Windows: Rename "target child" -> "target native"
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* Table of struct type_unit_group objects.
243 The hash key is the DW_AT_stmt_list value. */
244 htab_t type_unit_groups;
245
246 /* A table mapping .debug_types signatures to its signatured_type entry.
247 This is NULL if the .debug_types section hasn't been read in yet. */
248 htab_t signatured_types;
249
250 /* Type unit statistics, to see how well the scaling improvements
251 are doing. */
252 struct tu_stats
253 {
254 int nr_uniq_abbrev_tables;
255 int nr_symtabs;
256 int nr_symtab_sharers;
257 int nr_stmt_less_type_units;
258 } tu_stats;
259
260 /* A chain of compilation units that are currently read in, so that
261 they can be freed later. */
262 struct dwarf2_per_cu_data *read_in_chain;
263
264 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
265 This is NULL if the table hasn't been allocated yet. */
266 htab_t dwo_files;
267
268 /* Non-zero if we've check for whether there is a DWP file. */
269 int dwp_checked;
270
271 /* The DWP file if there is one, or NULL. */
272 struct dwp_file *dwp_file;
273
274 /* The shared '.dwz' file, if one exists. This is used when the
275 original data was compressed using 'dwz -m'. */
276 struct dwz_file *dwz_file;
277
278 /* A flag indicating wether this objfile has a section loaded at a
279 VMA of 0. */
280 int has_section_at_zero;
281
282 /* True if we are using the mapped index,
283 or we are faking it for OBJF_READNOW's sake. */
284 unsigned char using_index;
285
286 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
287 struct mapped_index *index_table;
288
289 /* When using index_table, this keeps track of all quick_file_names entries.
290 TUs typically share line table entries with a CU, so we maintain a
291 separate table of all line table entries to support the sharing.
292 Note that while there can be way more TUs than CUs, we've already
293 sorted all the TUs into "type unit groups", grouped by their
294 DW_AT_stmt_list value. Therefore the only sharing done here is with a
295 CU and its associated TU group if there is one. */
296 htab_t quick_file_names_table;
297
298 /* Set during partial symbol reading, to prevent queueing of full
299 symbols. */
300 int reading_partial_symbols;
301
302 /* Table mapping type DIEs to their struct type *.
303 This is NULL if not allocated yet.
304 The mapping is done via (CU/TU + DIE offset) -> type. */
305 htab_t die_type_hash;
306
307 /* The CUs we recently read. */
308 VEC (dwarf2_per_cu_ptr) *just_read_cus;
309 };
310
311 static struct dwarf2_per_objfile *dwarf2_per_objfile;
312
313 /* Default names of the debugging sections. */
314
315 /* Note that if the debugging section has been compressed, it might
316 have a name like .zdebug_info. */
317
318 static const struct dwarf2_debug_sections dwarf2_elf_names =
319 {
320 { ".debug_info", ".zdebug_info" },
321 { ".debug_abbrev", ".zdebug_abbrev" },
322 { ".debug_line", ".zdebug_line" },
323 { ".debug_loc", ".zdebug_loc" },
324 { ".debug_macinfo", ".zdebug_macinfo" },
325 { ".debug_macro", ".zdebug_macro" },
326 { ".debug_str", ".zdebug_str" },
327 { ".debug_ranges", ".zdebug_ranges" },
328 { ".debug_types", ".zdebug_types" },
329 { ".debug_addr", ".zdebug_addr" },
330 { ".debug_frame", ".zdebug_frame" },
331 { ".eh_frame", NULL },
332 { ".gdb_index", ".zgdb_index" },
333 23
334 };
335
336 /* List of DWO/DWP sections. */
337
338 static const struct dwop_section_names
339 {
340 struct dwarf2_section_names abbrev_dwo;
341 struct dwarf2_section_names info_dwo;
342 struct dwarf2_section_names line_dwo;
343 struct dwarf2_section_names loc_dwo;
344 struct dwarf2_section_names macinfo_dwo;
345 struct dwarf2_section_names macro_dwo;
346 struct dwarf2_section_names str_dwo;
347 struct dwarf2_section_names str_offsets_dwo;
348 struct dwarf2_section_names types_dwo;
349 struct dwarf2_section_names cu_index;
350 struct dwarf2_section_names tu_index;
351 }
352 dwop_section_names =
353 {
354 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
355 { ".debug_info.dwo", ".zdebug_info.dwo" },
356 { ".debug_line.dwo", ".zdebug_line.dwo" },
357 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
358 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
359 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
360 { ".debug_str.dwo", ".zdebug_str.dwo" },
361 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
362 { ".debug_types.dwo", ".zdebug_types.dwo" },
363 { ".debug_cu_index", ".zdebug_cu_index" },
364 { ".debug_tu_index", ".zdebug_tu_index" },
365 };
366
367 /* local data types */
368
369 /* The data in a compilation unit header, after target2host
370 translation, looks like this. */
371 struct comp_unit_head
372 {
373 unsigned int length;
374 short version;
375 unsigned char addr_size;
376 unsigned char signed_addr_p;
377 sect_offset abbrev_offset;
378
379 /* Size of file offsets; either 4 or 8. */
380 unsigned int offset_size;
381
382 /* Size of the length field; either 4 or 12. */
383 unsigned int initial_length_size;
384
385 /* Offset to the first byte of this compilation unit header in the
386 .debug_info section, for resolving relative reference dies. */
387 sect_offset offset;
388
389 /* Offset to first die in this cu from the start of the cu.
390 This will be the first byte following the compilation unit header. */
391 cu_offset first_die_offset;
392 };
393
394 /* Type used for delaying computation of method physnames.
395 See comments for compute_delayed_physnames. */
396 struct delayed_method_info
397 {
398 /* The type to which the method is attached, i.e., its parent class. */
399 struct type *type;
400
401 /* The index of the method in the type's function fieldlists. */
402 int fnfield_index;
403
404 /* The index of the method in the fieldlist. */
405 int index;
406
407 /* The name of the DIE. */
408 const char *name;
409
410 /* The DIE associated with this method. */
411 struct die_info *die;
412 };
413
414 typedef struct delayed_method_info delayed_method_info;
415 DEF_VEC_O (delayed_method_info);
416
417 /* Internal state when decoding a particular compilation unit. */
418 struct dwarf2_cu
419 {
420 /* The objfile containing this compilation unit. */
421 struct objfile *objfile;
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header;
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address;
428
429 /* Non-zero if base_address has been set. */
430 int base_known;
431
432 /* The language we are debugging. */
433 enum language language;
434 const struct language_defn *language_defn;
435
436 const char *producer;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope;
448
449 /* The abbrev table for this CU.
450 Normally this points to the abbrev table in the objfile.
451 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
452 struct abbrev_table *abbrev_table;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 struct obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header;
488
489 /* A list of methods which need to have physnames computed
490 after all type information has been read. */
491 VEC (delayed_method_info) *method_list;
492
493 /* To be copied to symtab->call_site_htab. */
494 htab_t call_site_htab;
495
496 /* Non-NULL if this CU came from a DWO file.
497 There is an invariant here that is important to remember:
498 Except for attributes copied from the top level DIE in the "main"
499 (or "stub") file in preparation for reading the DWO file
500 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
501 Either there isn't a DWO file (in which case this is NULL and the point
502 is moot), or there is and either we're not going to read it (in which
503 case this is NULL) or there is and we are reading it (in which case this
504 is non-NULL). */
505 struct dwo_unit *dwo_unit;
506
507 /* The DW_AT_addr_base attribute if present, zero otherwise
508 (zero is a valid value though).
509 Note this value comes from the Fission stub CU/TU's DIE. */
510 ULONGEST addr_base;
511
512 /* The DW_AT_ranges_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE.
515 Also note that the value is zero in the non-DWO case so this value can
516 be used without needing to know whether DWO files are in use or not.
517 N.B. This does not apply to DW_AT_ranges appearing in
518 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
519 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
520 DW_AT_ranges_base *would* have to be applied, and we'd have to care
521 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
522 ULONGEST ranges_base;
523
524 /* Mark used when releasing cached dies. */
525 unsigned int mark : 1;
526
527 /* This CU references .debug_loc. See the symtab->locations_valid field.
528 This test is imperfect as there may exist optimized debug code not using
529 any location list and still facing inlining issues if handled as
530 unoptimized code. For a future better test see GCC PR other/32998. */
531 unsigned int has_loclist : 1;
532
533 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
534 if all the producer_is_* fields are valid. This information is cached
535 because profiling CU expansion showed excessive time spent in
536 producer_is_gxx_lt_4_6. */
537 unsigned int checked_producer : 1;
538 unsigned int producer_is_gxx_lt_4_6 : 1;
539 unsigned int producer_is_gcc_lt_4_3 : 1;
540 unsigned int producer_is_icc : 1;
541
542 /* When set, the file that we're processing is known to have
543 debugging info for C++ namespaces. GCC 3.3.x did not produce
544 this information, but later versions do. */
545
546 unsigned int processing_has_namespace_info : 1;
547 };
548
549 /* Persistent data held for a compilation unit, even when not
550 processing it. We put a pointer to this structure in the
551 read_symtab_private field of the psymtab. */
552
553 struct dwarf2_per_cu_data
554 {
555 /* The start offset and length of this compilation unit.
556 NOTE: Unlike comp_unit_head.length, this length includes
557 initial_length_size.
558 If the DIE refers to a DWO file, this is always of the original die,
559 not the DWO file. */
560 sect_offset offset;
561 unsigned int length;
562
563 /* Flag indicating this compilation unit will be read in before
564 any of the current compilation units are processed. */
565 unsigned int queued : 1;
566
567 /* This flag will be set when reading partial DIEs if we need to load
568 absolutely all DIEs for this compilation unit, instead of just the ones
569 we think are interesting. It gets set if we look for a DIE in the
570 hash table and don't find it. */
571 unsigned int load_all_dies : 1;
572
573 /* Non-zero if this CU is from .debug_types.
574 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
575 this is non-zero. */
576 unsigned int is_debug_types : 1;
577
578 /* Non-zero if this CU is from the .dwz file. */
579 unsigned int is_dwz : 1;
580
581 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
582 This flag is only valid if is_debug_types is true.
583 We can't read a CU directly from a DWO file: There are required
584 attributes in the stub. */
585 unsigned int reading_dwo_directly : 1;
586
587 /* Non-zero if the TU has been read.
588 This is used to assist the "Stay in DWO Optimization" for Fission:
589 When reading a DWO, it's faster to read TUs from the DWO instead of
590 fetching them from random other DWOs (due to comdat folding).
591 If the TU has already been read, the optimization is unnecessary
592 (and unwise - we don't want to change where gdb thinks the TU lives
593 "midflight").
594 This flag is only valid if is_debug_types is true. */
595 unsigned int tu_read : 1;
596
597 /* The section this CU/TU lives in.
598 If the DIE refers to a DWO file, this is always the original die,
599 not the DWO file. */
600 struct dwarf2_section_info *section;
601
602 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
603 of the CU cache it gets reset to NULL again. */
604 struct dwarf2_cu *cu;
605
606 /* The corresponding objfile.
607 Normally we can get the objfile from dwarf2_per_objfile.
608 However we can enter this file with just a "per_cu" handle. */
609 struct objfile *objfile;
610
611 /* When using partial symbol tables, the 'psymtab' field is active.
612 Otherwise the 'quick' field is active. */
613 union
614 {
615 /* The partial symbol table associated with this compilation unit,
616 or NULL for unread partial units. */
617 struct partial_symtab *psymtab;
618
619 /* Data needed by the "quick" functions. */
620 struct dwarf2_per_cu_quick_data *quick;
621 } v;
622
623 /* The CUs we import using DW_TAG_imported_unit. This is filled in
624 while reading psymtabs, used to compute the psymtab dependencies,
625 and then cleared. Then it is filled in again while reading full
626 symbols, and only deleted when the objfile is destroyed.
627
628 This is also used to work around a difference between the way gold
629 generates .gdb_index version <=7 and the way gdb does. Arguably this
630 is a gold bug. For symbols coming from TUs, gold records in the index
631 the CU that includes the TU instead of the TU itself. This breaks
632 dw2_lookup_symbol: It assumes that if the index says symbol X lives
633 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
634 will find X. Alas TUs live in their own symtab, so after expanding CU Y
635 we need to look in TU Z to find X. Fortunately, this is akin to
636 DW_TAG_imported_unit, so we just use the same mechanism: For
637 .gdb_index version <=7 this also records the TUs that the CU referred
638 to. Concurrently with this change gdb was modified to emit version 8
639 indices so we only pay a price for gold generated indices.
640 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
641 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
642 };
643
644 /* Entry in the signatured_types hash table. */
645
646 struct signatured_type
647 {
648 /* The "per_cu" object of this type.
649 This struct is used iff per_cu.is_debug_types.
650 N.B.: This is the first member so that it's easy to convert pointers
651 between them. */
652 struct dwarf2_per_cu_data per_cu;
653
654 /* The type's signature. */
655 ULONGEST signature;
656
657 /* Offset in the TU of the type's DIE, as read from the TU header.
658 If this TU is a DWO stub and the definition lives in a DWO file
659 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
660 cu_offset type_offset_in_tu;
661
662 /* Offset in the section of the type's DIE.
663 If the definition lives in a DWO file, this is the offset in the
664 .debug_types.dwo section.
665 The value is zero until the actual value is known.
666 Zero is otherwise not a valid section offset. */
667 sect_offset type_offset_in_section;
668
669 /* Type units are grouped by their DW_AT_stmt_list entry so that they
670 can share them. This points to the containing symtab. */
671 struct type_unit_group *type_unit_group;
672
673 /* The type.
674 The first time we encounter this type we fully read it in and install it
675 in the symbol tables. Subsequent times we only need the type. */
676 struct type *type;
677
678 /* Containing DWO unit.
679 This field is valid iff per_cu.reading_dwo_directly. */
680 struct dwo_unit *dwo_unit;
681 };
682
683 typedef struct signatured_type *sig_type_ptr;
684 DEF_VEC_P (sig_type_ptr);
685
686 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
687 This includes type_unit_group and quick_file_names. */
688
689 struct stmt_list_hash
690 {
691 /* The DWO unit this table is from or NULL if there is none. */
692 struct dwo_unit *dwo_unit;
693
694 /* Offset in .debug_line or .debug_line.dwo. */
695 sect_offset line_offset;
696 };
697
698 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
699 an object of this type. */
700
701 struct type_unit_group
702 {
703 /* dwarf2read.c's main "handle" on a TU symtab.
704 To simplify things we create an artificial CU that "includes" all the
705 type units using this stmt_list so that the rest of the code still has
706 a "per_cu" handle on the symtab.
707 This PER_CU is recognized by having no section. */
708 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
709 struct dwarf2_per_cu_data per_cu;
710
711 /* The TUs that share this DW_AT_stmt_list entry.
712 This is added to while parsing type units to build partial symtabs,
713 and is deleted afterwards and not used again. */
714 VEC (sig_type_ptr) *tus;
715
716 /* The primary symtab.
717 Type units in a group needn't all be defined in the same source file,
718 so we create an essentially anonymous symtab as the primary symtab. */
719 struct symtab *primary_symtab;
720
721 /* The data used to construct the hash key. */
722 struct stmt_list_hash hash;
723
724 /* The number of symtabs from the line header.
725 The value here must match line_header.num_file_names. */
726 unsigned int num_symtabs;
727
728 /* The symbol tables for this TU (obtained from the files listed in
729 DW_AT_stmt_list).
730 WARNING: The order of entries here must match the order of entries
731 in the line header. After the first TU using this type_unit_group, the
732 line header for the subsequent TUs is recreated from this. This is done
733 because we need to use the same symtabs for each TU using the same
734 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
735 there's no guarantee the line header doesn't have duplicate entries. */
736 struct symtab **symtabs;
737 };
738
739 /* These sections are what may appear in a (real or virtual) DWO file. */
740
741 struct dwo_sections
742 {
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str;
749 struct dwarf2_section_info str_offsets;
750 /* In the case of a virtual DWO file, these two are unused. */
751 struct dwarf2_section_info info;
752 VEC (dwarf2_section_info_def) *types;
753 };
754
755 /* CUs/TUs in DWP/DWO files. */
756
757 struct dwo_unit
758 {
759 /* Backlink to the containing struct dwo_file. */
760 struct dwo_file *dwo_file;
761
762 /* The "id" that distinguishes this CU/TU.
763 .debug_info calls this "dwo_id", .debug_types calls this "signature".
764 Since signatures came first, we stick with it for consistency. */
765 ULONGEST signature;
766
767 /* The section this CU/TU lives in, in the DWO file. */
768 struct dwarf2_section_info *section;
769
770 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
771 sect_offset offset;
772 unsigned int length;
773
774 /* For types, offset in the type's DIE of the type defined by this TU. */
775 cu_offset type_offset_in_tu;
776 };
777
778 /* include/dwarf2.h defines the DWP section codes.
779 It defines a max value but it doesn't define a min value, which we
780 use for error checking, so provide one. */
781
782 enum dwp_v2_section_ids
783 {
784 DW_SECT_MIN = 1
785 };
786
787 /* Data for one DWO file.
788
789 This includes virtual DWO files (a virtual DWO file is a DWO file as it
790 appears in a DWP file). DWP files don't really have DWO files per se -
791 comdat folding of types "loses" the DWO file they came from, and from
792 a high level view DWP files appear to contain a mass of random types.
793 However, to maintain consistency with the non-DWP case we pretend DWP
794 files contain virtual DWO files, and we assign each TU with one virtual
795 DWO file (generally based on the line and abbrev section offsets -
796 a heuristic that seems to work in practice). */
797
798 struct dwo_file
799 {
800 /* The DW_AT_GNU_dwo_name attribute.
801 For virtual DWO files the name is constructed from the section offsets
802 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
803 from related CU+TUs. */
804 const char *dwo_name;
805
806 /* The DW_AT_comp_dir attribute. */
807 const char *comp_dir;
808
809 /* The bfd, when the file is open. Otherwise this is NULL.
810 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
811 bfd *dbfd;
812
813 /* The sections that make up this DWO file.
814 Remember that for virtual DWO files in DWP V2, these are virtual
815 sections (for lack of a better name). */
816 struct dwo_sections sections;
817
818 /* The CU in the file.
819 We only support one because having more than one requires hacking the
820 dwo_name of each to match, which is highly unlikely to happen.
821 Doing this means all TUs can share comp_dir: We also assume that
822 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
823 struct dwo_unit *cu;
824
825 /* Table of TUs in the file.
826 Each element is a struct dwo_unit. */
827 htab_t tus;
828 };
829
830 /* These sections are what may appear in a DWP file. */
831
832 struct dwp_sections
833 {
834 /* These are used by both DWP version 1 and 2. */
835 struct dwarf2_section_info str;
836 struct dwarf2_section_info cu_index;
837 struct dwarf2_section_info tu_index;
838
839 /* These are only used by DWP version 2 files.
840 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
841 sections are referenced by section number, and are not recorded here.
842 In DWP version 2 there is at most one copy of all these sections, each
843 section being (effectively) comprised of the concatenation of all of the
844 individual sections that exist in the version 1 format.
845 To keep the code simple we treat each of these concatenated pieces as a
846 section itself (a virtual section?). */
847 struct dwarf2_section_info abbrev;
848 struct dwarf2_section_info info;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info loc;
851 struct dwarf2_section_info macinfo;
852 struct dwarf2_section_info macro;
853 struct dwarf2_section_info str_offsets;
854 struct dwarf2_section_info types;
855 };
856
857 /* These sections are what may appear in a virtual DWO file in DWP version 1.
858 A virtual DWO file is a DWO file as it appears in a DWP file. */
859
860 struct virtual_v1_dwo_sections
861 {
862 struct dwarf2_section_info abbrev;
863 struct dwarf2_section_info line;
864 struct dwarf2_section_info loc;
865 struct dwarf2_section_info macinfo;
866 struct dwarf2_section_info macro;
867 struct dwarf2_section_info str_offsets;
868 /* Each DWP hash table entry records one CU or one TU.
869 That is recorded here, and copied to dwo_unit.section. */
870 struct dwarf2_section_info info_or_types;
871 };
872
873 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
874 In version 2, the sections of the DWO files are concatenated together
875 and stored in one section of that name. Thus each ELF section contains
876 several "virtual" sections. */
877
878 struct virtual_v2_dwo_sections
879 {
880 bfd_size_type abbrev_offset;
881 bfd_size_type abbrev_size;
882
883 bfd_size_type line_offset;
884 bfd_size_type line_size;
885
886 bfd_size_type loc_offset;
887 bfd_size_type loc_size;
888
889 bfd_size_type macinfo_offset;
890 bfd_size_type macinfo_size;
891
892 bfd_size_type macro_offset;
893 bfd_size_type macro_size;
894
895 bfd_size_type str_offsets_offset;
896 bfd_size_type str_offsets_size;
897
898 /* Each DWP hash table entry records one CU or one TU.
899 That is recorded here, and copied to dwo_unit.section. */
900 bfd_size_type info_or_types_offset;
901 bfd_size_type info_or_types_size;
902 };
903
904 /* Contents of DWP hash tables. */
905
906 struct dwp_hash_table
907 {
908 uint32_t version, nr_columns;
909 uint32_t nr_units, nr_slots;
910 const gdb_byte *hash_table, *unit_table;
911 union
912 {
913 struct
914 {
915 const gdb_byte *indices;
916 } v1;
917 struct
918 {
919 /* This is indexed by column number and gives the id of the section
920 in that column. */
921 #define MAX_NR_V2_DWO_SECTIONS \
922 (1 /* .debug_info or .debug_types */ \
923 + 1 /* .debug_abbrev */ \
924 + 1 /* .debug_line */ \
925 + 1 /* .debug_loc */ \
926 + 1 /* .debug_str_offsets */ \
927 + 1 /* .debug_macro or .debug_macinfo */)
928 int section_ids[MAX_NR_V2_DWO_SECTIONS];
929 const gdb_byte *offsets;
930 const gdb_byte *sizes;
931 } v2;
932 } section_pool;
933 };
934
935 /* Data for one DWP file. */
936
937 struct dwp_file
938 {
939 /* Name of the file. */
940 const char *name;
941
942 /* File format version. */
943 int version;
944
945 /* The bfd. */
946 bfd *dbfd;
947
948 /* Section info for this file. */
949 struct dwp_sections sections;
950
951 /* Table of CUs in the file. */
952 const struct dwp_hash_table *cus;
953
954 /* Table of TUs in the file. */
955 const struct dwp_hash_table *tus;
956
957 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
958 htab_t loaded_cus;
959 htab_t loaded_tus;
960
961 /* Table to map ELF section numbers to their sections.
962 This is only needed for the DWP V1 file format. */
963 unsigned int num_sections;
964 asection **elf_sections;
965 };
966
967 /* This represents a '.dwz' file. */
968
969 struct dwz_file
970 {
971 /* A dwz file can only contain a few sections. */
972 struct dwarf2_section_info abbrev;
973 struct dwarf2_section_info info;
974 struct dwarf2_section_info str;
975 struct dwarf2_section_info line;
976 struct dwarf2_section_info macro;
977 struct dwarf2_section_info gdb_index;
978
979 /* The dwz's BFD. */
980 bfd *dwz_bfd;
981 };
982
983 /* Struct used to pass misc. parameters to read_die_and_children, et
984 al. which are used for both .debug_info and .debug_types dies.
985 All parameters here are unchanging for the life of the call. This
986 struct exists to abstract away the constant parameters of die reading. */
987
988 struct die_reader_specs
989 {
990 /* The bfd of die_section. */
991 bfd* abfd;
992
993 /* The CU of the DIE we are parsing. */
994 struct dwarf2_cu *cu;
995
996 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
997 struct dwo_file *dwo_file;
998
999 /* The section the die comes from.
1000 This is either .debug_info or .debug_types, or the .dwo variants. */
1001 struct dwarf2_section_info *die_section;
1002
1003 /* die_section->buffer. */
1004 const gdb_byte *buffer;
1005
1006 /* The end of the buffer. */
1007 const gdb_byte *buffer_end;
1008
1009 /* The value of the DW_AT_comp_dir attribute. */
1010 const char *comp_dir;
1011 };
1012
1013 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1014 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1015 const gdb_byte *info_ptr,
1016 struct die_info *comp_unit_die,
1017 int has_children,
1018 void *data);
1019
1020 /* The line number information for a compilation unit (found in the
1021 .debug_line section) begins with a "statement program header",
1022 which contains the following information. */
1023 struct line_header
1024 {
1025 unsigned int total_length;
1026 unsigned short version;
1027 unsigned int header_length;
1028 unsigned char minimum_instruction_length;
1029 unsigned char maximum_ops_per_instruction;
1030 unsigned char default_is_stmt;
1031 int line_base;
1032 unsigned char line_range;
1033 unsigned char opcode_base;
1034
1035 /* standard_opcode_lengths[i] is the number of operands for the
1036 standard opcode whose value is i. This means that
1037 standard_opcode_lengths[0] is unused, and the last meaningful
1038 element is standard_opcode_lengths[opcode_base - 1]. */
1039 unsigned char *standard_opcode_lengths;
1040
1041 /* The include_directories table. NOTE! These strings are not
1042 allocated with xmalloc; instead, they are pointers into
1043 debug_line_buffer. If you try to free them, `free' will get
1044 indigestion. */
1045 unsigned int num_include_dirs, include_dirs_size;
1046 const char **include_dirs;
1047
1048 /* The file_names table. NOTE! These strings are not allocated
1049 with xmalloc; instead, they are pointers into debug_line_buffer.
1050 Don't try to free them directly. */
1051 unsigned int num_file_names, file_names_size;
1052 struct file_entry
1053 {
1054 const char *name;
1055 unsigned int dir_index;
1056 unsigned int mod_time;
1057 unsigned int length;
1058 int included_p; /* Non-zero if referenced by the Line Number Program. */
1059 struct symtab *symtab; /* The associated symbol table, if any. */
1060 } *file_names;
1061
1062 /* The start and end of the statement program following this
1063 header. These point into dwarf2_per_objfile->line_buffer. */
1064 const gdb_byte *statement_program_start, *statement_program_end;
1065 };
1066
1067 /* When we construct a partial symbol table entry we only
1068 need this much information. */
1069 struct partial_die_info
1070 {
1071 /* Offset of this DIE. */
1072 sect_offset offset;
1073
1074 /* DWARF-2 tag for this DIE. */
1075 ENUM_BITFIELD(dwarf_tag) tag : 16;
1076
1077 /* Assorted flags describing the data found in this DIE. */
1078 unsigned int has_children : 1;
1079 unsigned int is_external : 1;
1080 unsigned int is_declaration : 1;
1081 unsigned int has_type : 1;
1082 unsigned int has_specification : 1;
1083 unsigned int has_pc_info : 1;
1084 unsigned int may_be_inlined : 1;
1085
1086 /* Flag set if the SCOPE field of this structure has been
1087 computed. */
1088 unsigned int scope_set : 1;
1089
1090 /* Flag set if the DIE has a byte_size attribute. */
1091 unsigned int has_byte_size : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup_partial_die has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset offset;
1125 } d;
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc;
1129 CORE_ADDR highpc;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, read_partial_die could
1134 return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset;
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent, *die_child, *die_sibling;
1145 };
1146
1147 /* This data structure holds the information of an abbrev. */
1148 struct abbrev_info
1149 {
1150 unsigned int number; /* number identifying abbrev */
1151 enum dwarf_tag tag; /* dwarf tag */
1152 unsigned short has_children; /* boolean */
1153 unsigned short num_attrs; /* number of attributes */
1154 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1155 struct abbrev_info *next; /* next in chain */
1156 };
1157
1158 struct attr_abbrev
1159 {
1160 ENUM_BITFIELD(dwarf_attribute) name : 16;
1161 ENUM_BITFIELD(dwarf_form) form : 16;
1162 };
1163
1164 /* Size of abbrev_table.abbrev_hash_table. */
1165 #define ABBREV_HASH_SIZE 121
1166
1167 /* Top level data structure to contain an abbreviation table. */
1168
1169 struct abbrev_table
1170 {
1171 /* Where the abbrev table came from.
1172 This is used as a sanity check when the table is used. */
1173 sect_offset offset;
1174
1175 /* Storage for the abbrev table. */
1176 struct obstack abbrev_obstack;
1177
1178 /* Hash table of abbrevs.
1179 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1180 It could be statically allocated, but the previous code didn't so we
1181 don't either. */
1182 struct abbrev_info **abbrevs;
1183 };
1184
1185 /* Attributes have a name and a value. */
1186 struct attribute
1187 {
1188 ENUM_BITFIELD(dwarf_attribute) name : 16;
1189 ENUM_BITFIELD(dwarf_form) form : 15;
1190
1191 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1192 field should be in u.str (existing only for DW_STRING) but it is kept
1193 here for better struct attribute alignment. */
1194 unsigned int string_is_canonical : 1;
1195
1196 union
1197 {
1198 const char *str;
1199 struct dwarf_block *blk;
1200 ULONGEST unsnd;
1201 LONGEST snd;
1202 CORE_ADDR addr;
1203 ULONGEST signature;
1204 }
1205 u;
1206 };
1207
1208 /* This data structure holds a complete die structure. */
1209 struct die_info
1210 {
1211 /* DWARF-2 tag for this DIE. */
1212 ENUM_BITFIELD(dwarf_tag) tag : 16;
1213
1214 /* Number of attributes */
1215 unsigned char num_attrs;
1216
1217 /* True if we're presently building the full type name for the
1218 type derived from this DIE. */
1219 unsigned char building_fullname : 1;
1220
1221 /* True if this die is in process. PR 16581. */
1222 unsigned char in_process : 1;
1223
1224 /* Abbrev number */
1225 unsigned int abbrev;
1226
1227 /* Offset in .debug_info or .debug_types section. */
1228 sect_offset offset;
1229
1230 /* The dies in a compilation unit form an n-ary tree. PARENT
1231 points to this die's parent; CHILD points to the first child of
1232 this node; and all the children of a given node are chained
1233 together via their SIBLING fields. */
1234 struct die_info *child; /* Its first child, if any. */
1235 struct die_info *sibling; /* Its next sibling, if any. */
1236 struct die_info *parent; /* Its parent, if any. */
1237
1238 /* An array of attributes, with NUM_ATTRS elements. There may be
1239 zero, but it's not common and zero-sized arrays are not
1240 sufficiently portable C. */
1241 struct attribute attrs[1];
1242 };
1243
1244 /* Get at parts of an attribute structure. */
1245
1246 #define DW_STRING(attr) ((attr)->u.str)
1247 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1248 #define DW_UNSND(attr) ((attr)->u.unsnd)
1249 #define DW_BLOCK(attr) ((attr)->u.blk)
1250 #define DW_SND(attr) ((attr)->u.snd)
1251 #define DW_ADDR(attr) ((attr)->u.addr)
1252 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1253
1254 /* Blocks are a bunch of untyped bytes. */
1255 struct dwarf_block
1256 {
1257 size_t size;
1258
1259 /* Valid only if SIZE is not zero. */
1260 const gdb_byte *data;
1261 };
1262
1263 #ifndef ATTR_ALLOC_CHUNK
1264 #define ATTR_ALLOC_CHUNK 4
1265 #endif
1266
1267 /* Allocate fields for structs, unions and enums in this size. */
1268 #ifndef DW_FIELD_ALLOC_CHUNK
1269 #define DW_FIELD_ALLOC_CHUNK 4
1270 #endif
1271
1272 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1273 but this would require a corresponding change in unpack_field_as_long
1274 and friends. */
1275 static int bits_per_byte = 8;
1276
1277 /* The routines that read and process dies for a C struct or C++ class
1278 pass lists of data member fields and lists of member function fields
1279 in an instance of a field_info structure, as defined below. */
1280 struct field_info
1281 {
1282 /* List of data member and baseclasses fields. */
1283 struct nextfield
1284 {
1285 struct nextfield *next;
1286 int accessibility;
1287 int virtuality;
1288 struct field field;
1289 }
1290 *fields, *baseclasses;
1291
1292 /* Number of fields (including baseclasses). */
1293 int nfields;
1294
1295 /* Number of baseclasses. */
1296 int nbaseclasses;
1297
1298 /* Set if the accesibility of one of the fields is not public. */
1299 int non_public_fields;
1300
1301 /* Member function fields array, entries are allocated in the order they
1302 are encountered in the object file. */
1303 struct nextfnfield
1304 {
1305 struct nextfnfield *next;
1306 struct fn_field fnfield;
1307 }
1308 *fnfields;
1309
1310 /* Member function fieldlist array, contains name of possibly overloaded
1311 member function, number of overloaded member functions and a pointer
1312 to the head of the member function field chain. */
1313 struct fnfieldlist
1314 {
1315 const char *name;
1316 int length;
1317 struct nextfnfield *head;
1318 }
1319 *fnfieldlists;
1320
1321 /* Number of entries in the fnfieldlists array. */
1322 int nfnfields;
1323
1324 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1325 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1326 struct typedef_field_list
1327 {
1328 struct typedef_field field;
1329 struct typedef_field_list *next;
1330 }
1331 *typedef_field_list;
1332 unsigned typedef_field_list_count;
1333 };
1334
1335 /* One item on the queue of compilation units to read in full symbols
1336 for. */
1337 struct dwarf2_queue_item
1338 {
1339 struct dwarf2_per_cu_data *per_cu;
1340 enum language pretend_language;
1341 struct dwarf2_queue_item *next;
1342 };
1343
1344 /* The current queue. */
1345 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1346
1347 /* Loaded secondary compilation units are kept in memory until they
1348 have not been referenced for the processing of this many
1349 compilation units. Set this to zero to disable caching. Cache
1350 sizes of up to at least twenty will improve startup time for
1351 typical inter-CU-reference binaries, at an obvious memory cost. */
1352 static int dwarf2_max_cache_age = 5;
1353 static void
1354 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file, _("The upper bound on the age of cached "
1358 "dwarf2 compilation units is %s.\n"),
1359 value);
1360 }
1361 \f
1362 /* local function prototypes */
1363
1364 static const char *get_section_name (const struct dwarf2_section_info *);
1365
1366 static const char *get_section_file_name (const struct dwarf2_section_info *);
1367
1368 static void dwarf2_locate_sections (bfd *, asection *, void *);
1369
1370 static void dwarf2_find_base_address (struct die_info *die,
1371 struct dwarf2_cu *cu);
1372
1373 static struct partial_symtab *create_partial_symtab
1374 (struct dwarf2_per_cu_data *per_cu, const char *name);
1375
1376 static void dwarf2_build_psymtabs_hard (struct objfile *);
1377
1378 static void scan_partial_symbols (struct partial_die_info *,
1379 CORE_ADDR *, CORE_ADDR *,
1380 int, struct dwarf2_cu *);
1381
1382 static void add_partial_symbol (struct partial_die_info *,
1383 struct dwarf2_cu *);
1384
1385 static void add_partial_namespace (struct partial_die_info *pdi,
1386 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1387 int need_pc, struct dwarf2_cu *cu);
1388
1389 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1390 CORE_ADDR *highpc, int need_pc,
1391 struct dwarf2_cu *cu);
1392
1393 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1394 struct dwarf2_cu *cu);
1395
1396 static void add_partial_subprogram (struct partial_die_info *pdi,
1397 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1398 int need_pc, struct dwarf2_cu *cu);
1399
1400 static void dwarf2_read_symtab (struct partial_symtab *,
1401 struct objfile *);
1402
1403 static void psymtab_to_symtab_1 (struct partial_symtab *);
1404
1405 static struct abbrev_info *abbrev_table_lookup_abbrev
1406 (const struct abbrev_table *, unsigned int);
1407
1408 static struct abbrev_table *abbrev_table_read_table
1409 (struct dwarf2_section_info *, sect_offset);
1410
1411 static void abbrev_table_free (struct abbrev_table *);
1412
1413 static void abbrev_table_free_cleanup (void *);
1414
1415 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1416 struct dwarf2_section_info *);
1417
1418 static void dwarf2_free_abbrev_table (void *);
1419
1420 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1421
1422 static struct partial_die_info *load_partial_dies
1423 (const struct die_reader_specs *, const gdb_byte *, int);
1424
1425 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1426 struct partial_die_info *,
1427 struct abbrev_info *,
1428 unsigned int,
1429 const gdb_byte *);
1430
1431 static struct partial_die_info *find_partial_die (sect_offset, int,
1432 struct dwarf2_cu *);
1433
1434 static void fixup_partial_die (struct partial_die_info *,
1435 struct dwarf2_cu *);
1436
1437 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1438 struct attribute *, struct attr_abbrev *,
1439 const gdb_byte *);
1440
1441 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1442
1443 static int read_1_signed_byte (bfd *, const gdb_byte *);
1444
1445 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1448
1449 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1450
1451 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1452 unsigned int *);
1453
1454 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1455
1456 static LONGEST read_checked_initial_length_and_offset
1457 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1458 unsigned int *, unsigned int *);
1459
1460 static LONGEST read_offset (bfd *, const gdb_byte *,
1461 const struct comp_unit_head *,
1462 unsigned int *);
1463
1464 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1465
1466 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1467 sect_offset);
1468
1469 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1470
1471 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1472
1473 static const char *read_indirect_string (bfd *, const gdb_byte *,
1474 const struct comp_unit_head *,
1475 unsigned int *);
1476
1477 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1478
1479 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1480
1481 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1484 const gdb_byte *,
1485 unsigned int *);
1486
1487 static const char *read_str_index (const struct die_reader_specs *reader,
1488 ULONGEST str_index);
1489
1490 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1491
1492 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1493 struct dwarf2_cu *);
1494
1495 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1496 unsigned int);
1497
1498 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1499 struct dwarf2_cu *cu);
1500
1501 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1502
1503 static struct die_info *die_specification (struct die_info *die,
1504 struct dwarf2_cu **);
1505
1506 static void free_line_header (struct line_header *lh);
1507
1508 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1509 struct dwarf2_cu *cu);
1510
1511 static void dwarf_decode_lines (struct line_header *, const char *,
1512 struct dwarf2_cu *, struct partial_symtab *,
1513 int);
1514
1515 static void dwarf2_start_subfile (const char *, const char *, const char *);
1516
1517 static void dwarf2_start_symtab (struct dwarf2_cu *,
1518 const char *, const char *, CORE_ADDR);
1519
1520 static struct symbol *new_symbol (struct die_info *, struct type *,
1521 struct dwarf2_cu *);
1522
1523 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1524 struct dwarf2_cu *, struct symbol *);
1525
1526 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1527 struct dwarf2_cu *);
1528
1529 static void dwarf2_const_value_attr (const struct attribute *attr,
1530 struct type *type,
1531 const char *name,
1532 struct obstack *obstack,
1533 struct dwarf2_cu *cu, LONGEST *value,
1534 const gdb_byte **bytes,
1535 struct dwarf2_locexpr_baton **baton);
1536
1537 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1538
1539 static int need_gnat_info (struct dwarf2_cu *);
1540
1541 static struct type *die_descriptive_type (struct die_info *,
1542 struct dwarf2_cu *);
1543
1544 static void set_descriptive_type (struct type *, struct die_info *,
1545 struct dwarf2_cu *);
1546
1547 static struct type *die_containing_type (struct die_info *,
1548 struct dwarf2_cu *);
1549
1550 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1551 struct dwarf2_cu *);
1552
1553 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1554
1555 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1556
1557 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1558
1559 static char *typename_concat (struct obstack *obs, const char *prefix,
1560 const char *suffix, int physname,
1561 struct dwarf2_cu *cu);
1562
1563 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1564
1565 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1566
1567 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1568
1569 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1570
1571 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1572
1573 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1574 struct dwarf2_cu *, struct partial_symtab *);
1575
1576 static int dwarf2_get_pc_bounds (struct die_info *,
1577 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1578 struct partial_symtab *);
1579
1580 static void get_scope_pc_bounds (struct die_info *,
1581 CORE_ADDR *, CORE_ADDR *,
1582 struct dwarf2_cu *);
1583
1584 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1585 CORE_ADDR, struct dwarf2_cu *);
1586
1587 static void dwarf2_add_field (struct field_info *, struct die_info *,
1588 struct dwarf2_cu *);
1589
1590 static void dwarf2_attach_fields_to_type (struct field_info *,
1591 struct type *, struct dwarf2_cu *);
1592
1593 static void dwarf2_add_member_fn (struct field_info *,
1594 struct die_info *, struct type *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1598 struct type *,
1599 struct dwarf2_cu *);
1600
1601 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1602
1603 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1606
1607 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1608
1609 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1610
1611 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1612
1613 static struct type *read_module_type (struct die_info *die,
1614 struct dwarf2_cu *cu);
1615
1616 static const char *namespace_name (struct die_info *die,
1617 int *is_anonymous, struct dwarf2_cu *);
1618
1619 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1622
1623 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1624 struct dwarf2_cu *);
1625
1626 static struct die_info *read_die_and_siblings_1
1627 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1628 struct die_info *);
1629
1630 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1631 const gdb_byte *info_ptr,
1632 const gdb_byte **new_info_ptr,
1633 struct die_info *parent);
1634
1635 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1636 struct die_info **, const gdb_byte *,
1637 int *, int);
1638
1639 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1640 struct die_info **, const gdb_byte *,
1641 int *);
1642
1643 static void process_die (struct die_info *, struct dwarf2_cu *);
1644
1645 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1646 struct obstack *);
1647
1648 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1649
1650 static const char *dwarf2_full_name (const char *name,
1651 struct die_info *die,
1652 struct dwarf2_cu *cu);
1653
1654 static const char *dwarf2_physname (const char *name, struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657 static struct die_info *dwarf2_extension (struct die_info *die,
1658 struct dwarf2_cu **);
1659
1660 static const char *dwarf_tag_name (unsigned int);
1661
1662 static const char *dwarf_attr_name (unsigned int);
1663
1664 static const char *dwarf_form_name (unsigned int);
1665
1666 static char *dwarf_bool_name (unsigned int);
1667
1668 static const char *dwarf_type_encoding_name (unsigned int);
1669
1670 static struct die_info *sibling_die (struct die_info *);
1671
1672 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1673
1674 static void dump_die_for_error (struct die_info *);
1675
1676 static void dump_die_1 (struct ui_file *, int level, int max_level,
1677 struct die_info *);
1678
1679 /*static*/ void dump_die (struct die_info *, int max_level);
1680
1681 static void store_in_ref_table (struct die_info *,
1682 struct dwarf2_cu *);
1683
1684 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1685
1686 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1687
1688 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1689 const struct attribute *,
1690 struct dwarf2_cu **);
1691
1692 static struct die_info *follow_die_ref (struct die_info *,
1693 const struct attribute *,
1694 struct dwarf2_cu **);
1695
1696 static struct die_info *follow_die_sig (struct die_info *,
1697 const struct attribute *,
1698 struct dwarf2_cu **);
1699
1700 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1701 struct dwarf2_cu *);
1702
1703 static struct type *get_DW_AT_signature_type (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu *);
1706
1707 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1708
1709 static void read_signatured_type (struct signatured_type *);
1710
1711 /* memory allocation interface */
1712
1713 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1714
1715 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1716
1717 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1718 const char *, int);
1719
1720 static int attr_form_is_block (const struct attribute *);
1721
1722 static int attr_form_is_section_offset (const struct attribute *);
1723
1724 static int attr_form_is_constant (const struct attribute *);
1725
1726 static int attr_form_is_ref (const struct attribute *);
1727
1728 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1729 struct dwarf2_loclist_baton *baton,
1730 const struct attribute *attr);
1731
1732 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1733 struct symbol *sym,
1734 struct dwarf2_cu *cu,
1735 int is_block);
1736
1737 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1738 const gdb_byte *info_ptr,
1739 struct abbrev_info *abbrev);
1740
1741 static void free_stack_comp_unit (void *);
1742
1743 static hashval_t partial_die_hash (const void *item);
1744
1745 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1746
1747 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1748 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1749
1750 static void init_one_comp_unit (struct dwarf2_cu *cu,
1751 struct dwarf2_per_cu_data *per_cu);
1752
1753 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1754 struct die_info *comp_unit_die,
1755 enum language pretend_language);
1756
1757 static void free_heap_comp_unit (void *);
1758
1759 static void free_cached_comp_units (void *);
1760
1761 static void age_cached_comp_units (void);
1762
1763 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1764
1765 static struct type *set_die_type (struct die_info *, struct type *,
1766 struct dwarf2_cu *);
1767
1768 static void create_all_comp_units (struct objfile *);
1769
1770 static int create_all_type_units (struct objfile *);
1771
1772 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1773 enum language);
1774
1775 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1776 enum language);
1777
1778 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1779 enum language);
1780
1781 static void dwarf2_add_dependence (struct dwarf2_cu *,
1782 struct dwarf2_per_cu_data *);
1783
1784 static void dwarf2_mark (struct dwarf2_cu *);
1785
1786 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1787
1788 static struct type *get_die_type_at_offset (sect_offset,
1789 struct dwarf2_per_cu_data *);
1790
1791 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1792
1793 static void dwarf2_release_queue (void *dummy);
1794
1795 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1796 enum language pretend_language);
1797
1798 static void process_queue (void);
1799
1800 static void find_file_and_directory (struct die_info *die,
1801 struct dwarf2_cu *cu,
1802 const char **name, const char **comp_dir);
1803
1804 static char *file_full_name (int file, struct line_header *lh,
1805 const char *comp_dir);
1806
1807 static const gdb_byte *read_and_check_comp_unit_head
1808 (struct comp_unit_head *header,
1809 struct dwarf2_section_info *section,
1810 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1811 int is_debug_types_section);
1812
1813 static void init_cutu_and_read_dies
1814 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1815 int use_existing_cu, int keep,
1816 die_reader_func_ftype *die_reader_func, void *data);
1817
1818 static void init_cutu_and_read_dies_simple
1819 (struct dwarf2_per_cu_data *this_cu,
1820 die_reader_func_ftype *die_reader_func, void *data);
1821
1822 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1823
1824 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1825
1826 static struct dwo_unit *lookup_dwo_unit_in_dwp
1827 (struct dwp_file *dwp_file, const char *comp_dir,
1828 ULONGEST signature, int is_debug_types);
1829
1830 static struct dwp_file *get_dwp_file (void);
1831
1832 static struct dwo_unit *lookup_dwo_comp_unit
1833 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1834
1835 static struct dwo_unit *lookup_dwo_type_unit
1836 (struct signatured_type *, const char *, const char *);
1837
1838 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1839
1840 static void free_dwo_file_cleanup (void *);
1841
1842 static void process_cu_includes (void);
1843
1844 static void check_producer (struct dwarf2_cu *cu);
1845 \f
1846 /* Various complaints about symbol reading that don't abort the process. */
1847
1848 static void
1849 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1850 {
1851 complaint (&symfile_complaints,
1852 _("statement list doesn't fit in .debug_line section"));
1853 }
1854
1855 static void
1856 dwarf2_debug_line_missing_file_complaint (void)
1857 {
1858 complaint (&symfile_complaints,
1859 _(".debug_line section has line data without a file"));
1860 }
1861
1862 static void
1863 dwarf2_debug_line_missing_end_sequence_complaint (void)
1864 {
1865 complaint (&symfile_complaints,
1866 _(".debug_line section has line "
1867 "program sequence without an end"));
1868 }
1869
1870 static void
1871 dwarf2_complex_location_expr_complaint (void)
1872 {
1873 complaint (&symfile_complaints, _("location expression too complex"));
1874 }
1875
1876 static void
1877 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1878 int arg3)
1879 {
1880 complaint (&symfile_complaints,
1881 _("const value length mismatch for '%s', got %d, expected %d"),
1882 arg1, arg2, arg3);
1883 }
1884
1885 static void
1886 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1887 {
1888 complaint (&symfile_complaints,
1889 _("debug info runs off end of %s section"
1890 " [in module %s]"),
1891 get_section_name (section),
1892 get_section_file_name (section));
1893 }
1894
1895 static void
1896 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1897 {
1898 complaint (&symfile_complaints,
1899 _("macro debug info contains a "
1900 "malformed macro definition:\n`%s'"),
1901 arg1);
1902 }
1903
1904 static void
1905 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1906 {
1907 complaint (&symfile_complaints,
1908 _("invalid attribute class or form for '%s' in '%s'"),
1909 arg1, arg2);
1910 }
1911 \f
1912 #if WORDS_BIGENDIAN
1913
1914 /* Convert VALUE between big- and little-endian. */
1915 static offset_type
1916 byte_swap (offset_type value)
1917 {
1918 offset_type result;
1919
1920 result = (value & 0xff) << 24;
1921 result |= (value & 0xff00) << 8;
1922 result |= (value & 0xff0000) >> 8;
1923 result |= (value & 0xff000000) >> 24;
1924 return result;
1925 }
1926
1927 #define MAYBE_SWAP(V) byte_swap (V)
1928
1929 #else
1930 #define MAYBE_SWAP(V) (V)
1931 #endif /* WORDS_BIGENDIAN */
1932
1933 /* Read the given attribute value as an address, taking the attribute's
1934 form into account. */
1935
1936 static CORE_ADDR
1937 attr_value_as_address (struct attribute *attr)
1938 {
1939 CORE_ADDR addr;
1940
1941 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1942 {
1943 /* Aside from a few clearly defined exceptions, attributes that
1944 contain an address must always be in DW_FORM_addr form.
1945 Unfortunately, some compilers happen to be violating this
1946 requirement by encoding addresses using other forms, such
1947 as DW_FORM_data4 for example. For those broken compilers,
1948 we try to do our best, without any guarantee of success,
1949 to interpret the address correctly. It would also be nice
1950 to generate a complaint, but that would require us to maintain
1951 a list of legitimate cases where a non-address form is allowed,
1952 as well as update callers to pass in at least the CU's DWARF
1953 version. This is more overhead than what we're willing to
1954 expand for a pretty rare case. */
1955 addr = DW_UNSND (attr);
1956 }
1957 else
1958 addr = DW_ADDR (attr);
1959
1960 return addr;
1961 }
1962
1963 /* The suffix for an index file. */
1964 #define INDEX_SUFFIX ".gdb-index"
1965
1966 /* Try to locate the sections we need for DWARF 2 debugging
1967 information and return true if we have enough to do something.
1968 NAMES points to the dwarf2 section names, or is NULL if the standard
1969 ELF names are used. */
1970
1971 int
1972 dwarf2_has_info (struct objfile *objfile,
1973 const struct dwarf2_debug_sections *names)
1974 {
1975 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1976 if (!dwarf2_per_objfile)
1977 {
1978 /* Initialize per-objfile state. */
1979 struct dwarf2_per_objfile *data
1980 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1981
1982 memset (data, 0, sizeof (*data));
1983 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1984 dwarf2_per_objfile = data;
1985
1986 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1987 (void *) names);
1988 dwarf2_per_objfile->objfile = objfile;
1989 }
1990 return (!dwarf2_per_objfile->info.is_virtual
1991 && dwarf2_per_objfile->info.s.asection != NULL
1992 && !dwarf2_per_objfile->abbrev.is_virtual
1993 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1994 }
1995
1996 /* Return the containing section of virtual section SECTION. */
1997
1998 static struct dwarf2_section_info *
1999 get_containing_section (const struct dwarf2_section_info *section)
2000 {
2001 gdb_assert (section->is_virtual);
2002 return section->s.containing_section;
2003 }
2004
2005 /* Return the bfd owner of SECTION. */
2006
2007 static struct bfd *
2008 get_section_bfd_owner (const struct dwarf2_section_info *section)
2009 {
2010 if (section->is_virtual)
2011 {
2012 section = get_containing_section (section);
2013 gdb_assert (!section->is_virtual);
2014 }
2015 return section->s.asection->owner;
2016 }
2017
2018 /* Return the bfd section of SECTION.
2019 Returns NULL if the section is not present. */
2020
2021 static asection *
2022 get_section_bfd_section (const struct dwarf2_section_info *section)
2023 {
2024 if (section->is_virtual)
2025 {
2026 section = get_containing_section (section);
2027 gdb_assert (!section->is_virtual);
2028 }
2029 return section->s.asection;
2030 }
2031
2032 /* Return the name of SECTION. */
2033
2034 static const char *
2035 get_section_name (const struct dwarf2_section_info *section)
2036 {
2037 asection *sectp = get_section_bfd_section (section);
2038
2039 gdb_assert (sectp != NULL);
2040 return bfd_section_name (get_section_bfd_owner (section), sectp);
2041 }
2042
2043 /* Return the name of the file SECTION is in. */
2044
2045 static const char *
2046 get_section_file_name (const struct dwarf2_section_info *section)
2047 {
2048 bfd *abfd = get_section_bfd_owner (section);
2049
2050 return bfd_get_filename (abfd);
2051 }
2052
2053 /* Return the id of SECTION.
2054 Returns 0 if SECTION doesn't exist. */
2055
2056 static int
2057 get_section_id (const struct dwarf2_section_info *section)
2058 {
2059 asection *sectp = get_section_bfd_section (section);
2060
2061 if (sectp == NULL)
2062 return 0;
2063 return sectp->id;
2064 }
2065
2066 /* Return the flags of SECTION.
2067 SECTION (or containing section if this is a virtual section) must exist. */
2068
2069 static int
2070 get_section_flags (const struct dwarf2_section_info *section)
2071 {
2072 asection *sectp = get_section_bfd_section (section);
2073
2074 gdb_assert (sectp != NULL);
2075 return bfd_get_section_flags (sectp->owner, sectp);
2076 }
2077
2078 /* When loading sections, we look either for uncompressed section or for
2079 compressed section names. */
2080
2081 static int
2082 section_is_p (const char *section_name,
2083 const struct dwarf2_section_names *names)
2084 {
2085 if (names->normal != NULL
2086 && strcmp (section_name, names->normal) == 0)
2087 return 1;
2088 if (names->compressed != NULL
2089 && strcmp (section_name, names->compressed) == 0)
2090 return 1;
2091 return 0;
2092 }
2093
2094 /* This function is mapped across the sections and remembers the
2095 offset and size of each of the debugging sections we are interested
2096 in. */
2097
2098 static void
2099 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2100 {
2101 const struct dwarf2_debug_sections *names;
2102 flagword aflag = bfd_get_section_flags (abfd, sectp);
2103
2104 if (vnames == NULL)
2105 names = &dwarf2_elf_names;
2106 else
2107 names = (const struct dwarf2_debug_sections *) vnames;
2108
2109 if ((aflag & SEC_HAS_CONTENTS) == 0)
2110 {
2111 }
2112 else if (section_is_p (sectp->name, &names->info))
2113 {
2114 dwarf2_per_objfile->info.s.asection = sectp;
2115 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2116 }
2117 else if (section_is_p (sectp->name, &names->abbrev))
2118 {
2119 dwarf2_per_objfile->abbrev.s.asection = sectp;
2120 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2121 }
2122 else if (section_is_p (sectp->name, &names->line))
2123 {
2124 dwarf2_per_objfile->line.s.asection = sectp;
2125 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2126 }
2127 else if (section_is_p (sectp->name, &names->loc))
2128 {
2129 dwarf2_per_objfile->loc.s.asection = sectp;
2130 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2131 }
2132 else if (section_is_p (sectp->name, &names->macinfo))
2133 {
2134 dwarf2_per_objfile->macinfo.s.asection = sectp;
2135 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2136 }
2137 else if (section_is_p (sectp->name, &names->macro))
2138 {
2139 dwarf2_per_objfile->macro.s.asection = sectp;
2140 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2141 }
2142 else if (section_is_p (sectp->name, &names->str))
2143 {
2144 dwarf2_per_objfile->str.s.asection = sectp;
2145 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2146 }
2147 else if (section_is_p (sectp->name, &names->addr))
2148 {
2149 dwarf2_per_objfile->addr.s.asection = sectp;
2150 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2151 }
2152 else if (section_is_p (sectp->name, &names->frame))
2153 {
2154 dwarf2_per_objfile->frame.s.asection = sectp;
2155 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2156 }
2157 else if (section_is_p (sectp->name, &names->eh_frame))
2158 {
2159 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2160 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2161 }
2162 else if (section_is_p (sectp->name, &names->ranges))
2163 {
2164 dwarf2_per_objfile->ranges.s.asection = sectp;
2165 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2166 }
2167 else if (section_is_p (sectp->name, &names->types))
2168 {
2169 struct dwarf2_section_info type_section;
2170
2171 memset (&type_section, 0, sizeof (type_section));
2172 type_section.s.asection = sectp;
2173 type_section.size = bfd_get_section_size (sectp);
2174
2175 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2176 &type_section);
2177 }
2178 else if (section_is_p (sectp->name, &names->gdb_index))
2179 {
2180 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2181 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2182 }
2183
2184 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2185 && bfd_section_vma (abfd, sectp) == 0)
2186 dwarf2_per_objfile->has_section_at_zero = 1;
2187 }
2188
2189 /* A helper function that decides whether a section is empty,
2190 or not present. */
2191
2192 static int
2193 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2194 {
2195 if (section->is_virtual)
2196 return section->size == 0;
2197 return section->s.asection == NULL || section->size == 0;
2198 }
2199
2200 /* Read the contents of the section INFO.
2201 OBJFILE is the main object file, but not necessarily the file where
2202 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2203 of the DWO file.
2204 If the section is compressed, uncompress it before returning. */
2205
2206 static void
2207 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2208 {
2209 asection *sectp;
2210 bfd *abfd;
2211 gdb_byte *buf, *retbuf;
2212
2213 if (info->readin)
2214 return;
2215 info->buffer = NULL;
2216 info->readin = 1;
2217
2218 if (dwarf2_section_empty_p (info))
2219 return;
2220
2221 sectp = get_section_bfd_section (info);
2222
2223 /* If this is a virtual section we need to read in the real one first. */
2224 if (info->is_virtual)
2225 {
2226 struct dwarf2_section_info *containing_section =
2227 get_containing_section (info);
2228
2229 gdb_assert (sectp != NULL);
2230 if ((sectp->flags & SEC_RELOC) != 0)
2231 {
2232 error (_("Dwarf Error: DWP format V2 with relocations is not"
2233 " supported in section %s [in module %s]"),
2234 get_section_name (info), get_section_file_name (info));
2235 }
2236 dwarf2_read_section (objfile, containing_section);
2237 /* Other code should have already caught virtual sections that don't
2238 fit. */
2239 gdb_assert (info->virtual_offset + info->size
2240 <= containing_section->size);
2241 /* If the real section is empty or there was a problem reading the
2242 section we shouldn't get here. */
2243 gdb_assert (containing_section->buffer != NULL);
2244 info->buffer = containing_section->buffer + info->virtual_offset;
2245 return;
2246 }
2247
2248 /* If the section has relocations, we must read it ourselves.
2249 Otherwise we attach it to the BFD. */
2250 if ((sectp->flags & SEC_RELOC) == 0)
2251 {
2252 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2253 return;
2254 }
2255
2256 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2257 info->buffer = buf;
2258
2259 /* When debugging .o files, we may need to apply relocations; see
2260 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2261 We never compress sections in .o files, so we only need to
2262 try this when the section is not compressed. */
2263 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2264 if (retbuf != NULL)
2265 {
2266 info->buffer = retbuf;
2267 return;
2268 }
2269
2270 abfd = get_section_bfd_owner (info);
2271 gdb_assert (abfd != NULL);
2272
2273 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2274 || bfd_bread (buf, info->size, abfd) != info->size)
2275 {
2276 error (_("Dwarf Error: Can't read DWARF data"
2277 " in section %s [in module %s]"),
2278 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2279 }
2280 }
2281
2282 /* A helper function that returns the size of a section in a safe way.
2283 If you are positive that the section has been read before using the
2284 size, then it is safe to refer to the dwarf2_section_info object's
2285 "size" field directly. In other cases, you must call this
2286 function, because for compressed sections the size field is not set
2287 correctly until the section has been read. */
2288
2289 static bfd_size_type
2290 dwarf2_section_size (struct objfile *objfile,
2291 struct dwarf2_section_info *info)
2292 {
2293 if (!info->readin)
2294 dwarf2_read_section (objfile, info);
2295 return info->size;
2296 }
2297
2298 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2299 SECTION_NAME. */
2300
2301 void
2302 dwarf2_get_section_info (struct objfile *objfile,
2303 enum dwarf2_section_enum sect,
2304 asection **sectp, const gdb_byte **bufp,
2305 bfd_size_type *sizep)
2306 {
2307 struct dwarf2_per_objfile *data
2308 = objfile_data (objfile, dwarf2_objfile_data_key);
2309 struct dwarf2_section_info *info;
2310
2311 /* We may see an objfile without any DWARF, in which case we just
2312 return nothing. */
2313 if (data == NULL)
2314 {
2315 *sectp = NULL;
2316 *bufp = NULL;
2317 *sizep = 0;
2318 return;
2319 }
2320 switch (sect)
2321 {
2322 case DWARF2_DEBUG_FRAME:
2323 info = &data->frame;
2324 break;
2325 case DWARF2_EH_FRAME:
2326 info = &data->eh_frame;
2327 break;
2328 default:
2329 gdb_assert_not_reached ("unexpected section");
2330 }
2331
2332 dwarf2_read_section (objfile, info);
2333
2334 *sectp = get_section_bfd_section (info);
2335 *bufp = info->buffer;
2336 *sizep = info->size;
2337 }
2338
2339 /* A helper function to find the sections for a .dwz file. */
2340
2341 static void
2342 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2343 {
2344 struct dwz_file *dwz_file = arg;
2345
2346 /* Note that we only support the standard ELF names, because .dwz
2347 is ELF-only (at the time of writing). */
2348 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2349 {
2350 dwz_file->abbrev.s.asection = sectp;
2351 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2352 }
2353 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2354 {
2355 dwz_file->info.s.asection = sectp;
2356 dwz_file->info.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2359 {
2360 dwz_file->str.s.asection = sectp;
2361 dwz_file->str.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2364 {
2365 dwz_file->line.s.asection = sectp;
2366 dwz_file->line.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2369 {
2370 dwz_file->macro.s.asection = sectp;
2371 dwz_file->macro.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2374 {
2375 dwz_file->gdb_index.s.asection = sectp;
2376 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2377 }
2378 }
2379
2380 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2381 there is no .gnu_debugaltlink section in the file. Error if there
2382 is such a section but the file cannot be found. */
2383
2384 static struct dwz_file *
2385 dwarf2_get_dwz_file (void)
2386 {
2387 bfd *dwz_bfd;
2388 char *data;
2389 struct cleanup *cleanup;
2390 const char *filename;
2391 struct dwz_file *result;
2392 bfd_size_type buildid_len_arg;
2393 size_t buildid_len;
2394 bfd_byte *buildid;
2395
2396 if (dwarf2_per_objfile->dwz_file != NULL)
2397 return dwarf2_per_objfile->dwz_file;
2398
2399 bfd_set_error (bfd_error_no_error);
2400 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2401 &buildid_len_arg, &buildid);
2402 if (data == NULL)
2403 {
2404 if (bfd_get_error () == bfd_error_no_error)
2405 return NULL;
2406 error (_("could not read '.gnu_debugaltlink' section: %s"),
2407 bfd_errmsg (bfd_get_error ()));
2408 }
2409 cleanup = make_cleanup (xfree, data);
2410 make_cleanup (xfree, buildid);
2411
2412 buildid_len = (size_t) buildid_len_arg;
2413
2414 filename = (const char *) data;
2415 if (!IS_ABSOLUTE_PATH (filename))
2416 {
2417 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2418 char *rel;
2419
2420 make_cleanup (xfree, abs);
2421 abs = ldirname (abs);
2422 make_cleanup (xfree, abs);
2423
2424 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2425 make_cleanup (xfree, rel);
2426 filename = rel;
2427 }
2428
2429 /* First try the file name given in the section. If that doesn't
2430 work, try to use the build-id instead. */
2431 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2432 if (dwz_bfd != NULL)
2433 {
2434 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2435 {
2436 gdb_bfd_unref (dwz_bfd);
2437 dwz_bfd = NULL;
2438 }
2439 }
2440
2441 if (dwz_bfd == NULL)
2442 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2443
2444 if (dwz_bfd == NULL)
2445 error (_("could not find '.gnu_debugaltlink' file for %s"),
2446 objfile_name (dwarf2_per_objfile->objfile));
2447
2448 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2449 struct dwz_file);
2450 result->dwz_bfd = dwz_bfd;
2451
2452 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2453
2454 do_cleanups (cleanup);
2455
2456 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2457 dwarf2_per_objfile->dwz_file = result;
2458 return result;
2459 }
2460 \f
2461 /* DWARF quick_symbols_functions support. */
2462
2463 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2464 unique line tables, so we maintain a separate table of all .debug_line
2465 derived entries to support the sharing.
2466 All the quick functions need is the list of file names. We discard the
2467 line_header when we're done and don't need to record it here. */
2468 struct quick_file_names
2469 {
2470 /* The data used to construct the hash key. */
2471 struct stmt_list_hash hash;
2472
2473 /* The number of entries in file_names, real_names. */
2474 unsigned int num_file_names;
2475
2476 /* The file names from the line table, after being run through
2477 file_full_name. */
2478 const char **file_names;
2479
2480 /* The file names from the line table after being run through
2481 gdb_realpath. These are computed lazily. */
2482 const char **real_names;
2483 };
2484
2485 /* When using the index (and thus not using psymtabs), each CU has an
2486 object of this type. This is used to hold information needed by
2487 the various "quick" methods. */
2488 struct dwarf2_per_cu_quick_data
2489 {
2490 /* The file table. This can be NULL if there was no file table
2491 or it's currently not read in.
2492 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2493 struct quick_file_names *file_names;
2494
2495 /* The corresponding symbol table. This is NULL if symbols for this
2496 CU have not yet been read. */
2497 struct symtab *symtab;
2498
2499 /* A temporary mark bit used when iterating over all CUs in
2500 expand_symtabs_matching. */
2501 unsigned int mark : 1;
2502
2503 /* True if we've tried to read the file table and found there isn't one.
2504 There will be no point in trying to read it again next time. */
2505 unsigned int no_file_data : 1;
2506 };
2507
2508 /* Utility hash function for a stmt_list_hash. */
2509
2510 static hashval_t
2511 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2512 {
2513 hashval_t v = 0;
2514
2515 if (stmt_list_hash->dwo_unit != NULL)
2516 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2517 v += stmt_list_hash->line_offset.sect_off;
2518 return v;
2519 }
2520
2521 /* Utility equality function for a stmt_list_hash. */
2522
2523 static int
2524 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2525 const struct stmt_list_hash *rhs)
2526 {
2527 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2528 return 0;
2529 if (lhs->dwo_unit != NULL
2530 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2531 return 0;
2532
2533 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2534 }
2535
2536 /* Hash function for a quick_file_names. */
2537
2538 static hashval_t
2539 hash_file_name_entry (const void *e)
2540 {
2541 const struct quick_file_names *file_data = e;
2542
2543 return hash_stmt_list_entry (&file_data->hash);
2544 }
2545
2546 /* Equality function for a quick_file_names. */
2547
2548 static int
2549 eq_file_name_entry (const void *a, const void *b)
2550 {
2551 const struct quick_file_names *ea = a;
2552 const struct quick_file_names *eb = b;
2553
2554 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2555 }
2556
2557 /* Delete function for a quick_file_names. */
2558
2559 static void
2560 delete_file_name_entry (void *e)
2561 {
2562 struct quick_file_names *file_data = e;
2563 int i;
2564
2565 for (i = 0; i < file_data->num_file_names; ++i)
2566 {
2567 xfree ((void*) file_data->file_names[i]);
2568 if (file_data->real_names)
2569 xfree ((void*) file_data->real_names[i]);
2570 }
2571
2572 /* The space for the struct itself lives on objfile_obstack,
2573 so we don't free it here. */
2574 }
2575
2576 /* Create a quick_file_names hash table. */
2577
2578 static htab_t
2579 create_quick_file_names_table (unsigned int nr_initial_entries)
2580 {
2581 return htab_create_alloc (nr_initial_entries,
2582 hash_file_name_entry, eq_file_name_entry,
2583 delete_file_name_entry, xcalloc, xfree);
2584 }
2585
2586 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2587 have to be created afterwards. You should call age_cached_comp_units after
2588 processing PER_CU->CU. dw2_setup must have been already called. */
2589
2590 static void
2591 load_cu (struct dwarf2_per_cu_data *per_cu)
2592 {
2593 if (per_cu->is_debug_types)
2594 load_full_type_unit (per_cu);
2595 else
2596 load_full_comp_unit (per_cu, language_minimal);
2597
2598 gdb_assert (per_cu->cu != NULL);
2599
2600 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2601 }
2602
2603 /* Read in the symbols for PER_CU. */
2604
2605 static void
2606 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2607 {
2608 struct cleanup *back_to;
2609
2610 /* Skip type_unit_groups, reading the type units they contain
2611 is handled elsewhere. */
2612 if (IS_TYPE_UNIT_GROUP (per_cu))
2613 return;
2614
2615 back_to = make_cleanup (dwarf2_release_queue, NULL);
2616
2617 if (dwarf2_per_objfile->using_index
2618 ? per_cu->v.quick->symtab == NULL
2619 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2620 {
2621 queue_comp_unit (per_cu, language_minimal);
2622 load_cu (per_cu);
2623
2624 /* If we just loaded a CU from a DWO, and we're working with an index
2625 that may badly handle TUs, load all the TUs in that DWO as well.
2626 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2627 if (!per_cu->is_debug_types
2628 && per_cu->cu->dwo_unit != NULL
2629 && dwarf2_per_objfile->index_table != NULL
2630 && dwarf2_per_objfile->index_table->version <= 7
2631 /* DWP files aren't supported yet. */
2632 && get_dwp_file () == NULL)
2633 queue_and_load_all_dwo_tus (per_cu);
2634 }
2635
2636 process_queue ();
2637
2638 /* Age the cache, releasing compilation units that have not
2639 been used recently. */
2640 age_cached_comp_units ();
2641
2642 do_cleanups (back_to);
2643 }
2644
2645 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2646 the objfile from which this CU came. Returns the resulting symbol
2647 table. */
2648
2649 static struct symtab *
2650 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2651 {
2652 gdb_assert (dwarf2_per_objfile->using_index);
2653 if (!per_cu->v.quick->symtab)
2654 {
2655 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2656 increment_reading_symtab ();
2657 dw2_do_instantiate_symtab (per_cu);
2658 process_cu_includes ();
2659 do_cleanups (back_to);
2660 }
2661 return per_cu->v.quick->symtab;
2662 }
2663
2664 /* Return the CU/TU given its index.
2665
2666 This is intended for loops like:
2667
2668 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2669 + dwarf2_per_objfile->n_type_units); ++i)
2670 {
2671 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2672
2673 ...;
2674 }
2675 */
2676
2677 static struct dwarf2_per_cu_data *
2678 dw2_get_cutu (int index)
2679 {
2680 if (index >= dwarf2_per_objfile->n_comp_units)
2681 {
2682 index -= dwarf2_per_objfile->n_comp_units;
2683 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2684 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2685 }
2686
2687 return dwarf2_per_objfile->all_comp_units[index];
2688 }
2689
2690 /* Return the CU given its index.
2691 This differs from dw2_get_cutu in that it's for when you know INDEX
2692 refers to a CU. */
2693
2694 static struct dwarf2_per_cu_data *
2695 dw2_get_cu (int index)
2696 {
2697 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2698
2699 return dwarf2_per_objfile->all_comp_units[index];
2700 }
2701
2702 /* A helper for create_cus_from_index that handles a given list of
2703 CUs. */
2704
2705 static void
2706 create_cus_from_index_list (struct objfile *objfile,
2707 const gdb_byte *cu_list, offset_type n_elements,
2708 struct dwarf2_section_info *section,
2709 int is_dwz,
2710 int base_offset)
2711 {
2712 offset_type i;
2713
2714 for (i = 0; i < n_elements; i += 2)
2715 {
2716 struct dwarf2_per_cu_data *the_cu;
2717 ULONGEST offset, length;
2718
2719 gdb_static_assert (sizeof (ULONGEST) >= 8);
2720 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2721 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2722 cu_list += 2 * 8;
2723
2724 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2725 struct dwarf2_per_cu_data);
2726 the_cu->offset.sect_off = offset;
2727 the_cu->length = length;
2728 the_cu->objfile = objfile;
2729 the_cu->section = section;
2730 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2731 struct dwarf2_per_cu_quick_data);
2732 the_cu->is_dwz = is_dwz;
2733 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2734 }
2735 }
2736
2737 /* Read the CU list from the mapped index, and use it to create all
2738 the CU objects for this objfile. */
2739
2740 static void
2741 create_cus_from_index (struct objfile *objfile,
2742 const gdb_byte *cu_list, offset_type cu_list_elements,
2743 const gdb_byte *dwz_list, offset_type dwz_elements)
2744 {
2745 struct dwz_file *dwz;
2746
2747 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2748 dwarf2_per_objfile->all_comp_units
2749 = obstack_alloc (&objfile->objfile_obstack,
2750 dwarf2_per_objfile->n_comp_units
2751 * sizeof (struct dwarf2_per_cu_data *));
2752
2753 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2754 &dwarf2_per_objfile->info, 0, 0);
2755
2756 if (dwz_elements == 0)
2757 return;
2758
2759 dwz = dwarf2_get_dwz_file ();
2760 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2761 cu_list_elements / 2);
2762 }
2763
2764 /* Create the signatured type hash table from the index. */
2765
2766 static void
2767 create_signatured_type_table_from_index (struct objfile *objfile,
2768 struct dwarf2_section_info *section,
2769 const gdb_byte *bytes,
2770 offset_type elements)
2771 {
2772 offset_type i;
2773 htab_t sig_types_hash;
2774
2775 dwarf2_per_objfile->n_type_units = elements / 3;
2776 dwarf2_per_objfile->all_type_units
2777 = xmalloc (dwarf2_per_objfile->n_type_units
2778 * sizeof (struct signatured_type *));
2779
2780 sig_types_hash = allocate_signatured_type_table (objfile);
2781
2782 for (i = 0; i < elements; i += 3)
2783 {
2784 struct signatured_type *sig_type;
2785 ULONGEST offset, type_offset_in_tu, signature;
2786 void **slot;
2787
2788 gdb_static_assert (sizeof (ULONGEST) >= 8);
2789 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2790 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2791 BFD_ENDIAN_LITTLE);
2792 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2793 bytes += 3 * 8;
2794
2795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2796 struct signatured_type);
2797 sig_type->signature = signature;
2798 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2799 sig_type->per_cu.is_debug_types = 1;
2800 sig_type->per_cu.section = section;
2801 sig_type->per_cu.offset.sect_off = offset;
2802 sig_type->per_cu.objfile = objfile;
2803 sig_type->per_cu.v.quick
2804 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2805 struct dwarf2_per_cu_quick_data);
2806
2807 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2808 *slot = sig_type;
2809
2810 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2811 }
2812
2813 dwarf2_per_objfile->signatured_types = sig_types_hash;
2814 }
2815
2816 /* Read the address map data from the mapped index, and use it to
2817 populate the objfile's psymtabs_addrmap. */
2818
2819 static void
2820 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2821 {
2822 const gdb_byte *iter, *end;
2823 struct obstack temp_obstack;
2824 struct addrmap *mutable_map;
2825 struct cleanup *cleanup;
2826 CORE_ADDR baseaddr;
2827
2828 obstack_init (&temp_obstack);
2829 cleanup = make_cleanup_obstack_free (&temp_obstack);
2830 mutable_map = addrmap_create_mutable (&temp_obstack);
2831
2832 iter = index->address_table;
2833 end = iter + index->address_table_size;
2834
2835 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2836
2837 while (iter < end)
2838 {
2839 ULONGEST hi, lo, cu_index;
2840 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2841 iter += 8;
2842 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2843 iter += 8;
2844 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2845 iter += 4;
2846
2847 if (lo > hi)
2848 {
2849 complaint (&symfile_complaints,
2850 _(".gdb_index address table has invalid range (%s - %s)"),
2851 hex_string (lo), hex_string (hi));
2852 continue;
2853 }
2854
2855 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2856 {
2857 complaint (&symfile_complaints,
2858 _(".gdb_index address table has invalid CU number %u"),
2859 (unsigned) cu_index);
2860 continue;
2861 }
2862
2863 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2864 dw2_get_cutu (cu_index));
2865 }
2866
2867 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2868 &objfile->objfile_obstack);
2869 do_cleanups (cleanup);
2870 }
2871
2872 /* The hash function for strings in the mapped index. This is the same as
2873 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2874 implementation. This is necessary because the hash function is tied to the
2875 format of the mapped index file. The hash values do not have to match with
2876 SYMBOL_HASH_NEXT.
2877
2878 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2879
2880 static hashval_t
2881 mapped_index_string_hash (int index_version, const void *p)
2882 {
2883 const unsigned char *str = (const unsigned char *) p;
2884 hashval_t r = 0;
2885 unsigned char c;
2886
2887 while ((c = *str++) != 0)
2888 {
2889 if (index_version >= 5)
2890 c = tolower (c);
2891 r = r * 67 + c - 113;
2892 }
2893
2894 return r;
2895 }
2896
2897 /* Find a slot in the mapped index INDEX for the object named NAME.
2898 If NAME is found, set *VEC_OUT to point to the CU vector in the
2899 constant pool and return 1. If NAME cannot be found, return 0. */
2900
2901 static int
2902 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2903 offset_type **vec_out)
2904 {
2905 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2906 offset_type hash;
2907 offset_type slot, step;
2908 int (*cmp) (const char *, const char *);
2909
2910 if (current_language->la_language == language_cplus
2911 || current_language->la_language == language_java
2912 || current_language->la_language == language_fortran)
2913 {
2914 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2915 not contain any. */
2916 const char *paren = strchr (name, '(');
2917
2918 if (paren)
2919 {
2920 char *dup;
2921
2922 dup = xmalloc (paren - name + 1);
2923 memcpy (dup, name, paren - name);
2924 dup[paren - name] = 0;
2925
2926 make_cleanup (xfree, dup);
2927 name = dup;
2928 }
2929 }
2930
2931 /* Index version 4 did not support case insensitive searches. But the
2932 indices for case insensitive languages are built in lowercase, therefore
2933 simulate our NAME being searched is also lowercased. */
2934 hash = mapped_index_string_hash ((index->version == 4
2935 && case_sensitivity == case_sensitive_off
2936 ? 5 : index->version),
2937 name);
2938
2939 slot = hash & (index->symbol_table_slots - 1);
2940 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2941 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2942
2943 for (;;)
2944 {
2945 /* Convert a slot number to an offset into the table. */
2946 offset_type i = 2 * slot;
2947 const char *str;
2948 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2949 {
2950 do_cleanups (back_to);
2951 return 0;
2952 }
2953
2954 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2955 if (!cmp (name, str))
2956 {
2957 *vec_out = (offset_type *) (index->constant_pool
2958 + MAYBE_SWAP (index->symbol_table[i + 1]));
2959 do_cleanups (back_to);
2960 return 1;
2961 }
2962
2963 slot = (slot + step) & (index->symbol_table_slots - 1);
2964 }
2965 }
2966
2967 /* A helper function that reads the .gdb_index from SECTION and fills
2968 in MAP. FILENAME is the name of the file containing the section;
2969 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2970 ok to use deprecated sections.
2971
2972 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2973 out parameters that are filled in with information about the CU and
2974 TU lists in the section.
2975
2976 Returns 1 if all went well, 0 otherwise. */
2977
2978 static int
2979 read_index_from_section (struct objfile *objfile,
2980 const char *filename,
2981 int deprecated_ok,
2982 struct dwarf2_section_info *section,
2983 struct mapped_index *map,
2984 const gdb_byte **cu_list,
2985 offset_type *cu_list_elements,
2986 const gdb_byte **types_list,
2987 offset_type *types_list_elements)
2988 {
2989 const gdb_byte *addr;
2990 offset_type version;
2991 offset_type *metadata;
2992 int i;
2993
2994 if (dwarf2_section_empty_p (section))
2995 return 0;
2996
2997 /* Older elfutils strip versions could keep the section in the main
2998 executable while splitting it for the separate debug info file. */
2999 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3000 return 0;
3001
3002 dwarf2_read_section (objfile, section);
3003
3004 addr = section->buffer;
3005 /* Version check. */
3006 version = MAYBE_SWAP (*(offset_type *) addr);
3007 /* Versions earlier than 3 emitted every copy of a psymbol. This
3008 causes the index to behave very poorly for certain requests. Version 3
3009 contained incomplete addrmap. So, it seems better to just ignore such
3010 indices. */
3011 if (version < 4)
3012 {
3013 static int warning_printed = 0;
3014 if (!warning_printed)
3015 {
3016 warning (_("Skipping obsolete .gdb_index section in %s."),
3017 filename);
3018 warning_printed = 1;
3019 }
3020 return 0;
3021 }
3022 /* Index version 4 uses a different hash function than index version
3023 5 and later.
3024
3025 Versions earlier than 6 did not emit psymbols for inlined
3026 functions. Using these files will cause GDB not to be able to
3027 set breakpoints on inlined functions by name, so we ignore these
3028 indices unless the user has done
3029 "set use-deprecated-index-sections on". */
3030 if (version < 6 && !deprecated_ok)
3031 {
3032 static int warning_printed = 0;
3033 if (!warning_printed)
3034 {
3035 warning (_("\
3036 Skipping deprecated .gdb_index section in %s.\n\
3037 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3038 to use the section anyway."),
3039 filename);
3040 warning_printed = 1;
3041 }
3042 return 0;
3043 }
3044 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3045 of the TU (for symbols coming from TUs),
3046 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3047 Plus gold-generated indices can have duplicate entries for global symbols,
3048 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3049 These are just performance bugs, and we can't distinguish gdb-generated
3050 indices from gold-generated ones, so issue no warning here. */
3051
3052 /* Indexes with higher version than the one supported by GDB may be no
3053 longer backward compatible. */
3054 if (version > 8)
3055 return 0;
3056
3057 map->version = version;
3058 map->total_size = section->size;
3059
3060 metadata = (offset_type *) (addr + sizeof (offset_type));
3061
3062 i = 0;
3063 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3064 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3065 / 8);
3066 ++i;
3067
3068 *types_list = addr + MAYBE_SWAP (metadata[i]);
3069 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3070 - MAYBE_SWAP (metadata[i]))
3071 / 8);
3072 ++i;
3073
3074 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3075 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3076 - MAYBE_SWAP (metadata[i]));
3077 ++i;
3078
3079 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3080 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]))
3082 / (2 * sizeof (offset_type)));
3083 ++i;
3084
3085 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3086
3087 return 1;
3088 }
3089
3090
3091 /* Read the index file. If everything went ok, initialize the "quick"
3092 elements of all the CUs and return 1. Otherwise, return 0. */
3093
3094 static int
3095 dwarf2_read_index (struct objfile *objfile)
3096 {
3097 struct mapped_index local_map, *map;
3098 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3099 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3100 struct dwz_file *dwz;
3101
3102 if (!read_index_from_section (objfile, objfile_name (objfile),
3103 use_deprecated_index_sections,
3104 &dwarf2_per_objfile->gdb_index, &local_map,
3105 &cu_list, &cu_list_elements,
3106 &types_list, &types_list_elements))
3107 return 0;
3108
3109 /* Don't use the index if it's empty. */
3110 if (local_map.symbol_table_slots == 0)
3111 return 0;
3112
3113 /* If there is a .dwz file, read it so we can get its CU list as
3114 well. */
3115 dwz = dwarf2_get_dwz_file ();
3116 if (dwz != NULL)
3117 {
3118 struct mapped_index dwz_map;
3119 const gdb_byte *dwz_types_ignore;
3120 offset_type dwz_types_elements_ignore;
3121
3122 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3123 1,
3124 &dwz->gdb_index, &dwz_map,
3125 &dwz_list, &dwz_list_elements,
3126 &dwz_types_ignore,
3127 &dwz_types_elements_ignore))
3128 {
3129 warning (_("could not read '.gdb_index' section from %s; skipping"),
3130 bfd_get_filename (dwz->dwz_bfd));
3131 return 0;
3132 }
3133 }
3134
3135 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3136 dwz_list_elements);
3137
3138 if (types_list_elements)
3139 {
3140 struct dwarf2_section_info *section;
3141
3142 /* We can only handle a single .debug_types when we have an
3143 index. */
3144 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3145 return 0;
3146
3147 section = VEC_index (dwarf2_section_info_def,
3148 dwarf2_per_objfile->types, 0);
3149
3150 create_signatured_type_table_from_index (objfile, section, types_list,
3151 types_list_elements);
3152 }
3153
3154 create_addrmap_from_index (objfile, &local_map);
3155
3156 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3157 *map = local_map;
3158
3159 dwarf2_per_objfile->index_table = map;
3160 dwarf2_per_objfile->using_index = 1;
3161 dwarf2_per_objfile->quick_file_names_table =
3162 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3163
3164 return 1;
3165 }
3166
3167 /* A helper for the "quick" functions which sets the global
3168 dwarf2_per_objfile according to OBJFILE. */
3169
3170 static void
3171 dw2_setup (struct objfile *objfile)
3172 {
3173 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3174 gdb_assert (dwarf2_per_objfile);
3175 }
3176
3177 /* die_reader_func for dw2_get_file_names. */
3178
3179 static void
3180 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3181 const gdb_byte *info_ptr,
3182 struct die_info *comp_unit_die,
3183 int has_children,
3184 void *data)
3185 {
3186 struct dwarf2_cu *cu = reader->cu;
3187 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3188 struct objfile *objfile = dwarf2_per_objfile->objfile;
3189 struct dwarf2_per_cu_data *lh_cu;
3190 struct line_header *lh;
3191 struct attribute *attr;
3192 int i;
3193 const char *name, *comp_dir;
3194 void **slot;
3195 struct quick_file_names *qfn;
3196 unsigned int line_offset;
3197
3198 gdb_assert (! this_cu->is_debug_types);
3199
3200 /* Our callers never want to match partial units -- instead they
3201 will match the enclosing full CU. */
3202 if (comp_unit_die->tag == DW_TAG_partial_unit)
3203 {
3204 this_cu->v.quick->no_file_data = 1;
3205 return;
3206 }
3207
3208 lh_cu = this_cu;
3209 lh = NULL;
3210 slot = NULL;
3211 line_offset = 0;
3212
3213 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3214 if (attr)
3215 {
3216 struct quick_file_names find_entry;
3217
3218 line_offset = DW_UNSND (attr);
3219
3220 /* We may have already read in this line header (TU line header sharing).
3221 If we have we're done. */
3222 find_entry.hash.dwo_unit = cu->dwo_unit;
3223 find_entry.hash.line_offset.sect_off = line_offset;
3224 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3225 &find_entry, INSERT);
3226 if (*slot != NULL)
3227 {
3228 lh_cu->v.quick->file_names = *slot;
3229 return;
3230 }
3231
3232 lh = dwarf_decode_line_header (line_offset, cu);
3233 }
3234 if (lh == NULL)
3235 {
3236 lh_cu->v.quick->no_file_data = 1;
3237 return;
3238 }
3239
3240 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3241 qfn->hash.dwo_unit = cu->dwo_unit;
3242 qfn->hash.line_offset.sect_off = line_offset;
3243 gdb_assert (slot != NULL);
3244 *slot = qfn;
3245
3246 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3247
3248 qfn->num_file_names = lh->num_file_names;
3249 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3250 lh->num_file_names * sizeof (char *));
3251 for (i = 0; i < lh->num_file_names; ++i)
3252 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3253 qfn->real_names = NULL;
3254
3255 free_line_header (lh);
3256
3257 lh_cu->v.quick->file_names = qfn;
3258 }
3259
3260 /* A helper for the "quick" functions which attempts to read the line
3261 table for THIS_CU. */
3262
3263 static struct quick_file_names *
3264 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3265 {
3266 /* This should never be called for TUs. */
3267 gdb_assert (! this_cu->is_debug_types);
3268 /* Nor type unit groups. */
3269 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3270
3271 if (this_cu->v.quick->file_names != NULL)
3272 return this_cu->v.quick->file_names;
3273 /* If we know there is no line data, no point in looking again. */
3274 if (this_cu->v.quick->no_file_data)
3275 return NULL;
3276
3277 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3278
3279 if (this_cu->v.quick->no_file_data)
3280 return NULL;
3281 return this_cu->v.quick->file_names;
3282 }
3283
3284 /* A helper for the "quick" functions which computes and caches the
3285 real path for a given file name from the line table. */
3286
3287 static const char *
3288 dw2_get_real_path (struct objfile *objfile,
3289 struct quick_file_names *qfn, int index)
3290 {
3291 if (qfn->real_names == NULL)
3292 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3293 qfn->num_file_names, char *);
3294
3295 if (qfn->real_names[index] == NULL)
3296 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3297
3298 return qfn->real_names[index];
3299 }
3300
3301 static struct symtab *
3302 dw2_find_last_source_symtab (struct objfile *objfile)
3303 {
3304 int index;
3305
3306 dw2_setup (objfile);
3307 index = dwarf2_per_objfile->n_comp_units - 1;
3308 return dw2_instantiate_symtab (dw2_get_cutu (index));
3309 }
3310
3311 /* Traversal function for dw2_forget_cached_source_info. */
3312
3313 static int
3314 dw2_free_cached_file_names (void **slot, void *info)
3315 {
3316 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3317
3318 if (file_data->real_names)
3319 {
3320 int i;
3321
3322 for (i = 0; i < file_data->num_file_names; ++i)
3323 {
3324 xfree ((void*) file_data->real_names[i]);
3325 file_data->real_names[i] = NULL;
3326 }
3327 }
3328
3329 return 1;
3330 }
3331
3332 static void
3333 dw2_forget_cached_source_info (struct objfile *objfile)
3334 {
3335 dw2_setup (objfile);
3336
3337 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3338 dw2_free_cached_file_names, NULL);
3339 }
3340
3341 /* Helper function for dw2_map_symtabs_matching_filename that expands
3342 the symtabs and calls the iterator. */
3343
3344 static int
3345 dw2_map_expand_apply (struct objfile *objfile,
3346 struct dwarf2_per_cu_data *per_cu,
3347 const char *name, const char *real_path,
3348 int (*callback) (struct symtab *, void *),
3349 void *data)
3350 {
3351 struct symtab *last_made = objfile->symtabs;
3352
3353 /* Don't visit already-expanded CUs. */
3354 if (per_cu->v.quick->symtab)
3355 return 0;
3356
3357 /* This may expand more than one symtab, and we want to iterate over
3358 all of them. */
3359 dw2_instantiate_symtab (per_cu);
3360
3361 return iterate_over_some_symtabs (name, real_path, callback, data,
3362 objfile->symtabs, last_made);
3363 }
3364
3365 /* Implementation of the map_symtabs_matching_filename method. */
3366
3367 static int
3368 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3369 const char *real_path,
3370 int (*callback) (struct symtab *, void *),
3371 void *data)
3372 {
3373 int i;
3374 const char *name_basename = lbasename (name);
3375
3376 dw2_setup (objfile);
3377
3378 /* The rule is CUs specify all the files, including those used by
3379 any TU, so there's no need to scan TUs here. */
3380
3381 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3382 {
3383 int j;
3384 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3385 struct quick_file_names *file_data;
3386
3387 /* We only need to look at symtabs not already expanded. */
3388 if (per_cu->v.quick->symtab)
3389 continue;
3390
3391 file_data = dw2_get_file_names (per_cu);
3392 if (file_data == NULL)
3393 continue;
3394
3395 for (j = 0; j < file_data->num_file_names; ++j)
3396 {
3397 const char *this_name = file_data->file_names[j];
3398 const char *this_real_name;
3399
3400 if (compare_filenames_for_search (this_name, name))
3401 {
3402 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3403 callback, data))
3404 return 1;
3405 continue;
3406 }
3407
3408 /* Before we invoke realpath, which can get expensive when many
3409 files are involved, do a quick comparison of the basenames. */
3410 if (! basenames_may_differ
3411 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3412 continue;
3413
3414 this_real_name = dw2_get_real_path (objfile, file_data, j);
3415 if (compare_filenames_for_search (this_real_name, name))
3416 {
3417 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3418 callback, data))
3419 return 1;
3420 continue;
3421 }
3422
3423 if (real_path != NULL)
3424 {
3425 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3426 gdb_assert (IS_ABSOLUTE_PATH (name));
3427 if (this_real_name != NULL
3428 && FILENAME_CMP (real_path, this_real_name) == 0)
3429 {
3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3431 callback, data))
3432 return 1;
3433 continue;
3434 }
3435 }
3436 }
3437 }
3438
3439 return 0;
3440 }
3441
3442 /* Struct used to manage iterating over all CUs looking for a symbol. */
3443
3444 struct dw2_symtab_iterator
3445 {
3446 /* The internalized form of .gdb_index. */
3447 struct mapped_index *index;
3448 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3449 int want_specific_block;
3450 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3451 Unused if !WANT_SPECIFIC_BLOCK. */
3452 int block_index;
3453 /* The kind of symbol we're looking for. */
3454 domain_enum domain;
3455 /* The list of CUs from the index entry of the symbol,
3456 or NULL if not found. */
3457 offset_type *vec;
3458 /* The next element in VEC to look at. */
3459 int next;
3460 /* The number of elements in VEC, or zero if there is no match. */
3461 int length;
3462 /* Have we seen a global version of the symbol?
3463 If so we can ignore all further global instances.
3464 This is to work around gold/15646, inefficient gold-generated
3465 indices. */
3466 int global_seen;
3467 };
3468
3469 /* Initialize the index symtab iterator ITER.
3470 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3471 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3472
3473 static void
3474 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3475 struct mapped_index *index,
3476 int want_specific_block,
3477 int block_index,
3478 domain_enum domain,
3479 const char *name)
3480 {
3481 iter->index = index;
3482 iter->want_specific_block = want_specific_block;
3483 iter->block_index = block_index;
3484 iter->domain = domain;
3485 iter->next = 0;
3486 iter->global_seen = 0;
3487
3488 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3489 iter->length = MAYBE_SWAP (*iter->vec);
3490 else
3491 {
3492 iter->vec = NULL;
3493 iter->length = 0;
3494 }
3495 }
3496
3497 /* Return the next matching CU or NULL if there are no more. */
3498
3499 static struct dwarf2_per_cu_data *
3500 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3501 {
3502 for ( ; iter->next < iter->length; ++iter->next)
3503 {
3504 offset_type cu_index_and_attrs =
3505 MAYBE_SWAP (iter->vec[iter->next + 1]);
3506 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3507 struct dwarf2_per_cu_data *per_cu;
3508 int want_static = iter->block_index != GLOBAL_BLOCK;
3509 /* This value is only valid for index versions >= 7. */
3510 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3511 gdb_index_symbol_kind symbol_kind =
3512 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3513 /* Only check the symbol attributes if they're present.
3514 Indices prior to version 7 don't record them,
3515 and indices >= 7 may elide them for certain symbols
3516 (gold does this). */
3517 int attrs_valid =
3518 (iter->index->version >= 7
3519 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3520
3521 /* Don't crash on bad data. */
3522 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3523 + dwarf2_per_objfile->n_type_units))
3524 {
3525 complaint (&symfile_complaints,
3526 _(".gdb_index entry has bad CU index"
3527 " [in module %s]"),
3528 objfile_name (dwarf2_per_objfile->objfile));
3529 continue;
3530 }
3531
3532 per_cu = dw2_get_cutu (cu_index);
3533
3534 /* Skip if already read in. */
3535 if (per_cu->v.quick->symtab)
3536 continue;
3537
3538 /* Check static vs global. */
3539 if (attrs_valid)
3540 {
3541 if (iter->want_specific_block
3542 && want_static != is_static)
3543 continue;
3544 /* Work around gold/15646. */
3545 if (!is_static && iter->global_seen)
3546 continue;
3547 if (!is_static)
3548 iter->global_seen = 1;
3549 }
3550
3551 /* Only check the symbol's kind if it has one. */
3552 if (attrs_valid)
3553 {
3554 switch (iter->domain)
3555 {
3556 case VAR_DOMAIN:
3557 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3558 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3559 /* Some types are also in VAR_DOMAIN. */
3560 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3561 continue;
3562 break;
3563 case STRUCT_DOMAIN:
3564 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3565 continue;
3566 break;
3567 case LABEL_DOMAIN:
3568 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3569 continue;
3570 break;
3571 default:
3572 break;
3573 }
3574 }
3575
3576 ++iter->next;
3577 return per_cu;
3578 }
3579
3580 return NULL;
3581 }
3582
3583 static struct symtab *
3584 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3585 const char *name, domain_enum domain)
3586 {
3587 struct symtab *stab_best = NULL;
3588 struct mapped_index *index;
3589
3590 dw2_setup (objfile);
3591
3592 index = dwarf2_per_objfile->index_table;
3593
3594 /* index is NULL if OBJF_READNOW. */
3595 if (index)
3596 {
3597 struct dw2_symtab_iterator iter;
3598 struct dwarf2_per_cu_data *per_cu;
3599
3600 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3601
3602 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3603 {
3604 struct symbol *sym = NULL;
3605 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3606
3607 /* Some caution must be observed with overloaded functions
3608 and methods, since the index will not contain any overload
3609 information (but NAME might contain it). */
3610 if (stab->primary)
3611 {
3612 struct blockvector *bv = BLOCKVECTOR (stab);
3613 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3614
3615 sym = lookup_block_symbol (block, name, domain);
3616 }
3617
3618 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3619 {
3620 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3621 return stab;
3622
3623 stab_best = stab;
3624 }
3625
3626 /* Keep looking through other CUs. */
3627 }
3628 }
3629
3630 return stab_best;
3631 }
3632
3633 static void
3634 dw2_print_stats (struct objfile *objfile)
3635 {
3636 int i, total, count;
3637
3638 dw2_setup (objfile);
3639 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3640 count = 0;
3641 for (i = 0; i < total; ++i)
3642 {
3643 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3644
3645 if (!per_cu->v.quick->symtab)
3646 ++count;
3647 }
3648 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3649 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3650 }
3651
3652 /* This dumps minimal information about the index.
3653 It is called via "mt print objfiles".
3654 One use is to verify .gdb_index has been loaded by the
3655 gdb.dwarf2/gdb-index.exp testcase. */
3656
3657 static void
3658 dw2_dump (struct objfile *objfile)
3659 {
3660 dw2_setup (objfile);
3661 gdb_assert (dwarf2_per_objfile->using_index);
3662 printf_filtered (".gdb_index:");
3663 if (dwarf2_per_objfile->index_table != NULL)
3664 {
3665 printf_filtered (" version %d\n",
3666 dwarf2_per_objfile->index_table->version);
3667 }
3668 else
3669 printf_filtered (" faked for \"readnow\"\n");
3670 printf_filtered ("\n");
3671 }
3672
3673 static void
3674 dw2_relocate (struct objfile *objfile,
3675 const struct section_offsets *new_offsets,
3676 const struct section_offsets *delta)
3677 {
3678 /* There's nothing to relocate here. */
3679 }
3680
3681 static void
3682 dw2_expand_symtabs_for_function (struct objfile *objfile,
3683 const char *func_name)
3684 {
3685 struct mapped_index *index;
3686
3687 dw2_setup (objfile);
3688
3689 index = dwarf2_per_objfile->index_table;
3690
3691 /* index is NULL if OBJF_READNOW. */
3692 if (index)
3693 {
3694 struct dw2_symtab_iterator iter;
3695 struct dwarf2_per_cu_data *per_cu;
3696
3697 /* Note: It doesn't matter what we pass for block_index here. */
3698 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3699 func_name);
3700
3701 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3702 dw2_instantiate_symtab (per_cu);
3703 }
3704 }
3705
3706 static void
3707 dw2_expand_all_symtabs (struct objfile *objfile)
3708 {
3709 int i;
3710
3711 dw2_setup (objfile);
3712
3713 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3714 + dwarf2_per_objfile->n_type_units); ++i)
3715 {
3716 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3717
3718 dw2_instantiate_symtab (per_cu);
3719 }
3720 }
3721
3722 static void
3723 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3724 const char *fullname)
3725 {
3726 int i;
3727
3728 dw2_setup (objfile);
3729
3730 /* We don't need to consider type units here.
3731 This is only called for examining code, e.g. expand_line_sal.
3732 There can be an order of magnitude (or more) more type units
3733 than comp units, and we avoid them if we can. */
3734
3735 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3736 {
3737 int j;
3738 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3739 struct quick_file_names *file_data;
3740
3741 /* We only need to look at symtabs not already expanded. */
3742 if (per_cu->v.quick->symtab)
3743 continue;
3744
3745 file_data = dw2_get_file_names (per_cu);
3746 if (file_data == NULL)
3747 continue;
3748
3749 for (j = 0; j < file_data->num_file_names; ++j)
3750 {
3751 const char *this_fullname = file_data->file_names[j];
3752
3753 if (filename_cmp (this_fullname, fullname) == 0)
3754 {
3755 dw2_instantiate_symtab (per_cu);
3756 break;
3757 }
3758 }
3759 }
3760 }
3761
3762 static void
3763 dw2_map_matching_symbols (struct objfile *objfile,
3764 const char * name, domain_enum namespace,
3765 int global,
3766 int (*callback) (struct block *,
3767 struct symbol *, void *),
3768 void *data, symbol_compare_ftype *match,
3769 symbol_compare_ftype *ordered_compare)
3770 {
3771 /* Currently unimplemented; used for Ada. The function can be called if the
3772 current language is Ada for a non-Ada objfile using GNU index. As Ada
3773 does not look for non-Ada symbols this function should just return. */
3774 }
3775
3776 static void
3777 dw2_expand_symtabs_matching
3778 (struct objfile *objfile,
3779 expand_symtabs_file_matcher_ftype *file_matcher,
3780 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3781 enum search_domain kind,
3782 void *data)
3783 {
3784 int i;
3785 offset_type iter;
3786 struct mapped_index *index;
3787
3788 dw2_setup (objfile);
3789
3790 /* index_table is NULL if OBJF_READNOW. */
3791 if (!dwarf2_per_objfile->index_table)
3792 return;
3793 index = dwarf2_per_objfile->index_table;
3794
3795 if (file_matcher != NULL)
3796 {
3797 struct cleanup *cleanup;
3798 htab_t visited_found, visited_not_found;
3799
3800 visited_found = htab_create_alloc (10,
3801 htab_hash_pointer, htab_eq_pointer,
3802 NULL, xcalloc, xfree);
3803 cleanup = make_cleanup_htab_delete (visited_found);
3804 visited_not_found = htab_create_alloc (10,
3805 htab_hash_pointer, htab_eq_pointer,
3806 NULL, xcalloc, xfree);
3807 make_cleanup_htab_delete (visited_not_found);
3808
3809 /* The rule is CUs specify all the files, including those used by
3810 any TU, so there's no need to scan TUs here. */
3811
3812 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3813 {
3814 int j;
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3816 struct quick_file_names *file_data;
3817 void **slot;
3818
3819 per_cu->v.quick->mark = 0;
3820
3821 /* We only need to look at symtabs not already expanded. */
3822 if (per_cu->v.quick->symtab)
3823 continue;
3824
3825 file_data = dw2_get_file_names (per_cu);
3826 if (file_data == NULL)
3827 continue;
3828
3829 if (htab_find (visited_not_found, file_data) != NULL)
3830 continue;
3831 else if (htab_find (visited_found, file_data) != NULL)
3832 {
3833 per_cu->v.quick->mark = 1;
3834 continue;
3835 }
3836
3837 for (j = 0; j < file_data->num_file_names; ++j)
3838 {
3839 const char *this_real_name;
3840
3841 if (file_matcher (file_data->file_names[j], data, 0))
3842 {
3843 per_cu->v.quick->mark = 1;
3844 break;
3845 }
3846
3847 /* Before we invoke realpath, which can get expensive when many
3848 files are involved, do a quick comparison of the basenames. */
3849 if (!basenames_may_differ
3850 && !file_matcher (lbasename (file_data->file_names[j]),
3851 data, 1))
3852 continue;
3853
3854 this_real_name = dw2_get_real_path (objfile, file_data, j);
3855 if (file_matcher (this_real_name, data, 0))
3856 {
3857 per_cu->v.quick->mark = 1;
3858 break;
3859 }
3860 }
3861
3862 slot = htab_find_slot (per_cu->v.quick->mark
3863 ? visited_found
3864 : visited_not_found,
3865 file_data, INSERT);
3866 *slot = file_data;
3867 }
3868
3869 do_cleanups (cleanup);
3870 }
3871
3872 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3873 {
3874 offset_type idx = 2 * iter;
3875 const char *name;
3876 offset_type *vec, vec_len, vec_idx;
3877 int global_seen = 0;
3878
3879 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3880 continue;
3881
3882 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3883
3884 if (! (*symbol_matcher) (name, data))
3885 continue;
3886
3887 /* The name was matched, now expand corresponding CUs that were
3888 marked. */
3889 vec = (offset_type *) (index->constant_pool
3890 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3891 vec_len = MAYBE_SWAP (vec[0]);
3892 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3893 {
3894 struct dwarf2_per_cu_data *per_cu;
3895 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3896 /* This value is only valid for index versions >= 7. */
3897 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3898 gdb_index_symbol_kind symbol_kind =
3899 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3900 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3901 /* Only check the symbol attributes if they're present.
3902 Indices prior to version 7 don't record them,
3903 and indices >= 7 may elide them for certain symbols
3904 (gold does this). */
3905 int attrs_valid =
3906 (index->version >= 7
3907 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3908
3909 /* Work around gold/15646. */
3910 if (attrs_valid)
3911 {
3912 if (!is_static && global_seen)
3913 continue;
3914 if (!is_static)
3915 global_seen = 1;
3916 }
3917
3918 /* Only check the symbol's kind if it has one. */
3919 if (attrs_valid)
3920 {
3921 switch (kind)
3922 {
3923 case VARIABLES_DOMAIN:
3924 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3925 continue;
3926 break;
3927 case FUNCTIONS_DOMAIN:
3928 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3929 continue;
3930 break;
3931 case TYPES_DOMAIN:
3932 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3933 continue;
3934 break;
3935 default:
3936 break;
3937 }
3938 }
3939
3940 /* Don't crash on bad data. */
3941 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3942 + dwarf2_per_objfile->n_type_units))
3943 {
3944 complaint (&symfile_complaints,
3945 _(".gdb_index entry has bad CU index"
3946 " [in module %s]"), objfile_name (objfile));
3947 continue;
3948 }
3949
3950 per_cu = dw2_get_cutu (cu_index);
3951 if (file_matcher == NULL || per_cu->v.quick->mark)
3952 dw2_instantiate_symtab (per_cu);
3953 }
3954 }
3955 }
3956
3957 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3958 symtab. */
3959
3960 static struct symtab *
3961 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3962 {
3963 int i;
3964
3965 if (BLOCKVECTOR (symtab) != NULL
3966 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3967 return symtab;
3968
3969 if (symtab->includes == NULL)
3970 return NULL;
3971
3972 for (i = 0; symtab->includes[i]; ++i)
3973 {
3974 struct symtab *s = symtab->includes[i];
3975
3976 s = recursively_find_pc_sect_symtab (s, pc);
3977 if (s != NULL)
3978 return s;
3979 }
3980
3981 return NULL;
3982 }
3983
3984 static struct symtab *
3985 dw2_find_pc_sect_symtab (struct objfile *objfile,
3986 struct bound_minimal_symbol msymbol,
3987 CORE_ADDR pc,
3988 struct obj_section *section,
3989 int warn_if_readin)
3990 {
3991 struct dwarf2_per_cu_data *data;
3992 struct symtab *result;
3993
3994 dw2_setup (objfile);
3995
3996 if (!objfile->psymtabs_addrmap)
3997 return NULL;
3998
3999 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4000 if (!data)
4001 return NULL;
4002
4003 if (warn_if_readin && data->v.quick->symtab)
4004 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4005 paddress (get_objfile_arch (objfile), pc));
4006
4007 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4008 gdb_assert (result != NULL);
4009 return result;
4010 }
4011
4012 static void
4013 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4014 void *data, int need_fullname)
4015 {
4016 int i;
4017 struct cleanup *cleanup;
4018 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4019 NULL, xcalloc, xfree);
4020
4021 cleanup = make_cleanup_htab_delete (visited);
4022 dw2_setup (objfile);
4023
4024 /* The rule is CUs specify all the files, including those used by
4025 any TU, so there's no need to scan TUs here.
4026 We can ignore file names coming from already-expanded CUs. */
4027
4028 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4029 {
4030 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4031
4032 if (per_cu->v.quick->symtab)
4033 {
4034 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4035 INSERT);
4036
4037 *slot = per_cu->v.quick->file_names;
4038 }
4039 }
4040
4041 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4042 {
4043 int j;
4044 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4045 struct quick_file_names *file_data;
4046 void **slot;
4047
4048 /* We only need to look at symtabs not already expanded. */
4049 if (per_cu->v.quick->symtab)
4050 continue;
4051
4052 file_data = dw2_get_file_names (per_cu);
4053 if (file_data == NULL)
4054 continue;
4055
4056 slot = htab_find_slot (visited, file_data, INSERT);
4057 if (*slot)
4058 {
4059 /* Already visited. */
4060 continue;
4061 }
4062 *slot = file_data;
4063
4064 for (j = 0; j < file_data->num_file_names; ++j)
4065 {
4066 const char *this_real_name;
4067
4068 if (need_fullname)
4069 this_real_name = dw2_get_real_path (objfile, file_data, j);
4070 else
4071 this_real_name = NULL;
4072 (*fun) (file_data->file_names[j], this_real_name, data);
4073 }
4074 }
4075
4076 do_cleanups (cleanup);
4077 }
4078
4079 static int
4080 dw2_has_symbols (struct objfile *objfile)
4081 {
4082 return 1;
4083 }
4084
4085 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4086 {
4087 dw2_has_symbols,
4088 dw2_find_last_source_symtab,
4089 dw2_forget_cached_source_info,
4090 dw2_map_symtabs_matching_filename,
4091 dw2_lookup_symbol,
4092 dw2_print_stats,
4093 dw2_dump,
4094 dw2_relocate,
4095 dw2_expand_symtabs_for_function,
4096 dw2_expand_all_symtabs,
4097 dw2_expand_symtabs_with_fullname,
4098 dw2_map_matching_symbols,
4099 dw2_expand_symtabs_matching,
4100 dw2_find_pc_sect_symtab,
4101 dw2_map_symbol_filenames
4102 };
4103
4104 /* Initialize for reading DWARF for this objfile. Return 0 if this
4105 file will use psymtabs, or 1 if using the GNU index. */
4106
4107 int
4108 dwarf2_initialize_objfile (struct objfile *objfile)
4109 {
4110 /* If we're about to read full symbols, don't bother with the
4111 indices. In this case we also don't care if some other debug
4112 format is making psymtabs, because they are all about to be
4113 expanded anyway. */
4114 if ((objfile->flags & OBJF_READNOW))
4115 {
4116 int i;
4117
4118 dwarf2_per_objfile->using_index = 1;
4119 create_all_comp_units (objfile);
4120 create_all_type_units (objfile);
4121 dwarf2_per_objfile->quick_file_names_table =
4122 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4123
4124 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4125 + dwarf2_per_objfile->n_type_units); ++i)
4126 {
4127 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4128
4129 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4130 struct dwarf2_per_cu_quick_data);
4131 }
4132
4133 /* Return 1 so that gdb sees the "quick" functions. However,
4134 these functions will be no-ops because we will have expanded
4135 all symtabs. */
4136 return 1;
4137 }
4138
4139 if (dwarf2_read_index (objfile))
4140 return 1;
4141
4142 return 0;
4143 }
4144
4145 \f
4146
4147 /* Build a partial symbol table. */
4148
4149 void
4150 dwarf2_build_psymtabs (struct objfile *objfile)
4151 {
4152 volatile struct gdb_exception except;
4153
4154 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4155 {
4156 init_psymbol_list (objfile, 1024);
4157 }
4158
4159 TRY_CATCH (except, RETURN_MASK_ERROR)
4160 {
4161 /* This isn't really ideal: all the data we allocate on the
4162 objfile's obstack is still uselessly kept around. However,
4163 freeing it seems unsafe. */
4164 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4165
4166 dwarf2_build_psymtabs_hard (objfile);
4167 discard_cleanups (cleanups);
4168 }
4169 if (except.reason < 0)
4170 exception_print (gdb_stderr, except);
4171 }
4172
4173 /* Return the total length of the CU described by HEADER. */
4174
4175 static unsigned int
4176 get_cu_length (const struct comp_unit_head *header)
4177 {
4178 return header->initial_length_size + header->length;
4179 }
4180
4181 /* Return TRUE if OFFSET is within CU_HEADER. */
4182
4183 static inline int
4184 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4185 {
4186 sect_offset bottom = { cu_header->offset.sect_off };
4187 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4188
4189 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4190 }
4191
4192 /* Find the base address of the compilation unit for range lists and
4193 location lists. It will normally be specified by DW_AT_low_pc.
4194 In DWARF-3 draft 4, the base address could be overridden by
4195 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4196 compilation units with discontinuous ranges. */
4197
4198 static void
4199 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4200 {
4201 struct attribute *attr;
4202
4203 cu->base_known = 0;
4204 cu->base_address = 0;
4205
4206 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4207 if (attr)
4208 {
4209 cu->base_address = attr_value_as_address (attr);
4210 cu->base_known = 1;
4211 }
4212 else
4213 {
4214 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4215 if (attr)
4216 {
4217 cu->base_address = attr_value_as_address (attr);
4218 cu->base_known = 1;
4219 }
4220 }
4221 }
4222
4223 /* Read in the comp unit header information from the debug_info at info_ptr.
4224 NOTE: This leaves members offset, first_die_offset to be filled in
4225 by the caller. */
4226
4227 static const gdb_byte *
4228 read_comp_unit_head (struct comp_unit_head *cu_header,
4229 const gdb_byte *info_ptr, bfd *abfd)
4230 {
4231 int signed_addr;
4232 unsigned int bytes_read;
4233
4234 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4235 cu_header->initial_length_size = bytes_read;
4236 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4237 info_ptr += bytes_read;
4238 cu_header->version = read_2_bytes (abfd, info_ptr);
4239 info_ptr += 2;
4240 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4241 &bytes_read);
4242 info_ptr += bytes_read;
4243 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4244 info_ptr += 1;
4245 signed_addr = bfd_get_sign_extend_vma (abfd);
4246 if (signed_addr < 0)
4247 internal_error (__FILE__, __LINE__,
4248 _("read_comp_unit_head: dwarf from non elf file"));
4249 cu_header->signed_addr_p = signed_addr;
4250
4251 return info_ptr;
4252 }
4253
4254 /* Helper function that returns the proper abbrev section for
4255 THIS_CU. */
4256
4257 static struct dwarf2_section_info *
4258 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4259 {
4260 struct dwarf2_section_info *abbrev;
4261
4262 if (this_cu->is_dwz)
4263 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4264 else
4265 abbrev = &dwarf2_per_objfile->abbrev;
4266
4267 return abbrev;
4268 }
4269
4270 /* Subroutine of read_and_check_comp_unit_head and
4271 read_and_check_type_unit_head to simplify them.
4272 Perform various error checking on the header. */
4273
4274 static void
4275 error_check_comp_unit_head (struct comp_unit_head *header,
4276 struct dwarf2_section_info *section,
4277 struct dwarf2_section_info *abbrev_section)
4278 {
4279 bfd *abfd = get_section_bfd_owner (section);
4280 const char *filename = get_section_file_name (section);
4281
4282 if (header->version != 2 && header->version != 3 && header->version != 4)
4283 error (_("Dwarf Error: wrong version in compilation unit header "
4284 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4285 filename);
4286
4287 if (header->abbrev_offset.sect_off
4288 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4289 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4290 "(offset 0x%lx + 6) [in module %s]"),
4291 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4292 filename);
4293
4294 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4295 avoid potential 32-bit overflow. */
4296 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4297 > section->size)
4298 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4299 "(offset 0x%lx + 0) [in module %s]"),
4300 (long) header->length, (long) header->offset.sect_off,
4301 filename);
4302 }
4303
4304 /* Read in a CU/TU header and perform some basic error checking.
4305 The contents of the header are stored in HEADER.
4306 The result is a pointer to the start of the first DIE. */
4307
4308 static const gdb_byte *
4309 read_and_check_comp_unit_head (struct comp_unit_head *header,
4310 struct dwarf2_section_info *section,
4311 struct dwarf2_section_info *abbrev_section,
4312 const gdb_byte *info_ptr,
4313 int is_debug_types_section)
4314 {
4315 const gdb_byte *beg_of_comp_unit = info_ptr;
4316 bfd *abfd = get_section_bfd_owner (section);
4317
4318 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4319
4320 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4321
4322 /* If we're reading a type unit, skip over the signature and
4323 type_offset fields. */
4324 if (is_debug_types_section)
4325 info_ptr += 8 /*signature*/ + header->offset_size;
4326
4327 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4328
4329 error_check_comp_unit_head (header, section, abbrev_section);
4330
4331 return info_ptr;
4332 }
4333
4334 /* Read in the types comp unit header information from .debug_types entry at
4335 types_ptr. The result is a pointer to one past the end of the header. */
4336
4337 static const gdb_byte *
4338 read_and_check_type_unit_head (struct comp_unit_head *header,
4339 struct dwarf2_section_info *section,
4340 struct dwarf2_section_info *abbrev_section,
4341 const gdb_byte *info_ptr,
4342 ULONGEST *signature,
4343 cu_offset *type_offset_in_tu)
4344 {
4345 const gdb_byte *beg_of_comp_unit = info_ptr;
4346 bfd *abfd = get_section_bfd_owner (section);
4347
4348 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4349
4350 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4351
4352 /* If we're reading a type unit, skip over the signature and
4353 type_offset fields. */
4354 if (signature != NULL)
4355 *signature = read_8_bytes (abfd, info_ptr);
4356 info_ptr += 8;
4357 if (type_offset_in_tu != NULL)
4358 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4359 header->offset_size);
4360 info_ptr += header->offset_size;
4361
4362 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4363
4364 error_check_comp_unit_head (header, section, abbrev_section);
4365
4366 return info_ptr;
4367 }
4368
4369 /* Fetch the abbreviation table offset from a comp or type unit header. */
4370
4371 static sect_offset
4372 read_abbrev_offset (struct dwarf2_section_info *section,
4373 sect_offset offset)
4374 {
4375 bfd *abfd = get_section_bfd_owner (section);
4376 const gdb_byte *info_ptr;
4377 unsigned int length, initial_length_size, offset_size;
4378 sect_offset abbrev_offset;
4379
4380 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4381 info_ptr = section->buffer + offset.sect_off;
4382 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4383 offset_size = initial_length_size == 4 ? 4 : 8;
4384 info_ptr += initial_length_size + 2 /*version*/;
4385 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4386 return abbrev_offset;
4387 }
4388
4389 /* Allocate a new partial symtab for file named NAME and mark this new
4390 partial symtab as being an include of PST. */
4391
4392 static void
4393 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4394 struct objfile *objfile)
4395 {
4396 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4397
4398 if (!IS_ABSOLUTE_PATH (subpst->filename))
4399 {
4400 /* It shares objfile->objfile_obstack. */
4401 subpst->dirname = pst->dirname;
4402 }
4403
4404 subpst->section_offsets = pst->section_offsets;
4405 subpst->textlow = 0;
4406 subpst->texthigh = 0;
4407
4408 subpst->dependencies = (struct partial_symtab **)
4409 obstack_alloc (&objfile->objfile_obstack,
4410 sizeof (struct partial_symtab *));
4411 subpst->dependencies[0] = pst;
4412 subpst->number_of_dependencies = 1;
4413
4414 subpst->globals_offset = 0;
4415 subpst->n_global_syms = 0;
4416 subpst->statics_offset = 0;
4417 subpst->n_static_syms = 0;
4418 subpst->symtab = NULL;
4419 subpst->read_symtab = pst->read_symtab;
4420 subpst->readin = 0;
4421
4422 /* No private part is necessary for include psymtabs. This property
4423 can be used to differentiate between such include psymtabs and
4424 the regular ones. */
4425 subpst->read_symtab_private = NULL;
4426 }
4427
4428 /* Read the Line Number Program data and extract the list of files
4429 included by the source file represented by PST. Build an include
4430 partial symtab for each of these included files. */
4431
4432 static void
4433 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4434 struct die_info *die,
4435 struct partial_symtab *pst)
4436 {
4437 struct line_header *lh = NULL;
4438 struct attribute *attr;
4439
4440 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4441 if (attr)
4442 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4443 if (lh == NULL)
4444 return; /* No linetable, so no includes. */
4445
4446 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4447 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4448
4449 free_line_header (lh);
4450 }
4451
4452 static hashval_t
4453 hash_signatured_type (const void *item)
4454 {
4455 const struct signatured_type *sig_type = item;
4456
4457 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4458 return sig_type->signature;
4459 }
4460
4461 static int
4462 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4463 {
4464 const struct signatured_type *lhs = item_lhs;
4465 const struct signatured_type *rhs = item_rhs;
4466
4467 return lhs->signature == rhs->signature;
4468 }
4469
4470 /* Allocate a hash table for signatured types. */
4471
4472 static htab_t
4473 allocate_signatured_type_table (struct objfile *objfile)
4474 {
4475 return htab_create_alloc_ex (41,
4476 hash_signatured_type,
4477 eq_signatured_type,
4478 NULL,
4479 &objfile->objfile_obstack,
4480 hashtab_obstack_allocate,
4481 dummy_obstack_deallocate);
4482 }
4483
4484 /* A helper function to add a signatured type CU to a table. */
4485
4486 static int
4487 add_signatured_type_cu_to_table (void **slot, void *datum)
4488 {
4489 struct signatured_type *sigt = *slot;
4490 struct signatured_type ***datap = datum;
4491
4492 **datap = sigt;
4493 ++*datap;
4494
4495 return 1;
4496 }
4497
4498 /* Create the hash table of all entries in the .debug_types
4499 (or .debug_types.dwo) section(s).
4500 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4501 otherwise it is NULL.
4502
4503 The result is a pointer to the hash table or NULL if there are no types.
4504
4505 Note: This function processes DWO files only, not DWP files. */
4506
4507 static htab_t
4508 create_debug_types_hash_table (struct dwo_file *dwo_file,
4509 VEC (dwarf2_section_info_def) *types)
4510 {
4511 struct objfile *objfile = dwarf2_per_objfile->objfile;
4512 htab_t types_htab = NULL;
4513 int ix;
4514 struct dwarf2_section_info *section;
4515 struct dwarf2_section_info *abbrev_section;
4516
4517 if (VEC_empty (dwarf2_section_info_def, types))
4518 return NULL;
4519
4520 abbrev_section = (dwo_file != NULL
4521 ? &dwo_file->sections.abbrev
4522 : &dwarf2_per_objfile->abbrev);
4523
4524 if (dwarf2_read_debug)
4525 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4526 dwo_file ? ".dwo" : "",
4527 get_section_file_name (abbrev_section));
4528
4529 for (ix = 0;
4530 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4531 ++ix)
4532 {
4533 bfd *abfd;
4534 const gdb_byte *info_ptr, *end_ptr;
4535
4536 dwarf2_read_section (objfile, section);
4537 info_ptr = section->buffer;
4538
4539 if (info_ptr == NULL)
4540 continue;
4541
4542 /* We can't set abfd until now because the section may be empty or
4543 not present, in which case the bfd is unknown. */
4544 abfd = get_section_bfd_owner (section);
4545
4546 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4547 because we don't need to read any dies: the signature is in the
4548 header. */
4549
4550 end_ptr = info_ptr + section->size;
4551 while (info_ptr < end_ptr)
4552 {
4553 sect_offset offset;
4554 cu_offset type_offset_in_tu;
4555 ULONGEST signature;
4556 struct signatured_type *sig_type;
4557 struct dwo_unit *dwo_tu;
4558 void **slot;
4559 const gdb_byte *ptr = info_ptr;
4560 struct comp_unit_head header;
4561 unsigned int length;
4562
4563 offset.sect_off = ptr - section->buffer;
4564
4565 /* We need to read the type's signature in order to build the hash
4566 table, but we don't need anything else just yet. */
4567
4568 ptr = read_and_check_type_unit_head (&header, section,
4569 abbrev_section, ptr,
4570 &signature, &type_offset_in_tu);
4571
4572 length = get_cu_length (&header);
4573
4574 /* Skip dummy type units. */
4575 if (ptr >= info_ptr + length
4576 || peek_abbrev_code (abfd, ptr) == 0)
4577 {
4578 info_ptr += length;
4579 continue;
4580 }
4581
4582 if (types_htab == NULL)
4583 {
4584 if (dwo_file)
4585 types_htab = allocate_dwo_unit_table (objfile);
4586 else
4587 types_htab = allocate_signatured_type_table (objfile);
4588 }
4589
4590 if (dwo_file)
4591 {
4592 sig_type = NULL;
4593 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4594 struct dwo_unit);
4595 dwo_tu->dwo_file = dwo_file;
4596 dwo_tu->signature = signature;
4597 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4598 dwo_tu->section = section;
4599 dwo_tu->offset = offset;
4600 dwo_tu->length = length;
4601 }
4602 else
4603 {
4604 /* N.B.: type_offset is not usable if this type uses a DWO file.
4605 The real type_offset is in the DWO file. */
4606 dwo_tu = NULL;
4607 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4608 struct signatured_type);
4609 sig_type->signature = signature;
4610 sig_type->type_offset_in_tu = type_offset_in_tu;
4611 sig_type->per_cu.objfile = objfile;
4612 sig_type->per_cu.is_debug_types = 1;
4613 sig_type->per_cu.section = section;
4614 sig_type->per_cu.offset = offset;
4615 sig_type->per_cu.length = length;
4616 }
4617
4618 slot = htab_find_slot (types_htab,
4619 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4620 INSERT);
4621 gdb_assert (slot != NULL);
4622 if (*slot != NULL)
4623 {
4624 sect_offset dup_offset;
4625
4626 if (dwo_file)
4627 {
4628 const struct dwo_unit *dup_tu = *slot;
4629
4630 dup_offset = dup_tu->offset;
4631 }
4632 else
4633 {
4634 const struct signatured_type *dup_tu = *slot;
4635
4636 dup_offset = dup_tu->per_cu.offset;
4637 }
4638
4639 complaint (&symfile_complaints,
4640 _("debug type entry at offset 0x%x is duplicate to"
4641 " the entry at offset 0x%x, signature %s"),
4642 offset.sect_off, dup_offset.sect_off,
4643 hex_string (signature));
4644 }
4645 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4646
4647 if (dwarf2_read_debug > 1)
4648 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4649 offset.sect_off,
4650 hex_string (signature));
4651
4652 info_ptr += length;
4653 }
4654 }
4655
4656 return types_htab;
4657 }
4658
4659 /* Create the hash table of all entries in the .debug_types section,
4660 and initialize all_type_units.
4661 The result is zero if there is an error (e.g. missing .debug_types section),
4662 otherwise non-zero. */
4663
4664 static int
4665 create_all_type_units (struct objfile *objfile)
4666 {
4667 htab_t types_htab;
4668 struct signatured_type **iter;
4669
4670 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4671 if (types_htab == NULL)
4672 {
4673 dwarf2_per_objfile->signatured_types = NULL;
4674 return 0;
4675 }
4676
4677 dwarf2_per_objfile->signatured_types = types_htab;
4678
4679 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4680 dwarf2_per_objfile->all_type_units
4681 = xmalloc (dwarf2_per_objfile->n_type_units
4682 * sizeof (struct signatured_type *));
4683 iter = &dwarf2_per_objfile->all_type_units[0];
4684 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4685 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4686 == dwarf2_per_objfile->n_type_units);
4687
4688 return 1;
4689 }
4690
4691 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4692 Fill in SIG_ENTRY with DWO_ENTRY. */
4693
4694 static void
4695 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4696 struct signatured_type *sig_entry,
4697 struct dwo_unit *dwo_entry)
4698 {
4699 /* Make sure we're not clobbering something we don't expect to. */
4700 gdb_assert (! sig_entry->per_cu.queued);
4701 gdb_assert (sig_entry->per_cu.cu == NULL);
4702 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4703 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4704 gdb_assert (sig_entry->signature == dwo_entry->signature);
4705 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4706 gdb_assert (sig_entry->type_unit_group == NULL);
4707 gdb_assert (sig_entry->dwo_unit == NULL);
4708
4709 sig_entry->per_cu.section = dwo_entry->section;
4710 sig_entry->per_cu.offset = dwo_entry->offset;
4711 sig_entry->per_cu.length = dwo_entry->length;
4712 sig_entry->per_cu.reading_dwo_directly = 1;
4713 sig_entry->per_cu.objfile = objfile;
4714 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4715 sig_entry->dwo_unit = dwo_entry;
4716 }
4717
4718 /* Subroutine of lookup_signatured_type.
4719 If we haven't read the TU yet, create the signatured_type data structure
4720 for a TU to be read in directly from a DWO file, bypassing the stub.
4721 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4722 using .gdb_index, then when reading a CU we want to stay in the DWO file
4723 containing that CU. Otherwise we could end up reading several other DWO
4724 files (due to comdat folding) to process the transitive closure of all the
4725 mentioned TUs, and that can be slow. The current DWO file will have every
4726 type signature that it needs.
4727 We only do this for .gdb_index because in the psymtab case we already have
4728 to read all the DWOs to build the type unit groups. */
4729
4730 static struct signatured_type *
4731 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4732 {
4733 struct objfile *objfile = dwarf2_per_objfile->objfile;
4734 struct dwo_file *dwo_file;
4735 struct dwo_unit find_dwo_entry, *dwo_entry;
4736 struct signatured_type find_sig_entry, *sig_entry;
4737
4738 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4739
4740 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4741 dwo_unit of the TU itself. */
4742 dwo_file = cu->dwo_unit->dwo_file;
4743
4744 /* We only ever need to read in one copy of a signatured type.
4745 Just use the global signatured_types array. If this is the first time
4746 we're reading this type, replace the recorded data from .gdb_index with
4747 this TU. */
4748
4749 if (dwarf2_per_objfile->signatured_types == NULL)
4750 return NULL;
4751 find_sig_entry.signature = sig;
4752 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4753 if (sig_entry == NULL)
4754 return NULL;
4755
4756 /* We can get here with the TU already read, *or* in the process of being
4757 read. Don't reassign it if that's the case. Also note that if the TU is
4758 already being read, it may not have come from a DWO, the program may be
4759 a mix of Fission-compiled code and non-Fission-compiled code. */
4760 /* Have we already tried to read this TU? */
4761 if (sig_entry->per_cu.tu_read)
4762 return sig_entry;
4763
4764 /* Ok, this is the first time we're reading this TU. */
4765 if (dwo_file->tus == NULL)
4766 return NULL;
4767 find_dwo_entry.signature = sig;
4768 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4769 if (dwo_entry == NULL)
4770 return NULL;
4771
4772 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4773 sig_entry->per_cu.tu_read = 1;
4774 return sig_entry;
4775 }
4776
4777 /* Subroutine of lookup_dwp_signatured_type.
4778 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4779
4780 static struct signatured_type *
4781 add_type_unit (ULONGEST sig)
4782 {
4783 struct objfile *objfile = dwarf2_per_objfile->objfile;
4784 int n_type_units = dwarf2_per_objfile->n_type_units;
4785 struct signatured_type *sig_type;
4786 void **slot;
4787
4788 ++n_type_units;
4789 dwarf2_per_objfile->all_type_units =
4790 xrealloc (dwarf2_per_objfile->all_type_units,
4791 n_type_units * sizeof (struct signatured_type *));
4792 dwarf2_per_objfile->n_type_units = n_type_units;
4793 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4794 struct signatured_type);
4795 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4796 sig_type->signature = sig;
4797 sig_type->per_cu.is_debug_types = 1;
4798 sig_type->per_cu.v.quick =
4799 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4800 struct dwarf2_per_cu_quick_data);
4801 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4802 sig_type, INSERT);
4803 gdb_assert (*slot == NULL);
4804 *slot = sig_type;
4805 /* The rest of sig_type must be filled in by the caller. */
4806 return sig_type;
4807 }
4808
4809 /* Subroutine of lookup_signatured_type.
4810 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4811 then try the DWP file.
4812 Normally this "can't happen", but if there's a bug in signature
4813 generation and/or the DWP file is built incorrectly, it can happen.
4814 Using the type directly from the DWP file means we don't have the stub
4815 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4816 not critical. [Eventually the stub may go away for type units anyway.] */
4817
4818 static struct signatured_type *
4819 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4820 {
4821 struct objfile *objfile = dwarf2_per_objfile->objfile;
4822 struct dwp_file *dwp_file = get_dwp_file ();
4823 struct dwo_unit *dwo_entry;
4824 struct signatured_type find_sig_entry, *sig_entry;
4825
4826 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4827 gdb_assert (dwp_file != NULL);
4828
4829 if (dwarf2_per_objfile->signatured_types != NULL)
4830 {
4831 find_sig_entry.signature = sig;
4832 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4833 &find_sig_entry);
4834 if (sig_entry != NULL)
4835 return sig_entry;
4836 }
4837
4838 /* This is the "shouldn't happen" case.
4839 Try the DWP file and hope for the best. */
4840 if (dwp_file->tus == NULL)
4841 return NULL;
4842 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4843 sig, 1 /* is_debug_types */);
4844 if (dwo_entry == NULL)
4845 return NULL;
4846
4847 sig_entry = add_type_unit (sig);
4848 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4849
4850 /* The caller will signal a complaint if we return NULL.
4851 Here we don't return NULL but we still want to complain. */
4852 complaint (&symfile_complaints,
4853 _("Bad type signature %s referenced by %s at 0x%x,"
4854 " coping by using copy in DWP [in module %s]"),
4855 hex_string (sig),
4856 cu->per_cu->is_debug_types ? "TU" : "CU",
4857 cu->per_cu->offset.sect_off,
4858 objfile_name (objfile));
4859
4860 return sig_entry;
4861 }
4862
4863 /* Lookup a signature based type for DW_FORM_ref_sig8.
4864 Returns NULL if signature SIG is not present in the table.
4865 It is up to the caller to complain about this. */
4866
4867 static struct signatured_type *
4868 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4869 {
4870 if (cu->dwo_unit
4871 && dwarf2_per_objfile->using_index)
4872 {
4873 /* We're in a DWO/DWP file, and we're using .gdb_index.
4874 These cases require special processing. */
4875 if (get_dwp_file () == NULL)
4876 return lookup_dwo_signatured_type (cu, sig);
4877 else
4878 return lookup_dwp_signatured_type (cu, sig);
4879 }
4880 else
4881 {
4882 struct signatured_type find_entry, *entry;
4883
4884 if (dwarf2_per_objfile->signatured_types == NULL)
4885 return NULL;
4886 find_entry.signature = sig;
4887 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4888 return entry;
4889 }
4890 }
4891 \f
4892 /* Low level DIE reading support. */
4893
4894 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4895
4896 static void
4897 init_cu_die_reader (struct die_reader_specs *reader,
4898 struct dwarf2_cu *cu,
4899 struct dwarf2_section_info *section,
4900 struct dwo_file *dwo_file)
4901 {
4902 gdb_assert (section->readin && section->buffer != NULL);
4903 reader->abfd = get_section_bfd_owner (section);
4904 reader->cu = cu;
4905 reader->dwo_file = dwo_file;
4906 reader->die_section = section;
4907 reader->buffer = section->buffer;
4908 reader->buffer_end = section->buffer + section->size;
4909 reader->comp_dir = NULL;
4910 }
4911
4912 /* Subroutine of init_cutu_and_read_dies to simplify it.
4913 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4914 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4915 already.
4916
4917 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4918 from it to the DIE in the DWO. If NULL we are skipping the stub.
4919 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4920 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4921 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4922 STUB_COMP_DIR may be non-NULL.
4923 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4924 are filled in with the info of the DIE from the DWO file.
4925 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4926 provided an abbrev table to use.
4927 The result is non-zero if a valid (non-dummy) DIE was found. */
4928
4929 static int
4930 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4931 struct dwo_unit *dwo_unit,
4932 int abbrev_table_provided,
4933 struct die_info *stub_comp_unit_die,
4934 const char *stub_comp_dir,
4935 struct die_reader_specs *result_reader,
4936 const gdb_byte **result_info_ptr,
4937 struct die_info **result_comp_unit_die,
4938 int *result_has_children)
4939 {
4940 struct objfile *objfile = dwarf2_per_objfile->objfile;
4941 struct dwarf2_cu *cu = this_cu->cu;
4942 struct dwarf2_section_info *section;
4943 bfd *abfd;
4944 const gdb_byte *begin_info_ptr, *info_ptr;
4945 ULONGEST signature; /* Or dwo_id. */
4946 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4947 int i,num_extra_attrs;
4948 struct dwarf2_section_info *dwo_abbrev_section;
4949 struct attribute *attr;
4950 struct die_info *comp_unit_die;
4951
4952 /* At most one of these may be provided. */
4953 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4954
4955 /* These attributes aren't processed until later:
4956 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4957 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4958 referenced later. However, these attributes are found in the stub
4959 which we won't have later. In order to not impose this complication
4960 on the rest of the code, we read them here and copy them to the
4961 DWO CU/TU die. */
4962
4963 stmt_list = NULL;
4964 low_pc = NULL;
4965 high_pc = NULL;
4966 ranges = NULL;
4967 comp_dir = NULL;
4968
4969 if (stub_comp_unit_die != NULL)
4970 {
4971 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4972 DWO file. */
4973 if (! this_cu->is_debug_types)
4974 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4975 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4976 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4977 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4978 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4979
4980 /* There should be a DW_AT_addr_base attribute here (if needed).
4981 We need the value before we can process DW_FORM_GNU_addr_index. */
4982 cu->addr_base = 0;
4983 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4984 if (attr)
4985 cu->addr_base = DW_UNSND (attr);
4986
4987 /* There should be a DW_AT_ranges_base attribute here (if needed).
4988 We need the value before we can process DW_AT_ranges. */
4989 cu->ranges_base = 0;
4990 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4991 if (attr)
4992 cu->ranges_base = DW_UNSND (attr);
4993 }
4994 else if (stub_comp_dir != NULL)
4995 {
4996 /* Reconstruct the comp_dir attribute to simplify the code below. */
4997 comp_dir = (struct attribute *)
4998 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4999 comp_dir->name = DW_AT_comp_dir;
5000 comp_dir->form = DW_FORM_string;
5001 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5002 DW_STRING (comp_dir) = stub_comp_dir;
5003 }
5004
5005 /* Set up for reading the DWO CU/TU. */
5006 cu->dwo_unit = dwo_unit;
5007 section = dwo_unit->section;
5008 dwarf2_read_section (objfile, section);
5009 abfd = get_section_bfd_owner (section);
5010 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5011 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5012 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5013
5014 if (this_cu->is_debug_types)
5015 {
5016 ULONGEST header_signature;
5017 cu_offset type_offset_in_tu;
5018 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5019
5020 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5021 dwo_abbrev_section,
5022 info_ptr,
5023 &header_signature,
5024 &type_offset_in_tu);
5025 /* This is not an assert because it can be caused by bad debug info. */
5026 if (sig_type->signature != header_signature)
5027 {
5028 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5029 " TU at offset 0x%x [in module %s]"),
5030 hex_string (sig_type->signature),
5031 hex_string (header_signature),
5032 dwo_unit->offset.sect_off,
5033 bfd_get_filename (abfd));
5034 }
5035 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5036 /* For DWOs coming from DWP files, we don't know the CU length
5037 nor the type's offset in the TU until now. */
5038 dwo_unit->length = get_cu_length (&cu->header);
5039 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5040
5041 /* Establish the type offset that can be used to lookup the type.
5042 For DWO files, we don't know it until now. */
5043 sig_type->type_offset_in_section.sect_off =
5044 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5045 }
5046 else
5047 {
5048 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5049 dwo_abbrev_section,
5050 info_ptr, 0);
5051 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5052 /* For DWOs coming from DWP files, we don't know the CU length
5053 until now. */
5054 dwo_unit->length = get_cu_length (&cu->header);
5055 }
5056
5057 /* Replace the CU's original abbrev table with the DWO's.
5058 Reminder: We can't read the abbrev table until we've read the header. */
5059 if (abbrev_table_provided)
5060 {
5061 /* Don't free the provided abbrev table, the caller of
5062 init_cutu_and_read_dies owns it. */
5063 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5064 /* Ensure the DWO abbrev table gets freed. */
5065 make_cleanup (dwarf2_free_abbrev_table, cu);
5066 }
5067 else
5068 {
5069 dwarf2_free_abbrev_table (cu);
5070 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5071 /* Leave any existing abbrev table cleanup as is. */
5072 }
5073
5074 /* Read in the die, but leave space to copy over the attributes
5075 from the stub. This has the benefit of simplifying the rest of
5076 the code - all the work to maintain the illusion of a single
5077 DW_TAG_{compile,type}_unit DIE is done here. */
5078 num_extra_attrs = ((stmt_list != NULL)
5079 + (low_pc != NULL)
5080 + (high_pc != NULL)
5081 + (ranges != NULL)
5082 + (comp_dir != NULL));
5083 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5084 result_has_children, num_extra_attrs);
5085
5086 /* Copy over the attributes from the stub to the DIE we just read in. */
5087 comp_unit_die = *result_comp_unit_die;
5088 i = comp_unit_die->num_attrs;
5089 if (stmt_list != NULL)
5090 comp_unit_die->attrs[i++] = *stmt_list;
5091 if (low_pc != NULL)
5092 comp_unit_die->attrs[i++] = *low_pc;
5093 if (high_pc != NULL)
5094 comp_unit_die->attrs[i++] = *high_pc;
5095 if (ranges != NULL)
5096 comp_unit_die->attrs[i++] = *ranges;
5097 if (comp_dir != NULL)
5098 comp_unit_die->attrs[i++] = *comp_dir;
5099 comp_unit_die->num_attrs += num_extra_attrs;
5100
5101 if (dwarf2_die_debug)
5102 {
5103 fprintf_unfiltered (gdb_stdlog,
5104 "Read die from %s@0x%x of %s:\n",
5105 get_section_name (section),
5106 (unsigned) (begin_info_ptr - section->buffer),
5107 bfd_get_filename (abfd));
5108 dump_die (comp_unit_die, dwarf2_die_debug);
5109 }
5110
5111 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5112 TUs by skipping the stub and going directly to the entry in the DWO file.
5113 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5114 to get it via circuitous means. Blech. */
5115 if (comp_dir != NULL)
5116 result_reader->comp_dir = DW_STRING (comp_dir);
5117
5118 /* Skip dummy compilation units. */
5119 if (info_ptr >= begin_info_ptr + dwo_unit->length
5120 || peek_abbrev_code (abfd, info_ptr) == 0)
5121 return 0;
5122
5123 *result_info_ptr = info_ptr;
5124 return 1;
5125 }
5126
5127 /* Subroutine of init_cutu_and_read_dies to simplify it.
5128 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5129 Returns NULL if the specified DWO unit cannot be found. */
5130
5131 static struct dwo_unit *
5132 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5133 struct die_info *comp_unit_die)
5134 {
5135 struct dwarf2_cu *cu = this_cu->cu;
5136 struct attribute *attr;
5137 ULONGEST signature;
5138 struct dwo_unit *dwo_unit;
5139 const char *comp_dir, *dwo_name;
5140
5141 gdb_assert (cu != NULL);
5142
5143 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5144 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5145 gdb_assert (attr != NULL);
5146 dwo_name = DW_STRING (attr);
5147 comp_dir = NULL;
5148 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5149 if (attr)
5150 comp_dir = DW_STRING (attr);
5151
5152 if (this_cu->is_debug_types)
5153 {
5154 struct signatured_type *sig_type;
5155
5156 /* Since this_cu is the first member of struct signatured_type,
5157 we can go from a pointer to one to a pointer to the other. */
5158 sig_type = (struct signatured_type *) this_cu;
5159 signature = sig_type->signature;
5160 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5161 }
5162 else
5163 {
5164 struct attribute *attr;
5165
5166 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5167 if (! attr)
5168 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5169 " [in module %s]"),
5170 dwo_name, objfile_name (this_cu->objfile));
5171 signature = DW_UNSND (attr);
5172 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5173 signature);
5174 }
5175
5176 return dwo_unit;
5177 }
5178
5179 /* Subroutine of init_cutu_and_read_dies to simplify it.
5180 Read a TU directly from a DWO file, bypassing the stub. */
5181
5182 static void
5183 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5184 die_reader_func_ftype *die_reader_func,
5185 void *data)
5186 {
5187 struct dwarf2_cu *cu;
5188 struct signatured_type *sig_type;
5189 struct cleanup *cleanups, *free_cu_cleanup;
5190 struct die_reader_specs reader;
5191 const gdb_byte *info_ptr;
5192 struct die_info *comp_unit_die;
5193 int has_children;
5194
5195 /* Verify we can do the following downcast, and that we have the
5196 data we need. */
5197 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5198 sig_type = (struct signatured_type *) this_cu;
5199 gdb_assert (sig_type->dwo_unit != NULL);
5200
5201 cleanups = make_cleanup (null_cleanup, NULL);
5202
5203 gdb_assert (this_cu->cu == NULL);
5204 cu = xmalloc (sizeof (*cu));
5205 init_one_comp_unit (cu, this_cu);
5206 /* If an error occurs while loading, release our storage. */
5207 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5208
5209 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5210 0 /* abbrev_table_provided */,
5211 NULL /* stub_comp_unit_die */,
5212 sig_type->dwo_unit->dwo_file->comp_dir,
5213 &reader, &info_ptr,
5214 &comp_unit_die, &has_children) == 0)
5215 {
5216 /* Dummy die. */
5217 do_cleanups (cleanups);
5218 return;
5219 }
5220
5221 /* All the "real" work is done here. */
5222 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5223
5224 /* This duplicates some code in init_cutu_and_read_dies,
5225 but the alternative is making the latter more complex.
5226 This function is only for the special case of using DWO files directly:
5227 no point in overly complicating the general case just to handle this. */
5228 if (keep)
5229 {
5230 /* We've successfully allocated this compilation unit. Let our
5231 caller clean it up when finished with it. */
5232 discard_cleanups (free_cu_cleanup);
5233
5234 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5235 So we have to manually free the abbrev table. */
5236 dwarf2_free_abbrev_table (cu);
5237
5238 /* Link this CU into read_in_chain. */
5239 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5240 dwarf2_per_objfile->read_in_chain = this_cu;
5241 }
5242 else
5243 do_cleanups (free_cu_cleanup);
5244
5245 do_cleanups (cleanups);
5246 }
5247
5248 /* Initialize a CU (or TU) and read its DIEs.
5249 If the CU defers to a DWO file, read the DWO file as well.
5250
5251 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5252 Otherwise the table specified in the comp unit header is read in and used.
5253 This is an optimization for when we already have the abbrev table.
5254
5255 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5256 Otherwise, a new CU is allocated with xmalloc.
5257
5258 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5259 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5260
5261 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5262 linker) then DIE_READER_FUNC will not get called. */
5263
5264 static void
5265 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5266 struct abbrev_table *abbrev_table,
5267 int use_existing_cu, int keep,
5268 die_reader_func_ftype *die_reader_func,
5269 void *data)
5270 {
5271 struct objfile *objfile = dwarf2_per_objfile->objfile;
5272 struct dwarf2_section_info *section = this_cu->section;
5273 bfd *abfd = get_section_bfd_owner (section);
5274 struct dwarf2_cu *cu;
5275 const gdb_byte *begin_info_ptr, *info_ptr;
5276 struct die_reader_specs reader;
5277 struct die_info *comp_unit_die;
5278 int has_children;
5279 struct attribute *attr;
5280 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5281 struct signatured_type *sig_type = NULL;
5282 struct dwarf2_section_info *abbrev_section;
5283 /* Non-zero if CU currently points to a DWO file and we need to
5284 reread it. When this happens we need to reread the skeleton die
5285 before we can reread the DWO file (this only applies to CUs, not TUs). */
5286 int rereading_dwo_cu = 0;
5287
5288 if (dwarf2_die_debug)
5289 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5290 this_cu->is_debug_types ? "type" : "comp",
5291 this_cu->offset.sect_off);
5292
5293 if (use_existing_cu)
5294 gdb_assert (keep);
5295
5296 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5297 file (instead of going through the stub), short-circuit all of this. */
5298 if (this_cu->reading_dwo_directly)
5299 {
5300 /* Narrow down the scope of possibilities to have to understand. */
5301 gdb_assert (this_cu->is_debug_types);
5302 gdb_assert (abbrev_table == NULL);
5303 gdb_assert (!use_existing_cu);
5304 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5305 return;
5306 }
5307
5308 cleanups = make_cleanup (null_cleanup, NULL);
5309
5310 /* This is cheap if the section is already read in. */
5311 dwarf2_read_section (objfile, section);
5312
5313 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5314
5315 abbrev_section = get_abbrev_section_for_cu (this_cu);
5316
5317 if (use_existing_cu && this_cu->cu != NULL)
5318 {
5319 cu = this_cu->cu;
5320
5321 /* If this CU is from a DWO file we need to start over, we need to
5322 refetch the attributes from the skeleton CU.
5323 This could be optimized by retrieving those attributes from when we
5324 were here the first time: the previous comp_unit_die was stored in
5325 comp_unit_obstack. But there's no data yet that we need this
5326 optimization. */
5327 if (cu->dwo_unit != NULL)
5328 rereading_dwo_cu = 1;
5329 }
5330 else
5331 {
5332 /* If !use_existing_cu, this_cu->cu must be NULL. */
5333 gdb_assert (this_cu->cu == NULL);
5334
5335 cu = xmalloc (sizeof (*cu));
5336 init_one_comp_unit (cu, this_cu);
5337
5338 /* If an error occurs while loading, release our storage. */
5339 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5340 }
5341
5342 /* Get the header. */
5343 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5344 {
5345 /* We already have the header, there's no need to read it in again. */
5346 info_ptr += cu->header.first_die_offset.cu_off;
5347 }
5348 else
5349 {
5350 if (this_cu->is_debug_types)
5351 {
5352 ULONGEST signature;
5353 cu_offset type_offset_in_tu;
5354
5355 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5356 abbrev_section, info_ptr,
5357 &signature,
5358 &type_offset_in_tu);
5359
5360 /* Since per_cu is the first member of struct signatured_type,
5361 we can go from a pointer to one to a pointer to the other. */
5362 sig_type = (struct signatured_type *) this_cu;
5363 gdb_assert (sig_type->signature == signature);
5364 gdb_assert (sig_type->type_offset_in_tu.cu_off
5365 == type_offset_in_tu.cu_off);
5366 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5367
5368 /* LENGTH has not been set yet for type units if we're
5369 using .gdb_index. */
5370 this_cu->length = get_cu_length (&cu->header);
5371
5372 /* Establish the type offset that can be used to lookup the type. */
5373 sig_type->type_offset_in_section.sect_off =
5374 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5375 }
5376 else
5377 {
5378 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5379 abbrev_section,
5380 info_ptr, 0);
5381
5382 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5383 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5384 }
5385 }
5386
5387 /* Skip dummy compilation units. */
5388 if (info_ptr >= begin_info_ptr + this_cu->length
5389 || peek_abbrev_code (abfd, info_ptr) == 0)
5390 {
5391 do_cleanups (cleanups);
5392 return;
5393 }
5394
5395 /* If we don't have them yet, read the abbrevs for this compilation unit.
5396 And if we need to read them now, make sure they're freed when we're
5397 done. Note that it's important that if the CU had an abbrev table
5398 on entry we don't free it when we're done: Somewhere up the call stack
5399 it may be in use. */
5400 if (abbrev_table != NULL)
5401 {
5402 gdb_assert (cu->abbrev_table == NULL);
5403 gdb_assert (cu->header.abbrev_offset.sect_off
5404 == abbrev_table->offset.sect_off);
5405 cu->abbrev_table = abbrev_table;
5406 }
5407 else if (cu->abbrev_table == NULL)
5408 {
5409 dwarf2_read_abbrevs (cu, abbrev_section);
5410 make_cleanup (dwarf2_free_abbrev_table, cu);
5411 }
5412 else if (rereading_dwo_cu)
5413 {
5414 dwarf2_free_abbrev_table (cu);
5415 dwarf2_read_abbrevs (cu, abbrev_section);
5416 }
5417
5418 /* Read the top level CU/TU die. */
5419 init_cu_die_reader (&reader, cu, section, NULL);
5420 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5421
5422 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5423 from the DWO file.
5424 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5425 DWO CU, that this test will fail (the attribute will not be present). */
5426 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5427 if (attr)
5428 {
5429 struct dwo_unit *dwo_unit;
5430 struct die_info *dwo_comp_unit_die;
5431
5432 if (has_children)
5433 {
5434 complaint (&symfile_complaints,
5435 _("compilation unit with DW_AT_GNU_dwo_name"
5436 " has children (offset 0x%x) [in module %s]"),
5437 this_cu->offset.sect_off, bfd_get_filename (abfd));
5438 }
5439 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5440 if (dwo_unit != NULL)
5441 {
5442 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5443 abbrev_table != NULL,
5444 comp_unit_die, NULL,
5445 &reader, &info_ptr,
5446 &dwo_comp_unit_die, &has_children) == 0)
5447 {
5448 /* Dummy die. */
5449 do_cleanups (cleanups);
5450 return;
5451 }
5452 comp_unit_die = dwo_comp_unit_die;
5453 }
5454 else
5455 {
5456 /* Yikes, we couldn't find the rest of the DIE, we only have
5457 the stub. A complaint has already been logged. There's
5458 not much more we can do except pass on the stub DIE to
5459 die_reader_func. We don't want to throw an error on bad
5460 debug info. */
5461 }
5462 }
5463
5464 /* All of the above is setup for this call. Yikes. */
5465 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5466
5467 /* Done, clean up. */
5468 if (free_cu_cleanup != NULL)
5469 {
5470 if (keep)
5471 {
5472 /* We've successfully allocated this compilation unit. Let our
5473 caller clean it up when finished with it. */
5474 discard_cleanups (free_cu_cleanup);
5475
5476 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5477 So we have to manually free the abbrev table. */
5478 dwarf2_free_abbrev_table (cu);
5479
5480 /* Link this CU into read_in_chain. */
5481 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5482 dwarf2_per_objfile->read_in_chain = this_cu;
5483 }
5484 else
5485 do_cleanups (free_cu_cleanup);
5486 }
5487
5488 do_cleanups (cleanups);
5489 }
5490
5491 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5492 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5493 to have already done the lookup to find the DWO file).
5494
5495 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5496 THIS_CU->is_debug_types, but nothing else.
5497
5498 We fill in THIS_CU->length.
5499
5500 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5501 linker) then DIE_READER_FUNC will not get called.
5502
5503 THIS_CU->cu is always freed when done.
5504 This is done in order to not leave THIS_CU->cu in a state where we have
5505 to care whether it refers to the "main" CU or the DWO CU. */
5506
5507 static void
5508 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5509 struct dwo_file *dwo_file,
5510 die_reader_func_ftype *die_reader_func,
5511 void *data)
5512 {
5513 struct objfile *objfile = dwarf2_per_objfile->objfile;
5514 struct dwarf2_section_info *section = this_cu->section;
5515 bfd *abfd = get_section_bfd_owner (section);
5516 struct dwarf2_section_info *abbrev_section;
5517 struct dwarf2_cu cu;
5518 const gdb_byte *begin_info_ptr, *info_ptr;
5519 struct die_reader_specs reader;
5520 struct cleanup *cleanups;
5521 struct die_info *comp_unit_die;
5522 int has_children;
5523
5524 if (dwarf2_die_debug)
5525 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5526 this_cu->is_debug_types ? "type" : "comp",
5527 this_cu->offset.sect_off);
5528
5529 gdb_assert (this_cu->cu == NULL);
5530
5531 abbrev_section = (dwo_file != NULL
5532 ? &dwo_file->sections.abbrev
5533 : get_abbrev_section_for_cu (this_cu));
5534
5535 /* This is cheap if the section is already read in. */
5536 dwarf2_read_section (objfile, section);
5537
5538 init_one_comp_unit (&cu, this_cu);
5539
5540 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5541
5542 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5543 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5544 abbrev_section, info_ptr,
5545 this_cu->is_debug_types);
5546
5547 this_cu->length = get_cu_length (&cu.header);
5548
5549 /* Skip dummy compilation units. */
5550 if (info_ptr >= begin_info_ptr + this_cu->length
5551 || peek_abbrev_code (abfd, info_ptr) == 0)
5552 {
5553 do_cleanups (cleanups);
5554 return;
5555 }
5556
5557 dwarf2_read_abbrevs (&cu, abbrev_section);
5558 make_cleanup (dwarf2_free_abbrev_table, &cu);
5559
5560 init_cu_die_reader (&reader, &cu, section, dwo_file);
5561 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5562
5563 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5564
5565 do_cleanups (cleanups);
5566 }
5567
5568 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5569 does not lookup the specified DWO file.
5570 This cannot be used to read DWO files.
5571
5572 THIS_CU->cu is always freed when done.
5573 This is done in order to not leave THIS_CU->cu in a state where we have
5574 to care whether it refers to the "main" CU or the DWO CU.
5575 We can revisit this if the data shows there's a performance issue. */
5576
5577 static void
5578 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5579 die_reader_func_ftype *die_reader_func,
5580 void *data)
5581 {
5582 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5583 }
5584 \f
5585 /* Type Unit Groups.
5586
5587 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5588 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5589 so that all types coming from the same compilation (.o file) are grouped
5590 together. A future step could be to put the types in the same symtab as
5591 the CU the types ultimately came from. */
5592
5593 static hashval_t
5594 hash_type_unit_group (const void *item)
5595 {
5596 const struct type_unit_group *tu_group = item;
5597
5598 return hash_stmt_list_entry (&tu_group->hash);
5599 }
5600
5601 static int
5602 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5603 {
5604 const struct type_unit_group *lhs = item_lhs;
5605 const struct type_unit_group *rhs = item_rhs;
5606
5607 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5608 }
5609
5610 /* Allocate a hash table for type unit groups. */
5611
5612 static htab_t
5613 allocate_type_unit_groups_table (void)
5614 {
5615 return htab_create_alloc_ex (3,
5616 hash_type_unit_group,
5617 eq_type_unit_group,
5618 NULL,
5619 &dwarf2_per_objfile->objfile->objfile_obstack,
5620 hashtab_obstack_allocate,
5621 dummy_obstack_deallocate);
5622 }
5623
5624 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5625 partial symtabs. We combine several TUs per psymtab to not let the size
5626 of any one psymtab grow too big. */
5627 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5628 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5629
5630 /* Helper routine for get_type_unit_group.
5631 Create the type_unit_group object used to hold one or more TUs. */
5632
5633 static struct type_unit_group *
5634 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5635 {
5636 struct objfile *objfile = dwarf2_per_objfile->objfile;
5637 struct dwarf2_per_cu_data *per_cu;
5638 struct type_unit_group *tu_group;
5639
5640 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5641 struct type_unit_group);
5642 per_cu = &tu_group->per_cu;
5643 per_cu->objfile = objfile;
5644
5645 if (dwarf2_per_objfile->using_index)
5646 {
5647 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5648 struct dwarf2_per_cu_quick_data);
5649 }
5650 else
5651 {
5652 unsigned int line_offset = line_offset_struct.sect_off;
5653 struct partial_symtab *pst;
5654 char *name;
5655
5656 /* Give the symtab a useful name for debug purposes. */
5657 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5658 name = xstrprintf ("<type_units_%d>",
5659 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5660 else
5661 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5662
5663 pst = create_partial_symtab (per_cu, name);
5664 pst->anonymous = 1;
5665
5666 xfree (name);
5667 }
5668
5669 tu_group->hash.dwo_unit = cu->dwo_unit;
5670 tu_group->hash.line_offset = line_offset_struct;
5671
5672 return tu_group;
5673 }
5674
5675 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5676 STMT_LIST is a DW_AT_stmt_list attribute. */
5677
5678 static struct type_unit_group *
5679 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5680 {
5681 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5682 struct type_unit_group *tu_group;
5683 void **slot;
5684 unsigned int line_offset;
5685 struct type_unit_group type_unit_group_for_lookup;
5686
5687 if (dwarf2_per_objfile->type_unit_groups == NULL)
5688 {
5689 dwarf2_per_objfile->type_unit_groups =
5690 allocate_type_unit_groups_table ();
5691 }
5692
5693 /* Do we need to create a new group, or can we use an existing one? */
5694
5695 if (stmt_list)
5696 {
5697 line_offset = DW_UNSND (stmt_list);
5698 ++tu_stats->nr_symtab_sharers;
5699 }
5700 else
5701 {
5702 /* Ugh, no stmt_list. Rare, but we have to handle it.
5703 We can do various things here like create one group per TU or
5704 spread them over multiple groups to split up the expansion work.
5705 To avoid worst case scenarios (too many groups or too large groups)
5706 we, umm, group them in bunches. */
5707 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5708 | (tu_stats->nr_stmt_less_type_units
5709 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5710 ++tu_stats->nr_stmt_less_type_units;
5711 }
5712
5713 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5714 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5715 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5716 &type_unit_group_for_lookup, INSERT);
5717 if (*slot != NULL)
5718 {
5719 tu_group = *slot;
5720 gdb_assert (tu_group != NULL);
5721 }
5722 else
5723 {
5724 sect_offset line_offset_struct;
5725
5726 line_offset_struct.sect_off = line_offset;
5727 tu_group = create_type_unit_group (cu, line_offset_struct);
5728 *slot = tu_group;
5729 ++tu_stats->nr_symtabs;
5730 }
5731
5732 return tu_group;
5733 }
5734 \f
5735 /* Partial symbol tables. */
5736
5737 /* Create a psymtab named NAME and assign it to PER_CU.
5738
5739 The caller must fill in the following details:
5740 dirname, textlow, texthigh. */
5741
5742 static struct partial_symtab *
5743 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5744 {
5745 struct objfile *objfile = per_cu->objfile;
5746 struct partial_symtab *pst;
5747
5748 pst = start_psymtab_common (objfile, objfile->section_offsets,
5749 name, 0,
5750 objfile->global_psymbols.next,
5751 objfile->static_psymbols.next);
5752
5753 pst->psymtabs_addrmap_supported = 1;
5754
5755 /* This is the glue that links PST into GDB's symbol API. */
5756 pst->read_symtab_private = per_cu;
5757 pst->read_symtab = dwarf2_read_symtab;
5758 per_cu->v.psymtab = pst;
5759
5760 return pst;
5761 }
5762
5763 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5764 type. */
5765
5766 struct process_psymtab_comp_unit_data
5767 {
5768 /* True if we are reading a DW_TAG_partial_unit. */
5769
5770 int want_partial_unit;
5771
5772 /* The "pretend" language that is used if the CU doesn't declare a
5773 language. */
5774
5775 enum language pretend_language;
5776 };
5777
5778 /* die_reader_func for process_psymtab_comp_unit. */
5779
5780 static void
5781 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5782 const gdb_byte *info_ptr,
5783 struct die_info *comp_unit_die,
5784 int has_children,
5785 void *data)
5786 {
5787 struct dwarf2_cu *cu = reader->cu;
5788 struct objfile *objfile = cu->objfile;
5789 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5790 struct attribute *attr;
5791 CORE_ADDR baseaddr;
5792 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5793 struct partial_symtab *pst;
5794 int has_pc_info;
5795 const char *filename;
5796 struct process_psymtab_comp_unit_data *info = data;
5797
5798 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5799 return;
5800
5801 gdb_assert (! per_cu->is_debug_types);
5802
5803 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5804
5805 cu->list_in_scope = &file_symbols;
5806
5807 /* Allocate a new partial symbol table structure. */
5808 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5809 if (attr == NULL || !DW_STRING (attr))
5810 filename = "";
5811 else
5812 filename = DW_STRING (attr);
5813
5814 pst = create_partial_symtab (per_cu, filename);
5815
5816 /* This must be done before calling dwarf2_build_include_psymtabs. */
5817 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5818 if (attr != NULL)
5819 pst->dirname = DW_STRING (attr);
5820
5821 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5822
5823 dwarf2_find_base_address (comp_unit_die, cu);
5824
5825 /* Possibly set the default values of LOWPC and HIGHPC from
5826 `DW_AT_ranges'. */
5827 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5828 &best_highpc, cu, pst);
5829 if (has_pc_info == 1 && best_lowpc < best_highpc)
5830 /* Store the contiguous range if it is not empty; it can be empty for
5831 CUs with no code. */
5832 addrmap_set_empty (objfile->psymtabs_addrmap,
5833 best_lowpc + baseaddr,
5834 best_highpc + baseaddr - 1, pst);
5835
5836 /* Check if comp unit has_children.
5837 If so, read the rest of the partial symbols from this comp unit.
5838 If not, there's no more debug_info for this comp unit. */
5839 if (has_children)
5840 {
5841 struct partial_die_info *first_die;
5842 CORE_ADDR lowpc, highpc;
5843
5844 lowpc = ((CORE_ADDR) -1);
5845 highpc = ((CORE_ADDR) 0);
5846
5847 first_die = load_partial_dies (reader, info_ptr, 1);
5848
5849 scan_partial_symbols (first_die, &lowpc, &highpc,
5850 ! has_pc_info, cu);
5851
5852 /* If we didn't find a lowpc, set it to highpc to avoid
5853 complaints from `maint check'. */
5854 if (lowpc == ((CORE_ADDR) -1))
5855 lowpc = highpc;
5856
5857 /* If the compilation unit didn't have an explicit address range,
5858 then use the information extracted from its child dies. */
5859 if (! has_pc_info)
5860 {
5861 best_lowpc = lowpc;
5862 best_highpc = highpc;
5863 }
5864 }
5865 pst->textlow = best_lowpc + baseaddr;
5866 pst->texthigh = best_highpc + baseaddr;
5867
5868 pst->n_global_syms = objfile->global_psymbols.next -
5869 (objfile->global_psymbols.list + pst->globals_offset);
5870 pst->n_static_syms = objfile->static_psymbols.next -
5871 (objfile->static_psymbols.list + pst->statics_offset);
5872 sort_pst_symbols (objfile, pst);
5873
5874 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5875 {
5876 int i;
5877 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5878 struct dwarf2_per_cu_data *iter;
5879
5880 /* Fill in 'dependencies' here; we fill in 'users' in a
5881 post-pass. */
5882 pst->number_of_dependencies = len;
5883 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5884 len * sizeof (struct symtab *));
5885 for (i = 0;
5886 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5887 i, iter);
5888 ++i)
5889 pst->dependencies[i] = iter->v.psymtab;
5890
5891 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5892 }
5893
5894 /* Get the list of files included in the current compilation unit,
5895 and build a psymtab for each of them. */
5896 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5897
5898 if (dwarf2_read_debug)
5899 {
5900 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5901
5902 fprintf_unfiltered (gdb_stdlog,
5903 "Psymtab for %s unit @0x%x: %s - %s"
5904 ", %d global, %d static syms\n",
5905 per_cu->is_debug_types ? "type" : "comp",
5906 per_cu->offset.sect_off,
5907 paddress (gdbarch, pst->textlow),
5908 paddress (gdbarch, pst->texthigh),
5909 pst->n_global_syms, pst->n_static_syms);
5910 }
5911 }
5912
5913 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5914 Process compilation unit THIS_CU for a psymtab. */
5915
5916 static void
5917 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5918 int want_partial_unit,
5919 enum language pretend_language)
5920 {
5921 struct process_psymtab_comp_unit_data info;
5922
5923 /* If this compilation unit was already read in, free the
5924 cached copy in order to read it in again. This is
5925 necessary because we skipped some symbols when we first
5926 read in the compilation unit (see load_partial_dies).
5927 This problem could be avoided, but the benefit is unclear. */
5928 if (this_cu->cu != NULL)
5929 free_one_cached_comp_unit (this_cu);
5930
5931 gdb_assert (! this_cu->is_debug_types);
5932 info.want_partial_unit = want_partial_unit;
5933 info.pretend_language = pretend_language;
5934 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5935 process_psymtab_comp_unit_reader,
5936 &info);
5937
5938 /* Age out any secondary CUs. */
5939 age_cached_comp_units ();
5940 }
5941
5942 /* Reader function for build_type_psymtabs. */
5943
5944 static void
5945 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5946 const gdb_byte *info_ptr,
5947 struct die_info *type_unit_die,
5948 int has_children,
5949 void *data)
5950 {
5951 struct objfile *objfile = dwarf2_per_objfile->objfile;
5952 struct dwarf2_cu *cu = reader->cu;
5953 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5954 struct signatured_type *sig_type;
5955 struct type_unit_group *tu_group;
5956 struct attribute *attr;
5957 struct partial_die_info *first_die;
5958 CORE_ADDR lowpc, highpc;
5959 struct partial_symtab *pst;
5960
5961 gdb_assert (data == NULL);
5962 gdb_assert (per_cu->is_debug_types);
5963 sig_type = (struct signatured_type *) per_cu;
5964
5965 if (! has_children)
5966 return;
5967
5968 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5969 tu_group = get_type_unit_group (cu, attr);
5970
5971 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5972
5973 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5974 cu->list_in_scope = &file_symbols;
5975 pst = create_partial_symtab (per_cu, "");
5976 pst->anonymous = 1;
5977
5978 first_die = load_partial_dies (reader, info_ptr, 1);
5979
5980 lowpc = (CORE_ADDR) -1;
5981 highpc = (CORE_ADDR) 0;
5982 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5983
5984 pst->n_global_syms = objfile->global_psymbols.next -
5985 (objfile->global_psymbols.list + pst->globals_offset);
5986 pst->n_static_syms = objfile->static_psymbols.next -
5987 (objfile->static_psymbols.list + pst->statics_offset);
5988 sort_pst_symbols (objfile, pst);
5989 }
5990
5991 /* Struct used to sort TUs by their abbreviation table offset. */
5992
5993 struct tu_abbrev_offset
5994 {
5995 struct signatured_type *sig_type;
5996 sect_offset abbrev_offset;
5997 };
5998
5999 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6000
6001 static int
6002 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6003 {
6004 const struct tu_abbrev_offset * const *a = ap;
6005 const struct tu_abbrev_offset * const *b = bp;
6006 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6007 unsigned int boff = (*b)->abbrev_offset.sect_off;
6008
6009 return (aoff > boff) - (aoff < boff);
6010 }
6011
6012 /* Efficiently read all the type units.
6013 This does the bulk of the work for build_type_psymtabs.
6014
6015 The efficiency is because we sort TUs by the abbrev table they use and
6016 only read each abbrev table once. In one program there are 200K TUs
6017 sharing 8K abbrev tables.
6018
6019 The main purpose of this function is to support building the
6020 dwarf2_per_objfile->type_unit_groups table.
6021 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6022 can collapse the search space by grouping them by stmt_list.
6023 The savings can be significant, in the same program from above the 200K TUs
6024 share 8K stmt_list tables.
6025
6026 FUNC is expected to call get_type_unit_group, which will create the
6027 struct type_unit_group if necessary and add it to
6028 dwarf2_per_objfile->type_unit_groups. */
6029
6030 static void
6031 build_type_psymtabs_1 (void)
6032 {
6033 struct objfile *objfile = dwarf2_per_objfile->objfile;
6034 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6035 struct cleanup *cleanups;
6036 struct abbrev_table *abbrev_table;
6037 sect_offset abbrev_offset;
6038 struct tu_abbrev_offset *sorted_by_abbrev;
6039 struct type_unit_group **iter;
6040 int i;
6041
6042 /* It's up to the caller to not call us multiple times. */
6043 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6044
6045 if (dwarf2_per_objfile->n_type_units == 0)
6046 return;
6047
6048 /* TUs typically share abbrev tables, and there can be way more TUs than
6049 abbrev tables. Sort by abbrev table to reduce the number of times we
6050 read each abbrev table in.
6051 Alternatives are to punt or to maintain a cache of abbrev tables.
6052 This is simpler and efficient enough for now.
6053
6054 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6055 symtab to use). Typically TUs with the same abbrev offset have the same
6056 stmt_list value too so in practice this should work well.
6057
6058 The basic algorithm here is:
6059
6060 sort TUs by abbrev table
6061 for each TU with same abbrev table:
6062 read abbrev table if first user
6063 read TU top level DIE
6064 [IWBN if DWO skeletons had DW_AT_stmt_list]
6065 call FUNC */
6066
6067 if (dwarf2_read_debug)
6068 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6069
6070 /* Sort in a separate table to maintain the order of all_type_units
6071 for .gdb_index: TU indices directly index all_type_units. */
6072 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6073 dwarf2_per_objfile->n_type_units);
6074 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6075 {
6076 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6077
6078 sorted_by_abbrev[i].sig_type = sig_type;
6079 sorted_by_abbrev[i].abbrev_offset =
6080 read_abbrev_offset (sig_type->per_cu.section,
6081 sig_type->per_cu.offset);
6082 }
6083 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6084 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6085 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6086
6087 abbrev_offset.sect_off = ~(unsigned) 0;
6088 abbrev_table = NULL;
6089 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6090
6091 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6092 {
6093 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6094
6095 /* Switch to the next abbrev table if necessary. */
6096 if (abbrev_table == NULL
6097 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6098 {
6099 if (abbrev_table != NULL)
6100 {
6101 abbrev_table_free (abbrev_table);
6102 /* Reset to NULL in case abbrev_table_read_table throws
6103 an error: abbrev_table_free_cleanup will get called. */
6104 abbrev_table = NULL;
6105 }
6106 abbrev_offset = tu->abbrev_offset;
6107 abbrev_table =
6108 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6109 abbrev_offset);
6110 ++tu_stats->nr_uniq_abbrev_tables;
6111 }
6112
6113 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6114 build_type_psymtabs_reader, NULL);
6115 }
6116
6117 /* type_unit_groups can be NULL if there is an error in the debug info.
6118 Just create an empty table so the rest of gdb doesn't have to watch
6119 for this error case. */
6120 if (dwarf2_per_objfile->type_unit_groups == NULL)
6121 {
6122 dwarf2_per_objfile->type_unit_groups =
6123 allocate_type_unit_groups_table ();
6124 }
6125
6126 do_cleanups (cleanups);
6127
6128 if (dwarf2_read_debug)
6129 {
6130 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
6131 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6132 dwarf2_per_objfile->n_type_units);
6133 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6134 tu_stats->nr_uniq_abbrev_tables);
6135 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6136 tu_stats->nr_symtabs);
6137 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6138 tu_stats->nr_symtab_sharers);
6139 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6140 tu_stats->nr_stmt_less_type_units);
6141 }
6142 }
6143
6144 /* Traversal function for build_type_psymtabs. */
6145
6146 static int
6147 build_type_psymtab_dependencies (void **slot, void *info)
6148 {
6149 struct objfile *objfile = dwarf2_per_objfile->objfile;
6150 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6151 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6152 struct partial_symtab *pst = per_cu->v.psymtab;
6153 int len = VEC_length (sig_type_ptr, tu_group->tus);
6154 struct signatured_type *iter;
6155 int i;
6156
6157 gdb_assert (len > 0);
6158 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6159
6160 pst->number_of_dependencies = len;
6161 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6162 len * sizeof (struct psymtab *));
6163 for (i = 0;
6164 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6165 ++i)
6166 {
6167 gdb_assert (iter->per_cu.is_debug_types);
6168 pst->dependencies[i] = iter->per_cu.v.psymtab;
6169 iter->type_unit_group = tu_group;
6170 }
6171
6172 VEC_free (sig_type_ptr, tu_group->tus);
6173
6174 return 1;
6175 }
6176
6177 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6178 Build partial symbol tables for the .debug_types comp-units. */
6179
6180 static void
6181 build_type_psymtabs (struct objfile *objfile)
6182 {
6183 if (! create_all_type_units (objfile))
6184 return;
6185
6186 build_type_psymtabs_1 ();
6187
6188 /* Now that all TUs have been processed we can fill in the dependencies. */
6189 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6190 build_type_psymtab_dependencies, NULL);
6191 }
6192
6193 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6194
6195 static void
6196 psymtabs_addrmap_cleanup (void *o)
6197 {
6198 struct objfile *objfile = o;
6199
6200 objfile->psymtabs_addrmap = NULL;
6201 }
6202
6203 /* Compute the 'user' field for each psymtab in OBJFILE. */
6204
6205 static void
6206 set_partial_user (struct objfile *objfile)
6207 {
6208 int i;
6209
6210 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6211 {
6212 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6213 struct partial_symtab *pst = per_cu->v.psymtab;
6214 int j;
6215
6216 if (pst == NULL)
6217 continue;
6218
6219 for (j = 0; j < pst->number_of_dependencies; ++j)
6220 {
6221 /* Set the 'user' field only if it is not already set. */
6222 if (pst->dependencies[j]->user == NULL)
6223 pst->dependencies[j]->user = pst;
6224 }
6225 }
6226 }
6227
6228 /* Build the partial symbol table by doing a quick pass through the
6229 .debug_info and .debug_abbrev sections. */
6230
6231 static void
6232 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6233 {
6234 struct cleanup *back_to, *addrmap_cleanup;
6235 struct obstack temp_obstack;
6236 int i;
6237
6238 if (dwarf2_read_debug)
6239 {
6240 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6241 objfile_name (objfile));
6242 }
6243
6244 dwarf2_per_objfile->reading_partial_symbols = 1;
6245
6246 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6247
6248 /* Any cached compilation units will be linked by the per-objfile
6249 read_in_chain. Make sure to free them when we're done. */
6250 back_to = make_cleanup (free_cached_comp_units, NULL);
6251
6252 build_type_psymtabs (objfile);
6253
6254 create_all_comp_units (objfile);
6255
6256 /* Create a temporary address map on a temporary obstack. We later
6257 copy this to the final obstack. */
6258 obstack_init (&temp_obstack);
6259 make_cleanup_obstack_free (&temp_obstack);
6260 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6261 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6262
6263 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6264 {
6265 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6266
6267 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6268 }
6269
6270 set_partial_user (objfile);
6271
6272 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6273 &objfile->objfile_obstack);
6274 discard_cleanups (addrmap_cleanup);
6275
6276 do_cleanups (back_to);
6277
6278 if (dwarf2_read_debug)
6279 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6280 objfile_name (objfile));
6281 }
6282
6283 /* die_reader_func for load_partial_comp_unit. */
6284
6285 static void
6286 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6287 const gdb_byte *info_ptr,
6288 struct die_info *comp_unit_die,
6289 int has_children,
6290 void *data)
6291 {
6292 struct dwarf2_cu *cu = reader->cu;
6293
6294 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6295
6296 /* Check if comp unit has_children.
6297 If so, read the rest of the partial symbols from this comp unit.
6298 If not, there's no more debug_info for this comp unit. */
6299 if (has_children)
6300 load_partial_dies (reader, info_ptr, 0);
6301 }
6302
6303 /* Load the partial DIEs for a secondary CU into memory.
6304 This is also used when rereading a primary CU with load_all_dies. */
6305
6306 static void
6307 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6308 {
6309 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6310 load_partial_comp_unit_reader, NULL);
6311 }
6312
6313 static void
6314 read_comp_units_from_section (struct objfile *objfile,
6315 struct dwarf2_section_info *section,
6316 unsigned int is_dwz,
6317 int *n_allocated,
6318 int *n_comp_units,
6319 struct dwarf2_per_cu_data ***all_comp_units)
6320 {
6321 const gdb_byte *info_ptr;
6322 bfd *abfd = get_section_bfd_owner (section);
6323
6324 if (dwarf2_read_debug)
6325 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6326 get_section_name (section),
6327 get_section_file_name (section));
6328
6329 dwarf2_read_section (objfile, section);
6330
6331 info_ptr = section->buffer;
6332
6333 while (info_ptr < section->buffer + section->size)
6334 {
6335 unsigned int length, initial_length_size;
6336 struct dwarf2_per_cu_data *this_cu;
6337 sect_offset offset;
6338
6339 offset.sect_off = info_ptr - section->buffer;
6340
6341 /* Read just enough information to find out where the next
6342 compilation unit is. */
6343 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6344
6345 /* Save the compilation unit for later lookup. */
6346 this_cu = obstack_alloc (&objfile->objfile_obstack,
6347 sizeof (struct dwarf2_per_cu_data));
6348 memset (this_cu, 0, sizeof (*this_cu));
6349 this_cu->offset = offset;
6350 this_cu->length = length + initial_length_size;
6351 this_cu->is_dwz = is_dwz;
6352 this_cu->objfile = objfile;
6353 this_cu->section = section;
6354
6355 if (*n_comp_units == *n_allocated)
6356 {
6357 *n_allocated *= 2;
6358 *all_comp_units = xrealloc (*all_comp_units,
6359 *n_allocated
6360 * sizeof (struct dwarf2_per_cu_data *));
6361 }
6362 (*all_comp_units)[*n_comp_units] = this_cu;
6363 ++*n_comp_units;
6364
6365 info_ptr = info_ptr + this_cu->length;
6366 }
6367 }
6368
6369 /* Create a list of all compilation units in OBJFILE.
6370 This is only done for -readnow and building partial symtabs. */
6371
6372 static void
6373 create_all_comp_units (struct objfile *objfile)
6374 {
6375 int n_allocated;
6376 int n_comp_units;
6377 struct dwarf2_per_cu_data **all_comp_units;
6378 struct dwz_file *dwz;
6379
6380 n_comp_units = 0;
6381 n_allocated = 10;
6382 all_comp_units = xmalloc (n_allocated
6383 * sizeof (struct dwarf2_per_cu_data *));
6384
6385 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6386 &n_allocated, &n_comp_units, &all_comp_units);
6387
6388 dwz = dwarf2_get_dwz_file ();
6389 if (dwz != NULL)
6390 read_comp_units_from_section (objfile, &dwz->info, 1,
6391 &n_allocated, &n_comp_units,
6392 &all_comp_units);
6393
6394 dwarf2_per_objfile->all_comp_units
6395 = obstack_alloc (&objfile->objfile_obstack,
6396 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6397 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6398 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6399 xfree (all_comp_units);
6400 dwarf2_per_objfile->n_comp_units = n_comp_units;
6401 }
6402
6403 /* Process all loaded DIEs for compilation unit CU, starting at
6404 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6405 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6406 DW_AT_ranges). If NEED_PC is set, then this function will set
6407 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6408 and record the covered ranges in the addrmap. */
6409
6410 static void
6411 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6412 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6413 {
6414 struct partial_die_info *pdi;
6415
6416 /* Now, march along the PDI's, descending into ones which have
6417 interesting children but skipping the children of the other ones,
6418 until we reach the end of the compilation unit. */
6419
6420 pdi = first_die;
6421
6422 while (pdi != NULL)
6423 {
6424 fixup_partial_die (pdi, cu);
6425
6426 /* Anonymous namespaces or modules have no name but have interesting
6427 children, so we need to look at them. Ditto for anonymous
6428 enums. */
6429
6430 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6431 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6432 || pdi->tag == DW_TAG_imported_unit)
6433 {
6434 switch (pdi->tag)
6435 {
6436 case DW_TAG_subprogram:
6437 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6438 break;
6439 case DW_TAG_constant:
6440 case DW_TAG_variable:
6441 case DW_TAG_typedef:
6442 case DW_TAG_union_type:
6443 if (!pdi->is_declaration)
6444 {
6445 add_partial_symbol (pdi, cu);
6446 }
6447 break;
6448 case DW_TAG_class_type:
6449 case DW_TAG_interface_type:
6450 case DW_TAG_structure_type:
6451 if (!pdi->is_declaration)
6452 {
6453 add_partial_symbol (pdi, cu);
6454 }
6455 break;
6456 case DW_TAG_enumeration_type:
6457 if (!pdi->is_declaration)
6458 add_partial_enumeration (pdi, cu);
6459 break;
6460 case DW_TAG_base_type:
6461 case DW_TAG_subrange_type:
6462 /* File scope base type definitions are added to the partial
6463 symbol table. */
6464 add_partial_symbol (pdi, cu);
6465 break;
6466 case DW_TAG_namespace:
6467 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6468 break;
6469 case DW_TAG_module:
6470 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6471 break;
6472 case DW_TAG_imported_unit:
6473 {
6474 struct dwarf2_per_cu_data *per_cu;
6475
6476 /* For now we don't handle imported units in type units. */
6477 if (cu->per_cu->is_debug_types)
6478 {
6479 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6480 " supported in type units [in module %s]"),
6481 objfile_name (cu->objfile));
6482 }
6483
6484 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6485 pdi->is_dwz,
6486 cu->objfile);
6487
6488 /* Go read the partial unit, if needed. */
6489 if (per_cu->v.psymtab == NULL)
6490 process_psymtab_comp_unit (per_cu, 1, cu->language);
6491
6492 VEC_safe_push (dwarf2_per_cu_ptr,
6493 cu->per_cu->imported_symtabs, per_cu);
6494 }
6495 break;
6496 case DW_TAG_imported_declaration:
6497 add_partial_symbol (pdi, cu);
6498 break;
6499 default:
6500 break;
6501 }
6502 }
6503
6504 /* If the die has a sibling, skip to the sibling. */
6505
6506 pdi = pdi->die_sibling;
6507 }
6508 }
6509
6510 /* Functions used to compute the fully scoped name of a partial DIE.
6511
6512 Normally, this is simple. For C++, the parent DIE's fully scoped
6513 name is concatenated with "::" and the partial DIE's name. For
6514 Java, the same thing occurs except that "." is used instead of "::".
6515 Enumerators are an exception; they use the scope of their parent
6516 enumeration type, i.e. the name of the enumeration type is not
6517 prepended to the enumerator.
6518
6519 There are two complexities. One is DW_AT_specification; in this
6520 case "parent" means the parent of the target of the specification,
6521 instead of the direct parent of the DIE. The other is compilers
6522 which do not emit DW_TAG_namespace; in this case we try to guess
6523 the fully qualified name of structure types from their members'
6524 linkage names. This must be done using the DIE's children rather
6525 than the children of any DW_AT_specification target. We only need
6526 to do this for structures at the top level, i.e. if the target of
6527 any DW_AT_specification (if any; otherwise the DIE itself) does not
6528 have a parent. */
6529
6530 /* Compute the scope prefix associated with PDI's parent, in
6531 compilation unit CU. The result will be allocated on CU's
6532 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6533 field. NULL is returned if no prefix is necessary. */
6534 static const char *
6535 partial_die_parent_scope (struct partial_die_info *pdi,
6536 struct dwarf2_cu *cu)
6537 {
6538 const char *grandparent_scope;
6539 struct partial_die_info *parent, *real_pdi;
6540
6541 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6542 then this means the parent of the specification DIE. */
6543
6544 real_pdi = pdi;
6545 while (real_pdi->has_specification)
6546 real_pdi = find_partial_die (real_pdi->spec_offset,
6547 real_pdi->spec_is_dwz, cu);
6548
6549 parent = real_pdi->die_parent;
6550 if (parent == NULL)
6551 return NULL;
6552
6553 if (parent->scope_set)
6554 return parent->scope;
6555
6556 fixup_partial_die (parent, cu);
6557
6558 grandparent_scope = partial_die_parent_scope (parent, cu);
6559
6560 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6561 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6562 Work around this problem here. */
6563 if (cu->language == language_cplus
6564 && parent->tag == DW_TAG_namespace
6565 && strcmp (parent->name, "::") == 0
6566 && grandparent_scope == NULL)
6567 {
6568 parent->scope = NULL;
6569 parent->scope_set = 1;
6570 return NULL;
6571 }
6572
6573 if (pdi->tag == DW_TAG_enumerator)
6574 /* Enumerators should not get the name of the enumeration as a prefix. */
6575 parent->scope = grandparent_scope;
6576 else if (parent->tag == DW_TAG_namespace
6577 || parent->tag == DW_TAG_module
6578 || parent->tag == DW_TAG_structure_type
6579 || parent->tag == DW_TAG_class_type
6580 || parent->tag == DW_TAG_interface_type
6581 || parent->tag == DW_TAG_union_type
6582 || parent->tag == DW_TAG_enumeration_type)
6583 {
6584 if (grandparent_scope == NULL)
6585 parent->scope = parent->name;
6586 else
6587 parent->scope = typename_concat (&cu->comp_unit_obstack,
6588 grandparent_scope,
6589 parent->name, 0, cu);
6590 }
6591 else
6592 {
6593 /* FIXME drow/2004-04-01: What should we be doing with
6594 function-local names? For partial symbols, we should probably be
6595 ignoring them. */
6596 complaint (&symfile_complaints,
6597 _("unhandled containing DIE tag %d for DIE at %d"),
6598 parent->tag, pdi->offset.sect_off);
6599 parent->scope = grandparent_scope;
6600 }
6601
6602 parent->scope_set = 1;
6603 return parent->scope;
6604 }
6605
6606 /* Return the fully scoped name associated with PDI, from compilation unit
6607 CU. The result will be allocated with malloc. */
6608
6609 static char *
6610 partial_die_full_name (struct partial_die_info *pdi,
6611 struct dwarf2_cu *cu)
6612 {
6613 const char *parent_scope;
6614
6615 /* If this is a template instantiation, we can not work out the
6616 template arguments from partial DIEs. So, unfortunately, we have
6617 to go through the full DIEs. At least any work we do building
6618 types here will be reused if full symbols are loaded later. */
6619 if (pdi->has_template_arguments)
6620 {
6621 fixup_partial_die (pdi, cu);
6622
6623 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6624 {
6625 struct die_info *die;
6626 struct attribute attr;
6627 struct dwarf2_cu *ref_cu = cu;
6628
6629 /* DW_FORM_ref_addr is using section offset. */
6630 attr.name = 0;
6631 attr.form = DW_FORM_ref_addr;
6632 attr.u.unsnd = pdi->offset.sect_off;
6633 die = follow_die_ref (NULL, &attr, &ref_cu);
6634
6635 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6636 }
6637 }
6638
6639 parent_scope = partial_die_parent_scope (pdi, cu);
6640 if (parent_scope == NULL)
6641 return NULL;
6642 else
6643 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6644 }
6645
6646 static void
6647 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6648 {
6649 struct objfile *objfile = cu->objfile;
6650 CORE_ADDR addr = 0;
6651 const char *actual_name = NULL;
6652 CORE_ADDR baseaddr;
6653 char *built_actual_name;
6654
6655 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6656
6657 built_actual_name = partial_die_full_name (pdi, cu);
6658 if (built_actual_name != NULL)
6659 actual_name = built_actual_name;
6660
6661 if (actual_name == NULL)
6662 actual_name = pdi->name;
6663
6664 switch (pdi->tag)
6665 {
6666 case DW_TAG_subprogram:
6667 if (pdi->is_external || cu->language == language_ada)
6668 {
6669 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6670 of the global scope. But in Ada, we want to be able to access
6671 nested procedures globally. So all Ada subprograms are stored
6672 in the global scope. */
6673 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6674 mst_text, objfile); */
6675 add_psymbol_to_list (actual_name, strlen (actual_name),
6676 built_actual_name != NULL,
6677 VAR_DOMAIN, LOC_BLOCK,
6678 &objfile->global_psymbols,
6679 0, pdi->lowpc + baseaddr,
6680 cu->language, objfile);
6681 }
6682 else
6683 {
6684 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6685 mst_file_text, objfile); */
6686 add_psymbol_to_list (actual_name, strlen (actual_name),
6687 built_actual_name != NULL,
6688 VAR_DOMAIN, LOC_BLOCK,
6689 &objfile->static_psymbols,
6690 0, pdi->lowpc + baseaddr,
6691 cu->language, objfile);
6692 }
6693 break;
6694 case DW_TAG_constant:
6695 {
6696 struct psymbol_allocation_list *list;
6697
6698 if (pdi->is_external)
6699 list = &objfile->global_psymbols;
6700 else
6701 list = &objfile->static_psymbols;
6702 add_psymbol_to_list (actual_name, strlen (actual_name),
6703 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6704 list, 0, 0, cu->language, objfile);
6705 }
6706 break;
6707 case DW_TAG_variable:
6708 if (pdi->d.locdesc)
6709 addr = decode_locdesc (pdi->d.locdesc, cu);
6710
6711 if (pdi->d.locdesc
6712 && addr == 0
6713 && !dwarf2_per_objfile->has_section_at_zero)
6714 {
6715 /* A global or static variable may also have been stripped
6716 out by the linker if unused, in which case its address
6717 will be nullified; do not add such variables into partial
6718 symbol table then. */
6719 }
6720 else if (pdi->is_external)
6721 {
6722 /* Global Variable.
6723 Don't enter into the minimal symbol tables as there is
6724 a minimal symbol table entry from the ELF symbols already.
6725 Enter into partial symbol table if it has a location
6726 descriptor or a type.
6727 If the location descriptor is missing, new_symbol will create
6728 a LOC_UNRESOLVED symbol, the address of the variable will then
6729 be determined from the minimal symbol table whenever the variable
6730 is referenced.
6731 The address for the partial symbol table entry is not
6732 used by GDB, but it comes in handy for debugging partial symbol
6733 table building. */
6734
6735 if (pdi->d.locdesc || pdi->has_type)
6736 add_psymbol_to_list (actual_name, strlen (actual_name),
6737 built_actual_name != NULL,
6738 VAR_DOMAIN, LOC_STATIC,
6739 &objfile->global_psymbols,
6740 0, addr + baseaddr,
6741 cu->language, objfile);
6742 }
6743 else
6744 {
6745 /* Static Variable. Skip symbols without location descriptors. */
6746 if (pdi->d.locdesc == NULL)
6747 {
6748 xfree (built_actual_name);
6749 return;
6750 }
6751 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6752 mst_file_data, objfile); */
6753 add_psymbol_to_list (actual_name, strlen (actual_name),
6754 built_actual_name != NULL,
6755 VAR_DOMAIN, LOC_STATIC,
6756 &objfile->static_psymbols,
6757 0, addr + baseaddr,
6758 cu->language, objfile);
6759 }
6760 break;
6761 case DW_TAG_typedef:
6762 case DW_TAG_base_type:
6763 case DW_TAG_subrange_type:
6764 add_psymbol_to_list (actual_name, strlen (actual_name),
6765 built_actual_name != NULL,
6766 VAR_DOMAIN, LOC_TYPEDEF,
6767 &objfile->static_psymbols,
6768 0, (CORE_ADDR) 0, cu->language, objfile);
6769 break;
6770 case DW_TAG_imported_declaration:
6771 case DW_TAG_namespace:
6772 add_psymbol_to_list (actual_name, strlen (actual_name),
6773 built_actual_name != NULL,
6774 VAR_DOMAIN, LOC_TYPEDEF,
6775 &objfile->global_psymbols,
6776 0, (CORE_ADDR) 0, cu->language, objfile);
6777 break;
6778 case DW_TAG_module:
6779 add_psymbol_to_list (actual_name, strlen (actual_name),
6780 built_actual_name != NULL,
6781 MODULE_DOMAIN, LOC_TYPEDEF,
6782 &objfile->global_psymbols,
6783 0, (CORE_ADDR) 0, cu->language, objfile);
6784 break;
6785 case DW_TAG_class_type:
6786 case DW_TAG_interface_type:
6787 case DW_TAG_structure_type:
6788 case DW_TAG_union_type:
6789 case DW_TAG_enumeration_type:
6790 /* Skip external references. The DWARF standard says in the section
6791 about "Structure, Union, and Class Type Entries": "An incomplete
6792 structure, union or class type is represented by a structure,
6793 union or class entry that does not have a byte size attribute
6794 and that has a DW_AT_declaration attribute." */
6795 if (!pdi->has_byte_size && pdi->is_declaration)
6796 {
6797 xfree (built_actual_name);
6798 return;
6799 }
6800
6801 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6802 static vs. global. */
6803 add_psymbol_to_list (actual_name, strlen (actual_name),
6804 built_actual_name != NULL,
6805 STRUCT_DOMAIN, LOC_TYPEDEF,
6806 (cu->language == language_cplus
6807 || cu->language == language_java)
6808 ? &objfile->global_psymbols
6809 : &objfile->static_psymbols,
6810 0, (CORE_ADDR) 0, cu->language, objfile);
6811
6812 break;
6813 case DW_TAG_enumerator:
6814 add_psymbol_to_list (actual_name, strlen (actual_name),
6815 built_actual_name != NULL,
6816 VAR_DOMAIN, LOC_CONST,
6817 (cu->language == language_cplus
6818 || cu->language == language_java)
6819 ? &objfile->global_psymbols
6820 : &objfile->static_psymbols,
6821 0, (CORE_ADDR) 0, cu->language, objfile);
6822 break;
6823 default:
6824 break;
6825 }
6826
6827 xfree (built_actual_name);
6828 }
6829
6830 /* Read a partial die corresponding to a namespace; also, add a symbol
6831 corresponding to that namespace to the symbol table. NAMESPACE is
6832 the name of the enclosing namespace. */
6833
6834 static void
6835 add_partial_namespace (struct partial_die_info *pdi,
6836 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6837 int need_pc, struct dwarf2_cu *cu)
6838 {
6839 /* Add a symbol for the namespace. */
6840
6841 add_partial_symbol (pdi, cu);
6842
6843 /* Now scan partial symbols in that namespace. */
6844
6845 if (pdi->has_children)
6846 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6847 }
6848
6849 /* Read a partial die corresponding to a Fortran module. */
6850
6851 static void
6852 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6853 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6854 {
6855 /* Add a symbol for the namespace. */
6856
6857 add_partial_symbol (pdi, cu);
6858
6859 /* Now scan partial symbols in that module. */
6860
6861 if (pdi->has_children)
6862 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6863 }
6864
6865 /* Read a partial die corresponding to a subprogram and create a partial
6866 symbol for that subprogram. When the CU language allows it, this
6867 routine also defines a partial symbol for each nested subprogram
6868 that this subprogram contains.
6869
6870 DIE my also be a lexical block, in which case we simply search
6871 recursively for suprograms defined inside that lexical block.
6872 Again, this is only performed when the CU language allows this
6873 type of definitions. */
6874
6875 static void
6876 add_partial_subprogram (struct partial_die_info *pdi,
6877 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6878 int need_pc, struct dwarf2_cu *cu)
6879 {
6880 if (pdi->tag == DW_TAG_subprogram)
6881 {
6882 if (pdi->has_pc_info)
6883 {
6884 if (pdi->lowpc < *lowpc)
6885 *lowpc = pdi->lowpc;
6886 if (pdi->highpc > *highpc)
6887 *highpc = pdi->highpc;
6888 if (need_pc)
6889 {
6890 CORE_ADDR baseaddr;
6891 struct objfile *objfile = cu->objfile;
6892
6893 baseaddr = ANOFFSET (objfile->section_offsets,
6894 SECT_OFF_TEXT (objfile));
6895 addrmap_set_empty (objfile->psymtabs_addrmap,
6896 pdi->lowpc + baseaddr,
6897 pdi->highpc - 1 + baseaddr,
6898 cu->per_cu->v.psymtab);
6899 }
6900 }
6901
6902 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6903 {
6904 if (!pdi->is_declaration)
6905 /* Ignore subprogram DIEs that do not have a name, they are
6906 illegal. Do not emit a complaint at this point, we will
6907 do so when we convert this psymtab into a symtab. */
6908 if (pdi->name)
6909 add_partial_symbol (pdi, cu);
6910 }
6911 }
6912
6913 if (! pdi->has_children)
6914 return;
6915
6916 if (cu->language == language_ada)
6917 {
6918 pdi = pdi->die_child;
6919 while (pdi != NULL)
6920 {
6921 fixup_partial_die (pdi, cu);
6922 if (pdi->tag == DW_TAG_subprogram
6923 || pdi->tag == DW_TAG_lexical_block)
6924 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6925 pdi = pdi->die_sibling;
6926 }
6927 }
6928 }
6929
6930 /* Read a partial die corresponding to an enumeration type. */
6931
6932 static void
6933 add_partial_enumeration (struct partial_die_info *enum_pdi,
6934 struct dwarf2_cu *cu)
6935 {
6936 struct partial_die_info *pdi;
6937
6938 if (enum_pdi->name != NULL)
6939 add_partial_symbol (enum_pdi, cu);
6940
6941 pdi = enum_pdi->die_child;
6942 while (pdi)
6943 {
6944 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6945 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6946 else
6947 add_partial_symbol (pdi, cu);
6948 pdi = pdi->die_sibling;
6949 }
6950 }
6951
6952 /* Return the initial uleb128 in the die at INFO_PTR. */
6953
6954 static unsigned int
6955 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6956 {
6957 unsigned int bytes_read;
6958
6959 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6960 }
6961
6962 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6963 Return the corresponding abbrev, or NULL if the number is zero (indicating
6964 an empty DIE). In either case *BYTES_READ will be set to the length of
6965 the initial number. */
6966
6967 static struct abbrev_info *
6968 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6969 struct dwarf2_cu *cu)
6970 {
6971 bfd *abfd = cu->objfile->obfd;
6972 unsigned int abbrev_number;
6973 struct abbrev_info *abbrev;
6974
6975 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6976
6977 if (abbrev_number == 0)
6978 return NULL;
6979
6980 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6981 if (!abbrev)
6982 {
6983 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6984 abbrev_number, bfd_get_filename (abfd));
6985 }
6986
6987 return abbrev;
6988 }
6989
6990 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6991 Returns a pointer to the end of a series of DIEs, terminated by an empty
6992 DIE. Any children of the skipped DIEs will also be skipped. */
6993
6994 static const gdb_byte *
6995 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6996 {
6997 struct dwarf2_cu *cu = reader->cu;
6998 struct abbrev_info *abbrev;
6999 unsigned int bytes_read;
7000
7001 while (1)
7002 {
7003 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7004 if (abbrev == NULL)
7005 return info_ptr + bytes_read;
7006 else
7007 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7008 }
7009 }
7010
7011 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7012 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7013 abbrev corresponding to that skipped uleb128 should be passed in
7014 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7015 children. */
7016
7017 static const gdb_byte *
7018 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7019 struct abbrev_info *abbrev)
7020 {
7021 unsigned int bytes_read;
7022 struct attribute attr;
7023 bfd *abfd = reader->abfd;
7024 struct dwarf2_cu *cu = reader->cu;
7025 const gdb_byte *buffer = reader->buffer;
7026 const gdb_byte *buffer_end = reader->buffer_end;
7027 const gdb_byte *start_info_ptr = info_ptr;
7028 unsigned int form, i;
7029
7030 for (i = 0; i < abbrev->num_attrs; i++)
7031 {
7032 /* The only abbrev we care about is DW_AT_sibling. */
7033 if (abbrev->attrs[i].name == DW_AT_sibling)
7034 {
7035 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7036 if (attr.form == DW_FORM_ref_addr)
7037 complaint (&symfile_complaints,
7038 _("ignoring absolute DW_AT_sibling"));
7039 else
7040 {
7041 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7042 const gdb_byte *sibling_ptr = buffer + off;
7043
7044 if (sibling_ptr < info_ptr)
7045 complaint (&symfile_complaints,
7046 _("DW_AT_sibling points backwards"));
7047 else if (sibling_ptr > reader->buffer_end)
7048 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7049 else
7050 return sibling_ptr;
7051 }
7052 }
7053
7054 /* If it isn't DW_AT_sibling, skip this attribute. */
7055 form = abbrev->attrs[i].form;
7056 skip_attribute:
7057 switch (form)
7058 {
7059 case DW_FORM_ref_addr:
7060 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7061 and later it is offset sized. */
7062 if (cu->header.version == 2)
7063 info_ptr += cu->header.addr_size;
7064 else
7065 info_ptr += cu->header.offset_size;
7066 break;
7067 case DW_FORM_GNU_ref_alt:
7068 info_ptr += cu->header.offset_size;
7069 break;
7070 case DW_FORM_addr:
7071 info_ptr += cu->header.addr_size;
7072 break;
7073 case DW_FORM_data1:
7074 case DW_FORM_ref1:
7075 case DW_FORM_flag:
7076 info_ptr += 1;
7077 break;
7078 case DW_FORM_flag_present:
7079 break;
7080 case DW_FORM_data2:
7081 case DW_FORM_ref2:
7082 info_ptr += 2;
7083 break;
7084 case DW_FORM_data4:
7085 case DW_FORM_ref4:
7086 info_ptr += 4;
7087 break;
7088 case DW_FORM_data8:
7089 case DW_FORM_ref8:
7090 case DW_FORM_ref_sig8:
7091 info_ptr += 8;
7092 break;
7093 case DW_FORM_string:
7094 read_direct_string (abfd, info_ptr, &bytes_read);
7095 info_ptr += bytes_read;
7096 break;
7097 case DW_FORM_sec_offset:
7098 case DW_FORM_strp:
7099 case DW_FORM_GNU_strp_alt:
7100 info_ptr += cu->header.offset_size;
7101 break;
7102 case DW_FORM_exprloc:
7103 case DW_FORM_block:
7104 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7105 info_ptr += bytes_read;
7106 break;
7107 case DW_FORM_block1:
7108 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7109 break;
7110 case DW_FORM_block2:
7111 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7112 break;
7113 case DW_FORM_block4:
7114 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7115 break;
7116 case DW_FORM_sdata:
7117 case DW_FORM_udata:
7118 case DW_FORM_ref_udata:
7119 case DW_FORM_GNU_addr_index:
7120 case DW_FORM_GNU_str_index:
7121 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7122 break;
7123 case DW_FORM_indirect:
7124 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7125 info_ptr += bytes_read;
7126 /* We need to continue parsing from here, so just go back to
7127 the top. */
7128 goto skip_attribute;
7129
7130 default:
7131 error (_("Dwarf Error: Cannot handle %s "
7132 "in DWARF reader [in module %s]"),
7133 dwarf_form_name (form),
7134 bfd_get_filename (abfd));
7135 }
7136 }
7137
7138 if (abbrev->has_children)
7139 return skip_children (reader, info_ptr);
7140 else
7141 return info_ptr;
7142 }
7143
7144 /* Locate ORIG_PDI's sibling.
7145 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7146
7147 static const gdb_byte *
7148 locate_pdi_sibling (const struct die_reader_specs *reader,
7149 struct partial_die_info *orig_pdi,
7150 const gdb_byte *info_ptr)
7151 {
7152 /* Do we know the sibling already? */
7153
7154 if (orig_pdi->sibling)
7155 return orig_pdi->sibling;
7156
7157 /* Are there any children to deal with? */
7158
7159 if (!orig_pdi->has_children)
7160 return info_ptr;
7161
7162 /* Skip the children the long way. */
7163
7164 return skip_children (reader, info_ptr);
7165 }
7166
7167 /* Expand this partial symbol table into a full symbol table. SELF is
7168 not NULL. */
7169
7170 static void
7171 dwarf2_read_symtab (struct partial_symtab *self,
7172 struct objfile *objfile)
7173 {
7174 if (self->readin)
7175 {
7176 warning (_("bug: psymtab for %s is already read in."),
7177 self->filename);
7178 }
7179 else
7180 {
7181 if (info_verbose)
7182 {
7183 printf_filtered (_("Reading in symbols for %s..."),
7184 self->filename);
7185 gdb_flush (gdb_stdout);
7186 }
7187
7188 /* Restore our global data. */
7189 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7190
7191 /* If this psymtab is constructed from a debug-only objfile, the
7192 has_section_at_zero flag will not necessarily be correct. We
7193 can get the correct value for this flag by looking at the data
7194 associated with the (presumably stripped) associated objfile. */
7195 if (objfile->separate_debug_objfile_backlink)
7196 {
7197 struct dwarf2_per_objfile *dpo_backlink
7198 = objfile_data (objfile->separate_debug_objfile_backlink,
7199 dwarf2_objfile_data_key);
7200
7201 dwarf2_per_objfile->has_section_at_zero
7202 = dpo_backlink->has_section_at_zero;
7203 }
7204
7205 dwarf2_per_objfile->reading_partial_symbols = 0;
7206
7207 psymtab_to_symtab_1 (self);
7208
7209 /* Finish up the debug error message. */
7210 if (info_verbose)
7211 printf_filtered (_("done.\n"));
7212 }
7213
7214 process_cu_includes ();
7215 }
7216 \f
7217 /* Reading in full CUs. */
7218
7219 /* Add PER_CU to the queue. */
7220
7221 static void
7222 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7223 enum language pretend_language)
7224 {
7225 struct dwarf2_queue_item *item;
7226
7227 per_cu->queued = 1;
7228 item = xmalloc (sizeof (*item));
7229 item->per_cu = per_cu;
7230 item->pretend_language = pretend_language;
7231 item->next = NULL;
7232
7233 if (dwarf2_queue == NULL)
7234 dwarf2_queue = item;
7235 else
7236 dwarf2_queue_tail->next = item;
7237
7238 dwarf2_queue_tail = item;
7239 }
7240
7241 /* If PER_CU is not yet queued, add it to the queue.
7242 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7243 dependency.
7244 The result is non-zero if PER_CU was queued, otherwise the result is zero
7245 meaning either PER_CU is already queued or it is already loaded.
7246
7247 N.B. There is an invariant here that if a CU is queued then it is loaded.
7248 The caller is required to load PER_CU if we return non-zero. */
7249
7250 static int
7251 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7252 struct dwarf2_per_cu_data *per_cu,
7253 enum language pretend_language)
7254 {
7255 /* We may arrive here during partial symbol reading, if we need full
7256 DIEs to process an unusual case (e.g. template arguments). Do
7257 not queue PER_CU, just tell our caller to load its DIEs. */
7258 if (dwarf2_per_objfile->reading_partial_symbols)
7259 {
7260 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7261 return 1;
7262 return 0;
7263 }
7264
7265 /* Mark the dependence relation so that we don't flush PER_CU
7266 too early. */
7267 if (dependent_cu != NULL)
7268 dwarf2_add_dependence (dependent_cu, per_cu);
7269
7270 /* If it's already on the queue, we have nothing to do. */
7271 if (per_cu->queued)
7272 return 0;
7273
7274 /* If the compilation unit is already loaded, just mark it as
7275 used. */
7276 if (per_cu->cu != NULL)
7277 {
7278 per_cu->cu->last_used = 0;
7279 return 0;
7280 }
7281
7282 /* Add it to the queue. */
7283 queue_comp_unit (per_cu, pretend_language);
7284
7285 return 1;
7286 }
7287
7288 /* Process the queue. */
7289
7290 static void
7291 process_queue (void)
7292 {
7293 struct dwarf2_queue_item *item, *next_item;
7294
7295 if (dwarf2_read_debug)
7296 {
7297 fprintf_unfiltered (gdb_stdlog,
7298 "Expanding one or more symtabs of objfile %s ...\n",
7299 objfile_name (dwarf2_per_objfile->objfile));
7300 }
7301
7302 /* The queue starts out with one item, but following a DIE reference
7303 may load a new CU, adding it to the end of the queue. */
7304 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7305 {
7306 if (dwarf2_per_objfile->using_index
7307 ? !item->per_cu->v.quick->symtab
7308 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7309 {
7310 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7311 unsigned int debug_print_threshold;
7312 char buf[100];
7313
7314 if (per_cu->is_debug_types)
7315 {
7316 struct signatured_type *sig_type =
7317 (struct signatured_type *) per_cu;
7318
7319 sprintf (buf, "TU %s at offset 0x%x",
7320 hex_string (sig_type->signature),
7321 per_cu->offset.sect_off);
7322 /* There can be 100s of TUs.
7323 Only print them in verbose mode. */
7324 debug_print_threshold = 2;
7325 }
7326 else
7327 {
7328 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7329 debug_print_threshold = 1;
7330 }
7331
7332 if (dwarf2_read_debug >= debug_print_threshold)
7333 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7334
7335 if (per_cu->is_debug_types)
7336 process_full_type_unit (per_cu, item->pretend_language);
7337 else
7338 process_full_comp_unit (per_cu, item->pretend_language);
7339
7340 if (dwarf2_read_debug >= debug_print_threshold)
7341 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7342 }
7343
7344 item->per_cu->queued = 0;
7345 next_item = item->next;
7346 xfree (item);
7347 }
7348
7349 dwarf2_queue_tail = NULL;
7350
7351 if (dwarf2_read_debug)
7352 {
7353 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7354 objfile_name (dwarf2_per_objfile->objfile));
7355 }
7356 }
7357
7358 /* Free all allocated queue entries. This function only releases anything if
7359 an error was thrown; if the queue was processed then it would have been
7360 freed as we went along. */
7361
7362 static void
7363 dwarf2_release_queue (void *dummy)
7364 {
7365 struct dwarf2_queue_item *item, *last;
7366
7367 item = dwarf2_queue;
7368 while (item)
7369 {
7370 /* Anything still marked queued is likely to be in an
7371 inconsistent state, so discard it. */
7372 if (item->per_cu->queued)
7373 {
7374 if (item->per_cu->cu != NULL)
7375 free_one_cached_comp_unit (item->per_cu);
7376 item->per_cu->queued = 0;
7377 }
7378
7379 last = item;
7380 item = item->next;
7381 xfree (last);
7382 }
7383
7384 dwarf2_queue = dwarf2_queue_tail = NULL;
7385 }
7386
7387 /* Read in full symbols for PST, and anything it depends on. */
7388
7389 static void
7390 psymtab_to_symtab_1 (struct partial_symtab *pst)
7391 {
7392 struct dwarf2_per_cu_data *per_cu;
7393 int i;
7394
7395 if (pst->readin)
7396 return;
7397
7398 for (i = 0; i < pst->number_of_dependencies; i++)
7399 if (!pst->dependencies[i]->readin
7400 && pst->dependencies[i]->user == NULL)
7401 {
7402 /* Inform about additional files that need to be read in. */
7403 if (info_verbose)
7404 {
7405 /* FIXME: i18n: Need to make this a single string. */
7406 fputs_filtered (" ", gdb_stdout);
7407 wrap_here ("");
7408 fputs_filtered ("and ", gdb_stdout);
7409 wrap_here ("");
7410 printf_filtered ("%s...", pst->dependencies[i]->filename);
7411 wrap_here (""); /* Flush output. */
7412 gdb_flush (gdb_stdout);
7413 }
7414 psymtab_to_symtab_1 (pst->dependencies[i]);
7415 }
7416
7417 per_cu = pst->read_symtab_private;
7418
7419 if (per_cu == NULL)
7420 {
7421 /* It's an include file, no symbols to read for it.
7422 Everything is in the parent symtab. */
7423 pst->readin = 1;
7424 return;
7425 }
7426
7427 dw2_do_instantiate_symtab (per_cu);
7428 }
7429
7430 /* Trivial hash function for die_info: the hash value of a DIE
7431 is its offset in .debug_info for this objfile. */
7432
7433 static hashval_t
7434 die_hash (const void *item)
7435 {
7436 const struct die_info *die = item;
7437
7438 return die->offset.sect_off;
7439 }
7440
7441 /* Trivial comparison function for die_info structures: two DIEs
7442 are equal if they have the same offset. */
7443
7444 static int
7445 die_eq (const void *item_lhs, const void *item_rhs)
7446 {
7447 const struct die_info *die_lhs = item_lhs;
7448 const struct die_info *die_rhs = item_rhs;
7449
7450 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7451 }
7452
7453 /* die_reader_func for load_full_comp_unit.
7454 This is identical to read_signatured_type_reader,
7455 but is kept separate for now. */
7456
7457 static void
7458 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7459 const gdb_byte *info_ptr,
7460 struct die_info *comp_unit_die,
7461 int has_children,
7462 void *data)
7463 {
7464 struct dwarf2_cu *cu = reader->cu;
7465 enum language *language_ptr = data;
7466
7467 gdb_assert (cu->die_hash == NULL);
7468 cu->die_hash =
7469 htab_create_alloc_ex (cu->header.length / 12,
7470 die_hash,
7471 die_eq,
7472 NULL,
7473 &cu->comp_unit_obstack,
7474 hashtab_obstack_allocate,
7475 dummy_obstack_deallocate);
7476
7477 if (has_children)
7478 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7479 &info_ptr, comp_unit_die);
7480 cu->dies = comp_unit_die;
7481 /* comp_unit_die is not stored in die_hash, no need. */
7482
7483 /* We try not to read any attributes in this function, because not
7484 all CUs needed for references have been loaded yet, and symbol
7485 table processing isn't initialized. But we have to set the CU language,
7486 or we won't be able to build types correctly.
7487 Similarly, if we do not read the producer, we can not apply
7488 producer-specific interpretation. */
7489 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7490 }
7491
7492 /* Load the DIEs associated with PER_CU into memory. */
7493
7494 static void
7495 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7496 enum language pretend_language)
7497 {
7498 gdb_assert (! this_cu->is_debug_types);
7499
7500 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7501 load_full_comp_unit_reader, &pretend_language);
7502 }
7503
7504 /* Add a DIE to the delayed physname list. */
7505
7506 static void
7507 add_to_method_list (struct type *type, int fnfield_index, int index,
7508 const char *name, struct die_info *die,
7509 struct dwarf2_cu *cu)
7510 {
7511 struct delayed_method_info mi;
7512 mi.type = type;
7513 mi.fnfield_index = fnfield_index;
7514 mi.index = index;
7515 mi.name = name;
7516 mi.die = die;
7517 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7518 }
7519
7520 /* A cleanup for freeing the delayed method list. */
7521
7522 static void
7523 free_delayed_list (void *ptr)
7524 {
7525 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7526 if (cu->method_list != NULL)
7527 {
7528 VEC_free (delayed_method_info, cu->method_list);
7529 cu->method_list = NULL;
7530 }
7531 }
7532
7533 /* Compute the physnames of any methods on the CU's method list.
7534
7535 The computation of method physnames is delayed in order to avoid the
7536 (bad) condition that one of the method's formal parameters is of an as yet
7537 incomplete type. */
7538
7539 static void
7540 compute_delayed_physnames (struct dwarf2_cu *cu)
7541 {
7542 int i;
7543 struct delayed_method_info *mi;
7544 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7545 {
7546 const char *physname;
7547 struct fn_fieldlist *fn_flp
7548 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7549 physname = dwarf2_physname (mi->name, mi->die, cu);
7550 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7551 }
7552 }
7553
7554 /* Go objects should be embedded in a DW_TAG_module DIE,
7555 and it's not clear if/how imported objects will appear.
7556 To keep Go support simple until that's worked out,
7557 go back through what we've read and create something usable.
7558 We could do this while processing each DIE, and feels kinda cleaner,
7559 but that way is more invasive.
7560 This is to, for example, allow the user to type "p var" or "b main"
7561 without having to specify the package name, and allow lookups
7562 of module.object to work in contexts that use the expression
7563 parser. */
7564
7565 static void
7566 fixup_go_packaging (struct dwarf2_cu *cu)
7567 {
7568 char *package_name = NULL;
7569 struct pending *list;
7570 int i;
7571
7572 for (list = global_symbols; list != NULL; list = list->next)
7573 {
7574 for (i = 0; i < list->nsyms; ++i)
7575 {
7576 struct symbol *sym = list->symbol[i];
7577
7578 if (SYMBOL_LANGUAGE (sym) == language_go
7579 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7580 {
7581 char *this_package_name = go_symbol_package_name (sym);
7582
7583 if (this_package_name == NULL)
7584 continue;
7585 if (package_name == NULL)
7586 package_name = this_package_name;
7587 else
7588 {
7589 if (strcmp (package_name, this_package_name) != 0)
7590 complaint (&symfile_complaints,
7591 _("Symtab %s has objects from two different Go packages: %s and %s"),
7592 (SYMBOL_SYMTAB (sym)
7593 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7594 : objfile_name (cu->objfile)),
7595 this_package_name, package_name);
7596 xfree (this_package_name);
7597 }
7598 }
7599 }
7600 }
7601
7602 if (package_name != NULL)
7603 {
7604 struct objfile *objfile = cu->objfile;
7605 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7606 package_name,
7607 strlen (package_name));
7608 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7609 saved_package_name, objfile);
7610 struct symbol *sym;
7611
7612 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7613
7614 sym = allocate_symbol (objfile);
7615 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7616 SYMBOL_SET_NAMES (sym, saved_package_name,
7617 strlen (saved_package_name), 0, objfile);
7618 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7619 e.g., "main" finds the "main" module and not C's main(). */
7620 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7621 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7622 SYMBOL_TYPE (sym) = type;
7623
7624 add_symbol_to_list (sym, &global_symbols);
7625
7626 xfree (package_name);
7627 }
7628 }
7629
7630 /* Return the symtab for PER_CU. This works properly regardless of
7631 whether we're using the index or psymtabs. */
7632
7633 static struct symtab *
7634 get_symtab (struct dwarf2_per_cu_data *per_cu)
7635 {
7636 return (dwarf2_per_objfile->using_index
7637 ? per_cu->v.quick->symtab
7638 : per_cu->v.psymtab->symtab);
7639 }
7640
7641 /* A helper function for computing the list of all symbol tables
7642 included by PER_CU. */
7643
7644 static void
7645 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7646 htab_t all_children, htab_t all_type_symtabs,
7647 struct dwarf2_per_cu_data *per_cu,
7648 struct symtab *immediate_parent)
7649 {
7650 void **slot;
7651 int ix;
7652 struct symtab *symtab;
7653 struct dwarf2_per_cu_data *iter;
7654
7655 slot = htab_find_slot (all_children, per_cu, INSERT);
7656 if (*slot != NULL)
7657 {
7658 /* This inclusion and its children have been processed. */
7659 return;
7660 }
7661
7662 *slot = per_cu;
7663 /* Only add a CU if it has a symbol table. */
7664 symtab = get_symtab (per_cu);
7665 if (symtab != NULL)
7666 {
7667 /* If this is a type unit only add its symbol table if we haven't
7668 seen it yet (type unit per_cu's can share symtabs). */
7669 if (per_cu->is_debug_types)
7670 {
7671 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7672 if (*slot == NULL)
7673 {
7674 *slot = symtab;
7675 VEC_safe_push (symtab_ptr, *result, symtab);
7676 if (symtab->user == NULL)
7677 symtab->user = immediate_parent;
7678 }
7679 }
7680 else
7681 {
7682 VEC_safe_push (symtab_ptr, *result, symtab);
7683 if (symtab->user == NULL)
7684 symtab->user = immediate_parent;
7685 }
7686 }
7687
7688 for (ix = 0;
7689 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7690 ++ix)
7691 {
7692 recursively_compute_inclusions (result, all_children,
7693 all_type_symtabs, iter, symtab);
7694 }
7695 }
7696
7697 /* Compute the symtab 'includes' fields for the symtab related to
7698 PER_CU. */
7699
7700 static void
7701 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7702 {
7703 gdb_assert (! per_cu->is_debug_types);
7704
7705 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7706 {
7707 int ix, len;
7708 struct dwarf2_per_cu_data *per_cu_iter;
7709 struct symtab *symtab_iter;
7710 VEC (symtab_ptr) *result_symtabs = NULL;
7711 htab_t all_children, all_type_symtabs;
7712 struct symtab *symtab = get_symtab (per_cu);
7713
7714 /* If we don't have a symtab, we can just skip this case. */
7715 if (symtab == NULL)
7716 return;
7717
7718 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7719 NULL, xcalloc, xfree);
7720 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7721 NULL, xcalloc, xfree);
7722
7723 for (ix = 0;
7724 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7725 ix, per_cu_iter);
7726 ++ix)
7727 {
7728 recursively_compute_inclusions (&result_symtabs, all_children,
7729 all_type_symtabs, per_cu_iter,
7730 symtab);
7731 }
7732
7733 /* Now we have a transitive closure of all the included symtabs. */
7734 len = VEC_length (symtab_ptr, result_symtabs);
7735 symtab->includes
7736 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7737 (len + 1) * sizeof (struct symtab *));
7738 for (ix = 0;
7739 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7740 ++ix)
7741 symtab->includes[ix] = symtab_iter;
7742 symtab->includes[len] = NULL;
7743
7744 VEC_free (symtab_ptr, result_symtabs);
7745 htab_delete (all_children);
7746 htab_delete (all_type_symtabs);
7747 }
7748 }
7749
7750 /* Compute the 'includes' field for the symtabs of all the CUs we just
7751 read. */
7752
7753 static void
7754 process_cu_includes (void)
7755 {
7756 int ix;
7757 struct dwarf2_per_cu_data *iter;
7758
7759 for (ix = 0;
7760 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7761 ix, iter);
7762 ++ix)
7763 {
7764 if (! iter->is_debug_types)
7765 compute_symtab_includes (iter);
7766 }
7767
7768 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7769 }
7770
7771 /* Generate full symbol information for PER_CU, whose DIEs have
7772 already been loaded into memory. */
7773
7774 static void
7775 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7776 enum language pretend_language)
7777 {
7778 struct dwarf2_cu *cu = per_cu->cu;
7779 struct objfile *objfile = per_cu->objfile;
7780 CORE_ADDR lowpc, highpc;
7781 struct symtab *symtab;
7782 struct cleanup *back_to, *delayed_list_cleanup;
7783 CORE_ADDR baseaddr;
7784 struct block *static_block;
7785
7786 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7787
7788 buildsym_init ();
7789 back_to = make_cleanup (really_free_pendings, NULL);
7790 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7791
7792 cu->list_in_scope = &file_symbols;
7793
7794 cu->language = pretend_language;
7795 cu->language_defn = language_def (cu->language);
7796
7797 /* Do line number decoding in read_file_scope () */
7798 process_die (cu->dies, cu);
7799
7800 /* For now fudge the Go package. */
7801 if (cu->language == language_go)
7802 fixup_go_packaging (cu);
7803
7804 /* Now that we have processed all the DIEs in the CU, all the types
7805 should be complete, and it should now be safe to compute all of the
7806 physnames. */
7807 compute_delayed_physnames (cu);
7808 do_cleanups (delayed_list_cleanup);
7809
7810 /* Some compilers don't define a DW_AT_high_pc attribute for the
7811 compilation unit. If the DW_AT_high_pc is missing, synthesize
7812 it, by scanning the DIE's below the compilation unit. */
7813 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7814
7815 static_block
7816 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7817
7818 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7819 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7820 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7821 addrmap to help ensure it has an accurate map of pc values belonging to
7822 this comp unit. */
7823 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7824
7825 symtab = end_symtab_from_static_block (static_block, objfile,
7826 SECT_OFF_TEXT (objfile), 0);
7827
7828 if (symtab != NULL)
7829 {
7830 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7831
7832 /* Set symtab language to language from DW_AT_language. If the
7833 compilation is from a C file generated by language preprocessors, do
7834 not set the language if it was already deduced by start_subfile. */
7835 if (!(cu->language == language_c && symtab->language != language_c))
7836 symtab->language = cu->language;
7837
7838 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7839 produce DW_AT_location with location lists but it can be possibly
7840 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7841 there were bugs in prologue debug info, fixed later in GCC-4.5
7842 by "unwind info for epilogues" patch (which is not directly related).
7843
7844 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7845 needed, it would be wrong due to missing DW_AT_producer there.
7846
7847 Still one can confuse GDB by using non-standard GCC compilation
7848 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7849 */
7850 if (cu->has_loclist && gcc_4_minor >= 5)
7851 symtab->locations_valid = 1;
7852
7853 if (gcc_4_minor >= 5)
7854 symtab->epilogue_unwind_valid = 1;
7855
7856 symtab->call_site_htab = cu->call_site_htab;
7857 }
7858
7859 if (dwarf2_per_objfile->using_index)
7860 per_cu->v.quick->symtab = symtab;
7861 else
7862 {
7863 struct partial_symtab *pst = per_cu->v.psymtab;
7864 pst->symtab = symtab;
7865 pst->readin = 1;
7866 }
7867
7868 /* Push it for inclusion processing later. */
7869 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7870
7871 do_cleanups (back_to);
7872 }
7873
7874 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7875 already been loaded into memory. */
7876
7877 static void
7878 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7879 enum language pretend_language)
7880 {
7881 struct dwarf2_cu *cu = per_cu->cu;
7882 struct objfile *objfile = per_cu->objfile;
7883 struct symtab *symtab;
7884 struct cleanup *back_to, *delayed_list_cleanup;
7885 struct signatured_type *sig_type;
7886
7887 gdb_assert (per_cu->is_debug_types);
7888 sig_type = (struct signatured_type *) per_cu;
7889
7890 buildsym_init ();
7891 back_to = make_cleanup (really_free_pendings, NULL);
7892 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7893
7894 cu->list_in_scope = &file_symbols;
7895
7896 cu->language = pretend_language;
7897 cu->language_defn = language_def (cu->language);
7898
7899 /* The symbol tables are set up in read_type_unit_scope. */
7900 process_die (cu->dies, cu);
7901
7902 /* For now fudge the Go package. */
7903 if (cu->language == language_go)
7904 fixup_go_packaging (cu);
7905
7906 /* Now that we have processed all the DIEs in the CU, all the types
7907 should be complete, and it should now be safe to compute all of the
7908 physnames. */
7909 compute_delayed_physnames (cu);
7910 do_cleanups (delayed_list_cleanup);
7911
7912 /* TUs share symbol tables.
7913 If this is the first TU to use this symtab, complete the construction
7914 of it with end_expandable_symtab. Otherwise, complete the addition of
7915 this TU's symbols to the existing symtab. */
7916 if (sig_type->type_unit_group->primary_symtab == NULL)
7917 {
7918 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7919 sig_type->type_unit_group->primary_symtab = symtab;
7920
7921 if (symtab != NULL)
7922 {
7923 /* Set symtab language to language from DW_AT_language. If the
7924 compilation is from a C file generated by language preprocessors,
7925 do not set the language if it was already deduced by
7926 start_subfile. */
7927 if (!(cu->language == language_c && symtab->language != language_c))
7928 symtab->language = cu->language;
7929 }
7930 }
7931 else
7932 {
7933 augment_type_symtab (objfile,
7934 sig_type->type_unit_group->primary_symtab);
7935 symtab = sig_type->type_unit_group->primary_symtab;
7936 }
7937
7938 if (dwarf2_per_objfile->using_index)
7939 per_cu->v.quick->symtab = symtab;
7940 else
7941 {
7942 struct partial_symtab *pst = per_cu->v.psymtab;
7943 pst->symtab = symtab;
7944 pst->readin = 1;
7945 }
7946
7947 do_cleanups (back_to);
7948 }
7949
7950 /* Process an imported unit DIE. */
7951
7952 static void
7953 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7954 {
7955 struct attribute *attr;
7956
7957 /* For now we don't handle imported units in type units. */
7958 if (cu->per_cu->is_debug_types)
7959 {
7960 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7961 " supported in type units [in module %s]"),
7962 objfile_name (cu->objfile));
7963 }
7964
7965 attr = dwarf2_attr (die, DW_AT_import, cu);
7966 if (attr != NULL)
7967 {
7968 struct dwarf2_per_cu_data *per_cu;
7969 struct symtab *imported_symtab;
7970 sect_offset offset;
7971 int is_dwz;
7972
7973 offset = dwarf2_get_ref_die_offset (attr);
7974 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7975 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7976
7977 /* If necessary, add it to the queue and load its DIEs. */
7978 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7979 load_full_comp_unit (per_cu, cu->language);
7980
7981 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7982 per_cu);
7983 }
7984 }
7985
7986 /* Reset the in_process bit of a die. */
7987
7988 static void
7989 reset_die_in_process (void *arg)
7990 {
7991 struct die_info *die = arg;
7992
7993 die->in_process = 0;
7994 }
7995
7996 /* Process a die and its children. */
7997
7998 static void
7999 process_die (struct die_info *die, struct dwarf2_cu *cu)
8000 {
8001 struct cleanup *in_process;
8002
8003 /* We should only be processing those not already in process. */
8004 gdb_assert (!die->in_process);
8005
8006 die->in_process = 1;
8007 in_process = make_cleanup (reset_die_in_process,die);
8008
8009 switch (die->tag)
8010 {
8011 case DW_TAG_padding:
8012 break;
8013 case DW_TAG_compile_unit:
8014 case DW_TAG_partial_unit:
8015 read_file_scope (die, cu);
8016 break;
8017 case DW_TAG_type_unit:
8018 read_type_unit_scope (die, cu);
8019 break;
8020 case DW_TAG_subprogram:
8021 case DW_TAG_inlined_subroutine:
8022 read_func_scope (die, cu);
8023 break;
8024 case DW_TAG_lexical_block:
8025 case DW_TAG_try_block:
8026 case DW_TAG_catch_block:
8027 read_lexical_block_scope (die, cu);
8028 break;
8029 case DW_TAG_GNU_call_site:
8030 read_call_site_scope (die, cu);
8031 break;
8032 case DW_TAG_class_type:
8033 case DW_TAG_interface_type:
8034 case DW_TAG_structure_type:
8035 case DW_TAG_union_type:
8036 process_structure_scope (die, cu);
8037 break;
8038 case DW_TAG_enumeration_type:
8039 process_enumeration_scope (die, cu);
8040 break;
8041
8042 /* These dies have a type, but processing them does not create
8043 a symbol or recurse to process the children. Therefore we can
8044 read them on-demand through read_type_die. */
8045 case DW_TAG_subroutine_type:
8046 case DW_TAG_set_type:
8047 case DW_TAG_array_type:
8048 case DW_TAG_pointer_type:
8049 case DW_TAG_ptr_to_member_type:
8050 case DW_TAG_reference_type:
8051 case DW_TAG_string_type:
8052 break;
8053
8054 case DW_TAG_base_type:
8055 case DW_TAG_subrange_type:
8056 case DW_TAG_typedef:
8057 /* Add a typedef symbol for the type definition, if it has a
8058 DW_AT_name. */
8059 new_symbol (die, read_type_die (die, cu), cu);
8060 break;
8061 case DW_TAG_common_block:
8062 read_common_block (die, cu);
8063 break;
8064 case DW_TAG_common_inclusion:
8065 break;
8066 case DW_TAG_namespace:
8067 cu->processing_has_namespace_info = 1;
8068 read_namespace (die, cu);
8069 break;
8070 case DW_TAG_module:
8071 cu->processing_has_namespace_info = 1;
8072 read_module (die, cu);
8073 break;
8074 case DW_TAG_imported_declaration:
8075 cu->processing_has_namespace_info = 1;
8076 if (read_namespace_alias (die, cu))
8077 break;
8078 /* The declaration is not a global namespace alias: fall through. */
8079 case DW_TAG_imported_module:
8080 cu->processing_has_namespace_info = 1;
8081 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8082 || cu->language != language_fortran))
8083 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8084 dwarf_tag_name (die->tag));
8085 read_import_statement (die, cu);
8086 break;
8087
8088 case DW_TAG_imported_unit:
8089 process_imported_unit_die (die, cu);
8090 break;
8091
8092 default:
8093 new_symbol (die, NULL, cu);
8094 break;
8095 }
8096
8097 do_cleanups (in_process);
8098 }
8099 \f
8100 /* DWARF name computation. */
8101
8102 /* A helper function for dwarf2_compute_name which determines whether DIE
8103 needs to have the name of the scope prepended to the name listed in the
8104 die. */
8105
8106 static int
8107 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8108 {
8109 struct attribute *attr;
8110
8111 switch (die->tag)
8112 {
8113 case DW_TAG_namespace:
8114 case DW_TAG_typedef:
8115 case DW_TAG_class_type:
8116 case DW_TAG_interface_type:
8117 case DW_TAG_structure_type:
8118 case DW_TAG_union_type:
8119 case DW_TAG_enumeration_type:
8120 case DW_TAG_enumerator:
8121 case DW_TAG_subprogram:
8122 case DW_TAG_member:
8123 case DW_TAG_imported_declaration:
8124 return 1;
8125
8126 case DW_TAG_variable:
8127 case DW_TAG_constant:
8128 /* We only need to prefix "globally" visible variables. These include
8129 any variable marked with DW_AT_external or any variable that
8130 lives in a namespace. [Variables in anonymous namespaces
8131 require prefixing, but they are not DW_AT_external.] */
8132
8133 if (dwarf2_attr (die, DW_AT_specification, cu))
8134 {
8135 struct dwarf2_cu *spec_cu = cu;
8136
8137 return die_needs_namespace (die_specification (die, &spec_cu),
8138 spec_cu);
8139 }
8140
8141 attr = dwarf2_attr (die, DW_AT_external, cu);
8142 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8143 && die->parent->tag != DW_TAG_module)
8144 return 0;
8145 /* A variable in a lexical block of some kind does not need a
8146 namespace, even though in C++ such variables may be external
8147 and have a mangled name. */
8148 if (die->parent->tag == DW_TAG_lexical_block
8149 || die->parent->tag == DW_TAG_try_block
8150 || die->parent->tag == DW_TAG_catch_block
8151 || die->parent->tag == DW_TAG_subprogram)
8152 return 0;
8153 return 1;
8154
8155 default:
8156 return 0;
8157 }
8158 }
8159
8160 /* Retrieve the last character from a mem_file. */
8161
8162 static void
8163 do_ui_file_peek_last (void *object, const char *buffer, long length)
8164 {
8165 char *last_char_p = (char *) object;
8166
8167 if (length > 0)
8168 *last_char_p = buffer[length - 1];
8169 }
8170
8171 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8172 compute the physname for the object, which include a method's:
8173 - formal parameters (C++/Java),
8174 - receiver type (Go),
8175 - return type (Java).
8176
8177 The term "physname" is a bit confusing.
8178 For C++, for example, it is the demangled name.
8179 For Go, for example, it's the mangled name.
8180
8181 For Ada, return the DIE's linkage name rather than the fully qualified
8182 name. PHYSNAME is ignored..
8183
8184 The result is allocated on the objfile_obstack and canonicalized. */
8185
8186 static const char *
8187 dwarf2_compute_name (const char *name,
8188 struct die_info *die, struct dwarf2_cu *cu,
8189 int physname)
8190 {
8191 struct objfile *objfile = cu->objfile;
8192
8193 if (name == NULL)
8194 name = dwarf2_name (die, cu);
8195
8196 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8197 compute it by typename_concat inside GDB. */
8198 if (cu->language == language_ada
8199 || (cu->language == language_fortran && physname))
8200 {
8201 /* For Ada unit, we prefer the linkage name over the name, as
8202 the former contains the exported name, which the user expects
8203 to be able to reference. Ideally, we want the user to be able
8204 to reference this entity using either natural or linkage name,
8205 but we haven't started looking at this enhancement yet. */
8206 struct attribute *attr;
8207
8208 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8209 if (attr == NULL)
8210 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8211 if (attr && DW_STRING (attr))
8212 return DW_STRING (attr);
8213 }
8214
8215 /* These are the only languages we know how to qualify names in. */
8216 if (name != NULL
8217 && (cu->language == language_cplus || cu->language == language_java
8218 || cu->language == language_fortran))
8219 {
8220 if (die_needs_namespace (die, cu))
8221 {
8222 long length;
8223 const char *prefix;
8224 struct ui_file *buf;
8225
8226 prefix = determine_prefix (die, cu);
8227 buf = mem_fileopen ();
8228 if (*prefix != '\0')
8229 {
8230 char *prefixed_name = typename_concat (NULL, prefix, name,
8231 physname, cu);
8232
8233 fputs_unfiltered (prefixed_name, buf);
8234 xfree (prefixed_name);
8235 }
8236 else
8237 fputs_unfiltered (name, buf);
8238
8239 /* Template parameters may be specified in the DIE's DW_AT_name, or
8240 as children with DW_TAG_template_type_param or
8241 DW_TAG_value_type_param. If the latter, add them to the name
8242 here. If the name already has template parameters, then
8243 skip this step; some versions of GCC emit both, and
8244 it is more efficient to use the pre-computed name.
8245
8246 Something to keep in mind about this process: it is very
8247 unlikely, or in some cases downright impossible, to produce
8248 something that will match the mangled name of a function.
8249 If the definition of the function has the same debug info,
8250 we should be able to match up with it anyway. But fallbacks
8251 using the minimal symbol, for instance to find a method
8252 implemented in a stripped copy of libstdc++, will not work.
8253 If we do not have debug info for the definition, we will have to
8254 match them up some other way.
8255
8256 When we do name matching there is a related problem with function
8257 templates; two instantiated function templates are allowed to
8258 differ only by their return types, which we do not add here. */
8259
8260 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8261 {
8262 struct attribute *attr;
8263 struct die_info *child;
8264 int first = 1;
8265
8266 die->building_fullname = 1;
8267
8268 for (child = die->child; child != NULL; child = child->sibling)
8269 {
8270 struct type *type;
8271 LONGEST value;
8272 const gdb_byte *bytes;
8273 struct dwarf2_locexpr_baton *baton;
8274 struct value *v;
8275
8276 if (child->tag != DW_TAG_template_type_param
8277 && child->tag != DW_TAG_template_value_param)
8278 continue;
8279
8280 if (first)
8281 {
8282 fputs_unfiltered ("<", buf);
8283 first = 0;
8284 }
8285 else
8286 fputs_unfiltered (", ", buf);
8287
8288 attr = dwarf2_attr (child, DW_AT_type, cu);
8289 if (attr == NULL)
8290 {
8291 complaint (&symfile_complaints,
8292 _("template parameter missing DW_AT_type"));
8293 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8294 continue;
8295 }
8296 type = die_type (child, cu);
8297
8298 if (child->tag == DW_TAG_template_type_param)
8299 {
8300 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8301 continue;
8302 }
8303
8304 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8305 if (attr == NULL)
8306 {
8307 complaint (&symfile_complaints,
8308 _("template parameter missing "
8309 "DW_AT_const_value"));
8310 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8311 continue;
8312 }
8313
8314 dwarf2_const_value_attr (attr, type, name,
8315 &cu->comp_unit_obstack, cu,
8316 &value, &bytes, &baton);
8317
8318 if (TYPE_NOSIGN (type))
8319 /* GDB prints characters as NUMBER 'CHAR'. If that's
8320 changed, this can use value_print instead. */
8321 c_printchar (value, type, buf);
8322 else
8323 {
8324 struct value_print_options opts;
8325
8326 if (baton != NULL)
8327 v = dwarf2_evaluate_loc_desc (type, NULL,
8328 baton->data,
8329 baton->size,
8330 baton->per_cu);
8331 else if (bytes != NULL)
8332 {
8333 v = allocate_value (type);
8334 memcpy (value_contents_writeable (v), bytes,
8335 TYPE_LENGTH (type));
8336 }
8337 else
8338 v = value_from_longest (type, value);
8339
8340 /* Specify decimal so that we do not depend on
8341 the radix. */
8342 get_formatted_print_options (&opts, 'd');
8343 opts.raw = 1;
8344 value_print (v, buf, &opts);
8345 release_value (v);
8346 value_free (v);
8347 }
8348 }
8349
8350 die->building_fullname = 0;
8351
8352 if (!first)
8353 {
8354 /* Close the argument list, with a space if necessary
8355 (nested templates). */
8356 char last_char = '\0';
8357 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8358 if (last_char == '>')
8359 fputs_unfiltered (" >", buf);
8360 else
8361 fputs_unfiltered (">", buf);
8362 }
8363 }
8364
8365 /* For Java and C++ methods, append formal parameter type
8366 information, if PHYSNAME. */
8367
8368 if (physname && die->tag == DW_TAG_subprogram
8369 && (cu->language == language_cplus
8370 || cu->language == language_java))
8371 {
8372 struct type *type = read_type_die (die, cu);
8373
8374 c_type_print_args (type, buf, 1, cu->language,
8375 &type_print_raw_options);
8376
8377 if (cu->language == language_java)
8378 {
8379 /* For java, we must append the return type to method
8380 names. */
8381 if (die->tag == DW_TAG_subprogram)
8382 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8383 0, 0, &type_print_raw_options);
8384 }
8385 else if (cu->language == language_cplus)
8386 {
8387 /* Assume that an artificial first parameter is
8388 "this", but do not crash if it is not. RealView
8389 marks unnamed (and thus unused) parameters as
8390 artificial; there is no way to differentiate
8391 the two cases. */
8392 if (TYPE_NFIELDS (type) > 0
8393 && TYPE_FIELD_ARTIFICIAL (type, 0)
8394 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8395 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8396 0))))
8397 fputs_unfiltered (" const", buf);
8398 }
8399 }
8400
8401 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8402 &length);
8403 ui_file_delete (buf);
8404
8405 if (cu->language == language_cplus)
8406 {
8407 const char *cname
8408 = dwarf2_canonicalize_name (name, cu,
8409 &objfile->objfile_obstack);
8410
8411 if (cname != NULL)
8412 name = cname;
8413 }
8414 }
8415 }
8416
8417 return name;
8418 }
8419
8420 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8421 If scope qualifiers are appropriate they will be added. The result
8422 will be allocated on the objfile_obstack, or NULL if the DIE does
8423 not have a name. NAME may either be from a previous call to
8424 dwarf2_name or NULL.
8425
8426 The output string will be canonicalized (if C++/Java). */
8427
8428 static const char *
8429 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8430 {
8431 return dwarf2_compute_name (name, die, cu, 0);
8432 }
8433
8434 /* Construct a physname for the given DIE in CU. NAME may either be
8435 from a previous call to dwarf2_name or NULL. The result will be
8436 allocated on the objfile_objstack or NULL if the DIE does not have a
8437 name.
8438
8439 The output string will be canonicalized (if C++/Java). */
8440
8441 static const char *
8442 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8443 {
8444 struct objfile *objfile = cu->objfile;
8445 struct attribute *attr;
8446 const char *retval, *mangled = NULL, *canon = NULL;
8447 struct cleanup *back_to;
8448 int need_copy = 1;
8449
8450 /* In this case dwarf2_compute_name is just a shortcut not building anything
8451 on its own. */
8452 if (!die_needs_namespace (die, cu))
8453 return dwarf2_compute_name (name, die, cu, 1);
8454
8455 back_to = make_cleanup (null_cleanup, NULL);
8456
8457 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8458 if (!attr)
8459 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8460
8461 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8462 has computed. */
8463 if (attr && DW_STRING (attr))
8464 {
8465 char *demangled;
8466
8467 mangled = DW_STRING (attr);
8468
8469 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8470 type. It is easier for GDB users to search for such functions as
8471 `name(params)' than `long name(params)'. In such case the minimal
8472 symbol names do not match the full symbol names but for template
8473 functions there is never a need to look up their definition from their
8474 declaration so the only disadvantage remains the minimal symbol
8475 variant `long name(params)' does not have the proper inferior type.
8476 */
8477
8478 if (cu->language == language_go)
8479 {
8480 /* This is a lie, but we already lie to the caller new_symbol_full.
8481 new_symbol_full assumes we return the mangled name.
8482 This just undoes that lie until things are cleaned up. */
8483 demangled = NULL;
8484 }
8485 else
8486 {
8487 demangled = gdb_demangle (mangled,
8488 (DMGL_PARAMS | DMGL_ANSI
8489 | (cu->language == language_java
8490 ? DMGL_JAVA | DMGL_RET_POSTFIX
8491 : DMGL_RET_DROP)));
8492 }
8493 if (demangled)
8494 {
8495 make_cleanup (xfree, demangled);
8496 canon = demangled;
8497 }
8498 else
8499 {
8500 canon = mangled;
8501 need_copy = 0;
8502 }
8503 }
8504
8505 if (canon == NULL || check_physname)
8506 {
8507 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8508
8509 if (canon != NULL && strcmp (physname, canon) != 0)
8510 {
8511 /* It may not mean a bug in GDB. The compiler could also
8512 compute DW_AT_linkage_name incorrectly. But in such case
8513 GDB would need to be bug-to-bug compatible. */
8514
8515 complaint (&symfile_complaints,
8516 _("Computed physname <%s> does not match demangled <%s> "
8517 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8518 physname, canon, mangled, die->offset.sect_off,
8519 objfile_name (objfile));
8520
8521 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8522 is available here - over computed PHYSNAME. It is safer
8523 against both buggy GDB and buggy compilers. */
8524
8525 retval = canon;
8526 }
8527 else
8528 {
8529 retval = physname;
8530 need_copy = 0;
8531 }
8532 }
8533 else
8534 retval = canon;
8535
8536 if (need_copy)
8537 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8538
8539 do_cleanups (back_to);
8540 return retval;
8541 }
8542
8543 /* Inspect DIE in CU for a namespace alias. If one exists, record
8544 a new symbol for it.
8545
8546 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8547
8548 static int
8549 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8550 {
8551 struct attribute *attr;
8552
8553 /* If the die does not have a name, this is not a namespace
8554 alias. */
8555 attr = dwarf2_attr (die, DW_AT_name, cu);
8556 if (attr != NULL)
8557 {
8558 int num;
8559 struct die_info *d = die;
8560 struct dwarf2_cu *imported_cu = cu;
8561
8562 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8563 keep inspecting DIEs until we hit the underlying import. */
8564 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8565 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8566 {
8567 attr = dwarf2_attr (d, DW_AT_import, cu);
8568 if (attr == NULL)
8569 break;
8570
8571 d = follow_die_ref (d, attr, &imported_cu);
8572 if (d->tag != DW_TAG_imported_declaration)
8573 break;
8574 }
8575
8576 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8577 {
8578 complaint (&symfile_complaints,
8579 _("DIE at 0x%x has too many recursively imported "
8580 "declarations"), d->offset.sect_off);
8581 return 0;
8582 }
8583
8584 if (attr != NULL)
8585 {
8586 struct type *type;
8587 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8588
8589 type = get_die_type_at_offset (offset, cu->per_cu);
8590 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8591 {
8592 /* This declaration is a global namespace alias. Add
8593 a symbol for it whose type is the aliased namespace. */
8594 new_symbol (die, type, cu);
8595 return 1;
8596 }
8597 }
8598 }
8599
8600 return 0;
8601 }
8602
8603 /* Read the import statement specified by the given die and record it. */
8604
8605 static void
8606 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8607 {
8608 struct objfile *objfile = cu->objfile;
8609 struct attribute *import_attr;
8610 struct die_info *imported_die, *child_die;
8611 struct dwarf2_cu *imported_cu;
8612 const char *imported_name;
8613 const char *imported_name_prefix;
8614 const char *canonical_name;
8615 const char *import_alias;
8616 const char *imported_declaration = NULL;
8617 const char *import_prefix;
8618 VEC (const_char_ptr) *excludes = NULL;
8619 struct cleanup *cleanups;
8620
8621 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8622 if (import_attr == NULL)
8623 {
8624 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8625 dwarf_tag_name (die->tag));
8626 return;
8627 }
8628
8629 imported_cu = cu;
8630 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8631 imported_name = dwarf2_name (imported_die, imported_cu);
8632 if (imported_name == NULL)
8633 {
8634 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8635
8636 The import in the following code:
8637 namespace A
8638 {
8639 typedef int B;
8640 }
8641
8642 int main ()
8643 {
8644 using A::B;
8645 B b;
8646 return b;
8647 }
8648
8649 ...
8650 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8651 <52> DW_AT_decl_file : 1
8652 <53> DW_AT_decl_line : 6
8653 <54> DW_AT_import : <0x75>
8654 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8655 <59> DW_AT_name : B
8656 <5b> DW_AT_decl_file : 1
8657 <5c> DW_AT_decl_line : 2
8658 <5d> DW_AT_type : <0x6e>
8659 ...
8660 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8661 <76> DW_AT_byte_size : 4
8662 <77> DW_AT_encoding : 5 (signed)
8663
8664 imports the wrong die ( 0x75 instead of 0x58 ).
8665 This case will be ignored until the gcc bug is fixed. */
8666 return;
8667 }
8668
8669 /* Figure out the local name after import. */
8670 import_alias = dwarf2_name (die, cu);
8671
8672 /* Figure out where the statement is being imported to. */
8673 import_prefix = determine_prefix (die, cu);
8674
8675 /* Figure out what the scope of the imported die is and prepend it
8676 to the name of the imported die. */
8677 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8678
8679 if (imported_die->tag != DW_TAG_namespace
8680 && imported_die->tag != DW_TAG_module)
8681 {
8682 imported_declaration = imported_name;
8683 canonical_name = imported_name_prefix;
8684 }
8685 else if (strlen (imported_name_prefix) > 0)
8686 canonical_name = obconcat (&objfile->objfile_obstack,
8687 imported_name_prefix, "::", imported_name,
8688 (char *) NULL);
8689 else
8690 canonical_name = imported_name;
8691
8692 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8693
8694 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8695 for (child_die = die->child; child_die && child_die->tag;
8696 child_die = sibling_die (child_die))
8697 {
8698 /* DWARF-4: A Fortran use statement with a “rename list” may be
8699 represented by an imported module entry with an import attribute
8700 referring to the module and owned entries corresponding to those
8701 entities that are renamed as part of being imported. */
8702
8703 if (child_die->tag != DW_TAG_imported_declaration)
8704 {
8705 complaint (&symfile_complaints,
8706 _("child DW_TAG_imported_declaration expected "
8707 "- DIE at 0x%x [in module %s]"),
8708 child_die->offset.sect_off, objfile_name (objfile));
8709 continue;
8710 }
8711
8712 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8713 if (import_attr == NULL)
8714 {
8715 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8716 dwarf_tag_name (child_die->tag));
8717 continue;
8718 }
8719
8720 imported_cu = cu;
8721 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8722 &imported_cu);
8723 imported_name = dwarf2_name (imported_die, imported_cu);
8724 if (imported_name == NULL)
8725 {
8726 complaint (&symfile_complaints,
8727 _("child DW_TAG_imported_declaration has unknown "
8728 "imported name - DIE at 0x%x [in module %s]"),
8729 child_die->offset.sect_off, objfile_name (objfile));
8730 continue;
8731 }
8732
8733 VEC_safe_push (const_char_ptr, excludes, imported_name);
8734
8735 process_die (child_die, cu);
8736 }
8737
8738 cp_add_using_directive (import_prefix,
8739 canonical_name,
8740 import_alias,
8741 imported_declaration,
8742 excludes,
8743 0,
8744 &objfile->objfile_obstack);
8745
8746 do_cleanups (cleanups);
8747 }
8748
8749 /* Cleanup function for handle_DW_AT_stmt_list. */
8750
8751 static void
8752 free_cu_line_header (void *arg)
8753 {
8754 struct dwarf2_cu *cu = arg;
8755
8756 free_line_header (cu->line_header);
8757 cu->line_header = NULL;
8758 }
8759
8760 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8761 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8762 this, it was first present in GCC release 4.3.0. */
8763
8764 static int
8765 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8766 {
8767 if (!cu->checked_producer)
8768 check_producer (cu);
8769
8770 return cu->producer_is_gcc_lt_4_3;
8771 }
8772
8773 static void
8774 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8775 const char **name, const char **comp_dir)
8776 {
8777 struct attribute *attr;
8778
8779 *name = NULL;
8780 *comp_dir = NULL;
8781
8782 /* Find the filename. Do not use dwarf2_name here, since the filename
8783 is not a source language identifier. */
8784 attr = dwarf2_attr (die, DW_AT_name, cu);
8785 if (attr)
8786 {
8787 *name = DW_STRING (attr);
8788 }
8789
8790 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8791 if (attr)
8792 *comp_dir = DW_STRING (attr);
8793 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8794 && IS_ABSOLUTE_PATH (*name))
8795 {
8796 char *d = ldirname (*name);
8797
8798 *comp_dir = d;
8799 if (d != NULL)
8800 make_cleanup (xfree, d);
8801 }
8802 if (*comp_dir != NULL)
8803 {
8804 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8805 directory, get rid of it. */
8806 char *cp = strchr (*comp_dir, ':');
8807
8808 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8809 *comp_dir = cp + 1;
8810 }
8811
8812 if (*name == NULL)
8813 *name = "<unknown>";
8814 }
8815
8816 /* Handle DW_AT_stmt_list for a compilation unit.
8817 DIE is the DW_TAG_compile_unit die for CU.
8818 COMP_DIR is the compilation directory.
8819 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8820
8821 static void
8822 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8823 const char *comp_dir) /* ARI: editCase function */
8824 {
8825 struct attribute *attr;
8826
8827 gdb_assert (! cu->per_cu->is_debug_types);
8828
8829 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8830 if (attr)
8831 {
8832 unsigned int line_offset = DW_UNSND (attr);
8833 struct line_header *line_header
8834 = dwarf_decode_line_header (line_offset, cu);
8835
8836 if (line_header)
8837 {
8838 cu->line_header = line_header;
8839 make_cleanup (free_cu_line_header, cu);
8840 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8841 }
8842 }
8843 }
8844
8845 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8846
8847 static void
8848 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8849 {
8850 struct objfile *objfile = dwarf2_per_objfile->objfile;
8851 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8852 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8853 CORE_ADDR highpc = ((CORE_ADDR) 0);
8854 struct attribute *attr;
8855 const char *name = NULL;
8856 const char *comp_dir = NULL;
8857 struct die_info *child_die;
8858 bfd *abfd = objfile->obfd;
8859 CORE_ADDR baseaddr;
8860
8861 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8862
8863 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8864
8865 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8866 from finish_block. */
8867 if (lowpc == ((CORE_ADDR) -1))
8868 lowpc = highpc;
8869 lowpc += baseaddr;
8870 highpc += baseaddr;
8871
8872 find_file_and_directory (die, cu, &name, &comp_dir);
8873
8874 prepare_one_comp_unit (cu, die, cu->language);
8875
8876 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8877 standardised yet. As a workaround for the language detection we fall
8878 back to the DW_AT_producer string. */
8879 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8880 cu->language = language_opencl;
8881
8882 /* Similar hack for Go. */
8883 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8884 set_cu_language (DW_LANG_Go, cu);
8885
8886 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8887
8888 /* Decode line number information if present. We do this before
8889 processing child DIEs, so that the line header table is available
8890 for DW_AT_decl_file. */
8891 handle_DW_AT_stmt_list (die, cu, comp_dir);
8892
8893 /* Process all dies in compilation unit. */
8894 if (die->child != NULL)
8895 {
8896 child_die = die->child;
8897 while (child_die && child_die->tag)
8898 {
8899 process_die (child_die, cu);
8900 child_die = sibling_die (child_die);
8901 }
8902 }
8903
8904 /* Decode macro information, if present. Dwarf 2 macro information
8905 refers to information in the line number info statement program
8906 header, so we can only read it if we've read the header
8907 successfully. */
8908 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8909 if (attr && cu->line_header)
8910 {
8911 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8912 complaint (&symfile_complaints,
8913 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8914
8915 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8916 }
8917 else
8918 {
8919 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8920 if (attr && cu->line_header)
8921 {
8922 unsigned int macro_offset = DW_UNSND (attr);
8923
8924 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8925 }
8926 }
8927
8928 do_cleanups (back_to);
8929 }
8930
8931 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8932 Create the set of symtabs used by this TU, or if this TU is sharing
8933 symtabs with another TU and the symtabs have already been created
8934 then restore those symtabs in the line header.
8935 We don't need the pc/line-number mapping for type units. */
8936
8937 static void
8938 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8939 {
8940 struct objfile *objfile = dwarf2_per_objfile->objfile;
8941 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8942 struct type_unit_group *tu_group;
8943 int first_time;
8944 struct line_header *lh;
8945 struct attribute *attr;
8946 unsigned int i, line_offset;
8947 struct signatured_type *sig_type;
8948
8949 gdb_assert (per_cu->is_debug_types);
8950 sig_type = (struct signatured_type *) per_cu;
8951
8952 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8953
8954 /* If we're using .gdb_index (includes -readnow) then
8955 per_cu->type_unit_group may not have been set up yet. */
8956 if (sig_type->type_unit_group == NULL)
8957 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8958 tu_group = sig_type->type_unit_group;
8959
8960 /* If we've already processed this stmt_list there's no real need to
8961 do it again, we could fake it and just recreate the part we need
8962 (file name,index -> symtab mapping). If data shows this optimization
8963 is useful we can do it then. */
8964 first_time = tu_group->primary_symtab == NULL;
8965
8966 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8967 debug info. */
8968 lh = NULL;
8969 if (attr != NULL)
8970 {
8971 line_offset = DW_UNSND (attr);
8972 lh = dwarf_decode_line_header (line_offset, cu);
8973 }
8974 if (lh == NULL)
8975 {
8976 if (first_time)
8977 dwarf2_start_symtab (cu, "", NULL, 0);
8978 else
8979 {
8980 gdb_assert (tu_group->symtabs == NULL);
8981 restart_symtab (0);
8982 }
8983 /* Note: The primary symtab will get allocated at the end. */
8984 return;
8985 }
8986
8987 cu->line_header = lh;
8988 make_cleanup (free_cu_line_header, cu);
8989
8990 if (first_time)
8991 {
8992 dwarf2_start_symtab (cu, "", NULL, 0);
8993
8994 tu_group->num_symtabs = lh->num_file_names;
8995 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8996
8997 for (i = 0; i < lh->num_file_names; ++i)
8998 {
8999 const char *dir = NULL;
9000 struct file_entry *fe = &lh->file_names[i];
9001
9002 if (fe->dir_index)
9003 dir = lh->include_dirs[fe->dir_index - 1];
9004 dwarf2_start_subfile (fe->name, dir, NULL);
9005
9006 /* Note: We don't have to watch for the main subfile here, type units
9007 don't have DW_AT_name. */
9008
9009 if (current_subfile->symtab == NULL)
9010 {
9011 /* NOTE: start_subfile will recognize when it's been passed
9012 a file it has already seen. So we can't assume there's a
9013 simple mapping from lh->file_names to subfiles,
9014 lh->file_names may contain dups. */
9015 current_subfile->symtab = allocate_symtab (current_subfile->name,
9016 objfile);
9017 }
9018
9019 fe->symtab = current_subfile->symtab;
9020 tu_group->symtabs[i] = fe->symtab;
9021 }
9022 }
9023 else
9024 {
9025 restart_symtab (0);
9026
9027 for (i = 0; i < lh->num_file_names; ++i)
9028 {
9029 struct file_entry *fe = &lh->file_names[i];
9030
9031 fe->symtab = tu_group->symtabs[i];
9032 }
9033 }
9034
9035 /* The main symtab is allocated last. Type units don't have DW_AT_name
9036 so they don't have a "real" (so to speak) symtab anyway.
9037 There is later code that will assign the main symtab to all symbols
9038 that don't have one. We need to handle the case of a symbol with a
9039 missing symtab (DW_AT_decl_file) anyway. */
9040 }
9041
9042 /* Process DW_TAG_type_unit.
9043 For TUs we want to skip the first top level sibling if it's not the
9044 actual type being defined by this TU. In this case the first top
9045 level sibling is there to provide context only. */
9046
9047 static void
9048 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9049 {
9050 struct die_info *child_die;
9051
9052 prepare_one_comp_unit (cu, die, language_minimal);
9053
9054 /* Initialize (or reinitialize) the machinery for building symtabs.
9055 We do this before processing child DIEs, so that the line header table
9056 is available for DW_AT_decl_file. */
9057 setup_type_unit_groups (die, cu);
9058
9059 if (die->child != NULL)
9060 {
9061 child_die = die->child;
9062 while (child_die && child_die->tag)
9063 {
9064 process_die (child_die, cu);
9065 child_die = sibling_die (child_die);
9066 }
9067 }
9068 }
9069 \f
9070 /* DWO/DWP files.
9071
9072 http://gcc.gnu.org/wiki/DebugFission
9073 http://gcc.gnu.org/wiki/DebugFissionDWP
9074
9075 To simplify handling of both DWO files ("object" files with the DWARF info)
9076 and DWP files (a file with the DWOs packaged up into one file), we treat
9077 DWP files as having a collection of virtual DWO files. */
9078
9079 static hashval_t
9080 hash_dwo_file (const void *item)
9081 {
9082 const struct dwo_file *dwo_file = item;
9083 hashval_t hash;
9084
9085 hash = htab_hash_string (dwo_file->dwo_name);
9086 if (dwo_file->comp_dir != NULL)
9087 hash += htab_hash_string (dwo_file->comp_dir);
9088 return hash;
9089 }
9090
9091 static int
9092 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9093 {
9094 const struct dwo_file *lhs = item_lhs;
9095 const struct dwo_file *rhs = item_rhs;
9096
9097 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9098 return 0;
9099 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9100 return lhs->comp_dir == rhs->comp_dir;
9101 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9102 }
9103
9104 /* Allocate a hash table for DWO files. */
9105
9106 static htab_t
9107 allocate_dwo_file_hash_table (void)
9108 {
9109 struct objfile *objfile = dwarf2_per_objfile->objfile;
9110
9111 return htab_create_alloc_ex (41,
9112 hash_dwo_file,
9113 eq_dwo_file,
9114 NULL,
9115 &objfile->objfile_obstack,
9116 hashtab_obstack_allocate,
9117 dummy_obstack_deallocate);
9118 }
9119
9120 /* Lookup DWO file DWO_NAME. */
9121
9122 static void **
9123 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9124 {
9125 struct dwo_file find_entry;
9126 void **slot;
9127
9128 if (dwarf2_per_objfile->dwo_files == NULL)
9129 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9130
9131 memset (&find_entry, 0, sizeof (find_entry));
9132 find_entry.dwo_name = dwo_name;
9133 find_entry.comp_dir = comp_dir;
9134 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9135
9136 return slot;
9137 }
9138
9139 static hashval_t
9140 hash_dwo_unit (const void *item)
9141 {
9142 const struct dwo_unit *dwo_unit = item;
9143
9144 /* This drops the top 32 bits of the id, but is ok for a hash. */
9145 return dwo_unit->signature;
9146 }
9147
9148 static int
9149 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9150 {
9151 const struct dwo_unit *lhs = item_lhs;
9152 const struct dwo_unit *rhs = item_rhs;
9153
9154 /* The signature is assumed to be unique within the DWO file.
9155 So while object file CU dwo_id's always have the value zero,
9156 that's OK, assuming each object file DWO file has only one CU,
9157 and that's the rule for now. */
9158 return lhs->signature == rhs->signature;
9159 }
9160
9161 /* Allocate a hash table for DWO CUs,TUs.
9162 There is one of these tables for each of CUs,TUs for each DWO file. */
9163
9164 static htab_t
9165 allocate_dwo_unit_table (struct objfile *objfile)
9166 {
9167 /* Start out with a pretty small number.
9168 Generally DWO files contain only one CU and maybe some TUs. */
9169 return htab_create_alloc_ex (3,
9170 hash_dwo_unit,
9171 eq_dwo_unit,
9172 NULL,
9173 &objfile->objfile_obstack,
9174 hashtab_obstack_allocate,
9175 dummy_obstack_deallocate);
9176 }
9177
9178 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9179
9180 struct create_dwo_cu_data
9181 {
9182 struct dwo_file *dwo_file;
9183 struct dwo_unit dwo_unit;
9184 };
9185
9186 /* die_reader_func for create_dwo_cu. */
9187
9188 static void
9189 create_dwo_cu_reader (const struct die_reader_specs *reader,
9190 const gdb_byte *info_ptr,
9191 struct die_info *comp_unit_die,
9192 int has_children,
9193 void *datap)
9194 {
9195 struct dwarf2_cu *cu = reader->cu;
9196 struct objfile *objfile = dwarf2_per_objfile->objfile;
9197 sect_offset offset = cu->per_cu->offset;
9198 struct dwarf2_section_info *section = cu->per_cu->section;
9199 struct create_dwo_cu_data *data = datap;
9200 struct dwo_file *dwo_file = data->dwo_file;
9201 struct dwo_unit *dwo_unit = &data->dwo_unit;
9202 struct attribute *attr;
9203
9204 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9205 if (attr == NULL)
9206 {
9207 complaint (&symfile_complaints,
9208 _("Dwarf Error: debug entry at offset 0x%x is missing"
9209 " its dwo_id [in module %s]"),
9210 offset.sect_off, dwo_file->dwo_name);
9211 return;
9212 }
9213
9214 dwo_unit->dwo_file = dwo_file;
9215 dwo_unit->signature = DW_UNSND (attr);
9216 dwo_unit->section = section;
9217 dwo_unit->offset = offset;
9218 dwo_unit->length = cu->per_cu->length;
9219
9220 if (dwarf2_read_debug)
9221 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9222 offset.sect_off, hex_string (dwo_unit->signature));
9223 }
9224
9225 /* Create the dwo_unit for the lone CU in DWO_FILE.
9226 Note: This function processes DWO files only, not DWP files. */
9227
9228 static struct dwo_unit *
9229 create_dwo_cu (struct dwo_file *dwo_file)
9230 {
9231 struct objfile *objfile = dwarf2_per_objfile->objfile;
9232 struct dwarf2_section_info *section = &dwo_file->sections.info;
9233 bfd *abfd;
9234 htab_t cu_htab;
9235 const gdb_byte *info_ptr, *end_ptr;
9236 struct create_dwo_cu_data create_dwo_cu_data;
9237 struct dwo_unit *dwo_unit;
9238
9239 dwarf2_read_section (objfile, section);
9240 info_ptr = section->buffer;
9241
9242 if (info_ptr == NULL)
9243 return NULL;
9244
9245 /* We can't set abfd until now because the section may be empty or
9246 not present, in which case section->asection will be NULL. */
9247 abfd = get_section_bfd_owner (section);
9248
9249 if (dwarf2_read_debug)
9250 {
9251 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9252 get_section_name (section),
9253 get_section_file_name (section));
9254 }
9255
9256 create_dwo_cu_data.dwo_file = dwo_file;
9257 dwo_unit = NULL;
9258
9259 end_ptr = info_ptr + section->size;
9260 while (info_ptr < end_ptr)
9261 {
9262 struct dwarf2_per_cu_data per_cu;
9263
9264 memset (&create_dwo_cu_data.dwo_unit, 0,
9265 sizeof (create_dwo_cu_data.dwo_unit));
9266 memset (&per_cu, 0, sizeof (per_cu));
9267 per_cu.objfile = objfile;
9268 per_cu.is_debug_types = 0;
9269 per_cu.offset.sect_off = info_ptr - section->buffer;
9270 per_cu.section = section;
9271
9272 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9273 create_dwo_cu_reader,
9274 &create_dwo_cu_data);
9275
9276 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9277 {
9278 /* If we've already found one, complain. We only support one
9279 because having more than one requires hacking the dwo_name of
9280 each to match, which is highly unlikely to happen. */
9281 if (dwo_unit != NULL)
9282 {
9283 complaint (&symfile_complaints,
9284 _("Multiple CUs in DWO file %s [in module %s]"),
9285 dwo_file->dwo_name, objfile_name (objfile));
9286 break;
9287 }
9288
9289 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9290 *dwo_unit = create_dwo_cu_data.dwo_unit;
9291 }
9292
9293 info_ptr += per_cu.length;
9294 }
9295
9296 return dwo_unit;
9297 }
9298
9299 /* DWP file .debug_{cu,tu}_index section format:
9300 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9301
9302 DWP Version 1:
9303
9304 Both index sections have the same format, and serve to map a 64-bit
9305 signature to a set of section numbers. Each section begins with a header,
9306 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9307 indexes, and a pool of 32-bit section numbers. The index sections will be
9308 aligned at 8-byte boundaries in the file.
9309
9310 The index section header consists of:
9311
9312 V, 32 bit version number
9313 -, 32 bits unused
9314 N, 32 bit number of compilation units or type units in the index
9315 M, 32 bit number of slots in the hash table
9316
9317 Numbers are recorded using the byte order of the application binary.
9318
9319 The hash table begins at offset 16 in the section, and consists of an array
9320 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9321 order of the application binary). Unused slots in the hash table are 0.
9322 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9323
9324 The parallel table begins immediately after the hash table
9325 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9326 array of 32-bit indexes (using the byte order of the application binary),
9327 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9328 table contains a 32-bit index into the pool of section numbers. For unused
9329 hash table slots, the corresponding entry in the parallel table will be 0.
9330
9331 The pool of section numbers begins immediately following the hash table
9332 (at offset 16 + 12 * M from the beginning of the section). The pool of
9333 section numbers consists of an array of 32-bit words (using the byte order
9334 of the application binary). Each item in the array is indexed starting
9335 from 0. The hash table entry provides the index of the first section
9336 number in the set. Additional section numbers in the set follow, and the
9337 set is terminated by a 0 entry (section number 0 is not used in ELF).
9338
9339 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9340 section must be the first entry in the set, and the .debug_abbrev.dwo must
9341 be the second entry. Other members of the set may follow in any order.
9342
9343 ---
9344
9345 DWP Version 2:
9346
9347 DWP Version 2 combines all the .debug_info, etc. sections into one,
9348 and the entries in the index tables are now offsets into these sections.
9349 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9350 section.
9351
9352 Index Section Contents:
9353 Header
9354 Hash Table of Signatures dwp_hash_table.hash_table
9355 Parallel Table of Indices dwp_hash_table.unit_table
9356 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9357 Table of Section Sizes dwp_hash_table.v2.sizes
9358
9359 The index section header consists of:
9360
9361 V, 32 bit version number
9362 L, 32 bit number of columns in the table of section offsets
9363 N, 32 bit number of compilation units or type units in the index
9364 M, 32 bit number of slots in the hash table
9365
9366 Numbers are recorded using the byte order of the application binary.
9367
9368 The hash table has the same format as version 1.
9369 The parallel table of indices has the same format as version 1,
9370 except that the entries are origin-1 indices into the table of sections
9371 offsets and the table of section sizes.
9372
9373 The table of offsets begins immediately following the parallel table
9374 (at offset 16 + 12 * M from the beginning of the section). The table is
9375 a two-dimensional array of 32-bit words (using the byte order of the
9376 application binary), with L columns and N+1 rows, in row-major order.
9377 Each row in the array is indexed starting from 0. The first row provides
9378 a key to the remaining rows: each column in this row provides an identifier
9379 for a debug section, and the offsets in the same column of subsequent rows
9380 refer to that section. The section identifiers are:
9381
9382 DW_SECT_INFO 1 .debug_info.dwo
9383 DW_SECT_TYPES 2 .debug_types.dwo
9384 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9385 DW_SECT_LINE 4 .debug_line.dwo
9386 DW_SECT_LOC 5 .debug_loc.dwo
9387 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9388 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9389 DW_SECT_MACRO 8 .debug_macro.dwo
9390
9391 The offsets provided by the CU and TU index sections are the base offsets
9392 for the contributions made by each CU or TU to the corresponding section
9393 in the package file. Each CU and TU header contains an abbrev_offset
9394 field, used to find the abbreviations table for that CU or TU within the
9395 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9396 be interpreted as relative to the base offset given in the index section.
9397 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9398 should be interpreted as relative to the base offset for .debug_line.dwo,
9399 and offsets into other debug sections obtained from DWARF attributes should
9400 also be interpreted as relative to the corresponding base offset.
9401
9402 The table of sizes begins immediately following the table of offsets.
9403 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9404 with L columns and N rows, in row-major order. Each row in the array is
9405 indexed starting from 1 (row 0 is shared by the two tables).
9406
9407 ---
9408
9409 Hash table lookup is handled the same in version 1 and 2:
9410
9411 We assume that N and M will not exceed 2^32 - 1.
9412 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9413
9414 Given a 64-bit compilation unit signature or a type signature S, an entry
9415 in the hash table is located as follows:
9416
9417 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9418 the low-order k bits all set to 1.
9419
9420 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9421
9422 3) If the hash table entry at index H matches the signature, use that
9423 entry. If the hash table entry at index H is unused (all zeroes),
9424 terminate the search: the signature is not present in the table.
9425
9426 4) Let H = (H + H') modulo M. Repeat at Step 3.
9427
9428 Because M > N and H' and M are relatively prime, the search is guaranteed
9429 to stop at an unused slot or find the match. */
9430
9431 /* Create a hash table to map DWO IDs to their CU/TU entry in
9432 .debug_{info,types}.dwo in DWP_FILE.
9433 Returns NULL if there isn't one.
9434 Note: This function processes DWP files only, not DWO files. */
9435
9436 static struct dwp_hash_table *
9437 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9438 {
9439 struct objfile *objfile = dwarf2_per_objfile->objfile;
9440 bfd *dbfd = dwp_file->dbfd;
9441 const gdb_byte *index_ptr, *index_end;
9442 struct dwarf2_section_info *index;
9443 uint32_t version, nr_columns, nr_units, nr_slots;
9444 struct dwp_hash_table *htab;
9445
9446 if (is_debug_types)
9447 index = &dwp_file->sections.tu_index;
9448 else
9449 index = &dwp_file->sections.cu_index;
9450
9451 if (dwarf2_section_empty_p (index))
9452 return NULL;
9453 dwarf2_read_section (objfile, index);
9454
9455 index_ptr = index->buffer;
9456 index_end = index_ptr + index->size;
9457
9458 version = read_4_bytes (dbfd, index_ptr);
9459 index_ptr += 4;
9460 if (version == 2)
9461 nr_columns = read_4_bytes (dbfd, index_ptr);
9462 else
9463 nr_columns = 0;
9464 index_ptr += 4;
9465 nr_units = read_4_bytes (dbfd, index_ptr);
9466 index_ptr += 4;
9467 nr_slots = read_4_bytes (dbfd, index_ptr);
9468 index_ptr += 4;
9469
9470 if (version != 1 && version != 2)
9471 {
9472 error (_("Dwarf Error: unsupported DWP file version (%s)"
9473 " [in module %s]"),
9474 pulongest (version), dwp_file->name);
9475 }
9476 if (nr_slots != (nr_slots & -nr_slots))
9477 {
9478 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9479 " is not power of 2 [in module %s]"),
9480 pulongest (nr_slots), dwp_file->name);
9481 }
9482
9483 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9484 htab->version = version;
9485 htab->nr_columns = nr_columns;
9486 htab->nr_units = nr_units;
9487 htab->nr_slots = nr_slots;
9488 htab->hash_table = index_ptr;
9489 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9490
9491 /* Exit early if the table is empty. */
9492 if (nr_slots == 0 || nr_units == 0
9493 || (version == 2 && nr_columns == 0))
9494 {
9495 /* All must be zero. */
9496 if (nr_slots != 0 || nr_units != 0
9497 || (version == 2 && nr_columns != 0))
9498 {
9499 complaint (&symfile_complaints,
9500 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9501 " all zero [in modules %s]"),
9502 dwp_file->name);
9503 }
9504 return htab;
9505 }
9506
9507 if (version == 1)
9508 {
9509 htab->section_pool.v1.indices =
9510 htab->unit_table + sizeof (uint32_t) * nr_slots;
9511 /* It's harder to decide whether the section is too small in v1.
9512 V1 is deprecated anyway so we punt. */
9513 }
9514 else
9515 {
9516 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9517 int *ids = htab->section_pool.v2.section_ids;
9518 /* Reverse map for error checking. */
9519 int ids_seen[DW_SECT_MAX + 1];
9520 int i;
9521
9522 if (nr_columns < 2)
9523 {
9524 error (_("Dwarf Error: bad DWP hash table, too few columns"
9525 " in section table [in module %s]"),
9526 dwp_file->name);
9527 }
9528 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9529 {
9530 error (_("Dwarf Error: bad DWP hash table, too many columns"
9531 " in section table [in module %s]"),
9532 dwp_file->name);
9533 }
9534 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9535 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9536 for (i = 0; i < nr_columns; ++i)
9537 {
9538 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9539
9540 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9541 {
9542 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9543 " in section table [in module %s]"),
9544 id, dwp_file->name);
9545 }
9546 if (ids_seen[id] != -1)
9547 {
9548 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9549 " id %d in section table [in module %s]"),
9550 id, dwp_file->name);
9551 }
9552 ids_seen[id] = i;
9553 ids[i] = id;
9554 }
9555 /* Must have exactly one info or types section. */
9556 if (((ids_seen[DW_SECT_INFO] != -1)
9557 + (ids_seen[DW_SECT_TYPES] != -1))
9558 != 1)
9559 {
9560 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9561 " DWO info/types section [in module %s]"),
9562 dwp_file->name);
9563 }
9564 /* Must have an abbrev section. */
9565 if (ids_seen[DW_SECT_ABBREV] == -1)
9566 {
9567 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9568 " section [in module %s]"),
9569 dwp_file->name);
9570 }
9571 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9572 htab->section_pool.v2.sizes =
9573 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9574 * nr_units * nr_columns);
9575 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9576 * nr_units * nr_columns))
9577 > index_end)
9578 {
9579 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9580 " [in module %s]"),
9581 dwp_file->name);
9582 }
9583 }
9584
9585 return htab;
9586 }
9587
9588 /* Update SECTIONS with the data from SECTP.
9589
9590 This function is like the other "locate" section routines that are
9591 passed to bfd_map_over_sections, but in this context the sections to
9592 read comes from the DWP V1 hash table, not the full ELF section table.
9593
9594 The result is non-zero for success, or zero if an error was found. */
9595
9596 static int
9597 locate_v1_virtual_dwo_sections (asection *sectp,
9598 struct virtual_v1_dwo_sections *sections)
9599 {
9600 const struct dwop_section_names *names = &dwop_section_names;
9601
9602 if (section_is_p (sectp->name, &names->abbrev_dwo))
9603 {
9604 /* There can be only one. */
9605 if (sections->abbrev.s.asection != NULL)
9606 return 0;
9607 sections->abbrev.s.asection = sectp;
9608 sections->abbrev.size = bfd_get_section_size (sectp);
9609 }
9610 else if (section_is_p (sectp->name, &names->info_dwo)
9611 || section_is_p (sectp->name, &names->types_dwo))
9612 {
9613 /* There can be only one. */
9614 if (sections->info_or_types.s.asection != NULL)
9615 return 0;
9616 sections->info_or_types.s.asection = sectp;
9617 sections->info_or_types.size = bfd_get_section_size (sectp);
9618 }
9619 else if (section_is_p (sectp->name, &names->line_dwo))
9620 {
9621 /* There can be only one. */
9622 if (sections->line.s.asection != NULL)
9623 return 0;
9624 sections->line.s.asection = sectp;
9625 sections->line.size = bfd_get_section_size (sectp);
9626 }
9627 else if (section_is_p (sectp->name, &names->loc_dwo))
9628 {
9629 /* There can be only one. */
9630 if (sections->loc.s.asection != NULL)
9631 return 0;
9632 sections->loc.s.asection = sectp;
9633 sections->loc.size = bfd_get_section_size (sectp);
9634 }
9635 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9636 {
9637 /* There can be only one. */
9638 if (sections->macinfo.s.asection != NULL)
9639 return 0;
9640 sections->macinfo.s.asection = sectp;
9641 sections->macinfo.size = bfd_get_section_size (sectp);
9642 }
9643 else if (section_is_p (sectp->name, &names->macro_dwo))
9644 {
9645 /* There can be only one. */
9646 if (sections->macro.s.asection != NULL)
9647 return 0;
9648 sections->macro.s.asection = sectp;
9649 sections->macro.size = bfd_get_section_size (sectp);
9650 }
9651 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9652 {
9653 /* There can be only one. */
9654 if (sections->str_offsets.s.asection != NULL)
9655 return 0;
9656 sections->str_offsets.s.asection = sectp;
9657 sections->str_offsets.size = bfd_get_section_size (sectp);
9658 }
9659 else
9660 {
9661 /* No other kind of section is valid. */
9662 return 0;
9663 }
9664
9665 return 1;
9666 }
9667
9668 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9669 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9670 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9671 This is for DWP version 1 files. */
9672
9673 static struct dwo_unit *
9674 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9675 uint32_t unit_index,
9676 const char *comp_dir,
9677 ULONGEST signature, int is_debug_types)
9678 {
9679 struct objfile *objfile = dwarf2_per_objfile->objfile;
9680 const struct dwp_hash_table *dwp_htab =
9681 is_debug_types ? dwp_file->tus : dwp_file->cus;
9682 bfd *dbfd = dwp_file->dbfd;
9683 const char *kind = is_debug_types ? "TU" : "CU";
9684 struct dwo_file *dwo_file;
9685 struct dwo_unit *dwo_unit;
9686 struct virtual_v1_dwo_sections sections;
9687 void **dwo_file_slot;
9688 char *virtual_dwo_name;
9689 struct dwarf2_section_info *cutu;
9690 struct cleanup *cleanups;
9691 int i;
9692
9693 gdb_assert (dwp_file->version == 1);
9694
9695 if (dwarf2_read_debug)
9696 {
9697 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9698 kind,
9699 pulongest (unit_index), hex_string (signature),
9700 dwp_file->name);
9701 }
9702
9703 /* Fetch the sections of this DWO unit.
9704 Put a limit on the number of sections we look for so that bad data
9705 doesn't cause us to loop forever. */
9706
9707 #define MAX_NR_V1_DWO_SECTIONS \
9708 (1 /* .debug_info or .debug_types */ \
9709 + 1 /* .debug_abbrev */ \
9710 + 1 /* .debug_line */ \
9711 + 1 /* .debug_loc */ \
9712 + 1 /* .debug_str_offsets */ \
9713 + 1 /* .debug_macro or .debug_macinfo */ \
9714 + 1 /* trailing zero */)
9715
9716 memset (&sections, 0, sizeof (sections));
9717 cleanups = make_cleanup (null_cleanup, 0);
9718
9719 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9720 {
9721 asection *sectp;
9722 uint32_t section_nr =
9723 read_4_bytes (dbfd,
9724 dwp_htab->section_pool.v1.indices
9725 + (unit_index + i) * sizeof (uint32_t));
9726
9727 if (section_nr == 0)
9728 break;
9729 if (section_nr >= dwp_file->num_sections)
9730 {
9731 error (_("Dwarf Error: bad DWP hash table, section number too large"
9732 " [in module %s]"),
9733 dwp_file->name);
9734 }
9735
9736 sectp = dwp_file->elf_sections[section_nr];
9737 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9738 {
9739 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9740 " [in module %s]"),
9741 dwp_file->name);
9742 }
9743 }
9744
9745 if (i < 2
9746 || dwarf2_section_empty_p (&sections.info_or_types)
9747 || dwarf2_section_empty_p (&sections.abbrev))
9748 {
9749 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9750 " [in module %s]"),
9751 dwp_file->name);
9752 }
9753 if (i == MAX_NR_V1_DWO_SECTIONS)
9754 {
9755 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9756 " [in module %s]"),
9757 dwp_file->name);
9758 }
9759
9760 /* It's easier for the rest of the code if we fake a struct dwo_file and
9761 have dwo_unit "live" in that. At least for now.
9762
9763 The DWP file can be made up of a random collection of CUs and TUs.
9764 However, for each CU + set of TUs that came from the same original DWO
9765 file, we can combine them back into a virtual DWO file to save space
9766 (fewer struct dwo_file objects to allocate). Remember that for really
9767 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9768
9769 virtual_dwo_name =
9770 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9771 get_section_id (&sections.abbrev),
9772 get_section_id (&sections.line),
9773 get_section_id (&sections.loc),
9774 get_section_id (&sections.str_offsets));
9775 make_cleanup (xfree, virtual_dwo_name);
9776 /* Can we use an existing virtual DWO file? */
9777 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9778 /* Create one if necessary. */
9779 if (*dwo_file_slot == NULL)
9780 {
9781 if (dwarf2_read_debug)
9782 {
9783 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9784 virtual_dwo_name);
9785 }
9786 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9787 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9788 virtual_dwo_name,
9789 strlen (virtual_dwo_name));
9790 dwo_file->comp_dir = comp_dir;
9791 dwo_file->sections.abbrev = sections.abbrev;
9792 dwo_file->sections.line = sections.line;
9793 dwo_file->sections.loc = sections.loc;
9794 dwo_file->sections.macinfo = sections.macinfo;
9795 dwo_file->sections.macro = sections.macro;
9796 dwo_file->sections.str_offsets = sections.str_offsets;
9797 /* The "str" section is global to the entire DWP file. */
9798 dwo_file->sections.str = dwp_file->sections.str;
9799 /* The info or types section is assigned below to dwo_unit,
9800 there's no need to record it in dwo_file.
9801 Also, we can't simply record type sections in dwo_file because
9802 we record a pointer into the vector in dwo_unit. As we collect more
9803 types we'll grow the vector and eventually have to reallocate space
9804 for it, invalidating all copies of pointers into the previous
9805 contents. */
9806 *dwo_file_slot = dwo_file;
9807 }
9808 else
9809 {
9810 if (dwarf2_read_debug)
9811 {
9812 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9813 virtual_dwo_name);
9814 }
9815 dwo_file = *dwo_file_slot;
9816 }
9817 do_cleanups (cleanups);
9818
9819 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9820 dwo_unit->dwo_file = dwo_file;
9821 dwo_unit->signature = signature;
9822 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9823 sizeof (struct dwarf2_section_info));
9824 *dwo_unit->section = sections.info_or_types;
9825 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9826
9827 return dwo_unit;
9828 }
9829
9830 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9831 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9832 piece within that section used by a TU/CU, return a virtual section
9833 of just that piece. */
9834
9835 static struct dwarf2_section_info
9836 create_dwp_v2_section (struct dwarf2_section_info *section,
9837 bfd_size_type offset, bfd_size_type size)
9838 {
9839 struct dwarf2_section_info result;
9840 asection *sectp;
9841
9842 gdb_assert (section != NULL);
9843 gdb_assert (!section->is_virtual);
9844
9845 memset (&result, 0, sizeof (result));
9846 result.s.containing_section = section;
9847 result.is_virtual = 1;
9848
9849 if (size == 0)
9850 return result;
9851
9852 sectp = get_section_bfd_section (section);
9853
9854 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9855 bounds of the real section. This is a pretty-rare event, so just
9856 flag an error (easier) instead of a warning and trying to cope. */
9857 if (sectp == NULL
9858 || offset + size > bfd_get_section_size (sectp))
9859 {
9860 bfd *abfd = sectp->owner;
9861
9862 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9863 " in section %s [in module %s]"),
9864 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9865 objfile_name (dwarf2_per_objfile->objfile));
9866 }
9867
9868 result.virtual_offset = offset;
9869 result.size = size;
9870 return result;
9871 }
9872
9873 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9874 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9875 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9876 This is for DWP version 2 files. */
9877
9878 static struct dwo_unit *
9879 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9880 uint32_t unit_index,
9881 const char *comp_dir,
9882 ULONGEST signature, int is_debug_types)
9883 {
9884 struct objfile *objfile = dwarf2_per_objfile->objfile;
9885 const struct dwp_hash_table *dwp_htab =
9886 is_debug_types ? dwp_file->tus : dwp_file->cus;
9887 bfd *dbfd = dwp_file->dbfd;
9888 const char *kind = is_debug_types ? "TU" : "CU";
9889 struct dwo_file *dwo_file;
9890 struct dwo_unit *dwo_unit;
9891 struct virtual_v2_dwo_sections sections;
9892 void **dwo_file_slot;
9893 char *virtual_dwo_name;
9894 struct dwarf2_section_info *cutu;
9895 struct cleanup *cleanups;
9896 int i;
9897
9898 gdb_assert (dwp_file->version == 2);
9899
9900 if (dwarf2_read_debug)
9901 {
9902 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9903 kind,
9904 pulongest (unit_index), hex_string (signature),
9905 dwp_file->name);
9906 }
9907
9908 /* Fetch the section offsets of this DWO unit. */
9909
9910 memset (&sections, 0, sizeof (sections));
9911 cleanups = make_cleanup (null_cleanup, 0);
9912
9913 for (i = 0; i < dwp_htab->nr_columns; ++i)
9914 {
9915 uint32_t offset = read_4_bytes (dbfd,
9916 dwp_htab->section_pool.v2.offsets
9917 + (((unit_index - 1) * dwp_htab->nr_columns
9918 + i)
9919 * sizeof (uint32_t)));
9920 uint32_t size = read_4_bytes (dbfd,
9921 dwp_htab->section_pool.v2.sizes
9922 + (((unit_index - 1) * dwp_htab->nr_columns
9923 + i)
9924 * sizeof (uint32_t)));
9925
9926 switch (dwp_htab->section_pool.v2.section_ids[i])
9927 {
9928 case DW_SECT_INFO:
9929 case DW_SECT_TYPES:
9930 sections.info_or_types_offset = offset;
9931 sections.info_or_types_size = size;
9932 break;
9933 case DW_SECT_ABBREV:
9934 sections.abbrev_offset = offset;
9935 sections.abbrev_size = size;
9936 break;
9937 case DW_SECT_LINE:
9938 sections.line_offset = offset;
9939 sections.line_size = size;
9940 break;
9941 case DW_SECT_LOC:
9942 sections.loc_offset = offset;
9943 sections.loc_size = size;
9944 break;
9945 case DW_SECT_STR_OFFSETS:
9946 sections.str_offsets_offset = offset;
9947 sections.str_offsets_size = size;
9948 break;
9949 case DW_SECT_MACINFO:
9950 sections.macinfo_offset = offset;
9951 sections.macinfo_size = size;
9952 break;
9953 case DW_SECT_MACRO:
9954 sections.macro_offset = offset;
9955 sections.macro_size = size;
9956 break;
9957 }
9958 }
9959
9960 /* It's easier for the rest of the code if we fake a struct dwo_file and
9961 have dwo_unit "live" in that. At least for now.
9962
9963 The DWP file can be made up of a random collection of CUs and TUs.
9964 However, for each CU + set of TUs that came from the same original DWO
9965 file, we can combine them back into a virtual DWO file to save space
9966 (fewer struct dwo_file objects to allocate). Remember that for really
9967 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9968
9969 virtual_dwo_name =
9970 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
9971 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
9972 (long) (sections.line_size ? sections.line_offset : 0),
9973 (long) (sections.loc_size ? sections.loc_offset : 0),
9974 (long) (sections.str_offsets_size
9975 ? sections.str_offsets_offset : 0));
9976 make_cleanup (xfree, virtual_dwo_name);
9977 /* Can we use an existing virtual DWO file? */
9978 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9979 /* Create one if necessary. */
9980 if (*dwo_file_slot == NULL)
9981 {
9982 if (dwarf2_read_debug)
9983 {
9984 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9985 virtual_dwo_name);
9986 }
9987 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9988 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9989 virtual_dwo_name,
9990 strlen (virtual_dwo_name));
9991 dwo_file->comp_dir = comp_dir;
9992 dwo_file->sections.abbrev =
9993 create_dwp_v2_section (&dwp_file->sections.abbrev,
9994 sections.abbrev_offset, sections.abbrev_size);
9995 dwo_file->sections.line =
9996 create_dwp_v2_section (&dwp_file->sections.line,
9997 sections.line_offset, sections.line_size);
9998 dwo_file->sections.loc =
9999 create_dwp_v2_section (&dwp_file->sections.loc,
10000 sections.loc_offset, sections.loc_size);
10001 dwo_file->sections.macinfo =
10002 create_dwp_v2_section (&dwp_file->sections.macinfo,
10003 sections.macinfo_offset, sections.macinfo_size);
10004 dwo_file->sections.macro =
10005 create_dwp_v2_section (&dwp_file->sections.macro,
10006 sections.macro_offset, sections.macro_size);
10007 dwo_file->sections.str_offsets =
10008 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10009 sections.str_offsets_offset,
10010 sections.str_offsets_size);
10011 /* The "str" section is global to the entire DWP file. */
10012 dwo_file->sections.str = dwp_file->sections.str;
10013 /* The info or types section is assigned below to dwo_unit,
10014 there's no need to record it in dwo_file.
10015 Also, we can't simply record type sections in dwo_file because
10016 we record a pointer into the vector in dwo_unit. As we collect more
10017 types we'll grow the vector and eventually have to reallocate space
10018 for it, invalidating all copies of pointers into the previous
10019 contents. */
10020 *dwo_file_slot = dwo_file;
10021 }
10022 else
10023 {
10024 if (dwarf2_read_debug)
10025 {
10026 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10027 virtual_dwo_name);
10028 }
10029 dwo_file = *dwo_file_slot;
10030 }
10031 do_cleanups (cleanups);
10032
10033 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10034 dwo_unit->dwo_file = dwo_file;
10035 dwo_unit->signature = signature;
10036 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10037 sizeof (struct dwarf2_section_info));
10038 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10039 ? &dwp_file->sections.types
10040 : &dwp_file->sections.info,
10041 sections.info_or_types_offset,
10042 sections.info_or_types_size);
10043 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10044
10045 return dwo_unit;
10046 }
10047
10048 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10049 Returns NULL if the signature isn't found. */
10050
10051 static struct dwo_unit *
10052 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10053 ULONGEST signature, int is_debug_types)
10054 {
10055 const struct dwp_hash_table *dwp_htab =
10056 is_debug_types ? dwp_file->tus : dwp_file->cus;
10057 bfd *dbfd = dwp_file->dbfd;
10058 uint32_t mask = dwp_htab->nr_slots - 1;
10059 uint32_t hash = signature & mask;
10060 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10061 unsigned int i;
10062 void **slot;
10063 struct dwo_unit find_dwo_cu, *dwo_cu;
10064
10065 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10066 find_dwo_cu.signature = signature;
10067 slot = htab_find_slot (is_debug_types
10068 ? dwp_file->loaded_tus
10069 : dwp_file->loaded_cus,
10070 &find_dwo_cu, INSERT);
10071
10072 if (*slot != NULL)
10073 return *slot;
10074
10075 /* Use a for loop so that we don't loop forever on bad debug info. */
10076 for (i = 0; i < dwp_htab->nr_slots; ++i)
10077 {
10078 ULONGEST signature_in_table;
10079
10080 signature_in_table =
10081 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10082 if (signature_in_table == signature)
10083 {
10084 uint32_t unit_index =
10085 read_4_bytes (dbfd,
10086 dwp_htab->unit_table + hash * sizeof (uint32_t));
10087
10088 if (dwp_file->version == 1)
10089 {
10090 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10091 comp_dir, signature,
10092 is_debug_types);
10093 }
10094 else
10095 {
10096 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10097 comp_dir, signature,
10098 is_debug_types);
10099 }
10100 return *slot;
10101 }
10102 if (signature_in_table == 0)
10103 return NULL;
10104 hash = (hash + hash2) & mask;
10105 }
10106
10107 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10108 " [in module %s]"),
10109 dwp_file->name);
10110 }
10111
10112 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10113 Open the file specified by FILE_NAME and hand it off to BFD for
10114 preliminary analysis. Return a newly initialized bfd *, which
10115 includes a canonicalized copy of FILE_NAME.
10116 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10117 SEARCH_CWD is true if the current directory is to be searched.
10118 It will be searched before debug-file-directory.
10119 If successful, the file is added to the bfd include table of the
10120 objfile's bfd (see gdb_bfd_record_inclusion).
10121 If unable to find/open the file, return NULL.
10122 NOTE: This function is derived from symfile_bfd_open. */
10123
10124 static bfd *
10125 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10126 {
10127 bfd *sym_bfd;
10128 int desc, flags;
10129 char *absolute_name;
10130 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10131 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10132 to debug_file_directory. */
10133 char *search_path;
10134 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10135
10136 if (search_cwd)
10137 {
10138 if (*debug_file_directory != '\0')
10139 search_path = concat (".", dirname_separator_string,
10140 debug_file_directory, NULL);
10141 else
10142 search_path = xstrdup (".");
10143 }
10144 else
10145 search_path = xstrdup (debug_file_directory);
10146
10147 flags = OPF_RETURN_REALPATH;
10148 if (is_dwp)
10149 flags |= OPF_SEARCH_IN_PATH;
10150 desc = openp (search_path, flags, file_name,
10151 O_RDONLY | O_BINARY, &absolute_name);
10152 xfree (search_path);
10153 if (desc < 0)
10154 return NULL;
10155
10156 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10157 xfree (absolute_name);
10158 if (sym_bfd == NULL)
10159 return NULL;
10160 bfd_set_cacheable (sym_bfd, 1);
10161
10162 if (!bfd_check_format (sym_bfd, bfd_object))
10163 {
10164 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10165 return NULL;
10166 }
10167
10168 /* Success. Record the bfd as having been included by the objfile's bfd.
10169 This is important because things like demangled_names_hash lives in the
10170 objfile's per_bfd space and may have references to things like symbol
10171 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10172 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10173
10174 return sym_bfd;
10175 }
10176
10177 /* Try to open DWO file FILE_NAME.
10178 COMP_DIR is the DW_AT_comp_dir attribute.
10179 The result is the bfd handle of the file.
10180 If there is a problem finding or opening the file, return NULL.
10181 Upon success, the canonicalized path of the file is stored in the bfd,
10182 same as symfile_bfd_open. */
10183
10184 static bfd *
10185 open_dwo_file (const char *file_name, const char *comp_dir)
10186 {
10187 bfd *abfd;
10188
10189 if (IS_ABSOLUTE_PATH (file_name))
10190 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10191
10192 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10193
10194 if (comp_dir != NULL)
10195 {
10196 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10197
10198 /* NOTE: If comp_dir is a relative path, this will also try the
10199 search path, which seems useful. */
10200 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10201 xfree (path_to_try);
10202 if (abfd != NULL)
10203 return abfd;
10204 }
10205
10206 /* That didn't work, try debug-file-directory, which, despite its name,
10207 is a list of paths. */
10208
10209 if (*debug_file_directory == '\0')
10210 return NULL;
10211
10212 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10213 }
10214
10215 /* This function is mapped across the sections and remembers the offset and
10216 size of each of the DWO debugging sections we are interested in. */
10217
10218 static void
10219 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10220 {
10221 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10222 const struct dwop_section_names *names = &dwop_section_names;
10223
10224 if (section_is_p (sectp->name, &names->abbrev_dwo))
10225 {
10226 dwo_sections->abbrev.s.asection = sectp;
10227 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10228 }
10229 else if (section_is_p (sectp->name, &names->info_dwo))
10230 {
10231 dwo_sections->info.s.asection = sectp;
10232 dwo_sections->info.size = bfd_get_section_size (sectp);
10233 }
10234 else if (section_is_p (sectp->name, &names->line_dwo))
10235 {
10236 dwo_sections->line.s.asection = sectp;
10237 dwo_sections->line.size = bfd_get_section_size (sectp);
10238 }
10239 else if (section_is_p (sectp->name, &names->loc_dwo))
10240 {
10241 dwo_sections->loc.s.asection = sectp;
10242 dwo_sections->loc.size = bfd_get_section_size (sectp);
10243 }
10244 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10245 {
10246 dwo_sections->macinfo.s.asection = sectp;
10247 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10248 }
10249 else if (section_is_p (sectp->name, &names->macro_dwo))
10250 {
10251 dwo_sections->macro.s.asection = sectp;
10252 dwo_sections->macro.size = bfd_get_section_size (sectp);
10253 }
10254 else if (section_is_p (sectp->name, &names->str_dwo))
10255 {
10256 dwo_sections->str.s.asection = sectp;
10257 dwo_sections->str.size = bfd_get_section_size (sectp);
10258 }
10259 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10260 {
10261 dwo_sections->str_offsets.s.asection = sectp;
10262 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10263 }
10264 else if (section_is_p (sectp->name, &names->types_dwo))
10265 {
10266 struct dwarf2_section_info type_section;
10267
10268 memset (&type_section, 0, sizeof (type_section));
10269 type_section.s.asection = sectp;
10270 type_section.size = bfd_get_section_size (sectp);
10271 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10272 &type_section);
10273 }
10274 }
10275
10276 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10277 by PER_CU. This is for the non-DWP case.
10278 The result is NULL if DWO_NAME can't be found. */
10279
10280 static struct dwo_file *
10281 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10282 const char *dwo_name, const char *comp_dir)
10283 {
10284 struct objfile *objfile = dwarf2_per_objfile->objfile;
10285 struct dwo_file *dwo_file;
10286 bfd *dbfd;
10287 struct cleanup *cleanups;
10288
10289 dbfd = open_dwo_file (dwo_name, comp_dir);
10290 if (dbfd == NULL)
10291 {
10292 if (dwarf2_read_debug)
10293 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10294 return NULL;
10295 }
10296 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10297 dwo_file->dwo_name = dwo_name;
10298 dwo_file->comp_dir = comp_dir;
10299 dwo_file->dbfd = dbfd;
10300
10301 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10302
10303 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10304
10305 dwo_file->cu = create_dwo_cu (dwo_file);
10306
10307 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10308 dwo_file->sections.types);
10309
10310 discard_cleanups (cleanups);
10311
10312 if (dwarf2_read_debug)
10313 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10314
10315 return dwo_file;
10316 }
10317
10318 /* This function is mapped across the sections and remembers the offset and
10319 size of each of the DWP debugging sections common to version 1 and 2 that
10320 we are interested in. */
10321
10322 static void
10323 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10324 void *dwp_file_ptr)
10325 {
10326 struct dwp_file *dwp_file = dwp_file_ptr;
10327 const struct dwop_section_names *names = &dwop_section_names;
10328 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10329
10330 /* Record the ELF section number for later lookup: this is what the
10331 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10332 gdb_assert (elf_section_nr < dwp_file->num_sections);
10333 dwp_file->elf_sections[elf_section_nr] = sectp;
10334
10335 /* Look for specific sections that we need. */
10336 if (section_is_p (sectp->name, &names->str_dwo))
10337 {
10338 dwp_file->sections.str.s.asection = sectp;
10339 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10340 }
10341 else if (section_is_p (sectp->name, &names->cu_index))
10342 {
10343 dwp_file->sections.cu_index.s.asection = sectp;
10344 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10345 }
10346 else if (section_is_p (sectp->name, &names->tu_index))
10347 {
10348 dwp_file->sections.tu_index.s.asection = sectp;
10349 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10350 }
10351 }
10352
10353 /* This function is mapped across the sections and remembers the offset and
10354 size of each of the DWP version 2 debugging sections that we are interested
10355 in. This is split into a separate function because we don't know if we
10356 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10357
10358 static void
10359 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10360 {
10361 struct dwp_file *dwp_file = dwp_file_ptr;
10362 const struct dwop_section_names *names = &dwop_section_names;
10363 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10364
10365 /* Record the ELF section number for later lookup: this is what the
10366 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10367 gdb_assert (elf_section_nr < dwp_file->num_sections);
10368 dwp_file->elf_sections[elf_section_nr] = sectp;
10369
10370 /* Look for specific sections that we need. */
10371 if (section_is_p (sectp->name, &names->abbrev_dwo))
10372 {
10373 dwp_file->sections.abbrev.s.asection = sectp;
10374 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10375 }
10376 else if (section_is_p (sectp->name, &names->info_dwo))
10377 {
10378 dwp_file->sections.info.s.asection = sectp;
10379 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10380 }
10381 else if (section_is_p (sectp->name, &names->line_dwo))
10382 {
10383 dwp_file->sections.line.s.asection = sectp;
10384 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10385 }
10386 else if (section_is_p (sectp->name, &names->loc_dwo))
10387 {
10388 dwp_file->sections.loc.s.asection = sectp;
10389 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10390 }
10391 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10392 {
10393 dwp_file->sections.macinfo.s.asection = sectp;
10394 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10395 }
10396 else if (section_is_p (sectp->name, &names->macro_dwo))
10397 {
10398 dwp_file->sections.macro.s.asection = sectp;
10399 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10400 }
10401 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10402 {
10403 dwp_file->sections.str_offsets.s.asection = sectp;
10404 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10405 }
10406 else if (section_is_p (sectp->name, &names->types_dwo))
10407 {
10408 dwp_file->sections.types.s.asection = sectp;
10409 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10410 }
10411 }
10412
10413 /* Hash function for dwp_file loaded CUs/TUs. */
10414
10415 static hashval_t
10416 hash_dwp_loaded_cutus (const void *item)
10417 {
10418 const struct dwo_unit *dwo_unit = item;
10419
10420 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10421 return dwo_unit->signature;
10422 }
10423
10424 /* Equality function for dwp_file loaded CUs/TUs. */
10425
10426 static int
10427 eq_dwp_loaded_cutus (const void *a, const void *b)
10428 {
10429 const struct dwo_unit *dua = a;
10430 const struct dwo_unit *dub = b;
10431
10432 return dua->signature == dub->signature;
10433 }
10434
10435 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10436
10437 static htab_t
10438 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10439 {
10440 return htab_create_alloc_ex (3,
10441 hash_dwp_loaded_cutus,
10442 eq_dwp_loaded_cutus,
10443 NULL,
10444 &objfile->objfile_obstack,
10445 hashtab_obstack_allocate,
10446 dummy_obstack_deallocate);
10447 }
10448
10449 /* Try to open DWP file FILE_NAME.
10450 The result is the bfd handle of the file.
10451 If there is a problem finding or opening the file, return NULL.
10452 Upon success, the canonicalized path of the file is stored in the bfd,
10453 same as symfile_bfd_open. */
10454
10455 static bfd *
10456 open_dwp_file (const char *file_name)
10457 {
10458 bfd *abfd;
10459
10460 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10461 if (abfd != NULL)
10462 return abfd;
10463
10464 /* Work around upstream bug 15652.
10465 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10466 [Whether that's a "bug" is debatable, but it is getting in our way.]
10467 We have no real idea where the dwp file is, because gdb's realpath-ing
10468 of the executable's path may have discarded the needed info.
10469 [IWBN if the dwp file name was recorded in the executable, akin to
10470 .gnu_debuglink, but that doesn't exist yet.]
10471 Strip the directory from FILE_NAME and search again. */
10472 if (*debug_file_directory != '\0')
10473 {
10474 /* Don't implicitly search the current directory here.
10475 If the user wants to search "." to handle this case,
10476 it must be added to debug-file-directory. */
10477 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10478 0 /*search_cwd*/);
10479 }
10480
10481 return NULL;
10482 }
10483
10484 /* Initialize the use of the DWP file for the current objfile.
10485 By convention the name of the DWP file is ${objfile}.dwp.
10486 The result is NULL if it can't be found. */
10487
10488 static struct dwp_file *
10489 open_and_init_dwp_file (void)
10490 {
10491 struct objfile *objfile = dwarf2_per_objfile->objfile;
10492 struct dwp_file *dwp_file;
10493 char *dwp_name;
10494 bfd *dbfd;
10495 struct cleanup *cleanups;
10496
10497 /* Try to find first .dwp for the binary file before any symbolic links
10498 resolving. */
10499 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10500 cleanups = make_cleanup (xfree, dwp_name);
10501
10502 dbfd = open_dwp_file (dwp_name);
10503 if (dbfd == NULL
10504 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10505 {
10506 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10507 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10508 make_cleanup (xfree, dwp_name);
10509 dbfd = open_dwp_file (dwp_name);
10510 }
10511
10512 if (dbfd == NULL)
10513 {
10514 if (dwarf2_read_debug)
10515 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10516 do_cleanups (cleanups);
10517 return NULL;
10518 }
10519 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10520 dwp_file->name = bfd_get_filename (dbfd);
10521 dwp_file->dbfd = dbfd;
10522 do_cleanups (cleanups);
10523
10524 /* +1: section 0 is unused */
10525 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10526 dwp_file->elf_sections =
10527 OBSTACK_CALLOC (&objfile->objfile_obstack,
10528 dwp_file->num_sections, asection *);
10529
10530 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10531
10532 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10533
10534 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10535
10536 /* The DWP file version is stored in the hash table. Oh well. */
10537 if (dwp_file->cus->version != dwp_file->tus->version)
10538 {
10539 /* Technically speaking, we should try to limp along, but this is
10540 pretty bizarre. We use pulongest here because that's the established
10541 portability solution (e.g, we cannot use %u for uint32_t). */
10542 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10543 " TU version %s [in DWP file %s]"),
10544 pulongest (dwp_file->cus->version),
10545 pulongest (dwp_file->tus->version), dwp_name);
10546 }
10547 dwp_file->version = dwp_file->cus->version;
10548
10549 if (dwp_file->version == 2)
10550 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10551
10552 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10553 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10554
10555 if (dwarf2_read_debug)
10556 {
10557 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10558 fprintf_unfiltered (gdb_stdlog,
10559 " %s CUs, %s TUs\n",
10560 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10561 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10562 }
10563
10564 return dwp_file;
10565 }
10566
10567 /* Wrapper around open_and_init_dwp_file, only open it once. */
10568
10569 static struct dwp_file *
10570 get_dwp_file (void)
10571 {
10572 if (! dwarf2_per_objfile->dwp_checked)
10573 {
10574 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10575 dwarf2_per_objfile->dwp_checked = 1;
10576 }
10577 return dwarf2_per_objfile->dwp_file;
10578 }
10579
10580 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10581 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10582 or in the DWP file for the objfile, referenced by THIS_UNIT.
10583 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10584 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10585
10586 This is called, for example, when wanting to read a variable with a
10587 complex location. Therefore we don't want to do file i/o for every call.
10588 Therefore we don't want to look for a DWO file on every call.
10589 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10590 then we check if we've already seen DWO_NAME, and only THEN do we check
10591 for a DWO file.
10592
10593 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10594 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10595
10596 static struct dwo_unit *
10597 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10598 const char *dwo_name, const char *comp_dir,
10599 ULONGEST signature, int is_debug_types)
10600 {
10601 struct objfile *objfile = dwarf2_per_objfile->objfile;
10602 const char *kind = is_debug_types ? "TU" : "CU";
10603 void **dwo_file_slot;
10604 struct dwo_file *dwo_file;
10605 struct dwp_file *dwp_file;
10606
10607 /* First see if there's a DWP file.
10608 If we have a DWP file but didn't find the DWO inside it, don't
10609 look for the original DWO file. It makes gdb behave differently
10610 depending on whether one is debugging in the build tree. */
10611
10612 dwp_file = get_dwp_file ();
10613 if (dwp_file != NULL)
10614 {
10615 const struct dwp_hash_table *dwp_htab =
10616 is_debug_types ? dwp_file->tus : dwp_file->cus;
10617
10618 if (dwp_htab != NULL)
10619 {
10620 struct dwo_unit *dwo_cutu =
10621 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10622 signature, is_debug_types);
10623
10624 if (dwo_cutu != NULL)
10625 {
10626 if (dwarf2_read_debug)
10627 {
10628 fprintf_unfiltered (gdb_stdlog,
10629 "Virtual DWO %s %s found: @%s\n",
10630 kind, hex_string (signature),
10631 host_address_to_string (dwo_cutu));
10632 }
10633 return dwo_cutu;
10634 }
10635 }
10636 }
10637 else
10638 {
10639 /* No DWP file, look for the DWO file. */
10640
10641 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10642 if (*dwo_file_slot == NULL)
10643 {
10644 /* Read in the file and build a table of the CUs/TUs it contains. */
10645 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10646 }
10647 /* NOTE: This will be NULL if unable to open the file. */
10648 dwo_file = *dwo_file_slot;
10649
10650 if (dwo_file != NULL)
10651 {
10652 struct dwo_unit *dwo_cutu = NULL;
10653
10654 if (is_debug_types && dwo_file->tus)
10655 {
10656 struct dwo_unit find_dwo_cutu;
10657
10658 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10659 find_dwo_cutu.signature = signature;
10660 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10661 }
10662 else if (!is_debug_types && dwo_file->cu)
10663 {
10664 if (signature == dwo_file->cu->signature)
10665 dwo_cutu = dwo_file->cu;
10666 }
10667
10668 if (dwo_cutu != NULL)
10669 {
10670 if (dwarf2_read_debug)
10671 {
10672 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10673 kind, dwo_name, hex_string (signature),
10674 host_address_to_string (dwo_cutu));
10675 }
10676 return dwo_cutu;
10677 }
10678 }
10679 }
10680
10681 /* We didn't find it. This could mean a dwo_id mismatch, or
10682 someone deleted the DWO/DWP file, or the search path isn't set up
10683 correctly to find the file. */
10684
10685 if (dwarf2_read_debug)
10686 {
10687 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10688 kind, dwo_name, hex_string (signature));
10689 }
10690
10691 /* This is a warning and not a complaint because it can be caused by
10692 pilot error (e.g., user accidentally deleting the DWO). */
10693 {
10694 /* Print the name of the DWP file if we looked there, helps the user
10695 better diagnose the problem. */
10696 char *dwp_text = NULL;
10697 struct cleanup *cleanups;
10698
10699 if (dwp_file != NULL)
10700 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10701 cleanups = make_cleanup (xfree, dwp_text);
10702
10703 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10704 " [in module %s]"),
10705 kind, dwo_name, hex_string (signature),
10706 dwp_text != NULL ? dwp_text : "",
10707 this_unit->is_debug_types ? "TU" : "CU",
10708 this_unit->offset.sect_off, objfile_name (objfile));
10709
10710 do_cleanups (cleanups);
10711 }
10712 return NULL;
10713 }
10714
10715 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10716 See lookup_dwo_cutu_unit for details. */
10717
10718 static struct dwo_unit *
10719 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10720 const char *dwo_name, const char *comp_dir,
10721 ULONGEST signature)
10722 {
10723 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10724 }
10725
10726 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10727 See lookup_dwo_cutu_unit for details. */
10728
10729 static struct dwo_unit *
10730 lookup_dwo_type_unit (struct signatured_type *this_tu,
10731 const char *dwo_name, const char *comp_dir)
10732 {
10733 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10734 }
10735
10736 /* Traversal function for queue_and_load_all_dwo_tus. */
10737
10738 static int
10739 queue_and_load_dwo_tu (void **slot, void *info)
10740 {
10741 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10742 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10743 ULONGEST signature = dwo_unit->signature;
10744 struct signatured_type *sig_type =
10745 lookup_dwo_signatured_type (per_cu->cu, signature);
10746
10747 if (sig_type != NULL)
10748 {
10749 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10750
10751 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10752 a real dependency of PER_CU on SIG_TYPE. That is detected later
10753 while processing PER_CU. */
10754 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10755 load_full_type_unit (sig_cu);
10756 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10757 }
10758
10759 return 1;
10760 }
10761
10762 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10763 The DWO may have the only definition of the type, though it may not be
10764 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10765 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10766
10767 static void
10768 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10769 {
10770 struct dwo_unit *dwo_unit;
10771 struct dwo_file *dwo_file;
10772
10773 gdb_assert (!per_cu->is_debug_types);
10774 gdb_assert (get_dwp_file () == NULL);
10775 gdb_assert (per_cu->cu != NULL);
10776
10777 dwo_unit = per_cu->cu->dwo_unit;
10778 gdb_assert (dwo_unit != NULL);
10779
10780 dwo_file = dwo_unit->dwo_file;
10781 if (dwo_file->tus != NULL)
10782 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10783 }
10784
10785 /* Free all resources associated with DWO_FILE.
10786 Close the DWO file and munmap the sections.
10787 All memory should be on the objfile obstack. */
10788
10789 static void
10790 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10791 {
10792 int ix;
10793 struct dwarf2_section_info *section;
10794
10795 /* Note: dbfd is NULL for virtual DWO files. */
10796 gdb_bfd_unref (dwo_file->dbfd);
10797
10798 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10799 }
10800
10801 /* Wrapper for free_dwo_file for use in cleanups. */
10802
10803 static void
10804 free_dwo_file_cleanup (void *arg)
10805 {
10806 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10807 struct objfile *objfile = dwarf2_per_objfile->objfile;
10808
10809 free_dwo_file (dwo_file, objfile);
10810 }
10811
10812 /* Traversal function for free_dwo_files. */
10813
10814 static int
10815 free_dwo_file_from_slot (void **slot, void *info)
10816 {
10817 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10818 struct objfile *objfile = (struct objfile *) info;
10819
10820 free_dwo_file (dwo_file, objfile);
10821
10822 return 1;
10823 }
10824
10825 /* Free all resources associated with DWO_FILES. */
10826
10827 static void
10828 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10829 {
10830 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10831 }
10832 \f
10833 /* Read in various DIEs. */
10834
10835 /* qsort helper for inherit_abstract_dies. */
10836
10837 static int
10838 unsigned_int_compar (const void *ap, const void *bp)
10839 {
10840 unsigned int a = *(unsigned int *) ap;
10841 unsigned int b = *(unsigned int *) bp;
10842
10843 return (a > b) - (b > a);
10844 }
10845
10846 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10847 Inherit only the children of the DW_AT_abstract_origin DIE not being
10848 already referenced by DW_AT_abstract_origin from the children of the
10849 current DIE. */
10850
10851 static void
10852 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10853 {
10854 struct die_info *child_die;
10855 unsigned die_children_count;
10856 /* CU offsets which were referenced by children of the current DIE. */
10857 sect_offset *offsets;
10858 sect_offset *offsets_end, *offsetp;
10859 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10860 struct die_info *origin_die;
10861 /* Iterator of the ORIGIN_DIE children. */
10862 struct die_info *origin_child_die;
10863 struct cleanup *cleanups;
10864 struct attribute *attr;
10865 struct dwarf2_cu *origin_cu;
10866 struct pending **origin_previous_list_in_scope;
10867
10868 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10869 if (!attr)
10870 return;
10871
10872 /* Note that following die references may follow to a die in a
10873 different cu. */
10874
10875 origin_cu = cu;
10876 origin_die = follow_die_ref (die, attr, &origin_cu);
10877
10878 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10879 symbols in. */
10880 origin_previous_list_in_scope = origin_cu->list_in_scope;
10881 origin_cu->list_in_scope = cu->list_in_scope;
10882
10883 if (die->tag != origin_die->tag
10884 && !(die->tag == DW_TAG_inlined_subroutine
10885 && origin_die->tag == DW_TAG_subprogram))
10886 complaint (&symfile_complaints,
10887 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10888 die->offset.sect_off, origin_die->offset.sect_off);
10889
10890 child_die = die->child;
10891 die_children_count = 0;
10892 while (child_die && child_die->tag)
10893 {
10894 child_die = sibling_die (child_die);
10895 die_children_count++;
10896 }
10897 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10898 cleanups = make_cleanup (xfree, offsets);
10899
10900 offsets_end = offsets;
10901 child_die = die->child;
10902 while (child_die && child_die->tag)
10903 {
10904 /* For each CHILD_DIE, find the corresponding child of
10905 ORIGIN_DIE. If there is more than one layer of
10906 DW_AT_abstract_origin, follow them all; there shouldn't be,
10907 but GCC versions at least through 4.4 generate this (GCC PR
10908 40573). */
10909 struct die_info *child_origin_die = child_die;
10910 struct dwarf2_cu *child_origin_cu = cu;
10911
10912 while (1)
10913 {
10914 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10915 child_origin_cu);
10916 if (attr == NULL)
10917 break;
10918 child_origin_die = follow_die_ref (child_origin_die, attr,
10919 &child_origin_cu);
10920 }
10921
10922 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10923 counterpart may exist. */
10924 if (child_origin_die != child_die)
10925 {
10926 if (child_die->tag != child_origin_die->tag
10927 && !(child_die->tag == DW_TAG_inlined_subroutine
10928 && child_origin_die->tag == DW_TAG_subprogram))
10929 complaint (&symfile_complaints,
10930 _("Child DIE 0x%x and its abstract origin 0x%x have "
10931 "different tags"), child_die->offset.sect_off,
10932 child_origin_die->offset.sect_off);
10933 if (child_origin_die->parent != origin_die)
10934 complaint (&symfile_complaints,
10935 _("Child DIE 0x%x and its abstract origin 0x%x have "
10936 "different parents"), child_die->offset.sect_off,
10937 child_origin_die->offset.sect_off);
10938 else
10939 *offsets_end++ = child_origin_die->offset;
10940 }
10941 child_die = sibling_die (child_die);
10942 }
10943 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10944 unsigned_int_compar);
10945 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10946 if (offsetp[-1].sect_off == offsetp->sect_off)
10947 complaint (&symfile_complaints,
10948 _("Multiple children of DIE 0x%x refer "
10949 "to DIE 0x%x as their abstract origin"),
10950 die->offset.sect_off, offsetp->sect_off);
10951
10952 offsetp = offsets;
10953 origin_child_die = origin_die->child;
10954 while (origin_child_die && origin_child_die->tag)
10955 {
10956 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10957 while (offsetp < offsets_end
10958 && offsetp->sect_off < origin_child_die->offset.sect_off)
10959 offsetp++;
10960 if (offsetp >= offsets_end
10961 || offsetp->sect_off > origin_child_die->offset.sect_off)
10962 {
10963 /* Found that ORIGIN_CHILD_DIE is really not referenced.
10964 Check whether we're already processing ORIGIN_CHILD_DIE.
10965 This can happen with mutually referenced abstract_origins.
10966 PR 16581. */
10967 if (!origin_child_die->in_process)
10968 process_die (origin_child_die, origin_cu);
10969 }
10970 origin_child_die = sibling_die (origin_child_die);
10971 }
10972 origin_cu->list_in_scope = origin_previous_list_in_scope;
10973
10974 do_cleanups (cleanups);
10975 }
10976
10977 static void
10978 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10979 {
10980 struct objfile *objfile = cu->objfile;
10981 struct context_stack *new;
10982 CORE_ADDR lowpc;
10983 CORE_ADDR highpc;
10984 struct die_info *child_die;
10985 struct attribute *attr, *call_line, *call_file;
10986 const char *name;
10987 CORE_ADDR baseaddr;
10988 struct block *block;
10989 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10990 VEC (symbolp) *template_args = NULL;
10991 struct template_symbol *templ_func = NULL;
10992
10993 if (inlined_func)
10994 {
10995 /* If we do not have call site information, we can't show the
10996 caller of this inlined function. That's too confusing, so
10997 only use the scope for local variables. */
10998 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10999 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11000 if (call_line == NULL || call_file == NULL)
11001 {
11002 read_lexical_block_scope (die, cu);
11003 return;
11004 }
11005 }
11006
11007 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11008
11009 name = dwarf2_name (die, cu);
11010
11011 /* Ignore functions with missing or empty names. These are actually
11012 illegal according to the DWARF standard. */
11013 if (name == NULL)
11014 {
11015 complaint (&symfile_complaints,
11016 _("missing name for subprogram DIE at %d"),
11017 die->offset.sect_off);
11018 return;
11019 }
11020
11021 /* Ignore functions with missing or invalid low and high pc attributes. */
11022 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11023 {
11024 attr = dwarf2_attr (die, DW_AT_external, cu);
11025 if (!attr || !DW_UNSND (attr))
11026 complaint (&symfile_complaints,
11027 _("cannot get low and high bounds "
11028 "for subprogram DIE at %d"),
11029 die->offset.sect_off);
11030 return;
11031 }
11032
11033 lowpc += baseaddr;
11034 highpc += baseaddr;
11035
11036 /* If we have any template arguments, then we must allocate a
11037 different sort of symbol. */
11038 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11039 {
11040 if (child_die->tag == DW_TAG_template_type_param
11041 || child_die->tag == DW_TAG_template_value_param)
11042 {
11043 templ_func = allocate_template_symbol (objfile);
11044 templ_func->base.is_cplus_template_function = 1;
11045 break;
11046 }
11047 }
11048
11049 new = push_context (0, lowpc);
11050 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11051 (struct symbol *) templ_func);
11052
11053 /* If there is a location expression for DW_AT_frame_base, record
11054 it. */
11055 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11056 if (attr)
11057 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11058
11059 cu->list_in_scope = &local_symbols;
11060
11061 if (die->child != NULL)
11062 {
11063 child_die = die->child;
11064 while (child_die && child_die->tag)
11065 {
11066 if (child_die->tag == DW_TAG_template_type_param
11067 || child_die->tag == DW_TAG_template_value_param)
11068 {
11069 struct symbol *arg = new_symbol (child_die, NULL, cu);
11070
11071 if (arg != NULL)
11072 VEC_safe_push (symbolp, template_args, arg);
11073 }
11074 else
11075 process_die (child_die, cu);
11076 child_die = sibling_die (child_die);
11077 }
11078 }
11079
11080 inherit_abstract_dies (die, cu);
11081
11082 /* If we have a DW_AT_specification, we might need to import using
11083 directives from the context of the specification DIE. See the
11084 comment in determine_prefix. */
11085 if (cu->language == language_cplus
11086 && dwarf2_attr (die, DW_AT_specification, cu))
11087 {
11088 struct dwarf2_cu *spec_cu = cu;
11089 struct die_info *spec_die = die_specification (die, &spec_cu);
11090
11091 while (spec_die)
11092 {
11093 child_die = spec_die->child;
11094 while (child_die && child_die->tag)
11095 {
11096 if (child_die->tag == DW_TAG_imported_module)
11097 process_die (child_die, spec_cu);
11098 child_die = sibling_die (child_die);
11099 }
11100
11101 /* In some cases, GCC generates specification DIEs that
11102 themselves contain DW_AT_specification attributes. */
11103 spec_die = die_specification (spec_die, &spec_cu);
11104 }
11105 }
11106
11107 new = pop_context ();
11108 /* Make a block for the local symbols within. */
11109 block = finish_block (new->name, &local_symbols, new->old_blocks,
11110 lowpc, highpc, objfile);
11111
11112 /* For C++, set the block's scope. */
11113 if ((cu->language == language_cplus || cu->language == language_fortran)
11114 && cu->processing_has_namespace_info)
11115 block_set_scope (block, determine_prefix (die, cu),
11116 &objfile->objfile_obstack);
11117
11118 /* If we have address ranges, record them. */
11119 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11120
11121 /* Attach template arguments to function. */
11122 if (! VEC_empty (symbolp, template_args))
11123 {
11124 gdb_assert (templ_func != NULL);
11125
11126 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11127 templ_func->template_arguments
11128 = obstack_alloc (&objfile->objfile_obstack,
11129 (templ_func->n_template_arguments
11130 * sizeof (struct symbol *)));
11131 memcpy (templ_func->template_arguments,
11132 VEC_address (symbolp, template_args),
11133 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11134 VEC_free (symbolp, template_args);
11135 }
11136
11137 /* In C++, we can have functions nested inside functions (e.g., when
11138 a function declares a class that has methods). This means that
11139 when we finish processing a function scope, we may need to go
11140 back to building a containing block's symbol lists. */
11141 local_symbols = new->locals;
11142 using_directives = new->using_directives;
11143
11144 /* If we've finished processing a top-level function, subsequent
11145 symbols go in the file symbol list. */
11146 if (outermost_context_p ())
11147 cu->list_in_scope = &file_symbols;
11148 }
11149
11150 /* Process all the DIES contained within a lexical block scope. Start
11151 a new scope, process the dies, and then close the scope. */
11152
11153 static void
11154 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11155 {
11156 struct objfile *objfile = cu->objfile;
11157 struct context_stack *new;
11158 CORE_ADDR lowpc, highpc;
11159 struct die_info *child_die;
11160 CORE_ADDR baseaddr;
11161
11162 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11163
11164 /* Ignore blocks with missing or invalid low and high pc attributes. */
11165 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11166 as multiple lexical blocks? Handling children in a sane way would
11167 be nasty. Might be easier to properly extend generic blocks to
11168 describe ranges. */
11169 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11170 return;
11171 lowpc += baseaddr;
11172 highpc += baseaddr;
11173
11174 push_context (0, lowpc);
11175 if (die->child != NULL)
11176 {
11177 child_die = die->child;
11178 while (child_die && child_die->tag)
11179 {
11180 process_die (child_die, cu);
11181 child_die = sibling_die (child_die);
11182 }
11183 }
11184 new = pop_context ();
11185
11186 if (local_symbols != NULL || using_directives != NULL)
11187 {
11188 struct block *block
11189 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11190 highpc, objfile);
11191
11192 /* Note that recording ranges after traversing children, as we
11193 do here, means that recording a parent's ranges entails
11194 walking across all its children's ranges as they appear in
11195 the address map, which is quadratic behavior.
11196
11197 It would be nicer to record the parent's ranges before
11198 traversing its children, simply overriding whatever you find
11199 there. But since we don't even decide whether to create a
11200 block until after we've traversed its children, that's hard
11201 to do. */
11202 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11203 }
11204 local_symbols = new->locals;
11205 using_directives = new->using_directives;
11206 }
11207
11208 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11209
11210 static void
11211 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11212 {
11213 struct objfile *objfile = cu->objfile;
11214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11215 CORE_ADDR pc, baseaddr;
11216 struct attribute *attr;
11217 struct call_site *call_site, call_site_local;
11218 void **slot;
11219 int nparams;
11220 struct die_info *child_die;
11221
11222 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11223
11224 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11225 if (!attr)
11226 {
11227 complaint (&symfile_complaints,
11228 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11229 "DIE 0x%x [in module %s]"),
11230 die->offset.sect_off, objfile_name (objfile));
11231 return;
11232 }
11233 pc = attr_value_as_address (attr) + baseaddr;
11234
11235 if (cu->call_site_htab == NULL)
11236 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11237 NULL, &objfile->objfile_obstack,
11238 hashtab_obstack_allocate, NULL);
11239 call_site_local.pc = pc;
11240 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11241 if (*slot != NULL)
11242 {
11243 complaint (&symfile_complaints,
11244 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11245 "DIE 0x%x [in module %s]"),
11246 paddress (gdbarch, pc), die->offset.sect_off,
11247 objfile_name (objfile));
11248 return;
11249 }
11250
11251 /* Count parameters at the caller. */
11252
11253 nparams = 0;
11254 for (child_die = die->child; child_die && child_die->tag;
11255 child_die = sibling_die (child_die))
11256 {
11257 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11258 {
11259 complaint (&symfile_complaints,
11260 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11261 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11262 child_die->tag, child_die->offset.sect_off,
11263 objfile_name (objfile));
11264 continue;
11265 }
11266
11267 nparams++;
11268 }
11269
11270 call_site = obstack_alloc (&objfile->objfile_obstack,
11271 (sizeof (*call_site)
11272 + (sizeof (*call_site->parameter)
11273 * (nparams - 1))));
11274 *slot = call_site;
11275 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11276 call_site->pc = pc;
11277
11278 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11279 {
11280 struct die_info *func_die;
11281
11282 /* Skip also over DW_TAG_inlined_subroutine. */
11283 for (func_die = die->parent;
11284 func_die && func_die->tag != DW_TAG_subprogram
11285 && func_die->tag != DW_TAG_subroutine_type;
11286 func_die = func_die->parent);
11287
11288 /* DW_AT_GNU_all_call_sites is a superset
11289 of DW_AT_GNU_all_tail_call_sites. */
11290 if (func_die
11291 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11292 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11293 {
11294 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11295 not complete. But keep CALL_SITE for look ups via call_site_htab,
11296 both the initial caller containing the real return address PC and
11297 the final callee containing the current PC of a chain of tail
11298 calls do not need to have the tail call list complete. But any
11299 function candidate for a virtual tail call frame searched via
11300 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11301 determined unambiguously. */
11302 }
11303 else
11304 {
11305 struct type *func_type = NULL;
11306
11307 if (func_die)
11308 func_type = get_die_type (func_die, cu);
11309 if (func_type != NULL)
11310 {
11311 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11312
11313 /* Enlist this call site to the function. */
11314 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11315 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11316 }
11317 else
11318 complaint (&symfile_complaints,
11319 _("Cannot find function owning DW_TAG_GNU_call_site "
11320 "DIE 0x%x [in module %s]"),
11321 die->offset.sect_off, objfile_name (objfile));
11322 }
11323 }
11324
11325 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11326 if (attr == NULL)
11327 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11328 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11329 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11330 /* Keep NULL DWARF_BLOCK. */;
11331 else if (attr_form_is_block (attr))
11332 {
11333 struct dwarf2_locexpr_baton *dlbaton;
11334
11335 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11336 dlbaton->data = DW_BLOCK (attr)->data;
11337 dlbaton->size = DW_BLOCK (attr)->size;
11338 dlbaton->per_cu = cu->per_cu;
11339
11340 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11341 }
11342 else if (attr_form_is_ref (attr))
11343 {
11344 struct dwarf2_cu *target_cu = cu;
11345 struct die_info *target_die;
11346
11347 target_die = follow_die_ref (die, attr, &target_cu);
11348 gdb_assert (target_cu->objfile == objfile);
11349 if (die_is_declaration (target_die, target_cu))
11350 {
11351 const char *target_physname = NULL;
11352 struct attribute *target_attr;
11353
11354 /* Prefer the mangled name; otherwise compute the demangled one. */
11355 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11356 if (target_attr == NULL)
11357 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11358 target_cu);
11359 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11360 target_physname = DW_STRING (target_attr);
11361 else
11362 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11363 if (target_physname == NULL)
11364 complaint (&symfile_complaints,
11365 _("DW_AT_GNU_call_site_target target DIE has invalid "
11366 "physname, for referencing DIE 0x%x [in module %s]"),
11367 die->offset.sect_off, objfile_name (objfile));
11368 else
11369 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11370 }
11371 else
11372 {
11373 CORE_ADDR lowpc;
11374
11375 /* DW_AT_entry_pc should be preferred. */
11376 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11377 complaint (&symfile_complaints,
11378 _("DW_AT_GNU_call_site_target target DIE has invalid "
11379 "low pc, for referencing DIE 0x%x [in module %s]"),
11380 die->offset.sect_off, objfile_name (objfile));
11381 else
11382 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11383 }
11384 }
11385 else
11386 complaint (&symfile_complaints,
11387 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11388 "block nor reference, for DIE 0x%x [in module %s]"),
11389 die->offset.sect_off, objfile_name (objfile));
11390
11391 call_site->per_cu = cu->per_cu;
11392
11393 for (child_die = die->child;
11394 child_die && child_die->tag;
11395 child_die = sibling_die (child_die))
11396 {
11397 struct call_site_parameter *parameter;
11398 struct attribute *loc, *origin;
11399
11400 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11401 {
11402 /* Already printed the complaint above. */
11403 continue;
11404 }
11405
11406 gdb_assert (call_site->parameter_count < nparams);
11407 parameter = &call_site->parameter[call_site->parameter_count];
11408
11409 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11410 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11411 register is contained in DW_AT_GNU_call_site_value. */
11412
11413 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11414 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11415 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11416 {
11417 sect_offset offset;
11418
11419 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11420 offset = dwarf2_get_ref_die_offset (origin);
11421 if (!offset_in_cu_p (&cu->header, offset))
11422 {
11423 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11424 binding can be done only inside one CU. Such referenced DIE
11425 therefore cannot be even moved to DW_TAG_partial_unit. */
11426 complaint (&symfile_complaints,
11427 _("DW_AT_abstract_origin offset is not in CU for "
11428 "DW_TAG_GNU_call_site child DIE 0x%x "
11429 "[in module %s]"),
11430 child_die->offset.sect_off, objfile_name (objfile));
11431 continue;
11432 }
11433 parameter->u.param_offset.cu_off = (offset.sect_off
11434 - cu->header.offset.sect_off);
11435 }
11436 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11437 {
11438 complaint (&symfile_complaints,
11439 _("No DW_FORM_block* DW_AT_location for "
11440 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11441 child_die->offset.sect_off, objfile_name (objfile));
11442 continue;
11443 }
11444 else
11445 {
11446 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11447 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11448 if (parameter->u.dwarf_reg != -1)
11449 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11450 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11451 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11452 &parameter->u.fb_offset))
11453 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11454 else
11455 {
11456 complaint (&symfile_complaints,
11457 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11458 "for DW_FORM_block* DW_AT_location is supported for "
11459 "DW_TAG_GNU_call_site child DIE 0x%x "
11460 "[in module %s]"),
11461 child_die->offset.sect_off, objfile_name (objfile));
11462 continue;
11463 }
11464 }
11465
11466 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11467 if (!attr_form_is_block (attr))
11468 {
11469 complaint (&symfile_complaints,
11470 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11471 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11472 child_die->offset.sect_off, objfile_name (objfile));
11473 continue;
11474 }
11475 parameter->value = DW_BLOCK (attr)->data;
11476 parameter->value_size = DW_BLOCK (attr)->size;
11477
11478 /* Parameters are not pre-cleared by memset above. */
11479 parameter->data_value = NULL;
11480 parameter->data_value_size = 0;
11481 call_site->parameter_count++;
11482
11483 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11484 if (attr)
11485 {
11486 if (!attr_form_is_block (attr))
11487 complaint (&symfile_complaints,
11488 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11489 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11490 child_die->offset.sect_off, objfile_name (objfile));
11491 else
11492 {
11493 parameter->data_value = DW_BLOCK (attr)->data;
11494 parameter->data_value_size = DW_BLOCK (attr)->size;
11495 }
11496 }
11497 }
11498 }
11499
11500 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11501 Return 1 if the attributes are present and valid, otherwise, return 0.
11502 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11503
11504 static int
11505 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11506 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11507 struct partial_symtab *ranges_pst)
11508 {
11509 struct objfile *objfile = cu->objfile;
11510 struct comp_unit_head *cu_header = &cu->header;
11511 bfd *obfd = objfile->obfd;
11512 unsigned int addr_size = cu_header->addr_size;
11513 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11514 /* Base address selection entry. */
11515 CORE_ADDR base;
11516 int found_base;
11517 unsigned int dummy;
11518 const gdb_byte *buffer;
11519 CORE_ADDR marker;
11520 int low_set;
11521 CORE_ADDR low = 0;
11522 CORE_ADDR high = 0;
11523 CORE_ADDR baseaddr;
11524
11525 found_base = cu->base_known;
11526 base = cu->base_address;
11527
11528 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11529 if (offset >= dwarf2_per_objfile->ranges.size)
11530 {
11531 complaint (&symfile_complaints,
11532 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11533 offset);
11534 return 0;
11535 }
11536 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11537
11538 /* Read in the largest possible address. */
11539 marker = read_address (obfd, buffer, cu, &dummy);
11540 if ((marker & mask) == mask)
11541 {
11542 /* If we found the largest possible address, then
11543 read the base address. */
11544 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11545 buffer += 2 * addr_size;
11546 offset += 2 * addr_size;
11547 found_base = 1;
11548 }
11549
11550 low_set = 0;
11551
11552 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11553
11554 while (1)
11555 {
11556 CORE_ADDR range_beginning, range_end;
11557
11558 range_beginning = read_address (obfd, buffer, cu, &dummy);
11559 buffer += addr_size;
11560 range_end = read_address (obfd, buffer, cu, &dummy);
11561 buffer += addr_size;
11562 offset += 2 * addr_size;
11563
11564 /* An end of list marker is a pair of zero addresses. */
11565 if (range_beginning == 0 && range_end == 0)
11566 /* Found the end of list entry. */
11567 break;
11568
11569 /* Each base address selection entry is a pair of 2 values.
11570 The first is the largest possible address, the second is
11571 the base address. Check for a base address here. */
11572 if ((range_beginning & mask) == mask)
11573 {
11574 /* If we found the largest possible address, then
11575 read the base address. */
11576 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11577 found_base = 1;
11578 continue;
11579 }
11580
11581 if (!found_base)
11582 {
11583 /* We have no valid base address for the ranges
11584 data. */
11585 complaint (&symfile_complaints,
11586 _("Invalid .debug_ranges data (no base address)"));
11587 return 0;
11588 }
11589
11590 if (range_beginning > range_end)
11591 {
11592 /* Inverted range entries are invalid. */
11593 complaint (&symfile_complaints,
11594 _("Invalid .debug_ranges data (inverted range)"));
11595 return 0;
11596 }
11597
11598 /* Empty range entries have no effect. */
11599 if (range_beginning == range_end)
11600 continue;
11601
11602 range_beginning += base;
11603 range_end += base;
11604
11605 /* A not-uncommon case of bad debug info.
11606 Don't pollute the addrmap with bad data. */
11607 if (range_beginning + baseaddr == 0
11608 && !dwarf2_per_objfile->has_section_at_zero)
11609 {
11610 complaint (&symfile_complaints,
11611 _(".debug_ranges entry has start address of zero"
11612 " [in module %s]"), objfile_name (objfile));
11613 continue;
11614 }
11615
11616 if (ranges_pst != NULL)
11617 addrmap_set_empty (objfile->psymtabs_addrmap,
11618 range_beginning + baseaddr,
11619 range_end - 1 + baseaddr,
11620 ranges_pst);
11621
11622 /* FIXME: This is recording everything as a low-high
11623 segment of consecutive addresses. We should have a
11624 data structure for discontiguous block ranges
11625 instead. */
11626 if (! low_set)
11627 {
11628 low = range_beginning;
11629 high = range_end;
11630 low_set = 1;
11631 }
11632 else
11633 {
11634 if (range_beginning < low)
11635 low = range_beginning;
11636 if (range_end > high)
11637 high = range_end;
11638 }
11639 }
11640
11641 if (! low_set)
11642 /* If the first entry is an end-of-list marker, the range
11643 describes an empty scope, i.e. no instructions. */
11644 return 0;
11645
11646 if (low_return)
11647 *low_return = low;
11648 if (high_return)
11649 *high_return = high;
11650 return 1;
11651 }
11652
11653 /* Get low and high pc attributes from a die. Return 1 if the attributes
11654 are present and valid, otherwise, return 0. Return -1 if the range is
11655 discontinuous, i.e. derived from DW_AT_ranges information. */
11656
11657 static int
11658 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11659 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11660 struct partial_symtab *pst)
11661 {
11662 struct attribute *attr;
11663 struct attribute *attr_high;
11664 CORE_ADDR low = 0;
11665 CORE_ADDR high = 0;
11666 int ret = 0;
11667
11668 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11669 if (attr_high)
11670 {
11671 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11672 if (attr)
11673 {
11674 low = attr_value_as_address (attr);
11675 high = attr_value_as_address (attr_high);
11676 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11677 high += low;
11678 }
11679 else
11680 /* Found high w/o low attribute. */
11681 return 0;
11682
11683 /* Found consecutive range of addresses. */
11684 ret = 1;
11685 }
11686 else
11687 {
11688 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11689 if (attr != NULL)
11690 {
11691 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11692 We take advantage of the fact that DW_AT_ranges does not appear
11693 in DW_TAG_compile_unit of DWO files. */
11694 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11695 unsigned int ranges_offset = (DW_UNSND (attr)
11696 + (need_ranges_base
11697 ? cu->ranges_base
11698 : 0));
11699
11700 /* Value of the DW_AT_ranges attribute is the offset in the
11701 .debug_ranges section. */
11702 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11703 return 0;
11704 /* Found discontinuous range of addresses. */
11705 ret = -1;
11706 }
11707 }
11708
11709 /* read_partial_die has also the strict LOW < HIGH requirement. */
11710 if (high <= low)
11711 return 0;
11712
11713 /* When using the GNU linker, .gnu.linkonce. sections are used to
11714 eliminate duplicate copies of functions and vtables and such.
11715 The linker will arbitrarily choose one and discard the others.
11716 The AT_*_pc values for such functions refer to local labels in
11717 these sections. If the section from that file was discarded, the
11718 labels are not in the output, so the relocs get a value of 0.
11719 If this is a discarded function, mark the pc bounds as invalid,
11720 so that GDB will ignore it. */
11721 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11722 return 0;
11723
11724 *lowpc = low;
11725 if (highpc)
11726 *highpc = high;
11727 return ret;
11728 }
11729
11730 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11731 its low and high PC addresses. Do nothing if these addresses could not
11732 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11733 and HIGHPC to the high address if greater than HIGHPC. */
11734
11735 static void
11736 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11737 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11738 struct dwarf2_cu *cu)
11739 {
11740 CORE_ADDR low, high;
11741 struct die_info *child = die->child;
11742
11743 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11744 {
11745 *lowpc = min (*lowpc, low);
11746 *highpc = max (*highpc, high);
11747 }
11748
11749 /* If the language does not allow nested subprograms (either inside
11750 subprograms or lexical blocks), we're done. */
11751 if (cu->language != language_ada)
11752 return;
11753
11754 /* Check all the children of the given DIE. If it contains nested
11755 subprograms, then check their pc bounds. Likewise, we need to
11756 check lexical blocks as well, as they may also contain subprogram
11757 definitions. */
11758 while (child && child->tag)
11759 {
11760 if (child->tag == DW_TAG_subprogram
11761 || child->tag == DW_TAG_lexical_block)
11762 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11763 child = sibling_die (child);
11764 }
11765 }
11766
11767 /* Get the low and high pc's represented by the scope DIE, and store
11768 them in *LOWPC and *HIGHPC. If the correct values can't be
11769 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11770
11771 static void
11772 get_scope_pc_bounds (struct die_info *die,
11773 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11774 struct dwarf2_cu *cu)
11775 {
11776 CORE_ADDR best_low = (CORE_ADDR) -1;
11777 CORE_ADDR best_high = (CORE_ADDR) 0;
11778 CORE_ADDR current_low, current_high;
11779
11780 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11781 {
11782 best_low = current_low;
11783 best_high = current_high;
11784 }
11785 else
11786 {
11787 struct die_info *child = die->child;
11788
11789 while (child && child->tag)
11790 {
11791 switch (child->tag) {
11792 case DW_TAG_subprogram:
11793 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11794 break;
11795 case DW_TAG_namespace:
11796 case DW_TAG_module:
11797 /* FIXME: carlton/2004-01-16: Should we do this for
11798 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11799 that current GCC's always emit the DIEs corresponding
11800 to definitions of methods of classes as children of a
11801 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11802 the DIEs giving the declarations, which could be
11803 anywhere). But I don't see any reason why the
11804 standards says that they have to be there. */
11805 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11806
11807 if (current_low != ((CORE_ADDR) -1))
11808 {
11809 best_low = min (best_low, current_low);
11810 best_high = max (best_high, current_high);
11811 }
11812 break;
11813 default:
11814 /* Ignore. */
11815 break;
11816 }
11817
11818 child = sibling_die (child);
11819 }
11820 }
11821
11822 *lowpc = best_low;
11823 *highpc = best_high;
11824 }
11825
11826 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11827 in DIE. */
11828
11829 static void
11830 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11831 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11832 {
11833 struct objfile *objfile = cu->objfile;
11834 struct attribute *attr;
11835 struct attribute *attr_high;
11836
11837 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11838 if (attr_high)
11839 {
11840 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11841 if (attr)
11842 {
11843 CORE_ADDR low = attr_value_as_address (attr);
11844 CORE_ADDR high = attr_value_as_address (attr_high);
11845
11846 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11847 high += low;
11848
11849 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11850 }
11851 }
11852
11853 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11854 if (attr)
11855 {
11856 bfd *obfd = objfile->obfd;
11857 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11858 We take advantage of the fact that DW_AT_ranges does not appear
11859 in DW_TAG_compile_unit of DWO files. */
11860 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11861
11862 /* The value of the DW_AT_ranges attribute is the offset of the
11863 address range list in the .debug_ranges section. */
11864 unsigned long offset = (DW_UNSND (attr)
11865 + (need_ranges_base ? cu->ranges_base : 0));
11866 const gdb_byte *buffer;
11867
11868 /* For some target architectures, but not others, the
11869 read_address function sign-extends the addresses it returns.
11870 To recognize base address selection entries, we need a
11871 mask. */
11872 unsigned int addr_size = cu->header.addr_size;
11873 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11874
11875 /* The base address, to which the next pair is relative. Note
11876 that this 'base' is a DWARF concept: most entries in a range
11877 list are relative, to reduce the number of relocs against the
11878 debugging information. This is separate from this function's
11879 'baseaddr' argument, which GDB uses to relocate debugging
11880 information from a shared library based on the address at
11881 which the library was loaded. */
11882 CORE_ADDR base = cu->base_address;
11883 int base_known = cu->base_known;
11884
11885 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11886 if (offset >= dwarf2_per_objfile->ranges.size)
11887 {
11888 complaint (&symfile_complaints,
11889 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11890 offset);
11891 return;
11892 }
11893 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11894
11895 for (;;)
11896 {
11897 unsigned int bytes_read;
11898 CORE_ADDR start, end;
11899
11900 start = read_address (obfd, buffer, cu, &bytes_read);
11901 buffer += bytes_read;
11902 end = read_address (obfd, buffer, cu, &bytes_read);
11903 buffer += bytes_read;
11904
11905 /* Did we find the end of the range list? */
11906 if (start == 0 && end == 0)
11907 break;
11908
11909 /* Did we find a base address selection entry? */
11910 else if ((start & base_select_mask) == base_select_mask)
11911 {
11912 base = end;
11913 base_known = 1;
11914 }
11915
11916 /* We found an ordinary address range. */
11917 else
11918 {
11919 if (!base_known)
11920 {
11921 complaint (&symfile_complaints,
11922 _("Invalid .debug_ranges data "
11923 "(no base address)"));
11924 return;
11925 }
11926
11927 if (start > end)
11928 {
11929 /* Inverted range entries are invalid. */
11930 complaint (&symfile_complaints,
11931 _("Invalid .debug_ranges data "
11932 "(inverted range)"));
11933 return;
11934 }
11935
11936 /* Empty range entries have no effect. */
11937 if (start == end)
11938 continue;
11939
11940 start += base + baseaddr;
11941 end += base + baseaddr;
11942
11943 /* A not-uncommon case of bad debug info.
11944 Don't pollute the addrmap with bad data. */
11945 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11946 {
11947 complaint (&symfile_complaints,
11948 _(".debug_ranges entry has start address of zero"
11949 " [in module %s]"), objfile_name (objfile));
11950 continue;
11951 }
11952
11953 record_block_range (block, start, end - 1);
11954 }
11955 }
11956 }
11957 }
11958
11959 /* Check whether the producer field indicates either of GCC < 4.6, or the
11960 Intel C/C++ compiler, and cache the result in CU. */
11961
11962 static void
11963 check_producer (struct dwarf2_cu *cu)
11964 {
11965 const char *cs;
11966 int major, minor, release;
11967
11968 if (cu->producer == NULL)
11969 {
11970 /* For unknown compilers expect their behavior is DWARF version
11971 compliant.
11972
11973 GCC started to support .debug_types sections by -gdwarf-4 since
11974 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11975 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11976 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11977 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11978 }
11979 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11980 {
11981 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11982
11983 cs = &cu->producer[strlen ("GNU ")];
11984 while (*cs && !isdigit (*cs))
11985 cs++;
11986 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11987 {
11988 /* Not recognized as GCC. */
11989 }
11990 else
11991 {
11992 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11993 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11994 }
11995 }
11996 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11997 cu->producer_is_icc = 1;
11998 else
11999 {
12000 /* For other non-GCC compilers, expect their behavior is DWARF version
12001 compliant. */
12002 }
12003
12004 cu->checked_producer = 1;
12005 }
12006
12007 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12008 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12009 during 4.6.0 experimental. */
12010
12011 static int
12012 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12013 {
12014 if (!cu->checked_producer)
12015 check_producer (cu);
12016
12017 return cu->producer_is_gxx_lt_4_6;
12018 }
12019
12020 /* Return the default accessibility type if it is not overriden by
12021 DW_AT_accessibility. */
12022
12023 static enum dwarf_access_attribute
12024 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12025 {
12026 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12027 {
12028 /* The default DWARF 2 accessibility for members is public, the default
12029 accessibility for inheritance is private. */
12030
12031 if (die->tag != DW_TAG_inheritance)
12032 return DW_ACCESS_public;
12033 else
12034 return DW_ACCESS_private;
12035 }
12036 else
12037 {
12038 /* DWARF 3+ defines the default accessibility a different way. The same
12039 rules apply now for DW_TAG_inheritance as for the members and it only
12040 depends on the container kind. */
12041
12042 if (die->parent->tag == DW_TAG_class_type)
12043 return DW_ACCESS_private;
12044 else
12045 return DW_ACCESS_public;
12046 }
12047 }
12048
12049 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12050 offset. If the attribute was not found return 0, otherwise return
12051 1. If it was found but could not properly be handled, set *OFFSET
12052 to 0. */
12053
12054 static int
12055 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12056 LONGEST *offset)
12057 {
12058 struct attribute *attr;
12059
12060 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12061 if (attr != NULL)
12062 {
12063 *offset = 0;
12064
12065 /* Note that we do not check for a section offset first here.
12066 This is because DW_AT_data_member_location is new in DWARF 4,
12067 so if we see it, we can assume that a constant form is really
12068 a constant and not a section offset. */
12069 if (attr_form_is_constant (attr))
12070 *offset = dwarf2_get_attr_constant_value (attr, 0);
12071 else if (attr_form_is_section_offset (attr))
12072 dwarf2_complex_location_expr_complaint ();
12073 else if (attr_form_is_block (attr))
12074 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12075 else
12076 dwarf2_complex_location_expr_complaint ();
12077
12078 return 1;
12079 }
12080
12081 return 0;
12082 }
12083
12084 /* Add an aggregate field to the field list. */
12085
12086 static void
12087 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12088 struct dwarf2_cu *cu)
12089 {
12090 struct objfile *objfile = cu->objfile;
12091 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12092 struct nextfield *new_field;
12093 struct attribute *attr;
12094 struct field *fp;
12095 const char *fieldname = "";
12096
12097 /* Allocate a new field list entry and link it in. */
12098 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12099 make_cleanup (xfree, new_field);
12100 memset (new_field, 0, sizeof (struct nextfield));
12101
12102 if (die->tag == DW_TAG_inheritance)
12103 {
12104 new_field->next = fip->baseclasses;
12105 fip->baseclasses = new_field;
12106 }
12107 else
12108 {
12109 new_field->next = fip->fields;
12110 fip->fields = new_field;
12111 }
12112 fip->nfields++;
12113
12114 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12115 if (attr)
12116 new_field->accessibility = DW_UNSND (attr);
12117 else
12118 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12119 if (new_field->accessibility != DW_ACCESS_public)
12120 fip->non_public_fields = 1;
12121
12122 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12123 if (attr)
12124 new_field->virtuality = DW_UNSND (attr);
12125 else
12126 new_field->virtuality = DW_VIRTUALITY_none;
12127
12128 fp = &new_field->field;
12129
12130 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12131 {
12132 LONGEST offset;
12133
12134 /* Data member other than a C++ static data member. */
12135
12136 /* Get type of field. */
12137 fp->type = die_type (die, cu);
12138
12139 SET_FIELD_BITPOS (*fp, 0);
12140
12141 /* Get bit size of field (zero if none). */
12142 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12143 if (attr)
12144 {
12145 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12146 }
12147 else
12148 {
12149 FIELD_BITSIZE (*fp) = 0;
12150 }
12151
12152 /* Get bit offset of field. */
12153 if (handle_data_member_location (die, cu, &offset))
12154 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12155 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12156 if (attr)
12157 {
12158 if (gdbarch_bits_big_endian (gdbarch))
12159 {
12160 /* For big endian bits, the DW_AT_bit_offset gives the
12161 additional bit offset from the MSB of the containing
12162 anonymous object to the MSB of the field. We don't
12163 have to do anything special since we don't need to
12164 know the size of the anonymous object. */
12165 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12166 }
12167 else
12168 {
12169 /* For little endian bits, compute the bit offset to the
12170 MSB of the anonymous object, subtract off the number of
12171 bits from the MSB of the field to the MSB of the
12172 object, and then subtract off the number of bits of
12173 the field itself. The result is the bit offset of
12174 the LSB of the field. */
12175 int anonymous_size;
12176 int bit_offset = DW_UNSND (attr);
12177
12178 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12179 if (attr)
12180 {
12181 /* The size of the anonymous object containing
12182 the bit field is explicit, so use the
12183 indicated size (in bytes). */
12184 anonymous_size = DW_UNSND (attr);
12185 }
12186 else
12187 {
12188 /* The size of the anonymous object containing
12189 the bit field must be inferred from the type
12190 attribute of the data member containing the
12191 bit field. */
12192 anonymous_size = TYPE_LENGTH (fp->type);
12193 }
12194 SET_FIELD_BITPOS (*fp,
12195 (FIELD_BITPOS (*fp)
12196 + anonymous_size * bits_per_byte
12197 - bit_offset - FIELD_BITSIZE (*fp)));
12198 }
12199 }
12200
12201 /* Get name of field. */
12202 fieldname = dwarf2_name (die, cu);
12203 if (fieldname == NULL)
12204 fieldname = "";
12205
12206 /* The name is already allocated along with this objfile, so we don't
12207 need to duplicate it for the type. */
12208 fp->name = fieldname;
12209
12210 /* Change accessibility for artificial fields (e.g. virtual table
12211 pointer or virtual base class pointer) to private. */
12212 if (dwarf2_attr (die, DW_AT_artificial, cu))
12213 {
12214 FIELD_ARTIFICIAL (*fp) = 1;
12215 new_field->accessibility = DW_ACCESS_private;
12216 fip->non_public_fields = 1;
12217 }
12218 }
12219 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12220 {
12221 /* C++ static member. */
12222
12223 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12224 is a declaration, but all versions of G++ as of this writing
12225 (so through at least 3.2.1) incorrectly generate
12226 DW_TAG_variable tags. */
12227
12228 const char *physname;
12229
12230 /* Get name of field. */
12231 fieldname = dwarf2_name (die, cu);
12232 if (fieldname == NULL)
12233 return;
12234
12235 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12236 if (attr
12237 /* Only create a symbol if this is an external value.
12238 new_symbol checks this and puts the value in the global symbol
12239 table, which we want. If it is not external, new_symbol
12240 will try to put the value in cu->list_in_scope which is wrong. */
12241 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12242 {
12243 /* A static const member, not much different than an enum as far as
12244 we're concerned, except that we can support more types. */
12245 new_symbol (die, NULL, cu);
12246 }
12247
12248 /* Get physical name. */
12249 physname = dwarf2_physname (fieldname, die, cu);
12250
12251 /* The name is already allocated along with this objfile, so we don't
12252 need to duplicate it for the type. */
12253 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12254 FIELD_TYPE (*fp) = die_type (die, cu);
12255 FIELD_NAME (*fp) = fieldname;
12256 }
12257 else if (die->tag == DW_TAG_inheritance)
12258 {
12259 LONGEST offset;
12260
12261 /* C++ base class field. */
12262 if (handle_data_member_location (die, cu, &offset))
12263 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12264 FIELD_BITSIZE (*fp) = 0;
12265 FIELD_TYPE (*fp) = die_type (die, cu);
12266 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12267 fip->nbaseclasses++;
12268 }
12269 }
12270
12271 /* Add a typedef defined in the scope of the FIP's class. */
12272
12273 static void
12274 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12275 struct dwarf2_cu *cu)
12276 {
12277 struct objfile *objfile = cu->objfile;
12278 struct typedef_field_list *new_field;
12279 struct attribute *attr;
12280 struct typedef_field *fp;
12281 char *fieldname = "";
12282
12283 /* Allocate a new field list entry and link it in. */
12284 new_field = xzalloc (sizeof (*new_field));
12285 make_cleanup (xfree, new_field);
12286
12287 gdb_assert (die->tag == DW_TAG_typedef);
12288
12289 fp = &new_field->field;
12290
12291 /* Get name of field. */
12292 fp->name = dwarf2_name (die, cu);
12293 if (fp->name == NULL)
12294 return;
12295
12296 fp->type = read_type_die (die, cu);
12297
12298 new_field->next = fip->typedef_field_list;
12299 fip->typedef_field_list = new_field;
12300 fip->typedef_field_list_count++;
12301 }
12302
12303 /* Create the vector of fields, and attach it to the type. */
12304
12305 static void
12306 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12307 struct dwarf2_cu *cu)
12308 {
12309 int nfields = fip->nfields;
12310
12311 /* Record the field count, allocate space for the array of fields,
12312 and create blank accessibility bitfields if necessary. */
12313 TYPE_NFIELDS (type) = nfields;
12314 TYPE_FIELDS (type) = (struct field *)
12315 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12316 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12317
12318 if (fip->non_public_fields && cu->language != language_ada)
12319 {
12320 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12321
12322 TYPE_FIELD_PRIVATE_BITS (type) =
12323 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12324 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12325
12326 TYPE_FIELD_PROTECTED_BITS (type) =
12327 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12328 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12329
12330 TYPE_FIELD_IGNORE_BITS (type) =
12331 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12332 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12333 }
12334
12335 /* If the type has baseclasses, allocate and clear a bit vector for
12336 TYPE_FIELD_VIRTUAL_BITS. */
12337 if (fip->nbaseclasses && cu->language != language_ada)
12338 {
12339 int num_bytes = B_BYTES (fip->nbaseclasses);
12340 unsigned char *pointer;
12341
12342 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12343 pointer = TYPE_ALLOC (type, num_bytes);
12344 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12345 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12346 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12347 }
12348
12349 /* Copy the saved-up fields into the field vector. Start from the head of
12350 the list, adding to the tail of the field array, so that they end up in
12351 the same order in the array in which they were added to the list. */
12352 while (nfields-- > 0)
12353 {
12354 struct nextfield *fieldp;
12355
12356 if (fip->fields)
12357 {
12358 fieldp = fip->fields;
12359 fip->fields = fieldp->next;
12360 }
12361 else
12362 {
12363 fieldp = fip->baseclasses;
12364 fip->baseclasses = fieldp->next;
12365 }
12366
12367 TYPE_FIELD (type, nfields) = fieldp->field;
12368 switch (fieldp->accessibility)
12369 {
12370 case DW_ACCESS_private:
12371 if (cu->language != language_ada)
12372 SET_TYPE_FIELD_PRIVATE (type, nfields);
12373 break;
12374
12375 case DW_ACCESS_protected:
12376 if (cu->language != language_ada)
12377 SET_TYPE_FIELD_PROTECTED (type, nfields);
12378 break;
12379
12380 case DW_ACCESS_public:
12381 break;
12382
12383 default:
12384 /* Unknown accessibility. Complain and treat it as public. */
12385 {
12386 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12387 fieldp->accessibility);
12388 }
12389 break;
12390 }
12391 if (nfields < fip->nbaseclasses)
12392 {
12393 switch (fieldp->virtuality)
12394 {
12395 case DW_VIRTUALITY_virtual:
12396 case DW_VIRTUALITY_pure_virtual:
12397 if (cu->language == language_ada)
12398 error (_("unexpected virtuality in component of Ada type"));
12399 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12400 break;
12401 }
12402 }
12403 }
12404 }
12405
12406 /* Return true if this member function is a constructor, false
12407 otherwise. */
12408
12409 static int
12410 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12411 {
12412 const char *fieldname;
12413 const char *typename;
12414 int len;
12415
12416 if (die->parent == NULL)
12417 return 0;
12418
12419 if (die->parent->tag != DW_TAG_structure_type
12420 && die->parent->tag != DW_TAG_union_type
12421 && die->parent->tag != DW_TAG_class_type)
12422 return 0;
12423
12424 fieldname = dwarf2_name (die, cu);
12425 typename = dwarf2_name (die->parent, cu);
12426 if (fieldname == NULL || typename == NULL)
12427 return 0;
12428
12429 len = strlen (fieldname);
12430 return (strncmp (fieldname, typename, len) == 0
12431 && (typename[len] == '\0' || typename[len] == '<'));
12432 }
12433
12434 /* Add a member function to the proper fieldlist. */
12435
12436 static void
12437 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12438 struct type *type, struct dwarf2_cu *cu)
12439 {
12440 struct objfile *objfile = cu->objfile;
12441 struct attribute *attr;
12442 struct fnfieldlist *flp;
12443 int i;
12444 struct fn_field *fnp;
12445 const char *fieldname;
12446 struct nextfnfield *new_fnfield;
12447 struct type *this_type;
12448 enum dwarf_access_attribute accessibility;
12449
12450 if (cu->language == language_ada)
12451 error (_("unexpected member function in Ada type"));
12452
12453 /* Get name of member function. */
12454 fieldname = dwarf2_name (die, cu);
12455 if (fieldname == NULL)
12456 return;
12457
12458 /* Look up member function name in fieldlist. */
12459 for (i = 0; i < fip->nfnfields; i++)
12460 {
12461 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12462 break;
12463 }
12464
12465 /* Create new list element if necessary. */
12466 if (i < fip->nfnfields)
12467 flp = &fip->fnfieldlists[i];
12468 else
12469 {
12470 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12471 {
12472 fip->fnfieldlists = (struct fnfieldlist *)
12473 xrealloc (fip->fnfieldlists,
12474 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12475 * sizeof (struct fnfieldlist));
12476 if (fip->nfnfields == 0)
12477 make_cleanup (free_current_contents, &fip->fnfieldlists);
12478 }
12479 flp = &fip->fnfieldlists[fip->nfnfields];
12480 flp->name = fieldname;
12481 flp->length = 0;
12482 flp->head = NULL;
12483 i = fip->nfnfields++;
12484 }
12485
12486 /* Create a new member function field and chain it to the field list
12487 entry. */
12488 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12489 make_cleanup (xfree, new_fnfield);
12490 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12491 new_fnfield->next = flp->head;
12492 flp->head = new_fnfield;
12493 flp->length++;
12494
12495 /* Fill in the member function field info. */
12496 fnp = &new_fnfield->fnfield;
12497
12498 /* Delay processing of the physname until later. */
12499 if (cu->language == language_cplus || cu->language == language_java)
12500 {
12501 add_to_method_list (type, i, flp->length - 1, fieldname,
12502 die, cu);
12503 }
12504 else
12505 {
12506 const char *physname = dwarf2_physname (fieldname, die, cu);
12507 fnp->physname = physname ? physname : "";
12508 }
12509
12510 fnp->type = alloc_type (objfile);
12511 this_type = read_type_die (die, cu);
12512 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12513 {
12514 int nparams = TYPE_NFIELDS (this_type);
12515
12516 /* TYPE is the domain of this method, and THIS_TYPE is the type
12517 of the method itself (TYPE_CODE_METHOD). */
12518 smash_to_method_type (fnp->type, type,
12519 TYPE_TARGET_TYPE (this_type),
12520 TYPE_FIELDS (this_type),
12521 TYPE_NFIELDS (this_type),
12522 TYPE_VARARGS (this_type));
12523
12524 /* Handle static member functions.
12525 Dwarf2 has no clean way to discern C++ static and non-static
12526 member functions. G++ helps GDB by marking the first
12527 parameter for non-static member functions (which is the this
12528 pointer) as artificial. We obtain this information from
12529 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12530 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12531 fnp->voffset = VOFFSET_STATIC;
12532 }
12533 else
12534 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12535 dwarf2_full_name (fieldname, die, cu));
12536
12537 /* Get fcontext from DW_AT_containing_type if present. */
12538 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12539 fnp->fcontext = die_containing_type (die, cu);
12540
12541 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12542 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12543
12544 /* Get accessibility. */
12545 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12546 if (attr)
12547 accessibility = DW_UNSND (attr);
12548 else
12549 accessibility = dwarf2_default_access_attribute (die, cu);
12550 switch (accessibility)
12551 {
12552 case DW_ACCESS_private:
12553 fnp->is_private = 1;
12554 break;
12555 case DW_ACCESS_protected:
12556 fnp->is_protected = 1;
12557 break;
12558 }
12559
12560 /* Check for artificial methods. */
12561 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12562 if (attr && DW_UNSND (attr) != 0)
12563 fnp->is_artificial = 1;
12564
12565 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12566
12567 /* Get index in virtual function table if it is a virtual member
12568 function. For older versions of GCC, this is an offset in the
12569 appropriate virtual table, as specified by DW_AT_containing_type.
12570 For everyone else, it is an expression to be evaluated relative
12571 to the object address. */
12572
12573 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12574 if (attr)
12575 {
12576 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12577 {
12578 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12579 {
12580 /* Old-style GCC. */
12581 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12582 }
12583 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12584 || (DW_BLOCK (attr)->size > 1
12585 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12586 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12587 {
12588 struct dwarf_block blk;
12589 int offset;
12590
12591 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12592 ? 1 : 2);
12593 blk.size = DW_BLOCK (attr)->size - offset;
12594 blk.data = DW_BLOCK (attr)->data + offset;
12595 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12596 if ((fnp->voffset % cu->header.addr_size) != 0)
12597 dwarf2_complex_location_expr_complaint ();
12598 else
12599 fnp->voffset /= cu->header.addr_size;
12600 fnp->voffset += 2;
12601 }
12602 else
12603 dwarf2_complex_location_expr_complaint ();
12604
12605 if (!fnp->fcontext)
12606 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12607 }
12608 else if (attr_form_is_section_offset (attr))
12609 {
12610 dwarf2_complex_location_expr_complaint ();
12611 }
12612 else
12613 {
12614 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12615 fieldname);
12616 }
12617 }
12618 else
12619 {
12620 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12621 if (attr && DW_UNSND (attr))
12622 {
12623 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12624 complaint (&symfile_complaints,
12625 _("Member function \"%s\" (offset %d) is virtual "
12626 "but the vtable offset is not specified"),
12627 fieldname, die->offset.sect_off);
12628 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12629 TYPE_CPLUS_DYNAMIC (type) = 1;
12630 }
12631 }
12632 }
12633
12634 /* Create the vector of member function fields, and attach it to the type. */
12635
12636 static void
12637 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12638 struct dwarf2_cu *cu)
12639 {
12640 struct fnfieldlist *flp;
12641 int i;
12642
12643 if (cu->language == language_ada)
12644 error (_("unexpected member functions in Ada type"));
12645
12646 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12647 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12648 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12649
12650 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12651 {
12652 struct nextfnfield *nfp = flp->head;
12653 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12654 int k;
12655
12656 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12657 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12658 fn_flp->fn_fields = (struct fn_field *)
12659 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12660 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12661 fn_flp->fn_fields[k] = nfp->fnfield;
12662 }
12663
12664 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12665 }
12666
12667 /* Returns non-zero if NAME is the name of a vtable member in CU's
12668 language, zero otherwise. */
12669 static int
12670 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12671 {
12672 static const char vptr[] = "_vptr";
12673 static const char vtable[] = "vtable";
12674
12675 /* Look for the C++ and Java forms of the vtable. */
12676 if ((cu->language == language_java
12677 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12678 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12679 && is_cplus_marker (name[sizeof (vptr) - 1])))
12680 return 1;
12681
12682 return 0;
12683 }
12684
12685 /* GCC outputs unnamed structures that are really pointers to member
12686 functions, with the ABI-specified layout. If TYPE describes
12687 such a structure, smash it into a member function type.
12688
12689 GCC shouldn't do this; it should just output pointer to member DIEs.
12690 This is GCC PR debug/28767. */
12691
12692 static void
12693 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12694 {
12695 struct type *pfn_type, *domain_type, *new_type;
12696
12697 /* Check for a structure with no name and two children. */
12698 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12699 return;
12700
12701 /* Check for __pfn and __delta members. */
12702 if (TYPE_FIELD_NAME (type, 0) == NULL
12703 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12704 || TYPE_FIELD_NAME (type, 1) == NULL
12705 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12706 return;
12707
12708 /* Find the type of the method. */
12709 pfn_type = TYPE_FIELD_TYPE (type, 0);
12710 if (pfn_type == NULL
12711 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12712 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12713 return;
12714
12715 /* Look for the "this" argument. */
12716 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12717 if (TYPE_NFIELDS (pfn_type) == 0
12718 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12719 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12720 return;
12721
12722 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12723 new_type = alloc_type (objfile);
12724 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12725 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12726 TYPE_VARARGS (pfn_type));
12727 smash_to_methodptr_type (type, new_type);
12728 }
12729
12730 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12731 (icc). */
12732
12733 static int
12734 producer_is_icc (struct dwarf2_cu *cu)
12735 {
12736 if (!cu->checked_producer)
12737 check_producer (cu);
12738
12739 return cu->producer_is_icc;
12740 }
12741
12742 /* Called when we find the DIE that starts a structure or union scope
12743 (definition) to create a type for the structure or union. Fill in
12744 the type's name and general properties; the members will not be
12745 processed until process_structure_scope. A symbol table entry for
12746 the type will also not be done until process_structure_scope (assuming
12747 the type has a name).
12748
12749 NOTE: we need to call these functions regardless of whether or not the
12750 DIE has a DW_AT_name attribute, since it might be an anonymous
12751 structure or union. This gets the type entered into our set of
12752 user defined types. */
12753
12754 static struct type *
12755 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12756 {
12757 struct objfile *objfile = cu->objfile;
12758 struct type *type;
12759 struct attribute *attr;
12760 const char *name;
12761
12762 /* If the definition of this type lives in .debug_types, read that type.
12763 Don't follow DW_AT_specification though, that will take us back up
12764 the chain and we want to go down. */
12765 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12766 if (attr)
12767 {
12768 type = get_DW_AT_signature_type (die, attr, cu);
12769
12770 /* The type's CU may not be the same as CU.
12771 Ensure TYPE is recorded with CU in die_type_hash. */
12772 return set_die_type (die, type, cu);
12773 }
12774
12775 type = alloc_type (objfile);
12776 INIT_CPLUS_SPECIFIC (type);
12777
12778 name = dwarf2_name (die, cu);
12779 if (name != NULL)
12780 {
12781 if (cu->language == language_cplus
12782 || cu->language == language_java)
12783 {
12784 const char *full_name = dwarf2_full_name (name, die, cu);
12785
12786 /* dwarf2_full_name might have already finished building the DIE's
12787 type. If so, there is no need to continue. */
12788 if (get_die_type (die, cu) != NULL)
12789 return get_die_type (die, cu);
12790
12791 TYPE_TAG_NAME (type) = full_name;
12792 if (die->tag == DW_TAG_structure_type
12793 || die->tag == DW_TAG_class_type)
12794 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12795 }
12796 else
12797 {
12798 /* The name is already allocated along with this objfile, so
12799 we don't need to duplicate it for the type. */
12800 TYPE_TAG_NAME (type) = name;
12801 if (die->tag == DW_TAG_class_type)
12802 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12803 }
12804 }
12805
12806 if (die->tag == DW_TAG_structure_type)
12807 {
12808 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12809 }
12810 else if (die->tag == DW_TAG_union_type)
12811 {
12812 TYPE_CODE (type) = TYPE_CODE_UNION;
12813 }
12814 else
12815 {
12816 TYPE_CODE (type) = TYPE_CODE_CLASS;
12817 }
12818
12819 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12820 TYPE_DECLARED_CLASS (type) = 1;
12821
12822 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12823 if (attr)
12824 {
12825 TYPE_LENGTH (type) = DW_UNSND (attr);
12826 }
12827 else
12828 {
12829 TYPE_LENGTH (type) = 0;
12830 }
12831
12832 if (producer_is_icc (cu))
12833 {
12834 /* ICC does not output the required DW_AT_declaration
12835 on incomplete types, but gives them a size of zero. */
12836 }
12837 else
12838 TYPE_STUB_SUPPORTED (type) = 1;
12839
12840 if (die_is_declaration (die, cu))
12841 TYPE_STUB (type) = 1;
12842 else if (attr == NULL && die->child == NULL
12843 && producer_is_realview (cu->producer))
12844 /* RealView does not output the required DW_AT_declaration
12845 on incomplete types. */
12846 TYPE_STUB (type) = 1;
12847
12848 /* We need to add the type field to the die immediately so we don't
12849 infinitely recurse when dealing with pointers to the structure
12850 type within the structure itself. */
12851 set_die_type (die, type, cu);
12852
12853 /* set_die_type should be already done. */
12854 set_descriptive_type (type, die, cu);
12855
12856 return type;
12857 }
12858
12859 /* Finish creating a structure or union type, including filling in
12860 its members and creating a symbol for it. */
12861
12862 static void
12863 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12864 {
12865 struct objfile *objfile = cu->objfile;
12866 struct die_info *child_die = die->child;
12867 struct type *type;
12868
12869 type = get_die_type (die, cu);
12870 if (type == NULL)
12871 type = read_structure_type (die, cu);
12872
12873 if (die->child != NULL && ! die_is_declaration (die, cu))
12874 {
12875 struct field_info fi;
12876 struct die_info *child_die;
12877 VEC (symbolp) *template_args = NULL;
12878 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12879
12880 memset (&fi, 0, sizeof (struct field_info));
12881
12882 child_die = die->child;
12883
12884 while (child_die && child_die->tag)
12885 {
12886 if (child_die->tag == DW_TAG_member
12887 || child_die->tag == DW_TAG_variable)
12888 {
12889 /* NOTE: carlton/2002-11-05: A C++ static data member
12890 should be a DW_TAG_member that is a declaration, but
12891 all versions of G++ as of this writing (so through at
12892 least 3.2.1) incorrectly generate DW_TAG_variable
12893 tags for them instead. */
12894 dwarf2_add_field (&fi, child_die, cu);
12895 }
12896 else if (child_die->tag == DW_TAG_subprogram)
12897 {
12898 /* C++ member function. */
12899 dwarf2_add_member_fn (&fi, child_die, type, cu);
12900 }
12901 else if (child_die->tag == DW_TAG_inheritance)
12902 {
12903 /* C++ base class field. */
12904 dwarf2_add_field (&fi, child_die, cu);
12905 }
12906 else if (child_die->tag == DW_TAG_typedef)
12907 dwarf2_add_typedef (&fi, child_die, cu);
12908 else if (child_die->tag == DW_TAG_template_type_param
12909 || child_die->tag == DW_TAG_template_value_param)
12910 {
12911 struct symbol *arg = new_symbol (child_die, NULL, cu);
12912
12913 if (arg != NULL)
12914 VEC_safe_push (symbolp, template_args, arg);
12915 }
12916
12917 child_die = sibling_die (child_die);
12918 }
12919
12920 /* Attach template arguments to type. */
12921 if (! VEC_empty (symbolp, template_args))
12922 {
12923 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12924 TYPE_N_TEMPLATE_ARGUMENTS (type)
12925 = VEC_length (symbolp, template_args);
12926 TYPE_TEMPLATE_ARGUMENTS (type)
12927 = obstack_alloc (&objfile->objfile_obstack,
12928 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12929 * sizeof (struct symbol *)));
12930 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12931 VEC_address (symbolp, template_args),
12932 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12933 * sizeof (struct symbol *)));
12934 VEC_free (symbolp, template_args);
12935 }
12936
12937 /* Attach fields and member functions to the type. */
12938 if (fi.nfields)
12939 dwarf2_attach_fields_to_type (&fi, type, cu);
12940 if (fi.nfnfields)
12941 {
12942 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12943
12944 /* Get the type which refers to the base class (possibly this
12945 class itself) which contains the vtable pointer for the current
12946 class from the DW_AT_containing_type attribute. This use of
12947 DW_AT_containing_type is a GNU extension. */
12948
12949 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12950 {
12951 struct type *t = die_containing_type (die, cu);
12952
12953 TYPE_VPTR_BASETYPE (type) = t;
12954 if (type == t)
12955 {
12956 int i;
12957
12958 /* Our own class provides vtbl ptr. */
12959 for (i = TYPE_NFIELDS (t) - 1;
12960 i >= TYPE_N_BASECLASSES (t);
12961 --i)
12962 {
12963 const char *fieldname = TYPE_FIELD_NAME (t, i);
12964
12965 if (is_vtable_name (fieldname, cu))
12966 {
12967 TYPE_VPTR_FIELDNO (type) = i;
12968 break;
12969 }
12970 }
12971
12972 /* Complain if virtual function table field not found. */
12973 if (i < TYPE_N_BASECLASSES (t))
12974 complaint (&symfile_complaints,
12975 _("virtual function table pointer "
12976 "not found when defining class '%s'"),
12977 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12978 "");
12979 }
12980 else
12981 {
12982 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12983 }
12984 }
12985 else if (cu->producer
12986 && strncmp (cu->producer,
12987 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12988 {
12989 /* The IBM XLC compiler does not provide direct indication
12990 of the containing type, but the vtable pointer is
12991 always named __vfp. */
12992
12993 int i;
12994
12995 for (i = TYPE_NFIELDS (type) - 1;
12996 i >= TYPE_N_BASECLASSES (type);
12997 --i)
12998 {
12999 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13000 {
13001 TYPE_VPTR_FIELDNO (type) = i;
13002 TYPE_VPTR_BASETYPE (type) = type;
13003 break;
13004 }
13005 }
13006 }
13007 }
13008
13009 /* Copy fi.typedef_field_list linked list elements content into the
13010 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13011 if (fi.typedef_field_list)
13012 {
13013 int i = fi.typedef_field_list_count;
13014
13015 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13016 TYPE_TYPEDEF_FIELD_ARRAY (type)
13017 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13018 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13019
13020 /* Reverse the list order to keep the debug info elements order. */
13021 while (--i >= 0)
13022 {
13023 struct typedef_field *dest, *src;
13024
13025 dest = &TYPE_TYPEDEF_FIELD (type, i);
13026 src = &fi.typedef_field_list->field;
13027 fi.typedef_field_list = fi.typedef_field_list->next;
13028 *dest = *src;
13029 }
13030 }
13031
13032 do_cleanups (back_to);
13033
13034 if (HAVE_CPLUS_STRUCT (type))
13035 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13036 }
13037
13038 quirk_gcc_member_function_pointer (type, objfile);
13039
13040 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13041 snapshots) has been known to create a die giving a declaration
13042 for a class that has, as a child, a die giving a definition for a
13043 nested class. So we have to process our children even if the
13044 current die is a declaration. Normally, of course, a declaration
13045 won't have any children at all. */
13046
13047 while (child_die != NULL && child_die->tag)
13048 {
13049 if (child_die->tag == DW_TAG_member
13050 || child_die->tag == DW_TAG_variable
13051 || child_die->tag == DW_TAG_inheritance
13052 || child_die->tag == DW_TAG_template_value_param
13053 || child_die->tag == DW_TAG_template_type_param)
13054 {
13055 /* Do nothing. */
13056 }
13057 else
13058 process_die (child_die, cu);
13059
13060 child_die = sibling_die (child_die);
13061 }
13062
13063 /* Do not consider external references. According to the DWARF standard,
13064 these DIEs are identified by the fact that they have no byte_size
13065 attribute, and a declaration attribute. */
13066 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13067 || !die_is_declaration (die, cu))
13068 new_symbol (die, type, cu);
13069 }
13070
13071 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13072 update TYPE using some information only available in DIE's children. */
13073
13074 static void
13075 update_enumeration_type_from_children (struct die_info *die,
13076 struct type *type,
13077 struct dwarf2_cu *cu)
13078 {
13079 struct obstack obstack;
13080 struct die_info *child_die = die->child;
13081 int unsigned_enum = 1;
13082 int flag_enum = 1;
13083 ULONGEST mask = 0;
13084 struct cleanup *old_chain;
13085
13086 obstack_init (&obstack);
13087 old_chain = make_cleanup_obstack_free (&obstack);
13088
13089 while (child_die != NULL && child_die->tag)
13090 {
13091 struct attribute *attr;
13092 LONGEST value;
13093 const gdb_byte *bytes;
13094 struct dwarf2_locexpr_baton *baton;
13095 const char *name;
13096 if (child_die->tag != DW_TAG_enumerator)
13097 continue;
13098
13099 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13100 if (attr == NULL)
13101 continue;
13102
13103 name = dwarf2_name (child_die, cu);
13104 if (name == NULL)
13105 name = "<anonymous enumerator>";
13106
13107 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13108 &value, &bytes, &baton);
13109 if (value < 0)
13110 {
13111 unsigned_enum = 0;
13112 flag_enum = 0;
13113 }
13114 else if ((mask & value) != 0)
13115 flag_enum = 0;
13116 else
13117 mask |= value;
13118
13119 /* If we already know that the enum type is neither unsigned, nor
13120 a flag type, no need to look at the rest of the enumerates. */
13121 if (!unsigned_enum && !flag_enum)
13122 break;
13123 child_die = sibling_die (child_die);
13124 }
13125
13126 if (unsigned_enum)
13127 TYPE_UNSIGNED (type) = 1;
13128 if (flag_enum)
13129 TYPE_FLAG_ENUM (type) = 1;
13130
13131 do_cleanups (old_chain);
13132 }
13133
13134 /* Given a DW_AT_enumeration_type die, set its type. We do not
13135 complete the type's fields yet, or create any symbols. */
13136
13137 static struct type *
13138 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13139 {
13140 struct objfile *objfile = cu->objfile;
13141 struct type *type;
13142 struct attribute *attr;
13143 const char *name;
13144
13145 /* If the definition of this type lives in .debug_types, read that type.
13146 Don't follow DW_AT_specification though, that will take us back up
13147 the chain and we want to go down. */
13148 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13149 if (attr)
13150 {
13151 type = get_DW_AT_signature_type (die, attr, cu);
13152
13153 /* The type's CU may not be the same as CU.
13154 Ensure TYPE is recorded with CU in die_type_hash. */
13155 return set_die_type (die, type, cu);
13156 }
13157
13158 type = alloc_type (objfile);
13159
13160 TYPE_CODE (type) = TYPE_CODE_ENUM;
13161 name = dwarf2_full_name (NULL, die, cu);
13162 if (name != NULL)
13163 TYPE_TAG_NAME (type) = name;
13164
13165 attr = dwarf2_attr (die, DW_AT_type, cu);
13166 if (attr != NULL)
13167 {
13168 struct type *underlying_type = die_type (die, cu);
13169
13170 TYPE_TARGET_TYPE (type) = underlying_type;
13171 }
13172
13173 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13174 if (attr)
13175 {
13176 TYPE_LENGTH (type) = DW_UNSND (attr);
13177 }
13178 else
13179 {
13180 TYPE_LENGTH (type) = 0;
13181 }
13182
13183 /* The enumeration DIE can be incomplete. In Ada, any type can be
13184 declared as private in the package spec, and then defined only
13185 inside the package body. Such types are known as Taft Amendment
13186 Types. When another package uses such a type, an incomplete DIE
13187 may be generated by the compiler. */
13188 if (die_is_declaration (die, cu))
13189 TYPE_STUB (type) = 1;
13190
13191 /* Finish the creation of this type by using the enum's children.
13192 We must call this even when the underlying type has been provided
13193 so that we can determine if we're looking at a "flag" enum. */
13194 update_enumeration_type_from_children (die, type, cu);
13195
13196 /* If this type has an underlying type that is not a stub, then we
13197 may use its attributes. We always use the "unsigned" attribute
13198 in this situation, because ordinarily we guess whether the type
13199 is unsigned -- but the guess can be wrong and the underlying type
13200 can tell us the reality. However, we defer to a local size
13201 attribute if one exists, because this lets the compiler override
13202 the underlying type if needed. */
13203 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13204 {
13205 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13206 if (TYPE_LENGTH (type) == 0)
13207 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13208 }
13209
13210 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13211
13212 return set_die_type (die, type, cu);
13213 }
13214
13215 /* Given a pointer to a die which begins an enumeration, process all
13216 the dies that define the members of the enumeration, and create the
13217 symbol for the enumeration type.
13218
13219 NOTE: We reverse the order of the element list. */
13220
13221 static void
13222 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13223 {
13224 struct type *this_type;
13225
13226 this_type = get_die_type (die, cu);
13227 if (this_type == NULL)
13228 this_type = read_enumeration_type (die, cu);
13229
13230 if (die->child != NULL)
13231 {
13232 struct die_info *child_die;
13233 struct symbol *sym;
13234 struct field *fields = NULL;
13235 int num_fields = 0;
13236 const char *name;
13237
13238 child_die = die->child;
13239 while (child_die && child_die->tag)
13240 {
13241 if (child_die->tag != DW_TAG_enumerator)
13242 {
13243 process_die (child_die, cu);
13244 }
13245 else
13246 {
13247 name = dwarf2_name (child_die, cu);
13248 if (name)
13249 {
13250 sym = new_symbol (child_die, this_type, cu);
13251
13252 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13253 {
13254 fields = (struct field *)
13255 xrealloc (fields,
13256 (num_fields + DW_FIELD_ALLOC_CHUNK)
13257 * sizeof (struct field));
13258 }
13259
13260 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13261 FIELD_TYPE (fields[num_fields]) = NULL;
13262 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13263 FIELD_BITSIZE (fields[num_fields]) = 0;
13264
13265 num_fields++;
13266 }
13267 }
13268
13269 child_die = sibling_die (child_die);
13270 }
13271
13272 if (num_fields)
13273 {
13274 TYPE_NFIELDS (this_type) = num_fields;
13275 TYPE_FIELDS (this_type) = (struct field *)
13276 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13277 memcpy (TYPE_FIELDS (this_type), fields,
13278 sizeof (struct field) * num_fields);
13279 xfree (fields);
13280 }
13281 }
13282
13283 /* If we are reading an enum from a .debug_types unit, and the enum
13284 is a declaration, and the enum is not the signatured type in the
13285 unit, then we do not want to add a symbol for it. Adding a
13286 symbol would in some cases obscure the true definition of the
13287 enum, giving users an incomplete type when the definition is
13288 actually available. Note that we do not want to do this for all
13289 enums which are just declarations, because C++0x allows forward
13290 enum declarations. */
13291 if (cu->per_cu->is_debug_types
13292 && die_is_declaration (die, cu))
13293 {
13294 struct signatured_type *sig_type;
13295
13296 sig_type = (struct signatured_type *) cu->per_cu;
13297 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13298 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13299 return;
13300 }
13301
13302 new_symbol (die, this_type, cu);
13303 }
13304
13305 /* Extract all information from a DW_TAG_array_type DIE and put it in
13306 the DIE's type field. For now, this only handles one dimensional
13307 arrays. */
13308
13309 static struct type *
13310 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13311 {
13312 struct objfile *objfile = cu->objfile;
13313 struct die_info *child_die;
13314 struct type *type;
13315 struct type *element_type, *range_type, *index_type;
13316 struct type **range_types = NULL;
13317 struct attribute *attr;
13318 int ndim = 0;
13319 struct cleanup *back_to;
13320 const char *name;
13321 unsigned int bit_stride = 0;
13322
13323 element_type = die_type (die, cu);
13324
13325 /* The die_type call above may have already set the type for this DIE. */
13326 type = get_die_type (die, cu);
13327 if (type)
13328 return type;
13329
13330 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13331 if (attr != NULL)
13332 bit_stride = DW_UNSND (attr) * 8;
13333
13334 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13335 if (attr != NULL)
13336 bit_stride = DW_UNSND (attr);
13337
13338 /* Irix 6.2 native cc creates array types without children for
13339 arrays with unspecified length. */
13340 if (die->child == NULL)
13341 {
13342 index_type = objfile_type (objfile)->builtin_int;
13343 range_type = create_static_range_type (NULL, index_type, 0, -1);
13344 type = create_array_type_with_stride (NULL, element_type, range_type,
13345 bit_stride);
13346 return set_die_type (die, type, cu);
13347 }
13348
13349 back_to = make_cleanup (null_cleanup, NULL);
13350 child_die = die->child;
13351 while (child_die && child_die->tag)
13352 {
13353 if (child_die->tag == DW_TAG_subrange_type)
13354 {
13355 struct type *child_type = read_type_die (child_die, cu);
13356
13357 if (child_type != NULL)
13358 {
13359 /* The range type was succesfully read. Save it for the
13360 array type creation. */
13361 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13362 {
13363 range_types = (struct type **)
13364 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13365 * sizeof (struct type *));
13366 if (ndim == 0)
13367 make_cleanup (free_current_contents, &range_types);
13368 }
13369 range_types[ndim++] = child_type;
13370 }
13371 }
13372 child_die = sibling_die (child_die);
13373 }
13374
13375 /* Dwarf2 dimensions are output from left to right, create the
13376 necessary array types in backwards order. */
13377
13378 type = element_type;
13379
13380 if (read_array_order (die, cu) == DW_ORD_col_major)
13381 {
13382 int i = 0;
13383
13384 while (i < ndim)
13385 type = create_array_type_with_stride (NULL, type, range_types[i++],
13386 bit_stride);
13387 }
13388 else
13389 {
13390 while (ndim-- > 0)
13391 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13392 bit_stride);
13393 }
13394
13395 /* Understand Dwarf2 support for vector types (like they occur on
13396 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13397 array type. This is not part of the Dwarf2/3 standard yet, but a
13398 custom vendor extension. The main difference between a regular
13399 array and the vector variant is that vectors are passed by value
13400 to functions. */
13401 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13402 if (attr)
13403 make_vector_type (type);
13404
13405 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13406 implementation may choose to implement triple vectors using this
13407 attribute. */
13408 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13409 if (attr)
13410 {
13411 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13412 TYPE_LENGTH (type) = DW_UNSND (attr);
13413 else
13414 complaint (&symfile_complaints,
13415 _("DW_AT_byte_size for array type smaller "
13416 "than the total size of elements"));
13417 }
13418
13419 name = dwarf2_name (die, cu);
13420 if (name)
13421 TYPE_NAME (type) = name;
13422
13423 /* Install the type in the die. */
13424 set_die_type (die, type, cu);
13425
13426 /* set_die_type should be already done. */
13427 set_descriptive_type (type, die, cu);
13428
13429 do_cleanups (back_to);
13430
13431 return type;
13432 }
13433
13434 static enum dwarf_array_dim_ordering
13435 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13436 {
13437 struct attribute *attr;
13438
13439 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13440
13441 if (attr) return DW_SND (attr);
13442
13443 /* GNU F77 is a special case, as at 08/2004 array type info is the
13444 opposite order to the dwarf2 specification, but data is still
13445 laid out as per normal fortran.
13446
13447 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13448 version checking. */
13449
13450 if (cu->language == language_fortran
13451 && cu->producer && strstr (cu->producer, "GNU F77"))
13452 {
13453 return DW_ORD_row_major;
13454 }
13455
13456 switch (cu->language_defn->la_array_ordering)
13457 {
13458 case array_column_major:
13459 return DW_ORD_col_major;
13460 case array_row_major:
13461 default:
13462 return DW_ORD_row_major;
13463 };
13464 }
13465
13466 /* Extract all information from a DW_TAG_set_type DIE and put it in
13467 the DIE's type field. */
13468
13469 static struct type *
13470 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13471 {
13472 struct type *domain_type, *set_type;
13473 struct attribute *attr;
13474
13475 domain_type = die_type (die, cu);
13476
13477 /* The die_type call above may have already set the type for this DIE. */
13478 set_type = get_die_type (die, cu);
13479 if (set_type)
13480 return set_type;
13481
13482 set_type = create_set_type (NULL, domain_type);
13483
13484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13485 if (attr)
13486 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13487
13488 return set_die_type (die, set_type, cu);
13489 }
13490
13491 /* A helper for read_common_block that creates a locexpr baton.
13492 SYM is the symbol which we are marking as computed.
13493 COMMON_DIE is the DIE for the common block.
13494 COMMON_LOC is the location expression attribute for the common
13495 block itself.
13496 MEMBER_LOC is the location expression attribute for the particular
13497 member of the common block that we are processing.
13498 CU is the CU from which the above come. */
13499
13500 static void
13501 mark_common_block_symbol_computed (struct symbol *sym,
13502 struct die_info *common_die,
13503 struct attribute *common_loc,
13504 struct attribute *member_loc,
13505 struct dwarf2_cu *cu)
13506 {
13507 struct objfile *objfile = dwarf2_per_objfile->objfile;
13508 struct dwarf2_locexpr_baton *baton;
13509 gdb_byte *ptr;
13510 unsigned int cu_off;
13511 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13512 LONGEST offset = 0;
13513
13514 gdb_assert (common_loc && member_loc);
13515 gdb_assert (attr_form_is_block (common_loc));
13516 gdb_assert (attr_form_is_block (member_loc)
13517 || attr_form_is_constant (member_loc));
13518
13519 baton = obstack_alloc (&objfile->objfile_obstack,
13520 sizeof (struct dwarf2_locexpr_baton));
13521 baton->per_cu = cu->per_cu;
13522 gdb_assert (baton->per_cu);
13523
13524 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13525
13526 if (attr_form_is_constant (member_loc))
13527 {
13528 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13529 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13530 }
13531 else
13532 baton->size += DW_BLOCK (member_loc)->size;
13533
13534 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13535 baton->data = ptr;
13536
13537 *ptr++ = DW_OP_call4;
13538 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13539 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13540 ptr += 4;
13541
13542 if (attr_form_is_constant (member_loc))
13543 {
13544 *ptr++ = DW_OP_addr;
13545 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13546 ptr += cu->header.addr_size;
13547 }
13548 else
13549 {
13550 /* We have to copy the data here, because DW_OP_call4 will only
13551 use a DW_AT_location attribute. */
13552 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13553 ptr += DW_BLOCK (member_loc)->size;
13554 }
13555
13556 *ptr++ = DW_OP_plus;
13557 gdb_assert (ptr - baton->data == baton->size);
13558
13559 SYMBOL_LOCATION_BATON (sym) = baton;
13560 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13561 }
13562
13563 /* Create appropriate locally-scoped variables for all the
13564 DW_TAG_common_block entries. Also create a struct common_block
13565 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13566 is used to sepate the common blocks name namespace from regular
13567 variable names. */
13568
13569 static void
13570 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13571 {
13572 struct attribute *attr;
13573
13574 attr = dwarf2_attr (die, DW_AT_location, cu);
13575 if (attr)
13576 {
13577 /* Support the .debug_loc offsets. */
13578 if (attr_form_is_block (attr))
13579 {
13580 /* Ok. */
13581 }
13582 else if (attr_form_is_section_offset (attr))
13583 {
13584 dwarf2_complex_location_expr_complaint ();
13585 attr = NULL;
13586 }
13587 else
13588 {
13589 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13590 "common block member");
13591 attr = NULL;
13592 }
13593 }
13594
13595 if (die->child != NULL)
13596 {
13597 struct objfile *objfile = cu->objfile;
13598 struct die_info *child_die;
13599 size_t n_entries = 0, size;
13600 struct common_block *common_block;
13601 struct symbol *sym;
13602
13603 for (child_die = die->child;
13604 child_die && child_die->tag;
13605 child_die = sibling_die (child_die))
13606 ++n_entries;
13607
13608 size = (sizeof (struct common_block)
13609 + (n_entries - 1) * sizeof (struct symbol *));
13610 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13611 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13612 common_block->n_entries = 0;
13613
13614 for (child_die = die->child;
13615 child_die && child_die->tag;
13616 child_die = sibling_die (child_die))
13617 {
13618 /* Create the symbol in the DW_TAG_common_block block in the current
13619 symbol scope. */
13620 sym = new_symbol (child_die, NULL, cu);
13621 if (sym != NULL)
13622 {
13623 struct attribute *member_loc;
13624
13625 common_block->contents[common_block->n_entries++] = sym;
13626
13627 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13628 cu);
13629 if (member_loc)
13630 {
13631 /* GDB has handled this for a long time, but it is
13632 not specified by DWARF. It seems to have been
13633 emitted by gfortran at least as recently as:
13634 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13635 complaint (&symfile_complaints,
13636 _("Variable in common block has "
13637 "DW_AT_data_member_location "
13638 "- DIE at 0x%x [in module %s]"),
13639 child_die->offset.sect_off,
13640 objfile_name (cu->objfile));
13641
13642 if (attr_form_is_section_offset (member_loc))
13643 dwarf2_complex_location_expr_complaint ();
13644 else if (attr_form_is_constant (member_loc)
13645 || attr_form_is_block (member_loc))
13646 {
13647 if (attr)
13648 mark_common_block_symbol_computed (sym, die, attr,
13649 member_loc, cu);
13650 }
13651 else
13652 dwarf2_complex_location_expr_complaint ();
13653 }
13654 }
13655 }
13656
13657 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13658 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13659 }
13660 }
13661
13662 /* Create a type for a C++ namespace. */
13663
13664 static struct type *
13665 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13666 {
13667 struct objfile *objfile = cu->objfile;
13668 const char *previous_prefix, *name;
13669 int is_anonymous;
13670 struct type *type;
13671
13672 /* For extensions, reuse the type of the original namespace. */
13673 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13674 {
13675 struct die_info *ext_die;
13676 struct dwarf2_cu *ext_cu = cu;
13677
13678 ext_die = dwarf2_extension (die, &ext_cu);
13679 type = read_type_die (ext_die, ext_cu);
13680
13681 /* EXT_CU may not be the same as CU.
13682 Ensure TYPE is recorded with CU in die_type_hash. */
13683 return set_die_type (die, type, cu);
13684 }
13685
13686 name = namespace_name (die, &is_anonymous, cu);
13687
13688 /* Now build the name of the current namespace. */
13689
13690 previous_prefix = determine_prefix (die, cu);
13691 if (previous_prefix[0] != '\0')
13692 name = typename_concat (&objfile->objfile_obstack,
13693 previous_prefix, name, 0, cu);
13694
13695 /* Create the type. */
13696 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13697 objfile);
13698 TYPE_NAME (type) = name;
13699 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13700
13701 return set_die_type (die, type, cu);
13702 }
13703
13704 /* Read a C++ namespace. */
13705
13706 static void
13707 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13708 {
13709 struct objfile *objfile = cu->objfile;
13710 int is_anonymous;
13711
13712 /* Add a symbol associated to this if we haven't seen the namespace
13713 before. Also, add a using directive if it's an anonymous
13714 namespace. */
13715
13716 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13717 {
13718 struct type *type;
13719
13720 type = read_type_die (die, cu);
13721 new_symbol (die, type, cu);
13722
13723 namespace_name (die, &is_anonymous, cu);
13724 if (is_anonymous)
13725 {
13726 const char *previous_prefix = determine_prefix (die, cu);
13727
13728 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13729 NULL, NULL, 0, &objfile->objfile_obstack);
13730 }
13731 }
13732
13733 if (die->child != NULL)
13734 {
13735 struct die_info *child_die = die->child;
13736
13737 while (child_die && child_die->tag)
13738 {
13739 process_die (child_die, cu);
13740 child_die = sibling_die (child_die);
13741 }
13742 }
13743 }
13744
13745 /* Read a Fortran module as type. This DIE can be only a declaration used for
13746 imported module. Still we need that type as local Fortran "use ... only"
13747 declaration imports depend on the created type in determine_prefix. */
13748
13749 static struct type *
13750 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13751 {
13752 struct objfile *objfile = cu->objfile;
13753 const char *module_name;
13754 struct type *type;
13755
13756 module_name = dwarf2_name (die, cu);
13757 if (!module_name)
13758 complaint (&symfile_complaints,
13759 _("DW_TAG_module has no name, offset 0x%x"),
13760 die->offset.sect_off);
13761 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13762
13763 /* determine_prefix uses TYPE_TAG_NAME. */
13764 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13765
13766 return set_die_type (die, type, cu);
13767 }
13768
13769 /* Read a Fortran module. */
13770
13771 static void
13772 read_module (struct die_info *die, struct dwarf2_cu *cu)
13773 {
13774 struct die_info *child_die = die->child;
13775 struct type *type;
13776
13777 type = read_type_die (die, cu);
13778 new_symbol (die, type, cu);
13779
13780 while (child_die && child_die->tag)
13781 {
13782 process_die (child_die, cu);
13783 child_die = sibling_die (child_die);
13784 }
13785 }
13786
13787 /* Return the name of the namespace represented by DIE. Set
13788 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13789 namespace. */
13790
13791 static const char *
13792 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13793 {
13794 struct die_info *current_die;
13795 const char *name = NULL;
13796
13797 /* Loop through the extensions until we find a name. */
13798
13799 for (current_die = die;
13800 current_die != NULL;
13801 current_die = dwarf2_extension (die, &cu))
13802 {
13803 name = dwarf2_name (current_die, cu);
13804 if (name != NULL)
13805 break;
13806 }
13807
13808 /* Is it an anonymous namespace? */
13809
13810 *is_anonymous = (name == NULL);
13811 if (*is_anonymous)
13812 name = CP_ANONYMOUS_NAMESPACE_STR;
13813
13814 return name;
13815 }
13816
13817 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13818 the user defined type vector. */
13819
13820 static struct type *
13821 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13822 {
13823 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13824 struct comp_unit_head *cu_header = &cu->header;
13825 struct type *type;
13826 struct attribute *attr_byte_size;
13827 struct attribute *attr_address_class;
13828 int byte_size, addr_class;
13829 struct type *target_type;
13830
13831 target_type = die_type (die, cu);
13832
13833 /* The die_type call above may have already set the type for this DIE. */
13834 type = get_die_type (die, cu);
13835 if (type)
13836 return type;
13837
13838 type = lookup_pointer_type (target_type);
13839
13840 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13841 if (attr_byte_size)
13842 byte_size = DW_UNSND (attr_byte_size);
13843 else
13844 byte_size = cu_header->addr_size;
13845
13846 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13847 if (attr_address_class)
13848 addr_class = DW_UNSND (attr_address_class);
13849 else
13850 addr_class = DW_ADDR_none;
13851
13852 /* If the pointer size or address class is different than the
13853 default, create a type variant marked as such and set the
13854 length accordingly. */
13855 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13856 {
13857 if (gdbarch_address_class_type_flags_p (gdbarch))
13858 {
13859 int type_flags;
13860
13861 type_flags = gdbarch_address_class_type_flags
13862 (gdbarch, byte_size, addr_class);
13863 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13864 == 0);
13865 type = make_type_with_address_space (type, type_flags);
13866 }
13867 else if (TYPE_LENGTH (type) != byte_size)
13868 {
13869 complaint (&symfile_complaints,
13870 _("invalid pointer size %d"), byte_size);
13871 }
13872 else
13873 {
13874 /* Should we also complain about unhandled address classes? */
13875 }
13876 }
13877
13878 TYPE_LENGTH (type) = byte_size;
13879 return set_die_type (die, type, cu);
13880 }
13881
13882 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13883 the user defined type vector. */
13884
13885 static struct type *
13886 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13887 {
13888 struct type *type;
13889 struct type *to_type;
13890 struct type *domain;
13891
13892 to_type = die_type (die, cu);
13893 domain = die_containing_type (die, cu);
13894
13895 /* The calls above may have already set the type for this DIE. */
13896 type = get_die_type (die, cu);
13897 if (type)
13898 return type;
13899
13900 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13901 type = lookup_methodptr_type (to_type);
13902 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13903 {
13904 struct type *new_type = alloc_type (cu->objfile);
13905
13906 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13907 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13908 TYPE_VARARGS (to_type));
13909 type = lookup_methodptr_type (new_type);
13910 }
13911 else
13912 type = lookup_memberptr_type (to_type, domain);
13913
13914 return set_die_type (die, type, cu);
13915 }
13916
13917 /* Extract all information from a DW_TAG_reference_type DIE and add to
13918 the user defined type vector. */
13919
13920 static struct type *
13921 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13922 {
13923 struct comp_unit_head *cu_header = &cu->header;
13924 struct type *type, *target_type;
13925 struct attribute *attr;
13926
13927 target_type = die_type (die, cu);
13928
13929 /* The die_type call above may have already set the type for this DIE. */
13930 type = get_die_type (die, cu);
13931 if (type)
13932 return type;
13933
13934 type = lookup_reference_type (target_type);
13935 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13936 if (attr)
13937 {
13938 TYPE_LENGTH (type) = DW_UNSND (attr);
13939 }
13940 else
13941 {
13942 TYPE_LENGTH (type) = cu_header->addr_size;
13943 }
13944 return set_die_type (die, type, cu);
13945 }
13946
13947 static struct type *
13948 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13949 {
13950 struct type *base_type, *cv_type;
13951
13952 base_type = die_type (die, cu);
13953
13954 /* The die_type call above may have already set the type for this DIE. */
13955 cv_type = get_die_type (die, cu);
13956 if (cv_type)
13957 return cv_type;
13958
13959 /* In case the const qualifier is applied to an array type, the element type
13960 is so qualified, not the array type (section 6.7.3 of C99). */
13961 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13962 {
13963 struct type *el_type, *inner_array;
13964
13965 base_type = copy_type (base_type);
13966 inner_array = base_type;
13967
13968 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13969 {
13970 TYPE_TARGET_TYPE (inner_array) =
13971 copy_type (TYPE_TARGET_TYPE (inner_array));
13972 inner_array = TYPE_TARGET_TYPE (inner_array);
13973 }
13974
13975 el_type = TYPE_TARGET_TYPE (inner_array);
13976 TYPE_TARGET_TYPE (inner_array) =
13977 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13978
13979 return set_die_type (die, base_type, cu);
13980 }
13981
13982 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13983 return set_die_type (die, cv_type, cu);
13984 }
13985
13986 static struct type *
13987 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13988 {
13989 struct type *base_type, *cv_type;
13990
13991 base_type = die_type (die, cu);
13992
13993 /* The die_type call above may have already set the type for this DIE. */
13994 cv_type = get_die_type (die, cu);
13995 if (cv_type)
13996 return cv_type;
13997
13998 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13999 return set_die_type (die, cv_type, cu);
14000 }
14001
14002 /* Handle DW_TAG_restrict_type. */
14003
14004 static struct type *
14005 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14006 {
14007 struct type *base_type, *cv_type;
14008
14009 base_type = die_type (die, cu);
14010
14011 /* The die_type call above may have already set the type for this DIE. */
14012 cv_type = get_die_type (die, cu);
14013 if (cv_type)
14014 return cv_type;
14015
14016 cv_type = make_restrict_type (base_type);
14017 return set_die_type (die, cv_type, cu);
14018 }
14019
14020 /* Extract all information from a DW_TAG_string_type DIE and add to
14021 the user defined type vector. It isn't really a user defined type,
14022 but it behaves like one, with other DIE's using an AT_user_def_type
14023 attribute to reference it. */
14024
14025 static struct type *
14026 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14027 {
14028 struct objfile *objfile = cu->objfile;
14029 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14030 struct type *type, *range_type, *index_type, *char_type;
14031 struct attribute *attr;
14032 unsigned int length;
14033
14034 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14035 if (attr)
14036 {
14037 length = DW_UNSND (attr);
14038 }
14039 else
14040 {
14041 /* Check for the DW_AT_byte_size attribute. */
14042 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14043 if (attr)
14044 {
14045 length = DW_UNSND (attr);
14046 }
14047 else
14048 {
14049 length = 1;
14050 }
14051 }
14052
14053 index_type = objfile_type (objfile)->builtin_int;
14054 range_type = create_static_range_type (NULL, index_type, 1, length);
14055 char_type = language_string_char_type (cu->language_defn, gdbarch);
14056 type = create_string_type (NULL, char_type, range_type);
14057
14058 return set_die_type (die, type, cu);
14059 }
14060
14061 /* Assuming that DIE corresponds to a function, returns nonzero
14062 if the function is prototyped. */
14063
14064 static int
14065 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14066 {
14067 struct attribute *attr;
14068
14069 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14070 if (attr && (DW_UNSND (attr) != 0))
14071 return 1;
14072
14073 /* The DWARF standard implies that the DW_AT_prototyped attribute
14074 is only meaninful for C, but the concept also extends to other
14075 languages that allow unprototyped functions (Eg: Objective C).
14076 For all other languages, assume that functions are always
14077 prototyped. */
14078 if (cu->language != language_c
14079 && cu->language != language_objc
14080 && cu->language != language_opencl)
14081 return 1;
14082
14083 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14084 prototyped and unprototyped functions; default to prototyped,
14085 since that is more common in modern code (and RealView warns
14086 about unprototyped functions). */
14087 if (producer_is_realview (cu->producer))
14088 return 1;
14089
14090 return 0;
14091 }
14092
14093 /* Handle DIES due to C code like:
14094
14095 struct foo
14096 {
14097 int (*funcp)(int a, long l);
14098 int b;
14099 };
14100
14101 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14102
14103 static struct type *
14104 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14105 {
14106 struct objfile *objfile = cu->objfile;
14107 struct type *type; /* Type that this function returns. */
14108 struct type *ftype; /* Function that returns above type. */
14109 struct attribute *attr;
14110
14111 type = die_type (die, cu);
14112
14113 /* The die_type call above may have already set the type for this DIE. */
14114 ftype = get_die_type (die, cu);
14115 if (ftype)
14116 return ftype;
14117
14118 ftype = lookup_function_type (type);
14119
14120 if (prototyped_function_p (die, cu))
14121 TYPE_PROTOTYPED (ftype) = 1;
14122
14123 /* Store the calling convention in the type if it's available in
14124 the subroutine die. Otherwise set the calling convention to
14125 the default value DW_CC_normal. */
14126 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14127 if (attr)
14128 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14129 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14130 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14131 else
14132 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14133
14134 /* We need to add the subroutine type to the die immediately so
14135 we don't infinitely recurse when dealing with parameters
14136 declared as the same subroutine type. */
14137 set_die_type (die, ftype, cu);
14138
14139 if (die->child != NULL)
14140 {
14141 struct type *void_type = objfile_type (objfile)->builtin_void;
14142 struct die_info *child_die;
14143 int nparams, iparams;
14144
14145 /* Count the number of parameters.
14146 FIXME: GDB currently ignores vararg functions, but knows about
14147 vararg member functions. */
14148 nparams = 0;
14149 child_die = die->child;
14150 while (child_die && child_die->tag)
14151 {
14152 if (child_die->tag == DW_TAG_formal_parameter)
14153 nparams++;
14154 else if (child_die->tag == DW_TAG_unspecified_parameters)
14155 TYPE_VARARGS (ftype) = 1;
14156 child_die = sibling_die (child_die);
14157 }
14158
14159 /* Allocate storage for parameters and fill them in. */
14160 TYPE_NFIELDS (ftype) = nparams;
14161 TYPE_FIELDS (ftype) = (struct field *)
14162 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14163
14164 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14165 even if we error out during the parameters reading below. */
14166 for (iparams = 0; iparams < nparams; iparams++)
14167 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14168
14169 iparams = 0;
14170 child_die = die->child;
14171 while (child_die && child_die->tag)
14172 {
14173 if (child_die->tag == DW_TAG_formal_parameter)
14174 {
14175 struct type *arg_type;
14176
14177 /* DWARF version 2 has no clean way to discern C++
14178 static and non-static member functions. G++ helps
14179 GDB by marking the first parameter for non-static
14180 member functions (which is the this pointer) as
14181 artificial. We pass this information to
14182 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14183
14184 DWARF version 3 added DW_AT_object_pointer, which GCC
14185 4.5 does not yet generate. */
14186 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14187 if (attr)
14188 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14189 else
14190 {
14191 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14192
14193 /* GCC/43521: In java, the formal parameter
14194 "this" is sometimes not marked with DW_AT_artificial. */
14195 if (cu->language == language_java)
14196 {
14197 const char *name = dwarf2_name (child_die, cu);
14198
14199 if (name && !strcmp (name, "this"))
14200 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14201 }
14202 }
14203 arg_type = die_type (child_die, cu);
14204
14205 /* RealView does not mark THIS as const, which the testsuite
14206 expects. GCC marks THIS as const in method definitions,
14207 but not in the class specifications (GCC PR 43053). */
14208 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14209 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14210 {
14211 int is_this = 0;
14212 struct dwarf2_cu *arg_cu = cu;
14213 const char *name = dwarf2_name (child_die, cu);
14214
14215 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14216 if (attr)
14217 {
14218 /* If the compiler emits this, use it. */
14219 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14220 is_this = 1;
14221 }
14222 else if (name && strcmp (name, "this") == 0)
14223 /* Function definitions will have the argument names. */
14224 is_this = 1;
14225 else if (name == NULL && iparams == 0)
14226 /* Declarations may not have the names, so like
14227 elsewhere in GDB, assume an artificial first
14228 argument is "this". */
14229 is_this = 1;
14230
14231 if (is_this)
14232 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14233 arg_type, 0);
14234 }
14235
14236 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14237 iparams++;
14238 }
14239 child_die = sibling_die (child_die);
14240 }
14241 }
14242
14243 return ftype;
14244 }
14245
14246 static struct type *
14247 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14248 {
14249 struct objfile *objfile = cu->objfile;
14250 const char *name = NULL;
14251 struct type *this_type, *target_type;
14252
14253 name = dwarf2_full_name (NULL, die, cu);
14254 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14255 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14256 TYPE_NAME (this_type) = name;
14257 set_die_type (die, this_type, cu);
14258 target_type = die_type (die, cu);
14259 if (target_type != this_type)
14260 TYPE_TARGET_TYPE (this_type) = target_type;
14261 else
14262 {
14263 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14264 spec and cause infinite loops in GDB. */
14265 complaint (&symfile_complaints,
14266 _("Self-referential DW_TAG_typedef "
14267 "- DIE at 0x%x [in module %s]"),
14268 die->offset.sect_off, objfile_name (objfile));
14269 TYPE_TARGET_TYPE (this_type) = NULL;
14270 }
14271 return this_type;
14272 }
14273
14274 /* Find a representation of a given base type and install
14275 it in the TYPE field of the die. */
14276
14277 static struct type *
14278 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14279 {
14280 struct objfile *objfile = cu->objfile;
14281 struct type *type;
14282 struct attribute *attr;
14283 int encoding = 0, size = 0;
14284 const char *name;
14285 enum type_code code = TYPE_CODE_INT;
14286 int type_flags = 0;
14287 struct type *target_type = NULL;
14288
14289 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14290 if (attr)
14291 {
14292 encoding = DW_UNSND (attr);
14293 }
14294 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14295 if (attr)
14296 {
14297 size = DW_UNSND (attr);
14298 }
14299 name = dwarf2_name (die, cu);
14300 if (!name)
14301 {
14302 complaint (&symfile_complaints,
14303 _("DW_AT_name missing from DW_TAG_base_type"));
14304 }
14305
14306 switch (encoding)
14307 {
14308 case DW_ATE_address:
14309 /* Turn DW_ATE_address into a void * pointer. */
14310 code = TYPE_CODE_PTR;
14311 type_flags |= TYPE_FLAG_UNSIGNED;
14312 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14313 break;
14314 case DW_ATE_boolean:
14315 code = TYPE_CODE_BOOL;
14316 type_flags |= TYPE_FLAG_UNSIGNED;
14317 break;
14318 case DW_ATE_complex_float:
14319 code = TYPE_CODE_COMPLEX;
14320 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14321 break;
14322 case DW_ATE_decimal_float:
14323 code = TYPE_CODE_DECFLOAT;
14324 break;
14325 case DW_ATE_float:
14326 code = TYPE_CODE_FLT;
14327 break;
14328 case DW_ATE_signed:
14329 break;
14330 case DW_ATE_unsigned:
14331 type_flags |= TYPE_FLAG_UNSIGNED;
14332 if (cu->language == language_fortran
14333 && name
14334 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14335 code = TYPE_CODE_CHAR;
14336 break;
14337 case DW_ATE_signed_char:
14338 if (cu->language == language_ada || cu->language == language_m2
14339 || cu->language == language_pascal
14340 || cu->language == language_fortran)
14341 code = TYPE_CODE_CHAR;
14342 break;
14343 case DW_ATE_unsigned_char:
14344 if (cu->language == language_ada || cu->language == language_m2
14345 || cu->language == language_pascal
14346 || cu->language == language_fortran)
14347 code = TYPE_CODE_CHAR;
14348 type_flags |= TYPE_FLAG_UNSIGNED;
14349 break;
14350 case DW_ATE_UTF:
14351 /* We just treat this as an integer and then recognize the
14352 type by name elsewhere. */
14353 break;
14354
14355 default:
14356 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14357 dwarf_type_encoding_name (encoding));
14358 break;
14359 }
14360
14361 type = init_type (code, size, type_flags, NULL, objfile);
14362 TYPE_NAME (type) = name;
14363 TYPE_TARGET_TYPE (type) = target_type;
14364
14365 if (name && strcmp (name, "char") == 0)
14366 TYPE_NOSIGN (type) = 1;
14367
14368 return set_die_type (die, type, cu);
14369 }
14370
14371 /* Parse dwarf attribute if it's a block, reference or constant and put the
14372 resulting value of the attribute into struct bound_prop.
14373 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14374
14375 static int
14376 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14377 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14378 {
14379 struct dwarf2_property_baton *baton;
14380 struct obstack *obstack = &cu->objfile->objfile_obstack;
14381
14382 if (attr == NULL || prop == NULL)
14383 return 0;
14384
14385 if (attr_form_is_block (attr))
14386 {
14387 baton = obstack_alloc (obstack, sizeof (*baton));
14388 baton->referenced_type = NULL;
14389 baton->locexpr.per_cu = cu->per_cu;
14390 baton->locexpr.size = DW_BLOCK (attr)->size;
14391 baton->locexpr.data = DW_BLOCK (attr)->data;
14392 prop->data.baton = baton;
14393 prop->kind = PROP_LOCEXPR;
14394 gdb_assert (prop->data.baton != NULL);
14395 }
14396 else if (attr_form_is_ref (attr))
14397 {
14398 struct dwarf2_cu *target_cu = cu;
14399 struct die_info *target_die;
14400 struct attribute *target_attr;
14401
14402 target_die = follow_die_ref (die, attr, &target_cu);
14403 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14404 if (target_attr == NULL)
14405 return 0;
14406
14407 if (attr_form_is_section_offset (target_attr))
14408 {
14409 baton = obstack_alloc (obstack, sizeof (*baton));
14410 baton->referenced_type = die_type (target_die, target_cu);
14411 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14412 prop->data.baton = baton;
14413 prop->kind = PROP_LOCLIST;
14414 gdb_assert (prop->data.baton != NULL);
14415 }
14416 else if (attr_form_is_block (target_attr))
14417 {
14418 baton = obstack_alloc (obstack, sizeof (*baton));
14419 baton->referenced_type = die_type (target_die, target_cu);
14420 baton->locexpr.per_cu = cu->per_cu;
14421 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14422 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14423 prop->data.baton = baton;
14424 prop->kind = PROP_LOCEXPR;
14425 gdb_assert (prop->data.baton != NULL);
14426 }
14427 else
14428 {
14429 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14430 "dynamic property");
14431 return 0;
14432 }
14433 }
14434 else if (attr_form_is_constant (attr))
14435 {
14436 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14437 prop->kind = PROP_CONST;
14438 }
14439 else
14440 {
14441 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14442 dwarf2_name (die, cu));
14443 return 0;
14444 }
14445
14446 return 1;
14447 }
14448
14449 /* Read the given DW_AT_subrange DIE. */
14450
14451 static struct type *
14452 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14453 {
14454 struct type *base_type, *orig_base_type;
14455 struct type *range_type;
14456 struct attribute *attr;
14457 struct dynamic_prop low, high;
14458 int low_default_is_valid;
14459 int high_bound_is_count = 0;
14460 const char *name;
14461 LONGEST negative_mask;
14462
14463 orig_base_type = die_type (die, cu);
14464 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14465 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14466 creating the range type, but we use the result of check_typedef
14467 when examining properties of the type. */
14468 base_type = check_typedef (orig_base_type);
14469
14470 /* The die_type call above may have already set the type for this DIE. */
14471 range_type = get_die_type (die, cu);
14472 if (range_type)
14473 return range_type;
14474
14475 low.kind = PROP_CONST;
14476 high.kind = PROP_CONST;
14477 high.data.const_val = 0;
14478
14479 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14480 omitting DW_AT_lower_bound. */
14481 switch (cu->language)
14482 {
14483 case language_c:
14484 case language_cplus:
14485 low.data.const_val = 0;
14486 low_default_is_valid = 1;
14487 break;
14488 case language_fortran:
14489 low.data.const_val = 1;
14490 low_default_is_valid = 1;
14491 break;
14492 case language_d:
14493 case language_java:
14494 case language_objc:
14495 low.data.const_val = 0;
14496 low_default_is_valid = (cu->header.version >= 4);
14497 break;
14498 case language_ada:
14499 case language_m2:
14500 case language_pascal:
14501 low.data.const_val = 1;
14502 low_default_is_valid = (cu->header.version >= 4);
14503 break;
14504 default:
14505 low.data.const_val = 0;
14506 low_default_is_valid = 0;
14507 break;
14508 }
14509
14510 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14511 if (attr)
14512 attr_to_dynamic_prop (attr, die, cu, &low);
14513 else if (!low_default_is_valid)
14514 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14515 "- DIE at 0x%x [in module %s]"),
14516 die->offset.sect_off, objfile_name (cu->objfile));
14517
14518 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14519 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14520 {
14521 attr = dwarf2_attr (die, DW_AT_count, cu);
14522 if (attr_to_dynamic_prop (attr, die, cu, &high))
14523 {
14524 /* If bounds are constant do the final calculation here. */
14525 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14526 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14527 else
14528 high_bound_is_count = 1;
14529 }
14530 }
14531
14532 /* Dwarf-2 specifications explicitly allows to create subrange types
14533 without specifying a base type.
14534 In that case, the base type must be set to the type of
14535 the lower bound, upper bound or count, in that order, if any of these
14536 three attributes references an object that has a type.
14537 If no base type is found, the Dwarf-2 specifications say that
14538 a signed integer type of size equal to the size of an address should
14539 be used.
14540 For the following C code: `extern char gdb_int [];'
14541 GCC produces an empty range DIE.
14542 FIXME: muller/2010-05-28: Possible references to object for low bound,
14543 high bound or count are not yet handled by this code. */
14544 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14545 {
14546 struct objfile *objfile = cu->objfile;
14547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14548 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14549 struct type *int_type = objfile_type (objfile)->builtin_int;
14550
14551 /* Test "int", "long int", and "long long int" objfile types,
14552 and select the first one having a size above or equal to the
14553 architecture address size. */
14554 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14555 base_type = int_type;
14556 else
14557 {
14558 int_type = objfile_type (objfile)->builtin_long;
14559 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14560 base_type = int_type;
14561 else
14562 {
14563 int_type = objfile_type (objfile)->builtin_long_long;
14564 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14565 base_type = int_type;
14566 }
14567 }
14568 }
14569
14570 /* Normally, the DWARF producers are expected to use a signed
14571 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14572 But this is unfortunately not always the case, as witnessed
14573 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14574 is used instead. To work around that ambiguity, we treat
14575 the bounds as signed, and thus sign-extend their values, when
14576 the base type is signed. */
14577 negative_mask =
14578 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14579 if (low.kind == PROP_CONST
14580 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14581 low.data.const_val |= negative_mask;
14582 if (high.kind == PROP_CONST
14583 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14584 high.data.const_val |= negative_mask;
14585
14586 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14587
14588 if (high_bound_is_count)
14589 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14590
14591 /* Ada expects an empty array on no boundary attributes. */
14592 if (attr == NULL && cu->language != language_ada)
14593 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14594
14595 name = dwarf2_name (die, cu);
14596 if (name)
14597 TYPE_NAME (range_type) = name;
14598
14599 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14600 if (attr)
14601 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14602
14603 set_die_type (die, range_type, cu);
14604
14605 /* set_die_type should be already done. */
14606 set_descriptive_type (range_type, die, cu);
14607
14608 return range_type;
14609 }
14610
14611 static struct type *
14612 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14613 {
14614 struct type *type;
14615
14616 /* For now, we only support the C meaning of an unspecified type: void. */
14617
14618 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14619 TYPE_NAME (type) = dwarf2_name (die, cu);
14620
14621 return set_die_type (die, type, cu);
14622 }
14623
14624 /* Read a single die and all its descendents. Set the die's sibling
14625 field to NULL; set other fields in the die correctly, and set all
14626 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14627 location of the info_ptr after reading all of those dies. PARENT
14628 is the parent of the die in question. */
14629
14630 static struct die_info *
14631 read_die_and_children (const struct die_reader_specs *reader,
14632 const gdb_byte *info_ptr,
14633 const gdb_byte **new_info_ptr,
14634 struct die_info *parent)
14635 {
14636 struct die_info *die;
14637 const gdb_byte *cur_ptr;
14638 int has_children;
14639
14640 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14641 if (die == NULL)
14642 {
14643 *new_info_ptr = cur_ptr;
14644 return NULL;
14645 }
14646 store_in_ref_table (die, reader->cu);
14647
14648 if (has_children)
14649 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14650 else
14651 {
14652 die->child = NULL;
14653 *new_info_ptr = cur_ptr;
14654 }
14655
14656 die->sibling = NULL;
14657 die->parent = parent;
14658 return die;
14659 }
14660
14661 /* Read a die, all of its descendents, and all of its siblings; set
14662 all of the fields of all of the dies correctly. Arguments are as
14663 in read_die_and_children. */
14664
14665 static struct die_info *
14666 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14667 const gdb_byte *info_ptr,
14668 const gdb_byte **new_info_ptr,
14669 struct die_info *parent)
14670 {
14671 struct die_info *first_die, *last_sibling;
14672 const gdb_byte *cur_ptr;
14673
14674 cur_ptr = info_ptr;
14675 first_die = last_sibling = NULL;
14676
14677 while (1)
14678 {
14679 struct die_info *die
14680 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14681
14682 if (die == NULL)
14683 {
14684 *new_info_ptr = cur_ptr;
14685 return first_die;
14686 }
14687
14688 if (!first_die)
14689 first_die = die;
14690 else
14691 last_sibling->sibling = die;
14692
14693 last_sibling = die;
14694 }
14695 }
14696
14697 /* Read a die, all of its descendents, and all of its siblings; set
14698 all of the fields of all of the dies correctly. Arguments are as
14699 in read_die_and_children.
14700 This the main entry point for reading a DIE and all its children. */
14701
14702 static struct die_info *
14703 read_die_and_siblings (const struct die_reader_specs *reader,
14704 const gdb_byte *info_ptr,
14705 const gdb_byte **new_info_ptr,
14706 struct die_info *parent)
14707 {
14708 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14709 new_info_ptr, parent);
14710
14711 if (dwarf2_die_debug)
14712 {
14713 fprintf_unfiltered (gdb_stdlog,
14714 "Read die from %s@0x%x of %s:\n",
14715 get_section_name (reader->die_section),
14716 (unsigned) (info_ptr - reader->die_section->buffer),
14717 bfd_get_filename (reader->abfd));
14718 dump_die (die, dwarf2_die_debug);
14719 }
14720
14721 return die;
14722 }
14723
14724 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14725 attributes.
14726 The caller is responsible for filling in the extra attributes
14727 and updating (*DIEP)->num_attrs.
14728 Set DIEP to point to a newly allocated die with its information,
14729 except for its child, sibling, and parent fields.
14730 Set HAS_CHILDREN to tell whether the die has children or not. */
14731
14732 static const gdb_byte *
14733 read_full_die_1 (const struct die_reader_specs *reader,
14734 struct die_info **diep, const gdb_byte *info_ptr,
14735 int *has_children, int num_extra_attrs)
14736 {
14737 unsigned int abbrev_number, bytes_read, i;
14738 sect_offset offset;
14739 struct abbrev_info *abbrev;
14740 struct die_info *die;
14741 struct dwarf2_cu *cu = reader->cu;
14742 bfd *abfd = reader->abfd;
14743
14744 offset.sect_off = info_ptr - reader->buffer;
14745 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14746 info_ptr += bytes_read;
14747 if (!abbrev_number)
14748 {
14749 *diep = NULL;
14750 *has_children = 0;
14751 return info_ptr;
14752 }
14753
14754 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14755 if (!abbrev)
14756 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14757 abbrev_number,
14758 bfd_get_filename (abfd));
14759
14760 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14761 die->offset = offset;
14762 die->tag = abbrev->tag;
14763 die->abbrev = abbrev_number;
14764
14765 /* Make the result usable.
14766 The caller needs to update num_attrs after adding the extra
14767 attributes. */
14768 die->num_attrs = abbrev->num_attrs;
14769
14770 for (i = 0; i < abbrev->num_attrs; ++i)
14771 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14772 info_ptr);
14773
14774 *diep = die;
14775 *has_children = abbrev->has_children;
14776 return info_ptr;
14777 }
14778
14779 /* Read a die and all its attributes.
14780 Set DIEP to point to a newly allocated die with its information,
14781 except for its child, sibling, and parent fields.
14782 Set HAS_CHILDREN to tell whether the die has children or not. */
14783
14784 static const gdb_byte *
14785 read_full_die (const struct die_reader_specs *reader,
14786 struct die_info **diep, const gdb_byte *info_ptr,
14787 int *has_children)
14788 {
14789 const gdb_byte *result;
14790
14791 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14792
14793 if (dwarf2_die_debug)
14794 {
14795 fprintf_unfiltered (gdb_stdlog,
14796 "Read die from %s@0x%x of %s:\n",
14797 get_section_name (reader->die_section),
14798 (unsigned) (info_ptr - reader->die_section->buffer),
14799 bfd_get_filename (reader->abfd));
14800 dump_die (*diep, dwarf2_die_debug);
14801 }
14802
14803 return result;
14804 }
14805 \f
14806 /* Abbreviation tables.
14807
14808 In DWARF version 2, the description of the debugging information is
14809 stored in a separate .debug_abbrev section. Before we read any
14810 dies from a section we read in all abbreviations and install them
14811 in a hash table. */
14812
14813 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14814
14815 static struct abbrev_info *
14816 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14817 {
14818 struct abbrev_info *abbrev;
14819
14820 abbrev = (struct abbrev_info *)
14821 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14822 memset (abbrev, 0, sizeof (struct abbrev_info));
14823 return abbrev;
14824 }
14825
14826 /* Add an abbreviation to the table. */
14827
14828 static void
14829 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14830 unsigned int abbrev_number,
14831 struct abbrev_info *abbrev)
14832 {
14833 unsigned int hash_number;
14834
14835 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14836 abbrev->next = abbrev_table->abbrevs[hash_number];
14837 abbrev_table->abbrevs[hash_number] = abbrev;
14838 }
14839
14840 /* Look up an abbrev in the table.
14841 Returns NULL if the abbrev is not found. */
14842
14843 static struct abbrev_info *
14844 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14845 unsigned int abbrev_number)
14846 {
14847 unsigned int hash_number;
14848 struct abbrev_info *abbrev;
14849
14850 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14851 abbrev = abbrev_table->abbrevs[hash_number];
14852
14853 while (abbrev)
14854 {
14855 if (abbrev->number == abbrev_number)
14856 return abbrev;
14857 abbrev = abbrev->next;
14858 }
14859 return NULL;
14860 }
14861
14862 /* Read in an abbrev table. */
14863
14864 static struct abbrev_table *
14865 abbrev_table_read_table (struct dwarf2_section_info *section,
14866 sect_offset offset)
14867 {
14868 struct objfile *objfile = dwarf2_per_objfile->objfile;
14869 bfd *abfd = get_section_bfd_owner (section);
14870 struct abbrev_table *abbrev_table;
14871 const gdb_byte *abbrev_ptr;
14872 struct abbrev_info *cur_abbrev;
14873 unsigned int abbrev_number, bytes_read, abbrev_name;
14874 unsigned int abbrev_form;
14875 struct attr_abbrev *cur_attrs;
14876 unsigned int allocated_attrs;
14877
14878 abbrev_table = XNEW (struct abbrev_table);
14879 abbrev_table->offset = offset;
14880 obstack_init (&abbrev_table->abbrev_obstack);
14881 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14882 (ABBREV_HASH_SIZE
14883 * sizeof (struct abbrev_info *)));
14884 memset (abbrev_table->abbrevs, 0,
14885 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14886
14887 dwarf2_read_section (objfile, section);
14888 abbrev_ptr = section->buffer + offset.sect_off;
14889 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14890 abbrev_ptr += bytes_read;
14891
14892 allocated_attrs = ATTR_ALLOC_CHUNK;
14893 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14894
14895 /* Loop until we reach an abbrev number of 0. */
14896 while (abbrev_number)
14897 {
14898 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14899
14900 /* read in abbrev header */
14901 cur_abbrev->number = abbrev_number;
14902 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14903 abbrev_ptr += bytes_read;
14904 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14905 abbrev_ptr += 1;
14906
14907 /* now read in declarations */
14908 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14909 abbrev_ptr += bytes_read;
14910 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14911 abbrev_ptr += bytes_read;
14912 while (abbrev_name)
14913 {
14914 if (cur_abbrev->num_attrs == allocated_attrs)
14915 {
14916 allocated_attrs += ATTR_ALLOC_CHUNK;
14917 cur_attrs
14918 = xrealloc (cur_attrs, (allocated_attrs
14919 * sizeof (struct attr_abbrev)));
14920 }
14921
14922 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14923 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14924 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14925 abbrev_ptr += bytes_read;
14926 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14927 abbrev_ptr += bytes_read;
14928 }
14929
14930 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14931 (cur_abbrev->num_attrs
14932 * sizeof (struct attr_abbrev)));
14933 memcpy (cur_abbrev->attrs, cur_attrs,
14934 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14935
14936 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14937
14938 /* Get next abbreviation.
14939 Under Irix6 the abbreviations for a compilation unit are not
14940 always properly terminated with an abbrev number of 0.
14941 Exit loop if we encounter an abbreviation which we have
14942 already read (which means we are about to read the abbreviations
14943 for the next compile unit) or if the end of the abbreviation
14944 table is reached. */
14945 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14946 break;
14947 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14948 abbrev_ptr += bytes_read;
14949 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14950 break;
14951 }
14952
14953 xfree (cur_attrs);
14954 return abbrev_table;
14955 }
14956
14957 /* Free the resources held by ABBREV_TABLE. */
14958
14959 static void
14960 abbrev_table_free (struct abbrev_table *abbrev_table)
14961 {
14962 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14963 xfree (abbrev_table);
14964 }
14965
14966 /* Same as abbrev_table_free but as a cleanup.
14967 We pass in a pointer to the pointer to the table so that we can
14968 set the pointer to NULL when we're done. It also simplifies
14969 build_type_psymtabs_1. */
14970
14971 static void
14972 abbrev_table_free_cleanup (void *table_ptr)
14973 {
14974 struct abbrev_table **abbrev_table_ptr = table_ptr;
14975
14976 if (*abbrev_table_ptr != NULL)
14977 abbrev_table_free (*abbrev_table_ptr);
14978 *abbrev_table_ptr = NULL;
14979 }
14980
14981 /* Read the abbrev table for CU from ABBREV_SECTION. */
14982
14983 static void
14984 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14985 struct dwarf2_section_info *abbrev_section)
14986 {
14987 cu->abbrev_table =
14988 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14989 }
14990
14991 /* Release the memory used by the abbrev table for a compilation unit. */
14992
14993 static void
14994 dwarf2_free_abbrev_table (void *ptr_to_cu)
14995 {
14996 struct dwarf2_cu *cu = ptr_to_cu;
14997
14998 if (cu->abbrev_table != NULL)
14999 abbrev_table_free (cu->abbrev_table);
15000 /* Set this to NULL so that we SEGV if we try to read it later,
15001 and also because free_comp_unit verifies this is NULL. */
15002 cu->abbrev_table = NULL;
15003 }
15004 \f
15005 /* Returns nonzero if TAG represents a type that we might generate a partial
15006 symbol for. */
15007
15008 static int
15009 is_type_tag_for_partial (int tag)
15010 {
15011 switch (tag)
15012 {
15013 #if 0
15014 /* Some types that would be reasonable to generate partial symbols for,
15015 that we don't at present. */
15016 case DW_TAG_array_type:
15017 case DW_TAG_file_type:
15018 case DW_TAG_ptr_to_member_type:
15019 case DW_TAG_set_type:
15020 case DW_TAG_string_type:
15021 case DW_TAG_subroutine_type:
15022 #endif
15023 case DW_TAG_base_type:
15024 case DW_TAG_class_type:
15025 case DW_TAG_interface_type:
15026 case DW_TAG_enumeration_type:
15027 case DW_TAG_structure_type:
15028 case DW_TAG_subrange_type:
15029 case DW_TAG_typedef:
15030 case DW_TAG_union_type:
15031 return 1;
15032 default:
15033 return 0;
15034 }
15035 }
15036
15037 /* Load all DIEs that are interesting for partial symbols into memory. */
15038
15039 static struct partial_die_info *
15040 load_partial_dies (const struct die_reader_specs *reader,
15041 const gdb_byte *info_ptr, int building_psymtab)
15042 {
15043 struct dwarf2_cu *cu = reader->cu;
15044 struct objfile *objfile = cu->objfile;
15045 struct partial_die_info *part_die;
15046 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15047 struct abbrev_info *abbrev;
15048 unsigned int bytes_read;
15049 unsigned int load_all = 0;
15050 int nesting_level = 1;
15051
15052 parent_die = NULL;
15053 last_die = NULL;
15054
15055 gdb_assert (cu->per_cu != NULL);
15056 if (cu->per_cu->load_all_dies)
15057 load_all = 1;
15058
15059 cu->partial_dies
15060 = htab_create_alloc_ex (cu->header.length / 12,
15061 partial_die_hash,
15062 partial_die_eq,
15063 NULL,
15064 &cu->comp_unit_obstack,
15065 hashtab_obstack_allocate,
15066 dummy_obstack_deallocate);
15067
15068 part_die = obstack_alloc (&cu->comp_unit_obstack,
15069 sizeof (struct partial_die_info));
15070
15071 while (1)
15072 {
15073 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15074
15075 /* A NULL abbrev means the end of a series of children. */
15076 if (abbrev == NULL)
15077 {
15078 if (--nesting_level == 0)
15079 {
15080 /* PART_DIE was probably the last thing allocated on the
15081 comp_unit_obstack, so we could call obstack_free
15082 here. We don't do that because the waste is small,
15083 and will be cleaned up when we're done with this
15084 compilation unit. This way, we're also more robust
15085 against other users of the comp_unit_obstack. */
15086 return first_die;
15087 }
15088 info_ptr += bytes_read;
15089 last_die = parent_die;
15090 parent_die = parent_die->die_parent;
15091 continue;
15092 }
15093
15094 /* Check for template arguments. We never save these; if
15095 they're seen, we just mark the parent, and go on our way. */
15096 if (parent_die != NULL
15097 && cu->language == language_cplus
15098 && (abbrev->tag == DW_TAG_template_type_param
15099 || abbrev->tag == DW_TAG_template_value_param))
15100 {
15101 parent_die->has_template_arguments = 1;
15102
15103 if (!load_all)
15104 {
15105 /* We don't need a partial DIE for the template argument. */
15106 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15107 continue;
15108 }
15109 }
15110
15111 /* We only recurse into c++ subprograms looking for template arguments.
15112 Skip their other children. */
15113 if (!load_all
15114 && cu->language == language_cplus
15115 && parent_die != NULL
15116 && parent_die->tag == DW_TAG_subprogram)
15117 {
15118 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15119 continue;
15120 }
15121
15122 /* Check whether this DIE is interesting enough to save. Normally
15123 we would not be interested in members here, but there may be
15124 later variables referencing them via DW_AT_specification (for
15125 static members). */
15126 if (!load_all
15127 && !is_type_tag_for_partial (abbrev->tag)
15128 && abbrev->tag != DW_TAG_constant
15129 && abbrev->tag != DW_TAG_enumerator
15130 && abbrev->tag != DW_TAG_subprogram
15131 && abbrev->tag != DW_TAG_lexical_block
15132 && abbrev->tag != DW_TAG_variable
15133 && abbrev->tag != DW_TAG_namespace
15134 && abbrev->tag != DW_TAG_module
15135 && abbrev->tag != DW_TAG_member
15136 && abbrev->tag != DW_TAG_imported_unit
15137 && abbrev->tag != DW_TAG_imported_declaration)
15138 {
15139 /* Otherwise we skip to the next sibling, if any. */
15140 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15141 continue;
15142 }
15143
15144 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15145 info_ptr);
15146
15147 /* This two-pass algorithm for processing partial symbols has a
15148 high cost in cache pressure. Thus, handle some simple cases
15149 here which cover the majority of C partial symbols. DIEs
15150 which neither have specification tags in them, nor could have
15151 specification tags elsewhere pointing at them, can simply be
15152 processed and discarded.
15153
15154 This segment is also optional; scan_partial_symbols and
15155 add_partial_symbol will handle these DIEs if we chain
15156 them in normally. When compilers which do not emit large
15157 quantities of duplicate debug information are more common,
15158 this code can probably be removed. */
15159
15160 /* Any complete simple types at the top level (pretty much all
15161 of them, for a language without namespaces), can be processed
15162 directly. */
15163 if (parent_die == NULL
15164 && part_die->has_specification == 0
15165 && part_die->is_declaration == 0
15166 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15167 || part_die->tag == DW_TAG_base_type
15168 || part_die->tag == DW_TAG_subrange_type))
15169 {
15170 if (building_psymtab && part_die->name != NULL)
15171 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15172 VAR_DOMAIN, LOC_TYPEDEF,
15173 &objfile->static_psymbols,
15174 0, (CORE_ADDR) 0, cu->language, objfile);
15175 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15176 continue;
15177 }
15178
15179 /* The exception for DW_TAG_typedef with has_children above is
15180 a workaround of GCC PR debug/47510. In the case of this complaint
15181 type_name_no_tag_or_error will error on such types later.
15182
15183 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15184 it could not find the child DIEs referenced later, this is checked
15185 above. In correct DWARF DW_TAG_typedef should have no children. */
15186
15187 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15188 complaint (&symfile_complaints,
15189 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15190 "- DIE at 0x%x [in module %s]"),
15191 part_die->offset.sect_off, objfile_name (objfile));
15192
15193 /* If we're at the second level, and we're an enumerator, and
15194 our parent has no specification (meaning possibly lives in a
15195 namespace elsewhere), then we can add the partial symbol now
15196 instead of queueing it. */
15197 if (part_die->tag == DW_TAG_enumerator
15198 && parent_die != NULL
15199 && parent_die->die_parent == NULL
15200 && parent_die->tag == DW_TAG_enumeration_type
15201 && parent_die->has_specification == 0)
15202 {
15203 if (part_die->name == NULL)
15204 complaint (&symfile_complaints,
15205 _("malformed enumerator DIE ignored"));
15206 else if (building_psymtab)
15207 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15208 VAR_DOMAIN, LOC_CONST,
15209 (cu->language == language_cplus
15210 || cu->language == language_java)
15211 ? &objfile->global_psymbols
15212 : &objfile->static_psymbols,
15213 0, (CORE_ADDR) 0, cu->language, objfile);
15214
15215 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15216 continue;
15217 }
15218
15219 /* We'll save this DIE so link it in. */
15220 part_die->die_parent = parent_die;
15221 part_die->die_sibling = NULL;
15222 part_die->die_child = NULL;
15223
15224 if (last_die && last_die == parent_die)
15225 last_die->die_child = part_die;
15226 else if (last_die)
15227 last_die->die_sibling = part_die;
15228
15229 last_die = part_die;
15230
15231 if (first_die == NULL)
15232 first_die = part_die;
15233
15234 /* Maybe add the DIE to the hash table. Not all DIEs that we
15235 find interesting need to be in the hash table, because we
15236 also have the parent/sibling/child chains; only those that we
15237 might refer to by offset later during partial symbol reading.
15238
15239 For now this means things that might have be the target of a
15240 DW_AT_specification, DW_AT_abstract_origin, or
15241 DW_AT_extension. DW_AT_extension will refer only to
15242 namespaces; DW_AT_abstract_origin refers to functions (and
15243 many things under the function DIE, but we do not recurse
15244 into function DIEs during partial symbol reading) and
15245 possibly variables as well; DW_AT_specification refers to
15246 declarations. Declarations ought to have the DW_AT_declaration
15247 flag. It happens that GCC forgets to put it in sometimes, but
15248 only for functions, not for types.
15249
15250 Adding more things than necessary to the hash table is harmless
15251 except for the performance cost. Adding too few will result in
15252 wasted time in find_partial_die, when we reread the compilation
15253 unit with load_all_dies set. */
15254
15255 if (load_all
15256 || abbrev->tag == DW_TAG_constant
15257 || abbrev->tag == DW_TAG_subprogram
15258 || abbrev->tag == DW_TAG_variable
15259 || abbrev->tag == DW_TAG_namespace
15260 || part_die->is_declaration)
15261 {
15262 void **slot;
15263
15264 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15265 part_die->offset.sect_off, INSERT);
15266 *slot = part_die;
15267 }
15268
15269 part_die = obstack_alloc (&cu->comp_unit_obstack,
15270 sizeof (struct partial_die_info));
15271
15272 /* For some DIEs we want to follow their children (if any). For C
15273 we have no reason to follow the children of structures; for other
15274 languages we have to, so that we can get at method physnames
15275 to infer fully qualified class names, for DW_AT_specification,
15276 and for C++ template arguments. For C++, we also look one level
15277 inside functions to find template arguments (if the name of the
15278 function does not already contain the template arguments).
15279
15280 For Ada, we need to scan the children of subprograms and lexical
15281 blocks as well because Ada allows the definition of nested
15282 entities that could be interesting for the debugger, such as
15283 nested subprograms for instance. */
15284 if (last_die->has_children
15285 && (load_all
15286 || last_die->tag == DW_TAG_namespace
15287 || last_die->tag == DW_TAG_module
15288 || last_die->tag == DW_TAG_enumeration_type
15289 || (cu->language == language_cplus
15290 && last_die->tag == DW_TAG_subprogram
15291 && (last_die->name == NULL
15292 || strchr (last_die->name, '<') == NULL))
15293 || (cu->language != language_c
15294 && (last_die->tag == DW_TAG_class_type
15295 || last_die->tag == DW_TAG_interface_type
15296 || last_die->tag == DW_TAG_structure_type
15297 || last_die->tag == DW_TAG_union_type))
15298 || (cu->language == language_ada
15299 && (last_die->tag == DW_TAG_subprogram
15300 || last_die->tag == DW_TAG_lexical_block))))
15301 {
15302 nesting_level++;
15303 parent_die = last_die;
15304 continue;
15305 }
15306
15307 /* Otherwise we skip to the next sibling, if any. */
15308 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15309
15310 /* Back to the top, do it again. */
15311 }
15312 }
15313
15314 /* Read a minimal amount of information into the minimal die structure. */
15315
15316 static const gdb_byte *
15317 read_partial_die (const struct die_reader_specs *reader,
15318 struct partial_die_info *part_die,
15319 struct abbrev_info *abbrev, unsigned int abbrev_len,
15320 const gdb_byte *info_ptr)
15321 {
15322 struct dwarf2_cu *cu = reader->cu;
15323 struct objfile *objfile = cu->objfile;
15324 const gdb_byte *buffer = reader->buffer;
15325 unsigned int i;
15326 struct attribute attr;
15327 int has_low_pc_attr = 0;
15328 int has_high_pc_attr = 0;
15329 int high_pc_relative = 0;
15330
15331 memset (part_die, 0, sizeof (struct partial_die_info));
15332
15333 part_die->offset.sect_off = info_ptr - buffer;
15334
15335 info_ptr += abbrev_len;
15336
15337 if (abbrev == NULL)
15338 return info_ptr;
15339
15340 part_die->tag = abbrev->tag;
15341 part_die->has_children = abbrev->has_children;
15342
15343 for (i = 0; i < abbrev->num_attrs; ++i)
15344 {
15345 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15346
15347 /* Store the data if it is of an attribute we want to keep in a
15348 partial symbol table. */
15349 switch (attr.name)
15350 {
15351 case DW_AT_name:
15352 switch (part_die->tag)
15353 {
15354 case DW_TAG_compile_unit:
15355 case DW_TAG_partial_unit:
15356 case DW_TAG_type_unit:
15357 /* Compilation units have a DW_AT_name that is a filename, not
15358 a source language identifier. */
15359 case DW_TAG_enumeration_type:
15360 case DW_TAG_enumerator:
15361 /* These tags always have simple identifiers already; no need
15362 to canonicalize them. */
15363 part_die->name = DW_STRING (&attr);
15364 break;
15365 default:
15366 part_die->name
15367 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15368 &objfile->objfile_obstack);
15369 break;
15370 }
15371 break;
15372 case DW_AT_linkage_name:
15373 case DW_AT_MIPS_linkage_name:
15374 /* Note that both forms of linkage name might appear. We
15375 assume they will be the same, and we only store the last
15376 one we see. */
15377 if (cu->language == language_ada)
15378 part_die->name = DW_STRING (&attr);
15379 part_die->linkage_name = DW_STRING (&attr);
15380 break;
15381 case DW_AT_low_pc:
15382 has_low_pc_attr = 1;
15383 part_die->lowpc = attr_value_as_address (&attr);
15384 break;
15385 case DW_AT_high_pc:
15386 has_high_pc_attr = 1;
15387 part_die->highpc = attr_value_as_address (&attr);
15388 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15389 high_pc_relative = 1;
15390 break;
15391 case DW_AT_location:
15392 /* Support the .debug_loc offsets. */
15393 if (attr_form_is_block (&attr))
15394 {
15395 part_die->d.locdesc = DW_BLOCK (&attr);
15396 }
15397 else if (attr_form_is_section_offset (&attr))
15398 {
15399 dwarf2_complex_location_expr_complaint ();
15400 }
15401 else
15402 {
15403 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15404 "partial symbol information");
15405 }
15406 break;
15407 case DW_AT_external:
15408 part_die->is_external = DW_UNSND (&attr);
15409 break;
15410 case DW_AT_declaration:
15411 part_die->is_declaration = DW_UNSND (&attr);
15412 break;
15413 case DW_AT_type:
15414 part_die->has_type = 1;
15415 break;
15416 case DW_AT_abstract_origin:
15417 case DW_AT_specification:
15418 case DW_AT_extension:
15419 part_die->has_specification = 1;
15420 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15421 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15422 || cu->per_cu->is_dwz);
15423 break;
15424 case DW_AT_sibling:
15425 /* Ignore absolute siblings, they might point outside of
15426 the current compile unit. */
15427 if (attr.form == DW_FORM_ref_addr)
15428 complaint (&symfile_complaints,
15429 _("ignoring absolute DW_AT_sibling"));
15430 else
15431 {
15432 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15433 const gdb_byte *sibling_ptr = buffer + off;
15434
15435 if (sibling_ptr < info_ptr)
15436 complaint (&symfile_complaints,
15437 _("DW_AT_sibling points backwards"));
15438 else if (sibling_ptr > reader->buffer_end)
15439 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15440 else
15441 part_die->sibling = sibling_ptr;
15442 }
15443 break;
15444 case DW_AT_byte_size:
15445 part_die->has_byte_size = 1;
15446 break;
15447 case DW_AT_calling_convention:
15448 /* DWARF doesn't provide a way to identify a program's source-level
15449 entry point. DW_AT_calling_convention attributes are only meant
15450 to describe functions' calling conventions.
15451
15452 However, because it's a necessary piece of information in
15453 Fortran, and because DW_CC_program is the only piece of debugging
15454 information whose definition refers to a 'main program' at all,
15455 several compilers have begun marking Fortran main programs with
15456 DW_CC_program --- even when those functions use the standard
15457 calling conventions.
15458
15459 So until DWARF specifies a way to provide this information and
15460 compilers pick up the new representation, we'll support this
15461 practice. */
15462 if (DW_UNSND (&attr) == DW_CC_program
15463 && cu->language == language_fortran)
15464 set_objfile_main_name (objfile, part_die->name, language_fortran);
15465 break;
15466 case DW_AT_inline:
15467 if (DW_UNSND (&attr) == DW_INL_inlined
15468 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15469 part_die->may_be_inlined = 1;
15470 break;
15471
15472 case DW_AT_import:
15473 if (part_die->tag == DW_TAG_imported_unit)
15474 {
15475 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15476 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15477 || cu->per_cu->is_dwz);
15478 }
15479 break;
15480
15481 default:
15482 break;
15483 }
15484 }
15485
15486 if (high_pc_relative)
15487 part_die->highpc += part_die->lowpc;
15488
15489 if (has_low_pc_attr && has_high_pc_attr)
15490 {
15491 /* When using the GNU linker, .gnu.linkonce. sections are used to
15492 eliminate duplicate copies of functions and vtables and such.
15493 The linker will arbitrarily choose one and discard the others.
15494 The AT_*_pc values for such functions refer to local labels in
15495 these sections. If the section from that file was discarded, the
15496 labels are not in the output, so the relocs get a value of 0.
15497 If this is a discarded function, mark the pc bounds as invalid,
15498 so that GDB will ignore it. */
15499 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15500 {
15501 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15502
15503 complaint (&symfile_complaints,
15504 _("DW_AT_low_pc %s is zero "
15505 "for DIE at 0x%x [in module %s]"),
15506 paddress (gdbarch, part_die->lowpc),
15507 part_die->offset.sect_off, objfile_name (objfile));
15508 }
15509 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15510 else if (part_die->lowpc >= part_die->highpc)
15511 {
15512 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15513
15514 complaint (&symfile_complaints,
15515 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15516 "for DIE at 0x%x [in module %s]"),
15517 paddress (gdbarch, part_die->lowpc),
15518 paddress (gdbarch, part_die->highpc),
15519 part_die->offset.sect_off, objfile_name (objfile));
15520 }
15521 else
15522 part_die->has_pc_info = 1;
15523 }
15524
15525 return info_ptr;
15526 }
15527
15528 /* Find a cached partial DIE at OFFSET in CU. */
15529
15530 static struct partial_die_info *
15531 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15532 {
15533 struct partial_die_info *lookup_die = NULL;
15534 struct partial_die_info part_die;
15535
15536 part_die.offset = offset;
15537 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15538 offset.sect_off);
15539
15540 return lookup_die;
15541 }
15542
15543 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15544 except in the case of .debug_types DIEs which do not reference
15545 outside their CU (they do however referencing other types via
15546 DW_FORM_ref_sig8). */
15547
15548 static struct partial_die_info *
15549 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15550 {
15551 struct objfile *objfile = cu->objfile;
15552 struct dwarf2_per_cu_data *per_cu = NULL;
15553 struct partial_die_info *pd = NULL;
15554
15555 if (offset_in_dwz == cu->per_cu->is_dwz
15556 && offset_in_cu_p (&cu->header, offset))
15557 {
15558 pd = find_partial_die_in_comp_unit (offset, cu);
15559 if (pd != NULL)
15560 return pd;
15561 /* We missed recording what we needed.
15562 Load all dies and try again. */
15563 per_cu = cu->per_cu;
15564 }
15565 else
15566 {
15567 /* TUs don't reference other CUs/TUs (except via type signatures). */
15568 if (cu->per_cu->is_debug_types)
15569 {
15570 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15571 " external reference to offset 0x%lx [in module %s].\n"),
15572 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15573 bfd_get_filename (objfile->obfd));
15574 }
15575 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15576 objfile);
15577
15578 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15579 load_partial_comp_unit (per_cu);
15580
15581 per_cu->cu->last_used = 0;
15582 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15583 }
15584
15585 /* If we didn't find it, and not all dies have been loaded,
15586 load them all and try again. */
15587
15588 if (pd == NULL && per_cu->load_all_dies == 0)
15589 {
15590 per_cu->load_all_dies = 1;
15591
15592 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15593 THIS_CU->cu may already be in use. So we can't just free it and
15594 replace its DIEs with the ones we read in. Instead, we leave those
15595 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15596 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15597 set. */
15598 load_partial_comp_unit (per_cu);
15599
15600 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15601 }
15602
15603 if (pd == NULL)
15604 internal_error (__FILE__, __LINE__,
15605 _("could not find partial DIE 0x%x "
15606 "in cache [from module %s]\n"),
15607 offset.sect_off, bfd_get_filename (objfile->obfd));
15608 return pd;
15609 }
15610
15611 /* See if we can figure out if the class lives in a namespace. We do
15612 this by looking for a member function; its demangled name will
15613 contain namespace info, if there is any. */
15614
15615 static void
15616 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15617 struct dwarf2_cu *cu)
15618 {
15619 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15620 what template types look like, because the demangler
15621 frequently doesn't give the same name as the debug info. We
15622 could fix this by only using the demangled name to get the
15623 prefix (but see comment in read_structure_type). */
15624
15625 struct partial_die_info *real_pdi;
15626 struct partial_die_info *child_pdi;
15627
15628 /* If this DIE (this DIE's specification, if any) has a parent, then
15629 we should not do this. We'll prepend the parent's fully qualified
15630 name when we create the partial symbol. */
15631
15632 real_pdi = struct_pdi;
15633 while (real_pdi->has_specification)
15634 real_pdi = find_partial_die (real_pdi->spec_offset,
15635 real_pdi->spec_is_dwz, cu);
15636
15637 if (real_pdi->die_parent != NULL)
15638 return;
15639
15640 for (child_pdi = struct_pdi->die_child;
15641 child_pdi != NULL;
15642 child_pdi = child_pdi->die_sibling)
15643 {
15644 if (child_pdi->tag == DW_TAG_subprogram
15645 && child_pdi->linkage_name != NULL)
15646 {
15647 char *actual_class_name
15648 = language_class_name_from_physname (cu->language_defn,
15649 child_pdi->linkage_name);
15650 if (actual_class_name != NULL)
15651 {
15652 struct_pdi->name
15653 = obstack_copy0 (&cu->objfile->objfile_obstack,
15654 actual_class_name,
15655 strlen (actual_class_name));
15656 xfree (actual_class_name);
15657 }
15658 break;
15659 }
15660 }
15661 }
15662
15663 /* Adjust PART_DIE before generating a symbol for it. This function
15664 may set the is_external flag or change the DIE's name. */
15665
15666 static void
15667 fixup_partial_die (struct partial_die_info *part_die,
15668 struct dwarf2_cu *cu)
15669 {
15670 /* Once we've fixed up a die, there's no point in doing so again.
15671 This also avoids a memory leak if we were to call
15672 guess_partial_die_structure_name multiple times. */
15673 if (part_die->fixup_called)
15674 return;
15675
15676 /* If we found a reference attribute and the DIE has no name, try
15677 to find a name in the referred to DIE. */
15678
15679 if (part_die->name == NULL && part_die->has_specification)
15680 {
15681 struct partial_die_info *spec_die;
15682
15683 spec_die = find_partial_die (part_die->spec_offset,
15684 part_die->spec_is_dwz, cu);
15685
15686 fixup_partial_die (spec_die, cu);
15687
15688 if (spec_die->name)
15689 {
15690 part_die->name = spec_die->name;
15691
15692 /* Copy DW_AT_external attribute if it is set. */
15693 if (spec_die->is_external)
15694 part_die->is_external = spec_die->is_external;
15695 }
15696 }
15697
15698 /* Set default names for some unnamed DIEs. */
15699
15700 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15701 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15702
15703 /* If there is no parent die to provide a namespace, and there are
15704 children, see if we can determine the namespace from their linkage
15705 name. */
15706 if (cu->language == language_cplus
15707 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15708 && part_die->die_parent == NULL
15709 && part_die->has_children
15710 && (part_die->tag == DW_TAG_class_type
15711 || part_die->tag == DW_TAG_structure_type
15712 || part_die->tag == DW_TAG_union_type))
15713 guess_partial_die_structure_name (part_die, cu);
15714
15715 /* GCC might emit a nameless struct or union that has a linkage
15716 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15717 if (part_die->name == NULL
15718 && (part_die->tag == DW_TAG_class_type
15719 || part_die->tag == DW_TAG_interface_type
15720 || part_die->tag == DW_TAG_structure_type
15721 || part_die->tag == DW_TAG_union_type)
15722 && part_die->linkage_name != NULL)
15723 {
15724 char *demangled;
15725
15726 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15727 if (demangled)
15728 {
15729 const char *base;
15730
15731 /* Strip any leading namespaces/classes, keep only the base name.
15732 DW_AT_name for named DIEs does not contain the prefixes. */
15733 base = strrchr (demangled, ':');
15734 if (base && base > demangled && base[-1] == ':')
15735 base++;
15736 else
15737 base = demangled;
15738
15739 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15740 base, strlen (base));
15741 xfree (demangled);
15742 }
15743 }
15744
15745 part_die->fixup_called = 1;
15746 }
15747
15748 /* Read an attribute value described by an attribute form. */
15749
15750 static const gdb_byte *
15751 read_attribute_value (const struct die_reader_specs *reader,
15752 struct attribute *attr, unsigned form,
15753 const gdb_byte *info_ptr)
15754 {
15755 struct dwarf2_cu *cu = reader->cu;
15756 bfd *abfd = reader->abfd;
15757 struct comp_unit_head *cu_header = &cu->header;
15758 unsigned int bytes_read;
15759 struct dwarf_block *blk;
15760
15761 attr->form = form;
15762 switch (form)
15763 {
15764 case DW_FORM_ref_addr:
15765 if (cu->header.version == 2)
15766 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15767 else
15768 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15769 &cu->header, &bytes_read);
15770 info_ptr += bytes_read;
15771 break;
15772 case DW_FORM_GNU_ref_alt:
15773 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15774 info_ptr += bytes_read;
15775 break;
15776 case DW_FORM_addr:
15777 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15778 info_ptr += bytes_read;
15779 break;
15780 case DW_FORM_block2:
15781 blk = dwarf_alloc_block (cu);
15782 blk->size = read_2_bytes (abfd, info_ptr);
15783 info_ptr += 2;
15784 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15785 info_ptr += blk->size;
15786 DW_BLOCK (attr) = blk;
15787 break;
15788 case DW_FORM_block4:
15789 blk = dwarf_alloc_block (cu);
15790 blk->size = read_4_bytes (abfd, info_ptr);
15791 info_ptr += 4;
15792 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15793 info_ptr += blk->size;
15794 DW_BLOCK (attr) = blk;
15795 break;
15796 case DW_FORM_data2:
15797 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15798 info_ptr += 2;
15799 break;
15800 case DW_FORM_data4:
15801 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15802 info_ptr += 4;
15803 break;
15804 case DW_FORM_data8:
15805 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15806 info_ptr += 8;
15807 break;
15808 case DW_FORM_sec_offset:
15809 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15810 info_ptr += bytes_read;
15811 break;
15812 case DW_FORM_string:
15813 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15814 DW_STRING_IS_CANONICAL (attr) = 0;
15815 info_ptr += bytes_read;
15816 break;
15817 case DW_FORM_strp:
15818 if (!cu->per_cu->is_dwz)
15819 {
15820 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15821 &bytes_read);
15822 DW_STRING_IS_CANONICAL (attr) = 0;
15823 info_ptr += bytes_read;
15824 break;
15825 }
15826 /* FALLTHROUGH */
15827 case DW_FORM_GNU_strp_alt:
15828 {
15829 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15830 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15831 &bytes_read);
15832
15833 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15834 DW_STRING_IS_CANONICAL (attr) = 0;
15835 info_ptr += bytes_read;
15836 }
15837 break;
15838 case DW_FORM_exprloc:
15839 case DW_FORM_block:
15840 blk = dwarf_alloc_block (cu);
15841 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15842 info_ptr += bytes_read;
15843 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15844 info_ptr += blk->size;
15845 DW_BLOCK (attr) = blk;
15846 break;
15847 case DW_FORM_block1:
15848 blk = dwarf_alloc_block (cu);
15849 blk->size = read_1_byte (abfd, info_ptr);
15850 info_ptr += 1;
15851 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15852 info_ptr += blk->size;
15853 DW_BLOCK (attr) = blk;
15854 break;
15855 case DW_FORM_data1:
15856 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15857 info_ptr += 1;
15858 break;
15859 case DW_FORM_flag:
15860 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15861 info_ptr += 1;
15862 break;
15863 case DW_FORM_flag_present:
15864 DW_UNSND (attr) = 1;
15865 break;
15866 case DW_FORM_sdata:
15867 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15868 info_ptr += bytes_read;
15869 break;
15870 case DW_FORM_udata:
15871 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15872 info_ptr += bytes_read;
15873 break;
15874 case DW_FORM_ref1:
15875 DW_UNSND (attr) = (cu->header.offset.sect_off
15876 + read_1_byte (abfd, info_ptr));
15877 info_ptr += 1;
15878 break;
15879 case DW_FORM_ref2:
15880 DW_UNSND (attr) = (cu->header.offset.sect_off
15881 + read_2_bytes (abfd, info_ptr));
15882 info_ptr += 2;
15883 break;
15884 case DW_FORM_ref4:
15885 DW_UNSND (attr) = (cu->header.offset.sect_off
15886 + read_4_bytes (abfd, info_ptr));
15887 info_ptr += 4;
15888 break;
15889 case DW_FORM_ref8:
15890 DW_UNSND (attr) = (cu->header.offset.sect_off
15891 + read_8_bytes (abfd, info_ptr));
15892 info_ptr += 8;
15893 break;
15894 case DW_FORM_ref_sig8:
15895 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15896 info_ptr += 8;
15897 break;
15898 case DW_FORM_ref_udata:
15899 DW_UNSND (attr) = (cu->header.offset.sect_off
15900 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15901 info_ptr += bytes_read;
15902 break;
15903 case DW_FORM_indirect:
15904 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15905 info_ptr += bytes_read;
15906 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15907 break;
15908 case DW_FORM_GNU_addr_index:
15909 if (reader->dwo_file == NULL)
15910 {
15911 /* For now flag a hard error.
15912 Later we can turn this into a complaint. */
15913 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15914 dwarf_form_name (form),
15915 bfd_get_filename (abfd));
15916 }
15917 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15918 info_ptr += bytes_read;
15919 break;
15920 case DW_FORM_GNU_str_index:
15921 if (reader->dwo_file == NULL)
15922 {
15923 /* For now flag a hard error.
15924 Later we can turn this into a complaint if warranted. */
15925 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15926 dwarf_form_name (form),
15927 bfd_get_filename (abfd));
15928 }
15929 {
15930 ULONGEST str_index =
15931 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15932
15933 DW_STRING (attr) = read_str_index (reader, str_index);
15934 DW_STRING_IS_CANONICAL (attr) = 0;
15935 info_ptr += bytes_read;
15936 }
15937 break;
15938 default:
15939 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15940 dwarf_form_name (form),
15941 bfd_get_filename (abfd));
15942 }
15943
15944 /* Super hack. */
15945 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15946 attr->form = DW_FORM_GNU_ref_alt;
15947
15948 /* We have seen instances where the compiler tried to emit a byte
15949 size attribute of -1 which ended up being encoded as an unsigned
15950 0xffffffff. Although 0xffffffff is technically a valid size value,
15951 an object of this size seems pretty unlikely so we can relatively
15952 safely treat these cases as if the size attribute was invalid and
15953 treat them as zero by default. */
15954 if (attr->name == DW_AT_byte_size
15955 && form == DW_FORM_data4
15956 && DW_UNSND (attr) >= 0xffffffff)
15957 {
15958 complaint
15959 (&symfile_complaints,
15960 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15961 hex_string (DW_UNSND (attr)));
15962 DW_UNSND (attr) = 0;
15963 }
15964
15965 return info_ptr;
15966 }
15967
15968 /* Read an attribute described by an abbreviated attribute. */
15969
15970 static const gdb_byte *
15971 read_attribute (const struct die_reader_specs *reader,
15972 struct attribute *attr, struct attr_abbrev *abbrev,
15973 const gdb_byte *info_ptr)
15974 {
15975 attr->name = abbrev->name;
15976 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15977 }
15978
15979 /* Read dwarf information from a buffer. */
15980
15981 static unsigned int
15982 read_1_byte (bfd *abfd, const gdb_byte *buf)
15983 {
15984 return bfd_get_8 (abfd, buf);
15985 }
15986
15987 static int
15988 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15989 {
15990 return bfd_get_signed_8 (abfd, buf);
15991 }
15992
15993 static unsigned int
15994 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15995 {
15996 return bfd_get_16 (abfd, buf);
15997 }
15998
15999 static int
16000 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16001 {
16002 return bfd_get_signed_16 (abfd, buf);
16003 }
16004
16005 static unsigned int
16006 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16007 {
16008 return bfd_get_32 (abfd, buf);
16009 }
16010
16011 static int
16012 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16013 {
16014 return bfd_get_signed_32 (abfd, buf);
16015 }
16016
16017 static ULONGEST
16018 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16019 {
16020 return bfd_get_64 (abfd, buf);
16021 }
16022
16023 static CORE_ADDR
16024 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16025 unsigned int *bytes_read)
16026 {
16027 struct comp_unit_head *cu_header = &cu->header;
16028 CORE_ADDR retval = 0;
16029
16030 if (cu_header->signed_addr_p)
16031 {
16032 switch (cu_header->addr_size)
16033 {
16034 case 2:
16035 retval = bfd_get_signed_16 (abfd, buf);
16036 break;
16037 case 4:
16038 retval = bfd_get_signed_32 (abfd, buf);
16039 break;
16040 case 8:
16041 retval = bfd_get_signed_64 (abfd, buf);
16042 break;
16043 default:
16044 internal_error (__FILE__, __LINE__,
16045 _("read_address: bad switch, signed [in module %s]"),
16046 bfd_get_filename (abfd));
16047 }
16048 }
16049 else
16050 {
16051 switch (cu_header->addr_size)
16052 {
16053 case 2:
16054 retval = bfd_get_16 (abfd, buf);
16055 break;
16056 case 4:
16057 retval = bfd_get_32 (abfd, buf);
16058 break;
16059 case 8:
16060 retval = bfd_get_64 (abfd, buf);
16061 break;
16062 default:
16063 internal_error (__FILE__, __LINE__,
16064 _("read_address: bad switch, "
16065 "unsigned [in module %s]"),
16066 bfd_get_filename (abfd));
16067 }
16068 }
16069
16070 *bytes_read = cu_header->addr_size;
16071 return retval;
16072 }
16073
16074 /* Read the initial length from a section. The (draft) DWARF 3
16075 specification allows the initial length to take up either 4 bytes
16076 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16077 bytes describe the length and all offsets will be 8 bytes in length
16078 instead of 4.
16079
16080 An older, non-standard 64-bit format is also handled by this
16081 function. The older format in question stores the initial length
16082 as an 8-byte quantity without an escape value. Lengths greater
16083 than 2^32 aren't very common which means that the initial 4 bytes
16084 is almost always zero. Since a length value of zero doesn't make
16085 sense for the 32-bit format, this initial zero can be considered to
16086 be an escape value which indicates the presence of the older 64-bit
16087 format. As written, the code can't detect (old format) lengths
16088 greater than 4GB. If it becomes necessary to handle lengths
16089 somewhat larger than 4GB, we could allow other small values (such
16090 as the non-sensical values of 1, 2, and 3) to also be used as
16091 escape values indicating the presence of the old format.
16092
16093 The value returned via bytes_read should be used to increment the
16094 relevant pointer after calling read_initial_length().
16095
16096 [ Note: read_initial_length() and read_offset() are based on the
16097 document entitled "DWARF Debugging Information Format", revision
16098 3, draft 8, dated November 19, 2001. This document was obtained
16099 from:
16100
16101 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16102
16103 This document is only a draft and is subject to change. (So beware.)
16104
16105 Details regarding the older, non-standard 64-bit format were
16106 determined empirically by examining 64-bit ELF files produced by
16107 the SGI toolchain on an IRIX 6.5 machine.
16108
16109 - Kevin, July 16, 2002
16110 ] */
16111
16112 static LONGEST
16113 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16114 {
16115 LONGEST length = bfd_get_32 (abfd, buf);
16116
16117 if (length == 0xffffffff)
16118 {
16119 length = bfd_get_64 (abfd, buf + 4);
16120 *bytes_read = 12;
16121 }
16122 else if (length == 0)
16123 {
16124 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16125 length = bfd_get_64 (abfd, buf);
16126 *bytes_read = 8;
16127 }
16128 else
16129 {
16130 *bytes_read = 4;
16131 }
16132
16133 return length;
16134 }
16135
16136 /* Cover function for read_initial_length.
16137 Returns the length of the object at BUF, and stores the size of the
16138 initial length in *BYTES_READ and stores the size that offsets will be in
16139 *OFFSET_SIZE.
16140 If the initial length size is not equivalent to that specified in
16141 CU_HEADER then issue a complaint.
16142 This is useful when reading non-comp-unit headers. */
16143
16144 static LONGEST
16145 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16146 const struct comp_unit_head *cu_header,
16147 unsigned int *bytes_read,
16148 unsigned int *offset_size)
16149 {
16150 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16151
16152 gdb_assert (cu_header->initial_length_size == 4
16153 || cu_header->initial_length_size == 8
16154 || cu_header->initial_length_size == 12);
16155
16156 if (cu_header->initial_length_size != *bytes_read)
16157 complaint (&symfile_complaints,
16158 _("intermixed 32-bit and 64-bit DWARF sections"));
16159
16160 *offset_size = (*bytes_read == 4) ? 4 : 8;
16161 return length;
16162 }
16163
16164 /* Read an offset from the data stream. The size of the offset is
16165 given by cu_header->offset_size. */
16166
16167 static LONGEST
16168 read_offset (bfd *abfd, const gdb_byte *buf,
16169 const struct comp_unit_head *cu_header,
16170 unsigned int *bytes_read)
16171 {
16172 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16173
16174 *bytes_read = cu_header->offset_size;
16175 return offset;
16176 }
16177
16178 /* Read an offset from the data stream. */
16179
16180 static LONGEST
16181 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16182 {
16183 LONGEST retval = 0;
16184
16185 switch (offset_size)
16186 {
16187 case 4:
16188 retval = bfd_get_32 (abfd, buf);
16189 break;
16190 case 8:
16191 retval = bfd_get_64 (abfd, buf);
16192 break;
16193 default:
16194 internal_error (__FILE__, __LINE__,
16195 _("read_offset_1: bad switch [in module %s]"),
16196 bfd_get_filename (abfd));
16197 }
16198
16199 return retval;
16200 }
16201
16202 static const gdb_byte *
16203 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16204 {
16205 /* If the size of a host char is 8 bits, we can return a pointer
16206 to the buffer, otherwise we have to copy the data to a buffer
16207 allocated on the temporary obstack. */
16208 gdb_assert (HOST_CHAR_BIT == 8);
16209 return buf;
16210 }
16211
16212 static const char *
16213 read_direct_string (bfd *abfd, const gdb_byte *buf,
16214 unsigned int *bytes_read_ptr)
16215 {
16216 /* If the size of a host char is 8 bits, we can return a pointer
16217 to the string, otherwise we have to copy the string to a buffer
16218 allocated on the temporary obstack. */
16219 gdb_assert (HOST_CHAR_BIT == 8);
16220 if (*buf == '\0')
16221 {
16222 *bytes_read_ptr = 1;
16223 return NULL;
16224 }
16225 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16226 return (const char *) buf;
16227 }
16228
16229 static const char *
16230 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16231 {
16232 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16233 if (dwarf2_per_objfile->str.buffer == NULL)
16234 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16235 bfd_get_filename (abfd));
16236 if (str_offset >= dwarf2_per_objfile->str.size)
16237 error (_("DW_FORM_strp pointing outside of "
16238 ".debug_str section [in module %s]"),
16239 bfd_get_filename (abfd));
16240 gdb_assert (HOST_CHAR_BIT == 8);
16241 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16242 return NULL;
16243 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16244 }
16245
16246 /* Read a string at offset STR_OFFSET in the .debug_str section from
16247 the .dwz file DWZ. Throw an error if the offset is too large. If
16248 the string consists of a single NUL byte, return NULL; otherwise
16249 return a pointer to the string. */
16250
16251 static const char *
16252 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16253 {
16254 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16255
16256 if (dwz->str.buffer == NULL)
16257 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16258 "section [in module %s]"),
16259 bfd_get_filename (dwz->dwz_bfd));
16260 if (str_offset >= dwz->str.size)
16261 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16262 ".debug_str section [in module %s]"),
16263 bfd_get_filename (dwz->dwz_bfd));
16264 gdb_assert (HOST_CHAR_BIT == 8);
16265 if (dwz->str.buffer[str_offset] == '\0')
16266 return NULL;
16267 return (const char *) (dwz->str.buffer + str_offset);
16268 }
16269
16270 static const char *
16271 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16272 const struct comp_unit_head *cu_header,
16273 unsigned int *bytes_read_ptr)
16274 {
16275 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16276
16277 return read_indirect_string_at_offset (abfd, str_offset);
16278 }
16279
16280 static ULONGEST
16281 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16282 unsigned int *bytes_read_ptr)
16283 {
16284 ULONGEST result;
16285 unsigned int num_read;
16286 int i, shift;
16287 unsigned char byte;
16288
16289 result = 0;
16290 shift = 0;
16291 num_read = 0;
16292 i = 0;
16293 while (1)
16294 {
16295 byte = bfd_get_8 (abfd, buf);
16296 buf++;
16297 num_read++;
16298 result |= ((ULONGEST) (byte & 127) << shift);
16299 if ((byte & 128) == 0)
16300 {
16301 break;
16302 }
16303 shift += 7;
16304 }
16305 *bytes_read_ptr = num_read;
16306 return result;
16307 }
16308
16309 static LONGEST
16310 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16311 unsigned int *bytes_read_ptr)
16312 {
16313 LONGEST result;
16314 int i, shift, num_read;
16315 unsigned char byte;
16316
16317 result = 0;
16318 shift = 0;
16319 num_read = 0;
16320 i = 0;
16321 while (1)
16322 {
16323 byte = bfd_get_8 (abfd, buf);
16324 buf++;
16325 num_read++;
16326 result |= ((LONGEST) (byte & 127) << shift);
16327 shift += 7;
16328 if ((byte & 128) == 0)
16329 {
16330 break;
16331 }
16332 }
16333 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16334 result |= -(((LONGEST) 1) << shift);
16335 *bytes_read_ptr = num_read;
16336 return result;
16337 }
16338
16339 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16340 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16341 ADDR_SIZE is the size of addresses from the CU header. */
16342
16343 static CORE_ADDR
16344 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16345 {
16346 struct objfile *objfile = dwarf2_per_objfile->objfile;
16347 bfd *abfd = objfile->obfd;
16348 const gdb_byte *info_ptr;
16349
16350 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16351 if (dwarf2_per_objfile->addr.buffer == NULL)
16352 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16353 objfile_name (objfile));
16354 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16355 error (_("DW_FORM_addr_index pointing outside of "
16356 ".debug_addr section [in module %s]"),
16357 objfile_name (objfile));
16358 info_ptr = (dwarf2_per_objfile->addr.buffer
16359 + addr_base + addr_index * addr_size);
16360 if (addr_size == 4)
16361 return bfd_get_32 (abfd, info_ptr);
16362 else
16363 return bfd_get_64 (abfd, info_ptr);
16364 }
16365
16366 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16367
16368 static CORE_ADDR
16369 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16370 {
16371 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16372 }
16373
16374 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16375
16376 static CORE_ADDR
16377 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16378 unsigned int *bytes_read)
16379 {
16380 bfd *abfd = cu->objfile->obfd;
16381 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16382
16383 return read_addr_index (cu, addr_index);
16384 }
16385
16386 /* Data structure to pass results from dwarf2_read_addr_index_reader
16387 back to dwarf2_read_addr_index. */
16388
16389 struct dwarf2_read_addr_index_data
16390 {
16391 ULONGEST addr_base;
16392 int addr_size;
16393 };
16394
16395 /* die_reader_func for dwarf2_read_addr_index. */
16396
16397 static void
16398 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16399 const gdb_byte *info_ptr,
16400 struct die_info *comp_unit_die,
16401 int has_children,
16402 void *data)
16403 {
16404 struct dwarf2_cu *cu = reader->cu;
16405 struct dwarf2_read_addr_index_data *aidata =
16406 (struct dwarf2_read_addr_index_data *) data;
16407
16408 aidata->addr_base = cu->addr_base;
16409 aidata->addr_size = cu->header.addr_size;
16410 }
16411
16412 /* Given an index in .debug_addr, fetch the value.
16413 NOTE: This can be called during dwarf expression evaluation,
16414 long after the debug information has been read, and thus per_cu->cu
16415 may no longer exist. */
16416
16417 CORE_ADDR
16418 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16419 unsigned int addr_index)
16420 {
16421 struct objfile *objfile = per_cu->objfile;
16422 struct dwarf2_cu *cu = per_cu->cu;
16423 ULONGEST addr_base;
16424 int addr_size;
16425
16426 /* This is intended to be called from outside this file. */
16427 dw2_setup (objfile);
16428
16429 /* We need addr_base and addr_size.
16430 If we don't have PER_CU->cu, we have to get it.
16431 Nasty, but the alternative is storing the needed info in PER_CU,
16432 which at this point doesn't seem justified: it's not clear how frequently
16433 it would get used and it would increase the size of every PER_CU.
16434 Entry points like dwarf2_per_cu_addr_size do a similar thing
16435 so we're not in uncharted territory here.
16436 Alas we need to be a bit more complicated as addr_base is contained
16437 in the DIE.
16438
16439 We don't need to read the entire CU(/TU).
16440 We just need the header and top level die.
16441
16442 IWBN to use the aging mechanism to let us lazily later discard the CU.
16443 For now we skip this optimization. */
16444
16445 if (cu != NULL)
16446 {
16447 addr_base = cu->addr_base;
16448 addr_size = cu->header.addr_size;
16449 }
16450 else
16451 {
16452 struct dwarf2_read_addr_index_data aidata;
16453
16454 /* Note: We can't use init_cutu_and_read_dies_simple here,
16455 we need addr_base. */
16456 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16457 dwarf2_read_addr_index_reader, &aidata);
16458 addr_base = aidata.addr_base;
16459 addr_size = aidata.addr_size;
16460 }
16461
16462 return read_addr_index_1 (addr_index, addr_base, addr_size);
16463 }
16464
16465 /* Given a DW_FORM_GNU_str_index, fetch the string.
16466 This is only used by the Fission support. */
16467
16468 static const char *
16469 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16470 {
16471 struct objfile *objfile = dwarf2_per_objfile->objfile;
16472 const char *objf_name = objfile_name (objfile);
16473 bfd *abfd = objfile->obfd;
16474 struct dwarf2_cu *cu = reader->cu;
16475 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16476 struct dwarf2_section_info *str_offsets_section =
16477 &reader->dwo_file->sections.str_offsets;
16478 const gdb_byte *info_ptr;
16479 ULONGEST str_offset;
16480 static const char form_name[] = "DW_FORM_GNU_str_index";
16481
16482 dwarf2_read_section (objfile, str_section);
16483 dwarf2_read_section (objfile, str_offsets_section);
16484 if (str_section->buffer == NULL)
16485 error (_("%s used without .debug_str.dwo section"
16486 " in CU at offset 0x%lx [in module %s]"),
16487 form_name, (long) cu->header.offset.sect_off, objf_name);
16488 if (str_offsets_section->buffer == NULL)
16489 error (_("%s used without .debug_str_offsets.dwo section"
16490 " in CU at offset 0x%lx [in module %s]"),
16491 form_name, (long) cu->header.offset.sect_off, objf_name);
16492 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16493 error (_("%s pointing outside of .debug_str_offsets.dwo"
16494 " section in CU at offset 0x%lx [in module %s]"),
16495 form_name, (long) cu->header.offset.sect_off, objf_name);
16496 info_ptr = (str_offsets_section->buffer
16497 + str_index * cu->header.offset_size);
16498 if (cu->header.offset_size == 4)
16499 str_offset = bfd_get_32 (abfd, info_ptr);
16500 else
16501 str_offset = bfd_get_64 (abfd, info_ptr);
16502 if (str_offset >= str_section->size)
16503 error (_("Offset from %s pointing outside of"
16504 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16505 form_name, (long) cu->header.offset.sect_off, objf_name);
16506 return (const char *) (str_section->buffer + str_offset);
16507 }
16508
16509 /* Return the length of an LEB128 number in BUF. */
16510
16511 static int
16512 leb128_size (const gdb_byte *buf)
16513 {
16514 const gdb_byte *begin = buf;
16515 gdb_byte byte;
16516
16517 while (1)
16518 {
16519 byte = *buf++;
16520 if ((byte & 128) == 0)
16521 return buf - begin;
16522 }
16523 }
16524
16525 static void
16526 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16527 {
16528 switch (lang)
16529 {
16530 case DW_LANG_C89:
16531 case DW_LANG_C99:
16532 case DW_LANG_C:
16533 case DW_LANG_UPC:
16534 cu->language = language_c;
16535 break;
16536 case DW_LANG_C_plus_plus:
16537 cu->language = language_cplus;
16538 break;
16539 case DW_LANG_D:
16540 cu->language = language_d;
16541 break;
16542 case DW_LANG_Fortran77:
16543 case DW_LANG_Fortran90:
16544 case DW_LANG_Fortran95:
16545 cu->language = language_fortran;
16546 break;
16547 case DW_LANG_Go:
16548 cu->language = language_go;
16549 break;
16550 case DW_LANG_Mips_Assembler:
16551 cu->language = language_asm;
16552 break;
16553 case DW_LANG_Java:
16554 cu->language = language_java;
16555 break;
16556 case DW_LANG_Ada83:
16557 case DW_LANG_Ada95:
16558 cu->language = language_ada;
16559 break;
16560 case DW_LANG_Modula2:
16561 cu->language = language_m2;
16562 break;
16563 case DW_LANG_Pascal83:
16564 cu->language = language_pascal;
16565 break;
16566 case DW_LANG_ObjC:
16567 cu->language = language_objc;
16568 break;
16569 case DW_LANG_Cobol74:
16570 case DW_LANG_Cobol85:
16571 default:
16572 cu->language = language_minimal;
16573 break;
16574 }
16575 cu->language_defn = language_def (cu->language);
16576 }
16577
16578 /* Return the named attribute or NULL if not there. */
16579
16580 static struct attribute *
16581 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16582 {
16583 for (;;)
16584 {
16585 unsigned int i;
16586 struct attribute *spec = NULL;
16587
16588 for (i = 0; i < die->num_attrs; ++i)
16589 {
16590 if (die->attrs[i].name == name)
16591 return &die->attrs[i];
16592 if (die->attrs[i].name == DW_AT_specification
16593 || die->attrs[i].name == DW_AT_abstract_origin)
16594 spec = &die->attrs[i];
16595 }
16596
16597 if (!spec)
16598 break;
16599
16600 die = follow_die_ref (die, spec, &cu);
16601 }
16602
16603 return NULL;
16604 }
16605
16606 /* Return the named attribute or NULL if not there,
16607 but do not follow DW_AT_specification, etc.
16608 This is for use in contexts where we're reading .debug_types dies.
16609 Following DW_AT_specification, DW_AT_abstract_origin will take us
16610 back up the chain, and we want to go down. */
16611
16612 static struct attribute *
16613 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16614 {
16615 unsigned int i;
16616
16617 for (i = 0; i < die->num_attrs; ++i)
16618 if (die->attrs[i].name == name)
16619 return &die->attrs[i];
16620
16621 return NULL;
16622 }
16623
16624 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16625 and holds a non-zero value. This function should only be used for
16626 DW_FORM_flag or DW_FORM_flag_present attributes. */
16627
16628 static int
16629 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16630 {
16631 struct attribute *attr = dwarf2_attr (die, name, cu);
16632
16633 return (attr && DW_UNSND (attr));
16634 }
16635
16636 static int
16637 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16638 {
16639 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16640 which value is non-zero. However, we have to be careful with
16641 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16642 (via dwarf2_flag_true_p) follows this attribute. So we may
16643 end up accidently finding a declaration attribute that belongs
16644 to a different DIE referenced by the specification attribute,
16645 even though the given DIE does not have a declaration attribute. */
16646 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16647 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16648 }
16649
16650 /* Return the die giving the specification for DIE, if there is
16651 one. *SPEC_CU is the CU containing DIE on input, and the CU
16652 containing the return value on output. If there is no
16653 specification, but there is an abstract origin, that is
16654 returned. */
16655
16656 static struct die_info *
16657 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16658 {
16659 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16660 *spec_cu);
16661
16662 if (spec_attr == NULL)
16663 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16664
16665 if (spec_attr == NULL)
16666 return NULL;
16667 else
16668 return follow_die_ref (die, spec_attr, spec_cu);
16669 }
16670
16671 /* Free the line_header structure *LH, and any arrays and strings it
16672 refers to.
16673 NOTE: This is also used as a "cleanup" function. */
16674
16675 static void
16676 free_line_header (struct line_header *lh)
16677 {
16678 if (lh->standard_opcode_lengths)
16679 xfree (lh->standard_opcode_lengths);
16680
16681 /* Remember that all the lh->file_names[i].name pointers are
16682 pointers into debug_line_buffer, and don't need to be freed. */
16683 if (lh->file_names)
16684 xfree (lh->file_names);
16685
16686 /* Similarly for the include directory names. */
16687 if (lh->include_dirs)
16688 xfree (lh->include_dirs);
16689
16690 xfree (lh);
16691 }
16692
16693 /* Add an entry to LH's include directory table. */
16694
16695 static void
16696 add_include_dir (struct line_header *lh, const char *include_dir)
16697 {
16698 /* Grow the array if necessary. */
16699 if (lh->include_dirs_size == 0)
16700 {
16701 lh->include_dirs_size = 1; /* for testing */
16702 lh->include_dirs = xmalloc (lh->include_dirs_size
16703 * sizeof (*lh->include_dirs));
16704 }
16705 else if (lh->num_include_dirs >= lh->include_dirs_size)
16706 {
16707 lh->include_dirs_size *= 2;
16708 lh->include_dirs = xrealloc (lh->include_dirs,
16709 (lh->include_dirs_size
16710 * sizeof (*lh->include_dirs)));
16711 }
16712
16713 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16714 }
16715
16716 /* Add an entry to LH's file name table. */
16717
16718 static void
16719 add_file_name (struct line_header *lh,
16720 const char *name,
16721 unsigned int dir_index,
16722 unsigned int mod_time,
16723 unsigned int length)
16724 {
16725 struct file_entry *fe;
16726
16727 /* Grow the array if necessary. */
16728 if (lh->file_names_size == 0)
16729 {
16730 lh->file_names_size = 1; /* for testing */
16731 lh->file_names = xmalloc (lh->file_names_size
16732 * sizeof (*lh->file_names));
16733 }
16734 else if (lh->num_file_names >= lh->file_names_size)
16735 {
16736 lh->file_names_size *= 2;
16737 lh->file_names = xrealloc (lh->file_names,
16738 (lh->file_names_size
16739 * sizeof (*lh->file_names)));
16740 }
16741
16742 fe = &lh->file_names[lh->num_file_names++];
16743 fe->name = name;
16744 fe->dir_index = dir_index;
16745 fe->mod_time = mod_time;
16746 fe->length = length;
16747 fe->included_p = 0;
16748 fe->symtab = NULL;
16749 }
16750
16751 /* A convenience function to find the proper .debug_line section for a
16752 CU. */
16753
16754 static struct dwarf2_section_info *
16755 get_debug_line_section (struct dwarf2_cu *cu)
16756 {
16757 struct dwarf2_section_info *section;
16758
16759 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16760 DWO file. */
16761 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16762 section = &cu->dwo_unit->dwo_file->sections.line;
16763 else if (cu->per_cu->is_dwz)
16764 {
16765 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16766
16767 section = &dwz->line;
16768 }
16769 else
16770 section = &dwarf2_per_objfile->line;
16771
16772 return section;
16773 }
16774
16775 /* Read the statement program header starting at OFFSET in
16776 .debug_line, or .debug_line.dwo. Return a pointer
16777 to a struct line_header, allocated using xmalloc.
16778
16779 NOTE: the strings in the include directory and file name tables of
16780 the returned object point into the dwarf line section buffer,
16781 and must not be freed. */
16782
16783 static struct line_header *
16784 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16785 {
16786 struct cleanup *back_to;
16787 struct line_header *lh;
16788 const gdb_byte *line_ptr;
16789 unsigned int bytes_read, offset_size;
16790 int i;
16791 const char *cur_dir, *cur_file;
16792 struct dwarf2_section_info *section;
16793 bfd *abfd;
16794
16795 section = get_debug_line_section (cu);
16796 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16797 if (section->buffer == NULL)
16798 {
16799 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16800 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16801 else
16802 complaint (&symfile_complaints, _("missing .debug_line section"));
16803 return 0;
16804 }
16805
16806 /* We can't do this until we know the section is non-empty.
16807 Only then do we know we have such a section. */
16808 abfd = get_section_bfd_owner (section);
16809
16810 /* Make sure that at least there's room for the total_length field.
16811 That could be 12 bytes long, but we're just going to fudge that. */
16812 if (offset + 4 >= section->size)
16813 {
16814 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16815 return 0;
16816 }
16817
16818 lh = xmalloc (sizeof (*lh));
16819 memset (lh, 0, sizeof (*lh));
16820 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16821 (void *) lh);
16822
16823 line_ptr = section->buffer + offset;
16824
16825 /* Read in the header. */
16826 lh->total_length =
16827 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16828 &bytes_read, &offset_size);
16829 line_ptr += bytes_read;
16830 if (line_ptr + lh->total_length > (section->buffer + section->size))
16831 {
16832 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16833 do_cleanups (back_to);
16834 return 0;
16835 }
16836 lh->statement_program_end = line_ptr + lh->total_length;
16837 lh->version = read_2_bytes (abfd, line_ptr);
16838 line_ptr += 2;
16839 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16840 line_ptr += offset_size;
16841 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16842 line_ptr += 1;
16843 if (lh->version >= 4)
16844 {
16845 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16846 line_ptr += 1;
16847 }
16848 else
16849 lh->maximum_ops_per_instruction = 1;
16850
16851 if (lh->maximum_ops_per_instruction == 0)
16852 {
16853 lh->maximum_ops_per_instruction = 1;
16854 complaint (&symfile_complaints,
16855 _("invalid maximum_ops_per_instruction "
16856 "in `.debug_line' section"));
16857 }
16858
16859 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16860 line_ptr += 1;
16861 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16862 line_ptr += 1;
16863 lh->line_range = read_1_byte (abfd, line_ptr);
16864 line_ptr += 1;
16865 lh->opcode_base = read_1_byte (abfd, line_ptr);
16866 line_ptr += 1;
16867 lh->standard_opcode_lengths
16868 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16869
16870 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16871 for (i = 1; i < lh->opcode_base; ++i)
16872 {
16873 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16874 line_ptr += 1;
16875 }
16876
16877 /* Read directory table. */
16878 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16879 {
16880 line_ptr += bytes_read;
16881 add_include_dir (lh, cur_dir);
16882 }
16883 line_ptr += bytes_read;
16884
16885 /* Read file name table. */
16886 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16887 {
16888 unsigned int dir_index, mod_time, length;
16889
16890 line_ptr += bytes_read;
16891 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16892 line_ptr += bytes_read;
16893 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16894 line_ptr += bytes_read;
16895 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16896 line_ptr += bytes_read;
16897
16898 add_file_name (lh, cur_file, dir_index, mod_time, length);
16899 }
16900 line_ptr += bytes_read;
16901 lh->statement_program_start = line_ptr;
16902
16903 if (line_ptr > (section->buffer + section->size))
16904 complaint (&symfile_complaints,
16905 _("line number info header doesn't "
16906 "fit in `.debug_line' section"));
16907
16908 discard_cleanups (back_to);
16909 return lh;
16910 }
16911
16912 /* Subroutine of dwarf_decode_lines to simplify it.
16913 Return the file name of the psymtab for included file FILE_INDEX
16914 in line header LH of PST.
16915 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16916 If space for the result is malloc'd, it will be freed by a cleanup.
16917 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16918
16919 The function creates dangling cleanup registration. */
16920
16921 static const char *
16922 psymtab_include_file_name (const struct line_header *lh, int file_index,
16923 const struct partial_symtab *pst,
16924 const char *comp_dir)
16925 {
16926 const struct file_entry fe = lh->file_names [file_index];
16927 const char *include_name = fe.name;
16928 const char *include_name_to_compare = include_name;
16929 const char *dir_name = NULL;
16930 const char *pst_filename;
16931 char *copied_name = NULL;
16932 int file_is_pst;
16933
16934 if (fe.dir_index)
16935 dir_name = lh->include_dirs[fe.dir_index - 1];
16936
16937 if (!IS_ABSOLUTE_PATH (include_name)
16938 && (dir_name != NULL || comp_dir != NULL))
16939 {
16940 /* Avoid creating a duplicate psymtab for PST.
16941 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16942 Before we do the comparison, however, we need to account
16943 for DIR_NAME and COMP_DIR.
16944 First prepend dir_name (if non-NULL). If we still don't
16945 have an absolute path prepend comp_dir (if non-NULL).
16946 However, the directory we record in the include-file's
16947 psymtab does not contain COMP_DIR (to match the
16948 corresponding symtab(s)).
16949
16950 Example:
16951
16952 bash$ cd /tmp
16953 bash$ gcc -g ./hello.c
16954 include_name = "hello.c"
16955 dir_name = "."
16956 DW_AT_comp_dir = comp_dir = "/tmp"
16957 DW_AT_name = "./hello.c" */
16958
16959 if (dir_name != NULL)
16960 {
16961 char *tem = concat (dir_name, SLASH_STRING,
16962 include_name, (char *)NULL);
16963
16964 make_cleanup (xfree, tem);
16965 include_name = tem;
16966 include_name_to_compare = include_name;
16967 }
16968 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16969 {
16970 char *tem = concat (comp_dir, SLASH_STRING,
16971 include_name, (char *)NULL);
16972
16973 make_cleanup (xfree, tem);
16974 include_name_to_compare = tem;
16975 }
16976 }
16977
16978 pst_filename = pst->filename;
16979 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16980 {
16981 copied_name = concat (pst->dirname, SLASH_STRING,
16982 pst_filename, (char *)NULL);
16983 pst_filename = copied_name;
16984 }
16985
16986 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16987
16988 if (copied_name != NULL)
16989 xfree (copied_name);
16990
16991 if (file_is_pst)
16992 return NULL;
16993 return include_name;
16994 }
16995
16996 /* Ignore this record_line request. */
16997
16998 static void
16999 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17000 {
17001 return;
17002 }
17003
17004 /* Subroutine of dwarf_decode_lines to simplify it.
17005 Process the line number information in LH. */
17006
17007 static void
17008 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17009 struct dwarf2_cu *cu, struct partial_symtab *pst)
17010 {
17011 const gdb_byte *line_ptr, *extended_end;
17012 const gdb_byte *line_end;
17013 unsigned int bytes_read, extended_len;
17014 unsigned char op_code, extended_op, adj_opcode;
17015 CORE_ADDR baseaddr;
17016 struct objfile *objfile = cu->objfile;
17017 bfd *abfd = objfile->obfd;
17018 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17019 const int decode_for_pst_p = (pst != NULL);
17020 struct subfile *last_subfile = NULL;
17021 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17022 = record_line;
17023
17024 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17025
17026 line_ptr = lh->statement_program_start;
17027 line_end = lh->statement_program_end;
17028
17029 /* Read the statement sequences until there's nothing left. */
17030 while (line_ptr < line_end)
17031 {
17032 /* state machine registers */
17033 CORE_ADDR address = 0;
17034 unsigned int file = 1;
17035 unsigned int line = 1;
17036 unsigned int column = 0;
17037 int is_stmt = lh->default_is_stmt;
17038 int basic_block = 0;
17039 int end_sequence = 0;
17040 CORE_ADDR addr;
17041 unsigned char op_index = 0;
17042
17043 if (!decode_for_pst_p && lh->num_file_names >= file)
17044 {
17045 /* Start a subfile for the current file of the state machine. */
17046 /* lh->include_dirs and lh->file_names are 0-based, but the
17047 directory and file name numbers in the statement program
17048 are 1-based. */
17049 struct file_entry *fe = &lh->file_names[file - 1];
17050 const char *dir = NULL;
17051
17052 if (fe->dir_index)
17053 dir = lh->include_dirs[fe->dir_index - 1];
17054
17055 dwarf2_start_subfile (fe->name, dir, comp_dir);
17056 }
17057
17058 /* Decode the table. */
17059 while (!end_sequence)
17060 {
17061 op_code = read_1_byte (abfd, line_ptr);
17062 line_ptr += 1;
17063 if (line_ptr > line_end)
17064 {
17065 dwarf2_debug_line_missing_end_sequence_complaint ();
17066 break;
17067 }
17068
17069 if (op_code >= lh->opcode_base)
17070 {
17071 /* Special operand. */
17072 adj_opcode = op_code - lh->opcode_base;
17073 address += (((op_index + (adj_opcode / lh->line_range))
17074 / lh->maximum_ops_per_instruction)
17075 * lh->minimum_instruction_length);
17076 op_index = ((op_index + (adj_opcode / lh->line_range))
17077 % lh->maximum_ops_per_instruction);
17078 line += lh->line_base + (adj_opcode % lh->line_range);
17079 if (lh->num_file_names < file || file == 0)
17080 dwarf2_debug_line_missing_file_complaint ();
17081 /* For now we ignore lines not starting on an
17082 instruction boundary. */
17083 else if (op_index == 0)
17084 {
17085 lh->file_names[file - 1].included_p = 1;
17086 if (!decode_for_pst_p && is_stmt)
17087 {
17088 if (last_subfile != current_subfile)
17089 {
17090 addr = gdbarch_addr_bits_remove (gdbarch, address);
17091 if (last_subfile)
17092 (*p_record_line) (last_subfile, 0, addr);
17093 last_subfile = current_subfile;
17094 }
17095 /* Append row to matrix using current values. */
17096 addr = gdbarch_addr_bits_remove (gdbarch, address);
17097 (*p_record_line) (current_subfile, line, addr);
17098 }
17099 }
17100 basic_block = 0;
17101 }
17102 else switch (op_code)
17103 {
17104 case DW_LNS_extended_op:
17105 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17106 &bytes_read);
17107 line_ptr += bytes_read;
17108 extended_end = line_ptr + extended_len;
17109 extended_op = read_1_byte (abfd, line_ptr);
17110 line_ptr += 1;
17111 switch (extended_op)
17112 {
17113 case DW_LNE_end_sequence:
17114 p_record_line = record_line;
17115 end_sequence = 1;
17116 break;
17117 case DW_LNE_set_address:
17118 address = read_address (abfd, line_ptr, cu, &bytes_read);
17119
17120 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17121 {
17122 /* This line table is for a function which has been
17123 GCd by the linker. Ignore it. PR gdb/12528 */
17124
17125 long line_offset
17126 = line_ptr - get_debug_line_section (cu)->buffer;
17127
17128 complaint (&symfile_complaints,
17129 _(".debug_line address at offset 0x%lx is 0 "
17130 "[in module %s]"),
17131 line_offset, objfile_name (objfile));
17132 p_record_line = noop_record_line;
17133 }
17134
17135 op_index = 0;
17136 line_ptr += bytes_read;
17137 address += baseaddr;
17138 break;
17139 case DW_LNE_define_file:
17140 {
17141 const char *cur_file;
17142 unsigned int dir_index, mod_time, length;
17143
17144 cur_file = read_direct_string (abfd, line_ptr,
17145 &bytes_read);
17146 line_ptr += bytes_read;
17147 dir_index =
17148 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17149 line_ptr += bytes_read;
17150 mod_time =
17151 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17152 line_ptr += bytes_read;
17153 length =
17154 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17155 line_ptr += bytes_read;
17156 add_file_name (lh, cur_file, dir_index, mod_time, length);
17157 }
17158 break;
17159 case DW_LNE_set_discriminator:
17160 /* The discriminator is not interesting to the debugger;
17161 just ignore it. */
17162 line_ptr = extended_end;
17163 break;
17164 default:
17165 complaint (&symfile_complaints,
17166 _("mangled .debug_line section"));
17167 return;
17168 }
17169 /* Make sure that we parsed the extended op correctly. If e.g.
17170 we expected a different address size than the producer used,
17171 we may have read the wrong number of bytes. */
17172 if (line_ptr != extended_end)
17173 {
17174 complaint (&symfile_complaints,
17175 _("mangled .debug_line section"));
17176 return;
17177 }
17178 break;
17179 case DW_LNS_copy:
17180 if (lh->num_file_names < file || file == 0)
17181 dwarf2_debug_line_missing_file_complaint ();
17182 else
17183 {
17184 lh->file_names[file - 1].included_p = 1;
17185 if (!decode_for_pst_p && is_stmt)
17186 {
17187 if (last_subfile != current_subfile)
17188 {
17189 addr = gdbarch_addr_bits_remove (gdbarch, address);
17190 if (last_subfile)
17191 (*p_record_line) (last_subfile, 0, addr);
17192 last_subfile = current_subfile;
17193 }
17194 addr = gdbarch_addr_bits_remove (gdbarch, address);
17195 (*p_record_line) (current_subfile, line, addr);
17196 }
17197 }
17198 basic_block = 0;
17199 break;
17200 case DW_LNS_advance_pc:
17201 {
17202 CORE_ADDR adjust
17203 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17204
17205 address += (((op_index + adjust)
17206 / lh->maximum_ops_per_instruction)
17207 * lh->minimum_instruction_length);
17208 op_index = ((op_index + adjust)
17209 % lh->maximum_ops_per_instruction);
17210 line_ptr += bytes_read;
17211 }
17212 break;
17213 case DW_LNS_advance_line:
17214 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17215 line_ptr += bytes_read;
17216 break;
17217 case DW_LNS_set_file:
17218 {
17219 /* The arrays lh->include_dirs and lh->file_names are
17220 0-based, but the directory and file name numbers in
17221 the statement program are 1-based. */
17222 struct file_entry *fe;
17223 const char *dir = NULL;
17224
17225 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17226 line_ptr += bytes_read;
17227 if (lh->num_file_names < file || file == 0)
17228 dwarf2_debug_line_missing_file_complaint ();
17229 else
17230 {
17231 fe = &lh->file_names[file - 1];
17232 if (fe->dir_index)
17233 dir = lh->include_dirs[fe->dir_index - 1];
17234 if (!decode_for_pst_p)
17235 {
17236 last_subfile = current_subfile;
17237 dwarf2_start_subfile (fe->name, dir, comp_dir);
17238 }
17239 }
17240 }
17241 break;
17242 case DW_LNS_set_column:
17243 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17244 line_ptr += bytes_read;
17245 break;
17246 case DW_LNS_negate_stmt:
17247 is_stmt = (!is_stmt);
17248 break;
17249 case DW_LNS_set_basic_block:
17250 basic_block = 1;
17251 break;
17252 /* Add to the address register of the state machine the
17253 address increment value corresponding to special opcode
17254 255. I.e., this value is scaled by the minimum
17255 instruction length since special opcode 255 would have
17256 scaled the increment. */
17257 case DW_LNS_const_add_pc:
17258 {
17259 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17260
17261 address += (((op_index + adjust)
17262 / lh->maximum_ops_per_instruction)
17263 * lh->minimum_instruction_length);
17264 op_index = ((op_index + adjust)
17265 % lh->maximum_ops_per_instruction);
17266 }
17267 break;
17268 case DW_LNS_fixed_advance_pc:
17269 address += read_2_bytes (abfd, line_ptr);
17270 op_index = 0;
17271 line_ptr += 2;
17272 break;
17273 default:
17274 {
17275 /* Unknown standard opcode, ignore it. */
17276 int i;
17277
17278 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17279 {
17280 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17281 line_ptr += bytes_read;
17282 }
17283 }
17284 }
17285 }
17286 if (lh->num_file_names < file || file == 0)
17287 dwarf2_debug_line_missing_file_complaint ();
17288 else
17289 {
17290 lh->file_names[file - 1].included_p = 1;
17291 if (!decode_for_pst_p)
17292 {
17293 addr = gdbarch_addr_bits_remove (gdbarch, address);
17294 (*p_record_line) (current_subfile, 0, addr);
17295 }
17296 }
17297 }
17298 }
17299
17300 /* Decode the Line Number Program (LNP) for the given line_header
17301 structure and CU. The actual information extracted and the type
17302 of structures created from the LNP depends on the value of PST.
17303
17304 1. If PST is NULL, then this procedure uses the data from the program
17305 to create all necessary symbol tables, and their linetables.
17306
17307 2. If PST is not NULL, this procedure reads the program to determine
17308 the list of files included by the unit represented by PST, and
17309 builds all the associated partial symbol tables.
17310
17311 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17312 It is used for relative paths in the line table.
17313 NOTE: When processing partial symtabs (pst != NULL),
17314 comp_dir == pst->dirname.
17315
17316 NOTE: It is important that psymtabs have the same file name (via strcmp)
17317 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17318 symtab we don't use it in the name of the psymtabs we create.
17319 E.g. expand_line_sal requires this when finding psymtabs to expand.
17320 A good testcase for this is mb-inline.exp. */
17321
17322 static void
17323 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17324 struct dwarf2_cu *cu, struct partial_symtab *pst,
17325 int want_line_info)
17326 {
17327 struct objfile *objfile = cu->objfile;
17328 const int decode_for_pst_p = (pst != NULL);
17329 struct subfile *first_subfile = current_subfile;
17330
17331 if (want_line_info)
17332 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17333
17334 if (decode_for_pst_p)
17335 {
17336 int file_index;
17337
17338 /* Now that we're done scanning the Line Header Program, we can
17339 create the psymtab of each included file. */
17340 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17341 if (lh->file_names[file_index].included_p == 1)
17342 {
17343 const char *include_name =
17344 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17345 if (include_name != NULL)
17346 dwarf2_create_include_psymtab (include_name, pst, objfile);
17347 }
17348 }
17349 else
17350 {
17351 /* Make sure a symtab is created for every file, even files
17352 which contain only variables (i.e. no code with associated
17353 line numbers). */
17354 int i;
17355
17356 for (i = 0; i < lh->num_file_names; i++)
17357 {
17358 const char *dir = NULL;
17359 struct file_entry *fe;
17360
17361 fe = &lh->file_names[i];
17362 if (fe->dir_index)
17363 dir = lh->include_dirs[fe->dir_index - 1];
17364 dwarf2_start_subfile (fe->name, dir, comp_dir);
17365
17366 /* Skip the main file; we don't need it, and it must be
17367 allocated last, so that it will show up before the
17368 non-primary symtabs in the objfile's symtab list. */
17369 if (current_subfile == first_subfile)
17370 continue;
17371
17372 if (current_subfile->symtab == NULL)
17373 current_subfile->symtab = allocate_symtab (current_subfile->name,
17374 objfile);
17375 fe->symtab = current_subfile->symtab;
17376 }
17377 }
17378 }
17379
17380 /* Start a subfile for DWARF. FILENAME is the name of the file and
17381 DIRNAME the name of the source directory which contains FILENAME
17382 or NULL if not known. COMP_DIR is the compilation directory for the
17383 linetable's compilation unit or NULL if not known.
17384 This routine tries to keep line numbers from identical absolute and
17385 relative file names in a common subfile.
17386
17387 Using the `list' example from the GDB testsuite, which resides in
17388 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17389 of /srcdir/list0.c yields the following debugging information for list0.c:
17390
17391 DW_AT_name: /srcdir/list0.c
17392 DW_AT_comp_dir: /compdir
17393 files.files[0].name: list0.h
17394 files.files[0].dir: /srcdir
17395 files.files[1].name: list0.c
17396 files.files[1].dir: /srcdir
17397
17398 The line number information for list0.c has to end up in a single
17399 subfile, so that `break /srcdir/list0.c:1' works as expected.
17400 start_subfile will ensure that this happens provided that we pass the
17401 concatenation of files.files[1].dir and files.files[1].name as the
17402 subfile's name. */
17403
17404 static void
17405 dwarf2_start_subfile (const char *filename, const char *dirname,
17406 const char *comp_dir)
17407 {
17408 char *copy = NULL;
17409
17410 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17411 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17412 second argument to start_subfile. To be consistent, we do the
17413 same here. In order not to lose the line information directory,
17414 we concatenate it to the filename when it makes sense.
17415 Note that the Dwarf3 standard says (speaking of filenames in line
17416 information): ``The directory index is ignored for file names
17417 that represent full path names''. Thus ignoring dirname in the
17418 `else' branch below isn't an issue. */
17419
17420 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17421 {
17422 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17423 filename = copy;
17424 }
17425
17426 start_subfile (filename, comp_dir);
17427
17428 if (copy != NULL)
17429 xfree (copy);
17430 }
17431
17432 /* Start a symtab for DWARF.
17433 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17434
17435 static void
17436 dwarf2_start_symtab (struct dwarf2_cu *cu,
17437 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17438 {
17439 start_symtab (name, comp_dir, low_pc);
17440 record_debugformat ("DWARF 2");
17441 record_producer (cu->producer);
17442
17443 /* We assume that we're processing GCC output. */
17444 processing_gcc_compilation = 2;
17445
17446 cu->processing_has_namespace_info = 0;
17447 }
17448
17449 static void
17450 var_decode_location (struct attribute *attr, struct symbol *sym,
17451 struct dwarf2_cu *cu)
17452 {
17453 struct objfile *objfile = cu->objfile;
17454 struct comp_unit_head *cu_header = &cu->header;
17455
17456 /* NOTE drow/2003-01-30: There used to be a comment and some special
17457 code here to turn a symbol with DW_AT_external and a
17458 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17459 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17460 with some versions of binutils) where shared libraries could have
17461 relocations against symbols in their debug information - the
17462 minimal symbol would have the right address, but the debug info
17463 would not. It's no longer necessary, because we will explicitly
17464 apply relocations when we read in the debug information now. */
17465
17466 /* A DW_AT_location attribute with no contents indicates that a
17467 variable has been optimized away. */
17468 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17469 {
17470 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17471 return;
17472 }
17473
17474 /* Handle one degenerate form of location expression specially, to
17475 preserve GDB's previous behavior when section offsets are
17476 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17477 then mark this symbol as LOC_STATIC. */
17478
17479 if (attr_form_is_block (attr)
17480 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17481 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17482 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17483 && (DW_BLOCK (attr)->size
17484 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17485 {
17486 unsigned int dummy;
17487
17488 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17489 SYMBOL_VALUE_ADDRESS (sym) =
17490 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17491 else
17492 SYMBOL_VALUE_ADDRESS (sym) =
17493 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17494 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17495 fixup_symbol_section (sym, objfile);
17496 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17497 SYMBOL_SECTION (sym));
17498 return;
17499 }
17500
17501 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17502 expression evaluator, and use LOC_COMPUTED only when necessary
17503 (i.e. when the value of a register or memory location is
17504 referenced, or a thread-local block, etc.). Then again, it might
17505 not be worthwhile. I'm assuming that it isn't unless performance
17506 or memory numbers show me otherwise. */
17507
17508 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17509
17510 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17511 cu->has_loclist = 1;
17512 }
17513
17514 /* Given a pointer to a DWARF information entry, figure out if we need
17515 to make a symbol table entry for it, and if so, create a new entry
17516 and return a pointer to it.
17517 If TYPE is NULL, determine symbol type from the die, otherwise
17518 used the passed type.
17519 If SPACE is not NULL, use it to hold the new symbol. If it is
17520 NULL, allocate a new symbol on the objfile's obstack. */
17521
17522 static struct symbol *
17523 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17524 struct symbol *space)
17525 {
17526 struct objfile *objfile = cu->objfile;
17527 struct symbol *sym = NULL;
17528 const char *name;
17529 struct attribute *attr = NULL;
17530 struct attribute *attr2 = NULL;
17531 CORE_ADDR baseaddr;
17532 struct pending **list_to_add = NULL;
17533
17534 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17535
17536 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17537
17538 name = dwarf2_name (die, cu);
17539 if (name)
17540 {
17541 const char *linkagename;
17542 int suppress_add = 0;
17543
17544 if (space)
17545 sym = space;
17546 else
17547 sym = allocate_symbol (objfile);
17548 OBJSTAT (objfile, n_syms++);
17549
17550 /* Cache this symbol's name and the name's demangled form (if any). */
17551 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17552 linkagename = dwarf2_physname (name, die, cu);
17553 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17554
17555 /* Fortran does not have mangling standard and the mangling does differ
17556 between gfortran, iFort etc. */
17557 if (cu->language == language_fortran
17558 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17559 symbol_set_demangled_name (&(sym->ginfo),
17560 dwarf2_full_name (name, die, cu),
17561 NULL);
17562
17563 /* Default assumptions.
17564 Use the passed type or decode it from the die. */
17565 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17566 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17567 if (type != NULL)
17568 SYMBOL_TYPE (sym) = type;
17569 else
17570 SYMBOL_TYPE (sym) = die_type (die, cu);
17571 attr = dwarf2_attr (die,
17572 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17573 cu);
17574 if (attr)
17575 {
17576 SYMBOL_LINE (sym) = DW_UNSND (attr);
17577 }
17578
17579 attr = dwarf2_attr (die,
17580 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17581 cu);
17582 if (attr)
17583 {
17584 int file_index = DW_UNSND (attr);
17585
17586 if (cu->line_header == NULL
17587 || file_index > cu->line_header->num_file_names)
17588 complaint (&symfile_complaints,
17589 _("file index out of range"));
17590 else if (file_index > 0)
17591 {
17592 struct file_entry *fe;
17593
17594 fe = &cu->line_header->file_names[file_index - 1];
17595 SYMBOL_SYMTAB (sym) = fe->symtab;
17596 }
17597 }
17598
17599 switch (die->tag)
17600 {
17601 case DW_TAG_label:
17602 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17603 if (attr)
17604 SYMBOL_VALUE_ADDRESS (sym)
17605 = attr_value_as_address (attr) + baseaddr;
17606 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17607 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17608 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17609 add_symbol_to_list (sym, cu->list_in_scope);
17610 break;
17611 case DW_TAG_subprogram:
17612 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17613 finish_block. */
17614 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17615 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17616 if ((attr2 && (DW_UNSND (attr2) != 0))
17617 || cu->language == language_ada)
17618 {
17619 /* Subprograms marked external are stored as a global symbol.
17620 Ada subprograms, whether marked external or not, are always
17621 stored as a global symbol, because we want to be able to
17622 access them globally. For instance, we want to be able
17623 to break on a nested subprogram without having to
17624 specify the context. */
17625 list_to_add = &global_symbols;
17626 }
17627 else
17628 {
17629 list_to_add = cu->list_in_scope;
17630 }
17631 break;
17632 case DW_TAG_inlined_subroutine:
17633 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17634 finish_block. */
17635 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17636 SYMBOL_INLINED (sym) = 1;
17637 list_to_add = cu->list_in_scope;
17638 break;
17639 case DW_TAG_template_value_param:
17640 suppress_add = 1;
17641 /* Fall through. */
17642 case DW_TAG_constant:
17643 case DW_TAG_variable:
17644 case DW_TAG_member:
17645 /* Compilation with minimal debug info may result in
17646 variables with missing type entries. Change the
17647 misleading `void' type to something sensible. */
17648 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17649 SYMBOL_TYPE (sym)
17650 = objfile_type (objfile)->nodebug_data_symbol;
17651
17652 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17653 /* In the case of DW_TAG_member, we should only be called for
17654 static const members. */
17655 if (die->tag == DW_TAG_member)
17656 {
17657 /* dwarf2_add_field uses die_is_declaration,
17658 so we do the same. */
17659 gdb_assert (die_is_declaration (die, cu));
17660 gdb_assert (attr);
17661 }
17662 if (attr)
17663 {
17664 dwarf2_const_value (attr, sym, cu);
17665 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17666 if (!suppress_add)
17667 {
17668 if (attr2 && (DW_UNSND (attr2) != 0))
17669 list_to_add = &global_symbols;
17670 else
17671 list_to_add = cu->list_in_scope;
17672 }
17673 break;
17674 }
17675 attr = dwarf2_attr (die, DW_AT_location, cu);
17676 if (attr)
17677 {
17678 var_decode_location (attr, sym, cu);
17679 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17680
17681 /* Fortran explicitly imports any global symbols to the local
17682 scope by DW_TAG_common_block. */
17683 if (cu->language == language_fortran && die->parent
17684 && die->parent->tag == DW_TAG_common_block)
17685 attr2 = NULL;
17686
17687 if (SYMBOL_CLASS (sym) == LOC_STATIC
17688 && SYMBOL_VALUE_ADDRESS (sym) == 0
17689 && !dwarf2_per_objfile->has_section_at_zero)
17690 {
17691 /* When a static variable is eliminated by the linker,
17692 the corresponding debug information is not stripped
17693 out, but the variable address is set to null;
17694 do not add such variables into symbol table. */
17695 }
17696 else if (attr2 && (DW_UNSND (attr2) != 0))
17697 {
17698 /* Workaround gfortran PR debug/40040 - it uses
17699 DW_AT_location for variables in -fPIC libraries which may
17700 get overriden by other libraries/executable and get
17701 a different address. Resolve it by the minimal symbol
17702 which may come from inferior's executable using copy
17703 relocation. Make this workaround only for gfortran as for
17704 other compilers GDB cannot guess the minimal symbol
17705 Fortran mangling kind. */
17706 if (cu->language == language_fortran && die->parent
17707 && die->parent->tag == DW_TAG_module
17708 && cu->producer
17709 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17710 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17711
17712 /* A variable with DW_AT_external is never static,
17713 but it may be block-scoped. */
17714 list_to_add = (cu->list_in_scope == &file_symbols
17715 ? &global_symbols : cu->list_in_scope);
17716 }
17717 else
17718 list_to_add = cu->list_in_scope;
17719 }
17720 else
17721 {
17722 /* We do not know the address of this symbol.
17723 If it is an external symbol and we have type information
17724 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17725 The address of the variable will then be determined from
17726 the minimal symbol table whenever the variable is
17727 referenced. */
17728 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17729
17730 /* Fortran explicitly imports any global symbols to the local
17731 scope by DW_TAG_common_block. */
17732 if (cu->language == language_fortran && die->parent
17733 && die->parent->tag == DW_TAG_common_block)
17734 {
17735 /* SYMBOL_CLASS doesn't matter here because
17736 read_common_block is going to reset it. */
17737 if (!suppress_add)
17738 list_to_add = cu->list_in_scope;
17739 }
17740 else if (attr2 && (DW_UNSND (attr2) != 0)
17741 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17742 {
17743 /* A variable with DW_AT_external is never static, but it
17744 may be block-scoped. */
17745 list_to_add = (cu->list_in_scope == &file_symbols
17746 ? &global_symbols : cu->list_in_scope);
17747
17748 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17749 }
17750 else if (!die_is_declaration (die, cu))
17751 {
17752 /* Use the default LOC_OPTIMIZED_OUT class. */
17753 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17754 if (!suppress_add)
17755 list_to_add = cu->list_in_scope;
17756 }
17757 }
17758 break;
17759 case DW_TAG_formal_parameter:
17760 /* If we are inside a function, mark this as an argument. If
17761 not, we might be looking at an argument to an inlined function
17762 when we do not have enough information to show inlined frames;
17763 pretend it's a local variable in that case so that the user can
17764 still see it. */
17765 if (context_stack_depth > 0
17766 && context_stack[context_stack_depth - 1].name != NULL)
17767 SYMBOL_IS_ARGUMENT (sym) = 1;
17768 attr = dwarf2_attr (die, DW_AT_location, cu);
17769 if (attr)
17770 {
17771 var_decode_location (attr, sym, cu);
17772 }
17773 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17774 if (attr)
17775 {
17776 dwarf2_const_value (attr, sym, cu);
17777 }
17778
17779 list_to_add = cu->list_in_scope;
17780 break;
17781 case DW_TAG_unspecified_parameters:
17782 /* From varargs functions; gdb doesn't seem to have any
17783 interest in this information, so just ignore it for now.
17784 (FIXME?) */
17785 break;
17786 case DW_TAG_template_type_param:
17787 suppress_add = 1;
17788 /* Fall through. */
17789 case DW_TAG_class_type:
17790 case DW_TAG_interface_type:
17791 case DW_TAG_structure_type:
17792 case DW_TAG_union_type:
17793 case DW_TAG_set_type:
17794 case DW_TAG_enumeration_type:
17795 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17796 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17797
17798 {
17799 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17800 really ever be static objects: otherwise, if you try
17801 to, say, break of a class's method and you're in a file
17802 which doesn't mention that class, it won't work unless
17803 the check for all static symbols in lookup_symbol_aux
17804 saves you. See the OtherFileClass tests in
17805 gdb.c++/namespace.exp. */
17806
17807 if (!suppress_add)
17808 {
17809 list_to_add = (cu->list_in_scope == &file_symbols
17810 && (cu->language == language_cplus
17811 || cu->language == language_java)
17812 ? &global_symbols : cu->list_in_scope);
17813
17814 /* The semantics of C++ state that "struct foo {
17815 ... }" also defines a typedef for "foo". A Java
17816 class declaration also defines a typedef for the
17817 class. */
17818 if (cu->language == language_cplus
17819 || cu->language == language_java
17820 || cu->language == language_ada)
17821 {
17822 /* The symbol's name is already allocated along
17823 with this objfile, so we don't need to
17824 duplicate it for the type. */
17825 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17826 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17827 }
17828 }
17829 }
17830 break;
17831 case DW_TAG_typedef:
17832 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17834 list_to_add = cu->list_in_scope;
17835 break;
17836 case DW_TAG_base_type:
17837 case DW_TAG_subrange_type:
17838 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17839 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17840 list_to_add = cu->list_in_scope;
17841 break;
17842 case DW_TAG_enumerator:
17843 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17844 if (attr)
17845 {
17846 dwarf2_const_value (attr, sym, cu);
17847 }
17848 {
17849 /* NOTE: carlton/2003-11-10: See comment above in the
17850 DW_TAG_class_type, etc. block. */
17851
17852 list_to_add = (cu->list_in_scope == &file_symbols
17853 && (cu->language == language_cplus
17854 || cu->language == language_java)
17855 ? &global_symbols : cu->list_in_scope);
17856 }
17857 break;
17858 case DW_TAG_imported_declaration:
17859 case DW_TAG_namespace:
17860 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17861 list_to_add = &global_symbols;
17862 break;
17863 case DW_TAG_module:
17864 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17865 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17866 list_to_add = &global_symbols;
17867 break;
17868 case DW_TAG_common_block:
17869 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17870 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17871 add_symbol_to_list (sym, cu->list_in_scope);
17872 break;
17873 default:
17874 /* Not a tag we recognize. Hopefully we aren't processing
17875 trash data, but since we must specifically ignore things
17876 we don't recognize, there is nothing else we should do at
17877 this point. */
17878 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17879 dwarf_tag_name (die->tag));
17880 break;
17881 }
17882
17883 if (suppress_add)
17884 {
17885 sym->hash_next = objfile->template_symbols;
17886 objfile->template_symbols = sym;
17887 list_to_add = NULL;
17888 }
17889
17890 if (list_to_add != NULL)
17891 add_symbol_to_list (sym, list_to_add);
17892
17893 /* For the benefit of old versions of GCC, check for anonymous
17894 namespaces based on the demangled name. */
17895 if (!cu->processing_has_namespace_info
17896 && cu->language == language_cplus)
17897 cp_scan_for_anonymous_namespaces (sym, objfile);
17898 }
17899 return (sym);
17900 }
17901
17902 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17903
17904 static struct symbol *
17905 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17906 {
17907 return new_symbol_full (die, type, cu, NULL);
17908 }
17909
17910 /* Given an attr with a DW_FORM_dataN value in host byte order,
17911 zero-extend it as appropriate for the symbol's type. The DWARF
17912 standard (v4) is not entirely clear about the meaning of using
17913 DW_FORM_dataN for a constant with a signed type, where the type is
17914 wider than the data. The conclusion of a discussion on the DWARF
17915 list was that this is unspecified. We choose to always zero-extend
17916 because that is the interpretation long in use by GCC. */
17917
17918 static gdb_byte *
17919 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17920 struct dwarf2_cu *cu, LONGEST *value, int bits)
17921 {
17922 struct objfile *objfile = cu->objfile;
17923 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17924 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17925 LONGEST l = DW_UNSND (attr);
17926
17927 if (bits < sizeof (*value) * 8)
17928 {
17929 l &= ((LONGEST) 1 << bits) - 1;
17930 *value = l;
17931 }
17932 else if (bits == sizeof (*value) * 8)
17933 *value = l;
17934 else
17935 {
17936 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17937 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17938 return bytes;
17939 }
17940
17941 return NULL;
17942 }
17943
17944 /* Read a constant value from an attribute. Either set *VALUE, or if
17945 the value does not fit in *VALUE, set *BYTES - either already
17946 allocated on the objfile obstack, or newly allocated on OBSTACK,
17947 or, set *BATON, if we translated the constant to a location
17948 expression. */
17949
17950 static void
17951 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17952 const char *name, struct obstack *obstack,
17953 struct dwarf2_cu *cu,
17954 LONGEST *value, const gdb_byte **bytes,
17955 struct dwarf2_locexpr_baton **baton)
17956 {
17957 struct objfile *objfile = cu->objfile;
17958 struct comp_unit_head *cu_header = &cu->header;
17959 struct dwarf_block *blk;
17960 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17961 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17962
17963 *value = 0;
17964 *bytes = NULL;
17965 *baton = NULL;
17966
17967 switch (attr->form)
17968 {
17969 case DW_FORM_addr:
17970 case DW_FORM_GNU_addr_index:
17971 {
17972 gdb_byte *data;
17973
17974 if (TYPE_LENGTH (type) != cu_header->addr_size)
17975 dwarf2_const_value_length_mismatch_complaint (name,
17976 cu_header->addr_size,
17977 TYPE_LENGTH (type));
17978 /* Symbols of this form are reasonably rare, so we just
17979 piggyback on the existing location code rather than writing
17980 a new implementation of symbol_computed_ops. */
17981 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17982 (*baton)->per_cu = cu->per_cu;
17983 gdb_assert ((*baton)->per_cu);
17984
17985 (*baton)->size = 2 + cu_header->addr_size;
17986 data = obstack_alloc (obstack, (*baton)->size);
17987 (*baton)->data = data;
17988
17989 data[0] = DW_OP_addr;
17990 store_unsigned_integer (&data[1], cu_header->addr_size,
17991 byte_order, DW_ADDR (attr));
17992 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17993 }
17994 break;
17995 case DW_FORM_string:
17996 case DW_FORM_strp:
17997 case DW_FORM_GNU_str_index:
17998 case DW_FORM_GNU_strp_alt:
17999 /* DW_STRING is already allocated on the objfile obstack, point
18000 directly to it. */
18001 *bytes = (const gdb_byte *) DW_STRING (attr);
18002 break;
18003 case DW_FORM_block1:
18004 case DW_FORM_block2:
18005 case DW_FORM_block4:
18006 case DW_FORM_block:
18007 case DW_FORM_exprloc:
18008 blk = DW_BLOCK (attr);
18009 if (TYPE_LENGTH (type) != blk->size)
18010 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18011 TYPE_LENGTH (type));
18012 *bytes = blk->data;
18013 break;
18014
18015 /* The DW_AT_const_value attributes are supposed to carry the
18016 symbol's value "represented as it would be on the target
18017 architecture." By the time we get here, it's already been
18018 converted to host endianness, so we just need to sign- or
18019 zero-extend it as appropriate. */
18020 case DW_FORM_data1:
18021 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18022 break;
18023 case DW_FORM_data2:
18024 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18025 break;
18026 case DW_FORM_data4:
18027 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18028 break;
18029 case DW_FORM_data8:
18030 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18031 break;
18032
18033 case DW_FORM_sdata:
18034 *value = DW_SND (attr);
18035 break;
18036
18037 case DW_FORM_udata:
18038 *value = DW_UNSND (attr);
18039 break;
18040
18041 default:
18042 complaint (&symfile_complaints,
18043 _("unsupported const value attribute form: '%s'"),
18044 dwarf_form_name (attr->form));
18045 *value = 0;
18046 break;
18047 }
18048 }
18049
18050
18051 /* Copy constant value from an attribute to a symbol. */
18052
18053 static void
18054 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18055 struct dwarf2_cu *cu)
18056 {
18057 struct objfile *objfile = cu->objfile;
18058 struct comp_unit_head *cu_header = &cu->header;
18059 LONGEST value;
18060 const gdb_byte *bytes;
18061 struct dwarf2_locexpr_baton *baton;
18062
18063 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18064 SYMBOL_PRINT_NAME (sym),
18065 &objfile->objfile_obstack, cu,
18066 &value, &bytes, &baton);
18067
18068 if (baton != NULL)
18069 {
18070 SYMBOL_LOCATION_BATON (sym) = baton;
18071 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18072 }
18073 else if (bytes != NULL)
18074 {
18075 SYMBOL_VALUE_BYTES (sym) = bytes;
18076 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18077 }
18078 else
18079 {
18080 SYMBOL_VALUE (sym) = value;
18081 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18082 }
18083 }
18084
18085 /* Return the type of the die in question using its DW_AT_type attribute. */
18086
18087 static struct type *
18088 die_type (struct die_info *die, struct dwarf2_cu *cu)
18089 {
18090 struct attribute *type_attr;
18091
18092 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18093 if (!type_attr)
18094 {
18095 /* A missing DW_AT_type represents a void type. */
18096 return objfile_type (cu->objfile)->builtin_void;
18097 }
18098
18099 return lookup_die_type (die, type_attr, cu);
18100 }
18101
18102 /* True iff CU's producer generates GNAT Ada auxiliary information
18103 that allows to find parallel types through that information instead
18104 of having to do expensive parallel lookups by type name. */
18105
18106 static int
18107 need_gnat_info (struct dwarf2_cu *cu)
18108 {
18109 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18110 of GNAT produces this auxiliary information, without any indication
18111 that it is produced. Part of enhancing the FSF version of GNAT
18112 to produce that information will be to put in place an indicator
18113 that we can use in order to determine whether the descriptive type
18114 info is available or not. One suggestion that has been made is
18115 to use a new attribute, attached to the CU die. For now, assume
18116 that the descriptive type info is not available. */
18117 return 0;
18118 }
18119
18120 /* Return the auxiliary type of the die in question using its
18121 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18122 attribute is not present. */
18123
18124 static struct type *
18125 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18126 {
18127 struct attribute *type_attr;
18128
18129 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18130 if (!type_attr)
18131 return NULL;
18132
18133 return lookup_die_type (die, type_attr, cu);
18134 }
18135
18136 /* If DIE has a descriptive_type attribute, then set the TYPE's
18137 descriptive type accordingly. */
18138
18139 static void
18140 set_descriptive_type (struct type *type, struct die_info *die,
18141 struct dwarf2_cu *cu)
18142 {
18143 struct type *descriptive_type = die_descriptive_type (die, cu);
18144
18145 if (descriptive_type)
18146 {
18147 ALLOCATE_GNAT_AUX_TYPE (type);
18148 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18149 }
18150 }
18151
18152 /* Return the containing type of the die in question using its
18153 DW_AT_containing_type attribute. */
18154
18155 static struct type *
18156 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18157 {
18158 struct attribute *type_attr;
18159
18160 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18161 if (!type_attr)
18162 error (_("Dwarf Error: Problem turning containing type into gdb type "
18163 "[in module %s]"), objfile_name (cu->objfile));
18164
18165 return lookup_die_type (die, type_attr, cu);
18166 }
18167
18168 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18169
18170 static struct type *
18171 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18172 {
18173 struct objfile *objfile = dwarf2_per_objfile->objfile;
18174 char *message, *saved;
18175
18176 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18177 objfile_name (objfile),
18178 cu->header.offset.sect_off,
18179 die->offset.sect_off);
18180 saved = obstack_copy0 (&objfile->objfile_obstack,
18181 message, strlen (message));
18182 xfree (message);
18183
18184 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18185 }
18186
18187 /* Look up the type of DIE in CU using its type attribute ATTR.
18188 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18189 DW_AT_containing_type.
18190 If there is no type substitute an error marker. */
18191
18192 static struct type *
18193 lookup_die_type (struct die_info *die, const struct attribute *attr,
18194 struct dwarf2_cu *cu)
18195 {
18196 struct objfile *objfile = cu->objfile;
18197 struct type *this_type;
18198
18199 gdb_assert (attr->name == DW_AT_type
18200 || attr->name == DW_AT_GNAT_descriptive_type
18201 || attr->name == DW_AT_containing_type);
18202
18203 /* First see if we have it cached. */
18204
18205 if (attr->form == DW_FORM_GNU_ref_alt)
18206 {
18207 struct dwarf2_per_cu_data *per_cu;
18208 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18209
18210 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18211 this_type = get_die_type_at_offset (offset, per_cu);
18212 }
18213 else if (attr_form_is_ref (attr))
18214 {
18215 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18216
18217 this_type = get_die_type_at_offset (offset, cu->per_cu);
18218 }
18219 else if (attr->form == DW_FORM_ref_sig8)
18220 {
18221 ULONGEST signature = DW_SIGNATURE (attr);
18222
18223 return get_signatured_type (die, signature, cu);
18224 }
18225 else
18226 {
18227 complaint (&symfile_complaints,
18228 _("Dwarf Error: Bad type attribute %s in DIE"
18229 " at 0x%x [in module %s]"),
18230 dwarf_attr_name (attr->name), die->offset.sect_off,
18231 objfile_name (objfile));
18232 return build_error_marker_type (cu, die);
18233 }
18234
18235 /* If not cached we need to read it in. */
18236
18237 if (this_type == NULL)
18238 {
18239 struct die_info *type_die = NULL;
18240 struct dwarf2_cu *type_cu = cu;
18241
18242 if (attr_form_is_ref (attr))
18243 type_die = follow_die_ref (die, attr, &type_cu);
18244 if (type_die == NULL)
18245 return build_error_marker_type (cu, die);
18246 /* If we find the type now, it's probably because the type came
18247 from an inter-CU reference and the type's CU got expanded before
18248 ours. */
18249 this_type = read_type_die (type_die, type_cu);
18250 }
18251
18252 /* If we still don't have a type use an error marker. */
18253
18254 if (this_type == NULL)
18255 return build_error_marker_type (cu, die);
18256
18257 return this_type;
18258 }
18259
18260 /* Return the type in DIE, CU.
18261 Returns NULL for invalid types.
18262
18263 This first does a lookup in die_type_hash,
18264 and only reads the die in if necessary.
18265
18266 NOTE: This can be called when reading in partial or full symbols. */
18267
18268 static struct type *
18269 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18270 {
18271 struct type *this_type;
18272
18273 this_type = get_die_type (die, cu);
18274 if (this_type)
18275 return this_type;
18276
18277 return read_type_die_1 (die, cu);
18278 }
18279
18280 /* Read the type in DIE, CU.
18281 Returns NULL for invalid types. */
18282
18283 static struct type *
18284 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18285 {
18286 struct type *this_type = NULL;
18287
18288 switch (die->tag)
18289 {
18290 case DW_TAG_class_type:
18291 case DW_TAG_interface_type:
18292 case DW_TAG_structure_type:
18293 case DW_TAG_union_type:
18294 this_type = read_structure_type (die, cu);
18295 break;
18296 case DW_TAG_enumeration_type:
18297 this_type = read_enumeration_type (die, cu);
18298 break;
18299 case DW_TAG_subprogram:
18300 case DW_TAG_subroutine_type:
18301 case DW_TAG_inlined_subroutine:
18302 this_type = read_subroutine_type (die, cu);
18303 break;
18304 case DW_TAG_array_type:
18305 this_type = read_array_type (die, cu);
18306 break;
18307 case DW_TAG_set_type:
18308 this_type = read_set_type (die, cu);
18309 break;
18310 case DW_TAG_pointer_type:
18311 this_type = read_tag_pointer_type (die, cu);
18312 break;
18313 case DW_TAG_ptr_to_member_type:
18314 this_type = read_tag_ptr_to_member_type (die, cu);
18315 break;
18316 case DW_TAG_reference_type:
18317 this_type = read_tag_reference_type (die, cu);
18318 break;
18319 case DW_TAG_const_type:
18320 this_type = read_tag_const_type (die, cu);
18321 break;
18322 case DW_TAG_volatile_type:
18323 this_type = read_tag_volatile_type (die, cu);
18324 break;
18325 case DW_TAG_restrict_type:
18326 this_type = read_tag_restrict_type (die, cu);
18327 break;
18328 case DW_TAG_string_type:
18329 this_type = read_tag_string_type (die, cu);
18330 break;
18331 case DW_TAG_typedef:
18332 this_type = read_typedef (die, cu);
18333 break;
18334 case DW_TAG_subrange_type:
18335 this_type = read_subrange_type (die, cu);
18336 break;
18337 case DW_TAG_base_type:
18338 this_type = read_base_type (die, cu);
18339 break;
18340 case DW_TAG_unspecified_type:
18341 this_type = read_unspecified_type (die, cu);
18342 break;
18343 case DW_TAG_namespace:
18344 this_type = read_namespace_type (die, cu);
18345 break;
18346 case DW_TAG_module:
18347 this_type = read_module_type (die, cu);
18348 break;
18349 default:
18350 complaint (&symfile_complaints,
18351 _("unexpected tag in read_type_die: '%s'"),
18352 dwarf_tag_name (die->tag));
18353 break;
18354 }
18355
18356 return this_type;
18357 }
18358
18359 /* See if we can figure out if the class lives in a namespace. We do
18360 this by looking for a member function; its demangled name will
18361 contain namespace info, if there is any.
18362 Return the computed name or NULL.
18363 Space for the result is allocated on the objfile's obstack.
18364 This is the full-die version of guess_partial_die_structure_name.
18365 In this case we know DIE has no useful parent. */
18366
18367 static char *
18368 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18369 {
18370 struct die_info *spec_die;
18371 struct dwarf2_cu *spec_cu;
18372 struct die_info *child;
18373
18374 spec_cu = cu;
18375 spec_die = die_specification (die, &spec_cu);
18376 if (spec_die != NULL)
18377 {
18378 die = spec_die;
18379 cu = spec_cu;
18380 }
18381
18382 for (child = die->child;
18383 child != NULL;
18384 child = child->sibling)
18385 {
18386 if (child->tag == DW_TAG_subprogram)
18387 {
18388 struct attribute *attr;
18389
18390 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18391 if (attr == NULL)
18392 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18393 if (attr != NULL)
18394 {
18395 char *actual_name
18396 = language_class_name_from_physname (cu->language_defn,
18397 DW_STRING (attr));
18398 char *name = NULL;
18399
18400 if (actual_name != NULL)
18401 {
18402 const char *die_name = dwarf2_name (die, cu);
18403
18404 if (die_name != NULL
18405 && strcmp (die_name, actual_name) != 0)
18406 {
18407 /* Strip off the class name from the full name.
18408 We want the prefix. */
18409 int die_name_len = strlen (die_name);
18410 int actual_name_len = strlen (actual_name);
18411
18412 /* Test for '::' as a sanity check. */
18413 if (actual_name_len > die_name_len + 2
18414 && actual_name[actual_name_len
18415 - die_name_len - 1] == ':')
18416 name =
18417 obstack_copy0 (&cu->objfile->objfile_obstack,
18418 actual_name,
18419 actual_name_len - die_name_len - 2);
18420 }
18421 }
18422 xfree (actual_name);
18423 return name;
18424 }
18425 }
18426 }
18427
18428 return NULL;
18429 }
18430
18431 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18432 prefix part in such case. See
18433 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18434
18435 static char *
18436 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18437 {
18438 struct attribute *attr;
18439 char *base;
18440
18441 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18442 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18443 return NULL;
18444
18445 attr = dwarf2_attr (die, DW_AT_name, cu);
18446 if (attr != NULL && DW_STRING (attr) != NULL)
18447 return NULL;
18448
18449 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18450 if (attr == NULL)
18451 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18452 if (attr == NULL || DW_STRING (attr) == NULL)
18453 return NULL;
18454
18455 /* dwarf2_name had to be already called. */
18456 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18457
18458 /* Strip the base name, keep any leading namespaces/classes. */
18459 base = strrchr (DW_STRING (attr), ':');
18460 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18461 return "";
18462
18463 return obstack_copy0 (&cu->objfile->objfile_obstack,
18464 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18465 }
18466
18467 /* Return the name of the namespace/class that DIE is defined within,
18468 or "" if we can't tell. The caller should not xfree the result.
18469
18470 For example, if we're within the method foo() in the following
18471 code:
18472
18473 namespace N {
18474 class C {
18475 void foo () {
18476 }
18477 };
18478 }
18479
18480 then determine_prefix on foo's die will return "N::C". */
18481
18482 static const char *
18483 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18484 {
18485 struct die_info *parent, *spec_die;
18486 struct dwarf2_cu *spec_cu;
18487 struct type *parent_type;
18488 char *retval;
18489
18490 if (cu->language != language_cplus && cu->language != language_java
18491 && cu->language != language_fortran)
18492 return "";
18493
18494 retval = anonymous_struct_prefix (die, cu);
18495 if (retval)
18496 return retval;
18497
18498 /* We have to be careful in the presence of DW_AT_specification.
18499 For example, with GCC 3.4, given the code
18500
18501 namespace N {
18502 void foo() {
18503 // Definition of N::foo.
18504 }
18505 }
18506
18507 then we'll have a tree of DIEs like this:
18508
18509 1: DW_TAG_compile_unit
18510 2: DW_TAG_namespace // N
18511 3: DW_TAG_subprogram // declaration of N::foo
18512 4: DW_TAG_subprogram // definition of N::foo
18513 DW_AT_specification // refers to die #3
18514
18515 Thus, when processing die #4, we have to pretend that we're in
18516 the context of its DW_AT_specification, namely the contex of die
18517 #3. */
18518 spec_cu = cu;
18519 spec_die = die_specification (die, &spec_cu);
18520 if (spec_die == NULL)
18521 parent = die->parent;
18522 else
18523 {
18524 parent = spec_die->parent;
18525 cu = spec_cu;
18526 }
18527
18528 if (parent == NULL)
18529 return "";
18530 else if (parent->building_fullname)
18531 {
18532 const char *name;
18533 const char *parent_name;
18534
18535 /* It has been seen on RealView 2.2 built binaries,
18536 DW_TAG_template_type_param types actually _defined_ as
18537 children of the parent class:
18538
18539 enum E {};
18540 template class <class Enum> Class{};
18541 Class<enum E> class_e;
18542
18543 1: DW_TAG_class_type (Class)
18544 2: DW_TAG_enumeration_type (E)
18545 3: DW_TAG_enumerator (enum1:0)
18546 3: DW_TAG_enumerator (enum2:1)
18547 ...
18548 2: DW_TAG_template_type_param
18549 DW_AT_type DW_FORM_ref_udata (E)
18550
18551 Besides being broken debug info, it can put GDB into an
18552 infinite loop. Consider:
18553
18554 When we're building the full name for Class<E>, we'll start
18555 at Class, and go look over its template type parameters,
18556 finding E. We'll then try to build the full name of E, and
18557 reach here. We're now trying to build the full name of E,
18558 and look over the parent DIE for containing scope. In the
18559 broken case, if we followed the parent DIE of E, we'd again
18560 find Class, and once again go look at its template type
18561 arguments, etc., etc. Simply don't consider such parent die
18562 as source-level parent of this die (it can't be, the language
18563 doesn't allow it), and break the loop here. */
18564 name = dwarf2_name (die, cu);
18565 parent_name = dwarf2_name (parent, cu);
18566 complaint (&symfile_complaints,
18567 _("template param type '%s' defined within parent '%s'"),
18568 name ? name : "<unknown>",
18569 parent_name ? parent_name : "<unknown>");
18570 return "";
18571 }
18572 else
18573 switch (parent->tag)
18574 {
18575 case DW_TAG_namespace:
18576 parent_type = read_type_die (parent, cu);
18577 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18578 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18579 Work around this problem here. */
18580 if (cu->language == language_cplus
18581 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18582 return "";
18583 /* We give a name to even anonymous namespaces. */
18584 return TYPE_TAG_NAME (parent_type);
18585 case DW_TAG_class_type:
18586 case DW_TAG_interface_type:
18587 case DW_TAG_structure_type:
18588 case DW_TAG_union_type:
18589 case DW_TAG_module:
18590 parent_type = read_type_die (parent, cu);
18591 if (TYPE_TAG_NAME (parent_type) != NULL)
18592 return TYPE_TAG_NAME (parent_type);
18593 else
18594 /* An anonymous structure is only allowed non-static data
18595 members; no typedefs, no member functions, et cetera.
18596 So it does not need a prefix. */
18597 return "";
18598 case DW_TAG_compile_unit:
18599 case DW_TAG_partial_unit:
18600 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18601 if (cu->language == language_cplus
18602 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18603 && die->child != NULL
18604 && (die->tag == DW_TAG_class_type
18605 || die->tag == DW_TAG_structure_type
18606 || die->tag == DW_TAG_union_type))
18607 {
18608 char *name = guess_full_die_structure_name (die, cu);
18609 if (name != NULL)
18610 return name;
18611 }
18612 return "";
18613 case DW_TAG_enumeration_type:
18614 parent_type = read_type_die (parent, cu);
18615 if (TYPE_DECLARED_CLASS (parent_type))
18616 {
18617 if (TYPE_TAG_NAME (parent_type) != NULL)
18618 return TYPE_TAG_NAME (parent_type);
18619 return "";
18620 }
18621 /* Fall through. */
18622 default:
18623 return determine_prefix (parent, cu);
18624 }
18625 }
18626
18627 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18628 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18629 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18630 an obconcat, otherwise allocate storage for the result. The CU argument is
18631 used to determine the language and hence, the appropriate separator. */
18632
18633 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18634
18635 static char *
18636 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18637 int physname, struct dwarf2_cu *cu)
18638 {
18639 const char *lead = "";
18640 const char *sep;
18641
18642 if (suffix == NULL || suffix[0] == '\0'
18643 || prefix == NULL || prefix[0] == '\0')
18644 sep = "";
18645 else if (cu->language == language_java)
18646 sep = ".";
18647 else if (cu->language == language_fortran && physname)
18648 {
18649 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18650 DW_AT_MIPS_linkage_name is preferred and used instead. */
18651
18652 lead = "__";
18653 sep = "_MOD_";
18654 }
18655 else
18656 sep = "::";
18657
18658 if (prefix == NULL)
18659 prefix = "";
18660 if (suffix == NULL)
18661 suffix = "";
18662
18663 if (obs == NULL)
18664 {
18665 char *retval
18666 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18667
18668 strcpy (retval, lead);
18669 strcat (retval, prefix);
18670 strcat (retval, sep);
18671 strcat (retval, suffix);
18672 return retval;
18673 }
18674 else
18675 {
18676 /* We have an obstack. */
18677 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18678 }
18679 }
18680
18681 /* Return sibling of die, NULL if no sibling. */
18682
18683 static struct die_info *
18684 sibling_die (struct die_info *die)
18685 {
18686 return die->sibling;
18687 }
18688
18689 /* Get name of a die, return NULL if not found. */
18690
18691 static const char *
18692 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18693 struct obstack *obstack)
18694 {
18695 if (name && cu->language == language_cplus)
18696 {
18697 char *canon_name = cp_canonicalize_string (name);
18698
18699 if (canon_name != NULL)
18700 {
18701 if (strcmp (canon_name, name) != 0)
18702 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18703 xfree (canon_name);
18704 }
18705 }
18706
18707 return name;
18708 }
18709
18710 /* Get name of a die, return NULL if not found. */
18711
18712 static const char *
18713 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18714 {
18715 struct attribute *attr;
18716
18717 attr = dwarf2_attr (die, DW_AT_name, cu);
18718 if ((!attr || !DW_STRING (attr))
18719 && die->tag != DW_TAG_class_type
18720 && die->tag != DW_TAG_interface_type
18721 && die->tag != DW_TAG_structure_type
18722 && die->tag != DW_TAG_union_type)
18723 return NULL;
18724
18725 switch (die->tag)
18726 {
18727 case DW_TAG_compile_unit:
18728 case DW_TAG_partial_unit:
18729 /* Compilation units have a DW_AT_name that is a filename, not
18730 a source language identifier. */
18731 case DW_TAG_enumeration_type:
18732 case DW_TAG_enumerator:
18733 /* These tags always have simple identifiers already; no need
18734 to canonicalize them. */
18735 return DW_STRING (attr);
18736
18737 case DW_TAG_subprogram:
18738 /* Java constructors will all be named "<init>", so return
18739 the class name when we see this special case. */
18740 if (cu->language == language_java
18741 && DW_STRING (attr) != NULL
18742 && strcmp (DW_STRING (attr), "<init>") == 0)
18743 {
18744 struct dwarf2_cu *spec_cu = cu;
18745 struct die_info *spec_die;
18746
18747 /* GCJ will output '<init>' for Java constructor names.
18748 For this special case, return the name of the parent class. */
18749
18750 /* GCJ may output suprogram DIEs with AT_specification set.
18751 If so, use the name of the specified DIE. */
18752 spec_die = die_specification (die, &spec_cu);
18753 if (spec_die != NULL)
18754 return dwarf2_name (spec_die, spec_cu);
18755
18756 do
18757 {
18758 die = die->parent;
18759 if (die->tag == DW_TAG_class_type)
18760 return dwarf2_name (die, cu);
18761 }
18762 while (die->tag != DW_TAG_compile_unit
18763 && die->tag != DW_TAG_partial_unit);
18764 }
18765 break;
18766
18767 case DW_TAG_class_type:
18768 case DW_TAG_interface_type:
18769 case DW_TAG_structure_type:
18770 case DW_TAG_union_type:
18771 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18772 structures or unions. These were of the form "._%d" in GCC 4.1,
18773 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18774 and GCC 4.4. We work around this problem by ignoring these. */
18775 if (attr && DW_STRING (attr)
18776 && (strncmp (DW_STRING (attr), "._", 2) == 0
18777 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18778 return NULL;
18779
18780 /* GCC might emit a nameless typedef that has a linkage name. See
18781 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18782 if (!attr || DW_STRING (attr) == NULL)
18783 {
18784 char *demangled = NULL;
18785
18786 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18787 if (attr == NULL)
18788 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18789
18790 if (attr == NULL || DW_STRING (attr) == NULL)
18791 return NULL;
18792
18793 /* Avoid demangling DW_STRING (attr) the second time on a second
18794 call for the same DIE. */
18795 if (!DW_STRING_IS_CANONICAL (attr))
18796 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18797
18798 if (demangled)
18799 {
18800 char *base;
18801
18802 /* FIXME: we already did this for the partial symbol... */
18803 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18804 demangled, strlen (demangled));
18805 DW_STRING_IS_CANONICAL (attr) = 1;
18806 xfree (demangled);
18807
18808 /* Strip any leading namespaces/classes, keep only the base name.
18809 DW_AT_name for named DIEs does not contain the prefixes. */
18810 base = strrchr (DW_STRING (attr), ':');
18811 if (base && base > DW_STRING (attr) && base[-1] == ':')
18812 return &base[1];
18813 else
18814 return DW_STRING (attr);
18815 }
18816 }
18817 break;
18818
18819 default:
18820 break;
18821 }
18822
18823 if (!DW_STRING_IS_CANONICAL (attr))
18824 {
18825 DW_STRING (attr)
18826 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18827 &cu->objfile->objfile_obstack);
18828 DW_STRING_IS_CANONICAL (attr) = 1;
18829 }
18830 return DW_STRING (attr);
18831 }
18832
18833 /* Return the die that this die in an extension of, or NULL if there
18834 is none. *EXT_CU is the CU containing DIE on input, and the CU
18835 containing the return value on output. */
18836
18837 static struct die_info *
18838 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18839 {
18840 struct attribute *attr;
18841
18842 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18843 if (attr == NULL)
18844 return NULL;
18845
18846 return follow_die_ref (die, attr, ext_cu);
18847 }
18848
18849 /* Convert a DIE tag into its string name. */
18850
18851 static const char *
18852 dwarf_tag_name (unsigned tag)
18853 {
18854 const char *name = get_DW_TAG_name (tag);
18855
18856 if (name == NULL)
18857 return "DW_TAG_<unknown>";
18858
18859 return name;
18860 }
18861
18862 /* Convert a DWARF attribute code into its string name. */
18863
18864 static const char *
18865 dwarf_attr_name (unsigned attr)
18866 {
18867 const char *name;
18868
18869 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18870 if (attr == DW_AT_MIPS_fde)
18871 return "DW_AT_MIPS_fde";
18872 #else
18873 if (attr == DW_AT_HP_block_index)
18874 return "DW_AT_HP_block_index";
18875 #endif
18876
18877 name = get_DW_AT_name (attr);
18878
18879 if (name == NULL)
18880 return "DW_AT_<unknown>";
18881
18882 return name;
18883 }
18884
18885 /* Convert a DWARF value form code into its string name. */
18886
18887 static const char *
18888 dwarf_form_name (unsigned form)
18889 {
18890 const char *name = get_DW_FORM_name (form);
18891
18892 if (name == NULL)
18893 return "DW_FORM_<unknown>";
18894
18895 return name;
18896 }
18897
18898 static char *
18899 dwarf_bool_name (unsigned mybool)
18900 {
18901 if (mybool)
18902 return "TRUE";
18903 else
18904 return "FALSE";
18905 }
18906
18907 /* Convert a DWARF type code into its string name. */
18908
18909 static const char *
18910 dwarf_type_encoding_name (unsigned enc)
18911 {
18912 const char *name = get_DW_ATE_name (enc);
18913
18914 if (name == NULL)
18915 return "DW_ATE_<unknown>";
18916
18917 return name;
18918 }
18919
18920 static void
18921 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18922 {
18923 unsigned int i;
18924
18925 print_spaces (indent, f);
18926 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18927 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18928
18929 if (die->parent != NULL)
18930 {
18931 print_spaces (indent, f);
18932 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18933 die->parent->offset.sect_off);
18934 }
18935
18936 print_spaces (indent, f);
18937 fprintf_unfiltered (f, " has children: %s\n",
18938 dwarf_bool_name (die->child != NULL));
18939
18940 print_spaces (indent, f);
18941 fprintf_unfiltered (f, " attributes:\n");
18942
18943 for (i = 0; i < die->num_attrs; ++i)
18944 {
18945 print_spaces (indent, f);
18946 fprintf_unfiltered (f, " %s (%s) ",
18947 dwarf_attr_name (die->attrs[i].name),
18948 dwarf_form_name (die->attrs[i].form));
18949
18950 switch (die->attrs[i].form)
18951 {
18952 case DW_FORM_addr:
18953 case DW_FORM_GNU_addr_index:
18954 fprintf_unfiltered (f, "address: ");
18955 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18956 break;
18957 case DW_FORM_block2:
18958 case DW_FORM_block4:
18959 case DW_FORM_block:
18960 case DW_FORM_block1:
18961 fprintf_unfiltered (f, "block: size %s",
18962 pulongest (DW_BLOCK (&die->attrs[i])->size));
18963 break;
18964 case DW_FORM_exprloc:
18965 fprintf_unfiltered (f, "expression: size %s",
18966 pulongest (DW_BLOCK (&die->attrs[i])->size));
18967 break;
18968 case DW_FORM_ref_addr:
18969 fprintf_unfiltered (f, "ref address: ");
18970 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18971 break;
18972 case DW_FORM_GNU_ref_alt:
18973 fprintf_unfiltered (f, "alt ref address: ");
18974 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18975 break;
18976 case DW_FORM_ref1:
18977 case DW_FORM_ref2:
18978 case DW_FORM_ref4:
18979 case DW_FORM_ref8:
18980 case DW_FORM_ref_udata:
18981 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18982 (long) (DW_UNSND (&die->attrs[i])));
18983 break;
18984 case DW_FORM_data1:
18985 case DW_FORM_data2:
18986 case DW_FORM_data4:
18987 case DW_FORM_data8:
18988 case DW_FORM_udata:
18989 case DW_FORM_sdata:
18990 fprintf_unfiltered (f, "constant: %s",
18991 pulongest (DW_UNSND (&die->attrs[i])));
18992 break;
18993 case DW_FORM_sec_offset:
18994 fprintf_unfiltered (f, "section offset: %s",
18995 pulongest (DW_UNSND (&die->attrs[i])));
18996 break;
18997 case DW_FORM_ref_sig8:
18998 fprintf_unfiltered (f, "signature: %s",
18999 hex_string (DW_SIGNATURE (&die->attrs[i])));
19000 break;
19001 case DW_FORM_string:
19002 case DW_FORM_strp:
19003 case DW_FORM_GNU_str_index:
19004 case DW_FORM_GNU_strp_alt:
19005 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19006 DW_STRING (&die->attrs[i])
19007 ? DW_STRING (&die->attrs[i]) : "",
19008 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19009 break;
19010 case DW_FORM_flag:
19011 if (DW_UNSND (&die->attrs[i]))
19012 fprintf_unfiltered (f, "flag: TRUE");
19013 else
19014 fprintf_unfiltered (f, "flag: FALSE");
19015 break;
19016 case DW_FORM_flag_present:
19017 fprintf_unfiltered (f, "flag: TRUE");
19018 break;
19019 case DW_FORM_indirect:
19020 /* The reader will have reduced the indirect form to
19021 the "base form" so this form should not occur. */
19022 fprintf_unfiltered (f,
19023 "unexpected attribute form: DW_FORM_indirect");
19024 break;
19025 default:
19026 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19027 die->attrs[i].form);
19028 break;
19029 }
19030 fprintf_unfiltered (f, "\n");
19031 }
19032 }
19033
19034 static void
19035 dump_die_for_error (struct die_info *die)
19036 {
19037 dump_die_shallow (gdb_stderr, 0, die);
19038 }
19039
19040 static void
19041 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19042 {
19043 int indent = level * 4;
19044
19045 gdb_assert (die != NULL);
19046
19047 if (level >= max_level)
19048 return;
19049
19050 dump_die_shallow (f, indent, die);
19051
19052 if (die->child != NULL)
19053 {
19054 print_spaces (indent, f);
19055 fprintf_unfiltered (f, " Children:");
19056 if (level + 1 < max_level)
19057 {
19058 fprintf_unfiltered (f, "\n");
19059 dump_die_1 (f, level + 1, max_level, die->child);
19060 }
19061 else
19062 {
19063 fprintf_unfiltered (f,
19064 " [not printed, max nesting level reached]\n");
19065 }
19066 }
19067
19068 if (die->sibling != NULL && level > 0)
19069 {
19070 dump_die_1 (f, level, max_level, die->sibling);
19071 }
19072 }
19073
19074 /* This is called from the pdie macro in gdbinit.in.
19075 It's not static so gcc will keep a copy callable from gdb. */
19076
19077 void
19078 dump_die (struct die_info *die, int max_level)
19079 {
19080 dump_die_1 (gdb_stdlog, 0, max_level, die);
19081 }
19082
19083 static void
19084 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19085 {
19086 void **slot;
19087
19088 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19089 INSERT);
19090
19091 *slot = die;
19092 }
19093
19094 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19095 required kind. */
19096
19097 static sect_offset
19098 dwarf2_get_ref_die_offset (const struct attribute *attr)
19099 {
19100 sect_offset retval = { DW_UNSND (attr) };
19101
19102 if (attr_form_is_ref (attr))
19103 return retval;
19104
19105 retval.sect_off = 0;
19106 complaint (&symfile_complaints,
19107 _("unsupported die ref attribute form: '%s'"),
19108 dwarf_form_name (attr->form));
19109 return retval;
19110 }
19111
19112 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19113 * the value held by the attribute is not constant. */
19114
19115 static LONGEST
19116 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19117 {
19118 if (attr->form == DW_FORM_sdata)
19119 return DW_SND (attr);
19120 else if (attr->form == DW_FORM_udata
19121 || attr->form == DW_FORM_data1
19122 || attr->form == DW_FORM_data2
19123 || attr->form == DW_FORM_data4
19124 || attr->form == DW_FORM_data8)
19125 return DW_UNSND (attr);
19126 else
19127 {
19128 complaint (&symfile_complaints,
19129 _("Attribute value is not a constant (%s)"),
19130 dwarf_form_name (attr->form));
19131 return default_value;
19132 }
19133 }
19134
19135 /* Follow reference or signature attribute ATTR of SRC_DIE.
19136 On entry *REF_CU is the CU of SRC_DIE.
19137 On exit *REF_CU is the CU of the result. */
19138
19139 static struct die_info *
19140 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19141 struct dwarf2_cu **ref_cu)
19142 {
19143 struct die_info *die;
19144
19145 if (attr_form_is_ref (attr))
19146 die = follow_die_ref (src_die, attr, ref_cu);
19147 else if (attr->form == DW_FORM_ref_sig8)
19148 die = follow_die_sig (src_die, attr, ref_cu);
19149 else
19150 {
19151 dump_die_for_error (src_die);
19152 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19153 objfile_name ((*ref_cu)->objfile));
19154 }
19155
19156 return die;
19157 }
19158
19159 /* Follow reference OFFSET.
19160 On entry *REF_CU is the CU of the source die referencing OFFSET.
19161 On exit *REF_CU is the CU of the result.
19162 Returns NULL if OFFSET is invalid. */
19163
19164 static struct die_info *
19165 follow_die_offset (sect_offset offset, int offset_in_dwz,
19166 struct dwarf2_cu **ref_cu)
19167 {
19168 struct die_info temp_die;
19169 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19170
19171 gdb_assert (cu->per_cu != NULL);
19172
19173 target_cu = cu;
19174
19175 if (cu->per_cu->is_debug_types)
19176 {
19177 /* .debug_types CUs cannot reference anything outside their CU.
19178 If they need to, they have to reference a signatured type via
19179 DW_FORM_ref_sig8. */
19180 if (! offset_in_cu_p (&cu->header, offset))
19181 return NULL;
19182 }
19183 else if (offset_in_dwz != cu->per_cu->is_dwz
19184 || ! offset_in_cu_p (&cu->header, offset))
19185 {
19186 struct dwarf2_per_cu_data *per_cu;
19187
19188 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19189 cu->objfile);
19190
19191 /* If necessary, add it to the queue and load its DIEs. */
19192 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19193 load_full_comp_unit (per_cu, cu->language);
19194
19195 target_cu = per_cu->cu;
19196 }
19197 else if (cu->dies == NULL)
19198 {
19199 /* We're loading full DIEs during partial symbol reading. */
19200 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19201 load_full_comp_unit (cu->per_cu, language_minimal);
19202 }
19203
19204 *ref_cu = target_cu;
19205 temp_die.offset = offset;
19206 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19207 }
19208
19209 /* Follow reference attribute ATTR of SRC_DIE.
19210 On entry *REF_CU is the CU of SRC_DIE.
19211 On exit *REF_CU is the CU of the result. */
19212
19213 static struct die_info *
19214 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19215 struct dwarf2_cu **ref_cu)
19216 {
19217 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19218 struct dwarf2_cu *cu = *ref_cu;
19219 struct die_info *die;
19220
19221 die = follow_die_offset (offset,
19222 (attr->form == DW_FORM_GNU_ref_alt
19223 || cu->per_cu->is_dwz),
19224 ref_cu);
19225 if (!die)
19226 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19227 "at 0x%x [in module %s]"),
19228 offset.sect_off, src_die->offset.sect_off,
19229 objfile_name (cu->objfile));
19230
19231 return die;
19232 }
19233
19234 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19235 Returned value is intended for DW_OP_call*. Returned
19236 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19237
19238 struct dwarf2_locexpr_baton
19239 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19240 struct dwarf2_per_cu_data *per_cu,
19241 CORE_ADDR (*get_frame_pc) (void *baton),
19242 void *baton)
19243 {
19244 struct dwarf2_cu *cu;
19245 struct die_info *die;
19246 struct attribute *attr;
19247 struct dwarf2_locexpr_baton retval;
19248
19249 dw2_setup (per_cu->objfile);
19250
19251 if (per_cu->cu == NULL)
19252 load_cu (per_cu);
19253 cu = per_cu->cu;
19254
19255 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19256 if (!die)
19257 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19258 offset.sect_off, objfile_name (per_cu->objfile));
19259
19260 attr = dwarf2_attr (die, DW_AT_location, cu);
19261 if (!attr)
19262 {
19263 /* DWARF: "If there is no such attribute, then there is no effect.".
19264 DATA is ignored if SIZE is 0. */
19265
19266 retval.data = NULL;
19267 retval.size = 0;
19268 }
19269 else if (attr_form_is_section_offset (attr))
19270 {
19271 struct dwarf2_loclist_baton loclist_baton;
19272 CORE_ADDR pc = (*get_frame_pc) (baton);
19273 size_t size;
19274
19275 fill_in_loclist_baton (cu, &loclist_baton, attr);
19276
19277 retval.data = dwarf2_find_location_expression (&loclist_baton,
19278 &size, pc);
19279 retval.size = size;
19280 }
19281 else
19282 {
19283 if (!attr_form_is_block (attr))
19284 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19285 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19286 offset.sect_off, objfile_name (per_cu->objfile));
19287
19288 retval.data = DW_BLOCK (attr)->data;
19289 retval.size = DW_BLOCK (attr)->size;
19290 }
19291 retval.per_cu = cu->per_cu;
19292
19293 age_cached_comp_units ();
19294
19295 return retval;
19296 }
19297
19298 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19299 offset. */
19300
19301 struct dwarf2_locexpr_baton
19302 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19303 struct dwarf2_per_cu_data *per_cu,
19304 CORE_ADDR (*get_frame_pc) (void *baton),
19305 void *baton)
19306 {
19307 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19308
19309 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19310 }
19311
19312 /* Write a constant of a given type as target-ordered bytes into
19313 OBSTACK. */
19314
19315 static const gdb_byte *
19316 write_constant_as_bytes (struct obstack *obstack,
19317 enum bfd_endian byte_order,
19318 struct type *type,
19319 ULONGEST value,
19320 LONGEST *len)
19321 {
19322 gdb_byte *result;
19323
19324 *len = TYPE_LENGTH (type);
19325 result = obstack_alloc (obstack, *len);
19326 store_unsigned_integer (result, *len, byte_order, value);
19327
19328 return result;
19329 }
19330
19331 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19332 pointer to the constant bytes and set LEN to the length of the
19333 data. If memory is needed, allocate it on OBSTACK. If the DIE
19334 does not have a DW_AT_const_value, return NULL. */
19335
19336 const gdb_byte *
19337 dwarf2_fetch_constant_bytes (sect_offset offset,
19338 struct dwarf2_per_cu_data *per_cu,
19339 struct obstack *obstack,
19340 LONGEST *len)
19341 {
19342 struct dwarf2_cu *cu;
19343 struct die_info *die;
19344 struct attribute *attr;
19345 const gdb_byte *result = NULL;
19346 struct type *type;
19347 LONGEST value;
19348 enum bfd_endian byte_order;
19349
19350 dw2_setup (per_cu->objfile);
19351
19352 if (per_cu->cu == NULL)
19353 load_cu (per_cu);
19354 cu = per_cu->cu;
19355
19356 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19357 if (!die)
19358 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19359 offset.sect_off, objfile_name (per_cu->objfile));
19360
19361
19362 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19363 if (attr == NULL)
19364 return NULL;
19365
19366 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19367 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19368
19369 switch (attr->form)
19370 {
19371 case DW_FORM_addr:
19372 case DW_FORM_GNU_addr_index:
19373 {
19374 gdb_byte *tem;
19375
19376 *len = cu->header.addr_size;
19377 tem = obstack_alloc (obstack, *len);
19378 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19379 result = tem;
19380 }
19381 break;
19382 case DW_FORM_string:
19383 case DW_FORM_strp:
19384 case DW_FORM_GNU_str_index:
19385 case DW_FORM_GNU_strp_alt:
19386 /* DW_STRING is already allocated on the objfile obstack, point
19387 directly to it. */
19388 result = (const gdb_byte *) DW_STRING (attr);
19389 *len = strlen (DW_STRING (attr));
19390 break;
19391 case DW_FORM_block1:
19392 case DW_FORM_block2:
19393 case DW_FORM_block4:
19394 case DW_FORM_block:
19395 case DW_FORM_exprloc:
19396 result = DW_BLOCK (attr)->data;
19397 *len = DW_BLOCK (attr)->size;
19398 break;
19399
19400 /* The DW_AT_const_value attributes are supposed to carry the
19401 symbol's value "represented as it would be on the target
19402 architecture." By the time we get here, it's already been
19403 converted to host endianness, so we just need to sign- or
19404 zero-extend it as appropriate. */
19405 case DW_FORM_data1:
19406 type = die_type (die, cu);
19407 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19408 if (result == NULL)
19409 result = write_constant_as_bytes (obstack, byte_order,
19410 type, value, len);
19411 break;
19412 case DW_FORM_data2:
19413 type = die_type (die, cu);
19414 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19415 if (result == NULL)
19416 result = write_constant_as_bytes (obstack, byte_order,
19417 type, value, len);
19418 break;
19419 case DW_FORM_data4:
19420 type = die_type (die, cu);
19421 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19422 if (result == NULL)
19423 result = write_constant_as_bytes (obstack, byte_order,
19424 type, value, len);
19425 break;
19426 case DW_FORM_data8:
19427 type = die_type (die, cu);
19428 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19429 if (result == NULL)
19430 result = write_constant_as_bytes (obstack, byte_order,
19431 type, value, len);
19432 break;
19433
19434 case DW_FORM_sdata:
19435 type = die_type (die, cu);
19436 result = write_constant_as_bytes (obstack, byte_order,
19437 type, DW_SND (attr), len);
19438 break;
19439
19440 case DW_FORM_udata:
19441 type = die_type (die, cu);
19442 result = write_constant_as_bytes (obstack, byte_order,
19443 type, DW_UNSND (attr), len);
19444 break;
19445
19446 default:
19447 complaint (&symfile_complaints,
19448 _("unsupported const value attribute form: '%s'"),
19449 dwarf_form_name (attr->form));
19450 break;
19451 }
19452
19453 return result;
19454 }
19455
19456 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19457 PER_CU. */
19458
19459 struct type *
19460 dwarf2_get_die_type (cu_offset die_offset,
19461 struct dwarf2_per_cu_data *per_cu)
19462 {
19463 sect_offset die_offset_sect;
19464
19465 dw2_setup (per_cu->objfile);
19466
19467 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19468 return get_die_type_at_offset (die_offset_sect, per_cu);
19469 }
19470
19471 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19472 On entry *REF_CU is the CU of SRC_DIE.
19473 On exit *REF_CU is the CU of the result.
19474 Returns NULL if the referenced DIE isn't found. */
19475
19476 static struct die_info *
19477 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19478 struct dwarf2_cu **ref_cu)
19479 {
19480 struct objfile *objfile = (*ref_cu)->objfile;
19481 struct die_info temp_die;
19482 struct dwarf2_cu *sig_cu;
19483 struct die_info *die;
19484
19485 /* While it might be nice to assert sig_type->type == NULL here,
19486 we can get here for DW_AT_imported_declaration where we need
19487 the DIE not the type. */
19488
19489 /* If necessary, add it to the queue and load its DIEs. */
19490
19491 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19492 read_signatured_type (sig_type);
19493
19494 sig_cu = sig_type->per_cu.cu;
19495 gdb_assert (sig_cu != NULL);
19496 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19497 temp_die.offset = sig_type->type_offset_in_section;
19498 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19499 temp_die.offset.sect_off);
19500 if (die)
19501 {
19502 /* For .gdb_index version 7 keep track of included TUs.
19503 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19504 if (dwarf2_per_objfile->index_table != NULL
19505 && dwarf2_per_objfile->index_table->version <= 7)
19506 {
19507 VEC_safe_push (dwarf2_per_cu_ptr,
19508 (*ref_cu)->per_cu->imported_symtabs,
19509 sig_cu->per_cu);
19510 }
19511
19512 *ref_cu = sig_cu;
19513 return die;
19514 }
19515
19516 return NULL;
19517 }
19518
19519 /* Follow signatured type referenced by ATTR in SRC_DIE.
19520 On entry *REF_CU is the CU of SRC_DIE.
19521 On exit *REF_CU is the CU of the result.
19522 The result is the DIE of the type.
19523 If the referenced type cannot be found an error is thrown. */
19524
19525 static struct die_info *
19526 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19527 struct dwarf2_cu **ref_cu)
19528 {
19529 ULONGEST signature = DW_SIGNATURE (attr);
19530 struct signatured_type *sig_type;
19531 struct die_info *die;
19532
19533 gdb_assert (attr->form == DW_FORM_ref_sig8);
19534
19535 sig_type = lookup_signatured_type (*ref_cu, signature);
19536 /* sig_type will be NULL if the signatured type is missing from
19537 the debug info. */
19538 if (sig_type == NULL)
19539 {
19540 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19541 " from DIE at 0x%x [in module %s]"),
19542 hex_string (signature), src_die->offset.sect_off,
19543 objfile_name ((*ref_cu)->objfile));
19544 }
19545
19546 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19547 if (die == NULL)
19548 {
19549 dump_die_for_error (src_die);
19550 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19551 " from DIE at 0x%x [in module %s]"),
19552 hex_string (signature), src_die->offset.sect_off,
19553 objfile_name ((*ref_cu)->objfile));
19554 }
19555
19556 return die;
19557 }
19558
19559 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19560 reading in and processing the type unit if necessary. */
19561
19562 static struct type *
19563 get_signatured_type (struct die_info *die, ULONGEST signature,
19564 struct dwarf2_cu *cu)
19565 {
19566 struct signatured_type *sig_type;
19567 struct dwarf2_cu *type_cu;
19568 struct die_info *type_die;
19569 struct type *type;
19570
19571 sig_type = lookup_signatured_type (cu, signature);
19572 /* sig_type will be NULL if the signatured type is missing from
19573 the debug info. */
19574 if (sig_type == NULL)
19575 {
19576 complaint (&symfile_complaints,
19577 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19578 " from DIE at 0x%x [in module %s]"),
19579 hex_string (signature), die->offset.sect_off,
19580 objfile_name (dwarf2_per_objfile->objfile));
19581 return build_error_marker_type (cu, die);
19582 }
19583
19584 /* If we already know the type we're done. */
19585 if (sig_type->type != NULL)
19586 return sig_type->type;
19587
19588 type_cu = cu;
19589 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19590 if (type_die != NULL)
19591 {
19592 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19593 is created. This is important, for example, because for c++ classes
19594 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19595 type = read_type_die (type_die, type_cu);
19596 if (type == NULL)
19597 {
19598 complaint (&symfile_complaints,
19599 _("Dwarf Error: Cannot build signatured type %s"
19600 " referenced from DIE at 0x%x [in module %s]"),
19601 hex_string (signature), die->offset.sect_off,
19602 objfile_name (dwarf2_per_objfile->objfile));
19603 type = build_error_marker_type (cu, die);
19604 }
19605 }
19606 else
19607 {
19608 complaint (&symfile_complaints,
19609 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19610 " from DIE at 0x%x [in module %s]"),
19611 hex_string (signature), die->offset.sect_off,
19612 objfile_name (dwarf2_per_objfile->objfile));
19613 type = build_error_marker_type (cu, die);
19614 }
19615 sig_type->type = type;
19616
19617 return type;
19618 }
19619
19620 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19621 reading in and processing the type unit if necessary. */
19622
19623 static struct type *
19624 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19625 struct dwarf2_cu *cu) /* ARI: editCase function */
19626 {
19627 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19628 if (attr_form_is_ref (attr))
19629 {
19630 struct dwarf2_cu *type_cu = cu;
19631 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19632
19633 return read_type_die (type_die, type_cu);
19634 }
19635 else if (attr->form == DW_FORM_ref_sig8)
19636 {
19637 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19638 }
19639 else
19640 {
19641 complaint (&symfile_complaints,
19642 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19643 " at 0x%x [in module %s]"),
19644 dwarf_form_name (attr->form), die->offset.sect_off,
19645 objfile_name (dwarf2_per_objfile->objfile));
19646 return build_error_marker_type (cu, die);
19647 }
19648 }
19649
19650 /* Load the DIEs associated with type unit PER_CU into memory. */
19651
19652 static void
19653 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19654 {
19655 struct signatured_type *sig_type;
19656
19657 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19658 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19659
19660 /* We have the per_cu, but we need the signatured_type.
19661 Fortunately this is an easy translation. */
19662 gdb_assert (per_cu->is_debug_types);
19663 sig_type = (struct signatured_type *) per_cu;
19664
19665 gdb_assert (per_cu->cu == NULL);
19666
19667 read_signatured_type (sig_type);
19668
19669 gdb_assert (per_cu->cu != NULL);
19670 }
19671
19672 /* die_reader_func for read_signatured_type.
19673 This is identical to load_full_comp_unit_reader,
19674 but is kept separate for now. */
19675
19676 static void
19677 read_signatured_type_reader (const struct die_reader_specs *reader,
19678 const gdb_byte *info_ptr,
19679 struct die_info *comp_unit_die,
19680 int has_children,
19681 void *data)
19682 {
19683 struct dwarf2_cu *cu = reader->cu;
19684
19685 gdb_assert (cu->die_hash == NULL);
19686 cu->die_hash =
19687 htab_create_alloc_ex (cu->header.length / 12,
19688 die_hash,
19689 die_eq,
19690 NULL,
19691 &cu->comp_unit_obstack,
19692 hashtab_obstack_allocate,
19693 dummy_obstack_deallocate);
19694
19695 if (has_children)
19696 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19697 &info_ptr, comp_unit_die);
19698 cu->dies = comp_unit_die;
19699 /* comp_unit_die is not stored in die_hash, no need. */
19700
19701 /* We try not to read any attributes in this function, because not
19702 all CUs needed for references have been loaded yet, and symbol
19703 table processing isn't initialized. But we have to set the CU language,
19704 or we won't be able to build types correctly.
19705 Similarly, if we do not read the producer, we can not apply
19706 producer-specific interpretation. */
19707 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19708 }
19709
19710 /* Read in a signatured type and build its CU and DIEs.
19711 If the type is a stub for the real type in a DWO file,
19712 read in the real type from the DWO file as well. */
19713
19714 static void
19715 read_signatured_type (struct signatured_type *sig_type)
19716 {
19717 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19718
19719 gdb_assert (per_cu->is_debug_types);
19720 gdb_assert (per_cu->cu == NULL);
19721
19722 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19723 read_signatured_type_reader, NULL);
19724 sig_type->per_cu.tu_read = 1;
19725 }
19726
19727 /* Decode simple location descriptions.
19728 Given a pointer to a dwarf block that defines a location, compute
19729 the location and return the value.
19730
19731 NOTE drow/2003-11-18: This function is called in two situations
19732 now: for the address of static or global variables (partial symbols
19733 only) and for offsets into structures which are expected to be
19734 (more or less) constant. The partial symbol case should go away,
19735 and only the constant case should remain. That will let this
19736 function complain more accurately. A few special modes are allowed
19737 without complaint for global variables (for instance, global
19738 register values and thread-local values).
19739
19740 A location description containing no operations indicates that the
19741 object is optimized out. The return value is 0 for that case.
19742 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19743 callers will only want a very basic result and this can become a
19744 complaint.
19745
19746 Note that stack[0] is unused except as a default error return. */
19747
19748 static CORE_ADDR
19749 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19750 {
19751 struct objfile *objfile = cu->objfile;
19752 size_t i;
19753 size_t size = blk->size;
19754 const gdb_byte *data = blk->data;
19755 CORE_ADDR stack[64];
19756 int stacki;
19757 unsigned int bytes_read, unsnd;
19758 gdb_byte op;
19759
19760 i = 0;
19761 stacki = 0;
19762 stack[stacki] = 0;
19763 stack[++stacki] = 0;
19764
19765 while (i < size)
19766 {
19767 op = data[i++];
19768 switch (op)
19769 {
19770 case DW_OP_lit0:
19771 case DW_OP_lit1:
19772 case DW_OP_lit2:
19773 case DW_OP_lit3:
19774 case DW_OP_lit4:
19775 case DW_OP_lit5:
19776 case DW_OP_lit6:
19777 case DW_OP_lit7:
19778 case DW_OP_lit8:
19779 case DW_OP_lit9:
19780 case DW_OP_lit10:
19781 case DW_OP_lit11:
19782 case DW_OP_lit12:
19783 case DW_OP_lit13:
19784 case DW_OP_lit14:
19785 case DW_OP_lit15:
19786 case DW_OP_lit16:
19787 case DW_OP_lit17:
19788 case DW_OP_lit18:
19789 case DW_OP_lit19:
19790 case DW_OP_lit20:
19791 case DW_OP_lit21:
19792 case DW_OP_lit22:
19793 case DW_OP_lit23:
19794 case DW_OP_lit24:
19795 case DW_OP_lit25:
19796 case DW_OP_lit26:
19797 case DW_OP_lit27:
19798 case DW_OP_lit28:
19799 case DW_OP_lit29:
19800 case DW_OP_lit30:
19801 case DW_OP_lit31:
19802 stack[++stacki] = op - DW_OP_lit0;
19803 break;
19804
19805 case DW_OP_reg0:
19806 case DW_OP_reg1:
19807 case DW_OP_reg2:
19808 case DW_OP_reg3:
19809 case DW_OP_reg4:
19810 case DW_OP_reg5:
19811 case DW_OP_reg6:
19812 case DW_OP_reg7:
19813 case DW_OP_reg8:
19814 case DW_OP_reg9:
19815 case DW_OP_reg10:
19816 case DW_OP_reg11:
19817 case DW_OP_reg12:
19818 case DW_OP_reg13:
19819 case DW_OP_reg14:
19820 case DW_OP_reg15:
19821 case DW_OP_reg16:
19822 case DW_OP_reg17:
19823 case DW_OP_reg18:
19824 case DW_OP_reg19:
19825 case DW_OP_reg20:
19826 case DW_OP_reg21:
19827 case DW_OP_reg22:
19828 case DW_OP_reg23:
19829 case DW_OP_reg24:
19830 case DW_OP_reg25:
19831 case DW_OP_reg26:
19832 case DW_OP_reg27:
19833 case DW_OP_reg28:
19834 case DW_OP_reg29:
19835 case DW_OP_reg30:
19836 case DW_OP_reg31:
19837 stack[++stacki] = op - DW_OP_reg0;
19838 if (i < size)
19839 dwarf2_complex_location_expr_complaint ();
19840 break;
19841
19842 case DW_OP_regx:
19843 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19844 i += bytes_read;
19845 stack[++stacki] = unsnd;
19846 if (i < size)
19847 dwarf2_complex_location_expr_complaint ();
19848 break;
19849
19850 case DW_OP_addr:
19851 stack[++stacki] = read_address (objfile->obfd, &data[i],
19852 cu, &bytes_read);
19853 i += bytes_read;
19854 break;
19855
19856 case DW_OP_const1u:
19857 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19858 i += 1;
19859 break;
19860
19861 case DW_OP_const1s:
19862 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19863 i += 1;
19864 break;
19865
19866 case DW_OP_const2u:
19867 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19868 i += 2;
19869 break;
19870
19871 case DW_OP_const2s:
19872 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19873 i += 2;
19874 break;
19875
19876 case DW_OP_const4u:
19877 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19878 i += 4;
19879 break;
19880
19881 case DW_OP_const4s:
19882 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19883 i += 4;
19884 break;
19885
19886 case DW_OP_const8u:
19887 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19888 i += 8;
19889 break;
19890
19891 case DW_OP_constu:
19892 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19893 &bytes_read);
19894 i += bytes_read;
19895 break;
19896
19897 case DW_OP_consts:
19898 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19899 i += bytes_read;
19900 break;
19901
19902 case DW_OP_dup:
19903 stack[stacki + 1] = stack[stacki];
19904 stacki++;
19905 break;
19906
19907 case DW_OP_plus:
19908 stack[stacki - 1] += stack[stacki];
19909 stacki--;
19910 break;
19911
19912 case DW_OP_plus_uconst:
19913 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19914 &bytes_read);
19915 i += bytes_read;
19916 break;
19917
19918 case DW_OP_minus:
19919 stack[stacki - 1] -= stack[stacki];
19920 stacki--;
19921 break;
19922
19923 case DW_OP_deref:
19924 /* If we're not the last op, then we definitely can't encode
19925 this using GDB's address_class enum. This is valid for partial
19926 global symbols, although the variable's address will be bogus
19927 in the psymtab. */
19928 if (i < size)
19929 dwarf2_complex_location_expr_complaint ();
19930 break;
19931
19932 case DW_OP_GNU_push_tls_address:
19933 /* The top of the stack has the offset from the beginning
19934 of the thread control block at which the variable is located. */
19935 /* Nothing should follow this operator, so the top of stack would
19936 be returned. */
19937 /* This is valid for partial global symbols, but the variable's
19938 address will be bogus in the psymtab. Make it always at least
19939 non-zero to not look as a variable garbage collected by linker
19940 which have DW_OP_addr 0. */
19941 if (i < size)
19942 dwarf2_complex_location_expr_complaint ();
19943 stack[stacki]++;
19944 break;
19945
19946 case DW_OP_GNU_uninit:
19947 break;
19948
19949 case DW_OP_GNU_addr_index:
19950 case DW_OP_GNU_const_index:
19951 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19952 &bytes_read);
19953 i += bytes_read;
19954 break;
19955
19956 default:
19957 {
19958 const char *name = get_DW_OP_name (op);
19959
19960 if (name)
19961 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19962 name);
19963 else
19964 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19965 op);
19966 }
19967
19968 return (stack[stacki]);
19969 }
19970
19971 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19972 outside of the allocated space. Also enforce minimum>0. */
19973 if (stacki >= ARRAY_SIZE (stack) - 1)
19974 {
19975 complaint (&symfile_complaints,
19976 _("location description stack overflow"));
19977 return 0;
19978 }
19979
19980 if (stacki <= 0)
19981 {
19982 complaint (&symfile_complaints,
19983 _("location description stack underflow"));
19984 return 0;
19985 }
19986 }
19987 return (stack[stacki]);
19988 }
19989
19990 /* memory allocation interface */
19991
19992 static struct dwarf_block *
19993 dwarf_alloc_block (struct dwarf2_cu *cu)
19994 {
19995 struct dwarf_block *blk;
19996
19997 blk = (struct dwarf_block *)
19998 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19999 return (blk);
20000 }
20001
20002 static struct die_info *
20003 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20004 {
20005 struct die_info *die;
20006 size_t size = sizeof (struct die_info);
20007
20008 if (num_attrs > 1)
20009 size += (num_attrs - 1) * sizeof (struct attribute);
20010
20011 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20012 memset (die, 0, sizeof (struct die_info));
20013 return (die);
20014 }
20015
20016 \f
20017 /* Macro support. */
20018
20019 /* Return file name relative to the compilation directory of file number I in
20020 *LH's file name table. The result is allocated using xmalloc; the caller is
20021 responsible for freeing it. */
20022
20023 static char *
20024 file_file_name (int file, struct line_header *lh)
20025 {
20026 /* Is the file number a valid index into the line header's file name
20027 table? Remember that file numbers start with one, not zero. */
20028 if (1 <= file && file <= lh->num_file_names)
20029 {
20030 struct file_entry *fe = &lh->file_names[file - 1];
20031
20032 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20033 return xstrdup (fe->name);
20034 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20035 fe->name, NULL);
20036 }
20037 else
20038 {
20039 /* The compiler produced a bogus file number. We can at least
20040 record the macro definitions made in the file, even if we
20041 won't be able to find the file by name. */
20042 char fake_name[80];
20043
20044 xsnprintf (fake_name, sizeof (fake_name),
20045 "<bad macro file number %d>", file);
20046
20047 complaint (&symfile_complaints,
20048 _("bad file number in macro information (%d)"),
20049 file);
20050
20051 return xstrdup (fake_name);
20052 }
20053 }
20054
20055 /* Return the full name of file number I in *LH's file name table.
20056 Use COMP_DIR as the name of the current directory of the
20057 compilation. The result is allocated using xmalloc; the caller is
20058 responsible for freeing it. */
20059 static char *
20060 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20061 {
20062 /* Is the file number a valid index into the line header's file name
20063 table? Remember that file numbers start with one, not zero. */
20064 if (1 <= file && file <= lh->num_file_names)
20065 {
20066 char *relative = file_file_name (file, lh);
20067
20068 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20069 return relative;
20070 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20071 }
20072 else
20073 return file_file_name (file, lh);
20074 }
20075
20076
20077 static struct macro_source_file *
20078 macro_start_file (int file, int line,
20079 struct macro_source_file *current_file,
20080 const char *comp_dir,
20081 struct line_header *lh, struct objfile *objfile)
20082 {
20083 /* File name relative to the compilation directory of this source file. */
20084 char *file_name = file_file_name (file, lh);
20085
20086 if (! current_file)
20087 {
20088 /* Note: We don't create a macro table for this compilation unit
20089 at all until we actually get a filename. */
20090 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20091
20092 /* If we have no current file, then this must be the start_file
20093 directive for the compilation unit's main source file. */
20094 current_file = macro_set_main (macro_table, file_name);
20095 macro_define_special (macro_table);
20096 }
20097 else
20098 current_file = macro_include (current_file, line, file_name);
20099
20100 xfree (file_name);
20101
20102 return current_file;
20103 }
20104
20105
20106 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20107 followed by a null byte. */
20108 static char *
20109 copy_string (const char *buf, int len)
20110 {
20111 char *s = xmalloc (len + 1);
20112
20113 memcpy (s, buf, len);
20114 s[len] = '\0';
20115 return s;
20116 }
20117
20118
20119 static const char *
20120 consume_improper_spaces (const char *p, const char *body)
20121 {
20122 if (*p == ' ')
20123 {
20124 complaint (&symfile_complaints,
20125 _("macro definition contains spaces "
20126 "in formal argument list:\n`%s'"),
20127 body);
20128
20129 while (*p == ' ')
20130 p++;
20131 }
20132
20133 return p;
20134 }
20135
20136
20137 static void
20138 parse_macro_definition (struct macro_source_file *file, int line,
20139 const char *body)
20140 {
20141 const char *p;
20142
20143 /* The body string takes one of two forms. For object-like macro
20144 definitions, it should be:
20145
20146 <macro name> " " <definition>
20147
20148 For function-like macro definitions, it should be:
20149
20150 <macro name> "() " <definition>
20151 or
20152 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20153
20154 Spaces may appear only where explicitly indicated, and in the
20155 <definition>.
20156
20157 The Dwarf 2 spec says that an object-like macro's name is always
20158 followed by a space, but versions of GCC around March 2002 omit
20159 the space when the macro's definition is the empty string.
20160
20161 The Dwarf 2 spec says that there should be no spaces between the
20162 formal arguments in a function-like macro's formal argument list,
20163 but versions of GCC around March 2002 include spaces after the
20164 commas. */
20165
20166
20167 /* Find the extent of the macro name. The macro name is terminated
20168 by either a space or null character (for an object-like macro) or
20169 an opening paren (for a function-like macro). */
20170 for (p = body; *p; p++)
20171 if (*p == ' ' || *p == '(')
20172 break;
20173
20174 if (*p == ' ' || *p == '\0')
20175 {
20176 /* It's an object-like macro. */
20177 int name_len = p - body;
20178 char *name = copy_string (body, name_len);
20179 const char *replacement;
20180
20181 if (*p == ' ')
20182 replacement = body + name_len + 1;
20183 else
20184 {
20185 dwarf2_macro_malformed_definition_complaint (body);
20186 replacement = body + name_len;
20187 }
20188
20189 macro_define_object (file, line, name, replacement);
20190
20191 xfree (name);
20192 }
20193 else if (*p == '(')
20194 {
20195 /* It's a function-like macro. */
20196 char *name = copy_string (body, p - body);
20197 int argc = 0;
20198 int argv_size = 1;
20199 char **argv = xmalloc (argv_size * sizeof (*argv));
20200
20201 p++;
20202
20203 p = consume_improper_spaces (p, body);
20204
20205 /* Parse the formal argument list. */
20206 while (*p && *p != ')')
20207 {
20208 /* Find the extent of the current argument name. */
20209 const char *arg_start = p;
20210
20211 while (*p && *p != ',' && *p != ')' && *p != ' ')
20212 p++;
20213
20214 if (! *p || p == arg_start)
20215 dwarf2_macro_malformed_definition_complaint (body);
20216 else
20217 {
20218 /* Make sure argv has room for the new argument. */
20219 if (argc >= argv_size)
20220 {
20221 argv_size *= 2;
20222 argv = xrealloc (argv, argv_size * sizeof (*argv));
20223 }
20224
20225 argv[argc++] = copy_string (arg_start, p - arg_start);
20226 }
20227
20228 p = consume_improper_spaces (p, body);
20229
20230 /* Consume the comma, if present. */
20231 if (*p == ',')
20232 {
20233 p++;
20234
20235 p = consume_improper_spaces (p, body);
20236 }
20237 }
20238
20239 if (*p == ')')
20240 {
20241 p++;
20242
20243 if (*p == ' ')
20244 /* Perfectly formed definition, no complaints. */
20245 macro_define_function (file, line, name,
20246 argc, (const char **) argv,
20247 p + 1);
20248 else if (*p == '\0')
20249 {
20250 /* Complain, but do define it. */
20251 dwarf2_macro_malformed_definition_complaint (body);
20252 macro_define_function (file, line, name,
20253 argc, (const char **) argv,
20254 p);
20255 }
20256 else
20257 /* Just complain. */
20258 dwarf2_macro_malformed_definition_complaint (body);
20259 }
20260 else
20261 /* Just complain. */
20262 dwarf2_macro_malformed_definition_complaint (body);
20263
20264 xfree (name);
20265 {
20266 int i;
20267
20268 for (i = 0; i < argc; i++)
20269 xfree (argv[i]);
20270 }
20271 xfree (argv);
20272 }
20273 else
20274 dwarf2_macro_malformed_definition_complaint (body);
20275 }
20276
20277 /* Skip some bytes from BYTES according to the form given in FORM.
20278 Returns the new pointer. */
20279
20280 static const gdb_byte *
20281 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20282 enum dwarf_form form,
20283 unsigned int offset_size,
20284 struct dwarf2_section_info *section)
20285 {
20286 unsigned int bytes_read;
20287
20288 switch (form)
20289 {
20290 case DW_FORM_data1:
20291 case DW_FORM_flag:
20292 ++bytes;
20293 break;
20294
20295 case DW_FORM_data2:
20296 bytes += 2;
20297 break;
20298
20299 case DW_FORM_data4:
20300 bytes += 4;
20301 break;
20302
20303 case DW_FORM_data8:
20304 bytes += 8;
20305 break;
20306
20307 case DW_FORM_string:
20308 read_direct_string (abfd, bytes, &bytes_read);
20309 bytes += bytes_read;
20310 break;
20311
20312 case DW_FORM_sec_offset:
20313 case DW_FORM_strp:
20314 case DW_FORM_GNU_strp_alt:
20315 bytes += offset_size;
20316 break;
20317
20318 case DW_FORM_block:
20319 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20320 bytes += bytes_read;
20321 break;
20322
20323 case DW_FORM_block1:
20324 bytes += 1 + read_1_byte (abfd, bytes);
20325 break;
20326 case DW_FORM_block2:
20327 bytes += 2 + read_2_bytes (abfd, bytes);
20328 break;
20329 case DW_FORM_block4:
20330 bytes += 4 + read_4_bytes (abfd, bytes);
20331 break;
20332
20333 case DW_FORM_sdata:
20334 case DW_FORM_udata:
20335 case DW_FORM_GNU_addr_index:
20336 case DW_FORM_GNU_str_index:
20337 bytes = gdb_skip_leb128 (bytes, buffer_end);
20338 if (bytes == NULL)
20339 {
20340 dwarf2_section_buffer_overflow_complaint (section);
20341 return NULL;
20342 }
20343 break;
20344
20345 default:
20346 {
20347 complain:
20348 complaint (&symfile_complaints,
20349 _("invalid form 0x%x in `%s'"),
20350 form, get_section_name (section));
20351 return NULL;
20352 }
20353 }
20354
20355 return bytes;
20356 }
20357
20358 /* A helper for dwarf_decode_macros that handles skipping an unknown
20359 opcode. Returns an updated pointer to the macro data buffer; or,
20360 on error, issues a complaint and returns NULL. */
20361
20362 static const gdb_byte *
20363 skip_unknown_opcode (unsigned int opcode,
20364 const gdb_byte **opcode_definitions,
20365 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20366 bfd *abfd,
20367 unsigned int offset_size,
20368 struct dwarf2_section_info *section)
20369 {
20370 unsigned int bytes_read, i;
20371 unsigned long arg;
20372 const gdb_byte *defn;
20373
20374 if (opcode_definitions[opcode] == NULL)
20375 {
20376 complaint (&symfile_complaints,
20377 _("unrecognized DW_MACFINO opcode 0x%x"),
20378 opcode);
20379 return NULL;
20380 }
20381
20382 defn = opcode_definitions[opcode];
20383 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20384 defn += bytes_read;
20385
20386 for (i = 0; i < arg; ++i)
20387 {
20388 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20389 section);
20390 if (mac_ptr == NULL)
20391 {
20392 /* skip_form_bytes already issued the complaint. */
20393 return NULL;
20394 }
20395 }
20396
20397 return mac_ptr;
20398 }
20399
20400 /* A helper function which parses the header of a macro section.
20401 If the macro section is the extended (for now called "GNU") type,
20402 then this updates *OFFSET_SIZE. Returns a pointer to just after
20403 the header, or issues a complaint and returns NULL on error. */
20404
20405 static const gdb_byte *
20406 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20407 bfd *abfd,
20408 const gdb_byte *mac_ptr,
20409 unsigned int *offset_size,
20410 int section_is_gnu)
20411 {
20412 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20413
20414 if (section_is_gnu)
20415 {
20416 unsigned int version, flags;
20417
20418 version = read_2_bytes (abfd, mac_ptr);
20419 if (version != 4)
20420 {
20421 complaint (&symfile_complaints,
20422 _("unrecognized version `%d' in .debug_macro section"),
20423 version);
20424 return NULL;
20425 }
20426 mac_ptr += 2;
20427
20428 flags = read_1_byte (abfd, mac_ptr);
20429 ++mac_ptr;
20430 *offset_size = (flags & 1) ? 8 : 4;
20431
20432 if ((flags & 2) != 0)
20433 /* We don't need the line table offset. */
20434 mac_ptr += *offset_size;
20435
20436 /* Vendor opcode descriptions. */
20437 if ((flags & 4) != 0)
20438 {
20439 unsigned int i, count;
20440
20441 count = read_1_byte (abfd, mac_ptr);
20442 ++mac_ptr;
20443 for (i = 0; i < count; ++i)
20444 {
20445 unsigned int opcode, bytes_read;
20446 unsigned long arg;
20447
20448 opcode = read_1_byte (abfd, mac_ptr);
20449 ++mac_ptr;
20450 opcode_definitions[opcode] = mac_ptr;
20451 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20452 mac_ptr += bytes_read;
20453 mac_ptr += arg;
20454 }
20455 }
20456 }
20457
20458 return mac_ptr;
20459 }
20460
20461 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20462 including DW_MACRO_GNU_transparent_include. */
20463
20464 static void
20465 dwarf_decode_macro_bytes (bfd *abfd,
20466 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20467 struct macro_source_file *current_file,
20468 struct line_header *lh, const char *comp_dir,
20469 struct dwarf2_section_info *section,
20470 int section_is_gnu, int section_is_dwz,
20471 unsigned int offset_size,
20472 struct objfile *objfile,
20473 htab_t include_hash)
20474 {
20475 enum dwarf_macro_record_type macinfo_type;
20476 int at_commandline;
20477 const gdb_byte *opcode_definitions[256];
20478
20479 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20480 &offset_size, section_is_gnu);
20481 if (mac_ptr == NULL)
20482 {
20483 /* We already issued a complaint. */
20484 return;
20485 }
20486
20487 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20488 GDB is still reading the definitions from command line. First
20489 DW_MACINFO_start_file will need to be ignored as it was already executed
20490 to create CURRENT_FILE for the main source holding also the command line
20491 definitions. On first met DW_MACINFO_start_file this flag is reset to
20492 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20493
20494 at_commandline = 1;
20495
20496 do
20497 {
20498 /* Do we at least have room for a macinfo type byte? */
20499 if (mac_ptr >= mac_end)
20500 {
20501 dwarf2_section_buffer_overflow_complaint (section);
20502 break;
20503 }
20504
20505 macinfo_type = read_1_byte (abfd, mac_ptr);
20506 mac_ptr++;
20507
20508 /* Note that we rely on the fact that the corresponding GNU and
20509 DWARF constants are the same. */
20510 switch (macinfo_type)
20511 {
20512 /* A zero macinfo type indicates the end of the macro
20513 information. */
20514 case 0:
20515 break;
20516
20517 case DW_MACRO_GNU_define:
20518 case DW_MACRO_GNU_undef:
20519 case DW_MACRO_GNU_define_indirect:
20520 case DW_MACRO_GNU_undef_indirect:
20521 case DW_MACRO_GNU_define_indirect_alt:
20522 case DW_MACRO_GNU_undef_indirect_alt:
20523 {
20524 unsigned int bytes_read;
20525 int line;
20526 const char *body;
20527 int is_define;
20528
20529 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20530 mac_ptr += bytes_read;
20531
20532 if (macinfo_type == DW_MACRO_GNU_define
20533 || macinfo_type == DW_MACRO_GNU_undef)
20534 {
20535 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20536 mac_ptr += bytes_read;
20537 }
20538 else
20539 {
20540 LONGEST str_offset;
20541
20542 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20543 mac_ptr += offset_size;
20544
20545 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20546 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20547 || section_is_dwz)
20548 {
20549 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20550
20551 body = read_indirect_string_from_dwz (dwz, str_offset);
20552 }
20553 else
20554 body = read_indirect_string_at_offset (abfd, str_offset);
20555 }
20556
20557 is_define = (macinfo_type == DW_MACRO_GNU_define
20558 || macinfo_type == DW_MACRO_GNU_define_indirect
20559 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20560 if (! current_file)
20561 {
20562 /* DWARF violation as no main source is present. */
20563 complaint (&symfile_complaints,
20564 _("debug info with no main source gives macro %s "
20565 "on line %d: %s"),
20566 is_define ? _("definition") : _("undefinition"),
20567 line, body);
20568 break;
20569 }
20570 if ((line == 0 && !at_commandline)
20571 || (line != 0 && at_commandline))
20572 complaint (&symfile_complaints,
20573 _("debug info gives %s macro %s with %s line %d: %s"),
20574 at_commandline ? _("command-line") : _("in-file"),
20575 is_define ? _("definition") : _("undefinition"),
20576 line == 0 ? _("zero") : _("non-zero"), line, body);
20577
20578 if (is_define)
20579 parse_macro_definition (current_file, line, body);
20580 else
20581 {
20582 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20583 || macinfo_type == DW_MACRO_GNU_undef_indirect
20584 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20585 macro_undef (current_file, line, body);
20586 }
20587 }
20588 break;
20589
20590 case DW_MACRO_GNU_start_file:
20591 {
20592 unsigned int bytes_read;
20593 int line, file;
20594
20595 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20596 mac_ptr += bytes_read;
20597 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20598 mac_ptr += bytes_read;
20599
20600 if ((line == 0 && !at_commandline)
20601 || (line != 0 && at_commandline))
20602 complaint (&symfile_complaints,
20603 _("debug info gives source %d included "
20604 "from %s at %s line %d"),
20605 file, at_commandline ? _("command-line") : _("file"),
20606 line == 0 ? _("zero") : _("non-zero"), line);
20607
20608 if (at_commandline)
20609 {
20610 /* This DW_MACRO_GNU_start_file was executed in the
20611 pass one. */
20612 at_commandline = 0;
20613 }
20614 else
20615 current_file = macro_start_file (file, line,
20616 current_file, comp_dir,
20617 lh, objfile);
20618 }
20619 break;
20620
20621 case DW_MACRO_GNU_end_file:
20622 if (! current_file)
20623 complaint (&symfile_complaints,
20624 _("macro debug info has an unmatched "
20625 "`close_file' directive"));
20626 else
20627 {
20628 current_file = current_file->included_by;
20629 if (! current_file)
20630 {
20631 enum dwarf_macro_record_type next_type;
20632
20633 /* GCC circa March 2002 doesn't produce the zero
20634 type byte marking the end of the compilation
20635 unit. Complain if it's not there, but exit no
20636 matter what. */
20637
20638 /* Do we at least have room for a macinfo type byte? */
20639 if (mac_ptr >= mac_end)
20640 {
20641 dwarf2_section_buffer_overflow_complaint (section);
20642 return;
20643 }
20644
20645 /* We don't increment mac_ptr here, so this is just
20646 a look-ahead. */
20647 next_type = read_1_byte (abfd, mac_ptr);
20648 if (next_type != 0)
20649 complaint (&symfile_complaints,
20650 _("no terminating 0-type entry for "
20651 "macros in `.debug_macinfo' section"));
20652
20653 return;
20654 }
20655 }
20656 break;
20657
20658 case DW_MACRO_GNU_transparent_include:
20659 case DW_MACRO_GNU_transparent_include_alt:
20660 {
20661 LONGEST offset;
20662 void **slot;
20663 bfd *include_bfd = abfd;
20664 struct dwarf2_section_info *include_section = section;
20665 struct dwarf2_section_info alt_section;
20666 const gdb_byte *include_mac_end = mac_end;
20667 int is_dwz = section_is_dwz;
20668 const gdb_byte *new_mac_ptr;
20669
20670 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20671 mac_ptr += offset_size;
20672
20673 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20674 {
20675 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20676
20677 dwarf2_read_section (dwarf2_per_objfile->objfile,
20678 &dwz->macro);
20679
20680 include_section = &dwz->macro;
20681 include_bfd = get_section_bfd_owner (include_section);
20682 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20683 is_dwz = 1;
20684 }
20685
20686 new_mac_ptr = include_section->buffer + offset;
20687 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20688
20689 if (*slot != NULL)
20690 {
20691 /* This has actually happened; see
20692 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20693 complaint (&symfile_complaints,
20694 _("recursive DW_MACRO_GNU_transparent_include in "
20695 ".debug_macro section"));
20696 }
20697 else
20698 {
20699 *slot = (void *) new_mac_ptr;
20700
20701 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20702 include_mac_end, current_file,
20703 lh, comp_dir,
20704 section, section_is_gnu, is_dwz,
20705 offset_size, objfile, include_hash);
20706
20707 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20708 }
20709 }
20710 break;
20711
20712 case DW_MACINFO_vendor_ext:
20713 if (!section_is_gnu)
20714 {
20715 unsigned int bytes_read;
20716 int constant;
20717
20718 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20719 mac_ptr += bytes_read;
20720 read_direct_string (abfd, mac_ptr, &bytes_read);
20721 mac_ptr += bytes_read;
20722
20723 /* We don't recognize any vendor extensions. */
20724 break;
20725 }
20726 /* FALLTHROUGH */
20727
20728 default:
20729 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20730 mac_ptr, mac_end, abfd, offset_size,
20731 section);
20732 if (mac_ptr == NULL)
20733 return;
20734 break;
20735 }
20736 } while (macinfo_type != 0);
20737 }
20738
20739 static void
20740 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20741 const char *comp_dir, int section_is_gnu)
20742 {
20743 struct objfile *objfile = dwarf2_per_objfile->objfile;
20744 struct line_header *lh = cu->line_header;
20745 bfd *abfd;
20746 const gdb_byte *mac_ptr, *mac_end;
20747 struct macro_source_file *current_file = 0;
20748 enum dwarf_macro_record_type macinfo_type;
20749 unsigned int offset_size = cu->header.offset_size;
20750 const gdb_byte *opcode_definitions[256];
20751 struct cleanup *cleanup;
20752 htab_t include_hash;
20753 void **slot;
20754 struct dwarf2_section_info *section;
20755 const char *section_name;
20756
20757 if (cu->dwo_unit != NULL)
20758 {
20759 if (section_is_gnu)
20760 {
20761 section = &cu->dwo_unit->dwo_file->sections.macro;
20762 section_name = ".debug_macro.dwo";
20763 }
20764 else
20765 {
20766 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20767 section_name = ".debug_macinfo.dwo";
20768 }
20769 }
20770 else
20771 {
20772 if (section_is_gnu)
20773 {
20774 section = &dwarf2_per_objfile->macro;
20775 section_name = ".debug_macro";
20776 }
20777 else
20778 {
20779 section = &dwarf2_per_objfile->macinfo;
20780 section_name = ".debug_macinfo";
20781 }
20782 }
20783
20784 dwarf2_read_section (objfile, section);
20785 if (section->buffer == NULL)
20786 {
20787 complaint (&symfile_complaints, _("missing %s section"), section_name);
20788 return;
20789 }
20790 abfd = get_section_bfd_owner (section);
20791
20792 /* First pass: Find the name of the base filename.
20793 This filename is needed in order to process all macros whose definition
20794 (or undefinition) comes from the command line. These macros are defined
20795 before the first DW_MACINFO_start_file entry, and yet still need to be
20796 associated to the base file.
20797
20798 To determine the base file name, we scan the macro definitions until we
20799 reach the first DW_MACINFO_start_file entry. We then initialize
20800 CURRENT_FILE accordingly so that any macro definition found before the
20801 first DW_MACINFO_start_file can still be associated to the base file. */
20802
20803 mac_ptr = section->buffer + offset;
20804 mac_end = section->buffer + section->size;
20805
20806 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20807 &offset_size, section_is_gnu);
20808 if (mac_ptr == NULL)
20809 {
20810 /* We already issued a complaint. */
20811 return;
20812 }
20813
20814 do
20815 {
20816 /* Do we at least have room for a macinfo type byte? */
20817 if (mac_ptr >= mac_end)
20818 {
20819 /* Complaint is printed during the second pass as GDB will probably
20820 stop the first pass earlier upon finding
20821 DW_MACINFO_start_file. */
20822 break;
20823 }
20824
20825 macinfo_type = read_1_byte (abfd, mac_ptr);
20826 mac_ptr++;
20827
20828 /* Note that we rely on the fact that the corresponding GNU and
20829 DWARF constants are the same. */
20830 switch (macinfo_type)
20831 {
20832 /* A zero macinfo type indicates the end of the macro
20833 information. */
20834 case 0:
20835 break;
20836
20837 case DW_MACRO_GNU_define:
20838 case DW_MACRO_GNU_undef:
20839 /* Only skip the data by MAC_PTR. */
20840 {
20841 unsigned int bytes_read;
20842
20843 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20844 mac_ptr += bytes_read;
20845 read_direct_string (abfd, mac_ptr, &bytes_read);
20846 mac_ptr += bytes_read;
20847 }
20848 break;
20849
20850 case DW_MACRO_GNU_start_file:
20851 {
20852 unsigned int bytes_read;
20853 int line, file;
20854
20855 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20856 mac_ptr += bytes_read;
20857 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20858 mac_ptr += bytes_read;
20859
20860 current_file = macro_start_file (file, line, current_file,
20861 comp_dir, lh, objfile);
20862 }
20863 break;
20864
20865 case DW_MACRO_GNU_end_file:
20866 /* No data to skip by MAC_PTR. */
20867 break;
20868
20869 case DW_MACRO_GNU_define_indirect:
20870 case DW_MACRO_GNU_undef_indirect:
20871 case DW_MACRO_GNU_define_indirect_alt:
20872 case DW_MACRO_GNU_undef_indirect_alt:
20873 {
20874 unsigned int bytes_read;
20875
20876 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20877 mac_ptr += bytes_read;
20878 mac_ptr += offset_size;
20879 }
20880 break;
20881
20882 case DW_MACRO_GNU_transparent_include:
20883 case DW_MACRO_GNU_transparent_include_alt:
20884 /* Note that, according to the spec, a transparent include
20885 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20886 skip this opcode. */
20887 mac_ptr += offset_size;
20888 break;
20889
20890 case DW_MACINFO_vendor_ext:
20891 /* Only skip the data by MAC_PTR. */
20892 if (!section_is_gnu)
20893 {
20894 unsigned int bytes_read;
20895
20896 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20897 mac_ptr += bytes_read;
20898 read_direct_string (abfd, mac_ptr, &bytes_read);
20899 mac_ptr += bytes_read;
20900 }
20901 /* FALLTHROUGH */
20902
20903 default:
20904 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20905 mac_ptr, mac_end, abfd, offset_size,
20906 section);
20907 if (mac_ptr == NULL)
20908 return;
20909 break;
20910 }
20911 } while (macinfo_type != 0 && current_file == NULL);
20912
20913 /* Second pass: Process all entries.
20914
20915 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20916 command-line macro definitions/undefinitions. This flag is unset when we
20917 reach the first DW_MACINFO_start_file entry. */
20918
20919 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20920 NULL, xcalloc, xfree);
20921 cleanup = make_cleanup_htab_delete (include_hash);
20922 mac_ptr = section->buffer + offset;
20923 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20924 *slot = (void *) mac_ptr;
20925 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20926 current_file, lh, comp_dir, section,
20927 section_is_gnu, 0,
20928 offset_size, objfile, include_hash);
20929 do_cleanups (cleanup);
20930 }
20931
20932 /* Check if the attribute's form is a DW_FORM_block*
20933 if so return true else false. */
20934
20935 static int
20936 attr_form_is_block (const struct attribute *attr)
20937 {
20938 return (attr == NULL ? 0 :
20939 attr->form == DW_FORM_block1
20940 || attr->form == DW_FORM_block2
20941 || attr->form == DW_FORM_block4
20942 || attr->form == DW_FORM_block
20943 || attr->form == DW_FORM_exprloc);
20944 }
20945
20946 /* Return non-zero if ATTR's value is a section offset --- classes
20947 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20948 You may use DW_UNSND (attr) to retrieve such offsets.
20949
20950 Section 7.5.4, "Attribute Encodings", explains that no attribute
20951 may have a value that belongs to more than one of these classes; it
20952 would be ambiguous if we did, because we use the same forms for all
20953 of them. */
20954
20955 static int
20956 attr_form_is_section_offset (const struct attribute *attr)
20957 {
20958 return (attr->form == DW_FORM_data4
20959 || attr->form == DW_FORM_data8
20960 || attr->form == DW_FORM_sec_offset);
20961 }
20962
20963 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20964 zero otherwise. When this function returns true, you can apply
20965 dwarf2_get_attr_constant_value to it.
20966
20967 However, note that for some attributes you must check
20968 attr_form_is_section_offset before using this test. DW_FORM_data4
20969 and DW_FORM_data8 are members of both the constant class, and of
20970 the classes that contain offsets into other debug sections
20971 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20972 that, if an attribute's can be either a constant or one of the
20973 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20974 taken as section offsets, not constants. */
20975
20976 static int
20977 attr_form_is_constant (const struct attribute *attr)
20978 {
20979 switch (attr->form)
20980 {
20981 case DW_FORM_sdata:
20982 case DW_FORM_udata:
20983 case DW_FORM_data1:
20984 case DW_FORM_data2:
20985 case DW_FORM_data4:
20986 case DW_FORM_data8:
20987 return 1;
20988 default:
20989 return 0;
20990 }
20991 }
20992
20993
20994 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20995 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20996
20997 static int
20998 attr_form_is_ref (const struct attribute *attr)
20999 {
21000 switch (attr->form)
21001 {
21002 case DW_FORM_ref_addr:
21003 case DW_FORM_ref1:
21004 case DW_FORM_ref2:
21005 case DW_FORM_ref4:
21006 case DW_FORM_ref8:
21007 case DW_FORM_ref_udata:
21008 case DW_FORM_GNU_ref_alt:
21009 return 1;
21010 default:
21011 return 0;
21012 }
21013 }
21014
21015 /* Return the .debug_loc section to use for CU.
21016 For DWO files use .debug_loc.dwo. */
21017
21018 static struct dwarf2_section_info *
21019 cu_debug_loc_section (struct dwarf2_cu *cu)
21020 {
21021 if (cu->dwo_unit)
21022 return &cu->dwo_unit->dwo_file->sections.loc;
21023 return &dwarf2_per_objfile->loc;
21024 }
21025
21026 /* A helper function that fills in a dwarf2_loclist_baton. */
21027
21028 static void
21029 fill_in_loclist_baton (struct dwarf2_cu *cu,
21030 struct dwarf2_loclist_baton *baton,
21031 const struct attribute *attr)
21032 {
21033 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21034
21035 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21036
21037 baton->per_cu = cu->per_cu;
21038 gdb_assert (baton->per_cu);
21039 /* We don't know how long the location list is, but make sure we
21040 don't run off the edge of the section. */
21041 baton->size = section->size - DW_UNSND (attr);
21042 baton->data = section->buffer + DW_UNSND (attr);
21043 baton->base_address = cu->base_address;
21044 baton->from_dwo = cu->dwo_unit != NULL;
21045 }
21046
21047 static void
21048 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21049 struct dwarf2_cu *cu, int is_block)
21050 {
21051 struct objfile *objfile = dwarf2_per_objfile->objfile;
21052 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21053
21054 if (attr_form_is_section_offset (attr)
21055 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21056 the section. If so, fall through to the complaint in the
21057 other branch. */
21058 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21059 {
21060 struct dwarf2_loclist_baton *baton;
21061
21062 baton = obstack_alloc (&objfile->objfile_obstack,
21063 sizeof (struct dwarf2_loclist_baton));
21064
21065 fill_in_loclist_baton (cu, baton, attr);
21066
21067 if (cu->base_known == 0)
21068 complaint (&symfile_complaints,
21069 _("Location list used without "
21070 "specifying the CU base address."));
21071
21072 SYMBOL_ACLASS_INDEX (sym) = (is_block
21073 ? dwarf2_loclist_block_index
21074 : dwarf2_loclist_index);
21075 SYMBOL_LOCATION_BATON (sym) = baton;
21076 }
21077 else
21078 {
21079 struct dwarf2_locexpr_baton *baton;
21080
21081 baton = obstack_alloc (&objfile->objfile_obstack,
21082 sizeof (struct dwarf2_locexpr_baton));
21083 baton->per_cu = cu->per_cu;
21084 gdb_assert (baton->per_cu);
21085
21086 if (attr_form_is_block (attr))
21087 {
21088 /* Note that we're just copying the block's data pointer
21089 here, not the actual data. We're still pointing into the
21090 info_buffer for SYM's objfile; right now we never release
21091 that buffer, but when we do clean up properly this may
21092 need to change. */
21093 baton->size = DW_BLOCK (attr)->size;
21094 baton->data = DW_BLOCK (attr)->data;
21095 }
21096 else
21097 {
21098 dwarf2_invalid_attrib_class_complaint ("location description",
21099 SYMBOL_NATURAL_NAME (sym));
21100 baton->size = 0;
21101 }
21102
21103 SYMBOL_ACLASS_INDEX (sym) = (is_block
21104 ? dwarf2_locexpr_block_index
21105 : dwarf2_locexpr_index);
21106 SYMBOL_LOCATION_BATON (sym) = baton;
21107 }
21108 }
21109
21110 /* Return the OBJFILE associated with the compilation unit CU. If CU
21111 came from a separate debuginfo file, then the master objfile is
21112 returned. */
21113
21114 struct objfile *
21115 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21116 {
21117 struct objfile *objfile = per_cu->objfile;
21118
21119 /* Return the master objfile, so that we can report and look up the
21120 correct file containing this variable. */
21121 if (objfile->separate_debug_objfile_backlink)
21122 objfile = objfile->separate_debug_objfile_backlink;
21123
21124 return objfile;
21125 }
21126
21127 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21128 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21129 CU_HEADERP first. */
21130
21131 static const struct comp_unit_head *
21132 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21133 struct dwarf2_per_cu_data *per_cu)
21134 {
21135 const gdb_byte *info_ptr;
21136
21137 if (per_cu->cu)
21138 return &per_cu->cu->header;
21139
21140 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21141
21142 memset (cu_headerp, 0, sizeof (*cu_headerp));
21143 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21144
21145 return cu_headerp;
21146 }
21147
21148 /* Return the address size given in the compilation unit header for CU. */
21149
21150 int
21151 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21152 {
21153 struct comp_unit_head cu_header_local;
21154 const struct comp_unit_head *cu_headerp;
21155
21156 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21157
21158 return cu_headerp->addr_size;
21159 }
21160
21161 /* Return the offset size given in the compilation unit header for CU. */
21162
21163 int
21164 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21165 {
21166 struct comp_unit_head cu_header_local;
21167 const struct comp_unit_head *cu_headerp;
21168
21169 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21170
21171 return cu_headerp->offset_size;
21172 }
21173
21174 /* See its dwarf2loc.h declaration. */
21175
21176 int
21177 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21178 {
21179 struct comp_unit_head cu_header_local;
21180 const struct comp_unit_head *cu_headerp;
21181
21182 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21183
21184 if (cu_headerp->version == 2)
21185 return cu_headerp->addr_size;
21186 else
21187 return cu_headerp->offset_size;
21188 }
21189
21190 /* Return the text offset of the CU. The returned offset comes from
21191 this CU's objfile. If this objfile came from a separate debuginfo
21192 file, then the offset may be different from the corresponding
21193 offset in the parent objfile. */
21194
21195 CORE_ADDR
21196 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21197 {
21198 struct objfile *objfile = per_cu->objfile;
21199
21200 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21201 }
21202
21203 /* Locate the .debug_info compilation unit from CU's objfile which contains
21204 the DIE at OFFSET. Raises an error on failure. */
21205
21206 static struct dwarf2_per_cu_data *
21207 dwarf2_find_containing_comp_unit (sect_offset offset,
21208 unsigned int offset_in_dwz,
21209 struct objfile *objfile)
21210 {
21211 struct dwarf2_per_cu_data *this_cu;
21212 int low, high;
21213 const sect_offset *cu_off;
21214
21215 low = 0;
21216 high = dwarf2_per_objfile->n_comp_units - 1;
21217 while (high > low)
21218 {
21219 struct dwarf2_per_cu_data *mid_cu;
21220 int mid = low + (high - low) / 2;
21221
21222 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21223 cu_off = &mid_cu->offset;
21224 if (mid_cu->is_dwz > offset_in_dwz
21225 || (mid_cu->is_dwz == offset_in_dwz
21226 && cu_off->sect_off >= offset.sect_off))
21227 high = mid;
21228 else
21229 low = mid + 1;
21230 }
21231 gdb_assert (low == high);
21232 this_cu = dwarf2_per_objfile->all_comp_units[low];
21233 cu_off = &this_cu->offset;
21234 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21235 {
21236 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21237 error (_("Dwarf Error: could not find partial DIE containing "
21238 "offset 0x%lx [in module %s]"),
21239 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21240
21241 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21242 <= offset.sect_off);
21243 return dwarf2_per_objfile->all_comp_units[low-1];
21244 }
21245 else
21246 {
21247 this_cu = dwarf2_per_objfile->all_comp_units[low];
21248 if (low == dwarf2_per_objfile->n_comp_units - 1
21249 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21250 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21251 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21252 return this_cu;
21253 }
21254 }
21255
21256 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21257
21258 static void
21259 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21260 {
21261 memset (cu, 0, sizeof (*cu));
21262 per_cu->cu = cu;
21263 cu->per_cu = per_cu;
21264 cu->objfile = per_cu->objfile;
21265 obstack_init (&cu->comp_unit_obstack);
21266 }
21267
21268 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21269
21270 static void
21271 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21272 enum language pretend_language)
21273 {
21274 struct attribute *attr;
21275
21276 /* Set the language we're debugging. */
21277 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21278 if (attr)
21279 set_cu_language (DW_UNSND (attr), cu);
21280 else
21281 {
21282 cu->language = pretend_language;
21283 cu->language_defn = language_def (cu->language);
21284 }
21285
21286 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21287 if (attr)
21288 cu->producer = DW_STRING (attr);
21289 }
21290
21291 /* Release one cached compilation unit, CU. We unlink it from the tree
21292 of compilation units, but we don't remove it from the read_in_chain;
21293 the caller is responsible for that.
21294 NOTE: DATA is a void * because this function is also used as a
21295 cleanup routine. */
21296
21297 static void
21298 free_heap_comp_unit (void *data)
21299 {
21300 struct dwarf2_cu *cu = data;
21301
21302 gdb_assert (cu->per_cu != NULL);
21303 cu->per_cu->cu = NULL;
21304 cu->per_cu = NULL;
21305
21306 obstack_free (&cu->comp_unit_obstack, NULL);
21307
21308 xfree (cu);
21309 }
21310
21311 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21312 when we're finished with it. We can't free the pointer itself, but be
21313 sure to unlink it from the cache. Also release any associated storage. */
21314
21315 static void
21316 free_stack_comp_unit (void *data)
21317 {
21318 struct dwarf2_cu *cu = data;
21319
21320 gdb_assert (cu->per_cu != NULL);
21321 cu->per_cu->cu = NULL;
21322 cu->per_cu = NULL;
21323
21324 obstack_free (&cu->comp_unit_obstack, NULL);
21325 cu->partial_dies = NULL;
21326 }
21327
21328 /* Free all cached compilation units. */
21329
21330 static void
21331 free_cached_comp_units (void *data)
21332 {
21333 struct dwarf2_per_cu_data *per_cu, **last_chain;
21334
21335 per_cu = dwarf2_per_objfile->read_in_chain;
21336 last_chain = &dwarf2_per_objfile->read_in_chain;
21337 while (per_cu != NULL)
21338 {
21339 struct dwarf2_per_cu_data *next_cu;
21340
21341 next_cu = per_cu->cu->read_in_chain;
21342
21343 free_heap_comp_unit (per_cu->cu);
21344 *last_chain = next_cu;
21345
21346 per_cu = next_cu;
21347 }
21348 }
21349
21350 /* Increase the age counter on each cached compilation unit, and free
21351 any that are too old. */
21352
21353 static void
21354 age_cached_comp_units (void)
21355 {
21356 struct dwarf2_per_cu_data *per_cu, **last_chain;
21357
21358 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21359 per_cu = dwarf2_per_objfile->read_in_chain;
21360 while (per_cu != NULL)
21361 {
21362 per_cu->cu->last_used ++;
21363 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21364 dwarf2_mark (per_cu->cu);
21365 per_cu = per_cu->cu->read_in_chain;
21366 }
21367
21368 per_cu = dwarf2_per_objfile->read_in_chain;
21369 last_chain = &dwarf2_per_objfile->read_in_chain;
21370 while (per_cu != NULL)
21371 {
21372 struct dwarf2_per_cu_data *next_cu;
21373
21374 next_cu = per_cu->cu->read_in_chain;
21375
21376 if (!per_cu->cu->mark)
21377 {
21378 free_heap_comp_unit (per_cu->cu);
21379 *last_chain = next_cu;
21380 }
21381 else
21382 last_chain = &per_cu->cu->read_in_chain;
21383
21384 per_cu = next_cu;
21385 }
21386 }
21387
21388 /* Remove a single compilation unit from the cache. */
21389
21390 static void
21391 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21392 {
21393 struct dwarf2_per_cu_data *per_cu, **last_chain;
21394
21395 per_cu = dwarf2_per_objfile->read_in_chain;
21396 last_chain = &dwarf2_per_objfile->read_in_chain;
21397 while (per_cu != NULL)
21398 {
21399 struct dwarf2_per_cu_data *next_cu;
21400
21401 next_cu = per_cu->cu->read_in_chain;
21402
21403 if (per_cu == target_per_cu)
21404 {
21405 free_heap_comp_unit (per_cu->cu);
21406 per_cu->cu = NULL;
21407 *last_chain = next_cu;
21408 break;
21409 }
21410 else
21411 last_chain = &per_cu->cu->read_in_chain;
21412
21413 per_cu = next_cu;
21414 }
21415 }
21416
21417 /* Release all extra memory associated with OBJFILE. */
21418
21419 void
21420 dwarf2_free_objfile (struct objfile *objfile)
21421 {
21422 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21423
21424 if (dwarf2_per_objfile == NULL)
21425 return;
21426
21427 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21428 free_cached_comp_units (NULL);
21429
21430 if (dwarf2_per_objfile->quick_file_names_table)
21431 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21432
21433 /* Everything else should be on the objfile obstack. */
21434 }
21435
21436 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21437 We store these in a hash table separate from the DIEs, and preserve them
21438 when the DIEs are flushed out of cache.
21439
21440 The CU "per_cu" pointer is needed because offset alone is not enough to
21441 uniquely identify the type. A file may have multiple .debug_types sections,
21442 or the type may come from a DWO file. Furthermore, while it's more logical
21443 to use per_cu->section+offset, with Fission the section with the data is in
21444 the DWO file but we don't know that section at the point we need it.
21445 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21446 because we can enter the lookup routine, get_die_type_at_offset, from
21447 outside this file, and thus won't necessarily have PER_CU->cu.
21448 Fortunately, PER_CU is stable for the life of the objfile. */
21449
21450 struct dwarf2_per_cu_offset_and_type
21451 {
21452 const struct dwarf2_per_cu_data *per_cu;
21453 sect_offset offset;
21454 struct type *type;
21455 };
21456
21457 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21458
21459 static hashval_t
21460 per_cu_offset_and_type_hash (const void *item)
21461 {
21462 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21463
21464 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21465 }
21466
21467 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21468
21469 static int
21470 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21471 {
21472 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21473 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21474
21475 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21476 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21477 }
21478
21479 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21480 table if necessary. For convenience, return TYPE.
21481
21482 The DIEs reading must have careful ordering to:
21483 * Not cause infite loops trying to read in DIEs as a prerequisite for
21484 reading current DIE.
21485 * Not trying to dereference contents of still incompletely read in types
21486 while reading in other DIEs.
21487 * Enable referencing still incompletely read in types just by a pointer to
21488 the type without accessing its fields.
21489
21490 Therefore caller should follow these rules:
21491 * Try to fetch any prerequisite types we may need to build this DIE type
21492 before building the type and calling set_die_type.
21493 * After building type call set_die_type for current DIE as soon as
21494 possible before fetching more types to complete the current type.
21495 * Make the type as complete as possible before fetching more types. */
21496
21497 static struct type *
21498 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21499 {
21500 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21501 struct objfile *objfile = cu->objfile;
21502
21503 /* For Ada types, make sure that the gnat-specific data is always
21504 initialized (if not already set). There are a few types where
21505 we should not be doing so, because the type-specific area is
21506 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21507 where the type-specific area is used to store the floatformat).
21508 But this is not a problem, because the gnat-specific information
21509 is actually not needed for these types. */
21510 if (need_gnat_info (cu)
21511 && TYPE_CODE (type) != TYPE_CODE_FUNC
21512 && TYPE_CODE (type) != TYPE_CODE_FLT
21513 && !HAVE_GNAT_AUX_INFO (type))
21514 INIT_GNAT_SPECIFIC (type);
21515
21516 if (dwarf2_per_objfile->die_type_hash == NULL)
21517 {
21518 dwarf2_per_objfile->die_type_hash =
21519 htab_create_alloc_ex (127,
21520 per_cu_offset_and_type_hash,
21521 per_cu_offset_and_type_eq,
21522 NULL,
21523 &objfile->objfile_obstack,
21524 hashtab_obstack_allocate,
21525 dummy_obstack_deallocate);
21526 }
21527
21528 ofs.per_cu = cu->per_cu;
21529 ofs.offset = die->offset;
21530 ofs.type = type;
21531 slot = (struct dwarf2_per_cu_offset_and_type **)
21532 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21533 if (*slot)
21534 complaint (&symfile_complaints,
21535 _("A problem internal to GDB: DIE 0x%x has type already set"),
21536 die->offset.sect_off);
21537 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21538 **slot = ofs;
21539 return type;
21540 }
21541
21542 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21543 or return NULL if the die does not have a saved type. */
21544
21545 static struct type *
21546 get_die_type_at_offset (sect_offset offset,
21547 struct dwarf2_per_cu_data *per_cu)
21548 {
21549 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21550
21551 if (dwarf2_per_objfile->die_type_hash == NULL)
21552 return NULL;
21553
21554 ofs.per_cu = per_cu;
21555 ofs.offset = offset;
21556 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21557 if (slot)
21558 return slot->type;
21559 else
21560 return NULL;
21561 }
21562
21563 /* Look up the type for DIE in CU in die_type_hash,
21564 or return NULL if DIE does not have a saved type. */
21565
21566 static struct type *
21567 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21568 {
21569 return get_die_type_at_offset (die->offset, cu->per_cu);
21570 }
21571
21572 /* Add a dependence relationship from CU to REF_PER_CU. */
21573
21574 static void
21575 dwarf2_add_dependence (struct dwarf2_cu *cu,
21576 struct dwarf2_per_cu_data *ref_per_cu)
21577 {
21578 void **slot;
21579
21580 if (cu->dependencies == NULL)
21581 cu->dependencies
21582 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21583 NULL, &cu->comp_unit_obstack,
21584 hashtab_obstack_allocate,
21585 dummy_obstack_deallocate);
21586
21587 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21588 if (*slot == NULL)
21589 *slot = ref_per_cu;
21590 }
21591
21592 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21593 Set the mark field in every compilation unit in the
21594 cache that we must keep because we are keeping CU. */
21595
21596 static int
21597 dwarf2_mark_helper (void **slot, void *data)
21598 {
21599 struct dwarf2_per_cu_data *per_cu;
21600
21601 per_cu = (struct dwarf2_per_cu_data *) *slot;
21602
21603 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21604 reading of the chain. As such dependencies remain valid it is not much
21605 useful to track and undo them during QUIT cleanups. */
21606 if (per_cu->cu == NULL)
21607 return 1;
21608
21609 if (per_cu->cu->mark)
21610 return 1;
21611 per_cu->cu->mark = 1;
21612
21613 if (per_cu->cu->dependencies != NULL)
21614 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21615
21616 return 1;
21617 }
21618
21619 /* Set the mark field in CU and in every other compilation unit in the
21620 cache that we must keep because we are keeping CU. */
21621
21622 static void
21623 dwarf2_mark (struct dwarf2_cu *cu)
21624 {
21625 if (cu->mark)
21626 return;
21627 cu->mark = 1;
21628 if (cu->dependencies != NULL)
21629 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21630 }
21631
21632 static void
21633 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21634 {
21635 while (per_cu)
21636 {
21637 per_cu->cu->mark = 0;
21638 per_cu = per_cu->cu->read_in_chain;
21639 }
21640 }
21641
21642 /* Trivial hash function for partial_die_info: the hash value of a DIE
21643 is its offset in .debug_info for this objfile. */
21644
21645 static hashval_t
21646 partial_die_hash (const void *item)
21647 {
21648 const struct partial_die_info *part_die = item;
21649
21650 return part_die->offset.sect_off;
21651 }
21652
21653 /* Trivial comparison function for partial_die_info structures: two DIEs
21654 are equal if they have the same offset. */
21655
21656 static int
21657 partial_die_eq (const void *item_lhs, const void *item_rhs)
21658 {
21659 const struct partial_die_info *part_die_lhs = item_lhs;
21660 const struct partial_die_info *part_die_rhs = item_rhs;
21661
21662 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21663 }
21664
21665 static struct cmd_list_element *set_dwarf2_cmdlist;
21666 static struct cmd_list_element *show_dwarf2_cmdlist;
21667
21668 static void
21669 set_dwarf2_cmd (char *args, int from_tty)
21670 {
21671 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21672 }
21673
21674 static void
21675 show_dwarf2_cmd (char *args, int from_tty)
21676 {
21677 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21678 }
21679
21680 /* Free data associated with OBJFILE, if necessary. */
21681
21682 static void
21683 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21684 {
21685 struct dwarf2_per_objfile *data = d;
21686 int ix;
21687
21688 /* Make sure we don't accidentally use dwarf2_per_objfile while
21689 cleaning up. */
21690 dwarf2_per_objfile = NULL;
21691
21692 for (ix = 0; ix < data->n_comp_units; ++ix)
21693 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21694
21695 for (ix = 0; ix < data->n_type_units; ++ix)
21696 VEC_free (dwarf2_per_cu_ptr,
21697 data->all_type_units[ix]->per_cu.imported_symtabs);
21698 xfree (data->all_type_units);
21699
21700 VEC_free (dwarf2_section_info_def, data->types);
21701
21702 if (data->dwo_files)
21703 free_dwo_files (data->dwo_files, objfile);
21704 if (data->dwp_file)
21705 gdb_bfd_unref (data->dwp_file->dbfd);
21706
21707 if (data->dwz_file && data->dwz_file->dwz_bfd)
21708 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21709 }
21710
21711 \f
21712 /* The "save gdb-index" command. */
21713
21714 /* The contents of the hash table we create when building the string
21715 table. */
21716 struct strtab_entry
21717 {
21718 offset_type offset;
21719 const char *str;
21720 };
21721
21722 /* Hash function for a strtab_entry.
21723
21724 Function is used only during write_hash_table so no index format backward
21725 compatibility is needed. */
21726
21727 static hashval_t
21728 hash_strtab_entry (const void *e)
21729 {
21730 const struct strtab_entry *entry = e;
21731 return mapped_index_string_hash (INT_MAX, entry->str);
21732 }
21733
21734 /* Equality function for a strtab_entry. */
21735
21736 static int
21737 eq_strtab_entry (const void *a, const void *b)
21738 {
21739 const struct strtab_entry *ea = a;
21740 const struct strtab_entry *eb = b;
21741 return !strcmp (ea->str, eb->str);
21742 }
21743
21744 /* Create a strtab_entry hash table. */
21745
21746 static htab_t
21747 create_strtab (void)
21748 {
21749 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21750 xfree, xcalloc, xfree);
21751 }
21752
21753 /* Add a string to the constant pool. Return the string's offset in
21754 host order. */
21755
21756 static offset_type
21757 add_string (htab_t table, struct obstack *cpool, const char *str)
21758 {
21759 void **slot;
21760 struct strtab_entry entry;
21761 struct strtab_entry *result;
21762
21763 entry.str = str;
21764 slot = htab_find_slot (table, &entry, INSERT);
21765 if (*slot)
21766 result = *slot;
21767 else
21768 {
21769 result = XNEW (struct strtab_entry);
21770 result->offset = obstack_object_size (cpool);
21771 result->str = str;
21772 obstack_grow_str0 (cpool, str);
21773 *slot = result;
21774 }
21775 return result->offset;
21776 }
21777
21778 /* An entry in the symbol table. */
21779 struct symtab_index_entry
21780 {
21781 /* The name of the symbol. */
21782 const char *name;
21783 /* The offset of the name in the constant pool. */
21784 offset_type index_offset;
21785 /* A sorted vector of the indices of all the CUs that hold an object
21786 of this name. */
21787 VEC (offset_type) *cu_indices;
21788 };
21789
21790 /* The symbol table. This is a power-of-2-sized hash table. */
21791 struct mapped_symtab
21792 {
21793 offset_type n_elements;
21794 offset_type size;
21795 struct symtab_index_entry **data;
21796 };
21797
21798 /* Hash function for a symtab_index_entry. */
21799
21800 static hashval_t
21801 hash_symtab_entry (const void *e)
21802 {
21803 const struct symtab_index_entry *entry = e;
21804 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21805 sizeof (offset_type) * VEC_length (offset_type,
21806 entry->cu_indices),
21807 0);
21808 }
21809
21810 /* Equality function for a symtab_index_entry. */
21811
21812 static int
21813 eq_symtab_entry (const void *a, const void *b)
21814 {
21815 const struct symtab_index_entry *ea = a;
21816 const struct symtab_index_entry *eb = b;
21817 int len = VEC_length (offset_type, ea->cu_indices);
21818 if (len != VEC_length (offset_type, eb->cu_indices))
21819 return 0;
21820 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21821 VEC_address (offset_type, eb->cu_indices),
21822 sizeof (offset_type) * len);
21823 }
21824
21825 /* Destroy a symtab_index_entry. */
21826
21827 static void
21828 delete_symtab_entry (void *p)
21829 {
21830 struct symtab_index_entry *entry = p;
21831 VEC_free (offset_type, entry->cu_indices);
21832 xfree (entry);
21833 }
21834
21835 /* Create a hash table holding symtab_index_entry objects. */
21836
21837 static htab_t
21838 create_symbol_hash_table (void)
21839 {
21840 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21841 delete_symtab_entry, xcalloc, xfree);
21842 }
21843
21844 /* Create a new mapped symtab object. */
21845
21846 static struct mapped_symtab *
21847 create_mapped_symtab (void)
21848 {
21849 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21850 symtab->n_elements = 0;
21851 symtab->size = 1024;
21852 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21853 return symtab;
21854 }
21855
21856 /* Destroy a mapped_symtab. */
21857
21858 static void
21859 cleanup_mapped_symtab (void *p)
21860 {
21861 struct mapped_symtab *symtab = p;
21862 /* The contents of the array are freed when the other hash table is
21863 destroyed. */
21864 xfree (symtab->data);
21865 xfree (symtab);
21866 }
21867
21868 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21869 the slot.
21870
21871 Function is used only during write_hash_table so no index format backward
21872 compatibility is needed. */
21873
21874 static struct symtab_index_entry **
21875 find_slot (struct mapped_symtab *symtab, const char *name)
21876 {
21877 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21878
21879 index = hash & (symtab->size - 1);
21880 step = ((hash * 17) & (symtab->size - 1)) | 1;
21881
21882 for (;;)
21883 {
21884 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21885 return &symtab->data[index];
21886 index = (index + step) & (symtab->size - 1);
21887 }
21888 }
21889
21890 /* Expand SYMTAB's hash table. */
21891
21892 static void
21893 hash_expand (struct mapped_symtab *symtab)
21894 {
21895 offset_type old_size = symtab->size;
21896 offset_type i;
21897 struct symtab_index_entry **old_entries = symtab->data;
21898
21899 symtab->size *= 2;
21900 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21901
21902 for (i = 0; i < old_size; ++i)
21903 {
21904 if (old_entries[i])
21905 {
21906 struct symtab_index_entry **slot = find_slot (symtab,
21907 old_entries[i]->name);
21908 *slot = old_entries[i];
21909 }
21910 }
21911
21912 xfree (old_entries);
21913 }
21914
21915 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21916 CU_INDEX is the index of the CU in which the symbol appears.
21917 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21918
21919 static void
21920 add_index_entry (struct mapped_symtab *symtab, const char *name,
21921 int is_static, gdb_index_symbol_kind kind,
21922 offset_type cu_index)
21923 {
21924 struct symtab_index_entry **slot;
21925 offset_type cu_index_and_attrs;
21926
21927 ++symtab->n_elements;
21928 if (4 * symtab->n_elements / 3 >= symtab->size)
21929 hash_expand (symtab);
21930
21931 slot = find_slot (symtab, name);
21932 if (!*slot)
21933 {
21934 *slot = XNEW (struct symtab_index_entry);
21935 (*slot)->name = name;
21936 /* index_offset is set later. */
21937 (*slot)->cu_indices = NULL;
21938 }
21939
21940 cu_index_and_attrs = 0;
21941 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21942 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21943 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21944
21945 /* We don't want to record an index value twice as we want to avoid the
21946 duplication.
21947 We process all global symbols and then all static symbols
21948 (which would allow us to avoid the duplication by only having to check
21949 the last entry pushed), but a symbol could have multiple kinds in one CU.
21950 To keep things simple we don't worry about the duplication here and
21951 sort and uniqufy the list after we've processed all symbols. */
21952 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21953 }
21954
21955 /* qsort helper routine for uniquify_cu_indices. */
21956
21957 static int
21958 offset_type_compare (const void *ap, const void *bp)
21959 {
21960 offset_type a = *(offset_type *) ap;
21961 offset_type b = *(offset_type *) bp;
21962
21963 return (a > b) - (b > a);
21964 }
21965
21966 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21967
21968 static void
21969 uniquify_cu_indices (struct mapped_symtab *symtab)
21970 {
21971 int i;
21972
21973 for (i = 0; i < symtab->size; ++i)
21974 {
21975 struct symtab_index_entry *entry = symtab->data[i];
21976
21977 if (entry
21978 && entry->cu_indices != NULL)
21979 {
21980 unsigned int next_to_insert, next_to_check;
21981 offset_type last_value;
21982
21983 qsort (VEC_address (offset_type, entry->cu_indices),
21984 VEC_length (offset_type, entry->cu_indices),
21985 sizeof (offset_type), offset_type_compare);
21986
21987 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21988 next_to_insert = 1;
21989 for (next_to_check = 1;
21990 next_to_check < VEC_length (offset_type, entry->cu_indices);
21991 ++next_to_check)
21992 {
21993 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21994 != last_value)
21995 {
21996 last_value = VEC_index (offset_type, entry->cu_indices,
21997 next_to_check);
21998 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21999 last_value);
22000 ++next_to_insert;
22001 }
22002 }
22003 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22004 }
22005 }
22006 }
22007
22008 /* Add a vector of indices to the constant pool. */
22009
22010 static offset_type
22011 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22012 struct symtab_index_entry *entry)
22013 {
22014 void **slot;
22015
22016 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22017 if (!*slot)
22018 {
22019 offset_type len = VEC_length (offset_type, entry->cu_indices);
22020 offset_type val = MAYBE_SWAP (len);
22021 offset_type iter;
22022 int i;
22023
22024 *slot = entry;
22025 entry->index_offset = obstack_object_size (cpool);
22026
22027 obstack_grow (cpool, &val, sizeof (val));
22028 for (i = 0;
22029 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22030 ++i)
22031 {
22032 val = MAYBE_SWAP (iter);
22033 obstack_grow (cpool, &val, sizeof (val));
22034 }
22035 }
22036 else
22037 {
22038 struct symtab_index_entry *old_entry = *slot;
22039 entry->index_offset = old_entry->index_offset;
22040 entry = old_entry;
22041 }
22042 return entry->index_offset;
22043 }
22044
22045 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22046 constant pool entries going into the obstack CPOOL. */
22047
22048 static void
22049 write_hash_table (struct mapped_symtab *symtab,
22050 struct obstack *output, struct obstack *cpool)
22051 {
22052 offset_type i;
22053 htab_t symbol_hash_table;
22054 htab_t str_table;
22055
22056 symbol_hash_table = create_symbol_hash_table ();
22057 str_table = create_strtab ();
22058
22059 /* We add all the index vectors to the constant pool first, to
22060 ensure alignment is ok. */
22061 for (i = 0; i < symtab->size; ++i)
22062 {
22063 if (symtab->data[i])
22064 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22065 }
22066
22067 /* Now write out the hash table. */
22068 for (i = 0; i < symtab->size; ++i)
22069 {
22070 offset_type str_off, vec_off;
22071
22072 if (symtab->data[i])
22073 {
22074 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22075 vec_off = symtab->data[i]->index_offset;
22076 }
22077 else
22078 {
22079 /* While 0 is a valid constant pool index, it is not valid
22080 to have 0 for both offsets. */
22081 str_off = 0;
22082 vec_off = 0;
22083 }
22084
22085 str_off = MAYBE_SWAP (str_off);
22086 vec_off = MAYBE_SWAP (vec_off);
22087
22088 obstack_grow (output, &str_off, sizeof (str_off));
22089 obstack_grow (output, &vec_off, sizeof (vec_off));
22090 }
22091
22092 htab_delete (str_table);
22093 htab_delete (symbol_hash_table);
22094 }
22095
22096 /* Struct to map psymtab to CU index in the index file. */
22097 struct psymtab_cu_index_map
22098 {
22099 struct partial_symtab *psymtab;
22100 unsigned int cu_index;
22101 };
22102
22103 static hashval_t
22104 hash_psymtab_cu_index (const void *item)
22105 {
22106 const struct psymtab_cu_index_map *map = item;
22107
22108 return htab_hash_pointer (map->psymtab);
22109 }
22110
22111 static int
22112 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22113 {
22114 const struct psymtab_cu_index_map *lhs = item_lhs;
22115 const struct psymtab_cu_index_map *rhs = item_rhs;
22116
22117 return lhs->psymtab == rhs->psymtab;
22118 }
22119
22120 /* Helper struct for building the address table. */
22121 struct addrmap_index_data
22122 {
22123 struct objfile *objfile;
22124 struct obstack *addr_obstack;
22125 htab_t cu_index_htab;
22126
22127 /* Non-zero if the previous_* fields are valid.
22128 We can't write an entry until we see the next entry (since it is only then
22129 that we know the end of the entry). */
22130 int previous_valid;
22131 /* Index of the CU in the table of all CUs in the index file. */
22132 unsigned int previous_cu_index;
22133 /* Start address of the CU. */
22134 CORE_ADDR previous_cu_start;
22135 };
22136
22137 /* Write an address entry to OBSTACK. */
22138
22139 static void
22140 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22141 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22142 {
22143 offset_type cu_index_to_write;
22144 gdb_byte addr[8];
22145 CORE_ADDR baseaddr;
22146
22147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22148
22149 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22150 obstack_grow (obstack, addr, 8);
22151 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22152 obstack_grow (obstack, addr, 8);
22153 cu_index_to_write = MAYBE_SWAP (cu_index);
22154 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22155 }
22156
22157 /* Worker function for traversing an addrmap to build the address table. */
22158
22159 static int
22160 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22161 {
22162 struct addrmap_index_data *data = datap;
22163 struct partial_symtab *pst = obj;
22164
22165 if (data->previous_valid)
22166 add_address_entry (data->objfile, data->addr_obstack,
22167 data->previous_cu_start, start_addr,
22168 data->previous_cu_index);
22169
22170 data->previous_cu_start = start_addr;
22171 if (pst != NULL)
22172 {
22173 struct psymtab_cu_index_map find_map, *map;
22174 find_map.psymtab = pst;
22175 map = htab_find (data->cu_index_htab, &find_map);
22176 gdb_assert (map != NULL);
22177 data->previous_cu_index = map->cu_index;
22178 data->previous_valid = 1;
22179 }
22180 else
22181 data->previous_valid = 0;
22182
22183 return 0;
22184 }
22185
22186 /* Write OBJFILE's address map to OBSTACK.
22187 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22188 in the index file. */
22189
22190 static void
22191 write_address_map (struct objfile *objfile, struct obstack *obstack,
22192 htab_t cu_index_htab)
22193 {
22194 struct addrmap_index_data addrmap_index_data;
22195
22196 /* When writing the address table, we have to cope with the fact that
22197 the addrmap iterator only provides the start of a region; we have to
22198 wait until the next invocation to get the start of the next region. */
22199
22200 addrmap_index_data.objfile = objfile;
22201 addrmap_index_data.addr_obstack = obstack;
22202 addrmap_index_data.cu_index_htab = cu_index_htab;
22203 addrmap_index_data.previous_valid = 0;
22204
22205 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22206 &addrmap_index_data);
22207
22208 /* It's highly unlikely the last entry (end address = 0xff...ff)
22209 is valid, but we should still handle it.
22210 The end address is recorded as the start of the next region, but that
22211 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22212 anyway. */
22213 if (addrmap_index_data.previous_valid)
22214 add_address_entry (objfile, obstack,
22215 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22216 addrmap_index_data.previous_cu_index);
22217 }
22218
22219 /* Return the symbol kind of PSYM. */
22220
22221 static gdb_index_symbol_kind
22222 symbol_kind (struct partial_symbol *psym)
22223 {
22224 domain_enum domain = PSYMBOL_DOMAIN (psym);
22225 enum address_class aclass = PSYMBOL_CLASS (psym);
22226
22227 switch (domain)
22228 {
22229 case VAR_DOMAIN:
22230 switch (aclass)
22231 {
22232 case LOC_BLOCK:
22233 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22234 case LOC_TYPEDEF:
22235 return GDB_INDEX_SYMBOL_KIND_TYPE;
22236 case LOC_COMPUTED:
22237 case LOC_CONST_BYTES:
22238 case LOC_OPTIMIZED_OUT:
22239 case LOC_STATIC:
22240 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22241 case LOC_CONST:
22242 /* Note: It's currently impossible to recognize psyms as enum values
22243 short of reading the type info. For now punt. */
22244 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22245 default:
22246 /* There are other LOC_FOO values that one might want to classify
22247 as variables, but dwarf2read.c doesn't currently use them. */
22248 return GDB_INDEX_SYMBOL_KIND_OTHER;
22249 }
22250 case STRUCT_DOMAIN:
22251 return GDB_INDEX_SYMBOL_KIND_TYPE;
22252 default:
22253 return GDB_INDEX_SYMBOL_KIND_OTHER;
22254 }
22255 }
22256
22257 /* Add a list of partial symbols to SYMTAB. */
22258
22259 static void
22260 write_psymbols (struct mapped_symtab *symtab,
22261 htab_t psyms_seen,
22262 struct partial_symbol **psymp,
22263 int count,
22264 offset_type cu_index,
22265 int is_static)
22266 {
22267 for (; count-- > 0; ++psymp)
22268 {
22269 struct partial_symbol *psym = *psymp;
22270 void **slot;
22271
22272 if (SYMBOL_LANGUAGE (psym) == language_ada)
22273 error (_("Ada is not currently supported by the index"));
22274
22275 /* Only add a given psymbol once. */
22276 slot = htab_find_slot (psyms_seen, psym, INSERT);
22277 if (!*slot)
22278 {
22279 gdb_index_symbol_kind kind = symbol_kind (psym);
22280
22281 *slot = psym;
22282 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22283 is_static, kind, cu_index);
22284 }
22285 }
22286 }
22287
22288 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22289 exception if there is an error. */
22290
22291 static void
22292 write_obstack (FILE *file, struct obstack *obstack)
22293 {
22294 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22295 file)
22296 != obstack_object_size (obstack))
22297 error (_("couldn't data write to file"));
22298 }
22299
22300 /* Unlink a file if the argument is not NULL. */
22301
22302 static void
22303 unlink_if_set (void *p)
22304 {
22305 char **filename = p;
22306 if (*filename)
22307 unlink (*filename);
22308 }
22309
22310 /* A helper struct used when iterating over debug_types. */
22311 struct signatured_type_index_data
22312 {
22313 struct objfile *objfile;
22314 struct mapped_symtab *symtab;
22315 struct obstack *types_list;
22316 htab_t psyms_seen;
22317 int cu_index;
22318 };
22319
22320 /* A helper function that writes a single signatured_type to an
22321 obstack. */
22322
22323 static int
22324 write_one_signatured_type (void **slot, void *d)
22325 {
22326 struct signatured_type_index_data *info = d;
22327 struct signatured_type *entry = (struct signatured_type *) *slot;
22328 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22329 gdb_byte val[8];
22330
22331 write_psymbols (info->symtab,
22332 info->psyms_seen,
22333 info->objfile->global_psymbols.list
22334 + psymtab->globals_offset,
22335 psymtab->n_global_syms, info->cu_index,
22336 0);
22337 write_psymbols (info->symtab,
22338 info->psyms_seen,
22339 info->objfile->static_psymbols.list
22340 + psymtab->statics_offset,
22341 psymtab->n_static_syms, info->cu_index,
22342 1);
22343
22344 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22345 entry->per_cu.offset.sect_off);
22346 obstack_grow (info->types_list, val, 8);
22347 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22348 entry->type_offset_in_tu.cu_off);
22349 obstack_grow (info->types_list, val, 8);
22350 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22351 obstack_grow (info->types_list, val, 8);
22352
22353 ++info->cu_index;
22354
22355 return 1;
22356 }
22357
22358 /* Recurse into all "included" dependencies and write their symbols as
22359 if they appeared in this psymtab. */
22360
22361 static void
22362 recursively_write_psymbols (struct objfile *objfile,
22363 struct partial_symtab *psymtab,
22364 struct mapped_symtab *symtab,
22365 htab_t psyms_seen,
22366 offset_type cu_index)
22367 {
22368 int i;
22369
22370 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22371 if (psymtab->dependencies[i]->user != NULL)
22372 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22373 symtab, psyms_seen, cu_index);
22374
22375 write_psymbols (symtab,
22376 psyms_seen,
22377 objfile->global_psymbols.list + psymtab->globals_offset,
22378 psymtab->n_global_syms, cu_index,
22379 0);
22380 write_psymbols (symtab,
22381 psyms_seen,
22382 objfile->static_psymbols.list + psymtab->statics_offset,
22383 psymtab->n_static_syms, cu_index,
22384 1);
22385 }
22386
22387 /* Create an index file for OBJFILE in the directory DIR. */
22388
22389 static void
22390 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22391 {
22392 struct cleanup *cleanup;
22393 char *filename, *cleanup_filename;
22394 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22395 struct obstack cu_list, types_cu_list;
22396 int i;
22397 FILE *out_file;
22398 struct mapped_symtab *symtab;
22399 offset_type val, size_of_contents, total_len;
22400 struct stat st;
22401 htab_t psyms_seen;
22402 htab_t cu_index_htab;
22403 struct psymtab_cu_index_map *psymtab_cu_index_map;
22404
22405 if (dwarf2_per_objfile->using_index)
22406 error (_("Cannot use an index to create the index"));
22407
22408 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22409 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22410
22411 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22412 return;
22413
22414 if (stat (objfile_name (objfile), &st) < 0)
22415 perror_with_name (objfile_name (objfile));
22416
22417 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22418 INDEX_SUFFIX, (char *) NULL);
22419 cleanup = make_cleanup (xfree, filename);
22420
22421 out_file = gdb_fopen_cloexec (filename, "wb");
22422 if (!out_file)
22423 error (_("Can't open `%s' for writing"), filename);
22424
22425 cleanup_filename = filename;
22426 make_cleanup (unlink_if_set, &cleanup_filename);
22427
22428 symtab = create_mapped_symtab ();
22429 make_cleanup (cleanup_mapped_symtab, symtab);
22430
22431 obstack_init (&addr_obstack);
22432 make_cleanup_obstack_free (&addr_obstack);
22433
22434 obstack_init (&cu_list);
22435 make_cleanup_obstack_free (&cu_list);
22436
22437 obstack_init (&types_cu_list);
22438 make_cleanup_obstack_free (&types_cu_list);
22439
22440 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22441 NULL, xcalloc, xfree);
22442 make_cleanup_htab_delete (psyms_seen);
22443
22444 /* While we're scanning CU's create a table that maps a psymtab pointer
22445 (which is what addrmap records) to its index (which is what is recorded
22446 in the index file). This will later be needed to write the address
22447 table. */
22448 cu_index_htab = htab_create_alloc (100,
22449 hash_psymtab_cu_index,
22450 eq_psymtab_cu_index,
22451 NULL, xcalloc, xfree);
22452 make_cleanup_htab_delete (cu_index_htab);
22453 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22454 xmalloc (sizeof (struct psymtab_cu_index_map)
22455 * dwarf2_per_objfile->n_comp_units);
22456 make_cleanup (xfree, psymtab_cu_index_map);
22457
22458 /* The CU list is already sorted, so we don't need to do additional
22459 work here. Also, the debug_types entries do not appear in
22460 all_comp_units, but only in their own hash table. */
22461 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22462 {
22463 struct dwarf2_per_cu_data *per_cu
22464 = dwarf2_per_objfile->all_comp_units[i];
22465 struct partial_symtab *psymtab = per_cu->v.psymtab;
22466 gdb_byte val[8];
22467 struct psymtab_cu_index_map *map;
22468 void **slot;
22469
22470 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22471 It may be referenced from a local scope but in such case it does not
22472 need to be present in .gdb_index. */
22473 if (psymtab == NULL)
22474 continue;
22475
22476 if (psymtab->user == NULL)
22477 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22478
22479 map = &psymtab_cu_index_map[i];
22480 map->psymtab = psymtab;
22481 map->cu_index = i;
22482 slot = htab_find_slot (cu_index_htab, map, INSERT);
22483 gdb_assert (slot != NULL);
22484 gdb_assert (*slot == NULL);
22485 *slot = map;
22486
22487 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22488 per_cu->offset.sect_off);
22489 obstack_grow (&cu_list, val, 8);
22490 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22491 obstack_grow (&cu_list, val, 8);
22492 }
22493
22494 /* Dump the address map. */
22495 write_address_map (objfile, &addr_obstack, cu_index_htab);
22496
22497 /* Write out the .debug_type entries, if any. */
22498 if (dwarf2_per_objfile->signatured_types)
22499 {
22500 struct signatured_type_index_data sig_data;
22501
22502 sig_data.objfile = objfile;
22503 sig_data.symtab = symtab;
22504 sig_data.types_list = &types_cu_list;
22505 sig_data.psyms_seen = psyms_seen;
22506 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22507 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22508 write_one_signatured_type, &sig_data);
22509 }
22510
22511 /* Now that we've processed all symbols we can shrink their cu_indices
22512 lists. */
22513 uniquify_cu_indices (symtab);
22514
22515 obstack_init (&constant_pool);
22516 make_cleanup_obstack_free (&constant_pool);
22517 obstack_init (&symtab_obstack);
22518 make_cleanup_obstack_free (&symtab_obstack);
22519 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22520
22521 obstack_init (&contents);
22522 make_cleanup_obstack_free (&contents);
22523 size_of_contents = 6 * sizeof (offset_type);
22524 total_len = size_of_contents;
22525
22526 /* The version number. */
22527 val = MAYBE_SWAP (8);
22528 obstack_grow (&contents, &val, sizeof (val));
22529
22530 /* The offset of the CU list from the start of the file. */
22531 val = MAYBE_SWAP (total_len);
22532 obstack_grow (&contents, &val, sizeof (val));
22533 total_len += obstack_object_size (&cu_list);
22534
22535 /* The offset of the types CU list from the start of the file. */
22536 val = MAYBE_SWAP (total_len);
22537 obstack_grow (&contents, &val, sizeof (val));
22538 total_len += obstack_object_size (&types_cu_list);
22539
22540 /* The offset of the address table from the start of the file. */
22541 val = MAYBE_SWAP (total_len);
22542 obstack_grow (&contents, &val, sizeof (val));
22543 total_len += obstack_object_size (&addr_obstack);
22544
22545 /* The offset of the symbol table from the start of the file. */
22546 val = MAYBE_SWAP (total_len);
22547 obstack_grow (&contents, &val, sizeof (val));
22548 total_len += obstack_object_size (&symtab_obstack);
22549
22550 /* The offset of the constant pool from the start of the file. */
22551 val = MAYBE_SWAP (total_len);
22552 obstack_grow (&contents, &val, sizeof (val));
22553 total_len += obstack_object_size (&constant_pool);
22554
22555 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22556
22557 write_obstack (out_file, &contents);
22558 write_obstack (out_file, &cu_list);
22559 write_obstack (out_file, &types_cu_list);
22560 write_obstack (out_file, &addr_obstack);
22561 write_obstack (out_file, &symtab_obstack);
22562 write_obstack (out_file, &constant_pool);
22563
22564 fclose (out_file);
22565
22566 /* We want to keep the file, so we set cleanup_filename to NULL
22567 here. See unlink_if_set. */
22568 cleanup_filename = NULL;
22569
22570 do_cleanups (cleanup);
22571 }
22572
22573 /* Implementation of the `save gdb-index' command.
22574
22575 Note that the file format used by this command is documented in the
22576 GDB manual. Any changes here must be documented there. */
22577
22578 static void
22579 save_gdb_index_command (char *arg, int from_tty)
22580 {
22581 struct objfile *objfile;
22582
22583 if (!arg || !*arg)
22584 error (_("usage: save gdb-index DIRECTORY"));
22585
22586 ALL_OBJFILES (objfile)
22587 {
22588 struct stat st;
22589
22590 /* If the objfile does not correspond to an actual file, skip it. */
22591 if (stat (objfile_name (objfile), &st) < 0)
22592 continue;
22593
22594 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22595 if (dwarf2_per_objfile)
22596 {
22597 volatile struct gdb_exception except;
22598
22599 TRY_CATCH (except, RETURN_MASK_ERROR)
22600 {
22601 write_psymtabs_to_index (objfile, arg);
22602 }
22603 if (except.reason < 0)
22604 exception_fprintf (gdb_stderr, except,
22605 _("Error while writing index for `%s': "),
22606 objfile_name (objfile));
22607 }
22608 }
22609 }
22610
22611 \f
22612
22613 int dwarf2_always_disassemble;
22614
22615 static void
22616 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22617 struct cmd_list_element *c, const char *value)
22618 {
22619 fprintf_filtered (file,
22620 _("Whether to always disassemble "
22621 "DWARF expressions is %s.\n"),
22622 value);
22623 }
22624
22625 static void
22626 show_check_physname (struct ui_file *file, int from_tty,
22627 struct cmd_list_element *c, const char *value)
22628 {
22629 fprintf_filtered (file,
22630 _("Whether to check \"physname\" is %s.\n"),
22631 value);
22632 }
22633
22634 void _initialize_dwarf2_read (void);
22635
22636 void
22637 _initialize_dwarf2_read (void)
22638 {
22639 struct cmd_list_element *c;
22640
22641 dwarf2_objfile_data_key
22642 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22643
22644 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22645 Set DWARF 2 specific variables.\n\
22646 Configure DWARF 2 variables such as the cache size"),
22647 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22648 0/*allow-unknown*/, &maintenance_set_cmdlist);
22649
22650 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22651 Show DWARF 2 specific variables\n\
22652 Show DWARF 2 variables such as the cache size"),
22653 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22654 0/*allow-unknown*/, &maintenance_show_cmdlist);
22655
22656 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22657 &dwarf2_max_cache_age, _("\
22658 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22659 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22660 A higher limit means that cached compilation units will be stored\n\
22661 in memory longer, and more total memory will be used. Zero disables\n\
22662 caching, which can slow down startup."),
22663 NULL,
22664 show_dwarf2_max_cache_age,
22665 &set_dwarf2_cmdlist,
22666 &show_dwarf2_cmdlist);
22667
22668 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22669 &dwarf2_always_disassemble, _("\
22670 Set whether `info address' always disassembles DWARF expressions."), _("\
22671 Show whether `info address' always disassembles DWARF expressions."), _("\
22672 When enabled, DWARF expressions are always printed in an assembly-like\n\
22673 syntax. When disabled, expressions will be printed in a more\n\
22674 conversational style, when possible."),
22675 NULL,
22676 show_dwarf2_always_disassemble,
22677 &set_dwarf2_cmdlist,
22678 &show_dwarf2_cmdlist);
22679
22680 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22681 Set debugging of the dwarf2 reader."), _("\
22682 Show debugging of the dwarf2 reader."), _("\
22683 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22684 reading and symtab expansion. A value of 1 (one) provides basic\n\
22685 information. A value greater than 1 provides more verbose information."),
22686 NULL,
22687 NULL,
22688 &setdebuglist, &showdebuglist);
22689
22690 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22691 Set debugging of the dwarf2 DIE reader."), _("\
22692 Show debugging of the dwarf2 DIE reader."), _("\
22693 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22694 The value is the maximum depth to print."),
22695 NULL,
22696 NULL,
22697 &setdebuglist, &showdebuglist);
22698
22699 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22700 Set cross-checking of \"physname\" code against demangler."), _("\
22701 Show cross-checking of \"physname\" code against demangler."), _("\
22702 When enabled, GDB's internal \"physname\" code is checked against\n\
22703 the demangler."),
22704 NULL, show_check_physname,
22705 &setdebuglist, &showdebuglist);
22706
22707 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22708 no_class, &use_deprecated_index_sections, _("\
22709 Set whether to use deprecated gdb_index sections."), _("\
22710 Show whether to use deprecated gdb_index sections."), _("\
22711 When enabled, deprecated .gdb_index sections are used anyway.\n\
22712 Normally they are ignored either because of a missing feature or\n\
22713 performance issue.\n\
22714 Warning: This option must be enabled before gdb reads the file."),
22715 NULL,
22716 NULL,
22717 &setlist, &showlist);
22718
22719 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22720 _("\
22721 Save a gdb-index file.\n\
22722 Usage: save gdb-index DIRECTORY"),
22723 &save_cmdlist);
22724 set_cmd_completer (c, filename_completer);
22725
22726 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22727 &dwarf2_locexpr_funcs);
22728 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22729 &dwarf2_loclist_funcs);
22730
22731 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22732 &dwarf2_block_frame_base_locexpr_funcs);
22733 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22734 &dwarf2_block_frame_base_loclist_funcs);
22735 }
This page took 0.55408 seconds and 4 git commands to generate.