* win32-nat.c (psapi_module_handle): Remove static.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "objfiles.h"
33 #include "elf/dwarf2.h"
34 #include "buildsym.h"
35 #include "demangle.h"
36 #include "expression.h"
37 #include "filenames.h" /* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #if 0
69 /* .debug_info header for a compilation unit
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72 typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81 _COMP_UNIT_HEADER;
82 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
83 #endif
84
85 /* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88 typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98 _PUBNAMES_HEADER;
99 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101 /* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104 typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114 _ARANGES_HEADER;
115 #define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117 /* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120 typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138 _STATEMENT_PROLOGUE;
139
140 static const struct objfile_data *dwarf2_objfile_data_key;
141
142 struct dwarf2_per_objfile
143 {
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
165
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
180 };
181
182 static struct dwarf2_per_objfile *dwarf2_per_objfile;
183
184 static asection *dwarf_info_section;
185 static asection *dwarf_abbrev_section;
186 static asection *dwarf_line_section;
187 static asection *dwarf_pubnames_section;
188 static asection *dwarf_aranges_section;
189 static asection *dwarf_loc_section;
190 static asection *dwarf_macinfo_section;
191 static asection *dwarf_str_section;
192 static asection *dwarf_ranges_section;
193 asection *dwarf_frame_section;
194 asection *dwarf_eh_frame_section;
195
196 /* names of the debugging sections */
197
198 #define INFO_SECTION ".debug_info"
199 #define ABBREV_SECTION ".debug_abbrev"
200 #define LINE_SECTION ".debug_line"
201 #define PUBNAMES_SECTION ".debug_pubnames"
202 #define ARANGES_SECTION ".debug_aranges"
203 #define LOC_SECTION ".debug_loc"
204 #define MACINFO_SECTION ".debug_macinfo"
205 #define STR_SECTION ".debug_str"
206 #define RANGES_SECTION ".debug_ranges"
207 #define FRAME_SECTION ".debug_frame"
208 #define EH_FRAME_SECTION ".eh_frame"
209
210 /* local data types */
211
212 /* We hold several abbreviation tables in memory at the same time. */
213 #ifndef ABBREV_HASH_SIZE
214 #define ABBREV_HASH_SIZE 121
215 #endif
216
217 /* The data in a compilation unit header, after target2host
218 translation, looks like this. */
219 struct comp_unit_head
220 {
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
229
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
232
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
239 gdb_byte *cu_head_ptr;
240
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
243 gdb_byte *first_die_ptr;
244
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
247
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
250
251 /* Non-zero if base_address has been set. */
252 int base_known;
253 };
254
255 /* Fixed size for the DIE hash table. */
256 #ifndef REF_HASH_SIZE
257 #define REF_HASH_SIZE 1021
258 #endif
259
260 /* Internal state when decoding a particular compilation unit. */
261 struct dwarf2_cu
262 {
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
269 should logically be moved to the dwarf2_cu structure. */
270 struct comp_unit_head header;
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
278 const char *producer;
279
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* DWARF abbreviation table associated with this compilation unit. */
292 struct abbrev_info **dwarf2_abbrevs;
293
294 /* Storage for the abbrev table. */
295 struct obstack abbrev_obstack;
296
297 /* Hash table holding all the loaded partial DIEs. */
298 htab_t partial_dies;
299
300 /* Storage for things with the same lifetime as this read-in compilation
301 unit, including partial DIEs. */
302 struct obstack comp_unit_obstack;
303
304 /* When multiple dwarf2_cu structures are living in memory, this field
305 chains them all together, so that they can be released efficiently.
306 We will probably also want a generation counter so that most-recently-used
307 compilation units are cached... */
308 struct dwarf2_per_cu_data *read_in_chain;
309
310 /* Backchain to our per_cu entry if the tree has been built. */
311 struct dwarf2_per_cu_data *per_cu;
312
313 /* How many compilation units ago was this CU last referenced? */
314 int last_used;
315
316 /* A hash table of die offsets for following references. */
317 struct die_info *die_ref_table[REF_HASH_SIZE];
318
319 /* Full DIEs if read in. */
320 struct die_info *dies;
321
322 /* A set of pointers to dwarf2_per_cu_data objects for compilation
323 units referenced by this one. Only set during full symbol processing;
324 partial symbol tables do not have dependencies. */
325 htab_t dependencies;
326
327 /* Header data from the line table, during full symbol processing. */
328 struct line_header *line_header;
329
330 /* Mark used when releasing cached dies. */
331 unsigned int mark : 1;
332
333 /* This flag will be set if this compilation unit might include
334 inter-compilation-unit references. */
335 unsigned int has_form_ref_addr : 1;
336
337 /* This flag will be set if this compilation unit includes any
338 DW_TAG_namespace DIEs. If we know that there are explicit
339 DIEs for namespaces, we don't need to try to infer them
340 from mangled names. */
341 unsigned int has_namespace_info : 1;
342 };
343
344 /* Persistent data held for a compilation unit, even when not
345 processing it. We put a pointer to this structure in the
346 read_symtab_private field of the psymtab. If we encounter
347 inter-compilation-unit references, we also maintain a sorted
348 list of all compilation units. */
349
350 struct dwarf2_per_cu_data
351 {
352 /* The start offset and length of this compilation unit. 2**30-1
353 bytes should suffice to store the length of any compilation unit
354 - if it doesn't, GDB will fall over anyway. */
355 unsigned long offset;
356 unsigned long length : 30;
357
358 /* Flag indicating this compilation unit will be read in before
359 any of the current compilation units are processed. */
360 unsigned long queued : 1;
361
362 /* This flag will be set if we need to load absolutely all DIEs
363 for this compilation unit, instead of just the ones we think
364 are interesting. It gets set if we look for a DIE in the
365 hash table and don't find it. */
366 unsigned int load_all_dies : 1;
367
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
375 htab_t type_hash;
376
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
380 struct partial_symtab *psymtab;
381 };
382
383 /* The line number information for a compilation unit (found in the
384 .debug_line section) begins with a "statement program header",
385 which contains the following information. */
386 struct line_header
387 {
388 unsigned int total_length;
389 unsigned short version;
390 unsigned int header_length;
391 unsigned char minimum_instruction_length;
392 unsigned char default_is_stmt;
393 int line_base;
394 unsigned char line_range;
395 unsigned char opcode_base;
396
397 /* standard_opcode_lengths[i] is the number of operands for the
398 standard opcode whose value is i. This means that
399 standard_opcode_lengths[0] is unused, and the last meaningful
400 element is standard_opcode_lengths[opcode_base - 1]. */
401 unsigned char *standard_opcode_lengths;
402
403 /* The include_directories table. NOTE! These strings are not
404 allocated with xmalloc; instead, they are pointers into
405 debug_line_buffer. If you try to free them, `free' will get
406 indigestion. */
407 unsigned int num_include_dirs, include_dirs_size;
408 char **include_dirs;
409
410 /* The file_names table. NOTE! These strings are not allocated
411 with xmalloc; instead, they are pointers into debug_line_buffer.
412 Don't try to free them directly. */
413 unsigned int num_file_names, file_names_size;
414 struct file_entry
415 {
416 char *name;
417 unsigned int dir_index;
418 unsigned int mod_time;
419 unsigned int length;
420 int included_p; /* Non-zero if referenced by the Line Number Program. */
421 struct symtab *symtab; /* The associated symbol table, if any. */
422 } *file_names;
423
424 /* The start and end of the statement program following this
425 header. These point into dwarf2_per_objfile->line_buffer. */
426 gdb_byte *statement_program_start, *statement_program_end;
427 };
428
429 /* When we construct a partial symbol table entry we only
430 need this much information. */
431 struct partial_die_info
432 {
433 /* Offset of this DIE. */
434 unsigned int offset;
435
436 /* DWARF-2 tag for this DIE. */
437 ENUM_BITFIELD(dwarf_tag) tag : 16;
438
439 /* Language code associated with this DIE. This is only used
440 for the compilation unit DIE. */
441 unsigned int language : 8;
442
443 /* Assorted flags describing the data found in this DIE. */
444 unsigned int has_children : 1;
445 unsigned int is_external : 1;
446 unsigned int is_declaration : 1;
447 unsigned int has_type : 1;
448 unsigned int has_specification : 1;
449 unsigned int has_stmt_list : 1;
450 unsigned int has_pc_info : 1;
451
452 /* Flag set if the SCOPE field of this structure has been
453 computed. */
454 unsigned int scope_set : 1;
455
456 /* Flag set if the DIE has a byte_size attribute. */
457 unsigned int has_byte_size : 1;
458
459 /* The name of this DIE. Normally the value of DW_AT_name, but
460 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
461 other fashion. */
462 char *name;
463 char *dirname;
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
476
477 /* Pointer into the info_buffer pointing at the target of
478 DW_AT_sibling, if any. */
479 gdb_byte *sibling;
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
486 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
487 unsigned int line_offset;
488
489 /* Pointers to this DIE's parent, first child, and next sibling,
490 if any. */
491 struct partial_die_info *die_parent, *die_child, *die_sibling;
492 };
493
494 /* This data structure holds the information of an abbrev. */
495 struct abbrev_info
496 {
497 unsigned int number; /* number identifying abbrev */
498 enum dwarf_tag tag; /* dwarf tag */
499 unsigned short has_children; /* boolean */
500 unsigned short num_attrs; /* number of attributes */
501 struct attr_abbrev *attrs; /* an array of attribute descriptions */
502 struct abbrev_info *next; /* next in chain */
503 };
504
505 struct attr_abbrev
506 {
507 enum dwarf_attribute name;
508 enum dwarf_form form;
509 };
510
511 /* This data structure holds a complete die structure. */
512 struct die_info
513 {
514 enum dwarf_tag tag; /* Tag indicating type of die */
515 unsigned int abbrev; /* Abbrev number */
516 unsigned int offset; /* Offset in .debug_info section */
517 unsigned int num_attrs; /* Number of attributes */
518 struct attribute *attrs; /* An array of attributes */
519 struct die_info *next_ref; /* Next die in ref hash table */
520
521 /* The dies in a compilation unit form an n-ary tree. PARENT
522 points to this die's parent; CHILD points to the first child of
523 this node; and all the children of a given node are chained
524 together via their SIBLING fields, terminated by a die whose
525 tag is zero. */
526 struct die_info *child; /* Its first child, if any. */
527 struct die_info *sibling; /* Its next sibling, if any. */
528 struct die_info *parent; /* Its parent, if any. */
529
530 struct type *type; /* Cached type information */
531 };
532
533 /* Attributes have a name and a value */
534 struct attribute
535 {
536 enum dwarf_attribute name;
537 enum dwarf_form form;
538 union
539 {
540 char *str;
541 struct dwarf_block *blk;
542 unsigned long unsnd;
543 long int snd;
544 CORE_ADDR addr;
545 }
546 u;
547 };
548
549 struct function_range
550 {
551 const char *name;
552 CORE_ADDR lowpc, highpc;
553 int seen_line;
554 struct function_range *next;
555 };
556
557 /* Get at parts of an attribute structure */
558
559 #define DW_STRING(attr) ((attr)->u.str)
560 #define DW_UNSND(attr) ((attr)->u.unsnd)
561 #define DW_BLOCK(attr) ((attr)->u.blk)
562 #define DW_SND(attr) ((attr)->u.snd)
563 #define DW_ADDR(attr) ((attr)->u.addr)
564
565 /* Blocks are a bunch of untyped bytes. */
566 struct dwarf_block
567 {
568 unsigned int size;
569 gdb_byte *data;
570 };
571
572 #ifndef ATTR_ALLOC_CHUNK
573 #define ATTR_ALLOC_CHUNK 4
574 #endif
575
576 /* Allocate fields for structs, unions and enums in this size. */
577 #ifndef DW_FIELD_ALLOC_CHUNK
578 #define DW_FIELD_ALLOC_CHUNK 4
579 #endif
580
581 /* A zeroed version of a partial die for initialization purposes. */
582 static struct partial_die_info zeroed_partial_die;
583
584 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
585 but this would require a corresponding change in unpack_field_as_long
586 and friends. */
587 static int bits_per_byte = 8;
588
589 /* The routines that read and process dies for a C struct or C++ class
590 pass lists of data member fields and lists of member function fields
591 in an instance of a field_info structure, as defined below. */
592 struct field_info
593 {
594 /* List of data member and baseclasses fields. */
595 struct nextfield
596 {
597 struct nextfield *next;
598 int accessibility;
599 int virtuality;
600 struct field field;
601 }
602 *fields;
603
604 /* Number of fields. */
605 int nfields;
606
607 /* Number of baseclasses. */
608 int nbaseclasses;
609
610 /* Set if the accesibility of one of the fields is not public. */
611 int non_public_fields;
612
613 /* Member function fields array, entries are allocated in the order they
614 are encountered in the object file. */
615 struct nextfnfield
616 {
617 struct nextfnfield *next;
618 struct fn_field fnfield;
619 }
620 *fnfields;
621
622 /* Member function fieldlist array, contains name of possibly overloaded
623 member function, number of overloaded member functions and a pointer
624 to the head of the member function field chain. */
625 struct fnfieldlist
626 {
627 char *name;
628 int length;
629 struct nextfnfield *head;
630 }
631 *fnfieldlists;
632
633 /* Number of entries in the fnfieldlists array. */
634 int nfnfields;
635 };
636
637 /* One item on the queue of compilation units to read in full symbols
638 for. */
639 struct dwarf2_queue_item
640 {
641 struct dwarf2_per_cu_data *per_cu;
642 struct dwarf2_queue_item *next;
643 };
644
645 /* The current queue. */
646 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
647
648 /* Loaded secondary compilation units are kept in memory until they
649 have not been referenced for the processing of this many
650 compilation units. Set this to zero to disable caching. Cache
651 sizes of up to at least twenty will improve startup time for
652 typical inter-CU-reference binaries, at an obvious memory cost. */
653 static int dwarf2_max_cache_age = 5;
654 static void
655 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
656 struct cmd_list_element *c, const char *value)
657 {
658 fprintf_filtered (file, _("\
659 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
660 value);
661 }
662
663
664 /* Various complaints about symbol reading that don't abort the process */
665
666 static void
667 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
668 {
669 complaint (&symfile_complaints,
670 _("statement list doesn't fit in .debug_line section"));
671 }
672
673 static void
674 dwarf2_debug_line_missing_file_complaint (void)
675 {
676 complaint (&symfile_complaints,
677 _(".debug_line section has line data without a file"));
678 }
679
680 static void
681 dwarf2_complex_location_expr_complaint (void)
682 {
683 complaint (&symfile_complaints, _("location expression too complex"));
684 }
685
686 static void
687 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
688 int arg3)
689 {
690 complaint (&symfile_complaints,
691 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
692 arg2, arg3);
693 }
694
695 static void
696 dwarf2_macros_too_long_complaint (void)
697 {
698 complaint (&symfile_complaints,
699 _("macro info runs off end of `.debug_macinfo' section"));
700 }
701
702 static void
703 dwarf2_macro_malformed_definition_complaint (const char *arg1)
704 {
705 complaint (&symfile_complaints,
706 _("macro debug info contains a malformed macro definition:\n`%s'"),
707 arg1);
708 }
709
710 static void
711 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
712 {
713 complaint (&symfile_complaints,
714 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
715 }
716
717 /* local function prototypes */
718
719 static void dwarf2_locate_sections (bfd *, asection *, void *);
720
721 #if 0
722 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
723 #endif
724
725 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
726 struct objfile *);
727
728 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
729 struct partial_die_info *,
730 struct partial_symtab *);
731
732 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
733
734 static void scan_partial_symbols (struct partial_die_info *,
735 CORE_ADDR *, CORE_ADDR *,
736 struct dwarf2_cu *);
737
738 static void add_partial_symbol (struct partial_die_info *,
739 struct dwarf2_cu *);
740
741 static int pdi_needs_namespace (enum dwarf_tag tag);
742
743 static void add_partial_namespace (struct partial_die_info *pdi,
744 CORE_ADDR *lowpc, CORE_ADDR *highpc,
745 struct dwarf2_cu *cu);
746
747 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
748 struct dwarf2_cu *cu);
749
750 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
751 gdb_byte *info_ptr,
752 bfd *abfd,
753 struct dwarf2_cu *cu);
754
755 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
756
757 static void psymtab_to_symtab_1 (struct partial_symtab *);
758
759 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
760
761 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
762
763 static void dwarf2_free_abbrev_table (void *);
764
765 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
766 struct dwarf2_cu *);
767
768 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
769 struct dwarf2_cu *);
770
771 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
772 struct dwarf2_cu *);
773
774 static gdb_byte *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, gdb_byte *, struct dwarf2_cu *);
777
778 static struct partial_die_info *find_partial_die (unsigned long,
779 struct dwarf2_cu *);
780
781 static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
784 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
785 struct dwarf2_cu *, int *);
786
787 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, gdb_byte *, struct dwarf2_cu *);
789
790 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
791 bfd *, gdb_byte *, struct dwarf2_cu *);
792
793 static unsigned int read_1_byte (bfd *, gdb_byte *);
794
795 static int read_1_signed_byte (bfd *, gdb_byte *);
796
797 static unsigned int read_2_bytes (bfd *, gdb_byte *);
798
799 static unsigned int read_4_bytes (bfd *, gdb_byte *);
800
801 static unsigned long read_8_bytes (bfd *, gdb_byte *);
802
803 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
804 unsigned int *);
805
806 static LONGEST read_initial_length (bfd *, gdb_byte *,
807 struct comp_unit_head *, unsigned int *);
808
809 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
810 unsigned int *);
811
812 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
813
814 static char *read_string (bfd *, gdb_byte *, unsigned int *);
815
816 static char *read_indirect_string (bfd *, gdb_byte *,
817 const struct comp_unit_head *,
818 unsigned int *);
819
820 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
821
822 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
823
824 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
825
826 static void set_cu_language (unsigned int, struct dwarf2_cu *);
827
828 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
829 struct dwarf2_cu *);
830
831 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
832 struct dwarf2_cu *cu);
833
834 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
835
836 static struct die_info *die_specification (struct die_info *die,
837 struct dwarf2_cu *);
838
839 static void free_line_header (struct line_header *lh);
840
841 static void add_file_name (struct line_header *, char *, unsigned int,
842 unsigned int, unsigned int);
843
844 static struct line_header *(dwarf_decode_line_header
845 (unsigned int offset,
846 bfd *abfd, struct dwarf2_cu *cu));
847
848 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
849 struct dwarf2_cu *, struct partial_symtab *);
850
851 static void dwarf2_start_subfile (char *, char *, char *);
852
853 static struct symbol *new_symbol (struct die_info *, struct type *,
854 struct dwarf2_cu *);
855
856 static void dwarf2_const_value (struct attribute *, struct symbol *,
857 struct dwarf2_cu *);
858
859 static void dwarf2_const_value_data (struct attribute *attr,
860 struct symbol *sym,
861 int bits);
862
863 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
864
865 static struct type *die_containing_type (struct die_info *,
866 struct dwarf2_cu *);
867
868 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
869
870 static void read_type_die (struct die_info *, struct dwarf2_cu *);
871
872 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
873
874 static char *typename_concat (struct obstack *,
875 const char *prefix,
876 const char *suffix,
877 struct dwarf2_cu *);
878
879 static void read_typedef (struct die_info *, struct dwarf2_cu *);
880
881 static void read_base_type (struct die_info *, struct dwarf2_cu *);
882
883 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
884
885 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
886
887 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
888
889 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
890
891 static int dwarf2_get_pc_bounds (struct die_info *,
892 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
893
894 static void get_scope_pc_bounds (struct die_info *,
895 CORE_ADDR *, CORE_ADDR *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
899 CORE_ADDR, struct dwarf2_cu *);
900
901 static void dwarf2_add_field (struct field_info *, struct die_info *,
902 struct dwarf2_cu *);
903
904 static void dwarf2_attach_fields_to_type (struct field_info *,
905 struct type *, struct dwarf2_cu *);
906
907 static void dwarf2_add_member_fn (struct field_info *,
908 struct die_info *, struct type *,
909 struct dwarf2_cu *);
910
911 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
912 struct type *, struct dwarf2_cu *);
913
914 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
915
916 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
917
918 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
919
920 static void read_common_block (struct die_info *, struct dwarf2_cu *);
921
922 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
923
924 static const char *namespace_name (struct die_info *die,
925 int *is_anonymous, struct dwarf2_cu *);
926
927 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
928
929 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
930
931 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
932
933 static void read_array_type (struct die_info *, struct dwarf2_cu *);
934
935 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
936 struct dwarf2_cu *);
937
938 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
939
940 static void read_tag_ptr_to_member_type (struct die_info *,
941 struct dwarf2_cu *);
942
943 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
944
945 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
946
947 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
948
949 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
950
951 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
952
953 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
954
955 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
956 struct dwarf2_cu *,
957 gdb_byte **new_info_ptr,
958 struct die_info *parent);
959
960 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
961 struct dwarf2_cu *,
962 gdb_byte **new_info_ptr,
963 struct die_info *parent);
964
965 static void free_die_list (struct die_info *);
966
967 static void process_die (struct die_info *, struct dwarf2_cu *);
968
969 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
970
971 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
972
973 static struct die_info *dwarf2_extension (struct die_info *die,
974 struct dwarf2_cu *);
975
976 static char *dwarf_tag_name (unsigned int);
977
978 static char *dwarf_attr_name (unsigned int);
979
980 static char *dwarf_form_name (unsigned int);
981
982 static char *dwarf_stack_op_name (unsigned int);
983
984 static char *dwarf_bool_name (unsigned int);
985
986 static char *dwarf_type_encoding_name (unsigned int);
987
988 #if 0
989 static char *dwarf_cfi_name (unsigned int);
990
991 struct die_info *copy_die (struct die_info *);
992 #endif
993
994 static struct die_info *sibling_die (struct die_info *);
995
996 static void dump_die (struct die_info *);
997
998 static void dump_die_list (struct die_info *);
999
1000 static void store_in_ref_table (unsigned int, struct die_info *,
1001 struct dwarf2_cu *);
1002
1003 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1004 struct dwarf2_cu *);
1005
1006 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1007
1008 static struct die_info *follow_die_ref (struct die_info *,
1009 struct attribute *,
1010 struct dwarf2_cu *);
1011
1012 /* memory allocation interface */
1013
1014 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1015
1016 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1017
1018 static struct die_info *dwarf_alloc_die (void);
1019
1020 static void initialize_cu_func_list (struct dwarf2_cu *);
1021
1022 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
1024
1025 static void dwarf_decode_macros (struct line_header *, unsigned int,
1026 char *, bfd *, struct dwarf2_cu *);
1027
1028 static int attr_form_is_block (struct attribute *);
1029
1030 static int attr_form_is_section_offset (struct attribute *);
1031
1032 static int attr_form_is_constant (struct attribute *);
1033
1034 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1035 struct symbol *sym,
1036 struct dwarf2_cu *cu);
1037
1038 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
1040
1041 static void free_stack_comp_unit (void *);
1042
1043 static hashval_t partial_die_hash (const void *item);
1044
1045 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
1047 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053 static void free_one_comp_unit (void *);
1054
1055 static void free_cached_comp_units (void *);
1056
1057 static void age_cached_comp_units (void);
1058
1059 static void free_one_cached_comp_unit (void *);
1060
1061 static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1064 static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void create_all_comp_units (struct objfile *);
1068
1069 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1070 struct objfile *);
1071
1072 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1073
1074 static void dwarf2_add_dependence (struct dwarf2_cu *,
1075 struct dwarf2_per_cu_data *);
1076
1077 static void dwarf2_mark (struct dwarf2_cu *);
1078
1079 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1080
1081 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1082
1083
1084 /* Try to locate the sections we need for DWARF 2 debugging
1085 information and return true if we have enough to do something. */
1086
1087 int
1088 dwarf2_has_info (struct objfile *objfile)
1089 {
1090 struct dwarf2_per_objfile *data;
1091
1092 /* Initialize per-objfile state. */
1093 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1094 memset (data, 0, sizeof (*data));
1095 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1096 dwarf2_per_objfile = data;
1097
1098 dwarf_info_section = 0;
1099 dwarf_abbrev_section = 0;
1100 dwarf_line_section = 0;
1101 dwarf_str_section = 0;
1102 dwarf_macinfo_section = 0;
1103 dwarf_frame_section = 0;
1104 dwarf_eh_frame_section = 0;
1105 dwarf_ranges_section = 0;
1106 dwarf_loc_section = 0;
1107
1108 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1109 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1110 }
1111
1112 /* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116 static void
1117 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1118 {
1119 if (strcmp (sectp->name, INFO_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1122 dwarf_info_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1127 dwarf_abbrev_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1132 dwarf_line_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1137 dwarf_pubnames_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1142 dwarf_aranges_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1147 dwarf_loc_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1152 dwarf_macinfo_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, STR_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1157 dwarf_str_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1162 dwarf_frame_section = sectp;
1163 }
1164 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1165 {
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1170 dwarf_eh_frame_section = sectp;
1171 }
1172 }
1173 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1174 {
1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1176 dwarf_ranges_section = sectp;
1177 }
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
1182 }
1183
1184 /* Build a partial symbol table. */
1185
1186 void
1187 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1188 {
1189 /* We definitely need the .debug_info and .debug_abbrev sections */
1190
1191 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1192 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1193
1194 if (dwarf_line_section)
1195 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1196 else
1197 dwarf2_per_objfile->line_buffer = NULL;
1198
1199 if (dwarf_str_section)
1200 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1201 else
1202 dwarf2_per_objfile->str_buffer = NULL;
1203
1204 if (dwarf_macinfo_section)
1205 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1206 dwarf_macinfo_section);
1207 else
1208 dwarf2_per_objfile->macinfo_buffer = NULL;
1209
1210 if (dwarf_ranges_section)
1211 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1212 else
1213 dwarf2_per_objfile->ranges_buffer = NULL;
1214
1215 if (dwarf_loc_section)
1216 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1217 else
1218 dwarf2_per_objfile->loc_buffer = NULL;
1219
1220 if (mainline
1221 || (objfile->global_psymbols.size == 0
1222 && objfile->static_psymbols.size == 0))
1223 {
1224 init_psymbol_list (objfile, 1024);
1225 }
1226
1227 #if 0
1228 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1229 {
1230 /* Things are significantly easier if we have .debug_aranges and
1231 .debug_pubnames sections */
1232
1233 dwarf2_build_psymtabs_easy (objfile, mainline);
1234 }
1235 else
1236 #endif
1237 /* only test this case for now */
1238 {
1239 /* In this case we have to work a bit harder */
1240 dwarf2_build_psymtabs_hard (objfile, mainline);
1241 }
1242 }
1243
1244 #if 0
1245 /* Build the partial symbol table from the information in the
1246 .debug_pubnames and .debug_aranges sections. */
1247
1248 static void
1249 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1250 {
1251 bfd *abfd = objfile->obfd;
1252 char *aranges_buffer, *pubnames_buffer;
1253 char *aranges_ptr, *pubnames_ptr;
1254 unsigned int entry_length, version, info_offset, info_size;
1255
1256 pubnames_buffer = dwarf2_read_section (objfile,
1257 dwarf_pubnames_section);
1258 pubnames_ptr = pubnames_buffer;
1259 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1260 {
1261 struct comp_unit_head cu_header;
1262 unsigned int bytes_read;
1263
1264 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1265 &bytes_read);
1266 pubnames_ptr += bytes_read;
1267 version = read_1_byte (abfd, pubnames_ptr);
1268 pubnames_ptr += 1;
1269 info_offset = read_4_bytes (abfd, pubnames_ptr);
1270 pubnames_ptr += 4;
1271 info_size = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 }
1274
1275 aranges_buffer = dwarf2_read_section (objfile,
1276 dwarf_aranges_section);
1277
1278 }
1279 #endif
1280
1281 /* Read in the comp unit header information from the debug_info at
1282 info_ptr. */
1283
1284 static gdb_byte *
1285 read_comp_unit_head (struct comp_unit_head *cu_header,
1286 gdb_byte *info_ptr, bfd *abfd)
1287 {
1288 int signed_addr;
1289 unsigned int bytes_read;
1290 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1291 &bytes_read);
1292 info_ptr += bytes_read;
1293 cu_header->version = read_2_bytes (abfd, info_ptr);
1294 info_ptr += 2;
1295 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1296 &bytes_read);
1297 info_ptr += bytes_read;
1298 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1299 info_ptr += 1;
1300 signed_addr = bfd_get_sign_extend_vma (abfd);
1301 if (signed_addr < 0)
1302 internal_error (__FILE__, __LINE__,
1303 _("read_comp_unit_head: dwarf from non elf file"));
1304 cu_header->signed_addr_p = signed_addr;
1305 return info_ptr;
1306 }
1307
1308 static gdb_byte *
1309 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1310 bfd *abfd)
1311 {
1312 gdb_byte *beg_of_comp_unit = info_ptr;
1313
1314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1315
1316 if (header->version != 2 && header->version != 3)
1317 error (_("Dwarf Error: wrong version in compilation unit header "
1318 "(is %d, should be %d) [in module %s]"), header->version,
1319 2, bfd_get_filename (abfd));
1320
1321 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1322 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1323 "(offset 0x%lx + 6) [in module %s]"),
1324 (long) header->abbrev_offset,
1325 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1326 bfd_get_filename (abfd));
1327
1328 if (beg_of_comp_unit + header->length + header->initial_length_size
1329 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1330 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1331 "(offset 0x%lx + 0) [in module %s]"),
1332 (long) header->length,
1333 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1334 bfd_get_filename (abfd));
1335
1336 return info_ptr;
1337 }
1338
1339 /* Allocate a new partial symtab for file named NAME and mark this new
1340 partial symtab as being an include of PST. */
1341
1342 static void
1343 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1344 struct objfile *objfile)
1345 {
1346 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1347
1348 subpst->section_offsets = pst->section_offsets;
1349 subpst->textlow = 0;
1350 subpst->texthigh = 0;
1351
1352 subpst->dependencies = (struct partial_symtab **)
1353 obstack_alloc (&objfile->objfile_obstack,
1354 sizeof (struct partial_symtab *));
1355 subpst->dependencies[0] = pst;
1356 subpst->number_of_dependencies = 1;
1357
1358 subpst->globals_offset = 0;
1359 subpst->n_global_syms = 0;
1360 subpst->statics_offset = 0;
1361 subpst->n_static_syms = 0;
1362 subpst->symtab = NULL;
1363 subpst->read_symtab = pst->read_symtab;
1364 subpst->readin = 0;
1365
1366 /* No private part is necessary for include psymtabs. This property
1367 can be used to differentiate between such include psymtabs and
1368 the regular ones. */
1369 subpst->read_symtab_private = NULL;
1370 }
1371
1372 /* Read the Line Number Program data and extract the list of files
1373 included by the source file represented by PST. Build an include
1374 partial symtab for each of these included files.
1375
1376 This procedure assumes that there *is* a Line Number Program in
1377 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1378 before calling this procedure. */
1379
1380 static void
1381 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1382 struct partial_die_info *pdi,
1383 struct partial_symtab *pst)
1384 {
1385 struct objfile *objfile = cu->objfile;
1386 bfd *abfd = objfile->obfd;
1387 struct line_header *lh;
1388
1389 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1390 if (lh == NULL)
1391 return; /* No linetable, so no includes. */
1392
1393 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1394
1395 free_line_header (lh);
1396 }
1397
1398
1399 /* Build the partial symbol table by doing a quick pass through the
1400 .debug_info and .debug_abbrev sections. */
1401
1402 static void
1403 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1404 {
1405 /* Instead of reading this into a big buffer, we should probably use
1406 mmap() on architectures that support it. (FIXME) */
1407 bfd *abfd = objfile->obfd;
1408 gdb_byte *info_ptr;
1409 gdb_byte *beg_of_comp_unit;
1410 struct partial_die_info comp_unit_die;
1411 struct partial_symtab *pst;
1412 struct cleanup *back_to;
1413 CORE_ADDR lowpc, highpc, baseaddr;
1414
1415 info_ptr = dwarf2_per_objfile->info_buffer;
1416
1417 /* Any cached compilation units will be linked by the per-objfile
1418 read_in_chain. Make sure to free them when we're done. */
1419 back_to = make_cleanup (free_cached_comp_units, NULL);
1420
1421 create_all_comp_units (objfile);
1422
1423 /* Since the objects we're extracting from .debug_info vary in
1424 length, only the individual functions to extract them (like
1425 read_comp_unit_head and load_partial_die) can really know whether
1426 the buffer is large enough to hold another complete object.
1427
1428 At the moment, they don't actually check that. If .debug_info
1429 holds just one extra byte after the last compilation unit's dies,
1430 then read_comp_unit_head will happily read off the end of the
1431 buffer. read_partial_die is similarly casual. Those functions
1432 should be fixed.
1433
1434 For this loop condition, simply checking whether there's any data
1435 left at all should be sufficient. */
1436 while (info_ptr < (dwarf2_per_objfile->info_buffer
1437 + dwarf2_per_objfile->info_size))
1438 {
1439 struct cleanup *back_to_inner;
1440 struct dwarf2_cu cu;
1441 struct abbrev_info *abbrev;
1442 unsigned int bytes_read;
1443 struct dwarf2_per_cu_data *this_cu;
1444
1445 beg_of_comp_unit = info_ptr;
1446
1447 memset (&cu, 0, sizeof (cu));
1448
1449 obstack_init (&cu.comp_unit_obstack);
1450
1451 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1452
1453 cu.objfile = objfile;
1454 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1455
1456 /* Complete the cu_header */
1457 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1458 cu.header.first_die_ptr = info_ptr;
1459 cu.header.cu_head_ptr = beg_of_comp_unit;
1460
1461 cu.list_in_scope = &file_symbols;
1462
1463 /* Read the abbrevs for this compilation unit into a table */
1464 dwarf2_read_abbrevs (abfd, &cu);
1465 make_cleanup (dwarf2_free_abbrev_table, &cu);
1466
1467 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1468
1469 /* Read the compilation unit die */
1470 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1471 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1472 abfd, info_ptr, &cu);
1473
1474 if (comp_unit_die.tag == DW_TAG_partial_unit)
1475 {
1476 info_ptr = (beg_of_comp_unit + cu.header.length
1477 + cu.header.initial_length_size);
1478 do_cleanups (back_to_inner);
1479 continue;
1480 }
1481
1482 /* Set the language we're debugging */
1483 set_cu_language (comp_unit_die.language, &cu);
1484
1485 /* Allocate a new partial symbol table structure */
1486 pst = start_psymtab_common (objfile, objfile->section_offsets,
1487 comp_unit_die.name ? comp_unit_die.name : "",
1488 comp_unit_die.lowpc,
1489 objfile->global_psymbols.next,
1490 objfile->static_psymbols.next);
1491
1492 if (comp_unit_die.dirname)
1493 pst->dirname = xstrdup (comp_unit_die.dirname);
1494
1495 pst->read_symtab_private = (char *) this_cu;
1496
1497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1498
1499 /* Store the function that reads in the rest of the symbol table */
1500 pst->read_symtab = dwarf2_psymtab_to_symtab;
1501
1502 /* If this compilation unit was already read in, free the
1503 cached copy in order to read it in again. This is
1504 necessary because we skipped some symbols when we first
1505 read in the compilation unit (see load_partial_dies).
1506 This problem could be avoided, but the benefit is
1507 unclear. */
1508 if (this_cu->cu != NULL)
1509 free_one_cached_comp_unit (this_cu->cu);
1510
1511 cu.per_cu = this_cu;
1512
1513 /* Note that this is a pointer to our stack frame, being
1514 added to a global data structure. It will be cleaned up
1515 in free_stack_comp_unit when we finish with this
1516 compilation unit. */
1517 this_cu->cu = &cu;
1518
1519 this_cu->psymtab = pst;
1520
1521 /* Check if comp unit has_children.
1522 If so, read the rest of the partial symbols from this comp unit.
1523 If not, there's no more debug_info for this comp unit. */
1524 if (comp_unit_die.has_children)
1525 {
1526 struct partial_die_info *first_die;
1527
1528 lowpc = ((CORE_ADDR) -1);
1529 highpc = ((CORE_ADDR) 0);
1530
1531 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1532
1533 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1534
1535 /* If we didn't find a lowpc, set it to highpc to avoid
1536 complaints from `maint check'. */
1537 if (lowpc == ((CORE_ADDR) -1))
1538 lowpc = highpc;
1539
1540 /* If the compilation unit didn't have an explicit address range,
1541 then use the information extracted from its child dies. */
1542 if (! comp_unit_die.has_pc_info)
1543 {
1544 comp_unit_die.lowpc = lowpc;
1545 comp_unit_die.highpc = highpc;
1546 }
1547 }
1548 pst->textlow = comp_unit_die.lowpc + baseaddr;
1549 pst->texthigh = comp_unit_die.highpc + baseaddr;
1550
1551 pst->n_global_syms = objfile->global_psymbols.next -
1552 (objfile->global_psymbols.list + pst->globals_offset);
1553 pst->n_static_syms = objfile->static_psymbols.next -
1554 (objfile->static_psymbols.list + pst->statics_offset);
1555 sort_pst_symbols (pst);
1556
1557 /* If there is already a psymtab or symtab for a file of this
1558 name, remove it. (If there is a symtab, more drastic things
1559 also happen.) This happens in VxWorks. */
1560 free_named_symtabs (pst->filename);
1561
1562 info_ptr = beg_of_comp_unit + cu.header.length
1563 + cu.header.initial_length_size;
1564
1565 if (comp_unit_die.has_stmt_list)
1566 {
1567 /* Get the list of files included in the current compilation unit,
1568 and build a psymtab for each of them. */
1569 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1570 }
1571
1572 do_cleanups (back_to_inner);
1573 }
1574 do_cleanups (back_to);
1575 }
1576
1577 /* Load the DIEs for a secondary CU into memory. */
1578
1579 static void
1580 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1581 {
1582 bfd *abfd = objfile->obfd;
1583 gdb_byte *info_ptr, *beg_of_comp_unit;
1584 struct partial_die_info comp_unit_die;
1585 struct dwarf2_cu *cu;
1586 struct abbrev_info *abbrev;
1587 unsigned int bytes_read;
1588 struct cleanup *back_to;
1589
1590 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1591 beg_of_comp_unit = info_ptr;
1592
1593 cu = xmalloc (sizeof (struct dwarf2_cu));
1594 memset (cu, 0, sizeof (struct dwarf2_cu));
1595
1596 obstack_init (&cu->comp_unit_obstack);
1597
1598 cu->objfile = objfile;
1599 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1600
1601 /* Complete the cu_header. */
1602 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1603 cu->header.first_die_ptr = info_ptr;
1604 cu->header.cu_head_ptr = beg_of_comp_unit;
1605
1606 /* Read the abbrevs for this compilation unit into a table. */
1607 dwarf2_read_abbrevs (abfd, cu);
1608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1609
1610 /* Read the compilation unit die. */
1611 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1612 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1613 abfd, info_ptr, cu);
1614
1615 /* Set the language we're debugging. */
1616 set_cu_language (comp_unit_die.language, cu);
1617
1618 /* Link this compilation unit into the compilation unit tree. */
1619 this_cu->cu = cu;
1620 cu->per_cu = this_cu;
1621
1622 /* Check if comp unit has_children.
1623 If so, read the rest of the partial symbols from this comp unit.
1624 If not, there's no more debug_info for this comp unit. */
1625 if (comp_unit_die.has_children)
1626 load_partial_dies (abfd, info_ptr, 0, cu);
1627
1628 do_cleanups (back_to);
1629 }
1630
1631 /* Create a list of all compilation units in OBJFILE. We do this only
1632 if an inter-comp-unit reference is found; presumably if there is one,
1633 there will be many, and one will occur early in the .debug_info section.
1634 So there's no point in building this list incrementally. */
1635
1636 static void
1637 create_all_comp_units (struct objfile *objfile)
1638 {
1639 int n_allocated;
1640 int n_comp_units;
1641 struct dwarf2_per_cu_data **all_comp_units;
1642 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1643
1644 n_comp_units = 0;
1645 n_allocated = 10;
1646 all_comp_units = xmalloc (n_allocated
1647 * sizeof (struct dwarf2_per_cu_data *));
1648
1649 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1650 {
1651 struct comp_unit_head cu_header;
1652 gdb_byte *beg_of_comp_unit;
1653 struct dwarf2_per_cu_data *this_cu;
1654 unsigned long offset;
1655 unsigned int bytes_read;
1656
1657 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1658
1659 /* Read just enough information to find out where the next
1660 compilation unit is. */
1661 cu_header.initial_length_size = 0;
1662 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1663 &cu_header, &bytes_read);
1664
1665 /* Save the compilation unit for later lookup. */
1666 this_cu = obstack_alloc (&objfile->objfile_obstack,
1667 sizeof (struct dwarf2_per_cu_data));
1668 memset (this_cu, 0, sizeof (*this_cu));
1669 this_cu->offset = offset;
1670 this_cu->length = cu_header.length + cu_header.initial_length_size;
1671
1672 if (n_comp_units == n_allocated)
1673 {
1674 n_allocated *= 2;
1675 all_comp_units = xrealloc (all_comp_units,
1676 n_allocated
1677 * sizeof (struct dwarf2_per_cu_data *));
1678 }
1679 all_comp_units[n_comp_units++] = this_cu;
1680
1681 info_ptr = info_ptr + this_cu->length;
1682 }
1683
1684 dwarf2_per_objfile->all_comp_units
1685 = obstack_alloc (&objfile->objfile_obstack,
1686 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1687 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 xfree (all_comp_units);
1690 dwarf2_per_objfile->n_comp_units = n_comp_units;
1691 }
1692
1693 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1694 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1695 in CU. */
1696
1697 static void
1698 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1699 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1700 {
1701 struct objfile *objfile = cu->objfile;
1702 bfd *abfd = objfile->obfd;
1703 struct partial_die_info *pdi;
1704
1705 /* Now, march along the PDI's, descending into ones which have
1706 interesting children but skipping the children of the other ones,
1707 until we reach the end of the compilation unit. */
1708
1709 pdi = first_die;
1710
1711 while (pdi != NULL)
1712 {
1713 fixup_partial_die (pdi, cu);
1714
1715 /* Anonymous namespaces have no name but have interesting
1716 children, so we need to look at them. Ditto for anonymous
1717 enums. */
1718
1719 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1720 || pdi->tag == DW_TAG_enumeration_type)
1721 {
1722 switch (pdi->tag)
1723 {
1724 case DW_TAG_subprogram:
1725 if (pdi->has_pc_info)
1726 {
1727 if (pdi->lowpc < *lowpc)
1728 {
1729 *lowpc = pdi->lowpc;
1730 }
1731 if (pdi->highpc > *highpc)
1732 {
1733 *highpc = pdi->highpc;
1734 }
1735 if (!pdi->is_declaration)
1736 {
1737 add_partial_symbol (pdi, cu);
1738 }
1739 }
1740 break;
1741 case DW_TAG_variable:
1742 case DW_TAG_typedef:
1743 case DW_TAG_union_type:
1744 if (!pdi->is_declaration)
1745 {
1746 add_partial_symbol (pdi, cu);
1747 }
1748 break;
1749 case DW_TAG_class_type:
1750 case DW_TAG_interface_type:
1751 case DW_TAG_structure_type:
1752 if (!pdi->is_declaration)
1753 {
1754 add_partial_symbol (pdi, cu);
1755 }
1756 break;
1757 case DW_TAG_enumeration_type:
1758 if (!pdi->is_declaration)
1759 add_partial_enumeration (pdi, cu);
1760 break;
1761 case DW_TAG_base_type:
1762 case DW_TAG_subrange_type:
1763 /* File scope base type definitions are added to the partial
1764 symbol table. */
1765 add_partial_symbol (pdi, cu);
1766 break;
1767 case DW_TAG_namespace:
1768 add_partial_namespace (pdi, lowpc, highpc, cu);
1769 break;
1770 default:
1771 break;
1772 }
1773 }
1774
1775 /* If the die has a sibling, skip to the sibling. */
1776
1777 pdi = pdi->die_sibling;
1778 }
1779 }
1780
1781 /* Functions used to compute the fully scoped name of a partial DIE.
1782
1783 Normally, this is simple. For C++, the parent DIE's fully scoped
1784 name is concatenated with "::" and the partial DIE's name. For
1785 Java, the same thing occurs except that "." is used instead of "::".
1786 Enumerators are an exception; they use the scope of their parent
1787 enumeration type, i.e. the name of the enumeration type is not
1788 prepended to the enumerator.
1789
1790 There are two complexities. One is DW_AT_specification; in this
1791 case "parent" means the parent of the target of the specification,
1792 instead of the direct parent of the DIE. The other is compilers
1793 which do not emit DW_TAG_namespace; in this case we try to guess
1794 the fully qualified name of structure types from their members'
1795 linkage names. This must be done using the DIE's children rather
1796 than the children of any DW_AT_specification target. We only need
1797 to do this for structures at the top level, i.e. if the target of
1798 any DW_AT_specification (if any; otherwise the DIE itself) does not
1799 have a parent. */
1800
1801 /* Compute the scope prefix associated with PDI's parent, in
1802 compilation unit CU. The result will be allocated on CU's
1803 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1804 field. NULL is returned if no prefix is necessary. */
1805 static char *
1806 partial_die_parent_scope (struct partial_die_info *pdi,
1807 struct dwarf2_cu *cu)
1808 {
1809 char *grandparent_scope;
1810 struct partial_die_info *parent, *real_pdi;
1811
1812 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1813 then this means the parent of the specification DIE. */
1814
1815 real_pdi = pdi;
1816 while (real_pdi->has_specification)
1817 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1818
1819 parent = real_pdi->die_parent;
1820 if (parent == NULL)
1821 return NULL;
1822
1823 if (parent->scope_set)
1824 return parent->scope;
1825
1826 fixup_partial_die (parent, cu);
1827
1828 grandparent_scope = partial_die_parent_scope (parent, cu);
1829
1830 if (parent->tag == DW_TAG_namespace
1831 || parent->tag == DW_TAG_structure_type
1832 || parent->tag == DW_TAG_class_type
1833 || parent->tag == DW_TAG_interface_type
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
1851 _("unhandled containing DIE tag %d for DIE at %d"),
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
1854 }
1855
1856 parent->scope_set = 1;
1857 return parent->scope;
1858 }
1859
1860 /* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862 static char *
1863 partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865 {
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
1873 }
1874
1875 static void
1876 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1877 {
1878 struct objfile *objfile = cu->objfile;
1879 CORE_ADDR addr = 0;
1880 char *actual_name = NULL;
1881 const char *my_prefix;
1882 const struct partial_symbol *psym = NULL;
1883 CORE_ADDR baseaddr;
1884 int built_actual_name = 0;
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1887
1888 if (pdi_needs_namespace (pdi->tag))
1889 {
1890 actual_name = partial_die_full_name (pdi, cu);
1891 if (actual_name)
1892 built_actual_name = 1;
1893 }
1894
1895 if (actual_name == NULL)
1896 actual_name = pdi->name;
1897
1898 switch (pdi->tag)
1899 {
1900 case DW_TAG_subprogram:
1901 if (pdi->is_external)
1902 {
1903 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1904 mst_text, objfile); */
1905 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1906 VAR_DOMAIN, LOC_BLOCK,
1907 &objfile->global_psymbols,
1908 0, pdi->lowpc + baseaddr,
1909 cu->language, objfile);
1910 }
1911 else
1912 {
1913 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1914 mst_file_text, objfile); */
1915 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1916 VAR_DOMAIN, LOC_BLOCK,
1917 &objfile->static_psymbols,
1918 0, pdi->lowpc + baseaddr,
1919 cu->language, objfile);
1920 }
1921 break;
1922 case DW_TAG_variable:
1923 if (pdi->is_external)
1924 {
1925 /* Global Variable.
1926 Don't enter into the minimal symbol tables as there is
1927 a minimal symbol table entry from the ELF symbols already.
1928 Enter into partial symbol table if it has a location
1929 descriptor or a type.
1930 If the location descriptor is missing, new_symbol will create
1931 a LOC_UNRESOLVED symbol, the address of the variable will then
1932 be determined from the minimal symbol table whenever the variable
1933 is referenced.
1934 The address for the partial symbol table entry is not
1935 used by GDB, but it comes in handy for debugging partial symbol
1936 table building. */
1937
1938 if (pdi->locdesc)
1939 addr = decode_locdesc (pdi->locdesc, cu);
1940 if (pdi->locdesc || pdi->has_type)
1941 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1942 VAR_DOMAIN, LOC_STATIC,
1943 &objfile->global_psymbols,
1944 0, addr + baseaddr,
1945 cu->language, objfile);
1946 }
1947 else
1948 {
1949 /* Static Variable. Skip symbols without location descriptors. */
1950 if (pdi->locdesc == NULL)
1951 {
1952 if (built_actual_name)
1953 xfree (actual_name);
1954 return;
1955 }
1956 addr = decode_locdesc (pdi->locdesc, cu);
1957 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1958 mst_file_data, objfile); */
1959 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1960 VAR_DOMAIN, LOC_STATIC,
1961 &objfile->static_psymbols,
1962 0, addr + baseaddr,
1963 cu->language, objfile);
1964 }
1965 break;
1966 case DW_TAG_typedef:
1967 case DW_TAG_base_type:
1968 case DW_TAG_subrange_type:
1969 add_psymbol_to_list (actual_name, strlen (actual_name),
1970 VAR_DOMAIN, LOC_TYPEDEF,
1971 &objfile->static_psymbols,
1972 0, (CORE_ADDR) 0, cu->language, objfile);
1973 break;
1974 case DW_TAG_namespace:
1975 add_psymbol_to_list (actual_name, strlen (actual_name),
1976 VAR_DOMAIN, LOC_TYPEDEF,
1977 &objfile->global_psymbols,
1978 0, (CORE_ADDR) 0, cu->language, objfile);
1979 break;
1980 case DW_TAG_class_type:
1981 case DW_TAG_interface_type:
1982 case DW_TAG_structure_type:
1983 case DW_TAG_union_type:
1984 case DW_TAG_enumeration_type:
1985 /* Skip external references. The DWARF standard says in the section
1986 about "Structure, Union, and Class Type Entries": "An incomplete
1987 structure, union or class type is represented by a structure,
1988 union or class entry that does not have a byte size attribute
1989 and that has a DW_AT_declaration attribute." */
1990 if (!pdi->has_byte_size && pdi->is_declaration)
1991 {
1992 if (built_actual_name)
1993 xfree (actual_name);
1994 return;
1995 }
1996
1997 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1998 static vs. global. */
1999 add_psymbol_to_list (actual_name, strlen (actual_name),
2000 STRUCT_DOMAIN, LOC_TYPEDEF,
2001 (cu->language == language_cplus
2002 || cu->language == language_java)
2003 ? &objfile->global_psymbols
2004 : &objfile->static_psymbols,
2005 0, (CORE_ADDR) 0, cu->language, objfile);
2006
2007 if (cu->language == language_cplus
2008 || cu->language == language_java
2009 || cu->language == language_ada)
2010 {
2011 /* For C++ and Java, these implicitly act as typedefs as well. */
2012 add_psymbol_to_list (actual_name, strlen (actual_name),
2013 VAR_DOMAIN, LOC_TYPEDEF,
2014 &objfile->global_psymbols,
2015 0, (CORE_ADDR) 0, cu->language, objfile);
2016 }
2017 break;
2018 case DW_TAG_enumerator:
2019 add_psymbol_to_list (actual_name, strlen (actual_name),
2020 VAR_DOMAIN, LOC_CONST,
2021 (cu->language == language_cplus
2022 || cu->language == language_java)
2023 ? &objfile->global_psymbols
2024 : &objfile->static_psymbols,
2025 0, (CORE_ADDR) 0, cu->language, objfile);
2026 break;
2027 default:
2028 break;
2029 }
2030
2031 /* Check to see if we should scan the name for possible namespace
2032 info. Only do this if this is C++, if we don't have namespace
2033 debugging info in the file, if the psym is of an appropriate type
2034 (otherwise we'll have psym == NULL), and if we actually had a
2035 mangled name to begin with. */
2036
2037 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2038 cases which do not set PSYM above? */
2039
2040 if (cu->language == language_cplus
2041 && cu->has_namespace_info == 0
2042 && psym != NULL
2043 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2044 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2045 objfile);
2046
2047 if (built_actual_name)
2048 xfree (actual_name);
2049 }
2050
2051 /* Determine whether a die of type TAG living in a C++ class or
2052 namespace needs to have the name of the scope prepended to the
2053 name listed in the die. */
2054
2055 static int
2056 pdi_needs_namespace (enum dwarf_tag tag)
2057 {
2058 switch (tag)
2059 {
2060 case DW_TAG_namespace:
2061 case DW_TAG_typedef:
2062 case DW_TAG_class_type:
2063 case DW_TAG_interface_type:
2064 case DW_TAG_structure_type:
2065 case DW_TAG_union_type:
2066 case DW_TAG_enumeration_type:
2067 case DW_TAG_enumerator:
2068 return 1;
2069 default:
2070 return 0;
2071 }
2072 }
2073
2074 /* Read a partial die corresponding to a namespace; also, add a symbol
2075 corresponding to that namespace to the symbol table. NAMESPACE is
2076 the name of the enclosing namespace. */
2077
2078 static void
2079 add_partial_namespace (struct partial_die_info *pdi,
2080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2081 struct dwarf2_cu *cu)
2082 {
2083 struct objfile *objfile = cu->objfile;
2084
2085 /* Add a symbol for the namespace. */
2086
2087 add_partial_symbol (pdi, cu);
2088
2089 /* Now scan partial symbols in that namespace. */
2090
2091 if (pdi->has_children)
2092 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2093 }
2094
2095 /* See if we can figure out if the class lives in a namespace. We do
2096 this by looking for a member function; its demangled name will
2097 contain namespace info, if there is any. */
2098
2099 static void
2100 guess_structure_name (struct partial_die_info *struct_pdi,
2101 struct dwarf2_cu *cu)
2102 {
2103 if ((cu->language == language_cplus
2104 || cu->language == language_java)
2105 && cu->has_namespace_info == 0
2106 && struct_pdi->has_children)
2107 {
2108 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2109 what template types look like, because the demangler
2110 frequently doesn't give the same name as the debug info. We
2111 could fix this by only using the demangled name to get the
2112 prefix (but see comment in read_structure_type). */
2113
2114 struct partial_die_info *child_pdi = struct_pdi->die_child;
2115 struct partial_die_info *real_pdi;
2116
2117 /* If this DIE (this DIE's specification, if any) has a parent, then
2118 we should not do this. We'll prepend the parent's fully qualified
2119 name when we create the partial symbol. */
2120
2121 real_pdi = struct_pdi;
2122 while (real_pdi->has_specification)
2123 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2124
2125 if (real_pdi->die_parent != NULL)
2126 return;
2127
2128 while (child_pdi != NULL)
2129 {
2130 if (child_pdi->tag == DW_TAG_subprogram)
2131 {
2132 char *actual_class_name
2133 = language_class_name_from_physname (cu->language_defn,
2134 child_pdi->name);
2135 if (actual_class_name != NULL)
2136 {
2137 struct_pdi->name
2138 = obsavestring (actual_class_name,
2139 strlen (actual_class_name),
2140 &cu->comp_unit_obstack);
2141 xfree (actual_class_name);
2142 }
2143 break;
2144 }
2145
2146 child_pdi = child_pdi->die_sibling;
2147 }
2148 }
2149 }
2150
2151 /* Read a partial die corresponding to an enumeration type. */
2152
2153 static void
2154 add_partial_enumeration (struct partial_die_info *enum_pdi,
2155 struct dwarf2_cu *cu)
2156 {
2157 struct objfile *objfile = cu->objfile;
2158 bfd *abfd = objfile->obfd;
2159 struct partial_die_info *pdi;
2160
2161 if (enum_pdi->name != NULL)
2162 add_partial_symbol (enum_pdi, cu);
2163
2164 pdi = enum_pdi->die_child;
2165 while (pdi)
2166 {
2167 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2168 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2169 else
2170 add_partial_symbol (pdi, cu);
2171 pdi = pdi->die_sibling;
2172 }
2173 }
2174
2175 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2176 Return the corresponding abbrev, or NULL if the number is zero (indicating
2177 an empty DIE). In either case *BYTES_READ will be set to the length of
2178 the initial number. */
2179
2180 static struct abbrev_info *
2181 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2182 struct dwarf2_cu *cu)
2183 {
2184 bfd *abfd = cu->objfile->obfd;
2185 unsigned int abbrev_number;
2186 struct abbrev_info *abbrev;
2187
2188 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2189
2190 if (abbrev_number == 0)
2191 return NULL;
2192
2193 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2194 if (!abbrev)
2195 {
2196 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2197 bfd_get_filename (abfd));
2198 }
2199
2200 return abbrev;
2201 }
2202
2203 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2204 pointer to the end of a series of DIEs, terminated by an empty
2205 DIE. Any children of the skipped DIEs will also be skipped. */
2206
2207 static gdb_byte *
2208 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2209 {
2210 struct abbrev_info *abbrev;
2211 unsigned int bytes_read;
2212
2213 while (1)
2214 {
2215 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2216 if (abbrev == NULL)
2217 return info_ptr + bytes_read;
2218 else
2219 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2220 }
2221 }
2222
2223 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2224 should point just after the initial uleb128 of a DIE, and the
2225 abbrev corresponding to that skipped uleb128 should be passed in
2226 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2227 children. */
2228
2229 static gdb_byte *
2230 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2231 struct dwarf2_cu *cu)
2232 {
2233 unsigned int bytes_read;
2234 struct attribute attr;
2235 bfd *abfd = cu->objfile->obfd;
2236 unsigned int form, i;
2237
2238 for (i = 0; i < abbrev->num_attrs; i++)
2239 {
2240 /* The only abbrev we care about is DW_AT_sibling. */
2241 if (abbrev->attrs[i].name == DW_AT_sibling)
2242 {
2243 read_attribute (&attr, &abbrev->attrs[i],
2244 abfd, info_ptr, cu);
2245 if (attr.form == DW_FORM_ref_addr)
2246 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2247 else
2248 return dwarf2_per_objfile->info_buffer
2249 + dwarf2_get_ref_die_offset (&attr, cu);
2250 }
2251
2252 /* If it isn't DW_AT_sibling, skip this attribute. */
2253 form = abbrev->attrs[i].form;
2254 skip_attribute:
2255 switch (form)
2256 {
2257 case DW_FORM_addr:
2258 case DW_FORM_ref_addr:
2259 info_ptr += cu->header.addr_size;
2260 break;
2261 case DW_FORM_data1:
2262 case DW_FORM_ref1:
2263 case DW_FORM_flag:
2264 info_ptr += 1;
2265 break;
2266 case DW_FORM_data2:
2267 case DW_FORM_ref2:
2268 info_ptr += 2;
2269 break;
2270 case DW_FORM_data4:
2271 case DW_FORM_ref4:
2272 info_ptr += 4;
2273 break;
2274 case DW_FORM_data8:
2275 case DW_FORM_ref8:
2276 info_ptr += 8;
2277 break;
2278 case DW_FORM_string:
2279 read_string (abfd, info_ptr, &bytes_read);
2280 info_ptr += bytes_read;
2281 break;
2282 case DW_FORM_strp:
2283 info_ptr += cu->header.offset_size;
2284 break;
2285 case DW_FORM_block:
2286 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2287 info_ptr += bytes_read;
2288 break;
2289 case DW_FORM_block1:
2290 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2291 break;
2292 case DW_FORM_block2:
2293 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2294 break;
2295 case DW_FORM_block4:
2296 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2297 break;
2298 case DW_FORM_sdata:
2299 case DW_FORM_udata:
2300 case DW_FORM_ref_udata:
2301 info_ptr = skip_leb128 (abfd, info_ptr);
2302 break;
2303 case DW_FORM_indirect:
2304 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2305 info_ptr += bytes_read;
2306 /* We need to continue parsing from here, so just go back to
2307 the top. */
2308 goto skip_attribute;
2309
2310 default:
2311 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2312 dwarf_form_name (form),
2313 bfd_get_filename (abfd));
2314 }
2315 }
2316
2317 if (abbrev->has_children)
2318 return skip_children (info_ptr, cu);
2319 else
2320 return info_ptr;
2321 }
2322
2323 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2324 the next DIE after ORIG_PDI. */
2325
2326 static gdb_byte *
2327 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2328 bfd *abfd, struct dwarf2_cu *cu)
2329 {
2330 /* Do we know the sibling already? */
2331
2332 if (orig_pdi->sibling)
2333 return orig_pdi->sibling;
2334
2335 /* Are there any children to deal with? */
2336
2337 if (!orig_pdi->has_children)
2338 return info_ptr;
2339
2340 /* Skip the children the long way. */
2341
2342 return skip_children (info_ptr, cu);
2343 }
2344
2345 /* Expand this partial symbol table into a full symbol table. */
2346
2347 static void
2348 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2349 {
2350 /* FIXME: This is barely more than a stub. */
2351 if (pst != NULL)
2352 {
2353 if (pst->readin)
2354 {
2355 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2356 }
2357 else
2358 {
2359 if (info_verbose)
2360 {
2361 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2362 gdb_flush (gdb_stdout);
2363 }
2364
2365 /* Restore our global data. */
2366 dwarf2_per_objfile = objfile_data (pst->objfile,
2367 dwarf2_objfile_data_key);
2368
2369 psymtab_to_symtab_1 (pst);
2370
2371 /* Finish up the debug error message. */
2372 if (info_verbose)
2373 printf_filtered (_("done.\n"));
2374 }
2375 }
2376 }
2377
2378 /* Add PER_CU to the queue. */
2379
2380 static void
2381 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2382 {
2383 struct dwarf2_queue_item *item;
2384
2385 per_cu->queued = 1;
2386 item = xmalloc (sizeof (*item));
2387 item->per_cu = per_cu;
2388 item->next = NULL;
2389
2390 if (dwarf2_queue == NULL)
2391 dwarf2_queue = item;
2392 else
2393 dwarf2_queue_tail->next = item;
2394
2395 dwarf2_queue_tail = item;
2396 }
2397
2398 /* Process the queue. */
2399
2400 static void
2401 process_queue (struct objfile *objfile)
2402 {
2403 struct dwarf2_queue_item *item, *next_item;
2404
2405 /* Initially, there is just one item on the queue. Load its DIEs,
2406 and the DIEs of any other compilation units it requires,
2407 transitively. */
2408
2409 for (item = dwarf2_queue; item != NULL; item = item->next)
2410 {
2411 /* Read in this compilation unit. This may add new items to
2412 the end of the queue. */
2413 load_full_comp_unit (item->per_cu, objfile);
2414
2415 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2416 dwarf2_per_objfile->read_in_chain = item->per_cu;
2417
2418 /* If this compilation unit has already had full symbols created,
2419 reset the TYPE fields in each DIE. */
2420 if (item->per_cu->type_hash)
2421 reset_die_and_siblings_types (item->per_cu->cu->dies,
2422 item->per_cu->cu);
2423 }
2424
2425 /* Now everything left on the queue needs to be read in. Process
2426 them, one at a time, removing from the queue as we finish. */
2427 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2428 {
2429 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2430 process_full_comp_unit (item->per_cu);
2431
2432 item->per_cu->queued = 0;
2433 next_item = item->next;
2434 xfree (item);
2435 }
2436
2437 dwarf2_queue_tail = NULL;
2438 }
2439
2440 /* Free all allocated queue entries. This function only releases anything if
2441 an error was thrown; if the queue was processed then it would have been
2442 freed as we went along. */
2443
2444 static void
2445 dwarf2_release_queue (void *dummy)
2446 {
2447 struct dwarf2_queue_item *item, *last;
2448
2449 item = dwarf2_queue;
2450 while (item)
2451 {
2452 /* Anything still marked queued is likely to be in an
2453 inconsistent state, so discard it. */
2454 if (item->per_cu->queued)
2455 {
2456 if (item->per_cu->cu != NULL)
2457 free_one_cached_comp_unit (item->per_cu->cu);
2458 item->per_cu->queued = 0;
2459 }
2460
2461 last = item;
2462 item = item->next;
2463 xfree (last);
2464 }
2465
2466 dwarf2_queue = dwarf2_queue_tail = NULL;
2467 }
2468
2469 /* Read in full symbols for PST, and anything it depends on. */
2470
2471 static void
2472 psymtab_to_symtab_1 (struct partial_symtab *pst)
2473 {
2474 struct dwarf2_per_cu_data *per_cu;
2475 struct cleanup *back_to;
2476 int i;
2477
2478 for (i = 0; i < pst->number_of_dependencies; i++)
2479 if (!pst->dependencies[i]->readin)
2480 {
2481 /* Inform about additional files that need to be read in. */
2482 if (info_verbose)
2483 {
2484 /* FIXME: i18n: Need to make this a single string. */
2485 fputs_filtered (" ", gdb_stdout);
2486 wrap_here ("");
2487 fputs_filtered ("and ", gdb_stdout);
2488 wrap_here ("");
2489 printf_filtered ("%s...", pst->dependencies[i]->filename);
2490 wrap_here (""); /* Flush output */
2491 gdb_flush (gdb_stdout);
2492 }
2493 psymtab_to_symtab_1 (pst->dependencies[i]);
2494 }
2495
2496 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2497
2498 if (per_cu == NULL)
2499 {
2500 /* It's an include file, no symbols to read for it.
2501 Everything is in the parent symtab. */
2502 pst->readin = 1;
2503 return;
2504 }
2505
2506 back_to = make_cleanup (dwarf2_release_queue, NULL);
2507
2508 queue_comp_unit (per_cu);
2509
2510 process_queue (pst->objfile);
2511
2512 /* Age the cache, releasing compilation units that have not
2513 been used recently. */
2514 age_cached_comp_units ();
2515
2516 do_cleanups (back_to);
2517 }
2518
2519 /* Load the DIEs associated with PST and PER_CU into memory. */
2520
2521 static struct dwarf2_cu *
2522 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2523 {
2524 bfd *abfd = objfile->obfd;
2525 struct dwarf2_cu *cu;
2526 unsigned long offset;
2527 gdb_byte *info_ptr;
2528 struct cleanup *back_to, *free_cu_cleanup;
2529 struct attribute *attr;
2530 CORE_ADDR baseaddr;
2531
2532 /* Set local variables from the partial symbol table info. */
2533 offset = per_cu->offset;
2534
2535 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2536
2537 cu = xmalloc (sizeof (struct dwarf2_cu));
2538 memset (cu, 0, sizeof (struct dwarf2_cu));
2539
2540 /* If an error occurs while loading, release our storage. */
2541 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2542
2543 cu->objfile = objfile;
2544
2545 /* read in the comp_unit header */
2546 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2547
2548 /* Read the abbrevs for this compilation unit */
2549 dwarf2_read_abbrevs (abfd, cu);
2550 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2551
2552 cu->header.offset = offset;
2553
2554 cu->per_cu = per_cu;
2555 per_cu->cu = cu;
2556
2557 /* We use this obstack for block values in dwarf_alloc_block. */
2558 obstack_init (&cu->comp_unit_obstack);
2559
2560 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2561
2562 /* We try not to read any attributes in this function, because not
2563 all objfiles needed for references have been loaded yet, and symbol
2564 table processing isn't initialized. But we have to set the CU language,
2565 or we won't be able to build types correctly. */
2566 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2567 if (attr)
2568 set_cu_language (DW_UNSND (attr), cu);
2569 else
2570 set_cu_language (language_minimal, cu);
2571
2572 do_cleanups (back_to);
2573
2574 /* We've successfully allocated this compilation unit. Let our caller
2575 clean it up when finished with it. */
2576 discard_cleanups (free_cu_cleanup);
2577
2578 return cu;
2579 }
2580
2581 /* Generate full symbol information for PST and CU, whose DIEs have
2582 already been loaded into memory. */
2583
2584 static void
2585 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2586 {
2587 struct partial_symtab *pst = per_cu->psymtab;
2588 struct dwarf2_cu *cu = per_cu->cu;
2589 struct objfile *objfile = pst->objfile;
2590 bfd *abfd = objfile->obfd;
2591 CORE_ADDR lowpc, highpc;
2592 struct symtab *symtab;
2593 struct cleanup *back_to;
2594 struct attribute *attr;
2595 CORE_ADDR baseaddr;
2596
2597 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2598
2599 /* We're in the global namespace. */
2600 processing_current_prefix = "";
2601
2602 buildsym_init ();
2603 back_to = make_cleanup (really_free_pendings, NULL);
2604
2605 cu->list_in_scope = &file_symbols;
2606
2607 /* Find the base address of the compilation unit for range lists and
2608 location lists. It will normally be specified by DW_AT_low_pc.
2609 In DWARF-3 draft 4, the base address could be overridden by
2610 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2611 compilation units with discontinuous ranges. */
2612
2613 cu->header.base_known = 0;
2614 cu->header.base_address = 0;
2615
2616 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2617 if (attr)
2618 {
2619 cu->header.base_address = DW_ADDR (attr);
2620 cu->header.base_known = 1;
2621 }
2622 else
2623 {
2624 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2625 if (attr)
2626 {
2627 cu->header.base_address = DW_ADDR (attr);
2628 cu->header.base_known = 1;
2629 }
2630 }
2631
2632 /* Do line number decoding in read_file_scope () */
2633 process_die (cu->dies, cu);
2634
2635 /* Some compilers don't define a DW_AT_high_pc attribute for the
2636 compilation unit. If the DW_AT_high_pc is missing, synthesize
2637 it, by scanning the DIE's below the compilation unit. */
2638 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2639
2640 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2641
2642 /* Set symtab language to language from DW_AT_language.
2643 If the compilation is from a C file generated by language preprocessors,
2644 do not set the language if it was already deduced by start_subfile. */
2645 if (symtab != NULL
2646 && !(cu->language == language_c && symtab->language != language_c))
2647 {
2648 symtab->language = cu->language;
2649 }
2650 pst->symtab = symtab;
2651 pst->readin = 1;
2652
2653 do_cleanups (back_to);
2654 }
2655
2656 /* Process a die and its children. */
2657
2658 static void
2659 process_die (struct die_info *die, struct dwarf2_cu *cu)
2660 {
2661 switch (die->tag)
2662 {
2663 case DW_TAG_padding:
2664 break;
2665 case DW_TAG_compile_unit:
2666 read_file_scope (die, cu);
2667 break;
2668 case DW_TAG_subprogram:
2669 read_subroutine_type (die, cu);
2670 read_func_scope (die, cu);
2671 break;
2672 case DW_TAG_inlined_subroutine:
2673 /* FIXME: These are ignored for now.
2674 They could be used to set breakpoints on all inlined instances
2675 of a function and make GDB `next' properly over inlined functions. */
2676 break;
2677 case DW_TAG_lexical_block:
2678 case DW_TAG_try_block:
2679 case DW_TAG_catch_block:
2680 read_lexical_block_scope (die, cu);
2681 break;
2682 case DW_TAG_class_type:
2683 case DW_TAG_interface_type:
2684 case DW_TAG_structure_type:
2685 case DW_TAG_union_type:
2686 read_structure_type (die, cu);
2687 process_structure_scope (die, cu);
2688 break;
2689 case DW_TAG_enumeration_type:
2690 read_enumeration_type (die, cu);
2691 process_enumeration_scope (die, cu);
2692 break;
2693
2694 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2695 a symbol or process any children. Therefore it doesn't do anything
2696 that won't be done on-demand by read_type_die. */
2697 case DW_TAG_subroutine_type:
2698 read_subroutine_type (die, cu);
2699 break;
2700 case DW_TAG_set_type:
2701 read_set_type (die, cu);
2702 break;
2703 case DW_TAG_array_type:
2704 read_array_type (die, cu);
2705 break;
2706 case DW_TAG_pointer_type:
2707 read_tag_pointer_type (die, cu);
2708 break;
2709 case DW_TAG_ptr_to_member_type:
2710 read_tag_ptr_to_member_type (die, cu);
2711 break;
2712 case DW_TAG_reference_type:
2713 read_tag_reference_type (die, cu);
2714 break;
2715 case DW_TAG_string_type:
2716 read_tag_string_type (die, cu);
2717 break;
2718 /* END FIXME */
2719
2720 case DW_TAG_base_type:
2721 read_base_type (die, cu);
2722 /* Add a typedef symbol for the type definition, if it has a
2723 DW_AT_name. */
2724 new_symbol (die, die->type, cu);
2725 break;
2726 case DW_TAG_subrange_type:
2727 read_subrange_type (die, cu);
2728 /* Add a typedef symbol for the type definition, if it has a
2729 DW_AT_name. */
2730 new_symbol (die, die->type, cu);
2731 break;
2732 case DW_TAG_common_block:
2733 read_common_block (die, cu);
2734 break;
2735 case DW_TAG_common_inclusion:
2736 break;
2737 case DW_TAG_namespace:
2738 processing_has_namespace_info = 1;
2739 read_namespace (die, cu);
2740 break;
2741 case DW_TAG_imported_declaration:
2742 case DW_TAG_imported_module:
2743 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2744 information contained in these. DW_TAG_imported_declaration
2745 dies shouldn't have children; DW_TAG_imported_module dies
2746 shouldn't in the C++ case, but conceivably could in the
2747 Fortran case, so we'll have to replace this gdb_assert if
2748 Fortran compilers start generating that info. */
2749 processing_has_namespace_info = 1;
2750 gdb_assert (die->child == NULL);
2751 break;
2752 default:
2753 new_symbol (die, NULL, cu);
2754 break;
2755 }
2756 }
2757
2758 static void
2759 initialize_cu_func_list (struct dwarf2_cu *cu)
2760 {
2761 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2762 }
2763
2764 static void
2765 free_cu_line_header (void *arg)
2766 {
2767 struct dwarf2_cu *cu = arg;
2768
2769 free_line_header (cu->line_header);
2770 cu->line_header = NULL;
2771 }
2772
2773 static void
2774 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2775 {
2776 struct objfile *objfile = cu->objfile;
2777 struct comp_unit_head *cu_header = &cu->header;
2778 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2779 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2780 CORE_ADDR highpc = ((CORE_ADDR) 0);
2781 struct attribute *attr;
2782 char *name = NULL;
2783 char *comp_dir = NULL;
2784 struct die_info *child_die;
2785 bfd *abfd = objfile->obfd;
2786 struct line_header *line_header = 0;
2787 CORE_ADDR baseaddr;
2788
2789 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2790
2791 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2792
2793 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2794 from finish_block. */
2795 if (lowpc == ((CORE_ADDR) -1))
2796 lowpc = highpc;
2797 lowpc += baseaddr;
2798 highpc += baseaddr;
2799
2800 /* Find the filename. Do not use dwarf2_name here, since the filename
2801 is not a source language identifier. */
2802 attr = dwarf2_attr (die, DW_AT_name, cu);
2803 if (attr)
2804 {
2805 name = DW_STRING (attr);
2806 }
2807
2808 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2809 if (attr)
2810 comp_dir = DW_STRING (attr);
2811 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2812 {
2813 comp_dir = ldirname (name);
2814 if (comp_dir != NULL)
2815 make_cleanup (xfree, comp_dir);
2816 }
2817 if (comp_dir != NULL)
2818 {
2819 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2820 directory, get rid of it. */
2821 char *cp = strchr (comp_dir, ':');
2822
2823 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2824 comp_dir = cp + 1;
2825 }
2826
2827 if (name == NULL)
2828 name = "<unknown>";
2829
2830 attr = dwarf2_attr (die, DW_AT_language, cu);
2831 if (attr)
2832 {
2833 set_cu_language (DW_UNSND (attr), cu);
2834 }
2835
2836 attr = dwarf2_attr (die, DW_AT_producer, cu);
2837 if (attr)
2838 cu->producer = DW_STRING (attr);
2839
2840 /* We assume that we're processing GCC output. */
2841 processing_gcc_compilation = 2;
2842
2843 start_symtab (name, comp_dir, lowpc);
2844 record_debugformat ("DWARF 2");
2845 record_producer (cu->producer);
2846
2847 initialize_cu_func_list (cu);
2848
2849 /* Decode line number information if present. We do this before
2850 processing child DIEs, so that the line header table is available
2851 for DW_AT_decl_file. */
2852 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2853 if (attr)
2854 {
2855 unsigned int line_offset = DW_UNSND (attr);
2856 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2857 if (line_header)
2858 {
2859 cu->line_header = line_header;
2860 make_cleanup (free_cu_line_header, cu);
2861 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2862 }
2863 }
2864
2865 /* Process all dies in compilation unit. */
2866 if (die->child != NULL)
2867 {
2868 child_die = die->child;
2869 while (child_die && child_die->tag)
2870 {
2871 process_die (child_die, cu);
2872 child_die = sibling_die (child_die);
2873 }
2874 }
2875
2876 /* Decode macro information, if present. Dwarf 2 macro information
2877 refers to information in the line number info statement program
2878 header, so we can only read it if we've read the header
2879 successfully. */
2880 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2881 if (attr && line_header)
2882 {
2883 unsigned int macro_offset = DW_UNSND (attr);
2884 dwarf_decode_macros (line_header, macro_offset,
2885 comp_dir, abfd, cu);
2886 }
2887 do_cleanups (back_to);
2888 }
2889
2890 static void
2891 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2892 struct dwarf2_cu *cu)
2893 {
2894 struct function_range *thisfn;
2895
2896 thisfn = (struct function_range *)
2897 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2898 thisfn->name = name;
2899 thisfn->lowpc = lowpc;
2900 thisfn->highpc = highpc;
2901 thisfn->seen_line = 0;
2902 thisfn->next = NULL;
2903
2904 if (cu->last_fn == NULL)
2905 cu->first_fn = thisfn;
2906 else
2907 cu->last_fn->next = thisfn;
2908
2909 cu->last_fn = thisfn;
2910 }
2911
2912 static void
2913 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2914 {
2915 struct objfile *objfile = cu->objfile;
2916 struct context_stack *new;
2917 CORE_ADDR lowpc;
2918 CORE_ADDR highpc;
2919 struct die_info *child_die;
2920 struct attribute *attr;
2921 char *name;
2922 const char *previous_prefix = processing_current_prefix;
2923 struct cleanup *back_to = NULL;
2924 CORE_ADDR baseaddr;
2925 struct block *block;
2926
2927 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2928
2929 name = dwarf2_linkage_name (die, cu);
2930
2931 /* Ignore functions with missing or empty names and functions with
2932 missing or invalid low and high pc attributes. */
2933 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2934 return;
2935
2936 if (cu->language == language_cplus
2937 || cu->language == language_java)
2938 {
2939 struct die_info *spec_die = die_specification (die, cu);
2940
2941 /* NOTE: carlton/2004-01-23: We have to be careful in the
2942 presence of DW_AT_specification. For example, with GCC 3.4,
2943 given the code
2944
2945 namespace N {
2946 void foo() {
2947 // Definition of N::foo.
2948 }
2949 }
2950
2951 then we'll have a tree of DIEs like this:
2952
2953 1: DW_TAG_compile_unit
2954 2: DW_TAG_namespace // N
2955 3: DW_TAG_subprogram // declaration of N::foo
2956 4: DW_TAG_subprogram // definition of N::foo
2957 DW_AT_specification // refers to die #3
2958
2959 Thus, when processing die #4, we have to pretend that we're
2960 in the context of its DW_AT_specification, namely the contex
2961 of die #3. */
2962
2963 if (spec_die != NULL)
2964 {
2965 char *specification_prefix = determine_prefix (spec_die, cu);
2966 processing_current_prefix = specification_prefix;
2967 back_to = make_cleanup (xfree, specification_prefix);
2968 }
2969 }
2970
2971 lowpc += baseaddr;
2972 highpc += baseaddr;
2973
2974 /* Record the function range for dwarf_decode_lines. */
2975 add_to_cu_func_list (name, lowpc, highpc, cu);
2976
2977 new = push_context (0, lowpc);
2978 new->name = new_symbol (die, die->type, cu);
2979
2980 /* If there is a location expression for DW_AT_frame_base, record
2981 it. */
2982 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2983 if (attr)
2984 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2985 expression is being recorded directly in the function's symbol
2986 and not in a separate frame-base object. I guess this hack is
2987 to avoid adding some sort of frame-base adjunct/annex to the
2988 function's symbol :-(. The problem with doing this is that it
2989 results in a function symbol with a location expression that
2990 has nothing to do with the location of the function, ouch! The
2991 relationship should be: a function's symbol has-a frame base; a
2992 frame-base has-a location expression. */
2993 dwarf2_symbol_mark_computed (attr, new->name, cu);
2994
2995 cu->list_in_scope = &local_symbols;
2996
2997 if (die->child != NULL)
2998 {
2999 child_die = die->child;
3000 while (child_die && child_die->tag)
3001 {
3002 process_die (child_die, cu);
3003 child_die = sibling_die (child_die);
3004 }
3005 }
3006
3007 new = pop_context ();
3008 /* Make a block for the local symbols within. */
3009 block = finish_block (new->name, &local_symbols, new->old_blocks,
3010 lowpc, highpc, objfile);
3011
3012 /* If we have address ranges, record them. */
3013 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3014
3015 /* In C++, we can have functions nested inside functions (e.g., when
3016 a function declares a class that has methods). This means that
3017 when we finish processing a function scope, we may need to go
3018 back to building a containing block's symbol lists. */
3019 local_symbols = new->locals;
3020 param_symbols = new->params;
3021
3022 /* If we've finished processing a top-level function, subsequent
3023 symbols go in the file symbol list. */
3024 if (outermost_context_p ())
3025 cu->list_in_scope = &file_symbols;
3026
3027 processing_current_prefix = previous_prefix;
3028 if (back_to != NULL)
3029 do_cleanups (back_to);
3030 }
3031
3032 /* Process all the DIES contained within a lexical block scope. Start
3033 a new scope, process the dies, and then close the scope. */
3034
3035 static void
3036 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3037 {
3038 struct objfile *objfile = cu->objfile;
3039 struct context_stack *new;
3040 CORE_ADDR lowpc, highpc;
3041 struct die_info *child_die;
3042 CORE_ADDR baseaddr;
3043
3044 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3045
3046 /* Ignore blocks with missing or invalid low and high pc attributes. */
3047 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3048 as multiple lexical blocks? Handling children in a sane way would
3049 be nasty. Might be easier to properly extend generic blocks to
3050 describe ranges. */
3051 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3052 return;
3053 lowpc += baseaddr;
3054 highpc += baseaddr;
3055
3056 push_context (0, lowpc);
3057 if (die->child != NULL)
3058 {
3059 child_die = die->child;
3060 while (child_die && child_die->tag)
3061 {
3062 process_die (child_die, cu);
3063 child_die = sibling_die (child_die);
3064 }
3065 }
3066 new = pop_context ();
3067
3068 if (local_symbols != NULL)
3069 {
3070 struct block *block
3071 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3072 highpc, objfile);
3073
3074 /* Note that recording ranges after traversing children, as we
3075 do here, means that recording a parent's ranges entails
3076 walking across all its children's ranges as they appear in
3077 the address map, which is quadratic behavior.
3078
3079 It would be nicer to record the parent's ranges before
3080 traversing its children, simply overriding whatever you find
3081 there. But since we don't even decide whether to create a
3082 block until after we've traversed its children, that's hard
3083 to do. */
3084 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3085 }
3086 local_symbols = new->locals;
3087 }
3088
3089 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3090 Return 1 if the attributes are present and valid, otherwise, return 0. */
3091
3092 static int
3093 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3094 CORE_ADDR *high_return, struct dwarf2_cu *cu)
3095 {
3096 struct objfile *objfile = cu->objfile;
3097 struct comp_unit_head *cu_header = &cu->header;
3098 bfd *obfd = objfile->obfd;
3099 unsigned int addr_size = cu_header->addr_size;
3100 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3101 /* Base address selection entry. */
3102 CORE_ADDR base;
3103 int found_base;
3104 unsigned int dummy;
3105 gdb_byte *buffer;
3106 CORE_ADDR marker;
3107 int low_set;
3108 CORE_ADDR low = 0;
3109 CORE_ADDR high = 0;
3110
3111 found_base = cu_header->base_known;
3112 base = cu_header->base_address;
3113
3114 if (offset >= dwarf2_per_objfile->ranges_size)
3115 {
3116 complaint (&symfile_complaints,
3117 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3118 offset);
3119 return 0;
3120 }
3121 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3122
3123 /* Read in the largest possible address. */
3124 marker = read_address (obfd, buffer, cu, &dummy);
3125 if ((marker & mask) == mask)
3126 {
3127 /* If we found the largest possible address, then
3128 read the base address. */
3129 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3130 buffer += 2 * addr_size;
3131 offset += 2 * addr_size;
3132 found_base = 1;
3133 }
3134
3135 low_set = 0;
3136
3137 while (1)
3138 {
3139 CORE_ADDR range_beginning, range_end;
3140
3141 range_beginning = read_address (obfd, buffer, cu, &dummy);
3142 buffer += addr_size;
3143 range_end = read_address (obfd, buffer, cu, &dummy);
3144 buffer += addr_size;
3145 offset += 2 * addr_size;
3146
3147 /* An end of list marker is a pair of zero addresses. */
3148 if (range_beginning == 0 && range_end == 0)
3149 /* Found the end of list entry. */
3150 break;
3151
3152 /* Each base address selection entry is a pair of 2 values.
3153 The first is the largest possible address, the second is
3154 the base address. Check for a base address here. */
3155 if ((range_beginning & mask) == mask)
3156 {
3157 /* If we found the largest possible address, then
3158 read the base address. */
3159 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3160 found_base = 1;
3161 continue;
3162 }
3163
3164 if (!found_base)
3165 {
3166 /* We have no valid base address for the ranges
3167 data. */
3168 complaint (&symfile_complaints,
3169 _("Invalid .debug_ranges data (no base address)"));
3170 return 0;
3171 }
3172
3173 range_beginning += base;
3174 range_end += base;
3175
3176 /* FIXME: This is recording everything as a low-high
3177 segment of consecutive addresses. We should have a
3178 data structure for discontiguous block ranges
3179 instead. */
3180 if (! low_set)
3181 {
3182 low = range_beginning;
3183 high = range_end;
3184 low_set = 1;
3185 }
3186 else
3187 {
3188 if (range_beginning < low)
3189 low = range_beginning;
3190 if (range_end > high)
3191 high = range_end;
3192 }
3193 }
3194
3195 if (! low_set)
3196 /* If the first entry is an end-of-list marker, the range
3197 describes an empty scope, i.e. no instructions. */
3198 return 0;
3199
3200 if (low_return)
3201 *low_return = low;
3202 if (high_return)
3203 *high_return = high;
3204 return 1;
3205 }
3206
3207 /* Get low and high pc attributes from a die. Return 1 if the attributes
3208 are present and valid, otherwise, return 0. Return -1 if the range is
3209 discontinuous, i.e. derived from DW_AT_ranges information. */
3210 static int
3211 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3212 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3213 {
3214 struct attribute *attr;
3215 CORE_ADDR low = 0;
3216 CORE_ADDR high = 0;
3217 int ret = 0;
3218
3219 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3220 if (attr)
3221 {
3222 high = DW_ADDR (attr);
3223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3224 if (attr)
3225 low = DW_ADDR (attr);
3226 else
3227 /* Found high w/o low attribute. */
3228 return 0;
3229
3230 /* Found consecutive range of addresses. */
3231 ret = 1;
3232 }
3233 else
3234 {
3235 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3236 if (attr != NULL)
3237 {
3238 /* Value of the DW_AT_ranges attribute is the offset in the
3239 .debug_ranges section. */
3240 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu))
3241 return 0;
3242 /* Found discontinuous range of addresses. */
3243 ret = -1;
3244 }
3245 }
3246
3247 if (high < low)
3248 return 0;
3249
3250 /* When using the GNU linker, .gnu.linkonce. sections are used to
3251 eliminate duplicate copies of functions and vtables and such.
3252 The linker will arbitrarily choose one and discard the others.
3253 The AT_*_pc values for such functions refer to local labels in
3254 these sections. If the section from that file was discarded, the
3255 labels are not in the output, so the relocs get a value of 0.
3256 If this is a discarded function, mark the pc bounds as invalid,
3257 so that GDB will ignore it. */
3258 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3259 return 0;
3260
3261 *lowpc = low;
3262 *highpc = high;
3263 return ret;
3264 }
3265
3266 /* Get the low and high pc's represented by the scope DIE, and store
3267 them in *LOWPC and *HIGHPC. If the correct values can't be
3268 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3269
3270 static void
3271 get_scope_pc_bounds (struct die_info *die,
3272 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3273 struct dwarf2_cu *cu)
3274 {
3275 CORE_ADDR best_low = (CORE_ADDR) -1;
3276 CORE_ADDR best_high = (CORE_ADDR) 0;
3277 CORE_ADDR current_low, current_high;
3278
3279 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3280 {
3281 best_low = current_low;
3282 best_high = current_high;
3283 }
3284 else
3285 {
3286 struct die_info *child = die->child;
3287
3288 while (child && child->tag)
3289 {
3290 switch (child->tag) {
3291 case DW_TAG_subprogram:
3292 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3293 {
3294 best_low = min (best_low, current_low);
3295 best_high = max (best_high, current_high);
3296 }
3297 break;
3298 case DW_TAG_namespace:
3299 /* FIXME: carlton/2004-01-16: Should we do this for
3300 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3301 that current GCC's always emit the DIEs corresponding
3302 to definitions of methods of classes as children of a
3303 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3304 the DIEs giving the declarations, which could be
3305 anywhere). But I don't see any reason why the
3306 standards says that they have to be there. */
3307 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3308
3309 if (current_low != ((CORE_ADDR) -1))
3310 {
3311 best_low = min (best_low, current_low);
3312 best_high = max (best_high, current_high);
3313 }
3314 break;
3315 default:
3316 /* Ignore. */
3317 break;
3318 }
3319
3320 child = sibling_die (child);
3321 }
3322 }
3323
3324 *lowpc = best_low;
3325 *highpc = best_high;
3326 }
3327
3328 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
3329 in DIE. */
3330 static void
3331 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3332 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3333 {
3334 struct attribute *attr;
3335
3336 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3337 if (attr)
3338 {
3339 CORE_ADDR high = DW_ADDR (attr);
3340 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3341 if (attr)
3342 {
3343 CORE_ADDR low = DW_ADDR (attr);
3344 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3345 }
3346 }
3347
3348 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3349 if (attr)
3350 {
3351 bfd *obfd = cu->objfile->obfd;
3352
3353 /* The value of the DW_AT_ranges attribute is the offset of the
3354 address range list in the .debug_ranges section. */
3355 unsigned long offset = DW_UNSND (attr);
3356 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3357
3358 /* For some target architectures, but not others, the
3359 read_address function sign-extends the addresses it returns.
3360 To recognize base address selection entries, we need a
3361 mask. */
3362 unsigned int addr_size = cu->header.addr_size;
3363 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3364
3365 /* The base address, to which the next pair is relative. Note
3366 that this 'base' is a DWARF concept: most entries in a range
3367 list are relative, to reduce the number of relocs against the
3368 debugging information. This is separate from this function's
3369 'baseaddr' argument, which GDB uses to relocate debugging
3370 information from a shared library based on the address at
3371 which the library was loaded. */
3372 CORE_ADDR base = cu->header.base_address;
3373 int base_known = cu->header.base_known;
3374
3375 if (offset >= dwarf2_per_objfile->ranges_size)
3376 {
3377 complaint (&symfile_complaints,
3378 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3379 offset);
3380 return;
3381 }
3382
3383 for (;;)
3384 {
3385 unsigned int bytes_read;
3386 CORE_ADDR start, end;
3387
3388 start = read_address (obfd, buffer, cu, &bytes_read);
3389 buffer += bytes_read;
3390 end = read_address (obfd, buffer, cu, &bytes_read);
3391 buffer += bytes_read;
3392
3393 /* Did we find the end of the range list? */
3394 if (start == 0 && end == 0)
3395 break;
3396
3397 /* Did we find a base address selection entry? */
3398 else if ((start & base_select_mask) == base_select_mask)
3399 {
3400 base = end;
3401 base_known = 1;
3402 }
3403
3404 /* We found an ordinary address range. */
3405 else
3406 {
3407 if (!base_known)
3408 {
3409 complaint (&symfile_complaints,
3410 _("Invalid .debug_ranges data (no base address)"));
3411 return;
3412 }
3413
3414 record_block_range (block,
3415 baseaddr + base + start,
3416 baseaddr + base + end - 1);
3417 }
3418 }
3419 }
3420 }
3421
3422 /* Add an aggregate field to the field list. */
3423
3424 static void
3425 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3426 struct dwarf2_cu *cu)
3427 {
3428 struct objfile *objfile = cu->objfile;
3429 struct nextfield *new_field;
3430 struct attribute *attr;
3431 struct field *fp;
3432 char *fieldname = "";
3433
3434 /* Allocate a new field list entry and link it in. */
3435 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3436 make_cleanup (xfree, new_field);
3437 memset (new_field, 0, sizeof (struct nextfield));
3438 new_field->next = fip->fields;
3439 fip->fields = new_field;
3440 fip->nfields++;
3441
3442 /* Handle accessibility and virtuality of field.
3443 The default accessibility for members is public, the default
3444 accessibility for inheritance is private. */
3445 if (die->tag != DW_TAG_inheritance)
3446 new_field->accessibility = DW_ACCESS_public;
3447 else
3448 new_field->accessibility = DW_ACCESS_private;
3449 new_field->virtuality = DW_VIRTUALITY_none;
3450
3451 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3452 if (attr)
3453 new_field->accessibility = DW_UNSND (attr);
3454 if (new_field->accessibility != DW_ACCESS_public)
3455 fip->non_public_fields = 1;
3456 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3457 if (attr)
3458 new_field->virtuality = DW_UNSND (attr);
3459
3460 fp = &new_field->field;
3461
3462 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3463 {
3464 /* Data member other than a C++ static data member. */
3465
3466 /* Get type of field. */
3467 fp->type = die_type (die, cu);
3468
3469 FIELD_STATIC_KIND (*fp) = 0;
3470
3471 /* Get bit size of field (zero if none). */
3472 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3473 if (attr)
3474 {
3475 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3476 }
3477 else
3478 {
3479 FIELD_BITSIZE (*fp) = 0;
3480 }
3481
3482 /* Get bit offset of field. */
3483 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3484 if (attr)
3485 {
3486 int byte_offset;
3487
3488 if (attr_form_is_section_offset (attr))
3489 {
3490 dwarf2_complex_location_expr_complaint ();
3491 byte_offset = 0;
3492 }
3493 else if (attr_form_is_constant (attr))
3494 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3495 else
3496 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3497
3498 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
3499 }
3500 else
3501 FIELD_BITPOS (*fp) = 0;
3502 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3503 if (attr)
3504 {
3505 if (BITS_BIG_ENDIAN)
3506 {
3507 /* For big endian bits, the DW_AT_bit_offset gives the
3508 additional bit offset from the MSB of the containing
3509 anonymous object to the MSB of the field. We don't
3510 have to do anything special since we don't need to
3511 know the size of the anonymous object. */
3512 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3513 }
3514 else
3515 {
3516 /* For little endian bits, compute the bit offset to the
3517 MSB of the anonymous object, subtract off the number of
3518 bits from the MSB of the field to the MSB of the
3519 object, and then subtract off the number of bits of
3520 the field itself. The result is the bit offset of
3521 the LSB of the field. */
3522 int anonymous_size;
3523 int bit_offset = DW_UNSND (attr);
3524
3525 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3526 if (attr)
3527 {
3528 /* The size of the anonymous object containing
3529 the bit field is explicit, so use the
3530 indicated size (in bytes). */
3531 anonymous_size = DW_UNSND (attr);
3532 }
3533 else
3534 {
3535 /* The size of the anonymous object containing
3536 the bit field must be inferred from the type
3537 attribute of the data member containing the
3538 bit field. */
3539 anonymous_size = TYPE_LENGTH (fp->type);
3540 }
3541 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3542 - bit_offset - FIELD_BITSIZE (*fp);
3543 }
3544 }
3545
3546 /* Get name of field. */
3547 fieldname = dwarf2_name (die, cu);
3548 if (fieldname == NULL)
3549 fieldname = "";
3550
3551 /* The name is already allocated along with this objfile, so we don't
3552 need to duplicate it for the type. */
3553 fp->name = fieldname;
3554
3555 /* Change accessibility for artificial fields (e.g. virtual table
3556 pointer or virtual base class pointer) to private. */
3557 if (dwarf2_attr (die, DW_AT_artificial, cu))
3558 {
3559 new_field->accessibility = DW_ACCESS_private;
3560 fip->non_public_fields = 1;
3561 }
3562 }
3563 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3564 {
3565 /* C++ static member. */
3566
3567 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3568 is a declaration, but all versions of G++ as of this writing
3569 (so through at least 3.2.1) incorrectly generate
3570 DW_TAG_variable tags. */
3571
3572 char *physname;
3573
3574 /* Get name of field. */
3575 fieldname = dwarf2_name (die, cu);
3576 if (fieldname == NULL)
3577 return;
3578
3579 /* Get physical name. */
3580 physname = dwarf2_linkage_name (die, cu);
3581
3582 /* The name is already allocated along with this objfile, so we don't
3583 need to duplicate it for the type. */
3584 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3585 FIELD_TYPE (*fp) = die_type (die, cu);
3586 FIELD_NAME (*fp) = fieldname;
3587 }
3588 else if (die->tag == DW_TAG_inheritance)
3589 {
3590 /* C++ base class field. */
3591 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3592 if (attr)
3593 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3594 * bits_per_byte);
3595 FIELD_BITSIZE (*fp) = 0;
3596 FIELD_STATIC_KIND (*fp) = 0;
3597 FIELD_TYPE (*fp) = die_type (die, cu);
3598 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3599 fip->nbaseclasses++;
3600 }
3601 }
3602
3603 /* Create the vector of fields, and attach it to the type. */
3604
3605 static void
3606 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3607 struct dwarf2_cu *cu)
3608 {
3609 int nfields = fip->nfields;
3610
3611 /* Record the field count, allocate space for the array of fields,
3612 and create blank accessibility bitfields if necessary. */
3613 TYPE_NFIELDS (type) = nfields;
3614 TYPE_FIELDS (type) = (struct field *)
3615 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3616 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3617
3618 if (fip->non_public_fields)
3619 {
3620 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3621
3622 TYPE_FIELD_PRIVATE_BITS (type) =
3623 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3624 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3625
3626 TYPE_FIELD_PROTECTED_BITS (type) =
3627 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3628 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3629
3630 TYPE_FIELD_IGNORE_BITS (type) =
3631 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3632 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3633 }
3634
3635 /* If the type has baseclasses, allocate and clear a bit vector for
3636 TYPE_FIELD_VIRTUAL_BITS. */
3637 if (fip->nbaseclasses)
3638 {
3639 int num_bytes = B_BYTES (fip->nbaseclasses);
3640 unsigned char *pointer;
3641
3642 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3643 pointer = TYPE_ALLOC (type, num_bytes);
3644 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3645 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3646 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3647 }
3648
3649 /* Copy the saved-up fields into the field vector. Start from the head
3650 of the list, adding to the tail of the field array, so that they end
3651 up in the same order in the array in which they were added to the list. */
3652 while (nfields-- > 0)
3653 {
3654 TYPE_FIELD (type, nfields) = fip->fields->field;
3655 switch (fip->fields->accessibility)
3656 {
3657 case DW_ACCESS_private:
3658 SET_TYPE_FIELD_PRIVATE (type, nfields);
3659 break;
3660
3661 case DW_ACCESS_protected:
3662 SET_TYPE_FIELD_PROTECTED (type, nfields);
3663 break;
3664
3665 case DW_ACCESS_public:
3666 break;
3667
3668 default:
3669 /* Unknown accessibility. Complain and treat it as public. */
3670 {
3671 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3672 fip->fields->accessibility);
3673 }
3674 break;
3675 }
3676 if (nfields < fip->nbaseclasses)
3677 {
3678 switch (fip->fields->virtuality)
3679 {
3680 case DW_VIRTUALITY_virtual:
3681 case DW_VIRTUALITY_pure_virtual:
3682 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3683 break;
3684 }
3685 }
3686 fip->fields = fip->fields->next;
3687 }
3688 }
3689
3690 /* Add a member function to the proper fieldlist. */
3691
3692 static void
3693 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3694 struct type *type, struct dwarf2_cu *cu)
3695 {
3696 struct objfile *objfile = cu->objfile;
3697 struct attribute *attr;
3698 struct fnfieldlist *flp;
3699 int i;
3700 struct fn_field *fnp;
3701 char *fieldname;
3702 char *physname;
3703 struct nextfnfield *new_fnfield;
3704
3705 /* Get name of member function. */
3706 fieldname = dwarf2_name (die, cu);
3707 if (fieldname == NULL)
3708 return;
3709
3710 /* Get the mangled name. */
3711 physname = dwarf2_linkage_name (die, cu);
3712
3713 /* Look up member function name in fieldlist. */
3714 for (i = 0; i < fip->nfnfields; i++)
3715 {
3716 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3717 break;
3718 }
3719
3720 /* Create new list element if necessary. */
3721 if (i < fip->nfnfields)
3722 flp = &fip->fnfieldlists[i];
3723 else
3724 {
3725 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3726 {
3727 fip->fnfieldlists = (struct fnfieldlist *)
3728 xrealloc (fip->fnfieldlists,
3729 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3730 * sizeof (struct fnfieldlist));
3731 if (fip->nfnfields == 0)
3732 make_cleanup (free_current_contents, &fip->fnfieldlists);
3733 }
3734 flp = &fip->fnfieldlists[fip->nfnfields];
3735 flp->name = fieldname;
3736 flp->length = 0;
3737 flp->head = NULL;
3738 fip->nfnfields++;
3739 }
3740
3741 /* Create a new member function field and chain it to the field list
3742 entry. */
3743 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3744 make_cleanup (xfree, new_fnfield);
3745 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3746 new_fnfield->next = flp->head;
3747 flp->head = new_fnfield;
3748 flp->length++;
3749
3750 /* Fill in the member function field info. */
3751 fnp = &new_fnfield->fnfield;
3752 /* The name is already allocated along with this objfile, so we don't
3753 need to duplicate it for the type. */
3754 fnp->physname = physname ? physname : "";
3755 fnp->type = alloc_type (objfile);
3756 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3757 {
3758 int nparams = TYPE_NFIELDS (die->type);
3759
3760 /* TYPE is the domain of this method, and DIE->TYPE is the type
3761 of the method itself (TYPE_CODE_METHOD). */
3762 smash_to_method_type (fnp->type, type,
3763 TYPE_TARGET_TYPE (die->type),
3764 TYPE_FIELDS (die->type),
3765 TYPE_NFIELDS (die->type),
3766 TYPE_VARARGS (die->type));
3767
3768 /* Handle static member functions.
3769 Dwarf2 has no clean way to discern C++ static and non-static
3770 member functions. G++ helps GDB by marking the first
3771 parameter for non-static member functions (which is the
3772 this pointer) as artificial. We obtain this information
3773 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3774 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3775 fnp->voffset = VOFFSET_STATIC;
3776 }
3777 else
3778 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3779 physname);
3780
3781 /* Get fcontext from DW_AT_containing_type if present. */
3782 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3783 fnp->fcontext = die_containing_type (die, cu);
3784
3785 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3786 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3787
3788 /* Get accessibility. */
3789 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3790 if (attr)
3791 {
3792 switch (DW_UNSND (attr))
3793 {
3794 case DW_ACCESS_private:
3795 fnp->is_private = 1;
3796 break;
3797 case DW_ACCESS_protected:
3798 fnp->is_protected = 1;
3799 break;
3800 }
3801 }
3802
3803 /* Check for artificial methods. */
3804 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3805 if (attr && DW_UNSND (attr) != 0)
3806 fnp->is_artificial = 1;
3807
3808 /* Get index in virtual function table if it is a virtual member function. */
3809 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3810 if (attr)
3811 {
3812 /* Support the .debug_loc offsets */
3813 if (attr_form_is_block (attr))
3814 {
3815 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3816 }
3817 else if (attr_form_is_section_offset (attr))
3818 {
3819 dwarf2_complex_location_expr_complaint ();
3820 }
3821 else
3822 {
3823 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3824 fieldname);
3825 }
3826 }
3827 }
3828
3829 /* Create the vector of member function fields, and attach it to the type. */
3830
3831 static void
3832 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3833 struct dwarf2_cu *cu)
3834 {
3835 struct fnfieldlist *flp;
3836 int total_length = 0;
3837 int i;
3838
3839 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3840 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3841 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3842
3843 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3844 {
3845 struct nextfnfield *nfp = flp->head;
3846 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3847 int k;
3848
3849 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3850 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3851 fn_flp->fn_fields = (struct fn_field *)
3852 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3853 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3854 fn_flp->fn_fields[k] = nfp->fnfield;
3855
3856 total_length += flp->length;
3857 }
3858
3859 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3860 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3861 }
3862
3863 /* Returns non-zero if NAME is the name of a vtable member in CU's
3864 language, zero otherwise. */
3865 static int
3866 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3867 {
3868 static const char vptr[] = "_vptr";
3869 static const char vtable[] = "vtable";
3870
3871 /* Look for the C++ and Java forms of the vtable. */
3872 if ((cu->language == language_java
3873 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3874 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3875 && is_cplus_marker (name[sizeof (vptr) - 1])))
3876 return 1;
3877
3878 return 0;
3879 }
3880
3881 /* GCC outputs unnamed structures that are really pointers to member
3882 functions, with the ABI-specified layout. If DIE (from CU) describes
3883 such a structure, set its type, and return nonzero. Otherwise return
3884 zero.
3885
3886 GCC shouldn't do this; it should just output pointer to member DIEs.
3887 This is GCC PR debug/28767. */
3888
3889 static int
3890 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3891 {
3892 struct objfile *objfile = cu->objfile;
3893 struct type *type;
3894 struct die_info *pfn_die, *delta_die;
3895 struct attribute *pfn_name, *delta_name;
3896 struct type *pfn_type, *domain_type;
3897
3898 /* Check for a structure with no name and two children. */
3899 if (die->tag != DW_TAG_structure_type
3900 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3901 || die->child == NULL
3902 || die->child->sibling == NULL
3903 || (die->child->sibling->sibling != NULL
3904 && die->child->sibling->sibling->tag != DW_TAG_padding))
3905 return 0;
3906
3907 /* Check for __pfn and __delta members. */
3908 pfn_die = die->child;
3909 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3910 if (pfn_die->tag != DW_TAG_member
3911 || pfn_name == NULL
3912 || DW_STRING (pfn_name) == NULL
3913 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3914 return 0;
3915
3916 delta_die = pfn_die->sibling;
3917 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3918 if (delta_die->tag != DW_TAG_member
3919 || delta_name == NULL
3920 || DW_STRING (delta_name) == NULL
3921 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3922 return 0;
3923
3924 /* Find the type of the method. */
3925 pfn_type = die_type (pfn_die, cu);
3926 if (pfn_type == NULL
3927 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3928 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3929 return 0;
3930
3931 /* Look for the "this" argument. */
3932 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3933 if (TYPE_NFIELDS (pfn_type) == 0
3934 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3935 return 0;
3936
3937 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3938 type = alloc_type (objfile);
3939 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3940 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3941 TYPE_VARARGS (pfn_type));
3942 type = lookup_methodptr_type (type);
3943 set_die_type (die, type, cu);
3944
3945 return 1;
3946 }
3947
3948 /* Called when we find the DIE that starts a structure or union scope
3949 (definition) to process all dies that define the members of the
3950 structure or union.
3951
3952 NOTE: we need to call struct_type regardless of whether or not the
3953 DIE has an at_name attribute, since it might be an anonymous
3954 structure or union. This gets the type entered into our set of
3955 user defined types.
3956
3957 However, if the structure is incomplete (an opaque struct/union)
3958 then suppress creating a symbol table entry for it since gdb only
3959 wants to find the one with the complete definition. Note that if
3960 it is complete, we just call new_symbol, which does it's own
3961 checking about whether the struct/union is anonymous or not (and
3962 suppresses creating a symbol table entry itself). */
3963
3964 static void
3965 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3966 {
3967 struct objfile *objfile = cu->objfile;
3968 struct type *type;
3969 struct attribute *attr;
3970 const char *previous_prefix = processing_current_prefix;
3971 struct cleanup *back_to = NULL;
3972 char *name;
3973
3974 if (die->type)
3975 return;
3976
3977 if (quirk_gcc_member_function_pointer (die, cu))
3978 return;
3979
3980 type = alloc_type (objfile);
3981 INIT_CPLUS_SPECIFIC (type);
3982 name = dwarf2_name (die, cu);
3983 if (name != NULL)
3984 {
3985 if (cu->language == language_cplus
3986 || cu->language == language_java)
3987 {
3988 char *new_prefix = determine_class_name (die, cu);
3989 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3990 strlen (new_prefix),
3991 &objfile->objfile_obstack);
3992 back_to = make_cleanup (xfree, new_prefix);
3993 processing_current_prefix = new_prefix;
3994 }
3995 else
3996 {
3997 /* The name is already allocated along with this objfile, so
3998 we don't need to duplicate it for the type. */
3999 TYPE_TAG_NAME (type) = name;
4000 }
4001 }
4002
4003 if (die->tag == DW_TAG_structure_type)
4004 {
4005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4006 }
4007 else if (die->tag == DW_TAG_union_type)
4008 {
4009 TYPE_CODE (type) = TYPE_CODE_UNION;
4010 }
4011 else
4012 {
4013 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
4014 in gdbtypes.h. */
4015 TYPE_CODE (type) = TYPE_CODE_CLASS;
4016 }
4017
4018 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4019 if (attr)
4020 {
4021 TYPE_LENGTH (type) = DW_UNSND (attr);
4022 }
4023 else
4024 {
4025 TYPE_LENGTH (type) = 0;
4026 }
4027
4028 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
4029 if (die_is_declaration (die, cu))
4030 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4031
4032 /* We need to add the type field to the die immediately so we don't
4033 infinitely recurse when dealing with pointers to the structure
4034 type within the structure itself. */
4035 set_die_type (die, type, cu);
4036
4037 if (die->child != NULL && ! die_is_declaration (die, cu))
4038 {
4039 struct field_info fi;
4040 struct die_info *child_die;
4041 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4042
4043 memset (&fi, 0, sizeof (struct field_info));
4044
4045 child_die = die->child;
4046
4047 while (child_die && child_die->tag)
4048 {
4049 if (child_die->tag == DW_TAG_member
4050 || child_die->tag == DW_TAG_variable)
4051 {
4052 /* NOTE: carlton/2002-11-05: A C++ static data member
4053 should be a DW_TAG_member that is a declaration, but
4054 all versions of G++ as of this writing (so through at
4055 least 3.2.1) incorrectly generate DW_TAG_variable
4056 tags for them instead. */
4057 dwarf2_add_field (&fi, child_die, cu);
4058 }
4059 else if (child_die->tag == DW_TAG_subprogram)
4060 {
4061 /* C++ member function. */
4062 read_type_die (child_die, cu);
4063 dwarf2_add_member_fn (&fi, child_die, type, cu);
4064 }
4065 else if (child_die->tag == DW_TAG_inheritance)
4066 {
4067 /* C++ base class field. */
4068 dwarf2_add_field (&fi, child_die, cu);
4069 }
4070 child_die = sibling_die (child_die);
4071 }
4072
4073 /* Attach fields and member functions to the type. */
4074 if (fi.nfields)
4075 dwarf2_attach_fields_to_type (&fi, type, cu);
4076 if (fi.nfnfields)
4077 {
4078 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
4079
4080 /* Get the type which refers to the base class (possibly this
4081 class itself) which contains the vtable pointer for the current
4082 class from the DW_AT_containing_type attribute. */
4083
4084 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4085 {
4086 struct type *t = die_containing_type (die, cu);
4087
4088 TYPE_VPTR_BASETYPE (type) = t;
4089 if (type == t)
4090 {
4091 int i;
4092
4093 /* Our own class provides vtbl ptr. */
4094 for (i = TYPE_NFIELDS (t) - 1;
4095 i >= TYPE_N_BASECLASSES (t);
4096 --i)
4097 {
4098 char *fieldname = TYPE_FIELD_NAME (t, i);
4099
4100 if (is_vtable_name (fieldname, cu))
4101 {
4102 TYPE_VPTR_FIELDNO (type) = i;
4103 break;
4104 }
4105 }
4106
4107 /* Complain if virtual function table field not found. */
4108 if (i < TYPE_N_BASECLASSES (t))
4109 complaint (&symfile_complaints,
4110 _("virtual function table pointer not found when defining class '%s'"),
4111 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4112 "");
4113 }
4114 else
4115 {
4116 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4117 }
4118 }
4119 else if (cu->producer
4120 && strncmp (cu->producer,
4121 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4122 {
4123 /* The IBM XLC compiler does not provide direct indication
4124 of the containing type, but the vtable pointer is
4125 always named __vfp. */
4126
4127 int i;
4128
4129 for (i = TYPE_NFIELDS (type) - 1;
4130 i >= TYPE_N_BASECLASSES (type);
4131 --i)
4132 {
4133 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4134 {
4135 TYPE_VPTR_FIELDNO (type) = i;
4136 TYPE_VPTR_BASETYPE (type) = type;
4137 break;
4138 }
4139 }
4140 }
4141 }
4142
4143 do_cleanups (back_to);
4144 }
4145
4146 processing_current_prefix = previous_prefix;
4147 if (back_to != NULL)
4148 do_cleanups (back_to);
4149 }
4150
4151 static void
4152 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4153 {
4154 struct objfile *objfile = cu->objfile;
4155 const char *previous_prefix = processing_current_prefix;
4156 struct die_info *child_die = die->child;
4157
4158 if (TYPE_TAG_NAME (die->type) != NULL)
4159 processing_current_prefix = TYPE_TAG_NAME (die->type);
4160
4161 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4162 snapshots) has been known to create a die giving a declaration
4163 for a class that has, as a child, a die giving a definition for a
4164 nested class. So we have to process our children even if the
4165 current die is a declaration. Normally, of course, a declaration
4166 won't have any children at all. */
4167
4168 while (child_die != NULL && child_die->tag)
4169 {
4170 if (child_die->tag == DW_TAG_member
4171 || child_die->tag == DW_TAG_variable
4172 || child_die->tag == DW_TAG_inheritance)
4173 {
4174 /* Do nothing. */
4175 }
4176 else
4177 process_die (child_die, cu);
4178
4179 child_die = sibling_die (child_die);
4180 }
4181
4182 /* Do not consider external references. According to the DWARF standard,
4183 these DIEs are identified by the fact that they have no byte_size
4184 attribute, and a declaration attribute. */
4185 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4186 || !die_is_declaration (die, cu))
4187 new_symbol (die, die->type, cu);
4188
4189 processing_current_prefix = previous_prefix;
4190 }
4191
4192 /* Given a DW_AT_enumeration_type die, set its type. We do not
4193 complete the type's fields yet, or create any symbols. */
4194
4195 static void
4196 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4197 {
4198 struct objfile *objfile = cu->objfile;
4199 struct type *type;
4200 struct attribute *attr;
4201 char *name;
4202
4203 if (die->type)
4204 return;
4205
4206 type = alloc_type (objfile);
4207
4208 TYPE_CODE (type) = TYPE_CODE_ENUM;
4209 name = dwarf2_name (die, cu);
4210 if (name != NULL)
4211 {
4212 if (processing_has_namespace_info)
4213 {
4214 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4215 processing_current_prefix,
4216 name, cu);
4217 }
4218 else
4219 {
4220 /* The name is already allocated along with this objfile, so
4221 we don't need to duplicate it for the type. */
4222 TYPE_TAG_NAME (type) = name;
4223 }
4224 }
4225
4226 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4227 if (attr)
4228 {
4229 TYPE_LENGTH (type) = DW_UNSND (attr);
4230 }
4231 else
4232 {
4233 TYPE_LENGTH (type) = 0;
4234 }
4235
4236 set_die_type (die, type, cu);
4237 }
4238
4239 /* Determine the name of the type represented by DIE, which should be
4240 a named C++ or Java compound type. Return the name in question; the caller
4241 is responsible for xfree()'ing it. */
4242
4243 static char *
4244 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4245 {
4246 struct cleanup *back_to = NULL;
4247 struct die_info *spec_die = die_specification (die, cu);
4248 char *new_prefix = NULL;
4249
4250 /* If this is the definition of a class that is declared by another
4251 die, then processing_current_prefix may not be accurate; see
4252 read_func_scope for a similar example. */
4253 if (spec_die != NULL)
4254 {
4255 char *specification_prefix = determine_prefix (spec_die, cu);
4256 processing_current_prefix = specification_prefix;
4257 back_to = make_cleanup (xfree, specification_prefix);
4258 }
4259
4260 /* If we don't have namespace debug info, guess the name by trying
4261 to demangle the names of members, just like we did in
4262 guess_structure_name. */
4263 if (!processing_has_namespace_info)
4264 {
4265 struct die_info *child;
4266
4267 for (child = die->child;
4268 child != NULL && child->tag != 0;
4269 child = sibling_die (child))
4270 {
4271 if (child->tag == DW_TAG_subprogram)
4272 {
4273 new_prefix
4274 = language_class_name_from_physname (cu->language_defn,
4275 dwarf2_linkage_name
4276 (child, cu));
4277
4278 if (new_prefix != NULL)
4279 break;
4280 }
4281 }
4282 }
4283
4284 if (new_prefix == NULL)
4285 {
4286 const char *name = dwarf2_name (die, cu);
4287 new_prefix = typename_concat (NULL, processing_current_prefix,
4288 name ? name : "<<anonymous>>",
4289 cu);
4290 }
4291
4292 if (back_to != NULL)
4293 do_cleanups (back_to);
4294
4295 return new_prefix;
4296 }
4297
4298 /* Given a pointer to a die which begins an enumeration, process all
4299 the dies that define the members of the enumeration, and create the
4300 symbol for the enumeration type.
4301
4302 NOTE: We reverse the order of the element list. */
4303
4304 static void
4305 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4306 {
4307 struct objfile *objfile = cu->objfile;
4308 struct die_info *child_die;
4309 struct field *fields;
4310 struct symbol *sym;
4311 int num_fields;
4312 int unsigned_enum = 1;
4313 char *name;
4314
4315 num_fields = 0;
4316 fields = NULL;
4317 if (die->child != NULL)
4318 {
4319 child_die = die->child;
4320 while (child_die && child_die->tag)
4321 {
4322 if (child_die->tag != DW_TAG_enumerator)
4323 {
4324 process_die (child_die, cu);
4325 }
4326 else
4327 {
4328 name = dwarf2_name (child_die, cu);
4329 if (name)
4330 {
4331 sym = new_symbol (child_die, die->type, cu);
4332 if (SYMBOL_VALUE (sym) < 0)
4333 unsigned_enum = 0;
4334
4335 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4336 {
4337 fields = (struct field *)
4338 xrealloc (fields,
4339 (num_fields + DW_FIELD_ALLOC_CHUNK)
4340 * sizeof (struct field));
4341 }
4342
4343 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4344 FIELD_TYPE (fields[num_fields]) = NULL;
4345 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4346 FIELD_BITSIZE (fields[num_fields]) = 0;
4347 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4348
4349 num_fields++;
4350 }
4351 }
4352
4353 child_die = sibling_die (child_die);
4354 }
4355
4356 if (num_fields)
4357 {
4358 TYPE_NFIELDS (die->type) = num_fields;
4359 TYPE_FIELDS (die->type) = (struct field *)
4360 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4361 memcpy (TYPE_FIELDS (die->type), fields,
4362 sizeof (struct field) * num_fields);
4363 xfree (fields);
4364 }
4365 if (unsigned_enum)
4366 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4367 }
4368
4369 new_symbol (die, die->type, cu);
4370 }
4371
4372 /* Extract all information from a DW_TAG_array_type DIE and put it in
4373 the DIE's type field. For now, this only handles one dimensional
4374 arrays. */
4375
4376 static void
4377 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4378 {
4379 struct objfile *objfile = cu->objfile;
4380 struct die_info *child_die;
4381 struct type *type = NULL;
4382 struct type *element_type, *range_type, *index_type;
4383 struct type **range_types = NULL;
4384 struct attribute *attr;
4385 int ndim = 0;
4386 struct cleanup *back_to;
4387 char *name;
4388
4389 /* Return if we've already decoded this type. */
4390 if (die->type)
4391 {
4392 return;
4393 }
4394
4395 element_type = die_type (die, cu);
4396
4397 /* Irix 6.2 native cc creates array types without children for
4398 arrays with unspecified length. */
4399 if (die->child == NULL)
4400 {
4401 index_type = builtin_type_int32;
4402 range_type = create_range_type (NULL, index_type, 0, -1);
4403 set_die_type (die, create_array_type (NULL, element_type, range_type),
4404 cu);
4405 return;
4406 }
4407
4408 back_to = make_cleanup (null_cleanup, NULL);
4409 child_die = die->child;
4410 while (child_die && child_die->tag)
4411 {
4412 if (child_die->tag == DW_TAG_subrange_type)
4413 {
4414 read_subrange_type (child_die, cu);
4415
4416 if (child_die->type != NULL)
4417 {
4418 /* The range type was succesfully read. Save it for
4419 the array type creation. */
4420 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4421 {
4422 range_types = (struct type **)
4423 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4424 * sizeof (struct type *));
4425 if (ndim == 0)
4426 make_cleanup (free_current_contents, &range_types);
4427 }
4428 range_types[ndim++] = child_die->type;
4429 }
4430 }
4431 child_die = sibling_die (child_die);
4432 }
4433
4434 /* Dwarf2 dimensions are output from left to right, create the
4435 necessary array types in backwards order. */
4436
4437 type = element_type;
4438
4439 if (read_array_order (die, cu) == DW_ORD_col_major)
4440 {
4441 int i = 0;
4442 while (i < ndim)
4443 type = create_array_type (NULL, type, range_types[i++]);
4444 }
4445 else
4446 {
4447 while (ndim-- > 0)
4448 type = create_array_type (NULL, type, range_types[ndim]);
4449 }
4450
4451 /* Understand Dwarf2 support for vector types (like they occur on
4452 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4453 array type. This is not part of the Dwarf2/3 standard yet, but a
4454 custom vendor extension. The main difference between a regular
4455 array and the vector variant is that vectors are passed by value
4456 to functions. */
4457 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4458 if (attr)
4459 make_vector_type (type);
4460
4461 name = dwarf2_name (die, cu);
4462 if (name)
4463 TYPE_NAME (type) = name;
4464
4465 do_cleanups (back_to);
4466
4467 /* Install the type in the die. */
4468 set_die_type (die, type, cu);
4469 }
4470
4471 static enum dwarf_array_dim_ordering
4472 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4473 {
4474 struct attribute *attr;
4475
4476 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4477
4478 if (attr) return DW_SND (attr);
4479
4480 /*
4481 GNU F77 is a special case, as at 08/2004 array type info is the
4482 opposite order to the dwarf2 specification, but data is still
4483 laid out as per normal fortran.
4484
4485 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4486 version checking.
4487 */
4488
4489 if (cu->language == language_fortran &&
4490 cu->producer && strstr (cu->producer, "GNU F77"))
4491 {
4492 return DW_ORD_row_major;
4493 }
4494
4495 switch (cu->language_defn->la_array_ordering)
4496 {
4497 case array_column_major:
4498 return DW_ORD_col_major;
4499 case array_row_major:
4500 default:
4501 return DW_ORD_row_major;
4502 };
4503 }
4504
4505 /* Extract all information from a DW_TAG_set_type DIE and put it in
4506 the DIE's type field. */
4507
4508 static void
4509 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4510 {
4511 if (die->type == NULL)
4512 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4513 }
4514
4515 /* First cut: install each common block member as a global variable. */
4516
4517 static void
4518 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4519 {
4520 struct die_info *child_die;
4521 struct attribute *attr;
4522 struct symbol *sym;
4523 CORE_ADDR base = (CORE_ADDR) 0;
4524
4525 attr = dwarf2_attr (die, DW_AT_location, cu);
4526 if (attr)
4527 {
4528 /* Support the .debug_loc offsets */
4529 if (attr_form_is_block (attr))
4530 {
4531 base = decode_locdesc (DW_BLOCK (attr), cu);
4532 }
4533 else if (attr_form_is_section_offset (attr))
4534 {
4535 dwarf2_complex_location_expr_complaint ();
4536 }
4537 else
4538 {
4539 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4540 "common block member");
4541 }
4542 }
4543 if (die->child != NULL)
4544 {
4545 child_die = die->child;
4546 while (child_die && child_die->tag)
4547 {
4548 sym = new_symbol (child_die, NULL, cu);
4549 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4550 if (attr)
4551 {
4552 SYMBOL_VALUE_ADDRESS (sym) =
4553 base + decode_locdesc (DW_BLOCK (attr), cu);
4554 add_symbol_to_list (sym, &global_symbols);
4555 }
4556 child_die = sibling_die (child_die);
4557 }
4558 }
4559 }
4560
4561 /* Read a C++ namespace. */
4562
4563 static void
4564 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4565 {
4566 struct objfile *objfile = cu->objfile;
4567 const char *previous_prefix = processing_current_prefix;
4568 const char *name;
4569 int is_anonymous;
4570 struct die_info *current_die;
4571 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4572
4573 name = namespace_name (die, &is_anonymous, cu);
4574
4575 /* Now build the name of the current namespace. */
4576
4577 if (previous_prefix[0] == '\0')
4578 {
4579 processing_current_prefix = name;
4580 }
4581 else
4582 {
4583 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4584 make_cleanup (xfree, temp_name);
4585 processing_current_prefix = temp_name;
4586 }
4587
4588 /* Add a symbol associated to this if we haven't seen the namespace
4589 before. Also, add a using directive if it's an anonymous
4590 namespace. */
4591
4592 if (dwarf2_extension (die, cu) == NULL)
4593 {
4594 struct type *type;
4595
4596 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4597 this cast will hopefully become unnecessary. */
4598 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4599 (char *) processing_current_prefix,
4600 objfile);
4601 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4602
4603 new_symbol (die, type, cu);
4604 set_die_type (die, type, cu);
4605
4606 if (is_anonymous)
4607 cp_add_using_directive (processing_current_prefix,
4608 strlen (previous_prefix),
4609 strlen (processing_current_prefix));
4610 }
4611
4612 if (die->child != NULL)
4613 {
4614 struct die_info *child_die = die->child;
4615
4616 while (child_die && child_die->tag)
4617 {
4618 process_die (child_die, cu);
4619 child_die = sibling_die (child_die);
4620 }
4621 }
4622
4623 processing_current_prefix = previous_prefix;
4624 do_cleanups (back_to);
4625 }
4626
4627 /* Return the name of the namespace represented by DIE. Set
4628 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4629 namespace. */
4630
4631 static const char *
4632 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4633 {
4634 struct die_info *current_die;
4635 const char *name = NULL;
4636
4637 /* Loop through the extensions until we find a name. */
4638
4639 for (current_die = die;
4640 current_die != NULL;
4641 current_die = dwarf2_extension (die, cu))
4642 {
4643 name = dwarf2_name (current_die, cu);
4644 if (name != NULL)
4645 break;
4646 }
4647
4648 /* Is it an anonymous namespace? */
4649
4650 *is_anonymous = (name == NULL);
4651 if (*is_anonymous)
4652 name = "(anonymous namespace)";
4653
4654 return name;
4655 }
4656
4657 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4658 the user defined type vector. */
4659
4660 static void
4661 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4662 {
4663 struct comp_unit_head *cu_header = &cu->header;
4664 struct type *type;
4665 struct attribute *attr_byte_size;
4666 struct attribute *attr_address_class;
4667 int byte_size, addr_class;
4668
4669 if (die->type)
4670 {
4671 return;
4672 }
4673
4674 type = lookup_pointer_type (die_type (die, cu));
4675
4676 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4677 if (attr_byte_size)
4678 byte_size = DW_UNSND (attr_byte_size);
4679 else
4680 byte_size = cu_header->addr_size;
4681
4682 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4683 if (attr_address_class)
4684 addr_class = DW_UNSND (attr_address_class);
4685 else
4686 addr_class = DW_ADDR_none;
4687
4688 /* If the pointer size or address class is different than the
4689 default, create a type variant marked as such and set the
4690 length accordingly. */
4691 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4692 {
4693 if (gdbarch_address_class_type_flags_p (current_gdbarch))
4694 {
4695 int type_flags;
4696
4697 type_flags = gdbarch_address_class_type_flags
4698 (current_gdbarch, byte_size, addr_class);
4699 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4700 type = make_type_with_address_space (type, type_flags);
4701 }
4702 else if (TYPE_LENGTH (type) != byte_size)
4703 {
4704 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4705 }
4706 else {
4707 /* Should we also complain about unhandled address classes? */
4708 }
4709 }
4710
4711 TYPE_LENGTH (type) = byte_size;
4712 set_die_type (die, type, cu);
4713 }
4714
4715 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4716 the user defined type vector. */
4717
4718 static void
4719 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4720 {
4721 struct objfile *objfile = cu->objfile;
4722 struct type *type;
4723 struct type *to_type;
4724 struct type *domain;
4725
4726 if (die->type)
4727 {
4728 return;
4729 }
4730
4731 to_type = die_type (die, cu);
4732 domain = die_containing_type (die, cu);
4733
4734 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4735 type = lookup_methodptr_type (to_type);
4736 else
4737 type = lookup_memberptr_type (to_type, domain);
4738
4739 set_die_type (die, type, cu);
4740 }
4741
4742 /* Extract all information from a DW_TAG_reference_type DIE and add to
4743 the user defined type vector. */
4744
4745 static void
4746 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4747 {
4748 struct comp_unit_head *cu_header = &cu->header;
4749 struct type *type;
4750 struct attribute *attr;
4751
4752 if (die->type)
4753 {
4754 return;
4755 }
4756
4757 type = lookup_reference_type (die_type (die, cu));
4758 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4759 if (attr)
4760 {
4761 TYPE_LENGTH (type) = DW_UNSND (attr);
4762 }
4763 else
4764 {
4765 TYPE_LENGTH (type) = cu_header->addr_size;
4766 }
4767 set_die_type (die, type, cu);
4768 }
4769
4770 static void
4771 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4772 {
4773 struct type *base_type;
4774
4775 if (die->type)
4776 {
4777 return;
4778 }
4779
4780 base_type = die_type (die, cu);
4781 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4782 cu);
4783 }
4784
4785 static void
4786 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4787 {
4788 struct type *base_type;
4789
4790 if (die->type)
4791 {
4792 return;
4793 }
4794
4795 base_type = die_type (die, cu);
4796 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4797 cu);
4798 }
4799
4800 /* Extract all information from a DW_TAG_string_type DIE and add to
4801 the user defined type vector. It isn't really a user defined type,
4802 but it behaves like one, with other DIE's using an AT_user_def_type
4803 attribute to reference it. */
4804
4805 static void
4806 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4807 {
4808 struct objfile *objfile = cu->objfile;
4809 struct type *type, *range_type, *index_type, *char_type;
4810 struct attribute *attr;
4811 unsigned int length;
4812
4813 if (die->type)
4814 {
4815 return;
4816 }
4817
4818 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4819 if (attr)
4820 {
4821 length = DW_UNSND (attr);
4822 }
4823 else
4824 {
4825 /* check for the DW_AT_byte_size attribute */
4826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4827 if (attr)
4828 {
4829 length = DW_UNSND (attr);
4830 }
4831 else
4832 {
4833 length = 1;
4834 }
4835 }
4836
4837 index_type = builtin_type_int32;
4838 range_type = create_range_type (NULL, index_type, 1, length);
4839 type = create_string_type (NULL, range_type);
4840
4841 set_die_type (die, type, cu);
4842 }
4843
4844 /* Handle DIES due to C code like:
4845
4846 struct foo
4847 {
4848 int (*funcp)(int a, long l);
4849 int b;
4850 };
4851
4852 ('funcp' generates a DW_TAG_subroutine_type DIE)
4853 */
4854
4855 static void
4856 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4857 {
4858 struct type *type; /* Type that this function returns */
4859 struct type *ftype; /* Function that returns above type */
4860 struct attribute *attr;
4861
4862 /* Decode the type that this subroutine returns */
4863 if (die->type)
4864 {
4865 return;
4866 }
4867 type = die_type (die, cu);
4868 ftype = make_function_type (type, (struct type **) 0);
4869
4870 /* All functions in C++, Pascal and Java have prototypes. */
4871 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4872 if ((attr && (DW_UNSND (attr) != 0))
4873 || cu->language == language_cplus
4874 || cu->language == language_java
4875 || cu->language == language_pascal)
4876 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4877
4878 if (die->child != NULL)
4879 {
4880 struct die_info *child_die;
4881 int nparams = 0;
4882 int iparams = 0;
4883
4884 /* Count the number of parameters.
4885 FIXME: GDB currently ignores vararg functions, but knows about
4886 vararg member functions. */
4887 child_die = die->child;
4888 while (child_die && child_die->tag)
4889 {
4890 if (child_die->tag == DW_TAG_formal_parameter)
4891 nparams++;
4892 else if (child_die->tag == DW_TAG_unspecified_parameters)
4893 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4894 child_die = sibling_die (child_die);
4895 }
4896
4897 /* Allocate storage for parameters and fill them in. */
4898 TYPE_NFIELDS (ftype) = nparams;
4899 TYPE_FIELDS (ftype) = (struct field *)
4900 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4901
4902 child_die = die->child;
4903 while (child_die && child_die->tag)
4904 {
4905 if (child_die->tag == DW_TAG_formal_parameter)
4906 {
4907 /* Dwarf2 has no clean way to discern C++ static and non-static
4908 member functions. G++ helps GDB by marking the first
4909 parameter for non-static member functions (which is the
4910 this pointer) as artificial. We pass this information
4911 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4912 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4913 if (attr)
4914 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4915 else
4916 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4917 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4918 iparams++;
4919 }
4920 child_die = sibling_die (child_die);
4921 }
4922 }
4923
4924 set_die_type (die, ftype, cu);
4925 }
4926
4927 static void
4928 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4929 {
4930 struct objfile *objfile = cu->objfile;
4931 struct attribute *attr;
4932 char *name = NULL;
4933
4934 if (!die->type)
4935 {
4936 name = dwarf2_name (die, cu);
4937 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4938 TYPE_FLAG_TARGET_STUB, name, objfile),
4939 cu);
4940 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4941 }
4942 }
4943
4944 /* Find a representation of a given base type and install
4945 it in the TYPE field of the die. */
4946
4947 static void
4948 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4949 {
4950 struct objfile *objfile = cu->objfile;
4951 struct type *type;
4952 struct attribute *attr;
4953 int encoding = 0, size = 0;
4954 char *name;
4955 enum type_code code = TYPE_CODE_INT;
4956 int type_flags = 0;
4957 struct type *target_type = NULL;
4958
4959 /* If we've already decoded this die, this is a no-op. */
4960 if (die->type)
4961 {
4962 return;
4963 }
4964
4965 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4966 if (attr)
4967 {
4968 encoding = DW_UNSND (attr);
4969 }
4970 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4971 if (attr)
4972 {
4973 size = DW_UNSND (attr);
4974 }
4975 name = dwarf2_name (die, cu);
4976 if (!name)
4977 {
4978 complaint (&symfile_complaints,
4979 _("DW_AT_name missing from DW_TAG_base_type"));
4980 }
4981
4982 switch (encoding)
4983 {
4984 case DW_ATE_address:
4985 /* Turn DW_ATE_address into a void * pointer. */
4986 code = TYPE_CODE_PTR;
4987 type_flags |= TYPE_FLAG_UNSIGNED;
4988 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4989 break;
4990 case DW_ATE_boolean:
4991 code = TYPE_CODE_BOOL;
4992 type_flags |= TYPE_FLAG_UNSIGNED;
4993 break;
4994 case DW_ATE_complex_float:
4995 code = TYPE_CODE_COMPLEX;
4996 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
4997 break;
4998 case DW_ATE_decimal_float:
4999 code = TYPE_CODE_DECFLOAT;
5000 break;
5001 case DW_ATE_float:
5002 code = TYPE_CODE_FLT;
5003 break;
5004 case DW_ATE_signed:
5005 break;
5006 case DW_ATE_unsigned:
5007 type_flags |= TYPE_FLAG_UNSIGNED;
5008 break;
5009 case DW_ATE_signed_char:
5010 if (cu->language == language_ada || cu->language == language_m2)
5011 code = TYPE_CODE_CHAR;
5012 break;
5013 case DW_ATE_unsigned_char:
5014 if (cu->language == language_ada || cu->language == language_m2)
5015 code = TYPE_CODE_CHAR;
5016 type_flags |= TYPE_FLAG_UNSIGNED;
5017 break;
5018 default:
5019 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5020 dwarf_type_encoding_name (encoding));
5021 break;
5022 }
5023
5024 type = init_type (code, size, type_flags, name, objfile);
5025 TYPE_TARGET_TYPE (type) = target_type;
5026
5027 set_die_type (die, type, cu);
5028 }
5029
5030 /* Read the given DW_AT_subrange DIE. */
5031
5032 static void
5033 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5034 {
5035 struct type *base_type;
5036 struct type *range_type;
5037 struct attribute *attr;
5038 int low = 0;
5039 int high = -1;
5040 char *name;
5041
5042 /* If we have already decoded this die, then nothing more to do. */
5043 if (die->type)
5044 return;
5045
5046 base_type = die_type (die, cu);
5047 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
5048 {
5049 complaint (&symfile_complaints,
5050 _("DW_AT_type missing from DW_TAG_subrange_type"));
5051 base_type
5052 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (current_gdbarch) / 8,
5053 0, NULL, cu->objfile);
5054 }
5055
5056 if (cu->language == language_fortran)
5057 {
5058 /* FORTRAN implies a lower bound of 1, if not given. */
5059 low = 1;
5060 }
5061
5062 /* FIXME: For variable sized arrays either of these could be
5063 a variable rather than a constant value. We'll allow it,
5064 but we don't know how to handle it. */
5065 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
5066 if (attr)
5067 low = dwarf2_get_attr_constant_value (attr, 0);
5068
5069 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
5070 if (attr)
5071 {
5072 if (attr->form == DW_FORM_block1)
5073 {
5074 /* GCC encodes arrays with unspecified or dynamic length
5075 with a DW_FORM_block1 attribute.
5076 FIXME: GDB does not yet know how to handle dynamic
5077 arrays properly, treat them as arrays with unspecified
5078 length for now.
5079
5080 FIXME: jimb/2003-09-22: GDB does not really know
5081 how to handle arrays of unspecified length
5082 either; we just represent them as zero-length
5083 arrays. Choose an appropriate upper bound given
5084 the lower bound we've computed above. */
5085 high = low - 1;
5086 }
5087 else
5088 high = dwarf2_get_attr_constant_value (attr, 1);
5089 }
5090
5091 range_type = create_range_type (NULL, base_type, low, high);
5092
5093 name = dwarf2_name (die, cu);
5094 if (name)
5095 TYPE_NAME (range_type) = name;
5096
5097 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5098 if (attr)
5099 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5100
5101 set_die_type (die, range_type, cu);
5102 }
5103
5104 static void
5105 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5106 {
5107 struct type *type;
5108
5109 if (die->type)
5110 return;
5111
5112 /* For now, we only support the C meaning of an unspecified type: void. */
5113
5114 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
5115 cu->objfile);
5116
5117 set_die_type (die, type, cu);
5118 }
5119
5120 /* Read a whole compilation unit into a linked list of dies. */
5121
5122 static struct die_info *
5123 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5124 {
5125 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5126 }
5127
5128 /* Read a single die and all its descendents. Set the die's sibling
5129 field to NULL; set other fields in the die correctly, and set all
5130 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5131 location of the info_ptr after reading all of those dies. PARENT
5132 is the parent of the die in question. */
5133
5134 static struct die_info *
5135 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5136 struct dwarf2_cu *cu,
5137 gdb_byte **new_info_ptr,
5138 struct die_info *parent)
5139 {
5140 struct die_info *die;
5141 gdb_byte *cur_ptr;
5142 int has_children;
5143
5144 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5145 store_in_ref_table (die->offset, die, cu);
5146
5147 if (has_children)
5148 {
5149 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5150 new_info_ptr, die);
5151 }
5152 else
5153 {
5154 die->child = NULL;
5155 *new_info_ptr = cur_ptr;
5156 }
5157
5158 die->sibling = NULL;
5159 die->parent = parent;
5160 return die;
5161 }
5162
5163 /* Read a die, all of its descendents, and all of its siblings; set
5164 all of the fields of all of the dies correctly. Arguments are as
5165 in read_die_and_children. */
5166
5167 static struct die_info *
5168 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5169 struct dwarf2_cu *cu,
5170 gdb_byte **new_info_ptr,
5171 struct die_info *parent)
5172 {
5173 struct die_info *first_die, *last_sibling;
5174 gdb_byte *cur_ptr;
5175
5176 cur_ptr = info_ptr;
5177 first_die = last_sibling = NULL;
5178
5179 while (1)
5180 {
5181 struct die_info *die
5182 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5183
5184 if (!first_die)
5185 {
5186 first_die = die;
5187 }
5188 else
5189 {
5190 last_sibling->sibling = die;
5191 }
5192
5193 if (die->tag == 0)
5194 {
5195 *new_info_ptr = cur_ptr;
5196 return first_die;
5197 }
5198 else
5199 {
5200 last_sibling = die;
5201 }
5202 }
5203 }
5204
5205 /* Free a linked list of dies. */
5206
5207 static void
5208 free_die_list (struct die_info *dies)
5209 {
5210 struct die_info *die, *next;
5211
5212 die = dies;
5213 while (die)
5214 {
5215 if (die->child != NULL)
5216 free_die_list (die->child);
5217 next = die->sibling;
5218 xfree (die->attrs);
5219 xfree (die);
5220 die = next;
5221 }
5222 }
5223
5224 /* Read the contents of the section at OFFSET and of size SIZE from the
5225 object file specified by OBJFILE into the objfile_obstack and return it. */
5226
5227 gdb_byte *
5228 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5229 {
5230 bfd *abfd = objfile->obfd;
5231 gdb_byte *buf, *retbuf;
5232 bfd_size_type size = bfd_get_section_size (sectp);
5233
5234 if (size == 0)
5235 return NULL;
5236
5237 buf = obstack_alloc (&objfile->objfile_obstack, size);
5238 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5239 if (retbuf != NULL)
5240 return retbuf;
5241
5242 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5243 || bfd_bread (buf, size, abfd) != size)
5244 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5245 bfd_get_filename (abfd));
5246
5247 return buf;
5248 }
5249
5250 /* In DWARF version 2, the description of the debugging information is
5251 stored in a separate .debug_abbrev section. Before we read any
5252 dies from a section we read in all abbreviations and install them
5253 in a hash table. This function also sets flags in CU describing
5254 the data found in the abbrev table. */
5255
5256 static void
5257 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5258 {
5259 struct comp_unit_head *cu_header = &cu->header;
5260 gdb_byte *abbrev_ptr;
5261 struct abbrev_info *cur_abbrev;
5262 unsigned int abbrev_number, bytes_read, abbrev_name;
5263 unsigned int abbrev_form, hash_number;
5264 struct attr_abbrev *cur_attrs;
5265 unsigned int allocated_attrs;
5266
5267 /* Initialize dwarf2 abbrevs */
5268 obstack_init (&cu->abbrev_obstack);
5269 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5270 (ABBREV_HASH_SIZE
5271 * sizeof (struct abbrev_info *)));
5272 memset (cu->dwarf2_abbrevs, 0,
5273 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5274
5275 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5276 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5277 abbrev_ptr += bytes_read;
5278
5279 allocated_attrs = ATTR_ALLOC_CHUNK;
5280 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5281
5282 /* loop until we reach an abbrev number of 0 */
5283 while (abbrev_number)
5284 {
5285 cur_abbrev = dwarf_alloc_abbrev (cu);
5286
5287 /* read in abbrev header */
5288 cur_abbrev->number = abbrev_number;
5289 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5290 abbrev_ptr += bytes_read;
5291 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5292 abbrev_ptr += 1;
5293
5294 if (cur_abbrev->tag == DW_TAG_namespace)
5295 cu->has_namespace_info = 1;
5296
5297 /* now read in declarations */
5298 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5299 abbrev_ptr += bytes_read;
5300 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5301 abbrev_ptr += bytes_read;
5302 while (abbrev_name)
5303 {
5304 if (cur_abbrev->num_attrs == allocated_attrs)
5305 {
5306 allocated_attrs += ATTR_ALLOC_CHUNK;
5307 cur_attrs
5308 = xrealloc (cur_attrs, (allocated_attrs
5309 * sizeof (struct attr_abbrev)));
5310 }
5311
5312 /* Record whether this compilation unit might have
5313 inter-compilation-unit references. If we don't know what form
5314 this attribute will have, then it might potentially be a
5315 DW_FORM_ref_addr, so we conservatively expect inter-CU
5316 references. */
5317
5318 if (abbrev_form == DW_FORM_ref_addr
5319 || abbrev_form == DW_FORM_indirect)
5320 cu->has_form_ref_addr = 1;
5321
5322 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5323 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5324 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5325 abbrev_ptr += bytes_read;
5326 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5327 abbrev_ptr += bytes_read;
5328 }
5329
5330 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5331 (cur_abbrev->num_attrs
5332 * sizeof (struct attr_abbrev)));
5333 memcpy (cur_abbrev->attrs, cur_attrs,
5334 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5335
5336 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5337 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5338 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5339
5340 /* Get next abbreviation.
5341 Under Irix6 the abbreviations for a compilation unit are not
5342 always properly terminated with an abbrev number of 0.
5343 Exit loop if we encounter an abbreviation which we have
5344 already read (which means we are about to read the abbreviations
5345 for the next compile unit) or if the end of the abbreviation
5346 table is reached. */
5347 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5348 >= dwarf2_per_objfile->abbrev_size)
5349 break;
5350 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5351 abbrev_ptr += bytes_read;
5352 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5353 break;
5354 }
5355
5356 xfree (cur_attrs);
5357 }
5358
5359 /* Release the memory used by the abbrev table for a compilation unit. */
5360
5361 static void
5362 dwarf2_free_abbrev_table (void *ptr_to_cu)
5363 {
5364 struct dwarf2_cu *cu = ptr_to_cu;
5365
5366 obstack_free (&cu->abbrev_obstack, NULL);
5367 cu->dwarf2_abbrevs = NULL;
5368 }
5369
5370 /* Lookup an abbrev_info structure in the abbrev hash table. */
5371
5372 static struct abbrev_info *
5373 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5374 {
5375 unsigned int hash_number;
5376 struct abbrev_info *abbrev;
5377
5378 hash_number = number % ABBREV_HASH_SIZE;
5379 abbrev = cu->dwarf2_abbrevs[hash_number];
5380
5381 while (abbrev)
5382 {
5383 if (abbrev->number == number)
5384 return abbrev;
5385 else
5386 abbrev = abbrev->next;
5387 }
5388 return NULL;
5389 }
5390
5391 /* Returns nonzero if TAG represents a type that we might generate a partial
5392 symbol for. */
5393
5394 static int
5395 is_type_tag_for_partial (int tag)
5396 {
5397 switch (tag)
5398 {
5399 #if 0
5400 /* Some types that would be reasonable to generate partial symbols for,
5401 that we don't at present. */
5402 case DW_TAG_array_type:
5403 case DW_TAG_file_type:
5404 case DW_TAG_ptr_to_member_type:
5405 case DW_TAG_set_type:
5406 case DW_TAG_string_type:
5407 case DW_TAG_subroutine_type:
5408 #endif
5409 case DW_TAG_base_type:
5410 case DW_TAG_class_type:
5411 case DW_TAG_interface_type:
5412 case DW_TAG_enumeration_type:
5413 case DW_TAG_structure_type:
5414 case DW_TAG_subrange_type:
5415 case DW_TAG_typedef:
5416 case DW_TAG_union_type:
5417 return 1;
5418 default:
5419 return 0;
5420 }
5421 }
5422
5423 /* Load all DIEs that are interesting for partial symbols into memory. */
5424
5425 static struct partial_die_info *
5426 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5427 struct dwarf2_cu *cu)
5428 {
5429 struct partial_die_info *part_die;
5430 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5431 struct abbrev_info *abbrev;
5432 unsigned int bytes_read;
5433 unsigned int load_all = 0;
5434
5435 int nesting_level = 1;
5436
5437 parent_die = NULL;
5438 last_die = NULL;
5439
5440 if (cu->per_cu && cu->per_cu->load_all_dies)
5441 load_all = 1;
5442
5443 cu->partial_dies
5444 = htab_create_alloc_ex (cu->header.length / 12,
5445 partial_die_hash,
5446 partial_die_eq,
5447 NULL,
5448 &cu->comp_unit_obstack,
5449 hashtab_obstack_allocate,
5450 dummy_obstack_deallocate);
5451
5452 part_die = obstack_alloc (&cu->comp_unit_obstack,
5453 sizeof (struct partial_die_info));
5454
5455 while (1)
5456 {
5457 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5458
5459 /* A NULL abbrev means the end of a series of children. */
5460 if (abbrev == NULL)
5461 {
5462 if (--nesting_level == 0)
5463 {
5464 /* PART_DIE was probably the last thing allocated on the
5465 comp_unit_obstack, so we could call obstack_free
5466 here. We don't do that because the waste is small,
5467 and will be cleaned up when we're done with this
5468 compilation unit. This way, we're also more robust
5469 against other users of the comp_unit_obstack. */
5470 return first_die;
5471 }
5472 info_ptr += bytes_read;
5473 last_die = parent_die;
5474 parent_die = parent_die->die_parent;
5475 continue;
5476 }
5477
5478 /* Check whether this DIE is interesting enough to save. Normally
5479 we would not be interested in members here, but there may be
5480 later variables referencing them via DW_AT_specification (for
5481 static members). */
5482 if (!load_all
5483 && !is_type_tag_for_partial (abbrev->tag)
5484 && abbrev->tag != DW_TAG_enumerator
5485 && abbrev->tag != DW_TAG_subprogram
5486 && abbrev->tag != DW_TAG_variable
5487 && abbrev->tag != DW_TAG_namespace
5488 && abbrev->tag != DW_TAG_member)
5489 {
5490 /* Otherwise we skip to the next sibling, if any. */
5491 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5492 continue;
5493 }
5494
5495 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5496 abfd, info_ptr, cu);
5497
5498 /* This two-pass algorithm for processing partial symbols has a
5499 high cost in cache pressure. Thus, handle some simple cases
5500 here which cover the majority of C partial symbols. DIEs
5501 which neither have specification tags in them, nor could have
5502 specification tags elsewhere pointing at them, can simply be
5503 processed and discarded.
5504
5505 This segment is also optional; scan_partial_symbols and
5506 add_partial_symbol will handle these DIEs if we chain
5507 them in normally. When compilers which do not emit large
5508 quantities of duplicate debug information are more common,
5509 this code can probably be removed. */
5510
5511 /* Any complete simple types at the top level (pretty much all
5512 of them, for a language without namespaces), can be processed
5513 directly. */
5514 if (parent_die == NULL
5515 && part_die->has_specification == 0
5516 && part_die->is_declaration == 0
5517 && (part_die->tag == DW_TAG_typedef
5518 || part_die->tag == DW_TAG_base_type
5519 || part_die->tag == DW_TAG_subrange_type))
5520 {
5521 if (building_psymtab && part_die->name != NULL)
5522 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5523 VAR_DOMAIN, LOC_TYPEDEF,
5524 &cu->objfile->static_psymbols,
5525 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5526 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5527 continue;
5528 }
5529
5530 /* If we're at the second level, and we're an enumerator, and
5531 our parent has no specification (meaning possibly lives in a
5532 namespace elsewhere), then we can add the partial symbol now
5533 instead of queueing it. */
5534 if (part_die->tag == DW_TAG_enumerator
5535 && parent_die != NULL
5536 && parent_die->die_parent == NULL
5537 && parent_die->tag == DW_TAG_enumeration_type
5538 && parent_die->has_specification == 0)
5539 {
5540 if (part_die->name == NULL)
5541 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5542 else if (building_psymtab)
5543 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5544 VAR_DOMAIN, LOC_CONST,
5545 (cu->language == language_cplus
5546 || cu->language == language_java)
5547 ? &cu->objfile->global_psymbols
5548 : &cu->objfile->static_psymbols,
5549 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5550
5551 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5552 continue;
5553 }
5554
5555 /* We'll save this DIE so link it in. */
5556 part_die->die_parent = parent_die;
5557 part_die->die_sibling = NULL;
5558 part_die->die_child = NULL;
5559
5560 if (last_die && last_die == parent_die)
5561 last_die->die_child = part_die;
5562 else if (last_die)
5563 last_die->die_sibling = part_die;
5564
5565 last_die = part_die;
5566
5567 if (first_die == NULL)
5568 first_die = part_die;
5569
5570 /* Maybe add the DIE to the hash table. Not all DIEs that we
5571 find interesting need to be in the hash table, because we
5572 also have the parent/sibling/child chains; only those that we
5573 might refer to by offset later during partial symbol reading.
5574
5575 For now this means things that might have be the target of a
5576 DW_AT_specification, DW_AT_abstract_origin, or
5577 DW_AT_extension. DW_AT_extension will refer only to
5578 namespaces; DW_AT_abstract_origin refers to functions (and
5579 many things under the function DIE, but we do not recurse
5580 into function DIEs during partial symbol reading) and
5581 possibly variables as well; DW_AT_specification refers to
5582 declarations. Declarations ought to have the DW_AT_declaration
5583 flag. It happens that GCC forgets to put it in sometimes, but
5584 only for functions, not for types.
5585
5586 Adding more things than necessary to the hash table is harmless
5587 except for the performance cost. Adding too few will result in
5588 wasted time in find_partial_die, when we reread the compilation
5589 unit with load_all_dies set. */
5590
5591 if (load_all
5592 || abbrev->tag == DW_TAG_subprogram
5593 || abbrev->tag == DW_TAG_variable
5594 || abbrev->tag == DW_TAG_namespace
5595 || part_die->is_declaration)
5596 {
5597 void **slot;
5598
5599 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5600 part_die->offset, INSERT);
5601 *slot = part_die;
5602 }
5603
5604 part_die = obstack_alloc (&cu->comp_unit_obstack,
5605 sizeof (struct partial_die_info));
5606
5607 /* For some DIEs we want to follow their children (if any). For C
5608 we have no reason to follow the children of structures; for other
5609 languages we have to, both so that we can get at method physnames
5610 to infer fully qualified class names, and for DW_AT_specification. */
5611 if (last_die->has_children
5612 && (load_all
5613 || last_die->tag == DW_TAG_namespace
5614 || last_die->tag == DW_TAG_enumeration_type
5615 || (cu->language != language_c
5616 && (last_die->tag == DW_TAG_class_type
5617 || last_die->tag == DW_TAG_interface_type
5618 || last_die->tag == DW_TAG_structure_type
5619 || last_die->tag == DW_TAG_union_type))))
5620 {
5621 nesting_level++;
5622 parent_die = last_die;
5623 continue;
5624 }
5625
5626 /* Otherwise we skip to the next sibling, if any. */
5627 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5628
5629 /* Back to the top, do it again. */
5630 }
5631 }
5632
5633 /* Read a minimal amount of information into the minimal die structure. */
5634
5635 static gdb_byte *
5636 read_partial_die (struct partial_die_info *part_die,
5637 struct abbrev_info *abbrev,
5638 unsigned int abbrev_len, bfd *abfd,
5639 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5640 {
5641 unsigned int bytes_read, i;
5642 struct attribute attr;
5643 int has_low_pc_attr = 0;
5644 int has_high_pc_attr = 0;
5645
5646 memset (part_die, 0, sizeof (struct partial_die_info));
5647
5648 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5649
5650 info_ptr += abbrev_len;
5651
5652 if (abbrev == NULL)
5653 return info_ptr;
5654
5655 part_die->tag = abbrev->tag;
5656 part_die->has_children = abbrev->has_children;
5657
5658 for (i = 0; i < abbrev->num_attrs; ++i)
5659 {
5660 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5661
5662 /* Store the data if it is of an attribute we want to keep in a
5663 partial symbol table. */
5664 switch (attr.name)
5665 {
5666 case DW_AT_name:
5667
5668 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5669 if (part_die->name == NULL)
5670 part_die->name = DW_STRING (&attr);
5671 break;
5672 case DW_AT_comp_dir:
5673 if (part_die->dirname == NULL)
5674 part_die->dirname = DW_STRING (&attr);
5675 break;
5676 case DW_AT_MIPS_linkage_name:
5677 part_die->name = DW_STRING (&attr);
5678 break;
5679 case DW_AT_low_pc:
5680 has_low_pc_attr = 1;
5681 part_die->lowpc = DW_ADDR (&attr);
5682 break;
5683 case DW_AT_high_pc:
5684 has_high_pc_attr = 1;
5685 part_die->highpc = DW_ADDR (&attr);
5686 break;
5687 case DW_AT_ranges:
5688 if (dwarf2_ranges_read (DW_UNSND (&attr), &part_die->lowpc,
5689 &part_die->highpc, cu))
5690 has_low_pc_attr = has_high_pc_attr = 1;
5691 break;
5692 case DW_AT_location:
5693 /* Support the .debug_loc offsets */
5694 if (attr_form_is_block (&attr))
5695 {
5696 part_die->locdesc = DW_BLOCK (&attr);
5697 }
5698 else if (attr_form_is_section_offset (&attr))
5699 {
5700 dwarf2_complex_location_expr_complaint ();
5701 }
5702 else
5703 {
5704 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5705 "partial symbol information");
5706 }
5707 break;
5708 case DW_AT_language:
5709 part_die->language = DW_UNSND (&attr);
5710 break;
5711 case DW_AT_external:
5712 part_die->is_external = DW_UNSND (&attr);
5713 break;
5714 case DW_AT_declaration:
5715 part_die->is_declaration = DW_UNSND (&attr);
5716 break;
5717 case DW_AT_type:
5718 part_die->has_type = 1;
5719 break;
5720 case DW_AT_abstract_origin:
5721 case DW_AT_specification:
5722 case DW_AT_extension:
5723 part_die->has_specification = 1;
5724 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5725 break;
5726 case DW_AT_sibling:
5727 /* Ignore absolute siblings, they might point outside of
5728 the current compile unit. */
5729 if (attr.form == DW_FORM_ref_addr)
5730 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5731 else
5732 part_die->sibling = dwarf2_per_objfile->info_buffer
5733 + dwarf2_get_ref_die_offset (&attr, cu);
5734 break;
5735 case DW_AT_stmt_list:
5736 part_die->has_stmt_list = 1;
5737 part_die->line_offset = DW_UNSND (&attr);
5738 break;
5739 case DW_AT_byte_size:
5740 part_die->has_byte_size = 1;
5741 break;
5742 case DW_AT_calling_convention:
5743 /* DWARF doesn't provide a way to identify a program's source-level
5744 entry point. DW_AT_calling_convention attributes are only meant
5745 to describe functions' calling conventions.
5746
5747 However, because it's a necessary piece of information in
5748 Fortran, and because DW_CC_program is the only piece of debugging
5749 information whose definition refers to a 'main program' at all,
5750 several compilers have begun marking Fortran main programs with
5751 DW_CC_program --- even when those functions use the standard
5752 calling conventions.
5753
5754 So until DWARF specifies a way to provide this information and
5755 compilers pick up the new representation, we'll support this
5756 practice. */
5757 if (DW_UNSND (&attr) == DW_CC_program
5758 && cu->language == language_fortran)
5759 set_main_name (part_die->name);
5760 break;
5761 default:
5762 break;
5763 }
5764 }
5765
5766 /* When using the GNU linker, .gnu.linkonce. sections are used to
5767 eliminate duplicate copies of functions and vtables and such.
5768 The linker will arbitrarily choose one and discard the others.
5769 The AT_*_pc values for such functions refer to local labels in
5770 these sections. If the section from that file was discarded, the
5771 labels are not in the output, so the relocs get a value of 0.
5772 If this is a discarded function, mark the pc bounds as invalid,
5773 so that GDB will ignore it. */
5774 if (has_low_pc_attr && has_high_pc_attr
5775 && part_die->lowpc < part_die->highpc
5776 && (part_die->lowpc != 0
5777 || dwarf2_per_objfile->has_section_at_zero))
5778 part_die->has_pc_info = 1;
5779 return info_ptr;
5780 }
5781
5782 /* Find a cached partial DIE at OFFSET in CU. */
5783
5784 static struct partial_die_info *
5785 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5786 {
5787 struct partial_die_info *lookup_die = NULL;
5788 struct partial_die_info part_die;
5789
5790 part_die.offset = offset;
5791 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5792
5793 return lookup_die;
5794 }
5795
5796 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5797
5798 static struct partial_die_info *
5799 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5800 {
5801 struct dwarf2_per_cu_data *per_cu = NULL;
5802 struct partial_die_info *pd = NULL;
5803
5804 if (offset >= cu->header.offset
5805 && offset < cu->header.offset + cu->header.length)
5806 {
5807 pd = find_partial_die_in_comp_unit (offset, cu);
5808 if (pd != NULL)
5809 return pd;
5810 }
5811
5812 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5813
5814 if (per_cu->cu == NULL)
5815 {
5816 load_comp_unit (per_cu, cu->objfile);
5817 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5818 dwarf2_per_objfile->read_in_chain = per_cu;
5819 }
5820
5821 per_cu->cu->last_used = 0;
5822 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5823
5824 if (pd == NULL && per_cu->load_all_dies == 0)
5825 {
5826 struct cleanup *back_to;
5827 struct partial_die_info comp_unit_die;
5828 struct abbrev_info *abbrev;
5829 unsigned int bytes_read;
5830 char *info_ptr;
5831
5832 per_cu->load_all_dies = 1;
5833
5834 /* Re-read the DIEs. */
5835 back_to = make_cleanup (null_cleanup, 0);
5836 if (per_cu->cu->dwarf2_abbrevs == NULL)
5837 {
5838 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5839 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5840 }
5841 info_ptr = per_cu->cu->header.first_die_ptr;
5842 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5843 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5844 per_cu->cu->objfile->obfd, info_ptr,
5845 per_cu->cu);
5846 if (comp_unit_die.has_children)
5847 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5848 do_cleanups (back_to);
5849
5850 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5851 }
5852
5853 if (pd == NULL)
5854 internal_error (__FILE__, __LINE__,
5855 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5856 offset, bfd_get_filename (cu->objfile->obfd));
5857 return pd;
5858 }
5859
5860 /* Adjust PART_DIE before generating a symbol for it. This function
5861 may set the is_external flag or change the DIE's name. */
5862
5863 static void
5864 fixup_partial_die (struct partial_die_info *part_die,
5865 struct dwarf2_cu *cu)
5866 {
5867 /* If we found a reference attribute and the DIE has no name, try
5868 to find a name in the referred to DIE. */
5869
5870 if (part_die->name == NULL && part_die->has_specification)
5871 {
5872 struct partial_die_info *spec_die;
5873
5874 spec_die = find_partial_die (part_die->spec_offset, cu);
5875
5876 fixup_partial_die (spec_die, cu);
5877
5878 if (spec_die->name)
5879 {
5880 part_die->name = spec_die->name;
5881
5882 /* Copy DW_AT_external attribute if it is set. */
5883 if (spec_die->is_external)
5884 part_die->is_external = spec_die->is_external;
5885 }
5886 }
5887
5888 /* Set default names for some unnamed DIEs. */
5889 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5890 || part_die->tag == DW_TAG_class_type))
5891 part_die->name = "(anonymous class)";
5892
5893 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5894 part_die->name = "(anonymous namespace)";
5895
5896 if (part_die->tag == DW_TAG_structure_type
5897 || part_die->tag == DW_TAG_class_type
5898 || part_die->tag == DW_TAG_union_type)
5899 guess_structure_name (part_die, cu);
5900 }
5901
5902 /* Read the die from the .debug_info section buffer. Set DIEP to
5903 point to a newly allocated die with its information, except for its
5904 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5905 whether the die has children or not. */
5906
5907 static gdb_byte *
5908 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5909 struct dwarf2_cu *cu, int *has_children)
5910 {
5911 unsigned int abbrev_number, bytes_read, i, offset;
5912 struct abbrev_info *abbrev;
5913 struct die_info *die;
5914
5915 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5916 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5917 info_ptr += bytes_read;
5918 if (!abbrev_number)
5919 {
5920 die = dwarf_alloc_die ();
5921 die->tag = 0;
5922 die->abbrev = abbrev_number;
5923 die->type = NULL;
5924 *diep = die;
5925 *has_children = 0;
5926 return info_ptr;
5927 }
5928
5929 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5930 if (!abbrev)
5931 {
5932 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5933 abbrev_number,
5934 bfd_get_filename (abfd));
5935 }
5936 die = dwarf_alloc_die ();
5937 die->offset = offset;
5938 die->tag = abbrev->tag;
5939 die->abbrev = abbrev_number;
5940 die->type = NULL;
5941
5942 die->num_attrs = abbrev->num_attrs;
5943 die->attrs = (struct attribute *)
5944 xmalloc (die->num_attrs * sizeof (struct attribute));
5945
5946 for (i = 0; i < abbrev->num_attrs; ++i)
5947 {
5948 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5949 abfd, info_ptr, cu);
5950
5951 /* If this attribute is an absolute reference to a different
5952 compilation unit, make sure that compilation unit is loaded
5953 also. */
5954 if (die->attrs[i].form == DW_FORM_ref_addr
5955 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5956 || (DW_ADDR (&die->attrs[i])
5957 >= cu->header.offset + cu->header.length)))
5958 {
5959 struct dwarf2_per_cu_data *per_cu;
5960 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5961 cu->objfile);
5962
5963 /* Mark the dependence relation so that we don't flush PER_CU
5964 too early. */
5965 dwarf2_add_dependence (cu, per_cu);
5966
5967 /* If it's already on the queue, we have nothing to do. */
5968 if (per_cu->queued)
5969 continue;
5970
5971 /* If the compilation unit is already loaded, just mark it as
5972 used. */
5973 if (per_cu->cu != NULL)
5974 {
5975 per_cu->cu->last_used = 0;
5976 continue;
5977 }
5978
5979 /* Add it to the queue. */
5980 queue_comp_unit (per_cu);
5981 }
5982 }
5983
5984 *diep = die;
5985 *has_children = abbrev->has_children;
5986 return info_ptr;
5987 }
5988
5989 /* Read an attribute value described by an attribute form. */
5990
5991 static gdb_byte *
5992 read_attribute_value (struct attribute *attr, unsigned form,
5993 bfd *abfd, gdb_byte *info_ptr,
5994 struct dwarf2_cu *cu)
5995 {
5996 struct comp_unit_head *cu_header = &cu->header;
5997 unsigned int bytes_read;
5998 struct dwarf_block *blk;
5999
6000 attr->form = form;
6001 switch (form)
6002 {
6003 case DW_FORM_addr:
6004 case DW_FORM_ref_addr:
6005 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
6006 info_ptr += bytes_read;
6007 break;
6008 case DW_FORM_block2:
6009 blk = dwarf_alloc_block (cu);
6010 blk->size = read_2_bytes (abfd, info_ptr);
6011 info_ptr += 2;
6012 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6013 info_ptr += blk->size;
6014 DW_BLOCK (attr) = blk;
6015 break;
6016 case DW_FORM_block4:
6017 blk = dwarf_alloc_block (cu);
6018 blk->size = read_4_bytes (abfd, info_ptr);
6019 info_ptr += 4;
6020 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6021 info_ptr += blk->size;
6022 DW_BLOCK (attr) = blk;
6023 break;
6024 case DW_FORM_data2:
6025 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6026 info_ptr += 2;
6027 break;
6028 case DW_FORM_data4:
6029 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6030 info_ptr += 4;
6031 break;
6032 case DW_FORM_data8:
6033 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6034 info_ptr += 8;
6035 break;
6036 case DW_FORM_string:
6037 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6038 info_ptr += bytes_read;
6039 break;
6040 case DW_FORM_strp:
6041 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6042 &bytes_read);
6043 info_ptr += bytes_read;
6044 break;
6045 case DW_FORM_block:
6046 blk = dwarf_alloc_block (cu);
6047 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6048 info_ptr += bytes_read;
6049 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6050 info_ptr += blk->size;
6051 DW_BLOCK (attr) = blk;
6052 break;
6053 case DW_FORM_block1:
6054 blk = dwarf_alloc_block (cu);
6055 blk->size = read_1_byte (abfd, info_ptr);
6056 info_ptr += 1;
6057 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6058 info_ptr += blk->size;
6059 DW_BLOCK (attr) = blk;
6060 break;
6061 case DW_FORM_data1:
6062 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6063 info_ptr += 1;
6064 break;
6065 case DW_FORM_flag:
6066 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6067 info_ptr += 1;
6068 break;
6069 case DW_FORM_sdata:
6070 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6071 info_ptr += bytes_read;
6072 break;
6073 case DW_FORM_udata:
6074 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6075 info_ptr += bytes_read;
6076 break;
6077 case DW_FORM_ref1:
6078 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
6079 info_ptr += 1;
6080 break;
6081 case DW_FORM_ref2:
6082 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
6083 info_ptr += 2;
6084 break;
6085 case DW_FORM_ref4:
6086 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
6087 info_ptr += 4;
6088 break;
6089 case DW_FORM_ref8:
6090 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
6091 info_ptr += 8;
6092 break;
6093 case DW_FORM_ref_udata:
6094 DW_ADDR (attr) = (cu->header.offset
6095 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
6096 info_ptr += bytes_read;
6097 break;
6098 case DW_FORM_indirect:
6099 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6100 info_ptr += bytes_read;
6101 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
6102 break;
6103 default:
6104 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
6105 dwarf_form_name (form),
6106 bfd_get_filename (abfd));
6107 }
6108 return info_ptr;
6109 }
6110
6111 /* Read an attribute described by an abbreviated attribute. */
6112
6113 static gdb_byte *
6114 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
6115 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
6116 {
6117 attr->name = abbrev->name;
6118 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
6119 }
6120
6121 /* read dwarf information from a buffer */
6122
6123 static unsigned int
6124 read_1_byte (bfd *abfd, gdb_byte *buf)
6125 {
6126 return bfd_get_8 (abfd, buf);
6127 }
6128
6129 static int
6130 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
6131 {
6132 return bfd_get_signed_8 (abfd, buf);
6133 }
6134
6135 static unsigned int
6136 read_2_bytes (bfd *abfd, gdb_byte *buf)
6137 {
6138 return bfd_get_16 (abfd, buf);
6139 }
6140
6141 static int
6142 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6143 {
6144 return bfd_get_signed_16 (abfd, buf);
6145 }
6146
6147 static unsigned int
6148 read_4_bytes (bfd *abfd, gdb_byte *buf)
6149 {
6150 return bfd_get_32 (abfd, buf);
6151 }
6152
6153 static int
6154 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6155 {
6156 return bfd_get_signed_32 (abfd, buf);
6157 }
6158
6159 static unsigned long
6160 read_8_bytes (bfd *abfd, gdb_byte *buf)
6161 {
6162 return bfd_get_64 (abfd, buf);
6163 }
6164
6165 static CORE_ADDR
6166 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6167 unsigned int *bytes_read)
6168 {
6169 struct comp_unit_head *cu_header = &cu->header;
6170 CORE_ADDR retval = 0;
6171
6172 if (cu_header->signed_addr_p)
6173 {
6174 switch (cu_header->addr_size)
6175 {
6176 case 2:
6177 retval = bfd_get_signed_16 (abfd, buf);
6178 break;
6179 case 4:
6180 retval = bfd_get_signed_32 (abfd, buf);
6181 break;
6182 case 8:
6183 retval = bfd_get_signed_64 (abfd, buf);
6184 break;
6185 default:
6186 internal_error (__FILE__, __LINE__,
6187 _("read_address: bad switch, signed [in module %s]"),
6188 bfd_get_filename (abfd));
6189 }
6190 }
6191 else
6192 {
6193 switch (cu_header->addr_size)
6194 {
6195 case 2:
6196 retval = bfd_get_16 (abfd, buf);
6197 break;
6198 case 4:
6199 retval = bfd_get_32 (abfd, buf);
6200 break;
6201 case 8:
6202 retval = bfd_get_64 (abfd, buf);
6203 break;
6204 default:
6205 internal_error (__FILE__, __LINE__,
6206 _("read_address: bad switch, unsigned [in module %s]"),
6207 bfd_get_filename (abfd));
6208 }
6209 }
6210
6211 *bytes_read = cu_header->addr_size;
6212 return retval;
6213 }
6214
6215 /* Read the initial length from a section. The (draft) DWARF 3
6216 specification allows the initial length to take up either 4 bytes
6217 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6218 bytes describe the length and all offsets will be 8 bytes in length
6219 instead of 4.
6220
6221 An older, non-standard 64-bit format is also handled by this
6222 function. The older format in question stores the initial length
6223 as an 8-byte quantity without an escape value. Lengths greater
6224 than 2^32 aren't very common which means that the initial 4 bytes
6225 is almost always zero. Since a length value of zero doesn't make
6226 sense for the 32-bit format, this initial zero can be considered to
6227 be an escape value which indicates the presence of the older 64-bit
6228 format. As written, the code can't detect (old format) lengths
6229 greater than 4GB. If it becomes necessary to handle lengths
6230 somewhat larger than 4GB, we could allow other small values (such
6231 as the non-sensical values of 1, 2, and 3) to also be used as
6232 escape values indicating the presence of the old format.
6233
6234 The value returned via bytes_read should be used to increment the
6235 relevant pointer after calling read_initial_length().
6236
6237 As a side effect, this function sets the fields initial_length_size
6238 and offset_size in cu_header to the values appropriate for the
6239 length field. (The format of the initial length field determines
6240 the width of file offsets to be fetched later with read_offset().)
6241
6242 [ Note: read_initial_length() and read_offset() are based on the
6243 document entitled "DWARF Debugging Information Format", revision
6244 3, draft 8, dated November 19, 2001. This document was obtained
6245 from:
6246
6247 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6248
6249 This document is only a draft and is subject to change. (So beware.)
6250
6251 Details regarding the older, non-standard 64-bit format were
6252 determined empirically by examining 64-bit ELF files produced by
6253 the SGI toolchain on an IRIX 6.5 machine.
6254
6255 - Kevin, July 16, 2002
6256 ] */
6257
6258 static LONGEST
6259 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6260 unsigned int *bytes_read)
6261 {
6262 LONGEST length = bfd_get_32 (abfd, buf);
6263
6264 if (length == 0xffffffff)
6265 {
6266 length = bfd_get_64 (abfd, buf + 4);
6267 *bytes_read = 12;
6268 }
6269 else if (length == 0)
6270 {
6271 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6272 length = bfd_get_64 (abfd, buf);
6273 *bytes_read = 8;
6274 }
6275 else
6276 {
6277 *bytes_read = 4;
6278 }
6279
6280 if (cu_header)
6281 {
6282 gdb_assert (cu_header->initial_length_size == 0
6283 || cu_header->initial_length_size == 4
6284 || cu_header->initial_length_size == 8
6285 || cu_header->initial_length_size == 12);
6286
6287 if (cu_header->initial_length_size != 0
6288 && cu_header->initial_length_size != *bytes_read)
6289 complaint (&symfile_complaints,
6290 _("intermixed 32-bit and 64-bit DWARF sections"));
6291
6292 cu_header->initial_length_size = *bytes_read;
6293 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6294 }
6295
6296 return length;
6297 }
6298
6299 /* Read an offset from the data stream. The size of the offset is
6300 given by cu_header->offset_size. */
6301
6302 static LONGEST
6303 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6304 unsigned int *bytes_read)
6305 {
6306 LONGEST retval = 0;
6307
6308 switch (cu_header->offset_size)
6309 {
6310 case 4:
6311 retval = bfd_get_32 (abfd, buf);
6312 *bytes_read = 4;
6313 break;
6314 case 8:
6315 retval = bfd_get_64 (abfd, buf);
6316 *bytes_read = 8;
6317 break;
6318 default:
6319 internal_error (__FILE__, __LINE__,
6320 _("read_offset: bad switch [in module %s]"),
6321 bfd_get_filename (abfd));
6322 }
6323
6324 return retval;
6325 }
6326
6327 static gdb_byte *
6328 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6329 {
6330 /* If the size of a host char is 8 bits, we can return a pointer
6331 to the buffer, otherwise we have to copy the data to a buffer
6332 allocated on the temporary obstack. */
6333 gdb_assert (HOST_CHAR_BIT == 8);
6334 return buf;
6335 }
6336
6337 static char *
6338 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6339 {
6340 /* If the size of a host char is 8 bits, we can return a pointer
6341 to the string, otherwise we have to copy the string to a buffer
6342 allocated on the temporary obstack. */
6343 gdb_assert (HOST_CHAR_BIT == 8);
6344 if (*buf == '\0')
6345 {
6346 *bytes_read_ptr = 1;
6347 return NULL;
6348 }
6349 *bytes_read_ptr = strlen ((char *) buf) + 1;
6350 return (char *) buf;
6351 }
6352
6353 static char *
6354 read_indirect_string (bfd *abfd, gdb_byte *buf,
6355 const struct comp_unit_head *cu_header,
6356 unsigned int *bytes_read_ptr)
6357 {
6358 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6359 bytes_read_ptr);
6360
6361 if (dwarf2_per_objfile->str_buffer == NULL)
6362 {
6363 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6364 bfd_get_filename (abfd));
6365 return NULL;
6366 }
6367 if (str_offset >= dwarf2_per_objfile->str_size)
6368 {
6369 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6370 bfd_get_filename (abfd));
6371 return NULL;
6372 }
6373 gdb_assert (HOST_CHAR_BIT == 8);
6374 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6375 return NULL;
6376 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6377 }
6378
6379 static unsigned long
6380 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6381 {
6382 unsigned long result;
6383 unsigned int num_read;
6384 int i, shift;
6385 unsigned char byte;
6386
6387 result = 0;
6388 shift = 0;
6389 num_read = 0;
6390 i = 0;
6391 while (1)
6392 {
6393 byte = bfd_get_8 (abfd, buf);
6394 buf++;
6395 num_read++;
6396 result |= ((unsigned long)(byte & 127) << shift);
6397 if ((byte & 128) == 0)
6398 {
6399 break;
6400 }
6401 shift += 7;
6402 }
6403 *bytes_read_ptr = num_read;
6404 return result;
6405 }
6406
6407 static long
6408 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6409 {
6410 long result;
6411 int i, shift, num_read;
6412 unsigned char byte;
6413
6414 result = 0;
6415 shift = 0;
6416 num_read = 0;
6417 i = 0;
6418 while (1)
6419 {
6420 byte = bfd_get_8 (abfd, buf);
6421 buf++;
6422 num_read++;
6423 result |= ((long)(byte & 127) << shift);
6424 shift += 7;
6425 if ((byte & 128) == 0)
6426 {
6427 break;
6428 }
6429 }
6430 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6431 result |= -(((long)1) << shift);
6432 *bytes_read_ptr = num_read;
6433 return result;
6434 }
6435
6436 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6437
6438 static gdb_byte *
6439 skip_leb128 (bfd *abfd, gdb_byte *buf)
6440 {
6441 int byte;
6442
6443 while (1)
6444 {
6445 byte = bfd_get_8 (abfd, buf);
6446 buf++;
6447 if ((byte & 128) == 0)
6448 return buf;
6449 }
6450 }
6451
6452 static void
6453 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6454 {
6455 switch (lang)
6456 {
6457 case DW_LANG_C89:
6458 case DW_LANG_C:
6459 cu->language = language_c;
6460 break;
6461 case DW_LANG_C_plus_plus:
6462 cu->language = language_cplus;
6463 break;
6464 case DW_LANG_Fortran77:
6465 case DW_LANG_Fortran90:
6466 case DW_LANG_Fortran95:
6467 cu->language = language_fortran;
6468 break;
6469 case DW_LANG_Mips_Assembler:
6470 cu->language = language_asm;
6471 break;
6472 case DW_LANG_Java:
6473 cu->language = language_java;
6474 break;
6475 case DW_LANG_Ada83:
6476 case DW_LANG_Ada95:
6477 cu->language = language_ada;
6478 break;
6479 case DW_LANG_Modula2:
6480 cu->language = language_m2;
6481 break;
6482 case DW_LANG_Pascal83:
6483 cu->language = language_pascal;
6484 break;
6485 case DW_LANG_Cobol74:
6486 case DW_LANG_Cobol85:
6487 default:
6488 cu->language = language_minimal;
6489 break;
6490 }
6491 cu->language_defn = language_def (cu->language);
6492 }
6493
6494 /* Return the named attribute or NULL if not there. */
6495
6496 static struct attribute *
6497 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6498 {
6499 unsigned int i;
6500 struct attribute *spec = NULL;
6501
6502 for (i = 0; i < die->num_attrs; ++i)
6503 {
6504 if (die->attrs[i].name == name)
6505 return &die->attrs[i];
6506 if (die->attrs[i].name == DW_AT_specification
6507 || die->attrs[i].name == DW_AT_abstract_origin)
6508 spec = &die->attrs[i];
6509 }
6510
6511 if (spec)
6512 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6513
6514 return NULL;
6515 }
6516
6517 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6518 and holds a non-zero value. This function should only be used for
6519 DW_FORM_flag attributes. */
6520
6521 static int
6522 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6523 {
6524 struct attribute *attr = dwarf2_attr (die, name, cu);
6525
6526 return (attr && DW_UNSND (attr));
6527 }
6528
6529 static int
6530 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6531 {
6532 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6533 which value is non-zero. However, we have to be careful with
6534 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6535 (via dwarf2_flag_true_p) follows this attribute. So we may
6536 end up accidently finding a declaration attribute that belongs
6537 to a different DIE referenced by the specification attribute,
6538 even though the given DIE does not have a declaration attribute. */
6539 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6540 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6541 }
6542
6543 /* Return the die giving the specification for DIE, if there is
6544 one. */
6545
6546 static struct die_info *
6547 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6548 {
6549 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6550
6551 if (spec_attr == NULL)
6552 return NULL;
6553 else
6554 return follow_die_ref (die, spec_attr, cu);
6555 }
6556
6557 /* Free the line_header structure *LH, and any arrays and strings it
6558 refers to. */
6559 static void
6560 free_line_header (struct line_header *lh)
6561 {
6562 if (lh->standard_opcode_lengths)
6563 xfree (lh->standard_opcode_lengths);
6564
6565 /* Remember that all the lh->file_names[i].name pointers are
6566 pointers into debug_line_buffer, and don't need to be freed. */
6567 if (lh->file_names)
6568 xfree (lh->file_names);
6569
6570 /* Similarly for the include directory names. */
6571 if (lh->include_dirs)
6572 xfree (lh->include_dirs);
6573
6574 xfree (lh);
6575 }
6576
6577
6578 /* Add an entry to LH's include directory table. */
6579 static void
6580 add_include_dir (struct line_header *lh, char *include_dir)
6581 {
6582 /* Grow the array if necessary. */
6583 if (lh->include_dirs_size == 0)
6584 {
6585 lh->include_dirs_size = 1; /* for testing */
6586 lh->include_dirs = xmalloc (lh->include_dirs_size
6587 * sizeof (*lh->include_dirs));
6588 }
6589 else if (lh->num_include_dirs >= lh->include_dirs_size)
6590 {
6591 lh->include_dirs_size *= 2;
6592 lh->include_dirs = xrealloc (lh->include_dirs,
6593 (lh->include_dirs_size
6594 * sizeof (*lh->include_dirs)));
6595 }
6596
6597 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6598 }
6599
6600
6601 /* Add an entry to LH's file name table. */
6602 static void
6603 add_file_name (struct line_header *lh,
6604 char *name,
6605 unsigned int dir_index,
6606 unsigned int mod_time,
6607 unsigned int length)
6608 {
6609 struct file_entry *fe;
6610
6611 /* Grow the array if necessary. */
6612 if (lh->file_names_size == 0)
6613 {
6614 lh->file_names_size = 1; /* for testing */
6615 lh->file_names = xmalloc (lh->file_names_size
6616 * sizeof (*lh->file_names));
6617 }
6618 else if (lh->num_file_names >= lh->file_names_size)
6619 {
6620 lh->file_names_size *= 2;
6621 lh->file_names = xrealloc (lh->file_names,
6622 (lh->file_names_size
6623 * sizeof (*lh->file_names)));
6624 }
6625
6626 fe = &lh->file_names[lh->num_file_names++];
6627 fe->name = name;
6628 fe->dir_index = dir_index;
6629 fe->mod_time = mod_time;
6630 fe->length = length;
6631 fe->included_p = 0;
6632 fe->symtab = NULL;
6633 }
6634
6635
6636 /* Read the statement program header starting at OFFSET in
6637 .debug_line, according to the endianness of ABFD. Return a pointer
6638 to a struct line_header, allocated using xmalloc.
6639
6640 NOTE: the strings in the include directory and file name tables of
6641 the returned object point into debug_line_buffer, and must not be
6642 freed. */
6643 static struct line_header *
6644 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6645 struct dwarf2_cu *cu)
6646 {
6647 struct cleanup *back_to;
6648 struct line_header *lh;
6649 gdb_byte *line_ptr;
6650 unsigned int bytes_read;
6651 int i;
6652 char *cur_dir, *cur_file;
6653
6654 if (dwarf2_per_objfile->line_buffer == NULL)
6655 {
6656 complaint (&symfile_complaints, _("missing .debug_line section"));
6657 return 0;
6658 }
6659
6660 /* Make sure that at least there's room for the total_length field.
6661 That could be 12 bytes long, but we're just going to fudge that. */
6662 if (offset + 4 >= dwarf2_per_objfile->line_size)
6663 {
6664 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6665 return 0;
6666 }
6667
6668 lh = xmalloc (sizeof (*lh));
6669 memset (lh, 0, sizeof (*lh));
6670 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6671 (void *) lh);
6672
6673 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6674
6675 /* Read in the header. */
6676 lh->total_length =
6677 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6678 line_ptr += bytes_read;
6679 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6680 + dwarf2_per_objfile->line_size))
6681 {
6682 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6683 return 0;
6684 }
6685 lh->statement_program_end = line_ptr + lh->total_length;
6686 lh->version = read_2_bytes (abfd, line_ptr);
6687 line_ptr += 2;
6688 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6689 line_ptr += bytes_read;
6690 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6691 line_ptr += 1;
6692 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6693 line_ptr += 1;
6694 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6695 line_ptr += 1;
6696 lh->line_range = read_1_byte (abfd, line_ptr);
6697 line_ptr += 1;
6698 lh->opcode_base = read_1_byte (abfd, line_ptr);
6699 line_ptr += 1;
6700 lh->standard_opcode_lengths
6701 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6702
6703 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6704 for (i = 1; i < lh->opcode_base; ++i)
6705 {
6706 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6707 line_ptr += 1;
6708 }
6709
6710 /* Read directory table. */
6711 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6712 {
6713 line_ptr += bytes_read;
6714 add_include_dir (lh, cur_dir);
6715 }
6716 line_ptr += bytes_read;
6717
6718 /* Read file name table. */
6719 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6720 {
6721 unsigned int dir_index, mod_time, length;
6722
6723 line_ptr += bytes_read;
6724 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6725 line_ptr += bytes_read;
6726 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6727 line_ptr += bytes_read;
6728 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6729 line_ptr += bytes_read;
6730
6731 add_file_name (lh, cur_file, dir_index, mod_time, length);
6732 }
6733 line_ptr += bytes_read;
6734 lh->statement_program_start = line_ptr;
6735
6736 if (line_ptr > (dwarf2_per_objfile->line_buffer
6737 + dwarf2_per_objfile->line_size))
6738 complaint (&symfile_complaints,
6739 _("line number info header doesn't fit in `.debug_line' section"));
6740
6741 discard_cleanups (back_to);
6742 return lh;
6743 }
6744
6745 /* This function exists to work around a bug in certain compilers
6746 (particularly GCC 2.95), in which the first line number marker of a
6747 function does not show up until after the prologue, right before
6748 the second line number marker. This function shifts ADDRESS down
6749 to the beginning of the function if necessary, and is called on
6750 addresses passed to record_line. */
6751
6752 static CORE_ADDR
6753 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6754 {
6755 struct function_range *fn;
6756
6757 /* Find the function_range containing address. */
6758 if (!cu->first_fn)
6759 return address;
6760
6761 if (!cu->cached_fn)
6762 cu->cached_fn = cu->first_fn;
6763
6764 fn = cu->cached_fn;
6765 while (fn)
6766 if (fn->lowpc <= address && fn->highpc > address)
6767 goto found;
6768 else
6769 fn = fn->next;
6770
6771 fn = cu->first_fn;
6772 while (fn && fn != cu->cached_fn)
6773 if (fn->lowpc <= address && fn->highpc > address)
6774 goto found;
6775 else
6776 fn = fn->next;
6777
6778 return address;
6779
6780 found:
6781 if (fn->seen_line)
6782 return address;
6783 if (address != fn->lowpc)
6784 complaint (&symfile_complaints,
6785 _("misplaced first line number at 0x%lx for '%s'"),
6786 (unsigned long) address, fn->name);
6787 fn->seen_line = 1;
6788 return fn->lowpc;
6789 }
6790
6791 /* Decode the Line Number Program (LNP) for the given line_header
6792 structure and CU. The actual information extracted and the type
6793 of structures created from the LNP depends on the value of PST.
6794
6795 1. If PST is NULL, then this procedure uses the data from the program
6796 to create all necessary symbol tables, and their linetables.
6797 The compilation directory of the file is passed in COMP_DIR,
6798 and must not be NULL.
6799
6800 2. If PST is not NULL, this procedure reads the program to determine
6801 the list of files included by the unit represented by PST, and
6802 builds all the associated partial symbol tables. In this case,
6803 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6804 is not used to compute the full name of the symtab, and therefore
6805 omitting it when building the partial symtab does not introduce
6806 the potential for inconsistency - a partial symtab and its associated
6807 symbtab having a different fullname -). */
6808
6809 static void
6810 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6811 struct dwarf2_cu *cu, struct partial_symtab *pst)
6812 {
6813 gdb_byte *line_ptr, *extended_end;
6814 gdb_byte *line_end;
6815 unsigned int bytes_read, extended_len;
6816 unsigned char op_code, extended_op, adj_opcode;
6817 CORE_ADDR baseaddr;
6818 struct objfile *objfile = cu->objfile;
6819 const int decode_for_pst_p = (pst != NULL);
6820 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6821
6822 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6823
6824 line_ptr = lh->statement_program_start;
6825 line_end = lh->statement_program_end;
6826
6827 /* Read the statement sequences until there's nothing left. */
6828 while (line_ptr < line_end)
6829 {
6830 /* state machine registers */
6831 CORE_ADDR address = 0;
6832 unsigned int file = 1;
6833 unsigned int line = 1;
6834 unsigned int column = 0;
6835 int is_stmt = lh->default_is_stmt;
6836 int basic_block = 0;
6837 int end_sequence = 0;
6838
6839 if (!decode_for_pst_p && lh->num_file_names >= file)
6840 {
6841 /* Start a subfile for the current file of the state machine. */
6842 /* lh->include_dirs and lh->file_names are 0-based, but the
6843 directory and file name numbers in the statement program
6844 are 1-based. */
6845 struct file_entry *fe = &lh->file_names[file - 1];
6846 char *dir = NULL;
6847
6848 if (fe->dir_index)
6849 dir = lh->include_dirs[fe->dir_index - 1];
6850
6851 dwarf2_start_subfile (fe->name, dir, comp_dir);
6852 }
6853
6854 /* Decode the table. */
6855 while (!end_sequence)
6856 {
6857 op_code = read_1_byte (abfd, line_ptr);
6858 line_ptr += 1;
6859
6860 if (op_code >= lh->opcode_base)
6861 {
6862 /* Special operand. */
6863 adj_opcode = op_code - lh->opcode_base;
6864 address += (adj_opcode / lh->line_range)
6865 * lh->minimum_instruction_length;
6866 line += lh->line_base + (adj_opcode % lh->line_range);
6867 if (lh->num_file_names < file)
6868 dwarf2_debug_line_missing_file_complaint ();
6869 else
6870 {
6871 lh->file_names[file - 1].included_p = 1;
6872 if (!decode_for_pst_p)
6873 {
6874 if (last_subfile != current_subfile)
6875 {
6876 if (last_subfile)
6877 record_line (last_subfile, 0, address);
6878 last_subfile = current_subfile;
6879 }
6880 /* Append row to matrix using current values. */
6881 record_line (current_subfile, line,
6882 check_cu_functions (address, cu));
6883 }
6884 }
6885 basic_block = 1;
6886 }
6887 else switch (op_code)
6888 {
6889 case DW_LNS_extended_op:
6890 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6891 line_ptr += bytes_read;
6892 extended_end = line_ptr + extended_len;
6893 extended_op = read_1_byte (abfd, line_ptr);
6894 line_ptr += 1;
6895 switch (extended_op)
6896 {
6897 case DW_LNE_end_sequence:
6898 end_sequence = 1;
6899
6900 if (lh->num_file_names < file)
6901 dwarf2_debug_line_missing_file_complaint ();
6902 else
6903 {
6904 lh->file_names[file - 1].included_p = 1;
6905 if (!decode_for_pst_p)
6906 record_line (current_subfile, 0, address);
6907 }
6908 break;
6909 case DW_LNE_set_address:
6910 address = read_address (abfd, line_ptr, cu, &bytes_read);
6911 line_ptr += bytes_read;
6912 address += baseaddr;
6913 break;
6914 case DW_LNE_define_file:
6915 {
6916 char *cur_file;
6917 unsigned int dir_index, mod_time, length;
6918
6919 cur_file = read_string (abfd, line_ptr, &bytes_read);
6920 line_ptr += bytes_read;
6921 dir_index =
6922 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6923 line_ptr += bytes_read;
6924 mod_time =
6925 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6926 line_ptr += bytes_read;
6927 length =
6928 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6929 line_ptr += bytes_read;
6930 add_file_name (lh, cur_file, dir_index, mod_time, length);
6931 }
6932 break;
6933 default:
6934 complaint (&symfile_complaints,
6935 _("mangled .debug_line section"));
6936 return;
6937 }
6938 /* Make sure that we parsed the extended op correctly. If e.g.
6939 we expected a different address size than the producer used,
6940 we may have read the wrong number of bytes. */
6941 if (line_ptr != extended_end)
6942 {
6943 complaint (&symfile_complaints,
6944 _("mangled .debug_line section"));
6945 return;
6946 }
6947 break;
6948 case DW_LNS_copy:
6949 if (lh->num_file_names < file)
6950 dwarf2_debug_line_missing_file_complaint ();
6951 else
6952 {
6953 lh->file_names[file - 1].included_p = 1;
6954 if (!decode_for_pst_p)
6955 {
6956 if (last_subfile != current_subfile)
6957 {
6958 if (last_subfile)
6959 record_line (last_subfile, 0, address);
6960 last_subfile = current_subfile;
6961 }
6962 record_line (current_subfile, line,
6963 check_cu_functions (address, cu));
6964 }
6965 }
6966 basic_block = 0;
6967 break;
6968 case DW_LNS_advance_pc:
6969 address += lh->minimum_instruction_length
6970 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6971 line_ptr += bytes_read;
6972 break;
6973 case DW_LNS_advance_line:
6974 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6975 line_ptr += bytes_read;
6976 break;
6977 case DW_LNS_set_file:
6978 {
6979 /* The arrays lh->include_dirs and lh->file_names are
6980 0-based, but the directory and file name numbers in
6981 the statement program are 1-based. */
6982 struct file_entry *fe;
6983 char *dir = NULL;
6984
6985 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6986 line_ptr += bytes_read;
6987 if (lh->num_file_names < file)
6988 dwarf2_debug_line_missing_file_complaint ();
6989 else
6990 {
6991 fe = &lh->file_names[file - 1];
6992 if (fe->dir_index)
6993 dir = lh->include_dirs[fe->dir_index - 1];
6994 if (!decode_for_pst_p)
6995 {
6996 last_subfile = current_subfile;
6997 dwarf2_start_subfile (fe->name, dir, comp_dir);
6998 }
6999 }
7000 }
7001 break;
7002 case DW_LNS_set_column:
7003 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7004 line_ptr += bytes_read;
7005 break;
7006 case DW_LNS_negate_stmt:
7007 is_stmt = (!is_stmt);
7008 break;
7009 case DW_LNS_set_basic_block:
7010 basic_block = 1;
7011 break;
7012 /* Add to the address register of the state machine the
7013 address increment value corresponding to special opcode
7014 255. I.e., this value is scaled by the minimum
7015 instruction length since special opcode 255 would have
7016 scaled the the increment. */
7017 case DW_LNS_const_add_pc:
7018 address += (lh->minimum_instruction_length
7019 * ((255 - lh->opcode_base) / lh->line_range));
7020 break;
7021 case DW_LNS_fixed_advance_pc:
7022 address += read_2_bytes (abfd, line_ptr);
7023 line_ptr += 2;
7024 break;
7025 default:
7026 {
7027 /* Unknown standard opcode, ignore it. */
7028 int i;
7029
7030 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
7031 {
7032 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7033 line_ptr += bytes_read;
7034 }
7035 }
7036 }
7037 }
7038 }
7039
7040 if (decode_for_pst_p)
7041 {
7042 int file_index;
7043
7044 /* Now that we're done scanning the Line Header Program, we can
7045 create the psymtab of each included file. */
7046 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7047 if (lh->file_names[file_index].included_p == 1)
7048 {
7049 const struct file_entry fe = lh->file_names [file_index];
7050 char *include_name = fe.name;
7051 char *dir_name = NULL;
7052 char *pst_filename = pst->filename;
7053
7054 if (fe.dir_index)
7055 dir_name = lh->include_dirs[fe.dir_index - 1];
7056
7057 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7058 {
7059 include_name = concat (dir_name, SLASH_STRING,
7060 include_name, (char *)NULL);
7061 make_cleanup (xfree, include_name);
7062 }
7063
7064 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7065 {
7066 pst_filename = concat (pst->dirname, SLASH_STRING,
7067 pst_filename, (char *)NULL);
7068 make_cleanup (xfree, pst_filename);
7069 }
7070
7071 if (strcmp (include_name, pst_filename) != 0)
7072 dwarf2_create_include_psymtab (include_name, pst, objfile);
7073 }
7074 }
7075 else
7076 {
7077 /* Make sure a symtab is created for every file, even files
7078 which contain only variables (i.e. no code with associated
7079 line numbers). */
7080
7081 int i;
7082 struct file_entry *fe;
7083
7084 for (i = 0; i < lh->num_file_names; i++)
7085 {
7086 char *dir = NULL;
7087 fe = &lh->file_names[i];
7088 if (fe->dir_index)
7089 dir = lh->include_dirs[fe->dir_index - 1];
7090 dwarf2_start_subfile (fe->name, dir, comp_dir);
7091
7092 /* Skip the main file; we don't need it, and it must be
7093 allocated last, so that it will show up before the
7094 non-primary symtabs in the objfile's symtab list. */
7095 if (current_subfile == first_subfile)
7096 continue;
7097
7098 if (current_subfile->symtab == NULL)
7099 current_subfile->symtab = allocate_symtab (current_subfile->name,
7100 cu->objfile);
7101 fe->symtab = current_subfile->symtab;
7102 }
7103 }
7104 }
7105
7106 /* Start a subfile for DWARF. FILENAME is the name of the file and
7107 DIRNAME the name of the source directory which contains FILENAME
7108 or NULL if not known. COMP_DIR is the compilation directory for the
7109 linetable's compilation unit or NULL if not known.
7110 This routine tries to keep line numbers from identical absolute and
7111 relative file names in a common subfile.
7112
7113 Using the `list' example from the GDB testsuite, which resides in
7114 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7115 of /srcdir/list0.c yields the following debugging information for list0.c:
7116
7117 DW_AT_name: /srcdir/list0.c
7118 DW_AT_comp_dir: /compdir
7119 files.files[0].name: list0.h
7120 files.files[0].dir: /srcdir
7121 files.files[1].name: list0.c
7122 files.files[1].dir: /srcdir
7123
7124 The line number information for list0.c has to end up in a single
7125 subfile, so that `break /srcdir/list0.c:1' works as expected.
7126 start_subfile will ensure that this happens provided that we pass the
7127 concatenation of files.files[1].dir and files.files[1].name as the
7128 subfile's name. */
7129
7130 static void
7131 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
7132 {
7133 char *fullname;
7134
7135 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7136 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7137 second argument to start_subfile. To be consistent, we do the
7138 same here. In order not to lose the line information directory,
7139 we concatenate it to the filename when it makes sense.
7140 Note that the Dwarf3 standard says (speaking of filenames in line
7141 information): ``The directory index is ignored for file names
7142 that represent full path names''. Thus ignoring dirname in the
7143 `else' branch below isn't an issue. */
7144
7145 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7146 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7147 else
7148 fullname = filename;
7149
7150 start_subfile (fullname, comp_dir);
7151
7152 if (fullname != filename)
7153 xfree (fullname);
7154 }
7155
7156 static void
7157 var_decode_location (struct attribute *attr, struct symbol *sym,
7158 struct dwarf2_cu *cu)
7159 {
7160 struct objfile *objfile = cu->objfile;
7161 struct comp_unit_head *cu_header = &cu->header;
7162
7163 /* NOTE drow/2003-01-30: There used to be a comment and some special
7164 code here to turn a symbol with DW_AT_external and a
7165 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7166 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7167 with some versions of binutils) where shared libraries could have
7168 relocations against symbols in their debug information - the
7169 minimal symbol would have the right address, but the debug info
7170 would not. It's no longer necessary, because we will explicitly
7171 apply relocations when we read in the debug information now. */
7172
7173 /* A DW_AT_location attribute with no contents indicates that a
7174 variable has been optimized away. */
7175 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7176 {
7177 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7178 return;
7179 }
7180
7181 /* Handle one degenerate form of location expression specially, to
7182 preserve GDB's previous behavior when section offsets are
7183 specified. If this is just a DW_OP_addr then mark this symbol
7184 as LOC_STATIC. */
7185
7186 if (attr_form_is_block (attr)
7187 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7188 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7189 {
7190 unsigned int dummy;
7191
7192 SYMBOL_VALUE_ADDRESS (sym) =
7193 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7194 fixup_symbol_section (sym, objfile);
7195 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7196 SYMBOL_SECTION (sym));
7197 SYMBOL_CLASS (sym) = LOC_STATIC;
7198 return;
7199 }
7200
7201 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7202 expression evaluator, and use LOC_COMPUTED only when necessary
7203 (i.e. when the value of a register or memory location is
7204 referenced, or a thread-local block, etc.). Then again, it might
7205 not be worthwhile. I'm assuming that it isn't unless performance
7206 or memory numbers show me otherwise. */
7207
7208 dwarf2_symbol_mark_computed (attr, sym, cu);
7209 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7210 }
7211
7212 /* Given a pointer to a DWARF information entry, figure out if we need
7213 to make a symbol table entry for it, and if so, create a new entry
7214 and return a pointer to it.
7215 If TYPE is NULL, determine symbol type from the die, otherwise
7216 used the passed type. */
7217
7218 static struct symbol *
7219 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7220 {
7221 struct objfile *objfile = cu->objfile;
7222 struct symbol *sym = NULL;
7223 char *name;
7224 struct attribute *attr = NULL;
7225 struct attribute *attr2 = NULL;
7226 CORE_ADDR baseaddr;
7227
7228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7229
7230 if (die->tag != DW_TAG_namespace)
7231 name = dwarf2_linkage_name (die, cu);
7232 else
7233 name = TYPE_NAME (type);
7234
7235 if (name)
7236 {
7237 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7238 sizeof (struct symbol));
7239 OBJSTAT (objfile, n_syms++);
7240 memset (sym, 0, sizeof (struct symbol));
7241
7242 /* Cache this symbol's name and the name's demangled form (if any). */
7243 SYMBOL_LANGUAGE (sym) = cu->language;
7244 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7245
7246 /* Default assumptions.
7247 Use the passed type or decode it from the die. */
7248 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7249 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7250 if (type != NULL)
7251 SYMBOL_TYPE (sym) = type;
7252 else
7253 SYMBOL_TYPE (sym) = die_type (die, cu);
7254 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7255 if (attr)
7256 {
7257 SYMBOL_LINE (sym) = DW_UNSND (attr);
7258 }
7259
7260 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7261 if (attr)
7262 {
7263 int file_index = DW_UNSND (attr);
7264 if (cu->line_header == NULL
7265 || file_index > cu->line_header->num_file_names)
7266 complaint (&symfile_complaints,
7267 _("file index out of range"));
7268 else if (file_index > 0)
7269 {
7270 struct file_entry *fe;
7271 fe = &cu->line_header->file_names[file_index - 1];
7272 SYMBOL_SYMTAB (sym) = fe->symtab;
7273 }
7274 }
7275
7276 switch (die->tag)
7277 {
7278 case DW_TAG_label:
7279 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7280 if (attr)
7281 {
7282 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7283 }
7284 SYMBOL_CLASS (sym) = LOC_LABEL;
7285 break;
7286 case DW_TAG_subprogram:
7287 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7288 finish_block. */
7289 SYMBOL_CLASS (sym) = LOC_BLOCK;
7290 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7291 if (attr2 && (DW_UNSND (attr2) != 0))
7292 {
7293 add_symbol_to_list (sym, &global_symbols);
7294 }
7295 else
7296 {
7297 add_symbol_to_list (sym, cu->list_in_scope);
7298 }
7299 break;
7300 case DW_TAG_variable:
7301 /* Compilation with minimal debug info may result in variables
7302 with missing type entries. Change the misleading `void' type
7303 to something sensible. */
7304 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7305 SYMBOL_TYPE (sym)
7306 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7307
7308 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7309 if (attr)
7310 {
7311 dwarf2_const_value (attr, sym, cu);
7312 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7313 if (attr2 && (DW_UNSND (attr2) != 0))
7314 add_symbol_to_list (sym, &global_symbols);
7315 else
7316 add_symbol_to_list (sym, cu->list_in_scope);
7317 break;
7318 }
7319 attr = dwarf2_attr (die, DW_AT_location, cu);
7320 if (attr)
7321 {
7322 var_decode_location (attr, sym, cu);
7323 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7324 if (attr2 && (DW_UNSND (attr2) != 0))
7325 add_symbol_to_list (sym, &global_symbols);
7326 else
7327 add_symbol_to_list (sym, cu->list_in_scope);
7328 }
7329 else
7330 {
7331 /* We do not know the address of this symbol.
7332 If it is an external symbol and we have type information
7333 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7334 The address of the variable will then be determined from
7335 the minimal symbol table whenever the variable is
7336 referenced. */
7337 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7338 if (attr2 && (DW_UNSND (attr2) != 0)
7339 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7340 {
7341 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7342 add_symbol_to_list (sym, &global_symbols);
7343 }
7344 }
7345 break;
7346 case DW_TAG_formal_parameter:
7347 attr = dwarf2_attr (die, DW_AT_location, cu);
7348 if (attr)
7349 {
7350 var_decode_location (attr, sym, cu);
7351 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7352 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7353 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7354 }
7355 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7356 if (attr)
7357 {
7358 dwarf2_const_value (attr, sym, cu);
7359 }
7360 add_symbol_to_list (sym, cu->list_in_scope);
7361 break;
7362 case DW_TAG_unspecified_parameters:
7363 /* From varargs functions; gdb doesn't seem to have any
7364 interest in this information, so just ignore it for now.
7365 (FIXME?) */
7366 break;
7367 case DW_TAG_class_type:
7368 case DW_TAG_interface_type:
7369 case DW_TAG_structure_type:
7370 case DW_TAG_union_type:
7371 case DW_TAG_set_type:
7372 case DW_TAG_enumeration_type:
7373 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7374 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7375
7376 /* Make sure that the symbol includes appropriate enclosing
7377 classes/namespaces in its name. These are calculated in
7378 read_structure_type, and the correct name is saved in
7379 the type. */
7380
7381 if (cu->language == language_cplus
7382 || cu->language == language_java)
7383 {
7384 struct type *type = SYMBOL_TYPE (sym);
7385
7386 if (TYPE_TAG_NAME (type) != NULL)
7387 {
7388 /* FIXME: carlton/2003-11-10: Should this use
7389 SYMBOL_SET_NAMES instead? (The same problem also
7390 arises further down in this function.) */
7391 /* The type's name is already allocated along with
7392 this objfile, so we don't need to duplicate it
7393 for the symbol. */
7394 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7395 }
7396 }
7397
7398 {
7399 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7400 really ever be static objects: otherwise, if you try
7401 to, say, break of a class's method and you're in a file
7402 which doesn't mention that class, it won't work unless
7403 the check for all static symbols in lookup_symbol_aux
7404 saves you. See the OtherFileClass tests in
7405 gdb.c++/namespace.exp. */
7406
7407 struct pending **list_to_add;
7408
7409 list_to_add = (cu->list_in_scope == &file_symbols
7410 && (cu->language == language_cplus
7411 || cu->language == language_java)
7412 ? &global_symbols : cu->list_in_scope);
7413
7414 add_symbol_to_list (sym, list_to_add);
7415
7416 /* The semantics of C++ state that "struct foo { ... }" also
7417 defines a typedef for "foo". A Java class declaration also
7418 defines a typedef for the class. Synthesize a typedef symbol
7419 so that "ptype foo" works as expected. */
7420 if (cu->language == language_cplus
7421 || cu->language == language_java
7422 || cu->language == language_ada)
7423 {
7424 struct symbol *typedef_sym = (struct symbol *)
7425 obstack_alloc (&objfile->objfile_obstack,
7426 sizeof (struct symbol));
7427 *typedef_sym = *sym;
7428 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7429 /* The symbol's name is already allocated along with
7430 this objfile, so we don't need to duplicate it for
7431 the type. */
7432 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7433 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7434 add_symbol_to_list (typedef_sym, list_to_add);
7435 }
7436 }
7437 break;
7438 case DW_TAG_typedef:
7439 if (processing_has_namespace_info
7440 && processing_current_prefix[0] != '\0')
7441 {
7442 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7443 processing_current_prefix,
7444 name, cu);
7445 }
7446 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7447 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7448 add_symbol_to_list (sym, cu->list_in_scope);
7449 break;
7450 case DW_TAG_base_type:
7451 case DW_TAG_subrange_type:
7452 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7453 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7454 add_symbol_to_list (sym, cu->list_in_scope);
7455 break;
7456 case DW_TAG_enumerator:
7457 if (processing_has_namespace_info
7458 && processing_current_prefix[0] != '\0')
7459 {
7460 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7461 processing_current_prefix,
7462 name, cu);
7463 }
7464 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7465 if (attr)
7466 {
7467 dwarf2_const_value (attr, sym, cu);
7468 }
7469 {
7470 /* NOTE: carlton/2003-11-10: See comment above in the
7471 DW_TAG_class_type, etc. block. */
7472
7473 struct pending **list_to_add;
7474
7475 list_to_add = (cu->list_in_scope == &file_symbols
7476 && (cu->language == language_cplus
7477 || cu->language == language_java)
7478 ? &global_symbols : cu->list_in_scope);
7479
7480 add_symbol_to_list (sym, list_to_add);
7481 }
7482 break;
7483 case DW_TAG_namespace:
7484 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7485 add_symbol_to_list (sym, &global_symbols);
7486 break;
7487 default:
7488 /* Not a tag we recognize. Hopefully we aren't processing
7489 trash data, but since we must specifically ignore things
7490 we don't recognize, there is nothing else we should do at
7491 this point. */
7492 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7493 dwarf_tag_name (die->tag));
7494 break;
7495 }
7496 }
7497 return (sym);
7498 }
7499
7500 /* Copy constant value from an attribute to a symbol. */
7501
7502 static void
7503 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7504 struct dwarf2_cu *cu)
7505 {
7506 struct objfile *objfile = cu->objfile;
7507 struct comp_unit_head *cu_header = &cu->header;
7508 struct dwarf_block *blk;
7509
7510 switch (attr->form)
7511 {
7512 case DW_FORM_addr:
7513 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7514 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7515 cu_header->addr_size,
7516 TYPE_LENGTH (SYMBOL_TYPE
7517 (sym)));
7518 SYMBOL_VALUE_BYTES (sym) =
7519 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7520 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7521 it's body - store_unsigned_integer. */
7522 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7523 DW_ADDR (attr));
7524 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7525 break;
7526 case DW_FORM_block1:
7527 case DW_FORM_block2:
7528 case DW_FORM_block4:
7529 case DW_FORM_block:
7530 blk = DW_BLOCK (attr);
7531 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7532 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7533 blk->size,
7534 TYPE_LENGTH (SYMBOL_TYPE
7535 (sym)));
7536 SYMBOL_VALUE_BYTES (sym) =
7537 obstack_alloc (&objfile->objfile_obstack, blk->size);
7538 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7539 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7540 break;
7541
7542 /* The DW_AT_const_value attributes are supposed to carry the
7543 symbol's value "represented as it would be on the target
7544 architecture." By the time we get here, it's already been
7545 converted to host endianness, so we just need to sign- or
7546 zero-extend it as appropriate. */
7547 case DW_FORM_data1:
7548 dwarf2_const_value_data (attr, sym, 8);
7549 break;
7550 case DW_FORM_data2:
7551 dwarf2_const_value_data (attr, sym, 16);
7552 break;
7553 case DW_FORM_data4:
7554 dwarf2_const_value_data (attr, sym, 32);
7555 break;
7556 case DW_FORM_data8:
7557 dwarf2_const_value_data (attr, sym, 64);
7558 break;
7559
7560 case DW_FORM_sdata:
7561 SYMBOL_VALUE (sym) = DW_SND (attr);
7562 SYMBOL_CLASS (sym) = LOC_CONST;
7563 break;
7564
7565 case DW_FORM_udata:
7566 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7567 SYMBOL_CLASS (sym) = LOC_CONST;
7568 break;
7569
7570 default:
7571 complaint (&symfile_complaints,
7572 _("unsupported const value attribute form: '%s'"),
7573 dwarf_form_name (attr->form));
7574 SYMBOL_VALUE (sym) = 0;
7575 SYMBOL_CLASS (sym) = LOC_CONST;
7576 break;
7577 }
7578 }
7579
7580
7581 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7582 or zero-extend it as appropriate for the symbol's type. */
7583 static void
7584 dwarf2_const_value_data (struct attribute *attr,
7585 struct symbol *sym,
7586 int bits)
7587 {
7588 LONGEST l = DW_UNSND (attr);
7589
7590 if (bits < sizeof (l) * 8)
7591 {
7592 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7593 l &= ((LONGEST) 1 << bits) - 1;
7594 else
7595 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7596 }
7597
7598 SYMBOL_VALUE (sym) = l;
7599 SYMBOL_CLASS (sym) = LOC_CONST;
7600 }
7601
7602
7603 /* Return the type of the die in question using its DW_AT_type attribute. */
7604
7605 static struct type *
7606 die_type (struct die_info *die, struct dwarf2_cu *cu)
7607 {
7608 struct type *type;
7609 struct attribute *type_attr;
7610 struct die_info *type_die;
7611
7612 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7613 if (!type_attr)
7614 {
7615 /* A missing DW_AT_type represents a void type. */
7616 return builtin_type (current_gdbarch)->builtin_void;
7617 }
7618 else
7619 type_die = follow_die_ref (die, type_attr, cu);
7620
7621 type = tag_type_to_type (type_die, cu);
7622 if (!type)
7623 {
7624 dump_die (type_die);
7625 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7626 cu->objfile->name);
7627 }
7628 return type;
7629 }
7630
7631 /* Return the containing type of the die in question using its
7632 DW_AT_containing_type attribute. */
7633
7634 static struct type *
7635 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7636 {
7637 struct type *type = NULL;
7638 struct attribute *type_attr;
7639 struct die_info *type_die = NULL;
7640
7641 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7642 if (type_attr)
7643 {
7644 type_die = follow_die_ref (die, type_attr, cu);
7645 type = tag_type_to_type (type_die, cu);
7646 }
7647 if (!type)
7648 {
7649 if (type_die)
7650 dump_die (type_die);
7651 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7652 cu->objfile->name);
7653 }
7654 return type;
7655 }
7656
7657 static struct type *
7658 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7659 {
7660 if (die->type)
7661 {
7662 return die->type;
7663 }
7664 else
7665 {
7666 read_type_die (die, cu);
7667 if (!die->type)
7668 {
7669 dump_die (die);
7670 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7671 cu->objfile->name);
7672 }
7673 return die->type;
7674 }
7675 }
7676
7677 static void
7678 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7679 {
7680 char *prefix = determine_prefix (die, cu);
7681 const char *old_prefix = processing_current_prefix;
7682 struct cleanup *back_to = make_cleanup (xfree, prefix);
7683 processing_current_prefix = prefix;
7684
7685 switch (die->tag)
7686 {
7687 case DW_TAG_class_type:
7688 case DW_TAG_interface_type:
7689 case DW_TAG_structure_type:
7690 case DW_TAG_union_type:
7691 read_structure_type (die, cu);
7692 break;
7693 case DW_TAG_enumeration_type:
7694 read_enumeration_type (die, cu);
7695 break;
7696 case DW_TAG_subprogram:
7697 case DW_TAG_subroutine_type:
7698 read_subroutine_type (die, cu);
7699 break;
7700 case DW_TAG_array_type:
7701 read_array_type (die, cu);
7702 break;
7703 case DW_TAG_set_type:
7704 read_set_type (die, cu);
7705 break;
7706 case DW_TAG_pointer_type:
7707 read_tag_pointer_type (die, cu);
7708 break;
7709 case DW_TAG_ptr_to_member_type:
7710 read_tag_ptr_to_member_type (die, cu);
7711 break;
7712 case DW_TAG_reference_type:
7713 read_tag_reference_type (die, cu);
7714 break;
7715 case DW_TAG_const_type:
7716 read_tag_const_type (die, cu);
7717 break;
7718 case DW_TAG_volatile_type:
7719 read_tag_volatile_type (die, cu);
7720 break;
7721 case DW_TAG_string_type:
7722 read_tag_string_type (die, cu);
7723 break;
7724 case DW_TAG_typedef:
7725 read_typedef (die, cu);
7726 break;
7727 case DW_TAG_subrange_type:
7728 read_subrange_type (die, cu);
7729 break;
7730 case DW_TAG_base_type:
7731 read_base_type (die, cu);
7732 break;
7733 case DW_TAG_unspecified_type:
7734 read_unspecified_type (die, cu);
7735 break;
7736 default:
7737 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7738 dwarf_tag_name (die->tag));
7739 break;
7740 }
7741
7742 processing_current_prefix = old_prefix;
7743 do_cleanups (back_to);
7744 }
7745
7746 /* Return the name of the namespace/class that DIE is defined within,
7747 or "" if we can't tell. The caller should xfree the result. */
7748
7749 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7750 therein) for an example of how to use this function to deal with
7751 DW_AT_specification. */
7752
7753 static char *
7754 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7755 {
7756 struct die_info *parent;
7757
7758 if (cu->language != language_cplus
7759 && cu->language != language_java)
7760 return NULL;
7761
7762 parent = die->parent;
7763
7764 if (parent == NULL)
7765 {
7766 return xstrdup ("");
7767 }
7768 else
7769 {
7770 switch (parent->tag) {
7771 case DW_TAG_namespace:
7772 {
7773 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7774 before doing this check? */
7775 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7776 {
7777 return xstrdup (TYPE_TAG_NAME (parent->type));
7778 }
7779 else
7780 {
7781 int dummy;
7782 char *parent_prefix = determine_prefix (parent, cu);
7783 char *retval = typename_concat (NULL, parent_prefix,
7784 namespace_name (parent, &dummy,
7785 cu),
7786 cu);
7787 xfree (parent_prefix);
7788 return retval;
7789 }
7790 }
7791 break;
7792 case DW_TAG_class_type:
7793 case DW_TAG_interface_type:
7794 case DW_TAG_structure_type:
7795 {
7796 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7797 {
7798 return xstrdup (TYPE_TAG_NAME (parent->type));
7799 }
7800 else
7801 {
7802 const char *old_prefix = processing_current_prefix;
7803 char *new_prefix = determine_prefix (parent, cu);
7804 char *retval;
7805
7806 processing_current_prefix = new_prefix;
7807 retval = determine_class_name (parent, cu);
7808 processing_current_prefix = old_prefix;
7809
7810 xfree (new_prefix);
7811 return retval;
7812 }
7813 }
7814 default:
7815 return determine_prefix (parent, cu);
7816 }
7817 }
7818 }
7819
7820 /* Return a newly-allocated string formed by concatenating PREFIX and
7821 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7822 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7823 perform an obconcat, otherwise allocate storage for the result. The CU argument
7824 is used to determine the language and hence, the appropriate separator. */
7825
7826 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7827
7828 static char *
7829 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7830 struct dwarf2_cu *cu)
7831 {
7832 char *sep;
7833
7834 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7835 sep = "";
7836 else if (cu->language == language_java)
7837 sep = ".";
7838 else
7839 sep = "::";
7840
7841 if (obs == NULL)
7842 {
7843 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7844 retval[0] = '\0';
7845
7846 if (prefix)
7847 {
7848 strcpy (retval, prefix);
7849 strcat (retval, sep);
7850 }
7851 if (suffix)
7852 strcat (retval, suffix);
7853
7854 return retval;
7855 }
7856 else
7857 {
7858 /* We have an obstack. */
7859 return obconcat (obs, prefix, sep, suffix);
7860 }
7861 }
7862
7863 #if 0
7864 struct die_info *
7865 copy_die (struct die_info *old_die)
7866 {
7867 struct die_info *new_die;
7868 int i, num_attrs;
7869
7870 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7871 memset (new_die, 0, sizeof (struct die_info));
7872
7873 new_die->tag = old_die->tag;
7874 new_die->has_children = old_die->has_children;
7875 new_die->abbrev = old_die->abbrev;
7876 new_die->offset = old_die->offset;
7877 new_die->type = NULL;
7878
7879 num_attrs = old_die->num_attrs;
7880 new_die->num_attrs = num_attrs;
7881 new_die->attrs = (struct attribute *)
7882 xmalloc (num_attrs * sizeof (struct attribute));
7883
7884 for (i = 0; i < old_die->num_attrs; ++i)
7885 {
7886 new_die->attrs[i].name = old_die->attrs[i].name;
7887 new_die->attrs[i].form = old_die->attrs[i].form;
7888 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7889 }
7890
7891 new_die->next = NULL;
7892 return new_die;
7893 }
7894 #endif
7895
7896 /* Return sibling of die, NULL if no sibling. */
7897
7898 static struct die_info *
7899 sibling_die (struct die_info *die)
7900 {
7901 return die->sibling;
7902 }
7903
7904 /* Get linkage name of a die, return NULL if not found. */
7905
7906 static char *
7907 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7908 {
7909 struct attribute *attr;
7910
7911 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7912 if (attr && DW_STRING (attr))
7913 return DW_STRING (attr);
7914 attr = dwarf2_attr (die, DW_AT_name, cu);
7915 if (attr && DW_STRING (attr))
7916 return DW_STRING (attr);
7917 return NULL;
7918 }
7919
7920 /* Get name of a die, return NULL if not found. */
7921
7922 static char *
7923 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7924 {
7925 struct attribute *attr;
7926
7927 attr = dwarf2_attr (die, DW_AT_name, cu);
7928 if (attr && DW_STRING (attr))
7929 return DW_STRING (attr);
7930 return NULL;
7931 }
7932
7933 /* Return the die that this die in an extension of, or NULL if there
7934 is none. */
7935
7936 static struct die_info *
7937 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7938 {
7939 struct attribute *attr;
7940
7941 attr = dwarf2_attr (die, DW_AT_extension, cu);
7942 if (attr == NULL)
7943 return NULL;
7944
7945 return follow_die_ref (die, attr, cu);
7946 }
7947
7948 /* Convert a DIE tag into its string name. */
7949
7950 static char *
7951 dwarf_tag_name (unsigned tag)
7952 {
7953 switch (tag)
7954 {
7955 case DW_TAG_padding:
7956 return "DW_TAG_padding";
7957 case DW_TAG_array_type:
7958 return "DW_TAG_array_type";
7959 case DW_TAG_class_type:
7960 return "DW_TAG_class_type";
7961 case DW_TAG_entry_point:
7962 return "DW_TAG_entry_point";
7963 case DW_TAG_enumeration_type:
7964 return "DW_TAG_enumeration_type";
7965 case DW_TAG_formal_parameter:
7966 return "DW_TAG_formal_parameter";
7967 case DW_TAG_imported_declaration:
7968 return "DW_TAG_imported_declaration";
7969 case DW_TAG_label:
7970 return "DW_TAG_label";
7971 case DW_TAG_lexical_block:
7972 return "DW_TAG_lexical_block";
7973 case DW_TAG_member:
7974 return "DW_TAG_member";
7975 case DW_TAG_pointer_type:
7976 return "DW_TAG_pointer_type";
7977 case DW_TAG_reference_type:
7978 return "DW_TAG_reference_type";
7979 case DW_TAG_compile_unit:
7980 return "DW_TAG_compile_unit";
7981 case DW_TAG_string_type:
7982 return "DW_TAG_string_type";
7983 case DW_TAG_structure_type:
7984 return "DW_TAG_structure_type";
7985 case DW_TAG_subroutine_type:
7986 return "DW_TAG_subroutine_type";
7987 case DW_TAG_typedef:
7988 return "DW_TAG_typedef";
7989 case DW_TAG_union_type:
7990 return "DW_TAG_union_type";
7991 case DW_TAG_unspecified_parameters:
7992 return "DW_TAG_unspecified_parameters";
7993 case DW_TAG_variant:
7994 return "DW_TAG_variant";
7995 case DW_TAG_common_block:
7996 return "DW_TAG_common_block";
7997 case DW_TAG_common_inclusion:
7998 return "DW_TAG_common_inclusion";
7999 case DW_TAG_inheritance:
8000 return "DW_TAG_inheritance";
8001 case DW_TAG_inlined_subroutine:
8002 return "DW_TAG_inlined_subroutine";
8003 case DW_TAG_module:
8004 return "DW_TAG_module";
8005 case DW_TAG_ptr_to_member_type:
8006 return "DW_TAG_ptr_to_member_type";
8007 case DW_TAG_set_type:
8008 return "DW_TAG_set_type";
8009 case DW_TAG_subrange_type:
8010 return "DW_TAG_subrange_type";
8011 case DW_TAG_with_stmt:
8012 return "DW_TAG_with_stmt";
8013 case DW_TAG_access_declaration:
8014 return "DW_TAG_access_declaration";
8015 case DW_TAG_base_type:
8016 return "DW_TAG_base_type";
8017 case DW_TAG_catch_block:
8018 return "DW_TAG_catch_block";
8019 case DW_TAG_const_type:
8020 return "DW_TAG_const_type";
8021 case DW_TAG_constant:
8022 return "DW_TAG_constant";
8023 case DW_TAG_enumerator:
8024 return "DW_TAG_enumerator";
8025 case DW_TAG_file_type:
8026 return "DW_TAG_file_type";
8027 case DW_TAG_friend:
8028 return "DW_TAG_friend";
8029 case DW_TAG_namelist:
8030 return "DW_TAG_namelist";
8031 case DW_TAG_namelist_item:
8032 return "DW_TAG_namelist_item";
8033 case DW_TAG_packed_type:
8034 return "DW_TAG_packed_type";
8035 case DW_TAG_subprogram:
8036 return "DW_TAG_subprogram";
8037 case DW_TAG_template_type_param:
8038 return "DW_TAG_template_type_param";
8039 case DW_TAG_template_value_param:
8040 return "DW_TAG_template_value_param";
8041 case DW_TAG_thrown_type:
8042 return "DW_TAG_thrown_type";
8043 case DW_TAG_try_block:
8044 return "DW_TAG_try_block";
8045 case DW_TAG_variant_part:
8046 return "DW_TAG_variant_part";
8047 case DW_TAG_variable:
8048 return "DW_TAG_variable";
8049 case DW_TAG_volatile_type:
8050 return "DW_TAG_volatile_type";
8051 case DW_TAG_dwarf_procedure:
8052 return "DW_TAG_dwarf_procedure";
8053 case DW_TAG_restrict_type:
8054 return "DW_TAG_restrict_type";
8055 case DW_TAG_interface_type:
8056 return "DW_TAG_interface_type";
8057 case DW_TAG_namespace:
8058 return "DW_TAG_namespace";
8059 case DW_TAG_imported_module:
8060 return "DW_TAG_imported_module";
8061 case DW_TAG_unspecified_type:
8062 return "DW_TAG_unspecified_type";
8063 case DW_TAG_partial_unit:
8064 return "DW_TAG_partial_unit";
8065 case DW_TAG_imported_unit:
8066 return "DW_TAG_imported_unit";
8067 case DW_TAG_condition:
8068 return "DW_TAG_condition";
8069 case DW_TAG_shared_type:
8070 return "DW_TAG_shared_type";
8071 case DW_TAG_MIPS_loop:
8072 return "DW_TAG_MIPS_loop";
8073 case DW_TAG_HP_array_descriptor:
8074 return "DW_TAG_HP_array_descriptor";
8075 case DW_TAG_format_label:
8076 return "DW_TAG_format_label";
8077 case DW_TAG_function_template:
8078 return "DW_TAG_function_template";
8079 case DW_TAG_class_template:
8080 return "DW_TAG_class_template";
8081 case DW_TAG_GNU_BINCL:
8082 return "DW_TAG_GNU_BINCL";
8083 case DW_TAG_GNU_EINCL:
8084 return "DW_TAG_GNU_EINCL";
8085 case DW_TAG_upc_shared_type:
8086 return "DW_TAG_upc_shared_type";
8087 case DW_TAG_upc_strict_type:
8088 return "DW_TAG_upc_strict_type";
8089 case DW_TAG_upc_relaxed_type:
8090 return "DW_TAG_upc_relaxed_type";
8091 case DW_TAG_PGI_kanji_type:
8092 return "DW_TAG_PGI_kanji_type";
8093 case DW_TAG_PGI_interface_block:
8094 return "DW_TAG_PGI_interface_block";
8095 default:
8096 return "DW_TAG_<unknown>";
8097 }
8098 }
8099
8100 /* Convert a DWARF attribute code into its string name. */
8101
8102 static char *
8103 dwarf_attr_name (unsigned attr)
8104 {
8105 switch (attr)
8106 {
8107 case DW_AT_sibling:
8108 return "DW_AT_sibling";
8109 case DW_AT_location:
8110 return "DW_AT_location";
8111 case DW_AT_name:
8112 return "DW_AT_name";
8113 case DW_AT_ordering:
8114 return "DW_AT_ordering";
8115 case DW_AT_subscr_data:
8116 return "DW_AT_subscr_data";
8117 case DW_AT_byte_size:
8118 return "DW_AT_byte_size";
8119 case DW_AT_bit_offset:
8120 return "DW_AT_bit_offset";
8121 case DW_AT_bit_size:
8122 return "DW_AT_bit_size";
8123 case DW_AT_element_list:
8124 return "DW_AT_element_list";
8125 case DW_AT_stmt_list:
8126 return "DW_AT_stmt_list";
8127 case DW_AT_low_pc:
8128 return "DW_AT_low_pc";
8129 case DW_AT_high_pc:
8130 return "DW_AT_high_pc";
8131 case DW_AT_language:
8132 return "DW_AT_language";
8133 case DW_AT_member:
8134 return "DW_AT_member";
8135 case DW_AT_discr:
8136 return "DW_AT_discr";
8137 case DW_AT_discr_value:
8138 return "DW_AT_discr_value";
8139 case DW_AT_visibility:
8140 return "DW_AT_visibility";
8141 case DW_AT_import:
8142 return "DW_AT_import";
8143 case DW_AT_string_length:
8144 return "DW_AT_string_length";
8145 case DW_AT_common_reference:
8146 return "DW_AT_common_reference";
8147 case DW_AT_comp_dir:
8148 return "DW_AT_comp_dir";
8149 case DW_AT_const_value:
8150 return "DW_AT_const_value";
8151 case DW_AT_containing_type:
8152 return "DW_AT_containing_type";
8153 case DW_AT_default_value:
8154 return "DW_AT_default_value";
8155 case DW_AT_inline:
8156 return "DW_AT_inline";
8157 case DW_AT_is_optional:
8158 return "DW_AT_is_optional";
8159 case DW_AT_lower_bound:
8160 return "DW_AT_lower_bound";
8161 case DW_AT_producer:
8162 return "DW_AT_producer";
8163 case DW_AT_prototyped:
8164 return "DW_AT_prototyped";
8165 case DW_AT_return_addr:
8166 return "DW_AT_return_addr";
8167 case DW_AT_start_scope:
8168 return "DW_AT_start_scope";
8169 case DW_AT_bit_stride:
8170 return "DW_AT_bit_stride";
8171 case DW_AT_upper_bound:
8172 return "DW_AT_upper_bound";
8173 case DW_AT_abstract_origin:
8174 return "DW_AT_abstract_origin";
8175 case DW_AT_accessibility:
8176 return "DW_AT_accessibility";
8177 case DW_AT_address_class:
8178 return "DW_AT_address_class";
8179 case DW_AT_artificial:
8180 return "DW_AT_artificial";
8181 case DW_AT_base_types:
8182 return "DW_AT_base_types";
8183 case DW_AT_calling_convention:
8184 return "DW_AT_calling_convention";
8185 case DW_AT_count:
8186 return "DW_AT_count";
8187 case DW_AT_data_member_location:
8188 return "DW_AT_data_member_location";
8189 case DW_AT_decl_column:
8190 return "DW_AT_decl_column";
8191 case DW_AT_decl_file:
8192 return "DW_AT_decl_file";
8193 case DW_AT_decl_line:
8194 return "DW_AT_decl_line";
8195 case DW_AT_declaration:
8196 return "DW_AT_declaration";
8197 case DW_AT_discr_list:
8198 return "DW_AT_discr_list";
8199 case DW_AT_encoding:
8200 return "DW_AT_encoding";
8201 case DW_AT_external:
8202 return "DW_AT_external";
8203 case DW_AT_frame_base:
8204 return "DW_AT_frame_base";
8205 case DW_AT_friend:
8206 return "DW_AT_friend";
8207 case DW_AT_identifier_case:
8208 return "DW_AT_identifier_case";
8209 case DW_AT_macro_info:
8210 return "DW_AT_macro_info";
8211 case DW_AT_namelist_items:
8212 return "DW_AT_namelist_items";
8213 case DW_AT_priority:
8214 return "DW_AT_priority";
8215 case DW_AT_segment:
8216 return "DW_AT_segment";
8217 case DW_AT_specification:
8218 return "DW_AT_specification";
8219 case DW_AT_static_link:
8220 return "DW_AT_static_link";
8221 case DW_AT_type:
8222 return "DW_AT_type";
8223 case DW_AT_use_location:
8224 return "DW_AT_use_location";
8225 case DW_AT_variable_parameter:
8226 return "DW_AT_variable_parameter";
8227 case DW_AT_virtuality:
8228 return "DW_AT_virtuality";
8229 case DW_AT_vtable_elem_location:
8230 return "DW_AT_vtable_elem_location";
8231 /* DWARF 3 values. */
8232 case DW_AT_allocated:
8233 return "DW_AT_allocated";
8234 case DW_AT_associated:
8235 return "DW_AT_associated";
8236 case DW_AT_data_location:
8237 return "DW_AT_data_location";
8238 case DW_AT_byte_stride:
8239 return "DW_AT_byte_stride";
8240 case DW_AT_entry_pc:
8241 return "DW_AT_entry_pc";
8242 case DW_AT_use_UTF8:
8243 return "DW_AT_use_UTF8";
8244 case DW_AT_extension:
8245 return "DW_AT_extension";
8246 case DW_AT_ranges:
8247 return "DW_AT_ranges";
8248 case DW_AT_trampoline:
8249 return "DW_AT_trampoline";
8250 case DW_AT_call_column:
8251 return "DW_AT_call_column";
8252 case DW_AT_call_file:
8253 return "DW_AT_call_file";
8254 case DW_AT_call_line:
8255 return "DW_AT_call_line";
8256 case DW_AT_description:
8257 return "DW_AT_description";
8258 case DW_AT_binary_scale:
8259 return "DW_AT_binary_scale";
8260 case DW_AT_decimal_scale:
8261 return "DW_AT_decimal_scale";
8262 case DW_AT_small:
8263 return "DW_AT_small";
8264 case DW_AT_decimal_sign:
8265 return "DW_AT_decimal_sign";
8266 case DW_AT_digit_count:
8267 return "DW_AT_digit_count";
8268 case DW_AT_picture_string:
8269 return "DW_AT_picture_string";
8270 case DW_AT_mutable:
8271 return "DW_AT_mutable";
8272 case DW_AT_threads_scaled:
8273 return "DW_AT_threads_scaled";
8274 case DW_AT_explicit:
8275 return "DW_AT_explicit";
8276 case DW_AT_object_pointer:
8277 return "DW_AT_object_pointer";
8278 case DW_AT_endianity:
8279 return "DW_AT_endianity";
8280 case DW_AT_elemental:
8281 return "DW_AT_elemental";
8282 case DW_AT_pure:
8283 return "DW_AT_pure";
8284 case DW_AT_recursive:
8285 return "DW_AT_recursive";
8286 #ifdef MIPS
8287 /* SGI/MIPS extensions. */
8288 case DW_AT_MIPS_fde:
8289 return "DW_AT_MIPS_fde";
8290 case DW_AT_MIPS_loop_begin:
8291 return "DW_AT_MIPS_loop_begin";
8292 case DW_AT_MIPS_tail_loop_begin:
8293 return "DW_AT_MIPS_tail_loop_begin";
8294 case DW_AT_MIPS_epilog_begin:
8295 return "DW_AT_MIPS_epilog_begin";
8296 case DW_AT_MIPS_loop_unroll_factor:
8297 return "DW_AT_MIPS_loop_unroll_factor";
8298 case DW_AT_MIPS_software_pipeline_depth:
8299 return "DW_AT_MIPS_software_pipeline_depth";
8300 case DW_AT_MIPS_linkage_name:
8301 return "DW_AT_MIPS_linkage_name";
8302 case DW_AT_MIPS_stride:
8303 return "DW_AT_MIPS_stride";
8304 case DW_AT_MIPS_abstract_name:
8305 return "DW_AT_MIPS_abstract_name";
8306 case DW_AT_MIPS_clone_origin:
8307 return "DW_AT_MIPS_clone_origin";
8308 case DW_AT_MIPS_has_inlines:
8309 return "DW_AT_MIPS_has_inlines";
8310 #endif
8311 /* HP extensions. */
8312 case DW_AT_HP_block_index:
8313 return "DW_AT_HP_block_index";
8314 case DW_AT_HP_unmodifiable:
8315 return "DW_AT_HP_unmodifiable";
8316 case DW_AT_HP_actuals_stmt_list:
8317 return "DW_AT_HP_actuals_stmt_list";
8318 case DW_AT_HP_proc_per_section:
8319 return "DW_AT_HP_proc_per_section";
8320 case DW_AT_HP_raw_data_ptr:
8321 return "DW_AT_HP_raw_data_ptr";
8322 case DW_AT_HP_pass_by_reference:
8323 return "DW_AT_HP_pass_by_reference";
8324 case DW_AT_HP_opt_level:
8325 return "DW_AT_HP_opt_level";
8326 case DW_AT_HP_prof_version_id:
8327 return "DW_AT_HP_prof_version_id";
8328 case DW_AT_HP_opt_flags:
8329 return "DW_AT_HP_opt_flags";
8330 case DW_AT_HP_cold_region_low_pc:
8331 return "DW_AT_HP_cold_region_low_pc";
8332 case DW_AT_HP_cold_region_high_pc:
8333 return "DW_AT_HP_cold_region_high_pc";
8334 case DW_AT_HP_all_variables_modifiable:
8335 return "DW_AT_HP_all_variables_modifiable";
8336 case DW_AT_HP_linkage_name:
8337 return "DW_AT_HP_linkage_name";
8338 case DW_AT_HP_prof_flags:
8339 return "DW_AT_HP_prof_flags";
8340 /* GNU extensions. */
8341 case DW_AT_sf_names:
8342 return "DW_AT_sf_names";
8343 case DW_AT_src_info:
8344 return "DW_AT_src_info";
8345 case DW_AT_mac_info:
8346 return "DW_AT_mac_info";
8347 case DW_AT_src_coords:
8348 return "DW_AT_src_coords";
8349 case DW_AT_body_begin:
8350 return "DW_AT_body_begin";
8351 case DW_AT_body_end:
8352 return "DW_AT_body_end";
8353 case DW_AT_GNU_vector:
8354 return "DW_AT_GNU_vector";
8355 /* VMS extensions. */
8356 case DW_AT_VMS_rtnbeg_pd_address:
8357 return "DW_AT_VMS_rtnbeg_pd_address";
8358 /* UPC extension. */
8359 case DW_AT_upc_threads_scaled:
8360 return "DW_AT_upc_threads_scaled";
8361 /* PGI (STMicroelectronics) extensions. */
8362 case DW_AT_PGI_lbase:
8363 return "DW_AT_PGI_lbase";
8364 case DW_AT_PGI_soffset:
8365 return "DW_AT_PGI_soffset";
8366 case DW_AT_PGI_lstride:
8367 return "DW_AT_PGI_lstride";
8368 default:
8369 return "DW_AT_<unknown>";
8370 }
8371 }
8372
8373 /* Convert a DWARF value form code into its string name. */
8374
8375 static char *
8376 dwarf_form_name (unsigned form)
8377 {
8378 switch (form)
8379 {
8380 case DW_FORM_addr:
8381 return "DW_FORM_addr";
8382 case DW_FORM_block2:
8383 return "DW_FORM_block2";
8384 case DW_FORM_block4:
8385 return "DW_FORM_block4";
8386 case DW_FORM_data2:
8387 return "DW_FORM_data2";
8388 case DW_FORM_data4:
8389 return "DW_FORM_data4";
8390 case DW_FORM_data8:
8391 return "DW_FORM_data8";
8392 case DW_FORM_string:
8393 return "DW_FORM_string";
8394 case DW_FORM_block:
8395 return "DW_FORM_block";
8396 case DW_FORM_block1:
8397 return "DW_FORM_block1";
8398 case DW_FORM_data1:
8399 return "DW_FORM_data1";
8400 case DW_FORM_flag:
8401 return "DW_FORM_flag";
8402 case DW_FORM_sdata:
8403 return "DW_FORM_sdata";
8404 case DW_FORM_strp:
8405 return "DW_FORM_strp";
8406 case DW_FORM_udata:
8407 return "DW_FORM_udata";
8408 case DW_FORM_ref_addr:
8409 return "DW_FORM_ref_addr";
8410 case DW_FORM_ref1:
8411 return "DW_FORM_ref1";
8412 case DW_FORM_ref2:
8413 return "DW_FORM_ref2";
8414 case DW_FORM_ref4:
8415 return "DW_FORM_ref4";
8416 case DW_FORM_ref8:
8417 return "DW_FORM_ref8";
8418 case DW_FORM_ref_udata:
8419 return "DW_FORM_ref_udata";
8420 case DW_FORM_indirect:
8421 return "DW_FORM_indirect";
8422 default:
8423 return "DW_FORM_<unknown>";
8424 }
8425 }
8426
8427 /* Convert a DWARF stack opcode into its string name. */
8428
8429 static char *
8430 dwarf_stack_op_name (unsigned op)
8431 {
8432 switch (op)
8433 {
8434 case DW_OP_addr:
8435 return "DW_OP_addr";
8436 case DW_OP_deref:
8437 return "DW_OP_deref";
8438 case DW_OP_const1u:
8439 return "DW_OP_const1u";
8440 case DW_OP_const1s:
8441 return "DW_OP_const1s";
8442 case DW_OP_const2u:
8443 return "DW_OP_const2u";
8444 case DW_OP_const2s:
8445 return "DW_OP_const2s";
8446 case DW_OP_const4u:
8447 return "DW_OP_const4u";
8448 case DW_OP_const4s:
8449 return "DW_OP_const4s";
8450 case DW_OP_const8u:
8451 return "DW_OP_const8u";
8452 case DW_OP_const8s:
8453 return "DW_OP_const8s";
8454 case DW_OP_constu:
8455 return "DW_OP_constu";
8456 case DW_OP_consts:
8457 return "DW_OP_consts";
8458 case DW_OP_dup:
8459 return "DW_OP_dup";
8460 case DW_OP_drop:
8461 return "DW_OP_drop";
8462 case DW_OP_over:
8463 return "DW_OP_over";
8464 case DW_OP_pick:
8465 return "DW_OP_pick";
8466 case DW_OP_swap:
8467 return "DW_OP_swap";
8468 case DW_OP_rot:
8469 return "DW_OP_rot";
8470 case DW_OP_xderef:
8471 return "DW_OP_xderef";
8472 case DW_OP_abs:
8473 return "DW_OP_abs";
8474 case DW_OP_and:
8475 return "DW_OP_and";
8476 case DW_OP_div:
8477 return "DW_OP_div";
8478 case DW_OP_minus:
8479 return "DW_OP_minus";
8480 case DW_OP_mod:
8481 return "DW_OP_mod";
8482 case DW_OP_mul:
8483 return "DW_OP_mul";
8484 case DW_OP_neg:
8485 return "DW_OP_neg";
8486 case DW_OP_not:
8487 return "DW_OP_not";
8488 case DW_OP_or:
8489 return "DW_OP_or";
8490 case DW_OP_plus:
8491 return "DW_OP_plus";
8492 case DW_OP_plus_uconst:
8493 return "DW_OP_plus_uconst";
8494 case DW_OP_shl:
8495 return "DW_OP_shl";
8496 case DW_OP_shr:
8497 return "DW_OP_shr";
8498 case DW_OP_shra:
8499 return "DW_OP_shra";
8500 case DW_OP_xor:
8501 return "DW_OP_xor";
8502 case DW_OP_bra:
8503 return "DW_OP_bra";
8504 case DW_OP_eq:
8505 return "DW_OP_eq";
8506 case DW_OP_ge:
8507 return "DW_OP_ge";
8508 case DW_OP_gt:
8509 return "DW_OP_gt";
8510 case DW_OP_le:
8511 return "DW_OP_le";
8512 case DW_OP_lt:
8513 return "DW_OP_lt";
8514 case DW_OP_ne:
8515 return "DW_OP_ne";
8516 case DW_OP_skip:
8517 return "DW_OP_skip";
8518 case DW_OP_lit0:
8519 return "DW_OP_lit0";
8520 case DW_OP_lit1:
8521 return "DW_OP_lit1";
8522 case DW_OP_lit2:
8523 return "DW_OP_lit2";
8524 case DW_OP_lit3:
8525 return "DW_OP_lit3";
8526 case DW_OP_lit4:
8527 return "DW_OP_lit4";
8528 case DW_OP_lit5:
8529 return "DW_OP_lit5";
8530 case DW_OP_lit6:
8531 return "DW_OP_lit6";
8532 case DW_OP_lit7:
8533 return "DW_OP_lit7";
8534 case DW_OP_lit8:
8535 return "DW_OP_lit8";
8536 case DW_OP_lit9:
8537 return "DW_OP_lit9";
8538 case DW_OP_lit10:
8539 return "DW_OP_lit10";
8540 case DW_OP_lit11:
8541 return "DW_OP_lit11";
8542 case DW_OP_lit12:
8543 return "DW_OP_lit12";
8544 case DW_OP_lit13:
8545 return "DW_OP_lit13";
8546 case DW_OP_lit14:
8547 return "DW_OP_lit14";
8548 case DW_OP_lit15:
8549 return "DW_OP_lit15";
8550 case DW_OP_lit16:
8551 return "DW_OP_lit16";
8552 case DW_OP_lit17:
8553 return "DW_OP_lit17";
8554 case DW_OP_lit18:
8555 return "DW_OP_lit18";
8556 case DW_OP_lit19:
8557 return "DW_OP_lit19";
8558 case DW_OP_lit20:
8559 return "DW_OP_lit20";
8560 case DW_OP_lit21:
8561 return "DW_OP_lit21";
8562 case DW_OP_lit22:
8563 return "DW_OP_lit22";
8564 case DW_OP_lit23:
8565 return "DW_OP_lit23";
8566 case DW_OP_lit24:
8567 return "DW_OP_lit24";
8568 case DW_OP_lit25:
8569 return "DW_OP_lit25";
8570 case DW_OP_lit26:
8571 return "DW_OP_lit26";
8572 case DW_OP_lit27:
8573 return "DW_OP_lit27";
8574 case DW_OP_lit28:
8575 return "DW_OP_lit28";
8576 case DW_OP_lit29:
8577 return "DW_OP_lit29";
8578 case DW_OP_lit30:
8579 return "DW_OP_lit30";
8580 case DW_OP_lit31:
8581 return "DW_OP_lit31";
8582 case DW_OP_reg0:
8583 return "DW_OP_reg0";
8584 case DW_OP_reg1:
8585 return "DW_OP_reg1";
8586 case DW_OP_reg2:
8587 return "DW_OP_reg2";
8588 case DW_OP_reg3:
8589 return "DW_OP_reg3";
8590 case DW_OP_reg4:
8591 return "DW_OP_reg4";
8592 case DW_OP_reg5:
8593 return "DW_OP_reg5";
8594 case DW_OP_reg6:
8595 return "DW_OP_reg6";
8596 case DW_OP_reg7:
8597 return "DW_OP_reg7";
8598 case DW_OP_reg8:
8599 return "DW_OP_reg8";
8600 case DW_OP_reg9:
8601 return "DW_OP_reg9";
8602 case DW_OP_reg10:
8603 return "DW_OP_reg10";
8604 case DW_OP_reg11:
8605 return "DW_OP_reg11";
8606 case DW_OP_reg12:
8607 return "DW_OP_reg12";
8608 case DW_OP_reg13:
8609 return "DW_OP_reg13";
8610 case DW_OP_reg14:
8611 return "DW_OP_reg14";
8612 case DW_OP_reg15:
8613 return "DW_OP_reg15";
8614 case DW_OP_reg16:
8615 return "DW_OP_reg16";
8616 case DW_OP_reg17:
8617 return "DW_OP_reg17";
8618 case DW_OP_reg18:
8619 return "DW_OP_reg18";
8620 case DW_OP_reg19:
8621 return "DW_OP_reg19";
8622 case DW_OP_reg20:
8623 return "DW_OP_reg20";
8624 case DW_OP_reg21:
8625 return "DW_OP_reg21";
8626 case DW_OP_reg22:
8627 return "DW_OP_reg22";
8628 case DW_OP_reg23:
8629 return "DW_OP_reg23";
8630 case DW_OP_reg24:
8631 return "DW_OP_reg24";
8632 case DW_OP_reg25:
8633 return "DW_OP_reg25";
8634 case DW_OP_reg26:
8635 return "DW_OP_reg26";
8636 case DW_OP_reg27:
8637 return "DW_OP_reg27";
8638 case DW_OP_reg28:
8639 return "DW_OP_reg28";
8640 case DW_OP_reg29:
8641 return "DW_OP_reg29";
8642 case DW_OP_reg30:
8643 return "DW_OP_reg30";
8644 case DW_OP_reg31:
8645 return "DW_OP_reg31";
8646 case DW_OP_breg0:
8647 return "DW_OP_breg0";
8648 case DW_OP_breg1:
8649 return "DW_OP_breg1";
8650 case DW_OP_breg2:
8651 return "DW_OP_breg2";
8652 case DW_OP_breg3:
8653 return "DW_OP_breg3";
8654 case DW_OP_breg4:
8655 return "DW_OP_breg4";
8656 case DW_OP_breg5:
8657 return "DW_OP_breg5";
8658 case DW_OP_breg6:
8659 return "DW_OP_breg6";
8660 case DW_OP_breg7:
8661 return "DW_OP_breg7";
8662 case DW_OP_breg8:
8663 return "DW_OP_breg8";
8664 case DW_OP_breg9:
8665 return "DW_OP_breg9";
8666 case DW_OP_breg10:
8667 return "DW_OP_breg10";
8668 case DW_OP_breg11:
8669 return "DW_OP_breg11";
8670 case DW_OP_breg12:
8671 return "DW_OP_breg12";
8672 case DW_OP_breg13:
8673 return "DW_OP_breg13";
8674 case DW_OP_breg14:
8675 return "DW_OP_breg14";
8676 case DW_OP_breg15:
8677 return "DW_OP_breg15";
8678 case DW_OP_breg16:
8679 return "DW_OP_breg16";
8680 case DW_OP_breg17:
8681 return "DW_OP_breg17";
8682 case DW_OP_breg18:
8683 return "DW_OP_breg18";
8684 case DW_OP_breg19:
8685 return "DW_OP_breg19";
8686 case DW_OP_breg20:
8687 return "DW_OP_breg20";
8688 case DW_OP_breg21:
8689 return "DW_OP_breg21";
8690 case DW_OP_breg22:
8691 return "DW_OP_breg22";
8692 case DW_OP_breg23:
8693 return "DW_OP_breg23";
8694 case DW_OP_breg24:
8695 return "DW_OP_breg24";
8696 case DW_OP_breg25:
8697 return "DW_OP_breg25";
8698 case DW_OP_breg26:
8699 return "DW_OP_breg26";
8700 case DW_OP_breg27:
8701 return "DW_OP_breg27";
8702 case DW_OP_breg28:
8703 return "DW_OP_breg28";
8704 case DW_OP_breg29:
8705 return "DW_OP_breg29";
8706 case DW_OP_breg30:
8707 return "DW_OP_breg30";
8708 case DW_OP_breg31:
8709 return "DW_OP_breg31";
8710 case DW_OP_regx:
8711 return "DW_OP_regx";
8712 case DW_OP_fbreg:
8713 return "DW_OP_fbreg";
8714 case DW_OP_bregx:
8715 return "DW_OP_bregx";
8716 case DW_OP_piece:
8717 return "DW_OP_piece";
8718 case DW_OP_deref_size:
8719 return "DW_OP_deref_size";
8720 case DW_OP_xderef_size:
8721 return "DW_OP_xderef_size";
8722 case DW_OP_nop:
8723 return "DW_OP_nop";
8724 /* DWARF 3 extensions. */
8725 case DW_OP_push_object_address:
8726 return "DW_OP_push_object_address";
8727 case DW_OP_call2:
8728 return "DW_OP_call2";
8729 case DW_OP_call4:
8730 return "DW_OP_call4";
8731 case DW_OP_call_ref:
8732 return "DW_OP_call_ref";
8733 /* GNU extensions. */
8734 case DW_OP_form_tls_address:
8735 return "DW_OP_form_tls_address";
8736 case DW_OP_call_frame_cfa:
8737 return "DW_OP_call_frame_cfa";
8738 case DW_OP_bit_piece:
8739 return "DW_OP_bit_piece";
8740 case DW_OP_GNU_push_tls_address:
8741 return "DW_OP_GNU_push_tls_address";
8742 case DW_OP_GNU_uninit:
8743 return "DW_OP_GNU_uninit";
8744 /* HP extensions. */
8745 case DW_OP_HP_is_value:
8746 return "DW_OP_HP_is_value";
8747 case DW_OP_HP_fltconst4:
8748 return "DW_OP_HP_fltconst4";
8749 case DW_OP_HP_fltconst8:
8750 return "DW_OP_HP_fltconst8";
8751 case DW_OP_HP_mod_range:
8752 return "DW_OP_HP_mod_range";
8753 case DW_OP_HP_unmod_range:
8754 return "DW_OP_HP_unmod_range";
8755 case DW_OP_HP_tls:
8756 return "DW_OP_HP_tls";
8757 default:
8758 return "OP_<unknown>";
8759 }
8760 }
8761
8762 static char *
8763 dwarf_bool_name (unsigned mybool)
8764 {
8765 if (mybool)
8766 return "TRUE";
8767 else
8768 return "FALSE";
8769 }
8770
8771 /* Convert a DWARF type code into its string name. */
8772
8773 static char *
8774 dwarf_type_encoding_name (unsigned enc)
8775 {
8776 switch (enc)
8777 {
8778 case DW_ATE_void:
8779 return "DW_ATE_void";
8780 case DW_ATE_address:
8781 return "DW_ATE_address";
8782 case DW_ATE_boolean:
8783 return "DW_ATE_boolean";
8784 case DW_ATE_complex_float:
8785 return "DW_ATE_complex_float";
8786 case DW_ATE_float:
8787 return "DW_ATE_float";
8788 case DW_ATE_signed:
8789 return "DW_ATE_signed";
8790 case DW_ATE_signed_char:
8791 return "DW_ATE_signed_char";
8792 case DW_ATE_unsigned:
8793 return "DW_ATE_unsigned";
8794 case DW_ATE_unsigned_char:
8795 return "DW_ATE_unsigned_char";
8796 /* DWARF 3. */
8797 case DW_ATE_imaginary_float:
8798 return "DW_ATE_imaginary_float";
8799 case DW_ATE_packed_decimal:
8800 return "DW_ATE_packed_decimal";
8801 case DW_ATE_numeric_string:
8802 return "DW_ATE_numeric_string";
8803 case DW_ATE_edited:
8804 return "DW_ATE_edited";
8805 case DW_ATE_signed_fixed:
8806 return "DW_ATE_signed_fixed";
8807 case DW_ATE_unsigned_fixed:
8808 return "DW_ATE_unsigned_fixed";
8809 case DW_ATE_decimal_float:
8810 return "DW_ATE_decimal_float";
8811 /* HP extensions. */
8812 case DW_ATE_HP_float80:
8813 return "DW_ATE_HP_float80";
8814 case DW_ATE_HP_complex_float80:
8815 return "DW_ATE_HP_complex_float80";
8816 case DW_ATE_HP_float128:
8817 return "DW_ATE_HP_float128";
8818 case DW_ATE_HP_complex_float128:
8819 return "DW_ATE_HP_complex_float128";
8820 case DW_ATE_HP_floathpintel:
8821 return "DW_ATE_HP_floathpintel";
8822 case DW_ATE_HP_imaginary_float80:
8823 return "DW_ATE_HP_imaginary_float80";
8824 case DW_ATE_HP_imaginary_float128:
8825 return "DW_ATE_HP_imaginary_float128";
8826 default:
8827 return "DW_ATE_<unknown>";
8828 }
8829 }
8830
8831 /* Convert a DWARF call frame info operation to its string name. */
8832
8833 #if 0
8834 static char *
8835 dwarf_cfi_name (unsigned cfi_opc)
8836 {
8837 switch (cfi_opc)
8838 {
8839 case DW_CFA_advance_loc:
8840 return "DW_CFA_advance_loc";
8841 case DW_CFA_offset:
8842 return "DW_CFA_offset";
8843 case DW_CFA_restore:
8844 return "DW_CFA_restore";
8845 case DW_CFA_nop:
8846 return "DW_CFA_nop";
8847 case DW_CFA_set_loc:
8848 return "DW_CFA_set_loc";
8849 case DW_CFA_advance_loc1:
8850 return "DW_CFA_advance_loc1";
8851 case DW_CFA_advance_loc2:
8852 return "DW_CFA_advance_loc2";
8853 case DW_CFA_advance_loc4:
8854 return "DW_CFA_advance_loc4";
8855 case DW_CFA_offset_extended:
8856 return "DW_CFA_offset_extended";
8857 case DW_CFA_restore_extended:
8858 return "DW_CFA_restore_extended";
8859 case DW_CFA_undefined:
8860 return "DW_CFA_undefined";
8861 case DW_CFA_same_value:
8862 return "DW_CFA_same_value";
8863 case DW_CFA_register:
8864 return "DW_CFA_register";
8865 case DW_CFA_remember_state:
8866 return "DW_CFA_remember_state";
8867 case DW_CFA_restore_state:
8868 return "DW_CFA_restore_state";
8869 case DW_CFA_def_cfa:
8870 return "DW_CFA_def_cfa";
8871 case DW_CFA_def_cfa_register:
8872 return "DW_CFA_def_cfa_register";
8873 case DW_CFA_def_cfa_offset:
8874 return "DW_CFA_def_cfa_offset";
8875 /* DWARF 3. */
8876 case DW_CFA_def_cfa_expression:
8877 return "DW_CFA_def_cfa_expression";
8878 case DW_CFA_expression:
8879 return "DW_CFA_expression";
8880 case DW_CFA_offset_extended_sf:
8881 return "DW_CFA_offset_extended_sf";
8882 case DW_CFA_def_cfa_sf:
8883 return "DW_CFA_def_cfa_sf";
8884 case DW_CFA_def_cfa_offset_sf:
8885 return "DW_CFA_def_cfa_offset_sf";
8886 case DW_CFA_val_offset:
8887 return "DW_CFA_val_offset";
8888 case DW_CFA_val_offset_sf:
8889 return "DW_CFA_val_offset_sf";
8890 case DW_CFA_val_expression:
8891 return "DW_CFA_val_expression";
8892 /* SGI/MIPS specific. */
8893 case DW_CFA_MIPS_advance_loc8:
8894 return "DW_CFA_MIPS_advance_loc8";
8895 /* GNU extensions. */
8896 case DW_CFA_GNU_window_save:
8897 return "DW_CFA_GNU_window_save";
8898 case DW_CFA_GNU_args_size:
8899 return "DW_CFA_GNU_args_size";
8900 case DW_CFA_GNU_negative_offset_extended:
8901 return "DW_CFA_GNU_negative_offset_extended";
8902 default:
8903 return "DW_CFA_<unknown>";
8904 }
8905 }
8906 #endif
8907
8908 static void
8909 dump_die (struct die_info *die)
8910 {
8911 unsigned int i;
8912
8913 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8914 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8915 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8916 dwarf_bool_name (die->child != NULL));
8917
8918 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8919 for (i = 0; i < die->num_attrs; ++i)
8920 {
8921 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8922 dwarf_attr_name (die->attrs[i].name),
8923 dwarf_form_name (die->attrs[i].form));
8924 switch (die->attrs[i].form)
8925 {
8926 case DW_FORM_ref_addr:
8927 case DW_FORM_addr:
8928 fprintf_unfiltered (gdb_stderr, "address: ");
8929 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8930 break;
8931 case DW_FORM_block2:
8932 case DW_FORM_block4:
8933 case DW_FORM_block:
8934 case DW_FORM_block1:
8935 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8936 break;
8937 case DW_FORM_ref1:
8938 case DW_FORM_ref2:
8939 case DW_FORM_ref4:
8940 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8941 (long) (DW_ADDR (&die->attrs[i])));
8942 break;
8943 case DW_FORM_data1:
8944 case DW_FORM_data2:
8945 case DW_FORM_data4:
8946 case DW_FORM_data8:
8947 case DW_FORM_udata:
8948 case DW_FORM_sdata:
8949 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8950 break;
8951 case DW_FORM_string:
8952 case DW_FORM_strp:
8953 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8954 DW_STRING (&die->attrs[i])
8955 ? DW_STRING (&die->attrs[i]) : "");
8956 break;
8957 case DW_FORM_flag:
8958 if (DW_UNSND (&die->attrs[i]))
8959 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8960 else
8961 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8962 break;
8963 case DW_FORM_indirect:
8964 /* the reader will have reduced the indirect form to
8965 the "base form" so this form should not occur */
8966 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8967 break;
8968 default:
8969 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8970 die->attrs[i].form);
8971 }
8972 fprintf_unfiltered (gdb_stderr, "\n");
8973 }
8974 }
8975
8976 static void
8977 dump_die_list (struct die_info *die)
8978 {
8979 while (die)
8980 {
8981 dump_die (die);
8982 if (die->child != NULL)
8983 dump_die_list (die->child);
8984 if (die->sibling != NULL)
8985 dump_die_list (die->sibling);
8986 }
8987 }
8988
8989 static void
8990 store_in_ref_table (unsigned int offset, struct die_info *die,
8991 struct dwarf2_cu *cu)
8992 {
8993 int h;
8994 struct die_info *old;
8995
8996 h = (offset % REF_HASH_SIZE);
8997 old = cu->die_ref_table[h];
8998 die->next_ref = old;
8999 cu->die_ref_table[h] = die;
9000 }
9001
9002 static unsigned int
9003 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
9004 {
9005 unsigned int result = 0;
9006
9007 switch (attr->form)
9008 {
9009 case DW_FORM_ref_addr:
9010 case DW_FORM_ref1:
9011 case DW_FORM_ref2:
9012 case DW_FORM_ref4:
9013 case DW_FORM_ref8:
9014 case DW_FORM_ref_udata:
9015 result = DW_ADDR (attr);
9016 break;
9017 default:
9018 complaint (&symfile_complaints,
9019 _("unsupported die ref attribute form: '%s'"),
9020 dwarf_form_name (attr->form));
9021 }
9022 return result;
9023 }
9024
9025 /* Return the constant value held by the given attribute. Return -1
9026 if the value held by the attribute is not constant. */
9027
9028 static int
9029 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9030 {
9031 if (attr->form == DW_FORM_sdata)
9032 return DW_SND (attr);
9033 else if (attr->form == DW_FORM_udata
9034 || attr->form == DW_FORM_data1
9035 || attr->form == DW_FORM_data2
9036 || attr->form == DW_FORM_data4
9037 || attr->form == DW_FORM_data8)
9038 return DW_UNSND (attr);
9039 else
9040 {
9041 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
9042 dwarf_form_name (attr->form));
9043 return default_value;
9044 }
9045 }
9046
9047 static struct die_info *
9048 follow_die_ref (struct die_info *src_die, struct attribute *attr,
9049 struct dwarf2_cu *cu)
9050 {
9051 struct die_info *die;
9052 unsigned int offset;
9053 int h;
9054 struct die_info temp_die;
9055 struct dwarf2_cu *target_cu;
9056
9057 offset = dwarf2_get_ref_die_offset (attr, cu);
9058
9059 if (DW_ADDR (attr) < cu->header.offset
9060 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9061 {
9062 struct dwarf2_per_cu_data *per_cu;
9063 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9064 cu->objfile);
9065 target_cu = per_cu->cu;
9066 }
9067 else
9068 target_cu = cu;
9069
9070 h = (offset % REF_HASH_SIZE);
9071 die = target_cu->die_ref_table[h];
9072 while (die)
9073 {
9074 if (die->offset == offset)
9075 return die;
9076 die = die->next_ref;
9077 }
9078
9079 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9080 "at 0x%lx [in module %s]"),
9081 (long) src_die->offset, (long) offset, cu->objfile->name);
9082
9083 return NULL;
9084 }
9085
9086 /* Decode simple location descriptions.
9087 Given a pointer to a dwarf block that defines a location, compute
9088 the location and return the value.
9089
9090 NOTE drow/2003-11-18: This function is called in two situations
9091 now: for the address of static or global variables (partial symbols
9092 only) and for offsets into structures which are expected to be
9093 (more or less) constant. The partial symbol case should go away,
9094 and only the constant case should remain. That will let this
9095 function complain more accurately. A few special modes are allowed
9096 without complaint for global variables (for instance, global
9097 register values and thread-local values).
9098
9099 A location description containing no operations indicates that the
9100 object is optimized out. The return value is 0 for that case.
9101 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9102 callers will only want a very basic result and this can become a
9103 complaint.
9104
9105 Note that stack[0] is unused except as a default error return.
9106 Note that stack overflow is not yet handled. */
9107
9108 static CORE_ADDR
9109 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9110 {
9111 struct objfile *objfile = cu->objfile;
9112 struct comp_unit_head *cu_header = &cu->header;
9113 int i;
9114 int size = blk->size;
9115 gdb_byte *data = blk->data;
9116 CORE_ADDR stack[64];
9117 int stacki;
9118 unsigned int bytes_read, unsnd;
9119 gdb_byte op;
9120
9121 i = 0;
9122 stacki = 0;
9123 stack[stacki] = 0;
9124
9125 while (i < size)
9126 {
9127 op = data[i++];
9128 switch (op)
9129 {
9130 case DW_OP_lit0:
9131 case DW_OP_lit1:
9132 case DW_OP_lit2:
9133 case DW_OP_lit3:
9134 case DW_OP_lit4:
9135 case DW_OP_lit5:
9136 case DW_OP_lit6:
9137 case DW_OP_lit7:
9138 case DW_OP_lit8:
9139 case DW_OP_lit9:
9140 case DW_OP_lit10:
9141 case DW_OP_lit11:
9142 case DW_OP_lit12:
9143 case DW_OP_lit13:
9144 case DW_OP_lit14:
9145 case DW_OP_lit15:
9146 case DW_OP_lit16:
9147 case DW_OP_lit17:
9148 case DW_OP_lit18:
9149 case DW_OP_lit19:
9150 case DW_OP_lit20:
9151 case DW_OP_lit21:
9152 case DW_OP_lit22:
9153 case DW_OP_lit23:
9154 case DW_OP_lit24:
9155 case DW_OP_lit25:
9156 case DW_OP_lit26:
9157 case DW_OP_lit27:
9158 case DW_OP_lit28:
9159 case DW_OP_lit29:
9160 case DW_OP_lit30:
9161 case DW_OP_lit31:
9162 stack[++stacki] = op - DW_OP_lit0;
9163 break;
9164
9165 case DW_OP_reg0:
9166 case DW_OP_reg1:
9167 case DW_OP_reg2:
9168 case DW_OP_reg3:
9169 case DW_OP_reg4:
9170 case DW_OP_reg5:
9171 case DW_OP_reg6:
9172 case DW_OP_reg7:
9173 case DW_OP_reg8:
9174 case DW_OP_reg9:
9175 case DW_OP_reg10:
9176 case DW_OP_reg11:
9177 case DW_OP_reg12:
9178 case DW_OP_reg13:
9179 case DW_OP_reg14:
9180 case DW_OP_reg15:
9181 case DW_OP_reg16:
9182 case DW_OP_reg17:
9183 case DW_OP_reg18:
9184 case DW_OP_reg19:
9185 case DW_OP_reg20:
9186 case DW_OP_reg21:
9187 case DW_OP_reg22:
9188 case DW_OP_reg23:
9189 case DW_OP_reg24:
9190 case DW_OP_reg25:
9191 case DW_OP_reg26:
9192 case DW_OP_reg27:
9193 case DW_OP_reg28:
9194 case DW_OP_reg29:
9195 case DW_OP_reg30:
9196 case DW_OP_reg31:
9197 stack[++stacki] = op - DW_OP_reg0;
9198 if (i < size)
9199 dwarf2_complex_location_expr_complaint ();
9200 break;
9201
9202 case DW_OP_regx:
9203 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9204 i += bytes_read;
9205 stack[++stacki] = unsnd;
9206 if (i < size)
9207 dwarf2_complex_location_expr_complaint ();
9208 break;
9209
9210 case DW_OP_addr:
9211 stack[++stacki] = read_address (objfile->obfd, &data[i],
9212 cu, &bytes_read);
9213 i += bytes_read;
9214 break;
9215
9216 case DW_OP_const1u:
9217 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9218 i += 1;
9219 break;
9220
9221 case DW_OP_const1s:
9222 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9223 i += 1;
9224 break;
9225
9226 case DW_OP_const2u:
9227 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9228 i += 2;
9229 break;
9230
9231 case DW_OP_const2s:
9232 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9233 i += 2;
9234 break;
9235
9236 case DW_OP_const4u:
9237 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9238 i += 4;
9239 break;
9240
9241 case DW_OP_const4s:
9242 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9243 i += 4;
9244 break;
9245
9246 case DW_OP_constu:
9247 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9248 &bytes_read);
9249 i += bytes_read;
9250 break;
9251
9252 case DW_OP_consts:
9253 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9254 i += bytes_read;
9255 break;
9256
9257 case DW_OP_dup:
9258 stack[stacki + 1] = stack[stacki];
9259 stacki++;
9260 break;
9261
9262 case DW_OP_plus:
9263 stack[stacki - 1] += stack[stacki];
9264 stacki--;
9265 break;
9266
9267 case DW_OP_plus_uconst:
9268 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9269 i += bytes_read;
9270 break;
9271
9272 case DW_OP_minus:
9273 stack[stacki - 1] -= stack[stacki];
9274 stacki--;
9275 break;
9276
9277 case DW_OP_deref:
9278 /* If we're not the last op, then we definitely can't encode
9279 this using GDB's address_class enum. This is valid for partial
9280 global symbols, although the variable's address will be bogus
9281 in the psymtab. */
9282 if (i < size)
9283 dwarf2_complex_location_expr_complaint ();
9284 break;
9285
9286 case DW_OP_GNU_push_tls_address:
9287 /* The top of the stack has the offset from the beginning
9288 of the thread control block at which the variable is located. */
9289 /* Nothing should follow this operator, so the top of stack would
9290 be returned. */
9291 /* This is valid for partial global symbols, but the variable's
9292 address will be bogus in the psymtab. */
9293 if (i < size)
9294 dwarf2_complex_location_expr_complaint ();
9295 break;
9296
9297 case DW_OP_GNU_uninit:
9298 break;
9299
9300 default:
9301 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9302 dwarf_stack_op_name (op));
9303 return (stack[stacki]);
9304 }
9305 }
9306 return (stack[stacki]);
9307 }
9308
9309 /* memory allocation interface */
9310
9311 static struct dwarf_block *
9312 dwarf_alloc_block (struct dwarf2_cu *cu)
9313 {
9314 struct dwarf_block *blk;
9315
9316 blk = (struct dwarf_block *)
9317 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9318 return (blk);
9319 }
9320
9321 static struct abbrev_info *
9322 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9323 {
9324 struct abbrev_info *abbrev;
9325
9326 abbrev = (struct abbrev_info *)
9327 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9328 memset (abbrev, 0, sizeof (struct abbrev_info));
9329 return (abbrev);
9330 }
9331
9332 static struct die_info *
9333 dwarf_alloc_die (void)
9334 {
9335 struct die_info *die;
9336
9337 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9338 memset (die, 0, sizeof (struct die_info));
9339 return (die);
9340 }
9341
9342 \f
9343 /* Macro support. */
9344
9345
9346 /* Return the full name of file number I in *LH's file name table.
9347 Use COMP_DIR as the name of the current directory of the
9348 compilation. The result is allocated using xmalloc; the caller is
9349 responsible for freeing it. */
9350 static char *
9351 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9352 {
9353 /* Is the file number a valid index into the line header's file name
9354 table? Remember that file numbers start with one, not zero. */
9355 if (1 <= file && file <= lh->num_file_names)
9356 {
9357 struct file_entry *fe = &lh->file_names[file - 1];
9358
9359 if (IS_ABSOLUTE_PATH (fe->name))
9360 return xstrdup (fe->name);
9361 else
9362 {
9363 const char *dir;
9364 int dir_len;
9365 char *full_name;
9366
9367 if (fe->dir_index)
9368 dir = lh->include_dirs[fe->dir_index - 1];
9369 else
9370 dir = comp_dir;
9371
9372 if (dir)
9373 {
9374 dir_len = strlen (dir);
9375 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9376 strcpy (full_name, dir);
9377 full_name[dir_len] = '/';
9378 strcpy (full_name + dir_len + 1, fe->name);
9379 return full_name;
9380 }
9381 else
9382 return xstrdup (fe->name);
9383 }
9384 }
9385 else
9386 {
9387 /* The compiler produced a bogus file number. We can at least
9388 record the macro definitions made in the file, even if we
9389 won't be able to find the file by name. */
9390 char fake_name[80];
9391 sprintf (fake_name, "<bad macro file number %d>", file);
9392
9393 complaint (&symfile_complaints,
9394 _("bad file number in macro information (%d)"),
9395 file);
9396
9397 return xstrdup (fake_name);
9398 }
9399 }
9400
9401
9402 static struct macro_source_file *
9403 macro_start_file (int file, int line,
9404 struct macro_source_file *current_file,
9405 const char *comp_dir,
9406 struct line_header *lh, struct objfile *objfile)
9407 {
9408 /* The full name of this source file. */
9409 char *full_name = file_full_name (file, lh, comp_dir);
9410
9411 /* We don't create a macro table for this compilation unit
9412 at all until we actually get a filename. */
9413 if (! pending_macros)
9414 pending_macros = new_macro_table (&objfile->objfile_obstack,
9415 objfile->macro_cache);
9416
9417 if (! current_file)
9418 /* If we have no current file, then this must be the start_file
9419 directive for the compilation unit's main source file. */
9420 current_file = macro_set_main (pending_macros, full_name);
9421 else
9422 current_file = macro_include (current_file, line, full_name);
9423
9424 xfree (full_name);
9425
9426 return current_file;
9427 }
9428
9429
9430 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9431 followed by a null byte. */
9432 static char *
9433 copy_string (const char *buf, int len)
9434 {
9435 char *s = xmalloc (len + 1);
9436 memcpy (s, buf, len);
9437 s[len] = '\0';
9438
9439 return s;
9440 }
9441
9442
9443 static const char *
9444 consume_improper_spaces (const char *p, const char *body)
9445 {
9446 if (*p == ' ')
9447 {
9448 complaint (&symfile_complaints,
9449 _("macro definition contains spaces in formal argument list:\n`%s'"),
9450 body);
9451
9452 while (*p == ' ')
9453 p++;
9454 }
9455
9456 return p;
9457 }
9458
9459
9460 static void
9461 parse_macro_definition (struct macro_source_file *file, int line,
9462 const char *body)
9463 {
9464 const char *p;
9465
9466 /* The body string takes one of two forms. For object-like macro
9467 definitions, it should be:
9468
9469 <macro name> " " <definition>
9470
9471 For function-like macro definitions, it should be:
9472
9473 <macro name> "() " <definition>
9474 or
9475 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9476
9477 Spaces may appear only where explicitly indicated, and in the
9478 <definition>.
9479
9480 The Dwarf 2 spec says that an object-like macro's name is always
9481 followed by a space, but versions of GCC around March 2002 omit
9482 the space when the macro's definition is the empty string.
9483
9484 The Dwarf 2 spec says that there should be no spaces between the
9485 formal arguments in a function-like macro's formal argument list,
9486 but versions of GCC around March 2002 include spaces after the
9487 commas. */
9488
9489
9490 /* Find the extent of the macro name. The macro name is terminated
9491 by either a space or null character (for an object-like macro) or
9492 an opening paren (for a function-like macro). */
9493 for (p = body; *p; p++)
9494 if (*p == ' ' || *p == '(')
9495 break;
9496
9497 if (*p == ' ' || *p == '\0')
9498 {
9499 /* It's an object-like macro. */
9500 int name_len = p - body;
9501 char *name = copy_string (body, name_len);
9502 const char *replacement;
9503
9504 if (*p == ' ')
9505 replacement = body + name_len + 1;
9506 else
9507 {
9508 dwarf2_macro_malformed_definition_complaint (body);
9509 replacement = body + name_len;
9510 }
9511
9512 macro_define_object (file, line, name, replacement);
9513
9514 xfree (name);
9515 }
9516 else if (*p == '(')
9517 {
9518 /* It's a function-like macro. */
9519 char *name = copy_string (body, p - body);
9520 int argc = 0;
9521 int argv_size = 1;
9522 char **argv = xmalloc (argv_size * sizeof (*argv));
9523
9524 p++;
9525
9526 p = consume_improper_spaces (p, body);
9527
9528 /* Parse the formal argument list. */
9529 while (*p && *p != ')')
9530 {
9531 /* Find the extent of the current argument name. */
9532 const char *arg_start = p;
9533
9534 while (*p && *p != ',' && *p != ')' && *p != ' ')
9535 p++;
9536
9537 if (! *p || p == arg_start)
9538 dwarf2_macro_malformed_definition_complaint (body);
9539 else
9540 {
9541 /* Make sure argv has room for the new argument. */
9542 if (argc >= argv_size)
9543 {
9544 argv_size *= 2;
9545 argv = xrealloc (argv, argv_size * sizeof (*argv));
9546 }
9547
9548 argv[argc++] = copy_string (arg_start, p - arg_start);
9549 }
9550
9551 p = consume_improper_spaces (p, body);
9552
9553 /* Consume the comma, if present. */
9554 if (*p == ',')
9555 {
9556 p++;
9557
9558 p = consume_improper_spaces (p, body);
9559 }
9560 }
9561
9562 if (*p == ')')
9563 {
9564 p++;
9565
9566 if (*p == ' ')
9567 /* Perfectly formed definition, no complaints. */
9568 macro_define_function (file, line, name,
9569 argc, (const char **) argv,
9570 p + 1);
9571 else if (*p == '\0')
9572 {
9573 /* Complain, but do define it. */
9574 dwarf2_macro_malformed_definition_complaint (body);
9575 macro_define_function (file, line, name,
9576 argc, (const char **) argv,
9577 p);
9578 }
9579 else
9580 /* Just complain. */
9581 dwarf2_macro_malformed_definition_complaint (body);
9582 }
9583 else
9584 /* Just complain. */
9585 dwarf2_macro_malformed_definition_complaint (body);
9586
9587 xfree (name);
9588 {
9589 int i;
9590
9591 for (i = 0; i < argc; i++)
9592 xfree (argv[i]);
9593 }
9594 xfree (argv);
9595 }
9596 else
9597 dwarf2_macro_malformed_definition_complaint (body);
9598 }
9599
9600
9601 static void
9602 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9603 char *comp_dir, bfd *abfd,
9604 struct dwarf2_cu *cu)
9605 {
9606 gdb_byte *mac_ptr, *mac_end;
9607 struct macro_source_file *current_file = 0;
9608
9609 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9610 {
9611 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9612 return;
9613 }
9614
9615 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9616 mac_end = dwarf2_per_objfile->macinfo_buffer
9617 + dwarf2_per_objfile->macinfo_size;
9618
9619 for (;;)
9620 {
9621 enum dwarf_macinfo_record_type macinfo_type;
9622
9623 /* Do we at least have room for a macinfo type byte? */
9624 if (mac_ptr >= mac_end)
9625 {
9626 dwarf2_macros_too_long_complaint ();
9627 return;
9628 }
9629
9630 macinfo_type = read_1_byte (abfd, mac_ptr);
9631 mac_ptr++;
9632
9633 switch (macinfo_type)
9634 {
9635 /* A zero macinfo type indicates the end of the macro
9636 information. */
9637 case 0:
9638 return;
9639
9640 case DW_MACINFO_define:
9641 case DW_MACINFO_undef:
9642 {
9643 unsigned int bytes_read;
9644 int line;
9645 char *body;
9646
9647 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9648 mac_ptr += bytes_read;
9649 body = read_string (abfd, mac_ptr, &bytes_read);
9650 mac_ptr += bytes_read;
9651
9652 if (! current_file)
9653 complaint (&symfile_complaints,
9654 _("debug info gives macro %s outside of any file: %s"),
9655 macinfo_type ==
9656 DW_MACINFO_define ? "definition" : macinfo_type ==
9657 DW_MACINFO_undef ? "undefinition" :
9658 "something-or-other", body);
9659 else
9660 {
9661 if (macinfo_type == DW_MACINFO_define)
9662 parse_macro_definition (current_file, line, body);
9663 else if (macinfo_type == DW_MACINFO_undef)
9664 macro_undef (current_file, line, body);
9665 }
9666 }
9667 break;
9668
9669 case DW_MACINFO_start_file:
9670 {
9671 unsigned int bytes_read;
9672 int line, file;
9673
9674 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9675 mac_ptr += bytes_read;
9676 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9677 mac_ptr += bytes_read;
9678
9679 current_file = macro_start_file (file, line,
9680 current_file, comp_dir,
9681 lh, cu->objfile);
9682 }
9683 break;
9684
9685 case DW_MACINFO_end_file:
9686 if (! current_file)
9687 complaint (&symfile_complaints,
9688 _("macro debug info has an unmatched `close_file' directive"));
9689 else
9690 {
9691 current_file = current_file->included_by;
9692 if (! current_file)
9693 {
9694 enum dwarf_macinfo_record_type next_type;
9695
9696 /* GCC circa March 2002 doesn't produce the zero
9697 type byte marking the end of the compilation
9698 unit. Complain if it's not there, but exit no
9699 matter what. */
9700
9701 /* Do we at least have room for a macinfo type byte? */
9702 if (mac_ptr >= mac_end)
9703 {
9704 dwarf2_macros_too_long_complaint ();
9705 return;
9706 }
9707
9708 /* We don't increment mac_ptr here, so this is just
9709 a look-ahead. */
9710 next_type = read_1_byte (abfd, mac_ptr);
9711 if (next_type != 0)
9712 complaint (&symfile_complaints,
9713 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9714
9715 return;
9716 }
9717 }
9718 break;
9719
9720 case DW_MACINFO_vendor_ext:
9721 {
9722 unsigned int bytes_read;
9723 int constant;
9724 char *string;
9725
9726 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9727 mac_ptr += bytes_read;
9728 string = read_string (abfd, mac_ptr, &bytes_read);
9729 mac_ptr += bytes_read;
9730
9731 /* We don't recognize any vendor extensions. */
9732 }
9733 break;
9734 }
9735 }
9736 }
9737
9738 /* Check if the attribute's form is a DW_FORM_block*
9739 if so return true else false. */
9740 static int
9741 attr_form_is_block (struct attribute *attr)
9742 {
9743 return (attr == NULL ? 0 :
9744 attr->form == DW_FORM_block1
9745 || attr->form == DW_FORM_block2
9746 || attr->form == DW_FORM_block4
9747 || attr->form == DW_FORM_block);
9748 }
9749
9750 /* Return non-zero if ATTR's value is a section offset --- classes
9751 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9752 You may use DW_UNSND (attr) to retrieve such offsets.
9753
9754 Section 7.5.4, "Attribute Encodings", explains that no attribute
9755 may have a value that belongs to more than one of these classes; it
9756 would be ambiguous if we did, because we use the same forms for all
9757 of them. */
9758 static int
9759 attr_form_is_section_offset (struct attribute *attr)
9760 {
9761 return (attr->form == DW_FORM_data4
9762 || attr->form == DW_FORM_data8);
9763 }
9764
9765
9766 /* Return non-zero if ATTR's value falls in the 'constant' class, or
9767 zero otherwise. When this function returns true, you can apply
9768 dwarf2_get_attr_constant_value to it.
9769
9770 However, note that for some attributes you must check
9771 attr_form_is_section_offset before using this test. DW_FORM_data4
9772 and DW_FORM_data8 are members of both the constant class, and of
9773 the classes that contain offsets into other debug sections
9774 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9775 that, if an attribute's can be either a constant or one of the
9776 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9777 taken as section offsets, not constants. */
9778 static int
9779 attr_form_is_constant (struct attribute *attr)
9780 {
9781 switch (attr->form)
9782 {
9783 case DW_FORM_sdata:
9784 case DW_FORM_udata:
9785 case DW_FORM_data1:
9786 case DW_FORM_data2:
9787 case DW_FORM_data4:
9788 case DW_FORM_data8:
9789 return 1;
9790 default:
9791 return 0;
9792 }
9793 }
9794
9795 static void
9796 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9797 struct dwarf2_cu *cu)
9798 {
9799 struct objfile *objfile = cu->objfile;
9800
9801 /* Save the master objfile, so that we can report and look up the
9802 correct file containing this variable. */
9803 if (objfile->separate_debug_objfile_backlink)
9804 objfile = objfile->separate_debug_objfile_backlink;
9805
9806 if (attr_form_is_section_offset (attr)
9807 /* ".debug_loc" may not exist at all, or the offset may be outside
9808 the section. If so, fall through to the complaint in the
9809 other branch. */
9810 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9811 {
9812 struct dwarf2_loclist_baton *baton;
9813
9814 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9815 sizeof (struct dwarf2_loclist_baton));
9816 baton->objfile = objfile;
9817
9818 /* We don't know how long the location list is, but make sure we
9819 don't run off the edge of the section. */
9820 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9821 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9822 baton->base_address = cu->header.base_address;
9823 if (cu->header.base_known == 0)
9824 complaint (&symfile_complaints,
9825 _("Location list used without specifying the CU base address."));
9826
9827 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9828 SYMBOL_LOCATION_BATON (sym) = baton;
9829 }
9830 else
9831 {
9832 struct dwarf2_locexpr_baton *baton;
9833
9834 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9835 sizeof (struct dwarf2_locexpr_baton));
9836 baton->objfile = objfile;
9837
9838 if (attr_form_is_block (attr))
9839 {
9840 /* Note that we're just copying the block's data pointer
9841 here, not the actual data. We're still pointing into the
9842 info_buffer for SYM's objfile; right now we never release
9843 that buffer, but when we do clean up properly this may
9844 need to change. */
9845 baton->size = DW_BLOCK (attr)->size;
9846 baton->data = DW_BLOCK (attr)->data;
9847 }
9848 else
9849 {
9850 dwarf2_invalid_attrib_class_complaint ("location description",
9851 SYMBOL_NATURAL_NAME (sym));
9852 baton->size = 0;
9853 baton->data = NULL;
9854 }
9855
9856 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9857 SYMBOL_LOCATION_BATON (sym) = baton;
9858 }
9859 }
9860
9861 /* Locate the compilation unit from CU's objfile which contains the
9862 DIE at OFFSET. Raises an error on failure. */
9863
9864 static struct dwarf2_per_cu_data *
9865 dwarf2_find_containing_comp_unit (unsigned long offset,
9866 struct objfile *objfile)
9867 {
9868 struct dwarf2_per_cu_data *this_cu;
9869 int low, high;
9870
9871 low = 0;
9872 high = dwarf2_per_objfile->n_comp_units - 1;
9873 while (high > low)
9874 {
9875 int mid = low + (high - low) / 2;
9876 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9877 high = mid;
9878 else
9879 low = mid + 1;
9880 }
9881 gdb_assert (low == high);
9882 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9883 {
9884 if (low == 0)
9885 error (_("Dwarf Error: could not find partial DIE containing "
9886 "offset 0x%lx [in module %s]"),
9887 (long) offset, bfd_get_filename (objfile->obfd));
9888
9889 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9890 return dwarf2_per_objfile->all_comp_units[low-1];
9891 }
9892 else
9893 {
9894 this_cu = dwarf2_per_objfile->all_comp_units[low];
9895 if (low == dwarf2_per_objfile->n_comp_units - 1
9896 && offset >= this_cu->offset + this_cu->length)
9897 error (_("invalid dwarf2 offset %ld"), offset);
9898 gdb_assert (offset < this_cu->offset + this_cu->length);
9899 return this_cu;
9900 }
9901 }
9902
9903 /* Locate the compilation unit from OBJFILE which is located at exactly
9904 OFFSET. Raises an error on failure. */
9905
9906 static struct dwarf2_per_cu_data *
9907 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9908 {
9909 struct dwarf2_per_cu_data *this_cu;
9910 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9911 if (this_cu->offset != offset)
9912 error (_("no compilation unit with offset %ld."), offset);
9913 return this_cu;
9914 }
9915
9916 /* Release one cached compilation unit, CU. We unlink it from the tree
9917 of compilation units, but we don't remove it from the read_in_chain;
9918 the caller is responsible for that. */
9919
9920 static void
9921 free_one_comp_unit (void *data)
9922 {
9923 struct dwarf2_cu *cu = data;
9924
9925 if (cu->per_cu != NULL)
9926 cu->per_cu->cu = NULL;
9927 cu->per_cu = NULL;
9928
9929 obstack_free (&cu->comp_unit_obstack, NULL);
9930 if (cu->dies)
9931 free_die_list (cu->dies);
9932
9933 xfree (cu);
9934 }
9935
9936 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9937 when we're finished with it. We can't free the pointer itself, but be
9938 sure to unlink it from the cache. Also release any associated storage
9939 and perform cache maintenance.
9940
9941 Only used during partial symbol parsing. */
9942
9943 static void
9944 free_stack_comp_unit (void *data)
9945 {
9946 struct dwarf2_cu *cu = data;
9947
9948 obstack_free (&cu->comp_unit_obstack, NULL);
9949 cu->partial_dies = NULL;
9950
9951 if (cu->per_cu != NULL)
9952 {
9953 /* This compilation unit is on the stack in our caller, so we
9954 should not xfree it. Just unlink it. */
9955 cu->per_cu->cu = NULL;
9956 cu->per_cu = NULL;
9957
9958 /* If we had a per-cu pointer, then we may have other compilation
9959 units loaded, so age them now. */
9960 age_cached_comp_units ();
9961 }
9962 }
9963
9964 /* Free all cached compilation units. */
9965
9966 static void
9967 free_cached_comp_units (void *data)
9968 {
9969 struct dwarf2_per_cu_data *per_cu, **last_chain;
9970
9971 per_cu = dwarf2_per_objfile->read_in_chain;
9972 last_chain = &dwarf2_per_objfile->read_in_chain;
9973 while (per_cu != NULL)
9974 {
9975 struct dwarf2_per_cu_data *next_cu;
9976
9977 next_cu = per_cu->cu->read_in_chain;
9978
9979 free_one_comp_unit (per_cu->cu);
9980 *last_chain = next_cu;
9981
9982 per_cu = next_cu;
9983 }
9984 }
9985
9986 /* Increase the age counter on each cached compilation unit, and free
9987 any that are too old. */
9988
9989 static void
9990 age_cached_comp_units (void)
9991 {
9992 struct dwarf2_per_cu_data *per_cu, **last_chain;
9993
9994 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9995 per_cu = dwarf2_per_objfile->read_in_chain;
9996 while (per_cu != NULL)
9997 {
9998 per_cu->cu->last_used ++;
9999 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10000 dwarf2_mark (per_cu->cu);
10001 per_cu = per_cu->cu->read_in_chain;
10002 }
10003
10004 per_cu = dwarf2_per_objfile->read_in_chain;
10005 last_chain = &dwarf2_per_objfile->read_in_chain;
10006 while (per_cu != NULL)
10007 {
10008 struct dwarf2_per_cu_data *next_cu;
10009
10010 next_cu = per_cu->cu->read_in_chain;
10011
10012 if (!per_cu->cu->mark)
10013 {
10014 free_one_comp_unit (per_cu->cu);
10015 *last_chain = next_cu;
10016 }
10017 else
10018 last_chain = &per_cu->cu->read_in_chain;
10019
10020 per_cu = next_cu;
10021 }
10022 }
10023
10024 /* Remove a single compilation unit from the cache. */
10025
10026 static void
10027 free_one_cached_comp_unit (void *target_cu)
10028 {
10029 struct dwarf2_per_cu_data *per_cu, **last_chain;
10030
10031 per_cu = dwarf2_per_objfile->read_in_chain;
10032 last_chain = &dwarf2_per_objfile->read_in_chain;
10033 while (per_cu != NULL)
10034 {
10035 struct dwarf2_per_cu_data *next_cu;
10036
10037 next_cu = per_cu->cu->read_in_chain;
10038
10039 if (per_cu->cu == target_cu)
10040 {
10041 free_one_comp_unit (per_cu->cu);
10042 *last_chain = next_cu;
10043 break;
10044 }
10045 else
10046 last_chain = &per_cu->cu->read_in_chain;
10047
10048 per_cu = next_cu;
10049 }
10050 }
10051
10052 /* Release all extra memory associated with OBJFILE. */
10053
10054 void
10055 dwarf2_free_objfile (struct objfile *objfile)
10056 {
10057 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10058
10059 if (dwarf2_per_objfile == NULL)
10060 return;
10061
10062 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10063 free_cached_comp_units (NULL);
10064
10065 /* Everything else should be on the objfile obstack. */
10066 }
10067
10068 /* A pair of DIE offset and GDB type pointer. We store these
10069 in a hash table separate from the DIEs, and preserve them
10070 when the DIEs are flushed out of cache. */
10071
10072 struct dwarf2_offset_and_type
10073 {
10074 unsigned int offset;
10075 struct type *type;
10076 };
10077
10078 /* Hash function for a dwarf2_offset_and_type. */
10079
10080 static hashval_t
10081 offset_and_type_hash (const void *item)
10082 {
10083 const struct dwarf2_offset_and_type *ofs = item;
10084 return ofs->offset;
10085 }
10086
10087 /* Equality function for a dwarf2_offset_and_type. */
10088
10089 static int
10090 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10091 {
10092 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10093 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10094 return ofs_lhs->offset == ofs_rhs->offset;
10095 }
10096
10097 /* Set the type associated with DIE to TYPE. Save it in CU's hash
10098 table if necessary. */
10099
10100 static void
10101 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10102 {
10103 struct dwarf2_offset_and_type **slot, ofs;
10104
10105 die->type = type;
10106
10107 if (cu->per_cu == NULL)
10108 return;
10109
10110 if (cu->per_cu->type_hash == NULL)
10111 cu->per_cu->type_hash
10112 = htab_create_alloc_ex (cu->header.length / 24,
10113 offset_and_type_hash,
10114 offset_and_type_eq,
10115 NULL,
10116 &cu->objfile->objfile_obstack,
10117 hashtab_obstack_allocate,
10118 dummy_obstack_deallocate);
10119
10120 ofs.offset = die->offset;
10121 ofs.type = type;
10122 slot = (struct dwarf2_offset_and_type **)
10123 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10124 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10125 **slot = ofs;
10126 }
10127
10128 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10129 have a saved type. */
10130
10131 static struct type *
10132 get_die_type (struct die_info *die, htab_t type_hash)
10133 {
10134 struct dwarf2_offset_and_type *slot, ofs;
10135
10136 ofs.offset = die->offset;
10137 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10138 if (slot)
10139 return slot->type;
10140 else
10141 return NULL;
10142 }
10143
10144 /* Restore the types of the DIE tree starting at START_DIE from the hash
10145 table saved in CU. */
10146
10147 static void
10148 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10149 {
10150 struct die_info *die;
10151
10152 if (cu->per_cu->type_hash == NULL)
10153 return;
10154
10155 for (die = start_die; die != NULL; die = die->sibling)
10156 {
10157 die->type = get_die_type (die, cu->per_cu->type_hash);
10158 if (die->child != NULL)
10159 reset_die_and_siblings_types (die->child, cu);
10160 }
10161 }
10162
10163 /* Set the mark field in CU and in every other compilation unit in the
10164 cache that we must keep because we are keeping CU. */
10165
10166 /* Add a dependence relationship from CU to REF_PER_CU. */
10167
10168 static void
10169 dwarf2_add_dependence (struct dwarf2_cu *cu,
10170 struct dwarf2_per_cu_data *ref_per_cu)
10171 {
10172 void **slot;
10173
10174 if (cu->dependencies == NULL)
10175 cu->dependencies
10176 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10177 NULL, &cu->comp_unit_obstack,
10178 hashtab_obstack_allocate,
10179 dummy_obstack_deallocate);
10180
10181 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10182 if (*slot == NULL)
10183 *slot = ref_per_cu;
10184 }
10185
10186 /* Set the mark field in CU and in every other compilation unit in the
10187 cache that we must keep because we are keeping CU. */
10188
10189 static int
10190 dwarf2_mark_helper (void **slot, void *data)
10191 {
10192 struct dwarf2_per_cu_data *per_cu;
10193
10194 per_cu = (struct dwarf2_per_cu_data *) *slot;
10195 if (per_cu->cu->mark)
10196 return 1;
10197 per_cu->cu->mark = 1;
10198
10199 if (per_cu->cu->dependencies != NULL)
10200 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10201
10202 return 1;
10203 }
10204
10205 static void
10206 dwarf2_mark (struct dwarf2_cu *cu)
10207 {
10208 if (cu->mark)
10209 return;
10210 cu->mark = 1;
10211 if (cu->dependencies != NULL)
10212 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10213 }
10214
10215 static void
10216 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10217 {
10218 while (per_cu)
10219 {
10220 per_cu->cu->mark = 0;
10221 per_cu = per_cu->cu->read_in_chain;
10222 }
10223 }
10224
10225 /* Trivial hash function for partial_die_info: the hash value of a DIE
10226 is its offset in .debug_info for this objfile. */
10227
10228 static hashval_t
10229 partial_die_hash (const void *item)
10230 {
10231 const struct partial_die_info *part_die = item;
10232 return part_die->offset;
10233 }
10234
10235 /* Trivial comparison function for partial_die_info structures: two DIEs
10236 are equal if they have the same offset. */
10237
10238 static int
10239 partial_die_eq (const void *item_lhs, const void *item_rhs)
10240 {
10241 const struct partial_die_info *part_die_lhs = item_lhs;
10242 const struct partial_die_info *part_die_rhs = item_rhs;
10243 return part_die_lhs->offset == part_die_rhs->offset;
10244 }
10245
10246 static struct cmd_list_element *set_dwarf2_cmdlist;
10247 static struct cmd_list_element *show_dwarf2_cmdlist;
10248
10249 static void
10250 set_dwarf2_cmd (char *args, int from_tty)
10251 {
10252 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10253 }
10254
10255 static void
10256 show_dwarf2_cmd (char *args, int from_tty)
10257 {
10258 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10259 }
10260
10261 void _initialize_dwarf2_read (void);
10262
10263 void
10264 _initialize_dwarf2_read (void)
10265 {
10266 dwarf2_objfile_data_key = register_objfile_data ();
10267
10268 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10269 Set DWARF 2 specific variables.\n\
10270 Configure DWARF 2 variables such as the cache size"),
10271 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10272 0/*allow-unknown*/, &maintenance_set_cmdlist);
10273
10274 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10275 Show DWARF 2 specific variables\n\
10276 Show DWARF 2 variables such as the cache size"),
10277 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10278 0/*allow-unknown*/, &maintenance_show_cmdlist);
10279
10280 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10281 &dwarf2_max_cache_age, _("\
10282 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10283 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10284 A higher limit means that cached compilation units will be stored\n\
10285 in memory longer, and more total memory will be used. Zero disables\n\
10286 caching, which can slow down startup."),
10287 NULL,
10288 show_dwarf2_max_cache_age,
10289 &set_dwarf2_cmdlist,
10290 &show_dwarf2_cmdlist);
10291 }
This page took 0.518687 seconds and 4 git commands to generate.