lowpc == ((CORE_ADDR) -1))
8732 lowpc = highpc;
8733 lowpc += baseaddr;
8734 highpc += baseaddr;
8735
8736 find_file_and_directory (die, cu, &name, &comp_dir);
8737
8738 prepare_one_comp_unit (cu, die, cu->language);
8739
8740 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8741 standardised yet. As a workaround for the language detection we fall
8742 back to the DW_AT_producer string. */
8743 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8744 cu->language = language_opencl;
8745
8746 /* Similar hack for Go. */
8747 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8748 set_cu_language (DW_LANG_Go, cu);
8749
8750 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8751
8752 /* Decode line number information if present. We do this before
8753 processing child DIEs, so that the line header table is available
8754 for DW_AT_decl_file. */
8755 handle_DW_AT_stmt_list (die, cu, comp_dir);
8756
8757 /* Process all dies in compilation unit. */
8758 if (die->child != NULL)
8759 {
8760 child_die = die->child;
8761 while (child_die && child_die->tag)
8762 {
8763 process_die (child_die, cu);
8764 child_die = sibling_die (child_die);
8765 }
8766 }
8767
8768 /* Decode macro information, if present. Dwarf 2 macro information
8769 refers to information in the line number info statement program
8770 header, so we can only read it if we've read the header
8771 successfully. */
8772 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8773 if (attr && cu->line_header)
8774 {
8775 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8776 complaint (&symfile_complaints,
8777 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8778
8779 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8780 }
8781 else
8782 {
8783 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8784 if (attr && cu->line_header)
8785 {
8786 unsigned int macro_offset = DW_UNSND (attr);
8787
8788 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8789 }
8790 }
8791
8792 do_cleanups (back_to);
8793 }
8794
8795 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8796 Create the set of symtabs used by this TU, or if this TU is sharing
8797 symtabs with another TU and the symtabs have already been created
8798 then restore those symtabs in the line header.
8799 We don't need the pc/line-number mapping for type units. */
8800
8801 static void
8802 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8803 {
8804 struct objfile *objfile = dwarf2_per_objfile->objfile;
8805 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8806 struct type_unit_group *tu_group;
8807 int first_time;
8808 struct line_header *lh;
8809 struct attribute *attr;
8810 unsigned int i, line_offset;
8811 struct signatured_type *sig_type;
8812
8813 gdb_assert (per_cu->is_debug_types);
8814 sig_type = (struct signatured_type *) per_cu;
8815
8816 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8817
8818 /* If we're using .gdb_index (includes -readnow) then
8819 per_cu->type_unit_group may not have been set up yet. */
8820 if (sig_type->type_unit_group == NULL)
8821 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8822 tu_group = sig_type->type_unit_group;
8823
8824 /* If we've already processed this stmt_list there's no real need to
8825 do it again, we could fake it and just recreate the part we need
8826 (file name,index -> symtab mapping). If data shows this optimization
8827 is useful we can do it then. */
8828 first_time = tu_group->primary_symtab == NULL;
8829
8830 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8831 debug info. */
8832 lh = NULL;
8833 if (attr != NULL)
8834 {
8835 line_offset = DW_UNSND (attr);
8836 lh = dwarf_decode_line_header (line_offset, cu);
8837 }
8838 if (lh == NULL)
8839 {
8840 if (first_time)
8841 dwarf2_start_symtab (cu, "", NULL, 0);
8842 else
8843 {
8844 gdb_assert (tu_group->symtabs == NULL);
8845 restart_symtab (0);
8846 }
8847 /* Note: The primary symtab will get allocated at the end. */
8848 return;
8849 }
8850
8851 cu->line_header = lh;
8852 make_cleanup (free_cu_line_header, cu);
8853
8854 if (first_time)
8855 {
8856 dwarf2_start_symtab (cu, "", NULL, 0);
8857
8858 tu_group->num_symtabs = lh->num_file_names;
8859 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8860
8861 for (i = 0; i < lh->num_file_names; ++i)
8862 {
8863 const char *dir = NULL;
8864 struct file_entry *fe = &lh->file_names[i];
8865
8866 if (fe->dir_index)
8867 dir = lh->include_dirs[fe->dir_index - 1];
8868 dwarf2_start_subfile (fe->name, dir, NULL);
8869
8870 /* Note: We don't have to watch for the main subfile here, type units
8871 don't have DW_AT_name. */
8872
8873 if (current_subfile->symtab == NULL)
8874 {
8875 /* NOTE: start_subfile will recognize when it's been passed
8876 a file it has already seen. So we can't assume there's a
8877 simple mapping from lh->file_names to subfiles,
8878 lh->file_names may contain dups. */
8879 current_subfile->symtab = allocate_symtab (current_subfile->name,
8880 objfile);
8881 }
8882
8883 fe->symtab = current_subfile->symtab;
8884 tu_group->symtabs[i] = fe->symtab;
8885 }
8886 }
8887 else
8888 {
8889 restart_symtab (0);
8890
8891 for (i = 0; i < lh->num_file_names; ++i)
8892 {
8893 struct file_entry *fe = &lh->file_names[i];
8894
8895 fe->symtab = tu_group->symtabs[i];
8896 }
8897 }
8898
8899 /* The main symtab is allocated last. Type units don't have DW_AT_name
8900 so they don't have a "real" (so to speak) symtab anyway.
8901 There is later code that will assign the main symtab to all symbols
8902 that don't have one. We need to handle the case of a symbol with a
8903 missing symtab (DW_AT_decl_file) anyway. */
8904 }
8905
8906 /* Process DW_TAG_type_unit.
8907 For TUs we want to skip the first top level sibling if it's not the
8908 actual type being defined by this TU. In this case the first top
8909 level sibling is there to provide context only. */
8910
8911 static void
8912 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8913 {
8914 struct die_info *child_die;
8915
8916 prepare_one_comp_unit (cu, die, language_minimal);
8917
8918 /* Initialize (or reinitialize) the machinery for building symtabs.
8919 We do this before processing child DIEs, so that the line header table
8920 is available for DW_AT_decl_file. */
8921 setup_type_unit_groups (die, cu);
8922
8923 if (die->child != NULL)
8924 {
8925 child_die = die->child;
8926 while (child_die && child_die->tag)
8927 {
8928 process_die (child_die, cu);
8929 child_die = sibling_die (child_die);
8930 }
8931 }
8932 }
8933 \f
8934 /* DWO/DWP files.
8935
8936 http://gcc.gnu.org/wiki/DebugFission
8937 http://gcc.gnu.org/wiki/DebugFissionDWP
8938
8939 To simplify handling of both DWO files ("object" files with the DWARF info)
8940 and DWP files (a file with the DWOs packaged up into one file), we treat
8941 DWP files as having a collection of virtual DWO files. */
8942
8943 static hashval_t
8944 hash_dwo_file (const void *item)
8945 {
8946 const struct dwo_file *dwo_file = item;
8947 hashval_t hash;
8948
8949 hash = htab_hash_string (dwo_file->dwo_name);
8950 if (dwo_file->comp_dir != NULL)
8951 hash += htab_hash_string (dwo_file->comp_dir);
8952 return hash;
8953 }
8954
8955 static int
8956 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8957 {
8958 const struct dwo_file *lhs = item_lhs;
8959 const struct dwo_file *rhs = item_rhs;
8960
8961 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8962 return 0;
8963 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8964 return lhs->comp_dir == rhs->comp_dir;
8965 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8966 }
8967
8968 /* Allocate a hash table for DWO files. */
8969
8970 static htab_t
8971 allocate_dwo_file_hash_table (void)
8972 {
8973 struct objfile *objfile = dwarf2_per_objfile->objfile;
8974
8975 return htab_create_alloc_ex (41,
8976 hash_dwo_file,
8977 eq_dwo_file,
8978 NULL,
8979 &objfile->objfile_obstack,
8980 hashtab_obstack_allocate,
8981 dummy_obstack_deallocate);
8982 }
8983
8984 /* Lookup DWO file DWO_NAME. */
8985
8986 static void **
8987 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8988 {
8989 struct dwo_file find_entry;
8990 void **slot;
8991
8992 if (dwarf2_per_objfile->dwo_files == NULL)
8993 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8994
8995 memset (&find_entry, 0, sizeof (find_entry));
8996 find_entry.dwo_name = dwo_name;
8997 find_entry.comp_dir = comp_dir;
8998 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8999
9000 return slot;
9001 }
9002
9003 static hashval_t
9004 hash_dwo_unit (const void *item)
9005 {
9006 const struct dwo_unit *dwo_unit = item;
9007
9008 /* This drops the top 32 bits of the id, but is ok for a hash. */
9009 return dwo_unit->signature;
9010 }
9011
9012 static int
9013 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9014 {
9015 const struct dwo_unit *lhs = item_lhs;
9016 const struct dwo_unit *rhs = item_rhs;
9017
9018 /* The signature is assumed to be unique within the DWO file.
9019 So while object file CU dwo_id's always have the value zero,
9020 that's OK, assuming each object file DWO file has only one CU,
9021 and that's the rule for now. */
9022 return lhs->signature == rhs->signature;
9023 }
9024
9025 /* Allocate a hash table for DWO CUs,TUs.
9026 There is one of these tables for each of CUs,TUs for each DWO file. */
9027
9028 static htab_t
9029 allocate_dwo_unit_table (struct objfile *objfile)
9030 {
9031 /* Start out with a pretty small number.
9032 Generally DWO files contain only one CU and maybe some TUs. */
9033 return htab_create_alloc_ex (3,
9034 hash_dwo_unit,
9035 eq_dwo_unit,
9036 NULL,
9037 &objfile->objfile_obstack,
9038 hashtab_obstack_allocate,
9039 dummy_obstack_deallocate);
9040 }
9041
9042 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9043
9044 struct create_dwo_cu_data
9045 {
9046 struct dwo_file *dwo_file;
9047 struct dwo_unit dwo_unit;
9048 };
9049
9050 /* die_reader_func for create_dwo_cu. */
9051
9052 static void
9053 create_dwo_cu_reader (const struct die_reader_specs *reader,
9054 const gdb_byte *info_ptr,
9055 struct die_info *comp_unit_die,
9056 int has_children,
9057 void *datap)
9058 {
9059 struct dwarf2_cu *cu = reader->cu;
9060 struct objfile *objfile = dwarf2_per_objfile->objfile;
9061 sect_offset offset = cu->per_cu->offset;
9062 struct dwarf2_section_info *section = cu->per_cu->section;
9063 struct create_dwo_cu_data *data = datap;
9064 struct dwo_file *dwo_file = data->dwo_file;
9065 struct dwo_unit *dwo_unit = &data->dwo_unit;
9066 struct attribute *attr;
9067
9068 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9069 if (attr == NULL)
9070 {
9071 complaint (&symfile_complaints,
9072 _("Dwarf Error: debug entry at offset 0x%x is missing"
9073 " its dwo_id [in module %s]"),
9074 offset.sect_off, dwo_file->dwo_name);
9075 return;
9076 }
9077
9078 dwo_unit->dwo_file = dwo_file;
9079 dwo_unit->signature = DW_UNSND (attr);
9080 dwo_unit->section = section;
9081 dwo_unit->offset = offset;
9082 dwo_unit->length = cu->per_cu->length;
9083
9084 if (dwarf2_read_debug)
9085 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9086 offset.sect_off, hex_string (dwo_unit->signature));
9087 }
9088
9089 /* Create the dwo_unit for the lone CU in DWO_FILE.
9090 Note: This function processes DWO files only, not DWP files. */
9091
9092 static struct dwo_unit *
9093 create_dwo_cu (struct dwo_file *dwo_file)
9094 {
9095 struct objfile *objfile = dwarf2_per_objfile->objfile;
9096 struct dwarf2_section_info *section = &dwo_file->sections.info;
9097 bfd *abfd;
9098 htab_t cu_htab;
9099 const gdb_byte *info_ptr, *end_ptr;
9100 struct create_dwo_cu_data create_dwo_cu_data;
9101 struct dwo_unit *dwo_unit;
9102
9103 dwarf2_read_section (objfile, section);
9104 info_ptr = section->buffer;
9105
9106 if (info_ptr == NULL)
9107 return NULL;
9108
9109 /* We can't set abfd until now because the section may be empty or
9110 not present, in which case section->asection will be NULL. */
9111 abfd = get_section_bfd_owner (section);
9112
9113 if (dwarf2_read_debug)
9114 {
9115 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9116 get_section_name (section),
9117 get_section_file_name (section));
9118 }
9119
9120 create_dwo_cu_data.dwo_file = dwo_file;
9121 dwo_unit = NULL;
9122
9123 end_ptr = info_ptr + section->size;
9124 while (info_ptr < end_ptr)
9125 {
9126 struct dwarf2_per_cu_data per_cu;
9127
9128 memset (&create_dwo_cu_data.dwo_unit, 0,
9129 sizeof (create_dwo_cu_data.dwo_unit));
9130 memset (&per_cu, 0, sizeof (per_cu));
9131 per_cu.objfile = objfile;
9132 per_cu.is_debug_types = 0;
9133 per_cu.offset.sect_off = info_ptr - section->buffer;
9134 per_cu.section = section;
9135
9136 init_cutu_and_read_dies_no_follow (&per_cu,
9137 &dwo_file->sections.abbrev,
9138 dwo_file,
9139 create_dwo_cu_reader,
9140 &create_dwo_cu_data);
9141
9142 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9143 {
9144 /* If we've already found one, complain. We only support one
9145 because having more than one requires hacking the dwo_name of
9146 each to match, which is highly unlikely to happen. */
9147 if (dwo_unit != NULL)
9148 {
9149 complaint (&symfile_complaints,
9150 _("Multiple CUs in DWO file %s [in module %s]"),
9151 dwo_file->dwo_name, objfile_name (objfile));
9152 break;
9153 }
9154
9155 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9156 *dwo_unit = create_dwo_cu_data.dwo_unit;
9157 }
9158
9159 info_ptr += per_cu.length;
9160 }
9161
9162 return dwo_unit;
9163 }
9164
9165 /* DWP file .debug_{cu,tu}_index section format:
9166 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9167
9168 DWP Version 1:
9169
9170 Both index sections have the same format, and serve to map a 64-bit
9171 signature to a set of section numbers. Each section begins with a header,
9172 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9173 indexes, and a pool of 32-bit section numbers. The index sections will be
9174 aligned at 8-byte boundaries in the file.
9175
9176 The index section header consists of:
9177
9178 V, 32 bit version number
9179 -, 32 bits unused
9180 N, 32 bit number of compilation units or type units in the index
9181 M, 32 bit number of slots in the hash table
9182
9183 Numbers are recorded using the byte order of the application binary.
9184
9185 The hash table begins at offset 16 in the section, and consists of an array
9186 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9187 order of the application binary). Unused slots in the hash table are 0.
9188 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9189
9190 The parallel table begins immediately after the hash table
9191 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9192 array of 32-bit indexes (using the byte order of the application binary),
9193 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9194 table contains a 32-bit index into the pool of section numbers. For unused
9195 hash table slots, the corresponding entry in the parallel table will be 0.
9196
9197 The pool of section numbers begins immediately following the hash table
9198 (at offset 16 + 12 * M from the beginning of the section). The pool of
9199 section numbers consists of an array of 32-bit words (using the byte order
9200 of the application binary). Each item in the array is indexed starting
9201 from 0. The hash table entry provides the index of the first section
9202 number in the set. Additional section numbers in the set follow, and the
9203 set is terminated by a 0 entry (section number 0 is not used in ELF).
9204
9205 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9206 section must be the first entry in the set, and the .debug_abbrev.dwo must
9207 be the second entry. Other members of the set may follow in any order.
9208
9209 ---
9210
9211 DWP Version 2:
9212
9213 DWP Version 2 combines all the .debug_info, etc. sections into one,
9214 and the entries in the index tables are now offsets into these sections.
9215 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9216 section.
9217
9218 Index Section Contents:
9219 Header
9220 Hash Table of Signatures dwp_hash_table.hash_table
9221 Parallel Table of Indices dwp_hash_table.unit_table
9222 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9223 Table of Section Sizes dwp_hash_table.v2.sizes
9224
9225 The index section header consists of:
9226
9227 V, 32 bit version number
9228 L, 32 bit number of columns in the table of section offsets
9229 N, 32 bit number of compilation units or type units in the index
9230 M, 32 bit number of slots in the hash table
9231
9232 Numbers are recorded using the byte order of the application binary.
9233
9234 The hash table has the same format as version 1.
9235 The parallel table of indices has the same format as version 1,
9236 except that the entries are origin-1 indices into the table of sections
9237 offsets and the table of section sizes.
9238
9239 The table of offsets begins immediately following the parallel table
9240 (at offset 16 + 12 * M from the beginning of the section). The table is
9241 a two-dimensional array of 32-bit words (using the byte order of the
9242 application binary), with L columns and N+1 rows, in row-major order.
9243 Each row in the array is indexed starting from 0. The first row provides
9244 a key to the remaining rows: each column in this row provides an identifier
9245 for a debug section, and the offsets in the same column of subsequent rows
9246 refer to that section. The section identifiers are:
9247
9248 DW_SECT_INFO 1 .debug_info.dwo
9249 DW_SECT_TYPES 2 .debug_types.dwo
9250 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9251 DW_SECT_LINE 4 .debug_line.dwo
9252 DW_SECT_LOC 5 .debug_loc.dwo
9253 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9254 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9255 DW_SECT_MACRO 8 .debug_macro.dwo
9256
9257 The offsets provided by the CU and TU index sections are the base offsets
9258 for the contributions made by each CU or TU to the corresponding section
9259 in the package file. Each CU and TU header contains an abbrev_offset
9260 field, used to find the abbreviations table for that CU or TU within the
9261 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9262 be interpreted as relative to the base offset given in the index section.
9263 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9264 should be interpreted as relative to the base offset for .debug_line.dwo,
9265 and offsets into other debug sections obtained from DWARF attributes should
9266 also be interpreted as relative to the corresponding base offset.
9267
9268 The table of sizes begins immediately following the table of offsets.
9269 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9270 with L columns and N rows, in row-major order. Each row in the array is
9271 indexed starting from 1 (row 0 is shared by the two tables).
9272
9273 ---
9274
9275 Hash table lookup is handled the same in version 1 and 2:
9276
9277 We assume that N and M will not exceed 2^32 - 1.
9278 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9279
9280 Given a 64-bit compilation unit signature or a type signature S, an entry
9281 in the hash table is located as follows:
9282
9283 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9284 the low-order k bits all set to 1.
9285
9286 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9287
9288 3) If the hash table entry at index H matches the signature, use that
9289 entry. If the hash table entry at index H is unused (all zeroes),
9290 terminate the search: the signature is not present in the table.
9291
9292 4) Let H = (H + H') modulo M. Repeat at Step 3.
9293
9294 Because M > N and H' and M are relatively prime, the search is guaranteed
9295 to stop at an unused slot or find the match. */
9296
9297 /* Create a hash table to map DWO IDs to their CU/TU entry in
9298 .debug_{info,types}.dwo in DWP_FILE.
9299 Returns NULL if there isn't one.
9300 Note: This function processes DWP files only, not DWO files. */
9301
9302 static struct dwp_hash_table *
9303 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9304 {
9305 struct objfile *objfile = dwarf2_per_objfile->objfile;
9306 bfd *dbfd = dwp_file->dbfd;
9307 const gdb_byte *index_ptr, *index_end;
9308 struct dwarf2_section_info *index;
9309 uint32_t version, nr_columns, nr_units, nr_slots;
9310 struct dwp_hash_table *htab;
9311
9312 if (is_debug_types)
9313 index = &dwp_file->sections.tu_index;
9314 else
9315 index = &dwp_file->sections.cu_index;
9316
9317 if (dwarf2_section_empty_p (index))
9318 return NULL;
9319 dwarf2_read_section (objfile, index);
9320
9321 index_ptr = index->buffer;
9322 index_end = index_ptr + index->size;
9323
9324 version = read_4_bytes (dbfd, index_ptr);
9325 index_ptr += 4;
9326 if (version == 2)
9327 nr_columns = read_4_bytes (dbfd, index_ptr);
9328 else
9329 nr_columns = 0;
9330 index_ptr += 4;
9331 nr_units = read_4_bytes (dbfd, index_ptr);
9332 index_ptr += 4;
9333 nr_slots = read_4_bytes (dbfd, index_ptr);
9334 index_ptr += 4;
9335
9336 if (version != 1 && version != 2)
9337 {
9338 error (_("Dwarf Error: unsupported DWP file version (%s)"
9339 " [in module %s]"),
9340 pulongest (version), dwp_file->name);
9341 }
9342 if (nr_slots != (nr_slots & -nr_slots))
9343 {
9344 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9345 " is not power of 2 [in module %s]"),
9346 pulongest (nr_slots), dwp_file->name);
9347 }
9348
9349 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9350 htab->version = version;
9351 htab->nr_columns = nr_columns;
9352 htab->nr_units = nr_units;
9353 htab->nr_slots = nr_slots;
9354 htab->hash_table = index_ptr;
9355 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9356
9357 /* Exit early if the table is empty. */
9358 if (nr_slots == 0 || nr_units == 0
9359 || (version == 2 && nr_columns == 0))
9360 {
9361 /* All must be zero. */
9362 if (nr_slots != 0 || nr_units != 0
9363 || (version == 2 && nr_columns != 0))
9364 {
9365 complaint (&symfile_complaints,
9366 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9367 " all zero [in modules %s]"),
9368 dwp_file->name);
9369 }
9370 return htab;
9371 }
9372
9373 if (version == 1)
9374 {
9375 htab->section_pool.v1.indices =
9376 htab->unit_table + sizeof (uint32_t) * nr_slots;
9377 /* It's harder to decide whether the section is too small in v1.
9378 V1 is deprecated anyway so we punt. */
9379 }
9380 else
9381 {
9382 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9383 int *ids = htab->section_pool.v2.section_ids;
9384 /* Reverse map for error checking. */
9385 int ids_seen[DW_SECT_MAX + 1];
9386 int i;
9387
9388 if (nr_columns < 2)
9389 {
9390 error (_("Dwarf Error: bad DWP hash table, too few columns"
9391 " in section table [in module %s]"),
9392 dwp_file->name);
9393 }
9394 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9395 {
9396 error (_("Dwarf Error: bad DWP hash table, too many columns"
9397 " in section table [in module %s]"),
9398 dwp_file->name);
9399 }
9400 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9401 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9402 for (i = 0; i < nr_columns; ++i)
9403 {
9404 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9405
9406 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9407 {
9408 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9409 " in section table [in module %s]"),
9410 id, dwp_file->name);
9411 }
9412 if (ids_seen[id] != -1)
9413 {
9414 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9415 " id %d in section table [in module %s]"),
9416 id, dwp_file->name);
9417 }
9418 ids_seen[id] = i;
9419 ids[i] = id;
9420 }
9421 /* Must have exactly one info or types section. */
9422 if (((ids_seen[DW_SECT_INFO] != -1)
9423 + (ids_seen[DW_SECT_TYPES] != -1))
9424 != 1)
9425 {
9426 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9427 " DWO info/types section [in module %s]"),
9428 dwp_file->name);
9429 }
9430 /* Must have an abbrev section. */
9431 if (ids_seen[DW_SECT_ABBREV] == -1)
9432 {
9433 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9434 " section [in module %s]"),
9435 dwp_file->name);
9436 }
9437 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9438 htab->section_pool.v2.sizes =
9439 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9440 * nr_units * nr_columns);
9441 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9442 * nr_units * nr_columns))
9443 > index_end)
9444 {
9445 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9446 " [in module %s]"),
9447 dwp_file->name);
9448 }
9449 }
9450
9451 return htab;
9452 }
9453
9454 /* Update SECTIONS with the data from SECTP.
9455
9456 This function is like the other "locate" section routines that are
9457 passed to bfd_map_over_sections, but in this context the sections to
9458 read comes from the DWP V1 hash table, not the full ELF section table.
9459
9460 The result is non-zero for success, or zero if an error was found. */
9461
9462 static int
9463 locate_v1_virtual_dwo_sections (asection *sectp,
9464 struct virtual_v1_dwo_sections *sections)
9465 {
9466 const struct dwop_section_names *names = &dwop_section_names;
9467
9468 if (section_is_p (sectp->name, &names->abbrev_dwo))
9469 {
9470 /* There can be only one. */
9471 if (sections->abbrev.s.asection != NULL)
9472 return 0;
9473 sections->abbrev.s.asection = sectp;
9474 sections->abbrev.size = bfd_get_section_size (sectp);
9475 }
9476 else if (section_is_p (sectp->name, &names->info_dwo)
9477 || section_is_p (sectp->name, &names->types_dwo))
9478 {
9479 /* There can be only one. */
9480 if (sections->info_or_types.s.asection != NULL)
9481 return 0;
9482 sections->info_or_types.s.asection = sectp;
9483 sections->info_or_types.size = bfd_get_section_size (sectp);
9484 }
9485 else if (section_is_p (sectp->name, &names->line_dwo))
9486 {
9487 /* There can be only one. */
9488 if (sections->line.s.asection != NULL)
9489 return 0;
9490 sections->line.s.asection = sectp;
9491 sections->line.size = bfd_get_section_size (sectp);
9492 }
9493 else if (section_is_p (sectp->name, &names->loc_dwo))
9494 {
9495 /* There can be only one. */
9496 if (sections->loc.s.asection != NULL)
9497 return 0;
9498 sections->loc.s.asection = sectp;
9499 sections->loc.size = bfd_get_section_size (sectp);
9500 }
9501 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9502 {
9503 /* There can be only one. */
9504 if (sections->macinfo.s.asection != NULL)
9505 return 0;
9506 sections->macinfo.s.asection = sectp;
9507 sections->macinfo.size = bfd_get_section_size (sectp);
9508 }
9509 else if (section_is_p (sectp->name, &names->macro_dwo))
9510 {
9511 /* There can be only one. */
9512 if (sections->macro.s.asection != NULL)
9513 return 0;
9514 sections->macro.s.asection = sectp;
9515 sections->macro.size = bfd_get_section_size (sectp);
9516 }
9517 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9518 {
9519 /* There can be only one. */
9520 if (sections->str_offsets.s.asection != NULL)
9521 return 0;
9522 sections->str_offsets.s.asection = sectp;
9523 sections->str_offsets.size = bfd_get_section_size (sectp);
9524 }
9525 else
9526 {
9527 /* No other kind of section is valid. */
9528 return 0;
9529 }
9530
9531 return 1;
9532 }
9533
9534 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9535 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9536 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9537 This is for DWP version 1 files. */
9538
9539 static struct dwo_unit *
9540 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9541 uint32_t unit_index,
9542 const char *comp_dir,
9543 ULONGEST signature, int is_debug_types)
9544 {
9545 struct objfile *objfile = dwarf2_per_objfile->objfile;
9546 const struct dwp_hash_table *dwp_htab =
9547 is_debug_types ? dwp_file->tus : dwp_file->cus;
9548 bfd *dbfd = dwp_file->dbfd;
9549 const char *kind = is_debug_types ? "TU" : "CU";
9550 struct dwo_file *dwo_file;
9551 struct dwo_unit *dwo_unit;
9552 struct virtual_v1_dwo_sections sections;
9553 void **dwo_file_slot;
9554 char *virtual_dwo_name;
9555 struct dwarf2_section_info *cutu;
9556 struct cleanup *cleanups;
9557 int i;
9558
9559 gdb_assert (dwp_file->version == 1);
9560
9561 if (dwarf2_read_debug)
9562 {
9563 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9564 kind,
9565 pulongest (unit_index), hex_string (signature),
9566 dwp_file->name);
9567 }
9568
9569 /* Fetch the sections of this DWO unit.
9570 Put a limit on the number of sections we look for so that bad data
9571 doesn't cause us to loop forever. */
9572
9573 #define MAX_NR_V1_DWO_SECTIONS \
9574 (1 /* .debug_info or .debug_types */ \
9575 + 1 /* .debug_abbrev */ \
9576 + 1 /* .debug_line */ \
9577 + 1 /* .debug_loc */ \
9578 + 1 /* .debug_str_offsets */ \
9579 + 1 /* .debug_macro or .debug_macinfo */ \
9580 + 1 /* trailing zero */)
9581
9582 memset (&sections, 0, sizeof (sections));
9583 cleanups = make_cleanup (null_cleanup, 0);
9584
9585 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9586 {
9587 asection *sectp;
9588 uint32_t section_nr =
9589 read_4_bytes (dbfd,
9590 dwp_htab->section_pool.v1.indices
9591 + (unit_index + i) * sizeof (uint32_t));
9592
9593 if (section_nr == 0)
9594 break;
9595 if (section_nr >= dwp_file->num_sections)
9596 {
9597 error (_("Dwarf Error: bad DWP hash table, section number too large"
9598 " [in module %s]"),
9599 dwp_file->name);
9600 }
9601
9602 sectp = dwp_file->elf_sections[section_nr];
9603 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9604 {
9605 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9606 " [in module %s]"),
9607 dwp_file->name);
9608 }
9609 }
9610
9611 if (i < 2
9612 || dwarf2_section_empty_p (&sections.info_or_types)
9613 || dwarf2_section_empty_p (&sections.abbrev))
9614 {
9615 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9616 " [in module %s]"),
9617 dwp_file->name);
9618 }
9619 if (i == MAX_NR_V1_DWO_SECTIONS)
9620 {
9621 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9622 " [in module %s]"),
9623 dwp_file->name);
9624 }
9625
9626 /* It's easier for the rest of the code if we fake a struct dwo_file and
9627 have dwo_unit "live" in that. At least for now.
9628
9629 The DWP file can be made up of a random collection of CUs and TUs.
9630 However, for each CU + set of TUs that came from the same original DWO
9631 file, we can combine them back into a virtual DWO file to save space
9632 (fewer struct dwo_file objects to allocate). Remember that for really
9633 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9634
9635 virtual_dwo_name =
9636 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9637 get_section_id (&sections.abbrev),
9638 get_section_id (&sections.line),
9639 get_section_id (&sections.loc),
9640 get_section_id (&sections.str_offsets));
9641 make_cleanup (xfree, virtual_dwo_name);
9642 /* Can we use an existing virtual DWO file? */
9643 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9644 /* Create one if necessary. */
9645 if (*dwo_file_slot == NULL)
9646 {
9647 if (dwarf2_read_debug)
9648 {
9649 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9650 virtual_dwo_name);
9651 }
9652 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9653 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9654 virtual_dwo_name,
9655 strlen (virtual_dwo_name));
9656 dwo_file->comp_dir = comp_dir;
9657 dwo_file->sections.abbrev = sections.abbrev;
9658 dwo_file->sections.line = sections.line;
9659 dwo_file->sections.loc = sections.loc;
9660 dwo_file->sections.macinfo = sections.macinfo;
9661 dwo_file->sections.macro = sections.macro;
9662 dwo_file->sections.str_offsets = sections.str_offsets;
9663 /* The "str" section is global to the entire DWP file. */
9664 dwo_file->sections.str = dwp_file->sections.str;
9665 /* The info or types section is assigned below to dwo_unit,
9666 there's no need to record it in dwo_file.
9667 Also, we can't simply record type sections in dwo_file because
9668 we record a pointer into the vector in dwo_unit. As we collect more
9669 types we'll grow the vector and eventually have to reallocate space
9670 for it, invalidating all copies of pointers into the previous
9671 contents. */
9672 *dwo_file_slot = dwo_file;
9673 }
9674 else
9675 {
9676 if (dwarf2_read_debug)
9677 {
9678 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9679 virtual_dwo_name);
9680 }
9681 dwo_file = *dwo_file_slot;
9682 }
9683 do_cleanups (cleanups);
9684
9685 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9686 dwo_unit->dwo_file = dwo_file;
9687 dwo_unit->signature = signature;
9688 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9689 sizeof (struct dwarf2_section_info));
9690 *dwo_unit->section = sections.info_or_types;
9691 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9692
9693 return dwo_unit;
9694 }
9695
9696 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9697 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9698 piece within that section used by a TU/CU, return a virtual section
9699 of just that piece. */
9700
9701 static struct dwarf2_section_info
9702 create_dwp_v2_section (struct dwarf2_section_info *section,
9703 bfd_size_type offset, bfd_size_type size)
9704 {
9705 struct dwarf2_section_info result;
9706 asection *sectp;
9707
9708 gdb_assert (section != NULL);
9709 gdb_assert (!section->is_virtual);
9710
9711 memset (&result, 0, sizeof (result));
9712 result.s.containing_section = section;
9713 result.is_virtual = 1;
9714
9715 if (size == 0)
9716 return result;
9717
9718 sectp = get_section_bfd_section (section);
9719
9720 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9721 bounds of the real section. This is a pretty-rare event, so just
9722 flag an error (easier) instead of a warning and trying to cope. */
9723 if (sectp == NULL
9724 || offset + size > bfd_get_section_size (sectp))
9725 {
9726 bfd *abfd = sectp->owner;
9727
9728 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9729 " in section %s [in module %s]"),
9730 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9731 objfile_name (dwarf2_per_objfile->objfile));
9732 }
9733
9734 result.virtual_offset = offset;
9735 result.size = size;
9736 return result;
9737 }
9738
9739 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9740 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9741 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9742 This is for DWP version 2 files. */
9743
9744 static struct dwo_unit *
9745 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9746 uint32_t unit_index,
9747 const char *comp_dir,
9748 ULONGEST signature, int is_debug_types)
9749 {
9750 struct objfile *objfile = dwarf2_per_objfile->objfile;
9751 const struct dwp_hash_table *dwp_htab =
9752 is_debug_types ? dwp_file->tus : dwp_file->cus;
9753 bfd *dbfd = dwp_file->dbfd;
9754 const char *kind = is_debug_types ? "TU" : "CU";
9755 struct dwo_file *dwo_file;
9756 struct dwo_unit *dwo_unit;
9757 struct virtual_v2_dwo_sections sections;
9758 void **dwo_file_slot;
9759 char *virtual_dwo_name;
9760 struct dwarf2_section_info *cutu;
9761 struct cleanup *cleanups;
9762 int i;
9763
9764 gdb_assert (dwp_file->version == 2);
9765
9766 if (dwarf2_read_debug)
9767 {
9768 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9769 kind,
9770 pulongest (unit_index), hex_string (signature),
9771 dwp_file->name);
9772 }
9773
9774 /* Fetch the section offsets of this DWO unit. */
9775
9776 memset (&sections, 0, sizeof (sections));
9777 cleanups = make_cleanup (null_cleanup, 0);
9778
9779 for (i = 0; i < dwp_htab->nr_columns; ++i)
9780 {
9781 uint32_t offset = read_4_bytes (dbfd,
9782 dwp_htab->section_pool.v2.offsets
9783 + (((unit_index - 1) * dwp_htab->nr_columns
9784 + i)
9785 * sizeof (uint32_t)));
9786 uint32_t size = read_4_bytes (dbfd,
9787 dwp_htab->section_pool.v2.sizes
9788 + (((unit_index - 1) * dwp_htab->nr_columns
9789 + i)
9790 * sizeof (uint32_t)));
9791
9792 switch (dwp_htab->section_pool.v2.section_ids[i])
9793 {
9794 case DW_SECT_INFO:
9795 case DW_SECT_TYPES:
9796 sections.info_or_types_offset = offset;
9797 sections.info_or_types_size = size;
9798 break;
9799 case DW_SECT_ABBREV:
9800 sections.abbrev_offset = offset;
9801 sections.abbrev_size = size;
9802 break;
9803 case DW_SECT_LINE:
9804 sections.line_offset = offset;
9805 sections.line_size = size;
9806 break;
9807 case DW_SECT_LOC:
9808 sections.loc_offset = offset;
9809 sections.loc_size = size;
9810 break;
9811 case DW_SECT_STR_OFFSETS:
9812 sections.str_offsets_offset = offset;
9813 sections.str_offsets_size = size;
9814 break;
9815 case DW_SECT_MACINFO:
9816 sections.macinfo_offset = offset;
9817 sections.macinfo_size = size;
9818 break;
9819 case DW_SECT_MACRO:
9820 sections.macro_offset = offset;
9821 sections.macro_size = size;
9822 break;
9823 }
9824 }
9825
9826 /* It's easier for the rest of the code if we fake a struct dwo_file and
9827 have dwo_unit "live" in that. At least for now.
9828
9829 The DWP file can be made up of a random collection of CUs and TUs.
9830 However, for each CU + set of TUs that came from the same original DWO
9831 file, we can combine them back into a virtual DWO file to save space
9832 (fewer struct dwo_file objects to allocate). Remember that for really
9833 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9834
9835 virtual_dwo_name =
9836 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9837 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9838 (long) (sections.line_size ? sections.line_offset : 0),
9839 (long) (sections.loc_size ? sections.loc_offset : 0),
9840 (long) (sections.str_offsets_size
9841 ? sections.str_offsets_offset : 0));
9842 make_cleanup (xfree, virtual_dwo_name);
9843 /* Can we use an existing virtual DWO file? */
9844 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9845 /* Create one if necessary. */
9846 if (*dwo_file_slot == NULL)
9847 {
9848 if (dwarf2_read_debug)
9849 {
9850 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9851 virtual_dwo_name);
9852 }
9853 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9854 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9855 virtual_dwo_name,
9856 strlen (virtual_dwo_name));
9857 dwo_file->comp_dir = comp_dir;
9858 dwo_file->sections.abbrev =
9859 create_dwp_v2_section (&dwp_file->sections.abbrev,
9860 sections.abbrev_offset, sections.abbrev_size);
9861 dwo_file->sections.line =
9862 create_dwp_v2_section (&dwp_file->sections.line,
9863 sections.line_offset, sections.line_size);
9864 dwo_file->sections.loc =
9865 create_dwp_v2_section (&dwp_file->sections.loc,
9866 sections.loc_offset, sections.loc_size);
9867 dwo_file->sections.macinfo =
9868 create_dwp_v2_section (&dwp_file->sections.macinfo,
9869 sections.macinfo_offset, sections.macinfo_size);
9870 dwo_file->sections.macro =
9871 create_dwp_v2_section (&dwp_file->sections.macro,
9872 sections.macro_offset, sections.macro_size);
9873 dwo_file->sections.str_offsets =
9874 create_dwp_v2_section (&dwp_file->sections.str_offsets,
9875 sections.str_offsets_offset,
9876 sections.str_offsets_size);
9877 /* The "str" section is global to the entire DWP file. */
9878 dwo_file->sections.str = dwp_file->sections.str;
9879 /* The info or types section is assigned below to dwo_unit,
9880 there's no need to record it in dwo_file.
9881 Also, we can't simply record type sections in dwo_file because
9882 we record a pointer into the vector in dwo_unit. As we collect more
9883 types we'll grow the vector and eventually have to reallocate space
9884 for it, invalidating all copies of pointers into the previous
9885 contents. */
9886 *dwo_file_slot = dwo_file;
9887 }
9888 else
9889 {
9890 if (dwarf2_read_debug)
9891 {
9892 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9893 virtual_dwo_name);
9894 }
9895 dwo_file = *dwo_file_slot;
9896 }
9897 do_cleanups (cleanups);
9898
9899 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9900 dwo_unit->dwo_file = dwo_file;
9901 dwo_unit->signature = signature;
9902 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9903 sizeof (struct dwarf2_section_info));
9904 *dwo_unit->section = create_dwp_v2_section (is_debug_types
9905 ? &dwp_file->sections.types
9906 : &dwp_file->sections.info,
9907 sections.info_or_types_offset,
9908 sections.info_or_types_size);
9909 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9910
9911 return dwo_unit;
9912 }
9913
9914 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
9915 Returns NULL if the signature isn't found. */
9916
9917 static struct dwo_unit *
9918 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
9919 ULONGEST signature, int is_debug_types)
9920 {
9921 const struct dwp_hash_table *dwp_htab =
9922 is_debug_types ? dwp_file->tus : dwp_file->cus;
9923 bfd *dbfd = dwp_file->dbfd;
9924 uint32_t mask = dwp_htab->nr_slots - 1;
9925 uint32_t hash = signature & mask;
9926 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9927 unsigned int i;
9928 void **slot;
9929 struct dwo_unit find_dwo_cu, *dwo_cu;
9930
9931 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9932 find_dwo_cu.signature = signature;
9933 slot = htab_find_slot (is_debug_types
9934 ? dwp_file->loaded_tus
9935 : dwp_file->loaded_cus,
9936 &find_dwo_cu, INSERT);
9937
9938 if (*slot != NULL)
9939 return *slot;
9940
9941 /* Use a for loop so that we don't loop forever on bad debug info. */
9942 for (i = 0; i < dwp_htab->nr_slots; ++i)
9943 {
9944 ULONGEST signature_in_table;
9945
9946 signature_in_table =
9947 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
9948 if (signature_in_table == signature)
9949 {
9950 uint32_t unit_index =
9951 read_4_bytes (dbfd,
9952 dwp_htab->unit_table + hash * sizeof (uint32_t));
9953
9954 if (dwp_file->version == 1)
9955 {
9956 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
9957 comp_dir, signature,
9958 is_debug_types);
9959 }
9960 else
9961 {
9962 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
9963 comp_dir, signature,
9964 is_debug_types);
9965 }
9966 return *slot;
9967 }
9968 if (signature_in_table == 0)
9969 return NULL;
9970 hash = (hash + hash2) & mask;
9971 }
9972
9973 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9974 " [in module %s]"),
9975 dwp_file->name);
9976 }
9977
9978 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9979 Open the file specified by FILE_NAME and hand it off to BFD for
9980 preliminary analysis. Return a newly initialized bfd *, which
9981 includes a canonicalized copy of FILE_NAME.
9982 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9983 SEARCH_CWD is true if the current directory is to be searched.
9984 It will be searched before debug-file-directory.
9985 If unable to find/open the file, return NULL.
9986 NOTE: This function is derived from symfile_bfd_open. */
9987
9988 static bfd *
9989 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9990 {
9991 bfd *sym_bfd;
9992 int desc, flags;
9993 char *absolute_name;
9994 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9995 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9996 to debug_file_directory. */
9997 char *search_path;
9998 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9999
10000 if (search_cwd)
10001 {
10002 if (*debug_file_directory != '\0')
10003 search_path = concat (".", dirname_separator_string,
10004 debug_file_directory, NULL);
10005 else
10006 search_path = xstrdup (".");
10007 }
10008 else
10009 search_path = xstrdup (debug_file_directory);
10010
10011 flags = OPF_RETURN_REALPATH;
10012 if (is_dwp)
10013 flags |= OPF_SEARCH_IN_PATH;
10014 desc = openp (search_path, flags, file_name,
10015 O_RDONLY | O_BINARY, &absolute_name);
10016 xfree (search_path);
10017 if (desc < 0)
10018 return NULL;
10019
10020 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10021 xfree (absolute_name);
10022 if (sym_bfd == NULL)
10023 return NULL;
10024 bfd_set_cacheable (sym_bfd, 1);
10025
10026 if (!bfd_check_format (sym_bfd, bfd_object))
10027 {
10028 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10029 return NULL;
10030 }
10031
10032 return sym_bfd;
10033 }
10034
10035 /* Try to open DWO file FILE_NAME.
10036 COMP_DIR is the DW_AT_comp_dir attribute.
10037 The result is the bfd handle of the file.
10038 If there is a problem finding or opening the file, return NULL.
10039 Upon success, the canonicalized path of the file is stored in the bfd,
10040 same as symfile_bfd_open. */
10041
10042 static bfd *
10043 open_dwo_file (const char *file_name, const char *comp_dir)
10044 {
10045 bfd *abfd;
10046
10047 if (IS_ABSOLUTE_PATH (file_name))
10048 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10049
10050 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10051
10052 if (comp_dir != NULL)
10053 {
10054 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10055
10056 /* NOTE: If comp_dir is a relative path, this will also try the
10057 search path, which seems useful. */
10058 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10059 xfree (path_to_try);
10060 if (abfd != NULL)
10061 return abfd;
10062 }
10063
10064 /* That didn't work, try debug-file-directory, which, despite its name,
10065 is a list of paths. */
10066
10067 if (*debug_file_directory == '\0')
10068 return NULL;
10069
10070 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10071 }
10072
10073 /* This function is mapped across the sections and remembers the offset and
10074 size of each of the DWO debugging sections we are interested in. */
10075
10076 static void
10077 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10078 {
10079 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10080 const struct dwop_section_names *names = &dwop_section_names;
10081
10082 if (section_is_p (sectp->name, &names->abbrev_dwo))
10083 {
10084 dwo_sections->abbrev.s.asection = sectp;
10085 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10086 }
10087 else if (section_is_p (sectp->name, &names->info_dwo))
10088 {
10089 dwo_sections->info.s.asection = sectp;
10090 dwo_sections->info.size = bfd_get_section_size (sectp);
10091 }
10092 else if (section_is_p (sectp->name, &names->line_dwo))
10093 {
10094 dwo_sections->line.s.asection = sectp;
10095 dwo_sections->line.size = bfd_get_section_size (sectp);
10096 }
10097 else if (section_is_p (sectp->name, &names->loc_dwo))
10098 {
10099 dwo_sections->loc.s.asection = sectp;
10100 dwo_sections->loc.size = bfd_get_section_size (sectp);
10101 }
10102 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10103 {
10104 dwo_sections->macinfo.s.asection = sectp;
10105 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10106 }
10107 else if (section_is_p (sectp->name, &names->macro_dwo))
10108 {
10109 dwo_sections->macro.s.asection = sectp;
10110 dwo_sections->macro.size = bfd_get_section_size (sectp);
10111 }
10112 else if (section_is_p (sectp->name, &names->str_dwo))
10113 {
10114 dwo_sections->str.s.asection = sectp;
10115 dwo_sections->str.size = bfd_get_section_size (sectp);
10116 }
10117 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10118 {
10119 dwo_sections->str_offsets.s.asection = sectp;
10120 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10121 }
10122 else if (section_is_p (sectp->name, &names->types_dwo))
10123 {
10124 struct dwarf2_section_info type_section;
10125
10126 memset (&type_section, 0, sizeof (type_section));
10127 type_section.s.asection = sectp;
10128 type_section.size = bfd_get_section_size (sectp);
10129 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10130 &type_section);
10131 }
10132 }
10133
10134 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10135 by PER_CU. This is for the non-DWP case.
10136 The result is NULL if DWO_NAME can't be found. */
10137
10138 static struct dwo_file *
10139 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10140 const char *dwo_name, const char *comp_dir)
10141 {
10142 struct objfile *objfile = dwarf2_per_objfile->objfile;
10143 struct dwo_file *dwo_file;
10144 bfd *dbfd;
10145 struct cleanup *cleanups;
10146
10147 dbfd = open_dwo_file (dwo_name, comp_dir);
10148 if (dbfd == NULL)
10149 {
10150 if (dwarf2_read_debug)
10151 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10152 return NULL;
10153 }
10154 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10155 dwo_file->dwo_name = dwo_name;
10156 dwo_file->comp_dir = comp_dir;
10157 dwo_file->dbfd = dbfd;
10158
10159 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10160
10161 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10162
10163 dwo_file->cu = create_dwo_cu (dwo_file);
10164
10165 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10166 dwo_file->sections.types);
10167
10168 discard_cleanups (cleanups);
10169
10170 if (dwarf2_read_debug)
10171 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10172
10173 return dwo_file;
10174 }
10175
10176 /* This function is mapped across the sections and remembers the offset and
10177 size of each of the DWP debugging sections common to version 1 and 2 that
10178 we are interested in. */
10179
10180 static void
10181 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10182 void *dwp_file_ptr)
10183 {
10184 struct dwp_file *dwp_file = dwp_file_ptr;
10185 const struct dwop_section_names *names = &dwop_section_names;
10186 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10187
10188 /* Record the ELF section number for later lookup: this is what the
10189 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10190 gdb_assert (elf_section_nr < dwp_file->num_sections);
10191 dwp_file->elf_sections[elf_section_nr] = sectp;
10192
10193 /* Look for specific sections that we need. */
10194 if (section_is_p (sectp->name, &names->str_dwo))
10195 {
10196 dwp_file->sections.str.s.asection = sectp;
10197 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10198 }
10199 else if (section_is_p (sectp->name, &names->cu_index))
10200 {
10201 dwp_file->sections.cu_index.s.asection = sectp;
10202 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10203 }
10204 else if (section_is_p (sectp->name, &names->tu_index))
10205 {
10206 dwp_file->sections.tu_index.s.asection = sectp;
10207 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10208 }
10209 }
10210
10211 /* This function is mapped across the sections and remembers the offset and
10212 size of each of the DWP version 2 debugging sections that we are interested
10213 in. This is split into a separate function because we don't know if we
10214 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10215
10216 static void
10217 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10218 {
10219 struct dwp_file *dwp_file = dwp_file_ptr;
10220 const struct dwop_section_names *names = &dwop_section_names;
10221 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10222
10223 /* Record the ELF section number for later lookup: this is what the
10224 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10225 gdb_assert (elf_section_nr < dwp_file->num_sections);
10226 dwp_file->elf_sections[elf_section_nr] = sectp;
10227
10228 /* Look for specific sections that we need. */
10229 if (section_is_p (sectp->name, &names->abbrev_dwo))
10230 {
10231 dwp_file->sections.abbrev.s.asection = sectp;
10232 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10233 }
10234 else if (section_is_p (sectp->name, &names->info_dwo))
10235 {
10236 dwp_file->sections.info.s.asection = sectp;
10237 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10238 }
10239 else if (section_is_p (sectp->name, &names->line_dwo))
10240 {
10241 dwp_file->sections.line.s.asection = sectp;
10242 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10243 }
10244 else if (section_is_p (sectp->name, &names->loc_dwo))
10245 {
10246 dwp_file->sections.loc.s.asection = sectp;
10247 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10248 }
10249 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10250 {
10251 dwp_file->sections.macinfo.s.asection = sectp;
10252 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10253 }
10254 else if (section_is_p (sectp->name, &names->macro_dwo))
10255 {
10256 dwp_file->sections.macro.s.asection = sectp;
10257 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10258 }
10259 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10260 {
10261 dwp_file->sections.str_offsets.s.asection = sectp;
10262 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10263 }
10264 else if (section_is_p (sectp->name, &names->types_dwo))
10265 {
10266 dwp_file->sections.types.s.asection = sectp;
10267 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10268 }
10269 }
10270
10271 /* Hash function for dwp_file loaded CUs/TUs. */
10272
10273 static hashval_t
10274 hash_dwp_loaded_cutus (const void *item)
10275 {
10276 const struct dwo_unit *dwo_unit = item;
10277
10278 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10279 return dwo_unit->signature;
10280 }
10281
10282 /* Equality function for dwp_file loaded CUs/TUs. */
10283
10284 static int
10285 eq_dwp_loaded_cutus (const void *a, const void *b)
10286 {
10287 const struct dwo_unit *dua = a;
10288 const struct dwo_unit *dub = b;
10289
10290 return dua->signature == dub->signature;
10291 }
10292
10293 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10294
10295 static htab_t
10296 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10297 {
10298 return htab_create_alloc_ex (3,
10299 hash_dwp_loaded_cutus,
10300 eq_dwp_loaded_cutus,
10301 NULL,
10302 &objfile->objfile_obstack,
10303 hashtab_obstack_allocate,
10304 dummy_obstack_deallocate);
10305 }
10306
10307 /* Try to open DWP file FILE_NAME.
10308 The result is the bfd handle of the file.
10309 If there is a problem finding or opening the file, return NULL.
10310 Upon success, the canonicalized path of the file is stored in the bfd,
10311 same as symfile_bfd_open. */
10312
10313 static bfd *
10314 open_dwp_file (const char *file_name)
10315 {
10316 bfd *abfd;
10317
10318 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10319 if (abfd != NULL)
10320 return abfd;
10321
10322 /* Work around upstream bug 15652.
10323 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10324 [Whether that's a "bug" is debatable, but it is getting in our way.]
10325 We have no real idea where the dwp file is, because gdb's realpath-ing
10326 of the executable's path may have discarded the needed info.
10327 [IWBN if the dwp file name was recorded in the executable, akin to
10328 .gnu_debuglink, but that doesn't exist yet.]
10329 Strip the directory from FILE_NAME and search again. */
10330 if (*debug_file_directory != '\0')
10331 {
10332 /* Don't implicitly search the current directory here.
10333 If the user wants to search "." to handle this case,
10334 it must be added to debug-file-directory. */
10335 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10336 0 /*search_cwd*/);
10337 }
10338
10339 return NULL;
10340 }
10341
10342 /* Initialize the use of the DWP file for the current objfile.
10343 By convention the name of the DWP file is ${objfile}.dwp.
10344 The result is NULL if it can't be found. */
10345
10346 static struct dwp_file *
10347 open_and_init_dwp_file (void)
10348 {
10349 struct objfile *objfile = dwarf2_per_objfile->objfile;
10350 struct dwp_file *dwp_file;
10351 char *dwp_name;
10352 bfd *dbfd;
10353 struct cleanup *cleanups;
10354
10355 /* Try to find first .dwp for the binary file before any symbolic links
10356 resolving. */
10357 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10358 cleanups = make_cleanup (xfree, dwp_name);
10359
10360 dbfd = open_dwp_file (dwp_name);
10361 if (dbfd == NULL
10362 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10363 {
10364 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10365 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10366 make_cleanup (xfree, dwp_name);
10367 dbfd = open_dwp_file (dwp_name);
10368 }
10369
10370 if (dbfd == NULL)
10371 {
10372 if (dwarf2_read_debug)
10373 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10374 do_cleanups (cleanups);
10375 return NULL;
10376 }
10377 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10378 dwp_file->name = bfd_get_filename (dbfd);
10379 dwp_file->dbfd = dbfd;
10380 do_cleanups (cleanups);
10381
10382 /* +1: section 0 is unused */
10383 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10384 dwp_file->elf_sections =
10385 OBSTACK_CALLOC (&objfile->objfile_obstack,
10386 dwp_file->num_sections, asection *);
10387
10388 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10389
10390 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10391
10392 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10393
10394 /* The DWP file version is stored in the hash table. Oh well. */
10395 if (dwp_file->cus->version != dwp_file->tus->version)
10396 {
10397 /* Technically speaking, we should try to limp along, but this is
10398 pretty bizarre. */
10399 error (_("Dwarf Error: DWP file CU version %d doesn't match"
10400 " TU version %d [in DWP file %s]"),
10401 dwp_file->cus->version, dwp_file->tus->version, dwp_name);
10402 }
10403 dwp_file->version = dwp_file->cus->version;
10404
10405 if (dwp_file->version == 2)
10406 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10407
10408 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10409 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10410
10411 if (dwarf2_read_debug)
10412 {
10413 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10414 fprintf_unfiltered (gdb_stdlog,
10415 " %s CUs, %s TUs\n",
10416 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10417 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10418 }
10419
10420 return dwp_file;
10421 }
10422
10423 /* Wrapper around open_and_init_dwp_file, only open it once. */
10424
10425 static struct dwp_file *
10426 get_dwp_file (void)
10427 {
10428 if (! dwarf2_per_objfile->dwp_checked)
10429 {
10430 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10431 dwarf2_per_objfile->dwp_checked = 1;
10432 }
10433 return dwarf2_per_objfile->dwp_file;
10434 }
10435
10436 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10437 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10438 or in the DWP file for the objfile, referenced by THIS_UNIT.
10439 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10440 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10441
10442 This is called, for example, when wanting to read a variable with a
10443 complex location. Therefore we don't want to do file i/o for every call.
10444 Therefore we don't want to look for a DWO file on every call.
10445 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10446 then we check if we've already seen DWO_NAME, and only THEN do we check
10447 for a DWO file.
10448
10449 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10450 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10451
10452 static struct dwo_unit *
10453 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10454 const char *dwo_name, const char *comp_dir,
10455 ULONGEST signature, int is_debug_types)
10456 {
10457 struct objfile *objfile = dwarf2_per_objfile->objfile;
10458 const char *kind = is_debug_types ? "TU" : "CU";
10459 void **dwo_file_slot;
10460 struct dwo_file *dwo_file;
10461 struct dwp_file *dwp_file;
10462
10463 /* First see if there's a DWP file.
10464 If we have a DWP file but didn't find the DWO inside it, don't
10465 look for the original DWO file. It makes gdb behave differently
10466 depending on whether one is debugging in the build tree. */
10467
10468 dwp_file = get_dwp_file ();
10469 if (dwp_file != NULL)
10470 {
10471 const struct dwp_hash_table *dwp_htab =
10472 is_debug_types ? dwp_file->tus : dwp_file->cus;
10473
10474 if (dwp_htab != NULL)
10475 {
10476 struct dwo_unit *dwo_cutu =
10477 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10478 signature, is_debug_types);
10479
10480 if (dwo_cutu != NULL)
10481 {
10482 if (dwarf2_read_debug)
10483 {
10484 fprintf_unfiltered (gdb_stdlog,
10485 "Virtual DWO %s %s found: @%s\n",
10486 kind, hex_string (signature),
10487 host_address_to_string (dwo_cutu));
10488 }
10489 return dwo_cutu;
10490 }
10491 }
10492 }
10493 else
10494 {
10495 /* No DWP file, look for the DWO file. */
10496
10497 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10498 if (*dwo_file_slot == NULL)
10499 {
10500 /* Read in the file and build a table of the CUs/TUs it contains. */
10501 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10502 }
10503 /* NOTE: This will be NULL if unable to open the file. */
10504 dwo_file = *dwo_file_slot;
10505
10506 if (dwo_file != NULL)
10507 {
10508 struct dwo_unit *dwo_cutu = NULL;
10509
10510 if (is_debug_types && dwo_file->tus)
10511 {
10512 struct dwo_unit find_dwo_cutu;
10513
10514 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10515 find_dwo_cutu.signature = signature;
10516 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10517 }
10518 else if (!is_debug_types && dwo_file->cu)
10519 {
10520 if (signature == dwo_file->cu->signature)
10521 dwo_cutu = dwo_file->cu;
10522 }
10523
10524 if (dwo_cutu != NULL)
10525 {
10526 if (dwarf2_read_debug)
10527 {
10528 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10529 kind, dwo_name, hex_string (signature),
10530 host_address_to_string (dwo_cutu));
10531 }
10532 return dwo_cutu;
10533 }
10534 }
10535 }
10536
10537 /* We didn't find it. This could mean a dwo_id mismatch, or
10538 someone deleted the DWO/DWP file, or the search path isn't set up
10539 correctly to find the file. */
10540
10541 if (dwarf2_read_debug)
10542 {
10543 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10544 kind, dwo_name, hex_string (signature));
10545 }
10546
10547 /* This is a warning and not a complaint because it can be caused by
10548 pilot error (e.g., user accidentally deleting the DWO). */
10549 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
10550 " [in module %s]"),
10551 kind, dwo_name, hex_string (signature),
10552 this_unit->is_debug_types ? "TU" : "CU",
10553 this_unit->offset.sect_off, objfile_name (objfile));
10554 return NULL;
10555 }
10556
10557 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10558 See lookup_dwo_cutu_unit for details. */
10559
10560 static struct dwo_unit *
10561 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10562 const char *dwo_name, const char *comp_dir,
10563 ULONGEST signature)
10564 {
10565 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10566 }
10567
10568 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10569 See lookup_dwo_cutu_unit for details. */
10570
10571 static struct dwo_unit *
10572 lookup_dwo_type_unit (struct signatured_type *this_tu,
10573 const char *dwo_name, const char *comp_dir)
10574 {
10575 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10576 }
10577
10578 /* Traversal function for queue_and_load_all_dwo_tus. */
10579
10580 static int
10581 queue_and_load_dwo_tu (void **slot, void *info)
10582 {
10583 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10584 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10585 ULONGEST signature = dwo_unit->signature;
10586 struct signatured_type *sig_type =
10587 lookup_dwo_signatured_type (per_cu->cu, signature);
10588
10589 if (sig_type != NULL)
10590 {
10591 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10592
10593 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10594 a real dependency of PER_CU on SIG_TYPE. That is detected later
10595 while processing PER_CU. */
10596 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10597 load_full_type_unit (sig_cu);
10598 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10599 }
10600
10601 return 1;
10602 }
10603
10604 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10605 The DWO may have the only definition of the type, though it may not be
10606 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10607 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10608
10609 static void
10610 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10611 {
10612 struct dwo_unit *dwo_unit;
10613 struct dwo_file *dwo_file;
10614
10615 gdb_assert (!per_cu->is_debug_types);
10616 gdb_assert (get_dwp_file () == NULL);
10617 gdb_assert (per_cu->cu != NULL);
10618
10619 dwo_unit = per_cu->cu->dwo_unit;
10620 gdb_assert (dwo_unit != NULL);
10621
10622 dwo_file = dwo_unit->dwo_file;
10623 if (dwo_file->tus != NULL)
10624 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10625 }
10626
10627 /* Free all resources associated with DWO_FILE.
10628 Close the DWO file and munmap the sections.
10629 All memory should be on the objfile obstack. */
10630
10631 static void
10632 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10633 {
10634 int ix;
10635 struct dwarf2_section_info *section;
10636
10637 /* Note: dbfd is NULL for virtual DWO files. */
10638 gdb_bfd_unref (dwo_file->dbfd);
10639
10640 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10641 }
10642
10643 /* Wrapper for free_dwo_file for use in cleanups. */
10644
10645 static void
10646 free_dwo_file_cleanup (void *arg)
10647 {
10648 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10649 struct objfile *objfile = dwarf2_per_objfile->objfile;
10650
10651 free_dwo_file (dwo_file, objfile);
10652 }
10653
10654 /* Traversal function for free_dwo_files. */
10655
10656 static int
10657 free_dwo_file_from_slot (void **slot, void *info)
10658 {
10659 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10660 struct objfile *objfile = (struct objfile *) info;
10661
10662 free_dwo_file (dwo_file, objfile);
10663
10664 return 1;
10665 }
10666
10667 /* Free all resources associated with DWO_FILES. */
10668
10669 static void
10670 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10671 {
10672 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10673 }
10674 \f
10675 /* Read in various DIEs. */
10676
10677 /* qsort helper for inherit_abstract_dies. */
10678
10679 static int
10680 unsigned_int_compar (const void *ap, const void *bp)
10681 {
10682 unsigned int a = *(unsigned int *) ap;
10683 unsigned int b = *(unsigned int *) bp;
10684
10685 return (a > b) - (b > a);
10686 }
10687
10688 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10689 Inherit only the children of the DW_AT_abstract_origin DIE not being
10690 already referenced by DW_AT_abstract_origin from the children of the
10691 current DIE. */
10692
10693 static void
10694 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10695 {
10696 struct die_info *child_die;
10697 unsigned die_children_count;
10698 /* CU offsets which were referenced by children of the current DIE. */
10699 sect_offset *offsets;
10700 sect_offset *offsets_end, *offsetp;
10701 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10702 struct die_info *origin_die;
10703 /* Iterator of the ORIGIN_DIE children. */
10704 struct die_info *origin_child_die;
10705 struct cleanup *cleanups;
10706 struct attribute *attr;
10707 struct dwarf2_cu *origin_cu;
10708 struct pending **origin_previous_list_in_scope;
10709
10710 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10711 if (!attr)
10712 return;
10713
10714 /* Note that following die references may follow to a die in a
10715 different cu. */
10716
10717 origin_cu = cu;
10718 origin_die = follow_die_ref (die, attr, &origin_cu);
10719
10720 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10721 symbols in. */
10722 origin_previous_list_in_scope = origin_cu->list_in_scope;
10723 origin_cu->list_in_scope = cu->list_in_scope;
10724
10725 if (die->tag != origin_die->tag
10726 && !(die->tag == DW_TAG_inlined_subroutine
10727 && origin_die->tag == DW_TAG_subprogram))
10728 complaint (&symfile_complaints,
10729 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10730 die->offset.sect_off, origin_die->offset.sect_off);
10731
10732 child_die = die->child;
10733 die_children_count = 0;
10734 while (child_die && child_die->tag)
10735 {
10736 child_die = sibling_die (child_die);
10737 die_children_count++;
10738 }
10739 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10740 cleanups = make_cleanup (xfree, offsets);
10741
10742 offsets_end = offsets;
10743 child_die = die->child;
10744 while (child_die && child_die->tag)
10745 {
10746 /* For each CHILD_DIE, find the corresponding child of
10747 ORIGIN_DIE. If there is more than one layer of
10748 DW_AT_abstract_origin, follow them all; there shouldn't be,
10749 but GCC versions at least through 4.4 generate this (GCC PR
10750 40573). */
10751 struct die_info *child_origin_die = child_die;
10752 struct dwarf2_cu *child_origin_cu = cu;
10753
10754 while (1)
10755 {
10756 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10757 child_origin_cu);
10758 if (attr == NULL)
10759 break;
10760 child_origin_die = follow_die_ref (child_origin_die, attr,
10761 &child_origin_cu);
10762 }
10763
10764 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10765 counterpart may exist. */
10766 if (child_origin_die != child_die)
10767 {
10768 if (child_die->tag != child_origin_die->tag
10769 && !(child_die->tag == DW_TAG_inlined_subroutine
10770 && child_origin_die->tag == DW_TAG_subprogram))
10771 complaint (&symfile_complaints,
10772 _("Child DIE 0x%x and its abstract origin 0x%x have "
10773 "different tags"), child_die->offset.sect_off,
10774 child_origin_die->offset.sect_off);
10775 if (child_origin_die->parent != origin_die)
10776 complaint (&symfile_complaints,
10777 _("Child DIE 0x%x and its abstract origin 0x%x have "
10778 "different parents"), child_die->offset.sect_off,
10779 child_origin_die->offset.sect_off);
10780 else
10781 *offsets_end++ = child_origin_die->offset;
10782 }
10783 child_die = sibling_die (child_die);
10784 }
10785 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10786 unsigned_int_compar);
10787 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10788 if (offsetp[-1].sect_off == offsetp->sect_off)
10789 complaint (&symfile_complaints,
10790 _("Multiple children of DIE 0x%x refer "
10791 "to DIE 0x%x as their abstract origin"),
10792 die->offset.sect_off, offsetp->sect_off);
10793
10794 offsetp = offsets;
10795 origin_child_die = origin_die->child;
10796 while (origin_child_die && origin_child_die->tag)
10797 {
10798 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10799 while (offsetp < offsets_end
10800 && offsetp->sect_off < origin_child_die->offset.sect_off)
10801 offsetp++;
10802 if (offsetp >= offsets_end
10803 || offsetp->sect_off > origin_child_die->offset.sect_off)
10804 {
10805 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10806 process_die (origin_child_die, origin_cu);
10807 }
10808 origin_child_die = sibling_die (origin_child_die);
10809 }
10810 origin_cu->list_in_scope = origin_previous_list_in_scope;
10811
10812 do_cleanups (cleanups);
10813 }
10814
10815 static void
10816 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10817 {
10818 struct objfile *objfile = cu->objfile;
10819 struct context_stack *new;
10820 CORE_ADDR lowpc;
10821 CORE_ADDR highpc;
10822 struct die_info *child_die;
10823 struct attribute *attr, *call_line, *call_file;
10824 const char *name;
10825 CORE_ADDR baseaddr;
10826 struct block *block;
10827 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10828 VEC (symbolp) *template_args = NULL;
10829 struct template_symbol *templ_func = NULL;
10830
10831 if (inlined_func)
10832 {
10833 /* If we do not have call site information, we can't show the
10834 caller of this inlined function. That's too confusing, so
10835 only use the scope for local variables. */
10836 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10837 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10838 if (call_line == NULL || call_file == NULL)
10839 {
10840 read_lexical_block_scope (die, cu);
10841 return;
10842 }
10843 }
10844
10845 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10846
10847 name = dwarf2_name (die, cu);
10848
10849 /* Ignore functions with missing or empty names. These are actually
10850 illegal according to the DWARF standard. */
10851 if (name == NULL)
10852 {
10853 complaint (&symfile_complaints,
10854 _("missing name for subprogram DIE at %d"),
10855 die->offset.sect_off);
10856 return;
10857 }
10858
10859 /* Ignore functions with missing or invalid low and high pc attributes. */
10860 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10861 {
10862 attr = dwarf2_attr (die, DW_AT_external, cu);
10863 if (!attr || !DW_UNSND (attr))
10864 complaint (&symfile_complaints,
10865 _("cannot get low and high bounds "
10866 "for subprogram DIE at %d"),
10867 die->offset.sect_off);
10868 return;
10869 }
10870
10871 lowpc += baseaddr;
10872 highpc += baseaddr;
10873
10874 /* If we have any template arguments, then we must allocate a
10875 different sort of symbol. */
10876 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10877 {
10878 if (child_die->tag == DW_TAG_template_type_param
10879 || child_die->tag == DW_TAG_template_value_param)
10880 {
10881 templ_func = allocate_template_symbol (objfile);
10882 templ_func->base.is_cplus_template_function = 1;
10883 break;
10884 }
10885 }
10886
10887 new = push_context (0, lowpc);
10888 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10889 (struct symbol *) templ_func);
10890
10891 /* If there is a location expression for DW_AT_frame_base, record
10892 it. */
10893 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10894 if (attr)
10895 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10896
10897 cu->list_in_scope = &local_symbols;
10898
10899 if (die->child != NULL)
10900 {
10901 child_die = die->child;
10902 while (child_die && child_die->tag)
10903 {
10904 if (child_die->tag == DW_TAG_template_type_param
10905 || child_die->tag == DW_TAG_template_value_param)
10906 {
10907 struct symbol *arg = new_symbol (child_die, NULL, cu);
10908
10909 if (arg != NULL)
10910 VEC_safe_push (symbolp, template_args, arg);
10911 }
10912 else
10913 process_die (child_die, cu);
10914 child_die = sibling_die (child_die);
10915 }
10916 }
10917
10918 inherit_abstract_dies (die, cu);
10919
10920 /* If we have a DW_AT_specification, we might need to import using
10921 directives from the context of the specification DIE. See the
10922 comment in determine_prefix. */
10923 if (cu->language == language_cplus
10924 && dwarf2_attr (die, DW_AT_specification, cu))
10925 {
10926 struct dwarf2_cu *spec_cu = cu;
10927 struct die_info *spec_die = die_specification (die, &spec_cu);
10928
10929 while (spec_die)
10930 {
10931 child_die = spec_die->child;
10932 while (child_die && child_die->tag)
10933 {
10934 if (child_die->tag == DW_TAG_imported_module)
10935 process_die (child_die, spec_cu);
10936 child_die = sibling_die (child_die);
10937 }
10938
10939 /* In some cases, GCC generates specification DIEs that
10940 themselves contain DW_AT_specification attributes. */
10941 spec_die = die_specification (spec_die, &spec_cu);
10942 }
10943 }
10944
10945 new = pop_context ();
10946 /* Make a block for the local symbols within. */
10947 block = finish_block (new->name, &local_symbols, new->old_blocks,
10948 lowpc, highpc, objfile);
10949
10950 /* For C++, set the block's scope. */
10951 if ((cu->language == language_cplus || cu->language == language_fortran)
10952 && cu->processing_has_namespace_info)
10953 block_set_scope (block, determine_prefix (die, cu),
10954 &objfile->objfile_obstack);
10955
10956 /* If we have address ranges, record them. */
10957 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10958
10959 /* Attach template arguments to function. */
10960 if (! VEC_empty (symbolp, template_args))
10961 {
10962 gdb_assert (templ_func != NULL);
10963
10964 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10965 templ_func->template_arguments
10966 = obstack_alloc (&objfile->objfile_obstack,
10967 (templ_func->n_template_arguments
10968 * sizeof (struct symbol *)));
10969 memcpy (templ_func->template_arguments,
10970 VEC_address (symbolp, template_args),
10971 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10972 VEC_free (symbolp, template_args);
10973 }
10974
10975 /* In C++, we can have functions nested inside functions (e.g., when
10976 a function declares a class that has methods). This means that
10977 when we finish processing a function scope, we may need to go
10978 back to building a containing block's symbol lists. */
10979 local_symbols = new->locals;
10980 using_directives = new->using_directives;
10981
10982 /* If we've finished processing a top-level function, subsequent
10983 symbols go in the file symbol list. */
10984 if (outermost_context_p ())
10985 cu->list_in_scope = &file_symbols;
10986 }
10987
10988 /* Process all the DIES contained within a lexical block scope. Start
10989 a new scope, process the dies, and then close the scope. */
10990
10991 static void
10992 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10993 {
10994 struct objfile *objfile = cu->objfile;
10995 struct context_stack *new;
10996 CORE_ADDR lowpc, highpc;
10997 struct die_info *child_die;
10998 CORE_ADDR baseaddr;
10999
11000 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11001
11002 /* Ignore blocks with missing or invalid low and high pc attributes. */
11003 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11004 as multiple lexical blocks? Handling children in a sane way would
11005 be nasty. Might be easier to properly extend generic blocks to
11006 describe ranges. */
11007 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11008 return;
11009 lowpc += baseaddr;
11010 highpc += baseaddr;
11011
11012 push_context (0, lowpc);
11013 if (die->child != NULL)
11014 {
11015 child_die = die->child;
11016 while (child_die && child_die->tag)
11017 {
11018 process_die (child_die, cu);
11019 child_die = sibling_die (child_die);
11020 }
11021 }
11022 new = pop_context ();
11023
11024 if (local_symbols != NULL || using_directives != NULL)
11025 {
11026 struct block *block
11027 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11028 highpc, objfile);
11029
11030 /* Note that recording ranges after traversing children, as we
11031 do here, means that recording a parent's ranges entails
11032 walking across all its children's ranges as they appear in
11033 the address map, which is quadratic behavior.
11034
11035 It would be nicer to record the parent's ranges before
11036 traversing its children, simply overriding whatever you find
11037 there. But since we don't even decide whether to create a
11038 block until after we've traversed its children, that's hard
11039 to do. */
11040 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11041 }
11042 local_symbols = new->locals;
11043 using_directives = new->using_directives;
11044 }
11045
11046 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11047
11048 static void
11049 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11050 {
11051 struct objfile *objfile = cu->objfile;
11052 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11053 CORE_ADDR pc, baseaddr;
11054 struct attribute *attr;
11055 struct call_site *call_site, call_site_local;
11056 void **slot;
11057 int nparams;
11058 struct die_info *child_die;
11059
11060 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11061
11062 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11063 if (!attr)
11064 {
11065 complaint (&symfile_complaints,
11066 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11067 "DIE 0x%x [in module %s]"),
11068 die->offset.sect_off, objfile_name (objfile));
11069 return;
11070 }
11071 pc = DW_ADDR (attr) + baseaddr;
11072
11073 if (cu->call_site_htab == NULL)
11074 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11075 NULL, &objfile->objfile_obstack,
11076 hashtab_obstack_allocate, NULL);
11077 call_site_local.pc = pc;
11078 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11079 if (*slot != NULL)
11080 {
11081 complaint (&symfile_complaints,
11082 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11083 "DIE 0x%x [in module %s]"),
11084 paddress (gdbarch, pc), die->offset.sect_off,
11085 objfile_name (objfile));
11086 return;
11087 }
11088
11089 /* Count parameters at the caller. */
11090
11091 nparams = 0;
11092 for (child_die = die->child; child_die && child_die->tag;
11093 child_die = sibling_die (child_die))
11094 {
11095 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11096 {
11097 complaint (&symfile_complaints,
11098 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11099 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11100 child_die->tag, child_die->offset.sect_off,
11101 objfile_name (objfile));
11102 continue;
11103 }
11104
11105 nparams++;
11106 }
11107
11108 call_site = obstack_alloc (&objfile->objfile_obstack,
11109 (sizeof (*call_site)
11110 + (sizeof (*call_site->parameter)
11111 * (nparams - 1))));
11112 *slot = call_site;
11113 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11114 call_site->pc = pc;
11115
11116 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11117 {
11118 struct die_info *func_die;
11119
11120 /* Skip also over DW_TAG_inlined_subroutine. */
11121 for (func_die = die->parent;
11122 func_die && func_die->tag != DW_TAG_subprogram
11123 && func_die->tag != DW_TAG_subroutine_type;
11124 func_die = func_die->parent);
11125
11126 /* DW_AT_GNU_all_call_sites is a superset
11127 of DW_AT_GNU_all_tail_call_sites. */
11128 if (func_die
11129 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11130 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11131 {
11132 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11133 not complete. But keep CALL_SITE for look ups via call_site_htab,
11134 both the initial caller containing the real return address PC and
11135 the final callee containing the current PC of a chain of tail
11136 calls do not need to have the tail call list complete. But any
11137 function candidate for a virtual tail call frame searched via
11138 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11139 determined unambiguously. */
11140 }
11141 else
11142 {
11143 struct type *func_type = NULL;
11144
11145 if (func_die)
11146 func_type = get_die_type (func_die, cu);
11147 if (func_type != NULL)
11148 {
11149 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11150
11151 /* Enlist this call site to the function. */
11152 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11153 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11154 }
11155 else
11156 complaint (&symfile_complaints,
11157 _("Cannot find function owning DW_TAG_GNU_call_site "
11158 "DIE 0x%x [in module %s]"),
11159 die->offset.sect_off, objfile_name (objfile));
11160 }
11161 }
11162
11163 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11164 if (attr == NULL)
11165 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11166 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11167 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11168 /* Keep NULL DWARF_BLOCK. */;
11169 else if (attr_form_is_block (attr))
11170 {
11171 struct dwarf2_locexpr_baton *dlbaton;
11172
11173 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11174 dlbaton->data = DW_BLOCK (attr)->data;
11175 dlbaton->size = DW_BLOCK (attr)->size;
11176 dlbaton->per_cu = cu->per_cu;
11177
11178 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11179 }
11180 else if (attr_form_is_ref (attr))
11181 {
11182 struct dwarf2_cu *target_cu = cu;
11183 struct die_info *target_die;
11184
11185 target_die = follow_die_ref (die, attr, &target_cu);
11186 gdb_assert (target_cu->objfile == objfile);
11187 if (die_is_declaration (target_die, target_cu))
11188 {
11189 const char *target_physname = NULL;
11190 struct attribute *target_attr;
11191
11192 /* Prefer the mangled name; otherwise compute the demangled one. */
11193 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11194 if (target_attr == NULL)
11195 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11196 target_cu);
11197 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11198 target_physname = DW_STRING (target_attr);
11199 else
11200 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11201 if (target_physname == NULL)
11202 complaint (&symfile_complaints,
11203 _("DW_AT_GNU_call_site_target target DIE has invalid "
11204 "physname, for referencing DIE 0x%x [in module %s]"),
11205 die->offset.sect_off, objfile_name (objfile));
11206 else
11207 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11208 }
11209 else
11210 {
11211 CORE_ADDR lowpc;
11212
11213 /* DW_AT_entry_pc should be preferred. */
11214 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11215 complaint (&symfile_complaints,
11216 _("DW_AT_GNU_call_site_target target DIE has invalid "
11217 "low pc, for referencing DIE 0x%x [in module %s]"),
11218 die->offset.sect_off, objfile_name (objfile));
11219 else
11220 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11221 }
11222 }
11223 else
11224 complaint (&symfile_complaints,
11225 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11226 "block nor reference, for DIE 0x%x [in module %s]"),
11227 die->offset.sect_off, objfile_name (objfile));
11228
11229 call_site->per_cu = cu->per_cu;
11230
11231 for (child_die = die->child;
11232 child_die && child_die->tag;
11233 child_die = sibling_die (child_die))
11234 {
11235 struct call_site_parameter *parameter;
11236 struct attribute *loc, *origin;
11237
11238 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11239 {
11240 /* Already printed the complaint above. */
11241 continue;
11242 }
11243
11244 gdb_assert (call_site->parameter_count < nparams);
11245 parameter = &call_site->parameter[call_site->parameter_count];
11246
11247 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11248 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11249 register is contained in DW_AT_GNU_call_site_value. */
11250
11251 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11252 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11253 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11254 {
11255 sect_offset offset;
11256
11257 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11258 offset = dwarf2_get_ref_die_offset (origin);
11259 if (!offset_in_cu_p (&cu->header, offset))
11260 {
11261 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11262 binding can be done only inside one CU. Such referenced DIE
11263 therefore cannot be even moved to DW_TAG_partial_unit. */
11264 complaint (&symfile_complaints,
11265 _("DW_AT_abstract_origin offset is not in CU for "
11266 "DW_TAG_GNU_call_site child DIE 0x%x "
11267 "[in module %s]"),
11268 child_die->offset.sect_off, objfile_name (objfile));
11269 continue;
11270 }
11271 parameter->u.param_offset.cu_off = (offset.sect_off
11272 - cu->header.offset.sect_off);
11273 }
11274 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11275 {
11276 complaint (&symfile_complaints,
11277 _("No DW_FORM_block* DW_AT_location for "
11278 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11279 child_die->offset.sect_off, objfile_name (objfile));
11280 continue;
11281 }
11282 else
11283 {
11284 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11285 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11286 if (parameter->u.dwarf_reg != -1)
11287 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11288 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11289 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11290 &parameter->u.fb_offset))
11291 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11292 else
11293 {
11294 complaint (&symfile_complaints,
11295 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11296 "for DW_FORM_block* DW_AT_location is supported for "
11297 "DW_TAG_GNU_call_site child DIE 0x%x "
11298 "[in module %s]"),
11299 child_die->offset.sect_off, objfile_name (objfile));
11300 continue;
11301 }
11302 }
11303
11304 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11305 if (!attr_form_is_block (attr))
11306 {
11307 complaint (&symfile_complaints,
11308 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11309 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11310 child_die->offset.sect_off, objfile_name (objfile));
11311 continue;
11312 }
11313 parameter->value = DW_BLOCK (attr)->data;
11314 parameter->value_size = DW_BLOCK (attr)->size;
11315
11316 /* Parameters are not pre-cleared by memset above. */
11317 parameter->data_value = NULL;
11318 parameter->data_value_size = 0;
11319 call_site->parameter_count++;
11320
11321 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11322 if (attr)
11323 {
11324 if (!attr_form_is_block (attr))
11325 complaint (&symfile_complaints,
11326 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11327 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11328 child_die->offset.sect_off, objfile_name (objfile));
11329 else
11330 {
11331 parameter->data_value = DW_BLOCK (attr)->data;
11332 parameter->data_value_size = DW_BLOCK (attr)->size;
11333 }
11334 }
11335 }
11336 }
11337
11338 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11339 Return 1 if the attributes are present and valid, otherwise, return 0.
11340 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11341
11342 static int
11343 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11344 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11345 struct partial_symtab *ranges_pst)
11346 {
11347 struct objfile *objfile = cu->objfile;
11348 struct comp_unit_head *cu_header = &cu->header;
11349 bfd *obfd = objfile->obfd;
11350 unsigned int addr_size = cu_header->addr_size;
11351 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11352 /* Base address selection entry. */
11353 CORE_ADDR base;
11354 int found_base;
11355 unsigned int dummy;
11356 const gdb_byte *buffer;
11357 CORE_ADDR marker;
11358 int low_set;
11359 CORE_ADDR low = 0;
11360 CORE_ADDR high = 0;
11361 CORE_ADDR baseaddr;
11362
11363 found_base = cu->base_known;
11364 base = cu->base_address;
11365
11366 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11367 if (offset >= dwarf2_per_objfile->ranges.size)
11368 {
11369 complaint (&symfile_complaints,
11370 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11371 offset);
11372 return 0;
11373 }
11374 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11375
11376 /* Read in the largest possible address. */
11377 marker = read_address (obfd, buffer, cu, &dummy);
11378 if ((marker & mask) == mask)
11379 {
11380 /* If we found the largest possible address, then
11381 read the base address. */
11382 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11383 buffer += 2 * addr_size;
11384 offset += 2 * addr_size;
11385 found_base = 1;
11386 }
11387
11388 low_set = 0;
11389
11390 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11391
11392 while (1)
11393 {
11394 CORE_ADDR range_beginning, range_end;
11395
11396 range_beginning = read_address (obfd, buffer, cu, &dummy);
11397 buffer += addr_size;
11398 range_end = read_address (obfd, buffer, cu, &dummy);
11399 buffer += addr_size;
11400 offset += 2 * addr_size;
11401
11402 /* An end of list marker is a pair of zero addresses. */
11403 if (range_beginning == 0 && range_end == 0)
11404 /* Found the end of list entry. */
11405 break;
11406
11407 /* Each base address selection entry is a pair of 2 values.
11408 The first is the largest possible address, the second is
11409 the base address. Check for a base address here. */
11410 if ((range_beginning & mask) == mask)
11411 {
11412 /* If we found the largest possible address, then
11413 read the base address. */
11414 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11415 found_base = 1;
11416 continue;
11417 }
11418
11419 if (!found_base)
11420 {
11421 /* We have no valid base address for the ranges
11422 data. */
11423 complaint (&symfile_complaints,
11424 _("Invalid .debug_ranges data (no base address)"));
11425 return 0;
11426 }
11427
11428 if (range_beginning > range_end)
11429 {
11430 /* Inverted range entries are invalid. */
11431 complaint (&symfile_complaints,
11432 _("Invalid .debug_ranges data (inverted range)"));
11433 return 0;
11434 }
11435
11436 /* Empty range entries have no effect. */
11437 if (range_beginning == range_end)
11438 continue;
11439
11440 range_beginning += base;
11441 range_end += base;
11442
11443 /* A not-uncommon case of bad debug info.
11444 Don't pollute the addrmap with bad data. */
11445 if (range_beginning + baseaddr == 0
11446 && !dwarf2_per_objfile->has_section_at_zero)
11447 {
11448 complaint (&symfile_complaints,
11449 _(".debug_ranges entry has start address of zero"
11450 " [in module %s]"), objfile_name (objfile));
11451 continue;
11452 }
11453
11454 if (ranges_pst != NULL)
11455 addrmap_set_empty (objfile->psymtabs_addrmap,
11456 range_beginning + baseaddr,
11457 range_end - 1 + baseaddr,
11458 ranges_pst);
11459
11460 /* FIXME: This is recording everything as a low-high
11461 segment of consecutive addresses. We should have a
11462 data structure for discontiguous block ranges
11463 instead. */
11464 if (! low_set)
11465 {
11466 low = range_beginning;
11467 high = range_end;
11468 low_set = 1;
11469 }
11470 else
11471 {
11472 if (range_beginning < low)
11473 low = range_beginning;
11474 if (range_end > high)
11475 high = range_end;
11476 }
11477 }
11478
11479 if (! low_set)
11480 /* If the first entry is an end-of-list marker, the range
11481 describes an empty scope, i.e. no instructions. */
11482 return 0;
11483
11484 if (low_return)
11485 *low_return = low;
11486 if (high_return)
11487 *high_return = high;
11488 return 1;
11489 }
11490
11491 /* Get low and high pc attributes from a die. Return 1 if the attributes
11492 are present and valid, otherwise, return 0. Return -1 if the range is
11493 discontinuous, i.e. derived from DW_AT_ranges information. */
11494
11495 static int
11496 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11497 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11498 struct partial_symtab *pst)
11499 {
11500 struct attribute *attr;
11501 struct attribute *attr_high;
11502 CORE_ADDR low = 0;
11503 CORE_ADDR high = 0;
11504 int ret = 0;
11505
11506 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11507 if (attr_high)
11508 {
11509 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11510 if (attr)
11511 {
11512 low = DW_ADDR (attr);
11513 if (attr_high->form == DW_FORM_addr
11514 || attr_high->form == DW_FORM_GNU_addr_index)
11515 high = DW_ADDR (attr_high);
11516 else
11517 high = low + DW_UNSND (attr_high);
11518 }
11519 else
11520 /* Found high w/o low attribute. */
11521 return 0;
11522
11523 /* Found consecutive range of addresses. */
11524 ret = 1;
11525 }
11526 else
11527 {
11528 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11529 if (attr != NULL)
11530 {
11531 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11532 We take advantage of the fact that DW_AT_ranges does not appear
11533 in DW_TAG_compile_unit of DWO files. */
11534 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11535 unsigned int ranges_offset = (DW_UNSND (attr)
11536 + (need_ranges_base
11537 ? cu->ranges_base
11538 : 0));
11539
11540 /* Value of the DW_AT_ranges attribute is the offset in the
11541 .debug_ranges section. */
11542 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11543 return 0;
11544 /* Found discontinuous range of addresses. */
11545 ret = -1;
11546 }
11547 }
11548
11549 /* read_partial_die has also the strict LOW < HIGH requirement. */
11550 if (high <= low)
11551 return 0;
11552
11553 /* When using the GNU linker, .gnu.linkonce. sections are used to
11554 eliminate duplicate copies of functions and vtables and such.
11555 The linker will arbitrarily choose one and discard the others.
11556 The AT_*_pc values for such functions refer to local labels in
11557 these sections. If the section from that file was discarded, the
11558 labels are not in the output, so the relocs get a value of 0.
11559 If this is a discarded function, mark the pc bounds as invalid,
11560 so that GDB will ignore it. */
11561 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11562 return 0;
11563
11564 *lowpc = low;
11565 if (highpc)
11566 *highpc = high;
11567 return ret;
11568 }
11569
11570 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11571 its low and high PC addresses. Do nothing if these addresses could not
11572 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11573 and HIGHPC to the high address if greater than HIGHPC. */
11574
11575 static void
11576 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11577 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11578 struct dwarf2_cu *cu)
11579 {
11580 CORE_ADDR low, high;
11581 struct die_info *child = die->child;
11582
11583 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11584 {
11585 *lowpc = min (*lowpc, low);
11586 *highpc = max (*highpc, high);
11587 }
11588
11589 /* If the language does not allow nested subprograms (either inside
11590 subprograms or lexical blocks), we're done. */
11591 if (cu->language != language_ada)
11592 return;
11593
11594 /* Check all the children of the given DIE. If it contains nested
11595 subprograms, then check their pc bounds. Likewise, we need to
11596 check lexical blocks as well, as they may also contain subprogram
11597 definitions. */
11598 while (child && child->tag)
11599 {
11600 if (child->tag == DW_TAG_subprogram
11601 || child->tag == DW_TAG_lexical_block)
11602 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11603 child = sibling_die (child);
11604 }
11605 }
11606
11607 /* Get the low and high pc's represented by the scope DIE, and store
11608 them in *LOWPC and *HIGHPC. If the correct values can't be
11609 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11610
11611 static void
11612 get_scope_pc_bounds (struct die_info *die,
11613 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11614 struct dwarf2_cu *cu)
11615 {
11616 CORE_ADDR best_low = (CORE_ADDR) -1;
11617 CORE_ADDR best_high = (CORE_ADDR) 0;
11618 CORE_ADDR current_low, current_high;
11619
11620 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11621 {
11622 best_low = current_low;
11623 best_high = current_high;
11624 }
11625 else
11626 {
11627 struct die_info *child = die->child;
11628
11629 while (child && child->tag)
11630 {
11631 switch (child->tag) {
11632 case DW_TAG_subprogram:
11633 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11634 break;
11635 case DW_TAG_namespace:
11636 case DW_TAG_module:
11637 /* FIXME: carlton/2004-01-16: Should we do this for
11638 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11639 that current GCC's always emit the DIEs corresponding
11640 to definitions of methods of classes as children of a
11641 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11642 the DIEs giving the declarations, which could be
11643 anywhere). But I don't see any reason why the
11644 standards says that they have to be there. */
11645 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11646
11647 if (current_low != ((CORE_ADDR) -1))
11648 {
11649 best_low = min (best_low, current_low);
11650 best_high = max (best_high, current_high);
11651 }
11652 break;
11653 default:
11654 /* Ignore. */
11655 break;
11656 }
11657
11658 child = sibling_die (child);
11659 }
11660 }
11661
11662 *lowpc = best_low;
11663 *highpc = best_high;
11664 }
11665
11666 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11667 in DIE. */
11668
11669 static void
11670 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11671 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11672 {
11673 struct objfile *objfile = cu->objfile;
11674 struct attribute *attr;
11675 struct attribute *attr_high;
11676
11677 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11678 if (attr_high)
11679 {
11680 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11681 if (attr)
11682 {
11683 CORE_ADDR low = DW_ADDR (attr);
11684 CORE_ADDR high;
11685 if (attr_high->form == DW_FORM_addr
11686 || attr_high->form == DW_FORM_GNU_addr_index)
11687 high = DW_ADDR (attr_high);
11688 else
11689 high = low + DW_UNSND (attr_high);
11690
11691 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11692 }
11693 }
11694
11695 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11696 if (attr)
11697 {
11698 bfd *obfd = objfile->obfd;
11699 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11700 We take advantage of the fact that DW_AT_ranges does not appear
11701 in DW_TAG_compile_unit of DWO files. */
11702 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11703
11704 /* The value of the DW_AT_ranges attribute is the offset of the
11705 address range list in the .debug_ranges section. */
11706 unsigned long offset = (DW_UNSND (attr)
11707 + (need_ranges_base ? cu->ranges_base : 0));
11708 const gdb_byte *buffer;
11709
11710 /* For some target architectures, but not others, the
11711 read_address function sign-extends the addresses it returns.
11712 To recognize base address selection entries, we need a
11713 mask. */
11714 unsigned int addr_size = cu->header.addr_size;
11715 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11716
11717 /* The base address, to which the next pair is relative. Note
11718 that this 'base' is a DWARF concept: most entries in a range
11719 list are relative, to reduce the number of relocs against the
11720 debugging information. This is separate from this function's
11721 'baseaddr' argument, which GDB uses to relocate debugging
11722 information from a shared library based on the address at
11723 which the library was loaded. */
11724 CORE_ADDR base = cu->base_address;
11725 int base_known = cu->base_known;
11726
11727 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11728 if (offset >= dwarf2_per_objfile->ranges.size)
11729 {
11730 complaint (&symfile_complaints,
11731 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11732 offset);
11733 return;
11734 }
11735 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11736
11737 for (;;)
11738 {
11739 unsigned int bytes_read;
11740 CORE_ADDR start, end;
11741
11742 start = read_address (obfd, buffer, cu, &bytes_read);
11743 buffer += bytes_read;
11744 end = read_address (obfd, buffer, cu, &bytes_read);
11745 buffer += bytes_read;
11746
11747 /* Did we find the end of the range list? */
11748 if (start == 0 && end == 0)
11749 break;
11750
11751 /* Did we find a base address selection entry? */
11752 else if ((start & base_select_mask) == base_select_mask)
11753 {
11754 base = end;
11755 base_known = 1;
11756 }
11757
11758 /* We found an ordinary address range. */
11759 else
11760 {
11761 if (!base_known)
11762 {
11763 complaint (&symfile_complaints,
11764 _("Invalid .debug_ranges data "
11765 "(no base address)"));
11766 return;
11767 }
11768
11769 if (start > end)
11770 {
11771 /* Inverted range entries are invalid. */
11772 complaint (&symfile_complaints,
11773 _("Invalid .debug_ranges data "
11774 "(inverted range)"));
11775 return;
11776 }
11777
11778 /* Empty range entries have no effect. */
11779 if (start == end)
11780 continue;
11781
11782 start += base + baseaddr;
11783 end += base + baseaddr;
11784
11785 /* A not-uncommon case of bad debug info.
11786 Don't pollute the addrmap with bad data. */
11787 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11788 {
11789 complaint (&symfile_complaints,
11790 _(".debug_ranges entry has start address of zero"
11791 " [in module %s]"), objfile_name (objfile));
11792 continue;
11793 }
11794
11795 record_block_range (block, start, end - 1);
11796 }
11797 }
11798 }
11799 }
11800
11801 /* Check whether the producer field indicates either of GCC < 4.6, or the
11802 Intel C/C++ compiler, and cache the result in CU. */
11803
11804 static void
11805 check_producer (struct dwarf2_cu *cu)
11806 {
11807 const char *cs;
11808 int major, minor, release;
11809
11810 if (cu->producer == NULL)
11811 {
11812 /* For unknown compilers expect their behavior is DWARF version
11813 compliant.
11814
11815 GCC started to support .debug_types sections by -gdwarf-4 since
11816 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11817 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11818 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11819 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11820 }
11821 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11822 {
11823 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11824
11825 cs = &cu->producer[strlen ("GNU ")];
11826 while (*cs && !isdigit (*cs))
11827 cs++;
11828 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11829 {
11830 /* Not recognized as GCC. */
11831 }
11832 else
11833 {
11834 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11835 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11836 }
11837 }
11838 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11839 cu->producer_is_icc = 1;
11840 else
11841 {
11842 /* For other non-GCC compilers, expect their behavior is DWARF version
11843 compliant. */
11844 }
11845
11846 cu->checked_producer = 1;
11847 }
11848
11849 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11850 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11851 during 4.6.0 experimental. */
11852
11853 static int
11854 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11855 {
11856 if (!cu->checked_producer)
11857 check_producer (cu);
11858
11859 return cu->producer_is_gxx_lt_4_6;
11860 }
11861
11862 /* Return the default accessibility type if it is not overriden by
11863 DW_AT_accessibility. */
11864
11865 static enum dwarf_access_attribute
11866 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11867 {
11868 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11869 {
11870 /* The default DWARF 2 accessibility for members is public, the default
11871 accessibility for inheritance is private. */
11872
11873 if (die->tag != DW_TAG_inheritance)
11874 return DW_ACCESS_public;
11875 else
11876 return DW_ACCESS_private;
11877 }
11878 else
11879 {
11880 /* DWARF 3+ defines the default accessibility a different way. The same
11881 rules apply now for DW_TAG_inheritance as for the members and it only
11882 depends on the container kind. */
11883
11884 if (die->parent->tag == DW_TAG_class_type)
11885 return DW_ACCESS_private;
11886 else
11887 return DW_ACCESS_public;
11888 }
11889 }
11890
11891 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11892 offset. If the attribute was not found return 0, otherwise return
11893 1. If it was found but could not properly be handled, set *OFFSET
11894 to 0. */
11895
11896 static int
11897 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11898 LONGEST *offset)
11899 {
11900 struct attribute *attr;
11901
11902 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11903 if (attr != NULL)
11904 {
11905 *offset = 0;
11906
11907 /* Note that we do not check for a section offset first here.
11908 This is because DW_AT_data_member_location is new in DWARF 4,
11909 so if we see it, we can assume that a constant form is really
11910 a constant and not a section offset. */
11911 if (attr_form_is_constant (attr))
11912 *offset = dwarf2_get_attr_constant_value (attr, 0);
11913 else if (attr_form_is_section_offset (attr))
11914 dwarf2_complex_location_expr_complaint ();
11915 else if (attr_form_is_block (attr))
11916 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11917 else
11918 dwarf2_complex_location_expr_complaint ();
11919
11920 return 1;
11921 }
11922
11923 return 0;
11924 }
11925
11926 /* Add an aggregate field to the field list. */
11927
11928 static void
11929 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11930 struct dwarf2_cu *cu)
11931 {
11932 struct objfile *objfile = cu->objfile;
11933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11934 struct nextfield *new_field;
11935 struct attribute *attr;
11936 struct field *fp;
11937 const char *fieldname = "";
11938
11939 /* Allocate a new field list entry and link it in. */
11940 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11941 make_cleanup (xfree, new_field);
11942 memset (new_field, 0, sizeof (struct nextfield));
11943
11944 if (die->tag == DW_TAG_inheritance)
11945 {
11946 new_field->next = fip->baseclasses;
11947 fip->baseclasses = new_field;
11948 }
11949 else
11950 {
11951 new_field->next = fip->fields;
11952 fip->fields = new_field;
11953 }
11954 fip->nfields++;
11955
11956 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11957 if (attr)
11958 new_field->accessibility = DW_UNSND (attr);
11959 else
11960 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11961 if (new_field->accessibility != DW_ACCESS_public)
11962 fip->non_public_fields = 1;
11963
11964 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11965 if (attr)
11966 new_field->virtuality = DW_UNSND (attr);
11967 else
11968 new_field->virtuality = DW_VIRTUALITY_none;
11969
11970 fp = &new_field->field;
11971
11972 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11973 {
11974 LONGEST offset;
11975
11976 /* Data member other than a C++ static data member. */
11977
11978 /* Get type of field. */
11979 fp->type = die_type (die, cu);
11980
11981 SET_FIELD_BITPOS (*fp, 0);
11982
11983 /* Get bit size of field (zero if none). */
11984 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11985 if (attr)
11986 {
11987 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11988 }
11989 else
11990 {
11991 FIELD_BITSIZE (*fp) = 0;
11992 }
11993
11994 /* Get bit offset of field. */
11995 if (handle_data_member_location (die, cu, &offset))
11996 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11997 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11998 if (attr)
11999 {
12000 if (gdbarch_bits_big_endian (gdbarch))
12001 {
12002 /* For big endian bits, the DW_AT_bit_offset gives the
12003 additional bit offset from the MSB of the containing
12004 anonymous object to the MSB of the field. We don't
12005 have to do anything special since we don't need to
12006 know the size of the anonymous object. */
12007 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12008 }
12009 else
12010 {
12011 /* For little endian bits, compute the bit offset to the
12012 MSB of the anonymous object, subtract off the number of
12013 bits from the MSB of the field to the MSB of the
12014 object, and then subtract off the number of bits of
12015 the field itself. The result is the bit offset of
12016 the LSB of the field. */
12017 int anonymous_size;
12018 int bit_offset = DW_UNSND (attr);
12019
12020 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12021 if (attr)
12022 {
12023 /* The size of the anonymous object containing
12024 the bit field is explicit, so use the
12025 indicated size (in bytes). */
12026 anonymous_size = DW_UNSND (attr);
12027 }
12028 else
12029 {
12030 /* The size of the anonymous object containing
12031 the bit field must be inferred from the type
12032 attribute of the data member containing the
12033 bit field. */
12034 anonymous_size = TYPE_LENGTH (fp->type);
12035 }
12036 SET_FIELD_BITPOS (*fp,
12037 (FIELD_BITPOS (*fp)
12038 + anonymous_size * bits_per_byte
12039 - bit_offset - FIELD_BITSIZE (*fp)));
12040 }
12041 }
12042
12043 /* Get name of field. */
12044 fieldname = dwarf2_name (die, cu);
12045 if (fieldname == NULL)
12046 fieldname = "";
12047
12048 /* The name is already allocated along with this objfile, so we don't
12049 need to duplicate it for the type. */
12050 fp->name = fieldname;
12051
12052 /* Change accessibility for artificial fields (e.g. virtual table
12053 pointer or virtual base class pointer) to private. */
12054 if (dwarf2_attr (die, DW_AT_artificial, cu))
12055 {
12056 FIELD_ARTIFICIAL (*fp) = 1;
12057 new_field->accessibility = DW_ACCESS_private;
12058 fip->non_public_fields = 1;
12059 }
12060 }
12061 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12062 {
12063 /* C++ static member. */
12064
12065 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12066 is a declaration, but all versions of G++ as of this writing
12067 (so through at least 3.2.1) incorrectly generate
12068 DW_TAG_variable tags. */
12069
12070 const char *physname;
12071
12072 /* Get name of field. */
12073 fieldname = dwarf2_name (die, cu);
12074 if (fieldname == NULL)
12075 return;
12076
12077 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12078 if (attr
12079 /* Only create a symbol if this is an external value.
12080 new_symbol checks this and puts the value in the global symbol
12081 table, which we want. If it is not external, new_symbol
12082 will try to put the value in cu->list_in_scope which is wrong. */
12083 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12084 {
12085 /* A static const member, not much different than an enum as far as
12086 we're concerned, except that we can support more types. */
12087 new_symbol (die, NULL, cu);
12088 }
12089
12090 /* Get physical name. */
12091 physname = dwarf2_physname (fieldname, die, cu);
12092
12093 /* The name is already allocated along with this objfile, so we don't
12094 need to duplicate it for the type. */
12095 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12096 FIELD_TYPE (*fp) = die_type (die, cu);
12097 FIELD_NAME (*fp) = fieldname;
12098 }
12099 else if (die->tag == DW_TAG_inheritance)
12100 {
12101 LONGEST offset;
12102
12103 /* C++ base class field. */
12104 if (handle_data_member_location (die, cu, &offset))
12105 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12106 FIELD_BITSIZE (*fp) = 0;
12107 FIELD_TYPE (*fp) = die_type (die, cu);
12108 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12109 fip->nbaseclasses++;
12110 }
12111 }
12112
12113 /* Add a typedef defined in the scope of the FIP's class. */
12114
12115 static void
12116 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12117 struct dwarf2_cu *cu)
12118 {
12119 struct objfile *objfile = cu->objfile;
12120 struct typedef_field_list *new_field;
12121 struct attribute *attr;
12122 struct typedef_field *fp;
12123 char *fieldname = "";
12124
12125 /* Allocate a new field list entry and link it in. */
12126 new_field = xzalloc (sizeof (*new_field));
12127 make_cleanup (xfree, new_field);
12128
12129 gdb_assert (die->tag == DW_TAG_typedef);
12130
12131 fp = &new_field->field;
12132
12133 /* Get name of field. */
12134 fp->name = dwarf2_name (die, cu);
12135 if (fp->name == NULL)
12136 return;
12137
12138 fp->type = read_type_die (die, cu);
12139
12140 new_field->next = fip->typedef_field_list;
12141 fip->typedef_field_list = new_field;
12142 fip->typedef_field_list_count++;
12143 }
12144
12145 /* Create the vector of fields, and attach it to the type. */
12146
12147 static void
12148 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12149 struct dwarf2_cu *cu)
12150 {
12151 int nfields = fip->nfields;
12152
12153 /* Record the field count, allocate space for the array of fields,
12154 and create blank accessibility bitfields if necessary. */
12155 TYPE_NFIELDS (type) = nfields;
12156 TYPE_FIELDS (type) = (struct field *)
12157 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12158 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12159
12160 if (fip->non_public_fields && cu->language != language_ada)
12161 {
12162 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12163
12164 TYPE_FIELD_PRIVATE_BITS (type) =
12165 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12166 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12167
12168 TYPE_FIELD_PROTECTED_BITS (type) =
12169 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12170 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12171
12172 TYPE_FIELD_IGNORE_BITS (type) =
12173 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12174 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12175 }
12176
12177 /* If the type has baseclasses, allocate and clear a bit vector for
12178 TYPE_FIELD_VIRTUAL_BITS. */
12179 if (fip->nbaseclasses && cu->language != language_ada)
12180 {
12181 int num_bytes = B_BYTES (fip->nbaseclasses);
12182 unsigned char *pointer;
12183
12184 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12185 pointer = TYPE_ALLOC (type, num_bytes);
12186 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12187 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12188 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12189 }
12190
12191 /* Copy the saved-up fields into the field vector. Start from the head of
12192 the list, adding to the tail of the field array, so that they end up in
12193 the same order in the array in which they were added to the list. */
12194 while (nfields-- > 0)
12195 {
12196 struct nextfield *fieldp;
12197
12198 if (fip->fields)
12199 {
12200 fieldp = fip->fields;
12201 fip->fields = fieldp->next;
12202 }
12203 else
12204 {
12205 fieldp = fip->baseclasses;
12206 fip->baseclasses = fieldp->next;
12207 }
12208
12209 TYPE_FIELD (type, nfields) = fieldp->field;
12210 switch (fieldp->accessibility)
12211 {
12212 case DW_ACCESS_private:
12213 if (cu->language != language_ada)
12214 SET_TYPE_FIELD_PRIVATE (type, nfields);
12215 break;
12216
12217 case DW_ACCESS_protected:
12218 if (cu->language != language_ada)
12219 SET_TYPE_FIELD_PROTECTED (type, nfields);
12220 break;
12221
12222 case DW_ACCESS_public:
12223 break;
12224
12225 default:
12226 /* Unknown accessibility. Complain and treat it as public. */
12227 {
12228 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12229 fieldp->accessibility);
12230 }
12231 break;
12232 }
12233 if (nfields < fip->nbaseclasses)
12234 {
12235 switch (fieldp->virtuality)
12236 {
12237 case DW_VIRTUALITY_virtual:
12238 case DW_VIRTUALITY_pure_virtual:
12239 if (cu->language == language_ada)
12240 error (_("unexpected virtuality in component of Ada type"));
12241 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12242 break;
12243 }
12244 }
12245 }
12246 }
12247
12248 /* Return true if this member function is a constructor, false
12249 otherwise. */
12250
12251 static int
12252 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12253 {
12254 const char *fieldname;
12255 const char *typename;
12256 int len;
12257
12258 if (die->parent == NULL)
12259 return 0;
12260
12261 if (die->parent->tag != DW_TAG_structure_type
12262 && die->parent->tag != DW_TAG_union_type
12263 && die->parent->tag != DW_TAG_class_type)
12264 return 0;
12265
12266 fieldname = dwarf2_name (die, cu);
12267 typename = dwarf2_name (die->parent, cu);
12268 if (fieldname == NULL || typename == NULL)
12269 return 0;
12270
12271 len = strlen (fieldname);
12272 return (strncmp (fieldname, typename, len) == 0
12273 && (typename[len] == '\0' || typename[len] == '<'));
12274 }
12275
12276 /* Add a member function to the proper fieldlist. */
12277
12278 static void
12279 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12280 struct type *type, struct dwarf2_cu *cu)
12281 {
12282 struct objfile *objfile = cu->objfile;
12283 struct attribute *attr;
12284 struct fnfieldlist *flp;
12285 int i;
12286 struct fn_field *fnp;
12287 const char *fieldname;
12288 struct nextfnfield *new_fnfield;
12289 struct type *this_type;
12290 enum dwarf_access_attribute accessibility;
12291
12292 if (cu->language == language_ada)
12293 error (_("unexpected member function in Ada type"));
12294
12295 /* Get name of member function. */
12296 fieldname = dwarf2_name (die, cu);
12297 if (fieldname == NULL)
12298 return;
12299
12300 /* Look up member function name in fieldlist. */
12301 for (i = 0; i < fip->nfnfields; i++)
12302 {
12303 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12304 break;
12305 }
12306
12307 /* Create new list element if necessary. */
12308 if (i < fip->nfnfields)
12309 flp = &fip->fnfieldlists[i];
12310 else
12311 {
12312 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12313 {
12314 fip->fnfieldlists = (struct fnfieldlist *)
12315 xrealloc (fip->fnfieldlists,
12316 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12317 * sizeof (struct fnfieldlist));
12318 if (fip->nfnfields == 0)
12319 make_cleanup (free_current_contents, &fip->fnfieldlists);
12320 }
12321 flp = &fip->fnfieldlists[fip->nfnfields];
12322 flp->name = fieldname;
12323 flp->length = 0;
12324 flp->head = NULL;
12325 i = fip->nfnfields++;
12326 }
12327
12328 /* Create a new member function field and chain it to the field list
12329 entry. */
12330 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12331 make_cleanup (xfree, new_fnfield);
12332 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12333 new_fnfield->next = flp->head;
12334 flp->head = new_fnfield;
12335 flp->length++;
12336
12337 /* Fill in the member function field info. */
12338 fnp = &new_fnfield->fnfield;
12339
12340 /* Delay processing of the physname until later. */
12341 if (cu->language == language_cplus || cu->language == language_java)
12342 {
12343 add_to_method_list (type, i, flp->length - 1, fieldname,
12344 die, cu);
12345 }
12346 else
12347 {
12348 const char *physname = dwarf2_physname (fieldname, die, cu);
12349 fnp->physname = physname ? physname : "";
12350 }
12351
12352 fnp->type = alloc_type (objfile);
12353 this_type = read_type_die (die, cu);
12354 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12355 {
12356 int nparams = TYPE_NFIELDS (this_type);
12357
12358 /* TYPE is the domain of this method, and THIS_TYPE is the type
12359 of the method itself (TYPE_CODE_METHOD). */
12360 smash_to_method_type (fnp->type, type,
12361 TYPE_TARGET_TYPE (this_type),
12362 TYPE_FIELDS (this_type),
12363 TYPE_NFIELDS (this_type),
12364 TYPE_VARARGS (this_type));
12365
12366 /* Handle static member functions.
12367 Dwarf2 has no clean way to discern C++ static and non-static
12368 member functions. G++ helps GDB by marking the first
12369 parameter for non-static member functions (which is the this
12370 pointer) as artificial. We obtain this information from
12371 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12372 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12373 fnp->voffset = VOFFSET_STATIC;
12374 }
12375 else
12376 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12377 dwarf2_full_name (fieldname, die, cu));
12378
12379 /* Get fcontext from DW_AT_containing_type if present. */
12380 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12381 fnp->fcontext = die_containing_type (die, cu);
12382
12383 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12384 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12385
12386 /* Get accessibility. */
12387 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12388 if (attr)
12389 accessibility = DW_UNSND (attr);
12390 else
12391 accessibility = dwarf2_default_access_attribute (die, cu);
12392 switch (accessibility)
12393 {
12394 case DW_ACCESS_private:
12395 fnp->is_private = 1;
12396 break;
12397 case DW_ACCESS_protected:
12398 fnp->is_protected = 1;
12399 break;
12400 }
12401
12402 /* Check for artificial methods. */
12403 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12404 if (attr && DW_UNSND (attr) != 0)
12405 fnp->is_artificial = 1;
12406
12407 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12408
12409 /* Get index in virtual function table if it is a virtual member
12410 function. For older versions of GCC, this is an offset in the
12411 appropriate virtual table, as specified by DW_AT_containing_type.
12412 For everyone else, it is an expression to be evaluated relative
12413 to the object address. */
12414
12415 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12416 if (attr)
12417 {
12418 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12419 {
12420 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12421 {
12422 /* Old-style GCC. */
12423 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12424 }
12425 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12426 || (DW_BLOCK (attr)->size > 1
12427 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12428 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12429 {
12430 struct dwarf_block blk;
12431 int offset;
12432
12433 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12434 ? 1 : 2);
12435 blk.size = DW_BLOCK (attr)->size - offset;
12436 blk.data = DW_BLOCK (attr)->data + offset;
12437 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12438 if ((fnp->voffset % cu->header.addr_size) != 0)
12439 dwarf2_complex_location_expr_complaint ();
12440 else
12441 fnp->voffset /= cu->header.addr_size;
12442 fnp->voffset += 2;
12443 }
12444 else
12445 dwarf2_complex_location_expr_complaint ();
12446
12447 if (!fnp->fcontext)
12448 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12449 }
12450 else if (attr_form_is_section_offset (attr))
12451 {
12452 dwarf2_complex_location_expr_complaint ();
12453 }
12454 else
12455 {
12456 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12457 fieldname);
12458 }
12459 }
12460 else
12461 {
12462 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12463 if (attr && DW_UNSND (attr))
12464 {
12465 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12466 complaint (&symfile_complaints,
12467 _("Member function \"%s\" (offset %d) is virtual "
12468 "but the vtable offset is not specified"),
12469 fieldname, die->offset.sect_off);
12470 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12471 TYPE_CPLUS_DYNAMIC (type) = 1;
12472 }
12473 }
12474 }
12475
12476 /* Create the vector of member function fields, and attach it to the type. */
12477
12478 static void
12479 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12480 struct dwarf2_cu *cu)
12481 {
12482 struct fnfieldlist *flp;
12483 int i;
12484
12485 if (cu->language == language_ada)
12486 error (_("unexpected member functions in Ada type"));
12487
12488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12489 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12490 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12491
12492 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12493 {
12494 struct nextfnfield *nfp = flp->head;
12495 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12496 int k;
12497
12498 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12499 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12500 fn_flp->fn_fields = (struct fn_field *)
12501 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12502 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12503 fn_flp->fn_fields[k] = nfp->fnfield;
12504 }
12505
12506 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12507 }
12508
12509 /* Returns non-zero if NAME is the name of a vtable member in CU's
12510 language, zero otherwise. */
12511 static int
12512 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12513 {
12514 static const char vptr[] = "_vptr";
12515 static const char vtable[] = "vtable";
12516
12517 /* Look for the C++ and Java forms of the vtable. */
12518 if ((cu->language == language_java
12519 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12520 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12521 && is_cplus_marker (name[sizeof (vptr) - 1])))
12522 return 1;
12523
12524 return 0;
12525 }
12526
12527 /* GCC outputs unnamed structures that are really pointers to member
12528 functions, with the ABI-specified layout. If TYPE describes
12529 such a structure, smash it into a member function type.
12530
12531 GCC shouldn't do this; it should just output pointer to member DIEs.
12532 This is GCC PR debug/28767. */
12533
12534 static void
12535 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12536 {
12537 struct type *pfn_type, *domain_type, *new_type;
12538
12539 /* Check for a structure with no name and two children. */
12540 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12541 return;
12542
12543 /* Check for __pfn and __delta members. */
12544 if (TYPE_FIELD_NAME (type, 0) == NULL
12545 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12546 || TYPE_FIELD_NAME (type, 1) == NULL
12547 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12548 return;
12549
12550 /* Find the type of the method. */
12551 pfn_type = TYPE_FIELD_TYPE (type, 0);
12552 if (pfn_type == NULL
12553 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12554 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12555 return;
12556
12557 /* Look for the "this" argument. */
12558 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12559 if (TYPE_NFIELDS (pfn_type) == 0
12560 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12561 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12562 return;
12563
12564 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12565 new_type = alloc_type (objfile);
12566 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12567 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12568 TYPE_VARARGS (pfn_type));
12569 smash_to_methodptr_type (type, new_type);
12570 }
12571
12572 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12573 (icc). */
12574
12575 static int
12576 producer_is_icc (struct dwarf2_cu *cu)
12577 {
12578 if (!cu->checked_producer)
12579 check_producer (cu);
12580
12581 return cu->producer_is_icc;
12582 }
12583
12584 /* Called when we find the DIE that starts a structure or union scope
12585 (definition) to create a type for the structure or union. Fill in
12586 the type's name and general properties; the members will not be
12587 processed until process_structure_scope.
12588
12589 NOTE: we need to call these functions regardless of whether or not the
12590 DIE has a DW_AT_name attribute, since it might be an anonymous
12591 structure or union. This gets the type entered into our set of
12592 user defined types.
12593
12594 However, if the structure is incomplete (an opaque struct/union)
12595 then suppress creating a symbol table entry for it since gdb only
12596 wants to find the one with the complete definition. Note that if
12597 it is complete, we just call new_symbol, which does it's own
12598 checking about whether the struct/union is anonymous or not (and
12599 suppresses creating a symbol table entry itself). */
12600
12601 static struct type *
12602 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12603 {
12604 struct objfile *objfile = cu->objfile;
12605 struct type *type;
12606 struct attribute *attr;
12607 const char *name;
12608
12609 /* If the definition of this type lives in .debug_types, read that type.
12610 Don't follow DW_AT_specification though, that will take us back up
12611 the chain and we want to go down. */
12612 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12613 if (attr)
12614 {
12615 type = get_DW_AT_signature_type (die, attr, cu);
12616
12617 /* The type's CU may not be the same as CU.
12618 Ensure TYPE is recorded with CU in die_type_hash. */
12619 return set_die_type (die, type, cu);
12620 }
12621
12622 type = alloc_type (objfile);
12623 INIT_CPLUS_SPECIFIC (type);
12624
12625 name = dwarf2_name (die, cu);
12626 if (name != NULL)
12627 {
12628 if (cu->language == language_cplus
12629 || cu->language == language_java)
12630 {
12631 const char *full_name = dwarf2_full_name (name, die, cu);
12632
12633 /* dwarf2_full_name might have already finished building the DIE's
12634 type. If so, there is no need to continue. */
12635 if (get_die_type (die, cu) != NULL)
12636 return get_die_type (die, cu);
12637
12638 TYPE_TAG_NAME (type) = full_name;
12639 if (die->tag == DW_TAG_structure_type
12640 || die->tag == DW_TAG_class_type)
12641 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12642 }
12643 else
12644 {
12645 /* The name is already allocated along with this objfile, so
12646 we don't need to duplicate it for the type. */
12647 TYPE_TAG_NAME (type) = name;
12648 if (die->tag == DW_TAG_class_type)
12649 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12650 }
12651 }
12652
12653 if (die->tag == DW_TAG_structure_type)
12654 {
12655 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12656 }
12657 else if (die->tag == DW_TAG_union_type)
12658 {
12659 TYPE_CODE (type) = TYPE_CODE_UNION;
12660 }
12661 else
12662 {
12663 TYPE_CODE (type) = TYPE_CODE_CLASS;
12664 }
12665
12666 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12667 TYPE_DECLARED_CLASS (type) = 1;
12668
12669 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12670 if (attr)
12671 {
12672 TYPE_LENGTH (type) = DW_UNSND (attr);
12673 }
12674 else
12675 {
12676 TYPE_LENGTH (type) = 0;
12677 }
12678
12679 if (producer_is_icc (cu))
12680 {
12681 /* ICC does not output the required DW_AT_declaration
12682 on incomplete types, but gives them a size of zero. */
12683 }
12684 else
12685 TYPE_STUB_SUPPORTED (type) = 1;
12686
12687 if (die_is_declaration (die, cu))
12688 TYPE_STUB (type) = 1;
12689 else if (attr == NULL && die->child == NULL
12690 && producer_is_realview (cu->producer))
12691 /* RealView does not output the required DW_AT_declaration
12692 on incomplete types. */
12693 TYPE_STUB (type) = 1;
12694
12695 /* We need to add the type field to the die immediately so we don't
12696 infinitely recurse when dealing with pointers to the structure
12697 type within the structure itself. */
12698 set_die_type (die, type, cu);
12699
12700 /* set_die_type should be already done. */
12701 set_descriptive_type (type, die, cu);
12702
12703 return type;
12704 }
12705
12706 /* Finish creating a structure or union type, including filling in
12707 its members and creating a symbol for it. */
12708
12709 static void
12710 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12711 {
12712 struct objfile *objfile = cu->objfile;
12713 struct die_info *child_die = die->child;
12714 struct type *type;
12715
12716 type = get_die_type (die, cu);
12717 if (type == NULL)
12718 type = read_structure_type (die, cu);
12719
12720 if (die->child != NULL && ! die_is_declaration (die, cu))
12721 {
12722 struct field_info fi;
12723 struct die_info *child_die;
12724 VEC (symbolp) *template_args = NULL;
12725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12726
12727 memset (&fi, 0, sizeof (struct field_info));
12728
12729 child_die = die->child;
12730
12731 while (child_die && child_die->tag)
12732 {
12733 if (child_die->tag == DW_TAG_member
12734 || child_die->tag == DW_TAG_variable)
12735 {
12736 /* NOTE: carlton/2002-11-05: A C++ static data member
12737 should be a DW_TAG_member that is a declaration, but
12738 all versions of G++ as of this writing (so through at
12739 least 3.2.1) incorrectly generate DW_TAG_variable
12740 tags for them instead. */
12741 dwarf2_add_field (&fi, child_die, cu);
12742 }
12743 else if (child_die->tag == DW_TAG_subprogram)
12744 {
12745 /* C++ member function. */
12746 dwarf2_add_member_fn (&fi, child_die, type, cu);
12747 }
12748 else if (child_die->tag == DW_TAG_inheritance)
12749 {
12750 /* C++ base class field. */
12751 dwarf2_add_field (&fi, child_die, cu);
12752 }
12753 else if (child_die->tag == DW_TAG_typedef)
12754 dwarf2_add_typedef (&fi, child_die, cu);
12755 else if (child_die->tag == DW_TAG_template_type_param
12756 || child_die->tag == DW_TAG_template_value_param)
12757 {
12758 struct symbol *arg = new_symbol (child_die, NULL, cu);
12759
12760 if (arg != NULL)
12761 VEC_safe_push (symbolp, template_args, arg);
12762 }
12763
12764 child_die = sibling_die (child_die);
12765 }
12766
12767 /* Attach template arguments to type. */
12768 if (! VEC_empty (symbolp, template_args))
12769 {
12770 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12771 TYPE_N_TEMPLATE_ARGUMENTS (type)
12772 = VEC_length (symbolp, template_args);
12773 TYPE_TEMPLATE_ARGUMENTS (type)
12774 = obstack_alloc (&objfile->objfile_obstack,
12775 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12776 * sizeof (struct symbol *)));
12777 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12778 VEC_address (symbolp, template_args),
12779 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12780 * sizeof (struct symbol *)));
12781 VEC_free (symbolp, template_args);
12782 }
12783
12784 /* Attach fields and member functions to the type. */
12785 if (fi.nfields)
12786 dwarf2_attach_fields_to_type (&fi, type, cu);
12787 if (fi.nfnfields)
12788 {
12789 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12790
12791 /* Get the type which refers to the base class (possibly this
12792 class itself) which contains the vtable pointer for the current
12793 class from the DW_AT_containing_type attribute. This use of
12794 DW_AT_containing_type is a GNU extension. */
12795
12796 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12797 {
12798 struct type *t = die_containing_type (die, cu);
12799
12800 TYPE_VPTR_BASETYPE (type) = t;
12801 if (type == t)
12802 {
12803 int i;
12804
12805 /* Our own class provides vtbl ptr. */
12806 for (i = TYPE_NFIELDS (t) - 1;
12807 i >= TYPE_N_BASECLASSES (t);
12808 --i)
12809 {
12810 const char *fieldname = TYPE_FIELD_NAME (t, i);
12811
12812 if (is_vtable_name (fieldname, cu))
12813 {
12814 TYPE_VPTR_FIELDNO (type) = i;
12815 break;
12816 }
12817 }
12818
12819 /* Complain if virtual function table field not found. */
12820 if (i < TYPE_N_BASECLASSES (t))
12821 complaint (&symfile_complaints,
12822 _("virtual function table pointer "
12823 "not found when defining class '%s'"),
12824 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12825 "");
12826 }
12827 else
12828 {
12829 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12830 }
12831 }
12832 else if (cu->producer
12833 && strncmp (cu->producer,
12834 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12835 {
12836 /* The IBM XLC compiler does not provide direct indication
12837 of the containing type, but the vtable pointer is
12838 always named __vfp. */
12839
12840 int i;
12841
12842 for (i = TYPE_NFIELDS (type) - 1;
12843 i >= TYPE_N_BASECLASSES (type);
12844 --i)
12845 {
12846 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12847 {
12848 TYPE_VPTR_FIELDNO (type) = i;
12849 TYPE_VPTR_BASETYPE (type) = type;
12850 break;
12851 }
12852 }
12853 }
12854 }
12855
12856 /* Copy fi.typedef_field_list linked list elements content into the
12857 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12858 if (fi.typedef_field_list)
12859 {
12860 int i = fi.typedef_field_list_count;
12861
12862 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12863 TYPE_TYPEDEF_FIELD_ARRAY (type)
12864 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12865 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12866
12867 /* Reverse the list order to keep the debug info elements order. */
12868 while (--i >= 0)
12869 {
12870 struct typedef_field *dest, *src;
12871
12872 dest = &TYPE_TYPEDEF_FIELD (type, i);
12873 src = &fi.typedef_field_list->field;
12874 fi.typedef_field_list = fi.typedef_field_list->next;
12875 *dest = *src;
12876 }
12877 }
12878
12879 do_cleanups (back_to);
12880
12881 if (HAVE_CPLUS_STRUCT (type))
12882 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12883 }
12884
12885 quirk_gcc_member_function_pointer (type, objfile);
12886
12887 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12888 snapshots) has been known to create a die giving a declaration
12889 for a class that has, as a child, a die giving a definition for a
12890 nested class. So we have to process our children even if the
12891 current die is a declaration. Normally, of course, a declaration
12892 won't have any children at all. */
12893
12894 while (child_die != NULL && child_die->tag)
12895 {
12896 if (child_die->tag == DW_TAG_member
12897 || child_die->tag == DW_TAG_variable
12898 || child_die->tag == DW_TAG_inheritance
12899 || child_die->tag == DW_TAG_template_value_param
12900 || child_die->tag == DW_TAG_template_type_param)
12901 {
12902 /* Do nothing. */
12903 }
12904 else
12905 process_die (child_die, cu);
12906
12907 child_die = sibling_die (child_die);
12908 }
12909
12910 /* Do not consider external references. According to the DWARF standard,
12911 these DIEs are identified by the fact that they have no byte_size
12912 attribute, and a declaration attribute. */
12913 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12914 || !die_is_declaration (die, cu))
12915 new_symbol (die, type, cu);
12916 }
12917
12918 /* Given a DW_AT_enumeration_type die, set its type. We do not
12919 complete the type's fields yet, or create any symbols. */
12920
12921 static struct type *
12922 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12923 {
12924 struct objfile *objfile = cu->objfile;
12925 struct type *type;
12926 struct attribute *attr;
12927 const char *name;
12928
12929 /* If the definition of this type lives in .debug_types, read that type.
12930 Don't follow DW_AT_specification though, that will take us back up
12931 the chain and we want to go down. */
12932 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12933 if (attr)
12934 {
12935 type = get_DW_AT_signature_type (die, attr, cu);
12936
12937 /* The type's CU may not be the same as CU.
12938 Ensure TYPE is recorded with CU in die_type_hash. */
12939 return set_die_type (die, type, cu);
12940 }
12941
12942 type = alloc_type (objfile);
12943
12944 TYPE_CODE (type) = TYPE_CODE_ENUM;
12945 name = dwarf2_full_name (NULL, die, cu);
12946 if (name != NULL)
12947 TYPE_TAG_NAME (type) = name;
12948
12949 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12950 if (attr)
12951 {
12952 TYPE_LENGTH (type) = DW_UNSND (attr);
12953 }
12954 else
12955 {
12956 TYPE_LENGTH (type) = 0;
12957 }
12958
12959 /* The enumeration DIE can be incomplete. In Ada, any type can be
12960 declared as private in the package spec, and then defined only
12961 inside the package body. Such types are known as Taft Amendment
12962 Types. When another package uses such a type, an incomplete DIE
12963 may be generated by the compiler. */
12964 if (die_is_declaration (die, cu))
12965 TYPE_STUB (type) = 1;
12966
12967 return set_die_type (die, type, cu);
12968 }
12969
12970 /* Given a pointer to a die which begins an enumeration, process all
12971 the dies that define the members of the enumeration, and create the
12972 symbol for the enumeration type.
12973
12974 NOTE: We reverse the order of the element list. */
12975
12976 static void
12977 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12978 {
12979 struct type *this_type;
12980
12981 this_type = get_die_type (die, cu);
12982 if (this_type == NULL)
12983 this_type = read_enumeration_type (die, cu);
12984
12985 if (die->child != NULL)
12986 {
12987 struct die_info *child_die;
12988 struct symbol *sym;
12989 struct field *fields = NULL;
12990 int num_fields = 0;
12991 int unsigned_enum = 1;
12992 const char *name;
12993 int flag_enum = 1;
12994 ULONGEST mask = 0;
12995
12996 child_die = die->child;
12997 while (child_die && child_die->tag)
12998 {
12999 if (child_die->tag != DW_TAG_enumerator)
13000 {
13001 process_die (child_die, cu);
13002 }
13003 else
13004 {
13005 name = dwarf2_name (child_die, cu);
13006 if (name)
13007 {
13008 sym = new_symbol (child_die, this_type, cu);
13009 if (SYMBOL_VALUE (sym) < 0)
13010 {
13011 unsigned_enum = 0;
13012 flag_enum = 0;
13013 }
13014 else if ((mask & SYMBOL_VALUE (sym)) != 0)
13015 flag_enum = 0;
13016 else
13017 mask |= SYMBOL_VALUE (sym);
13018
13019 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13020 {
13021 fields = (struct field *)
13022 xrealloc (fields,
13023 (num_fields + DW_FIELD_ALLOC_CHUNK)
13024 * sizeof (struct field));
13025 }
13026
13027 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13028 FIELD_TYPE (fields[num_fields]) = NULL;
13029 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13030 FIELD_BITSIZE (fields[num_fields]) = 0;
13031
13032 num_fields++;
13033 }
13034 }
13035
13036 child_die = sibling_die (child_die);
13037 }
13038
13039 if (num_fields)
13040 {
13041 TYPE_NFIELDS (this_type) = num_fields;
13042 TYPE_FIELDS (this_type) = (struct field *)
13043 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13044 memcpy (TYPE_FIELDS (this_type), fields,
13045 sizeof (struct field) * num_fields);
13046 xfree (fields);
13047 }
13048 if (unsigned_enum)
13049 TYPE_UNSIGNED (this_type) = 1;
13050 if (flag_enum)
13051 TYPE_FLAG_ENUM (this_type) = 1;
13052 }
13053
13054 /* If we are reading an enum from a .debug_types unit, and the enum
13055 is a declaration, and the enum is not the signatured type in the
13056 unit, then we do not want to add a symbol for it. Adding a
13057 symbol would in some cases obscure the true definition of the
13058 enum, giving users an incomplete type when the definition is
13059 actually available. Note that we do not want to do this for all
13060 enums which are just declarations, because C++0x allows forward
13061 enum declarations. */
13062 if (cu->per_cu->is_debug_types
13063 && die_is_declaration (die, cu))
13064 {
13065 struct signatured_type *sig_type;
13066
13067 sig_type = (struct signatured_type *) cu->per_cu;
13068 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13069 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13070 return;
13071 }
13072
13073 new_symbol (die, this_type, cu);
13074 }
13075
13076 /* Extract all information from a DW_TAG_array_type DIE and put it in
13077 the DIE's type field. For now, this only handles one dimensional
13078 arrays. */
13079
13080 static struct type *
13081 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13082 {
13083 struct objfile *objfile = cu->objfile;
13084 struct die_info *child_die;
13085 struct type *type;
13086 struct type *element_type, *range_type, *index_type;
13087 struct type **range_types = NULL;
13088 struct attribute *attr;
13089 int ndim = 0;
13090 struct cleanup *back_to;
13091 const char *name;
13092
13093 element_type = die_type (die, cu);
13094
13095 /* The die_type call above may have already set the type for this DIE. */
13096 type = get_die_type (die, cu);
13097 if (type)
13098 return type;
13099
13100 /* Irix 6.2 native cc creates array types without children for
13101 arrays with unspecified length. */
13102 if (die->child == NULL)
13103 {
13104 index_type = objfile_type (objfile)->builtin_int;
13105 range_type = create_range_type (NULL, index_type, 0, -1);
13106 type = create_array_type (NULL, element_type, range_type);
13107 return set_die_type (die, type, cu);
13108 }
13109
13110 back_to = make_cleanup (null_cleanup, NULL);
13111 child_die = die->child;
13112 while (child_die && child_die->tag)
13113 {
13114 if (child_die->tag == DW_TAG_subrange_type)
13115 {
13116 struct type *child_type = read_type_die (child_die, cu);
13117
13118 if (child_type != NULL)
13119 {
13120 /* The range type was succesfully read. Save it for the
13121 array type creation. */
13122 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13123 {
13124 range_types = (struct type **)
13125 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13126 * sizeof (struct type *));
13127 if (ndim == 0)
13128 make_cleanup (free_current_contents, &range_types);
13129 }
13130 range_types[ndim++] = child_type;
13131 }
13132 }
13133 child_die = sibling_die (child_die);
13134 }
13135
13136 /* Dwarf2 dimensions are output from left to right, create the
13137 necessary array types in backwards order. */
13138
13139 type = element_type;
13140
13141 if (read_array_order (die, cu) == DW_ORD_col_major)
13142 {
13143 int i = 0;
13144
13145 while (i < ndim)
13146 type = create_array_type (NULL, type, range_types[i++]);
13147 }
13148 else
13149 {
13150 while (ndim-- > 0)
13151 type = create_array_type (NULL, type, range_types[ndim]);
13152 }
13153
13154 /* Understand Dwarf2 support for vector types (like they occur on
13155 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13156 array type. This is not part of the Dwarf2/3 standard yet, but a
13157 custom vendor extension. The main difference between a regular
13158 array and the vector variant is that vectors are passed by value
13159 to functions. */
13160 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13161 if (attr)
13162 make_vector_type (type);
13163
13164 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13165 implementation may choose to implement triple vectors using this
13166 attribute. */
13167 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13168 if (attr)
13169 {
13170 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13171 TYPE_LENGTH (type) = DW_UNSND (attr);
13172 else
13173 complaint (&symfile_complaints,
13174 _("DW_AT_byte_size for array type smaller "
13175 "than the total size of elements"));
13176 }
13177
13178 name = dwarf2_name (die, cu);
13179 if (name)
13180 TYPE_NAME (type) = name;
13181
13182 /* Install the type in the die. */
13183 set_die_type (die, type, cu);
13184
13185 /* set_die_type should be already done. */
13186 set_descriptive_type (type, die, cu);
13187
13188 do_cleanups (back_to);
13189
13190 return type;
13191 }
13192
13193 static enum dwarf_array_dim_ordering
13194 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13195 {
13196 struct attribute *attr;
13197
13198 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13199
13200 if (attr) return DW_SND (attr);
13201
13202 /* GNU F77 is a special case, as at 08/2004 array type info is the
13203 opposite order to the dwarf2 specification, but data is still
13204 laid out as per normal fortran.
13205
13206 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13207 version checking. */
13208
13209 if (cu->language == language_fortran
13210 && cu->producer && strstr (cu->producer, "GNU F77"))
13211 {
13212 return DW_ORD_row_major;
13213 }
13214
13215 switch (cu->language_defn->la_array_ordering)
13216 {
13217 case array_column_major:
13218 return DW_ORD_col_major;
13219 case array_row_major:
13220 default:
13221 return DW_ORD_row_major;
13222 };
13223 }
13224
13225 /* Extract all information from a DW_TAG_set_type DIE and put it in
13226 the DIE's type field. */
13227
13228 static struct type *
13229 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13230 {
13231 struct type *domain_type, *set_type;
13232 struct attribute *attr;
13233
13234 domain_type = die_type (die, cu);
13235
13236 /* The die_type call above may have already set the type for this DIE. */
13237 set_type = get_die_type (die, cu);
13238 if (set_type)
13239 return set_type;
13240
13241 set_type = create_set_type (NULL, domain_type);
13242
13243 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13244 if (attr)
13245 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13246
13247 return set_die_type (die, set_type, cu);
13248 }
13249
13250 /* A helper for read_common_block that creates a locexpr baton.
13251 SYM is the symbol which we are marking as computed.
13252 COMMON_DIE is the DIE for the common block.
13253 COMMON_LOC is the location expression attribute for the common
13254 block itself.
13255 MEMBER_LOC is the location expression attribute for the particular
13256 member of the common block that we are processing.
13257 CU is the CU from which the above come. */
13258
13259 static void
13260 mark_common_block_symbol_computed (struct symbol *sym,
13261 struct die_info *common_die,
13262 struct attribute *common_loc,
13263 struct attribute *member_loc,
13264 struct dwarf2_cu *cu)
13265 {
13266 struct objfile *objfile = dwarf2_per_objfile->objfile;
13267 struct dwarf2_locexpr_baton *baton;
13268 gdb_byte *ptr;
13269 unsigned int cu_off;
13270 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13271 LONGEST offset = 0;
13272
13273 gdb_assert (common_loc && member_loc);
13274 gdb_assert (attr_form_is_block (common_loc));
13275 gdb_assert (attr_form_is_block (member_loc)
13276 || attr_form_is_constant (member_loc));
13277
13278 baton = obstack_alloc (&objfile->objfile_obstack,
13279 sizeof (struct dwarf2_locexpr_baton));
13280 baton->per_cu = cu->per_cu;
13281 gdb_assert (baton->per_cu);
13282
13283 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13284
13285 if (attr_form_is_constant (member_loc))
13286 {
13287 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13288 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13289 }
13290 else
13291 baton->size += DW_BLOCK (member_loc)->size;
13292
13293 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13294 baton->data = ptr;
13295
13296 *ptr++ = DW_OP_call4;
13297 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13298 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13299 ptr += 4;
13300
13301 if (attr_form_is_constant (member_loc))
13302 {
13303 *ptr++ = DW_OP_addr;
13304 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13305 ptr += cu->header.addr_size;
13306 }
13307 else
13308 {
13309 /* We have to copy the data here, because DW_OP_call4 will only
13310 use a DW_AT_location attribute. */
13311 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13312 ptr += DW_BLOCK (member_loc)->size;
13313 }
13314
13315 *ptr++ = DW_OP_plus;
13316 gdb_assert (ptr - baton->data == baton->size);
13317
13318 SYMBOL_LOCATION_BATON (sym) = baton;
13319 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13320 }
13321
13322 /* Create appropriate locally-scoped variables for all the
13323 DW_TAG_common_block entries. Also create a struct common_block
13324 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13325 is used to sepate the common blocks name namespace from regular
13326 variable names. */
13327
13328 static void
13329 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13330 {
13331 struct attribute *attr;
13332
13333 attr = dwarf2_attr (die, DW_AT_location, cu);
13334 if (attr)
13335 {
13336 /* Support the .debug_loc offsets. */
13337 if (attr_form_is_block (attr))
13338 {
13339 /* Ok. */
13340 }
13341 else if (attr_form_is_section_offset (attr))
13342 {
13343 dwarf2_complex_location_expr_complaint ();
13344 attr = NULL;
13345 }
13346 else
13347 {
13348 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13349 "common block member");
13350 attr = NULL;
13351 }
13352 }
13353
13354 if (die->child != NULL)
13355 {
13356 struct objfile *objfile = cu->objfile;
13357 struct die_info *child_die;
13358 size_t n_entries = 0, size;
13359 struct common_block *common_block;
13360 struct symbol *sym;
13361
13362 for (child_die = die->child;
13363 child_die && child_die->tag;
13364 child_die = sibling_die (child_die))
13365 ++n_entries;
13366
13367 size = (sizeof (struct common_block)
13368 + (n_entries - 1) * sizeof (struct symbol *));
13369 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13370 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13371 common_block->n_entries = 0;
13372
13373 for (child_die = die->child;
13374 child_die && child_die->tag;
13375 child_die = sibling_die (child_die))
13376 {
13377 /* Create the symbol in the DW_TAG_common_block block in the current
13378 symbol scope. */
13379 sym = new_symbol (child_die, NULL, cu);
13380 if (sym != NULL)
13381 {
13382 struct attribute *member_loc;
13383
13384 common_block->contents[common_block->n_entries++] = sym;
13385
13386 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13387 cu);
13388 if (member_loc)
13389 {
13390 /* GDB has handled this for a long time, but it is
13391 not specified by DWARF. It seems to have been
13392 emitted by gfortran at least as recently as:
13393 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13394 complaint (&symfile_complaints,
13395 _("Variable in common block has "
13396 "DW_AT_data_member_location "
13397 "- DIE at 0x%x [in module %s]"),
13398 child_die->offset.sect_off,
13399 objfile_name (cu->objfile));
13400
13401 if (attr_form_is_section_offset (member_loc))
13402 dwarf2_complex_location_expr_complaint ();
13403 else if (attr_form_is_constant (member_loc)
13404 || attr_form_is_block (member_loc))
13405 {
13406 if (attr)
13407 mark_common_block_symbol_computed (sym, die, attr,
13408 member_loc, cu);
13409 }
13410 else
13411 dwarf2_complex_location_expr_complaint ();
13412 }
13413 }
13414 }
13415
13416 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13417 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13418 }
13419 }
13420
13421 /* Create a type for a C++ namespace. */
13422
13423 static struct type *
13424 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13425 {
13426 struct objfile *objfile = cu->objfile;
13427 const char *previous_prefix, *name;
13428 int is_anonymous;
13429 struct type *type;
13430
13431 /* For extensions, reuse the type of the original namespace. */
13432 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13433 {
13434 struct die_info *ext_die;
13435 struct dwarf2_cu *ext_cu = cu;
13436
13437 ext_die = dwarf2_extension (die, &ext_cu);
13438 type = read_type_die (ext_die, ext_cu);
13439
13440 /* EXT_CU may not be the same as CU.
13441 Ensure TYPE is recorded with CU in die_type_hash. */
13442 return set_die_type (die, type, cu);
13443 }
13444
13445 name = namespace_name (die, &is_anonymous, cu);
13446
13447 /* Now build the name of the current namespace. */
13448
13449 previous_prefix = determine_prefix (die, cu);
13450 if (previous_prefix[0] != '\0')
13451 name = typename_concat (&objfile->objfile_obstack,
13452 previous_prefix, name, 0, cu);
13453
13454 /* Create the type. */
13455 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13456 objfile);
13457 TYPE_NAME (type) = name;
13458 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13459
13460 return set_die_type (die, type, cu);
13461 }
13462
13463 /* Read a C++ namespace. */
13464
13465 static void
13466 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13467 {
13468 struct objfile *objfile = cu->objfile;
13469 int is_anonymous;
13470
13471 /* Add a symbol associated to this if we haven't seen the namespace
13472 before. Also, add a using directive if it's an anonymous
13473 namespace. */
13474
13475 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13476 {
13477 struct type *type;
13478
13479 type = read_type_die (die, cu);
13480 new_symbol (die, type, cu);
13481
13482 namespace_name (die, &is_anonymous, cu);
13483 if (is_anonymous)
13484 {
13485 const char *previous_prefix = determine_prefix (die, cu);
13486
13487 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13488 NULL, NULL, 0, &objfile->objfile_obstack);
13489 }
13490 }
13491
13492 if (die->child != NULL)
13493 {
13494 struct die_info *child_die = die->child;
13495
13496 while (child_die && child_die->tag)
13497 {
13498 process_die (child_die, cu);
13499 child_die = sibling_die (child_die);
13500 }
13501 }
13502 }
13503
13504 /* Read a Fortran module as type. This DIE can be only a declaration used for
13505 imported module. Still we need that type as local Fortran "use ... only"
13506 declaration imports depend on the created type in determine_prefix. */
13507
13508 static struct type *
13509 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13510 {
13511 struct objfile *objfile = cu->objfile;
13512 const char *module_name;
13513 struct type *type;
13514
13515 module_name = dwarf2_name (die, cu);
13516 if (!module_name)
13517 complaint (&symfile_complaints,
13518 _("DW_TAG_module has no name, offset 0x%x"),
13519 die->offset.sect_off);
13520 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13521
13522 /* determine_prefix uses TYPE_TAG_NAME. */
13523 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13524
13525 return set_die_type (die, type, cu);
13526 }
13527
13528 /* Read a Fortran module. */
13529
13530 static void
13531 read_module (struct die_info *die, struct dwarf2_cu *cu)
13532 {
13533 struct die_info *child_die = die->child;
13534
13535 while (child_die && child_die->tag)
13536 {
13537 process_die (child_die, cu);
13538 child_die = sibling_die (child_die);
13539 }
13540 }
13541
13542 /* Return the name of the namespace represented by DIE. Set
13543 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13544 namespace. */
13545
13546 static const char *
13547 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13548 {
13549 struct die_info *current_die;
13550 const char *name = NULL;
13551
13552 /* Loop through the extensions until we find a name. */
13553
13554 for (current_die = die;
13555 current_die != NULL;
13556 current_die = dwarf2_extension (die, &cu))
13557 {
13558 name = dwarf2_name (current_die, cu);
13559 if (name != NULL)
13560 break;
13561 }
13562
13563 /* Is it an anonymous namespace? */
13564
13565 *is_anonymous = (name == NULL);
13566 if (*is_anonymous)
13567 name = CP_ANONYMOUS_NAMESPACE_STR;
13568
13569 return name;
13570 }
13571
13572 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13573 the user defined type vector. */
13574
13575 static struct type *
13576 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13577 {
13578 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13579 struct comp_unit_head *cu_header = &cu->header;
13580 struct type *type;
13581 struct attribute *attr_byte_size;
13582 struct attribute *attr_address_class;
13583 int byte_size, addr_class;
13584 struct type *target_type;
13585
13586 target_type = die_type (die, cu);
13587
13588 /* The die_type call above may have already set the type for this DIE. */
13589 type = get_die_type (die, cu);
13590 if (type)
13591 return type;
13592
13593 type = lookup_pointer_type (target_type);
13594
13595 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13596 if (attr_byte_size)
13597 byte_size = DW_UNSND (attr_byte_size);
13598 else
13599 byte_size = cu_header->addr_size;
13600
13601 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13602 if (attr_address_class)
13603 addr_class = DW_UNSND (attr_address_class);
13604 else
13605 addr_class = DW_ADDR_none;
13606
13607 /* If the pointer size or address class is different than the
13608 default, create a type variant marked as such and set the
13609 length accordingly. */
13610 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13611 {
13612 if (gdbarch_address_class_type_flags_p (gdbarch))
13613 {
13614 int type_flags;
13615
13616 type_flags = gdbarch_address_class_type_flags
13617 (gdbarch, byte_size, addr_class);
13618 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13619 == 0);
13620 type = make_type_with_address_space (type, type_flags);
13621 }
13622 else if (TYPE_LENGTH (type) != byte_size)
13623 {
13624 complaint (&symfile_complaints,
13625 _("invalid pointer size %d"), byte_size);
13626 }
13627 else
13628 {
13629 /* Should we also complain about unhandled address classes? */
13630 }
13631 }
13632
13633 TYPE_LENGTH (type) = byte_size;
13634 return set_die_type (die, type, cu);
13635 }
13636
13637 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13638 the user defined type vector. */
13639
13640 static struct type *
13641 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13642 {
13643 struct type *type;
13644 struct type *to_type;
13645 struct type *domain;
13646
13647 to_type = die_type (die, cu);
13648 domain = die_containing_type (die, cu);
13649
13650 /* The calls above may have already set the type for this DIE. */
13651 type = get_die_type (die, cu);
13652 if (type)
13653 return type;
13654
13655 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13656 type = lookup_methodptr_type (to_type);
13657 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13658 {
13659 struct type *new_type = alloc_type (cu->objfile);
13660
13661 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13662 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13663 TYPE_VARARGS (to_type));
13664 type = lookup_methodptr_type (new_type);
13665 }
13666 else
13667 type = lookup_memberptr_type (to_type, domain);
13668
13669 return set_die_type (die, type, cu);
13670 }
13671
13672 /* Extract all information from a DW_TAG_reference_type DIE and add to
13673 the user defined type vector. */
13674
13675 static struct type *
13676 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13677 {
13678 struct comp_unit_head *cu_header = &cu->header;
13679 struct type *type, *target_type;
13680 struct attribute *attr;
13681
13682 target_type = die_type (die, cu);
13683
13684 /* The die_type call above may have already set the type for this DIE. */
13685 type = get_die_type (die, cu);
13686 if (type)
13687 return type;
13688
13689 type = lookup_reference_type (target_type);
13690 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13691 if (attr)
13692 {
13693 TYPE_LENGTH (type) = DW_UNSND (attr);
13694 }
13695 else
13696 {
13697 TYPE_LENGTH (type) = cu_header->addr_size;
13698 }
13699 return set_die_type (die, type, cu);
13700 }
13701
13702 static struct type *
13703 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13704 {
13705 struct type *base_type, *cv_type;
13706
13707 base_type = die_type (die, cu);
13708
13709 /* The die_type call above may have already set the type for this DIE. */
13710 cv_type = get_die_type (die, cu);
13711 if (cv_type)
13712 return cv_type;
13713
13714 /* In case the const qualifier is applied to an array type, the element type
13715 is so qualified, not the array type (section 6.7.3 of C99). */
13716 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13717 {
13718 struct type *el_type, *inner_array;
13719
13720 base_type = copy_type (base_type);
13721 inner_array = base_type;
13722
13723 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13724 {
13725 TYPE_TARGET_TYPE (inner_array) =
13726 copy_type (TYPE_TARGET_TYPE (inner_array));
13727 inner_array = TYPE_TARGET_TYPE (inner_array);
13728 }
13729
13730 el_type = TYPE_TARGET_TYPE (inner_array);
13731 TYPE_TARGET_TYPE (inner_array) =
13732 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13733
13734 return set_die_type (die, base_type, cu);
13735 }
13736
13737 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13738 return set_die_type (die, cv_type, cu);
13739 }
13740
13741 static struct type *
13742 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13743 {
13744 struct type *base_type, *cv_type;
13745
13746 base_type = die_type (die, cu);
13747
13748 /* The die_type call above may have already set the type for this DIE. */
13749 cv_type = get_die_type (die, cu);
13750 if (cv_type)
13751 return cv_type;
13752
13753 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13754 return set_die_type (die, cv_type, cu);
13755 }
13756
13757 /* Handle DW_TAG_restrict_type. */
13758
13759 static struct type *
13760 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13761 {
13762 struct type *base_type, *cv_type;
13763
13764 base_type = die_type (die, cu);
13765
13766 /* The die_type call above may have already set the type for this DIE. */
13767 cv_type = get_die_type (die, cu);
13768 if (cv_type)
13769 return cv_type;
13770
13771 cv_type = make_restrict_type (base_type);
13772 return set_die_type (die, cv_type, cu);
13773 }
13774
13775 /* Extract all information from a DW_TAG_string_type DIE and add to
13776 the user defined type vector. It isn't really a user defined type,
13777 but it behaves like one, with other DIE's using an AT_user_def_type
13778 attribute to reference it. */
13779
13780 static struct type *
13781 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13782 {
13783 struct objfile *objfile = cu->objfile;
13784 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13785 struct type *type, *range_type, *index_type, *char_type;
13786 struct attribute *attr;
13787 unsigned int length;
13788
13789 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13790 if (attr)
13791 {
13792 length = DW_UNSND (attr);
13793 }
13794 else
13795 {
13796 /* Check for the DW_AT_byte_size attribute. */
13797 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13798 if (attr)
13799 {
13800 length = DW_UNSND (attr);
13801 }
13802 else
13803 {
13804 length = 1;
13805 }
13806 }
13807
13808 index_type = objfile_type (objfile)->builtin_int;
13809 range_type = create_range_type (NULL, index_type, 1, length);
13810 char_type = language_string_char_type (cu->language_defn, gdbarch);
13811 type = create_string_type (NULL, char_type, range_type);
13812
13813 return set_die_type (die, type, cu);
13814 }
13815
13816 /* Assuming that DIE corresponds to a function, returns nonzero
13817 if the function is prototyped. */
13818
13819 static int
13820 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13821 {
13822 struct attribute *attr;
13823
13824 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13825 if (attr && (DW_UNSND (attr) != 0))
13826 return 1;
13827
13828 /* The DWARF standard implies that the DW_AT_prototyped attribute
13829 is only meaninful for C, but the concept also extends to other
13830 languages that allow unprototyped functions (Eg: Objective C).
13831 For all other languages, assume that functions are always
13832 prototyped. */
13833 if (cu->language != language_c
13834 && cu->language != language_objc
13835 && cu->language != language_opencl)
13836 return 1;
13837
13838 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13839 prototyped and unprototyped functions; default to prototyped,
13840 since that is more common in modern code (and RealView warns
13841 about unprototyped functions). */
13842 if (producer_is_realview (cu->producer))
13843 return 1;
13844
13845 return 0;
13846 }
13847
13848 /* Handle DIES due to C code like:
13849
13850 struct foo
13851 {
13852 int (*funcp)(int a, long l);
13853 int b;
13854 };
13855
13856 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13857
13858 static struct type *
13859 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct objfile *objfile = cu->objfile;
13862 struct type *type; /* Type that this function returns. */
13863 struct type *ftype; /* Function that returns above type. */
13864 struct attribute *attr;
13865
13866 type = die_type (die, cu);
13867
13868 /* The die_type call above may have already set the type for this DIE. */
13869 ftype = get_die_type (die, cu);
13870 if (ftype)
13871 return ftype;
13872
13873 ftype = lookup_function_type (type);
13874
13875 if (prototyped_function_p (die, cu))
13876 TYPE_PROTOTYPED (ftype) = 1;
13877
13878 /* Store the calling convention in the type if it's available in
13879 the subroutine die. Otherwise set the calling convention to
13880 the default value DW_CC_normal. */
13881 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13882 if (attr)
13883 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13884 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13885 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13886 else
13887 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13888
13889 /* We need to add the subroutine type to the die immediately so
13890 we don't infinitely recurse when dealing with parameters
13891 declared as the same subroutine type. */
13892 set_die_type (die, ftype, cu);
13893
13894 if (die->child != NULL)
13895 {
13896 struct type *void_type = objfile_type (objfile)->builtin_void;
13897 struct die_info *child_die;
13898 int nparams, iparams;
13899
13900 /* Count the number of parameters.
13901 FIXME: GDB currently ignores vararg functions, but knows about
13902 vararg member functions. */
13903 nparams = 0;
13904 child_die = die->child;
13905 while (child_die && child_die->tag)
13906 {
13907 if (child_die->tag == DW_TAG_formal_parameter)
13908 nparams++;
13909 else if (child_die->tag == DW_TAG_unspecified_parameters)
13910 TYPE_VARARGS (ftype) = 1;
13911 child_die = sibling_die (child_die);
13912 }
13913
13914 /* Allocate storage for parameters and fill them in. */
13915 TYPE_NFIELDS (ftype) = nparams;
13916 TYPE_FIELDS (ftype) = (struct field *)
13917 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13918
13919 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13920 even if we error out during the parameters reading below. */
13921 for (iparams = 0; iparams < nparams; iparams++)
13922 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13923
13924 iparams = 0;
13925 child_die = die->child;
13926 while (child_die && child_die->tag)
13927 {
13928 if (child_die->tag == DW_TAG_formal_parameter)
13929 {
13930 struct type *arg_type;
13931
13932 /* DWARF version 2 has no clean way to discern C++
13933 static and non-static member functions. G++ helps
13934 GDB by marking the first parameter for non-static
13935 member functions (which is the this pointer) as
13936 artificial. We pass this information to
13937 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13938
13939 DWARF version 3 added DW_AT_object_pointer, which GCC
13940 4.5 does not yet generate. */
13941 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13942 if (attr)
13943 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13944 else
13945 {
13946 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13947
13948 /* GCC/43521: In java, the formal parameter
13949 "this" is sometimes not marked with DW_AT_artificial. */
13950 if (cu->language == language_java)
13951 {
13952 const char *name = dwarf2_name (child_die, cu);
13953
13954 if (name && !strcmp (name, "this"))
13955 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13956 }
13957 }
13958 arg_type = die_type (child_die, cu);
13959
13960 /* RealView does not mark THIS as const, which the testsuite
13961 expects. GCC marks THIS as const in method definitions,
13962 but not in the class specifications (GCC PR 43053). */
13963 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13964 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13965 {
13966 int is_this = 0;
13967 struct dwarf2_cu *arg_cu = cu;
13968 const char *name = dwarf2_name (child_die, cu);
13969
13970 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13971 if (attr)
13972 {
13973 /* If the compiler emits this, use it. */
13974 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13975 is_this = 1;
13976 }
13977 else if (name && strcmp (name, "this") == 0)
13978 /* Function definitions will have the argument names. */
13979 is_this = 1;
13980 else if (name == NULL && iparams == 0)
13981 /* Declarations may not have the names, so like
13982 elsewhere in GDB, assume an artificial first
13983 argument is "this". */
13984 is_this = 1;
13985
13986 if (is_this)
13987 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13988 arg_type, 0);
13989 }
13990
13991 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13992 iparams++;
13993 }
13994 child_die = sibling_die (child_die);
13995 }
13996 }
13997
13998 return ftype;
13999 }
14000
14001 static struct type *
14002 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14003 {
14004 struct objfile *objfile = cu->objfile;
14005 const char *name = NULL;
14006 struct type *this_type, *target_type;
14007
14008 name = dwarf2_full_name (NULL, die, cu);
14009 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14010 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14011 TYPE_NAME (this_type) = name;
14012 set_die_type (die, this_type, cu);
14013 target_type = die_type (die, cu);
14014 if (target_type != this_type)
14015 TYPE_TARGET_TYPE (this_type) = target_type;
14016 else
14017 {
14018 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14019 spec and cause infinite loops in GDB. */
14020 complaint (&symfile_complaints,
14021 _("Self-referential DW_TAG_typedef "
14022 "- DIE at 0x%x [in module %s]"),
14023 die->offset.sect_off, objfile_name (objfile));
14024 TYPE_TARGET_TYPE (this_type) = NULL;
14025 }
14026 return this_type;
14027 }
14028
14029 /* Find a representation of a given base type and install
14030 it in the TYPE field of the die. */
14031
14032 static struct type *
14033 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14034 {
14035 struct objfile *objfile = cu->objfile;
14036 struct type *type;
14037 struct attribute *attr;
14038 int encoding = 0, size = 0;
14039 const char *name;
14040 enum type_code code = TYPE_CODE_INT;
14041 int type_flags = 0;
14042 struct type *target_type = NULL;
14043
14044 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14045 if (attr)
14046 {
14047 encoding = DW_UNSND (attr);
14048 }
14049 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14050 if (attr)
14051 {
14052 size = DW_UNSND (attr);
14053 }
14054 name = dwarf2_name (die, cu);
14055 if (!name)
14056 {
14057 complaint (&symfile_complaints,
14058 _("DW_AT_name missing from DW_TAG_base_type"));
14059 }
14060
14061 switch (encoding)
14062 {
14063 case DW_ATE_address:
14064 /* Turn DW_ATE_address into a void * pointer. */
14065 code = TYPE_CODE_PTR;
14066 type_flags |= TYPE_FLAG_UNSIGNED;
14067 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14068 break;
14069 case DW_ATE_boolean:
14070 code = TYPE_CODE_BOOL;
14071 type_flags |= TYPE_FLAG_UNSIGNED;
14072 break;
14073 case DW_ATE_complex_float:
14074 code = TYPE_CODE_COMPLEX;
14075 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14076 break;
14077 case DW_ATE_decimal_float:
14078 code = TYPE_CODE_DECFLOAT;
14079 break;
14080 case DW_ATE_float:
14081 code = TYPE_CODE_FLT;
14082 break;
14083 case DW_ATE_signed:
14084 break;
14085 case DW_ATE_unsigned:
14086 type_flags |= TYPE_FLAG_UNSIGNED;
14087 if (cu->language == language_fortran
14088 && name
14089 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14090 code = TYPE_CODE_CHAR;
14091 break;
14092 case DW_ATE_signed_char:
14093 if (cu->language == language_ada || cu->language == language_m2
14094 || cu->language == language_pascal
14095 || cu->language == language_fortran)
14096 code = TYPE_CODE_CHAR;
14097 break;
14098 case DW_ATE_unsigned_char:
14099 if (cu->language == language_ada || cu->language == language_m2
14100 || cu->language == language_pascal
14101 || cu->language == language_fortran)
14102 code = TYPE_CODE_CHAR;
14103 type_flags |= TYPE_FLAG_UNSIGNED;
14104 break;
14105 case DW_ATE_UTF:
14106 /* We just treat this as an integer and then recognize the
14107 type by name elsewhere. */
14108 break;
14109
14110 default:
14111 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14112 dwarf_type_encoding_name (encoding));
14113 break;
14114 }
14115
14116 type = init_type (code, size, type_flags, NULL, objfile);
14117 TYPE_NAME (type) = name;
14118 TYPE_TARGET_TYPE (type) = target_type;
14119
14120 if (name && strcmp (name, "char") == 0)
14121 TYPE_NOSIGN (type) = 1;
14122
14123 return set_die_type (die, type, cu);
14124 }
14125
14126 /* Read the given DW_AT_subrange DIE. */
14127
14128 static struct type *
14129 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14130 {
14131 struct type *base_type, *orig_base_type;
14132 struct type *range_type;
14133 struct attribute *attr;
14134 LONGEST low, high;
14135 int low_default_is_valid;
14136 const char *name;
14137 LONGEST negative_mask;
14138
14139 orig_base_type = die_type (die, cu);
14140 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14141 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14142 creating the range type, but we use the result of check_typedef
14143 when examining properties of the type. */
14144 base_type = check_typedef (orig_base_type);
14145
14146 /* The die_type call above may have already set the type for this DIE. */
14147 range_type = get_die_type (die, cu);
14148 if (range_type)
14149 return range_type;
14150
14151 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14152 omitting DW_AT_lower_bound. */
14153 switch (cu->language)
14154 {
14155 case language_c:
14156 case language_cplus:
14157 low = 0;
14158 low_default_is_valid = 1;
14159 break;
14160 case language_fortran:
14161 low = 1;
14162 low_default_is_valid = 1;
14163 break;
14164 case language_d:
14165 case language_java:
14166 case language_objc:
14167 low = 0;
14168 low_default_is_valid = (cu->header.version >= 4);
14169 break;
14170 case language_ada:
14171 case language_m2:
14172 case language_pascal:
14173 low = 1;
14174 low_default_is_valid = (cu->header.version >= 4);
14175 break;
14176 default:
14177 low = 0;
14178 low_default_is_valid = 0;
14179 break;
14180 }
14181
14182 /* FIXME: For variable sized arrays either of these could be
14183 a variable rather than a constant value. We'll allow it,
14184 but we don't know how to handle it. */
14185 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14186 if (attr)
14187 low = dwarf2_get_attr_constant_value (attr, low);
14188 else if (!low_default_is_valid)
14189 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14190 "- DIE at 0x%x [in module %s]"),
14191 die->offset.sect_off, objfile_name (cu->objfile));
14192
14193 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14194 if (attr)
14195 {
14196 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14197 {
14198 /* GCC encodes arrays with unspecified or dynamic length
14199 with a DW_FORM_block1 attribute or a reference attribute.
14200 FIXME: GDB does not yet know how to handle dynamic
14201 arrays properly, treat them as arrays with unspecified
14202 length for now.
14203
14204 FIXME: jimb/2003-09-22: GDB does not really know
14205 how to handle arrays of unspecified length
14206 either; we just represent them as zero-length
14207 arrays. Choose an appropriate upper bound given
14208 the lower bound we've computed above. */
14209 high = low - 1;
14210 }
14211 else
14212 high = dwarf2_get_attr_constant_value (attr, 1);
14213 }
14214 else
14215 {
14216 attr = dwarf2_attr (die, DW_AT_count, cu);
14217 if (attr)
14218 {
14219 int count = dwarf2_get_attr_constant_value (attr, 1);
14220 high = low + count - 1;
14221 }
14222 else
14223 {
14224 /* Unspecified array length. */
14225 high = low - 1;
14226 }
14227 }
14228
14229 /* Dwarf-2 specifications explicitly allows to create subrange types
14230 without specifying a base type.
14231 In that case, the base type must be set to the type of
14232 the lower bound, upper bound or count, in that order, if any of these
14233 three attributes references an object that has a type.
14234 If no base type is found, the Dwarf-2 specifications say that
14235 a signed integer type of size equal to the size of an address should
14236 be used.
14237 For the following C code: `extern char gdb_int [];'
14238 GCC produces an empty range DIE.
14239 FIXME: muller/2010-05-28: Possible references to object for low bound,
14240 high bound or count are not yet handled by this code. */
14241 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14242 {
14243 struct objfile *objfile = cu->objfile;
14244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14245 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14246 struct type *int_type = objfile_type (objfile)->builtin_int;
14247
14248 /* Test "int", "long int", and "long long int" objfile types,
14249 and select the first one having a size above or equal to the
14250 architecture address size. */
14251 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14252 base_type = int_type;
14253 else
14254 {
14255 int_type = objfile_type (objfile)->builtin_long;
14256 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14257 base_type = int_type;
14258 else
14259 {
14260 int_type = objfile_type (objfile)->builtin_long_long;
14261 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14262 base_type = int_type;
14263 }
14264 }
14265 }
14266
14267 negative_mask =
14268 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14269 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14270 low |= negative_mask;
14271 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14272 high |= negative_mask;
14273
14274 range_type = create_range_type (NULL, orig_base_type, low, high);
14275
14276 /* Mark arrays with dynamic length at least as an array of unspecified
14277 length. GDB could check the boundary but before it gets implemented at
14278 least allow accessing the array elements. */
14279 if (attr && attr_form_is_block (attr))
14280 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14281
14282 /* Ada expects an empty array on no boundary attributes. */
14283 if (attr == NULL && cu->language != language_ada)
14284 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14285
14286 name = dwarf2_name (die, cu);
14287 if (name)
14288 TYPE_NAME (range_type) = name;
14289
14290 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14291 if (attr)
14292 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14293
14294 set_die_type (die, range_type, cu);
14295
14296 /* set_die_type should be already done. */
14297 set_descriptive_type (range_type, die, cu);
14298
14299 return range_type;
14300 }
14301
14302 static struct type *
14303 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14304 {
14305 struct type *type;
14306
14307 /* For now, we only support the C meaning of an unspecified type: void. */
14308
14309 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14310 TYPE_NAME (type) = dwarf2_name (die, cu);
14311
14312 return set_die_type (die, type, cu);
14313 }
14314
14315 /* Read a single die and all its descendents. Set the die's sibling
14316 field to NULL; set other fields in the die correctly, and set all
14317 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14318 location of the info_ptr after reading all of those dies. PARENT
14319 is the parent of the die in question. */
14320
14321 static struct die_info *
14322 read_die_and_children (const struct die_reader_specs *reader,
14323 const gdb_byte *info_ptr,
14324 const gdb_byte **new_info_ptr,
14325 struct die_info *parent)
14326 {
14327 struct die_info *die;
14328 const gdb_byte *cur_ptr;
14329 int has_children;
14330
14331 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14332 if (die == NULL)
14333 {
14334 *new_info_ptr = cur_ptr;
14335 return NULL;
14336 }
14337 store_in_ref_table (die, reader->cu);
14338
14339 if (has_children)
14340 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14341 else
14342 {
14343 die->child = NULL;
14344 *new_info_ptr = cur_ptr;
14345 }
14346
14347 die->sibling = NULL;
14348 die->parent = parent;
14349 return die;
14350 }
14351
14352 /* Read a die, all of its descendents, and all of its siblings; set
14353 all of the fields of all of the dies correctly. Arguments are as
14354 in read_die_and_children. */
14355
14356 static struct die_info *
14357 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14358 const gdb_byte *info_ptr,
14359 const gdb_byte **new_info_ptr,
14360 struct die_info *parent)
14361 {
14362 struct die_info *first_die, *last_sibling;
14363 const gdb_byte *cur_ptr;
14364
14365 cur_ptr = info_ptr;
14366 first_die = last_sibling = NULL;
14367
14368 while (1)
14369 {
14370 struct die_info *die
14371 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14372
14373 if (die == NULL)
14374 {
14375 *new_info_ptr = cur_ptr;
14376 return first_die;
14377 }
14378
14379 if (!first_die)
14380 first_die = die;
14381 else
14382 last_sibling->sibling = die;
14383
14384 last_sibling = die;
14385 }
14386 }
14387
14388 /* Read a die, all of its descendents, and all of its siblings; set
14389 all of the fields of all of the dies correctly. Arguments are as
14390 in read_die_and_children.
14391 This the main entry point for reading a DIE and all its children. */
14392
14393 static struct die_info *
14394 read_die_and_siblings (const struct die_reader_specs *reader,
14395 const gdb_byte *info_ptr,
14396 const gdb_byte **new_info_ptr,
14397 struct die_info *parent)
14398 {
14399 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14400 new_info_ptr, parent);
14401
14402 if (dwarf2_die_debug)
14403 {
14404 fprintf_unfiltered (gdb_stdlog,
14405 "Read die from %s@0x%x of %s:\n",
14406 get_section_name (reader->die_section),
14407 (unsigned) (info_ptr - reader->die_section->buffer),
14408 bfd_get_filename (reader->abfd));
14409 dump_die (die, dwarf2_die_debug);
14410 }
14411
14412 return die;
14413 }
14414
14415 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14416 attributes.
14417 The caller is responsible for filling in the extra attributes
14418 and updating (*DIEP)->num_attrs.
14419 Set DIEP to point to a newly allocated die with its information,
14420 except for its child, sibling, and parent fields.
14421 Set HAS_CHILDREN to tell whether the die has children or not. */
14422
14423 static const gdb_byte *
14424 read_full_die_1 (const struct die_reader_specs *reader,
14425 struct die_info **diep, const gdb_byte *info_ptr,
14426 int *has_children, int num_extra_attrs)
14427 {
14428 unsigned int abbrev_number, bytes_read, i;
14429 sect_offset offset;
14430 struct abbrev_info *abbrev;
14431 struct die_info *die;
14432 struct dwarf2_cu *cu = reader->cu;
14433 bfd *abfd = reader->abfd;
14434
14435 offset.sect_off = info_ptr - reader->buffer;
14436 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14437 info_ptr += bytes_read;
14438 if (!abbrev_number)
14439 {
14440 *diep = NULL;
14441 *has_children = 0;
14442 return info_ptr;
14443 }
14444
14445 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14446 if (!abbrev)
14447 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14448 abbrev_number,
14449 bfd_get_filename (abfd));
14450
14451 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14452 die->offset = offset;
14453 die->tag = abbrev->tag;
14454 die->abbrev = abbrev_number;
14455
14456 /* Make the result usable.
14457 The caller needs to update num_attrs after adding the extra
14458 attributes. */
14459 die->num_attrs = abbrev->num_attrs;
14460
14461 for (i = 0; i < abbrev->num_attrs; ++i)
14462 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14463 info_ptr);
14464
14465 *diep = die;
14466 *has_children = abbrev->has_children;
14467 return info_ptr;
14468 }
14469
14470 /* Read a die and all its attributes.
14471 Set DIEP to point to a newly allocated die with its information,
14472 except for its child, sibling, and parent fields.
14473 Set HAS_CHILDREN to tell whether the die has children or not. */
14474
14475 static const gdb_byte *
14476 read_full_die (const struct die_reader_specs *reader,
14477 struct die_info **diep, const gdb_byte *info_ptr,
14478 int *has_children)
14479 {
14480 const gdb_byte *result;
14481
14482 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14483
14484 if (dwarf2_die_debug)
14485 {
14486 fprintf_unfiltered (gdb_stdlog,
14487 "Read die from %s@0x%x of %s:\n",
14488 get_section_name (reader->die_section),
14489 (unsigned) (info_ptr - reader->die_section->buffer),
14490 bfd_get_filename (reader->abfd));
14491 dump_die (*diep, dwarf2_die_debug);
14492 }
14493
14494 return result;
14495 }
14496 \f
14497 /* Abbreviation tables.
14498
14499 In DWARF version 2, the description of the debugging information is
14500 stored in a separate .debug_abbrev section. Before we read any
14501 dies from a section we read in all abbreviations and install them
14502 in a hash table. */
14503
14504 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14505
14506 static struct abbrev_info *
14507 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14508 {
14509 struct abbrev_info *abbrev;
14510
14511 abbrev = (struct abbrev_info *)
14512 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14513 memset (abbrev, 0, sizeof (struct abbrev_info));
14514 return abbrev;
14515 }
14516
14517 /* Add an abbreviation to the table. */
14518
14519 static void
14520 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14521 unsigned int abbrev_number,
14522 struct abbrev_info *abbrev)
14523 {
14524 unsigned int hash_number;
14525
14526 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14527 abbrev->next = abbrev_table->abbrevs[hash_number];
14528 abbrev_table->abbrevs[hash_number] = abbrev;
14529 }
14530
14531 /* Look up an abbrev in the table.
14532 Returns NULL if the abbrev is not found. */
14533
14534 static struct abbrev_info *
14535 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14536 unsigned int abbrev_number)
14537 {
14538 unsigned int hash_number;
14539 struct abbrev_info *abbrev;
14540
14541 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14542 abbrev = abbrev_table->abbrevs[hash_number];
14543
14544 while (abbrev)
14545 {
14546 if (abbrev->number == abbrev_number)
14547 return abbrev;
14548 abbrev = abbrev->next;
14549 }
14550 return NULL;
14551 }
14552
14553 /* Read in an abbrev table. */
14554
14555 static struct abbrev_table *
14556 abbrev_table_read_table (struct dwarf2_section_info *section,
14557 sect_offset offset)
14558 {
14559 struct objfile *objfile = dwarf2_per_objfile->objfile;
14560 bfd *abfd = get_section_bfd_owner (section);
14561 struct abbrev_table *abbrev_table;
14562 const gdb_byte *abbrev_ptr;
14563 struct abbrev_info *cur_abbrev;
14564 unsigned int abbrev_number, bytes_read, abbrev_name;
14565 unsigned int abbrev_form;
14566 struct attr_abbrev *cur_attrs;
14567 unsigned int allocated_attrs;
14568
14569 abbrev_table = XMALLOC (struct abbrev_table);
14570 abbrev_table->offset = offset;
14571 obstack_init (&abbrev_table->abbrev_obstack);
14572 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14573 (ABBREV_HASH_SIZE
14574 * sizeof (struct abbrev_info *)));
14575 memset (abbrev_table->abbrevs, 0,
14576 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14577
14578 dwarf2_read_section (objfile, section);
14579 abbrev_ptr = section->buffer + offset.sect_off;
14580 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14581 abbrev_ptr += bytes_read;
14582
14583 allocated_attrs = ATTR_ALLOC_CHUNK;
14584 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14585
14586 /* Loop until we reach an abbrev number of 0. */
14587 while (abbrev_number)
14588 {
14589 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14590
14591 /* read in abbrev header */
14592 cur_abbrev->number = abbrev_number;
14593 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14594 abbrev_ptr += bytes_read;
14595 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14596 abbrev_ptr += 1;
14597
14598 /* now read in declarations */
14599 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14600 abbrev_ptr += bytes_read;
14601 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14602 abbrev_ptr += bytes_read;
14603 while (abbrev_name)
14604 {
14605 if (cur_abbrev->num_attrs == allocated_attrs)
14606 {
14607 allocated_attrs += ATTR_ALLOC_CHUNK;
14608 cur_attrs
14609 = xrealloc (cur_attrs, (allocated_attrs
14610 * sizeof (struct attr_abbrev)));
14611 }
14612
14613 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14614 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14615 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14616 abbrev_ptr += bytes_read;
14617 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14618 abbrev_ptr += bytes_read;
14619 }
14620
14621 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14622 (cur_abbrev->num_attrs
14623 * sizeof (struct attr_abbrev)));
14624 memcpy (cur_abbrev->attrs, cur_attrs,
14625 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14626
14627 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14628
14629 /* Get next abbreviation.
14630 Under Irix6 the abbreviations for a compilation unit are not
14631 always properly terminated with an abbrev number of 0.
14632 Exit loop if we encounter an abbreviation which we have
14633 already read (which means we are about to read the abbreviations
14634 for the next compile unit) or if the end of the abbreviation
14635 table is reached. */
14636 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14637 break;
14638 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14639 abbrev_ptr += bytes_read;
14640 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14641 break;
14642 }
14643
14644 xfree (cur_attrs);
14645 return abbrev_table;
14646 }
14647
14648 /* Free the resources held by ABBREV_TABLE. */
14649
14650 static void
14651 abbrev_table_free (struct abbrev_table *abbrev_table)
14652 {
14653 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14654 xfree (abbrev_table);
14655 }
14656
14657 /* Same as abbrev_table_free but as a cleanup.
14658 We pass in a pointer to the pointer to the table so that we can
14659 set the pointer to NULL when we're done. It also simplifies
14660 build_type_unit_groups. */
14661
14662 static void
14663 abbrev_table_free_cleanup (void *table_ptr)
14664 {
14665 struct abbrev_table **abbrev_table_ptr = table_ptr;
14666
14667 if (*abbrev_table_ptr != NULL)
14668 abbrev_table_free (*abbrev_table_ptr);
14669 *abbrev_table_ptr = NULL;
14670 }
14671
14672 /* Read the abbrev table for CU from ABBREV_SECTION. */
14673
14674 static void
14675 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14676 struct dwarf2_section_info *abbrev_section)
14677 {
14678 cu->abbrev_table =
14679 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14680 }
14681
14682 /* Release the memory used by the abbrev table for a compilation unit. */
14683
14684 static void
14685 dwarf2_free_abbrev_table (void *ptr_to_cu)
14686 {
14687 struct dwarf2_cu *cu = ptr_to_cu;
14688
14689 if (cu->abbrev_table != NULL)
14690 abbrev_table_free (cu->abbrev_table);
14691 /* Set this to NULL so that we SEGV if we try to read it later,
14692 and also because free_comp_unit verifies this is NULL. */
14693 cu->abbrev_table = NULL;
14694 }
14695 \f
14696 /* Returns nonzero if TAG represents a type that we might generate a partial
14697 symbol for. */
14698
14699 static int
14700 is_type_tag_for_partial (int tag)
14701 {
14702 switch (tag)
14703 {
14704 #if 0
14705 /* Some types that would be reasonable to generate partial symbols for,
14706 that we don't at present. */
14707 case DW_TAG_array_type:
14708 case DW_TAG_file_type:
14709 case DW_TAG_ptr_to_member_type:
14710 case DW_TAG_set_type:
14711 case DW_TAG_string_type:
14712 case DW_TAG_subroutine_type:
14713 #endif
14714 case DW_TAG_base_type:
14715 case DW_TAG_class_type:
14716 case DW_TAG_interface_type:
14717 case DW_TAG_enumeration_type:
14718 case DW_TAG_structure_type:
14719 case DW_TAG_subrange_type:
14720 case DW_TAG_typedef:
14721 case DW_TAG_union_type:
14722 return 1;
14723 default:
14724 return 0;
14725 }
14726 }
14727
14728 /* Load all DIEs that are interesting for partial symbols into memory. */
14729
14730 static struct partial_die_info *
14731 load_partial_dies (const struct die_reader_specs *reader,
14732 const gdb_byte *info_ptr, int building_psymtab)
14733 {
14734 struct dwarf2_cu *cu = reader->cu;
14735 struct objfile *objfile = cu->objfile;
14736 struct partial_die_info *part_die;
14737 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14738 struct abbrev_info *abbrev;
14739 unsigned int bytes_read;
14740 unsigned int load_all = 0;
14741 int nesting_level = 1;
14742
14743 parent_die = NULL;
14744 last_die = NULL;
14745
14746 gdb_assert (cu->per_cu != NULL);
14747 if (cu->per_cu->load_all_dies)
14748 load_all = 1;
14749
14750 cu->partial_dies
14751 = htab_create_alloc_ex (cu->header.length / 12,
14752 partial_die_hash,
14753 partial_die_eq,
14754 NULL,
14755 &cu->comp_unit_obstack,
14756 hashtab_obstack_allocate,
14757 dummy_obstack_deallocate);
14758
14759 part_die = obstack_alloc (&cu->comp_unit_obstack,
14760 sizeof (struct partial_die_info));
14761
14762 while (1)
14763 {
14764 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14765
14766 /* A NULL abbrev means the end of a series of children. */
14767 if (abbrev == NULL)
14768 {
14769 if (--nesting_level == 0)
14770 {
14771 /* PART_DIE was probably the last thing allocated on the
14772 comp_unit_obstack, so we could call obstack_free
14773 here. We don't do that because the waste is small,
14774 and will be cleaned up when we're done with this
14775 compilation unit. This way, we're also more robust
14776 against other users of the comp_unit_obstack. */
14777 return first_die;
14778 }
14779 info_ptr += bytes_read;
14780 last_die = parent_die;
14781 parent_die = parent_die->die_parent;
14782 continue;
14783 }
14784
14785 /* Check for template arguments. We never save these; if
14786 they're seen, we just mark the parent, and go on our way. */
14787 if (parent_die != NULL
14788 && cu->language == language_cplus
14789 && (abbrev->tag == DW_TAG_template_type_param
14790 || abbrev->tag == DW_TAG_template_value_param))
14791 {
14792 parent_die->has_template_arguments = 1;
14793
14794 if (!load_all)
14795 {
14796 /* We don't need a partial DIE for the template argument. */
14797 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14798 continue;
14799 }
14800 }
14801
14802 /* We only recurse into c++ subprograms looking for template arguments.
14803 Skip their other children. */
14804 if (!load_all
14805 && cu->language == language_cplus
14806 && parent_die != NULL
14807 && parent_die->tag == DW_TAG_subprogram)
14808 {
14809 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14810 continue;
14811 }
14812
14813 /* Check whether this DIE is interesting enough to save. Normally
14814 we would not be interested in members here, but there may be
14815 later variables referencing them via DW_AT_specification (for
14816 static members). */
14817 if (!load_all
14818 && !is_type_tag_for_partial (abbrev->tag)
14819 && abbrev->tag != DW_TAG_constant
14820 && abbrev->tag != DW_TAG_enumerator
14821 && abbrev->tag != DW_TAG_subprogram
14822 && abbrev->tag != DW_TAG_lexical_block
14823 && abbrev->tag != DW_TAG_variable
14824 && abbrev->tag != DW_TAG_namespace
14825 && abbrev->tag != DW_TAG_module
14826 && abbrev->tag != DW_TAG_member
14827 && abbrev->tag != DW_TAG_imported_unit)
14828 {
14829 /* Otherwise we skip to the next sibling, if any. */
14830 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14831 continue;
14832 }
14833
14834 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14835 info_ptr);
14836
14837 /* This two-pass algorithm for processing partial symbols has a
14838 high cost in cache pressure. Thus, handle some simple cases
14839 here which cover the majority of C partial symbols. DIEs
14840 which neither have specification tags in them, nor could have
14841 specification tags elsewhere pointing at them, can simply be
14842 processed and discarded.
14843
14844 This segment is also optional; scan_partial_symbols and
14845 add_partial_symbol will handle these DIEs if we chain
14846 them in normally. When compilers which do not emit large
14847 quantities of duplicate debug information are more common,
14848 this code can probably be removed. */
14849
14850 /* Any complete simple types at the top level (pretty much all
14851 of them, for a language without namespaces), can be processed
14852 directly. */
14853 if (parent_die == NULL
14854 && part_die->has_specification == 0
14855 && part_die->is_declaration == 0
14856 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14857 || part_die->tag == DW_TAG_base_type
14858 || part_die->tag == DW_TAG_subrange_type))
14859 {
14860 if (building_psymtab && part_die->name != NULL)
14861 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14862 VAR_DOMAIN, LOC_TYPEDEF,
14863 &objfile->static_psymbols,
14864 0, (CORE_ADDR) 0, cu->language, objfile);
14865 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14866 continue;
14867 }
14868
14869 /* The exception for DW_TAG_typedef with has_children above is
14870 a workaround of GCC PR debug/47510. In the case of this complaint
14871 type_name_no_tag_or_error will error on such types later.
14872
14873 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14874 it could not find the child DIEs referenced later, this is checked
14875 above. In correct DWARF DW_TAG_typedef should have no children. */
14876
14877 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14878 complaint (&symfile_complaints,
14879 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14880 "- DIE at 0x%x [in module %s]"),
14881 part_die->offset.sect_off, objfile_name (objfile));
14882
14883 /* If we're at the second level, and we're an enumerator, and
14884 our parent has no specification (meaning possibly lives in a
14885 namespace elsewhere), then we can add the partial symbol now
14886 instead of queueing it. */
14887 if (part_die->tag == DW_TAG_enumerator
14888 && parent_die != NULL
14889 && parent_die->die_parent == NULL
14890 && parent_die->tag == DW_TAG_enumeration_type
14891 && parent_die->has_specification == 0)
14892 {
14893 if (part_die->name == NULL)
14894 complaint (&symfile_complaints,
14895 _("malformed enumerator DIE ignored"));
14896 else if (building_psymtab)
14897 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14898 VAR_DOMAIN, LOC_CONST,
14899 (cu->language == language_cplus
14900 || cu->language == language_java)
14901 ? &objfile->global_psymbols
14902 : &objfile->static_psymbols,
14903 0, (CORE_ADDR) 0, cu->language, objfile);
14904
14905 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14906 continue;
14907 }
14908
14909 /* We'll save this DIE so link it in. */
14910 part_die->die_parent = parent_die;
14911 part_die->die_sibling = NULL;
14912 part_die->die_child = NULL;
14913
14914 if (last_die && last_die == parent_die)
14915 last_die->die_child = part_die;
14916 else if (last_die)
14917 last_die->die_sibling = part_die;
14918
14919 last_die = part_die;
14920
14921 if (first_die == NULL)
14922 first_die = part_die;
14923
14924 /* Maybe add the DIE to the hash table. Not all DIEs that we
14925 find interesting need to be in the hash table, because we
14926 also have the parent/sibling/child chains; only those that we
14927 might refer to by offset later during partial symbol reading.
14928
14929 For now this means things that might have be the target of a
14930 DW_AT_specification, DW_AT_abstract_origin, or
14931 DW_AT_extension. DW_AT_extension will refer only to
14932 namespaces; DW_AT_abstract_origin refers to functions (and
14933 many things under the function DIE, but we do not recurse
14934 into function DIEs during partial symbol reading) and
14935 possibly variables as well; DW_AT_specification refers to
14936 declarations. Declarations ought to have the DW_AT_declaration
14937 flag. It happens that GCC forgets to put it in sometimes, but
14938 only for functions, not for types.
14939
14940 Adding more things than necessary to the hash table is harmless
14941 except for the performance cost. Adding too few will result in
14942 wasted time in find_partial_die, when we reread the compilation
14943 unit with load_all_dies set. */
14944
14945 if (load_all
14946 || abbrev->tag == DW_TAG_constant
14947 || abbrev->tag == DW_TAG_subprogram
14948 || abbrev->tag == DW_TAG_variable
14949 || abbrev->tag == DW_TAG_namespace
14950 || part_die->is_declaration)
14951 {
14952 void **slot;
14953
14954 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14955 part_die->offset.sect_off, INSERT);
14956 *slot = part_die;
14957 }
14958
14959 part_die = obstack_alloc (&cu->comp_unit_obstack,
14960 sizeof (struct partial_die_info));
14961
14962 /* For some DIEs we want to follow their children (if any). For C
14963 we have no reason to follow the children of structures; for other
14964 languages we have to, so that we can get at method physnames
14965 to infer fully qualified class names, for DW_AT_specification,
14966 and for C++ template arguments. For C++, we also look one level
14967 inside functions to find template arguments (if the name of the
14968 function does not already contain the template arguments).
14969
14970 For Ada, we need to scan the children of subprograms and lexical
14971 blocks as well because Ada allows the definition of nested
14972 entities that could be interesting for the debugger, such as
14973 nested subprograms for instance. */
14974 if (last_die->has_children
14975 && (load_all
14976 || last_die->tag == DW_TAG_namespace
14977 || last_die->tag == DW_TAG_module
14978 || last_die->tag == DW_TAG_enumeration_type
14979 || (cu->language == language_cplus
14980 && last_die->tag == DW_TAG_subprogram
14981 && (last_die->name == NULL
14982 || strchr (last_die->name, '<') == NULL))
14983 || (cu->language != language_c
14984 && (last_die->tag == DW_TAG_class_type
14985 || last_die->tag == DW_TAG_interface_type
14986 || last_die->tag == DW_TAG_structure_type
14987 || last_die->tag == DW_TAG_union_type))
14988 || (cu->language == language_ada
14989 && (last_die->tag == DW_TAG_subprogram
14990 || last_die->tag == DW_TAG_lexical_block))))
14991 {
14992 nesting_level++;
14993 parent_die = last_die;
14994 continue;
14995 }
14996
14997 /* Otherwise we skip to the next sibling, if any. */
14998 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14999
15000 /* Back to the top, do it again. */
15001 }
15002 }
15003
15004 /* Read a minimal amount of information into the minimal die structure. */
15005
15006 static const gdb_byte *
15007 read_partial_die (const struct die_reader_specs *reader,
15008 struct partial_die_info *part_die,
15009 struct abbrev_info *abbrev, unsigned int abbrev_len,
15010 const gdb_byte *info_ptr)
15011 {
15012 struct dwarf2_cu *cu = reader->cu;
15013 struct objfile *objfile = cu->objfile;
15014 const gdb_byte *buffer = reader->buffer;
15015 unsigned int i;
15016 struct attribute attr;
15017 int has_low_pc_attr = 0;
15018 int has_high_pc_attr = 0;
15019 int high_pc_relative = 0;
15020
15021 memset (part_die, 0, sizeof (struct partial_die_info));
15022
15023 part_die->offset.sect_off = info_ptr - buffer;
15024
15025 info_ptr += abbrev_len;
15026
15027 if (abbrev == NULL)
15028 return info_ptr;
15029
15030 part_die->tag = abbrev->tag;
15031 part_die->has_children = abbrev->has_children;
15032
15033 for (i = 0; i < abbrev->num_attrs; ++i)
15034 {
15035 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15036
15037 /* Store the data if it is of an attribute we want to keep in a
15038 partial symbol table. */
15039 switch (attr.name)
15040 {
15041 case DW_AT_name:
15042 switch (part_die->tag)
15043 {
15044 case DW_TAG_compile_unit:
15045 case DW_TAG_partial_unit:
15046 case DW_TAG_type_unit:
15047 /* Compilation units have a DW_AT_name that is a filename, not
15048 a source language identifier. */
15049 case DW_TAG_enumeration_type:
15050 case DW_TAG_enumerator:
15051 /* These tags always have simple identifiers already; no need
15052 to canonicalize them. */
15053 part_die->name = DW_STRING (&attr);
15054 break;
15055 default:
15056 part_die->name
15057 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15058 &objfile->objfile_obstack);
15059 break;
15060 }
15061 break;
15062 case DW_AT_linkage_name:
15063 case DW_AT_MIPS_linkage_name:
15064 /* Note that both forms of linkage name might appear. We
15065 assume they will be the same, and we only store the last
15066 one we see. */
15067 if (cu->language == language_ada)
15068 part_die->name = DW_STRING (&attr);
15069 part_die->linkage_name = DW_STRING (&attr);
15070 break;
15071 case DW_AT_low_pc:
15072 has_low_pc_attr = 1;
15073 part_die->lowpc = DW_ADDR (&attr);
15074 break;
15075 case DW_AT_high_pc:
15076 has_high_pc_attr = 1;
15077 if (attr.form == DW_FORM_addr
15078 || attr.form == DW_FORM_GNU_addr_index)
15079 part_die->highpc = DW_ADDR (&attr);
15080 else
15081 {
15082 high_pc_relative = 1;
15083 part_die->highpc = DW_UNSND (&attr);
15084 }
15085 break;
15086 case DW_AT_location:
15087 /* Support the .debug_loc offsets. */
15088 if (attr_form_is_block (&attr))
15089 {
15090 part_die->d.locdesc = DW_BLOCK (&attr);
15091 }
15092 else if (attr_form_is_section_offset (&attr))
15093 {
15094 dwarf2_complex_location_expr_complaint ();
15095 }
15096 else
15097 {
15098 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15099 "partial symbol information");
15100 }
15101 break;
15102 case DW_AT_external:
15103 part_die->is_external = DW_UNSND (&attr);
15104 break;
15105 case DW_AT_declaration:
15106 part_die->is_declaration = DW_UNSND (&attr);
15107 break;
15108 case DW_AT_type:
15109 part_die->has_type = 1;
15110 break;
15111 case DW_AT_abstract_origin:
15112 case DW_AT_specification:
15113 case DW_AT_extension:
15114 part_die->has_specification = 1;
15115 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15116 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15117 || cu->per_cu->is_dwz);
15118 break;
15119 case DW_AT_sibling:
15120 /* Ignore absolute siblings, they might point outside of
15121 the current compile unit. */
15122 if (attr.form == DW_FORM_ref_addr)
15123 complaint (&symfile_complaints,
15124 _("ignoring absolute DW_AT_sibling"));
15125 else
15126 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
15127 break;
15128 case DW_AT_byte_size:
15129 part_die->has_byte_size = 1;
15130 break;
15131 case DW_AT_calling_convention:
15132 /* DWARF doesn't provide a way to identify a program's source-level
15133 entry point. DW_AT_calling_convention attributes are only meant
15134 to describe functions' calling conventions.
15135
15136 However, because it's a necessary piece of information in
15137 Fortran, and because DW_CC_program is the only piece of debugging
15138 information whose definition refers to a 'main program' at all,
15139 several compilers have begun marking Fortran main programs with
15140 DW_CC_program --- even when those functions use the standard
15141 calling conventions.
15142
15143 So until DWARF specifies a way to provide this information and
15144 compilers pick up the new representation, we'll support this
15145 practice. */
15146 if (DW_UNSND (&attr) == DW_CC_program
15147 && cu->language == language_fortran)
15148 {
15149 set_main_name (part_die->name);
15150
15151 /* As this DIE has a static linkage the name would be difficult
15152 to look up later. */
15153 language_of_main = language_fortran;
15154 }
15155 break;
15156 case DW_AT_inline:
15157 if (DW_UNSND (&attr) == DW_INL_inlined
15158 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15159 part_die->may_be_inlined = 1;
15160 break;
15161
15162 case DW_AT_import:
15163 if (part_die->tag == DW_TAG_imported_unit)
15164 {
15165 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15166 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15167 || cu->per_cu->is_dwz);
15168 }
15169 break;
15170
15171 default:
15172 break;
15173 }
15174 }
15175
15176 if (high_pc_relative)
15177 part_die->highpc += part_die->lowpc;
15178
15179 if (has_low_pc_attr && has_high_pc_attr)
15180 {
15181 /* When using the GNU linker, .gnu.linkonce. sections are used to
15182 eliminate duplicate copies of functions and vtables and such.
15183 The linker will arbitrarily choose one and discard the others.
15184 The AT_*_pc values for such functions refer to local labels in
15185 these sections. If the section from that file was discarded, the
15186 labels are not in the output, so the relocs get a value of 0.
15187 If this is a discarded function, mark the pc bounds as invalid,
15188 so that GDB will ignore it. */
15189 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15190 {
15191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15192
15193 complaint (&symfile_complaints,
15194 _("DW_AT_low_pc %s is zero "
15195 "for DIE at 0x%x [in module %s]"),
15196 paddress (gdbarch, part_die->lowpc),
15197 part_die->offset.sect_off, objfile_name (objfile));
15198 }
15199 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15200 else if (part_die->lowpc >= part_die->highpc)
15201 {
15202 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15203
15204 complaint (&symfile_complaints,
15205 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15206 "for DIE at 0x%x [in module %s]"),
15207 paddress (gdbarch, part_die->lowpc),
15208 paddress (gdbarch, part_die->highpc),
15209 part_die->offset.sect_off, objfile_name (objfile));
15210 }
15211 else
15212 part_die->has_pc_info = 1;
15213 }
15214
15215 return info_ptr;
15216 }
15217
15218 /* Find a cached partial DIE at OFFSET in CU. */
15219
15220 static struct partial_die_info *
15221 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15222 {
15223 struct partial_die_info *lookup_die = NULL;
15224 struct partial_die_info part_die;
15225
15226 part_die.offset = offset;
15227 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15228 offset.sect_off);
15229
15230 return lookup_die;
15231 }
15232
15233 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15234 except in the case of .debug_types DIEs which do not reference
15235 outside their CU (they do however referencing other types via
15236 DW_FORM_ref_sig8). */
15237
15238 static struct partial_die_info *
15239 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15240 {
15241 struct objfile *objfile = cu->objfile;
15242 struct dwarf2_per_cu_data *per_cu = NULL;
15243 struct partial_die_info *pd = NULL;
15244
15245 if (offset_in_dwz == cu->per_cu->is_dwz
15246 && offset_in_cu_p (&cu->header, offset))
15247 {
15248 pd = find_partial_die_in_comp_unit (offset, cu);
15249 if (pd != NULL)
15250 return pd;
15251 /* We missed recording what we needed.
15252 Load all dies and try again. */
15253 per_cu = cu->per_cu;
15254 }
15255 else
15256 {
15257 /* TUs don't reference other CUs/TUs (except via type signatures). */
15258 if (cu->per_cu->is_debug_types)
15259 {
15260 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15261 " external reference to offset 0x%lx [in module %s].\n"),
15262 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15263 bfd_get_filename (objfile->obfd));
15264 }
15265 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15266 objfile);
15267
15268 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15269 load_partial_comp_unit (per_cu);
15270
15271 per_cu->cu->last_used = 0;
15272 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15273 }
15274
15275 /* If we didn't find it, and not all dies have been loaded,
15276 load them all and try again. */
15277
15278 if (pd == NULL && per_cu->load_all_dies == 0)
15279 {
15280 per_cu->load_all_dies = 1;
15281
15282 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15283 THIS_CU->cu may already be in use. So we can't just free it and
15284 replace its DIEs with the ones we read in. Instead, we leave those
15285 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15286 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15287 set. */
15288 load_partial_comp_unit (per_cu);
15289
15290 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15291 }
15292
15293 if (pd == NULL)
15294 internal_error (__FILE__, __LINE__,
15295 _("could not find partial DIE 0x%x "
15296 "in cache [from module %s]\n"),
15297 offset.sect_off, bfd_get_filename (objfile->obfd));
15298 return pd;
15299 }
15300
15301 /* See if we can figure out if the class lives in a namespace. We do
15302 this by looking for a member function; its demangled name will
15303 contain namespace info, if there is any. */
15304
15305 static void
15306 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15307 struct dwarf2_cu *cu)
15308 {
15309 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15310 what template types look like, because the demangler
15311 frequently doesn't give the same name as the debug info. We
15312 could fix this by only using the demangled name to get the
15313 prefix (but see comment in read_structure_type). */
15314
15315 struct partial_die_info *real_pdi;
15316 struct partial_die_info *child_pdi;
15317
15318 /* If this DIE (this DIE's specification, if any) has a parent, then
15319 we should not do this. We'll prepend the parent's fully qualified
15320 name when we create the partial symbol. */
15321
15322 real_pdi = struct_pdi;
15323 while (real_pdi->has_specification)
15324 real_pdi = find_partial_die (real_pdi->spec_offset,
15325 real_pdi->spec_is_dwz, cu);
15326
15327 if (real_pdi->die_parent != NULL)
15328 return;
15329
15330 for (child_pdi = struct_pdi->die_child;
15331 child_pdi != NULL;
15332 child_pdi = child_pdi->die_sibling)
15333 {
15334 if (child_pdi->tag == DW_TAG_subprogram
15335 && child_pdi->linkage_name != NULL)
15336 {
15337 char *actual_class_name
15338 = language_class_name_from_physname (cu->language_defn,
15339 child_pdi->linkage_name);
15340 if (actual_class_name != NULL)
15341 {
15342 struct_pdi->name
15343 = obstack_copy0 (&cu->objfile->objfile_obstack,
15344 actual_class_name,
15345 strlen (actual_class_name));
15346 xfree (actual_class_name);
15347 }
15348 break;
15349 }
15350 }
15351 }
15352
15353 /* Adjust PART_DIE before generating a symbol for it. This function
15354 may set the is_external flag or change the DIE's name. */
15355
15356 static void
15357 fixup_partial_die (struct partial_die_info *part_die,
15358 struct dwarf2_cu *cu)
15359 {
15360 /* Once we've fixed up a die, there's no point in doing so again.
15361 This also avoids a memory leak if we were to call
15362 guess_partial_die_structure_name multiple times. */
15363 if (part_die->fixup_called)
15364 return;
15365
15366 /* If we found a reference attribute and the DIE has no name, try
15367 to find a name in the referred to DIE. */
15368
15369 if (part_die->name == NULL && part_die->has_specification)
15370 {
15371 struct partial_die_info *spec_die;
15372
15373 spec_die = find_partial_die (part_die->spec_offset,
15374 part_die->spec_is_dwz, cu);
15375
15376 fixup_partial_die (spec_die, cu);
15377
15378 if (spec_die->name)
15379 {
15380 part_die->name = spec_die->name;
15381
15382 /* Copy DW_AT_external attribute if it is set. */
15383 if (spec_die->is_external)
15384 part_die->is_external = spec_die->is_external;
15385 }
15386 }
15387
15388 /* Set default names for some unnamed DIEs. */
15389
15390 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15391 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15392
15393 /* If there is no parent die to provide a namespace, and there are
15394 children, see if we can determine the namespace from their linkage
15395 name. */
15396 if (cu->language == language_cplus
15397 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15398 && part_die->die_parent == NULL
15399 && part_die->has_children
15400 && (part_die->tag == DW_TAG_class_type
15401 || part_die->tag == DW_TAG_structure_type
15402 || part_die->tag == DW_TAG_union_type))
15403 guess_partial_die_structure_name (part_die, cu);
15404
15405 /* GCC might emit a nameless struct or union that has a linkage
15406 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15407 if (part_die->name == NULL
15408 && (part_die->tag == DW_TAG_class_type
15409 || part_die->tag == DW_TAG_interface_type
15410 || part_die->tag == DW_TAG_structure_type
15411 || part_die->tag == DW_TAG_union_type)
15412 && part_die->linkage_name != NULL)
15413 {
15414 char *demangled;
15415
15416 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15417 if (demangled)
15418 {
15419 const char *base;
15420
15421 /* Strip any leading namespaces/classes, keep only the base name.
15422 DW_AT_name for named DIEs does not contain the prefixes. */
15423 base = strrchr (demangled, ':');
15424 if (base && base > demangled && base[-1] == ':')
15425 base++;
15426 else
15427 base = demangled;
15428
15429 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15430 base, strlen (base));
15431 xfree (demangled);
15432 }
15433 }
15434
15435 part_die->fixup_called = 1;
15436 }
15437
15438 /* Read an attribute value described by an attribute form. */
15439
15440 static const gdb_byte *
15441 read_attribute_value (const struct die_reader_specs *reader,
15442 struct attribute *attr, unsigned form,
15443 const gdb_byte *info_ptr)
15444 {
15445 struct dwarf2_cu *cu = reader->cu;
15446 bfd *abfd = reader->abfd;
15447 struct comp_unit_head *cu_header = &cu->header;
15448 unsigned int bytes_read;
15449 struct dwarf_block *blk;
15450
15451 attr->form = form;
15452 switch (form)
15453 {
15454 case DW_FORM_ref_addr:
15455 if (cu->header.version == 2)
15456 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15457 else
15458 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15459 &cu->header, &bytes_read);
15460 info_ptr += bytes_read;
15461 break;
15462 case DW_FORM_GNU_ref_alt:
15463 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15464 info_ptr += bytes_read;
15465 break;
15466 case DW_FORM_addr:
15467 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15468 info_ptr += bytes_read;
15469 break;
15470 case DW_FORM_block2:
15471 blk = dwarf_alloc_block (cu);
15472 blk->size = read_2_bytes (abfd, info_ptr);
15473 info_ptr += 2;
15474 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15475 info_ptr += blk->size;
15476 DW_BLOCK (attr) = blk;
15477 break;
15478 case DW_FORM_block4:
15479 blk = dwarf_alloc_block (cu);
15480 blk->size = read_4_bytes (abfd, info_ptr);
15481 info_ptr += 4;
15482 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15483 info_ptr += blk->size;
15484 DW_BLOCK (attr) = blk;
15485 break;
15486 case DW_FORM_data2:
15487 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15488 info_ptr += 2;
15489 break;
15490 case DW_FORM_data4:
15491 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15492 info_ptr += 4;
15493 break;
15494 case DW_FORM_data8:
15495 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15496 info_ptr += 8;
15497 break;
15498 case DW_FORM_sec_offset:
15499 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15500 info_ptr += bytes_read;
15501 break;
15502 case DW_FORM_string:
15503 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15504 DW_STRING_IS_CANONICAL (attr) = 0;
15505 info_ptr += bytes_read;
15506 break;
15507 case DW_FORM_strp:
15508 if (!cu->per_cu->is_dwz)
15509 {
15510 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15511 &bytes_read);
15512 DW_STRING_IS_CANONICAL (attr) = 0;
15513 info_ptr += bytes_read;
15514 break;
15515 }
15516 /* FALLTHROUGH */
15517 case DW_FORM_GNU_strp_alt:
15518 {
15519 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15520 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15521 &bytes_read);
15522
15523 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15524 DW_STRING_IS_CANONICAL (attr) = 0;
15525 info_ptr += bytes_read;
15526 }
15527 break;
15528 case DW_FORM_exprloc:
15529 case DW_FORM_block:
15530 blk = dwarf_alloc_block (cu);
15531 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15532 info_ptr += bytes_read;
15533 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15534 info_ptr += blk->size;
15535 DW_BLOCK (attr) = blk;
15536 break;
15537 case DW_FORM_block1:
15538 blk = dwarf_alloc_block (cu);
15539 blk->size = read_1_byte (abfd, info_ptr);
15540 info_ptr += 1;
15541 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15542 info_ptr += blk->size;
15543 DW_BLOCK (attr) = blk;
15544 break;
15545 case DW_FORM_data1:
15546 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15547 info_ptr += 1;
15548 break;
15549 case DW_FORM_flag:
15550 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15551 info_ptr += 1;
15552 break;
15553 case DW_FORM_flag_present:
15554 DW_UNSND (attr) = 1;
15555 break;
15556 case DW_FORM_sdata:
15557 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15558 info_ptr += bytes_read;
15559 break;
15560 case DW_FORM_udata:
15561 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15562 info_ptr += bytes_read;
15563 break;
15564 case DW_FORM_ref1:
15565 DW_UNSND (attr) = (cu->header.offset.sect_off
15566 + read_1_byte (abfd, info_ptr));
15567 info_ptr += 1;
15568 break;
15569 case DW_FORM_ref2:
15570 DW_UNSND (attr) = (cu->header.offset.sect_off
15571 + read_2_bytes (abfd, info_ptr));
15572 info_ptr += 2;
15573 break;
15574 case DW_FORM_ref4:
15575 DW_UNSND (attr) = (cu->header.offset.sect_off
15576 + read_4_bytes (abfd, info_ptr));
15577 info_ptr += 4;
15578 break;
15579 case DW_FORM_ref8:
15580 DW_UNSND (attr) = (cu->header.offset.sect_off
15581 + read_8_bytes (abfd, info_ptr));
15582 info_ptr += 8;
15583 break;
15584 case DW_FORM_ref_sig8:
15585 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15586 info_ptr += 8;
15587 break;
15588 case DW_FORM_ref_udata:
15589 DW_UNSND (attr) = (cu->header.offset.sect_off
15590 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15591 info_ptr += bytes_read;
15592 break;
15593 case DW_FORM_indirect:
15594 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15595 info_ptr += bytes_read;
15596 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15597 break;
15598 case DW_FORM_GNU_addr_index:
15599 if (reader->dwo_file == NULL)
15600 {
15601 /* For now flag a hard error.
15602 Later we can turn this into a complaint. */
15603 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15604 dwarf_form_name (form),
15605 bfd_get_filename (abfd));
15606 }
15607 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15608 info_ptr += bytes_read;
15609 break;
15610 case DW_FORM_GNU_str_index:
15611 if (reader->dwo_file == NULL)
15612 {
15613 /* For now flag a hard error.
15614 Later we can turn this into a complaint if warranted. */
15615 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15616 dwarf_form_name (form),
15617 bfd_get_filename (abfd));
15618 }
15619 {
15620 ULONGEST str_index =
15621 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15622
15623 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15624 DW_STRING_IS_CANONICAL (attr) = 0;
15625 info_ptr += bytes_read;
15626 }
15627 break;
15628 default:
15629 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15630 dwarf_form_name (form),
15631 bfd_get_filename (abfd));
15632 }
15633
15634 /* Super hack. */
15635 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15636 attr->form = DW_FORM_GNU_ref_alt;
15637
15638 /* We have seen instances where the compiler tried to emit a byte
15639 size attribute of -1 which ended up being encoded as an unsigned
15640 0xffffffff. Although 0xffffffff is technically a valid size value,
15641 an object of this size seems pretty unlikely so we can relatively
15642 safely treat these cases as if the size attribute was invalid and
15643 treat them as zero by default. */
15644 if (attr->name == DW_AT_byte_size
15645 && form == DW_FORM_data4
15646 && DW_UNSND (attr) >= 0xffffffff)
15647 {
15648 complaint
15649 (&symfile_complaints,
15650 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15651 hex_string (DW_UNSND (attr)));
15652 DW_UNSND (attr) = 0;
15653 }
15654
15655 return info_ptr;
15656 }
15657
15658 /* Read an attribute described by an abbreviated attribute. */
15659
15660 static const gdb_byte *
15661 read_attribute (const struct die_reader_specs *reader,
15662 struct attribute *attr, struct attr_abbrev *abbrev,
15663 const gdb_byte *info_ptr)
15664 {
15665 attr->name = abbrev->name;
15666 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15667 }
15668
15669 /* Read dwarf information from a buffer. */
15670
15671 static unsigned int
15672 read_1_byte (bfd *abfd, const gdb_byte *buf)
15673 {
15674 return bfd_get_8 (abfd, buf);
15675 }
15676
15677 static int
15678 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15679 {
15680 return bfd_get_signed_8 (abfd, buf);
15681 }
15682
15683 static unsigned int
15684 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15685 {
15686 return bfd_get_16 (abfd, buf);
15687 }
15688
15689 static int
15690 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15691 {
15692 return bfd_get_signed_16 (abfd, buf);
15693 }
15694
15695 static unsigned int
15696 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15697 {
15698 return bfd_get_32 (abfd, buf);
15699 }
15700
15701 static int
15702 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15703 {
15704 return bfd_get_signed_32 (abfd, buf);
15705 }
15706
15707 static ULONGEST
15708 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15709 {
15710 return bfd_get_64 (abfd, buf);
15711 }
15712
15713 static CORE_ADDR
15714 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15715 unsigned int *bytes_read)
15716 {
15717 struct comp_unit_head *cu_header = &cu->header;
15718 CORE_ADDR retval = 0;
15719
15720 if (cu_header->signed_addr_p)
15721 {
15722 switch (cu_header->addr_size)
15723 {
15724 case 2:
15725 retval = bfd_get_signed_16 (abfd, buf);
15726 break;
15727 case 4:
15728 retval = bfd_get_signed_32 (abfd, buf);
15729 break;
15730 case 8:
15731 retval = bfd_get_signed_64 (abfd, buf);
15732 break;
15733 default:
15734 internal_error (__FILE__, __LINE__,
15735 _("read_address: bad switch, signed [in module %s]"),
15736 bfd_get_filename (abfd));
15737 }
15738 }
15739 else
15740 {
15741 switch (cu_header->addr_size)
15742 {
15743 case 2:
15744 retval = bfd_get_16 (abfd, buf);
15745 break;
15746 case 4:
15747 retval = bfd_get_32 (abfd, buf);
15748 break;
15749 case 8:
15750 retval = bfd_get_64 (abfd, buf);
15751 break;
15752 default:
15753 internal_error (__FILE__, __LINE__,
15754 _("read_address: bad switch, "
15755 "unsigned [in module %s]"),
15756 bfd_get_filename (abfd));
15757 }
15758 }
15759
15760 *bytes_read = cu_header->addr_size;
15761 return retval;
15762 }
15763
15764 /* Read the initial length from a section. The (draft) DWARF 3
15765 specification allows the initial length to take up either 4 bytes
15766 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15767 bytes describe the length and all offsets will be 8 bytes in length
15768 instead of 4.
15769
15770 An older, non-standard 64-bit format is also handled by this
15771 function. The older format in question stores the initial length
15772 as an 8-byte quantity without an escape value. Lengths greater
15773 than 2^32 aren't very common which means that the initial 4 bytes
15774 is almost always zero. Since a length value of zero doesn't make
15775 sense for the 32-bit format, this initial zero can be considered to
15776 be an escape value which indicates the presence of the older 64-bit
15777 format. As written, the code can't detect (old format) lengths
15778 greater than 4GB. If it becomes necessary to handle lengths
15779 somewhat larger than 4GB, we could allow other small values (such
15780 as the non-sensical values of 1, 2, and 3) to also be used as
15781 escape values indicating the presence of the old format.
15782
15783 The value returned via bytes_read should be used to increment the
15784 relevant pointer after calling read_initial_length().
15785
15786 [ Note: read_initial_length() and read_offset() are based on the
15787 document entitled "DWARF Debugging Information Format", revision
15788 3, draft 8, dated November 19, 2001. This document was obtained
15789 from:
15790
15791 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15792
15793 This document is only a draft and is subject to change. (So beware.)
15794
15795 Details regarding the older, non-standard 64-bit format were
15796 determined empirically by examining 64-bit ELF files produced by
15797 the SGI toolchain on an IRIX 6.5 machine.
15798
15799 - Kevin, July 16, 2002
15800 ] */
15801
15802 static LONGEST
15803 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15804 {
15805 LONGEST length = bfd_get_32 (abfd, buf);
15806
15807 if (length == 0xffffffff)
15808 {
15809 length = bfd_get_64 (abfd, buf + 4);
15810 *bytes_read = 12;
15811 }
15812 else if (length == 0)
15813 {
15814 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15815 length = bfd_get_64 (abfd, buf);
15816 *bytes_read = 8;
15817 }
15818 else
15819 {
15820 *bytes_read = 4;
15821 }
15822
15823 return length;
15824 }
15825
15826 /* Cover function for read_initial_length.
15827 Returns the length of the object at BUF, and stores the size of the
15828 initial length in *BYTES_READ and stores the size that offsets will be in
15829 *OFFSET_SIZE.
15830 If the initial length size is not equivalent to that specified in
15831 CU_HEADER then issue a complaint.
15832 This is useful when reading non-comp-unit headers. */
15833
15834 static LONGEST
15835 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15836 const struct comp_unit_head *cu_header,
15837 unsigned int *bytes_read,
15838 unsigned int *offset_size)
15839 {
15840 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15841
15842 gdb_assert (cu_header->initial_length_size == 4
15843 || cu_header->initial_length_size == 8
15844 || cu_header->initial_length_size == 12);
15845
15846 if (cu_header->initial_length_size != *bytes_read)
15847 complaint (&symfile_complaints,
15848 _("intermixed 32-bit and 64-bit DWARF sections"));
15849
15850 *offset_size = (*bytes_read == 4) ? 4 : 8;
15851 return length;
15852 }
15853
15854 /* Read an offset from the data stream. The size of the offset is
15855 given by cu_header->offset_size. */
15856
15857 static LONGEST
15858 read_offset (bfd *abfd, const gdb_byte *buf,
15859 const struct comp_unit_head *cu_header,
15860 unsigned int *bytes_read)
15861 {
15862 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15863
15864 *bytes_read = cu_header->offset_size;
15865 return offset;
15866 }
15867
15868 /* Read an offset from the data stream. */
15869
15870 static LONGEST
15871 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15872 {
15873 LONGEST retval = 0;
15874
15875 switch (offset_size)
15876 {
15877 case 4:
15878 retval = bfd_get_32 (abfd, buf);
15879 break;
15880 case 8:
15881 retval = bfd_get_64 (abfd, buf);
15882 break;
15883 default:
15884 internal_error (__FILE__, __LINE__,
15885 _("read_offset_1: bad switch [in module %s]"),
15886 bfd_get_filename (abfd));
15887 }
15888
15889 return retval;
15890 }
15891
15892 static const gdb_byte *
15893 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15894 {
15895 /* If the size of a host char is 8 bits, we can return a pointer
15896 to the buffer, otherwise we have to copy the data to a buffer
15897 allocated on the temporary obstack. */
15898 gdb_assert (HOST_CHAR_BIT == 8);
15899 return buf;
15900 }
15901
15902 static const char *
15903 read_direct_string (bfd *abfd, const gdb_byte *buf,
15904 unsigned int *bytes_read_ptr)
15905 {
15906 /* If the size of a host char is 8 bits, we can return a pointer
15907 to the string, otherwise we have to copy the string to a buffer
15908 allocated on the temporary obstack. */
15909 gdb_assert (HOST_CHAR_BIT == 8);
15910 if (*buf == '\0')
15911 {
15912 *bytes_read_ptr = 1;
15913 return NULL;
15914 }
15915 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15916 return (const char *) buf;
15917 }
15918
15919 static const char *
15920 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15921 {
15922 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15923 if (dwarf2_per_objfile->str.buffer == NULL)
15924 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15925 bfd_get_filename (abfd));
15926 if (str_offset >= dwarf2_per_objfile->str.size)
15927 error (_("DW_FORM_strp pointing outside of "
15928 ".debug_str section [in module %s]"),
15929 bfd_get_filename (abfd));
15930 gdb_assert (HOST_CHAR_BIT == 8);
15931 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15932 return NULL;
15933 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15934 }
15935
15936 /* Read a string at offset STR_OFFSET in the .debug_str section from
15937 the .dwz file DWZ. Throw an error if the offset is too large. If
15938 the string consists of a single NUL byte, return NULL; otherwise
15939 return a pointer to the string. */
15940
15941 static const char *
15942 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15943 {
15944 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15945
15946 if (dwz->str.buffer == NULL)
15947 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15948 "section [in module %s]"),
15949 bfd_get_filename (dwz->dwz_bfd));
15950 if (str_offset >= dwz->str.size)
15951 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15952 ".debug_str section [in module %s]"),
15953 bfd_get_filename (dwz->dwz_bfd));
15954 gdb_assert (HOST_CHAR_BIT == 8);
15955 if (dwz->str.buffer[str_offset] == '\0')
15956 return NULL;
15957 return (const char *) (dwz->str.buffer + str_offset);
15958 }
15959
15960 static const char *
15961 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15962 const struct comp_unit_head *cu_header,
15963 unsigned int *bytes_read_ptr)
15964 {
15965 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15966
15967 return read_indirect_string_at_offset (abfd, str_offset);
15968 }
15969
15970 static ULONGEST
15971 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15972 unsigned int *bytes_read_ptr)
15973 {
15974 ULONGEST result;
15975 unsigned int num_read;
15976 int i, shift;
15977 unsigned char byte;
15978
15979 result = 0;
15980 shift = 0;
15981 num_read = 0;
15982 i = 0;
15983 while (1)
15984 {
15985 byte = bfd_get_8 (abfd, buf);
15986 buf++;
15987 num_read++;
15988 result |= ((ULONGEST) (byte & 127) << shift);
15989 if ((byte & 128) == 0)
15990 {
15991 break;
15992 }
15993 shift += 7;
15994 }
15995 *bytes_read_ptr = num_read;
15996 return result;
15997 }
15998
15999 static LONGEST
16000 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16001 unsigned int *bytes_read_ptr)
16002 {
16003 LONGEST result;
16004 int i, shift, num_read;
16005 unsigned char byte;
16006
16007 result = 0;
16008 shift = 0;
16009 num_read = 0;
16010 i = 0;
16011 while (1)
16012 {
16013 byte = bfd_get_8 (abfd, buf);
16014 buf++;
16015 num_read++;
16016 result |= ((LONGEST) (byte & 127) << shift);
16017 shift += 7;
16018 if ((byte & 128) == 0)
16019 {
16020 break;
16021 }
16022 }
16023 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16024 result |= -(((LONGEST) 1) << shift);
16025 *bytes_read_ptr = num_read;
16026 return result;
16027 }
16028
16029 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16030 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16031 ADDR_SIZE is the size of addresses from the CU header. */
16032
16033 static CORE_ADDR
16034 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16035 {
16036 struct objfile *objfile = dwarf2_per_objfile->objfile;
16037 bfd *abfd = objfile->obfd;
16038 const gdb_byte *info_ptr;
16039
16040 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16041 if (dwarf2_per_objfile->addr.buffer == NULL)
16042 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16043 objfile_name (objfile));
16044 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16045 error (_("DW_FORM_addr_index pointing outside of "
16046 ".debug_addr section [in module %s]"),
16047 objfile_name (objfile));
16048 info_ptr = (dwarf2_per_objfile->addr.buffer
16049 + addr_base + addr_index * addr_size);
16050 if (addr_size == 4)
16051 return bfd_get_32 (abfd, info_ptr);
16052 else
16053 return bfd_get_64 (abfd, info_ptr);
16054 }
16055
16056 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16057
16058 static CORE_ADDR
16059 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16060 {
16061 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16062 }
16063
16064 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16065
16066 static CORE_ADDR
16067 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16068 unsigned int *bytes_read)
16069 {
16070 bfd *abfd = cu->objfile->obfd;
16071 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16072
16073 return read_addr_index (cu, addr_index);
16074 }
16075
16076 /* Data structure to pass results from dwarf2_read_addr_index_reader
16077 back to dwarf2_read_addr_index. */
16078
16079 struct dwarf2_read_addr_index_data
16080 {
16081 ULONGEST addr_base;
16082 int addr_size;
16083 };
16084
16085 /* die_reader_func for dwarf2_read_addr_index. */
16086
16087 static void
16088 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16089 const gdb_byte *info_ptr,
16090 struct die_info *comp_unit_die,
16091 int has_children,
16092 void *data)
16093 {
16094 struct dwarf2_cu *cu = reader->cu;
16095 struct dwarf2_read_addr_index_data *aidata =
16096 (struct dwarf2_read_addr_index_data *) data;
16097
16098 aidata->addr_base = cu->addr_base;
16099 aidata->addr_size = cu->header.addr_size;
16100 }
16101
16102 /* Given an index in .debug_addr, fetch the value.
16103 NOTE: This can be called during dwarf expression evaluation,
16104 long after the debug information has been read, and thus per_cu->cu
16105 may no longer exist. */
16106
16107 CORE_ADDR
16108 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16109 unsigned int addr_index)
16110 {
16111 struct objfile *objfile = per_cu->objfile;
16112 struct dwarf2_cu *cu = per_cu->cu;
16113 ULONGEST addr_base;
16114 int addr_size;
16115
16116 /* This is intended to be called from outside this file. */
16117 dw2_setup (objfile);
16118
16119 /* We need addr_base and addr_size.
16120 If we don't have PER_CU->cu, we have to get it.
16121 Nasty, but the alternative is storing the needed info in PER_CU,
16122 which at this point doesn't seem justified: it's not clear how frequently
16123 it would get used and it would increase the size of every PER_CU.
16124 Entry points like dwarf2_per_cu_addr_size do a similar thing
16125 so we're not in uncharted territory here.
16126 Alas we need to be a bit more complicated as addr_base is contained
16127 in the DIE.
16128
16129 We don't need to read the entire CU(/TU).
16130 We just need the header and top level die.
16131
16132 IWBN to use the aging mechanism to let us lazily later discard the CU.
16133 For now we skip this optimization. */
16134
16135 if (cu != NULL)
16136 {
16137 addr_base = cu->addr_base;
16138 addr_size = cu->header.addr_size;
16139 }
16140 else
16141 {
16142 struct dwarf2_read_addr_index_data aidata;
16143
16144 /* Note: We can't use init_cutu_and_read_dies_simple here,
16145 we need addr_base. */
16146 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16147 dwarf2_read_addr_index_reader, &aidata);
16148 addr_base = aidata.addr_base;
16149 addr_size = aidata.addr_size;
16150 }
16151
16152 return read_addr_index_1 (addr_index, addr_base, addr_size);
16153 }
16154
16155 /* Given a DW_FORM_GNU_str_index, fetch the string.
16156 This is only used by the Fission support. */
16157
16158 static const char *
16159 read_str_index (const struct die_reader_specs *reader,
16160 struct dwarf2_cu *cu, ULONGEST str_index)
16161 {
16162 struct objfile *objfile = dwarf2_per_objfile->objfile;
16163 const char *dwo_name = objfile_name (objfile);
16164 bfd *abfd = objfile->obfd;
16165 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16166 struct dwarf2_section_info *str_offsets_section =
16167 &reader->dwo_file->sections.str_offsets;
16168 const gdb_byte *info_ptr;
16169 ULONGEST str_offset;
16170 static const char form_name[] = "DW_FORM_GNU_str_index";
16171
16172 dwarf2_read_section (objfile, str_section);
16173 dwarf2_read_section (objfile, str_offsets_section);
16174 if (str_section->buffer == NULL)
16175 error (_("%s used without .debug_str.dwo section"
16176 " in CU at offset 0x%lx [in module %s]"),
16177 form_name, (long) cu->header.offset.sect_off, dwo_name);
16178 if (str_offsets_section->buffer == NULL)
16179 error (_("%s used without .debug_str_offsets.dwo section"
16180 " in CU at offset 0x%lx [in module %s]"),
16181 form_name, (long) cu->header.offset.sect_off, dwo_name);
16182 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16183 error (_("%s pointing outside of .debug_str_offsets.dwo"
16184 " section in CU at offset 0x%lx [in module %s]"),
16185 form_name, (long) cu->header.offset.sect_off, dwo_name);
16186 info_ptr = (str_offsets_section->buffer
16187 + str_index * cu->header.offset_size);
16188 if (cu->header.offset_size == 4)
16189 str_offset = bfd_get_32 (abfd, info_ptr);
16190 else
16191 str_offset = bfd_get_64 (abfd, info_ptr);
16192 if (str_offset >= str_section->size)
16193 error (_("Offset from %s pointing outside of"
16194 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16195 form_name, (long) cu->header.offset.sect_off, dwo_name);
16196 return (const char *) (str_section->buffer + str_offset);
16197 }
16198
16199 /* Return the length of an LEB128 number in BUF. */
16200
16201 static int
16202 leb128_size (const gdb_byte *buf)
16203 {
16204 const gdb_byte *begin = buf;
16205 gdb_byte byte;
16206
16207 while (1)
16208 {
16209 byte = *buf++;
16210 if ((byte & 128) == 0)
16211 return buf - begin;
16212 }
16213 }
16214
16215 static void
16216 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16217 {
16218 switch (lang)
16219 {
16220 case DW_LANG_C89:
16221 case DW_LANG_C99:
16222 case DW_LANG_C:
16223 case DW_LANG_UPC:
16224 cu->language = language_c;
16225 break;
16226 case DW_LANG_C_plus_plus:
16227 cu->language = language_cplus;
16228 break;
16229 case DW_LANG_D:
16230 cu->language = language_d;
16231 break;
16232 case DW_LANG_Fortran77:
16233 case DW_LANG_Fortran90:
16234 case DW_LANG_Fortran95:
16235 cu->language = language_fortran;
16236 break;
16237 case DW_LANG_Go:
16238 cu->language = language_go;
16239 break;
16240 case DW_LANG_Mips_Assembler:
16241 cu->language = language_asm;
16242 break;
16243 case DW_LANG_Java:
16244 cu->language = language_java;
16245 break;
16246 case DW_LANG_Ada83:
16247 case DW_LANG_Ada95:
16248 cu->language = language_ada;
16249 break;
16250 case DW_LANG_Modula2:
16251 cu->language = language_m2;
16252 break;
16253 case DW_LANG_Pascal83:
16254 cu->language = language_pascal;
16255 break;
16256 case DW_LANG_ObjC:
16257 cu->language = language_objc;
16258 break;
16259 case DW_LANG_Cobol74:
16260 case DW_LANG_Cobol85:
16261 default:
16262 cu->language = language_minimal;
16263 break;
16264 }
16265 cu->language_defn = language_def (cu->language);
16266 }
16267
16268 /* Return the named attribute or NULL if not there. */
16269
16270 static struct attribute *
16271 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16272 {
16273 for (;;)
16274 {
16275 unsigned int i;
16276 struct attribute *spec = NULL;
16277
16278 for (i = 0; i < die->num_attrs; ++i)
16279 {
16280 if (die->attrs[i].name == name)
16281 return &die->attrs[i];
16282 if (die->attrs[i].name == DW_AT_specification
16283 || die->attrs[i].name == DW_AT_abstract_origin)
16284 spec = &die->attrs[i];
16285 }
16286
16287 if (!spec)
16288 break;
16289
16290 die = follow_die_ref (die, spec, &cu);
16291 }
16292
16293 return NULL;
16294 }
16295
16296 /* Return the named attribute or NULL if not there,
16297 but do not follow DW_AT_specification, etc.
16298 This is for use in contexts where we're reading .debug_types dies.
16299 Following DW_AT_specification, DW_AT_abstract_origin will take us
16300 back up the chain, and we want to go down. */
16301
16302 static struct attribute *
16303 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16304 {
16305 unsigned int i;
16306
16307 for (i = 0; i < die->num_attrs; ++i)
16308 if (die->attrs[i].name == name)
16309 return &die->attrs[i];
16310
16311 return NULL;
16312 }
16313
16314 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16315 and holds a non-zero value. This function should only be used for
16316 DW_FORM_flag or DW_FORM_flag_present attributes. */
16317
16318 static int
16319 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16320 {
16321 struct attribute *attr = dwarf2_attr (die, name, cu);
16322
16323 return (attr && DW_UNSND (attr));
16324 }
16325
16326 static int
16327 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16328 {
16329 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16330 which value is non-zero. However, we have to be careful with
16331 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16332 (via dwarf2_flag_true_p) follows this attribute. So we may
16333 end up accidently finding a declaration attribute that belongs
16334 to a different DIE referenced by the specification attribute,
16335 even though the given DIE does not have a declaration attribute. */
16336 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16337 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16338 }
16339
16340 /* Return the die giving the specification for DIE, if there is
16341 one. *SPEC_CU is the CU containing DIE on input, and the CU
16342 containing the return value on output. If there is no
16343 specification, but there is an abstract origin, that is
16344 returned. */
16345
16346 static struct die_info *
16347 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16348 {
16349 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16350 *spec_cu);
16351
16352 if (spec_attr == NULL)
16353 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16354
16355 if (spec_attr == NULL)
16356 return NULL;
16357 else
16358 return follow_die_ref (die, spec_attr, spec_cu);
16359 }
16360
16361 /* Free the line_header structure *LH, and any arrays and strings it
16362 refers to.
16363 NOTE: This is also used as a "cleanup" function. */
16364
16365 static void
16366 free_line_header (struct line_header *lh)
16367 {
16368 if (lh->standard_opcode_lengths)
16369 xfree (lh->standard_opcode_lengths);
16370
16371 /* Remember that all the lh->file_names[i].name pointers are
16372 pointers into debug_line_buffer, and don't need to be freed. */
16373 if (lh->file_names)
16374 xfree (lh->file_names);
16375
16376 /* Similarly for the include directory names. */
16377 if (lh->include_dirs)
16378 xfree (lh->include_dirs);
16379
16380 xfree (lh);
16381 }
16382
16383 /* Add an entry to LH's include directory table. */
16384
16385 static void
16386 add_include_dir (struct line_header *lh, const char *include_dir)
16387 {
16388 /* Grow the array if necessary. */
16389 if (lh->include_dirs_size == 0)
16390 {
16391 lh->include_dirs_size = 1; /* for testing */
16392 lh->include_dirs = xmalloc (lh->include_dirs_size
16393 * sizeof (*lh->include_dirs));
16394 }
16395 else if (lh->num_include_dirs >= lh->include_dirs_size)
16396 {
16397 lh->include_dirs_size *= 2;
16398 lh->include_dirs = xrealloc (lh->include_dirs,
16399 (lh->include_dirs_size
16400 * sizeof (*lh->include_dirs)));
16401 }
16402
16403 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16404 }
16405
16406 /* Add an entry to LH's file name table. */
16407
16408 static void
16409 add_file_name (struct line_header *lh,
16410 const char *name,
16411 unsigned int dir_index,
16412 unsigned int mod_time,
16413 unsigned int length)
16414 {
16415 struct file_entry *fe;
16416
16417 /* Grow the array if necessary. */
16418 if (lh->file_names_size == 0)
16419 {
16420 lh->file_names_size = 1; /* for testing */
16421 lh->file_names = xmalloc (lh->file_names_size
16422 * sizeof (*lh->file_names));
16423 }
16424 else if (lh->num_file_names >= lh->file_names_size)
16425 {
16426 lh->file_names_size *= 2;
16427 lh->file_names = xrealloc (lh->file_names,
16428 (lh->file_names_size
16429 * sizeof (*lh->file_names)));
16430 }
16431
16432 fe = &lh->file_names[lh->num_file_names++];
16433 fe->name = name;
16434 fe->dir_index = dir_index;
16435 fe->mod_time = mod_time;
16436 fe->length = length;
16437 fe->included_p = 0;
16438 fe->symtab = NULL;
16439 }
16440
16441 /* A convenience function to find the proper .debug_line section for a
16442 CU. */
16443
16444 static struct dwarf2_section_info *
16445 get_debug_line_section (struct dwarf2_cu *cu)
16446 {
16447 struct dwarf2_section_info *section;
16448
16449 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16450 DWO file. */
16451 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16452 section = &cu->dwo_unit->dwo_file->sections.line;
16453 else if (cu->per_cu->is_dwz)
16454 {
16455 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16456
16457 section = &dwz->line;
16458 }
16459 else
16460 section = &dwarf2_per_objfile->line;
16461
16462 return section;
16463 }
16464
16465 /* Read the statement program header starting at OFFSET in
16466 .debug_line, or .debug_line.dwo. Return a pointer
16467 to a struct line_header, allocated using xmalloc.
16468
16469 NOTE: the strings in the include directory and file name tables of
16470 the returned object point into the dwarf line section buffer,
16471 and must not be freed. */
16472
16473 static struct line_header *
16474 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16475 {
16476 struct cleanup *back_to;
16477 struct line_header *lh;
16478 const gdb_byte *line_ptr;
16479 unsigned int bytes_read, offset_size;
16480 int i;
16481 const char *cur_dir, *cur_file;
16482 struct dwarf2_section_info *section;
16483 bfd *abfd;
16484
16485 section = get_debug_line_section (cu);
16486 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16487 if (section->buffer == NULL)
16488 {
16489 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16490 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16491 else
16492 complaint (&symfile_complaints, _("missing .debug_line section"));
16493 return 0;
16494 }
16495
16496 /* We can't do this until we know the section is non-empty.
16497 Only then do we know we have such a section. */
16498 abfd = get_section_bfd_owner (section);
16499
16500 /* Make sure that at least there's room for the total_length field.
16501 That could be 12 bytes long, but we're just going to fudge that. */
16502 if (offset + 4 >= section->size)
16503 {
16504 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16505 return 0;
16506 }
16507
16508 lh = xmalloc (sizeof (*lh));
16509 memset (lh, 0, sizeof (*lh));
16510 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16511 (void *) lh);
16512
16513 line_ptr = section->buffer + offset;
16514
16515 /* Read in the header. */
16516 lh->total_length =
16517 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16518 &bytes_read, &offset_size);
16519 line_ptr += bytes_read;
16520 if (line_ptr + lh->total_length > (section->buffer + section->size))
16521 {
16522 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16523 do_cleanups (back_to);
16524 return 0;
16525 }
16526 lh->statement_program_end = line_ptr + lh->total_length;
16527 lh->version = read_2_bytes (abfd, line_ptr);
16528 line_ptr += 2;
16529 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16530 line_ptr += offset_size;
16531 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16532 line_ptr += 1;
16533 if (lh->version >= 4)
16534 {
16535 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16536 line_ptr += 1;
16537 }
16538 else
16539 lh->maximum_ops_per_instruction = 1;
16540
16541 if (lh->maximum_ops_per_instruction == 0)
16542 {
16543 lh->maximum_ops_per_instruction = 1;
16544 complaint (&symfile_complaints,
16545 _("invalid maximum_ops_per_instruction "
16546 "in `.debug_line' section"));
16547 }
16548
16549 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16550 line_ptr += 1;
16551 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16552 line_ptr += 1;
16553 lh->line_range = read_1_byte (abfd, line_ptr);
16554 line_ptr += 1;
16555 lh->opcode_base = read_1_byte (abfd, line_ptr);
16556 line_ptr += 1;
16557 lh->standard_opcode_lengths
16558 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16559
16560 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16561 for (i = 1; i < lh->opcode_base; ++i)
16562 {
16563 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16564 line_ptr += 1;
16565 }
16566
16567 /* Read directory table. */
16568 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16569 {
16570 line_ptr += bytes_read;
16571 add_include_dir (lh, cur_dir);
16572 }
16573 line_ptr += bytes_read;
16574
16575 /* Read file name table. */
16576 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16577 {
16578 unsigned int dir_index, mod_time, length;
16579
16580 line_ptr += bytes_read;
16581 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16582 line_ptr += bytes_read;
16583 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16584 line_ptr += bytes_read;
16585 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16586 line_ptr += bytes_read;
16587
16588 add_file_name (lh, cur_file, dir_index, mod_time, length);
16589 }
16590 line_ptr += bytes_read;
16591 lh->statement_program_start = line_ptr;
16592
16593 if (line_ptr > (section->buffer + section->size))
16594 complaint (&symfile_complaints,
16595 _("line number info header doesn't "
16596 "fit in `.debug_line' section"));
16597
16598 discard_cleanups (back_to);
16599 return lh;
16600 }
16601
16602 /* Subroutine of dwarf_decode_lines to simplify it.
16603 Return the file name of the psymtab for included file FILE_INDEX
16604 in line header LH of PST.
16605 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16606 If space for the result is malloc'd, it will be freed by a cleanup.
16607 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16608
16609 The function creates dangling cleanup registration. */
16610
16611 static const char *
16612 psymtab_include_file_name (const struct line_header *lh, int file_index,
16613 const struct partial_symtab *pst,
16614 const char *comp_dir)
16615 {
16616 const struct file_entry fe = lh->file_names [file_index];
16617 const char *include_name = fe.name;
16618 const char *include_name_to_compare = include_name;
16619 const char *dir_name = NULL;
16620 const char *pst_filename;
16621 char *copied_name = NULL;
16622 int file_is_pst;
16623
16624 if (fe.dir_index)
16625 dir_name = lh->include_dirs[fe.dir_index - 1];
16626
16627 if (!IS_ABSOLUTE_PATH (include_name)
16628 && (dir_name != NULL || comp_dir != NULL))
16629 {
16630 /* Avoid creating a duplicate psymtab for PST.
16631 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16632 Before we do the comparison, however, we need to account
16633 for DIR_NAME and COMP_DIR.
16634 First prepend dir_name (if non-NULL). If we still don't
16635 have an absolute path prepend comp_dir (if non-NULL).
16636 However, the directory we record in the include-file's
16637 psymtab does not contain COMP_DIR (to match the
16638 corresponding symtab(s)).
16639
16640 Example:
16641
16642 bash$ cd /tmp
16643 bash$ gcc -g ./hello.c
16644 include_name = "hello.c"
16645 dir_name = "."
16646 DW_AT_comp_dir = comp_dir = "/tmp"
16647 DW_AT_name = "./hello.c" */
16648
16649 if (dir_name != NULL)
16650 {
16651 char *tem = concat (dir_name, SLASH_STRING,
16652 include_name, (char *)NULL);
16653
16654 make_cleanup (xfree, tem);
16655 include_name = tem;
16656 include_name_to_compare = include_name;
16657 }
16658 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16659 {
16660 char *tem = concat (comp_dir, SLASH_STRING,
16661 include_name, (char *)NULL);
16662
16663 make_cleanup (xfree, tem);
16664 include_name_to_compare = tem;
16665 }
16666 }
16667
16668 pst_filename = pst->filename;
16669 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16670 {
16671 copied_name = concat (pst->dirname, SLASH_STRING,
16672 pst_filename, (char *)NULL);
16673 pst_filename = copied_name;
16674 }
16675
16676 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16677
16678 if (copied_name != NULL)
16679 xfree (copied_name);
16680
16681 if (file_is_pst)
16682 return NULL;
16683 return include_name;
16684 }
16685
16686 /* Ignore this record_line request. */
16687
16688 static void
16689 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16690 {
16691 return;
16692 }
16693
16694 /* Subroutine of dwarf_decode_lines to simplify it.
16695 Process the line number information in LH. */
16696
16697 static void
16698 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16699 struct dwarf2_cu *cu, struct partial_symtab *pst)
16700 {
16701 const gdb_byte *line_ptr, *extended_end;
16702 const gdb_byte *line_end;
16703 unsigned int bytes_read, extended_len;
16704 unsigned char op_code, extended_op, adj_opcode;
16705 CORE_ADDR baseaddr;
16706 struct objfile *objfile = cu->objfile;
16707 bfd *abfd = objfile->obfd;
16708 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16709 const int decode_for_pst_p = (pst != NULL);
16710 struct subfile *last_subfile = NULL;
16711 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16712 = record_line;
16713
16714 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16715
16716 line_ptr = lh->statement_program_start;
16717 line_end = lh->statement_program_end;
16718
16719 /* Read the statement sequences until there's nothing left. */
16720 while (line_ptr < line_end)
16721 {
16722 /* state machine registers */
16723 CORE_ADDR address = 0;
16724 unsigned int file = 1;
16725 unsigned int line = 1;
16726 unsigned int column = 0;
16727 int is_stmt = lh->default_is_stmt;
16728 int basic_block = 0;
16729 int end_sequence = 0;
16730 CORE_ADDR addr;
16731 unsigned char op_index = 0;
16732
16733 if (!decode_for_pst_p && lh->num_file_names >= file)
16734 {
16735 /* Start a subfile for the current file of the state machine. */
16736 /* lh->include_dirs and lh->file_names are 0-based, but the
16737 directory and file name numbers in the statement program
16738 are 1-based. */
16739 struct file_entry *fe = &lh->file_names[file - 1];
16740 const char *dir = NULL;
16741
16742 if (fe->dir_index)
16743 dir = lh->include_dirs[fe->dir_index - 1];
16744
16745 dwarf2_start_subfile (fe->name, dir, comp_dir);
16746 }
16747
16748 /* Decode the table. */
16749 while (!end_sequence)
16750 {
16751 op_code = read_1_byte (abfd, line_ptr);
16752 line_ptr += 1;
16753 if (line_ptr > line_end)
16754 {
16755 dwarf2_debug_line_missing_end_sequence_complaint ();
16756 break;
16757 }
16758
16759 if (op_code >= lh->opcode_base)
16760 {
16761 /* Special operand. */
16762 adj_opcode = op_code - lh->opcode_base;
16763 address += (((op_index + (adj_opcode / lh->line_range))
16764 / lh->maximum_ops_per_instruction)
16765 * lh->minimum_instruction_length);
16766 op_index = ((op_index + (adj_opcode / lh->line_range))
16767 % lh->maximum_ops_per_instruction);
16768 line += lh->line_base + (adj_opcode % lh->line_range);
16769 if (lh->num_file_names < file || file == 0)
16770 dwarf2_debug_line_missing_file_complaint ();
16771 /* For now we ignore lines not starting on an
16772 instruction boundary. */
16773 else if (op_index == 0)
16774 {
16775 lh->file_names[file - 1].included_p = 1;
16776 if (!decode_for_pst_p && is_stmt)
16777 {
16778 if (last_subfile != current_subfile)
16779 {
16780 addr = gdbarch_addr_bits_remove (gdbarch, address);
16781 if (last_subfile)
16782 (*p_record_line) (last_subfile, 0, addr);
16783 last_subfile = current_subfile;
16784 }
16785 /* Append row to matrix using current values. */
16786 addr = gdbarch_addr_bits_remove (gdbarch, address);
16787 (*p_record_line) (current_subfile, line, addr);
16788 }
16789 }
16790 basic_block = 0;
16791 }
16792 else switch (op_code)
16793 {
16794 case DW_LNS_extended_op:
16795 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16796 &bytes_read);
16797 line_ptr += bytes_read;
16798 extended_end = line_ptr + extended_len;
16799 extended_op = read_1_byte (abfd, line_ptr);
16800 line_ptr += 1;
16801 switch (extended_op)
16802 {
16803 case DW_LNE_end_sequence:
16804 p_record_line = record_line;
16805 end_sequence = 1;
16806 break;
16807 case DW_LNE_set_address:
16808 address = read_address (abfd, line_ptr, cu, &bytes_read);
16809
16810 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16811 {
16812 /* This line table is for a function which has been
16813 GCd by the linker. Ignore it. PR gdb/12528 */
16814
16815 long line_offset
16816 = line_ptr - get_debug_line_section (cu)->buffer;
16817
16818 complaint (&symfile_complaints,
16819 _(".debug_line address at offset 0x%lx is 0 "
16820 "[in module %s]"),
16821 line_offset, objfile_name (objfile));
16822 p_record_line = noop_record_line;
16823 }
16824
16825 op_index = 0;
16826 line_ptr += bytes_read;
16827 address += baseaddr;
16828 break;
16829 case DW_LNE_define_file:
16830 {
16831 const char *cur_file;
16832 unsigned int dir_index, mod_time, length;
16833
16834 cur_file = read_direct_string (abfd, line_ptr,
16835 &bytes_read);
16836 line_ptr += bytes_read;
16837 dir_index =
16838 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16839 line_ptr += bytes_read;
16840 mod_time =
16841 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16842 line_ptr += bytes_read;
16843 length =
16844 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16845 line_ptr += bytes_read;
16846 add_file_name (lh, cur_file, dir_index, mod_time, length);
16847 }
16848 break;
16849 case DW_LNE_set_discriminator:
16850 /* The discriminator is not interesting to the debugger;
16851 just ignore it. */
16852 line_ptr = extended_end;
16853 break;
16854 default:
16855 complaint (&symfile_complaints,
16856 _("mangled .debug_line section"));
16857 return;
16858 }
16859 /* Make sure that we parsed the extended op correctly. If e.g.
16860 we expected a different address size than the producer used,
16861 we may have read the wrong number of bytes. */
16862 if (line_ptr != extended_end)
16863 {
16864 complaint (&symfile_complaints,
16865 _("mangled .debug_line section"));
16866 return;
16867 }
16868 break;
16869 case DW_LNS_copy:
16870 if (lh->num_file_names < file || file == 0)
16871 dwarf2_debug_line_missing_file_complaint ();
16872 else
16873 {
16874 lh->file_names[file - 1].included_p = 1;
16875 if (!decode_for_pst_p && is_stmt)
16876 {
16877 if (last_subfile != current_subfile)
16878 {
16879 addr = gdbarch_addr_bits_remove (gdbarch, address);
16880 if (last_subfile)
16881 (*p_record_line) (last_subfile, 0, addr);
16882 last_subfile = current_subfile;
16883 }
16884 addr = gdbarch_addr_bits_remove (gdbarch, address);
16885 (*p_record_line) (current_subfile, line, addr);
16886 }
16887 }
16888 basic_block = 0;
16889 break;
16890 case DW_LNS_advance_pc:
16891 {
16892 CORE_ADDR adjust
16893 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16894
16895 address += (((op_index + adjust)
16896 / lh->maximum_ops_per_instruction)
16897 * lh->minimum_instruction_length);
16898 op_index = ((op_index + adjust)
16899 % lh->maximum_ops_per_instruction);
16900 line_ptr += bytes_read;
16901 }
16902 break;
16903 case DW_LNS_advance_line:
16904 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16905 line_ptr += bytes_read;
16906 break;
16907 case DW_LNS_set_file:
16908 {
16909 /* The arrays lh->include_dirs and lh->file_names are
16910 0-based, but the directory and file name numbers in
16911 the statement program are 1-based. */
16912 struct file_entry *fe;
16913 const char *dir = NULL;
16914
16915 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16916 line_ptr += bytes_read;
16917 if (lh->num_file_names < file || file == 0)
16918 dwarf2_debug_line_missing_file_complaint ();
16919 else
16920 {
16921 fe = &lh->file_names[file - 1];
16922 if (fe->dir_index)
16923 dir = lh->include_dirs[fe->dir_index - 1];
16924 if (!decode_for_pst_p)
16925 {
16926 last_subfile = current_subfile;
16927 dwarf2_start_subfile (fe->name, dir, comp_dir);
16928 }
16929 }
16930 }
16931 break;
16932 case DW_LNS_set_column:
16933 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16934 line_ptr += bytes_read;
16935 break;
16936 case DW_LNS_negate_stmt:
16937 is_stmt = (!is_stmt);
16938 break;
16939 case DW_LNS_set_basic_block:
16940 basic_block = 1;
16941 break;
16942 /* Add to the address register of the state machine the
16943 address increment value corresponding to special opcode
16944 255. I.e., this value is scaled by the minimum
16945 instruction length since special opcode 255 would have
16946 scaled the increment. */
16947 case DW_LNS_const_add_pc:
16948 {
16949 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16950
16951 address += (((op_index + adjust)
16952 / lh->maximum_ops_per_instruction)
16953 * lh->minimum_instruction_length);
16954 op_index = ((op_index + adjust)
16955 % lh->maximum_ops_per_instruction);
16956 }
16957 break;
16958 case DW_LNS_fixed_advance_pc:
16959 address += read_2_bytes (abfd, line_ptr);
16960 op_index = 0;
16961 line_ptr += 2;
16962 break;
16963 default:
16964 {
16965 /* Unknown standard opcode, ignore it. */
16966 int i;
16967
16968 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16969 {
16970 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16971 line_ptr += bytes_read;
16972 }
16973 }
16974 }
16975 }
16976 if (lh->num_file_names < file || file == 0)
16977 dwarf2_debug_line_missing_file_complaint ();
16978 else
16979 {
16980 lh->file_names[file - 1].included_p = 1;
16981 if (!decode_for_pst_p)
16982 {
16983 addr = gdbarch_addr_bits_remove (gdbarch, address);
16984 (*p_record_line) (current_subfile, 0, addr);
16985 }
16986 }
16987 }
16988 }
16989
16990 /* Decode the Line Number Program (LNP) for the given line_header
16991 structure and CU. The actual information extracted and the type
16992 of structures created from the LNP depends on the value of PST.
16993
16994 1. If PST is NULL, then this procedure uses the data from the program
16995 to create all necessary symbol tables, and their linetables.
16996
16997 2. If PST is not NULL, this procedure reads the program to determine
16998 the list of files included by the unit represented by PST, and
16999 builds all the associated partial symbol tables.
17000
17001 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17002 It is used for relative paths in the line table.
17003 NOTE: When processing partial symtabs (pst != NULL),
17004 comp_dir == pst->dirname.
17005
17006 NOTE: It is important that psymtabs have the same file name (via strcmp)
17007 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17008 symtab we don't use it in the name of the psymtabs we create.
17009 E.g. expand_line_sal requires this when finding psymtabs to expand.
17010 A good testcase for this is mb-inline.exp. */
17011
17012 static void
17013 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17014 struct dwarf2_cu *cu, struct partial_symtab *pst,
17015 int want_line_info)
17016 {
17017 struct objfile *objfile = cu->objfile;
17018 const int decode_for_pst_p = (pst != NULL);
17019 struct subfile *first_subfile = current_subfile;
17020
17021 if (want_line_info)
17022 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17023
17024 if (decode_for_pst_p)
17025 {
17026 int file_index;
17027
17028 /* Now that we're done scanning the Line Header Program, we can
17029 create the psymtab of each included file. */
17030 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17031 if (lh->file_names[file_index].included_p == 1)
17032 {
17033 const char *include_name =
17034 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17035 if (include_name != NULL)
17036 dwarf2_create_include_psymtab (include_name, pst, objfile);
17037 }
17038 }
17039 else
17040 {
17041 /* Make sure a symtab is created for every file, even files
17042 which contain only variables (i.e. no code with associated
17043 line numbers). */
17044 int i;
17045
17046 for (i = 0; i < lh->num_file_names; i++)
17047 {
17048 const char *dir = NULL;
17049 struct file_entry *fe;
17050
17051 fe = &lh->file_names[i];
17052 if (fe->dir_index)
17053 dir = lh->include_dirs[fe->dir_index - 1];
17054 dwarf2_start_subfile (fe->name, dir, comp_dir);
17055
17056 /* Skip the main file; we don't need it, and it must be
17057 allocated last, so that it will show up before the
17058 non-primary symtabs in the objfile's symtab list. */
17059 if (current_subfile == first_subfile)
17060 continue;
17061
17062 if (current_subfile->symtab == NULL)
17063 current_subfile->symtab = allocate_symtab (current_subfile->name,
17064 objfile);
17065 fe->symtab = current_subfile->symtab;
17066 }
17067 }
17068 }
17069
17070 /* Start a subfile for DWARF. FILENAME is the name of the file and
17071 DIRNAME the name of the source directory which contains FILENAME
17072 or NULL if not known. COMP_DIR is the compilation directory for the
17073 linetable's compilation unit or NULL if not known.
17074 This routine tries to keep line numbers from identical absolute and
17075 relative file names in a common subfile.
17076
17077 Using the `list' example from the GDB testsuite, which resides in
17078 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17079 of /srcdir/list0.c yields the following debugging information for list0.c:
17080
17081 DW_AT_name: /srcdir/list0.c
17082 DW_AT_comp_dir: /compdir
17083 files.files[0].name: list0.h
17084 files.files[0].dir: /srcdir
17085 files.files[1].name: list0.c
17086 files.files[1].dir: /srcdir
17087
17088 The line number information for list0.c has to end up in a single
17089 subfile, so that `break /srcdir/list0.c:1' works as expected.
17090 start_subfile will ensure that this happens provided that we pass the
17091 concatenation of files.files[1].dir and files.files[1].name as the
17092 subfile's name. */
17093
17094 static void
17095 dwarf2_start_subfile (const char *filename, const char *dirname,
17096 const char *comp_dir)
17097 {
17098 char *copy = NULL;
17099
17100 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17101 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17102 second argument to start_subfile. To be consistent, we do the
17103 same here. In order not to lose the line information directory,
17104 we concatenate it to the filename when it makes sense.
17105 Note that the Dwarf3 standard says (speaking of filenames in line
17106 information): ``The directory index is ignored for file names
17107 that represent full path names''. Thus ignoring dirname in the
17108 `else' branch below isn't an issue. */
17109
17110 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17111 {
17112 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17113 filename = copy;
17114 }
17115
17116 start_subfile (filename, comp_dir);
17117
17118 if (copy != NULL)
17119 xfree (copy);
17120 }
17121
17122 /* Start a symtab for DWARF.
17123 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17124
17125 static void
17126 dwarf2_start_symtab (struct dwarf2_cu *cu,
17127 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17128 {
17129 start_symtab (name, comp_dir, low_pc);
17130 record_debugformat ("DWARF 2");
17131 record_producer (cu->producer);
17132
17133 /* We assume that we're processing GCC output. */
17134 processing_gcc_compilation = 2;
17135
17136 cu->processing_has_namespace_info = 0;
17137 }
17138
17139 static void
17140 var_decode_location (struct attribute *attr, struct symbol *sym,
17141 struct dwarf2_cu *cu)
17142 {
17143 struct objfile *objfile = cu->objfile;
17144 struct comp_unit_head *cu_header = &cu->header;
17145
17146 /* NOTE drow/2003-01-30: There used to be a comment and some special
17147 code here to turn a symbol with DW_AT_external and a
17148 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17149 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17150 with some versions of binutils) where shared libraries could have
17151 relocations against symbols in their debug information - the
17152 minimal symbol would have the right address, but the debug info
17153 would not. It's no longer necessary, because we will explicitly
17154 apply relocations when we read in the debug information now. */
17155
17156 /* A DW_AT_location attribute with no contents indicates that a
17157 variable has been optimized away. */
17158 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17159 {
17160 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17161 return;
17162 }
17163
17164 /* Handle one degenerate form of location expression specially, to
17165 preserve GDB's previous behavior when section offsets are
17166 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17167 then mark this symbol as LOC_STATIC. */
17168
17169 if (attr_form_is_block (attr)
17170 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17171 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17172 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17173 && (DW_BLOCK (attr)->size
17174 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17175 {
17176 unsigned int dummy;
17177
17178 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17179 SYMBOL_VALUE_ADDRESS (sym) =
17180 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17181 else
17182 SYMBOL_VALUE_ADDRESS (sym) =
17183 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17184 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17185 fixup_symbol_section (sym, objfile);
17186 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17187 SYMBOL_SECTION (sym));
17188 return;
17189 }
17190
17191 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17192 expression evaluator, and use LOC_COMPUTED only when necessary
17193 (i.e. when the value of a register or memory location is
17194 referenced, or a thread-local block, etc.). Then again, it might
17195 not be worthwhile. I'm assuming that it isn't unless performance
17196 or memory numbers show me otherwise. */
17197
17198 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17199
17200 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17201 cu->has_loclist = 1;
17202 }
17203
17204 /* Given a pointer to a DWARF information entry, figure out if we need
17205 to make a symbol table entry for it, and if so, create a new entry
17206 and return a pointer to it.
17207 If TYPE is NULL, determine symbol type from the die, otherwise
17208 used the passed type.
17209 If SPACE is not NULL, use it to hold the new symbol. If it is
17210 NULL, allocate a new symbol on the objfile's obstack. */
17211
17212 static struct symbol *
17213 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17214 struct symbol *space)
17215 {
17216 struct objfile *objfile = cu->objfile;
17217 struct symbol *sym = NULL;
17218 const char *name;
17219 struct attribute *attr = NULL;
17220 struct attribute *attr2 = NULL;
17221 CORE_ADDR baseaddr;
17222 struct pending **list_to_add = NULL;
17223
17224 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17225
17226 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17227
17228 name = dwarf2_name (die, cu);
17229 if (name)
17230 {
17231 const char *linkagename;
17232 int suppress_add = 0;
17233
17234 if (space)
17235 sym = space;
17236 else
17237 sym = allocate_symbol (objfile);
17238 OBJSTAT (objfile, n_syms++);
17239
17240 /* Cache this symbol's name and the name's demangled form (if any). */
17241 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17242 linkagename = dwarf2_physname (name, die, cu);
17243 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17244
17245 /* Fortran does not have mangling standard and the mangling does differ
17246 between gfortran, iFort etc. */
17247 if (cu->language == language_fortran
17248 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17249 symbol_set_demangled_name (&(sym->ginfo),
17250 dwarf2_full_name (name, die, cu),
17251 NULL);
17252
17253 /* Default assumptions.
17254 Use the passed type or decode it from the die. */
17255 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17256 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17257 if (type != NULL)
17258 SYMBOL_TYPE (sym) = type;
17259 else
17260 SYMBOL_TYPE (sym) = die_type (die, cu);
17261 attr = dwarf2_attr (die,
17262 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17263 cu);
17264 if (attr)
17265 {
17266 SYMBOL_LINE (sym) = DW_UNSND (attr);
17267 }
17268
17269 attr = dwarf2_attr (die,
17270 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17271 cu);
17272 if (attr)
17273 {
17274 int file_index = DW_UNSND (attr);
17275
17276 if (cu->line_header == NULL
17277 || file_index > cu->line_header->num_file_names)
17278 complaint (&symfile_complaints,
17279 _("file index out of range"));
17280 else if (file_index > 0)
17281 {
17282 struct file_entry *fe;
17283
17284 fe = &cu->line_header->file_names[file_index - 1];
17285 SYMBOL_SYMTAB (sym) = fe->symtab;
17286 }
17287 }
17288
17289 switch (die->tag)
17290 {
17291 case DW_TAG_label:
17292 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17293 if (attr)
17294 {
17295 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17296 }
17297 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17298 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17299 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17300 add_symbol_to_list (sym, cu->list_in_scope);
17301 break;
17302 case DW_TAG_subprogram:
17303 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17304 finish_block. */
17305 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17306 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17307 if ((attr2 && (DW_UNSND (attr2) != 0))
17308 || cu->language == language_ada)
17309 {
17310 /* Subprograms marked external are stored as a global symbol.
17311 Ada subprograms, whether marked external or not, are always
17312 stored as a global symbol, because we want to be able to
17313 access them globally. For instance, we want to be able
17314 to break on a nested subprogram without having to
17315 specify the context. */
17316 list_to_add = &global_symbols;
17317 }
17318 else
17319 {
17320 list_to_add = cu->list_in_scope;
17321 }
17322 break;
17323 case DW_TAG_inlined_subroutine:
17324 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17325 finish_block. */
17326 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17327 SYMBOL_INLINED (sym) = 1;
17328 list_to_add = cu->list_in_scope;
17329 break;
17330 case DW_TAG_template_value_param:
17331 suppress_add = 1;
17332 /* Fall through. */
17333 case DW_TAG_constant:
17334 case DW_TAG_variable:
17335 case DW_TAG_member:
17336 /* Compilation with minimal debug info may result in
17337 variables with missing type entries. Change the
17338 misleading `void' type to something sensible. */
17339 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17340 SYMBOL_TYPE (sym)
17341 = objfile_type (objfile)->nodebug_data_symbol;
17342
17343 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17344 /* In the case of DW_TAG_member, we should only be called for
17345 static const members. */
17346 if (die->tag == DW_TAG_member)
17347 {
17348 /* dwarf2_add_field uses die_is_declaration,
17349 so we do the same. */
17350 gdb_assert (die_is_declaration (die, cu));
17351 gdb_assert (attr);
17352 }
17353 if (attr)
17354 {
17355 dwarf2_const_value (attr, sym, cu);
17356 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17357 if (!suppress_add)
17358 {
17359 if (attr2 && (DW_UNSND (attr2) != 0))
17360 list_to_add = &global_symbols;
17361 else
17362 list_to_add = cu->list_in_scope;
17363 }
17364 break;
17365 }
17366 attr = dwarf2_attr (die, DW_AT_location, cu);
17367 if (attr)
17368 {
17369 var_decode_location (attr, sym, cu);
17370 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17371
17372 /* Fortran explicitly imports any global symbols to the local
17373 scope by DW_TAG_common_block. */
17374 if (cu->language == language_fortran && die->parent
17375 && die->parent->tag == DW_TAG_common_block)
17376 attr2 = NULL;
17377
17378 if (SYMBOL_CLASS (sym) == LOC_STATIC
17379 && SYMBOL_VALUE_ADDRESS (sym) == 0
17380 && !dwarf2_per_objfile->has_section_at_zero)
17381 {
17382 /* When a static variable is eliminated by the linker,
17383 the corresponding debug information is not stripped
17384 out, but the variable address is set to null;
17385 do not add such variables into symbol table. */
17386 }
17387 else if (attr2 && (DW_UNSND (attr2) != 0))
17388 {
17389 /* Workaround gfortran PR debug/40040 - it uses
17390 DW_AT_location for variables in -fPIC libraries which may
17391 get overriden by other libraries/executable and get
17392 a different address. Resolve it by the minimal symbol
17393 which may come from inferior's executable using copy
17394 relocation. Make this workaround only for gfortran as for
17395 other compilers GDB cannot guess the minimal symbol
17396 Fortran mangling kind. */
17397 if (cu->language == language_fortran && die->parent
17398 && die->parent->tag == DW_TAG_module
17399 && cu->producer
17400 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17401 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17402
17403 /* A variable with DW_AT_external is never static,
17404 but it may be block-scoped. */
17405 list_to_add = (cu->list_in_scope == &file_symbols
17406 ? &global_symbols : cu->list_in_scope);
17407 }
17408 else
17409 list_to_add = cu->list_in_scope;
17410 }
17411 else
17412 {
17413 /* We do not know the address of this symbol.
17414 If it is an external symbol and we have type information
17415 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17416 The address of the variable will then be determined from
17417 the minimal symbol table whenever the variable is
17418 referenced. */
17419 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17420
17421 /* Fortran explicitly imports any global symbols to the local
17422 scope by DW_TAG_common_block. */
17423 if (cu->language == language_fortran && die->parent
17424 && die->parent->tag == DW_TAG_common_block)
17425 {
17426 /* SYMBOL_CLASS doesn't matter here because
17427 read_common_block is going to reset it. */
17428 if (!suppress_add)
17429 list_to_add = cu->list_in_scope;
17430 }
17431 else if (attr2 && (DW_UNSND (attr2) != 0)
17432 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17433 {
17434 /* A variable with DW_AT_external is never static, but it
17435 may be block-scoped. */
17436 list_to_add = (cu->list_in_scope == &file_symbols
17437 ? &global_symbols : cu->list_in_scope);
17438
17439 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17440 }
17441 else if (!die_is_declaration (die, cu))
17442 {
17443 /* Use the default LOC_OPTIMIZED_OUT class. */
17444 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17445 if (!suppress_add)
17446 list_to_add = cu->list_in_scope;
17447 }
17448 }
17449 break;
17450 case DW_TAG_formal_parameter:
17451 /* If we are inside a function, mark this as an argument. If
17452 not, we might be looking at an argument to an inlined function
17453 when we do not have enough information to show inlined frames;
17454 pretend it's a local variable in that case so that the user can
17455 still see it. */
17456 if (context_stack_depth > 0
17457 && context_stack[context_stack_depth - 1].name != NULL)
17458 SYMBOL_IS_ARGUMENT (sym) = 1;
17459 attr = dwarf2_attr (die, DW_AT_location, cu);
17460 if (attr)
17461 {
17462 var_decode_location (attr, sym, cu);
17463 }
17464 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17465 if (attr)
17466 {
17467 dwarf2_const_value (attr, sym, cu);
17468 }
17469
17470 list_to_add = cu->list_in_scope;
17471 break;
17472 case DW_TAG_unspecified_parameters:
17473 /* From varargs functions; gdb doesn't seem to have any
17474 interest in this information, so just ignore it for now.
17475 (FIXME?) */
17476 break;
17477 case DW_TAG_template_type_param:
17478 suppress_add = 1;
17479 /* Fall through. */
17480 case DW_TAG_class_type:
17481 case DW_TAG_interface_type:
17482 case DW_TAG_structure_type:
17483 case DW_TAG_union_type:
17484 case DW_TAG_set_type:
17485 case DW_TAG_enumeration_type:
17486 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17487 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17488
17489 {
17490 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17491 really ever be static objects: otherwise, if you try
17492 to, say, break of a class's method and you're in a file
17493 which doesn't mention that class, it won't work unless
17494 the check for all static symbols in lookup_symbol_aux
17495 saves you. See the OtherFileClass tests in
17496 gdb.c++/namespace.exp. */
17497
17498 if (!suppress_add)
17499 {
17500 list_to_add = (cu->list_in_scope == &file_symbols
17501 && (cu->language == language_cplus
17502 || cu->language == language_java)
17503 ? &global_symbols : cu->list_in_scope);
17504
17505 /* The semantics of C++ state that "struct foo {
17506 ... }" also defines a typedef for "foo". A Java
17507 class declaration also defines a typedef for the
17508 class. */
17509 if (cu->language == language_cplus
17510 || cu->language == language_java
17511 || cu->language == language_ada)
17512 {
17513 /* The symbol's name is already allocated along
17514 with this objfile, so we don't need to
17515 duplicate it for the type. */
17516 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17517 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17518 }
17519 }
17520 }
17521 break;
17522 case DW_TAG_typedef:
17523 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17524 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17525 list_to_add = cu->list_in_scope;
17526 break;
17527 case DW_TAG_base_type:
17528 case DW_TAG_subrange_type:
17529 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17530 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17531 list_to_add = cu->list_in_scope;
17532 break;
17533 case DW_TAG_enumerator:
17534 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17535 if (attr)
17536 {
17537 dwarf2_const_value (attr, sym, cu);
17538 }
17539 {
17540 /* NOTE: carlton/2003-11-10: See comment above in the
17541 DW_TAG_class_type, etc. block. */
17542
17543 list_to_add = (cu->list_in_scope == &file_symbols
17544 && (cu->language == language_cplus
17545 || cu->language == language_java)
17546 ? &global_symbols : cu->list_in_scope);
17547 }
17548 break;
17549 case DW_TAG_namespace:
17550 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17551 list_to_add = &global_symbols;
17552 break;
17553 case DW_TAG_common_block:
17554 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17555 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17556 add_symbol_to_list (sym, cu->list_in_scope);
17557 break;
17558 default:
17559 /* Not a tag we recognize. Hopefully we aren't processing
17560 trash data, but since we must specifically ignore things
17561 we don't recognize, there is nothing else we should do at
17562 this point. */
17563 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17564 dwarf_tag_name (die->tag));
17565 break;
17566 }
17567
17568 if (suppress_add)
17569 {
17570 sym->hash_next = objfile->template_symbols;
17571 objfile->template_symbols = sym;
17572 list_to_add = NULL;
17573 }
17574
17575 if (list_to_add != NULL)
17576 add_symbol_to_list (sym, list_to_add);
17577
17578 /* For the benefit of old versions of GCC, check for anonymous
17579 namespaces based on the demangled name. */
17580 if (!cu->processing_has_namespace_info
17581 && cu->language == language_cplus)
17582 cp_scan_for_anonymous_namespaces (sym, objfile);
17583 }
17584 return (sym);
17585 }
17586
17587 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17588
17589 static struct symbol *
17590 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17591 {
17592 return new_symbol_full (die, type, cu, NULL);
17593 }
17594
17595 /* Given an attr with a DW_FORM_dataN value in host byte order,
17596 zero-extend it as appropriate for the symbol's type. The DWARF
17597 standard (v4) is not entirely clear about the meaning of using
17598 DW_FORM_dataN for a constant with a signed type, where the type is
17599 wider than the data. The conclusion of a discussion on the DWARF
17600 list was that this is unspecified. We choose to always zero-extend
17601 because that is the interpretation long in use by GCC. */
17602
17603 static gdb_byte *
17604 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17605 struct dwarf2_cu *cu, LONGEST *value, int bits)
17606 {
17607 struct objfile *objfile = cu->objfile;
17608 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17609 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17610 LONGEST l = DW_UNSND (attr);
17611
17612 if (bits < sizeof (*value) * 8)
17613 {
17614 l &= ((LONGEST) 1 << bits) - 1;
17615 *value = l;
17616 }
17617 else if (bits == sizeof (*value) * 8)
17618 *value = l;
17619 else
17620 {
17621 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17622 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17623 return bytes;
17624 }
17625
17626 return NULL;
17627 }
17628
17629 /* Read a constant value from an attribute. Either set *VALUE, or if
17630 the value does not fit in *VALUE, set *BYTES - either already
17631 allocated on the objfile obstack, or newly allocated on OBSTACK,
17632 or, set *BATON, if we translated the constant to a location
17633 expression. */
17634
17635 static void
17636 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17637 const char *name, struct obstack *obstack,
17638 struct dwarf2_cu *cu,
17639 LONGEST *value, const gdb_byte **bytes,
17640 struct dwarf2_locexpr_baton **baton)
17641 {
17642 struct objfile *objfile = cu->objfile;
17643 struct comp_unit_head *cu_header = &cu->header;
17644 struct dwarf_block *blk;
17645 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17646 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17647
17648 *value = 0;
17649 *bytes = NULL;
17650 *baton = NULL;
17651
17652 switch (attr->form)
17653 {
17654 case DW_FORM_addr:
17655 case DW_FORM_GNU_addr_index:
17656 {
17657 gdb_byte *data;
17658
17659 if (TYPE_LENGTH (type) != cu_header->addr_size)
17660 dwarf2_const_value_length_mismatch_complaint (name,
17661 cu_header->addr_size,
17662 TYPE_LENGTH (type));
17663 /* Symbols of this form are reasonably rare, so we just
17664 piggyback on the existing location code rather than writing
17665 a new implementation of symbol_computed_ops. */
17666 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17667 (*baton)->per_cu = cu->per_cu;
17668 gdb_assert ((*baton)->per_cu);
17669
17670 (*baton)->size = 2 + cu_header->addr_size;
17671 data = obstack_alloc (obstack, (*baton)->size);
17672 (*baton)->data = data;
17673
17674 data[0] = DW_OP_addr;
17675 store_unsigned_integer (&data[1], cu_header->addr_size,
17676 byte_order, DW_ADDR (attr));
17677 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17678 }
17679 break;
17680 case DW_FORM_string:
17681 case DW_FORM_strp:
17682 case DW_FORM_GNU_str_index:
17683 case DW_FORM_GNU_strp_alt:
17684 /* DW_STRING is already allocated on the objfile obstack, point
17685 directly to it. */
17686 *bytes = (const gdb_byte *) DW_STRING (attr);
17687 break;
17688 case DW_FORM_block1:
17689 case DW_FORM_block2:
17690 case DW_FORM_block4:
17691 case DW_FORM_block:
17692 case DW_FORM_exprloc:
17693 blk = DW_BLOCK (attr);
17694 if (TYPE_LENGTH (type) != blk->size)
17695 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17696 TYPE_LENGTH (type));
17697 *bytes = blk->data;
17698 break;
17699
17700 /* The DW_AT_const_value attributes are supposed to carry the
17701 symbol's value "represented as it would be on the target
17702 architecture." By the time we get here, it's already been
17703 converted to host endianness, so we just need to sign- or
17704 zero-extend it as appropriate. */
17705 case DW_FORM_data1:
17706 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17707 break;
17708 case DW_FORM_data2:
17709 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17710 break;
17711 case DW_FORM_data4:
17712 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17713 break;
17714 case DW_FORM_data8:
17715 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17716 break;
17717
17718 case DW_FORM_sdata:
17719 *value = DW_SND (attr);
17720 break;
17721
17722 case DW_FORM_udata:
17723 *value = DW_UNSND (attr);
17724 break;
17725
17726 default:
17727 complaint (&symfile_complaints,
17728 _("unsupported const value attribute form: '%s'"),
17729 dwarf_form_name (attr->form));
17730 *value = 0;
17731 break;
17732 }
17733 }
17734
17735
17736 /* Copy constant value from an attribute to a symbol. */
17737
17738 static void
17739 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17740 struct dwarf2_cu *cu)
17741 {
17742 struct objfile *objfile = cu->objfile;
17743 struct comp_unit_head *cu_header = &cu->header;
17744 LONGEST value;
17745 const gdb_byte *bytes;
17746 struct dwarf2_locexpr_baton *baton;
17747
17748 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17749 SYMBOL_PRINT_NAME (sym),
17750 &objfile->objfile_obstack, cu,
17751 &value, &bytes, &baton);
17752
17753 if (baton != NULL)
17754 {
17755 SYMBOL_LOCATION_BATON (sym) = baton;
17756 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17757 }
17758 else if (bytes != NULL)
17759 {
17760 SYMBOL_VALUE_BYTES (sym) = bytes;
17761 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17762 }
17763 else
17764 {
17765 SYMBOL_VALUE (sym) = value;
17766 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17767 }
17768 }
17769
17770 /* Return the type of the die in question using its DW_AT_type attribute. */
17771
17772 static struct type *
17773 die_type (struct die_info *die, struct dwarf2_cu *cu)
17774 {
17775 struct attribute *type_attr;
17776
17777 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17778 if (!type_attr)
17779 {
17780 /* A missing DW_AT_type represents a void type. */
17781 return objfile_type (cu->objfile)->builtin_void;
17782 }
17783
17784 return lookup_die_type (die, type_attr, cu);
17785 }
17786
17787 /* True iff CU's producer generates GNAT Ada auxiliary information
17788 that allows to find parallel types through that information instead
17789 of having to do expensive parallel lookups by type name. */
17790
17791 static int
17792 need_gnat_info (struct dwarf2_cu *cu)
17793 {
17794 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17795 of GNAT produces this auxiliary information, without any indication
17796 that it is produced. Part of enhancing the FSF version of GNAT
17797 to produce that information will be to put in place an indicator
17798 that we can use in order to determine whether the descriptive type
17799 info is available or not. One suggestion that has been made is
17800 to use a new attribute, attached to the CU die. For now, assume
17801 that the descriptive type info is not available. */
17802 return 0;
17803 }
17804
17805 /* Return the auxiliary type of the die in question using its
17806 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17807 attribute is not present. */
17808
17809 static struct type *
17810 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17811 {
17812 struct attribute *type_attr;
17813
17814 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17815 if (!type_attr)
17816 return NULL;
17817
17818 return lookup_die_type (die, type_attr, cu);
17819 }
17820
17821 /* If DIE has a descriptive_type attribute, then set the TYPE's
17822 descriptive type accordingly. */
17823
17824 static void
17825 set_descriptive_type (struct type *type, struct die_info *die,
17826 struct dwarf2_cu *cu)
17827 {
17828 struct type *descriptive_type = die_descriptive_type (die, cu);
17829
17830 if (descriptive_type)
17831 {
17832 ALLOCATE_GNAT_AUX_TYPE (type);
17833 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17834 }
17835 }
17836
17837 /* Return the containing type of the die in question using its
17838 DW_AT_containing_type attribute. */
17839
17840 static struct type *
17841 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17842 {
17843 struct attribute *type_attr;
17844
17845 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17846 if (!type_attr)
17847 error (_("Dwarf Error: Problem turning containing type into gdb type "
17848 "[in module %s]"), objfile_name (cu->objfile));
17849
17850 return lookup_die_type (die, type_attr, cu);
17851 }
17852
17853 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17854
17855 static struct type *
17856 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17857 {
17858 struct objfile *objfile = dwarf2_per_objfile->objfile;
17859 char *message, *saved;
17860
17861 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17862 objfile_name (objfile),
17863 cu->header.offset.sect_off,
17864 die->offset.sect_off);
17865 saved = obstack_copy0 (&objfile->objfile_obstack,
17866 message, strlen (message));
17867 xfree (message);
17868
17869 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17870 }
17871
17872 /* Look up the type of DIE in CU using its type attribute ATTR.
17873 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17874 DW_AT_containing_type.
17875 If there is no type substitute an error marker. */
17876
17877 static struct type *
17878 lookup_die_type (struct die_info *die, const struct attribute *attr,
17879 struct dwarf2_cu *cu)
17880 {
17881 struct objfile *objfile = cu->objfile;
17882 struct type *this_type;
17883
17884 gdb_assert (attr->name == DW_AT_type
17885 || attr->name == DW_AT_GNAT_descriptive_type
17886 || attr->name == DW_AT_containing_type);
17887
17888 /* First see if we have it cached. */
17889
17890 if (attr->form == DW_FORM_GNU_ref_alt)
17891 {
17892 struct dwarf2_per_cu_data *per_cu;
17893 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17894
17895 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17896 this_type = get_die_type_at_offset (offset, per_cu);
17897 }
17898 else if (attr_form_is_ref (attr))
17899 {
17900 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17901
17902 this_type = get_die_type_at_offset (offset, cu->per_cu);
17903 }
17904 else if (attr->form == DW_FORM_ref_sig8)
17905 {
17906 ULONGEST signature = DW_SIGNATURE (attr);
17907
17908 return get_signatured_type (die, signature, cu);
17909 }
17910 else
17911 {
17912 complaint (&symfile_complaints,
17913 _("Dwarf Error: Bad type attribute %s in DIE"
17914 " at 0x%x [in module %s]"),
17915 dwarf_attr_name (attr->name), die->offset.sect_off,
17916 objfile_name (objfile));
17917 return build_error_marker_type (cu, die);
17918 }
17919
17920 /* If not cached we need to read it in. */
17921
17922 if (this_type == NULL)
17923 {
17924 struct die_info *type_die = NULL;
17925 struct dwarf2_cu *type_cu = cu;
17926
17927 if (attr_form_is_ref (attr))
17928 type_die = follow_die_ref (die, attr, &type_cu);
17929 if (type_die == NULL)
17930 return build_error_marker_type (cu, die);
17931 /* If we find the type now, it's probably because the type came
17932 from an inter-CU reference and the type's CU got expanded before
17933 ours. */
17934 this_type = read_type_die (type_die, type_cu);
17935 }
17936
17937 /* If we still don't have a type use an error marker. */
17938
17939 if (this_type == NULL)
17940 return build_error_marker_type (cu, die);
17941
17942 return this_type;
17943 }
17944
17945 /* Return the type in DIE, CU.
17946 Returns NULL for invalid types.
17947
17948 This first does a lookup in die_type_hash,
17949 and only reads the die in if necessary.
17950
17951 NOTE: This can be called when reading in partial or full symbols. */
17952
17953 static struct type *
17954 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17955 {
17956 struct type *this_type;
17957
17958 this_type = get_die_type (die, cu);
17959 if (this_type)
17960 return this_type;
17961
17962 return read_type_die_1 (die, cu);
17963 }
17964
17965 /* Read the type in DIE, CU.
17966 Returns NULL for invalid types. */
17967
17968 static struct type *
17969 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17970 {
17971 struct type *this_type = NULL;
17972
17973 switch (die->tag)
17974 {
17975 case DW_TAG_class_type:
17976 case DW_TAG_interface_type:
17977 case DW_TAG_structure_type:
17978 case DW_TAG_union_type:
17979 this_type = read_structure_type (die, cu);
17980 break;
17981 case DW_TAG_enumeration_type:
17982 this_type = read_enumeration_type (die, cu);
17983 break;
17984 case DW_TAG_subprogram:
17985 case DW_TAG_subroutine_type:
17986 case DW_TAG_inlined_subroutine:
17987 this_type = read_subroutine_type (die, cu);
17988 break;
17989 case DW_TAG_array_type:
17990 this_type = read_array_type (die, cu);
17991 break;
17992 case DW_TAG_set_type:
17993 this_type = read_set_type (die, cu);
17994 break;
17995 case DW_TAG_pointer_type:
17996 this_type = read_tag_pointer_type (die, cu);
17997 break;
17998 case DW_TAG_ptr_to_member_type:
17999 this_type = read_tag_ptr_to_member_type (die, cu);
18000 break;
18001 case DW_TAG_reference_type:
18002 this_type = read_tag_reference_type (die, cu);
18003 break;
18004 case DW_TAG_const_type:
18005 this_type = read_tag_const_type (die, cu);
18006 break;
18007 case DW_TAG_volatile_type:
18008 this_type = read_tag_volatile_type (die, cu);
18009 break;
18010 case DW_TAG_restrict_type:
18011 this_type = read_tag_restrict_type (die, cu);
18012 break;
18013 case DW_TAG_string_type:
18014 this_type = read_tag_string_type (die, cu);
18015 break;
18016 case DW_TAG_typedef:
18017 this_type = read_typedef (die, cu);
18018 break;
18019 case DW_TAG_subrange_type:
18020 this_type = read_subrange_type (die, cu);
18021 break;
18022 case DW_TAG_base_type:
18023 this_type = read_base_type (die, cu);
18024 break;
18025 case DW_TAG_unspecified_type:
18026 this_type = read_unspecified_type (die, cu);
18027 break;
18028 case DW_TAG_namespace:
18029 this_type = read_namespace_type (die, cu);
18030 break;
18031 case DW_TAG_module:
18032 this_type = read_module_type (die, cu);
18033 break;
18034 default:
18035 complaint (&symfile_complaints,
18036 _("unexpected tag in read_type_die: '%s'"),
18037 dwarf_tag_name (die->tag));
18038 break;
18039 }
18040
18041 return this_type;
18042 }
18043
18044 /* See if we can figure out if the class lives in a namespace. We do
18045 this by looking for a member function; its demangled name will
18046 contain namespace info, if there is any.
18047 Return the computed name or NULL.
18048 Space for the result is allocated on the objfile's obstack.
18049 This is the full-die version of guess_partial_die_structure_name.
18050 In this case we know DIE has no useful parent. */
18051
18052 static char *
18053 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18054 {
18055 struct die_info *spec_die;
18056 struct dwarf2_cu *spec_cu;
18057 struct die_info *child;
18058
18059 spec_cu = cu;
18060 spec_die = die_specification (die, &spec_cu);
18061 if (spec_die != NULL)
18062 {
18063 die = spec_die;
18064 cu = spec_cu;
18065 }
18066
18067 for (child = die->child;
18068 child != NULL;
18069 child = child->sibling)
18070 {
18071 if (child->tag == DW_TAG_subprogram)
18072 {
18073 struct attribute *attr;
18074
18075 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18076 if (attr == NULL)
18077 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18078 if (attr != NULL)
18079 {
18080 char *actual_name
18081 = language_class_name_from_physname (cu->language_defn,
18082 DW_STRING (attr));
18083 char *name = NULL;
18084
18085 if (actual_name != NULL)
18086 {
18087 const char *die_name = dwarf2_name (die, cu);
18088
18089 if (die_name != NULL
18090 && strcmp (die_name, actual_name) != 0)
18091 {
18092 /* Strip off the class name from the full name.
18093 We want the prefix. */
18094 int die_name_len = strlen (die_name);
18095 int actual_name_len = strlen (actual_name);
18096
18097 /* Test for '::' as a sanity check. */
18098 if (actual_name_len > die_name_len + 2
18099 && actual_name[actual_name_len
18100 - die_name_len - 1] == ':')
18101 name =
18102 obstack_copy0 (&cu->objfile->objfile_obstack,
18103 actual_name,
18104 actual_name_len - die_name_len - 2);
18105 }
18106 }
18107 xfree (actual_name);
18108 return name;
18109 }
18110 }
18111 }
18112
18113 return NULL;
18114 }
18115
18116 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18117 prefix part in such case. See
18118 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18119
18120 static char *
18121 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18122 {
18123 struct attribute *attr;
18124 char *base;
18125
18126 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18127 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18128 return NULL;
18129
18130 attr = dwarf2_attr (die, DW_AT_name, cu);
18131 if (attr != NULL && DW_STRING (attr) != NULL)
18132 return NULL;
18133
18134 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18135 if (attr == NULL)
18136 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18137 if (attr == NULL || DW_STRING (attr) == NULL)
18138 return NULL;
18139
18140 /* dwarf2_name had to be already called. */
18141 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18142
18143 /* Strip the base name, keep any leading namespaces/classes. */
18144 base = strrchr (DW_STRING (attr), ':');
18145 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18146 return "";
18147
18148 return obstack_copy0 (&cu->objfile->objfile_obstack,
18149 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18150 }
18151
18152 /* Return the name of the namespace/class that DIE is defined within,
18153 or "" if we can't tell. The caller should not xfree the result.
18154
18155 For example, if we're within the method foo() in the following
18156 code:
18157
18158 namespace N {
18159 class C {
18160 void foo () {
18161 }
18162 };
18163 }
18164
18165 then determine_prefix on foo's die will return "N::C". */
18166
18167 static const char *
18168 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18169 {
18170 struct die_info *parent, *spec_die;
18171 struct dwarf2_cu *spec_cu;
18172 struct type *parent_type;
18173 char *retval;
18174
18175 if (cu->language != language_cplus && cu->language != language_java
18176 && cu->language != language_fortran)
18177 return "";
18178
18179 retval = anonymous_struct_prefix (die, cu);
18180 if (retval)
18181 return retval;
18182
18183 /* We have to be careful in the presence of DW_AT_specification.
18184 For example, with GCC 3.4, given the code
18185
18186 namespace N {
18187 void foo() {
18188 // Definition of N::foo.
18189 }
18190 }
18191
18192 then we'll have a tree of DIEs like this:
18193
18194 1: DW_TAG_compile_unit
18195 2: DW_TAG_namespace // N
18196 3: DW_TAG_subprogram // declaration of N::foo
18197 4: DW_TAG_subprogram // definition of N::foo
18198 DW_AT_specification // refers to die #3
18199
18200 Thus, when processing die #4, we have to pretend that we're in
18201 the context of its DW_AT_specification, namely the contex of die
18202 #3. */
18203 spec_cu = cu;
18204 spec_die = die_specification (die, &spec_cu);
18205 if (spec_die == NULL)
18206 parent = die->parent;
18207 else
18208 {
18209 parent = spec_die->parent;
18210 cu = spec_cu;
18211 }
18212
18213 if (parent == NULL)
18214 return "";
18215 else if (parent->building_fullname)
18216 {
18217 const char *name;
18218 const char *parent_name;
18219
18220 /* It has been seen on RealView 2.2 built binaries,
18221 DW_TAG_template_type_param types actually _defined_ as
18222 children of the parent class:
18223
18224 enum E {};
18225 template class <class Enum> Class{};
18226 Class<enum E> class_e;
18227
18228 1: DW_TAG_class_type (Class)
18229 2: DW_TAG_enumeration_type (E)
18230 3: DW_TAG_enumerator (enum1:0)
18231 3: DW_TAG_enumerator (enum2:1)
18232 ...
18233 2: DW_TAG_template_type_param
18234 DW_AT_type DW_FORM_ref_udata (E)
18235
18236 Besides being broken debug info, it can put GDB into an
18237 infinite loop. Consider:
18238
18239 When we're building the full name for Class<E>, we'll start
18240 at Class, and go look over its template type parameters,
18241 finding E. We'll then try to build the full name of E, and
18242 reach here. We're now trying to build the full name of E,
18243 and look over the parent DIE for containing scope. In the
18244 broken case, if we followed the parent DIE of E, we'd again
18245 find Class, and once again go look at its template type
18246 arguments, etc., etc. Simply don't consider such parent die
18247 as source-level parent of this die (it can't be, the language
18248 doesn't allow it), and break the loop here. */
18249 name = dwarf2_name (die, cu);
18250 parent_name = dwarf2_name (parent, cu);
18251 complaint (&symfile_complaints,
18252 _("template param type '%s' defined within parent '%s'"),
18253 name ? name : "<unknown>",
18254 parent_name ? parent_name : "<unknown>");
18255 return "";
18256 }
18257 else
18258 switch (parent->tag)
18259 {
18260 case DW_TAG_namespace:
18261 parent_type = read_type_die (parent, cu);
18262 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18263 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18264 Work around this problem here. */
18265 if (cu->language == language_cplus
18266 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18267 return "";
18268 /* We give a name to even anonymous namespaces. */
18269 return TYPE_TAG_NAME (parent_type);
18270 case DW_TAG_class_type:
18271 case DW_TAG_interface_type:
18272 case DW_TAG_structure_type:
18273 case DW_TAG_union_type:
18274 case DW_TAG_module:
18275 parent_type = read_type_die (parent, cu);
18276 if (TYPE_TAG_NAME (parent_type) != NULL)
18277 return TYPE_TAG_NAME (parent_type);
18278 else
18279 /* An anonymous structure is only allowed non-static data
18280 members; no typedefs, no member functions, et cetera.
18281 So it does not need a prefix. */
18282 return "";
18283 case DW_TAG_compile_unit:
18284 case DW_TAG_partial_unit:
18285 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18286 if (cu->language == language_cplus
18287 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18288 && die->child != NULL
18289 && (die->tag == DW_TAG_class_type
18290 || die->tag == DW_TAG_structure_type
18291 || die->tag == DW_TAG_union_type))
18292 {
18293 char *name = guess_full_die_structure_name (die, cu);
18294 if (name != NULL)
18295 return name;
18296 }
18297 return "";
18298 default:
18299 return determine_prefix (parent, cu);
18300 }
18301 }
18302
18303 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18304 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18305 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18306 an obconcat, otherwise allocate storage for the result. The CU argument is
18307 used to determine the language and hence, the appropriate separator. */
18308
18309 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18310
18311 static char *
18312 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18313 int physname, struct dwarf2_cu *cu)
18314 {
18315 const char *lead = "";
18316 const char *sep;
18317
18318 if (suffix == NULL || suffix[0] == '\0'
18319 || prefix == NULL || prefix[0] == '\0')
18320 sep = "";
18321 else if (cu->language == language_java)
18322 sep = ".";
18323 else if (cu->language == language_fortran && physname)
18324 {
18325 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18326 DW_AT_MIPS_linkage_name is preferred and used instead. */
18327
18328 lead = "__";
18329 sep = "_MOD_";
18330 }
18331 else
18332 sep = "::";
18333
18334 if (prefix == NULL)
18335 prefix = "";
18336 if (suffix == NULL)
18337 suffix = "";
18338
18339 if (obs == NULL)
18340 {
18341 char *retval
18342 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18343
18344 strcpy (retval, lead);
18345 strcat (retval, prefix);
18346 strcat (retval, sep);
18347 strcat (retval, suffix);
18348 return retval;
18349 }
18350 else
18351 {
18352 /* We have an obstack. */
18353 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18354 }
18355 }
18356
18357 /* Return sibling of die, NULL if no sibling. */
18358
18359 static struct die_info *
18360 sibling_die (struct die_info *die)
18361 {
18362 return die->sibling;
18363 }
18364
18365 /* Get name of a die, return NULL if not found. */
18366
18367 static const char *
18368 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18369 struct obstack *obstack)
18370 {
18371 if (name && cu->language == language_cplus)
18372 {
18373 char *canon_name = cp_canonicalize_string (name);
18374
18375 if (canon_name != NULL)
18376 {
18377 if (strcmp (canon_name, name) != 0)
18378 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18379 xfree (canon_name);
18380 }
18381 }
18382
18383 return name;
18384 }
18385
18386 /* Get name of a die, return NULL if not found. */
18387
18388 static const char *
18389 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18390 {
18391 struct attribute *attr;
18392
18393 attr = dwarf2_attr (die, DW_AT_name, cu);
18394 if ((!attr || !DW_STRING (attr))
18395 && die->tag != DW_TAG_class_type
18396 && die->tag != DW_TAG_interface_type
18397 && die->tag != DW_TAG_structure_type
18398 && die->tag != DW_TAG_union_type)
18399 return NULL;
18400
18401 switch (die->tag)
18402 {
18403 case DW_TAG_compile_unit:
18404 case DW_TAG_partial_unit:
18405 /* Compilation units have a DW_AT_name that is a filename, not
18406 a source language identifier. */
18407 case DW_TAG_enumeration_type:
18408 case DW_TAG_enumerator:
18409 /* These tags always have simple identifiers already; no need
18410 to canonicalize them. */
18411 return DW_STRING (attr);
18412
18413 case DW_TAG_subprogram:
18414 /* Java constructors will all be named "<init>", so return
18415 the class name when we see this special case. */
18416 if (cu->language == language_java
18417 && DW_STRING (attr) != NULL
18418 && strcmp (DW_STRING (attr), "<init>") == 0)
18419 {
18420 struct dwarf2_cu *spec_cu = cu;
18421 struct die_info *spec_die;
18422
18423 /* GCJ will output '<init>' for Java constructor names.
18424 For this special case, return the name of the parent class. */
18425
18426 /* GCJ may output suprogram DIEs with AT_specification set.
18427 If so, use the name of the specified DIE. */
18428 spec_die = die_specification (die, &spec_cu);
18429 if (spec_die != NULL)
18430 return dwarf2_name (spec_die, spec_cu);
18431
18432 do
18433 {
18434 die = die->parent;
18435 if (die->tag == DW_TAG_class_type)
18436 return dwarf2_name (die, cu);
18437 }
18438 while (die->tag != DW_TAG_compile_unit
18439 && die->tag != DW_TAG_partial_unit);
18440 }
18441 break;
18442
18443 case DW_TAG_class_type:
18444 case DW_TAG_interface_type:
18445 case DW_TAG_structure_type:
18446 case DW_TAG_union_type:
18447 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18448 structures or unions. These were of the form "._%d" in GCC 4.1,
18449 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18450 and GCC 4.4. We work around this problem by ignoring these. */
18451 if (attr && DW_STRING (attr)
18452 && (strncmp (DW_STRING (attr), "._", 2) == 0
18453 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18454 return NULL;
18455
18456 /* GCC might emit a nameless typedef that has a linkage name. See
18457 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18458 if (!attr || DW_STRING (attr) == NULL)
18459 {
18460 char *demangled = NULL;
18461
18462 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18463 if (attr == NULL)
18464 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18465
18466 if (attr == NULL || DW_STRING (attr) == NULL)
18467 return NULL;
18468
18469 /* Avoid demangling DW_STRING (attr) the second time on a second
18470 call for the same DIE. */
18471 if (!DW_STRING_IS_CANONICAL (attr))
18472 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18473
18474 if (demangled)
18475 {
18476 char *base;
18477
18478 /* FIXME: we already did this for the partial symbol... */
18479 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18480 demangled, strlen (demangled));
18481 DW_STRING_IS_CANONICAL (attr) = 1;
18482 xfree (demangled);
18483
18484 /* Strip any leading namespaces/classes, keep only the base name.
18485 DW_AT_name for named DIEs does not contain the prefixes. */
18486 base = strrchr (DW_STRING (attr), ':');
18487 if (base && base > DW_STRING (attr) && base[-1] == ':')
18488 return &base[1];
18489 else
18490 return DW_STRING (attr);
18491 }
18492 }
18493 break;
18494
18495 default:
18496 break;
18497 }
18498
18499 if (!DW_STRING_IS_CANONICAL (attr))
18500 {
18501 DW_STRING (attr)
18502 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18503 &cu->objfile->objfile_obstack);
18504 DW_STRING_IS_CANONICAL (attr) = 1;
18505 }
18506 return DW_STRING (attr);
18507 }
18508
18509 /* Return the die that this die in an extension of, or NULL if there
18510 is none. *EXT_CU is the CU containing DIE on input, and the CU
18511 containing the return value on output. */
18512
18513 static struct die_info *
18514 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18515 {
18516 struct attribute *attr;
18517
18518 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18519 if (attr == NULL)
18520 return NULL;
18521
18522 return follow_die_ref (die, attr, ext_cu);
18523 }
18524
18525 /* Convert a DIE tag into its string name. */
18526
18527 static const char *
18528 dwarf_tag_name (unsigned tag)
18529 {
18530 const char *name = get_DW_TAG_name (tag);
18531
18532 if (name == NULL)
18533 return "DW_TAG_<unknown>";
18534
18535 return name;
18536 }
18537
18538 /* Convert a DWARF attribute code into its string name. */
18539
18540 static const char *
18541 dwarf_attr_name (unsigned attr)
18542 {
18543 const char *name;
18544
18545 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18546 if (attr == DW_AT_MIPS_fde)
18547 return "DW_AT_MIPS_fde";
18548 #else
18549 if (attr == DW_AT_HP_block_index)
18550 return "DW_AT_HP_block_index";
18551 #endif
18552
18553 name = get_DW_AT_name (attr);
18554
18555 if (name == NULL)
18556 return "DW_AT_<unknown>";
18557
18558 return name;
18559 }
18560
18561 /* Convert a DWARF value form code into its string name. */
18562
18563 static const char *
18564 dwarf_form_name (unsigned form)
18565 {
18566 const char *name = get_DW_FORM_name (form);
18567
18568 if (name == NULL)
18569 return "DW_FORM_<unknown>";
18570
18571 return name;
18572 }
18573
18574 static char *
18575 dwarf_bool_name (unsigned mybool)
18576 {
18577 if (mybool)
18578 return "TRUE";
18579 else
18580 return "FALSE";
18581 }
18582
18583 /* Convert a DWARF type code into its string name. */
18584
18585 static const char *
18586 dwarf_type_encoding_name (unsigned enc)
18587 {
18588 const char *name = get_DW_ATE_name (enc);
18589
18590 if (name == NULL)
18591 return "DW_ATE_<unknown>";
18592
18593 return name;
18594 }
18595
18596 static void
18597 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18598 {
18599 unsigned int i;
18600
18601 print_spaces (indent, f);
18602 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18603 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18604
18605 if (die->parent != NULL)
18606 {
18607 print_spaces (indent, f);
18608 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18609 die->parent->offset.sect_off);
18610 }
18611
18612 print_spaces (indent, f);
18613 fprintf_unfiltered (f, " has children: %s\n",
18614 dwarf_bool_name (die->child != NULL));
18615
18616 print_spaces (indent, f);
18617 fprintf_unfiltered (f, " attributes:\n");
18618
18619 for (i = 0; i < die->num_attrs; ++i)
18620 {
18621 print_spaces (indent, f);
18622 fprintf_unfiltered (f, " %s (%s) ",
18623 dwarf_attr_name (die->attrs[i].name),
18624 dwarf_form_name (die->attrs[i].form));
18625
18626 switch (die->attrs[i].form)
18627 {
18628 case DW_FORM_addr:
18629 case DW_FORM_GNU_addr_index:
18630 fprintf_unfiltered (f, "address: ");
18631 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18632 break;
18633 case DW_FORM_block2:
18634 case DW_FORM_block4:
18635 case DW_FORM_block:
18636 case DW_FORM_block1:
18637 fprintf_unfiltered (f, "block: size %s",
18638 pulongest (DW_BLOCK (&die->attrs[i])->size));
18639 break;
18640 case DW_FORM_exprloc:
18641 fprintf_unfiltered (f, "expression: size %s",
18642 pulongest (DW_BLOCK (&die->attrs[i])->size));
18643 break;
18644 case DW_FORM_ref_addr:
18645 fprintf_unfiltered (f, "ref address: ");
18646 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18647 break;
18648 case DW_FORM_GNU_ref_alt:
18649 fprintf_unfiltered (f, "alt ref address: ");
18650 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18651 break;
18652 case DW_FORM_ref1:
18653 case DW_FORM_ref2:
18654 case DW_FORM_ref4:
18655 case DW_FORM_ref8:
18656 case DW_FORM_ref_udata:
18657 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18658 (long) (DW_UNSND (&die->attrs[i])));
18659 break;
18660 case DW_FORM_data1:
18661 case DW_FORM_data2:
18662 case DW_FORM_data4:
18663 case DW_FORM_data8:
18664 case DW_FORM_udata:
18665 case DW_FORM_sdata:
18666 fprintf_unfiltered (f, "constant: %s",
18667 pulongest (DW_UNSND (&die->attrs[i])));
18668 break;
18669 case DW_FORM_sec_offset:
18670 fprintf_unfiltered (f, "section offset: %s",
18671 pulongest (DW_UNSND (&die->attrs[i])));
18672 break;
18673 case DW_FORM_ref_sig8:
18674 fprintf_unfiltered (f, "signature: %s",
18675 hex_string (DW_SIGNATURE (&die->attrs[i])));
18676 break;
18677 case DW_FORM_string:
18678 case DW_FORM_strp:
18679 case DW_FORM_GNU_str_index:
18680 case DW_FORM_GNU_strp_alt:
18681 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18682 DW_STRING (&die->attrs[i])
18683 ? DW_STRING (&die->attrs[i]) : "",
18684 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18685 break;
18686 case DW_FORM_flag:
18687 if (DW_UNSND (&die->attrs[i]))
18688 fprintf_unfiltered (f, "flag: TRUE");
18689 else
18690 fprintf_unfiltered (f, "flag: FALSE");
18691 break;
18692 case DW_FORM_flag_present:
18693 fprintf_unfiltered (f, "flag: TRUE");
18694 break;
18695 case DW_FORM_indirect:
18696 /* The reader will have reduced the indirect form to
18697 the "base form" so this form should not occur. */
18698 fprintf_unfiltered (f,
18699 "unexpected attribute form: DW_FORM_indirect");
18700 break;
18701 default:
18702 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18703 die->attrs[i].form);
18704 break;
18705 }
18706 fprintf_unfiltered (f, "\n");
18707 }
18708 }
18709
18710 static void
18711 dump_die_for_error (struct die_info *die)
18712 {
18713 dump_die_shallow (gdb_stderr, 0, die);
18714 }
18715
18716 static void
18717 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18718 {
18719 int indent = level * 4;
18720
18721 gdb_assert (die != NULL);
18722
18723 if (level >= max_level)
18724 return;
18725
18726 dump_die_shallow (f, indent, die);
18727
18728 if (die->child != NULL)
18729 {
18730 print_spaces (indent, f);
18731 fprintf_unfiltered (f, " Children:");
18732 if (level + 1 < max_level)
18733 {
18734 fprintf_unfiltered (f, "\n");
18735 dump_die_1 (f, level + 1, max_level, die->child);
18736 }
18737 else
18738 {
18739 fprintf_unfiltered (f,
18740 " [not printed, max nesting level reached]\n");
18741 }
18742 }
18743
18744 if (die->sibling != NULL && level > 0)
18745 {
18746 dump_die_1 (f, level, max_level, die->sibling);
18747 }
18748 }
18749
18750 /* This is called from the pdie macro in gdbinit.in.
18751 It's not static so gcc will keep a copy callable from gdb. */
18752
18753 void
18754 dump_die (struct die_info *die, int max_level)
18755 {
18756 dump_die_1 (gdb_stdlog, 0, max_level, die);
18757 }
18758
18759 static void
18760 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18761 {
18762 void **slot;
18763
18764 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18765 INSERT);
18766
18767 *slot = die;
18768 }
18769
18770 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18771 required kind. */
18772
18773 static sect_offset
18774 dwarf2_get_ref_die_offset (const struct attribute *attr)
18775 {
18776 sect_offset retval = { DW_UNSND (attr) };
18777
18778 if (attr_form_is_ref (attr))
18779 return retval;
18780
18781 retval.sect_off = 0;
18782 complaint (&symfile_complaints,
18783 _("unsupported die ref attribute form: '%s'"),
18784 dwarf_form_name (attr->form));
18785 return retval;
18786 }
18787
18788 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18789 * the value held by the attribute is not constant. */
18790
18791 static LONGEST
18792 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18793 {
18794 if (attr->form == DW_FORM_sdata)
18795 return DW_SND (attr);
18796 else if (attr->form == DW_FORM_udata
18797 || attr->form == DW_FORM_data1
18798 || attr->form == DW_FORM_data2
18799 || attr->form == DW_FORM_data4
18800 || attr->form == DW_FORM_data8)
18801 return DW_UNSND (attr);
18802 else
18803 {
18804 complaint (&symfile_complaints,
18805 _("Attribute value is not a constant (%s)"),
18806 dwarf_form_name (attr->form));
18807 return default_value;
18808 }
18809 }
18810
18811 /* Follow reference or signature attribute ATTR of SRC_DIE.
18812 On entry *REF_CU is the CU of SRC_DIE.
18813 On exit *REF_CU is the CU of the result. */
18814
18815 static struct die_info *
18816 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18817 struct dwarf2_cu **ref_cu)
18818 {
18819 struct die_info *die;
18820
18821 if (attr_form_is_ref (attr))
18822 die = follow_die_ref (src_die, attr, ref_cu);
18823 else if (attr->form == DW_FORM_ref_sig8)
18824 die = follow_die_sig (src_die, attr, ref_cu);
18825 else
18826 {
18827 dump_die_for_error (src_die);
18828 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18829 objfile_name ((*ref_cu)->objfile));
18830 }
18831
18832 return die;
18833 }
18834
18835 /* Follow reference OFFSET.
18836 On entry *REF_CU is the CU of the source die referencing OFFSET.
18837 On exit *REF_CU is the CU of the result.
18838 Returns NULL if OFFSET is invalid. */
18839
18840 static struct die_info *
18841 follow_die_offset (sect_offset offset, int offset_in_dwz,
18842 struct dwarf2_cu **ref_cu)
18843 {
18844 struct die_info temp_die;
18845 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18846
18847 gdb_assert (cu->per_cu != NULL);
18848
18849 target_cu = cu;
18850
18851 if (cu->per_cu->is_debug_types)
18852 {
18853 /* .debug_types CUs cannot reference anything outside their CU.
18854 If they need to, they have to reference a signatured type via
18855 DW_FORM_ref_sig8. */
18856 if (! offset_in_cu_p (&cu->header, offset))
18857 return NULL;
18858 }
18859 else if (offset_in_dwz != cu->per_cu->is_dwz
18860 || ! offset_in_cu_p (&cu->header, offset))
18861 {
18862 struct dwarf2_per_cu_data *per_cu;
18863
18864 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18865 cu->objfile);
18866
18867 /* If necessary, add it to the queue and load its DIEs. */
18868 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18869 load_full_comp_unit (per_cu, cu->language);
18870
18871 target_cu = per_cu->cu;
18872 }
18873 else if (cu->dies == NULL)
18874 {
18875 /* We're loading full DIEs during partial symbol reading. */
18876 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18877 load_full_comp_unit (cu->per_cu, language_minimal);
18878 }
18879
18880 *ref_cu = target_cu;
18881 temp_die.offset = offset;
18882 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18883 }
18884
18885 /* Follow reference attribute ATTR of SRC_DIE.
18886 On entry *REF_CU is the CU of SRC_DIE.
18887 On exit *REF_CU is the CU of the result. */
18888
18889 static struct die_info *
18890 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18891 struct dwarf2_cu **ref_cu)
18892 {
18893 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18894 struct dwarf2_cu *cu = *ref_cu;
18895 struct die_info *die;
18896
18897 die = follow_die_offset (offset,
18898 (attr->form == DW_FORM_GNU_ref_alt
18899 || cu->per_cu->is_dwz),
18900 ref_cu);
18901 if (!die)
18902 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18903 "at 0x%x [in module %s]"),
18904 offset.sect_off, src_die->offset.sect_off,
18905 objfile_name (cu->objfile));
18906
18907 return die;
18908 }
18909
18910 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18911 Returned value is intended for DW_OP_call*. Returned
18912 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18913
18914 struct dwarf2_locexpr_baton
18915 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18916 struct dwarf2_per_cu_data *per_cu,
18917 CORE_ADDR (*get_frame_pc) (void *baton),
18918 void *baton)
18919 {
18920 struct dwarf2_cu *cu;
18921 struct die_info *die;
18922 struct attribute *attr;
18923 struct dwarf2_locexpr_baton retval;
18924
18925 dw2_setup (per_cu->objfile);
18926
18927 if (per_cu->cu == NULL)
18928 load_cu (per_cu);
18929 cu = per_cu->cu;
18930
18931 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18932 if (!die)
18933 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18934 offset.sect_off, objfile_name (per_cu->objfile));
18935
18936 attr = dwarf2_attr (die, DW_AT_location, cu);
18937 if (!attr)
18938 {
18939 /* DWARF: "If there is no such attribute, then there is no effect.".
18940 DATA is ignored if SIZE is 0. */
18941
18942 retval.data = NULL;
18943 retval.size = 0;
18944 }
18945 else if (attr_form_is_section_offset (attr))
18946 {
18947 struct dwarf2_loclist_baton loclist_baton;
18948 CORE_ADDR pc = (*get_frame_pc) (baton);
18949 size_t size;
18950
18951 fill_in_loclist_baton (cu, &loclist_baton, attr);
18952
18953 retval.data = dwarf2_find_location_expression (&loclist_baton,
18954 &size, pc);
18955 retval.size = size;
18956 }
18957 else
18958 {
18959 if (!attr_form_is_block (attr))
18960 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18961 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18962 offset.sect_off, objfile_name (per_cu->objfile));
18963
18964 retval.data = DW_BLOCK (attr)->data;
18965 retval.size = DW_BLOCK (attr)->size;
18966 }
18967 retval.per_cu = cu->per_cu;
18968
18969 age_cached_comp_units ();
18970
18971 return retval;
18972 }
18973
18974 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18975 offset. */
18976
18977 struct dwarf2_locexpr_baton
18978 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18979 struct dwarf2_per_cu_data *per_cu,
18980 CORE_ADDR (*get_frame_pc) (void *baton),
18981 void *baton)
18982 {
18983 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18984
18985 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18986 }
18987
18988 /* Write a constant of a given type as target-ordered bytes into
18989 OBSTACK. */
18990
18991 static const gdb_byte *
18992 write_constant_as_bytes (struct obstack *obstack,
18993 enum bfd_endian byte_order,
18994 struct type *type,
18995 ULONGEST value,
18996 LONGEST *len)
18997 {
18998 gdb_byte *result;
18999
19000 *len = TYPE_LENGTH (type);
19001 result = obstack_alloc (obstack, *len);
19002 store_unsigned_integer (result, *len, byte_order, value);
19003
19004 return result;
19005 }
19006
19007 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19008 pointer to the constant bytes and set LEN to the length of the
19009 data. If memory is needed, allocate it on OBSTACK. If the DIE
19010 does not have a DW_AT_const_value, return NULL. */
19011
19012 const gdb_byte *
19013 dwarf2_fetch_constant_bytes (sect_offset offset,
19014 struct dwarf2_per_cu_data *per_cu,
19015 struct obstack *obstack,
19016 LONGEST *len)
19017 {
19018 struct dwarf2_cu *cu;
19019 struct die_info *die;
19020 struct attribute *attr;
19021 const gdb_byte *result = NULL;
19022 struct type *type;
19023 LONGEST value;
19024 enum bfd_endian byte_order;
19025
19026 dw2_setup (per_cu->objfile);
19027
19028 if (per_cu->cu == NULL)
19029 load_cu (per_cu);
19030 cu = per_cu->cu;
19031
19032 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19033 if (!die)
19034 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19035 offset.sect_off, objfile_name (per_cu->objfile));
19036
19037
19038 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19039 if (attr == NULL)
19040 return NULL;
19041
19042 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19043 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19044
19045 switch (attr->form)
19046 {
19047 case DW_FORM_addr:
19048 case DW_FORM_GNU_addr_index:
19049 {
19050 gdb_byte *tem;
19051
19052 *len = cu->header.addr_size;
19053 tem = obstack_alloc (obstack, *len);
19054 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19055 result = tem;
19056 }
19057 break;
19058 case DW_FORM_string:
19059 case DW_FORM_strp:
19060 case DW_FORM_GNU_str_index:
19061 case DW_FORM_GNU_strp_alt:
19062 /* DW_STRING is already allocated on the objfile obstack, point
19063 directly to it. */
19064 result = (const gdb_byte *) DW_STRING (attr);
19065 *len = strlen (DW_STRING (attr));
19066 break;
19067 case DW_FORM_block1:
19068 case DW_FORM_block2:
19069 case DW_FORM_block4:
19070 case DW_FORM_block:
19071 case DW_FORM_exprloc:
19072 result = DW_BLOCK (attr)->data;
19073 *len = DW_BLOCK (attr)->size;
19074 break;
19075
19076 /* The DW_AT_const_value attributes are supposed to carry the
19077 symbol's value "represented as it would be on the target
19078 architecture." By the time we get here, it's already been
19079 converted to host endianness, so we just need to sign- or
19080 zero-extend it as appropriate. */
19081 case DW_FORM_data1:
19082 type = die_type (die, cu);
19083 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19084 if (result == NULL)
19085 result = write_constant_as_bytes (obstack, byte_order,
19086 type, value, len);
19087 break;
19088 case DW_FORM_data2:
19089 type = die_type (die, cu);
19090 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19091 if (result == NULL)
19092 result = write_constant_as_bytes (obstack, byte_order,
19093 type, value, len);
19094 break;
19095 case DW_FORM_data4:
19096 type = die_type (die, cu);
19097 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19098 if (result == NULL)
19099 result = write_constant_as_bytes (obstack, byte_order,
19100 type, value, len);
19101 break;
19102 case DW_FORM_data8:
19103 type = die_type (die, cu);
19104 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19105 if (result == NULL)
19106 result = write_constant_as_bytes (obstack, byte_order,
19107 type, value, len);
19108 break;
19109
19110 case DW_FORM_sdata:
19111 type = die_type (die, cu);
19112 result = write_constant_as_bytes (obstack, byte_order,
19113 type, DW_SND (attr), len);
19114 break;
19115
19116 case DW_FORM_udata:
19117 type = die_type (die, cu);
19118 result = write_constant_as_bytes (obstack, byte_order,
19119 type, DW_UNSND (attr), len);
19120 break;
19121
19122 default:
19123 complaint (&symfile_complaints,
19124 _("unsupported const value attribute form: '%s'"),
19125 dwarf_form_name (attr->form));
19126 break;
19127 }
19128
19129 return result;
19130 }
19131
19132 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19133 PER_CU. */
19134
19135 struct type *
19136 dwarf2_get_die_type (cu_offset die_offset,
19137 struct dwarf2_per_cu_data *per_cu)
19138 {
19139 sect_offset die_offset_sect;
19140
19141 dw2_setup (per_cu->objfile);
19142
19143 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19144 return get_die_type_at_offset (die_offset_sect, per_cu);
19145 }
19146
19147 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19148 On entry *REF_CU is the CU of SRC_DIE.
19149 On exit *REF_CU is the CU of the result.
19150 Returns NULL if the referenced DIE isn't found. */
19151
19152 static struct die_info *
19153 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19154 struct dwarf2_cu **ref_cu)
19155 {
19156 struct objfile *objfile = (*ref_cu)->objfile;
19157 struct die_info temp_die;
19158 struct dwarf2_cu *sig_cu;
19159 struct die_info *die;
19160
19161 /* While it might be nice to assert sig_type->type == NULL here,
19162 we can get here for DW_AT_imported_declaration where we need
19163 the DIE not the type. */
19164
19165 /* If necessary, add it to the queue and load its DIEs. */
19166
19167 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19168 read_signatured_type (sig_type);
19169
19170 sig_cu = sig_type->per_cu.cu;
19171 gdb_assert (sig_cu != NULL);
19172 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19173 temp_die.offset = sig_type->type_offset_in_section;
19174 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19175 temp_die.offset.sect_off);
19176 if (die)
19177 {
19178 /* For .gdb_index version 7 keep track of included TUs.
19179 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19180 if (dwarf2_per_objfile->index_table != NULL
19181 && dwarf2_per_objfile->index_table->version <= 7)
19182 {
19183 VEC_safe_push (dwarf2_per_cu_ptr,
19184 (*ref_cu)->per_cu->imported_symtabs,
19185 sig_cu->per_cu);
19186 }
19187
19188 *ref_cu = sig_cu;
19189 return die;
19190 }
19191
19192 return NULL;
19193 }
19194
19195 /* Follow signatured type referenced by ATTR in SRC_DIE.
19196 On entry *REF_CU is the CU of SRC_DIE.
19197 On exit *REF_CU is the CU of the result.
19198 The result is the DIE of the type.
19199 If the referenced type cannot be found an error is thrown. */
19200
19201 static struct die_info *
19202 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19203 struct dwarf2_cu **ref_cu)
19204 {
19205 ULONGEST signature = DW_SIGNATURE (attr);
19206 struct signatured_type *sig_type;
19207 struct die_info *die;
19208
19209 gdb_assert (attr->form == DW_FORM_ref_sig8);
19210
19211 sig_type = lookup_signatured_type (*ref_cu, signature);
19212 /* sig_type will be NULL if the signatured type is missing from
19213 the debug info. */
19214 if (sig_type == NULL)
19215 {
19216 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19217 " from DIE at 0x%x [in module %s]"),
19218 hex_string (signature), src_die->offset.sect_off,
19219 objfile_name ((*ref_cu)->objfile));
19220 }
19221
19222 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19223 if (die == NULL)
19224 {
19225 dump_die_for_error (src_die);
19226 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19227 " from DIE at 0x%x [in module %s]"),
19228 hex_string (signature), src_die->offset.sect_off,
19229 objfile_name ((*ref_cu)->objfile));
19230 }
19231
19232 return die;
19233 }
19234
19235 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19236 reading in and processing the type unit if necessary. */
19237
19238 static struct type *
19239 get_signatured_type (struct die_info *die, ULONGEST signature,
19240 struct dwarf2_cu *cu)
19241 {
19242 struct signatured_type *sig_type;
19243 struct dwarf2_cu *type_cu;
19244 struct die_info *type_die;
19245 struct type *type;
19246
19247 sig_type = lookup_signatured_type (cu, signature);
19248 /* sig_type will be NULL if the signatured type is missing from
19249 the debug info. */
19250 if (sig_type == NULL)
19251 {
19252 complaint (&symfile_complaints,
19253 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19254 " from DIE at 0x%x [in module %s]"),
19255 hex_string (signature), die->offset.sect_off,
19256 objfile_name (dwarf2_per_objfile->objfile));
19257 return build_error_marker_type (cu, die);
19258 }
19259
19260 /* If we already know the type we're done. */
19261 if (sig_type->type != NULL)
19262 return sig_type->type;
19263
19264 type_cu = cu;
19265 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19266 if (type_die != NULL)
19267 {
19268 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19269 is created. This is important, for example, because for c++ classes
19270 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19271 type = read_type_die (type_die, type_cu);
19272 if (type == NULL)
19273 {
19274 complaint (&symfile_complaints,
19275 _("Dwarf Error: Cannot build signatured type %s"
19276 " referenced from DIE at 0x%x [in module %s]"),
19277 hex_string (signature), die->offset.sect_off,
19278 objfile_name (dwarf2_per_objfile->objfile));
19279 type = build_error_marker_type (cu, die);
19280 }
19281 }
19282 else
19283 {
19284 complaint (&symfile_complaints,
19285 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19286 " from DIE at 0x%x [in module %s]"),
19287 hex_string (signature), die->offset.sect_off,
19288 objfile_name (dwarf2_per_objfile->objfile));
19289 type = build_error_marker_type (cu, die);
19290 }
19291 sig_type->type = type;
19292
19293 return type;
19294 }
19295
19296 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19297 reading in and processing the type unit if necessary. */
19298
19299 static struct type *
19300 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19301 struct dwarf2_cu *cu) /* ARI: editCase function */
19302 {
19303 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19304 if (attr_form_is_ref (attr))
19305 {
19306 struct dwarf2_cu *type_cu = cu;
19307 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19308
19309 return read_type_die (type_die, type_cu);
19310 }
19311 else if (attr->form == DW_FORM_ref_sig8)
19312 {
19313 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19314 }
19315 else
19316 {
19317 complaint (&symfile_complaints,
19318 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19319 " at 0x%x [in module %s]"),
19320 dwarf_form_name (attr->form), die->offset.sect_off,
19321 objfile_name (dwarf2_per_objfile->objfile));
19322 return build_error_marker_type (cu, die);
19323 }
19324 }
19325
19326 /* Load the DIEs associated with type unit PER_CU into memory. */
19327
19328 static void
19329 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19330 {
19331 struct signatured_type *sig_type;
19332
19333 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19334 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19335
19336 /* We have the per_cu, but we need the signatured_type.
19337 Fortunately this is an easy translation. */
19338 gdb_assert (per_cu->is_debug_types);
19339 sig_type = (struct signatured_type *) per_cu;
19340
19341 gdb_assert (per_cu->cu == NULL);
19342
19343 read_signatured_type (sig_type);
19344
19345 gdb_assert (per_cu->cu != NULL);
19346 }
19347
19348 /* die_reader_func for read_signatured_type.
19349 This is identical to load_full_comp_unit_reader,
19350 but is kept separate for now. */
19351
19352 static void
19353 read_signatured_type_reader (const struct die_reader_specs *reader,
19354 const gdb_byte *info_ptr,
19355 struct die_info *comp_unit_die,
19356 int has_children,
19357 void *data)
19358 {
19359 struct dwarf2_cu *cu = reader->cu;
19360
19361 gdb_assert (cu->die_hash == NULL);
19362 cu->die_hash =
19363 htab_create_alloc_ex (cu->header.length / 12,
19364 die_hash,
19365 die_eq,
19366 NULL,
19367 &cu->comp_unit_obstack,
19368 hashtab_obstack_allocate,
19369 dummy_obstack_deallocate);
19370
19371 if (has_children)
19372 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19373 &info_ptr, comp_unit_die);
19374 cu->dies = comp_unit_die;
19375 /* comp_unit_die is not stored in die_hash, no need. */
19376
19377 /* We try not to read any attributes in this function, because not
19378 all CUs needed for references have been loaded yet, and symbol
19379 table processing isn't initialized. But we have to set the CU language,
19380 or we won't be able to build types correctly.
19381 Similarly, if we do not read the producer, we can not apply
19382 producer-specific interpretation. */
19383 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19384 }
19385
19386 /* Read in a signatured type and build its CU and DIEs.
19387 If the type is a stub for the real type in a DWO file,
19388 read in the real type from the DWO file as well. */
19389
19390 static void
19391 read_signatured_type (struct signatured_type *sig_type)
19392 {
19393 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19394
19395 gdb_assert (per_cu->is_debug_types);
19396 gdb_assert (per_cu->cu == NULL);
19397
19398 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19399 read_signatured_type_reader, NULL);
19400 sig_type->per_cu.tu_read = 1;
19401 }
19402
19403 /* Decode simple location descriptions.
19404 Given a pointer to a dwarf block that defines a location, compute
19405 the location and return the value.
19406
19407 NOTE drow/2003-11-18: This function is called in two situations
19408 now: for the address of static or global variables (partial symbols
19409 only) and for offsets into structures which are expected to be
19410 (more or less) constant. The partial symbol case should go away,
19411 and only the constant case should remain. That will let this
19412 function complain more accurately. A few special modes are allowed
19413 without complaint for global variables (for instance, global
19414 register values and thread-local values).
19415
19416 A location description containing no operations indicates that the
19417 object is optimized out. The return value is 0 for that case.
19418 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19419 callers will only want a very basic result and this can become a
19420 complaint.
19421
19422 Note that stack[0] is unused except as a default error return. */
19423
19424 static CORE_ADDR
19425 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19426 {
19427 struct objfile *objfile = cu->objfile;
19428 size_t i;
19429 size_t size = blk->size;
19430 const gdb_byte *data = blk->data;
19431 CORE_ADDR stack[64];
19432 int stacki;
19433 unsigned int bytes_read, unsnd;
19434 gdb_byte op;
19435
19436 i = 0;
19437 stacki = 0;
19438 stack[stacki] = 0;
19439 stack[++stacki] = 0;
19440
19441 while (i < size)
19442 {
19443 op = data[i++];
19444 switch (op)
19445 {
19446 case DW_OP_lit0:
19447 case DW_OP_lit1:
19448 case DW_OP_lit2:
19449 case DW_OP_lit3:
19450 case DW_OP_lit4:
19451 case DW_OP_lit5:
19452 case DW_OP_lit6:
19453 case DW_OP_lit7:
19454 case DW_OP_lit8:
19455 case DW_OP_lit9:
19456 case DW_OP_lit10:
19457 case DW_OP_lit11:
19458 case DW_OP_lit12:
19459 case DW_OP_lit13:
19460 case DW_OP_lit14:
19461 case DW_OP_lit15:
19462 case DW_OP_lit16:
19463 case DW_OP_lit17:
19464 case DW_OP_lit18:
19465 case DW_OP_lit19:
19466 case DW_OP_lit20:
19467 case DW_OP_lit21:
19468 case DW_OP_lit22:
19469 case DW_OP_lit23:
19470 case DW_OP_lit24:
19471 case DW_OP_lit25:
19472 case DW_OP_lit26:
19473 case DW_OP_lit27:
19474 case DW_OP_lit28:
19475 case DW_OP_lit29:
19476 case DW_OP_lit30:
19477 case DW_OP_lit31:
19478 stack[++stacki] = op - DW_OP_lit0;
19479 break;
19480
19481 case DW_OP_reg0:
19482 case DW_OP_reg1:
19483 case DW_OP_reg2:
19484 case DW_OP_reg3:
19485 case DW_OP_reg4:
19486 case DW_OP_reg5:
19487 case DW_OP_reg6:
19488 case DW_OP_reg7:
19489 case DW_OP_reg8:
19490 case DW_OP_reg9:
19491 case DW_OP_reg10:
19492 case DW_OP_reg11:
19493 case DW_OP_reg12:
19494 case DW_OP_reg13:
19495 case DW_OP_reg14:
19496 case DW_OP_reg15:
19497 case DW_OP_reg16:
19498 case DW_OP_reg17:
19499 case DW_OP_reg18:
19500 case DW_OP_reg19:
19501 case DW_OP_reg20:
19502 case DW_OP_reg21:
19503 case DW_OP_reg22:
19504 case DW_OP_reg23:
19505 case DW_OP_reg24:
19506 case DW_OP_reg25:
19507 case DW_OP_reg26:
19508 case DW_OP_reg27:
19509 case DW_OP_reg28:
19510 case DW_OP_reg29:
19511 case DW_OP_reg30:
19512 case DW_OP_reg31:
19513 stack[++stacki] = op - DW_OP_reg0;
19514 if (i < size)
19515 dwarf2_complex_location_expr_complaint ();
19516 break;
19517
19518 case DW_OP_regx:
19519 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19520 i += bytes_read;
19521 stack[++stacki] = unsnd;
19522 if (i < size)
19523 dwarf2_complex_location_expr_complaint ();
19524 break;
19525
19526 case DW_OP_addr:
19527 stack[++stacki] = read_address (objfile->obfd, &data[i],
19528 cu, &bytes_read);
19529 i += bytes_read;
19530 break;
19531
19532 case DW_OP_const1u:
19533 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19534 i += 1;
19535 break;
19536
19537 case DW_OP_const1s:
19538 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19539 i += 1;
19540 break;
19541
19542 case DW_OP_const2u:
19543 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19544 i += 2;
19545 break;
19546
19547 case DW_OP_const2s:
19548 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19549 i += 2;
19550 break;
19551
19552 case DW_OP_const4u:
19553 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19554 i += 4;
19555 break;
19556
19557 case DW_OP_const4s:
19558 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19559 i += 4;
19560 break;
19561
19562 case DW_OP_const8u:
19563 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19564 i += 8;
19565 break;
19566
19567 case DW_OP_constu:
19568 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19569 &bytes_read);
19570 i += bytes_read;
19571 break;
19572
19573 case DW_OP_consts:
19574 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19575 i += bytes_read;
19576 break;
19577
19578 case DW_OP_dup:
19579 stack[stacki + 1] = stack[stacki];
19580 stacki++;
19581 break;
19582
19583 case DW_OP_plus:
19584 stack[stacki - 1] += stack[stacki];
19585 stacki--;
19586 break;
19587
19588 case DW_OP_plus_uconst:
19589 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19590 &bytes_read);
19591 i += bytes_read;
19592 break;
19593
19594 case DW_OP_minus:
19595 stack[stacki - 1] -= stack[stacki];
19596 stacki--;
19597 break;
19598
19599 case DW_OP_deref:
19600 /* If we're not the last op, then we definitely can't encode
19601 this using GDB's address_class enum. This is valid for partial
19602 global symbols, although the variable's address will be bogus
19603 in the psymtab. */
19604 if (i < size)
19605 dwarf2_complex_location_expr_complaint ();
19606 break;
19607
19608 case DW_OP_GNU_push_tls_address:
19609 /* The top of the stack has the offset from the beginning
19610 of the thread control block at which the variable is located. */
19611 /* Nothing should follow this operator, so the top of stack would
19612 be returned. */
19613 /* This is valid for partial global symbols, but the variable's
19614 address will be bogus in the psymtab. Make it always at least
19615 non-zero to not look as a variable garbage collected by linker
19616 which have DW_OP_addr 0. */
19617 if (i < size)
19618 dwarf2_complex_location_expr_complaint ();
19619 stack[stacki]++;
19620 break;
19621
19622 case DW_OP_GNU_uninit:
19623 break;
19624
19625 case DW_OP_GNU_addr_index:
19626 case DW_OP_GNU_const_index:
19627 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19628 &bytes_read);
19629 i += bytes_read;
19630 break;
19631
19632 default:
19633 {
19634 const char *name = get_DW_OP_name (op);
19635
19636 if (name)
19637 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19638 name);
19639 else
19640 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19641 op);
19642 }
19643
19644 return (stack[stacki]);
19645 }
19646
19647 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19648 outside of the allocated space. Also enforce minimum>0. */
19649 if (stacki >= ARRAY_SIZE (stack) - 1)
19650 {
19651 complaint (&symfile_complaints,
19652 _("location description stack overflow"));
19653 return 0;
19654 }
19655
19656 if (stacki <= 0)
19657 {
19658 complaint (&symfile_complaints,
19659 _("location description stack underflow"));
19660 return 0;
19661 }
19662 }
19663 return (stack[stacki]);
19664 }
19665
19666 /* memory allocation interface */
19667
19668 static struct dwarf_block *
19669 dwarf_alloc_block (struct dwarf2_cu *cu)
19670 {
19671 struct dwarf_block *blk;
19672
19673 blk = (struct dwarf_block *)
19674 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19675 return (blk);
19676 }
19677
19678 static struct die_info *
19679 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19680 {
19681 struct die_info *die;
19682 size_t size = sizeof (struct die_info);
19683
19684 if (num_attrs > 1)
19685 size += (num_attrs - 1) * sizeof (struct attribute);
19686
19687 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19688 memset (die, 0, sizeof (struct die_info));
19689 return (die);
19690 }
19691
19692 \f
19693 /* Macro support. */
19694
19695 /* Return file name relative to the compilation directory of file number I in
19696 *LH's file name table. The result is allocated using xmalloc; the caller is
19697 responsible for freeing it. */
19698
19699 static char *
19700 file_file_name (int file, struct line_header *lh)
19701 {
19702 /* Is the file number a valid index into the line header's file name
19703 table? Remember that file numbers start with one, not zero. */
19704 if (1 <= file && file <= lh->num_file_names)
19705 {
19706 struct file_entry *fe = &lh->file_names[file - 1];
19707
19708 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19709 return xstrdup (fe->name);
19710 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19711 fe->name, NULL);
19712 }
19713 else
19714 {
19715 /* The compiler produced a bogus file number. We can at least
19716 record the macro definitions made in the file, even if we
19717 won't be able to find the file by name. */
19718 char fake_name[80];
19719
19720 xsnprintf (fake_name, sizeof (fake_name),
19721 "<bad macro file number %d>", file);
19722
19723 complaint (&symfile_complaints,
19724 _("bad file number in macro information (%d)"),
19725 file);
19726
19727 return xstrdup (fake_name);
19728 }
19729 }
19730
19731 /* Return the full name of file number I in *LH's file name table.
19732 Use COMP_DIR as the name of the current directory of the
19733 compilation. The result is allocated using xmalloc; the caller is
19734 responsible for freeing it. */
19735 static char *
19736 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19737 {
19738 /* Is the file number a valid index into the line header's file name
19739 table? Remember that file numbers start with one, not zero. */
19740 if (1 <= file && file <= lh->num_file_names)
19741 {
19742 char *relative = file_file_name (file, lh);
19743
19744 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19745 return relative;
19746 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19747 }
19748 else
19749 return file_file_name (file, lh);
19750 }
19751
19752
19753 static struct macro_source_file *
19754 macro_start_file (int file, int line,
19755 struct macro_source_file *current_file,
19756 const char *comp_dir,
19757 struct line_header *lh, struct objfile *objfile)
19758 {
19759 /* File name relative to the compilation directory of this source file. */
19760 char *file_name = file_file_name (file, lh);
19761
19762 if (! current_file)
19763 {
19764 /* Note: We don't create a macro table for this compilation unit
19765 at all until we actually get a filename. */
19766 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19767
19768 /* If we have no current file, then this must be the start_file
19769 directive for the compilation unit's main source file. */
19770 current_file = macro_set_main (macro_table, file_name);
19771 macro_define_special (macro_table);
19772 }
19773 else
19774 current_file = macro_include (current_file, line, file_name);
19775
19776 xfree (file_name);
19777
19778 return current_file;
19779 }
19780
19781
19782 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19783 followed by a null byte. */
19784 static char *
19785 copy_string (const char *buf, int len)
19786 {
19787 char *s = xmalloc (len + 1);
19788
19789 memcpy (s, buf, len);
19790 s[len] = '\0';
19791 return s;
19792 }
19793
19794
19795 static const char *
19796 consume_improper_spaces (const char *p, const char *body)
19797 {
19798 if (*p == ' ')
19799 {
19800 complaint (&symfile_complaints,
19801 _("macro definition contains spaces "
19802 "in formal argument list:\n`%s'"),
19803 body);
19804
19805 while (*p == ' ')
19806 p++;
19807 }
19808
19809 return p;
19810 }
19811
19812
19813 static void
19814 parse_macro_definition (struct macro_source_file *file, int line,
19815 const char *body)
19816 {
19817 const char *p;
19818
19819 /* The body string takes one of two forms. For object-like macro
19820 definitions, it should be:
19821
19822 <macro name> " " <definition>
19823
19824 For function-like macro definitions, it should be:
19825
19826 <macro name> "() " <definition>
19827 or
19828 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19829
19830 Spaces may appear only where explicitly indicated, and in the
19831 <definition>.
19832
19833 The Dwarf 2 spec says that an object-like macro's name is always
19834 followed by a space, but versions of GCC around March 2002 omit
19835 the space when the macro's definition is the empty string.
19836
19837 The Dwarf 2 spec says that there should be no spaces between the
19838 formal arguments in a function-like macro's formal argument list,
19839 but versions of GCC around March 2002 include spaces after the
19840 commas. */
19841
19842
19843 /* Find the extent of the macro name. The macro name is terminated
19844 by either a space or null character (for an object-like macro) or
19845 an opening paren (for a function-like macro). */
19846 for (p = body; *p; p++)
19847 if (*p == ' ' || *p == '(')
19848 break;
19849
19850 if (*p == ' ' || *p == '\0')
19851 {
19852 /* It's an object-like macro. */
19853 int name_len = p - body;
19854 char *name = copy_string (body, name_len);
19855 const char *replacement;
19856
19857 if (*p == ' ')
19858 replacement = body + name_len + 1;
19859 else
19860 {
19861 dwarf2_macro_malformed_definition_complaint (body);
19862 replacement = body + name_len;
19863 }
19864
19865 macro_define_object (file, line, name, replacement);
19866
19867 xfree (name);
19868 }
19869 else if (*p == '(')
19870 {
19871 /* It's a function-like macro. */
19872 char *name = copy_string (body, p - body);
19873 int argc = 0;
19874 int argv_size = 1;
19875 char **argv = xmalloc (argv_size * sizeof (*argv));
19876
19877 p++;
19878
19879 p = consume_improper_spaces (p, body);
19880
19881 /* Parse the formal argument list. */
19882 while (*p && *p != ')')
19883 {
19884 /* Find the extent of the current argument name. */
19885 const char *arg_start = p;
19886
19887 while (*p && *p != ',' && *p != ')' && *p != ' ')
19888 p++;
19889
19890 if (! *p || p == arg_start)
19891 dwarf2_macro_malformed_definition_complaint (body);
19892 else
19893 {
19894 /* Make sure argv has room for the new argument. */
19895 if (argc >= argv_size)
19896 {
19897 argv_size *= 2;
19898 argv = xrealloc (argv, argv_size * sizeof (*argv));
19899 }
19900
19901 argv[argc++] = copy_string (arg_start, p - arg_start);
19902 }
19903
19904 p = consume_improper_spaces (p, body);
19905
19906 /* Consume the comma, if present. */
19907 if (*p == ',')
19908 {
19909 p++;
19910
19911 p = consume_improper_spaces (p, body);
19912 }
19913 }
19914
19915 if (*p == ')')
19916 {
19917 p++;
19918
19919 if (*p == ' ')
19920 /* Perfectly formed definition, no complaints. */
19921 macro_define_function (file, line, name,
19922 argc, (const char **) argv,
19923 p + 1);
19924 else if (*p == '\0')
19925 {
19926 /* Complain, but do define it. */
19927 dwarf2_macro_malformed_definition_complaint (body);
19928 macro_define_function (file, line, name,
19929 argc, (const char **) argv,
19930 p);
19931 }
19932 else
19933 /* Just complain. */
19934 dwarf2_macro_malformed_definition_complaint (body);
19935 }
19936 else
19937 /* Just complain. */
19938 dwarf2_macro_malformed_definition_complaint (body);
19939
19940 xfree (name);
19941 {
19942 int i;
19943
19944 for (i = 0; i < argc; i++)
19945 xfree (argv[i]);
19946 }
19947 xfree (argv);
19948 }
19949 else
19950 dwarf2_macro_malformed_definition_complaint (body);
19951 }
19952
19953 /* Skip some bytes from BYTES according to the form given in FORM.
19954 Returns the new pointer. */
19955
19956 static const gdb_byte *
19957 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19958 enum dwarf_form form,
19959 unsigned int offset_size,
19960 struct dwarf2_section_info *section)
19961 {
19962 unsigned int bytes_read;
19963
19964 switch (form)
19965 {
19966 case DW_FORM_data1:
19967 case DW_FORM_flag:
19968 ++bytes;
19969 break;
19970
19971 case DW_FORM_data2:
19972 bytes += 2;
19973 break;
19974
19975 case DW_FORM_data4:
19976 bytes += 4;
19977 break;
19978
19979 case DW_FORM_data8:
19980 bytes += 8;
19981 break;
19982
19983 case DW_FORM_string:
19984 read_direct_string (abfd, bytes, &bytes_read);
19985 bytes += bytes_read;
19986 break;
19987
19988 case DW_FORM_sec_offset:
19989 case DW_FORM_strp:
19990 case DW_FORM_GNU_strp_alt:
19991 bytes += offset_size;
19992 break;
19993
19994 case DW_FORM_block:
19995 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19996 bytes += bytes_read;
19997 break;
19998
19999 case DW_FORM_block1:
20000 bytes += 1 + read_1_byte (abfd, bytes);
20001 break;
20002 case DW_FORM_block2:
20003 bytes += 2 + read_2_bytes (abfd, bytes);
20004 break;
20005 case DW_FORM_block4:
20006 bytes += 4 + read_4_bytes (abfd, bytes);
20007 break;
20008
20009 case DW_FORM_sdata:
20010 case DW_FORM_udata:
20011 case DW_FORM_GNU_addr_index:
20012 case DW_FORM_GNU_str_index:
20013 bytes = gdb_skip_leb128 (bytes, buffer_end);
20014 if (bytes == NULL)
20015 {
20016 dwarf2_section_buffer_overflow_complaint (section);
20017 return NULL;
20018 }
20019 break;
20020
20021 default:
20022 {
20023 complain:
20024 complaint (&symfile_complaints,
20025 _("invalid form 0x%x in `%s'"),
20026 form, get_section_name (section));
20027 return NULL;
20028 }
20029 }
20030
20031 return bytes;
20032 }
20033
20034 /* A helper for dwarf_decode_macros that handles skipping an unknown
20035 opcode. Returns an updated pointer to the macro data buffer; or,
20036 on error, issues a complaint and returns NULL. */
20037
20038 static const gdb_byte *
20039 skip_unknown_opcode (unsigned int opcode,
20040 const gdb_byte **opcode_definitions,
20041 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20042 bfd *abfd,
20043 unsigned int offset_size,
20044 struct dwarf2_section_info *section)
20045 {
20046 unsigned int bytes_read, i;
20047 unsigned long arg;
20048 const gdb_byte *defn;
20049
20050 if (opcode_definitions[opcode] == NULL)
20051 {
20052 complaint (&symfile_complaints,
20053 _("unrecognized DW_MACFINO opcode 0x%x"),
20054 opcode);
20055 return NULL;
20056 }
20057
20058 defn = opcode_definitions[opcode];
20059 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20060 defn += bytes_read;
20061
20062 for (i = 0; i < arg; ++i)
20063 {
20064 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20065 section);
20066 if (mac_ptr == NULL)
20067 {
20068 /* skip_form_bytes already issued the complaint. */
20069 return NULL;
20070 }
20071 }
20072
20073 return mac_ptr;
20074 }
20075
20076 /* A helper function which parses the header of a macro section.
20077 If the macro section is the extended (for now called "GNU") type,
20078 then this updates *OFFSET_SIZE. Returns a pointer to just after
20079 the header, or issues a complaint and returns NULL on error. */
20080
20081 static const gdb_byte *
20082 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20083 bfd *abfd,
20084 const gdb_byte *mac_ptr,
20085 unsigned int *offset_size,
20086 int section_is_gnu)
20087 {
20088 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20089
20090 if (section_is_gnu)
20091 {
20092 unsigned int version, flags;
20093
20094 version = read_2_bytes (abfd, mac_ptr);
20095 if (version != 4)
20096 {
20097 complaint (&symfile_complaints,
20098 _("unrecognized version `%d' in .debug_macro section"),
20099 version);
20100 return NULL;
20101 }
20102 mac_ptr += 2;
20103
20104 flags = read_1_byte (abfd, mac_ptr);
20105 ++mac_ptr;
20106 *offset_size = (flags & 1) ? 8 : 4;
20107
20108 if ((flags & 2) != 0)
20109 /* We don't need the line table offset. */
20110 mac_ptr += *offset_size;
20111
20112 /* Vendor opcode descriptions. */
20113 if ((flags & 4) != 0)
20114 {
20115 unsigned int i, count;
20116
20117 count = read_1_byte (abfd, mac_ptr);
20118 ++mac_ptr;
20119 for (i = 0; i < count; ++i)
20120 {
20121 unsigned int opcode, bytes_read;
20122 unsigned long arg;
20123
20124 opcode = read_1_byte (abfd, mac_ptr);
20125 ++mac_ptr;
20126 opcode_definitions[opcode] = mac_ptr;
20127 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20128 mac_ptr += bytes_read;
20129 mac_ptr += arg;
20130 }
20131 }
20132 }
20133
20134 return mac_ptr;
20135 }
20136
20137 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20138 including DW_MACRO_GNU_transparent_include. */
20139
20140 static void
20141 dwarf_decode_macro_bytes (bfd *abfd,
20142 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20143 struct macro_source_file *current_file,
20144 struct line_header *lh, const char *comp_dir,
20145 struct dwarf2_section_info *section,
20146 int section_is_gnu, int section_is_dwz,
20147 unsigned int offset_size,
20148 struct objfile *objfile,
20149 htab_t include_hash)
20150 {
20151 enum dwarf_macro_record_type macinfo_type;
20152 int at_commandline;
20153 const gdb_byte *opcode_definitions[256];
20154
20155 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20156 &offset_size, section_is_gnu);
20157 if (mac_ptr == NULL)
20158 {
20159 /* We already issued a complaint. */
20160 return;
20161 }
20162
20163 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20164 GDB is still reading the definitions from command line. First
20165 DW_MACINFO_start_file will need to be ignored as it was already executed
20166 to create CURRENT_FILE for the main source holding also the command line
20167 definitions. On first met DW_MACINFO_start_file this flag is reset to
20168 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20169
20170 at_commandline = 1;
20171
20172 do
20173 {
20174 /* Do we at least have room for a macinfo type byte? */
20175 if (mac_ptr >= mac_end)
20176 {
20177 dwarf2_section_buffer_overflow_complaint (section);
20178 break;
20179 }
20180
20181 macinfo_type = read_1_byte (abfd, mac_ptr);
20182 mac_ptr++;
20183
20184 /* Note that we rely on the fact that the corresponding GNU and
20185 DWARF constants are the same. */
20186 switch (macinfo_type)
20187 {
20188 /* A zero macinfo type indicates the end of the macro
20189 information. */
20190 case 0:
20191 break;
20192
20193 case DW_MACRO_GNU_define:
20194 case DW_MACRO_GNU_undef:
20195 case DW_MACRO_GNU_define_indirect:
20196 case DW_MACRO_GNU_undef_indirect:
20197 case DW_MACRO_GNU_define_indirect_alt:
20198 case DW_MACRO_GNU_undef_indirect_alt:
20199 {
20200 unsigned int bytes_read;
20201 int line;
20202 const char *body;
20203 int is_define;
20204
20205 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20206 mac_ptr += bytes_read;
20207
20208 if (macinfo_type == DW_MACRO_GNU_define
20209 || macinfo_type == DW_MACRO_GNU_undef)
20210 {
20211 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20212 mac_ptr += bytes_read;
20213 }
20214 else
20215 {
20216 LONGEST str_offset;
20217
20218 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20219 mac_ptr += offset_size;
20220
20221 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20222 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20223 || section_is_dwz)
20224 {
20225 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20226
20227 body = read_indirect_string_from_dwz (dwz, str_offset);
20228 }
20229 else
20230 body = read_indirect_string_at_offset (abfd, str_offset);
20231 }
20232
20233 is_define = (macinfo_type == DW_MACRO_GNU_define
20234 || macinfo_type == DW_MACRO_GNU_define_indirect
20235 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20236 if (! current_file)
20237 {
20238 /* DWARF violation as no main source is present. */
20239 complaint (&symfile_complaints,
20240 _("debug info with no main source gives macro %s "
20241 "on line %d: %s"),
20242 is_define ? _("definition") : _("undefinition"),
20243 line, body);
20244 break;
20245 }
20246 if ((line == 0 && !at_commandline)
20247 || (line != 0 && at_commandline))
20248 complaint (&symfile_complaints,
20249 _("debug info gives %s macro %s with %s line %d: %s"),
20250 at_commandline ? _("command-line") : _("in-file"),
20251 is_define ? _("definition") : _("undefinition"),
20252 line == 0 ? _("zero") : _("non-zero"), line, body);
20253
20254 if (is_define)
20255 parse_macro_definition (current_file, line, body);
20256 else
20257 {
20258 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20259 || macinfo_type == DW_MACRO_GNU_undef_indirect
20260 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20261 macro_undef (current_file, line, body);
20262 }
20263 }
20264 break;
20265
20266 case DW_MACRO_GNU_start_file:
20267 {
20268 unsigned int bytes_read;
20269 int line, file;
20270
20271 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20272 mac_ptr += bytes_read;
20273 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20274 mac_ptr += bytes_read;
20275
20276 if ((line == 0 && !at_commandline)
20277 || (line != 0 && at_commandline))
20278 complaint (&symfile_complaints,
20279 _("debug info gives source %d included "
20280 "from %s at %s line %d"),
20281 file, at_commandline ? _("command-line") : _("file"),
20282 line == 0 ? _("zero") : _("non-zero"), line);
20283
20284 if (at_commandline)
20285 {
20286 /* This DW_MACRO_GNU_start_file was executed in the
20287 pass one. */
20288 at_commandline = 0;
20289 }
20290 else
20291 current_file = macro_start_file (file, line,
20292 current_file, comp_dir,
20293 lh, objfile);
20294 }
20295 break;
20296
20297 case DW_MACRO_GNU_end_file:
20298 if (! current_file)
20299 complaint (&symfile_complaints,
20300 _("macro debug info has an unmatched "
20301 "`close_file' directive"));
20302 else
20303 {
20304 current_file = current_file->included_by;
20305 if (! current_file)
20306 {
20307 enum dwarf_macro_record_type next_type;
20308
20309 /* GCC circa March 2002 doesn't produce the zero
20310 type byte marking the end of the compilation
20311 unit. Complain if it's not there, but exit no
20312 matter what. */
20313
20314 /* Do we at least have room for a macinfo type byte? */
20315 if (mac_ptr >= mac_end)
20316 {
20317 dwarf2_section_buffer_overflow_complaint (section);
20318 return;
20319 }
20320
20321 /* We don't increment mac_ptr here, so this is just
20322 a look-ahead. */
20323 next_type = read_1_byte (abfd, mac_ptr);
20324 if (next_type != 0)
20325 complaint (&symfile_complaints,
20326 _("no terminating 0-type entry for "
20327 "macros in `.debug_macinfo' section"));
20328
20329 return;
20330 }
20331 }
20332 break;
20333
20334 case DW_MACRO_GNU_transparent_include:
20335 case DW_MACRO_GNU_transparent_include_alt:
20336 {
20337 LONGEST offset;
20338 void **slot;
20339 bfd *include_bfd = abfd;
20340 struct dwarf2_section_info *include_section = section;
20341 struct dwarf2_section_info alt_section;
20342 const gdb_byte *include_mac_end = mac_end;
20343 int is_dwz = section_is_dwz;
20344 const gdb_byte *new_mac_ptr;
20345
20346 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20347 mac_ptr += offset_size;
20348
20349 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20350 {
20351 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20352
20353 dwarf2_read_section (dwarf2_per_objfile->objfile,
20354 &dwz->macro);
20355
20356 include_section = &dwz->macro;
20357 include_bfd = get_section_bfd_owner (include_section);
20358 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20359 is_dwz = 1;
20360 }
20361
20362 new_mac_ptr = include_section->buffer + offset;
20363 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20364
20365 if (*slot != NULL)
20366 {
20367 /* This has actually happened; see
20368 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20369 complaint (&symfile_complaints,
20370 _("recursive DW_MACRO_GNU_transparent_include in "
20371 ".debug_macro section"));
20372 }
20373 else
20374 {
20375 *slot = (void *) new_mac_ptr;
20376
20377 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20378 include_mac_end, current_file,
20379 lh, comp_dir,
20380 section, section_is_gnu, is_dwz,
20381 offset_size, objfile, include_hash);
20382
20383 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20384 }
20385 }
20386 break;
20387
20388 case DW_MACINFO_vendor_ext:
20389 if (!section_is_gnu)
20390 {
20391 unsigned int bytes_read;
20392 int constant;
20393
20394 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20395 mac_ptr += bytes_read;
20396 read_direct_string (abfd, mac_ptr, &bytes_read);
20397 mac_ptr += bytes_read;
20398
20399 /* We don't recognize any vendor extensions. */
20400 break;
20401 }
20402 /* FALLTHROUGH */
20403
20404 default:
20405 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20406 mac_ptr, mac_end, abfd, offset_size,
20407 section);
20408 if (mac_ptr == NULL)
20409 return;
20410 break;
20411 }
20412 } while (macinfo_type != 0);
20413 }
20414
20415 static void
20416 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20417 const char *comp_dir, int section_is_gnu)
20418 {
20419 struct objfile *objfile = dwarf2_per_objfile->objfile;
20420 struct line_header *lh = cu->line_header;
20421 bfd *abfd;
20422 const gdb_byte *mac_ptr, *mac_end;
20423 struct macro_source_file *current_file = 0;
20424 enum dwarf_macro_record_type macinfo_type;
20425 unsigned int offset_size = cu->header.offset_size;
20426 const gdb_byte *opcode_definitions[256];
20427 struct cleanup *cleanup;
20428 htab_t include_hash;
20429 void **slot;
20430 struct dwarf2_section_info *section;
20431 const char *section_name;
20432
20433 if (cu->dwo_unit != NULL)
20434 {
20435 if (section_is_gnu)
20436 {
20437 section = &cu->dwo_unit->dwo_file->sections.macro;
20438 section_name = ".debug_macro.dwo";
20439 }
20440 else
20441 {
20442 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20443 section_name = ".debug_macinfo.dwo";
20444 }
20445 }
20446 else
20447 {
20448 if (section_is_gnu)
20449 {
20450 section = &dwarf2_per_objfile->macro;
20451 section_name = ".debug_macro";
20452 }
20453 else
20454 {
20455 section = &dwarf2_per_objfile->macinfo;
20456 section_name = ".debug_macinfo";
20457 }
20458 }
20459
20460 dwarf2_read_section (objfile, section);
20461 if (section->buffer == NULL)
20462 {
20463 complaint (&symfile_complaints, _("missing %s section"), section_name);
20464 return;
20465 }
20466 abfd = get_section_bfd_owner (section);
20467
20468 /* First pass: Find the name of the base filename.
20469 This filename is needed in order to process all macros whose definition
20470 (or undefinition) comes from the command line. These macros are defined
20471 before the first DW_MACINFO_start_file entry, and yet still need to be
20472 associated to the base file.
20473
20474 To determine the base file name, we scan the macro definitions until we
20475 reach the first DW_MACINFO_start_file entry. We then initialize
20476 CURRENT_FILE accordingly so that any macro definition found before the
20477 first DW_MACINFO_start_file can still be associated to the base file. */
20478
20479 mac_ptr = section->buffer + offset;
20480 mac_end = section->buffer + section->size;
20481
20482 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20483 &offset_size, section_is_gnu);
20484 if (mac_ptr == NULL)
20485 {
20486 /* We already issued a complaint. */
20487 return;
20488 }
20489
20490 do
20491 {
20492 /* Do we at least have room for a macinfo type byte? */
20493 if (mac_ptr >= mac_end)
20494 {
20495 /* Complaint is printed during the second pass as GDB will probably
20496 stop the first pass earlier upon finding
20497 DW_MACINFO_start_file. */
20498 break;
20499 }
20500
20501 macinfo_type = read_1_byte (abfd, mac_ptr);
20502 mac_ptr++;
20503
20504 /* Note that we rely on the fact that the corresponding GNU and
20505 DWARF constants are the same. */
20506 switch (macinfo_type)
20507 {
20508 /* A zero macinfo type indicates the end of the macro
20509 information. */
20510 case 0:
20511 break;
20512
20513 case DW_MACRO_GNU_define:
20514 case DW_MACRO_GNU_undef:
20515 /* Only skip the data by MAC_PTR. */
20516 {
20517 unsigned int bytes_read;
20518
20519 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20520 mac_ptr += bytes_read;
20521 read_direct_string (abfd, mac_ptr, &bytes_read);
20522 mac_ptr += bytes_read;
20523 }
20524 break;
20525
20526 case DW_MACRO_GNU_start_file:
20527 {
20528 unsigned int bytes_read;
20529 int line, file;
20530
20531 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20532 mac_ptr += bytes_read;
20533 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20534 mac_ptr += bytes_read;
20535
20536 current_file = macro_start_file (file, line, current_file,
20537 comp_dir, lh, objfile);
20538 }
20539 break;
20540
20541 case DW_MACRO_GNU_end_file:
20542 /* No data to skip by MAC_PTR. */
20543 break;
20544
20545 case DW_MACRO_GNU_define_indirect:
20546 case DW_MACRO_GNU_undef_indirect:
20547 case DW_MACRO_GNU_define_indirect_alt:
20548 case DW_MACRO_GNU_undef_indirect_alt:
20549 {
20550 unsigned int bytes_read;
20551
20552 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20553 mac_ptr += bytes_read;
20554 mac_ptr += offset_size;
20555 }
20556 break;
20557
20558 case DW_MACRO_GNU_transparent_include:
20559 case DW_MACRO_GNU_transparent_include_alt:
20560 /* Note that, according to the spec, a transparent include
20561 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20562 skip this opcode. */
20563 mac_ptr += offset_size;
20564 break;
20565
20566 case DW_MACINFO_vendor_ext:
20567 /* Only skip the data by MAC_PTR. */
20568 if (!section_is_gnu)
20569 {
20570 unsigned int bytes_read;
20571
20572 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20573 mac_ptr += bytes_read;
20574 read_direct_string (abfd, mac_ptr, &bytes_read);
20575 mac_ptr += bytes_read;
20576 }
20577 /* FALLTHROUGH */
20578
20579 default:
20580 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20581 mac_ptr, mac_end, abfd, offset_size,
20582 section);
20583 if (mac_ptr == NULL)
20584 return;
20585 break;
20586 }
20587 } while (macinfo_type != 0 && current_file == NULL);
20588
20589 /* Second pass: Process all entries.
20590
20591 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20592 command-line macro definitions/undefinitions. This flag is unset when we
20593 reach the first DW_MACINFO_start_file entry. */
20594
20595 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20596 NULL, xcalloc, xfree);
20597 cleanup = make_cleanup_htab_delete (include_hash);
20598 mac_ptr = section->buffer + offset;
20599 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20600 *slot = (void *) mac_ptr;
20601 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20602 current_file, lh, comp_dir, section,
20603 section_is_gnu, 0,
20604 offset_size, objfile, include_hash);
20605 do_cleanups (cleanup);
20606 }
20607
20608 /* Check if the attribute's form is a DW_FORM_block*
20609 if so return true else false. */
20610
20611 static int
20612 attr_form_is_block (const struct attribute *attr)
20613 {
20614 return (attr == NULL ? 0 :
20615 attr->form == DW_FORM_block1
20616 || attr->form == DW_FORM_block2
20617 || attr->form == DW_FORM_block4
20618 || attr->form == DW_FORM_block
20619 || attr->form == DW_FORM_exprloc);
20620 }
20621
20622 /* Return non-zero if ATTR's value is a section offset --- classes
20623 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20624 You may use DW_UNSND (attr) to retrieve such offsets.
20625
20626 Section 7.5.4, "Attribute Encodings", explains that no attribute
20627 may have a value that belongs to more than one of these classes; it
20628 would be ambiguous if we did, because we use the same forms for all
20629 of them. */
20630
20631 static int
20632 attr_form_is_section_offset (const struct attribute *attr)
20633 {
20634 return (attr->form == DW_FORM_data4
20635 || attr->form == DW_FORM_data8
20636 || attr->form == DW_FORM_sec_offset);
20637 }
20638
20639 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20640 zero otherwise. When this function returns true, you can apply
20641 dwarf2_get_attr_constant_value to it.
20642
20643 However, note that for some attributes you must check
20644 attr_form_is_section_offset before using this test. DW_FORM_data4
20645 and DW_FORM_data8 are members of both the constant class, and of
20646 the classes that contain offsets into other debug sections
20647 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20648 that, if an attribute's can be either a constant or one of the
20649 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20650 taken as section offsets, not constants. */
20651
20652 static int
20653 attr_form_is_constant (const struct attribute *attr)
20654 {
20655 switch (attr->form)
20656 {
20657 case DW_FORM_sdata:
20658 case DW_FORM_udata:
20659 case DW_FORM_data1:
20660 case DW_FORM_data2:
20661 case DW_FORM_data4:
20662 case DW_FORM_data8:
20663 return 1;
20664 default:
20665 return 0;
20666 }
20667 }
20668
20669
20670 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20671 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20672
20673 static int
20674 attr_form_is_ref (const struct attribute *attr)
20675 {
20676 switch (attr->form)
20677 {
20678 case DW_FORM_ref_addr:
20679 case DW_FORM_ref1:
20680 case DW_FORM_ref2:
20681 case DW_FORM_ref4:
20682 case DW_FORM_ref8:
20683 case DW_FORM_ref_udata:
20684 case DW_FORM_GNU_ref_alt:
20685 return 1;
20686 default:
20687 return 0;
20688 }
20689 }
20690
20691 /* Return the .debug_loc section to use for CU.
20692 For DWO files use .debug_loc.dwo. */
20693
20694 static struct dwarf2_section_info *
20695 cu_debug_loc_section (struct dwarf2_cu *cu)
20696 {
20697 if (cu->dwo_unit)
20698 return &cu->dwo_unit->dwo_file->sections.loc;
20699 return &dwarf2_per_objfile->loc;
20700 }
20701
20702 /* A helper function that fills in a dwarf2_loclist_baton. */
20703
20704 static void
20705 fill_in_loclist_baton (struct dwarf2_cu *cu,
20706 struct dwarf2_loclist_baton *baton,
20707 const struct attribute *attr)
20708 {
20709 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20710
20711 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20712
20713 baton->per_cu = cu->per_cu;
20714 gdb_assert (baton->per_cu);
20715 /* We don't know how long the location list is, but make sure we
20716 don't run off the edge of the section. */
20717 baton->size = section->size - DW_UNSND (attr);
20718 baton->data = section->buffer + DW_UNSND (attr);
20719 baton->base_address = cu->base_address;
20720 baton->from_dwo = cu->dwo_unit != NULL;
20721 }
20722
20723 static void
20724 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20725 struct dwarf2_cu *cu, int is_block)
20726 {
20727 struct objfile *objfile = dwarf2_per_objfile->objfile;
20728 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20729
20730 if (attr_form_is_section_offset (attr)
20731 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20732 the section. If so, fall through to the complaint in the
20733 other branch. */
20734 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20735 {
20736 struct dwarf2_loclist_baton *baton;
20737
20738 baton = obstack_alloc (&objfile->objfile_obstack,
20739 sizeof (struct dwarf2_loclist_baton));
20740
20741 fill_in_loclist_baton (cu, baton, attr);
20742
20743 if (cu->base_known == 0)
20744 complaint (&symfile_complaints,
20745 _("Location list used without "
20746 "specifying the CU base address."));
20747
20748 SYMBOL_ACLASS_INDEX (sym) = (is_block
20749 ? dwarf2_loclist_block_index
20750 : dwarf2_loclist_index);
20751 SYMBOL_LOCATION_BATON (sym) = baton;
20752 }
20753 else
20754 {
20755 struct dwarf2_locexpr_baton *baton;
20756
20757 baton = obstack_alloc (&objfile->objfile_obstack,
20758 sizeof (struct dwarf2_locexpr_baton));
20759 baton->per_cu = cu->per_cu;
20760 gdb_assert (baton->per_cu);
20761
20762 if (attr_form_is_block (attr))
20763 {
20764 /* Note that we're just copying the block's data pointer
20765 here, not the actual data. We're still pointing into the
20766 info_buffer for SYM's objfile; right now we never release
20767 that buffer, but when we do clean up properly this may
20768 need to change. */
20769 baton->size = DW_BLOCK (attr)->size;
20770 baton->data = DW_BLOCK (attr)->data;
20771 }
20772 else
20773 {
20774 dwarf2_invalid_attrib_class_complaint ("location description",
20775 SYMBOL_NATURAL_NAME (sym));
20776 baton->size = 0;
20777 }
20778
20779 SYMBOL_ACLASS_INDEX (sym) = (is_block
20780 ? dwarf2_locexpr_block_index
20781 : dwarf2_locexpr_index);
20782 SYMBOL_LOCATION_BATON (sym) = baton;
20783 }
20784 }
20785
20786 /* Return the OBJFILE associated with the compilation unit CU. If CU
20787 came from a separate debuginfo file, then the master objfile is
20788 returned. */
20789
20790 struct objfile *
20791 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20792 {
20793 struct objfile *objfile = per_cu->objfile;
20794
20795 /* Return the master objfile, so that we can report and look up the
20796 correct file containing this variable. */
20797 if (objfile->separate_debug_objfile_backlink)
20798 objfile = objfile->separate_debug_objfile_backlink;
20799
20800 return objfile;
20801 }
20802
20803 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20804 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20805 CU_HEADERP first. */
20806
20807 static const struct comp_unit_head *
20808 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20809 struct dwarf2_per_cu_data *per_cu)
20810 {
20811 const gdb_byte *info_ptr;
20812
20813 if (per_cu->cu)
20814 return &per_cu->cu->header;
20815
20816 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20817
20818 memset (cu_headerp, 0, sizeof (*cu_headerp));
20819 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20820
20821 return cu_headerp;
20822 }
20823
20824 /* Return the address size given in the compilation unit header for CU. */
20825
20826 int
20827 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20828 {
20829 struct comp_unit_head cu_header_local;
20830 const struct comp_unit_head *cu_headerp;
20831
20832 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20833
20834 return cu_headerp->addr_size;
20835 }
20836
20837 /* Return the offset size given in the compilation unit header for CU. */
20838
20839 int
20840 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20841 {
20842 struct comp_unit_head cu_header_local;
20843 const struct comp_unit_head *cu_headerp;
20844
20845 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20846
20847 return cu_headerp->offset_size;
20848 }
20849
20850 /* See its dwarf2loc.h declaration. */
20851
20852 int
20853 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20854 {
20855 struct comp_unit_head cu_header_local;
20856 const struct comp_unit_head *cu_headerp;
20857
20858 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20859
20860 if (cu_headerp->version == 2)
20861 return cu_headerp->addr_size;
20862 else
20863 return cu_headerp->offset_size;
20864 }
20865
20866 /* Return the text offset of the CU. The returned offset comes from
20867 this CU's objfile. If this objfile came from a separate debuginfo
20868 file, then the offset may be different from the corresponding
20869 offset in the parent objfile. */
20870
20871 CORE_ADDR
20872 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20873 {
20874 struct objfile *objfile = per_cu->objfile;
20875
20876 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20877 }
20878
20879 /* Locate the .debug_info compilation unit from CU's objfile which contains
20880 the DIE at OFFSET. Raises an error on failure. */
20881
20882 static struct dwarf2_per_cu_data *
20883 dwarf2_find_containing_comp_unit (sect_offset offset,
20884 unsigned int offset_in_dwz,
20885 struct objfile *objfile)
20886 {
20887 struct dwarf2_per_cu_data *this_cu;
20888 int low, high;
20889 const sect_offset *cu_off;
20890
20891 low = 0;
20892 high = dwarf2_per_objfile->n_comp_units - 1;
20893 while (high > low)
20894 {
20895 struct dwarf2_per_cu_data *mid_cu;
20896 int mid = low + (high - low) / 2;
20897
20898 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20899 cu_off = &mid_cu->offset;
20900 if (mid_cu->is_dwz > offset_in_dwz
20901 || (mid_cu->is_dwz == offset_in_dwz
20902 && cu_off->sect_off >= offset.sect_off))
20903 high = mid;
20904 else
20905 low = mid + 1;
20906 }
20907 gdb_assert (low == high);
20908 this_cu = dwarf2_per_objfile->all_comp_units[low];
20909 cu_off = &this_cu->offset;
20910 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20911 {
20912 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20913 error (_("Dwarf Error: could not find partial DIE containing "
20914 "offset 0x%lx [in module %s]"),
20915 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20916
20917 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20918 <= offset.sect_off);
20919 return dwarf2_per_objfile->all_comp_units[low-1];
20920 }
20921 else
20922 {
20923 this_cu = dwarf2_per_objfile->all_comp_units[low];
20924 if (low == dwarf2_per_objfile->n_comp_units - 1
20925 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20926 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20927 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20928 return this_cu;
20929 }
20930 }
20931
20932 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20933
20934 static void
20935 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20936 {
20937 memset (cu, 0, sizeof (*cu));
20938 per_cu->cu = cu;
20939 cu->per_cu = per_cu;
20940 cu->objfile = per_cu->objfile;
20941 obstack_init (&cu->comp_unit_obstack);
20942 }
20943
20944 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20945
20946 static void
20947 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20948 enum language pretend_language)
20949 {
20950 struct attribute *attr;
20951
20952 /* Set the language we're debugging. */
20953 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20954 if (attr)
20955 set_cu_language (DW_UNSND (attr), cu);
20956 else
20957 {
20958 cu->language = pretend_language;
20959 cu->language_defn = language_def (cu->language);
20960 }
20961
20962 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20963 if (attr)
20964 cu->producer = DW_STRING (attr);
20965 }
20966
20967 /* Release one cached compilation unit, CU. We unlink it from the tree
20968 of compilation units, but we don't remove it from the read_in_chain;
20969 the caller is responsible for that.
20970 NOTE: DATA is a void * because this function is also used as a
20971 cleanup routine. */
20972
20973 static void
20974 free_heap_comp_unit (void *data)
20975 {
20976 struct dwarf2_cu *cu = data;
20977
20978 gdb_assert (cu->per_cu != NULL);
20979 cu->per_cu->cu = NULL;
20980 cu->per_cu = NULL;
20981
20982 obstack_free (&cu->comp_unit_obstack, NULL);
20983
20984 xfree (cu);
20985 }
20986
20987 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20988 when we're finished with it. We can't free the pointer itself, but be
20989 sure to unlink it from the cache. Also release any associated storage. */
20990
20991 static void
20992 free_stack_comp_unit (void *data)
20993 {
20994 struct dwarf2_cu *cu = data;
20995
20996 gdb_assert (cu->per_cu != NULL);
20997 cu->per_cu->cu = NULL;
20998 cu->per_cu = NULL;
20999
21000 obstack_free (&cu->comp_unit_obstack, NULL);
21001 cu->partial_dies = NULL;
21002 }
21003
21004 /* Free all cached compilation units. */
21005
21006 static void
21007 free_cached_comp_units (void *data)
21008 {
21009 struct dwarf2_per_cu_data *per_cu, **last_chain;
21010
21011 per_cu = dwarf2_per_objfile->read_in_chain;
21012 last_chain = &dwarf2_per_objfile->read_in_chain;
21013 while (per_cu != NULL)
21014 {
21015 struct dwarf2_per_cu_data *next_cu;
21016
21017 next_cu = per_cu->cu->read_in_chain;
21018
21019 free_heap_comp_unit (per_cu->cu);
21020 *last_chain = next_cu;
21021
21022 per_cu = next_cu;
21023 }
21024 }
21025
21026 /* Increase the age counter on each cached compilation unit, and free
21027 any that are too old. */
21028
21029 static void
21030 age_cached_comp_units (void)
21031 {
21032 struct dwarf2_per_cu_data *per_cu, **last_chain;
21033
21034 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21035 per_cu = dwarf2_per_objfile->read_in_chain;
21036 while (per_cu != NULL)
21037 {
21038 per_cu->cu->last_used ++;
21039 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21040 dwarf2_mark (per_cu->cu);
21041 per_cu = per_cu->cu->read_in_chain;
21042 }
21043
21044 per_cu = dwarf2_per_objfile->read_in_chain;
21045 last_chain = &dwarf2_per_objfile->read_in_chain;
21046 while (per_cu != NULL)
21047 {
21048 struct dwarf2_per_cu_data *next_cu;
21049
21050 next_cu = per_cu->cu->read_in_chain;
21051
21052 if (!per_cu->cu->mark)
21053 {
21054 free_heap_comp_unit (per_cu->cu);
21055 *last_chain = next_cu;
21056 }
21057 else
21058 last_chain = &per_cu->cu->read_in_chain;
21059
21060 per_cu = next_cu;
21061 }
21062 }
21063
21064 /* Remove a single compilation unit from the cache. */
21065
21066 static void
21067 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21068 {
21069 struct dwarf2_per_cu_data *per_cu, **last_chain;
21070
21071 per_cu = dwarf2_per_objfile->read_in_chain;
21072 last_chain = &dwarf2_per_objfile->read_in_chain;
21073 while (per_cu != NULL)
21074 {
21075 struct dwarf2_per_cu_data *next_cu;
21076
21077 next_cu = per_cu->cu->read_in_chain;
21078
21079 if (per_cu == target_per_cu)
21080 {
21081 free_heap_comp_unit (per_cu->cu);
21082 per_cu->cu = NULL;
21083 *last_chain = next_cu;
21084 break;
21085 }
21086 else
21087 last_chain = &per_cu->cu->read_in_chain;
21088
21089 per_cu = next_cu;
21090 }
21091 }
21092
21093 /* Release all extra memory associated with OBJFILE. */
21094
21095 void
21096 dwarf2_free_objfile (struct objfile *objfile)
21097 {
21098 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21099
21100 if (dwarf2_per_objfile == NULL)
21101 return;
21102
21103 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21104 free_cached_comp_units (NULL);
21105
21106 if (dwarf2_per_objfile->quick_file_names_table)
21107 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21108
21109 /* Everything else should be on the objfile obstack. */
21110 }
21111
21112 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21113 We store these in a hash table separate from the DIEs, and preserve them
21114 when the DIEs are flushed out of cache.
21115
21116 The CU "per_cu" pointer is needed because offset alone is not enough to
21117 uniquely identify the type. A file may have multiple .debug_types sections,
21118 or the type may come from a DWO file. Furthermore, while it's more logical
21119 to use per_cu->section+offset, with Fission the section with the data is in
21120 the DWO file but we don't know that section at the point we need it.
21121 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21122 because we can enter the lookup routine, get_die_type_at_offset, from
21123 outside this file, and thus won't necessarily have PER_CU->cu.
21124 Fortunately, PER_CU is stable for the life of the objfile. */
21125
21126 struct dwarf2_per_cu_offset_and_type
21127 {
21128 const struct dwarf2_per_cu_data *per_cu;
21129 sect_offset offset;
21130 struct type *type;
21131 };
21132
21133 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21134
21135 static hashval_t
21136 per_cu_offset_and_type_hash (const void *item)
21137 {
21138 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21139
21140 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21141 }
21142
21143 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21144
21145 static int
21146 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21147 {
21148 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21149 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21150
21151 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21152 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21153 }
21154
21155 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21156 table if necessary. For convenience, return TYPE.
21157
21158 The DIEs reading must have careful ordering to:
21159 * Not cause infite loops trying to read in DIEs as a prerequisite for
21160 reading current DIE.
21161 * Not trying to dereference contents of still incompletely read in types
21162 while reading in other DIEs.
21163 * Enable referencing still incompletely read in types just by a pointer to
21164 the type without accessing its fields.
21165
21166 Therefore caller should follow these rules:
21167 * Try to fetch any prerequisite types we may need to build this DIE type
21168 before building the type and calling set_die_type.
21169 * After building type call set_die_type for current DIE as soon as
21170 possible before fetching more types to complete the current type.
21171 * Make the type as complete as possible before fetching more types. */
21172
21173 static struct type *
21174 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21175 {
21176 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21177 struct objfile *objfile = cu->objfile;
21178
21179 /* For Ada types, make sure that the gnat-specific data is always
21180 initialized (if not already set). There are a few types where
21181 we should not be doing so, because the type-specific area is
21182 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21183 where the type-specific area is used to store the floatformat).
21184 But this is not a problem, because the gnat-specific information
21185 is actually not needed for these types. */
21186 if (need_gnat_info (cu)
21187 && TYPE_CODE (type) != TYPE_CODE_FUNC
21188 && TYPE_CODE (type) != TYPE_CODE_FLT
21189 && !HAVE_GNAT_AUX_INFO (type))
21190 INIT_GNAT_SPECIFIC (type);
21191
21192 if (dwarf2_per_objfile->die_type_hash == NULL)
21193 {
21194 dwarf2_per_objfile->die_type_hash =
21195 htab_create_alloc_ex (127,
21196 per_cu_offset_and_type_hash,
21197 per_cu_offset_and_type_eq,
21198 NULL,
21199 &objfile->objfile_obstack,
21200 hashtab_obstack_allocate,
21201 dummy_obstack_deallocate);
21202 }
21203
21204 ofs.per_cu = cu->per_cu;
21205 ofs.offset = die->offset;
21206 ofs.type = type;
21207 slot = (struct dwarf2_per_cu_offset_and_type **)
21208 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21209 if (*slot)
21210 complaint (&symfile_complaints,
21211 _("A problem internal to GDB: DIE 0x%x has type already set"),
21212 die->offset.sect_off);
21213 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21214 **slot = ofs;
21215 return type;
21216 }
21217
21218 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21219 or return NULL if the die does not have a saved type. */
21220
21221 static struct type *
21222 get_die_type_at_offset (sect_offset offset,
21223 struct dwarf2_per_cu_data *per_cu)
21224 {
21225 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21226
21227 if (dwarf2_per_objfile->die_type_hash == NULL)
21228 return NULL;
21229
21230 ofs.per_cu = per_cu;
21231 ofs.offset = offset;
21232 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21233 if (slot)
21234 return slot->type;
21235 else
21236 return NULL;
21237 }
21238
21239 /* Look up the type for DIE in CU in die_type_hash,
21240 or return NULL if DIE does not have a saved type. */
21241
21242 static struct type *
21243 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21244 {
21245 return get_die_type_at_offset (die->offset, cu->per_cu);
21246 }
21247
21248 /* Add a dependence relationship from CU to REF_PER_CU. */
21249
21250 static void
21251 dwarf2_add_dependence (struct dwarf2_cu *cu,
21252 struct dwarf2_per_cu_data *ref_per_cu)
21253 {
21254 void **slot;
21255
21256 if (cu->dependencies == NULL)
21257 cu->dependencies
21258 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21259 NULL, &cu->comp_unit_obstack,
21260 hashtab_obstack_allocate,
21261 dummy_obstack_deallocate);
21262
21263 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21264 if (*slot == NULL)
21265 *slot = ref_per_cu;
21266 }
21267
21268 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21269 Set the mark field in every compilation unit in the
21270 cache that we must keep because we are keeping CU. */
21271
21272 static int
21273 dwarf2_mark_helper (void **slot, void *data)
21274 {
21275 struct dwarf2_per_cu_data *per_cu;
21276
21277 per_cu = (struct dwarf2_per_cu_data *) *slot;
21278
21279 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21280 reading of the chain. As such dependencies remain valid it is not much
21281 useful to track and undo them during QUIT cleanups. */
21282 if (per_cu->cu == NULL)
21283 return 1;
21284
21285 if (per_cu->cu->mark)
21286 return 1;
21287 per_cu->cu->mark = 1;
21288
21289 if (per_cu->cu->dependencies != NULL)
21290 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21291
21292 return 1;
21293 }
21294
21295 /* Set the mark field in CU and in every other compilation unit in the
21296 cache that we must keep because we are keeping CU. */
21297
21298 static void
21299 dwarf2_mark (struct dwarf2_cu *cu)
21300 {
21301 if (cu->mark)
21302 return;
21303 cu->mark = 1;
21304 if (cu->dependencies != NULL)
21305 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21306 }
21307
21308 static void
21309 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21310 {
21311 while (per_cu)
21312 {
21313 per_cu->cu->mark = 0;
21314 per_cu = per_cu->cu->read_in_chain;
21315 }
21316 }
21317
21318 /* Trivial hash function for partial_die_info: the hash value of a DIE
21319 is its offset in .debug_info for this objfile. */
21320
21321 static hashval_t
21322 partial_die_hash (const void *item)
21323 {
21324 const struct partial_die_info *part_die = item;
21325
21326 return part_die->offset.sect_off;
21327 }
21328
21329 /* Trivial comparison function for partial_die_info structures: two DIEs
21330 are equal if they have the same offset. */
21331
21332 static int
21333 partial_die_eq (const void *item_lhs, const void *item_rhs)
21334 {
21335 const struct partial_die_info *part_die_lhs = item_lhs;
21336 const struct partial_die_info *part_die_rhs = item_rhs;
21337
21338 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21339 }
21340
21341 static struct cmd_list_element *set_dwarf2_cmdlist;
21342 static struct cmd_list_element *show_dwarf2_cmdlist;
21343
21344 static void
21345 set_dwarf2_cmd (char *args, int from_tty)
21346 {
21347 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21348 }
21349
21350 static void
21351 show_dwarf2_cmd (char *args, int from_tty)
21352 {
21353 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21354 }
21355
21356 /* Free data associated with OBJFILE, if necessary. */
21357
21358 static void
21359 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21360 {
21361 struct dwarf2_per_objfile *data = d;
21362 int ix;
21363
21364 /* Make sure we don't accidentally use dwarf2_per_objfile while
21365 cleaning up. */
21366 dwarf2_per_objfile = NULL;
21367
21368 for (ix = 0; ix < data->n_comp_units; ++ix)
21369 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21370
21371 for (ix = 0; ix < data->n_type_units; ++ix)
21372 VEC_free (dwarf2_per_cu_ptr,
21373 data->all_type_units[ix]->per_cu.imported_symtabs);
21374 xfree (data->all_type_units);
21375
21376 VEC_free (dwarf2_section_info_def, data->types);
21377
21378 if (data->dwo_files)
21379 free_dwo_files (data->dwo_files, objfile);
21380 if (data->dwp_file)
21381 gdb_bfd_unref (data->dwp_file->dbfd);
21382
21383 if (data->dwz_file && data->dwz_file->dwz_bfd)
21384 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21385 }
21386
21387 \f
21388 /* The "save gdb-index" command. */
21389
21390 /* The contents of the hash table we create when building the string
21391 table. */
21392 struct strtab_entry
21393 {
21394 offset_type offset;
21395 const char *str;
21396 };
21397
21398 /* Hash function for a strtab_entry.
21399
21400 Function is used only during write_hash_table so no index format backward
21401 compatibility is needed. */
21402
21403 static hashval_t
21404 hash_strtab_entry (const void *e)
21405 {
21406 const struct strtab_entry *entry = e;
21407 return mapped_index_string_hash (INT_MAX, entry->str);
21408 }
21409
21410 /* Equality function for a strtab_entry. */
21411
21412 static int
21413 eq_strtab_entry (const void *a, const void *b)
21414 {
21415 const struct strtab_entry *ea = a;
21416 const struct strtab_entry *eb = b;
21417 return !strcmp (ea->str, eb->str);
21418 }
21419
21420 /* Create a strtab_entry hash table. */
21421
21422 static htab_t
21423 create_strtab (void)
21424 {
21425 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21426 xfree, xcalloc, xfree);
21427 }
21428
21429 /* Add a string to the constant pool. Return the string's offset in
21430 host order. */
21431
21432 static offset_type
21433 add_string (htab_t table, struct obstack *cpool, const char *str)
21434 {
21435 void **slot;
21436 struct strtab_entry entry;
21437 struct strtab_entry *result;
21438
21439 entry.str = str;
21440 slot = htab_find_slot (table, &entry, INSERT);
21441 if (*slot)
21442 result = *slot;
21443 else
21444 {
21445 result = XNEW (struct strtab_entry);
21446 result->offset = obstack_object_size (cpool);
21447 result->str = str;
21448 obstack_grow_str0 (cpool, str);
21449 *slot = result;
21450 }
21451 return result->offset;
21452 }
21453
21454 /* An entry in the symbol table. */
21455 struct symtab_index_entry
21456 {
21457 /* The name of the symbol. */
21458 const char *name;
21459 /* The offset of the name in the constant pool. */
21460 offset_type index_offset;
21461 /* A sorted vector of the indices of all the CUs that hold an object
21462 of this name. */
21463 VEC (offset_type) *cu_indices;
21464 };
21465
21466 /* The symbol table. This is a power-of-2-sized hash table. */
21467 struct mapped_symtab
21468 {
21469 offset_type n_elements;
21470 offset_type size;
21471 struct symtab_index_entry **data;
21472 };
21473
21474 /* Hash function for a symtab_index_entry. */
21475
21476 static hashval_t
21477 hash_symtab_entry (const void *e)
21478 {
21479 const struct symtab_index_entry *entry = e;
21480 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21481 sizeof (offset_type) * VEC_length (offset_type,
21482 entry->cu_indices),
21483 0);
21484 }
21485
21486 /* Equality function for a symtab_index_entry. */
21487
21488 static int
21489 eq_symtab_entry (const void *a, const void *b)
21490 {
21491 const struct symtab_index_entry *ea = a;
21492 const struct symtab_index_entry *eb = b;
21493 int len = VEC_length (offset_type, ea->cu_indices);
21494 if (len != VEC_length (offset_type, eb->cu_indices))
21495 return 0;
21496 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21497 VEC_address (offset_type, eb->cu_indices),
21498 sizeof (offset_type) * len);
21499 }
21500
21501 /* Destroy a symtab_index_entry. */
21502
21503 static void
21504 delete_symtab_entry (void *p)
21505 {
21506 struct symtab_index_entry *entry = p;
21507 VEC_free (offset_type, entry->cu_indices);
21508 xfree (entry);
21509 }
21510
21511 /* Create a hash table holding symtab_index_entry objects. */
21512
21513 static htab_t
21514 create_symbol_hash_table (void)
21515 {
21516 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21517 delete_symtab_entry, xcalloc, xfree);
21518 }
21519
21520 /* Create a new mapped symtab object. */
21521
21522 static struct mapped_symtab *
21523 create_mapped_symtab (void)
21524 {
21525 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21526 symtab->n_elements = 0;
21527 symtab->size = 1024;
21528 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21529 return symtab;
21530 }
21531
21532 /* Destroy a mapped_symtab. */
21533
21534 static void
21535 cleanup_mapped_symtab (void *p)
21536 {
21537 struct mapped_symtab *symtab = p;
21538 /* The contents of the array are freed when the other hash table is
21539 destroyed. */
21540 xfree (symtab->data);
21541 xfree (symtab);
21542 }
21543
21544 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21545 the slot.
21546
21547 Function is used only during write_hash_table so no index format backward
21548 compatibility is needed. */
21549
21550 static struct symtab_index_entry **
21551 find_slot (struct mapped_symtab *symtab, const char *name)
21552 {
21553 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21554
21555 index = hash & (symtab->size - 1);
21556 step = ((hash * 17) & (symtab->size - 1)) | 1;
21557
21558 for (;;)
21559 {
21560 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21561 return &symtab->data[index];
21562 index = (index + step) & (symtab->size - 1);
21563 }
21564 }
21565
21566 /* Expand SYMTAB's hash table. */
21567
21568 static void
21569 hash_expand (struct mapped_symtab *symtab)
21570 {
21571 offset_type old_size = symtab->size;
21572 offset_type i;
21573 struct symtab_index_entry **old_entries = symtab->data;
21574
21575 symtab->size *= 2;
21576 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21577
21578 for (i = 0; i < old_size; ++i)
21579 {
21580 if (old_entries[i])
21581 {
21582 struct symtab_index_entry **slot = find_slot (symtab,
21583 old_entries[i]->name);
21584 *slot = old_entries[i];
21585 }
21586 }
21587
21588 xfree (old_entries);
21589 }
21590
21591 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21592 CU_INDEX is the index of the CU in which the symbol appears.
21593 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21594
21595 static void
21596 add_index_entry (struct mapped_symtab *symtab, const char *name,
21597 int is_static, gdb_index_symbol_kind kind,
21598 offset_type cu_index)
21599 {
21600 struct symtab_index_entry **slot;
21601 offset_type cu_index_and_attrs;
21602
21603 ++symtab->n_elements;
21604 if (4 * symtab->n_elements / 3 >= symtab->size)
21605 hash_expand (symtab);
21606
21607 slot = find_slot (symtab, name);
21608 if (!*slot)
21609 {
21610 *slot = XNEW (struct symtab_index_entry);
21611 (*slot)->name = name;
21612 /* index_offset is set later. */
21613 (*slot)->cu_indices = NULL;
21614 }
21615
21616 cu_index_and_attrs = 0;
21617 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21618 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21619 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21620
21621 /* We don't want to record an index value twice as we want to avoid the
21622 duplication.
21623 We process all global symbols and then all static symbols
21624 (which would allow us to avoid the duplication by only having to check
21625 the last entry pushed), but a symbol could have multiple kinds in one CU.
21626 To keep things simple we don't worry about the duplication here and
21627 sort and uniqufy the list after we've processed all symbols. */
21628 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21629 }
21630
21631 /* qsort helper routine for uniquify_cu_indices. */
21632
21633 static int
21634 offset_type_compare (const void *ap, const void *bp)
21635 {
21636 offset_type a = *(offset_type *) ap;
21637 offset_type b = *(offset_type *) bp;
21638
21639 return (a > b) - (b > a);
21640 }
21641
21642 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21643
21644 static void
21645 uniquify_cu_indices (struct mapped_symtab *symtab)
21646 {
21647 int i;
21648
21649 for (i = 0; i < symtab->size; ++i)
21650 {
21651 struct symtab_index_entry *entry = symtab->data[i];
21652
21653 if (entry
21654 && entry->cu_indices != NULL)
21655 {
21656 unsigned int next_to_insert, next_to_check;
21657 offset_type last_value;
21658
21659 qsort (VEC_address (offset_type, entry->cu_indices),
21660 VEC_length (offset_type, entry->cu_indices),
21661 sizeof (offset_type), offset_type_compare);
21662
21663 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21664 next_to_insert = 1;
21665 for (next_to_check = 1;
21666 next_to_check < VEC_length (offset_type, entry->cu_indices);
21667 ++next_to_check)
21668 {
21669 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21670 != last_value)
21671 {
21672 last_value = VEC_index (offset_type, entry->cu_indices,
21673 next_to_check);
21674 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21675 last_value);
21676 ++next_to_insert;
21677 }
21678 }
21679 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21680 }
21681 }
21682 }
21683
21684 /* Add a vector of indices to the constant pool. */
21685
21686 static offset_type
21687 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21688 struct symtab_index_entry *entry)
21689 {
21690 void **slot;
21691
21692 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21693 if (!*slot)
21694 {
21695 offset_type len = VEC_length (offset_type, entry->cu_indices);
21696 offset_type val = MAYBE_SWAP (len);
21697 offset_type iter;
21698 int i;
21699
21700 *slot = entry;
21701 entry->index_offset = obstack_object_size (cpool);
21702
21703 obstack_grow (cpool, &val, sizeof (val));
21704 for (i = 0;
21705 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21706 ++i)
21707 {
21708 val = MAYBE_SWAP (iter);
21709 obstack_grow (cpool, &val, sizeof (val));
21710 }
21711 }
21712 else
21713 {
21714 struct symtab_index_entry *old_entry = *slot;
21715 entry->index_offset = old_entry->index_offset;
21716 entry = old_entry;
21717 }
21718 return entry->index_offset;
21719 }
21720
21721 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21722 constant pool entries going into the obstack CPOOL. */
21723
21724 static void
21725 write_hash_table (struct mapped_symtab *symtab,
21726 struct obstack *output, struct obstack *cpool)
21727 {
21728 offset_type i;
21729 htab_t symbol_hash_table;
21730 htab_t str_table;
21731
21732 symbol_hash_table = create_symbol_hash_table ();
21733 str_table = create_strtab ();
21734
21735 /* We add all the index vectors to the constant pool first, to
21736 ensure alignment is ok. */
21737 for (i = 0; i < symtab->size; ++i)
21738 {
21739 if (symtab->data[i])
21740 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21741 }
21742
21743 /* Now write out the hash table. */
21744 for (i = 0; i < symtab->size; ++i)
21745 {
21746 offset_type str_off, vec_off;
21747
21748 if (symtab->data[i])
21749 {
21750 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21751 vec_off = symtab->data[i]->index_offset;
21752 }
21753 else
21754 {
21755 /* While 0 is a valid constant pool index, it is not valid
21756 to have 0 for both offsets. */
21757 str_off = 0;
21758 vec_off = 0;
21759 }
21760
21761 str_off = MAYBE_SWAP (str_off);
21762 vec_off = MAYBE_SWAP (vec_off);
21763
21764 obstack_grow (output, &str_off, sizeof (str_off));
21765 obstack_grow (output, &vec_off, sizeof (vec_off));
21766 }
21767
21768 htab_delete (str_table);
21769 htab_delete (symbol_hash_table);
21770 }
21771
21772 /* Struct to map psymtab to CU index in the index file. */
21773 struct psymtab_cu_index_map
21774 {
21775 struct partial_symtab *psymtab;
21776 unsigned int cu_index;
21777 };
21778
21779 static hashval_t
21780 hash_psymtab_cu_index (const void *item)
21781 {
21782 const struct psymtab_cu_index_map *map = item;
21783
21784 return htab_hash_pointer (map->psymtab);
21785 }
21786
21787 static int
21788 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21789 {
21790 const struct psymtab_cu_index_map *lhs = item_lhs;
21791 const struct psymtab_cu_index_map *rhs = item_rhs;
21792
21793 return lhs->psymtab == rhs->psymtab;
21794 }
21795
21796 /* Helper struct for building the address table. */
21797 struct addrmap_index_data
21798 {
21799 struct objfile *objfile;
21800 struct obstack *addr_obstack;
21801 htab_t cu_index_htab;
21802
21803 /* Non-zero if the previous_* fields are valid.
21804 We can't write an entry until we see the next entry (since it is only then
21805 that we know the end of the entry). */
21806 int previous_valid;
21807 /* Index of the CU in the table of all CUs in the index file. */
21808 unsigned int previous_cu_index;
21809 /* Start address of the CU. */
21810 CORE_ADDR previous_cu_start;
21811 };
21812
21813 /* Write an address entry to OBSTACK. */
21814
21815 static void
21816 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21817 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21818 {
21819 offset_type cu_index_to_write;
21820 gdb_byte addr[8];
21821 CORE_ADDR baseaddr;
21822
21823 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21824
21825 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21826 obstack_grow (obstack, addr, 8);
21827 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21828 obstack_grow (obstack, addr, 8);
21829 cu_index_to_write = MAYBE_SWAP (cu_index);
21830 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21831 }
21832
21833 /* Worker function for traversing an addrmap to build the address table. */
21834
21835 static int
21836 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21837 {
21838 struct addrmap_index_data *data = datap;
21839 struct partial_symtab *pst = obj;
21840
21841 if (data->previous_valid)
21842 add_address_entry (data->objfile, data->addr_obstack,
21843 data->previous_cu_start, start_addr,
21844 data->previous_cu_index);
21845
21846 data->previous_cu_start = start_addr;
21847 if (pst != NULL)
21848 {
21849 struct psymtab_cu_index_map find_map, *map;
21850 find_map.psymtab = pst;
21851 map = htab_find (data->cu_index_htab, &find_map);
21852 gdb_assert (map != NULL);
21853 data->previous_cu_index = map->cu_index;
21854 data->previous_valid = 1;
21855 }
21856 else
21857 data->previous_valid = 0;
21858
21859 return 0;
21860 }
21861
21862 /* Write OBJFILE's address map to OBSTACK.
21863 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21864 in the index file. */
21865
21866 static void
21867 write_address_map (struct objfile *objfile, struct obstack *obstack,
21868 htab_t cu_index_htab)
21869 {
21870 struct addrmap_index_data addrmap_index_data;
21871
21872 /* When writing the address table, we have to cope with the fact that
21873 the addrmap iterator only provides the start of a region; we have to
21874 wait until the next invocation to get the start of the next region. */
21875
21876 addrmap_index_data.objfile = objfile;
21877 addrmap_index_data.addr_obstack = obstack;
21878 addrmap_index_data.cu_index_htab = cu_index_htab;
21879 addrmap_index_data.previous_valid = 0;
21880
21881 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21882 &addrmap_index_data);
21883
21884 /* It's highly unlikely the last entry (end address = 0xff...ff)
21885 is valid, but we should still handle it.
21886 The end address is recorded as the start of the next region, but that
21887 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21888 anyway. */
21889 if (addrmap_index_data.previous_valid)
21890 add_address_entry (objfile, obstack,
21891 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21892 addrmap_index_data.previous_cu_index);
21893 }
21894
21895 /* Return the symbol kind of PSYM. */
21896
21897 static gdb_index_symbol_kind
21898 symbol_kind (struct partial_symbol *psym)
21899 {
21900 domain_enum domain = PSYMBOL_DOMAIN (psym);
21901 enum address_class aclass = PSYMBOL_CLASS (psym);
21902
21903 switch (domain)
21904 {
21905 case VAR_DOMAIN:
21906 switch (aclass)
21907 {
21908 case LOC_BLOCK:
21909 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21910 case LOC_TYPEDEF:
21911 return GDB_INDEX_SYMBOL_KIND_TYPE;
21912 case LOC_COMPUTED:
21913 case LOC_CONST_BYTES:
21914 case LOC_OPTIMIZED_OUT:
21915 case LOC_STATIC:
21916 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21917 case LOC_CONST:
21918 /* Note: It's currently impossible to recognize psyms as enum values
21919 short of reading the type info. For now punt. */
21920 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21921 default:
21922 /* There are other LOC_FOO values that one might want to classify
21923 as variables, but dwarf2read.c doesn't currently use them. */
21924 return GDB_INDEX_SYMBOL_KIND_OTHER;
21925 }
21926 case STRUCT_DOMAIN:
21927 return GDB_INDEX_SYMBOL_KIND_TYPE;
21928 default:
21929 return GDB_INDEX_SYMBOL_KIND_OTHER;
21930 }
21931 }
21932
21933 /* Add a list of partial symbols to SYMTAB. */
21934
21935 static void
21936 write_psymbols (struct mapped_symtab *symtab,
21937 htab_t psyms_seen,
21938 struct partial_symbol **psymp,
21939 int count,
21940 offset_type cu_index,
21941 int is_static)
21942 {
21943 for (; count-- > 0; ++psymp)
21944 {
21945 struct partial_symbol *psym = *psymp;
21946 void **slot;
21947
21948 if (SYMBOL_LANGUAGE (psym) == language_ada)
21949 error (_("Ada is not currently supported by the index"));
21950
21951 /* Only add a given psymbol once. */
21952 slot = htab_find_slot (psyms_seen, psym, INSERT);
21953 if (!*slot)
21954 {
21955 gdb_index_symbol_kind kind = symbol_kind (psym);
21956
21957 *slot = psym;
21958 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21959 is_static, kind, cu_index);
21960 }
21961 }
21962 }
21963
21964 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21965 exception if there is an error. */
21966
21967 static void
21968 write_obstack (FILE *file, struct obstack *obstack)
21969 {
21970 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21971 file)
21972 != obstack_object_size (obstack))
21973 error (_("couldn't data write to file"));
21974 }
21975
21976 /* Unlink a file if the argument is not NULL. */
21977
21978 static void
21979 unlink_if_set (void *p)
21980 {
21981 char **filename = p;
21982 if (*filename)
21983 unlink (*filename);
21984 }
21985
21986 /* A helper struct used when iterating over debug_types. */
21987 struct signatured_type_index_data
21988 {
21989 struct objfile *objfile;
21990 struct mapped_symtab *symtab;
21991 struct obstack *types_list;
21992 htab_t psyms_seen;
21993 int cu_index;
21994 };
21995
21996 /* A helper function that writes a single signatured_type to an
21997 obstack. */
21998
21999 static int
22000 write_one_signatured_type (void **slot, void *d)
22001 {
22002 struct signatured_type_index_data *info = d;
22003 struct signatured_type *entry = (struct signatured_type *) *slot;
22004 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22005 gdb_byte val[8];
22006
22007 write_psymbols (info->symtab,
22008 info->psyms_seen,
22009 info->objfile->global_psymbols.list
22010 + psymtab->globals_offset,
22011 psymtab->n_global_syms, info->cu_index,
22012 0);
22013 write_psymbols (info->symtab,
22014 info->psyms_seen,
22015 info->objfile->static_psymbols.list
22016 + psymtab->statics_offset,
22017 psymtab->n_static_syms, info->cu_index,
22018 1);
22019
22020 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22021 entry->per_cu.offset.sect_off);
22022 obstack_grow (info->types_list, val, 8);
22023 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22024 entry->type_offset_in_tu.cu_off);
22025 obstack_grow (info->types_list, val, 8);
22026 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22027 obstack_grow (info->types_list, val, 8);
22028
22029 ++info->cu_index;
22030
22031 return 1;
22032 }
22033
22034 /* Recurse into all "included" dependencies and write their symbols as
22035 if they appeared in this psymtab. */
22036
22037 static void
22038 recursively_write_psymbols (struct objfile *objfile,
22039 struct partial_symtab *psymtab,
22040 struct mapped_symtab *symtab,
22041 htab_t psyms_seen,
22042 offset_type cu_index)
22043 {
22044 int i;
22045
22046 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22047 if (psymtab->dependencies[i]->user != NULL)
22048 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22049 symtab, psyms_seen, cu_index);
22050
22051 write_psymbols (symtab,
22052 psyms_seen,
22053 objfile->global_psymbols.list + psymtab->globals_offset,
22054 psymtab->n_global_syms, cu_index,
22055 0);
22056 write_psymbols (symtab,
22057 psyms_seen,
22058 objfile->static_psymbols.list + psymtab->statics_offset,
22059 psymtab->n_static_syms, cu_index,
22060 1);
22061 }
22062
22063 /* Create an index file for OBJFILE in the directory DIR. */
22064
22065 static void
22066 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22067 {
22068 struct cleanup *cleanup;
22069 char *filename, *cleanup_filename;
22070 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22071 struct obstack cu_list, types_cu_list;
22072 int i;
22073 FILE *out_file;
22074 struct mapped_symtab *symtab;
22075 offset_type val, size_of_contents, total_len;
22076 struct stat st;
22077 htab_t psyms_seen;
22078 htab_t cu_index_htab;
22079 struct psymtab_cu_index_map *psymtab_cu_index_map;
22080
22081 if (dwarf2_per_objfile->using_index)
22082 error (_("Cannot use an index to create the index"));
22083
22084 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22085 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22086
22087 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22088 return;
22089
22090 if (stat (objfile_name (objfile), &st) < 0)
22091 perror_with_name (objfile_name (objfile));
22092
22093 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22094 INDEX_SUFFIX, (char *) NULL);
22095 cleanup = make_cleanup (xfree, filename);
22096
22097 out_file = gdb_fopen_cloexec (filename, "wb");
22098 if (!out_file)
22099 error (_("Can't open `%s' for writing"), filename);
22100
22101 cleanup_filename = filename;
22102 make_cleanup (unlink_if_set, &cleanup_filename);
22103
22104 symtab = create_mapped_symtab ();
22105 make_cleanup (cleanup_mapped_symtab, symtab);
22106
22107 obstack_init (&addr_obstack);
22108 make_cleanup_obstack_free (&addr_obstack);
22109
22110 obstack_init (&cu_list);
22111 make_cleanup_obstack_free (&cu_list);
22112
22113 obstack_init (&types_cu_list);
22114 make_cleanup_obstack_free (&types_cu_list);
22115
22116 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22117 NULL, xcalloc, xfree);
22118 make_cleanup_htab_delete (psyms_seen);
22119
22120 /* While we're scanning CU's create a table that maps a psymtab pointer
22121 (which is what addrmap records) to its index (which is what is recorded
22122 in the index file). This will later be needed to write the address
22123 table. */
22124 cu_index_htab = htab_create_alloc (100,
22125 hash_psymtab_cu_index,
22126 eq_psymtab_cu_index,
22127 NULL, xcalloc, xfree);
22128 make_cleanup_htab_delete (cu_index_htab);
22129 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22130 xmalloc (sizeof (struct psymtab_cu_index_map)
22131 * dwarf2_per_objfile->n_comp_units);
22132 make_cleanup (xfree, psymtab_cu_index_map);
22133
22134 /* The CU list is already sorted, so we don't need to do additional
22135 work here. Also, the debug_types entries do not appear in
22136 all_comp_units, but only in their own hash table. */
22137 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22138 {
22139 struct dwarf2_per_cu_data *per_cu
22140 = dwarf2_per_objfile->all_comp_units[i];
22141 struct partial_symtab *psymtab = per_cu->v.psymtab;
22142 gdb_byte val[8];
22143 struct psymtab_cu_index_map *map;
22144 void **slot;
22145
22146 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22147 It may be referenced from a local scope but in such case it does not
22148 need to be present in .gdb_index. */
22149 if (psymtab == NULL)
22150 continue;
22151
22152 if (psymtab->user == NULL)
22153 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22154
22155 map = &psymtab_cu_index_map[i];
22156 map->psymtab = psymtab;
22157 map->cu_index = i;
22158 slot = htab_find_slot (cu_index_htab, map, INSERT);
22159 gdb_assert (slot != NULL);
22160 gdb_assert (*slot == NULL);
22161 *slot = map;
22162
22163 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22164 per_cu->offset.sect_off);
22165 obstack_grow (&cu_list, val, 8);
22166 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22167 obstack_grow (&cu_list, val, 8);
22168 }
22169
22170 /* Dump the address map. */
22171 write_address_map (objfile, &addr_obstack, cu_index_htab);
22172
22173 /* Write out the .debug_type entries, if any. */
22174 if (dwarf2_per_objfile->signatured_types)
22175 {
22176 struct signatured_type_index_data sig_data;
22177
22178 sig_data.objfile = objfile;
22179 sig_data.symtab = symtab;
22180 sig_data.types_list = &types_cu_list;
22181 sig_data.psyms_seen = psyms_seen;
22182 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22183 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22184 write_one_signatured_type, &sig_data);
22185 }
22186
22187 /* Now that we've processed all symbols we can shrink their cu_indices
22188 lists. */
22189 uniquify_cu_indices (symtab);
22190
22191 obstack_init (&constant_pool);
22192 make_cleanup_obstack_free (&constant_pool);
22193 obstack_init (&symtab_obstack);
22194 make_cleanup_obstack_free (&symtab_obstack);
22195 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22196
22197 obstack_init (&contents);
22198 make_cleanup_obstack_free (&contents);
22199 size_of_contents = 6 * sizeof (offset_type);
22200 total_len = size_of_contents;
22201
22202 /* The version number. */
22203 val = MAYBE_SWAP (8);
22204 obstack_grow (&contents, &val, sizeof (val));
22205
22206 /* The offset of the CU list from the start of the file. */
22207 val = MAYBE_SWAP (total_len);
22208 obstack_grow (&contents, &val, sizeof (val));
22209 total_len += obstack_object_size (&cu_list);
22210
22211 /* The offset of the types CU list from the start of the file. */
22212 val = MAYBE_SWAP (total_len);
22213 obstack_grow (&contents, &val, sizeof (val));
22214 total_len += obstack_object_size (&types_cu_list);
22215
22216 /* The offset of the address table from the start of the file. */
22217 val = MAYBE_SWAP (total_len);
22218 obstack_grow (&contents, &val, sizeof (val));
22219 total_len += obstack_object_size (&addr_obstack);
22220
22221 /* The offset of the symbol table from the start of the file. */
22222 val = MAYBE_SWAP (total_len);
22223 obstack_grow (&contents, &val, sizeof (val));
22224 total_len += obstack_object_size (&symtab_obstack);
22225
22226 /* The offset of the constant pool from the start of the file. */
22227 val = MAYBE_SWAP (total_len);
22228 obstack_grow (&contents, &val, sizeof (val));
22229 total_len += obstack_object_size (&constant_pool);
22230
22231 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22232
22233 write_obstack (out_file, &contents);
22234 write_obstack (out_file, &cu_list);
22235 write_obstack (out_file, &types_cu_list);
22236 write_obstack (out_file, &addr_obstack);
22237 write_obstack (out_file, &symtab_obstack);
22238 write_obstack (out_file, &constant_pool);
22239
22240 fclose (out_file);
22241
22242 /* We want to keep the file, so we set cleanup_filename to NULL
22243 here. See unlink_if_set. */
22244 cleanup_filename = NULL;
22245
22246 do_cleanups (cleanup);
22247 }
22248
22249 /* Implementation of the `save gdb-index' command.
22250
22251 Note that the file format used by this command is documented in the
22252 GDB manual. Any changes here must be documented there. */
22253
22254 static void
22255 save_gdb_index_command (char *arg, int from_tty)
22256 {
22257 struct objfile *objfile;
22258
22259 if (!arg || !*arg)
22260 error (_("usage: save gdb-index DIRECTORY"));
22261
22262 ALL_OBJFILES (objfile)
22263 {
22264 struct stat st;
22265
22266 /* If the objfile does not correspond to an actual file, skip it. */
22267 if (stat (objfile_name (objfile), &st) < 0)
22268 continue;
22269
22270 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22271 if (dwarf2_per_objfile)
22272 {
22273 volatile struct gdb_exception except;
22274
22275 TRY_CATCH (except, RETURN_MASK_ERROR)
22276 {
22277 write_psymtabs_to_index (objfile, arg);
22278 }
22279 if (except.reason < 0)
22280 exception_fprintf (gdb_stderr, except,
22281 _("Error while writing index for `%s': "),
22282 objfile_name (objfile));
22283 }
22284 }
22285 }
22286
22287 \f
22288
22289 int dwarf2_always_disassemble;
22290
22291 static void
22292 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22293 struct cmd_list_element *c, const char *value)
22294 {
22295 fprintf_filtered (file,
22296 _("Whether to always disassemble "
22297 "DWARF expressions is %s.\n"),
22298 value);
22299 }
22300
22301 static void
22302 show_check_physname (struct ui_file *file, int from_tty,
22303 struct cmd_list_element *c, const char *value)
22304 {
22305 fprintf_filtered (file,
22306 _("Whether to check \"physname\" is %s.\n"),
22307 value);
22308 }
22309
22310 void _initialize_dwarf2_read (void);
22311
22312 void
22313 _initialize_dwarf2_read (void)
22314 {
22315 struct cmd_list_element *c;
22316
22317 dwarf2_objfile_data_key
22318 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22319
22320 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22321 Set DWARF 2 specific variables.\n\
22322 Configure DWARF 2 variables such as the cache size"),
22323 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22324 0/*allow-unknown*/, &maintenance_set_cmdlist);
22325
22326 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22327 Show DWARF 2 specific variables\n\
22328 Show DWARF 2 variables such as the cache size"),
22329 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22330 0/*allow-unknown*/, &maintenance_show_cmdlist);
22331
22332 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22333 &dwarf2_max_cache_age, _("\
22334 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22335 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22336 A higher limit means that cached compilation units will be stored\n\
22337 in memory longer, and more total memory will be used. Zero disables\n\
22338 caching, which can slow down startup."),
22339 NULL,
22340 show_dwarf2_max_cache_age,
22341 &set_dwarf2_cmdlist,
22342 &show_dwarf2_cmdlist);
22343
22344 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22345 &dwarf2_always_disassemble, _("\
22346 Set whether `info address' always disassembles DWARF expressions."), _("\
22347 Show whether `info address' always disassembles DWARF expressions."), _("\
22348 When enabled, DWARF expressions are always printed in an assembly-like\n\
22349 syntax. When disabled, expressions will be printed in a more\n\
22350 conversational style, when possible."),
22351 NULL,
22352 show_dwarf2_always_disassemble,
22353 &set_dwarf2_cmdlist,
22354 &show_dwarf2_cmdlist);
22355
22356 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22357 Set debugging of the dwarf2 reader."), _("\
22358 Show debugging of the dwarf2 reader."), _("\
22359 When enabled, debugging messages are printed during dwarf2 reading\n\
22360 and symtab expansion."),
22361 NULL,
22362 NULL,
22363 &setdebuglist, &showdebuglist);
22364
22365 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22366 Set debugging of the dwarf2 DIE reader."), _("\
22367 Show debugging of the dwarf2 DIE reader."), _("\
22368 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22369 The value is the maximum depth to print."),
22370 NULL,
22371 NULL,
22372 &setdebuglist, &showdebuglist);
22373
22374 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22375 Set cross-checking of \"physname\" code against demangler."), _("\
22376 Show cross-checking of \"physname\" code against demangler."), _("\
22377 When enabled, GDB's internal \"physname\" code is checked against\n\
22378 the demangler."),
22379 NULL, show_check_physname,
22380 &setdebuglist, &showdebuglist);
22381
22382 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22383 no_class, &use_deprecated_index_sections, _("\
22384 Set whether to use deprecated gdb_index sections."), _("\
22385 Show whether to use deprecated gdb_index sections."), _("\
22386 When enabled, deprecated .gdb_index sections are used anyway.\n\
22387 Normally they are ignored either because of a missing feature or\n\
22388 performance issue.\n\
22389 Warning: This option must be enabled before gdb reads the file."),
22390 NULL,
22391 NULL,
22392 &setlist, &showlist);
22393
22394 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22395 _("\
22396 Save a gdb-index file.\n\
22397 Usage: save gdb-index DIRECTORY"),
22398 &save_cmdlist);
22399 set_cmd_completer (c, filename_completer);
22400
22401 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22402 &dwarf2_locexpr_funcs);
22403 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22404 &dwarf2_loclist_funcs);
22405
22406 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22407 &dwarf2_block_frame_base_locexpr_funcs);
22408 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22409 &dwarf2_block_frame_base_loclist_funcs);
22410 }
This page took 0.569936 seconds and 4 git commands to generate.