5f0ec27036b1fa13a01da7d030abeb0f38c1eb23
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support in dwarfread.c
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or (at
17 your option) any later version.
18
19 This program is distributed in the hope that it will be useful, but
20 WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330,
27 Boston, MA 02111-1307, USA. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47
48 #include <fcntl.h>
49 #include "gdb_string.h"
50 #include "gdb_assert.h"
51 #include <sys/types.h>
52
53 #ifndef DWARF2_REG_TO_REGNUM
54 #define DWARF2_REG_TO_REGNUM(REG) (REG)
55 #endif
56
57 #if 0
58 /* .debug_info header for a compilation unit
59 Because of alignment constraints, this structure has padding and cannot
60 be mapped directly onto the beginning of the .debug_info section. */
61 typedef struct comp_unit_header
62 {
63 unsigned int length; /* length of the .debug_info
64 contribution */
65 unsigned short version; /* version number -- 2 for DWARF
66 version 2 */
67 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
68 unsigned char addr_size; /* byte size of an address -- 4 */
69 }
70 _COMP_UNIT_HEADER;
71 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
72 #endif
73
74 /* .debug_pubnames header
75 Because of alignment constraints, this structure has padding and cannot
76 be mapped directly onto the beginning of the .debug_info section. */
77 typedef struct pubnames_header
78 {
79 unsigned int length; /* length of the .debug_pubnames
80 contribution */
81 unsigned char version; /* version number -- 2 for DWARF
82 version 2 */
83 unsigned int info_offset; /* offset into .debug_info section */
84 unsigned int info_size; /* byte size of .debug_info section
85 portion */
86 }
87 _PUBNAMES_HEADER;
88 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
89
90 /* .debug_pubnames header
91 Because of alignment constraints, this structure has padding and cannot
92 be mapped directly onto the beginning of the .debug_info section. */
93 typedef struct aranges_header
94 {
95 unsigned int length; /* byte len of the .debug_aranges
96 contribution */
97 unsigned short version; /* version number -- 2 for DWARF
98 version 2 */
99 unsigned int info_offset; /* offset into .debug_info section */
100 unsigned char addr_size; /* byte size of an address */
101 unsigned char seg_size; /* byte size of segment descriptor */
102 }
103 _ARANGES_HEADER;
104 #define _ACTUAL_ARANGES_HEADER_SIZE 12
105
106 /* .debug_line statement program prologue
107 Because of alignment constraints, this structure has padding and cannot
108 be mapped directly onto the beginning of the .debug_info section. */
109 typedef struct statement_prologue
110 {
111 unsigned int total_length; /* byte length of the statement
112 information */
113 unsigned short version; /* version number -- 2 for DWARF
114 version 2 */
115 unsigned int prologue_length; /* # bytes between prologue &
116 stmt program */
117 unsigned char minimum_instruction_length; /* byte size of
118 smallest instr */
119 unsigned char default_is_stmt; /* initial value of is_stmt
120 register */
121 char line_base;
122 unsigned char line_range;
123 unsigned char opcode_base; /* number assigned to first special
124 opcode */
125 unsigned char *standard_opcode_lengths;
126 }
127 _STATEMENT_PROLOGUE;
128
129 /* offsets and sizes of debugging sections */
130
131 static file_ptr dwarf_info_offset;
132 static file_ptr dwarf_abbrev_offset;
133 static file_ptr dwarf_line_offset;
134 static file_ptr dwarf_pubnames_offset;
135 static file_ptr dwarf_aranges_offset;
136 static file_ptr dwarf_loc_offset;
137 static file_ptr dwarf_macinfo_offset;
138 static file_ptr dwarf_str_offset;
139 static file_ptr dwarf_ranges_offset;
140 file_ptr dwarf_frame_offset;
141 file_ptr dwarf_eh_frame_offset;
142
143 static unsigned int dwarf_info_size;
144 static unsigned int dwarf_abbrev_size;
145 static unsigned int dwarf_line_size;
146 static unsigned int dwarf_pubnames_size;
147 static unsigned int dwarf_aranges_size;
148 static unsigned int dwarf_loc_size;
149 static unsigned int dwarf_macinfo_size;
150 static unsigned int dwarf_str_size;
151 static unsigned int dwarf_ranges_size;
152 unsigned int dwarf_frame_size;
153 unsigned int dwarf_eh_frame_size;
154
155 static asection *dwarf_info_section;
156 static asection *dwarf_abbrev_section;
157 static asection *dwarf_line_section;
158 static asection *dwarf_pubnames_section;
159 static asection *dwarf_aranges_section;
160 static asection *dwarf_loc_section;
161 static asection *dwarf_macinfo_section;
162 static asection *dwarf_str_section;
163 static asection *dwarf_ranges_section;
164 asection *dwarf_frame_section;
165 asection *dwarf_eh_frame_section;
166
167 /* names of the debugging sections */
168
169 #define INFO_SECTION ".debug_info"
170 #define ABBREV_SECTION ".debug_abbrev"
171 #define LINE_SECTION ".debug_line"
172 #define PUBNAMES_SECTION ".debug_pubnames"
173 #define ARANGES_SECTION ".debug_aranges"
174 #define LOC_SECTION ".debug_loc"
175 #define MACINFO_SECTION ".debug_macinfo"
176 #define STR_SECTION ".debug_str"
177 #define RANGES_SECTION ".debug_ranges"
178 #define FRAME_SECTION ".debug_frame"
179 #define EH_FRAME_SECTION ".eh_frame"
180
181 /* local data types */
182
183 /* We hold several abbreviation tables in memory at the same time. */
184 #ifndef ABBREV_HASH_SIZE
185 #define ABBREV_HASH_SIZE 121
186 #endif
187
188 /* The data in a compilation unit header, after target2host
189 translation, looks like this. */
190 struct comp_unit_head
191 {
192 unsigned long length;
193 short version;
194 unsigned int abbrev_offset;
195 unsigned char addr_size;
196 unsigned char signed_addr_p;
197 unsigned int offset_size; /* size of file offsets; either 4 or 8 */
198 unsigned int initial_length_size; /* size of the length field; either
199 4 or 12 */
200
201 /* Offset to the first byte of this compilation unit header in the
202 * .debug_info section, for resolving relative reference dies. */
203
204 unsigned int offset;
205
206 /* Pointer to this compilation unit header in the .debug_info
207 * section */
208
209 char *cu_head_ptr;
210
211 /* Pointer to the first die of this compilatio unit. This will
212 * be the first byte following the compilation unit header. */
213
214 char *first_die_ptr;
215
216 /* Pointer to the next compilation unit header in the program. */
217
218 struct comp_unit_head *next;
219
220 /* DWARF abbreviation table associated with this compilation unit */
221
222 struct abbrev_info *dwarf2_abbrevs[ABBREV_HASH_SIZE];
223
224 /* Base address of this compilation unit. */
225
226 CORE_ADDR base_address;
227
228 /* Non-zero if base_address has been set. */
229
230 int base_known;
231 };
232
233 /* The line number information for a compilation unit (found in the
234 .debug_line section) begins with a "statement program header",
235 which contains the following information. */
236 struct line_header
237 {
238 unsigned int total_length;
239 unsigned short version;
240 unsigned int header_length;
241 unsigned char minimum_instruction_length;
242 unsigned char default_is_stmt;
243 int line_base;
244 unsigned char line_range;
245 unsigned char opcode_base;
246
247 /* standard_opcode_lengths[i] is the number of operands for the
248 standard opcode whose value is i. This means that
249 standard_opcode_lengths[0] is unused, and the last meaningful
250 element is standard_opcode_lengths[opcode_base - 1]. */
251 unsigned char *standard_opcode_lengths;
252
253 /* The include_directories table. NOTE! These strings are not
254 allocated with xmalloc; instead, they are pointers into
255 debug_line_buffer. If you try to free them, `free' will get
256 indigestion. */
257 unsigned int num_include_dirs, include_dirs_size;
258 char **include_dirs;
259
260 /* The file_names table. NOTE! These strings are not allocated
261 with xmalloc; instead, they are pointers into debug_line_buffer.
262 Don't try to free them directly. */
263 unsigned int num_file_names, file_names_size;
264 struct file_entry
265 {
266 char *name;
267 unsigned int dir_index;
268 unsigned int mod_time;
269 unsigned int length;
270 } *file_names;
271
272 /* The start and end of the statement program following this
273 header. These point into dwarf_line_buffer. */
274 char *statement_program_start, *statement_program_end;
275 };
276
277 /* When we construct a partial symbol table entry we only
278 need this much information. */
279 struct partial_die_info
280 {
281 enum dwarf_tag tag;
282 unsigned char has_children;
283 unsigned char is_external;
284 unsigned char is_declaration;
285 unsigned char has_type;
286 unsigned int offset;
287 unsigned int abbrev;
288 char *name;
289 int has_pc_info;
290 CORE_ADDR lowpc;
291 CORE_ADDR highpc;
292 struct dwarf_block *locdesc;
293 unsigned int language;
294 char *sibling;
295 };
296
297 /* This data structure holds the information of an abbrev. */
298 struct abbrev_info
299 {
300 unsigned int number; /* number identifying abbrev */
301 enum dwarf_tag tag; /* dwarf tag */
302 int has_children; /* boolean */
303 unsigned int num_attrs; /* number of attributes */
304 struct attr_abbrev *attrs; /* an array of attribute descriptions */
305 struct abbrev_info *next; /* next in chain */
306 };
307
308 struct attr_abbrev
309 {
310 enum dwarf_attribute name;
311 enum dwarf_form form;
312 };
313
314 /* This data structure holds a complete die structure. */
315 struct die_info
316 {
317 enum dwarf_tag tag; /* Tag indicating type of die */
318 unsigned short has_children; /* Does the die have children */
319 unsigned int abbrev; /* Abbrev number */
320 unsigned int offset; /* Offset in .debug_info section */
321 unsigned int num_attrs; /* Number of attributes */
322 struct attribute *attrs; /* An array of attributes */
323 struct die_info *next_ref; /* Next die in ref hash table */
324 struct die_info *next; /* Next die in linked list */
325 struct type *type; /* Cached type information */
326 };
327
328 /* Attributes have a name and a value */
329 struct attribute
330 {
331 enum dwarf_attribute name;
332 enum dwarf_form form;
333 union
334 {
335 char *str;
336 struct dwarf_block *blk;
337 unsigned long unsnd;
338 long int snd;
339 CORE_ADDR addr;
340 }
341 u;
342 };
343
344 struct function_range
345 {
346 const char *name;
347 CORE_ADDR lowpc, highpc;
348 int seen_line;
349 struct function_range *next;
350 };
351
352 static struct function_range *cu_first_fn, *cu_last_fn, *cu_cached_fn;
353
354 /* Get at parts of an attribute structure */
355
356 #define DW_STRING(attr) ((attr)->u.str)
357 #define DW_UNSND(attr) ((attr)->u.unsnd)
358 #define DW_BLOCK(attr) ((attr)->u.blk)
359 #define DW_SND(attr) ((attr)->u.snd)
360 #define DW_ADDR(attr) ((attr)->u.addr)
361
362 /* Blocks are a bunch of untyped bytes. */
363 struct dwarf_block
364 {
365 unsigned int size;
366 char *data;
367 };
368
369 #ifndef ATTR_ALLOC_CHUNK
370 #define ATTR_ALLOC_CHUNK 4
371 #endif
372
373 /* A hash table of die offsets for following references. */
374 #ifndef REF_HASH_SIZE
375 #define REF_HASH_SIZE 1021
376 #endif
377
378 static struct die_info *die_ref_table[REF_HASH_SIZE];
379
380 /* Obstack for allocating temporary storage used during symbol reading. */
381 static struct obstack dwarf2_tmp_obstack;
382
383 /* Offset to the first byte of the current compilation unit header,
384 for resolving relative reference dies. */
385 static unsigned int cu_header_offset;
386
387 /* Allocate fields for structs, unions and enums in this size. */
388 #ifndef DW_FIELD_ALLOC_CHUNK
389 #define DW_FIELD_ALLOC_CHUNK 4
390 #endif
391
392 /* The language we are debugging. */
393 static enum language cu_language;
394 static const struct language_defn *cu_language_defn;
395
396 /* Actually data from the sections. */
397 static char *dwarf_info_buffer;
398 static char *dwarf_abbrev_buffer;
399 static char *dwarf_line_buffer;
400 static char *dwarf_str_buffer;
401 static char *dwarf_macinfo_buffer;
402 static char *dwarf_ranges_buffer;
403 static char *dwarf_loc_buffer;
404
405 /* A zeroed version of a partial die for initialization purposes. */
406 static struct partial_die_info zeroed_partial_die;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the first
414 local scope, and all other local scopes as nested local scopes, and worked
415 fine. Check to see if we really need to distinguish these
416 in buildsym.c. */
417 static struct pending **list_in_scope = &file_symbols;
418
419 /* FIXME: decode_locdesc sets these variables to describe the location
420 to the caller. These ought to be a structure or something. If
421 none of the flags are set, the object lives at the address returned
422 by decode_locdesc. */
423
424 static int optimized_out; /* No ops in location in expression,
425 so object was optimized out. */
426 static int isreg; /* Object lives in register.
427 decode_locdesc's return value is
428 the register number. */
429 static int offreg; /* Object's address is the sum of the
430 register specified by basereg, plus
431 the offset returned. */
432 static int basereg; /* See `offreg'. */
433 static int isderef; /* Value described by flags above is
434 the address of a pointer to the object. */
435 static int islocal; /* Variable is at the returned offset
436 from the frame start, but there's
437 no identified frame pointer for
438 this function, so we can't say
439 which register it's relative to;
440 use LOC_LOCAL. */
441
442 /* DW_AT_frame_base values for the current function.
443 frame_base_reg is -1 if DW_AT_frame_base is missing, otherwise it
444 contains the register number for the frame register.
445 frame_base_offset is the offset from the frame register to the
446 virtual stack frame. */
447 static int frame_base_reg;
448 static CORE_ADDR frame_base_offset;
449
450 /* This value is added to each symbol value. FIXME: Generalize to
451 the section_offsets structure used by dbxread (once this is done,
452 pass the appropriate section number to end_symtab). */
453 static CORE_ADDR baseaddr; /* Add to each symbol value */
454
455 /* We put a pointer to this structure in the read_symtab_private field
456 of the psymtab.
457 The complete dwarf information for an objfile is kept in the
458 psymbol_obstack, so that absolute die references can be handled.
459 Most of the information in this structure is related to an entire
460 object file and could be passed via the sym_private field of the objfile.
461 It is however conceivable that dwarf2 might not be the only type
462 of symbols read from an object file. */
463
464 struct dwarf2_pinfo
465 {
466 /* Pointer to start of dwarf info buffer for the objfile. */
467
468 char *dwarf_info_buffer;
469
470 /* Offset in dwarf_info_buffer for this compilation unit. */
471
472 unsigned long dwarf_info_offset;
473
474 /* Pointer to start of dwarf abbreviation buffer for the objfile. */
475
476 char *dwarf_abbrev_buffer;
477
478 /* Size of dwarf abbreviation section for the objfile. */
479
480 unsigned int dwarf_abbrev_size;
481
482 /* Pointer to start of dwarf line buffer for the objfile. */
483
484 char *dwarf_line_buffer;
485
486 /* Size of dwarf_line_buffer, in bytes. */
487
488 unsigned int dwarf_line_size;
489
490 /* Pointer to start of dwarf string buffer for the objfile. */
491
492 char *dwarf_str_buffer;
493
494 /* Size of dwarf string section for the objfile. */
495
496 unsigned int dwarf_str_size;
497
498 /* Pointer to start of dwarf macro buffer for the objfile. */
499
500 char *dwarf_macinfo_buffer;
501
502 /* Size of dwarf macinfo section for the objfile. */
503
504 unsigned int dwarf_macinfo_size;
505
506 /* Pointer to start of dwarf ranges buffer for the objfile. */
507
508 char *dwarf_ranges_buffer;
509
510 /* Size of dwarf ranges buffer for the objfile. */
511
512 unsigned int dwarf_ranges_size;
513
514 /* Pointer to start of dwarf locations buffer for the objfile. */
515
516 char *dwarf_loc_buffer;
517
518 /* Size of dwarf locations buffer for the objfile. */
519
520 unsigned int dwarf_loc_size;
521 };
522
523 #define PST_PRIVATE(p) ((struct dwarf2_pinfo *)(p)->read_symtab_private)
524 #define DWARF_INFO_BUFFER(p) (PST_PRIVATE(p)->dwarf_info_buffer)
525 #define DWARF_INFO_OFFSET(p) (PST_PRIVATE(p)->dwarf_info_offset)
526 #define DWARF_ABBREV_BUFFER(p) (PST_PRIVATE(p)->dwarf_abbrev_buffer)
527 #define DWARF_ABBREV_SIZE(p) (PST_PRIVATE(p)->dwarf_abbrev_size)
528 #define DWARF_LINE_BUFFER(p) (PST_PRIVATE(p)->dwarf_line_buffer)
529 #define DWARF_LINE_SIZE(p) (PST_PRIVATE(p)->dwarf_line_size)
530 #define DWARF_STR_BUFFER(p) (PST_PRIVATE(p)->dwarf_str_buffer)
531 #define DWARF_STR_SIZE(p) (PST_PRIVATE(p)->dwarf_str_size)
532 #define DWARF_MACINFO_BUFFER(p) (PST_PRIVATE(p)->dwarf_macinfo_buffer)
533 #define DWARF_MACINFO_SIZE(p) (PST_PRIVATE(p)->dwarf_macinfo_size)
534 #define DWARF_RANGES_BUFFER(p) (PST_PRIVATE(p)->dwarf_ranges_buffer)
535 #define DWARF_RANGES_SIZE(p) (PST_PRIVATE(p)->dwarf_ranges_size)
536 #define DWARF_LOC_BUFFER(p) (PST_PRIVATE(p)->dwarf_loc_buffer)
537 #define DWARF_LOC_SIZE(p) (PST_PRIVATE(p)->dwarf_loc_size)
538
539 /* Maintain an array of referenced fundamental types for the current
540 compilation unit being read. For DWARF version 1, we have to construct
541 the fundamental types on the fly, since no information about the
542 fundamental types is supplied. Each such fundamental type is created by
543 calling a language dependent routine to create the type, and then a
544 pointer to that type is then placed in the array at the index specified
545 by it's FT_<TYPENAME> value. The array has a fixed size set by the
546 FT_NUM_MEMBERS compile time constant, which is the number of predefined
547 fundamental types gdb knows how to construct. */
548 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
549
550 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
551 but this would require a corresponding change in unpack_field_as_long
552 and friends. */
553 static int bits_per_byte = 8;
554
555 /* The routines that read and process dies for a C struct or C++ class
556 pass lists of data member fields and lists of member function fields
557 in an instance of a field_info structure, as defined below. */
558 struct field_info
559 {
560 /* List of data member and baseclasses fields. */
561 struct nextfield
562 {
563 struct nextfield *next;
564 int accessibility;
565 int virtuality;
566 struct field field;
567 }
568 *fields;
569
570 /* Number of fields. */
571 int nfields;
572
573 /* Number of baseclasses. */
574 int nbaseclasses;
575
576 /* Set if the accesibility of one of the fields is not public. */
577 int non_public_fields;
578
579 /* Member function fields array, entries are allocated in the order they
580 are encountered in the object file. */
581 struct nextfnfield
582 {
583 struct nextfnfield *next;
584 struct fn_field fnfield;
585 }
586 *fnfields;
587
588 /* Member function fieldlist array, contains name of possibly overloaded
589 member function, number of overloaded member functions and a pointer
590 to the head of the member function field chain. */
591 struct fnfieldlist
592 {
593 char *name;
594 int length;
595 struct nextfnfield *head;
596 }
597 *fnfieldlists;
598
599 /* Number of entries in the fnfieldlists array. */
600 int nfnfields;
601 };
602
603 /* Various complaints about symbol reading that don't abort the process */
604
605 static void
606 dwarf2_non_const_array_bound_ignored_complaint (const char *arg1)
607 {
608 complaint (&symfile_complaints, "non-constant array bounds form '%s' ignored",
609 arg1);
610 }
611
612 static void
613 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
614 {
615 complaint (&symfile_complaints,
616 "statement list doesn't fit in .debug_line section");
617 }
618
619 static void
620 dwarf2_complex_location_expr_complaint (void)
621 {
622 complaint (&symfile_complaints, "location expression too complex");
623 }
624
625 static void
626 dwarf2_unsupported_at_frame_base_complaint (const char *arg1)
627 {
628 complaint (&symfile_complaints,
629 "unsupported DW_AT_frame_base for function '%s'", arg1);
630 }
631
632 static void
633 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
634 int arg3)
635 {
636 complaint (&symfile_complaints,
637 "const value length mismatch for '%s', got %d, expected %d", arg1,
638 arg2, arg3);
639 }
640
641 static void
642 dwarf2_macros_too_long_complaint (void)
643 {
644 complaint (&symfile_complaints,
645 "macro info runs off end of `.debug_macinfo' section");
646 }
647
648 static void
649 dwarf2_macro_malformed_definition_complaint (const char *arg1)
650 {
651 complaint (&symfile_complaints,
652 "macro debug info contains a malformed macro definition:\n`%s'",
653 arg1);
654 }
655
656 static void
657 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
658 {
659 complaint (&symfile_complaints,
660 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
661 }
662
663 /* local function prototypes */
664
665 static void dwarf2_locate_sections (bfd *, asection *, void *);
666
667 #if 0
668 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
669 #endif
670
671 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
672
673 static char *scan_partial_symbols (char *, struct objfile *,
674 CORE_ADDR *, CORE_ADDR *,
675 const struct comp_unit_head *,
676 const char *namespace);
677
678 static void add_partial_symbol (struct partial_die_info *, struct objfile *,
679 const struct comp_unit_head *,
680 const char *namespace);
681
682 static char *add_partial_namespace (struct partial_die_info *pdi,
683 char *info_ptr,
684 struct objfile *objfile,
685 CORE_ADDR *lowpc, CORE_ADDR *highpc,
686 const struct comp_unit_head *cu_header,
687 const char *namespace);
688
689 static char *add_partial_enumeration (struct partial_die_info *enum_pdi,
690 char *info_ptr,
691 struct objfile *objfile,
692 const struct comp_unit_head *cu_header,
693 const char *namespace);
694
695 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
696 char *info_ptr,
697 bfd *abfd,
698 const struct comp_unit_head *cu_header);
699
700 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
701
702 static void psymtab_to_symtab_1 (struct partial_symtab *);
703
704 char *dwarf2_read_section (struct objfile *, file_ptr, unsigned int,
705 asection *);
706
707 static void dwarf2_read_abbrevs (bfd *abfd, struct comp_unit_head *cu_header);
708
709 static void dwarf2_empty_abbrev_table (void *);
710
711 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
712 const struct comp_unit_head *cu_header);
713
714 static char *read_partial_die (struct partial_die_info *,
715 bfd *, char *,
716 const struct comp_unit_head *);
717
718 static char *read_full_die (struct die_info **, bfd *, char *,
719 const struct comp_unit_head *);
720
721 static char *read_attribute (struct attribute *, struct attr_abbrev *,
722 bfd *, char *, const struct comp_unit_head *);
723
724 static char *read_attribute_value (struct attribute *, unsigned,
725 bfd *, char *, const struct comp_unit_head *);
726
727 static unsigned int read_1_byte (bfd *, char *);
728
729 static int read_1_signed_byte (bfd *, char *);
730
731 static unsigned int read_2_bytes (bfd *, char *);
732
733 static unsigned int read_4_bytes (bfd *, char *);
734
735 static unsigned long read_8_bytes (bfd *, char *);
736
737 static CORE_ADDR read_address (bfd *, char *ptr, const struct comp_unit_head *,
738 int *bytes_read);
739
740 static LONGEST read_initial_length (bfd *, char *,
741 struct comp_unit_head *, int *bytes_read);
742
743 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
744 int *bytes_read);
745
746 static char *read_n_bytes (bfd *, char *, unsigned int);
747
748 static char *read_string (bfd *, char *, unsigned int *);
749
750 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
751 unsigned int *);
752
753 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
754
755 static long read_signed_leb128 (bfd *, char *, unsigned int *);
756
757 static void set_cu_language (unsigned int);
758
759 static struct attribute *dwarf_attr (struct die_info *, unsigned int);
760
761 static int die_is_declaration (struct die_info *);
762
763 static void free_line_header (struct line_header *lh);
764
765 static struct line_header *(dwarf_decode_line_header
766 (unsigned int offset,
767 bfd *abfd,
768 const struct comp_unit_head *cu_header));
769
770 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
771 const struct comp_unit_head *);
772
773 static void dwarf2_start_subfile (char *, char *);
774
775 static struct symbol *new_symbol (struct die_info *, struct type *,
776 struct objfile *, const struct comp_unit_head *);
777
778 static void dwarf2_const_value (struct attribute *, struct symbol *,
779 struct objfile *, const struct comp_unit_head *);
780
781 static void dwarf2_const_value_data (struct attribute *attr,
782 struct symbol *sym,
783 int bits);
784
785 static struct type *die_type (struct die_info *, struct objfile *,
786 const struct comp_unit_head *);
787
788 static struct type *die_containing_type (struct die_info *, struct objfile *,
789 const struct comp_unit_head *);
790
791 #if 0
792 static struct type *type_at_offset (unsigned int, struct objfile *);
793 #endif
794
795 static struct type *tag_type_to_type (struct die_info *, struct objfile *,
796 const struct comp_unit_head *);
797
798 static void read_type_die (struct die_info *, struct objfile *,
799 const struct comp_unit_head *);
800
801 static void read_typedef (struct die_info *, struct objfile *,
802 const struct comp_unit_head *);
803
804 static void read_base_type (struct die_info *, struct objfile *);
805
806 static void read_file_scope (struct die_info *, struct objfile *,
807 const struct comp_unit_head *);
808
809 static void read_func_scope (struct die_info *, struct objfile *,
810 const struct comp_unit_head *);
811
812 static void read_lexical_block_scope (struct die_info *, struct objfile *,
813 const struct comp_unit_head *);
814
815 static int dwarf2_get_pc_bounds (struct die_info *,
816 CORE_ADDR *, CORE_ADDR *, struct objfile *,
817 const struct comp_unit_head *);
818
819 static void dwarf2_add_field (struct field_info *, struct die_info *,
820 struct objfile *, const struct comp_unit_head *);
821
822 static void dwarf2_attach_fields_to_type (struct field_info *,
823 struct type *, struct objfile *);
824
825 static void dwarf2_add_member_fn (struct field_info *,
826 struct die_info *, struct type *,
827 struct objfile *objfile,
828 const struct comp_unit_head *);
829
830 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
831 struct type *, struct objfile *);
832
833 static void read_structure_scope (struct die_info *, struct objfile *,
834 const struct comp_unit_head *);
835
836 static void read_common_block (struct die_info *, struct objfile *,
837 const struct comp_unit_head *);
838
839 static void read_namespace (struct die_info *die, struct objfile *objfile,
840 const struct comp_unit_head *cu_header);
841
842 static void read_enumeration (struct die_info *, struct objfile *,
843 const struct comp_unit_head *);
844
845 static struct type *dwarf_base_type (int, int, struct objfile *);
846
847 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct objfile *,
848 const struct comp_unit_head *);
849
850 static void read_array_type (struct die_info *, struct objfile *,
851 const struct comp_unit_head *);
852
853 static void read_tag_pointer_type (struct die_info *, struct objfile *,
854 const struct comp_unit_head *);
855
856 static void read_tag_ptr_to_member_type (struct die_info *, struct objfile *,
857 const struct comp_unit_head *);
858
859 static void read_tag_reference_type (struct die_info *, struct objfile *,
860 const struct comp_unit_head *);
861
862 static void read_tag_const_type (struct die_info *, struct objfile *,
863 const struct comp_unit_head *);
864
865 static void read_tag_volatile_type (struct die_info *, struct objfile *,
866 const struct comp_unit_head *);
867
868 static void read_tag_string_type (struct die_info *, struct objfile *);
869
870 static void read_subroutine_type (struct die_info *, struct objfile *,
871 const struct comp_unit_head *);
872
873 static struct die_info *read_comp_unit (char *, bfd *,
874 const struct comp_unit_head *);
875
876 static void free_die_list (struct die_info *);
877
878 static struct cleanup *make_cleanup_free_die_list (struct die_info *);
879
880 static void process_die (struct die_info *, struct objfile *,
881 const struct comp_unit_head *);
882
883 static char *dwarf2_linkage_name (struct die_info *);
884
885 static char *dwarf2_name (struct die_info *die);
886
887 static struct die_info *dwarf2_extension (struct die_info *die);
888
889 static char *dwarf_tag_name (unsigned int);
890
891 static char *dwarf_attr_name (unsigned int);
892
893 static char *dwarf_form_name (unsigned int);
894
895 static char *dwarf_stack_op_name (unsigned int);
896
897 static char *dwarf_bool_name (unsigned int);
898
899 static char *dwarf_type_encoding_name (unsigned int);
900
901 #if 0
902 static char *dwarf_cfi_name (unsigned int);
903
904 struct die_info *copy_die (struct die_info *);
905 #endif
906
907 static struct die_info *sibling_die (struct die_info *);
908
909 static void dump_die (struct die_info *);
910
911 static void dump_die_list (struct die_info *);
912
913 static void store_in_ref_table (unsigned int, struct die_info *);
914
915 static void dwarf2_empty_hash_tables (void);
916
917 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
918
919 static struct die_info *follow_die_ref (unsigned int);
920
921 static struct type *dwarf2_fundamental_type (struct objfile *, int);
922
923 /* memory allocation interface */
924
925 static void dwarf2_free_tmp_obstack (void *);
926
927 static struct dwarf_block *dwarf_alloc_block (void);
928
929 static struct abbrev_info *dwarf_alloc_abbrev (void);
930
931 static struct die_info *dwarf_alloc_die (void);
932
933 static void initialize_cu_func_list (void);
934
935 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR);
936
937 static void dwarf_decode_macros (struct line_header *, unsigned int,
938 char *, bfd *, const struct comp_unit_head *,
939 struct objfile *);
940
941 static int attr_form_is_block (struct attribute *);
942
943 static void
944 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
945 const struct comp_unit_head *,
946 struct objfile *objfile);
947
948 /* Try to locate the sections we need for DWARF 2 debugging
949 information and return true if we have enough to do something. */
950
951 int
952 dwarf2_has_info (bfd *abfd)
953 {
954 dwarf_info_offset = 0;
955 dwarf_abbrev_offset = 0;
956 dwarf_line_offset = 0;
957 dwarf_str_offset = 0;
958 dwarf_macinfo_offset = 0;
959 dwarf_frame_offset = 0;
960 dwarf_eh_frame_offset = 0;
961 dwarf_ranges_offset = 0;
962 dwarf_loc_offset = 0;
963
964 bfd_map_over_sections (abfd, dwarf2_locate_sections, NULL);
965 if (dwarf_info_offset && dwarf_abbrev_offset)
966 {
967 return 1;
968 }
969 else
970 {
971 return 0;
972 }
973 }
974
975 /* This function is mapped across the sections and remembers the
976 offset and size of each of the debugging sections we are interested
977 in. */
978
979 static void
980 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
981 {
982 if (STREQ (sectp->name, INFO_SECTION))
983 {
984 dwarf_info_offset = sectp->filepos;
985 dwarf_info_size = bfd_get_section_size_before_reloc (sectp);
986 dwarf_info_section = sectp;
987 }
988 else if (STREQ (sectp->name, ABBREV_SECTION))
989 {
990 dwarf_abbrev_offset = sectp->filepos;
991 dwarf_abbrev_size = bfd_get_section_size_before_reloc (sectp);
992 dwarf_abbrev_section = sectp;
993 }
994 else if (STREQ (sectp->name, LINE_SECTION))
995 {
996 dwarf_line_offset = sectp->filepos;
997 dwarf_line_size = bfd_get_section_size_before_reloc (sectp);
998 dwarf_line_section = sectp;
999 }
1000 else if (STREQ (sectp->name, PUBNAMES_SECTION))
1001 {
1002 dwarf_pubnames_offset = sectp->filepos;
1003 dwarf_pubnames_size = bfd_get_section_size_before_reloc (sectp);
1004 dwarf_pubnames_section = sectp;
1005 }
1006 else if (STREQ (sectp->name, ARANGES_SECTION))
1007 {
1008 dwarf_aranges_offset = sectp->filepos;
1009 dwarf_aranges_size = bfd_get_section_size_before_reloc (sectp);
1010 dwarf_aranges_section = sectp;
1011 }
1012 else if (STREQ (sectp->name, LOC_SECTION))
1013 {
1014 dwarf_loc_offset = sectp->filepos;
1015 dwarf_loc_size = bfd_get_section_size_before_reloc (sectp);
1016 dwarf_loc_section = sectp;
1017 }
1018 else if (STREQ (sectp->name, MACINFO_SECTION))
1019 {
1020 dwarf_macinfo_offset = sectp->filepos;
1021 dwarf_macinfo_size = bfd_get_section_size_before_reloc (sectp);
1022 dwarf_macinfo_section = sectp;
1023 }
1024 else if (STREQ (sectp->name, STR_SECTION))
1025 {
1026 dwarf_str_offset = sectp->filepos;
1027 dwarf_str_size = bfd_get_section_size_before_reloc (sectp);
1028 dwarf_str_section = sectp;
1029 }
1030 else if (STREQ (sectp->name, FRAME_SECTION))
1031 {
1032 dwarf_frame_offset = sectp->filepos;
1033 dwarf_frame_size = bfd_get_section_size_before_reloc (sectp);
1034 dwarf_frame_section = sectp;
1035 }
1036 else if (STREQ (sectp->name, EH_FRAME_SECTION))
1037 {
1038 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1039 if (aflag & SEC_HAS_CONTENTS)
1040 {
1041 dwarf_eh_frame_offset = sectp->filepos;
1042 dwarf_eh_frame_size = bfd_get_section_size_before_reloc (sectp);
1043 dwarf_eh_frame_section = sectp;
1044 }
1045 }
1046 else if (STREQ (sectp->name, RANGES_SECTION))
1047 {
1048 dwarf_ranges_offset = sectp->filepos;
1049 dwarf_ranges_size = bfd_get_section_size_before_reloc (sectp);
1050 dwarf_ranges_section = sectp;
1051 }
1052 }
1053
1054 /* Build a partial symbol table. */
1055
1056 void
1057 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1058 {
1059
1060 /* We definitely need the .debug_info and .debug_abbrev sections */
1061
1062 dwarf_info_buffer = dwarf2_read_section (objfile,
1063 dwarf_info_offset,
1064 dwarf_info_size,
1065 dwarf_info_section);
1066 dwarf_abbrev_buffer = dwarf2_read_section (objfile,
1067 dwarf_abbrev_offset,
1068 dwarf_abbrev_size,
1069 dwarf_abbrev_section);
1070
1071 if (dwarf_line_offset)
1072 dwarf_line_buffer = dwarf2_read_section (objfile,
1073 dwarf_line_offset,
1074 dwarf_line_size,
1075 dwarf_line_section);
1076 else
1077 dwarf_line_buffer = NULL;
1078
1079 if (dwarf_str_offset)
1080 dwarf_str_buffer = dwarf2_read_section (objfile,
1081 dwarf_str_offset,
1082 dwarf_str_size,
1083 dwarf_str_section);
1084 else
1085 dwarf_str_buffer = NULL;
1086
1087 if (dwarf_macinfo_offset)
1088 dwarf_macinfo_buffer = dwarf2_read_section (objfile,
1089 dwarf_macinfo_offset,
1090 dwarf_macinfo_size,
1091 dwarf_macinfo_section);
1092 else
1093 dwarf_macinfo_buffer = NULL;
1094
1095 if (dwarf_ranges_offset)
1096 dwarf_ranges_buffer = dwarf2_read_section (objfile,
1097 dwarf_ranges_offset,
1098 dwarf_ranges_size,
1099 dwarf_ranges_section);
1100 else
1101 dwarf_ranges_buffer = NULL;
1102
1103 if (dwarf_loc_offset)
1104 dwarf_loc_buffer = dwarf2_read_section (objfile,
1105 dwarf_loc_offset,
1106 dwarf_loc_size,
1107 dwarf_loc_section);
1108 else
1109 dwarf_loc_buffer = NULL;
1110
1111 if (mainline
1112 || (objfile->global_psymbols.size == 0
1113 && objfile->static_psymbols.size == 0))
1114 {
1115 init_psymbol_list (objfile, 1024);
1116 }
1117
1118 #if 0
1119 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1120 {
1121 /* Things are significantly easier if we have .debug_aranges and
1122 .debug_pubnames sections */
1123
1124 dwarf2_build_psymtabs_easy (objfile, mainline);
1125 }
1126 else
1127 #endif
1128 /* only test this case for now */
1129 {
1130 /* In this case we have to work a bit harder */
1131 dwarf2_build_psymtabs_hard (objfile, mainline);
1132 }
1133 }
1134
1135 #if 0
1136 /* Build the partial symbol table from the information in the
1137 .debug_pubnames and .debug_aranges sections. */
1138
1139 static void
1140 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1141 {
1142 bfd *abfd = objfile->obfd;
1143 char *aranges_buffer, *pubnames_buffer;
1144 char *aranges_ptr, *pubnames_ptr;
1145 unsigned int entry_length, version, info_offset, info_size;
1146
1147 pubnames_buffer = dwarf2_read_section (objfile,
1148 dwarf_pubnames_offset,
1149 dwarf_pubnames_size,
1150 dwarf_pubnames_section);
1151 pubnames_ptr = pubnames_buffer;
1152 while ((pubnames_ptr - pubnames_buffer) < dwarf_pubnames_size)
1153 {
1154 struct comp_unit_head cu_header;
1155 int bytes_read;
1156
1157 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1158 &bytes_read);
1159 pubnames_ptr += bytes_read;
1160 version = read_1_byte (abfd, pubnames_ptr);
1161 pubnames_ptr += 1;
1162 info_offset = read_4_bytes (abfd, pubnames_ptr);
1163 pubnames_ptr += 4;
1164 info_size = read_4_bytes (abfd, pubnames_ptr);
1165 pubnames_ptr += 4;
1166 }
1167
1168 aranges_buffer = dwarf2_read_section (objfile,
1169 dwarf_aranges_offset,
1170 dwarf_aranges_size,
1171 dwarf_aranges_section);
1172
1173 }
1174 #endif
1175
1176 /* Read in the comp unit header information from the debug_info at
1177 info_ptr. */
1178
1179 static char *
1180 read_comp_unit_head (struct comp_unit_head *cu_header,
1181 char *info_ptr, bfd *abfd)
1182 {
1183 int signed_addr;
1184 int bytes_read;
1185 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1186 &bytes_read);
1187 info_ptr += bytes_read;
1188 cu_header->version = read_2_bytes (abfd, info_ptr);
1189 info_ptr += 2;
1190 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1191 &bytes_read);
1192 info_ptr += bytes_read;
1193 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1194 info_ptr += 1;
1195 signed_addr = bfd_get_sign_extend_vma (abfd);
1196 if (signed_addr < 0)
1197 internal_error (__FILE__, __LINE__,
1198 "read_comp_unit_head: dwarf from non elf file");
1199 cu_header->signed_addr_p = signed_addr;
1200 return info_ptr;
1201 }
1202
1203 /* Build the partial symbol table by doing a quick pass through the
1204 .debug_info and .debug_abbrev sections. */
1205
1206 static void
1207 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1208 {
1209 /* Instead of reading this into a big buffer, we should probably use
1210 mmap() on architectures that support it. (FIXME) */
1211 bfd *abfd = objfile->obfd;
1212 char *info_ptr, *abbrev_ptr;
1213 char *beg_of_comp_unit;
1214 struct partial_die_info comp_unit_die;
1215 struct partial_symtab *pst;
1216 struct cleanup *back_to;
1217 CORE_ADDR lowpc, highpc;
1218
1219 info_ptr = dwarf_info_buffer;
1220 abbrev_ptr = dwarf_abbrev_buffer;
1221
1222 /* We use dwarf2_tmp_obstack for objects that don't need to survive
1223 the partial symbol scan, like attribute values.
1224
1225 We could reduce our peak memory consumption during partial symbol
1226 table construction by freeing stuff from this obstack more often
1227 --- say, after processing each compilation unit, or each die ---
1228 but it turns out that this saves almost nothing. For an
1229 executable with 11Mb of Dwarf 2 data, I found about 64k allocated
1230 on dwarf2_tmp_obstack. Some investigation showed:
1231
1232 1) 69% of the attributes used forms DW_FORM_addr, DW_FORM_data*,
1233 DW_FORM_flag, DW_FORM_[su]data, and DW_FORM_ref*. These are
1234 all fixed-length values not requiring dynamic allocation.
1235
1236 2) 30% of the attributes used the form DW_FORM_string. For
1237 DW_FORM_string, read_attribute simply hands back a pointer to
1238 the null-terminated string in dwarf_info_buffer, so no dynamic
1239 allocation is needed there either.
1240
1241 3) The remaining 1% of the attributes all used DW_FORM_block1.
1242 75% of those were DW_AT_frame_base location lists for
1243 functions; the rest were DW_AT_location attributes, probably
1244 for the global variables.
1245
1246 Anyway, what this all means is that the memory the dwarf2
1247 reader uses as temporary space reading partial symbols is about
1248 0.5% as much as we use for dwarf_*_buffer. That's noise. */
1249
1250 obstack_init (&dwarf2_tmp_obstack);
1251 back_to = make_cleanup (dwarf2_free_tmp_obstack, NULL);
1252
1253 /* Since the objects we're extracting from dwarf_info_buffer vary in
1254 length, only the individual functions to extract them (like
1255 read_comp_unit_head and read_partial_die) can really know whether
1256 the buffer is large enough to hold another complete object.
1257
1258 At the moment, they don't actually check that. If
1259 dwarf_info_buffer holds just one extra byte after the last
1260 compilation unit's dies, then read_comp_unit_head will happily
1261 read off the end of the buffer. read_partial_die is similarly
1262 casual. Those functions should be fixed.
1263
1264 For this loop condition, simply checking whether there's any data
1265 left at all should be sufficient. */
1266 while (info_ptr < dwarf_info_buffer + dwarf_info_size)
1267 {
1268 struct comp_unit_head cu_header;
1269 beg_of_comp_unit = info_ptr;
1270 info_ptr = read_comp_unit_head (&cu_header, info_ptr, abfd);
1271
1272 if (cu_header.version != 2)
1273 {
1274 error ("Dwarf Error: wrong version in compilation unit header (is %d, should be %d) [in module %s]", cu_header.version, 2, bfd_get_filename (abfd));
1275 return;
1276 }
1277 if (cu_header.abbrev_offset >= dwarf_abbrev_size)
1278 {
1279 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header (offset 0x%lx + 6) [in module %s]",
1280 (long) cu_header.abbrev_offset,
1281 (long) (beg_of_comp_unit - dwarf_info_buffer),
1282 bfd_get_filename (abfd));
1283 return;
1284 }
1285 if (beg_of_comp_unit + cu_header.length + cu_header.initial_length_size
1286 > dwarf_info_buffer + dwarf_info_size)
1287 {
1288 error ("Dwarf Error: bad length (0x%lx) in compilation unit header (offset 0x%lx + 0) [in module %s]",
1289 (long) cu_header.length,
1290 (long) (beg_of_comp_unit - dwarf_info_buffer),
1291 bfd_get_filename (abfd));
1292 return;
1293 }
1294 /* Complete the cu_header */
1295 cu_header.offset = beg_of_comp_unit - dwarf_info_buffer;
1296 cu_header.first_die_ptr = info_ptr;
1297 cu_header.cu_head_ptr = beg_of_comp_unit;
1298
1299 /* Read the abbrevs for this compilation unit into a table */
1300 dwarf2_read_abbrevs (abfd, &cu_header);
1301 make_cleanup (dwarf2_empty_abbrev_table, cu_header.dwarf2_abbrevs);
1302
1303 /* Read the compilation unit die */
1304 info_ptr = read_partial_die (&comp_unit_die, abfd, info_ptr,
1305 &cu_header);
1306
1307 /* Set the language we're debugging */
1308 set_cu_language (comp_unit_die.language);
1309
1310 /* Allocate a new partial symbol table structure */
1311 pst = start_psymtab_common (objfile, objfile->section_offsets,
1312 comp_unit_die.name ? comp_unit_die.name : "",
1313 comp_unit_die.lowpc,
1314 objfile->global_psymbols.next,
1315 objfile->static_psymbols.next);
1316
1317 pst->read_symtab_private = (char *)
1318 obstack_alloc (&objfile->psymbol_obstack, sizeof (struct dwarf2_pinfo));
1319 cu_header_offset = beg_of_comp_unit - dwarf_info_buffer;
1320 DWARF_INFO_BUFFER (pst) = dwarf_info_buffer;
1321 DWARF_INFO_OFFSET (pst) = beg_of_comp_unit - dwarf_info_buffer;
1322 DWARF_ABBREV_BUFFER (pst) = dwarf_abbrev_buffer;
1323 DWARF_ABBREV_SIZE (pst) = dwarf_abbrev_size;
1324 DWARF_LINE_BUFFER (pst) = dwarf_line_buffer;
1325 DWARF_LINE_SIZE (pst) = dwarf_line_size;
1326 DWARF_STR_BUFFER (pst) = dwarf_str_buffer;
1327 DWARF_STR_SIZE (pst) = dwarf_str_size;
1328 DWARF_MACINFO_BUFFER (pst) = dwarf_macinfo_buffer;
1329 DWARF_MACINFO_SIZE (pst) = dwarf_macinfo_size;
1330 DWARF_RANGES_BUFFER (pst) = dwarf_ranges_buffer;
1331 DWARF_RANGES_SIZE (pst) = dwarf_ranges_size;
1332 DWARF_LOC_BUFFER (pst) = dwarf_loc_buffer;
1333 DWARF_LOC_SIZE (pst) = dwarf_loc_size;
1334 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1335
1336 /* Store the function that reads in the rest of the symbol table */
1337 pst->read_symtab = dwarf2_psymtab_to_symtab;
1338
1339 /* Check if comp unit has_children.
1340 If so, read the rest of the partial symbols from this comp unit.
1341 If not, there's no more debug_info for this comp unit. */
1342 if (comp_unit_die.has_children)
1343 {
1344 lowpc = ((CORE_ADDR) -1);
1345 highpc = ((CORE_ADDR) 0);
1346
1347 info_ptr = scan_partial_symbols (info_ptr, objfile, &lowpc, &highpc,
1348 &cu_header, NULL);
1349
1350 /* If we didn't find a lowpc, set it to highpc to avoid
1351 complaints from `maint check'. */
1352 if (lowpc == ((CORE_ADDR) -1))
1353 lowpc = highpc;
1354
1355 /* If the compilation unit didn't have an explicit address range,
1356 then use the information extracted from its child dies. */
1357 if (! comp_unit_die.has_pc_info)
1358 {
1359 comp_unit_die.lowpc = lowpc;
1360 comp_unit_die.highpc = highpc;
1361 }
1362 }
1363 pst->textlow = comp_unit_die.lowpc + baseaddr;
1364 pst->texthigh = comp_unit_die.highpc + baseaddr;
1365
1366 pst->n_global_syms = objfile->global_psymbols.next -
1367 (objfile->global_psymbols.list + pst->globals_offset);
1368 pst->n_static_syms = objfile->static_psymbols.next -
1369 (objfile->static_psymbols.list + pst->statics_offset);
1370 sort_pst_symbols (pst);
1371
1372 /* If there is already a psymtab or symtab for a file of this
1373 name, remove it. (If there is a symtab, more drastic things
1374 also happen.) This happens in VxWorks. */
1375 free_named_symtabs (pst->filename);
1376
1377 info_ptr = beg_of_comp_unit + cu_header.length
1378 + cu_header.initial_length_size;
1379 }
1380 do_cleanups (back_to);
1381 }
1382
1383 /* Read in all interesting dies to the end of the compilation unit or
1384 to the end of the current namespace. NAMESPACE is NULL if we
1385 haven't yet encountered any DW_TAG_namespace entries; otherwise,
1386 it's the name of the current namespace. In particular, it's the
1387 empty string if we're currently in the global namespace but have
1388 previously encountered a DW_TAG_namespace. */
1389
1390 static char *
1391 scan_partial_symbols (char *info_ptr, struct objfile *objfile,
1392 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1393 const struct comp_unit_head *cu_header,
1394 const char *namespace)
1395 {
1396 bfd *abfd = objfile->obfd;
1397 struct partial_die_info pdi;
1398
1399 /* Now, march along the PDI's, descending into ones which have
1400 interesting children but skipping the children of the other ones,
1401 until we reach the end of the compilation unit. */
1402
1403 while (1)
1404 {
1405 /* This flag tells whether or not info_ptr has gotten updated
1406 inside the loop. */
1407 int info_ptr_updated = 0;
1408
1409 info_ptr = read_partial_die (&pdi, abfd, info_ptr, cu_header);
1410
1411 /* Anonymous namespaces have no name but have interesting
1412 children, so we need to look at them. Ditto for anonymous
1413 enums. */
1414
1415 if (pdi.name != NULL || pdi.tag == DW_TAG_namespace
1416 || pdi.tag == DW_TAG_enumeration_type)
1417 {
1418 switch (pdi.tag)
1419 {
1420 case DW_TAG_subprogram:
1421 if (pdi.has_pc_info)
1422 {
1423 if (pdi.lowpc < *lowpc)
1424 {
1425 *lowpc = pdi.lowpc;
1426 }
1427 if (pdi.highpc > *highpc)
1428 {
1429 *highpc = pdi.highpc;
1430 }
1431 if (!pdi.is_declaration)
1432 {
1433 add_partial_symbol (&pdi, objfile, cu_header, namespace);
1434 }
1435 }
1436 break;
1437 case DW_TAG_variable:
1438 case DW_TAG_typedef:
1439 case DW_TAG_union_type:
1440 case DW_TAG_class_type:
1441 case DW_TAG_structure_type:
1442 if (!pdi.is_declaration)
1443 {
1444 add_partial_symbol (&pdi, objfile, cu_header, namespace);
1445 }
1446 break;
1447 case DW_TAG_enumeration_type:
1448 if (!pdi.is_declaration)
1449 {
1450 info_ptr = add_partial_enumeration (&pdi, info_ptr,
1451 objfile, cu_header,
1452 namespace);
1453 info_ptr_updated = 1;
1454 }
1455 break;
1456 case DW_TAG_base_type:
1457 /* File scope base type definitions are added to the partial
1458 symbol table. */
1459 add_partial_symbol (&pdi, objfile, cu_header, namespace);
1460 break;
1461 case DW_TAG_namespace:
1462 /* We've hit a DW_TAG_namespace entry, so we know this
1463 file has been compiled using a compiler that
1464 generates them; update NAMESPACE to reflect that. */
1465 if (namespace == NULL)
1466 namespace = "";
1467 info_ptr = add_partial_namespace (&pdi, info_ptr, objfile,
1468 lowpc, highpc, cu_header,
1469 namespace);
1470 info_ptr_updated = 1;
1471 break;
1472 default:
1473 break;
1474 }
1475 }
1476
1477 if (pdi.tag == 0)
1478 break;
1479
1480 /* If the die has a sibling, skip to the sibling, unless another
1481 function has already updated info_ptr for us. */
1482
1483 /* NOTE: carlton/2003-06-16: This is a bit hackish, but whether
1484 or not we want to update this depends on enough stuff (not
1485 only pdi.tag but also whether or not pdi.name is NULL) that
1486 this seems like the easiest way to handle the issue. */
1487
1488 if (!info_ptr_updated)
1489 info_ptr = locate_pdi_sibling (&pdi, info_ptr, abfd, cu_header);
1490 }
1491
1492 return info_ptr;
1493 }
1494
1495 static void
1496 add_partial_symbol (struct partial_die_info *pdi, struct objfile *objfile,
1497 const struct comp_unit_head *cu_header,
1498 const char *namespace)
1499 {
1500 CORE_ADDR addr = 0;
1501 const struct partial_symbol *psym = NULL;
1502
1503 switch (pdi->tag)
1504 {
1505 case DW_TAG_subprogram:
1506 if (pdi->is_external)
1507 {
1508 /*prim_record_minimal_symbol (pdi->name, pdi->lowpc + baseaddr,
1509 mst_text, objfile); */
1510 psym = add_psymbol_to_list (pdi->name, strlen (pdi->name),
1511 VAR_DOMAIN, LOC_BLOCK,
1512 &objfile->global_psymbols,
1513 0, pdi->lowpc + baseaddr,
1514 cu_language, objfile);
1515 }
1516 else
1517 {
1518 /*prim_record_minimal_symbol (pdi->name, pdi->lowpc + baseaddr,
1519 mst_file_text, objfile); */
1520 psym = add_psymbol_to_list (pdi->name, strlen (pdi->name),
1521 VAR_DOMAIN, LOC_BLOCK,
1522 &objfile->static_psymbols,
1523 0, pdi->lowpc + baseaddr,
1524 cu_language, objfile);
1525 }
1526 break;
1527 case DW_TAG_variable:
1528 if (pdi->is_external)
1529 {
1530 /* Global Variable.
1531 Don't enter into the minimal symbol tables as there is
1532 a minimal symbol table entry from the ELF symbols already.
1533 Enter into partial symbol table if it has a location
1534 descriptor or a type.
1535 If the location descriptor is missing, new_symbol will create
1536 a LOC_UNRESOLVED symbol, the address of the variable will then
1537 be determined from the minimal symbol table whenever the variable
1538 is referenced.
1539 The address for the partial symbol table entry is not
1540 used by GDB, but it comes in handy for debugging partial symbol
1541 table building. */
1542
1543 if (pdi->locdesc)
1544 addr = decode_locdesc (pdi->locdesc, objfile, cu_header);
1545 if (pdi->locdesc || pdi->has_type)
1546 psym = add_psymbol_to_list (pdi->name, strlen (pdi->name),
1547 VAR_DOMAIN, LOC_STATIC,
1548 &objfile->global_psymbols,
1549 0, addr + baseaddr,
1550 cu_language, objfile);
1551 }
1552 else
1553 {
1554 /* Static Variable. Skip symbols without location descriptors. */
1555 if (pdi->locdesc == NULL)
1556 return;
1557 addr = decode_locdesc (pdi->locdesc, objfile, cu_header);
1558 /*prim_record_minimal_symbol (pdi->name, addr + baseaddr,
1559 mst_file_data, objfile); */
1560 psym = add_psymbol_to_list (pdi->name, strlen (pdi->name),
1561 VAR_DOMAIN, LOC_STATIC,
1562 &objfile->static_psymbols,
1563 0, addr + baseaddr,
1564 cu_language, objfile);
1565 }
1566 break;
1567 case DW_TAG_typedef:
1568 case DW_TAG_base_type:
1569 add_psymbol_to_list (pdi->name, strlen (pdi->name),
1570 VAR_DOMAIN, LOC_TYPEDEF,
1571 &objfile->static_psymbols,
1572 0, (CORE_ADDR) 0, cu_language, objfile);
1573 break;
1574 case DW_TAG_class_type:
1575 case DW_TAG_structure_type:
1576 case DW_TAG_union_type:
1577 case DW_TAG_enumeration_type:
1578 /* Skip aggregate types without children, these are external
1579 references. */
1580 if (pdi->has_children == 0)
1581 return;
1582 add_psymbol_to_list (pdi->name, strlen (pdi->name),
1583 STRUCT_DOMAIN, LOC_TYPEDEF,
1584 &objfile->static_psymbols,
1585 0, (CORE_ADDR) 0, cu_language, objfile);
1586
1587 if (cu_language == language_cplus)
1588 {
1589 /* For C++, these implicitly act as typedefs as well. */
1590 add_psymbol_to_list (pdi->name, strlen (pdi->name),
1591 VAR_DOMAIN, LOC_TYPEDEF,
1592 &objfile->static_psymbols,
1593 0, (CORE_ADDR) 0, cu_language, objfile);
1594 }
1595 break;
1596 case DW_TAG_enumerator:
1597 add_psymbol_to_list (pdi->name, strlen (pdi->name),
1598 VAR_DOMAIN, LOC_CONST,
1599 &objfile->static_psymbols,
1600 0, (CORE_ADDR) 0, cu_language, objfile);
1601 break;
1602 default:
1603 break;
1604 }
1605
1606 /* Check to see if we should scan the name for possible namespace
1607 info. Only do this if this is C++, if we don't have namespace
1608 debugging info in the file, if the psym is of an appropriate type
1609 (otherwise we'll have psym == NULL), and if we actually had a
1610 mangled name to begin with. */
1611
1612 if (cu_language == language_cplus
1613 && namespace == NULL
1614 && psym != NULL
1615 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
1616 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
1617 objfile);
1618 }
1619
1620 /* Read a partial die corresponding to a namespace; also, add a symbol
1621 corresponding to that namespace to the symbol table. NAMESPACE is
1622 the name of the enclosing namespace. */
1623
1624 static char *
1625 add_partial_namespace (struct partial_die_info *pdi, char *info_ptr,
1626 struct objfile *objfile,
1627 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1628 const struct comp_unit_head *cu_header,
1629 const char *namespace)
1630 {
1631 /* Calculate the full name of the namespace that we just entered. */
1632
1633 const char *new_name = pdi->name;
1634 char *full_name;
1635
1636 if (new_name == NULL)
1637 new_name = "(anonymous namespace)";
1638 full_name = alloca (strlen (namespace) + 2 + strlen (new_name) + 1);
1639 strcpy (full_name, namespace);
1640 if (*namespace != '\0')
1641 strcat (full_name, "::");
1642 strcat (full_name, new_name);
1643
1644 /* FIXME: carlton/2003-06-27: Once we build qualified names for more
1645 symbols than just namespaces, we should replace this by a call to
1646 add_partial_symbol. */
1647
1648 add_psymbol_to_list (full_name, strlen (full_name),
1649 VAR_DOMAIN, LOC_TYPEDEF,
1650 &objfile->global_psymbols,
1651 0, 0, cu_language, objfile);
1652
1653 /* Now scan partial symbols in that namespace. */
1654
1655 if (pdi->has_children)
1656 info_ptr = scan_partial_symbols (info_ptr, objfile,
1657 lowpc, highpc,
1658 cu_header, full_name);
1659
1660 return info_ptr;
1661 }
1662
1663 /* Read a partial die corresponding to an enumeration type. */
1664
1665 static char *
1666 add_partial_enumeration (struct partial_die_info *enum_pdi, char *info_ptr,
1667 struct objfile *objfile,
1668 const struct comp_unit_head *cu_header,
1669 const char *namespace)
1670 {
1671 bfd *abfd = objfile->obfd;
1672 struct partial_die_info pdi;
1673
1674 if (enum_pdi->name != NULL)
1675 add_partial_symbol (enum_pdi, objfile, cu_header, namespace);
1676
1677 while (1)
1678 {
1679 info_ptr = read_partial_die (&pdi, abfd, info_ptr, cu_header);
1680 if (pdi.tag == 0)
1681 break;
1682 if (pdi.tag != DW_TAG_enumerator || pdi.name == NULL)
1683 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
1684 else
1685 add_partial_symbol (&pdi, objfile, cu_header, namespace);
1686 }
1687
1688 return info_ptr;
1689 }
1690
1691 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the next DIE
1692 after ORIG_PDI. */
1693
1694 static char *
1695 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
1696 bfd *abfd, const struct comp_unit_head *cu_header)
1697 {
1698 /* Do we know the sibling already? */
1699
1700 if (orig_pdi->sibling)
1701 return orig_pdi->sibling;
1702
1703 /* Are there any children to deal with? */
1704
1705 if (!orig_pdi->has_children)
1706 return info_ptr;
1707
1708 /* Okay, we don't know the sibling, but we have children that we
1709 want to skip. So read children until we run into one without a
1710 tag; return whatever follows it. */
1711
1712 while (1)
1713 {
1714 struct partial_die_info pdi;
1715
1716 info_ptr = read_partial_die (&pdi, abfd, info_ptr, cu_header);
1717
1718 if (pdi.tag == 0)
1719 return info_ptr;
1720 else
1721 info_ptr = locate_pdi_sibling (&pdi, info_ptr, abfd, cu_header);
1722 }
1723 }
1724
1725 /* Expand this partial symbol table into a full symbol table. */
1726
1727 static void
1728 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
1729 {
1730 /* FIXME: This is barely more than a stub. */
1731 if (pst != NULL)
1732 {
1733 if (pst->readin)
1734 {
1735 warning ("bug: psymtab for %s is already read in.", pst->filename);
1736 }
1737 else
1738 {
1739 if (info_verbose)
1740 {
1741 printf_filtered ("Reading in symbols for %s...", pst->filename);
1742 gdb_flush (gdb_stdout);
1743 }
1744
1745 psymtab_to_symtab_1 (pst);
1746
1747 /* Finish up the debug error message. */
1748 if (info_verbose)
1749 printf_filtered ("done.\n");
1750 }
1751 }
1752 }
1753
1754 static void
1755 psymtab_to_symtab_1 (struct partial_symtab *pst)
1756 {
1757 struct objfile *objfile = pst->objfile;
1758 bfd *abfd = objfile->obfd;
1759 struct comp_unit_head cu_header;
1760 struct die_info *dies;
1761 unsigned long offset;
1762 CORE_ADDR lowpc, highpc;
1763 struct die_info *child_die;
1764 char *info_ptr;
1765 struct symtab *symtab;
1766 struct cleanup *back_to;
1767 struct attribute *attr;
1768
1769 /* Set local variables from the partial symbol table info. */
1770 offset = DWARF_INFO_OFFSET (pst);
1771 dwarf_info_buffer = DWARF_INFO_BUFFER (pst);
1772 dwarf_abbrev_buffer = DWARF_ABBREV_BUFFER (pst);
1773 dwarf_abbrev_size = DWARF_ABBREV_SIZE (pst);
1774 dwarf_line_buffer = DWARF_LINE_BUFFER (pst);
1775 dwarf_line_size = DWARF_LINE_SIZE (pst);
1776 dwarf_str_buffer = DWARF_STR_BUFFER (pst);
1777 dwarf_str_size = DWARF_STR_SIZE (pst);
1778 dwarf_macinfo_buffer = DWARF_MACINFO_BUFFER (pst);
1779 dwarf_macinfo_size = DWARF_MACINFO_SIZE (pst);
1780 dwarf_ranges_buffer = DWARF_RANGES_BUFFER (pst);
1781 dwarf_ranges_size = DWARF_RANGES_SIZE (pst);
1782 dwarf_loc_buffer = DWARF_LOC_BUFFER (pst);
1783 dwarf_loc_size = DWARF_LOC_SIZE (pst);
1784 baseaddr = ANOFFSET (pst->section_offsets, SECT_OFF_TEXT (objfile));
1785 cu_header_offset = offset;
1786 info_ptr = dwarf_info_buffer + offset;
1787
1788 obstack_init (&dwarf2_tmp_obstack);
1789 back_to = make_cleanup (dwarf2_free_tmp_obstack, NULL);
1790
1791 buildsym_init ();
1792 make_cleanup (really_free_pendings, NULL);
1793
1794 /* read in the comp_unit header */
1795 info_ptr = read_comp_unit_head (&cu_header, info_ptr, abfd);
1796
1797 /* Read the abbrevs for this compilation unit */
1798 dwarf2_read_abbrevs (abfd, &cu_header);
1799 make_cleanup (dwarf2_empty_abbrev_table, cu_header.dwarf2_abbrevs);
1800
1801 dies = read_comp_unit (info_ptr, abfd, &cu_header);
1802
1803 make_cleanup_free_die_list (dies);
1804
1805 /* Find the base address of the compilation unit for range lists and
1806 location lists. It will normally be specified by DW_AT_low_pc.
1807 In DWARF-3 draft 4, the base address could be overridden by
1808 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1809 compilation units with discontinuous ranges. */
1810
1811 cu_header.base_known = 0;
1812 cu_header.base_address = 0;
1813
1814 attr = dwarf_attr (dies, DW_AT_entry_pc);
1815 if (attr)
1816 {
1817 cu_header.base_address = DW_ADDR (attr);
1818 cu_header.base_known = 1;
1819 }
1820 else
1821 {
1822 attr = dwarf_attr (dies, DW_AT_low_pc);
1823 if (attr)
1824 {
1825 cu_header.base_address = DW_ADDR (attr);
1826 cu_header.base_known = 1;
1827 }
1828 }
1829
1830 /* Do line number decoding in read_file_scope () */
1831 process_die (dies, objfile, &cu_header);
1832
1833 if (!dwarf2_get_pc_bounds (dies, &lowpc, &highpc, objfile, &cu_header))
1834 {
1835 /* Some compilers don't define a DW_AT_high_pc attribute for
1836 the compilation unit. If the DW_AT_high_pc is missing,
1837 synthesize it, by scanning the DIE's below the compilation unit. */
1838 highpc = 0;
1839 if (dies->has_children)
1840 {
1841 child_die = dies->next;
1842 while (child_die && child_die->tag)
1843 {
1844 if (child_die->tag == DW_TAG_subprogram)
1845 {
1846 CORE_ADDR low, high;
1847
1848 if (dwarf2_get_pc_bounds (child_die, &low, &high,
1849 objfile, &cu_header))
1850 {
1851 highpc = max (highpc, high);
1852 }
1853 }
1854 child_die = sibling_die (child_die);
1855 }
1856 }
1857 }
1858 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
1859
1860 /* Set symtab language to language from DW_AT_language.
1861 If the compilation is from a C file generated by language preprocessors,
1862 do not set the language if it was already deduced by start_subfile. */
1863 if (symtab != NULL
1864 && !(cu_language == language_c && symtab->language != language_c))
1865 {
1866 symtab->language = cu_language;
1867 }
1868 pst->symtab = symtab;
1869 pst->readin = 1;
1870
1871 do_cleanups (back_to);
1872 }
1873
1874 /* Process a die and its children. */
1875
1876 static void
1877 process_die (struct die_info *die, struct objfile *objfile,
1878 const struct comp_unit_head *cu_header)
1879 {
1880 switch (die->tag)
1881 {
1882 case DW_TAG_padding:
1883 break;
1884 case DW_TAG_compile_unit:
1885 read_file_scope (die, objfile, cu_header);
1886 break;
1887 case DW_TAG_subprogram:
1888 read_subroutine_type (die, objfile, cu_header);
1889 read_func_scope (die, objfile, cu_header);
1890 break;
1891 case DW_TAG_inlined_subroutine:
1892 /* FIXME: These are ignored for now.
1893 They could be used to set breakpoints on all inlined instances
1894 of a function and make GDB `next' properly over inlined functions. */
1895 break;
1896 case DW_TAG_lexical_block:
1897 case DW_TAG_try_block:
1898 case DW_TAG_catch_block:
1899 read_lexical_block_scope (die, objfile, cu_header);
1900 break;
1901 case DW_TAG_class_type:
1902 case DW_TAG_structure_type:
1903 case DW_TAG_union_type:
1904 read_structure_scope (die, objfile, cu_header);
1905 break;
1906 case DW_TAG_enumeration_type:
1907 read_enumeration (die, objfile, cu_header);
1908 break;
1909 case DW_TAG_subroutine_type:
1910 read_subroutine_type (die, objfile, cu_header);
1911 break;
1912 case DW_TAG_array_type:
1913 read_array_type (die, objfile, cu_header);
1914 break;
1915 case DW_TAG_pointer_type:
1916 read_tag_pointer_type (die, objfile, cu_header);
1917 break;
1918 case DW_TAG_ptr_to_member_type:
1919 read_tag_ptr_to_member_type (die, objfile, cu_header);
1920 break;
1921 case DW_TAG_reference_type:
1922 read_tag_reference_type (die, objfile, cu_header);
1923 break;
1924 case DW_TAG_string_type:
1925 read_tag_string_type (die, objfile);
1926 break;
1927 case DW_TAG_base_type:
1928 read_base_type (die, objfile);
1929 if (dwarf_attr (die, DW_AT_name))
1930 {
1931 /* Add a typedef symbol for the base type definition. */
1932 new_symbol (die, die->type, objfile, cu_header);
1933 }
1934 break;
1935 case DW_TAG_common_block:
1936 read_common_block (die, objfile, cu_header);
1937 break;
1938 case DW_TAG_common_inclusion:
1939 break;
1940 case DW_TAG_namespace:
1941 if (!processing_has_namespace_info)
1942 {
1943 processing_has_namespace_info = 1;
1944 processing_current_namespace = "";
1945 }
1946 read_namespace (die, objfile, cu_header);
1947 break;
1948 case DW_TAG_imported_declaration:
1949 case DW_TAG_imported_module:
1950 /* FIXME: carlton/2002-10-16: Eventually, we should use the
1951 information contained in these. DW_TAG_imported_declaration
1952 dies shouldn't have children; DW_TAG_imported_module dies
1953 shouldn't in the C++ case, but conceivably could in the
1954 Fortran case, so we'll have to replace this gdb_assert if
1955 Fortran compilers start generating that info. */
1956 if (!processing_has_namespace_info)
1957 {
1958 processing_has_namespace_info = 1;
1959 processing_current_namespace = "";
1960 }
1961 gdb_assert (!die->has_children);
1962 break;
1963 default:
1964 new_symbol (die, NULL, objfile, cu_header);
1965 break;
1966 }
1967 }
1968
1969 static void
1970 initialize_cu_func_list (void)
1971 {
1972 cu_first_fn = cu_last_fn = cu_cached_fn = NULL;
1973 }
1974
1975 static void
1976 read_file_scope (struct die_info *die, struct objfile *objfile,
1977 const struct comp_unit_head *cu_header)
1978 {
1979 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1980 CORE_ADDR lowpc = ((CORE_ADDR) -1);
1981 CORE_ADDR highpc = ((CORE_ADDR) 0);
1982 struct attribute *attr;
1983 char *name = "<unknown>";
1984 char *comp_dir = NULL;
1985 struct die_info *child_die;
1986 bfd *abfd = objfile->obfd;
1987 struct line_header *line_header = 0;
1988
1989 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, objfile, cu_header))
1990 {
1991 if (die->has_children)
1992 {
1993 child_die = die->next;
1994 while (child_die && child_die->tag)
1995 {
1996 if (child_die->tag == DW_TAG_subprogram)
1997 {
1998 CORE_ADDR low, high;
1999
2000 if (dwarf2_get_pc_bounds (child_die, &low, &high,
2001 objfile, cu_header))
2002 {
2003 lowpc = min (lowpc, low);
2004 highpc = max (highpc, high);
2005 }
2006 }
2007 child_die = sibling_die (child_die);
2008 }
2009 }
2010 }
2011
2012 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2013 from finish_block. */
2014 if (lowpc == ((CORE_ADDR) -1))
2015 lowpc = highpc;
2016 lowpc += baseaddr;
2017 highpc += baseaddr;
2018
2019 attr = dwarf_attr (die, DW_AT_name);
2020 if (attr)
2021 {
2022 name = DW_STRING (attr);
2023 }
2024 attr = dwarf_attr (die, DW_AT_comp_dir);
2025 if (attr)
2026 {
2027 comp_dir = DW_STRING (attr);
2028 if (comp_dir)
2029 {
2030 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2031 directory, get rid of it. */
2032 char *cp = strchr (comp_dir, ':');
2033
2034 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2035 comp_dir = cp + 1;
2036 }
2037 }
2038
2039 if (objfile->ei.entry_point >= lowpc &&
2040 objfile->ei.entry_point < highpc)
2041 {
2042 objfile->ei.deprecated_entry_file_lowpc = lowpc;
2043 objfile->ei.deprecated_entry_file_highpc = highpc;
2044 }
2045
2046 attr = dwarf_attr (die, DW_AT_language);
2047 if (attr)
2048 {
2049 set_cu_language (DW_UNSND (attr));
2050 }
2051
2052 /* We assume that we're processing GCC output. */
2053 processing_gcc_compilation = 2;
2054 #if 0
2055 /* FIXME:Do something here. */
2056 if (dip->at_producer != NULL)
2057 {
2058 handle_producer (dip->at_producer);
2059 }
2060 #endif
2061
2062 /* The compilation unit may be in a different language or objfile,
2063 zero out all remembered fundamental types. */
2064 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2065
2066 start_symtab (name, comp_dir, lowpc);
2067 record_debugformat ("DWARF 2");
2068
2069 initialize_cu_func_list ();
2070
2071 /* Process all dies in compilation unit. */
2072 if (die->has_children)
2073 {
2074 child_die = die->next;
2075 while (child_die && child_die->tag)
2076 {
2077 process_die (child_die, objfile, cu_header);
2078 child_die = sibling_die (child_die);
2079 }
2080 }
2081
2082 /* Decode line number information if present. */
2083 attr = dwarf_attr (die, DW_AT_stmt_list);
2084 if (attr)
2085 {
2086 unsigned int line_offset = DW_UNSND (attr);
2087 line_header = dwarf_decode_line_header (line_offset,
2088 abfd, cu_header);
2089 if (line_header)
2090 {
2091 make_cleanup ((make_cleanup_ftype *) free_line_header,
2092 (void *) line_header);
2093 dwarf_decode_lines (line_header, comp_dir, abfd, cu_header);
2094 }
2095 }
2096
2097 /* Decode macro information, if present. Dwarf 2 macro information
2098 refers to information in the line number info statement program
2099 header, so we can only read it if we've read the header
2100 successfully. */
2101 attr = dwarf_attr (die, DW_AT_macro_info);
2102 if (attr && line_header)
2103 {
2104 unsigned int macro_offset = DW_UNSND (attr);
2105 dwarf_decode_macros (line_header, macro_offset,
2106 comp_dir, abfd, cu_header, objfile);
2107 }
2108 do_cleanups (back_to);
2109 }
2110
2111 static void
2112 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc)
2113 {
2114 struct function_range *thisfn;
2115
2116 thisfn = (struct function_range *)
2117 obstack_alloc (&dwarf2_tmp_obstack, sizeof (struct function_range));
2118 thisfn->name = name;
2119 thisfn->lowpc = lowpc;
2120 thisfn->highpc = highpc;
2121 thisfn->seen_line = 0;
2122 thisfn->next = NULL;
2123
2124 if (cu_last_fn == NULL)
2125 cu_first_fn = thisfn;
2126 else
2127 cu_last_fn->next = thisfn;
2128
2129 cu_last_fn = thisfn;
2130 }
2131
2132 static void
2133 read_func_scope (struct die_info *die, struct objfile *objfile,
2134 const struct comp_unit_head *cu_header)
2135 {
2136 struct context_stack *new;
2137 CORE_ADDR lowpc;
2138 CORE_ADDR highpc;
2139 struct die_info *child_die;
2140 struct attribute *attr;
2141 char *name;
2142
2143 name = dwarf2_linkage_name (die);
2144
2145 /* Ignore functions with missing or empty names and functions with
2146 missing or invalid low and high pc attributes. */
2147 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, objfile, cu_header))
2148 return;
2149
2150 lowpc += baseaddr;
2151 highpc += baseaddr;
2152
2153 /* Record the function range for dwarf_decode_lines. */
2154 add_to_cu_func_list (name, lowpc, highpc);
2155
2156 if (objfile->ei.entry_point >= lowpc &&
2157 objfile->ei.entry_point < highpc)
2158 {
2159 objfile->ei.entry_func_lowpc = lowpc;
2160 objfile->ei.entry_func_highpc = highpc;
2161 }
2162
2163 /* Decode DW_AT_frame_base location descriptor if present, keep result
2164 for DW_OP_fbreg operands in decode_locdesc. */
2165 frame_base_reg = -1;
2166 frame_base_offset = 0;
2167 attr = dwarf_attr (die, DW_AT_frame_base);
2168 if (attr)
2169 {
2170 CORE_ADDR addr;
2171
2172 /* Support the .debug_loc offsets */
2173 if (attr_form_is_block (attr))
2174 {
2175 addr = decode_locdesc (DW_BLOCK (attr), objfile, cu_header);
2176 }
2177 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
2178 {
2179 dwarf2_complex_location_expr_complaint ();
2180 addr = 0;
2181 }
2182 else
2183 {
2184 dwarf2_invalid_attrib_class_complaint ("DW_AT_frame_base", name);
2185 addr = 0;
2186 }
2187
2188 if (isderef)
2189 dwarf2_unsupported_at_frame_base_complaint (name);
2190 else if (isreg)
2191 frame_base_reg = addr;
2192 else if (offreg)
2193 {
2194 frame_base_reg = basereg;
2195 frame_base_offset = addr;
2196 }
2197 else
2198 dwarf2_unsupported_at_frame_base_complaint (name);
2199 }
2200
2201 new = push_context (0, lowpc);
2202 new->name = new_symbol (die, die->type, objfile, cu_header);
2203
2204 /* If there was a location expression for DW_AT_frame_base above,
2205 record it. We still need to decode it above because not all
2206 symbols use location expressions exclusively. */
2207 if (attr)
2208 dwarf2_symbol_mark_computed (attr, new->name, cu_header, objfile);
2209
2210 list_in_scope = &local_symbols;
2211
2212 if (die->has_children)
2213 {
2214 child_die = die->next;
2215 while (child_die && child_die->tag)
2216 {
2217 process_die (child_die, objfile, cu_header);
2218 child_die = sibling_die (child_die);
2219 }
2220 }
2221
2222 new = pop_context ();
2223 /* Make a block for the local symbols within. */
2224 finish_block (new->name, &local_symbols, new->old_blocks,
2225 lowpc, highpc, objfile);
2226
2227 /* In C++, we can have functions nested inside functions (e.g., when
2228 a function declares a class that has methods). This means that
2229 when we finish processing a function scope, we may need to go
2230 back to building a containing block's symbol lists. */
2231 local_symbols = new->locals;
2232 param_symbols = new->params;
2233
2234 /* If we've finished processing a top-level function, subsequent
2235 symbols go in the file symbol list. */
2236 if (outermost_context_p ())
2237 list_in_scope = &file_symbols;
2238 }
2239
2240 /* Process all the DIES contained within a lexical block scope. Start
2241 a new scope, process the dies, and then close the scope. */
2242
2243 static void
2244 read_lexical_block_scope (struct die_info *die, struct objfile *objfile,
2245 const struct comp_unit_head *cu_header)
2246 {
2247 struct context_stack *new;
2248 CORE_ADDR lowpc, highpc;
2249 struct die_info *child_die;
2250
2251 /* Ignore blocks with missing or invalid low and high pc attributes. */
2252 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2253 as multiple lexical blocks? Handling children in a sane way would
2254 be nasty. Might be easier to properly extend generic blocks to
2255 describe ranges. */
2256 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, objfile, cu_header))
2257 return;
2258 lowpc += baseaddr;
2259 highpc += baseaddr;
2260
2261 push_context (0, lowpc);
2262 if (die->has_children)
2263 {
2264 child_die = die->next;
2265 while (child_die && child_die->tag)
2266 {
2267 process_die (child_die, objfile, cu_header);
2268 child_die = sibling_die (child_die);
2269 }
2270 }
2271 new = pop_context ();
2272
2273 if (local_symbols != NULL)
2274 {
2275 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
2276 highpc, objfile);
2277 }
2278 local_symbols = new->locals;
2279 }
2280
2281 /* Get low and high pc attributes from a die. Return 1 if the attributes
2282 are present and valid, otherwise, return 0. Return -1 if the range is
2283 discontinuous, i.e. derived from DW_AT_ranges information. */
2284 static int
2285 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
2286 CORE_ADDR *highpc, struct objfile *objfile,
2287 const struct comp_unit_head *cu_header)
2288 {
2289 struct attribute *attr;
2290 bfd *obfd = objfile->obfd;
2291 CORE_ADDR low = 0;
2292 CORE_ADDR high = 0;
2293 int ret = 0;
2294
2295 attr = dwarf_attr (die, DW_AT_high_pc);
2296 if (attr)
2297 {
2298 high = DW_ADDR (attr);
2299 attr = dwarf_attr (die, DW_AT_low_pc);
2300 if (attr)
2301 low = DW_ADDR (attr);
2302 else
2303 /* Found high w/o low attribute. */
2304 return 0;
2305
2306 /* Found consecutive range of addresses. */
2307 ret = 1;
2308 }
2309 else
2310 {
2311 attr = dwarf_attr (die, DW_AT_ranges);
2312 if (attr != NULL)
2313 {
2314 unsigned int addr_size = cu_header->addr_size;
2315 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2316 /* Value of the DW_AT_ranges attribute is the offset in the
2317 .debug_ranges section. */
2318 unsigned int offset = DW_UNSND (attr);
2319 /* Base address selection entry. */
2320 CORE_ADDR base;
2321 int found_base;
2322 int dummy;
2323 unsigned int i;
2324 char *buffer;
2325 CORE_ADDR marker;
2326 int low_set;
2327
2328 found_base = cu_header->base_known;
2329 base = cu_header->base_address;
2330
2331 if (offset >= dwarf_ranges_size)
2332 {
2333 complaint (&symfile_complaints,
2334 "Offset %d out of bounds for DW_AT_ranges attribute",
2335 offset);
2336 return 0;
2337 }
2338 buffer = dwarf_ranges_buffer + offset;
2339
2340 /* Read in the largest possible address. */
2341 marker = read_address (obfd, buffer, cu_header, &dummy);
2342 if ((marker & mask) == mask)
2343 {
2344 /* If we found the largest possible address, then
2345 read the base address. */
2346 base = read_address (obfd, buffer + addr_size,
2347 cu_header, &dummy);
2348 buffer += 2 * addr_size;
2349 offset += 2 * addr_size;
2350 found_base = 1;
2351 }
2352
2353 low_set = 0;
2354
2355 while (1)
2356 {
2357 CORE_ADDR range_beginning, range_end;
2358
2359 range_beginning = read_address (obfd, buffer,
2360 cu_header, &dummy);
2361 buffer += addr_size;
2362 range_end = read_address (obfd, buffer, cu_header, &dummy);
2363 buffer += addr_size;
2364 offset += 2 * addr_size;
2365
2366 /* An end of list marker is a pair of zero addresses. */
2367 if (range_beginning == 0 && range_end == 0)
2368 /* Found the end of list entry. */
2369 break;
2370
2371 /* Each base address selection entry is a pair of 2 values.
2372 The first is the largest possible address, the second is
2373 the base address. Check for a base address here. */
2374 if ((range_beginning & mask) == mask)
2375 {
2376 /* If we found the largest possible address, then
2377 read the base address. */
2378 base = read_address (obfd, buffer + addr_size,
2379 cu_header, &dummy);
2380 found_base = 1;
2381 continue;
2382 }
2383
2384 if (!found_base)
2385 {
2386 /* We have no valid base address for the ranges
2387 data. */
2388 complaint (&symfile_complaints,
2389 "Invalid .debug_ranges data (no base address)");
2390 return 0;
2391 }
2392
2393 range_beginning += base;
2394 range_end += base;
2395
2396 /* FIXME: This is recording everything as a low-high
2397 segment of consecutive addresses. We should have a
2398 data structure for discontiguous block ranges
2399 instead. */
2400 if (! low_set)
2401 {
2402 low = range_beginning;
2403 high = range_end;
2404 low_set = 1;
2405 }
2406 else
2407 {
2408 if (range_beginning < low)
2409 low = range_beginning;
2410 if (range_end > high)
2411 high = range_end;
2412 }
2413 }
2414
2415 if (! low_set)
2416 /* If the first entry is an end-of-list marker, the range
2417 describes an empty scope, i.e. no instructions. */
2418 return 0;
2419
2420 ret = -1;
2421 }
2422 }
2423
2424 if (high < low)
2425 return 0;
2426
2427 /* When using the GNU linker, .gnu.linkonce. sections are used to
2428 eliminate duplicate copies of functions and vtables and such.
2429 The linker will arbitrarily choose one and discard the others.
2430 The AT_*_pc values for such functions refer to local labels in
2431 these sections. If the section from that file was discarded, the
2432 labels are not in the output, so the relocs get a value of 0.
2433 If this is a discarded function, mark the pc bounds as invalid,
2434 so that GDB will ignore it. */
2435 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
2436 return 0;
2437
2438 *lowpc = low;
2439 *highpc = high;
2440 return ret;
2441 }
2442
2443 /* Add an aggregate field to the field list. */
2444
2445 static void
2446 dwarf2_add_field (struct field_info *fip, struct die_info *die,
2447 struct objfile *objfile,
2448 const struct comp_unit_head *cu_header)
2449 {
2450 struct nextfield *new_field;
2451 struct attribute *attr;
2452 struct field *fp;
2453 char *fieldname = "";
2454
2455 /* Allocate a new field list entry and link it in. */
2456 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2457 make_cleanup (xfree, new_field);
2458 memset (new_field, 0, sizeof (struct nextfield));
2459 new_field->next = fip->fields;
2460 fip->fields = new_field;
2461 fip->nfields++;
2462
2463 /* Handle accessibility and virtuality of field.
2464 The default accessibility for members is public, the default
2465 accessibility for inheritance is private. */
2466 if (die->tag != DW_TAG_inheritance)
2467 new_field->accessibility = DW_ACCESS_public;
2468 else
2469 new_field->accessibility = DW_ACCESS_private;
2470 new_field->virtuality = DW_VIRTUALITY_none;
2471
2472 attr = dwarf_attr (die, DW_AT_accessibility);
2473 if (attr)
2474 new_field->accessibility = DW_UNSND (attr);
2475 if (new_field->accessibility != DW_ACCESS_public)
2476 fip->non_public_fields = 1;
2477 attr = dwarf_attr (die, DW_AT_virtuality);
2478 if (attr)
2479 new_field->virtuality = DW_UNSND (attr);
2480
2481 fp = &new_field->field;
2482
2483 if (die->tag == DW_TAG_member && ! die_is_declaration (die))
2484 {
2485 /* Data member other than a C++ static data member. */
2486
2487 /* Get type of field. */
2488 fp->type = die_type (die, objfile, cu_header);
2489
2490 FIELD_STATIC_KIND (*fp) = 0;
2491
2492 /* Get bit size of field (zero if none). */
2493 attr = dwarf_attr (die, DW_AT_bit_size);
2494 if (attr)
2495 {
2496 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
2497 }
2498 else
2499 {
2500 FIELD_BITSIZE (*fp) = 0;
2501 }
2502
2503 /* Get bit offset of field. */
2504 attr = dwarf_attr (die, DW_AT_data_member_location);
2505 if (attr)
2506 {
2507 FIELD_BITPOS (*fp) =
2508 decode_locdesc (DW_BLOCK (attr), objfile, cu_header) * bits_per_byte;
2509 }
2510 else
2511 FIELD_BITPOS (*fp) = 0;
2512 attr = dwarf_attr (die, DW_AT_bit_offset);
2513 if (attr)
2514 {
2515 if (BITS_BIG_ENDIAN)
2516 {
2517 /* For big endian bits, the DW_AT_bit_offset gives the
2518 additional bit offset from the MSB of the containing
2519 anonymous object to the MSB of the field. We don't
2520 have to do anything special since we don't need to
2521 know the size of the anonymous object. */
2522 FIELD_BITPOS (*fp) += DW_UNSND (attr);
2523 }
2524 else
2525 {
2526 /* For little endian bits, compute the bit offset to the
2527 MSB of the anonymous object, subtract off the number of
2528 bits from the MSB of the field to the MSB of the
2529 object, and then subtract off the number of bits of
2530 the field itself. The result is the bit offset of
2531 the LSB of the field. */
2532 int anonymous_size;
2533 int bit_offset = DW_UNSND (attr);
2534
2535 attr = dwarf_attr (die, DW_AT_byte_size);
2536 if (attr)
2537 {
2538 /* The size of the anonymous object containing
2539 the bit field is explicit, so use the
2540 indicated size (in bytes). */
2541 anonymous_size = DW_UNSND (attr);
2542 }
2543 else
2544 {
2545 /* The size of the anonymous object containing
2546 the bit field must be inferred from the type
2547 attribute of the data member containing the
2548 bit field. */
2549 anonymous_size = TYPE_LENGTH (fp->type);
2550 }
2551 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
2552 - bit_offset - FIELD_BITSIZE (*fp);
2553 }
2554 }
2555
2556 /* Get name of field. */
2557 attr = dwarf_attr (die, DW_AT_name);
2558 if (attr && DW_STRING (attr))
2559 fieldname = DW_STRING (attr);
2560 fp->name = obsavestring (fieldname, strlen (fieldname),
2561 &objfile->type_obstack);
2562
2563 /* Change accessibility for artificial fields (e.g. virtual table
2564 pointer or virtual base class pointer) to private. */
2565 if (dwarf_attr (die, DW_AT_artificial))
2566 {
2567 new_field->accessibility = DW_ACCESS_private;
2568 fip->non_public_fields = 1;
2569 }
2570 }
2571 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
2572 {
2573 /* C++ static member. */
2574
2575 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
2576 is a declaration, but all versions of G++ as of this writing
2577 (so through at least 3.2.1) incorrectly generate
2578 DW_TAG_variable tags. */
2579
2580 char *physname;
2581
2582 /* Get name of field. */
2583 attr = dwarf_attr (die, DW_AT_name);
2584 if (attr && DW_STRING (attr))
2585 fieldname = DW_STRING (attr);
2586 else
2587 return;
2588
2589 /* Get physical name. */
2590 physname = dwarf2_linkage_name (die);
2591
2592 SET_FIELD_PHYSNAME (*fp, obsavestring (physname, strlen (physname),
2593 &objfile->type_obstack));
2594 FIELD_TYPE (*fp) = die_type (die, objfile, cu_header);
2595 FIELD_NAME (*fp) = obsavestring (fieldname, strlen (fieldname),
2596 &objfile->type_obstack);
2597 }
2598 else if (die->tag == DW_TAG_inheritance)
2599 {
2600 /* C++ base class field. */
2601 attr = dwarf_attr (die, DW_AT_data_member_location);
2602 if (attr)
2603 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), objfile, cu_header)
2604 * bits_per_byte);
2605 FIELD_BITSIZE (*fp) = 0;
2606 FIELD_STATIC_KIND (*fp) = 0;
2607 FIELD_TYPE (*fp) = die_type (die, objfile, cu_header);
2608 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
2609 fip->nbaseclasses++;
2610 }
2611 }
2612
2613 /* Create the vector of fields, and attach it to the type. */
2614
2615 static void
2616 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
2617 struct objfile *objfile)
2618 {
2619 int nfields = fip->nfields;
2620
2621 /* Record the field count, allocate space for the array of fields,
2622 and create blank accessibility bitfields if necessary. */
2623 TYPE_NFIELDS (type) = nfields;
2624 TYPE_FIELDS (type) = (struct field *)
2625 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2626 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2627
2628 if (fip->non_public_fields)
2629 {
2630 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2631
2632 TYPE_FIELD_PRIVATE_BITS (type) =
2633 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2634 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2635
2636 TYPE_FIELD_PROTECTED_BITS (type) =
2637 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2638 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2639
2640 TYPE_FIELD_IGNORE_BITS (type) =
2641 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2642 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2643 }
2644
2645 /* If the type has baseclasses, allocate and clear a bit vector for
2646 TYPE_FIELD_VIRTUAL_BITS. */
2647 if (fip->nbaseclasses)
2648 {
2649 int num_bytes = B_BYTES (fip->nbaseclasses);
2650 char *pointer;
2651
2652 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2653 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2654 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2655 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
2656 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
2657 }
2658
2659 /* Copy the saved-up fields into the field vector. Start from the head
2660 of the list, adding to the tail of the field array, so that they end
2661 up in the same order in the array in which they were added to the list. */
2662 while (nfields-- > 0)
2663 {
2664 TYPE_FIELD (type, nfields) = fip->fields->field;
2665 switch (fip->fields->accessibility)
2666 {
2667 case DW_ACCESS_private:
2668 SET_TYPE_FIELD_PRIVATE (type, nfields);
2669 break;
2670
2671 case DW_ACCESS_protected:
2672 SET_TYPE_FIELD_PROTECTED (type, nfields);
2673 break;
2674
2675 case DW_ACCESS_public:
2676 break;
2677
2678 default:
2679 /* Unknown accessibility. Complain and treat it as public. */
2680 {
2681 complaint (&symfile_complaints, "unsupported accessibility %d",
2682 fip->fields->accessibility);
2683 }
2684 break;
2685 }
2686 if (nfields < fip->nbaseclasses)
2687 {
2688 switch (fip->fields->virtuality)
2689 {
2690 case DW_VIRTUALITY_virtual:
2691 case DW_VIRTUALITY_pure_virtual:
2692 SET_TYPE_FIELD_VIRTUAL (type, nfields);
2693 break;
2694 }
2695 }
2696 fip->fields = fip->fields->next;
2697 }
2698 }
2699
2700 /* Add a member function to the proper fieldlist. */
2701
2702 static void
2703 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
2704 struct type *type, struct objfile *objfile,
2705 const struct comp_unit_head *cu_header)
2706 {
2707 struct attribute *attr;
2708 struct fnfieldlist *flp;
2709 int i;
2710 struct fn_field *fnp;
2711 char *fieldname;
2712 char *physname;
2713 struct nextfnfield *new_fnfield;
2714
2715 /* Get name of member function. */
2716 attr = dwarf_attr (die, DW_AT_name);
2717 if (attr && DW_STRING (attr))
2718 fieldname = DW_STRING (attr);
2719 else
2720 return;
2721
2722 /* Get the mangled name. */
2723 physname = dwarf2_linkage_name (die);
2724
2725 /* Look up member function name in fieldlist. */
2726 for (i = 0; i < fip->nfnfields; i++)
2727 {
2728 if (STREQ (fip->fnfieldlists[i].name, fieldname))
2729 break;
2730 }
2731
2732 /* Create new list element if necessary. */
2733 if (i < fip->nfnfields)
2734 flp = &fip->fnfieldlists[i];
2735 else
2736 {
2737 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
2738 {
2739 fip->fnfieldlists = (struct fnfieldlist *)
2740 xrealloc (fip->fnfieldlists,
2741 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
2742 * sizeof (struct fnfieldlist));
2743 if (fip->nfnfields == 0)
2744 make_cleanup (free_current_contents, &fip->fnfieldlists);
2745 }
2746 flp = &fip->fnfieldlists[fip->nfnfields];
2747 flp->name = fieldname;
2748 flp->length = 0;
2749 flp->head = NULL;
2750 fip->nfnfields++;
2751 }
2752
2753 /* Create a new member function field and chain it to the field list
2754 entry. */
2755 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
2756 make_cleanup (xfree, new_fnfield);
2757 memset (new_fnfield, 0, sizeof (struct nextfnfield));
2758 new_fnfield->next = flp->head;
2759 flp->head = new_fnfield;
2760 flp->length++;
2761
2762 /* Fill in the member function field info. */
2763 fnp = &new_fnfield->fnfield;
2764 fnp->physname = obsavestring (physname, strlen (physname),
2765 &objfile->type_obstack);
2766 fnp->type = alloc_type (objfile);
2767 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
2768 {
2769 struct type *return_type = TYPE_TARGET_TYPE (die->type);
2770 int nparams = TYPE_NFIELDS (die->type);
2771
2772 /* TYPE is the domain of this method, and DIE->TYPE is the type
2773 of the method itself (TYPE_CODE_METHOD). */
2774 smash_to_method_type (fnp->type, type,
2775 TYPE_TARGET_TYPE (die->type),
2776 TYPE_FIELDS (die->type),
2777 TYPE_NFIELDS (die->type),
2778 TYPE_VARARGS (die->type));
2779
2780 /* Handle static member functions.
2781 Dwarf2 has no clean way to discern C++ static and non-static
2782 member functions. G++ helps GDB by marking the first
2783 parameter for non-static member functions (which is the
2784 this pointer) as artificial. We obtain this information
2785 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
2786 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
2787 fnp->voffset = VOFFSET_STATIC;
2788 }
2789 else
2790 complaint (&symfile_complaints, "member function type missing for '%s'",
2791 physname);
2792
2793 /* Get fcontext from DW_AT_containing_type if present. */
2794 if (dwarf_attr (die, DW_AT_containing_type) != NULL)
2795 fnp->fcontext = die_containing_type (die, objfile, cu_header);
2796
2797 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
2798 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
2799
2800 /* Get accessibility. */
2801 attr = dwarf_attr (die, DW_AT_accessibility);
2802 if (attr)
2803 {
2804 switch (DW_UNSND (attr))
2805 {
2806 case DW_ACCESS_private:
2807 fnp->is_private = 1;
2808 break;
2809 case DW_ACCESS_protected:
2810 fnp->is_protected = 1;
2811 break;
2812 }
2813 }
2814
2815 /* Check for artificial methods. */
2816 attr = dwarf_attr (die, DW_AT_artificial);
2817 if (attr && DW_UNSND (attr) != 0)
2818 fnp->is_artificial = 1;
2819
2820 /* Get index in virtual function table if it is a virtual member function. */
2821 attr = dwarf_attr (die, DW_AT_vtable_elem_location);
2822 if (attr)
2823 {
2824 /* Support the .debug_loc offsets */
2825 if (attr_form_is_block (attr))
2826 {
2827 fnp->voffset = decode_locdesc (DW_BLOCK (attr), objfile, cu_header) + 2;
2828 }
2829 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
2830 {
2831 dwarf2_complex_location_expr_complaint ();
2832 }
2833 else
2834 {
2835 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
2836 fieldname);
2837 }
2838 }
2839 }
2840
2841 /* Create the vector of member function fields, and attach it to the type. */
2842
2843 static void
2844 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
2845 struct objfile *objfile)
2846 {
2847 struct fnfieldlist *flp;
2848 int total_length = 0;
2849 int i;
2850
2851 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2852 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2853 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
2854
2855 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
2856 {
2857 struct nextfnfield *nfp = flp->head;
2858 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
2859 int k;
2860
2861 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
2862 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
2863 fn_flp->fn_fields = (struct fn_field *)
2864 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
2865 for (k = flp->length; (k--, nfp); nfp = nfp->next)
2866 fn_flp->fn_fields[k] = nfp->fnfield;
2867
2868 total_length += flp->length;
2869 }
2870
2871 TYPE_NFN_FIELDS (type) = fip->nfnfields;
2872 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2873 }
2874
2875 /* Called when we find the DIE that starts a structure or union scope
2876 (definition) to process all dies that define the members of the
2877 structure or union.
2878
2879 NOTE: we need to call struct_type regardless of whether or not the
2880 DIE has an at_name attribute, since it might be an anonymous
2881 structure or union. This gets the type entered into our set of
2882 user defined types.
2883
2884 However, if the structure is incomplete (an opaque struct/union)
2885 then suppress creating a symbol table entry for it since gdb only
2886 wants to find the one with the complete definition. Note that if
2887 it is complete, we just call new_symbol, which does it's own
2888 checking about whether the struct/union is anonymous or not (and
2889 suppresses creating a symbol table entry itself). */
2890
2891 static void
2892 read_structure_scope (struct die_info *die, struct objfile *objfile,
2893 const struct comp_unit_head *cu_header)
2894 {
2895 struct type *type;
2896 struct attribute *attr;
2897
2898 type = alloc_type (objfile);
2899
2900 INIT_CPLUS_SPECIFIC (type);
2901 attr = dwarf_attr (die, DW_AT_name);
2902 if (attr && DW_STRING (attr))
2903 {
2904 TYPE_TAG_NAME (type) = obsavestring (DW_STRING (attr),
2905 strlen (DW_STRING (attr)),
2906 &objfile->type_obstack);
2907 }
2908
2909 if (die->tag == DW_TAG_structure_type)
2910 {
2911 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2912 }
2913 else if (die->tag == DW_TAG_union_type)
2914 {
2915 TYPE_CODE (type) = TYPE_CODE_UNION;
2916 }
2917 else
2918 {
2919 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
2920 in gdbtypes.h. */
2921 TYPE_CODE (type) = TYPE_CODE_CLASS;
2922 }
2923
2924 attr = dwarf_attr (die, DW_AT_byte_size);
2925 if (attr)
2926 {
2927 TYPE_LENGTH (type) = DW_UNSND (attr);
2928 }
2929 else
2930 {
2931 TYPE_LENGTH (type) = 0;
2932 }
2933
2934 /* We need to add the type field to the die immediately so we don't
2935 infinitely recurse when dealing with pointers to the structure
2936 type within the structure itself. */
2937 die->type = type;
2938
2939 if (die->has_children && ! die_is_declaration (die))
2940 {
2941 struct field_info fi;
2942 struct die_info *child_die;
2943 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
2944
2945 memset (&fi, 0, sizeof (struct field_info));
2946
2947 child_die = die->next;
2948
2949 while (child_die && child_die->tag)
2950 {
2951 if (child_die->tag == DW_TAG_member
2952 || child_die->tag == DW_TAG_variable)
2953 {
2954 /* NOTE: carlton/2002-11-05: A C++ static data member
2955 should be a DW_TAG_member that is a declaration, but
2956 all versions of G++ as of this writing (so through at
2957 least 3.2.1) incorrectly generate DW_TAG_variable
2958 tags for them instead. */
2959 dwarf2_add_field (&fi, child_die, objfile, cu_header);
2960 }
2961 else if (child_die->tag == DW_TAG_subprogram)
2962 {
2963 /* C++ member function. */
2964 process_die (child_die, objfile, cu_header);
2965 dwarf2_add_member_fn (&fi, child_die, type, objfile, cu_header);
2966 }
2967 else if (child_die->tag == DW_TAG_inheritance)
2968 {
2969 /* C++ base class field. */
2970 dwarf2_add_field (&fi, child_die, objfile, cu_header);
2971 }
2972 else
2973 {
2974 process_die (child_die, objfile, cu_header);
2975 }
2976 child_die = sibling_die (child_die);
2977 }
2978
2979 /* Attach fields and member functions to the type. */
2980 if (fi.nfields)
2981 dwarf2_attach_fields_to_type (&fi, type, objfile);
2982 if (fi.nfnfields)
2983 {
2984 dwarf2_attach_fn_fields_to_type (&fi, type, objfile);
2985
2986 /* Get the type which refers to the base class (possibly this
2987 class itself) which contains the vtable pointer for the current
2988 class from the DW_AT_containing_type attribute. */
2989
2990 if (dwarf_attr (die, DW_AT_containing_type) != NULL)
2991 {
2992 struct type *t = die_containing_type (die, objfile, cu_header);
2993
2994 TYPE_VPTR_BASETYPE (type) = t;
2995 if (type == t)
2996 {
2997 static const char vptr_name[] =
2998 {'_', 'v', 'p', 't', 'r', '\0'};
2999 int i;
3000
3001 /* Our own class provides vtbl ptr. */
3002 for (i = TYPE_NFIELDS (t) - 1;
3003 i >= TYPE_N_BASECLASSES (t);
3004 --i)
3005 {
3006 char *fieldname = TYPE_FIELD_NAME (t, i);
3007
3008 if (STREQN (fieldname, vptr_name, strlen (vptr_name) - 1)
3009 && is_cplus_marker (fieldname[strlen (vptr_name)]))
3010 {
3011 TYPE_VPTR_FIELDNO (type) = i;
3012 break;
3013 }
3014 }
3015
3016 /* Complain if virtual function table field not found. */
3017 if (i < TYPE_N_BASECLASSES (t))
3018 complaint (&symfile_complaints,
3019 "virtual function table pointer not found when defining class '%s'",
3020 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3021 "");
3022 }
3023 else
3024 {
3025 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3026 }
3027 }
3028 }
3029
3030 new_symbol (die, type, objfile, cu_header);
3031
3032 do_cleanups (back_to);
3033 }
3034 else
3035 {
3036 /* No children, must be stub. */
3037 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3038 }
3039 }
3040
3041 /* Given a pointer to a die which begins an enumeration, process all
3042 the dies that define the members of the enumeration.
3043
3044 This will be much nicer in draft 6 of the DWARF spec when our
3045 members will be dies instead squished into the DW_AT_element_list
3046 attribute.
3047
3048 NOTE: We reverse the order of the element list. */
3049
3050 static void
3051 read_enumeration (struct die_info *die, struct objfile *objfile,
3052 const struct comp_unit_head *cu_header)
3053 {
3054 struct die_info *child_die;
3055 struct type *type;
3056 struct field *fields;
3057 struct attribute *attr;
3058 struct symbol *sym;
3059 int num_fields;
3060 int unsigned_enum = 1;
3061
3062 type = alloc_type (objfile);
3063
3064 TYPE_CODE (type) = TYPE_CODE_ENUM;
3065 attr = dwarf_attr (die, DW_AT_name);
3066 if (attr && DW_STRING (attr))
3067 {
3068 TYPE_TAG_NAME (type) = obsavestring (DW_STRING (attr),
3069 strlen (DW_STRING (attr)),
3070 &objfile->type_obstack);
3071 }
3072
3073 attr = dwarf_attr (die, DW_AT_byte_size);
3074 if (attr)
3075 {
3076 TYPE_LENGTH (type) = DW_UNSND (attr);
3077 }
3078 else
3079 {
3080 TYPE_LENGTH (type) = 0;
3081 }
3082
3083 num_fields = 0;
3084 fields = NULL;
3085 if (die->has_children)
3086 {
3087 child_die = die->next;
3088 while (child_die && child_die->tag)
3089 {
3090 if (child_die->tag != DW_TAG_enumerator)
3091 {
3092 process_die (child_die, objfile, cu_header);
3093 }
3094 else
3095 {
3096 attr = dwarf_attr (child_die, DW_AT_name);
3097 if (attr)
3098 {
3099 sym = new_symbol (child_die, type, objfile, cu_header);
3100 if (SYMBOL_VALUE (sym) < 0)
3101 unsigned_enum = 0;
3102
3103 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
3104 {
3105 fields = (struct field *)
3106 xrealloc (fields,
3107 (num_fields + DW_FIELD_ALLOC_CHUNK)
3108 * sizeof (struct field));
3109 }
3110
3111 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
3112 FIELD_TYPE (fields[num_fields]) = NULL;
3113 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
3114 FIELD_BITSIZE (fields[num_fields]) = 0;
3115 FIELD_STATIC_KIND (fields[num_fields]) = 0;
3116
3117 num_fields++;
3118 }
3119 }
3120
3121 child_die = sibling_die (child_die);
3122 }
3123
3124 if (num_fields)
3125 {
3126 TYPE_NFIELDS (type) = num_fields;
3127 TYPE_FIELDS (type) = (struct field *)
3128 TYPE_ALLOC (type, sizeof (struct field) * num_fields);
3129 memcpy (TYPE_FIELDS (type), fields,
3130 sizeof (struct field) * num_fields);
3131 xfree (fields);
3132 }
3133 if (unsigned_enum)
3134 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3135 }
3136 die->type = type;
3137 new_symbol (die, type, objfile, cu_header);
3138 }
3139
3140 /* Extract all information from a DW_TAG_array_type DIE and put it in
3141 the DIE's type field. For now, this only handles one dimensional
3142 arrays. */
3143
3144 static void
3145 read_array_type (struct die_info *die, struct objfile *objfile,
3146 const struct comp_unit_head *cu_header)
3147 {
3148 struct die_info *child_die;
3149 struct type *type = NULL;
3150 struct type *element_type, *range_type, *index_type;
3151 struct type **range_types = NULL;
3152 struct attribute *attr;
3153 int ndim = 0;
3154 struct cleanup *back_to;
3155
3156 /* Return if we've already decoded this type. */
3157 if (die->type)
3158 {
3159 return;
3160 }
3161
3162 element_type = die_type (die, objfile, cu_header);
3163
3164 /* Irix 6.2 native cc creates array types without children for
3165 arrays with unspecified length. */
3166 if (die->has_children == 0)
3167 {
3168 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER);
3169 range_type = create_range_type (NULL, index_type, 0, -1);
3170 die->type = create_array_type (NULL, element_type, range_type);
3171 return;
3172 }
3173
3174 back_to = make_cleanup (null_cleanup, NULL);
3175 child_die = die->next;
3176 while (child_die && child_die->tag)
3177 {
3178 if (child_die->tag == DW_TAG_subrange_type)
3179 {
3180 unsigned int low, high;
3181
3182 /* Default bounds to an array with unspecified length. */
3183 low = 0;
3184 high = -1;
3185 if (cu_language == language_fortran)
3186 {
3187 /* FORTRAN implies a lower bound of 1, if not given. */
3188 low = 1;
3189 }
3190
3191 index_type = die_type (child_die, objfile, cu_header);
3192 attr = dwarf_attr (child_die, DW_AT_lower_bound);
3193 if (attr)
3194 {
3195 if (attr->form == DW_FORM_sdata)
3196 {
3197 low = DW_SND (attr);
3198 }
3199 else if (attr->form == DW_FORM_udata
3200 || attr->form == DW_FORM_data1
3201 || attr->form == DW_FORM_data2
3202 || attr->form == DW_FORM_data4
3203 || attr->form == DW_FORM_data8)
3204 {
3205 low = DW_UNSND (attr);
3206 }
3207 else
3208 {
3209 dwarf2_non_const_array_bound_ignored_complaint
3210 (dwarf_form_name (attr->form));
3211 #ifdef FORTRAN_HACK
3212 die->type = lookup_pointer_type (element_type);
3213 return;
3214 #else
3215 low = 0;
3216 #endif
3217 }
3218 }
3219 attr = dwarf_attr (child_die, DW_AT_upper_bound);
3220 if (attr)
3221 {
3222 if (attr->form == DW_FORM_sdata)
3223 {
3224 high = DW_SND (attr);
3225 }
3226 else if (attr->form == DW_FORM_udata
3227 || attr->form == DW_FORM_data1
3228 || attr->form == DW_FORM_data2
3229 || attr->form == DW_FORM_data4
3230 || attr->form == DW_FORM_data8)
3231 {
3232 high = DW_UNSND (attr);
3233 }
3234 else if (attr->form == DW_FORM_block1)
3235 {
3236 /* GCC encodes arrays with unspecified or dynamic length
3237 with a DW_FORM_block1 attribute.
3238 FIXME: GDB does not yet know how to handle dynamic
3239 arrays properly, treat them as arrays with unspecified
3240 length for now. */
3241 high = -1;
3242 }
3243 else
3244 {
3245 dwarf2_non_const_array_bound_ignored_complaint
3246 (dwarf_form_name (attr->form));
3247 #ifdef FORTRAN_HACK
3248 die->type = lookup_pointer_type (element_type);
3249 return;
3250 #else
3251 high = 1;
3252 #endif
3253 }
3254 }
3255
3256 /* Create a range type and save it for array type creation. */
3257 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
3258 {
3259 range_types = (struct type **)
3260 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
3261 * sizeof (struct type *));
3262 if (ndim == 0)
3263 make_cleanup (free_current_contents, &range_types);
3264 }
3265 range_types[ndim++] = create_range_type (NULL, index_type, low, high);
3266 }
3267 child_die = sibling_die (child_die);
3268 }
3269
3270 /* Dwarf2 dimensions are output from left to right, create the
3271 necessary array types in backwards order. */
3272 type = element_type;
3273 while (ndim-- > 0)
3274 type = create_array_type (NULL, type, range_types[ndim]);
3275
3276 /* Understand Dwarf2 support for vector types (like they occur on
3277 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
3278 array type. This is not part of the Dwarf2/3 standard yet, but a
3279 custom vendor extension. The main difference between a regular
3280 array and the vector variant is that vectors are passed by value
3281 to functions. */
3282 attr = dwarf_attr (die, DW_AT_GNU_vector);
3283 if (attr)
3284 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
3285
3286 do_cleanups (back_to);
3287
3288 /* Install the type in the die. */
3289 die->type = type;
3290 }
3291
3292 /* First cut: install each common block member as a global variable. */
3293
3294 static void
3295 read_common_block (struct die_info *die, struct objfile *objfile,
3296 const struct comp_unit_head *cu_header)
3297 {
3298 struct die_info *child_die;
3299 struct attribute *attr;
3300 struct symbol *sym;
3301 CORE_ADDR base = (CORE_ADDR) 0;
3302
3303 attr = dwarf_attr (die, DW_AT_location);
3304 if (attr)
3305 {
3306 /* Support the .debug_loc offsets */
3307 if (attr_form_is_block (attr))
3308 {
3309 base = decode_locdesc (DW_BLOCK (attr), objfile, cu_header);
3310 }
3311 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3312 {
3313 dwarf2_complex_location_expr_complaint ();
3314 }
3315 else
3316 {
3317 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
3318 "common block member");
3319 }
3320 }
3321 if (die->has_children)
3322 {
3323 child_die = die->next;
3324 while (child_die && child_die->tag)
3325 {
3326 sym = new_symbol (child_die, NULL, objfile, cu_header);
3327 attr = dwarf_attr (child_die, DW_AT_data_member_location);
3328 if (attr)
3329 {
3330 SYMBOL_VALUE_ADDRESS (sym) =
3331 base + decode_locdesc (DW_BLOCK (attr), objfile, cu_header);
3332 add_symbol_to_list (sym, &global_symbols);
3333 }
3334 child_die = sibling_die (child_die);
3335 }
3336 }
3337 }
3338
3339 /* Read a C++ namespace. */
3340
3341 static void
3342 read_namespace (struct die_info *die, struct objfile *objfile,
3343 const struct comp_unit_head *cu_header)
3344 {
3345 const char *previous_namespace = processing_current_namespace;
3346 const char *name = NULL;
3347 int is_anonymous;
3348 struct die_info *current_die;
3349
3350 /* Loop through the extensions until we find a name. */
3351
3352 for (current_die = die;
3353 current_die != NULL;
3354 current_die = dwarf2_extension (die))
3355 {
3356 name = dwarf2_name (current_die);
3357 if (name != NULL)
3358 break;
3359 }
3360
3361 /* Is it an anonymous namespace? */
3362
3363 is_anonymous = (name == NULL);
3364 if (is_anonymous)
3365 name = "(anonymous namespace)";
3366
3367 /* Now build the name of the current namespace. */
3368
3369 if (previous_namespace[0] == '\0')
3370 {
3371 processing_current_namespace = name;
3372 }
3373 else
3374 {
3375 /* We need temp_name around because processing_current_namespace
3376 is a const char *. */
3377 char *temp_name = alloca (strlen (previous_namespace)
3378 + 2 + strlen(name) + 1);
3379 strcpy (temp_name, previous_namespace);
3380 strcat (temp_name, "::");
3381 strcat (temp_name, name);
3382
3383 processing_current_namespace = temp_name;
3384 }
3385
3386 /* Add a symbol associated to this if we haven't seen the namespace
3387 before. Also, add a using directive if it's an anonymous
3388 namespace. */
3389
3390 if (dwarf2_extension (die) == NULL)
3391 {
3392 struct type *type;
3393
3394 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
3395 this cast will hopefully become unnecessary. */
3396 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
3397 (char *) processing_current_namespace,
3398 objfile);
3399 TYPE_TAG_NAME (type) = TYPE_NAME (type);
3400
3401 new_symbol (die, type, objfile, cu_header);
3402
3403 if (is_anonymous)
3404 cp_add_using_directive (processing_current_namespace,
3405 strlen (previous_namespace),
3406 strlen (processing_current_namespace));
3407 }
3408
3409 if (die->has_children)
3410 {
3411 struct die_info *child_die = die->next;
3412
3413 while (child_die && child_die->tag)
3414 {
3415 process_die (child_die, objfile, cu_header);
3416 child_die = sibling_die (child_die);
3417 }
3418 }
3419
3420 processing_current_namespace = previous_namespace;
3421 }
3422
3423 /* Extract all information from a DW_TAG_pointer_type DIE and add to
3424 the user defined type vector. */
3425
3426 static void
3427 read_tag_pointer_type (struct die_info *die, struct objfile *objfile,
3428 const struct comp_unit_head *cu_header)
3429 {
3430 struct type *type;
3431 struct attribute *attr_byte_size;
3432 struct attribute *attr_address_class;
3433 int byte_size, addr_class;
3434
3435 if (die->type)
3436 {
3437 return;
3438 }
3439
3440 type = lookup_pointer_type (die_type (die, objfile, cu_header));
3441
3442 attr_byte_size = dwarf_attr (die, DW_AT_byte_size);
3443 if (attr_byte_size)
3444 byte_size = DW_UNSND (attr_byte_size);
3445 else
3446 byte_size = cu_header->addr_size;
3447
3448 attr_address_class = dwarf_attr (die, DW_AT_address_class);
3449 if (attr_address_class)
3450 addr_class = DW_UNSND (attr_address_class);
3451 else
3452 addr_class = DW_ADDR_none;
3453
3454 /* If the pointer size or address class is different than the
3455 default, create a type variant marked as such and set the
3456 length accordingly. */
3457 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
3458 {
3459 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
3460 {
3461 int type_flags;
3462
3463 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
3464 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
3465 type = make_type_with_address_space (type, type_flags);
3466 }
3467 else if (TYPE_LENGTH (type) != byte_size)
3468 {
3469 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
3470 }
3471 else {
3472 /* Should we also complain about unhandled address classes? */
3473 }
3474 }
3475
3476 TYPE_LENGTH (type) = byte_size;
3477 die->type = type;
3478 }
3479
3480 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
3481 the user defined type vector. */
3482
3483 static void
3484 read_tag_ptr_to_member_type (struct die_info *die, struct objfile *objfile,
3485 const struct comp_unit_head *cu_header)
3486 {
3487 struct type *type;
3488 struct type *to_type;
3489 struct type *domain;
3490
3491 if (die->type)
3492 {
3493 return;
3494 }
3495
3496 type = alloc_type (objfile);
3497 to_type = die_type (die, objfile, cu_header);
3498 domain = die_containing_type (die, objfile, cu_header);
3499 smash_to_member_type (type, domain, to_type);
3500
3501 die->type = type;
3502 }
3503
3504 /* Extract all information from a DW_TAG_reference_type DIE and add to
3505 the user defined type vector. */
3506
3507 static void
3508 read_tag_reference_type (struct die_info *die, struct objfile *objfile,
3509 const struct comp_unit_head *cu_header)
3510 {
3511 struct type *type;
3512 struct attribute *attr;
3513
3514 if (die->type)
3515 {
3516 return;
3517 }
3518
3519 type = lookup_reference_type (die_type (die, objfile, cu_header));
3520 attr = dwarf_attr (die, DW_AT_byte_size);
3521 if (attr)
3522 {
3523 TYPE_LENGTH (type) = DW_UNSND (attr);
3524 }
3525 else
3526 {
3527 TYPE_LENGTH (type) = cu_header->addr_size;
3528 }
3529 die->type = type;
3530 }
3531
3532 static void
3533 read_tag_const_type (struct die_info *die, struct objfile *objfile,
3534 const struct comp_unit_head *cu_header)
3535 {
3536 struct type *base_type;
3537
3538 if (die->type)
3539 {
3540 return;
3541 }
3542
3543 base_type = die_type (die, objfile, cu_header);
3544 die->type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
3545 }
3546
3547 static void
3548 read_tag_volatile_type (struct die_info *die, struct objfile *objfile,
3549 const struct comp_unit_head *cu_header)
3550 {
3551 struct type *base_type;
3552
3553 if (die->type)
3554 {
3555 return;
3556 }
3557
3558 base_type = die_type (die, objfile, cu_header);
3559 die->type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
3560 }
3561
3562 /* Extract all information from a DW_TAG_string_type DIE and add to
3563 the user defined type vector. It isn't really a user defined type,
3564 but it behaves like one, with other DIE's using an AT_user_def_type
3565 attribute to reference it. */
3566
3567 static void
3568 read_tag_string_type (struct die_info *die, struct objfile *objfile)
3569 {
3570 struct type *type, *range_type, *index_type, *char_type;
3571 struct attribute *attr;
3572 unsigned int length;
3573
3574 if (die->type)
3575 {
3576 return;
3577 }
3578
3579 attr = dwarf_attr (die, DW_AT_string_length);
3580 if (attr)
3581 {
3582 length = DW_UNSND (attr);
3583 }
3584 else
3585 {
3586 /* check for the DW_AT_byte_size attribute */
3587 attr = dwarf_attr (die, DW_AT_byte_size);
3588 if (attr)
3589 {
3590 length = DW_UNSND (attr);
3591 }
3592 else
3593 {
3594 length = 1;
3595 }
3596 }
3597 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER);
3598 range_type = create_range_type (NULL, index_type, 1, length);
3599 if (cu_language == language_fortran)
3600 {
3601 /* Need to create a unique string type for bounds
3602 information */
3603 type = create_string_type (0, range_type);
3604 }
3605 else
3606 {
3607 char_type = dwarf2_fundamental_type (objfile, FT_CHAR);
3608 type = create_string_type (char_type, range_type);
3609 }
3610 die->type = type;
3611 }
3612
3613 /* Handle DIES due to C code like:
3614
3615 struct foo
3616 {
3617 int (*funcp)(int a, long l);
3618 int b;
3619 };
3620
3621 ('funcp' generates a DW_TAG_subroutine_type DIE)
3622 */
3623
3624 static void
3625 read_subroutine_type (struct die_info *die, struct objfile *objfile,
3626 const struct comp_unit_head *cu_header)
3627 {
3628 struct type *type; /* Type that this function returns */
3629 struct type *ftype; /* Function that returns above type */
3630 struct attribute *attr;
3631
3632 /* Decode the type that this subroutine returns */
3633 if (die->type)
3634 {
3635 return;
3636 }
3637 type = die_type (die, objfile, cu_header);
3638 ftype = lookup_function_type (type);
3639
3640 /* All functions in C++ have prototypes. */
3641 attr = dwarf_attr (die, DW_AT_prototyped);
3642 if ((attr && (DW_UNSND (attr) != 0))
3643 || cu_language == language_cplus)
3644 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
3645
3646 if (die->has_children)
3647 {
3648 struct die_info *child_die;
3649 int nparams = 0;
3650 int iparams = 0;
3651
3652 /* Count the number of parameters.
3653 FIXME: GDB currently ignores vararg functions, but knows about
3654 vararg member functions. */
3655 child_die = die->next;
3656 while (child_die && child_die->tag)
3657 {
3658 if (child_die->tag == DW_TAG_formal_parameter)
3659 nparams++;
3660 else if (child_die->tag == DW_TAG_unspecified_parameters)
3661 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
3662 child_die = sibling_die (child_die);
3663 }
3664
3665 /* Allocate storage for parameters and fill them in. */
3666 TYPE_NFIELDS (ftype) = nparams;
3667 TYPE_FIELDS (ftype) = (struct field *)
3668 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
3669
3670 child_die = die->next;
3671 while (child_die && child_die->tag)
3672 {
3673 if (child_die->tag == DW_TAG_formal_parameter)
3674 {
3675 /* Dwarf2 has no clean way to discern C++ static and non-static
3676 member functions. G++ helps GDB by marking the first
3677 parameter for non-static member functions (which is the
3678 this pointer) as artificial. We pass this information
3679 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
3680 attr = dwarf_attr (child_die, DW_AT_artificial);
3681 if (attr)
3682 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
3683 else
3684 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3685 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, objfile,
3686 cu_header);
3687 iparams++;
3688 }
3689 child_die = sibling_die (child_die);
3690 }
3691 }
3692
3693 die->type = ftype;
3694 }
3695
3696 static void
3697 read_typedef (struct die_info *die, struct objfile *objfile,
3698 const struct comp_unit_head *cu_header)
3699 {
3700 struct attribute *attr;
3701 char *name = NULL;
3702
3703 if (!die->type)
3704 {
3705 attr = dwarf_attr (die, DW_AT_name);
3706 if (attr && DW_STRING (attr))
3707 {
3708 name = DW_STRING (attr);
3709 }
3710 die->type = init_type (TYPE_CODE_TYPEDEF, 0, TYPE_FLAG_TARGET_STUB, name, objfile);
3711 TYPE_TARGET_TYPE (die->type) = die_type (die, objfile, cu_header);
3712 }
3713 }
3714
3715 /* Find a representation of a given base type and install
3716 it in the TYPE field of the die. */
3717
3718 static void
3719 read_base_type (struct die_info *die, struct objfile *objfile)
3720 {
3721 struct type *type;
3722 struct attribute *attr;
3723 int encoding = 0, size = 0;
3724
3725 /* If we've already decoded this die, this is a no-op. */
3726 if (die->type)
3727 {
3728 return;
3729 }
3730
3731 attr = dwarf_attr (die, DW_AT_encoding);
3732 if (attr)
3733 {
3734 encoding = DW_UNSND (attr);
3735 }
3736 attr = dwarf_attr (die, DW_AT_byte_size);
3737 if (attr)
3738 {
3739 size = DW_UNSND (attr);
3740 }
3741 attr = dwarf_attr (die, DW_AT_name);
3742 if (attr && DW_STRING (attr))
3743 {
3744 enum type_code code = TYPE_CODE_INT;
3745 int type_flags = 0;
3746
3747 switch (encoding)
3748 {
3749 case DW_ATE_address:
3750 /* Turn DW_ATE_address into a void * pointer. */
3751 code = TYPE_CODE_PTR;
3752 type_flags |= TYPE_FLAG_UNSIGNED;
3753 break;
3754 case DW_ATE_boolean:
3755 code = TYPE_CODE_BOOL;
3756 type_flags |= TYPE_FLAG_UNSIGNED;
3757 break;
3758 case DW_ATE_complex_float:
3759 code = TYPE_CODE_COMPLEX;
3760 break;
3761 case DW_ATE_float:
3762 code = TYPE_CODE_FLT;
3763 break;
3764 case DW_ATE_signed:
3765 case DW_ATE_signed_char:
3766 break;
3767 case DW_ATE_unsigned:
3768 case DW_ATE_unsigned_char:
3769 type_flags |= TYPE_FLAG_UNSIGNED;
3770 break;
3771 default:
3772 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
3773 dwarf_type_encoding_name (encoding));
3774 break;
3775 }
3776 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
3777 if (encoding == DW_ATE_address)
3778 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID);
3779 else if (encoding == DW_ATE_complex_float)
3780 {
3781 if (size == 32)
3782 TYPE_TARGET_TYPE (type)
3783 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT);
3784 else if (size == 16)
3785 TYPE_TARGET_TYPE (type)
3786 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT);
3787 else if (size == 8)
3788 TYPE_TARGET_TYPE (type)
3789 = dwarf2_fundamental_type (objfile, FT_FLOAT);
3790 }
3791 }
3792 else
3793 {
3794 type = dwarf_base_type (encoding, size, objfile);
3795 }
3796 die->type = type;
3797 }
3798
3799 /* Read a whole compilation unit into a linked list of dies. */
3800
3801 static struct die_info *
3802 read_comp_unit (char *info_ptr, bfd *abfd,
3803 const struct comp_unit_head *cu_header)
3804 {
3805 struct die_info *first_die, *last_die, *die;
3806 char *cur_ptr;
3807 int nesting_level;
3808
3809 /* Reset die reference table; we are
3810 building new ones now. */
3811 dwarf2_empty_hash_tables ();
3812
3813 cur_ptr = info_ptr;
3814 nesting_level = 0;
3815 first_die = last_die = NULL;
3816 do
3817 {
3818 cur_ptr = read_full_die (&die, abfd, cur_ptr, cu_header);
3819 if (die->has_children)
3820 {
3821 nesting_level++;
3822 }
3823 if (die->tag == 0)
3824 {
3825 nesting_level--;
3826 }
3827
3828 die->next = NULL;
3829
3830 /* Enter die in reference hash table */
3831 store_in_ref_table (die->offset, die);
3832
3833 if (!first_die)
3834 {
3835 first_die = last_die = die;
3836 }
3837 else
3838 {
3839 last_die->next = die;
3840 last_die = die;
3841 }
3842 }
3843 while (nesting_level > 0);
3844 return first_die;
3845 }
3846
3847 /* Free a linked list of dies. */
3848
3849 static void
3850 free_die_list (struct die_info *dies)
3851 {
3852 struct die_info *die, *next;
3853
3854 die = dies;
3855 while (die)
3856 {
3857 next = die->next;
3858 xfree (die->attrs);
3859 xfree (die);
3860 die = next;
3861 }
3862 }
3863
3864 static void
3865 do_free_die_list_cleanup (void *dies)
3866 {
3867 free_die_list (dies);
3868 }
3869
3870 static struct cleanup *
3871 make_cleanup_free_die_list (struct die_info *dies)
3872 {
3873 return make_cleanup (do_free_die_list_cleanup, dies);
3874 }
3875
3876
3877 /* Read the contents of the section at OFFSET and of size SIZE from the
3878 object file specified by OBJFILE into the psymbol_obstack and return it. */
3879
3880 char *
3881 dwarf2_read_section (struct objfile *objfile, file_ptr offset,
3882 unsigned int size, asection *sectp)
3883 {
3884 bfd *abfd = objfile->obfd;
3885 char *buf, *retbuf;
3886
3887 if (size == 0)
3888 return NULL;
3889
3890 buf = (char *) obstack_alloc (&objfile->psymbol_obstack, size);
3891 retbuf
3892 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
3893 if (retbuf != NULL)
3894 return retbuf;
3895
3896 if ((bfd_seek (abfd, offset, SEEK_SET) != 0) ||
3897 (bfd_bread (buf, size, abfd) != size))
3898 {
3899 buf = NULL;
3900 error ("Dwarf Error: Can't read DWARF data from '%s'",
3901 bfd_get_filename (abfd));
3902 }
3903 return buf;
3904 }
3905
3906 /* In DWARF version 2, the description of the debugging information is
3907 stored in a separate .debug_abbrev section. Before we read any
3908 dies from a section we read in all abbreviations and install them
3909 in a hash table. */
3910
3911 static void
3912 dwarf2_read_abbrevs (bfd *abfd, struct comp_unit_head *cu_header)
3913 {
3914 char *abbrev_ptr;
3915 struct abbrev_info *cur_abbrev;
3916 unsigned int abbrev_number, bytes_read, abbrev_name;
3917 unsigned int abbrev_form, hash_number;
3918
3919 /* Initialize dwarf2 abbrevs */
3920 memset (cu_header->dwarf2_abbrevs, 0,
3921 ABBREV_HASH_SIZE*sizeof (struct abbrev_info *));
3922
3923 abbrev_ptr = dwarf_abbrev_buffer + cu_header->abbrev_offset;
3924 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
3925 abbrev_ptr += bytes_read;
3926
3927 /* loop until we reach an abbrev number of 0 */
3928 while (abbrev_number)
3929 {
3930 cur_abbrev = dwarf_alloc_abbrev ();
3931
3932 /* read in abbrev header */
3933 cur_abbrev->number = abbrev_number;
3934 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
3935 abbrev_ptr += bytes_read;
3936 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
3937 abbrev_ptr += 1;
3938
3939 /* now read in declarations */
3940 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
3941 abbrev_ptr += bytes_read;
3942 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
3943 abbrev_ptr += bytes_read;
3944 while (abbrev_name)
3945 {
3946 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
3947 {
3948 cur_abbrev->attrs = (struct attr_abbrev *)
3949 xrealloc (cur_abbrev->attrs,
3950 (cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK)
3951 * sizeof (struct attr_abbrev));
3952 }
3953 cur_abbrev->attrs[cur_abbrev->num_attrs].name = abbrev_name;
3954 cur_abbrev->attrs[cur_abbrev->num_attrs++].form = abbrev_form;
3955 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
3956 abbrev_ptr += bytes_read;
3957 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
3958 abbrev_ptr += bytes_read;
3959 }
3960
3961 hash_number = abbrev_number % ABBREV_HASH_SIZE;
3962 cur_abbrev->next = cu_header->dwarf2_abbrevs[hash_number];
3963 cu_header->dwarf2_abbrevs[hash_number] = cur_abbrev;
3964
3965 /* Get next abbreviation.
3966 Under Irix6 the abbreviations for a compilation unit are not
3967 always properly terminated with an abbrev number of 0.
3968 Exit loop if we encounter an abbreviation which we have
3969 already read (which means we are about to read the abbreviations
3970 for the next compile unit) or if the end of the abbreviation
3971 table is reached. */
3972 if ((unsigned int) (abbrev_ptr - dwarf_abbrev_buffer)
3973 >= dwarf_abbrev_size)
3974 break;
3975 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
3976 abbrev_ptr += bytes_read;
3977 if (dwarf2_lookup_abbrev (abbrev_number, cu_header) != NULL)
3978 break;
3979 }
3980 }
3981
3982 /* Empty the abbrev table for a new compilation unit. */
3983
3984 /* ARGSUSED */
3985 static void
3986 dwarf2_empty_abbrev_table (void *ptr_to_abbrevs_table)
3987 {
3988 int i;
3989 struct abbrev_info *abbrev, *next;
3990 struct abbrev_info **abbrevs;
3991
3992 abbrevs = (struct abbrev_info **)ptr_to_abbrevs_table;
3993
3994 for (i = 0; i < ABBREV_HASH_SIZE; ++i)
3995 {
3996 next = NULL;
3997 abbrev = abbrevs[i];
3998 while (abbrev)
3999 {
4000 next = abbrev->next;
4001 xfree (abbrev->attrs);
4002 xfree (abbrev);
4003 abbrev = next;
4004 }
4005 abbrevs[i] = NULL;
4006 }
4007 }
4008
4009 /* Lookup an abbrev_info structure in the abbrev hash table. */
4010
4011 static struct abbrev_info *
4012 dwarf2_lookup_abbrev (unsigned int number, const struct comp_unit_head *cu_header)
4013 {
4014 unsigned int hash_number;
4015 struct abbrev_info *abbrev;
4016
4017 hash_number = number % ABBREV_HASH_SIZE;
4018 abbrev = cu_header->dwarf2_abbrevs[hash_number];
4019
4020 while (abbrev)
4021 {
4022 if (abbrev->number == number)
4023 return abbrev;
4024 else
4025 abbrev = abbrev->next;
4026 }
4027 return NULL;
4028 }
4029
4030 /* Read a minimal amount of information into the minimal die structure. */
4031
4032 static char *
4033 read_partial_die (struct partial_die_info *part_die, bfd *abfd,
4034 char *info_ptr, const struct comp_unit_head *cu_header)
4035 {
4036 unsigned int abbrev_number, bytes_read, i;
4037 struct abbrev_info *abbrev;
4038 struct attribute attr;
4039 struct attribute spec_attr;
4040 int found_spec_attr = 0;
4041 int has_low_pc_attr = 0;
4042 int has_high_pc_attr = 0;
4043
4044 *part_die = zeroed_partial_die;
4045 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4046 info_ptr += bytes_read;
4047 if (!abbrev_number)
4048 return info_ptr;
4049
4050 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu_header);
4051 if (!abbrev)
4052 {
4053 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
4054 bfd_get_filename (abfd));
4055 }
4056 part_die->offset = info_ptr - dwarf_info_buffer;
4057 part_die->tag = abbrev->tag;
4058 part_die->has_children = abbrev->has_children;
4059 part_die->abbrev = abbrev_number;
4060
4061 for (i = 0; i < abbrev->num_attrs; ++i)
4062 {
4063 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd,
4064 info_ptr, cu_header);
4065
4066 /* Store the data if it is of an attribute we want to keep in a
4067 partial symbol table. */
4068 switch (attr.name)
4069 {
4070 case DW_AT_name:
4071
4072 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
4073 if (part_die->name == NULL)
4074 part_die->name = DW_STRING (&attr);
4075 break;
4076 case DW_AT_MIPS_linkage_name:
4077 part_die->name = DW_STRING (&attr);
4078 break;
4079 case DW_AT_low_pc:
4080 has_low_pc_attr = 1;
4081 part_die->lowpc = DW_ADDR (&attr);
4082 break;
4083 case DW_AT_high_pc:
4084 has_high_pc_attr = 1;
4085 part_die->highpc = DW_ADDR (&attr);
4086 break;
4087 case DW_AT_location:
4088 /* Support the .debug_loc offsets */
4089 if (attr_form_is_block (&attr))
4090 {
4091 part_die->locdesc = DW_BLOCK (&attr);
4092 }
4093 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
4094 {
4095 dwarf2_complex_location_expr_complaint ();
4096 }
4097 else
4098 {
4099 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4100 "partial symbol information");
4101 }
4102 break;
4103 case DW_AT_language:
4104 part_die->language = DW_UNSND (&attr);
4105 break;
4106 case DW_AT_external:
4107 part_die->is_external = DW_UNSND (&attr);
4108 break;
4109 case DW_AT_declaration:
4110 part_die->is_declaration = DW_UNSND (&attr);
4111 break;
4112 case DW_AT_type:
4113 part_die->has_type = 1;
4114 break;
4115 case DW_AT_abstract_origin:
4116 case DW_AT_specification:
4117 found_spec_attr = 1;
4118 spec_attr = attr;
4119 break;
4120 case DW_AT_sibling:
4121 /* Ignore absolute siblings, they might point outside of
4122 the current compile unit. */
4123 if (attr.form == DW_FORM_ref_addr)
4124 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
4125 else
4126 part_die->sibling =
4127 dwarf_info_buffer + dwarf2_get_ref_die_offset (&attr);
4128 break;
4129 default:
4130 break;
4131 }
4132 }
4133
4134 /* If we found a reference attribute and the die has no name, try
4135 to find a name in the referred to die. */
4136
4137 if (found_spec_attr && part_die->name == NULL)
4138 {
4139 struct partial_die_info spec_die;
4140 char *spec_ptr;
4141 int dummy;
4142
4143 spec_ptr = dwarf_info_buffer + dwarf2_get_ref_die_offset (&spec_attr);
4144 read_partial_die (&spec_die, abfd, spec_ptr, cu_header);
4145 if (spec_die.name)
4146 {
4147 part_die->name = spec_die.name;
4148
4149 /* Copy DW_AT_external attribute if it is set. */
4150 if (spec_die.is_external)
4151 part_die->is_external = spec_die.is_external;
4152 }
4153 }
4154
4155 /* When using the GNU linker, .gnu.linkonce. sections are used to
4156 eliminate duplicate copies of functions and vtables and such.
4157 The linker will arbitrarily choose one and discard the others.
4158 The AT_*_pc values for such functions refer to local labels in
4159 these sections. If the section from that file was discarded, the
4160 labels are not in the output, so the relocs get a value of 0.
4161 If this is a discarded function, mark the pc bounds as invalid,
4162 so that GDB will ignore it. */
4163 if (has_low_pc_attr && has_high_pc_attr
4164 && part_die->lowpc < part_die->highpc
4165 && (part_die->lowpc != 0
4166 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
4167 part_die->has_pc_info = 1;
4168 return info_ptr;
4169 }
4170
4171 /* Read the die from the .debug_info section buffer. And set diep to
4172 point to a newly allocated die with its information. */
4173
4174 static char *
4175 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
4176 const struct comp_unit_head *cu_header)
4177 {
4178 unsigned int abbrev_number, bytes_read, i, offset;
4179 struct abbrev_info *abbrev;
4180 struct die_info *die;
4181
4182 offset = info_ptr - dwarf_info_buffer;
4183 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4184 info_ptr += bytes_read;
4185 if (!abbrev_number)
4186 {
4187 die = dwarf_alloc_die ();
4188 die->tag = 0;
4189 die->abbrev = abbrev_number;
4190 die->type = NULL;
4191 *diep = die;
4192 return info_ptr;
4193 }
4194
4195 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu_header);
4196 if (!abbrev)
4197 {
4198 error ("Dwarf Error: could not find abbrev number %d [in module %s]", abbrev_number,
4199 bfd_get_filename (abfd));
4200 }
4201 die = dwarf_alloc_die ();
4202 die->offset = offset;
4203 die->tag = abbrev->tag;
4204 die->has_children = abbrev->has_children;
4205 die->abbrev = abbrev_number;
4206 die->type = NULL;
4207
4208 die->num_attrs = abbrev->num_attrs;
4209 die->attrs = (struct attribute *)
4210 xmalloc (die->num_attrs * sizeof (struct attribute));
4211
4212 for (i = 0; i < abbrev->num_attrs; ++i)
4213 {
4214 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
4215 abfd, info_ptr, cu_header);
4216 }
4217
4218 *diep = die;
4219 return info_ptr;
4220 }
4221
4222 /* Read an attribute value described by an attribute form. */
4223
4224 static char *
4225 read_attribute_value (struct attribute *attr, unsigned form,
4226 bfd *abfd, char *info_ptr,
4227 const struct comp_unit_head *cu_header)
4228 {
4229 unsigned int bytes_read;
4230 struct dwarf_block *blk;
4231
4232 attr->form = form;
4233 switch (form)
4234 {
4235 case DW_FORM_addr:
4236 case DW_FORM_ref_addr:
4237 DW_ADDR (attr) = read_address (abfd, info_ptr, cu_header, &bytes_read);
4238 info_ptr += bytes_read;
4239 break;
4240 case DW_FORM_block2:
4241 blk = dwarf_alloc_block ();
4242 blk->size = read_2_bytes (abfd, info_ptr);
4243 info_ptr += 2;
4244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
4245 info_ptr += blk->size;
4246 DW_BLOCK (attr) = blk;
4247 break;
4248 case DW_FORM_block4:
4249 blk = dwarf_alloc_block ();
4250 blk->size = read_4_bytes (abfd, info_ptr);
4251 info_ptr += 4;
4252 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
4253 info_ptr += blk->size;
4254 DW_BLOCK (attr) = blk;
4255 break;
4256 case DW_FORM_data2:
4257 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
4258 info_ptr += 2;
4259 break;
4260 case DW_FORM_data4:
4261 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
4262 info_ptr += 4;
4263 break;
4264 case DW_FORM_data8:
4265 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
4266 info_ptr += 8;
4267 break;
4268 case DW_FORM_string:
4269 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
4270 info_ptr += bytes_read;
4271 break;
4272 case DW_FORM_strp:
4273 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
4274 &bytes_read);
4275 info_ptr += bytes_read;
4276 break;
4277 case DW_FORM_block:
4278 blk = dwarf_alloc_block ();
4279 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4280 info_ptr += bytes_read;
4281 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
4282 info_ptr += blk->size;
4283 DW_BLOCK (attr) = blk;
4284 break;
4285 case DW_FORM_block1:
4286 blk = dwarf_alloc_block ();
4287 blk->size = read_1_byte (abfd, info_ptr);
4288 info_ptr += 1;
4289 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
4290 info_ptr += blk->size;
4291 DW_BLOCK (attr) = blk;
4292 break;
4293 case DW_FORM_data1:
4294 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
4295 info_ptr += 1;
4296 break;
4297 case DW_FORM_flag:
4298 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
4299 info_ptr += 1;
4300 break;
4301 case DW_FORM_sdata:
4302 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
4303 info_ptr += bytes_read;
4304 break;
4305 case DW_FORM_udata:
4306 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4307 info_ptr += bytes_read;
4308 break;
4309 case DW_FORM_ref1:
4310 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
4311 info_ptr += 1;
4312 break;
4313 case DW_FORM_ref2:
4314 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
4315 info_ptr += 2;
4316 break;
4317 case DW_FORM_ref4:
4318 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
4319 info_ptr += 4;
4320 break;
4321 case DW_FORM_ref8:
4322 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
4323 info_ptr += 8;
4324 break;
4325 case DW_FORM_ref_udata:
4326 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4327 info_ptr += bytes_read;
4328 break;
4329 case DW_FORM_indirect:
4330 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4331 info_ptr += bytes_read;
4332 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu_header);
4333 break;
4334 default:
4335 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
4336 dwarf_form_name (form),
4337 bfd_get_filename (abfd));
4338 }
4339 return info_ptr;
4340 }
4341
4342 /* Read an attribute described by an abbreviated attribute. */
4343
4344 static char *
4345 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
4346 bfd *abfd, char *info_ptr,
4347 const struct comp_unit_head *cu_header)
4348 {
4349 attr->name = abbrev->name;
4350 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu_header);
4351 }
4352
4353 /* read dwarf information from a buffer */
4354
4355 static unsigned int
4356 read_1_byte (bfd *abfd, char *buf)
4357 {
4358 return bfd_get_8 (abfd, (bfd_byte *) buf);
4359 }
4360
4361 static int
4362 read_1_signed_byte (bfd *abfd, char *buf)
4363 {
4364 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
4365 }
4366
4367 static unsigned int
4368 read_2_bytes (bfd *abfd, char *buf)
4369 {
4370 return bfd_get_16 (abfd, (bfd_byte *) buf);
4371 }
4372
4373 static int
4374 read_2_signed_bytes (bfd *abfd, char *buf)
4375 {
4376 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
4377 }
4378
4379 static unsigned int
4380 read_4_bytes (bfd *abfd, char *buf)
4381 {
4382 return bfd_get_32 (abfd, (bfd_byte *) buf);
4383 }
4384
4385 static int
4386 read_4_signed_bytes (bfd *abfd, char *buf)
4387 {
4388 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
4389 }
4390
4391 static unsigned long
4392 read_8_bytes (bfd *abfd, char *buf)
4393 {
4394 return bfd_get_64 (abfd, (bfd_byte *) buf);
4395 }
4396
4397 static CORE_ADDR
4398 read_address (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
4399 int *bytes_read)
4400 {
4401 CORE_ADDR retval = 0;
4402
4403 if (cu_header->signed_addr_p)
4404 {
4405 switch (cu_header->addr_size)
4406 {
4407 case 2:
4408 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
4409 break;
4410 case 4:
4411 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
4412 break;
4413 case 8:
4414 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
4415 break;
4416 default:
4417 internal_error (__FILE__, __LINE__,
4418 "read_address: bad switch, signed [in module %s]",
4419 bfd_get_filename (abfd));
4420 }
4421 }
4422 else
4423 {
4424 switch (cu_header->addr_size)
4425 {
4426 case 2:
4427 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
4428 break;
4429 case 4:
4430 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
4431 break;
4432 case 8:
4433 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
4434 break;
4435 default:
4436 internal_error (__FILE__, __LINE__,
4437 "read_address: bad switch, unsigned [in module %s]",
4438 bfd_get_filename (abfd));
4439 }
4440 }
4441
4442 *bytes_read = cu_header->addr_size;
4443 return retval;
4444 }
4445
4446 /* Read the initial length from a section. The (draft) DWARF 3
4447 specification allows the initial length to take up either 4 bytes
4448 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
4449 bytes describe the length and all offsets will be 8 bytes in length
4450 instead of 4.
4451
4452 An older, non-standard 64-bit format is also handled by this
4453 function. The older format in question stores the initial length
4454 as an 8-byte quantity without an escape value. Lengths greater
4455 than 2^32 aren't very common which means that the initial 4 bytes
4456 is almost always zero. Since a length value of zero doesn't make
4457 sense for the 32-bit format, this initial zero can be considered to
4458 be an escape value which indicates the presence of the older 64-bit
4459 format. As written, the code can't detect (old format) lengths
4460 greater than 4GB. If it becomes necessary to handle lengths somewhat
4461 larger than 4GB, we could allow other small values (such as the
4462 non-sensical values of 1, 2, and 3) to also be used as escape values
4463 indicating the presence of the old format.
4464
4465 The value returned via bytes_read should be used to increment
4466 the relevant pointer after calling read_initial_length().
4467
4468 As a side effect, this function sets the fields initial_length_size
4469 and offset_size in cu_header to the values appropriate for the
4470 length field. (The format of the initial length field determines
4471 the width of file offsets to be fetched later with fetch_offset().)
4472
4473 [ Note: read_initial_length() and read_offset() are based on the
4474 document entitled "DWARF Debugging Information Format", revision
4475 3, draft 8, dated November 19, 2001. This document was obtained
4476 from:
4477
4478 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
4479
4480 This document is only a draft and is subject to change. (So beware.)
4481
4482 Details regarding the older, non-standard 64-bit format were
4483 determined empirically by examining 64-bit ELF files produced
4484 by the SGI toolchain on an IRIX 6.5 machine.
4485
4486 - Kevin, July 16, 2002
4487 ] */
4488
4489 static LONGEST
4490 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
4491 int *bytes_read)
4492 {
4493 LONGEST retval = 0;
4494
4495 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
4496
4497 if (retval == 0xffffffff)
4498 {
4499 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
4500 *bytes_read = 12;
4501 if (cu_header != NULL)
4502 {
4503 cu_header->initial_length_size = 12;
4504 cu_header->offset_size = 8;
4505 }
4506 }
4507 else if (retval == 0)
4508 {
4509 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
4510 by IRIX. */
4511 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
4512 *bytes_read = 8;
4513 if (cu_header != NULL)
4514 {
4515 cu_header->initial_length_size = 8;
4516 cu_header->offset_size = 8;
4517 }
4518 }
4519 else
4520 {
4521 *bytes_read = 4;
4522 if (cu_header != NULL)
4523 {
4524 cu_header->initial_length_size = 4;
4525 cu_header->offset_size = 4;
4526 }
4527 }
4528
4529 return retval;
4530 }
4531
4532 /* Read an offset from the data stream. The size of the offset is
4533 given by cu_header->offset_size. */
4534
4535 static LONGEST
4536 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
4537 int *bytes_read)
4538 {
4539 LONGEST retval = 0;
4540
4541 switch (cu_header->offset_size)
4542 {
4543 case 4:
4544 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
4545 *bytes_read = 4;
4546 break;
4547 case 8:
4548 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
4549 *bytes_read = 8;
4550 break;
4551 default:
4552 internal_error (__FILE__, __LINE__,
4553 "read_offset: bad switch [in module %s]",
4554 bfd_get_filename (abfd));
4555 }
4556
4557 return retval;
4558 }
4559
4560 static char *
4561 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
4562 {
4563 /* If the size of a host char is 8 bits, we can return a pointer
4564 to the buffer, otherwise we have to copy the data to a buffer
4565 allocated on the temporary obstack. */
4566 gdb_assert (HOST_CHAR_BIT == 8);
4567 return buf;
4568 }
4569
4570 static char *
4571 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
4572 {
4573 /* If the size of a host char is 8 bits, we can return a pointer
4574 to the string, otherwise we have to copy the string to a buffer
4575 allocated on the temporary obstack. */
4576 gdb_assert (HOST_CHAR_BIT == 8);
4577 if (*buf == '\0')
4578 {
4579 *bytes_read_ptr = 1;
4580 return NULL;
4581 }
4582 *bytes_read_ptr = strlen (buf) + 1;
4583 return buf;
4584 }
4585
4586 static char *
4587 read_indirect_string (bfd *abfd, char *buf,
4588 const struct comp_unit_head *cu_header,
4589 unsigned int *bytes_read_ptr)
4590 {
4591 LONGEST str_offset = read_offset (abfd, buf, cu_header,
4592 (int *) bytes_read_ptr);
4593
4594 if (dwarf_str_buffer == NULL)
4595 {
4596 error ("DW_FORM_strp used without .debug_str section [in module %s]",
4597 bfd_get_filename (abfd));
4598 return NULL;
4599 }
4600 if (str_offset >= dwarf_str_size)
4601 {
4602 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
4603 bfd_get_filename (abfd));
4604 return NULL;
4605 }
4606 gdb_assert (HOST_CHAR_BIT == 8);
4607 if (dwarf_str_buffer[str_offset] == '\0')
4608 return NULL;
4609 return dwarf_str_buffer + str_offset;
4610 }
4611
4612 static unsigned long
4613 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
4614 {
4615 unsigned long result;
4616 unsigned int num_read;
4617 int i, shift;
4618 unsigned char byte;
4619
4620 result = 0;
4621 shift = 0;
4622 num_read = 0;
4623 i = 0;
4624 while (1)
4625 {
4626 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
4627 buf++;
4628 num_read++;
4629 result |= ((unsigned long)(byte & 127) << shift);
4630 if ((byte & 128) == 0)
4631 {
4632 break;
4633 }
4634 shift += 7;
4635 }
4636 *bytes_read_ptr = num_read;
4637 return result;
4638 }
4639
4640 static long
4641 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
4642 {
4643 long result;
4644 int i, shift, size, num_read;
4645 unsigned char byte;
4646
4647 result = 0;
4648 shift = 0;
4649 size = 32;
4650 num_read = 0;
4651 i = 0;
4652 while (1)
4653 {
4654 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
4655 buf++;
4656 num_read++;
4657 result |= ((long)(byte & 127) << shift);
4658 shift += 7;
4659 if ((byte & 128) == 0)
4660 {
4661 break;
4662 }
4663 }
4664 if ((shift < size) && (byte & 0x40))
4665 {
4666 result |= -(1 << shift);
4667 }
4668 *bytes_read_ptr = num_read;
4669 return result;
4670 }
4671
4672 static void
4673 set_cu_language (unsigned int lang)
4674 {
4675 switch (lang)
4676 {
4677 case DW_LANG_C89:
4678 case DW_LANG_C:
4679 cu_language = language_c;
4680 break;
4681 case DW_LANG_C_plus_plus:
4682 cu_language = language_cplus;
4683 break;
4684 case DW_LANG_Fortran77:
4685 case DW_LANG_Fortran90:
4686 case DW_LANG_Fortran95:
4687 cu_language = language_fortran;
4688 break;
4689 case DW_LANG_Mips_Assembler:
4690 cu_language = language_asm;
4691 break;
4692 case DW_LANG_Java:
4693 cu_language = language_java;
4694 break;
4695 case DW_LANG_Ada83:
4696 case DW_LANG_Ada95:
4697 case DW_LANG_Cobol74:
4698 case DW_LANG_Cobol85:
4699 case DW_LANG_Pascal83:
4700 case DW_LANG_Modula2:
4701 default:
4702 cu_language = language_minimal;
4703 break;
4704 }
4705 cu_language_defn = language_def (cu_language);
4706 }
4707
4708 /* Return the named attribute or NULL if not there. */
4709
4710 static struct attribute *
4711 dwarf_attr (struct die_info *die, unsigned int name)
4712 {
4713 unsigned int i;
4714 struct attribute *spec = NULL;
4715
4716 for (i = 0; i < die->num_attrs; ++i)
4717 {
4718 if (die->attrs[i].name == name)
4719 {
4720 return &die->attrs[i];
4721 }
4722 if (die->attrs[i].name == DW_AT_specification
4723 || die->attrs[i].name == DW_AT_abstract_origin)
4724 spec = &die->attrs[i];
4725 }
4726 if (spec)
4727 {
4728 struct die_info *ref_die =
4729 follow_die_ref (dwarf2_get_ref_die_offset (spec));
4730
4731 if (ref_die)
4732 return dwarf_attr (ref_die, name);
4733 }
4734
4735 return NULL;
4736 }
4737
4738 static int
4739 die_is_declaration (struct die_info *die)
4740 {
4741 return (dwarf_attr (die, DW_AT_declaration)
4742 && ! dwarf_attr (die, DW_AT_specification));
4743 }
4744
4745
4746 /* Free the line_header structure *LH, and any arrays and strings it
4747 refers to. */
4748 static void
4749 free_line_header (struct line_header *lh)
4750 {
4751 if (lh->standard_opcode_lengths)
4752 xfree (lh->standard_opcode_lengths);
4753
4754 /* Remember that all the lh->file_names[i].name pointers are
4755 pointers into debug_line_buffer, and don't need to be freed. */
4756 if (lh->file_names)
4757 xfree (lh->file_names);
4758
4759 /* Similarly for the include directory names. */
4760 if (lh->include_dirs)
4761 xfree (lh->include_dirs);
4762
4763 xfree (lh);
4764 }
4765
4766
4767 /* Add an entry to LH's include directory table. */
4768 static void
4769 add_include_dir (struct line_header *lh, char *include_dir)
4770 {
4771 /* Grow the array if necessary. */
4772 if (lh->include_dirs_size == 0)
4773 {
4774 lh->include_dirs_size = 1; /* for testing */
4775 lh->include_dirs = xmalloc (lh->include_dirs_size
4776 * sizeof (*lh->include_dirs));
4777 }
4778 else if (lh->num_include_dirs >= lh->include_dirs_size)
4779 {
4780 lh->include_dirs_size *= 2;
4781 lh->include_dirs = xrealloc (lh->include_dirs,
4782 (lh->include_dirs_size
4783 * sizeof (*lh->include_dirs)));
4784 }
4785
4786 lh->include_dirs[lh->num_include_dirs++] = include_dir;
4787 }
4788
4789
4790 /* Add an entry to LH's file name table. */
4791 static void
4792 add_file_name (struct line_header *lh,
4793 char *name,
4794 unsigned int dir_index,
4795 unsigned int mod_time,
4796 unsigned int length)
4797 {
4798 struct file_entry *fe;
4799
4800 /* Grow the array if necessary. */
4801 if (lh->file_names_size == 0)
4802 {
4803 lh->file_names_size = 1; /* for testing */
4804 lh->file_names = xmalloc (lh->file_names_size
4805 * sizeof (*lh->file_names));
4806 }
4807 else if (lh->num_file_names >= lh->file_names_size)
4808 {
4809 lh->file_names_size *= 2;
4810 lh->file_names = xrealloc (lh->file_names,
4811 (lh->file_names_size
4812 * sizeof (*lh->file_names)));
4813 }
4814
4815 fe = &lh->file_names[lh->num_file_names++];
4816 fe->name = name;
4817 fe->dir_index = dir_index;
4818 fe->mod_time = mod_time;
4819 fe->length = length;
4820 }
4821
4822
4823 /* Read the statement program header starting at OFFSET in
4824 dwarf_line_buffer, according to the endianness of ABFD. Return a
4825 pointer to a struct line_header, allocated using xmalloc.
4826
4827 NOTE: the strings in the include directory and file name tables of
4828 the returned object point into debug_line_buffer, and must not be
4829 freed. */
4830 static struct line_header *
4831 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
4832 const struct comp_unit_head *cu_header)
4833 {
4834 struct cleanup *back_to;
4835 struct line_header *lh;
4836 char *line_ptr;
4837 int bytes_read;
4838 int i;
4839 char *cur_dir, *cur_file;
4840
4841 if (dwarf_line_buffer == NULL)
4842 {
4843 complaint (&symfile_complaints, "missing .debug_line section");
4844 return 0;
4845 }
4846
4847 /* Make sure that at least there's room for the total_length field. That
4848 could be 12 bytes long, but we're just going to fudge that. */
4849 if (offset + 4 >= dwarf_line_size)
4850 {
4851 dwarf2_statement_list_fits_in_line_number_section_complaint ();
4852 return 0;
4853 }
4854
4855 lh = xmalloc (sizeof (*lh));
4856 memset (lh, 0, sizeof (*lh));
4857 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
4858 (void *) lh);
4859
4860 line_ptr = dwarf_line_buffer + offset;
4861
4862 /* read in the header */
4863 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
4864 line_ptr += bytes_read;
4865 if (line_ptr + lh->total_length > dwarf_line_buffer + dwarf_line_size)
4866 {
4867 dwarf2_statement_list_fits_in_line_number_section_complaint ();
4868 return 0;
4869 }
4870 lh->statement_program_end = line_ptr + lh->total_length;
4871 lh->version = read_2_bytes (abfd, line_ptr);
4872 line_ptr += 2;
4873 lh->header_length = read_offset (abfd, line_ptr, cu_header, &bytes_read);
4874 line_ptr += bytes_read;
4875 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
4876 line_ptr += 1;
4877 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
4878 line_ptr += 1;
4879 lh->line_base = read_1_signed_byte (abfd, line_ptr);
4880 line_ptr += 1;
4881 lh->line_range = read_1_byte (abfd, line_ptr);
4882 line_ptr += 1;
4883 lh->opcode_base = read_1_byte (abfd, line_ptr);
4884 line_ptr += 1;
4885 lh->standard_opcode_lengths
4886 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
4887
4888 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
4889 for (i = 1; i < lh->opcode_base; ++i)
4890 {
4891 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
4892 line_ptr += 1;
4893 }
4894
4895 /* Read directory table */
4896 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
4897 {
4898 line_ptr += bytes_read;
4899 add_include_dir (lh, cur_dir);
4900 }
4901 line_ptr += bytes_read;
4902
4903 /* Read file name table */
4904 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
4905 {
4906 unsigned int dir_index, mod_time, length;
4907
4908 line_ptr += bytes_read;
4909 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
4910 line_ptr += bytes_read;
4911 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
4912 line_ptr += bytes_read;
4913 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
4914 line_ptr += bytes_read;
4915
4916 add_file_name (lh, cur_file, dir_index, mod_time, length);
4917 }
4918 line_ptr += bytes_read;
4919 lh->statement_program_start = line_ptr;
4920
4921 if (line_ptr > dwarf_line_buffer + dwarf_line_size)
4922 complaint (&symfile_complaints,
4923 "line number info header doesn't fit in `.debug_line' section");
4924
4925 discard_cleanups (back_to);
4926 return lh;
4927 }
4928
4929 /* This function exists to work around a bug in certain compilers
4930 (particularly GCC 2.95), in which the first line number marker of a
4931 function does not show up until after the prologue, right before
4932 the second line number marker. This function shifts ADDRESS down
4933 to the beginning of the function if necessary, and is called on
4934 addresses passed to record_line. */
4935
4936 static CORE_ADDR
4937 check_cu_functions (CORE_ADDR address)
4938 {
4939 struct function_range *fn;
4940
4941 /* Find the function_range containing address. */
4942 if (!cu_first_fn)
4943 return address;
4944
4945 if (!cu_cached_fn)
4946 cu_cached_fn = cu_first_fn;
4947
4948 fn = cu_cached_fn;
4949 while (fn)
4950 if (fn->lowpc <= address && fn->highpc > address)
4951 goto found;
4952 else
4953 fn = fn->next;
4954
4955 fn = cu_first_fn;
4956 while (fn && fn != cu_cached_fn)
4957 if (fn->lowpc <= address && fn->highpc > address)
4958 goto found;
4959 else
4960 fn = fn->next;
4961
4962 return address;
4963
4964 found:
4965 if (fn->seen_line)
4966 return address;
4967 if (address != fn->lowpc)
4968 complaint (&symfile_complaints,
4969 "misplaced first line number at 0x%lx for '%s'",
4970 (unsigned long) address, fn->name);
4971 fn->seen_line = 1;
4972 return fn->lowpc;
4973 }
4974
4975 /* Decode the line number information for the compilation unit whose
4976 line number info is at OFFSET in the .debug_line section.
4977 The compilation directory of the file is passed in COMP_DIR. */
4978
4979 static void
4980 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
4981 const struct comp_unit_head *cu_header)
4982 {
4983 char *line_ptr;
4984 char *line_end;
4985 unsigned int i, bytes_read;
4986 char *cur_dir;
4987 unsigned char op_code, extended_op, adj_opcode;
4988
4989 line_ptr = lh->statement_program_start;
4990 line_end = lh->statement_program_end;
4991
4992 /* Read the statement sequences until there's nothing left. */
4993 while (line_ptr < line_end)
4994 {
4995 /* state machine registers */
4996 CORE_ADDR address = 0;
4997 unsigned int file = 1;
4998 unsigned int line = 1;
4999 unsigned int column = 0;
5000 int is_stmt = lh->default_is_stmt;
5001 int basic_block = 0;
5002 int end_sequence = 0;
5003
5004 /* Start a subfile for the current file of the state machine. */
5005 if (lh->num_file_names >= file)
5006 {
5007 /* lh->include_dirs and lh->file_names are 0-based, but the
5008 directory and file name numbers in the statement program
5009 are 1-based. */
5010 struct file_entry *fe = &lh->file_names[file - 1];
5011 char *dir;
5012 if (fe->dir_index)
5013 dir = lh->include_dirs[fe->dir_index - 1];
5014 else
5015 dir = comp_dir;
5016 dwarf2_start_subfile (fe->name, dir);
5017 }
5018
5019 /* Decode the table. */
5020 while (!end_sequence)
5021 {
5022 op_code = read_1_byte (abfd, line_ptr);
5023 line_ptr += 1;
5024
5025 if (op_code >= lh->opcode_base)
5026 { /* Special operand. */
5027 adj_opcode = op_code - lh->opcode_base;
5028 address += (adj_opcode / lh->line_range)
5029 * lh->minimum_instruction_length;
5030 line += lh->line_base + (adj_opcode % lh->line_range);
5031 /* append row to matrix using current values */
5032 record_line (current_subfile, line,
5033 check_cu_functions (address));
5034 basic_block = 1;
5035 }
5036 else switch (op_code)
5037 {
5038 case DW_LNS_extended_op:
5039 line_ptr += 1; /* ignore length */
5040 extended_op = read_1_byte (abfd, line_ptr);
5041 line_ptr += 1;
5042 switch (extended_op)
5043 {
5044 case DW_LNE_end_sequence:
5045 end_sequence = 1;
5046 record_line (current_subfile, 0, address);
5047 break;
5048 case DW_LNE_set_address:
5049 address = read_address (abfd, line_ptr, cu_header, &bytes_read);
5050 line_ptr += bytes_read;
5051 address += baseaddr;
5052 break;
5053 case DW_LNE_define_file:
5054 {
5055 char *cur_file;
5056 unsigned int dir_index, mod_time, length;
5057
5058 cur_file = read_string (abfd, line_ptr, &bytes_read);
5059 line_ptr += bytes_read;
5060 dir_index =
5061 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5062 line_ptr += bytes_read;
5063 mod_time =
5064 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5065 line_ptr += bytes_read;
5066 length =
5067 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5068 line_ptr += bytes_read;
5069 add_file_name (lh, cur_file, dir_index, mod_time, length);
5070 }
5071 break;
5072 default:
5073 complaint (&symfile_complaints,
5074 "mangled .debug_line section");
5075 return;
5076 }
5077 break;
5078 case DW_LNS_copy:
5079 record_line (current_subfile, line,
5080 check_cu_functions (address));
5081 basic_block = 0;
5082 break;
5083 case DW_LNS_advance_pc:
5084 address += lh->minimum_instruction_length
5085 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5086 line_ptr += bytes_read;
5087 break;
5088 case DW_LNS_advance_line:
5089 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
5090 line_ptr += bytes_read;
5091 break;
5092 case DW_LNS_set_file:
5093 {
5094 /* lh->include_dirs and lh->file_names are 0-based,
5095 but the directory and file name numbers in the
5096 statement program are 1-based. */
5097 struct file_entry *fe;
5098 char *dir;
5099 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5100 line_ptr += bytes_read;
5101 fe = &lh->file_names[file - 1];
5102 if (fe->dir_index)
5103 dir = lh->include_dirs[fe->dir_index - 1];
5104 else
5105 dir = comp_dir;
5106 dwarf2_start_subfile (fe->name, dir);
5107 }
5108 break;
5109 case DW_LNS_set_column:
5110 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5111 line_ptr += bytes_read;
5112 break;
5113 case DW_LNS_negate_stmt:
5114 is_stmt = (!is_stmt);
5115 break;
5116 case DW_LNS_set_basic_block:
5117 basic_block = 1;
5118 break;
5119 /* Add to the address register of the state machine the
5120 address increment value corresponding to special opcode
5121 255. Ie, this value is scaled by the minimum instruction
5122 length since special opcode 255 would have scaled the
5123 the increment. */
5124 case DW_LNS_const_add_pc:
5125 address += (lh->minimum_instruction_length
5126 * ((255 - lh->opcode_base) / lh->line_range));
5127 break;
5128 case DW_LNS_fixed_advance_pc:
5129 address += read_2_bytes (abfd, line_ptr);
5130 line_ptr += 2;
5131 break;
5132 default:
5133 { /* Unknown standard opcode, ignore it. */
5134 int i;
5135 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
5136 {
5137 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
5138 line_ptr += bytes_read;
5139 }
5140 }
5141 }
5142 }
5143 }
5144 }
5145
5146 /* Start a subfile for DWARF. FILENAME is the name of the file and
5147 DIRNAME the name of the source directory which contains FILENAME
5148 or NULL if not known.
5149 This routine tries to keep line numbers from identical absolute and
5150 relative file names in a common subfile.
5151
5152 Using the `list' example from the GDB testsuite, which resides in
5153 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
5154 of /srcdir/list0.c yields the following debugging information for list0.c:
5155
5156 DW_AT_name: /srcdir/list0.c
5157 DW_AT_comp_dir: /compdir
5158 files.files[0].name: list0.h
5159 files.files[0].dir: /srcdir
5160 files.files[1].name: list0.c
5161 files.files[1].dir: /srcdir
5162
5163 The line number information for list0.c has to end up in a single
5164 subfile, so that `break /srcdir/list0.c:1' works as expected. */
5165
5166 static void
5167 dwarf2_start_subfile (char *filename, char *dirname)
5168 {
5169 /* If the filename isn't absolute, try to match an existing subfile
5170 with the full pathname. */
5171
5172 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
5173 {
5174 struct subfile *subfile;
5175 char *fullname = concat (dirname, "/", filename, NULL);
5176
5177 for (subfile = subfiles; subfile; subfile = subfile->next)
5178 {
5179 if (FILENAME_CMP (subfile->name, fullname) == 0)
5180 {
5181 current_subfile = subfile;
5182 xfree (fullname);
5183 return;
5184 }
5185 }
5186 xfree (fullname);
5187 }
5188 start_subfile (filename, dirname);
5189 }
5190
5191 static void
5192 var_decode_location (struct attribute *attr, struct symbol *sym,
5193 struct objfile *objfile,
5194 const struct comp_unit_head *cu_header)
5195 {
5196 /* NOTE drow/2003-01-30: There used to be a comment and some special
5197 code here to turn a symbol with DW_AT_external and a
5198 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
5199 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
5200 with some versions of binutils) where shared libraries could have
5201 relocations against symbols in their debug information - the
5202 minimal symbol would have the right address, but the debug info
5203 would not. It's no longer necessary, because we will explicitly
5204 apply relocations when we read in the debug information now. */
5205
5206 /* A DW_AT_location attribute with no contents indicates that a
5207 variable has been optimized away. */
5208 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
5209 {
5210 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
5211 return;
5212 }
5213
5214 /* Handle one degenerate form of location expression specially, to
5215 preserve GDB's previous behavior when section offsets are
5216 specified. If this is just a DW_OP_addr then mark this symbol
5217 as LOC_STATIC. */
5218
5219 if (attr_form_is_block (attr)
5220 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
5221 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
5222 {
5223 int dummy;
5224
5225 SYMBOL_VALUE_ADDRESS (sym) =
5226 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu_header,
5227 &dummy);
5228 fixup_symbol_section (sym, objfile);
5229 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
5230 SYMBOL_SECTION (sym));
5231 SYMBOL_CLASS (sym) = LOC_STATIC;
5232 return;
5233 }
5234
5235 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
5236 expression evaluator, and use LOC_COMPUTED only when necessary
5237 (i.e. when the value of a register or memory location is
5238 referenced, or a thread-local block, etc.). Then again, it might
5239 not be worthwhile. I'm assuming that it isn't unless performance
5240 or memory numbers show me otherwise. */
5241
5242 dwarf2_symbol_mark_computed (attr, sym, cu_header, objfile);
5243 SYMBOL_CLASS (sym) = LOC_COMPUTED;
5244 }
5245
5246 /* Given a pointer to a DWARF information entry, figure out if we need
5247 to make a symbol table entry for it, and if so, create a new entry
5248 and return a pointer to it.
5249 If TYPE is NULL, determine symbol type from the die, otherwise
5250 used the passed type. */
5251
5252 static struct symbol *
5253 new_symbol (struct die_info *die, struct type *type, struct objfile *objfile,
5254 const struct comp_unit_head *cu_header)
5255 {
5256 struct symbol *sym = NULL;
5257 char *name;
5258 struct attribute *attr = NULL;
5259 struct attribute *attr2 = NULL;
5260 CORE_ADDR addr = 0;
5261
5262 if (die->tag != DW_TAG_namespace)
5263 name = dwarf2_linkage_name (die);
5264 else
5265 name = TYPE_NAME (type);
5266
5267 if (name)
5268 {
5269 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
5270 sizeof (struct symbol));
5271 OBJSTAT (objfile, n_syms++);
5272 memset (sym, 0, sizeof (struct symbol));
5273
5274 /* Cache this symbol's name and the name's demangled form (if any). */
5275 SYMBOL_LANGUAGE (sym) = cu_language;
5276 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
5277
5278 /* Default assumptions.
5279 Use the passed type or decode it from the die. */
5280 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
5281 SYMBOL_CLASS (sym) = LOC_STATIC;
5282 if (type != NULL)
5283 SYMBOL_TYPE (sym) = type;
5284 else
5285 SYMBOL_TYPE (sym) = die_type (die, objfile, cu_header);
5286 attr = dwarf_attr (die, DW_AT_decl_line);
5287 if (attr)
5288 {
5289 SYMBOL_LINE (sym) = DW_UNSND (attr);
5290 }
5291 switch (die->tag)
5292 {
5293 case DW_TAG_label:
5294 attr = dwarf_attr (die, DW_AT_low_pc);
5295 if (attr)
5296 {
5297 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
5298 }
5299 SYMBOL_CLASS (sym) = LOC_LABEL;
5300 break;
5301 case DW_TAG_subprogram:
5302 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
5303 finish_block. */
5304 SYMBOL_CLASS (sym) = LOC_BLOCK;
5305 attr2 = dwarf_attr (die, DW_AT_external);
5306 if (attr2 && (DW_UNSND (attr2) != 0))
5307 {
5308 add_symbol_to_list (sym, &global_symbols);
5309 }
5310 else
5311 {
5312 add_symbol_to_list (sym, list_in_scope);
5313 }
5314 break;
5315 case DW_TAG_variable:
5316 /* Compilation with minimal debug info may result in variables
5317 with missing type entries. Change the misleading `void' type
5318 to something sensible. */
5319 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
5320 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
5321 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
5322 "<variable, no debug info>",
5323 objfile);
5324 attr = dwarf_attr (die, DW_AT_const_value);
5325 if (attr)
5326 {
5327 dwarf2_const_value (attr, sym, objfile, cu_header);
5328 attr2 = dwarf_attr (die, DW_AT_external);
5329 if (attr2 && (DW_UNSND (attr2) != 0))
5330 add_symbol_to_list (sym, &global_symbols);
5331 else
5332 add_symbol_to_list (sym, list_in_scope);
5333 break;
5334 }
5335 attr = dwarf_attr (die, DW_AT_location);
5336 if (attr)
5337 {
5338 var_decode_location (attr, sym, objfile, cu_header);
5339 attr2 = dwarf_attr (die, DW_AT_external);
5340 if (attr2 && (DW_UNSND (attr2) != 0))
5341 add_symbol_to_list (sym, &global_symbols);
5342 else
5343 add_symbol_to_list (sym, list_in_scope);
5344 }
5345 else
5346 {
5347 /* We do not know the address of this symbol.
5348 If it is an external symbol and we have type information
5349 for it, enter the symbol as a LOC_UNRESOLVED symbol.
5350 The address of the variable will then be determined from
5351 the minimal symbol table whenever the variable is
5352 referenced. */
5353 attr2 = dwarf_attr (die, DW_AT_external);
5354 if (attr2 && (DW_UNSND (attr2) != 0)
5355 && dwarf_attr (die, DW_AT_type) != NULL)
5356 {
5357 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
5358 add_symbol_to_list (sym, &global_symbols);
5359 }
5360 }
5361 break;
5362 case DW_TAG_formal_parameter:
5363 attr = dwarf_attr (die, DW_AT_location);
5364 if (attr)
5365 {
5366 var_decode_location (attr, sym, objfile, cu_header);
5367 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
5368 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
5369 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
5370 }
5371 attr = dwarf_attr (die, DW_AT_const_value);
5372 if (attr)
5373 {
5374 dwarf2_const_value (attr, sym, objfile, cu_header);
5375 }
5376 add_symbol_to_list (sym, list_in_scope);
5377 break;
5378 case DW_TAG_unspecified_parameters:
5379 /* From varargs functions; gdb doesn't seem to have any
5380 interest in this information, so just ignore it for now.
5381 (FIXME?) */
5382 break;
5383 case DW_TAG_class_type:
5384 case DW_TAG_structure_type:
5385 case DW_TAG_union_type:
5386 case DW_TAG_enumeration_type:
5387 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
5388 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
5389 add_symbol_to_list (sym, list_in_scope);
5390
5391 /* The semantics of C++ state that "struct foo { ... }" also
5392 defines a typedef for "foo". Synthesize a typedef symbol so
5393 that "ptype foo" works as expected. */
5394 if (cu_language == language_cplus)
5395 {
5396 struct symbol *typedef_sym = (struct symbol *)
5397 obstack_alloc (&objfile->symbol_obstack,
5398 sizeof (struct symbol));
5399 *typedef_sym = *sym;
5400 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
5401 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
5402 TYPE_NAME (SYMBOL_TYPE (sym)) =
5403 obsavestring (DEPRECATED_SYMBOL_NAME (sym),
5404 strlen (DEPRECATED_SYMBOL_NAME (sym)),
5405 &objfile->type_obstack);
5406 add_symbol_to_list (typedef_sym, list_in_scope);
5407 }
5408 break;
5409 case DW_TAG_typedef:
5410 case DW_TAG_base_type:
5411 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
5412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
5413 add_symbol_to_list (sym, list_in_scope);
5414 break;
5415 case DW_TAG_enumerator:
5416 attr = dwarf_attr (die, DW_AT_const_value);
5417 if (attr)
5418 {
5419 dwarf2_const_value (attr, sym, objfile, cu_header);
5420 }
5421 add_symbol_to_list (sym, list_in_scope);
5422 break;
5423 case DW_TAG_namespace:
5424 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
5425 add_symbol_to_list (sym, &global_symbols);
5426 break;
5427 default:
5428 /* Not a tag we recognize. Hopefully we aren't processing
5429 trash data, but since we must specifically ignore things
5430 we don't recognize, there is nothing else we should do at
5431 this point. */
5432 complaint (&symfile_complaints, "unsupported tag: '%s'",
5433 dwarf_tag_name (die->tag));
5434 break;
5435 }
5436 }
5437 return (sym);
5438 }
5439
5440 /* Copy constant value from an attribute to a symbol. */
5441
5442 static void
5443 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
5444 struct objfile *objfile,
5445 const struct comp_unit_head *cu_header)
5446 {
5447 struct dwarf_block *blk;
5448
5449 switch (attr->form)
5450 {
5451 case DW_FORM_addr:
5452 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
5453 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
5454 cu_header->addr_size,
5455 TYPE_LENGTH (SYMBOL_TYPE
5456 (sym)));
5457 SYMBOL_VALUE_BYTES (sym) = (char *)
5458 obstack_alloc (&objfile->symbol_obstack, cu_header->addr_size);
5459 /* NOTE: cagney/2003-05-09: In-lined store_address call with
5460 it's body - store_unsigned_integer. */
5461 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
5462 DW_ADDR (attr));
5463 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
5464 break;
5465 case DW_FORM_block1:
5466 case DW_FORM_block2:
5467 case DW_FORM_block4:
5468 case DW_FORM_block:
5469 blk = DW_BLOCK (attr);
5470 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
5471 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
5472 blk->size,
5473 TYPE_LENGTH (SYMBOL_TYPE
5474 (sym)));
5475 SYMBOL_VALUE_BYTES (sym) = (char *)
5476 obstack_alloc (&objfile->symbol_obstack, blk->size);
5477 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
5478 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
5479 break;
5480
5481 /* The DW_AT_const_value attributes are supposed to carry the
5482 symbol's value "represented as it would be on the target
5483 architecture." By the time we get here, it's already been
5484 converted to host endianness, so we just need to sign- or
5485 zero-extend it as appropriate. */
5486 case DW_FORM_data1:
5487 dwarf2_const_value_data (attr, sym, 8);
5488 break;
5489 case DW_FORM_data2:
5490 dwarf2_const_value_data (attr, sym, 16);
5491 break;
5492 case DW_FORM_data4:
5493 dwarf2_const_value_data (attr, sym, 32);
5494 break;
5495 case DW_FORM_data8:
5496 dwarf2_const_value_data (attr, sym, 64);
5497 break;
5498
5499 case DW_FORM_sdata:
5500 SYMBOL_VALUE (sym) = DW_SND (attr);
5501 SYMBOL_CLASS (sym) = LOC_CONST;
5502 break;
5503
5504 case DW_FORM_udata:
5505 SYMBOL_VALUE (sym) = DW_UNSND (attr);
5506 SYMBOL_CLASS (sym) = LOC_CONST;
5507 break;
5508
5509 default:
5510 complaint (&symfile_complaints,
5511 "unsupported const value attribute form: '%s'",
5512 dwarf_form_name (attr->form));
5513 SYMBOL_VALUE (sym) = 0;
5514 SYMBOL_CLASS (sym) = LOC_CONST;
5515 break;
5516 }
5517 }
5518
5519
5520 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
5521 or zero-extend it as appropriate for the symbol's type. */
5522 static void
5523 dwarf2_const_value_data (struct attribute *attr,
5524 struct symbol *sym,
5525 int bits)
5526 {
5527 LONGEST l = DW_UNSND (attr);
5528
5529 if (bits < sizeof (l) * 8)
5530 {
5531 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
5532 l &= ((LONGEST) 1 << bits) - 1;
5533 else
5534 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
5535 }
5536
5537 SYMBOL_VALUE (sym) = l;
5538 SYMBOL_CLASS (sym) = LOC_CONST;
5539 }
5540
5541
5542 /* Return the type of the die in question using its DW_AT_type attribute. */
5543
5544 static struct type *
5545 die_type (struct die_info *die, struct objfile *objfile,
5546 const struct comp_unit_head *cu_header)
5547 {
5548 struct type *type;
5549 struct attribute *type_attr;
5550 struct die_info *type_die;
5551 unsigned int ref;
5552
5553 type_attr = dwarf_attr (die, DW_AT_type);
5554 if (!type_attr)
5555 {
5556 /* A missing DW_AT_type represents a void type. */
5557 return dwarf2_fundamental_type (objfile, FT_VOID);
5558 }
5559 else
5560 {
5561 ref = dwarf2_get_ref_die_offset (type_attr);
5562 type_die = follow_die_ref (ref);
5563 if (!type_die)
5564 {
5565 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]",
5566 ref, objfile->name);
5567 return NULL;
5568 }
5569 }
5570 type = tag_type_to_type (type_die, objfile, cu_header);
5571 if (!type)
5572 {
5573 dump_die (type_die);
5574 error ("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]",
5575 objfile->name);
5576 }
5577 return type;
5578 }
5579
5580 /* Return the containing type of the die in question using its
5581 DW_AT_containing_type attribute. */
5582
5583 static struct type *
5584 die_containing_type (struct die_info *die, struct objfile *objfile,
5585 const struct comp_unit_head *cu_header)
5586 {
5587 struct type *type = NULL;
5588 struct attribute *type_attr;
5589 struct die_info *type_die = NULL;
5590 unsigned int ref;
5591
5592 type_attr = dwarf_attr (die, DW_AT_containing_type);
5593 if (type_attr)
5594 {
5595 ref = dwarf2_get_ref_die_offset (type_attr);
5596 type_die = follow_die_ref (ref);
5597 if (!type_die)
5598 {
5599 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]", ref,
5600 objfile->name);
5601 return NULL;
5602 }
5603 type = tag_type_to_type (type_die, objfile, cu_header);
5604 }
5605 if (!type)
5606 {
5607 if (type_die)
5608 dump_die (type_die);
5609 error ("Dwarf Error: Problem turning containing type into gdb type [in module %s]",
5610 objfile->name);
5611 }
5612 return type;
5613 }
5614
5615 #if 0
5616 static struct type *
5617 type_at_offset (unsigned int offset, struct objfile *objfile)
5618 {
5619 struct die_info *die;
5620 struct type *type;
5621
5622 die = follow_die_ref (offset);
5623 if (!die)
5624 {
5625 error ("Dwarf Error: Cannot find type referent at offset %d.", offset);
5626 return NULL;
5627 }
5628 type = tag_type_to_type (die, objfile);
5629 return type;
5630 }
5631 #endif
5632
5633 static struct type *
5634 tag_type_to_type (struct die_info *die, struct objfile *objfile,
5635 const struct comp_unit_head *cu_header)
5636 {
5637 if (die->type)
5638 {
5639 return die->type;
5640 }
5641 else
5642 {
5643 read_type_die (die, objfile, cu_header);
5644 if (!die->type)
5645 {
5646 dump_die (die);
5647 error ("Dwarf Error: Cannot find type of die [in module %s]",
5648 objfile->name);
5649 }
5650 return die->type;
5651 }
5652 }
5653
5654 static void
5655 read_type_die (struct die_info *die, struct objfile *objfile,
5656 const struct comp_unit_head *cu_header)
5657 {
5658 switch (die->tag)
5659 {
5660 case DW_TAG_class_type:
5661 case DW_TAG_structure_type:
5662 case DW_TAG_union_type:
5663 read_structure_scope (die, objfile, cu_header);
5664 break;
5665 case DW_TAG_enumeration_type:
5666 read_enumeration (die, objfile, cu_header);
5667 break;
5668 case DW_TAG_subprogram:
5669 case DW_TAG_subroutine_type:
5670 read_subroutine_type (die, objfile, cu_header);
5671 break;
5672 case DW_TAG_array_type:
5673 read_array_type (die, objfile, cu_header);
5674 break;
5675 case DW_TAG_pointer_type:
5676 read_tag_pointer_type (die, objfile, cu_header);
5677 break;
5678 case DW_TAG_ptr_to_member_type:
5679 read_tag_ptr_to_member_type (die, objfile, cu_header);
5680 break;
5681 case DW_TAG_reference_type:
5682 read_tag_reference_type (die, objfile, cu_header);
5683 break;
5684 case DW_TAG_const_type:
5685 read_tag_const_type (die, objfile, cu_header);
5686 break;
5687 case DW_TAG_volatile_type:
5688 read_tag_volatile_type (die, objfile, cu_header);
5689 break;
5690 case DW_TAG_string_type:
5691 read_tag_string_type (die, objfile);
5692 break;
5693 case DW_TAG_typedef:
5694 read_typedef (die, objfile, cu_header);
5695 break;
5696 case DW_TAG_base_type:
5697 read_base_type (die, objfile);
5698 break;
5699 default:
5700 complaint (&symfile_complaints, "unexepected tag in read_type_die: '%s'",
5701 dwarf_tag_name (die->tag));
5702 break;
5703 }
5704 }
5705
5706 static struct type *
5707 dwarf_base_type (int encoding, int size, struct objfile *objfile)
5708 {
5709 /* FIXME - this should not produce a new (struct type *)
5710 every time. It should cache base types. */
5711 struct type *type;
5712 switch (encoding)
5713 {
5714 case DW_ATE_address:
5715 type = dwarf2_fundamental_type (objfile, FT_VOID);
5716 return type;
5717 case DW_ATE_boolean:
5718 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN);
5719 return type;
5720 case DW_ATE_complex_float:
5721 if (size == 16)
5722 {
5723 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX);
5724 }
5725 else
5726 {
5727 type = dwarf2_fundamental_type (objfile, FT_COMPLEX);
5728 }
5729 return type;
5730 case DW_ATE_float:
5731 if (size == 8)
5732 {
5733 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT);
5734 }
5735 else
5736 {
5737 type = dwarf2_fundamental_type (objfile, FT_FLOAT);
5738 }
5739 return type;
5740 case DW_ATE_signed:
5741 switch (size)
5742 {
5743 case 1:
5744 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR);
5745 break;
5746 case 2:
5747 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT);
5748 break;
5749 default:
5750 case 4:
5751 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER);
5752 break;
5753 }
5754 return type;
5755 case DW_ATE_signed_char:
5756 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR);
5757 return type;
5758 case DW_ATE_unsigned:
5759 switch (size)
5760 {
5761 case 1:
5762 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR);
5763 break;
5764 case 2:
5765 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT);
5766 break;
5767 default:
5768 case 4:
5769 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
5770 break;
5771 }
5772 return type;
5773 case DW_ATE_unsigned_char:
5774 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR);
5775 return type;
5776 default:
5777 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER);
5778 return type;
5779 }
5780 }
5781
5782 #if 0
5783 struct die_info *
5784 copy_die (struct die_info *old_die)
5785 {
5786 struct die_info *new_die;
5787 int i, num_attrs;
5788
5789 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
5790 memset (new_die, 0, sizeof (struct die_info));
5791
5792 new_die->tag = old_die->tag;
5793 new_die->has_children = old_die->has_children;
5794 new_die->abbrev = old_die->abbrev;
5795 new_die->offset = old_die->offset;
5796 new_die->type = NULL;
5797
5798 num_attrs = old_die->num_attrs;
5799 new_die->num_attrs = num_attrs;
5800 new_die->attrs = (struct attribute *)
5801 xmalloc (num_attrs * sizeof (struct attribute));
5802
5803 for (i = 0; i < old_die->num_attrs; ++i)
5804 {
5805 new_die->attrs[i].name = old_die->attrs[i].name;
5806 new_die->attrs[i].form = old_die->attrs[i].form;
5807 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
5808 }
5809
5810 new_die->next = NULL;
5811 return new_die;
5812 }
5813 #endif
5814
5815 /* Return sibling of die, NULL if no sibling. */
5816
5817 static struct die_info *
5818 sibling_die (struct die_info *die)
5819 {
5820 int nesting_level = 0;
5821
5822 if (!die->has_children)
5823 {
5824 if (die->next && (die->next->tag == 0))
5825 {
5826 return NULL;
5827 }
5828 else
5829 {
5830 return die->next;
5831 }
5832 }
5833 else
5834 {
5835 do
5836 {
5837 if (die->has_children)
5838 {
5839 nesting_level++;
5840 }
5841 if (die->tag == 0)
5842 {
5843 nesting_level--;
5844 }
5845 die = die->next;
5846 }
5847 while (nesting_level);
5848 if (die && (die->tag == 0))
5849 {
5850 return NULL;
5851 }
5852 else
5853 {
5854 return die;
5855 }
5856 }
5857 }
5858
5859 /* Get linkage name of a die, return NULL if not found. */
5860
5861 static char *
5862 dwarf2_linkage_name (struct die_info *die)
5863 {
5864 struct attribute *attr;
5865
5866 attr = dwarf_attr (die, DW_AT_MIPS_linkage_name);
5867 if (attr && DW_STRING (attr))
5868 return DW_STRING (attr);
5869 attr = dwarf_attr (die, DW_AT_name);
5870 if (attr && DW_STRING (attr))
5871 return DW_STRING (attr);
5872 return NULL;
5873 }
5874
5875 /* Get name of a die, return NULL if not found. */
5876
5877 static char *
5878 dwarf2_name (struct die_info *die)
5879 {
5880 struct attribute *attr;
5881
5882 attr = dwarf_attr (die, DW_AT_name);
5883 if (attr && DW_STRING (attr))
5884 return DW_STRING (attr);
5885 return NULL;
5886 }
5887
5888 /* Return the die that this die in an extension of, or NULL if there
5889 is none. */
5890
5891 static struct die_info *
5892 dwarf2_extension (struct die_info *die)
5893 {
5894 struct attribute *attr;
5895 struct die_info *extension_die;
5896 unsigned int ref;
5897
5898 attr = dwarf_attr (die, DW_AT_extension);
5899 if (attr == NULL)
5900 return NULL;
5901
5902 ref = dwarf2_get_ref_die_offset (attr);
5903 extension_die = follow_die_ref (ref);
5904 if (!extension_die)
5905 {
5906 error ("Dwarf Error: Cannot find referent at offset %d.", ref);
5907 }
5908
5909 return extension_die;
5910 }
5911
5912 /* Convert a DIE tag into its string name. */
5913
5914 static char *
5915 dwarf_tag_name (register unsigned tag)
5916 {
5917 switch (tag)
5918 {
5919 case DW_TAG_padding:
5920 return "DW_TAG_padding";
5921 case DW_TAG_array_type:
5922 return "DW_TAG_array_type";
5923 case DW_TAG_class_type:
5924 return "DW_TAG_class_type";
5925 case DW_TAG_entry_point:
5926 return "DW_TAG_entry_point";
5927 case DW_TAG_enumeration_type:
5928 return "DW_TAG_enumeration_type";
5929 case DW_TAG_formal_parameter:
5930 return "DW_TAG_formal_parameter";
5931 case DW_TAG_imported_declaration:
5932 return "DW_TAG_imported_declaration";
5933 case DW_TAG_label:
5934 return "DW_TAG_label";
5935 case DW_TAG_lexical_block:
5936 return "DW_TAG_lexical_block";
5937 case DW_TAG_member:
5938 return "DW_TAG_member";
5939 case DW_TAG_pointer_type:
5940 return "DW_TAG_pointer_type";
5941 case DW_TAG_reference_type:
5942 return "DW_TAG_reference_type";
5943 case DW_TAG_compile_unit:
5944 return "DW_TAG_compile_unit";
5945 case DW_TAG_string_type:
5946 return "DW_TAG_string_type";
5947 case DW_TAG_structure_type:
5948 return "DW_TAG_structure_type";
5949 case DW_TAG_subroutine_type:
5950 return "DW_TAG_subroutine_type";
5951 case DW_TAG_typedef:
5952 return "DW_TAG_typedef";
5953 case DW_TAG_union_type:
5954 return "DW_TAG_union_type";
5955 case DW_TAG_unspecified_parameters:
5956 return "DW_TAG_unspecified_parameters";
5957 case DW_TAG_variant:
5958 return "DW_TAG_variant";
5959 case DW_TAG_common_block:
5960 return "DW_TAG_common_block";
5961 case DW_TAG_common_inclusion:
5962 return "DW_TAG_common_inclusion";
5963 case DW_TAG_inheritance:
5964 return "DW_TAG_inheritance";
5965 case DW_TAG_inlined_subroutine:
5966 return "DW_TAG_inlined_subroutine";
5967 case DW_TAG_module:
5968 return "DW_TAG_module";
5969 case DW_TAG_ptr_to_member_type:
5970 return "DW_TAG_ptr_to_member_type";
5971 case DW_TAG_set_type:
5972 return "DW_TAG_set_type";
5973 case DW_TAG_subrange_type:
5974 return "DW_TAG_subrange_type";
5975 case DW_TAG_with_stmt:
5976 return "DW_TAG_with_stmt";
5977 case DW_TAG_access_declaration:
5978 return "DW_TAG_access_declaration";
5979 case DW_TAG_base_type:
5980 return "DW_TAG_base_type";
5981 case DW_TAG_catch_block:
5982 return "DW_TAG_catch_block";
5983 case DW_TAG_const_type:
5984 return "DW_TAG_const_type";
5985 case DW_TAG_constant:
5986 return "DW_TAG_constant";
5987 case DW_TAG_enumerator:
5988 return "DW_TAG_enumerator";
5989 case DW_TAG_file_type:
5990 return "DW_TAG_file_type";
5991 case DW_TAG_friend:
5992 return "DW_TAG_friend";
5993 case DW_TAG_namelist:
5994 return "DW_TAG_namelist";
5995 case DW_TAG_namelist_item:
5996 return "DW_TAG_namelist_item";
5997 case DW_TAG_packed_type:
5998 return "DW_TAG_packed_type";
5999 case DW_TAG_subprogram:
6000 return "DW_TAG_subprogram";
6001 case DW_TAG_template_type_param:
6002 return "DW_TAG_template_type_param";
6003 case DW_TAG_template_value_param:
6004 return "DW_TAG_template_value_param";
6005 case DW_TAG_thrown_type:
6006 return "DW_TAG_thrown_type";
6007 case DW_TAG_try_block:
6008 return "DW_TAG_try_block";
6009 case DW_TAG_variant_part:
6010 return "DW_TAG_variant_part";
6011 case DW_TAG_variable:
6012 return "DW_TAG_variable";
6013 case DW_TAG_volatile_type:
6014 return "DW_TAG_volatile_type";
6015 case DW_TAG_dwarf_procedure:
6016 return "DW_TAG_dwarf_procedure";
6017 case DW_TAG_restrict_type:
6018 return "DW_TAG_restrict_type";
6019 case DW_TAG_interface_type:
6020 return "DW_TAG_interface_type";
6021 case DW_TAG_namespace:
6022 return "DW_TAG_namespace";
6023 case DW_TAG_imported_module:
6024 return "DW_TAG_imported_module";
6025 case DW_TAG_unspecified_type:
6026 return "DW_TAG_unspecified_type";
6027 case DW_TAG_partial_unit:
6028 return "DW_TAG_partial_unit";
6029 case DW_TAG_imported_unit:
6030 return "DW_TAG_imported_unit";
6031 case DW_TAG_MIPS_loop:
6032 return "DW_TAG_MIPS_loop";
6033 case DW_TAG_format_label:
6034 return "DW_TAG_format_label";
6035 case DW_TAG_function_template:
6036 return "DW_TAG_function_template";
6037 case DW_TAG_class_template:
6038 return "DW_TAG_class_template";
6039 default:
6040 return "DW_TAG_<unknown>";
6041 }
6042 }
6043
6044 /* Convert a DWARF attribute code into its string name. */
6045
6046 static char *
6047 dwarf_attr_name (register unsigned attr)
6048 {
6049 switch (attr)
6050 {
6051 case DW_AT_sibling:
6052 return "DW_AT_sibling";
6053 case DW_AT_location:
6054 return "DW_AT_location";
6055 case DW_AT_name:
6056 return "DW_AT_name";
6057 case DW_AT_ordering:
6058 return "DW_AT_ordering";
6059 case DW_AT_subscr_data:
6060 return "DW_AT_subscr_data";
6061 case DW_AT_byte_size:
6062 return "DW_AT_byte_size";
6063 case DW_AT_bit_offset:
6064 return "DW_AT_bit_offset";
6065 case DW_AT_bit_size:
6066 return "DW_AT_bit_size";
6067 case DW_AT_element_list:
6068 return "DW_AT_element_list";
6069 case DW_AT_stmt_list:
6070 return "DW_AT_stmt_list";
6071 case DW_AT_low_pc:
6072 return "DW_AT_low_pc";
6073 case DW_AT_high_pc:
6074 return "DW_AT_high_pc";
6075 case DW_AT_language:
6076 return "DW_AT_language";
6077 case DW_AT_member:
6078 return "DW_AT_member";
6079 case DW_AT_discr:
6080 return "DW_AT_discr";
6081 case DW_AT_discr_value:
6082 return "DW_AT_discr_value";
6083 case DW_AT_visibility:
6084 return "DW_AT_visibility";
6085 case DW_AT_import:
6086 return "DW_AT_import";
6087 case DW_AT_string_length:
6088 return "DW_AT_string_length";
6089 case DW_AT_common_reference:
6090 return "DW_AT_common_reference";
6091 case DW_AT_comp_dir:
6092 return "DW_AT_comp_dir";
6093 case DW_AT_const_value:
6094 return "DW_AT_const_value";
6095 case DW_AT_containing_type:
6096 return "DW_AT_containing_type";
6097 case DW_AT_default_value:
6098 return "DW_AT_default_value";
6099 case DW_AT_inline:
6100 return "DW_AT_inline";
6101 case DW_AT_is_optional:
6102 return "DW_AT_is_optional";
6103 case DW_AT_lower_bound:
6104 return "DW_AT_lower_bound";
6105 case DW_AT_producer:
6106 return "DW_AT_producer";
6107 case DW_AT_prototyped:
6108 return "DW_AT_prototyped";
6109 case DW_AT_return_addr:
6110 return "DW_AT_return_addr";
6111 case DW_AT_start_scope:
6112 return "DW_AT_start_scope";
6113 case DW_AT_stride_size:
6114 return "DW_AT_stride_size";
6115 case DW_AT_upper_bound:
6116 return "DW_AT_upper_bound";
6117 case DW_AT_abstract_origin:
6118 return "DW_AT_abstract_origin";
6119 case DW_AT_accessibility:
6120 return "DW_AT_accessibility";
6121 case DW_AT_address_class:
6122 return "DW_AT_address_class";
6123 case DW_AT_artificial:
6124 return "DW_AT_artificial";
6125 case DW_AT_base_types:
6126 return "DW_AT_base_types";
6127 case DW_AT_calling_convention:
6128 return "DW_AT_calling_convention";
6129 case DW_AT_count:
6130 return "DW_AT_count";
6131 case DW_AT_data_member_location:
6132 return "DW_AT_data_member_location";
6133 case DW_AT_decl_column:
6134 return "DW_AT_decl_column";
6135 case DW_AT_decl_file:
6136 return "DW_AT_decl_file";
6137 case DW_AT_decl_line:
6138 return "DW_AT_decl_line";
6139 case DW_AT_declaration:
6140 return "DW_AT_declaration";
6141 case DW_AT_discr_list:
6142 return "DW_AT_discr_list";
6143 case DW_AT_encoding:
6144 return "DW_AT_encoding";
6145 case DW_AT_external:
6146 return "DW_AT_external";
6147 case DW_AT_frame_base:
6148 return "DW_AT_frame_base";
6149 case DW_AT_friend:
6150 return "DW_AT_friend";
6151 case DW_AT_identifier_case:
6152 return "DW_AT_identifier_case";
6153 case DW_AT_macro_info:
6154 return "DW_AT_macro_info";
6155 case DW_AT_namelist_items:
6156 return "DW_AT_namelist_items";
6157 case DW_AT_priority:
6158 return "DW_AT_priority";
6159 case DW_AT_segment:
6160 return "DW_AT_segment";
6161 case DW_AT_specification:
6162 return "DW_AT_specification";
6163 case DW_AT_static_link:
6164 return "DW_AT_static_link";
6165 case DW_AT_type:
6166 return "DW_AT_type";
6167 case DW_AT_use_location:
6168 return "DW_AT_use_location";
6169 case DW_AT_variable_parameter:
6170 return "DW_AT_variable_parameter";
6171 case DW_AT_virtuality:
6172 return "DW_AT_virtuality";
6173 case DW_AT_vtable_elem_location:
6174 return "DW_AT_vtable_elem_location";
6175 case DW_AT_allocated:
6176 return "DW_AT_allocated";
6177 case DW_AT_associated:
6178 return "DW_AT_associated";
6179 case DW_AT_data_location:
6180 return "DW_AT_data_location";
6181 case DW_AT_stride:
6182 return "DW_AT_stride";
6183 case DW_AT_entry_pc:
6184 return "DW_AT_entry_pc";
6185 case DW_AT_use_UTF8:
6186 return "DW_AT_use_UTF8";
6187 case DW_AT_extension:
6188 return "DW_AT_extension";
6189 case DW_AT_ranges:
6190 return "DW_AT_ranges";
6191 case DW_AT_trampoline:
6192 return "DW_AT_trampoline";
6193 case DW_AT_call_column:
6194 return "DW_AT_call_column";
6195 case DW_AT_call_file:
6196 return "DW_AT_call_file";
6197 case DW_AT_call_line:
6198 return "DW_AT_call_line";
6199 #ifdef MIPS
6200 case DW_AT_MIPS_fde:
6201 return "DW_AT_MIPS_fde";
6202 case DW_AT_MIPS_loop_begin:
6203 return "DW_AT_MIPS_loop_begin";
6204 case DW_AT_MIPS_tail_loop_begin:
6205 return "DW_AT_MIPS_tail_loop_begin";
6206 case DW_AT_MIPS_epilog_begin:
6207 return "DW_AT_MIPS_epilog_begin";
6208 case DW_AT_MIPS_loop_unroll_factor:
6209 return "DW_AT_MIPS_loop_unroll_factor";
6210 case DW_AT_MIPS_software_pipeline_depth:
6211 return "DW_AT_MIPS_software_pipeline_depth";
6212 #endif
6213 case DW_AT_MIPS_linkage_name:
6214 return "DW_AT_MIPS_linkage_name";
6215
6216 case DW_AT_sf_names:
6217 return "DW_AT_sf_names";
6218 case DW_AT_src_info:
6219 return "DW_AT_src_info";
6220 case DW_AT_mac_info:
6221 return "DW_AT_mac_info";
6222 case DW_AT_src_coords:
6223 return "DW_AT_src_coords";
6224 case DW_AT_body_begin:
6225 return "DW_AT_body_begin";
6226 case DW_AT_body_end:
6227 return "DW_AT_body_end";
6228 case DW_AT_GNU_vector:
6229 return "DW_AT_GNU_vector";
6230 default:
6231 return "DW_AT_<unknown>";
6232 }
6233 }
6234
6235 /* Convert a DWARF value form code into its string name. */
6236
6237 static char *
6238 dwarf_form_name (register unsigned form)
6239 {
6240 switch (form)
6241 {
6242 case DW_FORM_addr:
6243 return "DW_FORM_addr";
6244 case DW_FORM_block2:
6245 return "DW_FORM_block2";
6246 case DW_FORM_block4:
6247 return "DW_FORM_block4";
6248 case DW_FORM_data2:
6249 return "DW_FORM_data2";
6250 case DW_FORM_data4:
6251 return "DW_FORM_data4";
6252 case DW_FORM_data8:
6253 return "DW_FORM_data8";
6254 case DW_FORM_string:
6255 return "DW_FORM_string";
6256 case DW_FORM_block:
6257 return "DW_FORM_block";
6258 case DW_FORM_block1:
6259 return "DW_FORM_block1";
6260 case DW_FORM_data1:
6261 return "DW_FORM_data1";
6262 case DW_FORM_flag:
6263 return "DW_FORM_flag";
6264 case DW_FORM_sdata:
6265 return "DW_FORM_sdata";
6266 case DW_FORM_strp:
6267 return "DW_FORM_strp";
6268 case DW_FORM_udata:
6269 return "DW_FORM_udata";
6270 case DW_FORM_ref_addr:
6271 return "DW_FORM_ref_addr";
6272 case DW_FORM_ref1:
6273 return "DW_FORM_ref1";
6274 case DW_FORM_ref2:
6275 return "DW_FORM_ref2";
6276 case DW_FORM_ref4:
6277 return "DW_FORM_ref4";
6278 case DW_FORM_ref8:
6279 return "DW_FORM_ref8";
6280 case DW_FORM_ref_udata:
6281 return "DW_FORM_ref_udata";
6282 case DW_FORM_indirect:
6283 return "DW_FORM_indirect";
6284 default:
6285 return "DW_FORM_<unknown>";
6286 }
6287 }
6288
6289 /* Convert a DWARF stack opcode into its string name. */
6290
6291 static char *
6292 dwarf_stack_op_name (register unsigned op)
6293 {
6294 switch (op)
6295 {
6296 case DW_OP_addr:
6297 return "DW_OP_addr";
6298 case DW_OP_deref:
6299 return "DW_OP_deref";
6300 case DW_OP_const1u:
6301 return "DW_OP_const1u";
6302 case DW_OP_const1s:
6303 return "DW_OP_const1s";
6304 case DW_OP_const2u:
6305 return "DW_OP_const2u";
6306 case DW_OP_const2s:
6307 return "DW_OP_const2s";
6308 case DW_OP_const4u:
6309 return "DW_OP_const4u";
6310 case DW_OP_const4s:
6311 return "DW_OP_const4s";
6312 case DW_OP_const8u:
6313 return "DW_OP_const8u";
6314 case DW_OP_const8s:
6315 return "DW_OP_const8s";
6316 case DW_OP_constu:
6317 return "DW_OP_constu";
6318 case DW_OP_consts:
6319 return "DW_OP_consts";
6320 case DW_OP_dup:
6321 return "DW_OP_dup";
6322 case DW_OP_drop:
6323 return "DW_OP_drop";
6324 case DW_OP_over:
6325 return "DW_OP_over";
6326 case DW_OP_pick:
6327 return "DW_OP_pick";
6328 case DW_OP_swap:
6329 return "DW_OP_swap";
6330 case DW_OP_rot:
6331 return "DW_OP_rot";
6332 case DW_OP_xderef:
6333 return "DW_OP_xderef";
6334 case DW_OP_abs:
6335 return "DW_OP_abs";
6336 case DW_OP_and:
6337 return "DW_OP_and";
6338 case DW_OP_div:
6339 return "DW_OP_div";
6340 case DW_OP_minus:
6341 return "DW_OP_minus";
6342 case DW_OP_mod:
6343 return "DW_OP_mod";
6344 case DW_OP_mul:
6345 return "DW_OP_mul";
6346 case DW_OP_neg:
6347 return "DW_OP_neg";
6348 case DW_OP_not:
6349 return "DW_OP_not";
6350 case DW_OP_or:
6351 return "DW_OP_or";
6352 case DW_OP_plus:
6353 return "DW_OP_plus";
6354 case DW_OP_plus_uconst:
6355 return "DW_OP_plus_uconst";
6356 case DW_OP_shl:
6357 return "DW_OP_shl";
6358 case DW_OP_shr:
6359 return "DW_OP_shr";
6360 case DW_OP_shra:
6361 return "DW_OP_shra";
6362 case DW_OP_xor:
6363 return "DW_OP_xor";
6364 case DW_OP_bra:
6365 return "DW_OP_bra";
6366 case DW_OP_eq:
6367 return "DW_OP_eq";
6368 case DW_OP_ge:
6369 return "DW_OP_ge";
6370 case DW_OP_gt:
6371 return "DW_OP_gt";
6372 case DW_OP_le:
6373 return "DW_OP_le";
6374 case DW_OP_lt:
6375 return "DW_OP_lt";
6376 case DW_OP_ne:
6377 return "DW_OP_ne";
6378 case DW_OP_skip:
6379 return "DW_OP_skip";
6380 case DW_OP_lit0:
6381 return "DW_OP_lit0";
6382 case DW_OP_lit1:
6383 return "DW_OP_lit1";
6384 case DW_OP_lit2:
6385 return "DW_OP_lit2";
6386 case DW_OP_lit3:
6387 return "DW_OP_lit3";
6388 case DW_OP_lit4:
6389 return "DW_OP_lit4";
6390 case DW_OP_lit5:
6391 return "DW_OP_lit5";
6392 case DW_OP_lit6:
6393 return "DW_OP_lit6";
6394 case DW_OP_lit7:
6395 return "DW_OP_lit7";
6396 case DW_OP_lit8:
6397 return "DW_OP_lit8";
6398 case DW_OP_lit9:
6399 return "DW_OP_lit9";
6400 case DW_OP_lit10:
6401 return "DW_OP_lit10";
6402 case DW_OP_lit11:
6403 return "DW_OP_lit11";
6404 case DW_OP_lit12:
6405 return "DW_OP_lit12";
6406 case DW_OP_lit13:
6407 return "DW_OP_lit13";
6408 case DW_OP_lit14:
6409 return "DW_OP_lit14";
6410 case DW_OP_lit15:
6411 return "DW_OP_lit15";
6412 case DW_OP_lit16:
6413 return "DW_OP_lit16";
6414 case DW_OP_lit17:
6415 return "DW_OP_lit17";
6416 case DW_OP_lit18:
6417 return "DW_OP_lit18";
6418 case DW_OP_lit19:
6419 return "DW_OP_lit19";
6420 case DW_OP_lit20:
6421 return "DW_OP_lit20";
6422 case DW_OP_lit21:
6423 return "DW_OP_lit21";
6424 case DW_OP_lit22:
6425 return "DW_OP_lit22";
6426 case DW_OP_lit23:
6427 return "DW_OP_lit23";
6428 case DW_OP_lit24:
6429 return "DW_OP_lit24";
6430 case DW_OP_lit25:
6431 return "DW_OP_lit25";
6432 case DW_OP_lit26:
6433 return "DW_OP_lit26";
6434 case DW_OP_lit27:
6435 return "DW_OP_lit27";
6436 case DW_OP_lit28:
6437 return "DW_OP_lit28";
6438 case DW_OP_lit29:
6439 return "DW_OP_lit29";
6440 case DW_OP_lit30:
6441 return "DW_OP_lit30";
6442 case DW_OP_lit31:
6443 return "DW_OP_lit31";
6444 case DW_OP_reg0:
6445 return "DW_OP_reg0";
6446 case DW_OP_reg1:
6447 return "DW_OP_reg1";
6448 case DW_OP_reg2:
6449 return "DW_OP_reg2";
6450 case DW_OP_reg3:
6451 return "DW_OP_reg3";
6452 case DW_OP_reg4:
6453 return "DW_OP_reg4";
6454 case DW_OP_reg5:
6455 return "DW_OP_reg5";
6456 case DW_OP_reg6:
6457 return "DW_OP_reg6";
6458 case DW_OP_reg7:
6459 return "DW_OP_reg7";
6460 case DW_OP_reg8:
6461 return "DW_OP_reg8";
6462 case DW_OP_reg9:
6463 return "DW_OP_reg9";
6464 case DW_OP_reg10:
6465 return "DW_OP_reg10";
6466 case DW_OP_reg11:
6467 return "DW_OP_reg11";
6468 case DW_OP_reg12:
6469 return "DW_OP_reg12";
6470 case DW_OP_reg13:
6471 return "DW_OP_reg13";
6472 case DW_OP_reg14:
6473 return "DW_OP_reg14";
6474 case DW_OP_reg15:
6475 return "DW_OP_reg15";
6476 case DW_OP_reg16:
6477 return "DW_OP_reg16";
6478 case DW_OP_reg17:
6479 return "DW_OP_reg17";
6480 case DW_OP_reg18:
6481 return "DW_OP_reg18";
6482 case DW_OP_reg19:
6483 return "DW_OP_reg19";
6484 case DW_OP_reg20:
6485 return "DW_OP_reg20";
6486 case DW_OP_reg21:
6487 return "DW_OP_reg21";
6488 case DW_OP_reg22:
6489 return "DW_OP_reg22";
6490 case DW_OP_reg23:
6491 return "DW_OP_reg23";
6492 case DW_OP_reg24:
6493 return "DW_OP_reg24";
6494 case DW_OP_reg25:
6495 return "DW_OP_reg25";
6496 case DW_OP_reg26:
6497 return "DW_OP_reg26";
6498 case DW_OP_reg27:
6499 return "DW_OP_reg27";
6500 case DW_OP_reg28:
6501 return "DW_OP_reg28";
6502 case DW_OP_reg29:
6503 return "DW_OP_reg29";
6504 case DW_OP_reg30:
6505 return "DW_OP_reg30";
6506 case DW_OP_reg31:
6507 return "DW_OP_reg31";
6508 case DW_OP_breg0:
6509 return "DW_OP_breg0";
6510 case DW_OP_breg1:
6511 return "DW_OP_breg1";
6512 case DW_OP_breg2:
6513 return "DW_OP_breg2";
6514 case DW_OP_breg3:
6515 return "DW_OP_breg3";
6516 case DW_OP_breg4:
6517 return "DW_OP_breg4";
6518 case DW_OP_breg5:
6519 return "DW_OP_breg5";
6520 case DW_OP_breg6:
6521 return "DW_OP_breg6";
6522 case DW_OP_breg7:
6523 return "DW_OP_breg7";
6524 case DW_OP_breg8:
6525 return "DW_OP_breg8";
6526 case DW_OP_breg9:
6527 return "DW_OP_breg9";
6528 case DW_OP_breg10:
6529 return "DW_OP_breg10";
6530 case DW_OP_breg11:
6531 return "DW_OP_breg11";
6532 case DW_OP_breg12:
6533 return "DW_OP_breg12";
6534 case DW_OP_breg13:
6535 return "DW_OP_breg13";
6536 case DW_OP_breg14:
6537 return "DW_OP_breg14";
6538 case DW_OP_breg15:
6539 return "DW_OP_breg15";
6540 case DW_OP_breg16:
6541 return "DW_OP_breg16";
6542 case DW_OP_breg17:
6543 return "DW_OP_breg17";
6544 case DW_OP_breg18:
6545 return "DW_OP_breg18";
6546 case DW_OP_breg19:
6547 return "DW_OP_breg19";
6548 case DW_OP_breg20:
6549 return "DW_OP_breg20";
6550 case DW_OP_breg21:
6551 return "DW_OP_breg21";
6552 case DW_OP_breg22:
6553 return "DW_OP_breg22";
6554 case DW_OP_breg23:
6555 return "DW_OP_breg23";
6556 case DW_OP_breg24:
6557 return "DW_OP_breg24";
6558 case DW_OP_breg25:
6559 return "DW_OP_breg25";
6560 case DW_OP_breg26:
6561 return "DW_OP_breg26";
6562 case DW_OP_breg27:
6563 return "DW_OP_breg27";
6564 case DW_OP_breg28:
6565 return "DW_OP_breg28";
6566 case DW_OP_breg29:
6567 return "DW_OP_breg29";
6568 case DW_OP_breg30:
6569 return "DW_OP_breg30";
6570 case DW_OP_breg31:
6571 return "DW_OP_breg31";
6572 case DW_OP_regx:
6573 return "DW_OP_regx";
6574 case DW_OP_fbreg:
6575 return "DW_OP_fbreg";
6576 case DW_OP_bregx:
6577 return "DW_OP_bregx";
6578 case DW_OP_piece:
6579 return "DW_OP_piece";
6580 case DW_OP_deref_size:
6581 return "DW_OP_deref_size";
6582 case DW_OP_xderef_size:
6583 return "DW_OP_xderef_size";
6584 case DW_OP_nop:
6585 return "DW_OP_nop";
6586 /* DWARF 3 extensions. */
6587 case DW_OP_push_object_address:
6588 return "DW_OP_push_object_address";
6589 case DW_OP_call2:
6590 return "DW_OP_call2";
6591 case DW_OP_call4:
6592 return "DW_OP_call4";
6593 case DW_OP_call_ref:
6594 return "DW_OP_call_ref";
6595 /* GNU extensions. */
6596 case DW_OP_GNU_push_tls_address:
6597 return "DW_OP_GNU_push_tls_address";
6598 default:
6599 return "OP_<unknown>";
6600 }
6601 }
6602
6603 static char *
6604 dwarf_bool_name (unsigned mybool)
6605 {
6606 if (mybool)
6607 return "TRUE";
6608 else
6609 return "FALSE";
6610 }
6611
6612 /* Convert a DWARF type code into its string name. */
6613
6614 static char *
6615 dwarf_type_encoding_name (register unsigned enc)
6616 {
6617 switch (enc)
6618 {
6619 case DW_ATE_address:
6620 return "DW_ATE_address";
6621 case DW_ATE_boolean:
6622 return "DW_ATE_boolean";
6623 case DW_ATE_complex_float:
6624 return "DW_ATE_complex_float";
6625 case DW_ATE_float:
6626 return "DW_ATE_float";
6627 case DW_ATE_signed:
6628 return "DW_ATE_signed";
6629 case DW_ATE_signed_char:
6630 return "DW_ATE_signed_char";
6631 case DW_ATE_unsigned:
6632 return "DW_ATE_unsigned";
6633 case DW_ATE_unsigned_char:
6634 return "DW_ATE_unsigned_char";
6635 case DW_ATE_imaginary_float:
6636 return "DW_ATE_imaginary_float";
6637 default:
6638 return "DW_ATE_<unknown>";
6639 }
6640 }
6641
6642 /* Convert a DWARF call frame info operation to its string name. */
6643
6644 #if 0
6645 static char *
6646 dwarf_cfi_name (register unsigned cfi_opc)
6647 {
6648 switch (cfi_opc)
6649 {
6650 case DW_CFA_advance_loc:
6651 return "DW_CFA_advance_loc";
6652 case DW_CFA_offset:
6653 return "DW_CFA_offset";
6654 case DW_CFA_restore:
6655 return "DW_CFA_restore";
6656 case DW_CFA_nop:
6657 return "DW_CFA_nop";
6658 case DW_CFA_set_loc:
6659 return "DW_CFA_set_loc";
6660 case DW_CFA_advance_loc1:
6661 return "DW_CFA_advance_loc1";
6662 case DW_CFA_advance_loc2:
6663 return "DW_CFA_advance_loc2";
6664 case DW_CFA_advance_loc4:
6665 return "DW_CFA_advance_loc4";
6666 case DW_CFA_offset_extended:
6667 return "DW_CFA_offset_extended";
6668 case DW_CFA_restore_extended:
6669 return "DW_CFA_restore_extended";
6670 case DW_CFA_undefined:
6671 return "DW_CFA_undefined";
6672 case DW_CFA_same_value:
6673 return "DW_CFA_same_value";
6674 case DW_CFA_register:
6675 return "DW_CFA_register";
6676 case DW_CFA_remember_state:
6677 return "DW_CFA_remember_state";
6678 case DW_CFA_restore_state:
6679 return "DW_CFA_restore_state";
6680 case DW_CFA_def_cfa:
6681 return "DW_CFA_def_cfa";
6682 case DW_CFA_def_cfa_register:
6683 return "DW_CFA_def_cfa_register";
6684 case DW_CFA_def_cfa_offset:
6685 return "DW_CFA_def_cfa_offset";
6686
6687 /* DWARF 3 */
6688 case DW_CFA_def_cfa_expression:
6689 return "DW_CFA_def_cfa_expression";
6690 case DW_CFA_expression:
6691 return "DW_CFA_expression";
6692 case DW_CFA_offset_extended_sf:
6693 return "DW_CFA_offset_extended_sf";
6694 case DW_CFA_def_cfa_sf:
6695 return "DW_CFA_def_cfa_sf";
6696 case DW_CFA_def_cfa_offset_sf:
6697 return "DW_CFA_def_cfa_offset_sf";
6698
6699 /* SGI/MIPS specific */
6700 case DW_CFA_MIPS_advance_loc8:
6701 return "DW_CFA_MIPS_advance_loc8";
6702
6703 /* GNU extensions */
6704 case DW_CFA_GNU_window_save:
6705 return "DW_CFA_GNU_window_save";
6706 case DW_CFA_GNU_args_size:
6707 return "DW_CFA_GNU_args_size";
6708 case DW_CFA_GNU_negative_offset_extended:
6709 return "DW_CFA_GNU_negative_offset_extended";
6710
6711 default:
6712 return "DW_CFA_<unknown>";
6713 }
6714 }
6715 #endif
6716
6717 static void
6718 dump_die (struct die_info *die)
6719 {
6720 unsigned int i;
6721
6722 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
6723 dwarf_tag_name (die->tag), die->abbrev, die->offset);
6724 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
6725 dwarf_bool_name (die->has_children));
6726
6727 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
6728 for (i = 0; i < die->num_attrs; ++i)
6729 {
6730 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
6731 dwarf_attr_name (die->attrs[i].name),
6732 dwarf_form_name (die->attrs[i].form));
6733 switch (die->attrs[i].form)
6734 {
6735 case DW_FORM_ref_addr:
6736 case DW_FORM_addr:
6737 fprintf_unfiltered (gdb_stderr, "address: ");
6738 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
6739 break;
6740 case DW_FORM_block2:
6741 case DW_FORM_block4:
6742 case DW_FORM_block:
6743 case DW_FORM_block1:
6744 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
6745 break;
6746 case DW_FORM_data1:
6747 case DW_FORM_data2:
6748 case DW_FORM_data4:
6749 case DW_FORM_data8:
6750 case DW_FORM_ref1:
6751 case DW_FORM_ref2:
6752 case DW_FORM_ref4:
6753 case DW_FORM_udata:
6754 case DW_FORM_sdata:
6755 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
6756 break;
6757 case DW_FORM_string:
6758 case DW_FORM_strp:
6759 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
6760 DW_STRING (&die->attrs[i])
6761 ? DW_STRING (&die->attrs[i]) : "");
6762 break;
6763 case DW_FORM_flag:
6764 if (DW_UNSND (&die->attrs[i]))
6765 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
6766 else
6767 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
6768 break;
6769 case DW_FORM_indirect:
6770 /* the reader will have reduced the indirect form to
6771 the "base form" so this form should not occur */
6772 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
6773 break;
6774 default:
6775 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
6776 die->attrs[i].form);
6777 }
6778 fprintf_unfiltered (gdb_stderr, "\n");
6779 }
6780 }
6781
6782 static void
6783 dump_die_list (struct die_info *die)
6784 {
6785 while (die)
6786 {
6787 dump_die (die);
6788 die = die->next;
6789 }
6790 }
6791
6792 static void
6793 store_in_ref_table (unsigned int offset, struct die_info *die)
6794 {
6795 int h;
6796 struct die_info *old;
6797
6798 h = (offset % REF_HASH_SIZE);
6799 old = die_ref_table[h];
6800 die->next_ref = old;
6801 die_ref_table[h] = die;
6802 }
6803
6804
6805 static void
6806 dwarf2_empty_hash_tables (void)
6807 {
6808 memset (die_ref_table, 0, sizeof (die_ref_table));
6809 }
6810
6811 static unsigned int
6812 dwarf2_get_ref_die_offset (struct attribute *attr)
6813 {
6814 unsigned int result = 0;
6815
6816 switch (attr->form)
6817 {
6818 case DW_FORM_ref_addr:
6819 result = DW_ADDR (attr);
6820 break;
6821 case DW_FORM_ref1:
6822 case DW_FORM_ref2:
6823 case DW_FORM_ref4:
6824 case DW_FORM_ref8:
6825 case DW_FORM_ref_udata:
6826 result = cu_header_offset + DW_UNSND (attr);
6827 break;
6828 default:
6829 complaint (&symfile_complaints,
6830 "unsupported die ref attribute form: '%s'",
6831 dwarf_form_name (attr->form));
6832 }
6833 return result;
6834 }
6835
6836 static struct die_info *
6837 follow_die_ref (unsigned int offset)
6838 {
6839 struct die_info *die;
6840 int h;
6841
6842 h = (offset % REF_HASH_SIZE);
6843 die = die_ref_table[h];
6844 while (die)
6845 {
6846 if (die->offset == offset)
6847 {
6848 return die;
6849 }
6850 die = die->next_ref;
6851 }
6852 return NULL;
6853 }
6854
6855 static struct type *
6856 dwarf2_fundamental_type (struct objfile *objfile, int typeid)
6857 {
6858 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
6859 {
6860 error ("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]",
6861 typeid, objfile->name);
6862 }
6863
6864 /* Look for this particular type in the fundamental type vector. If
6865 one is not found, create and install one appropriate for the
6866 current language and the current target machine. */
6867
6868 if (ftypes[typeid] == NULL)
6869 {
6870 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
6871 }
6872
6873 return (ftypes[typeid]);
6874 }
6875
6876 /* Decode simple location descriptions.
6877 Given a pointer to a dwarf block that defines a location, compute
6878 the location and return the value.
6879
6880 FIXME: This is a kludge until we figure out a better
6881 way to handle the location descriptions.
6882 Gdb's design does not mesh well with the DWARF2 notion of a location
6883 computing interpreter, which is a shame because the flexibility goes unused.
6884 FIXME: Implement more operations as necessary.
6885
6886 A location description containing no operations indicates that the
6887 object is optimized out. The global optimized_out flag is set for
6888 those, the return value is meaningless.
6889
6890 When the result is a register number, the global isreg flag is set,
6891 otherwise it is cleared.
6892
6893 When the result is a base register offset, the global offreg flag is set
6894 and the register number is returned in basereg, otherwise it is cleared.
6895
6896 When the DW_OP_fbreg operation is encountered without a corresponding
6897 DW_AT_frame_base attribute, the global islocal flag is set.
6898 Hopefully the machine dependent code knows how to set up a virtual
6899 frame pointer for the local references.
6900
6901 Note that stack[0] is unused except as a default error return.
6902 Note that stack overflow is not yet handled. */
6903
6904 static CORE_ADDR
6905 decode_locdesc (struct dwarf_block *blk, struct objfile *objfile,
6906 const struct comp_unit_head *cu_header)
6907 {
6908 int i;
6909 int size = blk->size;
6910 char *data = blk->data;
6911 CORE_ADDR stack[64];
6912 int stacki;
6913 unsigned int bytes_read, unsnd;
6914 unsigned char op;
6915
6916 i = 0;
6917 stacki = 0;
6918 stack[stacki] = 0;
6919 isreg = 0;
6920 offreg = 0;
6921 isderef = 0;
6922 islocal = 0;
6923 optimized_out = 1;
6924
6925 while (i < size)
6926 {
6927 optimized_out = 0;
6928 op = data[i++];
6929 switch (op)
6930 {
6931 case DW_OP_lit0:
6932 case DW_OP_lit1:
6933 case DW_OP_lit2:
6934 case DW_OP_lit3:
6935 case DW_OP_lit4:
6936 case DW_OP_lit5:
6937 case DW_OP_lit6:
6938 case DW_OP_lit7:
6939 case DW_OP_lit8:
6940 case DW_OP_lit9:
6941 case DW_OP_lit10:
6942 case DW_OP_lit11:
6943 case DW_OP_lit12:
6944 case DW_OP_lit13:
6945 case DW_OP_lit14:
6946 case DW_OP_lit15:
6947 case DW_OP_lit16:
6948 case DW_OP_lit17:
6949 case DW_OP_lit18:
6950 case DW_OP_lit19:
6951 case DW_OP_lit20:
6952 case DW_OP_lit21:
6953 case DW_OP_lit22:
6954 case DW_OP_lit23:
6955 case DW_OP_lit24:
6956 case DW_OP_lit25:
6957 case DW_OP_lit26:
6958 case DW_OP_lit27:
6959 case DW_OP_lit28:
6960 case DW_OP_lit29:
6961 case DW_OP_lit30:
6962 case DW_OP_lit31:
6963 stack[++stacki] = op - DW_OP_lit0;
6964 break;
6965
6966 case DW_OP_reg0:
6967 case DW_OP_reg1:
6968 case DW_OP_reg2:
6969 case DW_OP_reg3:
6970 case DW_OP_reg4:
6971 case DW_OP_reg5:
6972 case DW_OP_reg6:
6973 case DW_OP_reg7:
6974 case DW_OP_reg8:
6975 case DW_OP_reg9:
6976 case DW_OP_reg10:
6977 case DW_OP_reg11:
6978 case DW_OP_reg12:
6979 case DW_OP_reg13:
6980 case DW_OP_reg14:
6981 case DW_OP_reg15:
6982 case DW_OP_reg16:
6983 case DW_OP_reg17:
6984 case DW_OP_reg18:
6985 case DW_OP_reg19:
6986 case DW_OP_reg20:
6987 case DW_OP_reg21:
6988 case DW_OP_reg22:
6989 case DW_OP_reg23:
6990 case DW_OP_reg24:
6991 case DW_OP_reg25:
6992 case DW_OP_reg26:
6993 case DW_OP_reg27:
6994 case DW_OP_reg28:
6995 case DW_OP_reg29:
6996 case DW_OP_reg30:
6997 case DW_OP_reg31:
6998 isreg = 1;
6999 stack[++stacki] = op - DW_OP_reg0;
7000 break;
7001
7002 case DW_OP_regx:
7003 isreg = 1;
7004 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
7005 i += bytes_read;
7006 stack[++stacki] = unsnd;
7007 break;
7008
7009 case DW_OP_breg0:
7010 case DW_OP_breg1:
7011 case DW_OP_breg2:
7012 case DW_OP_breg3:
7013 case DW_OP_breg4:
7014 case DW_OP_breg5:
7015 case DW_OP_breg6:
7016 case DW_OP_breg7:
7017 case DW_OP_breg8:
7018 case DW_OP_breg9:
7019 case DW_OP_breg10:
7020 case DW_OP_breg11:
7021 case DW_OP_breg12:
7022 case DW_OP_breg13:
7023 case DW_OP_breg14:
7024 case DW_OP_breg15:
7025 case DW_OP_breg16:
7026 case DW_OP_breg17:
7027 case DW_OP_breg18:
7028 case DW_OP_breg19:
7029 case DW_OP_breg20:
7030 case DW_OP_breg21:
7031 case DW_OP_breg22:
7032 case DW_OP_breg23:
7033 case DW_OP_breg24:
7034 case DW_OP_breg25:
7035 case DW_OP_breg26:
7036 case DW_OP_breg27:
7037 case DW_OP_breg28:
7038 case DW_OP_breg29:
7039 case DW_OP_breg30:
7040 case DW_OP_breg31:
7041 offreg = 1;
7042 basereg = op - DW_OP_breg0;
7043 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
7044 i += bytes_read;
7045 break;
7046
7047 case DW_OP_bregx:
7048 offreg = 1;
7049 basereg = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
7050 i += bytes_read;
7051 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
7052 i += bytes_read;
7053 break;
7054
7055 case DW_OP_fbreg:
7056 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
7057 i += bytes_read;
7058 if (frame_base_reg >= 0)
7059 {
7060 offreg = 1;
7061 basereg = frame_base_reg;
7062 stack[stacki] += frame_base_offset;
7063 }
7064 else
7065 {
7066 complaint (&symfile_complaints,
7067 "DW_AT_frame_base missing for DW_OP_fbreg");
7068 islocal = 1;
7069 }
7070 break;
7071
7072 case DW_OP_addr:
7073 stack[++stacki] = read_address (objfile->obfd, &data[i],
7074 cu_header, &bytes_read);
7075 i += bytes_read;
7076 break;
7077
7078 case DW_OP_const1u:
7079 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
7080 i += 1;
7081 break;
7082
7083 case DW_OP_const1s:
7084 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
7085 i += 1;
7086 break;
7087
7088 case DW_OP_const2u:
7089 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
7090 i += 2;
7091 break;
7092
7093 case DW_OP_const2s:
7094 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
7095 i += 2;
7096 break;
7097
7098 case DW_OP_const4u:
7099 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
7100 i += 4;
7101 break;
7102
7103 case DW_OP_const4s:
7104 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
7105 i += 4;
7106 break;
7107
7108 case DW_OP_constu:
7109 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
7110 &bytes_read);
7111 i += bytes_read;
7112 break;
7113
7114 case DW_OP_consts:
7115 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
7116 i += bytes_read;
7117 break;
7118
7119 case DW_OP_dup:
7120 stack[stacki + 1] = stack[stacki];
7121 stacki++;
7122 break;
7123
7124 case DW_OP_plus:
7125 stack[stacki - 1] += stack[stacki];
7126 stacki--;
7127 break;
7128
7129 case DW_OP_plus_uconst:
7130 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
7131 i += bytes_read;
7132 break;
7133
7134 case DW_OP_minus:
7135 stack[stacki - 1] -= stack[stacki];
7136 stacki--;
7137 break;
7138
7139 case DW_OP_deref:
7140 isderef = 1;
7141 /* If we're not the last op, then we definitely can't encode
7142 this using GDB's address_class enum. */
7143 if (i < size)
7144 dwarf2_complex_location_expr_complaint ();
7145 break;
7146
7147 case DW_OP_GNU_push_tls_address:
7148 /* The top of the stack has the offset from the beginning
7149 of the thread control block at which the variable is located. */
7150 /* Nothing should follow this operator, so the top of stack would
7151 be returned. */
7152 if (i < size)
7153 dwarf2_complex_location_expr_complaint ();
7154 break;
7155
7156 default:
7157 complaint (&symfile_complaints, "unsupported stack op: '%s'",
7158 dwarf_stack_op_name (op));
7159 return (stack[stacki]);
7160 }
7161 }
7162 return (stack[stacki]);
7163 }
7164
7165 /* memory allocation interface */
7166
7167 /* ARGSUSED */
7168 static void
7169 dwarf2_free_tmp_obstack (void *ignore)
7170 {
7171 obstack_free (&dwarf2_tmp_obstack, NULL);
7172 }
7173
7174 static struct dwarf_block *
7175 dwarf_alloc_block (void)
7176 {
7177 struct dwarf_block *blk;
7178
7179 blk = (struct dwarf_block *)
7180 obstack_alloc (&dwarf2_tmp_obstack, sizeof (struct dwarf_block));
7181 return (blk);
7182 }
7183
7184 static struct abbrev_info *
7185 dwarf_alloc_abbrev (void)
7186 {
7187 struct abbrev_info *abbrev;
7188
7189 abbrev = (struct abbrev_info *) xmalloc (sizeof (struct abbrev_info));
7190 memset (abbrev, 0, sizeof (struct abbrev_info));
7191 return (abbrev);
7192 }
7193
7194 static struct die_info *
7195 dwarf_alloc_die (void)
7196 {
7197 struct die_info *die;
7198
7199 die = (struct die_info *) xmalloc (sizeof (struct die_info));
7200 memset (die, 0, sizeof (struct die_info));
7201 return (die);
7202 }
7203
7204 \f
7205 /* Macro support. */
7206
7207
7208 /* Return the full name of file number I in *LH's file name table.
7209 Use COMP_DIR as the name of the current directory of the
7210 compilation. The result is allocated using xmalloc; the caller is
7211 responsible for freeing it. */
7212 static char *
7213 file_full_name (int file, struct line_header *lh, const char *comp_dir)
7214 {
7215 struct file_entry *fe = &lh->file_names[file - 1];
7216
7217 if (IS_ABSOLUTE_PATH (fe->name))
7218 return xstrdup (fe->name);
7219 else
7220 {
7221 const char *dir;
7222 int dir_len;
7223 char *full_name;
7224
7225 if (fe->dir_index)
7226 dir = lh->include_dirs[fe->dir_index - 1];
7227 else
7228 dir = comp_dir;
7229
7230 if (dir)
7231 {
7232 dir_len = strlen (dir);
7233 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
7234 strcpy (full_name, dir);
7235 full_name[dir_len] = '/';
7236 strcpy (full_name + dir_len + 1, fe->name);
7237 return full_name;
7238 }
7239 else
7240 return xstrdup (fe->name);
7241 }
7242 }
7243
7244
7245 static struct macro_source_file *
7246 macro_start_file (int file, int line,
7247 struct macro_source_file *current_file,
7248 const char *comp_dir,
7249 struct line_header *lh, struct objfile *objfile)
7250 {
7251 /* The full name of this source file. */
7252 char *full_name = file_full_name (file, lh, comp_dir);
7253
7254 /* We don't create a macro table for this compilation unit
7255 at all until we actually get a filename. */
7256 if (! pending_macros)
7257 pending_macros = new_macro_table (&objfile->symbol_obstack,
7258 objfile->macro_cache);
7259
7260 if (! current_file)
7261 /* If we have no current file, then this must be the start_file
7262 directive for the compilation unit's main source file. */
7263 current_file = macro_set_main (pending_macros, full_name);
7264 else
7265 current_file = macro_include (current_file, line, full_name);
7266
7267 xfree (full_name);
7268
7269 return current_file;
7270 }
7271
7272
7273 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
7274 followed by a null byte. */
7275 static char *
7276 copy_string (const char *buf, int len)
7277 {
7278 char *s = xmalloc (len + 1);
7279 memcpy (s, buf, len);
7280 s[len] = '\0';
7281
7282 return s;
7283 }
7284
7285
7286 static const char *
7287 consume_improper_spaces (const char *p, const char *body)
7288 {
7289 if (*p == ' ')
7290 {
7291 complaint (&symfile_complaints,
7292 "macro definition contains spaces in formal argument list:\n`%s'",
7293 body);
7294
7295 while (*p == ' ')
7296 p++;
7297 }
7298
7299 return p;
7300 }
7301
7302
7303 static void
7304 parse_macro_definition (struct macro_source_file *file, int line,
7305 const char *body)
7306 {
7307 const char *p;
7308
7309 /* The body string takes one of two forms. For object-like macro
7310 definitions, it should be:
7311
7312 <macro name> " " <definition>
7313
7314 For function-like macro definitions, it should be:
7315
7316 <macro name> "() " <definition>
7317 or
7318 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
7319
7320 Spaces may appear only where explicitly indicated, and in the
7321 <definition>.
7322
7323 The Dwarf 2 spec says that an object-like macro's name is always
7324 followed by a space, but versions of GCC around March 2002 omit
7325 the space when the macro's definition is the empty string.
7326
7327 The Dwarf 2 spec says that there should be no spaces between the
7328 formal arguments in a function-like macro's formal argument list,
7329 but versions of GCC around March 2002 include spaces after the
7330 commas. */
7331
7332
7333 /* Find the extent of the macro name. The macro name is terminated
7334 by either a space or null character (for an object-like macro) or
7335 an opening paren (for a function-like macro). */
7336 for (p = body; *p; p++)
7337 if (*p == ' ' || *p == '(')
7338 break;
7339
7340 if (*p == ' ' || *p == '\0')
7341 {
7342 /* It's an object-like macro. */
7343 int name_len = p - body;
7344 char *name = copy_string (body, name_len);
7345 const char *replacement;
7346
7347 if (*p == ' ')
7348 replacement = body + name_len + 1;
7349 else
7350 {
7351 dwarf2_macro_malformed_definition_complaint (body);
7352 replacement = body + name_len;
7353 }
7354
7355 macro_define_object (file, line, name, replacement);
7356
7357 xfree (name);
7358 }
7359 else if (*p == '(')
7360 {
7361 /* It's a function-like macro. */
7362 char *name = copy_string (body, p - body);
7363 int argc = 0;
7364 int argv_size = 1;
7365 char **argv = xmalloc (argv_size * sizeof (*argv));
7366
7367 p++;
7368
7369 p = consume_improper_spaces (p, body);
7370
7371 /* Parse the formal argument list. */
7372 while (*p && *p != ')')
7373 {
7374 /* Find the extent of the current argument name. */
7375 const char *arg_start = p;
7376
7377 while (*p && *p != ',' && *p != ')' && *p != ' ')
7378 p++;
7379
7380 if (! *p || p == arg_start)
7381 dwarf2_macro_malformed_definition_complaint (body);
7382 else
7383 {
7384 /* Make sure argv has room for the new argument. */
7385 if (argc >= argv_size)
7386 {
7387 argv_size *= 2;
7388 argv = xrealloc (argv, argv_size * sizeof (*argv));
7389 }
7390
7391 argv[argc++] = copy_string (arg_start, p - arg_start);
7392 }
7393
7394 p = consume_improper_spaces (p, body);
7395
7396 /* Consume the comma, if present. */
7397 if (*p == ',')
7398 {
7399 p++;
7400
7401 p = consume_improper_spaces (p, body);
7402 }
7403 }
7404
7405 if (*p == ')')
7406 {
7407 p++;
7408
7409 if (*p == ' ')
7410 /* Perfectly formed definition, no complaints. */
7411 macro_define_function (file, line, name,
7412 argc, (const char **) argv,
7413 p + 1);
7414 else if (*p == '\0')
7415 {
7416 /* Complain, but do define it. */
7417 dwarf2_macro_malformed_definition_complaint (body);
7418 macro_define_function (file, line, name,
7419 argc, (const char **) argv,
7420 p);
7421 }
7422 else
7423 /* Just complain. */
7424 dwarf2_macro_malformed_definition_complaint (body);
7425 }
7426 else
7427 /* Just complain. */
7428 dwarf2_macro_malformed_definition_complaint (body);
7429
7430 xfree (name);
7431 {
7432 int i;
7433
7434 for (i = 0; i < argc; i++)
7435 xfree (argv[i]);
7436 }
7437 xfree (argv);
7438 }
7439 else
7440 dwarf2_macro_malformed_definition_complaint (body);
7441 }
7442
7443
7444 static void
7445 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
7446 char *comp_dir, bfd *abfd,
7447 const struct comp_unit_head *cu_header,
7448 struct objfile *objfile)
7449 {
7450 char *mac_ptr, *mac_end;
7451 struct macro_source_file *current_file = 0;
7452
7453 if (dwarf_macinfo_buffer == NULL)
7454 {
7455 complaint (&symfile_complaints, "missing .debug_macinfo section");
7456 return;
7457 }
7458
7459 mac_ptr = dwarf_macinfo_buffer + offset;
7460 mac_end = dwarf_macinfo_buffer + dwarf_macinfo_size;
7461
7462 for (;;)
7463 {
7464 enum dwarf_macinfo_record_type macinfo_type;
7465
7466 /* Do we at least have room for a macinfo type byte? */
7467 if (mac_ptr >= mac_end)
7468 {
7469 dwarf2_macros_too_long_complaint ();
7470 return;
7471 }
7472
7473 macinfo_type = read_1_byte (abfd, mac_ptr);
7474 mac_ptr++;
7475
7476 switch (macinfo_type)
7477 {
7478 /* A zero macinfo type indicates the end of the macro
7479 information. */
7480 case 0:
7481 return;
7482
7483 case DW_MACINFO_define:
7484 case DW_MACINFO_undef:
7485 {
7486 int bytes_read;
7487 int line;
7488 char *body;
7489
7490 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
7491 mac_ptr += bytes_read;
7492 body = read_string (abfd, mac_ptr, &bytes_read);
7493 mac_ptr += bytes_read;
7494
7495 if (! current_file)
7496 complaint (&symfile_complaints,
7497 "debug info gives macro %s outside of any file: %s",
7498 macinfo_type ==
7499 DW_MACINFO_define ? "definition" : macinfo_type ==
7500 DW_MACINFO_undef ? "undefinition" :
7501 "something-or-other", body);
7502 else
7503 {
7504 if (macinfo_type == DW_MACINFO_define)
7505 parse_macro_definition (current_file, line, body);
7506 else if (macinfo_type == DW_MACINFO_undef)
7507 macro_undef (current_file, line, body);
7508 }
7509 }
7510 break;
7511
7512 case DW_MACINFO_start_file:
7513 {
7514 int bytes_read;
7515 int line, file;
7516
7517 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
7518 mac_ptr += bytes_read;
7519 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
7520 mac_ptr += bytes_read;
7521
7522 current_file = macro_start_file (file, line,
7523 current_file, comp_dir,
7524 lh, objfile);
7525 }
7526 break;
7527
7528 case DW_MACINFO_end_file:
7529 if (! current_file)
7530 complaint (&symfile_complaints,
7531 "macro debug info has an unmatched `close_file' directive");
7532 else
7533 {
7534 current_file = current_file->included_by;
7535 if (! current_file)
7536 {
7537 enum dwarf_macinfo_record_type next_type;
7538
7539 /* GCC circa March 2002 doesn't produce the zero
7540 type byte marking the end of the compilation
7541 unit. Complain if it's not there, but exit no
7542 matter what. */
7543
7544 /* Do we at least have room for a macinfo type byte? */
7545 if (mac_ptr >= mac_end)
7546 {
7547 dwarf2_macros_too_long_complaint ();
7548 return;
7549 }
7550
7551 /* We don't increment mac_ptr here, so this is just
7552 a look-ahead. */
7553 next_type = read_1_byte (abfd, mac_ptr);
7554 if (next_type != 0)
7555 complaint (&symfile_complaints,
7556 "no terminating 0-type entry for macros in `.debug_macinfo' section");
7557
7558 return;
7559 }
7560 }
7561 break;
7562
7563 case DW_MACINFO_vendor_ext:
7564 {
7565 int bytes_read;
7566 int constant;
7567 char *string;
7568
7569 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
7570 mac_ptr += bytes_read;
7571 string = read_string (abfd, mac_ptr, &bytes_read);
7572 mac_ptr += bytes_read;
7573
7574 /* We don't recognize any vendor extensions. */
7575 }
7576 break;
7577 }
7578 }
7579 }
7580
7581 /* Check if the attribute's form is a DW_FORM_block*
7582 if so return true else false. */
7583 static int
7584 attr_form_is_block (struct attribute *attr)
7585 {
7586 return (attr == NULL ? 0 :
7587 attr->form == DW_FORM_block1
7588 || attr->form == DW_FORM_block2
7589 || attr->form == DW_FORM_block4
7590 || attr->form == DW_FORM_block);
7591 }
7592
7593 static void
7594 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
7595 const struct comp_unit_head *cu_header,
7596 struct objfile *objfile)
7597 {
7598 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
7599 {
7600 struct dwarf2_loclist_baton *baton;
7601
7602 baton = obstack_alloc (&objfile->symbol_obstack,
7603 sizeof (struct dwarf2_loclist_baton));
7604 baton->objfile = objfile;
7605
7606 /* We don't know how long the location list is, but make sure we
7607 don't run off the edge of the section. */
7608 baton->size = dwarf_loc_size - DW_UNSND (attr);
7609 baton->data = dwarf_loc_buffer + DW_UNSND (attr);
7610 baton->base_address = cu_header->base_address;
7611 if (cu_header->base_known == 0)
7612 complaint (&symfile_complaints,
7613 "Location list used without specifying the CU base address.");
7614
7615 SYMBOL_LOCATION_FUNCS (sym) = &dwarf2_loclist_funcs;
7616 SYMBOL_LOCATION_BATON (sym) = baton;
7617 }
7618 else
7619 {
7620 struct dwarf2_locexpr_baton *baton;
7621
7622 baton = obstack_alloc (&objfile->symbol_obstack,
7623 sizeof (struct dwarf2_locexpr_baton));
7624 baton->objfile = objfile;
7625
7626 if (attr_form_is_block (attr))
7627 {
7628 /* Note that we're just copying the block's data pointer
7629 here, not the actual data. We're still pointing into the
7630 dwarf_info_buffer for SYM's objfile; right now we never
7631 release that buffer, but when we do clean up properly
7632 this may need to change. */
7633 baton->size = DW_BLOCK (attr)->size;
7634 baton->data = DW_BLOCK (attr)->data;
7635 }
7636 else
7637 {
7638 dwarf2_invalid_attrib_class_complaint ("location description",
7639 SYMBOL_NATURAL_NAME (sym));
7640 baton->size = 0;
7641 baton->data = NULL;
7642 }
7643
7644 SYMBOL_LOCATION_FUNCS (sym) = &dwarf2_locexpr_funcs;
7645 SYMBOL_LOCATION_BATON (sym) = baton;
7646 }
7647 }
This page took 0.191135 seconds and 4 git commands to generate.