target: add to_record_stop_replaying target method
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = item_lhs;
1976 const struct line_header *ofs_rhs = item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2047 if (!dwarf2_per_objfile)
2048 {
2049 /* Initialize per-objfile state. */
2050 struct dwarf2_per_objfile *data
2051 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2052
2053 memset (data, 0, sizeof (*data));
2054 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2055 dwarf2_per_objfile = data;
2056
2057 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2058 (void *) names);
2059 dwarf2_per_objfile->objfile = objfile;
2060 }
2061 return (!dwarf2_per_objfile->info.is_virtual
2062 && dwarf2_per_objfile->info.s.section != NULL
2063 && !dwarf2_per_objfile->abbrev.is_virtual
2064 && dwarf2_per_objfile->abbrev.s.section != NULL);
2065 }
2066
2067 /* Return the containing section of virtual section SECTION. */
2068
2069 static struct dwarf2_section_info *
2070 get_containing_section (const struct dwarf2_section_info *section)
2071 {
2072 gdb_assert (section->is_virtual);
2073 return section->s.containing_section;
2074 }
2075
2076 /* Return the bfd owner of SECTION. */
2077
2078 static struct bfd *
2079 get_section_bfd_owner (const struct dwarf2_section_info *section)
2080 {
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.section->owner;
2087 }
2088
2089 /* Return the bfd section of SECTION.
2090 Returns NULL if the section is not present. */
2091
2092 static asection *
2093 get_section_bfd_section (const struct dwarf2_section_info *section)
2094 {
2095 if (section->is_virtual)
2096 {
2097 section = get_containing_section (section);
2098 gdb_assert (!section->is_virtual);
2099 }
2100 return section->s.section;
2101 }
2102
2103 /* Return the name of SECTION. */
2104
2105 static const char *
2106 get_section_name (const struct dwarf2_section_info *section)
2107 {
2108 asection *sectp = get_section_bfd_section (section);
2109
2110 gdb_assert (sectp != NULL);
2111 return bfd_section_name (get_section_bfd_owner (section), sectp);
2112 }
2113
2114 /* Return the name of the file SECTION is in. */
2115
2116 static const char *
2117 get_section_file_name (const struct dwarf2_section_info *section)
2118 {
2119 bfd *abfd = get_section_bfd_owner (section);
2120
2121 return bfd_get_filename (abfd);
2122 }
2123
2124 /* Return the id of SECTION.
2125 Returns 0 if SECTION doesn't exist. */
2126
2127 static int
2128 get_section_id (const struct dwarf2_section_info *section)
2129 {
2130 asection *sectp = get_section_bfd_section (section);
2131
2132 if (sectp == NULL)
2133 return 0;
2134 return sectp->id;
2135 }
2136
2137 /* Return the flags of SECTION.
2138 SECTION (or containing section if this is a virtual section) must exist. */
2139
2140 static int
2141 get_section_flags (const struct dwarf2_section_info *section)
2142 {
2143 asection *sectp = get_section_bfd_section (section);
2144
2145 gdb_assert (sectp != NULL);
2146 return bfd_get_section_flags (sectp->owner, sectp);
2147 }
2148
2149 /* When loading sections, we look either for uncompressed section or for
2150 compressed section names. */
2151
2152 static int
2153 section_is_p (const char *section_name,
2154 const struct dwarf2_section_names *names)
2155 {
2156 if (names->normal != NULL
2157 && strcmp (section_name, names->normal) == 0)
2158 return 1;
2159 if (names->compressed != NULL
2160 && strcmp (section_name, names->compressed) == 0)
2161 return 1;
2162 return 0;
2163 }
2164
2165 /* This function is mapped across the sections and remembers the
2166 offset and size of each of the debugging sections we are interested
2167 in. */
2168
2169 static void
2170 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2171 {
2172 const struct dwarf2_debug_sections *names;
2173 flagword aflag = bfd_get_section_flags (abfd, sectp);
2174
2175 if (vnames == NULL)
2176 names = &dwarf2_elf_names;
2177 else
2178 names = (const struct dwarf2_debug_sections *) vnames;
2179
2180 if ((aflag & SEC_HAS_CONTENTS) == 0)
2181 {
2182 }
2183 else if (section_is_p (sectp->name, &names->info))
2184 {
2185 dwarf2_per_objfile->info.s.section = sectp;
2186 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2187 }
2188 else if (section_is_p (sectp->name, &names->abbrev))
2189 {
2190 dwarf2_per_objfile->abbrev.s.section = sectp;
2191 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2192 }
2193 else if (section_is_p (sectp->name, &names->line))
2194 {
2195 dwarf2_per_objfile->line.s.section = sectp;
2196 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2197 }
2198 else if (section_is_p (sectp->name, &names->loc))
2199 {
2200 dwarf2_per_objfile->loc.s.section = sectp;
2201 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2202 }
2203 else if (section_is_p (sectp->name, &names->macinfo))
2204 {
2205 dwarf2_per_objfile->macinfo.s.section = sectp;
2206 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->macro))
2209 {
2210 dwarf2_per_objfile->macro.s.section = sectp;
2211 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->str))
2214 {
2215 dwarf2_per_objfile->str.s.section = sectp;
2216 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->addr))
2219 {
2220 dwarf2_per_objfile->addr.s.section = sectp;
2221 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->frame))
2224 {
2225 dwarf2_per_objfile->frame.s.section = sectp;
2226 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->eh_frame))
2229 {
2230 dwarf2_per_objfile->eh_frame.s.section = sectp;
2231 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->ranges))
2234 {
2235 dwarf2_per_objfile->ranges.s.section = sectp;
2236 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->types))
2239 {
2240 struct dwarf2_section_info type_section;
2241
2242 memset (&type_section, 0, sizeof (type_section));
2243 type_section.s.section = sectp;
2244 type_section.size = bfd_get_section_size (sectp);
2245
2246 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2247 &type_section);
2248 }
2249 else if (section_is_p (sectp->name, &names->gdb_index))
2250 {
2251 dwarf2_per_objfile->gdb_index.s.section = sectp;
2252 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2253 }
2254
2255 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2256 && bfd_section_vma (abfd, sectp) == 0)
2257 dwarf2_per_objfile->has_section_at_zero = 1;
2258 }
2259
2260 /* A helper function that decides whether a section is empty,
2261 or not present. */
2262
2263 static int
2264 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 return section->size == 0;
2268 return section->s.section == NULL || section->size == 0;
2269 }
2270
2271 /* Read the contents of the section INFO.
2272 OBJFILE is the main object file, but not necessarily the file where
2273 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2274 of the DWO file.
2275 If the section is compressed, uncompress it before returning. */
2276
2277 static void
2278 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2279 {
2280 asection *sectp;
2281 bfd *abfd;
2282 gdb_byte *buf, *retbuf;
2283
2284 if (info->readin)
2285 return;
2286 info->buffer = NULL;
2287 info->readin = 1;
2288
2289 if (dwarf2_section_empty_p (info))
2290 return;
2291
2292 sectp = get_section_bfd_section (info);
2293
2294 /* If this is a virtual section we need to read in the real one first. */
2295 if (info->is_virtual)
2296 {
2297 struct dwarf2_section_info *containing_section =
2298 get_containing_section (info);
2299
2300 gdb_assert (sectp != NULL);
2301 if ((sectp->flags & SEC_RELOC) != 0)
2302 {
2303 error (_("Dwarf Error: DWP format V2 with relocations is not"
2304 " supported in section %s [in module %s]"),
2305 get_section_name (info), get_section_file_name (info));
2306 }
2307 dwarf2_read_section (objfile, containing_section);
2308 /* Other code should have already caught virtual sections that don't
2309 fit. */
2310 gdb_assert (info->virtual_offset + info->size
2311 <= containing_section->size);
2312 /* If the real section is empty or there was a problem reading the
2313 section we shouldn't get here. */
2314 gdb_assert (containing_section->buffer != NULL);
2315 info->buffer = containing_section->buffer + info->virtual_offset;
2316 return;
2317 }
2318
2319 /* If the section has relocations, we must read it ourselves.
2320 Otherwise we attach it to the BFD. */
2321 if ((sectp->flags & SEC_RELOC) == 0)
2322 {
2323 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2324 return;
2325 }
2326
2327 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2328 info->buffer = buf;
2329
2330 /* When debugging .o files, we may need to apply relocations; see
2331 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2332 We never compress sections in .o files, so we only need to
2333 try this when the section is not compressed. */
2334 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2335 if (retbuf != NULL)
2336 {
2337 info->buffer = retbuf;
2338 return;
2339 }
2340
2341 abfd = get_section_bfd_owner (info);
2342 gdb_assert (abfd != NULL);
2343
2344 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2345 || bfd_bread (buf, info->size, abfd) != info->size)
2346 {
2347 error (_("Dwarf Error: Can't read DWARF data"
2348 " in section %s [in module %s]"),
2349 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2350 }
2351 }
2352
2353 /* A helper function that returns the size of a section in a safe way.
2354 If you are positive that the section has been read before using the
2355 size, then it is safe to refer to the dwarf2_section_info object's
2356 "size" field directly. In other cases, you must call this
2357 function, because for compressed sections the size field is not set
2358 correctly until the section has been read. */
2359
2360 static bfd_size_type
2361 dwarf2_section_size (struct objfile *objfile,
2362 struct dwarf2_section_info *info)
2363 {
2364 if (!info->readin)
2365 dwarf2_read_section (objfile, info);
2366 return info->size;
2367 }
2368
2369 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2370 SECTION_NAME. */
2371
2372 void
2373 dwarf2_get_section_info (struct objfile *objfile,
2374 enum dwarf2_section_enum sect,
2375 asection **sectp, const gdb_byte **bufp,
2376 bfd_size_type *sizep)
2377 {
2378 struct dwarf2_per_objfile *data
2379 = objfile_data (objfile, dwarf2_objfile_data_key);
2380 struct dwarf2_section_info *info;
2381
2382 /* We may see an objfile without any DWARF, in which case we just
2383 return nothing. */
2384 if (data == NULL)
2385 {
2386 *sectp = NULL;
2387 *bufp = NULL;
2388 *sizep = 0;
2389 return;
2390 }
2391 switch (sect)
2392 {
2393 case DWARF2_DEBUG_FRAME:
2394 info = &data->frame;
2395 break;
2396 case DWARF2_EH_FRAME:
2397 info = &data->eh_frame;
2398 break;
2399 default:
2400 gdb_assert_not_reached ("unexpected section");
2401 }
2402
2403 dwarf2_read_section (objfile, info);
2404
2405 *sectp = get_section_bfd_section (info);
2406 *bufp = info->buffer;
2407 *sizep = info->size;
2408 }
2409
2410 /* A helper function to find the sections for a .dwz file. */
2411
2412 static void
2413 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2414 {
2415 struct dwz_file *dwz_file = arg;
2416
2417 /* Note that we only support the standard ELF names, because .dwz
2418 is ELF-only (at the time of writing). */
2419 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2420 {
2421 dwz_file->abbrev.s.section = sectp;
2422 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2423 }
2424 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2425 {
2426 dwz_file->info.s.section = sectp;
2427 dwz_file->info.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2430 {
2431 dwz_file->str.s.section = sectp;
2432 dwz_file->str.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2435 {
2436 dwz_file->line.s.section = sectp;
2437 dwz_file->line.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2440 {
2441 dwz_file->macro.s.section = sectp;
2442 dwz_file->macro.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2445 {
2446 dwz_file->gdb_index.s.section = sectp;
2447 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2448 }
2449 }
2450
2451 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2452 there is no .gnu_debugaltlink section in the file. Error if there
2453 is such a section but the file cannot be found. */
2454
2455 static struct dwz_file *
2456 dwarf2_get_dwz_file (void)
2457 {
2458 bfd *dwz_bfd;
2459 char *data;
2460 struct cleanup *cleanup;
2461 const char *filename;
2462 struct dwz_file *result;
2463 bfd_size_type buildid_len_arg;
2464 size_t buildid_len;
2465 bfd_byte *buildid;
2466
2467 if (dwarf2_per_objfile->dwz_file != NULL)
2468 return dwarf2_per_objfile->dwz_file;
2469
2470 bfd_set_error (bfd_error_no_error);
2471 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2472 &buildid_len_arg, &buildid);
2473 if (data == NULL)
2474 {
2475 if (bfd_get_error () == bfd_error_no_error)
2476 return NULL;
2477 error (_("could not read '.gnu_debugaltlink' section: %s"),
2478 bfd_errmsg (bfd_get_error ()));
2479 }
2480 cleanup = make_cleanup (xfree, data);
2481 make_cleanup (xfree, buildid);
2482
2483 buildid_len = (size_t) buildid_len_arg;
2484
2485 filename = (const char *) data;
2486 if (!IS_ABSOLUTE_PATH (filename))
2487 {
2488 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2489 char *rel;
2490
2491 make_cleanup (xfree, abs);
2492 abs = ldirname (abs);
2493 make_cleanup (xfree, abs);
2494
2495 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2496 make_cleanup (xfree, rel);
2497 filename = rel;
2498 }
2499
2500 /* First try the file name given in the section. If that doesn't
2501 work, try to use the build-id instead. */
2502 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2503 if (dwz_bfd != NULL)
2504 {
2505 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2506 {
2507 gdb_bfd_unref (dwz_bfd);
2508 dwz_bfd = NULL;
2509 }
2510 }
2511
2512 if (dwz_bfd == NULL)
2513 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2514
2515 if (dwz_bfd == NULL)
2516 error (_("could not find '.gnu_debugaltlink' file for %s"),
2517 objfile_name (dwarf2_per_objfile->objfile));
2518
2519 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2520 struct dwz_file);
2521 result->dwz_bfd = dwz_bfd;
2522
2523 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2524
2525 do_cleanups (cleanup);
2526
2527 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2528 dwarf2_per_objfile->dwz_file = result;
2529 return result;
2530 }
2531 \f
2532 /* DWARF quick_symbols_functions support. */
2533
2534 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2535 unique line tables, so we maintain a separate table of all .debug_line
2536 derived entries to support the sharing.
2537 All the quick functions need is the list of file names. We discard the
2538 line_header when we're done and don't need to record it here. */
2539 struct quick_file_names
2540 {
2541 /* The data used to construct the hash key. */
2542 struct stmt_list_hash hash;
2543
2544 /* The number of entries in file_names, real_names. */
2545 unsigned int num_file_names;
2546
2547 /* The file names from the line table, after being run through
2548 file_full_name. */
2549 const char **file_names;
2550
2551 /* The file names from the line table after being run through
2552 gdb_realpath. These are computed lazily. */
2553 const char **real_names;
2554 };
2555
2556 /* When using the index (and thus not using psymtabs), each CU has an
2557 object of this type. This is used to hold information needed by
2558 the various "quick" methods. */
2559 struct dwarf2_per_cu_quick_data
2560 {
2561 /* The file table. This can be NULL if there was no file table
2562 or it's currently not read in.
2563 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2564 struct quick_file_names *file_names;
2565
2566 /* The corresponding symbol table. This is NULL if symbols for this
2567 CU have not yet been read. */
2568 struct compunit_symtab *compunit_symtab;
2569
2570 /* A temporary mark bit used when iterating over all CUs in
2571 expand_symtabs_matching. */
2572 unsigned int mark : 1;
2573
2574 /* True if we've tried to read the file table and found there isn't one.
2575 There will be no point in trying to read it again next time. */
2576 unsigned int no_file_data : 1;
2577 };
2578
2579 /* Utility hash function for a stmt_list_hash. */
2580
2581 static hashval_t
2582 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2583 {
2584 hashval_t v = 0;
2585
2586 if (stmt_list_hash->dwo_unit != NULL)
2587 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2588 v += stmt_list_hash->line_offset.sect_off;
2589 return v;
2590 }
2591
2592 /* Utility equality function for a stmt_list_hash. */
2593
2594 static int
2595 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2596 const struct stmt_list_hash *rhs)
2597 {
2598 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2599 return 0;
2600 if (lhs->dwo_unit != NULL
2601 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2602 return 0;
2603
2604 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2605 }
2606
2607 /* Hash function for a quick_file_names. */
2608
2609 static hashval_t
2610 hash_file_name_entry (const void *e)
2611 {
2612 const struct quick_file_names *file_data = e;
2613
2614 return hash_stmt_list_entry (&file_data->hash);
2615 }
2616
2617 /* Equality function for a quick_file_names. */
2618
2619 static int
2620 eq_file_name_entry (const void *a, const void *b)
2621 {
2622 const struct quick_file_names *ea = a;
2623 const struct quick_file_names *eb = b;
2624
2625 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2626 }
2627
2628 /* Delete function for a quick_file_names. */
2629
2630 static void
2631 delete_file_name_entry (void *e)
2632 {
2633 struct quick_file_names *file_data = e;
2634 int i;
2635
2636 for (i = 0; i < file_data->num_file_names; ++i)
2637 {
2638 xfree ((void*) file_data->file_names[i]);
2639 if (file_data->real_names)
2640 xfree ((void*) file_data->real_names[i]);
2641 }
2642
2643 /* The space for the struct itself lives on objfile_obstack,
2644 so we don't free it here. */
2645 }
2646
2647 /* Create a quick_file_names hash table. */
2648
2649 static htab_t
2650 create_quick_file_names_table (unsigned int nr_initial_entries)
2651 {
2652 return htab_create_alloc (nr_initial_entries,
2653 hash_file_name_entry, eq_file_name_entry,
2654 delete_file_name_entry, xcalloc, xfree);
2655 }
2656
2657 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2658 have to be created afterwards. You should call age_cached_comp_units after
2659 processing PER_CU->CU. dw2_setup must have been already called. */
2660
2661 static void
2662 load_cu (struct dwarf2_per_cu_data *per_cu)
2663 {
2664 if (per_cu->is_debug_types)
2665 load_full_type_unit (per_cu);
2666 else
2667 load_full_comp_unit (per_cu, language_minimal);
2668
2669 if (per_cu->cu == NULL)
2670 return; /* Dummy CU. */
2671
2672 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2673 }
2674
2675 /* Read in the symbols for PER_CU. */
2676
2677 static void
2678 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2679 {
2680 struct cleanup *back_to;
2681
2682 /* Skip type_unit_groups, reading the type units they contain
2683 is handled elsewhere. */
2684 if (IS_TYPE_UNIT_GROUP (per_cu))
2685 return;
2686
2687 back_to = make_cleanup (dwarf2_release_queue, NULL);
2688
2689 if (dwarf2_per_objfile->using_index
2690 ? per_cu->v.quick->compunit_symtab == NULL
2691 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2692 {
2693 queue_comp_unit (per_cu, language_minimal);
2694 load_cu (per_cu);
2695
2696 /* If we just loaded a CU from a DWO, and we're working with an index
2697 that may badly handle TUs, load all the TUs in that DWO as well.
2698 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2699 if (!per_cu->is_debug_types
2700 && per_cu->cu != NULL
2701 && per_cu->cu->dwo_unit != NULL
2702 && dwarf2_per_objfile->index_table != NULL
2703 && dwarf2_per_objfile->index_table->version <= 7
2704 /* DWP files aren't supported yet. */
2705 && get_dwp_file () == NULL)
2706 queue_and_load_all_dwo_tus (per_cu);
2707 }
2708
2709 process_queue ();
2710
2711 /* Age the cache, releasing compilation units that have not
2712 been used recently. */
2713 age_cached_comp_units ();
2714
2715 do_cleanups (back_to);
2716 }
2717
2718 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2719 the objfile from which this CU came. Returns the resulting symbol
2720 table. */
2721
2722 static struct compunit_symtab *
2723 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2724 {
2725 gdb_assert (dwarf2_per_objfile->using_index);
2726 if (!per_cu->v.quick->compunit_symtab)
2727 {
2728 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2729 increment_reading_symtab ();
2730 dw2_do_instantiate_symtab (per_cu);
2731 process_cu_includes ();
2732 do_cleanups (back_to);
2733 }
2734
2735 return per_cu->v.quick->compunit_symtab;
2736 }
2737
2738 /* Return the CU/TU given its index.
2739
2740 This is intended for loops like:
2741
2742 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2743 + dwarf2_per_objfile->n_type_units); ++i)
2744 {
2745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2746
2747 ...;
2748 }
2749 */
2750
2751 static struct dwarf2_per_cu_data *
2752 dw2_get_cutu (int index)
2753 {
2754 if (index >= dwarf2_per_objfile->n_comp_units)
2755 {
2756 index -= dwarf2_per_objfile->n_comp_units;
2757 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2758 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2759 }
2760
2761 return dwarf2_per_objfile->all_comp_units[index];
2762 }
2763
2764 /* Return the CU given its index.
2765 This differs from dw2_get_cutu in that it's for when you know INDEX
2766 refers to a CU. */
2767
2768 static struct dwarf2_per_cu_data *
2769 dw2_get_cu (int index)
2770 {
2771 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2772
2773 return dwarf2_per_objfile->all_comp_units[index];
2774 }
2775
2776 /* A helper for create_cus_from_index that handles a given list of
2777 CUs. */
2778
2779 static void
2780 create_cus_from_index_list (struct objfile *objfile,
2781 const gdb_byte *cu_list, offset_type n_elements,
2782 struct dwarf2_section_info *section,
2783 int is_dwz,
2784 int base_offset)
2785 {
2786 offset_type i;
2787
2788 for (i = 0; i < n_elements; i += 2)
2789 {
2790 struct dwarf2_per_cu_data *the_cu;
2791 ULONGEST offset, length;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2795 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2796 cu_list += 2 * 8;
2797
2798 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_data);
2800 the_cu->offset.sect_off = offset;
2801 the_cu->length = length;
2802 the_cu->objfile = objfile;
2803 the_cu->section = section;
2804 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2805 struct dwarf2_per_cu_quick_data);
2806 the_cu->is_dwz = is_dwz;
2807 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2808 }
2809 }
2810
2811 /* Read the CU list from the mapped index, and use it to create all
2812 the CU objects for this objfile. */
2813
2814 static void
2815 create_cus_from_index (struct objfile *objfile,
2816 const gdb_byte *cu_list, offset_type cu_list_elements,
2817 const gdb_byte *dwz_list, offset_type dwz_elements)
2818 {
2819 struct dwz_file *dwz;
2820
2821 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2822 dwarf2_per_objfile->all_comp_units =
2823 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2824 dwarf2_per_objfile->n_comp_units);
2825
2826 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2827 &dwarf2_per_objfile->info, 0, 0);
2828
2829 if (dwz_elements == 0)
2830 return;
2831
2832 dwz = dwarf2_get_dwz_file ();
2833 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2834 cu_list_elements / 2);
2835 }
2836
2837 /* Create the signatured type hash table from the index. */
2838
2839 static void
2840 create_signatured_type_table_from_index (struct objfile *objfile,
2841 struct dwarf2_section_info *section,
2842 const gdb_byte *bytes,
2843 offset_type elements)
2844 {
2845 offset_type i;
2846 htab_t sig_types_hash;
2847
2848 dwarf2_per_objfile->n_type_units
2849 = dwarf2_per_objfile->n_allocated_type_units
2850 = elements / 3;
2851 dwarf2_per_objfile->all_type_units =
2852 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2853
2854 sig_types_hash = allocate_signatured_type_table (objfile);
2855
2856 for (i = 0; i < elements; i += 3)
2857 {
2858 struct signatured_type *sig_type;
2859 ULONGEST offset, type_offset_in_tu, signature;
2860 void **slot;
2861
2862 gdb_static_assert (sizeof (ULONGEST) >= 8);
2863 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2864 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2865 BFD_ENDIAN_LITTLE);
2866 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2867 bytes += 3 * 8;
2868
2869 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2870 struct signatured_type);
2871 sig_type->signature = signature;
2872 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2873 sig_type->per_cu.is_debug_types = 1;
2874 sig_type->per_cu.section = section;
2875 sig_type->per_cu.offset.sect_off = offset;
2876 sig_type->per_cu.objfile = objfile;
2877 sig_type->per_cu.v.quick
2878 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2879 struct dwarf2_per_cu_quick_data);
2880
2881 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2882 *slot = sig_type;
2883
2884 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2885 }
2886
2887 dwarf2_per_objfile->signatured_types = sig_types_hash;
2888 }
2889
2890 /* Read the address map data from the mapped index, and use it to
2891 populate the objfile's psymtabs_addrmap. */
2892
2893 static void
2894 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2895 {
2896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2897 const gdb_byte *iter, *end;
2898 struct obstack temp_obstack;
2899 struct addrmap *mutable_map;
2900 struct cleanup *cleanup;
2901 CORE_ADDR baseaddr;
2902
2903 obstack_init (&temp_obstack);
2904 cleanup = make_cleanup_obstack_free (&temp_obstack);
2905 mutable_map = addrmap_create_mutable (&temp_obstack);
2906
2907 iter = index->address_table;
2908 end = iter + index->address_table_size;
2909
2910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2911
2912 while (iter < end)
2913 {
2914 ULONGEST hi, lo, cu_index;
2915 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2916 iter += 8;
2917 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2918 iter += 8;
2919 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2920 iter += 4;
2921
2922 if (lo > hi)
2923 {
2924 complaint (&symfile_complaints,
2925 _(".gdb_index address table has invalid range (%s - %s)"),
2926 hex_string (lo), hex_string (hi));
2927 continue;
2928 }
2929
2930 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2931 {
2932 complaint (&symfile_complaints,
2933 _(".gdb_index address table has invalid CU number %u"),
2934 (unsigned) cu_index);
2935 continue;
2936 }
2937
2938 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2939 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2940 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2941 }
2942
2943 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2944 &objfile->objfile_obstack);
2945 do_cleanups (cleanup);
2946 }
2947
2948 /* The hash function for strings in the mapped index. This is the same as
2949 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2950 implementation. This is necessary because the hash function is tied to the
2951 format of the mapped index file. The hash values do not have to match with
2952 SYMBOL_HASH_NEXT.
2953
2954 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2955
2956 static hashval_t
2957 mapped_index_string_hash (int index_version, const void *p)
2958 {
2959 const unsigned char *str = (const unsigned char *) p;
2960 hashval_t r = 0;
2961 unsigned char c;
2962
2963 while ((c = *str++) != 0)
2964 {
2965 if (index_version >= 5)
2966 c = tolower (c);
2967 r = r * 67 + c - 113;
2968 }
2969
2970 return r;
2971 }
2972
2973 /* Find a slot in the mapped index INDEX for the object named NAME.
2974 If NAME is found, set *VEC_OUT to point to the CU vector in the
2975 constant pool and return 1. If NAME cannot be found, return 0. */
2976
2977 static int
2978 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2979 offset_type **vec_out)
2980 {
2981 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2982 offset_type hash;
2983 offset_type slot, step;
2984 int (*cmp) (const char *, const char *);
2985
2986 if (current_language->la_language == language_cplus
2987 || current_language->la_language == language_java
2988 || current_language->la_language == language_fortran
2989 || current_language->la_language == language_d)
2990 {
2991 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2992 not contain any. */
2993
2994 if (strchr (name, '(') != NULL)
2995 {
2996 char *without_params = cp_remove_params (name);
2997
2998 if (without_params != NULL)
2999 {
3000 make_cleanup (xfree, without_params);
3001 name = without_params;
3002 }
3003 }
3004 }
3005
3006 /* Index version 4 did not support case insensitive searches. But the
3007 indices for case insensitive languages are built in lowercase, therefore
3008 simulate our NAME being searched is also lowercased. */
3009 hash = mapped_index_string_hash ((index->version == 4
3010 && case_sensitivity == case_sensitive_off
3011 ? 5 : index->version),
3012 name);
3013
3014 slot = hash & (index->symbol_table_slots - 1);
3015 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3016 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3017
3018 for (;;)
3019 {
3020 /* Convert a slot number to an offset into the table. */
3021 offset_type i = 2 * slot;
3022 const char *str;
3023 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3024 {
3025 do_cleanups (back_to);
3026 return 0;
3027 }
3028
3029 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3030 if (!cmp (name, str))
3031 {
3032 *vec_out = (offset_type *) (index->constant_pool
3033 + MAYBE_SWAP (index->symbol_table[i + 1]));
3034 do_cleanups (back_to);
3035 return 1;
3036 }
3037
3038 slot = (slot + step) & (index->symbol_table_slots - 1);
3039 }
3040 }
3041
3042 /* A helper function that reads the .gdb_index from SECTION and fills
3043 in MAP. FILENAME is the name of the file containing the section;
3044 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3045 ok to use deprecated sections.
3046
3047 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3048 out parameters that are filled in with information about the CU and
3049 TU lists in the section.
3050
3051 Returns 1 if all went well, 0 otherwise. */
3052
3053 static int
3054 read_index_from_section (struct objfile *objfile,
3055 const char *filename,
3056 int deprecated_ok,
3057 struct dwarf2_section_info *section,
3058 struct mapped_index *map,
3059 const gdb_byte **cu_list,
3060 offset_type *cu_list_elements,
3061 const gdb_byte **types_list,
3062 offset_type *types_list_elements)
3063 {
3064 const gdb_byte *addr;
3065 offset_type version;
3066 offset_type *metadata;
3067 int i;
3068
3069 if (dwarf2_section_empty_p (section))
3070 return 0;
3071
3072 /* Older elfutils strip versions could keep the section in the main
3073 executable while splitting it for the separate debug info file. */
3074 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3075 return 0;
3076
3077 dwarf2_read_section (objfile, section);
3078
3079 addr = section->buffer;
3080 /* Version check. */
3081 version = MAYBE_SWAP (*(offset_type *) addr);
3082 /* Versions earlier than 3 emitted every copy of a psymbol. This
3083 causes the index to behave very poorly for certain requests. Version 3
3084 contained incomplete addrmap. So, it seems better to just ignore such
3085 indices. */
3086 if (version < 4)
3087 {
3088 static int warning_printed = 0;
3089 if (!warning_printed)
3090 {
3091 warning (_("Skipping obsolete .gdb_index section in %s."),
3092 filename);
3093 warning_printed = 1;
3094 }
3095 return 0;
3096 }
3097 /* Index version 4 uses a different hash function than index version
3098 5 and later.
3099
3100 Versions earlier than 6 did not emit psymbols for inlined
3101 functions. Using these files will cause GDB not to be able to
3102 set breakpoints on inlined functions by name, so we ignore these
3103 indices unless the user has done
3104 "set use-deprecated-index-sections on". */
3105 if (version < 6 && !deprecated_ok)
3106 {
3107 static int warning_printed = 0;
3108 if (!warning_printed)
3109 {
3110 warning (_("\
3111 Skipping deprecated .gdb_index section in %s.\n\
3112 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3113 to use the section anyway."),
3114 filename);
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3120 of the TU (for symbols coming from TUs),
3121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3122 Plus gold-generated indices can have duplicate entries for global symbols,
3123 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3124 These are just performance bugs, and we can't distinguish gdb-generated
3125 indices from gold-generated ones, so issue no warning here. */
3126
3127 /* Indexes with higher version than the one supported by GDB may be no
3128 longer backward compatible. */
3129 if (version > 8)
3130 return 0;
3131
3132 map->version = version;
3133 map->total_size = section->size;
3134
3135 metadata = (offset_type *) (addr + sizeof (offset_type));
3136
3137 i = 0;
3138 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3139 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3140 / 8);
3141 ++i;
3142
3143 *types_list = addr + MAYBE_SWAP (metadata[i]);
3144 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3145 - MAYBE_SWAP (metadata[i]))
3146 / 8);
3147 ++i;
3148
3149 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3150 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]));
3152 ++i;
3153
3154 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3155 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3156 - MAYBE_SWAP (metadata[i]))
3157 / (2 * sizeof (offset_type)));
3158 ++i;
3159
3160 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3161
3162 return 1;
3163 }
3164
3165
3166 /* Read the index file. If everything went ok, initialize the "quick"
3167 elements of all the CUs and return 1. Otherwise, return 0. */
3168
3169 static int
3170 dwarf2_read_index (struct objfile *objfile)
3171 {
3172 struct mapped_index local_map, *map;
3173 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3174 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3175 struct dwz_file *dwz;
3176
3177 if (!read_index_from_section (objfile, objfile_name (objfile),
3178 use_deprecated_index_sections,
3179 &dwarf2_per_objfile->gdb_index, &local_map,
3180 &cu_list, &cu_list_elements,
3181 &types_list, &types_list_elements))
3182 return 0;
3183
3184 /* Don't use the index if it's empty. */
3185 if (local_map.symbol_table_slots == 0)
3186 return 0;
3187
3188 /* If there is a .dwz file, read it so we can get its CU list as
3189 well. */
3190 dwz = dwarf2_get_dwz_file ();
3191 if (dwz != NULL)
3192 {
3193 struct mapped_index dwz_map;
3194 const gdb_byte *dwz_types_ignore;
3195 offset_type dwz_types_elements_ignore;
3196
3197 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3198 1,
3199 &dwz->gdb_index, &dwz_map,
3200 &dwz_list, &dwz_list_elements,
3201 &dwz_types_ignore,
3202 &dwz_types_elements_ignore))
3203 {
3204 warning (_("could not read '.gdb_index' section from %s; skipping"),
3205 bfd_get_filename (dwz->dwz_bfd));
3206 return 0;
3207 }
3208 }
3209
3210 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3211 dwz_list_elements);
3212
3213 if (types_list_elements)
3214 {
3215 struct dwarf2_section_info *section;
3216
3217 /* We can only handle a single .debug_types when we have an
3218 index. */
3219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3220 return 0;
3221
3222 section = VEC_index (dwarf2_section_info_def,
3223 dwarf2_per_objfile->types, 0);
3224
3225 create_signatured_type_table_from_index (objfile, section, types_list,
3226 types_list_elements);
3227 }
3228
3229 create_addrmap_from_index (objfile, &local_map);
3230
3231 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3232 *map = local_map;
3233
3234 dwarf2_per_objfile->index_table = map;
3235 dwarf2_per_objfile->using_index = 1;
3236 dwarf2_per_objfile->quick_file_names_table =
3237 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3238
3239 return 1;
3240 }
3241
3242 /* A helper for the "quick" functions which sets the global
3243 dwarf2_per_objfile according to OBJFILE. */
3244
3245 static void
3246 dw2_setup (struct objfile *objfile)
3247 {
3248 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3249 gdb_assert (dwarf2_per_objfile);
3250 }
3251
3252 /* die_reader_func for dw2_get_file_names. */
3253
3254 static void
3255 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3256 const gdb_byte *info_ptr,
3257 struct die_info *comp_unit_die,
3258 int has_children,
3259 void *data)
3260 {
3261 struct dwarf2_cu *cu = reader->cu;
3262 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3263 struct objfile *objfile = dwarf2_per_objfile->objfile;
3264 struct dwarf2_per_cu_data *lh_cu;
3265 struct line_header *lh;
3266 struct attribute *attr;
3267 int i;
3268 const char *name, *comp_dir;
3269 void **slot;
3270 struct quick_file_names *qfn;
3271 unsigned int line_offset;
3272
3273 gdb_assert (! this_cu->is_debug_types);
3274
3275 /* Our callers never want to match partial units -- instead they
3276 will match the enclosing full CU. */
3277 if (comp_unit_die->tag == DW_TAG_partial_unit)
3278 {
3279 this_cu->v.quick->no_file_data = 1;
3280 return;
3281 }
3282
3283 lh_cu = this_cu;
3284 lh = NULL;
3285 slot = NULL;
3286 line_offset = 0;
3287
3288 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3289 if (attr)
3290 {
3291 struct quick_file_names find_entry;
3292
3293 line_offset = DW_UNSND (attr);
3294
3295 /* We may have already read in this line header (TU line header sharing).
3296 If we have we're done. */
3297 find_entry.hash.dwo_unit = cu->dwo_unit;
3298 find_entry.hash.line_offset.sect_off = line_offset;
3299 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3300 &find_entry, INSERT);
3301 if (*slot != NULL)
3302 {
3303 lh_cu->v.quick->file_names = *slot;
3304 return;
3305 }
3306
3307 lh = dwarf_decode_line_header (line_offset, cu);
3308 }
3309 if (lh == NULL)
3310 {
3311 lh_cu->v.quick->no_file_data = 1;
3312 return;
3313 }
3314
3315 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3316 qfn->hash.dwo_unit = cu->dwo_unit;
3317 qfn->hash.line_offset.sect_off = line_offset;
3318 gdb_assert (slot != NULL);
3319 *slot = qfn;
3320
3321 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3322
3323 qfn->num_file_names = lh->num_file_names;
3324 qfn->file_names =
3325 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3326 for (i = 0; i < lh->num_file_names; ++i)
3327 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3328 qfn->real_names = NULL;
3329
3330 free_line_header (lh);
3331
3332 lh_cu->v.quick->file_names = qfn;
3333 }
3334
3335 /* A helper for the "quick" functions which attempts to read the line
3336 table for THIS_CU. */
3337
3338 static struct quick_file_names *
3339 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3340 {
3341 /* This should never be called for TUs. */
3342 gdb_assert (! this_cu->is_debug_types);
3343 /* Nor type unit groups. */
3344 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3345
3346 if (this_cu->v.quick->file_names != NULL)
3347 return this_cu->v.quick->file_names;
3348 /* If we know there is no line data, no point in looking again. */
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351
3352 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3353
3354 if (this_cu->v.quick->no_file_data)
3355 return NULL;
3356 return this_cu->v.quick->file_names;
3357 }
3358
3359 /* A helper for the "quick" functions which computes and caches the
3360 real path for a given file name from the line table. */
3361
3362 static const char *
3363 dw2_get_real_path (struct objfile *objfile,
3364 struct quick_file_names *qfn, int index)
3365 {
3366 if (qfn->real_names == NULL)
3367 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3368 qfn->num_file_names, const char *);
3369
3370 if (qfn->real_names[index] == NULL)
3371 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3372
3373 return qfn->real_names[index];
3374 }
3375
3376 static struct symtab *
3377 dw2_find_last_source_symtab (struct objfile *objfile)
3378 {
3379 struct compunit_symtab *cust;
3380 int index;
3381
3382 dw2_setup (objfile);
3383 index = dwarf2_per_objfile->n_comp_units - 1;
3384 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3385 if (cust == NULL)
3386 return NULL;
3387 return compunit_primary_filetab (cust);
3388 }
3389
3390 /* Traversal function for dw2_forget_cached_source_info. */
3391
3392 static int
3393 dw2_free_cached_file_names (void **slot, void *info)
3394 {
3395 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3396
3397 if (file_data->real_names)
3398 {
3399 int i;
3400
3401 for (i = 0; i < file_data->num_file_names; ++i)
3402 {
3403 xfree ((void*) file_data->real_names[i]);
3404 file_data->real_names[i] = NULL;
3405 }
3406 }
3407
3408 return 1;
3409 }
3410
3411 static void
3412 dw2_forget_cached_source_info (struct objfile *objfile)
3413 {
3414 dw2_setup (objfile);
3415
3416 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3417 dw2_free_cached_file_names, NULL);
3418 }
3419
3420 /* Helper function for dw2_map_symtabs_matching_filename that expands
3421 the symtabs and calls the iterator. */
3422
3423 static int
3424 dw2_map_expand_apply (struct objfile *objfile,
3425 struct dwarf2_per_cu_data *per_cu,
3426 const char *name, const char *real_path,
3427 int (*callback) (struct symtab *, void *),
3428 void *data)
3429 {
3430 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3431
3432 /* Don't visit already-expanded CUs. */
3433 if (per_cu->v.quick->compunit_symtab)
3434 return 0;
3435
3436 /* This may expand more than one symtab, and we want to iterate over
3437 all of them. */
3438 dw2_instantiate_symtab (per_cu);
3439
3440 return iterate_over_some_symtabs (name, real_path, callback, data,
3441 objfile->compunit_symtabs, last_made);
3442 }
3443
3444 /* Implementation of the map_symtabs_matching_filename method. */
3445
3446 static int
3447 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3448 const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 int i;
3453 const char *name_basename = lbasename (name);
3454
3455 dw2_setup (objfile);
3456
3457 /* The rule is CUs specify all the files, including those used by
3458 any TU, so there's no need to scan TUs here. */
3459
3460 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3461 {
3462 int j;
3463 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3464 struct quick_file_names *file_data;
3465
3466 /* We only need to look at symtabs not already expanded. */
3467 if (per_cu->v.quick->compunit_symtab)
3468 continue;
3469
3470 file_data = dw2_get_file_names (per_cu);
3471 if (file_data == NULL)
3472 continue;
3473
3474 for (j = 0; j < file_data->num_file_names; ++j)
3475 {
3476 const char *this_name = file_data->file_names[j];
3477 const char *this_real_name;
3478
3479 if (compare_filenames_for_search (this_name, name))
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486
3487 /* Before we invoke realpath, which can get expensive when many
3488 files are involved, do a quick comparison of the basenames. */
3489 if (! basenames_may_differ
3490 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3491 continue;
3492
3493 this_real_name = dw2_get_real_path (objfile, file_data, j);
3494 if (compare_filenames_for_search (this_real_name, name))
3495 {
3496 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3497 callback, data))
3498 return 1;
3499 continue;
3500 }
3501
3502 if (real_path != NULL)
3503 {
3504 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3505 gdb_assert (IS_ABSOLUTE_PATH (name));
3506 if (this_real_name != NULL
3507 && FILENAME_CMP (real_path, this_real_name) == 0)
3508 {
3509 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3510 callback, data))
3511 return 1;
3512 continue;
3513 }
3514 }
3515 }
3516 }
3517
3518 return 0;
3519 }
3520
3521 /* Struct used to manage iterating over all CUs looking for a symbol. */
3522
3523 struct dw2_symtab_iterator
3524 {
3525 /* The internalized form of .gdb_index. */
3526 struct mapped_index *index;
3527 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3528 int want_specific_block;
3529 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3530 Unused if !WANT_SPECIFIC_BLOCK. */
3531 int block_index;
3532 /* The kind of symbol we're looking for. */
3533 domain_enum domain;
3534 /* The list of CUs from the index entry of the symbol,
3535 or NULL if not found. */
3536 offset_type *vec;
3537 /* The next element in VEC to look at. */
3538 int next;
3539 /* The number of elements in VEC, or zero if there is no match. */
3540 int length;
3541 /* Have we seen a global version of the symbol?
3542 If so we can ignore all further global instances.
3543 This is to work around gold/15646, inefficient gold-generated
3544 indices. */
3545 int global_seen;
3546 };
3547
3548 /* Initialize the index symtab iterator ITER.
3549 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3550 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3551
3552 static void
3553 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3554 struct mapped_index *index,
3555 int want_specific_block,
3556 int block_index,
3557 domain_enum domain,
3558 const char *name)
3559 {
3560 iter->index = index;
3561 iter->want_specific_block = want_specific_block;
3562 iter->block_index = block_index;
3563 iter->domain = domain;
3564 iter->next = 0;
3565 iter->global_seen = 0;
3566
3567 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3568 iter->length = MAYBE_SWAP (*iter->vec);
3569 else
3570 {
3571 iter->vec = NULL;
3572 iter->length = 0;
3573 }
3574 }
3575
3576 /* Return the next matching CU or NULL if there are no more. */
3577
3578 static struct dwarf2_per_cu_data *
3579 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3580 {
3581 for ( ; iter->next < iter->length; ++iter->next)
3582 {
3583 offset_type cu_index_and_attrs =
3584 MAYBE_SWAP (iter->vec[iter->next + 1]);
3585 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3586 struct dwarf2_per_cu_data *per_cu;
3587 int want_static = iter->block_index != GLOBAL_BLOCK;
3588 /* This value is only valid for index versions >= 7. */
3589 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3590 gdb_index_symbol_kind symbol_kind =
3591 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3592 /* Only check the symbol attributes if they're present.
3593 Indices prior to version 7 don't record them,
3594 and indices >= 7 may elide them for certain symbols
3595 (gold does this). */
3596 int attrs_valid =
3597 (iter->index->version >= 7
3598 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3599
3600 /* Don't crash on bad data. */
3601 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3602 + dwarf2_per_objfile->n_type_units))
3603 {
3604 complaint (&symfile_complaints,
3605 _(".gdb_index entry has bad CU index"
3606 " [in module %s]"),
3607 objfile_name (dwarf2_per_objfile->objfile));
3608 continue;
3609 }
3610
3611 per_cu = dw2_get_cutu (cu_index);
3612
3613 /* Skip if already read in. */
3614 if (per_cu->v.quick->compunit_symtab)
3615 continue;
3616
3617 /* Check static vs global. */
3618 if (attrs_valid)
3619 {
3620 if (iter->want_specific_block
3621 && want_static != is_static)
3622 continue;
3623 /* Work around gold/15646. */
3624 if (!is_static && iter->global_seen)
3625 continue;
3626 if (!is_static)
3627 iter->global_seen = 1;
3628 }
3629
3630 /* Only check the symbol's kind if it has one. */
3631 if (attrs_valid)
3632 {
3633 switch (iter->domain)
3634 {
3635 case VAR_DOMAIN:
3636 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3637 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3638 /* Some types are also in VAR_DOMAIN. */
3639 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3640 continue;
3641 break;
3642 case STRUCT_DOMAIN:
3643 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case LABEL_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3648 continue;
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 ++iter->next;
3656 return per_cu;
3657 }
3658
3659 return NULL;
3660 }
3661
3662 static struct compunit_symtab *
3663 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3664 const char *name, domain_enum domain)
3665 {
3666 struct compunit_symtab *stab_best = NULL;
3667 struct mapped_index *index;
3668
3669 dw2_setup (objfile);
3670
3671 index = dwarf2_per_objfile->index_table;
3672
3673 /* index is NULL if OBJF_READNOW. */
3674 if (index)
3675 {
3676 struct dw2_symtab_iterator iter;
3677 struct dwarf2_per_cu_data *per_cu;
3678
3679 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3680
3681 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3682 {
3683 struct symbol *sym, *with_opaque = NULL;
3684 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3685 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3686 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3687
3688 sym = block_find_symbol (block, name, domain,
3689 block_find_non_opaque_type_preferred,
3690 &with_opaque);
3691
3692 /* Some caution must be observed with overloaded functions
3693 and methods, since the index will not contain any overload
3694 information (but NAME might contain it). */
3695
3696 if (sym != NULL
3697 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3698 return stab;
3699 if (with_opaque != NULL
3700 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3701 stab_best = stab;
3702
3703 /* Keep looking through other CUs. */
3704 }
3705 }
3706
3707 return stab_best;
3708 }
3709
3710 static void
3711 dw2_print_stats (struct objfile *objfile)
3712 {
3713 int i, total, count;
3714
3715 dw2_setup (objfile);
3716 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3717 count = 0;
3718 for (i = 0; i < total; ++i)
3719 {
3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3721
3722 if (!per_cu->v.quick->compunit_symtab)
3723 ++count;
3724 }
3725 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3726 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3727 }
3728
3729 /* This dumps minimal information about the index.
3730 It is called via "mt print objfiles".
3731 One use is to verify .gdb_index has been loaded by the
3732 gdb.dwarf2/gdb-index.exp testcase. */
3733
3734 static void
3735 dw2_dump (struct objfile *objfile)
3736 {
3737 dw2_setup (objfile);
3738 gdb_assert (dwarf2_per_objfile->using_index);
3739 printf_filtered (".gdb_index:");
3740 if (dwarf2_per_objfile->index_table != NULL)
3741 {
3742 printf_filtered (" version %d\n",
3743 dwarf2_per_objfile->index_table->version);
3744 }
3745 else
3746 printf_filtered (" faked for \"readnow\"\n");
3747 printf_filtered ("\n");
3748 }
3749
3750 static void
3751 dw2_relocate (struct objfile *objfile,
3752 const struct section_offsets *new_offsets,
3753 const struct section_offsets *delta)
3754 {
3755 /* There's nothing to relocate here. */
3756 }
3757
3758 static void
3759 dw2_expand_symtabs_for_function (struct objfile *objfile,
3760 const char *func_name)
3761 {
3762 struct mapped_index *index;
3763
3764 dw2_setup (objfile);
3765
3766 index = dwarf2_per_objfile->index_table;
3767
3768 /* index is NULL if OBJF_READNOW. */
3769 if (index)
3770 {
3771 struct dw2_symtab_iterator iter;
3772 struct dwarf2_per_cu_data *per_cu;
3773
3774 /* Note: It doesn't matter what we pass for block_index here. */
3775 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3776 func_name);
3777
3778 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3779 dw2_instantiate_symtab (per_cu);
3780 }
3781 }
3782
3783 static void
3784 dw2_expand_all_symtabs (struct objfile *objfile)
3785 {
3786 int i;
3787
3788 dw2_setup (objfile);
3789
3790 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3791 + dwarf2_per_objfile->n_type_units); ++i)
3792 {
3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3794
3795 dw2_instantiate_symtab (per_cu);
3796 }
3797 }
3798
3799 static void
3800 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3801 const char *fullname)
3802 {
3803 int i;
3804
3805 dw2_setup (objfile);
3806
3807 /* We don't need to consider type units here.
3808 This is only called for examining code, e.g. expand_line_sal.
3809 There can be an order of magnitude (or more) more type units
3810 than comp units, and we avoid them if we can. */
3811
3812 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3813 {
3814 int j;
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816 struct quick_file_names *file_data;
3817
3818 /* We only need to look at symtabs not already expanded. */
3819 if (per_cu->v.quick->compunit_symtab)
3820 continue;
3821
3822 file_data = dw2_get_file_names (per_cu);
3823 if (file_data == NULL)
3824 continue;
3825
3826 for (j = 0; j < file_data->num_file_names; ++j)
3827 {
3828 const char *this_fullname = file_data->file_names[j];
3829
3830 if (filename_cmp (this_fullname, fullname) == 0)
3831 {
3832 dw2_instantiate_symtab (per_cu);
3833 break;
3834 }
3835 }
3836 }
3837 }
3838
3839 static void
3840 dw2_map_matching_symbols (struct objfile *objfile,
3841 const char * name, domain_enum domain,
3842 int global,
3843 int (*callback) (struct block *,
3844 struct symbol *, void *),
3845 void *data, symbol_compare_ftype *match,
3846 symbol_compare_ftype *ordered_compare)
3847 {
3848 /* Currently unimplemented; used for Ada. The function can be called if the
3849 current language is Ada for a non-Ada objfile using GNU index. As Ada
3850 does not look for non-Ada symbols this function should just return. */
3851 }
3852
3853 static void
3854 dw2_expand_symtabs_matching
3855 (struct objfile *objfile,
3856 expand_symtabs_file_matcher_ftype *file_matcher,
3857 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3858 expand_symtabs_exp_notify_ftype *expansion_notify,
3859 enum search_domain kind,
3860 void *data)
3861 {
3862 int i;
3863 offset_type iter;
3864 struct mapped_index *index;
3865
3866 dw2_setup (objfile);
3867
3868 /* index_table is NULL if OBJF_READNOW. */
3869 if (!dwarf2_per_objfile->index_table)
3870 return;
3871 index = dwarf2_per_objfile->index_table;
3872
3873 if (file_matcher != NULL)
3874 {
3875 struct cleanup *cleanup;
3876 htab_t visited_found, visited_not_found;
3877
3878 visited_found = htab_create_alloc (10,
3879 htab_hash_pointer, htab_eq_pointer,
3880 NULL, xcalloc, xfree);
3881 cleanup = make_cleanup_htab_delete (visited_found);
3882 visited_not_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 make_cleanup_htab_delete (visited_not_found);
3886
3887 /* The rule is CUs specify all the files, including those used by
3888 any TU, so there's no need to scan TUs here. */
3889
3890 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3891 {
3892 int j;
3893 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3894 struct quick_file_names *file_data;
3895 void **slot;
3896
3897 QUIT;
3898
3899 per_cu->v.quick->mark = 0;
3900
3901 /* We only need to look at symtabs not already expanded. */
3902 if (per_cu->v.quick->compunit_symtab)
3903 continue;
3904
3905 file_data = dw2_get_file_names (per_cu);
3906 if (file_data == NULL)
3907 continue;
3908
3909 if (htab_find (visited_not_found, file_data) != NULL)
3910 continue;
3911 else if (htab_find (visited_found, file_data) != NULL)
3912 {
3913 per_cu->v.quick->mark = 1;
3914 continue;
3915 }
3916
3917 for (j = 0; j < file_data->num_file_names; ++j)
3918 {
3919 const char *this_real_name;
3920
3921 if (file_matcher (file_data->file_names[j], data, 0))
3922 {
3923 per_cu->v.quick->mark = 1;
3924 break;
3925 }
3926
3927 /* Before we invoke realpath, which can get expensive when many
3928 files are involved, do a quick comparison of the basenames. */
3929 if (!basenames_may_differ
3930 && !file_matcher (lbasename (file_data->file_names[j]),
3931 data, 1))
3932 continue;
3933
3934 this_real_name = dw2_get_real_path (objfile, file_data, j);
3935 if (file_matcher (this_real_name, data, 0))
3936 {
3937 per_cu->v.quick->mark = 1;
3938 break;
3939 }
3940 }
3941
3942 slot = htab_find_slot (per_cu->v.quick->mark
3943 ? visited_found
3944 : visited_not_found,
3945 file_data, INSERT);
3946 *slot = file_data;
3947 }
3948
3949 do_cleanups (cleanup);
3950 }
3951
3952 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3953 {
3954 offset_type idx = 2 * iter;
3955 const char *name;
3956 offset_type *vec, vec_len, vec_idx;
3957 int global_seen = 0;
3958
3959 QUIT;
3960
3961 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3962 continue;
3963
3964 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3965
3966 if (! (*symbol_matcher) (name, data))
3967 continue;
3968
3969 /* The name was matched, now expand corresponding CUs that were
3970 marked. */
3971 vec = (offset_type *) (index->constant_pool
3972 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3973 vec_len = MAYBE_SWAP (vec[0]);
3974 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3975 {
3976 struct dwarf2_per_cu_data *per_cu;
3977 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3978 /* This value is only valid for index versions >= 7. */
3979 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3980 gdb_index_symbol_kind symbol_kind =
3981 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3982 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3983 /* Only check the symbol attributes if they're present.
3984 Indices prior to version 7 don't record them,
3985 and indices >= 7 may elide them for certain symbols
3986 (gold does this). */
3987 int attrs_valid =
3988 (index->version >= 7
3989 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3990
3991 /* Work around gold/15646. */
3992 if (attrs_valid)
3993 {
3994 if (!is_static && global_seen)
3995 continue;
3996 if (!is_static)
3997 global_seen = 1;
3998 }
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (kind)
4004 {
4005 case VARIABLES_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4007 continue;
4008 break;
4009 case FUNCTIONS_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4011 continue;
4012 break;
4013 case TYPES_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 default:
4018 break;
4019 }
4020 }
4021
4022 /* Don't crash on bad data. */
4023 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4024 + dwarf2_per_objfile->n_type_units))
4025 {
4026 complaint (&symfile_complaints,
4027 _(".gdb_index entry has bad CU index"
4028 " [in module %s]"), objfile_name (objfile));
4029 continue;
4030 }
4031
4032 per_cu = dw2_get_cutu (cu_index);
4033 if (file_matcher == NULL || per_cu->v.quick->mark)
4034 {
4035 int symtab_was_null =
4036 (per_cu->v.quick->compunit_symtab == NULL);
4037
4038 dw2_instantiate_symtab (per_cu);
4039
4040 if (expansion_notify != NULL
4041 && symtab_was_null
4042 && per_cu->v.quick->compunit_symtab != NULL)
4043 {
4044 expansion_notify (per_cu->v.quick->compunit_symtab,
4045 data);
4046 }
4047 }
4048 }
4049 }
4050 }
4051
4052 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4053 symtab. */
4054
4055 static struct compunit_symtab *
4056 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4057 CORE_ADDR pc)
4058 {
4059 int i;
4060
4061 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4062 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4063 return cust;
4064
4065 if (cust->includes == NULL)
4066 return NULL;
4067
4068 for (i = 0; cust->includes[i]; ++i)
4069 {
4070 struct compunit_symtab *s = cust->includes[i];
4071
4072 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4073 if (s != NULL)
4074 return s;
4075 }
4076
4077 return NULL;
4078 }
4079
4080 static struct compunit_symtab *
4081 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4082 struct bound_minimal_symbol msymbol,
4083 CORE_ADDR pc,
4084 struct obj_section *section,
4085 int warn_if_readin)
4086 {
4087 struct dwarf2_per_cu_data *data;
4088 struct compunit_symtab *result;
4089
4090 dw2_setup (objfile);
4091
4092 if (!objfile->psymtabs_addrmap)
4093 return NULL;
4094
4095 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4096 if (!data)
4097 return NULL;
4098
4099 if (warn_if_readin && data->v.quick->compunit_symtab)
4100 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4101 paddress (get_objfile_arch (objfile), pc));
4102
4103 result
4104 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4105 pc);
4106 gdb_assert (result != NULL);
4107 return result;
4108 }
4109
4110 static void
4111 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4112 void *data, int need_fullname)
4113 {
4114 int i;
4115 struct cleanup *cleanup;
4116 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4117 NULL, xcalloc, xfree);
4118
4119 cleanup = make_cleanup_htab_delete (visited);
4120 dw2_setup (objfile);
4121
4122 /* The rule is CUs specify all the files, including those used by
4123 any TU, so there's no need to scan TUs here.
4124 We can ignore file names coming from already-expanded CUs. */
4125
4126 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4127 {
4128 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4129
4130 if (per_cu->v.quick->compunit_symtab)
4131 {
4132 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4133 INSERT);
4134
4135 *slot = per_cu->v.quick->file_names;
4136 }
4137 }
4138
4139 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4140 {
4141 int j;
4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4143 struct quick_file_names *file_data;
4144 void **slot;
4145
4146 /* We only need to look at symtabs not already expanded. */
4147 if (per_cu->v.quick->compunit_symtab)
4148 continue;
4149
4150 file_data = dw2_get_file_names (per_cu);
4151 if (file_data == NULL)
4152 continue;
4153
4154 slot = htab_find_slot (visited, file_data, INSERT);
4155 if (*slot)
4156 {
4157 /* Already visited. */
4158 continue;
4159 }
4160 *slot = file_data;
4161
4162 for (j = 0; j < file_data->num_file_names; ++j)
4163 {
4164 const char *this_real_name;
4165
4166 if (need_fullname)
4167 this_real_name = dw2_get_real_path (objfile, file_data, j);
4168 else
4169 this_real_name = NULL;
4170 (*fun) (file_data->file_names[j], this_real_name, data);
4171 }
4172 }
4173
4174 do_cleanups (cleanup);
4175 }
4176
4177 static int
4178 dw2_has_symbols (struct objfile *objfile)
4179 {
4180 return 1;
4181 }
4182
4183 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4184 {
4185 dw2_has_symbols,
4186 dw2_find_last_source_symtab,
4187 dw2_forget_cached_source_info,
4188 dw2_map_symtabs_matching_filename,
4189 dw2_lookup_symbol,
4190 dw2_print_stats,
4191 dw2_dump,
4192 dw2_relocate,
4193 dw2_expand_symtabs_for_function,
4194 dw2_expand_all_symtabs,
4195 dw2_expand_symtabs_with_fullname,
4196 dw2_map_matching_symbols,
4197 dw2_expand_symtabs_matching,
4198 dw2_find_pc_sect_compunit_symtab,
4199 dw2_map_symbol_filenames
4200 };
4201
4202 /* Initialize for reading DWARF for this objfile. Return 0 if this
4203 file will use psymtabs, or 1 if using the GNU index. */
4204
4205 int
4206 dwarf2_initialize_objfile (struct objfile *objfile)
4207 {
4208 /* If we're about to read full symbols, don't bother with the
4209 indices. In this case we also don't care if some other debug
4210 format is making psymtabs, because they are all about to be
4211 expanded anyway. */
4212 if ((objfile->flags & OBJF_READNOW))
4213 {
4214 int i;
4215
4216 dwarf2_per_objfile->using_index = 1;
4217 create_all_comp_units (objfile);
4218 create_all_type_units (objfile);
4219 dwarf2_per_objfile->quick_file_names_table =
4220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4221
4222 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4223 + dwarf2_per_objfile->n_type_units); ++i)
4224 {
4225 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4226
4227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4228 struct dwarf2_per_cu_quick_data);
4229 }
4230
4231 /* Return 1 so that gdb sees the "quick" functions. However,
4232 these functions will be no-ops because we will have expanded
4233 all symtabs. */
4234 return 1;
4235 }
4236
4237 if (dwarf2_read_index (objfile))
4238 return 1;
4239
4240 return 0;
4241 }
4242
4243 \f
4244
4245 /* Build a partial symbol table. */
4246
4247 void
4248 dwarf2_build_psymtabs (struct objfile *objfile)
4249 {
4250
4251 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4252 {
4253 init_psymbol_list (objfile, 1024);
4254 }
4255
4256 TRY
4257 {
4258 /* This isn't really ideal: all the data we allocate on the
4259 objfile's obstack is still uselessly kept around. However,
4260 freeing it seems unsafe. */
4261 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4262
4263 dwarf2_build_psymtabs_hard (objfile);
4264 discard_cleanups (cleanups);
4265 }
4266 CATCH (except, RETURN_MASK_ERROR)
4267 {
4268 exception_print (gdb_stderr, except);
4269 }
4270 END_CATCH
4271 }
4272
4273 /* Return the total length of the CU described by HEADER. */
4274
4275 static unsigned int
4276 get_cu_length (const struct comp_unit_head *header)
4277 {
4278 return header->initial_length_size + header->length;
4279 }
4280
4281 /* Return TRUE if OFFSET is within CU_HEADER. */
4282
4283 static inline int
4284 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4285 {
4286 sect_offset bottom = { cu_header->offset.sect_off };
4287 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4288
4289 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4290 }
4291
4292 /* Find the base address of the compilation unit for range lists and
4293 location lists. It will normally be specified by DW_AT_low_pc.
4294 In DWARF-3 draft 4, the base address could be overridden by
4295 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4296 compilation units with discontinuous ranges. */
4297
4298 static void
4299 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4300 {
4301 struct attribute *attr;
4302
4303 cu->base_known = 0;
4304 cu->base_address = 0;
4305
4306 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4307 if (attr)
4308 {
4309 cu->base_address = attr_value_as_address (attr);
4310 cu->base_known = 1;
4311 }
4312 else
4313 {
4314 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4315 if (attr)
4316 {
4317 cu->base_address = attr_value_as_address (attr);
4318 cu->base_known = 1;
4319 }
4320 }
4321 }
4322
4323 /* Read in the comp unit header information from the debug_info at info_ptr.
4324 NOTE: This leaves members offset, first_die_offset to be filled in
4325 by the caller. */
4326
4327 static const gdb_byte *
4328 read_comp_unit_head (struct comp_unit_head *cu_header,
4329 const gdb_byte *info_ptr, bfd *abfd)
4330 {
4331 int signed_addr;
4332 unsigned int bytes_read;
4333
4334 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4335 cu_header->initial_length_size = bytes_read;
4336 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4337 info_ptr += bytes_read;
4338 cu_header->version = read_2_bytes (abfd, info_ptr);
4339 info_ptr += 2;
4340 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4341 &bytes_read);
4342 info_ptr += bytes_read;
4343 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4344 info_ptr += 1;
4345 signed_addr = bfd_get_sign_extend_vma (abfd);
4346 if (signed_addr < 0)
4347 internal_error (__FILE__, __LINE__,
4348 _("read_comp_unit_head: dwarf from non elf file"));
4349 cu_header->signed_addr_p = signed_addr;
4350
4351 return info_ptr;
4352 }
4353
4354 /* Helper function that returns the proper abbrev section for
4355 THIS_CU. */
4356
4357 static struct dwarf2_section_info *
4358 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4359 {
4360 struct dwarf2_section_info *abbrev;
4361
4362 if (this_cu->is_dwz)
4363 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4364 else
4365 abbrev = &dwarf2_per_objfile->abbrev;
4366
4367 return abbrev;
4368 }
4369
4370 /* Subroutine of read_and_check_comp_unit_head and
4371 read_and_check_type_unit_head to simplify them.
4372 Perform various error checking on the header. */
4373
4374 static void
4375 error_check_comp_unit_head (struct comp_unit_head *header,
4376 struct dwarf2_section_info *section,
4377 struct dwarf2_section_info *abbrev_section)
4378 {
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const char *filename = get_section_file_name (section);
4381
4382 if (header->version != 2 && header->version != 3 && header->version != 4)
4383 error (_("Dwarf Error: wrong version in compilation unit header "
4384 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4385 filename);
4386
4387 if (header->abbrev_offset.sect_off
4388 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4389 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4390 "(offset 0x%lx + 6) [in module %s]"),
4391 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4392 filename);
4393
4394 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4395 avoid potential 32-bit overflow. */
4396 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4397 > section->size)
4398 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4399 "(offset 0x%lx + 0) [in module %s]"),
4400 (long) header->length, (long) header->offset.sect_off,
4401 filename);
4402 }
4403
4404 /* Read in a CU/TU header and perform some basic error checking.
4405 The contents of the header are stored in HEADER.
4406 The result is a pointer to the start of the first DIE. */
4407
4408 static const gdb_byte *
4409 read_and_check_comp_unit_head (struct comp_unit_head *header,
4410 struct dwarf2_section_info *section,
4411 struct dwarf2_section_info *abbrev_section,
4412 const gdb_byte *info_ptr,
4413 int is_debug_types_section)
4414 {
4415 const gdb_byte *beg_of_comp_unit = info_ptr;
4416 bfd *abfd = get_section_bfd_owner (section);
4417
4418 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4419
4420 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4421
4422 /* If we're reading a type unit, skip over the signature and
4423 type_offset fields. */
4424 if (is_debug_types_section)
4425 info_ptr += 8 /*signature*/ + header->offset_size;
4426
4427 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4428
4429 error_check_comp_unit_head (header, section, abbrev_section);
4430
4431 return info_ptr;
4432 }
4433
4434 /* Read in the types comp unit header information from .debug_types entry at
4435 types_ptr. The result is a pointer to one past the end of the header. */
4436
4437 static const gdb_byte *
4438 read_and_check_type_unit_head (struct comp_unit_head *header,
4439 struct dwarf2_section_info *section,
4440 struct dwarf2_section_info *abbrev_section,
4441 const gdb_byte *info_ptr,
4442 ULONGEST *signature,
4443 cu_offset *type_offset_in_tu)
4444 {
4445 const gdb_byte *beg_of_comp_unit = info_ptr;
4446 bfd *abfd = get_section_bfd_owner (section);
4447
4448 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4449
4450 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4451
4452 /* If we're reading a type unit, skip over the signature and
4453 type_offset fields. */
4454 if (signature != NULL)
4455 *signature = read_8_bytes (abfd, info_ptr);
4456 info_ptr += 8;
4457 if (type_offset_in_tu != NULL)
4458 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4459 header->offset_size);
4460 info_ptr += header->offset_size;
4461
4462 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4463
4464 error_check_comp_unit_head (header, section, abbrev_section);
4465
4466 return info_ptr;
4467 }
4468
4469 /* Fetch the abbreviation table offset from a comp or type unit header. */
4470
4471 static sect_offset
4472 read_abbrev_offset (struct dwarf2_section_info *section,
4473 sect_offset offset)
4474 {
4475 bfd *abfd = get_section_bfd_owner (section);
4476 const gdb_byte *info_ptr;
4477 unsigned int length, initial_length_size, offset_size;
4478 sect_offset abbrev_offset;
4479
4480 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4481 info_ptr = section->buffer + offset.sect_off;
4482 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4483 offset_size = initial_length_size == 4 ? 4 : 8;
4484 info_ptr += initial_length_size + 2 /*version*/;
4485 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4486 return abbrev_offset;
4487 }
4488
4489 /* Allocate a new partial symtab for file named NAME and mark this new
4490 partial symtab as being an include of PST. */
4491
4492 static void
4493 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4494 struct objfile *objfile)
4495 {
4496 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4497
4498 if (!IS_ABSOLUTE_PATH (subpst->filename))
4499 {
4500 /* It shares objfile->objfile_obstack. */
4501 subpst->dirname = pst->dirname;
4502 }
4503
4504 subpst->textlow = 0;
4505 subpst->texthigh = 0;
4506
4507 subpst->dependencies
4508 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4509 subpst->dependencies[0] = pst;
4510 subpst->number_of_dependencies = 1;
4511
4512 subpst->globals_offset = 0;
4513 subpst->n_global_syms = 0;
4514 subpst->statics_offset = 0;
4515 subpst->n_static_syms = 0;
4516 subpst->compunit_symtab = NULL;
4517 subpst->read_symtab = pst->read_symtab;
4518 subpst->readin = 0;
4519
4520 /* No private part is necessary for include psymtabs. This property
4521 can be used to differentiate between such include psymtabs and
4522 the regular ones. */
4523 subpst->read_symtab_private = NULL;
4524 }
4525
4526 /* Read the Line Number Program data and extract the list of files
4527 included by the source file represented by PST. Build an include
4528 partial symtab for each of these included files. */
4529
4530 static void
4531 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4532 struct die_info *die,
4533 struct partial_symtab *pst)
4534 {
4535 struct line_header *lh = NULL;
4536 struct attribute *attr;
4537
4538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4539 if (attr)
4540 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4541 if (lh == NULL)
4542 return; /* No linetable, so no includes. */
4543
4544 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4545 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4546
4547 free_line_header (lh);
4548 }
4549
4550 static hashval_t
4551 hash_signatured_type (const void *item)
4552 {
4553 const struct signatured_type *sig_type = item;
4554
4555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4556 return sig_type->signature;
4557 }
4558
4559 static int
4560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4561 {
4562 const struct signatured_type *lhs = item_lhs;
4563 const struct signatured_type *rhs = item_rhs;
4564
4565 return lhs->signature == rhs->signature;
4566 }
4567
4568 /* Allocate a hash table for signatured types. */
4569
4570 static htab_t
4571 allocate_signatured_type_table (struct objfile *objfile)
4572 {
4573 return htab_create_alloc_ex (41,
4574 hash_signatured_type,
4575 eq_signatured_type,
4576 NULL,
4577 &objfile->objfile_obstack,
4578 hashtab_obstack_allocate,
4579 dummy_obstack_deallocate);
4580 }
4581
4582 /* A helper function to add a signatured type CU to a table. */
4583
4584 static int
4585 add_signatured_type_cu_to_table (void **slot, void *datum)
4586 {
4587 struct signatured_type *sigt = *slot;
4588 struct signatured_type ***datap = datum;
4589
4590 **datap = sigt;
4591 ++*datap;
4592
4593 return 1;
4594 }
4595
4596 /* Create the hash table of all entries in the .debug_types
4597 (or .debug_types.dwo) section(s).
4598 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4599 otherwise it is NULL.
4600
4601 The result is a pointer to the hash table or NULL if there are no types.
4602
4603 Note: This function processes DWO files only, not DWP files. */
4604
4605 static htab_t
4606 create_debug_types_hash_table (struct dwo_file *dwo_file,
4607 VEC (dwarf2_section_info_def) *types)
4608 {
4609 struct objfile *objfile = dwarf2_per_objfile->objfile;
4610 htab_t types_htab = NULL;
4611 int ix;
4612 struct dwarf2_section_info *section;
4613 struct dwarf2_section_info *abbrev_section;
4614
4615 if (VEC_empty (dwarf2_section_info_def, types))
4616 return NULL;
4617
4618 abbrev_section = (dwo_file != NULL
4619 ? &dwo_file->sections.abbrev
4620 : &dwarf2_per_objfile->abbrev);
4621
4622 if (dwarf_read_debug)
4623 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4624 dwo_file ? ".dwo" : "",
4625 get_section_file_name (abbrev_section));
4626
4627 for (ix = 0;
4628 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4629 ++ix)
4630 {
4631 bfd *abfd;
4632 const gdb_byte *info_ptr, *end_ptr;
4633
4634 dwarf2_read_section (objfile, section);
4635 info_ptr = section->buffer;
4636
4637 if (info_ptr == NULL)
4638 continue;
4639
4640 /* We can't set abfd until now because the section may be empty or
4641 not present, in which case the bfd is unknown. */
4642 abfd = get_section_bfd_owner (section);
4643
4644 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4645 because we don't need to read any dies: the signature is in the
4646 header. */
4647
4648 end_ptr = info_ptr + section->size;
4649 while (info_ptr < end_ptr)
4650 {
4651 sect_offset offset;
4652 cu_offset type_offset_in_tu;
4653 ULONGEST signature;
4654 struct signatured_type *sig_type;
4655 struct dwo_unit *dwo_tu;
4656 void **slot;
4657 const gdb_byte *ptr = info_ptr;
4658 struct comp_unit_head header;
4659 unsigned int length;
4660
4661 offset.sect_off = ptr - section->buffer;
4662
4663 /* We need to read the type's signature in order to build the hash
4664 table, but we don't need anything else just yet. */
4665
4666 ptr = read_and_check_type_unit_head (&header, section,
4667 abbrev_section, ptr,
4668 &signature, &type_offset_in_tu);
4669
4670 length = get_cu_length (&header);
4671
4672 /* Skip dummy type units. */
4673 if (ptr >= info_ptr + length
4674 || peek_abbrev_code (abfd, ptr) == 0)
4675 {
4676 info_ptr += length;
4677 continue;
4678 }
4679
4680 if (types_htab == NULL)
4681 {
4682 if (dwo_file)
4683 types_htab = allocate_dwo_unit_table (objfile);
4684 else
4685 types_htab = allocate_signatured_type_table (objfile);
4686 }
4687
4688 if (dwo_file)
4689 {
4690 sig_type = NULL;
4691 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4692 struct dwo_unit);
4693 dwo_tu->dwo_file = dwo_file;
4694 dwo_tu->signature = signature;
4695 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4696 dwo_tu->section = section;
4697 dwo_tu->offset = offset;
4698 dwo_tu->length = length;
4699 }
4700 else
4701 {
4702 /* N.B.: type_offset is not usable if this type uses a DWO file.
4703 The real type_offset is in the DWO file. */
4704 dwo_tu = NULL;
4705 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4706 struct signatured_type);
4707 sig_type->signature = signature;
4708 sig_type->type_offset_in_tu = type_offset_in_tu;
4709 sig_type->per_cu.objfile = objfile;
4710 sig_type->per_cu.is_debug_types = 1;
4711 sig_type->per_cu.section = section;
4712 sig_type->per_cu.offset = offset;
4713 sig_type->per_cu.length = length;
4714 }
4715
4716 slot = htab_find_slot (types_htab,
4717 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4718 INSERT);
4719 gdb_assert (slot != NULL);
4720 if (*slot != NULL)
4721 {
4722 sect_offset dup_offset;
4723
4724 if (dwo_file)
4725 {
4726 const struct dwo_unit *dup_tu = *slot;
4727
4728 dup_offset = dup_tu->offset;
4729 }
4730 else
4731 {
4732 const struct signatured_type *dup_tu = *slot;
4733
4734 dup_offset = dup_tu->per_cu.offset;
4735 }
4736
4737 complaint (&symfile_complaints,
4738 _("debug type entry at offset 0x%x is duplicate to"
4739 " the entry at offset 0x%x, signature %s"),
4740 offset.sect_off, dup_offset.sect_off,
4741 hex_string (signature));
4742 }
4743 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4744
4745 if (dwarf_read_debug > 1)
4746 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4747 offset.sect_off,
4748 hex_string (signature));
4749
4750 info_ptr += length;
4751 }
4752 }
4753
4754 return types_htab;
4755 }
4756
4757 /* Create the hash table of all entries in the .debug_types section,
4758 and initialize all_type_units.
4759 The result is zero if there is an error (e.g. missing .debug_types section),
4760 otherwise non-zero. */
4761
4762 static int
4763 create_all_type_units (struct objfile *objfile)
4764 {
4765 htab_t types_htab;
4766 struct signatured_type **iter;
4767
4768 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4769 if (types_htab == NULL)
4770 {
4771 dwarf2_per_objfile->signatured_types = NULL;
4772 return 0;
4773 }
4774
4775 dwarf2_per_objfile->signatured_types = types_htab;
4776
4777 dwarf2_per_objfile->n_type_units
4778 = dwarf2_per_objfile->n_allocated_type_units
4779 = htab_elements (types_htab);
4780 dwarf2_per_objfile->all_type_units =
4781 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4782 iter = &dwarf2_per_objfile->all_type_units[0];
4783 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4784 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4785 == dwarf2_per_objfile->n_type_units);
4786
4787 return 1;
4788 }
4789
4790 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4791 If SLOT is non-NULL, it is the entry to use in the hash table.
4792 Otherwise we find one. */
4793
4794 static struct signatured_type *
4795 add_type_unit (ULONGEST sig, void **slot)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 int n_type_units = dwarf2_per_objfile->n_type_units;
4799 struct signatured_type *sig_type;
4800
4801 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4802 ++n_type_units;
4803 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4804 {
4805 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4806 dwarf2_per_objfile->n_allocated_type_units = 1;
4807 dwarf2_per_objfile->n_allocated_type_units *= 2;
4808 dwarf2_per_objfile->all_type_units
4809 = xrealloc (dwarf2_per_objfile->all_type_units,
4810 dwarf2_per_objfile->n_allocated_type_units
4811 * sizeof (struct signatured_type *));
4812 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4813 }
4814 dwarf2_per_objfile->n_type_units = n_type_units;
4815
4816 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4817 struct signatured_type);
4818 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4819 sig_type->signature = sig;
4820 sig_type->per_cu.is_debug_types = 1;
4821 if (dwarf2_per_objfile->using_index)
4822 {
4823 sig_type->per_cu.v.quick =
4824 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct dwarf2_per_cu_quick_data);
4826 }
4827
4828 if (slot == NULL)
4829 {
4830 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4831 sig_type, INSERT);
4832 }
4833 gdb_assert (*slot == NULL);
4834 *slot = sig_type;
4835 /* The rest of sig_type must be filled in by the caller. */
4836 return sig_type;
4837 }
4838
4839 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4840 Fill in SIG_ENTRY with DWO_ENTRY. */
4841
4842 static void
4843 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4844 struct signatured_type *sig_entry,
4845 struct dwo_unit *dwo_entry)
4846 {
4847 /* Make sure we're not clobbering something we don't expect to. */
4848 gdb_assert (! sig_entry->per_cu.queued);
4849 gdb_assert (sig_entry->per_cu.cu == NULL);
4850 if (dwarf2_per_objfile->using_index)
4851 {
4852 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4853 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4854 }
4855 else
4856 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4857 gdb_assert (sig_entry->signature == dwo_entry->signature);
4858 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4859 gdb_assert (sig_entry->type_unit_group == NULL);
4860 gdb_assert (sig_entry->dwo_unit == NULL);
4861
4862 sig_entry->per_cu.section = dwo_entry->section;
4863 sig_entry->per_cu.offset = dwo_entry->offset;
4864 sig_entry->per_cu.length = dwo_entry->length;
4865 sig_entry->per_cu.reading_dwo_directly = 1;
4866 sig_entry->per_cu.objfile = objfile;
4867 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4868 sig_entry->dwo_unit = dwo_entry;
4869 }
4870
4871 /* Subroutine of lookup_signatured_type.
4872 If we haven't read the TU yet, create the signatured_type data structure
4873 for a TU to be read in directly from a DWO file, bypassing the stub.
4874 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4875 using .gdb_index, then when reading a CU we want to stay in the DWO file
4876 containing that CU. Otherwise we could end up reading several other DWO
4877 files (due to comdat folding) to process the transitive closure of all the
4878 mentioned TUs, and that can be slow. The current DWO file will have every
4879 type signature that it needs.
4880 We only do this for .gdb_index because in the psymtab case we already have
4881 to read all the DWOs to build the type unit groups. */
4882
4883 static struct signatured_type *
4884 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4885 {
4886 struct objfile *objfile = dwarf2_per_objfile->objfile;
4887 struct dwo_file *dwo_file;
4888 struct dwo_unit find_dwo_entry, *dwo_entry;
4889 struct signatured_type find_sig_entry, *sig_entry;
4890 void **slot;
4891
4892 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4893
4894 /* If TU skeletons have been removed then we may not have read in any
4895 TUs yet. */
4896 if (dwarf2_per_objfile->signatured_types == NULL)
4897 {
4898 dwarf2_per_objfile->signatured_types
4899 = allocate_signatured_type_table (objfile);
4900 }
4901
4902 /* We only ever need to read in one copy of a signatured type.
4903 Use the global signatured_types array to do our own comdat-folding
4904 of types. If this is the first time we're reading this TU, and
4905 the TU has an entry in .gdb_index, replace the recorded data from
4906 .gdb_index with this TU. */
4907
4908 find_sig_entry.signature = sig;
4909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4910 &find_sig_entry, INSERT);
4911 sig_entry = *slot;
4912
4913 /* We can get here with the TU already read, *or* in the process of being
4914 read. Don't reassign the global entry to point to this DWO if that's
4915 the case. Also note that if the TU is already being read, it may not
4916 have come from a DWO, the program may be a mix of Fission-compiled
4917 code and non-Fission-compiled code. */
4918
4919 /* Have we already tried to read this TU?
4920 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4921 needn't exist in the global table yet). */
4922 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4923 return sig_entry;
4924
4925 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4926 dwo_unit of the TU itself. */
4927 dwo_file = cu->dwo_unit->dwo_file;
4928
4929 /* Ok, this is the first time we're reading this TU. */
4930 if (dwo_file->tus == NULL)
4931 return NULL;
4932 find_dwo_entry.signature = sig;
4933 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4934 if (dwo_entry == NULL)
4935 return NULL;
4936
4937 /* If the global table doesn't have an entry for this TU, add one. */
4938 if (sig_entry == NULL)
4939 sig_entry = add_type_unit (sig, slot);
4940
4941 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4942 sig_entry->per_cu.tu_read = 1;
4943 return sig_entry;
4944 }
4945
4946 /* Subroutine of lookup_signatured_type.
4947 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4948 then try the DWP file. If the TU stub (skeleton) has been removed then
4949 it won't be in .gdb_index. */
4950
4951 static struct signatured_type *
4952 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4953 {
4954 struct objfile *objfile = dwarf2_per_objfile->objfile;
4955 struct dwp_file *dwp_file = get_dwp_file ();
4956 struct dwo_unit *dwo_entry;
4957 struct signatured_type find_sig_entry, *sig_entry;
4958 void **slot;
4959
4960 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4961 gdb_assert (dwp_file != NULL);
4962
4963 /* If TU skeletons have been removed then we may not have read in any
4964 TUs yet. */
4965 if (dwarf2_per_objfile->signatured_types == NULL)
4966 {
4967 dwarf2_per_objfile->signatured_types
4968 = allocate_signatured_type_table (objfile);
4969 }
4970
4971 find_sig_entry.signature = sig;
4972 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4973 &find_sig_entry, INSERT);
4974 sig_entry = *slot;
4975
4976 /* Have we already tried to read this TU?
4977 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4978 needn't exist in the global table yet). */
4979 if (sig_entry != NULL)
4980 return sig_entry;
4981
4982 if (dwp_file->tus == NULL)
4983 return NULL;
4984 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4985 sig, 1 /* is_debug_types */);
4986 if (dwo_entry == NULL)
4987 return NULL;
4988
4989 sig_entry = add_type_unit (sig, slot);
4990 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4991
4992 return sig_entry;
4993 }
4994
4995 /* Lookup a signature based type for DW_FORM_ref_sig8.
4996 Returns NULL if signature SIG is not present in the table.
4997 It is up to the caller to complain about this. */
4998
4999 static struct signatured_type *
5000 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5001 {
5002 if (cu->dwo_unit
5003 && dwarf2_per_objfile->using_index)
5004 {
5005 /* We're in a DWO/DWP file, and we're using .gdb_index.
5006 These cases require special processing. */
5007 if (get_dwp_file () == NULL)
5008 return lookup_dwo_signatured_type (cu, sig);
5009 else
5010 return lookup_dwp_signatured_type (cu, sig);
5011 }
5012 else
5013 {
5014 struct signatured_type find_entry, *entry;
5015
5016 if (dwarf2_per_objfile->signatured_types == NULL)
5017 return NULL;
5018 find_entry.signature = sig;
5019 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5020 return entry;
5021 }
5022 }
5023 \f
5024 /* Low level DIE reading support. */
5025
5026 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5027
5028 static void
5029 init_cu_die_reader (struct die_reader_specs *reader,
5030 struct dwarf2_cu *cu,
5031 struct dwarf2_section_info *section,
5032 struct dwo_file *dwo_file)
5033 {
5034 gdb_assert (section->readin && section->buffer != NULL);
5035 reader->abfd = get_section_bfd_owner (section);
5036 reader->cu = cu;
5037 reader->dwo_file = dwo_file;
5038 reader->die_section = section;
5039 reader->buffer = section->buffer;
5040 reader->buffer_end = section->buffer + section->size;
5041 reader->comp_dir = NULL;
5042 }
5043
5044 /* Subroutine of init_cutu_and_read_dies to simplify it.
5045 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5046 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5047 already.
5048
5049 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5050 from it to the DIE in the DWO. If NULL we are skipping the stub.
5051 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5052 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5053 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5054 STUB_COMP_DIR may be non-NULL.
5055 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5056 are filled in with the info of the DIE from the DWO file.
5057 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5058 provided an abbrev table to use.
5059 The result is non-zero if a valid (non-dummy) DIE was found. */
5060
5061 static int
5062 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5063 struct dwo_unit *dwo_unit,
5064 int abbrev_table_provided,
5065 struct die_info *stub_comp_unit_die,
5066 const char *stub_comp_dir,
5067 struct die_reader_specs *result_reader,
5068 const gdb_byte **result_info_ptr,
5069 struct die_info **result_comp_unit_die,
5070 int *result_has_children)
5071 {
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073 struct dwarf2_cu *cu = this_cu->cu;
5074 struct dwarf2_section_info *section;
5075 bfd *abfd;
5076 const gdb_byte *begin_info_ptr, *info_ptr;
5077 ULONGEST signature; /* Or dwo_id. */
5078 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5079 int i,num_extra_attrs;
5080 struct dwarf2_section_info *dwo_abbrev_section;
5081 struct attribute *attr;
5082 struct die_info *comp_unit_die;
5083
5084 /* At most one of these may be provided. */
5085 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5086
5087 /* These attributes aren't processed until later:
5088 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5089 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5090 referenced later. However, these attributes are found in the stub
5091 which we won't have later. In order to not impose this complication
5092 on the rest of the code, we read them here and copy them to the
5093 DWO CU/TU die. */
5094
5095 stmt_list = NULL;
5096 low_pc = NULL;
5097 high_pc = NULL;
5098 ranges = NULL;
5099 comp_dir = NULL;
5100
5101 if (stub_comp_unit_die != NULL)
5102 {
5103 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5104 DWO file. */
5105 if (! this_cu->is_debug_types)
5106 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5107 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5108 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5109 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5110 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5111
5112 /* There should be a DW_AT_addr_base attribute here (if needed).
5113 We need the value before we can process DW_FORM_GNU_addr_index. */
5114 cu->addr_base = 0;
5115 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5116 if (attr)
5117 cu->addr_base = DW_UNSND (attr);
5118
5119 /* There should be a DW_AT_ranges_base attribute here (if needed).
5120 We need the value before we can process DW_AT_ranges. */
5121 cu->ranges_base = 0;
5122 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5123 if (attr)
5124 cu->ranges_base = DW_UNSND (attr);
5125 }
5126 else if (stub_comp_dir != NULL)
5127 {
5128 /* Reconstruct the comp_dir attribute to simplify the code below. */
5129 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5130 comp_dir->name = DW_AT_comp_dir;
5131 comp_dir->form = DW_FORM_string;
5132 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5133 DW_STRING (comp_dir) = stub_comp_dir;
5134 }
5135
5136 /* Set up for reading the DWO CU/TU. */
5137 cu->dwo_unit = dwo_unit;
5138 section = dwo_unit->section;
5139 dwarf2_read_section (objfile, section);
5140 abfd = get_section_bfd_owner (section);
5141 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5142 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5143 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5144
5145 if (this_cu->is_debug_types)
5146 {
5147 ULONGEST header_signature;
5148 cu_offset type_offset_in_tu;
5149 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5150
5151 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5152 dwo_abbrev_section,
5153 info_ptr,
5154 &header_signature,
5155 &type_offset_in_tu);
5156 /* This is not an assert because it can be caused by bad debug info. */
5157 if (sig_type->signature != header_signature)
5158 {
5159 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5160 " TU at offset 0x%x [in module %s]"),
5161 hex_string (sig_type->signature),
5162 hex_string (header_signature),
5163 dwo_unit->offset.sect_off,
5164 bfd_get_filename (abfd));
5165 }
5166 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5167 /* For DWOs coming from DWP files, we don't know the CU length
5168 nor the type's offset in the TU until now. */
5169 dwo_unit->length = get_cu_length (&cu->header);
5170 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5171
5172 /* Establish the type offset that can be used to lookup the type.
5173 For DWO files, we don't know it until now. */
5174 sig_type->type_offset_in_section.sect_off =
5175 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5176 }
5177 else
5178 {
5179 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5180 dwo_abbrev_section,
5181 info_ptr, 0);
5182 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5183 /* For DWOs coming from DWP files, we don't know the CU length
5184 until now. */
5185 dwo_unit->length = get_cu_length (&cu->header);
5186 }
5187
5188 /* Replace the CU's original abbrev table with the DWO's.
5189 Reminder: We can't read the abbrev table until we've read the header. */
5190 if (abbrev_table_provided)
5191 {
5192 /* Don't free the provided abbrev table, the caller of
5193 init_cutu_and_read_dies owns it. */
5194 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5195 /* Ensure the DWO abbrev table gets freed. */
5196 make_cleanup (dwarf2_free_abbrev_table, cu);
5197 }
5198 else
5199 {
5200 dwarf2_free_abbrev_table (cu);
5201 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5202 /* Leave any existing abbrev table cleanup as is. */
5203 }
5204
5205 /* Read in the die, but leave space to copy over the attributes
5206 from the stub. This has the benefit of simplifying the rest of
5207 the code - all the work to maintain the illusion of a single
5208 DW_TAG_{compile,type}_unit DIE is done here. */
5209 num_extra_attrs = ((stmt_list != NULL)
5210 + (low_pc != NULL)
5211 + (high_pc != NULL)
5212 + (ranges != NULL)
5213 + (comp_dir != NULL));
5214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5215 result_has_children, num_extra_attrs);
5216
5217 /* Copy over the attributes from the stub to the DIE we just read in. */
5218 comp_unit_die = *result_comp_unit_die;
5219 i = comp_unit_die->num_attrs;
5220 if (stmt_list != NULL)
5221 comp_unit_die->attrs[i++] = *stmt_list;
5222 if (low_pc != NULL)
5223 comp_unit_die->attrs[i++] = *low_pc;
5224 if (high_pc != NULL)
5225 comp_unit_die->attrs[i++] = *high_pc;
5226 if (ranges != NULL)
5227 comp_unit_die->attrs[i++] = *ranges;
5228 if (comp_dir != NULL)
5229 comp_unit_die->attrs[i++] = *comp_dir;
5230 comp_unit_die->num_attrs += num_extra_attrs;
5231
5232 if (dwarf_die_debug)
5233 {
5234 fprintf_unfiltered (gdb_stdlog,
5235 "Read die from %s@0x%x of %s:\n",
5236 get_section_name (section),
5237 (unsigned) (begin_info_ptr - section->buffer),
5238 bfd_get_filename (abfd));
5239 dump_die (comp_unit_die, dwarf_die_debug);
5240 }
5241
5242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5243 TUs by skipping the stub and going directly to the entry in the DWO file.
5244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5245 to get it via circuitous means. Blech. */
5246 if (comp_dir != NULL)
5247 result_reader->comp_dir = DW_STRING (comp_dir);
5248
5249 /* Skip dummy compilation units. */
5250 if (info_ptr >= begin_info_ptr + dwo_unit->length
5251 || peek_abbrev_code (abfd, info_ptr) == 0)
5252 return 0;
5253
5254 *result_info_ptr = info_ptr;
5255 return 1;
5256 }
5257
5258 /* Subroutine of init_cutu_and_read_dies to simplify it.
5259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5260 Returns NULL if the specified DWO unit cannot be found. */
5261
5262 static struct dwo_unit *
5263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5264 struct die_info *comp_unit_die)
5265 {
5266 struct dwarf2_cu *cu = this_cu->cu;
5267 struct attribute *attr;
5268 ULONGEST signature;
5269 struct dwo_unit *dwo_unit;
5270 const char *comp_dir, *dwo_name;
5271
5272 gdb_assert (cu != NULL);
5273
5274 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5275 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5276 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5277
5278 if (this_cu->is_debug_types)
5279 {
5280 struct signatured_type *sig_type;
5281
5282 /* Since this_cu is the first member of struct signatured_type,
5283 we can go from a pointer to one to a pointer to the other. */
5284 sig_type = (struct signatured_type *) this_cu;
5285 signature = sig_type->signature;
5286 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5287 }
5288 else
5289 {
5290 struct attribute *attr;
5291
5292 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5293 if (! attr)
5294 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5295 " [in module %s]"),
5296 dwo_name, objfile_name (this_cu->objfile));
5297 signature = DW_UNSND (attr);
5298 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5299 signature);
5300 }
5301
5302 return dwo_unit;
5303 }
5304
5305 /* Subroutine of init_cutu_and_read_dies to simplify it.
5306 See it for a description of the parameters.
5307 Read a TU directly from a DWO file, bypassing the stub.
5308
5309 Note: This function could be a little bit simpler if we shared cleanups
5310 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5311 to do, so we keep this function self-contained. Or we could move this
5312 into our caller, but it's complex enough already. */
5313
5314 static void
5315 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5316 int use_existing_cu, int keep,
5317 die_reader_func_ftype *die_reader_func,
5318 void *data)
5319 {
5320 struct dwarf2_cu *cu;
5321 struct signatured_type *sig_type;
5322 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5323 struct die_reader_specs reader;
5324 const gdb_byte *info_ptr;
5325 struct die_info *comp_unit_die;
5326 int has_children;
5327
5328 /* Verify we can do the following downcast, and that we have the
5329 data we need. */
5330 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5331 sig_type = (struct signatured_type *) this_cu;
5332 gdb_assert (sig_type->dwo_unit != NULL);
5333
5334 cleanups = make_cleanup (null_cleanup, NULL);
5335
5336 if (use_existing_cu && this_cu->cu != NULL)
5337 {
5338 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5339 cu = this_cu->cu;
5340 /* There's no need to do the rereading_dwo_cu handling that
5341 init_cutu_and_read_dies does since we don't read the stub. */
5342 }
5343 else
5344 {
5345 /* If !use_existing_cu, this_cu->cu must be NULL. */
5346 gdb_assert (this_cu->cu == NULL);
5347 cu = XNEW (struct dwarf2_cu);
5348 init_one_comp_unit (cu, this_cu);
5349 /* If an error occurs while loading, release our storage. */
5350 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5351 }
5352
5353 /* A future optimization, if needed, would be to use an existing
5354 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5355 could share abbrev tables. */
5356
5357 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5358 0 /* abbrev_table_provided */,
5359 NULL /* stub_comp_unit_die */,
5360 sig_type->dwo_unit->dwo_file->comp_dir,
5361 &reader, &info_ptr,
5362 &comp_unit_die, &has_children) == 0)
5363 {
5364 /* Dummy die. */
5365 do_cleanups (cleanups);
5366 return;
5367 }
5368
5369 /* All the "real" work is done here. */
5370 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5371
5372 /* This duplicates the code in init_cutu_and_read_dies,
5373 but the alternative is making the latter more complex.
5374 This function is only for the special case of using DWO files directly:
5375 no point in overly complicating the general case just to handle this. */
5376 if (free_cu_cleanup != NULL)
5377 {
5378 if (keep)
5379 {
5380 /* We've successfully allocated this compilation unit. Let our
5381 caller clean it up when finished with it. */
5382 discard_cleanups (free_cu_cleanup);
5383
5384 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5385 So we have to manually free the abbrev table. */
5386 dwarf2_free_abbrev_table (cu);
5387
5388 /* Link this CU into read_in_chain. */
5389 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5390 dwarf2_per_objfile->read_in_chain = this_cu;
5391 }
5392 else
5393 do_cleanups (free_cu_cleanup);
5394 }
5395
5396 do_cleanups (cleanups);
5397 }
5398
5399 /* Initialize a CU (or TU) and read its DIEs.
5400 If the CU defers to a DWO file, read the DWO file as well.
5401
5402 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5403 Otherwise the table specified in the comp unit header is read in and used.
5404 This is an optimization for when we already have the abbrev table.
5405
5406 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5407 Otherwise, a new CU is allocated with xmalloc.
5408
5409 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5410 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5411
5412 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5413 linker) then DIE_READER_FUNC will not get called. */
5414
5415 static void
5416 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5417 struct abbrev_table *abbrev_table,
5418 int use_existing_cu, int keep,
5419 die_reader_func_ftype *die_reader_func,
5420 void *data)
5421 {
5422 struct objfile *objfile = dwarf2_per_objfile->objfile;
5423 struct dwarf2_section_info *section = this_cu->section;
5424 bfd *abfd = get_section_bfd_owner (section);
5425 struct dwarf2_cu *cu;
5426 const gdb_byte *begin_info_ptr, *info_ptr;
5427 struct die_reader_specs reader;
5428 struct die_info *comp_unit_die;
5429 int has_children;
5430 struct attribute *attr;
5431 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5432 struct signatured_type *sig_type = NULL;
5433 struct dwarf2_section_info *abbrev_section;
5434 /* Non-zero if CU currently points to a DWO file and we need to
5435 reread it. When this happens we need to reread the skeleton die
5436 before we can reread the DWO file (this only applies to CUs, not TUs). */
5437 int rereading_dwo_cu = 0;
5438
5439 if (dwarf_die_debug)
5440 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5441 this_cu->is_debug_types ? "type" : "comp",
5442 this_cu->offset.sect_off);
5443
5444 if (use_existing_cu)
5445 gdb_assert (keep);
5446
5447 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5448 file (instead of going through the stub), short-circuit all of this. */
5449 if (this_cu->reading_dwo_directly)
5450 {
5451 /* Narrow down the scope of possibilities to have to understand. */
5452 gdb_assert (this_cu->is_debug_types);
5453 gdb_assert (abbrev_table == NULL);
5454 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5455 die_reader_func, data);
5456 return;
5457 }
5458
5459 cleanups = make_cleanup (null_cleanup, NULL);
5460
5461 /* This is cheap if the section is already read in. */
5462 dwarf2_read_section (objfile, section);
5463
5464 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5465
5466 abbrev_section = get_abbrev_section_for_cu (this_cu);
5467
5468 if (use_existing_cu && this_cu->cu != NULL)
5469 {
5470 cu = this_cu->cu;
5471 /* If this CU is from a DWO file we need to start over, we need to
5472 refetch the attributes from the skeleton CU.
5473 This could be optimized by retrieving those attributes from when we
5474 were here the first time: the previous comp_unit_die was stored in
5475 comp_unit_obstack. But there's no data yet that we need this
5476 optimization. */
5477 if (cu->dwo_unit != NULL)
5478 rereading_dwo_cu = 1;
5479 }
5480 else
5481 {
5482 /* If !use_existing_cu, this_cu->cu must be NULL. */
5483 gdb_assert (this_cu->cu == NULL);
5484 cu = XNEW (struct dwarf2_cu);
5485 init_one_comp_unit (cu, this_cu);
5486 /* If an error occurs while loading, release our storage. */
5487 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5488 }
5489
5490 /* Get the header. */
5491 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5492 {
5493 /* We already have the header, there's no need to read it in again. */
5494 info_ptr += cu->header.first_die_offset.cu_off;
5495 }
5496 else
5497 {
5498 if (this_cu->is_debug_types)
5499 {
5500 ULONGEST signature;
5501 cu_offset type_offset_in_tu;
5502
5503 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5504 abbrev_section, info_ptr,
5505 &signature,
5506 &type_offset_in_tu);
5507
5508 /* Since per_cu is the first member of struct signatured_type,
5509 we can go from a pointer to one to a pointer to the other. */
5510 sig_type = (struct signatured_type *) this_cu;
5511 gdb_assert (sig_type->signature == signature);
5512 gdb_assert (sig_type->type_offset_in_tu.cu_off
5513 == type_offset_in_tu.cu_off);
5514 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5515
5516 /* LENGTH has not been set yet for type units if we're
5517 using .gdb_index. */
5518 this_cu->length = get_cu_length (&cu->header);
5519
5520 /* Establish the type offset that can be used to lookup the type. */
5521 sig_type->type_offset_in_section.sect_off =
5522 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5523 }
5524 else
5525 {
5526 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5527 abbrev_section,
5528 info_ptr, 0);
5529
5530 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5531 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5532 }
5533 }
5534
5535 /* Skip dummy compilation units. */
5536 if (info_ptr >= begin_info_ptr + this_cu->length
5537 || peek_abbrev_code (abfd, info_ptr) == 0)
5538 {
5539 do_cleanups (cleanups);
5540 return;
5541 }
5542
5543 /* If we don't have them yet, read the abbrevs for this compilation unit.
5544 And if we need to read them now, make sure they're freed when we're
5545 done. Note that it's important that if the CU had an abbrev table
5546 on entry we don't free it when we're done: Somewhere up the call stack
5547 it may be in use. */
5548 if (abbrev_table != NULL)
5549 {
5550 gdb_assert (cu->abbrev_table == NULL);
5551 gdb_assert (cu->header.abbrev_offset.sect_off
5552 == abbrev_table->offset.sect_off);
5553 cu->abbrev_table = abbrev_table;
5554 }
5555 else if (cu->abbrev_table == NULL)
5556 {
5557 dwarf2_read_abbrevs (cu, abbrev_section);
5558 make_cleanup (dwarf2_free_abbrev_table, cu);
5559 }
5560 else if (rereading_dwo_cu)
5561 {
5562 dwarf2_free_abbrev_table (cu);
5563 dwarf2_read_abbrevs (cu, abbrev_section);
5564 }
5565
5566 /* Read the top level CU/TU die. */
5567 init_cu_die_reader (&reader, cu, section, NULL);
5568 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5569
5570 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5571 from the DWO file.
5572 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5573 DWO CU, that this test will fail (the attribute will not be present). */
5574 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5575 if (attr)
5576 {
5577 struct dwo_unit *dwo_unit;
5578 struct die_info *dwo_comp_unit_die;
5579
5580 if (has_children)
5581 {
5582 complaint (&symfile_complaints,
5583 _("compilation unit with DW_AT_GNU_dwo_name"
5584 " has children (offset 0x%x) [in module %s]"),
5585 this_cu->offset.sect_off, bfd_get_filename (abfd));
5586 }
5587 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5588 if (dwo_unit != NULL)
5589 {
5590 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5591 abbrev_table != NULL,
5592 comp_unit_die, NULL,
5593 &reader, &info_ptr,
5594 &dwo_comp_unit_die, &has_children) == 0)
5595 {
5596 /* Dummy die. */
5597 do_cleanups (cleanups);
5598 return;
5599 }
5600 comp_unit_die = dwo_comp_unit_die;
5601 }
5602 else
5603 {
5604 /* Yikes, we couldn't find the rest of the DIE, we only have
5605 the stub. A complaint has already been logged. There's
5606 not much more we can do except pass on the stub DIE to
5607 die_reader_func. We don't want to throw an error on bad
5608 debug info. */
5609 }
5610 }
5611
5612 /* All of the above is setup for this call. Yikes. */
5613 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5614
5615 /* Done, clean up. */
5616 if (free_cu_cleanup != NULL)
5617 {
5618 if (keep)
5619 {
5620 /* We've successfully allocated this compilation unit. Let our
5621 caller clean it up when finished with it. */
5622 discard_cleanups (free_cu_cleanup);
5623
5624 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5625 So we have to manually free the abbrev table. */
5626 dwarf2_free_abbrev_table (cu);
5627
5628 /* Link this CU into read_in_chain. */
5629 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5630 dwarf2_per_objfile->read_in_chain = this_cu;
5631 }
5632 else
5633 do_cleanups (free_cu_cleanup);
5634 }
5635
5636 do_cleanups (cleanups);
5637 }
5638
5639 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5640 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5641 to have already done the lookup to find the DWO file).
5642
5643 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5644 THIS_CU->is_debug_types, but nothing else.
5645
5646 We fill in THIS_CU->length.
5647
5648 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5649 linker) then DIE_READER_FUNC will not get called.
5650
5651 THIS_CU->cu is always freed when done.
5652 This is done in order to not leave THIS_CU->cu in a state where we have
5653 to care whether it refers to the "main" CU or the DWO CU. */
5654
5655 static void
5656 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5657 struct dwo_file *dwo_file,
5658 die_reader_func_ftype *die_reader_func,
5659 void *data)
5660 {
5661 struct objfile *objfile = dwarf2_per_objfile->objfile;
5662 struct dwarf2_section_info *section = this_cu->section;
5663 bfd *abfd = get_section_bfd_owner (section);
5664 struct dwarf2_section_info *abbrev_section;
5665 struct dwarf2_cu cu;
5666 const gdb_byte *begin_info_ptr, *info_ptr;
5667 struct die_reader_specs reader;
5668 struct cleanup *cleanups;
5669 struct die_info *comp_unit_die;
5670 int has_children;
5671
5672 if (dwarf_die_debug)
5673 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5674 this_cu->is_debug_types ? "type" : "comp",
5675 this_cu->offset.sect_off);
5676
5677 gdb_assert (this_cu->cu == NULL);
5678
5679 abbrev_section = (dwo_file != NULL
5680 ? &dwo_file->sections.abbrev
5681 : get_abbrev_section_for_cu (this_cu));
5682
5683 /* This is cheap if the section is already read in. */
5684 dwarf2_read_section (objfile, section);
5685
5686 init_one_comp_unit (&cu, this_cu);
5687
5688 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5689
5690 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5691 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5692 abbrev_section, info_ptr,
5693 this_cu->is_debug_types);
5694
5695 this_cu->length = get_cu_length (&cu.header);
5696
5697 /* Skip dummy compilation units. */
5698 if (info_ptr >= begin_info_ptr + this_cu->length
5699 || peek_abbrev_code (abfd, info_ptr) == 0)
5700 {
5701 do_cleanups (cleanups);
5702 return;
5703 }
5704
5705 dwarf2_read_abbrevs (&cu, abbrev_section);
5706 make_cleanup (dwarf2_free_abbrev_table, &cu);
5707
5708 init_cu_die_reader (&reader, &cu, section, dwo_file);
5709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5710
5711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5712
5713 do_cleanups (cleanups);
5714 }
5715
5716 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5717 does not lookup the specified DWO file.
5718 This cannot be used to read DWO files.
5719
5720 THIS_CU->cu is always freed when done.
5721 This is done in order to not leave THIS_CU->cu in a state where we have
5722 to care whether it refers to the "main" CU or the DWO CU.
5723 We can revisit this if the data shows there's a performance issue. */
5724
5725 static void
5726 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5727 die_reader_func_ftype *die_reader_func,
5728 void *data)
5729 {
5730 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5731 }
5732 \f
5733 /* Type Unit Groups.
5734
5735 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5736 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5737 so that all types coming from the same compilation (.o file) are grouped
5738 together. A future step could be to put the types in the same symtab as
5739 the CU the types ultimately came from. */
5740
5741 static hashval_t
5742 hash_type_unit_group (const void *item)
5743 {
5744 const struct type_unit_group *tu_group = item;
5745
5746 return hash_stmt_list_entry (&tu_group->hash);
5747 }
5748
5749 static int
5750 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5751 {
5752 const struct type_unit_group *lhs = item_lhs;
5753 const struct type_unit_group *rhs = item_rhs;
5754
5755 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5756 }
5757
5758 /* Allocate a hash table for type unit groups. */
5759
5760 static htab_t
5761 allocate_type_unit_groups_table (void)
5762 {
5763 return htab_create_alloc_ex (3,
5764 hash_type_unit_group,
5765 eq_type_unit_group,
5766 NULL,
5767 &dwarf2_per_objfile->objfile->objfile_obstack,
5768 hashtab_obstack_allocate,
5769 dummy_obstack_deallocate);
5770 }
5771
5772 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5773 partial symtabs. We combine several TUs per psymtab to not let the size
5774 of any one psymtab grow too big. */
5775 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5776 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5777
5778 /* Helper routine for get_type_unit_group.
5779 Create the type_unit_group object used to hold one or more TUs. */
5780
5781 static struct type_unit_group *
5782 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5783 {
5784 struct objfile *objfile = dwarf2_per_objfile->objfile;
5785 struct dwarf2_per_cu_data *per_cu;
5786 struct type_unit_group *tu_group;
5787
5788 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5789 struct type_unit_group);
5790 per_cu = &tu_group->per_cu;
5791 per_cu->objfile = objfile;
5792
5793 if (dwarf2_per_objfile->using_index)
5794 {
5795 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5796 struct dwarf2_per_cu_quick_data);
5797 }
5798 else
5799 {
5800 unsigned int line_offset = line_offset_struct.sect_off;
5801 struct partial_symtab *pst;
5802 char *name;
5803
5804 /* Give the symtab a useful name for debug purposes. */
5805 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5806 name = xstrprintf ("<type_units_%d>",
5807 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5808 else
5809 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5810
5811 pst = create_partial_symtab (per_cu, name);
5812 pst->anonymous = 1;
5813
5814 xfree (name);
5815 }
5816
5817 tu_group->hash.dwo_unit = cu->dwo_unit;
5818 tu_group->hash.line_offset = line_offset_struct;
5819
5820 return tu_group;
5821 }
5822
5823 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5824 STMT_LIST is a DW_AT_stmt_list attribute. */
5825
5826 static struct type_unit_group *
5827 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5828 {
5829 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5830 struct type_unit_group *tu_group;
5831 void **slot;
5832 unsigned int line_offset;
5833 struct type_unit_group type_unit_group_for_lookup;
5834
5835 if (dwarf2_per_objfile->type_unit_groups == NULL)
5836 {
5837 dwarf2_per_objfile->type_unit_groups =
5838 allocate_type_unit_groups_table ();
5839 }
5840
5841 /* Do we need to create a new group, or can we use an existing one? */
5842
5843 if (stmt_list)
5844 {
5845 line_offset = DW_UNSND (stmt_list);
5846 ++tu_stats->nr_symtab_sharers;
5847 }
5848 else
5849 {
5850 /* Ugh, no stmt_list. Rare, but we have to handle it.
5851 We can do various things here like create one group per TU or
5852 spread them over multiple groups to split up the expansion work.
5853 To avoid worst case scenarios (too many groups or too large groups)
5854 we, umm, group them in bunches. */
5855 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5856 | (tu_stats->nr_stmt_less_type_units
5857 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5858 ++tu_stats->nr_stmt_less_type_units;
5859 }
5860
5861 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5862 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5863 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5864 &type_unit_group_for_lookup, INSERT);
5865 if (*slot != NULL)
5866 {
5867 tu_group = *slot;
5868 gdb_assert (tu_group != NULL);
5869 }
5870 else
5871 {
5872 sect_offset line_offset_struct;
5873
5874 line_offset_struct.sect_off = line_offset;
5875 tu_group = create_type_unit_group (cu, line_offset_struct);
5876 *slot = tu_group;
5877 ++tu_stats->nr_symtabs;
5878 }
5879
5880 return tu_group;
5881 }
5882 \f
5883 /* Partial symbol tables. */
5884
5885 /* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890 static struct partial_symtab *
5891 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892 {
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
5896 pst = start_psymtab_common (objfile, name, 0,
5897 objfile->global_psymbols.next,
5898 objfile->static_psymbols.next);
5899
5900 pst->psymtabs_addrmap_supported = 1;
5901
5902 /* This is the glue that links PST into GDB's symbol API. */
5903 pst->read_symtab_private = per_cu;
5904 pst->read_symtab = dwarf2_read_symtab;
5905 per_cu->v.psymtab = pst;
5906
5907 return pst;
5908 }
5909
5910 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5911 type. */
5912
5913 struct process_psymtab_comp_unit_data
5914 {
5915 /* True if we are reading a DW_TAG_partial_unit. */
5916
5917 int want_partial_unit;
5918
5919 /* The "pretend" language that is used if the CU doesn't declare a
5920 language. */
5921
5922 enum language pretend_language;
5923 };
5924
5925 /* die_reader_func for process_psymtab_comp_unit. */
5926
5927 static void
5928 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5929 const gdb_byte *info_ptr,
5930 struct die_info *comp_unit_die,
5931 int has_children,
5932 void *data)
5933 {
5934 struct dwarf2_cu *cu = reader->cu;
5935 struct objfile *objfile = cu->objfile;
5936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5938 CORE_ADDR baseaddr;
5939 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5940 struct partial_symtab *pst;
5941 int has_pc_info;
5942 const char *filename;
5943 struct process_psymtab_comp_unit_data *info = data;
5944
5945 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5946 return;
5947
5948 gdb_assert (! per_cu->is_debug_types);
5949
5950 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5951
5952 cu->list_in_scope = &file_symbols;
5953
5954 /* Allocate a new partial symbol table structure. */
5955 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5956 if (filename == NULL)
5957 filename = "";
5958
5959 pst = create_partial_symtab (per_cu, filename);
5960
5961 /* This must be done before calling dwarf2_build_include_psymtabs. */
5962 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6013
6014 end_psymtab_common (objfile, pst);
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
6025 pst->dependencies =
6026 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
6040 if (dwarf_read_debug)
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053 }
6054
6055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058 static void
6059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6060 int want_partial_unit,
6061 enum language pretend_language)
6062 {
6063 struct process_psymtab_comp_unit_data info;
6064
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
6078 &info);
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082 }
6083
6084 /* Reader function for build_type_psymtabs. */
6085
6086 static void
6087 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6088 const gdb_byte *info_ptr,
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6096 struct signatured_type *sig_type;
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6111 tu_group = get_type_unit_group (cu, attr);
6112
6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
6126 end_psymtab_common (objfile, pst);
6127 }
6128
6129 /* Struct used to sort TUs by their abbreviation table offset. */
6130
6131 struct tu_abbrev_offset
6132 {
6133 struct signatured_type *sig_type;
6134 sect_offset abbrev_offset;
6135 };
6136
6137 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6138
6139 static int
6140 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6141 {
6142 const struct tu_abbrev_offset * const *a = ap;
6143 const struct tu_abbrev_offset * const *b = bp;
6144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6145 unsigned int boff = (*b)->abbrev_offset.sect_off;
6146
6147 return (aoff > boff) - (aoff < boff);
6148 }
6149
6150 /* Efficiently read all the type units.
6151 This does the bulk of the work for build_type_psymtabs.
6152
6153 The efficiency is because we sort TUs by the abbrev table they use and
6154 only read each abbrev table once. In one program there are 200K TUs
6155 sharing 8K abbrev tables.
6156
6157 The main purpose of this function is to support building the
6158 dwarf2_per_objfile->type_unit_groups table.
6159 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6160 can collapse the search space by grouping them by stmt_list.
6161 The savings can be significant, in the same program from above the 200K TUs
6162 share 8K stmt_list tables.
6163
6164 FUNC is expected to call get_type_unit_group, which will create the
6165 struct type_unit_group if necessary and add it to
6166 dwarf2_per_objfile->type_unit_groups. */
6167
6168 static void
6169 build_type_psymtabs_1 (void)
6170 {
6171 struct objfile *objfile = dwarf2_per_objfile->objfile;
6172 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6173 struct cleanup *cleanups;
6174 struct abbrev_table *abbrev_table;
6175 sect_offset abbrev_offset;
6176 struct tu_abbrev_offset *sorted_by_abbrev;
6177 struct type_unit_group **iter;
6178 int i;
6179
6180 /* It's up to the caller to not call us multiple times. */
6181 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6182
6183 if (dwarf2_per_objfile->n_type_units == 0)
6184 return;
6185
6186 /* TUs typically share abbrev tables, and there can be way more TUs than
6187 abbrev tables. Sort by abbrev table to reduce the number of times we
6188 read each abbrev table in.
6189 Alternatives are to punt or to maintain a cache of abbrev tables.
6190 This is simpler and efficient enough for now.
6191
6192 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6193 symtab to use). Typically TUs with the same abbrev offset have the same
6194 stmt_list value too so in practice this should work well.
6195
6196 The basic algorithm here is:
6197
6198 sort TUs by abbrev table
6199 for each TU with same abbrev table:
6200 read abbrev table if first user
6201 read TU top level DIE
6202 [IWBN if DWO skeletons had DW_AT_stmt_list]
6203 call FUNC */
6204
6205 if (dwarf_read_debug)
6206 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6207
6208 /* Sort in a separate table to maintain the order of all_type_units
6209 for .gdb_index: TU indices directly index all_type_units. */
6210 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6211 dwarf2_per_objfile->n_type_units);
6212 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6213 {
6214 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6215
6216 sorted_by_abbrev[i].sig_type = sig_type;
6217 sorted_by_abbrev[i].abbrev_offset =
6218 read_abbrev_offset (sig_type->per_cu.section,
6219 sig_type->per_cu.offset);
6220 }
6221 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6222 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6223 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6224
6225 abbrev_offset.sect_off = ~(unsigned) 0;
6226 abbrev_table = NULL;
6227 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6228
6229 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6230 {
6231 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6232
6233 /* Switch to the next abbrev table if necessary. */
6234 if (abbrev_table == NULL
6235 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6236 {
6237 if (abbrev_table != NULL)
6238 {
6239 abbrev_table_free (abbrev_table);
6240 /* Reset to NULL in case abbrev_table_read_table throws
6241 an error: abbrev_table_free_cleanup will get called. */
6242 abbrev_table = NULL;
6243 }
6244 abbrev_offset = tu->abbrev_offset;
6245 abbrev_table =
6246 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6247 abbrev_offset);
6248 ++tu_stats->nr_uniq_abbrev_tables;
6249 }
6250
6251 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6252 build_type_psymtabs_reader, NULL);
6253 }
6254
6255 do_cleanups (cleanups);
6256 }
6257
6258 /* Print collected type unit statistics. */
6259
6260 static void
6261 print_tu_stats (void)
6262 {
6263 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6264
6265 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6266 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6267 dwarf2_per_objfile->n_type_units);
6268 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6269 tu_stats->nr_uniq_abbrev_tables);
6270 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6271 tu_stats->nr_symtabs);
6272 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6273 tu_stats->nr_symtab_sharers);
6274 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6275 tu_stats->nr_stmt_less_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6277 tu_stats->nr_all_type_units_reallocs);
6278 }
6279
6280 /* Traversal function for build_type_psymtabs. */
6281
6282 static int
6283 build_type_psymtab_dependencies (void **slot, void *info)
6284 {
6285 struct objfile *objfile = dwarf2_per_objfile->objfile;
6286 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6287 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6288 struct partial_symtab *pst = per_cu->v.psymtab;
6289 int len = VEC_length (sig_type_ptr, tu_group->tus);
6290 struct signatured_type *iter;
6291 int i;
6292
6293 gdb_assert (len > 0);
6294 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6295
6296 pst->number_of_dependencies = len;
6297 pst->dependencies =
6298 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6299 for (i = 0;
6300 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6301 ++i)
6302 {
6303 gdb_assert (iter->per_cu.is_debug_types);
6304 pst->dependencies[i] = iter->per_cu.v.psymtab;
6305 iter->type_unit_group = tu_group;
6306 }
6307
6308 VEC_free (sig_type_ptr, tu_group->tus);
6309
6310 return 1;
6311 }
6312
6313 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6314 Build partial symbol tables for the .debug_types comp-units. */
6315
6316 static void
6317 build_type_psymtabs (struct objfile *objfile)
6318 {
6319 if (! create_all_type_units (objfile))
6320 return;
6321
6322 build_type_psymtabs_1 ();
6323 }
6324
6325 /* Traversal function for process_skeletonless_type_unit.
6326 Read a TU in a DWO file and build partial symbols for it. */
6327
6328 static int
6329 process_skeletonless_type_unit (void **slot, void *info)
6330 {
6331 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6332 struct objfile *objfile = info;
6333 struct signatured_type find_entry, *entry;
6334
6335 /* If this TU doesn't exist in the global table, add it and read it in. */
6336
6337 if (dwarf2_per_objfile->signatured_types == NULL)
6338 {
6339 dwarf2_per_objfile->signatured_types
6340 = allocate_signatured_type_table (objfile);
6341 }
6342
6343 find_entry.signature = dwo_unit->signature;
6344 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6345 INSERT);
6346 /* If we've already seen this type there's nothing to do. What's happening
6347 is we're doing our own version of comdat-folding here. */
6348 if (*slot != NULL)
6349 return 1;
6350
6351 /* This does the job that create_all_type_units would have done for
6352 this TU. */
6353 entry = add_type_unit (dwo_unit->signature, slot);
6354 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6355 *slot = entry;
6356
6357 /* This does the job that build_type_psymtabs_1 would have done. */
6358 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6359 build_type_psymtabs_reader, NULL);
6360
6361 return 1;
6362 }
6363
6364 /* Traversal function for process_skeletonless_type_units. */
6365
6366 static int
6367 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6368 {
6369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6370
6371 if (dwo_file->tus != NULL)
6372 {
6373 htab_traverse_noresize (dwo_file->tus,
6374 process_skeletonless_type_unit, info);
6375 }
6376
6377 return 1;
6378 }
6379
6380 /* Scan all TUs of DWO files, verifying we've processed them.
6381 This is needed in case a TU was emitted without its skeleton.
6382 Note: This can't be done until we know what all the DWO files are. */
6383
6384 static void
6385 process_skeletonless_type_units (struct objfile *objfile)
6386 {
6387 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6388 if (get_dwp_file () == NULL
6389 && dwarf2_per_objfile->dwo_files != NULL)
6390 {
6391 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6392 process_dwo_file_for_skeletonless_type_units,
6393 objfile);
6394 }
6395 }
6396
6397 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6398
6399 static void
6400 psymtabs_addrmap_cleanup (void *o)
6401 {
6402 struct objfile *objfile = o;
6403
6404 objfile->psymtabs_addrmap = NULL;
6405 }
6406
6407 /* Compute the 'user' field for each psymtab in OBJFILE. */
6408
6409 static void
6410 set_partial_user (struct objfile *objfile)
6411 {
6412 int i;
6413
6414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6415 {
6416 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6417 struct partial_symtab *pst = per_cu->v.psymtab;
6418 int j;
6419
6420 if (pst == NULL)
6421 continue;
6422
6423 for (j = 0; j < pst->number_of_dependencies; ++j)
6424 {
6425 /* Set the 'user' field only if it is not already set. */
6426 if (pst->dependencies[j]->user == NULL)
6427 pst->dependencies[j]->user = pst;
6428 }
6429 }
6430 }
6431
6432 /* Build the partial symbol table by doing a quick pass through the
6433 .debug_info and .debug_abbrev sections. */
6434
6435 static void
6436 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6437 {
6438 struct cleanup *back_to, *addrmap_cleanup;
6439 struct obstack temp_obstack;
6440 int i;
6441
6442 if (dwarf_read_debug)
6443 {
6444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6445 objfile_name (objfile));
6446 }
6447
6448 dwarf2_per_objfile->reading_partial_symbols = 1;
6449
6450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6451
6452 /* Any cached compilation units will be linked by the per-objfile
6453 read_in_chain. Make sure to free them when we're done. */
6454 back_to = make_cleanup (free_cached_comp_units, NULL);
6455
6456 build_type_psymtabs (objfile);
6457
6458 create_all_comp_units (objfile);
6459
6460 /* Create a temporary address map on a temporary obstack. We later
6461 copy this to the final obstack. */
6462 obstack_init (&temp_obstack);
6463 make_cleanup_obstack_free (&temp_obstack);
6464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6466
6467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6468 {
6469 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6470
6471 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6472 }
6473
6474 /* This has to wait until we read the CUs, we need the list of DWOs. */
6475 process_skeletonless_type_units (objfile);
6476
6477 /* Now that all TUs have been processed we can fill in the dependencies. */
6478 if (dwarf2_per_objfile->type_unit_groups != NULL)
6479 {
6480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6481 build_type_psymtab_dependencies, NULL);
6482 }
6483
6484 if (dwarf_read_debug)
6485 print_tu_stats ();
6486
6487 set_partial_user (objfile);
6488
6489 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6490 &objfile->objfile_obstack);
6491 discard_cleanups (addrmap_cleanup);
6492
6493 do_cleanups (back_to);
6494
6495 if (dwarf_read_debug)
6496 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6497 objfile_name (objfile));
6498 }
6499
6500 /* die_reader_func for load_partial_comp_unit. */
6501
6502 static void
6503 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6504 const gdb_byte *info_ptr,
6505 struct die_info *comp_unit_die,
6506 int has_children,
6507 void *data)
6508 {
6509 struct dwarf2_cu *cu = reader->cu;
6510
6511 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6512
6513 /* Check if comp unit has_children.
6514 If so, read the rest of the partial symbols from this comp unit.
6515 If not, there's no more debug_info for this comp unit. */
6516 if (has_children)
6517 load_partial_dies (reader, info_ptr, 0);
6518 }
6519
6520 /* Load the partial DIEs for a secondary CU into memory.
6521 This is also used when rereading a primary CU with load_all_dies. */
6522
6523 static void
6524 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6525 {
6526 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6527 load_partial_comp_unit_reader, NULL);
6528 }
6529
6530 static void
6531 read_comp_units_from_section (struct objfile *objfile,
6532 struct dwarf2_section_info *section,
6533 unsigned int is_dwz,
6534 int *n_allocated,
6535 int *n_comp_units,
6536 struct dwarf2_per_cu_data ***all_comp_units)
6537 {
6538 const gdb_byte *info_ptr;
6539 bfd *abfd = get_section_bfd_owner (section);
6540
6541 if (dwarf_read_debug)
6542 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6543 get_section_name (section),
6544 get_section_file_name (section));
6545
6546 dwarf2_read_section (objfile, section);
6547
6548 info_ptr = section->buffer;
6549
6550 while (info_ptr < section->buffer + section->size)
6551 {
6552 unsigned int length, initial_length_size;
6553 struct dwarf2_per_cu_data *this_cu;
6554 sect_offset offset;
6555
6556 offset.sect_off = info_ptr - section->buffer;
6557
6558 /* Read just enough information to find out where the next
6559 compilation unit is. */
6560 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6561
6562 /* Save the compilation unit for later lookup. */
6563 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6564 memset (this_cu, 0, sizeof (*this_cu));
6565 this_cu->offset = offset;
6566 this_cu->length = length + initial_length_size;
6567 this_cu->is_dwz = is_dwz;
6568 this_cu->objfile = objfile;
6569 this_cu->section = section;
6570
6571 if (*n_comp_units == *n_allocated)
6572 {
6573 *n_allocated *= 2;
6574 *all_comp_units = xrealloc (*all_comp_units,
6575 *n_allocated
6576 * sizeof (struct dwarf2_per_cu_data *));
6577 }
6578 (*all_comp_units)[*n_comp_units] = this_cu;
6579 ++*n_comp_units;
6580
6581 info_ptr = info_ptr + this_cu->length;
6582 }
6583 }
6584
6585 /* Create a list of all compilation units in OBJFILE.
6586 This is only done for -readnow and building partial symtabs. */
6587
6588 static void
6589 create_all_comp_units (struct objfile *objfile)
6590 {
6591 int n_allocated;
6592 int n_comp_units;
6593 struct dwarf2_per_cu_data **all_comp_units;
6594 struct dwz_file *dwz;
6595
6596 n_comp_units = 0;
6597 n_allocated = 10;
6598 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6599
6600 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6601 &n_allocated, &n_comp_units, &all_comp_units);
6602
6603 dwz = dwarf2_get_dwz_file ();
6604 if (dwz != NULL)
6605 read_comp_units_from_section (objfile, &dwz->info, 1,
6606 &n_allocated, &n_comp_units,
6607 &all_comp_units);
6608
6609 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6610 struct dwarf2_per_cu_data *,
6611 n_comp_units);
6612 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6613 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6614 xfree (all_comp_units);
6615 dwarf2_per_objfile->n_comp_units = n_comp_units;
6616 }
6617
6618 /* Process all loaded DIEs for compilation unit CU, starting at
6619 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6620 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6621 DW_AT_ranges). See the comments of add_partial_subprogram on how
6622 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6623
6624 static void
6625 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6626 CORE_ADDR *highpc, int set_addrmap,
6627 struct dwarf2_cu *cu)
6628 {
6629 struct partial_die_info *pdi;
6630
6631 /* Now, march along the PDI's, descending into ones which have
6632 interesting children but skipping the children of the other ones,
6633 until we reach the end of the compilation unit. */
6634
6635 pdi = first_die;
6636
6637 while (pdi != NULL)
6638 {
6639 fixup_partial_die (pdi, cu);
6640
6641 /* Anonymous namespaces or modules have no name but have interesting
6642 children, so we need to look at them. Ditto for anonymous
6643 enums. */
6644
6645 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6646 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6647 || pdi->tag == DW_TAG_imported_unit)
6648 {
6649 switch (pdi->tag)
6650 {
6651 case DW_TAG_subprogram:
6652 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6653 break;
6654 case DW_TAG_constant:
6655 case DW_TAG_variable:
6656 case DW_TAG_typedef:
6657 case DW_TAG_union_type:
6658 if (!pdi->is_declaration)
6659 {
6660 add_partial_symbol (pdi, cu);
6661 }
6662 break;
6663 case DW_TAG_class_type:
6664 case DW_TAG_interface_type:
6665 case DW_TAG_structure_type:
6666 if (!pdi->is_declaration)
6667 {
6668 add_partial_symbol (pdi, cu);
6669 }
6670 break;
6671 case DW_TAG_enumeration_type:
6672 if (!pdi->is_declaration)
6673 add_partial_enumeration (pdi, cu);
6674 break;
6675 case DW_TAG_base_type:
6676 case DW_TAG_subrange_type:
6677 /* File scope base type definitions are added to the partial
6678 symbol table. */
6679 add_partial_symbol (pdi, cu);
6680 break;
6681 case DW_TAG_namespace:
6682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6683 break;
6684 case DW_TAG_module:
6685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6686 break;
6687 case DW_TAG_imported_unit:
6688 {
6689 struct dwarf2_per_cu_data *per_cu;
6690
6691 /* For now we don't handle imported units in type units. */
6692 if (cu->per_cu->is_debug_types)
6693 {
6694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6695 " supported in type units [in module %s]"),
6696 objfile_name (cu->objfile));
6697 }
6698
6699 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6700 pdi->is_dwz,
6701 cu->objfile);
6702
6703 /* Go read the partial unit, if needed. */
6704 if (per_cu->v.psymtab == NULL)
6705 process_psymtab_comp_unit (per_cu, 1, cu->language);
6706
6707 VEC_safe_push (dwarf2_per_cu_ptr,
6708 cu->per_cu->imported_symtabs, per_cu);
6709 }
6710 break;
6711 case DW_TAG_imported_declaration:
6712 add_partial_symbol (pdi, cu);
6713 break;
6714 default:
6715 break;
6716 }
6717 }
6718
6719 /* If the die has a sibling, skip to the sibling. */
6720
6721 pdi = pdi->die_sibling;
6722 }
6723 }
6724
6725 /* Functions used to compute the fully scoped name of a partial DIE.
6726
6727 Normally, this is simple. For C++, the parent DIE's fully scoped
6728 name is concatenated with "::" and the partial DIE's name. For
6729 Java, the same thing occurs except that "." is used instead of "::".
6730 Enumerators are an exception; they use the scope of their parent
6731 enumeration type, i.e. the name of the enumeration type is not
6732 prepended to the enumerator.
6733
6734 There are two complexities. One is DW_AT_specification; in this
6735 case "parent" means the parent of the target of the specification,
6736 instead of the direct parent of the DIE. The other is compilers
6737 which do not emit DW_TAG_namespace; in this case we try to guess
6738 the fully qualified name of structure types from their members'
6739 linkage names. This must be done using the DIE's children rather
6740 than the children of any DW_AT_specification target. We only need
6741 to do this for structures at the top level, i.e. if the target of
6742 any DW_AT_specification (if any; otherwise the DIE itself) does not
6743 have a parent. */
6744
6745 /* Compute the scope prefix associated with PDI's parent, in
6746 compilation unit CU. The result will be allocated on CU's
6747 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6748 field. NULL is returned if no prefix is necessary. */
6749 static const char *
6750 partial_die_parent_scope (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6752 {
6753 const char *grandparent_scope;
6754 struct partial_die_info *parent, *real_pdi;
6755
6756 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6757 then this means the parent of the specification DIE. */
6758
6759 real_pdi = pdi;
6760 while (real_pdi->has_specification)
6761 real_pdi = find_partial_die (real_pdi->spec_offset,
6762 real_pdi->spec_is_dwz, cu);
6763
6764 parent = real_pdi->die_parent;
6765 if (parent == NULL)
6766 return NULL;
6767
6768 if (parent->scope_set)
6769 return parent->scope;
6770
6771 fixup_partial_die (parent, cu);
6772
6773 grandparent_scope = partial_die_parent_scope (parent, cu);
6774
6775 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6776 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6777 Work around this problem here. */
6778 if (cu->language == language_cplus
6779 && parent->tag == DW_TAG_namespace
6780 && strcmp (parent->name, "::") == 0
6781 && grandparent_scope == NULL)
6782 {
6783 parent->scope = NULL;
6784 parent->scope_set = 1;
6785 return NULL;
6786 }
6787
6788 if (pdi->tag == DW_TAG_enumerator)
6789 /* Enumerators should not get the name of the enumeration as a prefix. */
6790 parent->scope = grandparent_scope;
6791 else if (parent->tag == DW_TAG_namespace
6792 || parent->tag == DW_TAG_module
6793 || parent->tag == DW_TAG_structure_type
6794 || parent->tag == DW_TAG_class_type
6795 || parent->tag == DW_TAG_interface_type
6796 || parent->tag == DW_TAG_union_type
6797 || parent->tag == DW_TAG_enumeration_type)
6798 {
6799 if (grandparent_scope == NULL)
6800 parent->scope = parent->name;
6801 else
6802 parent->scope = typename_concat (&cu->comp_unit_obstack,
6803 grandparent_scope,
6804 parent->name, 0, cu);
6805 }
6806 else
6807 {
6808 /* FIXME drow/2004-04-01: What should we be doing with
6809 function-local names? For partial symbols, we should probably be
6810 ignoring them. */
6811 complaint (&symfile_complaints,
6812 _("unhandled containing DIE tag %d for DIE at %d"),
6813 parent->tag, pdi->offset.sect_off);
6814 parent->scope = grandparent_scope;
6815 }
6816
6817 parent->scope_set = 1;
6818 return parent->scope;
6819 }
6820
6821 /* Return the fully scoped name associated with PDI, from compilation unit
6822 CU. The result will be allocated with malloc. */
6823
6824 static char *
6825 partial_die_full_name (struct partial_die_info *pdi,
6826 struct dwarf2_cu *cu)
6827 {
6828 const char *parent_scope;
6829
6830 /* If this is a template instantiation, we can not work out the
6831 template arguments from partial DIEs. So, unfortunately, we have
6832 to go through the full DIEs. At least any work we do building
6833 types here will be reused if full symbols are loaded later. */
6834 if (pdi->has_template_arguments)
6835 {
6836 fixup_partial_die (pdi, cu);
6837
6838 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6839 {
6840 struct die_info *die;
6841 struct attribute attr;
6842 struct dwarf2_cu *ref_cu = cu;
6843
6844 /* DW_FORM_ref_addr is using section offset. */
6845 attr.name = 0;
6846 attr.form = DW_FORM_ref_addr;
6847 attr.u.unsnd = pdi->offset.sect_off;
6848 die = follow_die_ref (NULL, &attr, &ref_cu);
6849
6850 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6851 }
6852 }
6853
6854 parent_scope = partial_die_parent_scope (pdi, cu);
6855 if (parent_scope == NULL)
6856 return NULL;
6857 else
6858 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6859 }
6860
6861 static void
6862 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6863 {
6864 struct objfile *objfile = cu->objfile;
6865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6866 CORE_ADDR addr = 0;
6867 const char *actual_name = NULL;
6868 CORE_ADDR baseaddr;
6869 char *built_actual_name;
6870
6871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6872
6873 built_actual_name = partial_die_full_name (pdi, cu);
6874 if (built_actual_name != NULL)
6875 actual_name = built_actual_name;
6876
6877 if (actual_name == NULL)
6878 actual_name = pdi->name;
6879
6880 switch (pdi->tag)
6881 {
6882 case DW_TAG_subprogram:
6883 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6884 if (pdi->is_external || cu->language == language_ada)
6885 {
6886 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6887 of the global scope. But in Ada, we want to be able to access
6888 nested procedures globally. So all Ada subprograms are stored
6889 in the global scope. */
6890 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6891 objfile); */
6892 add_psymbol_to_list (actual_name, strlen (actual_name),
6893 built_actual_name != NULL,
6894 VAR_DOMAIN, LOC_BLOCK,
6895 &objfile->global_psymbols,
6896 addr, cu->language, objfile);
6897 }
6898 else
6899 {
6900 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6901 objfile); */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->static_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 break;
6909 case DW_TAG_constant:
6910 {
6911 struct psymbol_allocation_list *list;
6912
6913 if (pdi->is_external)
6914 list = &objfile->global_psymbols;
6915 else
6916 list = &objfile->static_psymbols;
6917 add_psymbol_to_list (actual_name, strlen (actual_name),
6918 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6919 list, 0, cu->language, objfile);
6920 }
6921 break;
6922 case DW_TAG_variable:
6923 if (pdi->d.locdesc)
6924 addr = decode_locdesc (pdi->d.locdesc, cu);
6925
6926 if (pdi->d.locdesc
6927 && addr == 0
6928 && !dwarf2_per_objfile->has_section_at_zero)
6929 {
6930 /* A global or static variable may also have been stripped
6931 out by the linker if unused, in which case its address
6932 will be nullified; do not add such variables into partial
6933 symbol table then. */
6934 }
6935 else if (pdi->is_external)
6936 {
6937 /* Global Variable.
6938 Don't enter into the minimal symbol tables as there is
6939 a minimal symbol table entry from the ELF symbols already.
6940 Enter into partial symbol table if it has a location
6941 descriptor or a type.
6942 If the location descriptor is missing, new_symbol will create
6943 a LOC_UNRESOLVED symbol, the address of the variable will then
6944 be determined from the minimal symbol table whenever the variable
6945 is referenced.
6946 The address for the partial symbol table entry is not
6947 used by GDB, but it comes in handy for debugging partial symbol
6948 table building. */
6949
6950 if (pdi->d.locdesc || pdi->has_type)
6951 add_psymbol_to_list (actual_name, strlen (actual_name),
6952 built_actual_name != NULL,
6953 VAR_DOMAIN, LOC_STATIC,
6954 &objfile->global_psymbols,
6955 addr + baseaddr,
6956 cu->language, objfile);
6957 }
6958 else
6959 {
6960 int has_loc = pdi->d.locdesc != NULL;
6961
6962 /* Static Variable. Skip symbols whose value we cannot know (those
6963 without location descriptors or constant values). */
6964 if (!has_loc && !pdi->has_const_value)
6965 {
6966 xfree (built_actual_name);
6967 return;
6968 }
6969
6970 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6971 mst_file_data, objfile); */
6972 add_psymbol_to_list (actual_name, strlen (actual_name),
6973 built_actual_name != NULL,
6974 VAR_DOMAIN, LOC_STATIC,
6975 &objfile->static_psymbols,
6976 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6977 cu->language, objfile);
6978 }
6979 break;
6980 case DW_TAG_typedef:
6981 case DW_TAG_base_type:
6982 case DW_TAG_subrange_type:
6983 add_psymbol_to_list (actual_name, strlen (actual_name),
6984 built_actual_name != NULL,
6985 VAR_DOMAIN, LOC_TYPEDEF,
6986 &objfile->static_psymbols,
6987 0, cu->language, objfile);
6988 break;
6989 case DW_TAG_imported_declaration:
6990 case DW_TAG_namespace:
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 VAR_DOMAIN, LOC_TYPEDEF,
6994 &objfile->global_psymbols,
6995 0, cu->language, objfile);
6996 break;
6997 case DW_TAG_module:
6998 add_psymbol_to_list (actual_name, strlen (actual_name),
6999 built_actual_name != NULL,
7000 MODULE_DOMAIN, LOC_TYPEDEF,
7001 &objfile->global_psymbols,
7002 0, cu->language, objfile);
7003 break;
7004 case DW_TAG_class_type:
7005 case DW_TAG_interface_type:
7006 case DW_TAG_structure_type:
7007 case DW_TAG_union_type:
7008 case DW_TAG_enumeration_type:
7009 /* Skip external references. The DWARF standard says in the section
7010 about "Structure, Union, and Class Type Entries": "An incomplete
7011 structure, union or class type is represented by a structure,
7012 union or class entry that does not have a byte size attribute
7013 and that has a DW_AT_declaration attribute." */
7014 if (!pdi->has_byte_size && pdi->is_declaration)
7015 {
7016 xfree (built_actual_name);
7017 return;
7018 }
7019
7020 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7021 static vs. global. */
7022 add_psymbol_to_list (actual_name, strlen (actual_name),
7023 built_actual_name != NULL,
7024 STRUCT_DOMAIN, LOC_TYPEDEF,
7025 (cu->language == language_cplus
7026 || cu->language == language_java)
7027 ? &objfile->global_psymbols
7028 : &objfile->static_psymbols,
7029 0, cu->language, objfile);
7030
7031 break;
7032 case DW_TAG_enumerator:
7033 add_psymbol_to_list (actual_name, strlen (actual_name),
7034 built_actual_name != NULL,
7035 VAR_DOMAIN, LOC_CONST,
7036 (cu->language == language_cplus
7037 || cu->language == language_java)
7038 ? &objfile->global_psymbols
7039 : &objfile->static_psymbols,
7040 0, cu->language, objfile);
7041 break;
7042 default:
7043 break;
7044 }
7045
7046 xfree (built_actual_name);
7047 }
7048
7049 /* Read a partial die corresponding to a namespace; also, add a symbol
7050 corresponding to that namespace to the symbol table. NAMESPACE is
7051 the name of the enclosing namespace. */
7052
7053 static void
7054 add_partial_namespace (struct partial_die_info *pdi,
7055 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7056 int set_addrmap, struct dwarf2_cu *cu)
7057 {
7058 /* Add a symbol for the namespace. */
7059
7060 add_partial_symbol (pdi, cu);
7061
7062 /* Now scan partial symbols in that namespace. */
7063
7064 if (pdi->has_children)
7065 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7066 }
7067
7068 /* Read a partial die corresponding to a Fortran module. */
7069
7070 static void
7071 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7072 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7073 {
7074 /* Add a symbol for the namespace. */
7075
7076 add_partial_symbol (pdi, cu);
7077
7078 /* Now scan partial symbols in that module. */
7079
7080 if (pdi->has_children)
7081 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7082 }
7083
7084 /* Read a partial die corresponding to a subprogram and create a partial
7085 symbol for that subprogram. When the CU language allows it, this
7086 routine also defines a partial symbol for each nested subprogram
7087 that this subprogram contains. If SET_ADDRMAP is true, record the
7088 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7089 and highest PC values found in PDI.
7090
7091 PDI may also be a lexical block, in which case we simply search
7092 recursively for subprograms defined inside that lexical block.
7093 Again, this is only performed when the CU language allows this
7094 type of definitions. */
7095
7096 static void
7097 add_partial_subprogram (struct partial_die_info *pdi,
7098 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7099 int set_addrmap, struct dwarf2_cu *cu)
7100 {
7101 if (pdi->tag == DW_TAG_subprogram)
7102 {
7103 if (pdi->has_pc_info)
7104 {
7105 if (pdi->lowpc < *lowpc)
7106 *lowpc = pdi->lowpc;
7107 if (pdi->highpc > *highpc)
7108 *highpc = pdi->highpc;
7109 if (set_addrmap)
7110 {
7111 struct objfile *objfile = cu->objfile;
7112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7113 CORE_ADDR baseaddr;
7114 CORE_ADDR highpc;
7115 CORE_ADDR lowpc;
7116
7117 baseaddr = ANOFFSET (objfile->section_offsets,
7118 SECT_OFF_TEXT (objfile));
7119 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7120 pdi->lowpc + baseaddr);
7121 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7122 pdi->highpc + baseaddr);
7123 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7124 cu->per_cu->v.psymtab);
7125 }
7126 }
7127
7128 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7129 {
7130 if (!pdi->is_declaration)
7131 /* Ignore subprogram DIEs that do not have a name, they are
7132 illegal. Do not emit a complaint at this point, we will
7133 do so when we convert this psymtab into a symtab. */
7134 if (pdi->name)
7135 add_partial_symbol (pdi, cu);
7136 }
7137 }
7138
7139 if (! pdi->has_children)
7140 return;
7141
7142 if (cu->language == language_ada)
7143 {
7144 pdi = pdi->die_child;
7145 while (pdi != NULL)
7146 {
7147 fixup_partial_die (pdi, cu);
7148 if (pdi->tag == DW_TAG_subprogram
7149 || pdi->tag == DW_TAG_lexical_block)
7150 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7151 pdi = pdi->die_sibling;
7152 }
7153 }
7154 }
7155
7156 /* Read a partial die corresponding to an enumeration type. */
7157
7158 static void
7159 add_partial_enumeration (struct partial_die_info *enum_pdi,
7160 struct dwarf2_cu *cu)
7161 {
7162 struct partial_die_info *pdi;
7163
7164 if (enum_pdi->name != NULL)
7165 add_partial_symbol (enum_pdi, cu);
7166
7167 pdi = enum_pdi->die_child;
7168 while (pdi)
7169 {
7170 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7171 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7172 else
7173 add_partial_symbol (pdi, cu);
7174 pdi = pdi->die_sibling;
7175 }
7176 }
7177
7178 /* Return the initial uleb128 in the die at INFO_PTR. */
7179
7180 static unsigned int
7181 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7182 {
7183 unsigned int bytes_read;
7184
7185 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7186 }
7187
7188 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7189 Return the corresponding abbrev, or NULL if the number is zero (indicating
7190 an empty DIE). In either case *BYTES_READ will be set to the length of
7191 the initial number. */
7192
7193 static struct abbrev_info *
7194 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7195 struct dwarf2_cu *cu)
7196 {
7197 bfd *abfd = cu->objfile->obfd;
7198 unsigned int abbrev_number;
7199 struct abbrev_info *abbrev;
7200
7201 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7202
7203 if (abbrev_number == 0)
7204 return NULL;
7205
7206 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7207 if (!abbrev)
7208 {
7209 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7210 " at offset 0x%x [in module %s]"),
7211 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7212 cu->header.offset.sect_off, bfd_get_filename (abfd));
7213 }
7214
7215 return abbrev;
7216 }
7217
7218 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7219 Returns a pointer to the end of a series of DIEs, terminated by an empty
7220 DIE. Any children of the skipped DIEs will also be skipped. */
7221
7222 static const gdb_byte *
7223 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7224 {
7225 struct dwarf2_cu *cu = reader->cu;
7226 struct abbrev_info *abbrev;
7227 unsigned int bytes_read;
7228
7229 while (1)
7230 {
7231 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7232 if (abbrev == NULL)
7233 return info_ptr + bytes_read;
7234 else
7235 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7236 }
7237 }
7238
7239 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7240 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7241 abbrev corresponding to that skipped uleb128 should be passed in
7242 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7243 children. */
7244
7245 static const gdb_byte *
7246 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7247 struct abbrev_info *abbrev)
7248 {
7249 unsigned int bytes_read;
7250 struct attribute attr;
7251 bfd *abfd = reader->abfd;
7252 struct dwarf2_cu *cu = reader->cu;
7253 const gdb_byte *buffer = reader->buffer;
7254 const gdb_byte *buffer_end = reader->buffer_end;
7255 const gdb_byte *start_info_ptr = info_ptr;
7256 unsigned int form, i;
7257
7258 for (i = 0; i < abbrev->num_attrs; i++)
7259 {
7260 /* The only abbrev we care about is DW_AT_sibling. */
7261 if (abbrev->attrs[i].name == DW_AT_sibling)
7262 {
7263 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7264 if (attr.form == DW_FORM_ref_addr)
7265 complaint (&symfile_complaints,
7266 _("ignoring absolute DW_AT_sibling"));
7267 else
7268 {
7269 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7270 const gdb_byte *sibling_ptr = buffer + off;
7271
7272 if (sibling_ptr < info_ptr)
7273 complaint (&symfile_complaints,
7274 _("DW_AT_sibling points backwards"));
7275 else if (sibling_ptr > reader->buffer_end)
7276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7277 else
7278 return sibling_ptr;
7279 }
7280 }
7281
7282 /* If it isn't DW_AT_sibling, skip this attribute. */
7283 form = abbrev->attrs[i].form;
7284 skip_attribute:
7285 switch (form)
7286 {
7287 case DW_FORM_ref_addr:
7288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7289 and later it is offset sized. */
7290 if (cu->header.version == 2)
7291 info_ptr += cu->header.addr_size;
7292 else
7293 info_ptr += cu->header.offset_size;
7294 break;
7295 case DW_FORM_GNU_ref_alt:
7296 info_ptr += cu->header.offset_size;
7297 break;
7298 case DW_FORM_addr:
7299 info_ptr += cu->header.addr_size;
7300 break;
7301 case DW_FORM_data1:
7302 case DW_FORM_ref1:
7303 case DW_FORM_flag:
7304 info_ptr += 1;
7305 break;
7306 case DW_FORM_flag_present:
7307 break;
7308 case DW_FORM_data2:
7309 case DW_FORM_ref2:
7310 info_ptr += 2;
7311 break;
7312 case DW_FORM_data4:
7313 case DW_FORM_ref4:
7314 info_ptr += 4;
7315 break;
7316 case DW_FORM_data8:
7317 case DW_FORM_ref8:
7318 case DW_FORM_ref_sig8:
7319 info_ptr += 8;
7320 break;
7321 case DW_FORM_string:
7322 read_direct_string (abfd, info_ptr, &bytes_read);
7323 info_ptr += bytes_read;
7324 break;
7325 case DW_FORM_sec_offset:
7326 case DW_FORM_strp:
7327 case DW_FORM_GNU_strp_alt:
7328 info_ptr += cu->header.offset_size;
7329 break;
7330 case DW_FORM_exprloc:
7331 case DW_FORM_block:
7332 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7333 info_ptr += bytes_read;
7334 break;
7335 case DW_FORM_block1:
7336 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7337 break;
7338 case DW_FORM_block2:
7339 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7340 break;
7341 case DW_FORM_block4:
7342 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7343 break;
7344 case DW_FORM_sdata:
7345 case DW_FORM_udata:
7346 case DW_FORM_ref_udata:
7347 case DW_FORM_GNU_addr_index:
7348 case DW_FORM_GNU_str_index:
7349 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7350 break;
7351 case DW_FORM_indirect:
7352 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7353 info_ptr += bytes_read;
7354 /* We need to continue parsing from here, so just go back to
7355 the top. */
7356 goto skip_attribute;
7357
7358 default:
7359 error (_("Dwarf Error: Cannot handle %s "
7360 "in DWARF reader [in module %s]"),
7361 dwarf_form_name (form),
7362 bfd_get_filename (abfd));
7363 }
7364 }
7365
7366 if (abbrev->has_children)
7367 return skip_children (reader, info_ptr);
7368 else
7369 return info_ptr;
7370 }
7371
7372 /* Locate ORIG_PDI's sibling.
7373 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7374
7375 static const gdb_byte *
7376 locate_pdi_sibling (const struct die_reader_specs *reader,
7377 struct partial_die_info *orig_pdi,
7378 const gdb_byte *info_ptr)
7379 {
7380 /* Do we know the sibling already? */
7381
7382 if (orig_pdi->sibling)
7383 return orig_pdi->sibling;
7384
7385 /* Are there any children to deal with? */
7386
7387 if (!orig_pdi->has_children)
7388 return info_ptr;
7389
7390 /* Skip the children the long way. */
7391
7392 return skip_children (reader, info_ptr);
7393 }
7394
7395 /* Expand this partial symbol table into a full symbol table. SELF is
7396 not NULL. */
7397
7398 static void
7399 dwarf2_read_symtab (struct partial_symtab *self,
7400 struct objfile *objfile)
7401 {
7402 if (self->readin)
7403 {
7404 warning (_("bug: psymtab for %s is already read in."),
7405 self->filename);
7406 }
7407 else
7408 {
7409 if (info_verbose)
7410 {
7411 printf_filtered (_("Reading in symbols for %s..."),
7412 self->filename);
7413 gdb_flush (gdb_stdout);
7414 }
7415
7416 /* Restore our global data. */
7417 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7418
7419 /* If this psymtab is constructed from a debug-only objfile, the
7420 has_section_at_zero flag will not necessarily be correct. We
7421 can get the correct value for this flag by looking at the data
7422 associated with the (presumably stripped) associated objfile. */
7423 if (objfile->separate_debug_objfile_backlink)
7424 {
7425 struct dwarf2_per_objfile *dpo_backlink
7426 = objfile_data (objfile->separate_debug_objfile_backlink,
7427 dwarf2_objfile_data_key);
7428
7429 dwarf2_per_objfile->has_section_at_zero
7430 = dpo_backlink->has_section_at_zero;
7431 }
7432
7433 dwarf2_per_objfile->reading_partial_symbols = 0;
7434
7435 psymtab_to_symtab_1 (self);
7436
7437 /* Finish up the debug error message. */
7438 if (info_verbose)
7439 printf_filtered (_("done.\n"));
7440 }
7441
7442 process_cu_includes ();
7443 }
7444 \f
7445 /* Reading in full CUs. */
7446
7447 /* Add PER_CU to the queue. */
7448
7449 static void
7450 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7451 enum language pretend_language)
7452 {
7453 struct dwarf2_queue_item *item;
7454
7455 per_cu->queued = 1;
7456 item = XNEW (struct dwarf2_queue_item);
7457 item->per_cu = per_cu;
7458 item->pretend_language = pretend_language;
7459 item->next = NULL;
7460
7461 if (dwarf2_queue == NULL)
7462 dwarf2_queue = item;
7463 else
7464 dwarf2_queue_tail->next = item;
7465
7466 dwarf2_queue_tail = item;
7467 }
7468
7469 /* If PER_CU is not yet queued, add it to the queue.
7470 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7471 dependency.
7472 The result is non-zero if PER_CU was queued, otherwise the result is zero
7473 meaning either PER_CU is already queued or it is already loaded.
7474
7475 N.B. There is an invariant here that if a CU is queued then it is loaded.
7476 The caller is required to load PER_CU if we return non-zero. */
7477
7478 static int
7479 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7480 struct dwarf2_per_cu_data *per_cu,
7481 enum language pretend_language)
7482 {
7483 /* We may arrive here during partial symbol reading, if we need full
7484 DIEs to process an unusual case (e.g. template arguments). Do
7485 not queue PER_CU, just tell our caller to load its DIEs. */
7486 if (dwarf2_per_objfile->reading_partial_symbols)
7487 {
7488 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7489 return 1;
7490 return 0;
7491 }
7492
7493 /* Mark the dependence relation so that we don't flush PER_CU
7494 too early. */
7495 if (dependent_cu != NULL)
7496 dwarf2_add_dependence (dependent_cu, per_cu);
7497
7498 /* If it's already on the queue, we have nothing to do. */
7499 if (per_cu->queued)
7500 return 0;
7501
7502 /* If the compilation unit is already loaded, just mark it as
7503 used. */
7504 if (per_cu->cu != NULL)
7505 {
7506 per_cu->cu->last_used = 0;
7507 return 0;
7508 }
7509
7510 /* Add it to the queue. */
7511 queue_comp_unit (per_cu, pretend_language);
7512
7513 return 1;
7514 }
7515
7516 /* Process the queue. */
7517
7518 static void
7519 process_queue (void)
7520 {
7521 struct dwarf2_queue_item *item, *next_item;
7522
7523 if (dwarf_read_debug)
7524 {
7525 fprintf_unfiltered (gdb_stdlog,
7526 "Expanding one or more symtabs of objfile %s ...\n",
7527 objfile_name (dwarf2_per_objfile->objfile));
7528 }
7529
7530 /* The queue starts out with one item, but following a DIE reference
7531 may load a new CU, adding it to the end of the queue. */
7532 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7533 {
7534 if ((dwarf2_per_objfile->using_index
7535 ? !item->per_cu->v.quick->compunit_symtab
7536 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7537 /* Skip dummy CUs. */
7538 && item->per_cu->cu != NULL)
7539 {
7540 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7541 unsigned int debug_print_threshold;
7542 char buf[100];
7543
7544 if (per_cu->is_debug_types)
7545 {
7546 struct signatured_type *sig_type =
7547 (struct signatured_type *) per_cu;
7548
7549 sprintf (buf, "TU %s at offset 0x%x",
7550 hex_string (sig_type->signature),
7551 per_cu->offset.sect_off);
7552 /* There can be 100s of TUs.
7553 Only print them in verbose mode. */
7554 debug_print_threshold = 2;
7555 }
7556 else
7557 {
7558 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7559 debug_print_threshold = 1;
7560 }
7561
7562 if (dwarf_read_debug >= debug_print_threshold)
7563 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7564
7565 if (per_cu->is_debug_types)
7566 process_full_type_unit (per_cu, item->pretend_language);
7567 else
7568 process_full_comp_unit (per_cu, item->pretend_language);
7569
7570 if (dwarf_read_debug >= debug_print_threshold)
7571 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7572 }
7573
7574 item->per_cu->queued = 0;
7575 next_item = item->next;
7576 xfree (item);
7577 }
7578
7579 dwarf2_queue_tail = NULL;
7580
7581 if (dwarf_read_debug)
7582 {
7583 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7584 objfile_name (dwarf2_per_objfile->objfile));
7585 }
7586 }
7587
7588 /* Free all allocated queue entries. This function only releases anything if
7589 an error was thrown; if the queue was processed then it would have been
7590 freed as we went along. */
7591
7592 static void
7593 dwarf2_release_queue (void *dummy)
7594 {
7595 struct dwarf2_queue_item *item, *last;
7596
7597 item = dwarf2_queue;
7598 while (item)
7599 {
7600 /* Anything still marked queued is likely to be in an
7601 inconsistent state, so discard it. */
7602 if (item->per_cu->queued)
7603 {
7604 if (item->per_cu->cu != NULL)
7605 free_one_cached_comp_unit (item->per_cu);
7606 item->per_cu->queued = 0;
7607 }
7608
7609 last = item;
7610 item = item->next;
7611 xfree (last);
7612 }
7613
7614 dwarf2_queue = dwarf2_queue_tail = NULL;
7615 }
7616
7617 /* Read in full symbols for PST, and anything it depends on. */
7618
7619 static void
7620 psymtab_to_symtab_1 (struct partial_symtab *pst)
7621 {
7622 struct dwarf2_per_cu_data *per_cu;
7623 int i;
7624
7625 if (pst->readin)
7626 return;
7627
7628 for (i = 0; i < pst->number_of_dependencies; i++)
7629 if (!pst->dependencies[i]->readin
7630 && pst->dependencies[i]->user == NULL)
7631 {
7632 /* Inform about additional files that need to be read in. */
7633 if (info_verbose)
7634 {
7635 /* FIXME: i18n: Need to make this a single string. */
7636 fputs_filtered (" ", gdb_stdout);
7637 wrap_here ("");
7638 fputs_filtered ("and ", gdb_stdout);
7639 wrap_here ("");
7640 printf_filtered ("%s...", pst->dependencies[i]->filename);
7641 wrap_here (""); /* Flush output. */
7642 gdb_flush (gdb_stdout);
7643 }
7644 psymtab_to_symtab_1 (pst->dependencies[i]);
7645 }
7646
7647 per_cu = pst->read_symtab_private;
7648
7649 if (per_cu == NULL)
7650 {
7651 /* It's an include file, no symbols to read for it.
7652 Everything is in the parent symtab. */
7653 pst->readin = 1;
7654 return;
7655 }
7656
7657 dw2_do_instantiate_symtab (per_cu);
7658 }
7659
7660 /* Trivial hash function for die_info: the hash value of a DIE
7661 is its offset in .debug_info for this objfile. */
7662
7663 static hashval_t
7664 die_hash (const void *item)
7665 {
7666 const struct die_info *die = item;
7667
7668 return die->offset.sect_off;
7669 }
7670
7671 /* Trivial comparison function for die_info structures: two DIEs
7672 are equal if they have the same offset. */
7673
7674 static int
7675 die_eq (const void *item_lhs, const void *item_rhs)
7676 {
7677 const struct die_info *die_lhs = item_lhs;
7678 const struct die_info *die_rhs = item_rhs;
7679
7680 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7681 }
7682
7683 /* die_reader_func for load_full_comp_unit.
7684 This is identical to read_signatured_type_reader,
7685 but is kept separate for now. */
7686
7687 static void
7688 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7689 const gdb_byte *info_ptr,
7690 struct die_info *comp_unit_die,
7691 int has_children,
7692 void *data)
7693 {
7694 struct dwarf2_cu *cu = reader->cu;
7695 enum language *language_ptr = data;
7696
7697 gdb_assert (cu->die_hash == NULL);
7698 cu->die_hash =
7699 htab_create_alloc_ex (cu->header.length / 12,
7700 die_hash,
7701 die_eq,
7702 NULL,
7703 &cu->comp_unit_obstack,
7704 hashtab_obstack_allocate,
7705 dummy_obstack_deallocate);
7706
7707 if (has_children)
7708 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7709 &info_ptr, comp_unit_die);
7710 cu->dies = comp_unit_die;
7711 /* comp_unit_die is not stored in die_hash, no need. */
7712
7713 /* We try not to read any attributes in this function, because not
7714 all CUs needed for references have been loaded yet, and symbol
7715 table processing isn't initialized. But we have to set the CU language,
7716 or we won't be able to build types correctly.
7717 Similarly, if we do not read the producer, we can not apply
7718 producer-specific interpretation. */
7719 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7720 }
7721
7722 /* Load the DIEs associated with PER_CU into memory. */
7723
7724 static void
7725 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7726 enum language pretend_language)
7727 {
7728 gdb_assert (! this_cu->is_debug_types);
7729
7730 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7731 load_full_comp_unit_reader, &pretend_language);
7732 }
7733
7734 /* Add a DIE to the delayed physname list. */
7735
7736 static void
7737 add_to_method_list (struct type *type, int fnfield_index, int index,
7738 const char *name, struct die_info *die,
7739 struct dwarf2_cu *cu)
7740 {
7741 struct delayed_method_info mi;
7742 mi.type = type;
7743 mi.fnfield_index = fnfield_index;
7744 mi.index = index;
7745 mi.name = name;
7746 mi.die = die;
7747 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7748 }
7749
7750 /* A cleanup for freeing the delayed method list. */
7751
7752 static void
7753 free_delayed_list (void *ptr)
7754 {
7755 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7756 if (cu->method_list != NULL)
7757 {
7758 VEC_free (delayed_method_info, cu->method_list);
7759 cu->method_list = NULL;
7760 }
7761 }
7762
7763 /* Compute the physnames of any methods on the CU's method list.
7764
7765 The computation of method physnames is delayed in order to avoid the
7766 (bad) condition that one of the method's formal parameters is of an as yet
7767 incomplete type. */
7768
7769 static void
7770 compute_delayed_physnames (struct dwarf2_cu *cu)
7771 {
7772 int i;
7773 struct delayed_method_info *mi;
7774 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7775 {
7776 const char *physname;
7777 struct fn_fieldlist *fn_flp
7778 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7779 physname = dwarf2_physname (mi->name, mi->die, cu);
7780 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7781 = physname ? physname : "";
7782 }
7783 }
7784
7785 /* Go objects should be embedded in a DW_TAG_module DIE,
7786 and it's not clear if/how imported objects will appear.
7787 To keep Go support simple until that's worked out,
7788 go back through what we've read and create something usable.
7789 We could do this while processing each DIE, and feels kinda cleaner,
7790 but that way is more invasive.
7791 This is to, for example, allow the user to type "p var" or "b main"
7792 without having to specify the package name, and allow lookups
7793 of module.object to work in contexts that use the expression
7794 parser. */
7795
7796 static void
7797 fixup_go_packaging (struct dwarf2_cu *cu)
7798 {
7799 char *package_name = NULL;
7800 struct pending *list;
7801 int i;
7802
7803 for (list = global_symbols; list != NULL; list = list->next)
7804 {
7805 for (i = 0; i < list->nsyms; ++i)
7806 {
7807 struct symbol *sym = list->symbol[i];
7808
7809 if (SYMBOL_LANGUAGE (sym) == language_go
7810 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7811 {
7812 char *this_package_name = go_symbol_package_name (sym);
7813
7814 if (this_package_name == NULL)
7815 continue;
7816 if (package_name == NULL)
7817 package_name = this_package_name;
7818 else
7819 {
7820 if (strcmp (package_name, this_package_name) != 0)
7821 complaint (&symfile_complaints,
7822 _("Symtab %s has objects from two different Go packages: %s and %s"),
7823 (symbol_symtab (sym) != NULL
7824 ? symtab_to_filename_for_display
7825 (symbol_symtab (sym))
7826 : objfile_name (cu->objfile)),
7827 this_package_name, package_name);
7828 xfree (this_package_name);
7829 }
7830 }
7831 }
7832 }
7833
7834 if (package_name != NULL)
7835 {
7836 struct objfile *objfile = cu->objfile;
7837 const char *saved_package_name
7838 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7839 package_name,
7840 strlen (package_name));
7841 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7842 saved_package_name, objfile);
7843 struct symbol *sym;
7844
7845 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7846
7847 sym = allocate_symbol (objfile);
7848 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7849 SYMBOL_SET_NAMES (sym, saved_package_name,
7850 strlen (saved_package_name), 0, objfile);
7851 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7852 e.g., "main" finds the "main" module and not C's main(). */
7853 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7854 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7855 SYMBOL_TYPE (sym) = type;
7856
7857 add_symbol_to_list (sym, &global_symbols);
7858
7859 xfree (package_name);
7860 }
7861 }
7862
7863 /* Return the symtab for PER_CU. This works properly regardless of
7864 whether we're using the index or psymtabs. */
7865
7866 static struct compunit_symtab *
7867 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7868 {
7869 return (dwarf2_per_objfile->using_index
7870 ? per_cu->v.quick->compunit_symtab
7871 : per_cu->v.psymtab->compunit_symtab);
7872 }
7873
7874 /* A helper function for computing the list of all symbol tables
7875 included by PER_CU. */
7876
7877 static void
7878 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7879 htab_t all_children, htab_t all_type_symtabs,
7880 struct dwarf2_per_cu_data *per_cu,
7881 struct compunit_symtab *immediate_parent)
7882 {
7883 void **slot;
7884 int ix;
7885 struct compunit_symtab *cust;
7886 struct dwarf2_per_cu_data *iter;
7887
7888 slot = htab_find_slot (all_children, per_cu, INSERT);
7889 if (*slot != NULL)
7890 {
7891 /* This inclusion and its children have been processed. */
7892 return;
7893 }
7894
7895 *slot = per_cu;
7896 /* Only add a CU if it has a symbol table. */
7897 cust = get_compunit_symtab (per_cu);
7898 if (cust != NULL)
7899 {
7900 /* If this is a type unit only add its symbol table if we haven't
7901 seen it yet (type unit per_cu's can share symtabs). */
7902 if (per_cu->is_debug_types)
7903 {
7904 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7905 if (*slot == NULL)
7906 {
7907 *slot = cust;
7908 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7909 if (cust->user == NULL)
7910 cust->user = immediate_parent;
7911 }
7912 }
7913 else
7914 {
7915 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7916 if (cust->user == NULL)
7917 cust->user = immediate_parent;
7918 }
7919 }
7920
7921 for (ix = 0;
7922 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7923 ++ix)
7924 {
7925 recursively_compute_inclusions (result, all_children,
7926 all_type_symtabs, iter, cust);
7927 }
7928 }
7929
7930 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7931 PER_CU. */
7932
7933 static void
7934 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7935 {
7936 gdb_assert (! per_cu->is_debug_types);
7937
7938 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7939 {
7940 int ix, len;
7941 struct dwarf2_per_cu_data *per_cu_iter;
7942 struct compunit_symtab *compunit_symtab_iter;
7943 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7944 htab_t all_children, all_type_symtabs;
7945 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7946
7947 /* If we don't have a symtab, we can just skip this case. */
7948 if (cust == NULL)
7949 return;
7950
7951 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7952 NULL, xcalloc, xfree);
7953 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7954 NULL, xcalloc, xfree);
7955
7956 for (ix = 0;
7957 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7958 ix, per_cu_iter);
7959 ++ix)
7960 {
7961 recursively_compute_inclusions (&result_symtabs, all_children,
7962 all_type_symtabs, per_cu_iter,
7963 cust);
7964 }
7965
7966 /* Now we have a transitive closure of all the included symtabs. */
7967 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7968 cust->includes
7969 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7970 struct compunit_symtab *, len + 1);
7971 for (ix = 0;
7972 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7973 compunit_symtab_iter);
7974 ++ix)
7975 cust->includes[ix] = compunit_symtab_iter;
7976 cust->includes[len] = NULL;
7977
7978 VEC_free (compunit_symtab_ptr, result_symtabs);
7979 htab_delete (all_children);
7980 htab_delete (all_type_symtabs);
7981 }
7982 }
7983
7984 /* Compute the 'includes' field for the symtabs of all the CUs we just
7985 read. */
7986
7987 static void
7988 process_cu_includes (void)
7989 {
7990 int ix;
7991 struct dwarf2_per_cu_data *iter;
7992
7993 for (ix = 0;
7994 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7995 ix, iter);
7996 ++ix)
7997 {
7998 if (! iter->is_debug_types)
7999 compute_compunit_symtab_includes (iter);
8000 }
8001
8002 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8003 }
8004
8005 /* Generate full symbol information for PER_CU, whose DIEs have
8006 already been loaded into memory. */
8007
8008 static void
8009 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8010 enum language pretend_language)
8011 {
8012 struct dwarf2_cu *cu = per_cu->cu;
8013 struct objfile *objfile = per_cu->objfile;
8014 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8015 CORE_ADDR lowpc, highpc;
8016 struct compunit_symtab *cust;
8017 struct cleanup *back_to, *delayed_list_cleanup;
8018 CORE_ADDR baseaddr;
8019 struct block *static_block;
8020 CORE_ADDR addr;
8021
8022 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8023
8024 buildsym_init ();
8025 back_to = make_cleanup (really_free_pendings, NULL);
8026 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8027
8028 cu->list_in_scope = &file_symbols;
8029
8030 cu->language = pretend_language;
8031 cu->language_defn = language_def (cu->language);
8032
8033 /* Do line number decoding in read_file_scope () */
8034 process_die (cu->dies, cu);
8035
8036 /* For now fudge the Go package. */
8037 if (cu->language == language_go)
8038 fixup_go_packaging (cu);
8039
8040 /* Now that we have processed all the DIEs in the CU, all the types
8041 should be complete, and it should now be safe to compute all of the
8042 physnames. */
8043 compute_delayed_physnames (cu);
8044 do_cleanups (delayed_list_cleanup);
8045
8046 /* Some compilers don't define a DW_AT_high_pc attribute for the
8047 compilation unit. If the DW_AT_high_pc is missing, synthesize
8048 it, by scanning the DIE's below the compilation unit. */
8049 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8050
8051 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8052 static_block = end_symtab_get_static_block (addr, 0, 1);
8053
8054 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8055 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8056 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8057 addrmap to help ensure it has an accurate map of pc values belonging to
8058 this comp unit. */
8059 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8060
8061 cust = end_symtab_from_static_block (static_block,
8062 SECT_OFF_TEXT (objfile), 0);
8063
8064 if (cust != NULL)
8065 {
8066 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8067
8068 /* Set symtab language to language from DW_AT_language. If the
8069 compilation is from a C file generated by language preprocessors, do
8070 not set the language if it was already deduced by start_subfile. */
8071 if (!(cu->language == language_c
8072 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8073 COMPUNIT_FILETABS (cust)->language = cu->language;
8074
8075 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8076 produce DW_AT_location with location lists but it can be possibly
8077 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8078 there were bugs in prologue debug info, fixed later in GCC-4.5
8079 by "unwind info for epilogues" patch (which is not directly related).
8080
8081 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8082 needed, it would be wrong due to missing DW_AT_producer there.
8083
8084 Still one can confuse GDB by using non-standard GCC compilation
8085 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8086 */
8087 if (cu->has_loclist && gcc_4_minor >= 5)
8088 cust->locations_valid = 1;
8089
8090 if (gcc_4_minor >= 5)
8091 cust->epilogue_unwind_valid = 1;
8092
8093 cust->call_site_htab = cu->call_site_htab;
8094 }
8095
8096 if (dwarf2_per_objfile->using_index)
8097 per_cu->v.quick->compunit_symtab = cust;
8098 else
8099 {
8100 struct partial_symtab *pst = per_cu->v.psymtab;
8101 pst->compunit_symtab = cust;
8102 pst->readin = 1;
8103 }
8104
8105 /* Push it for inclusion processing later. */
8106 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8107
8108 do_cleanups (back_to);
8109 }
8110
8111 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8112 already been loaded into memory. */
8113
8114 static void
8115 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8116 enum language pretend_language)
8117 {
8118 struct dwarf2_cu *cu = per_cu->cu;
8119 struct objfile *objfile = per_cu->objfile;
8120 struct compunit_symtab *cust;
8121 struct cleanup *back_to, *delayed_list_cleanup;
8122 struct signatured_type *sig_type;
8123
8124 gdb_assert (per_cu->is_debug_types);
8125 sig_type = (struct signatured_type *) per_cu;
8126
8127 buildsym_init ();
8128 back_to = make_cleanup (really_free_pendings, NULL);
8129 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8130
8131 cu->list_in_scope = &file_symbols;
8132
8133 cu->language = pretend_language;
8134 cu->language_defn = language_def (cu->language);
8135
8136 /* The symbol tables are set up in read_type_unit_scope. */
8137 process_die (cu->dies, cu);
8138
8139 /* For now fudge the Go package. */
8140 if (cu->language == language_go)
8141 fixup_go_packaging (cu);
8142
8143 /* Now that we have processed all the DIEs in the CU, all the types
8144 should be complete, and it should now be safe to compute all of the
8145 physnames. */
8146 compute_delayed_physnames (cu);
8147 do_cleanups (delayed_list_cleanup);
8148
8149 /* TUs share symbol tables.
8150 If this is the first TU to use this symtab, complete the construction
8151 of it with end_expandable_symtab. Otherwise, complete the addition of
8152 this TU's symbols to the existing symtab. */
8153 if (sig_type->type_unit_group->compunit_symtab == NULL)
8154 {
8155 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8156 sig_type->type_unit_group->compunit_symtab = cust;
8157
8158 if (cust != NULL)
8159 {
8160 /* Set symtab language to language from DW_AT_language. If the
8161 compilation is from a C file generated by language preprocessors,
8162 do not set the language if it was already deduced by
8163 start_subfile. */
8164 if (!(cu->language == language_c
8165 && COMPUNIT_FILETABS (cust)->language != language_c))
8166 COMPUNIT_FILETABS (cust)->language = cu->language;
8167 }
8168 }
8169 else
8170 {
8171 augment_type_symtab ();
8172 cust = sig_type->type_unit_group->compunit_symtab;
8173 }
8174
8175 if (dwarf2_per_objfile->using_index)
8176 per_cu->v.quick->compunit_symtab = cust;
8177 else
8178 {
8179 struct partial_symtab *pst = per_cu->v.psymtab;
8180 pst->compunit_symtab = cust;
8181 pst->readin = 1;
8182 }
8183
8184 do_cleanups (back_to);
8185 }
8186
8187 /* Process an imported unit DIE. */
8188
8189 static void
8190 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8191 {
8192 struct attribute *attr;
8193
8194 /* For now we don't handle imported units in type units. */
8195 if (cu->per_cu->is_debug_types)
8196 {
8197 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8198 " supported in type units [in module %s]"),
8199 objfile_name (cu->objfile));
8200 }
8201
8202 attr = dwarf2_attr (die, DW_AT_import, cu);
8203 if (attr != NULL)
8204 {
8205 struct dwarf2_per_cu_data *per_cu;
8206 struct symtab *imported_symtab;
8207 sect_offset offset;
8208 int is_dwz;
8209
8210 offset = dwarf2_get_ref_die_offset (attr);
8211 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8212 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8213
8214 /* If necessary, add it to the queue and load its DIEs. */
8215 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8216 load_full_comp_unit (per_cu, cu->language);
8217
8218 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8219 per_cu);
8220 }
8221 }
8222
8223 /* Reset the in_process bit of a die. */
8224
8225 static void
8226 reset_die_in_process (void *arg)
8227 {
8228 struct die_info *die = arg;
8229
8230 die->in_process = 0;
8231 }
8232
8233 /* Process a die and its children. */
8234
8235 static void
8236 process_die (struct die_info *die, struct dwarf2_cu *cu)
8237 {
8238 struct cleanup *in_process;
8239
8240 /* We should only be processing those not already in process. */
8241 gdb_assert (!die->in_process);
8242
8243 die->in_process = 1;
8244 in_process = make_cleanup (reset_die_in_process,die);
8245
8246 switch (die->tag)
8247 {
8248 case DW_TAG_padding:
8249 break;
8250 case DW_TAG_compile_unit:
8251 case DW_TAG_partial_unit:
8252 read_file_scope (die, cu);
8253 break;
8254 case DW_TAG_type_unit:
8255 read_type_unit_scope (die, cu);
8256 break;
8257 case DW_TAG_subprogram:
8258 case DW_TAG_inlined_subroutine:
8259 read_func_scope (die, cu);
8260 break;
8261 case DW_TAG_lexical_block:
8262 case DW_TAG_try_block:
8263 case DW_TAG_catch_block:
8264 read_lexical_block_scope (die, cu);
8265 break;
8266 case DW_TAG_GNU_call_site:
8267 read_call_site_scope (die, cu);
8268 break;
8269 case DW_TAG_class_type:
8270 case DW_TAG_interface_type:
8271 case DW_TAG_structure_type:
8272 case DW_TAG_union_type:
8273 process_structure_scope (die, cu);
8274 break;
8275 case DW_TAG_enumeration_type:
8276 process_enumeration_scope (die, cu);
8277 break;
8278
8279 /* These dies have a type, but processing them does not create
8280 a symbol or recurse to process the children. Therefore we can
8281 read them on-demand through read_type_die. */
8282 case DW_TAG_subroutine_type:
8283 case DW_TAG_set_type:
8284 case DW_TAG_array_type:
8285 case DW_TAG_pointer_type:
8286 case DW_TAG_ptr_to_member_type:
8287 case DW_TAG_reference_type:
8288 case DW_TAG_string_type:
8289 break;
8290
8291 case DW_TAG_base_type:
8292 case DW_TAG_subrange_type:
8293 case DW_TAG_typedef:
8294 /* Add a typedef symbol for the type definition, if it has a
8295 DW_AT_name. */
8296 new_symbol (die, read_type_die (die, cu), cu);
8297 break;
8298 case DW_TAG_common_block:
8299 read_common_block (die, cu);
8300 break;
8301 case DW_TAG_common_inclusion:
8302 break;
8303 case DW_TAG_namespace:
8304 cu->processing_has_namespace_info = 1;
8305 read_namespace (die, cu);
8306 break;
8307 case DW_TAG_module:
8308 cu->processing_has_namespace_info = 1;
8309 read_module (die, cu);
8310 break;
8311 case DW_TAG_imported_declaration:
8312 cu->processing_has_namespace_info = 1;
8313 if (read_namespace_alias (die, cu))
8314 break;
8315 /* The declaration is not a global namespace alias: fall through. */
8316 case DW_TAG_imported_module:
8317 cu->processing_has_namespace_info = 1;
8318 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8319 || cu->language != language_fortran))
8320 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8321 dwarf_tag_name (die->tag));
8322 read_import_statement (die, cu);
8323 break;
8324
8325 case DW_TAG_imported_unit:
8326 process_imported_unit_die (die, cu);
8327 break;
8328
8329 default:
8330 new_symbol (die, NULL, cu);
8331 break;
8332 }
8333
8334 do_cleanups (in_process);
8335 }
8336 \f
8337 /* DWARF name computation. */
8338
8339 /* A helper function for dwarf2_compute_name which determines whether DIE
8340 needs to have the name of the scope prepended to the name listed in the
8341 die. */
8342
8343 static int
8344 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8345 {
8346 struct attribute *attr;
8347
8348 switch (die->tag)
8349 {
8350 case DW_TAG_namespace:
8351 case DW_TAG_typedef:
8352 case DW_TAG_class_type:
8353 case DW_TAG_interface_type:
8354 case DW_TAG_structure_type:
8355 case DW_TAG_union_type:
8356 case DW_TAG_enumeration_type:
8357 case DW_TAG_enumerator:
8358 case DW_TAG_subprogram:
8359 case DW_TAG_inlined_subroutine:
8360 case DW_TAG_member:
8361 case DW_TAG_imported_declaration:
8362 return 1;
8363
8364 case DW_TAG_variable:
8365 case DW_TAG_constant:
8366 /* We only need to prefix "globally" visible variables. These include
8367 any variable marked with DW_AT_external or any variable that
8368 lives in a namespace. [Variables in anonymous namespaces
8369 require prefixing, but they are not DW_AT_external.] */
8370
8371 if (dwarf2_attr (die, DW_AT_specification, cu))
8372 {
8373 struct dwarf2_cu *spec_cu = cu;
8374
8375 return die_needs_namespace (die_specification (die, &spec_cu),
8376 spec_cu);
8377 }
8378
8379 attr = dwarf2_attr (die, DW_AT_external, cu);
8380 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8381 && die->parent->tag != DW_TAG_module)
8382 return 0;
8383 /* A variable in a lexical block of some kind does not need a
8384 namespace, even though in C++ such variables may be external
8385 and have a mangled name. */
8386 if (die->parent->tag == DW_TAG_lexical_block
8387 || die->parent->tag == DW_TAG_try_block
8388 || die->parent->tag == DW_TAG_catch_block
8389 || die->parent->tag == DW_TAG_subprogram)
8390 return 0;
8391 return 1;
8392
8393 default:
8394 return 0;
8395 }
8396 }
8397
8398 /* Retrieve the last character from a mem_file. */
8399
8400 static void
8401 do_ui_file_peek_last (void *object, const char *buffer, long length)
8402 {
8403 char *last_char_p = (char *) object;
8404
8405 if (length > 0)
8406 *last_char_p = buffer[length - 1];
8407 }
8408
8409 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8410 compute the physname for the object, which include a method's:
8411 - formal parameters (C++/Java),
8412 - receiver type (Go),
8413 - return type (Java).
8414
8415 The term "physname" is a bit confusing.
8416 For C++, for example, it is the demangled name.
8417 For Go, for example, it's the mangled name.
8418
8419 For Ada, return the DIE's linkage name rather than the fully qualified
8420 name. PHYSNAME is ignored..
8421
8422 The result is allocated on the objfile_obstack and canonicalized. */
8423
8424 static const char *
8425 dwarf2_compute_name (const char *name,
8426 struct die_info *die, struct dwarf2_cu *cu,
8427 int physname)
8428 {
8429 struct objfile *objfile = cu->objfile;
8430
8431 if (name == NULL)
8432 name = dwarf2_name (die, cu);
8433
8434 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8435 compute it by typename_concat inside GDB. */
8436 if (cu->language == language_ada
8437 || (cu->language == language_fortran && physname))
8438 {
8439 /* For Ada unit, we prefer the linkage name over the name, as
8440 the former contains the exported name, which the user expects
8441 to be able to reference. Ideally, we want the user to be able
8442 to reference this entity using either natural or linkage name,
8443 but we haven't started looking at this enhancement yet. */
8444 const char *name;
8445
8446 name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8447 if (name == NULL)
8448 name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8449 if (name != NULL)
8450 return name;
8451 }
8452
8453 /* These are the only languages we know how to qualify names in. */
8454 if (name != NULL
8455 && (cu->language == language_cplus || cu->language == language_java
8456 || cu->language == language_fortran || cu->language == language_d))
8457 {
8458 if (die_needs_namespace (die, cu))
8459 {
8460 long length;
8461 const char *prefix;
8462 struct ui_file *buf;
8463 char *intermediate_name;
8464 const char *canonical_name = NULL;
8465
8466 prefix = determine_prefix (die, cu);
8467 buf = mem_fileopen ();
8468 if (*prefix != '\0')
8469 {
8470 char *prefixed_name = typename_concat (NULL, prefix, name,
8471 physname, cu);
8472
8473 fputs_unfiltered (prefixed_name, buf);
8474 xfree (prefixed_name);
8475 }
8476 else
8477 fputs_unfiltered (name, buf);
8478
8479 /* Template parameters may be specified in the DIE's DW_AT_name, or
8480 as children with DW_TAG_template_type_param or
8481 DW_TAG_value_type_param. If the latter, add them to the name
8482 here. If the name already has template parameters, then
8483 skip this step; some versions of GCC emit both, and
8484 it is more efficient to use the pre-computed name.
8485
8486 Something to keep in mind about this process: it is very
8487 unlikely, or in some cases downright impossible, to produce
8488 something that will match the mangled name of a function.
8489 If the definition of the function has the same debug info,
8490 we should be able to match up with it anyway. But fallbacks
8491 using the minimal symbol, for instance to find a method
8492 implemented in a stripped copy of libstdc++, will not work.
8493 If we do not have debug info for the definition, we will have to
8494 match them up some other way.
8495
8496 When we do name matching there is a related problem with function
8497 templates; two instantiated function templates are allowed to
8498 differ only by their return types, which we do not add here. */
8499
8500 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8501 {
8502 struct attribute *attr;
8503 struct die_info *child;
8504 int first = 1;
8505
8506 die->building_fullname = 1;
8507
8508 for (child = die->child; child != NULL; child = child->sibling)
8509 {
8510 struct type *type;
8511 LONGEST value;
8512 const gdb_byte *bytes;
8513 struct dwarf2_locexpr_baton *baton;
8514 struct value *v;
8515
8516 if (child->tag != DW_TAG_template_type_param
8517 && child->tag != DW_TAG_template_value_param)
8518 continue;
8519
8520 if (first)
8521 {
8522 fputs_unfiltered ("<", buf);
8523 first = 0;
8524 }
8525 else
8526 fputs_unfiltered (", ", buf);
8527
8528 attr = dwarf2_attr (child, DW_AT_type, cu);
8529 if (attr == NULL)
8530 {
8531 complaint (&symfile_complaints,
8532 _("template parameter missing DW_AT_type"));
8533 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8534 continue;
8535 }
8536 type = die_type (child, cu);
8537
8538 if (child->tag == DW_TAG_template_type_param)
8539 {
8540 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8541 continue;
8542 }
8543
8544 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8545 if (attr == NULL)
8546 {
8547 complaint (&symfile_complaints,
8548 _("template parameter missing "
8549 "DW_AT_const_value"));
8550 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8551 continue;
8552 }
8553
8554 dwarf2_const_value_attr (attr, type, name,
8555 &cu->comp_unit_obstack, cu,
8556 &value, &bytes, &baton);
8557
8558 if (TYPE_NOSIGN (type))
8559 /* GDB prints characters as NUMBER 'CHAR'. If that's
8560 changed, this can use value_print instead. */
8561 c_printchar (value, type, buf);
8562 else
8563 {
8564 struct value_print_options opts;
8565
8566 if (baton != NULL)
8567 v = dwarf2_evaluate_loc_desc (type, NULL,
8568 baton->data,
8569 baton->size,
8570 baton->per_cu);
8571 else if (bytes != NULL)
8572 {
8573 v = allocate_value (type);
8574 memcpy (value_contents_writeable (v), bytes,
8575 TYPE_LENGTH (type));
8576 }
8577 else
8578 v = value_from_longest (type, value);
8579
8580 /* Specify decimal so that we do not depend on
8581 the radix. */
8582 get_formatted_print_options (&opts, 'd');
8583 opts.raw = 1;
8584 value_print (v, buf, &opts);
8585 release_value (v);
8586 value_free (v);
8587 }
8588 }
8589
8590 die->building_fullname = 0;
8591
8592 if (!first)
8593 {
8594 /* Close the argument list, with a space if necessary
8595 (nested templates). */
8596 char last_char = '\0';
8597 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8598 if (last_char == '>')
8599 fputs_unfiltered (" >", buf);
8600 else
8601 fputs_unfiltered (">", buf);
8602 }
8603 }
8604
8605 /* For Java and C++ methods, append formal parameter type
8606 information, if PHYSNAME. */
8607
8608 if (physname && die->tag == DW_TAG_subprogram
8609 && (cu->language == language_cplus
8610 || cu->language == language_java))
8611 {
8612 struct type *type = read_type_die (die, cu);
8613
8614 c_type_print_args (type, buf, 1, cu->language,
8615 &type_print_raw_options);
8616
8617 if (cu->language == language_java)
8618 {
8619 /* For java, we must append the return type to method
8620 names. */
8621 if (die->tag == DW_TAG_subprogram)
8622 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8623 0, 0, &type_print_raw_options);
8624 }
8625 else if (cu->language == language_cplus)
8626 {
8627 /* Assume that an artificial first parameter is
8628 "this", but do not crash if it is not. RealView
8629 marks unnamed (and thus unused) parameters as
8630 artificial; there is no way to differentiate
8631 the two cases. */
8632 if (TYPE_NFIELDS (type) > 0
8633 && TYPE_FIELD_ARTIFICIAL (type, 0)
8634 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8635 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8636 0))))
8637 fputs_unfiltered (" const", buf);
8638 }
8639 }
8640
8641 intermediate_name = ui_file_xstrdup (buf, &length);
8642 ui_file_delete (buf);
8643
8644 if (cu->language == language_cplus)
8645 canonical_name
8646 = dwarf2_canonicalize_name (intermediate_name, cu,
8647 &objfile->per_bfd->storage_obstack);
8648
8649 /* If we only computed INTERMEDIATE_NAME, or if
8650 INTERMEDIATE_NAME is already canonical, then we need to
8651 copy it to the appropriate obstack. */
8652 if (canonical_name == NULL || canonical_name == intermediate_name)
8653 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8654 intermediate_name,
8655 strlen (intermediate_name));
8656 else
8657 name = canonical_name;
8658
8659 xfree (intermediate_name);
8660 }
8661 }
8662
8663 return name;
8664 }
8665
8666 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8667 If scope qualifiers are appropriate they will be added. The result
8668 will be allocated on the storage_obstack, or NULL if the DIE does
8669 not have a name. NAME may either be from a previous call to
8670 dwarf2_name or NULL.
8671
8672 The output string will be canonicalized (if C++/Java). */
8673
8674 static const char *
8675 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8676 {
8677 return dwarf2_compute_name (name, die, cu, 0);
8678 }
8679
8680 /* Construct a physname for the given DIE in CU. NAME may either be
8681 from a previous call to dwarf2_name or NULL. The result will be
8682 allocated on the objfile_objstack or NULL if the DIE does not have a
8683 name.
8684
8685 The output string will be canonicalized (if C++/Java). */
8686
8687 static const char *
8688 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8689 {
8690 struct objfile *objfile = cu->objfile;
8691 struct attribute *attr;
8692 const char *retval, *mangled = NULL, *canon = NULL;
8693 struct cleanup *back_to;
8694 int need_copy = 1;
8695
8696 /* In this case dwarf2_compute_name is just a shortcut not building anything
8697 on its own. */
8698 if (!die_needs_namespace (die, cu))
8699 return dwarf2_compute_name (name, die, cu, 1);
8700
8701 back_to = make_cleanup (null_cleanup, NULL);
8702
8703 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8704 if (mangled == NULL)
8705 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8706
8707 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8708 has computed. */
8709 if (mangled != NULL)
8710 {
8711 char *demangled;
8712
8713 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8714 type. It is easier for GDB users to search for such functions as
8715 `name(params)' than `long name(params)'. In such case the minimal
8716 symbol names do not match the full symbol names but for template
8717 functions there is never a need to look up their definition from their
8718 declaration so the only disadvantage remains the minimal symbol
8719 variant `long name(params)' does not have the proper inferior type.
8720 */
8721
8722 if (cu->language == language_go)
8723 {
8724 /* This is a lie, but we already lie to the caller new_symbol_full.
8725 new_symbol_full assumes we return the mangled name.
8726 This just undoes that lie until things are cleaned up. */
8727 demangled = NULL;
8728 }
8729 else
8730 {
8731 demangled = gdb_demangle (mangled,
8732 (DMGL_PARAMS | DMGL_ANSI
8733 | (cu->language == language_java
8734 ? DMGL_JAVA | DMGL_RET_POSTFIX
8735 : DMGL_RET_DROP)));
8736 }
8737 if (demangled)
8738 {
8739 make_cleanup (xfree, demangled);
8740 canon = demangled;
8741 }
8742 else
8743 {
8744 canon = mangled;
8745 need_copy = 0;
8746 }
8747 }
8748
8749 if (canon == NULL || check_physname)
8750 {
8751 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8752
8753 if (canon != NULL && strcmp (physname, canon) != 0)
8754 {
8755 /* It may not mean a bug in GDB. The compiler could also
8756 compute DW_AT_linkage_name incorrectly. But in such case
8757 GDB would need to be bug-to-bug compatible. */
8758
8759 complaint (&symfile_complaints,
8760 _("Computed physname <%s> does not match demangled <%s> "
8761 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8762 physname, canon, mangled, die->offset.sect_off,
8763 objfile_name (objfile));
8764
8765 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8766 is available here - over computed PHYSNAME. It is safer
8767 against both buggy GDB and buggy compilers. */
8768
8769 retval = canon;
8770 }
8771 else
8772 {
8773 retval = physname;
8774 need_copy = 0;
8775 }
8776 }
8777 else
8778 retval = canon;
8779
8780 if (need_copy)
8781 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8782 retval, strlen (retval));
8783
8784 do_cleanups (back_to);
8785 return retval;
8786 }
8787
8788 /* Inspect DIE in CU for a namespace alias. If one exists, record
8789 a new symbol for it.
8790
8791 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8792
8793 static int
8794 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8795 {
8796 struct attribute *attr;
8797
8798 /* If the die does not have a name, this is not a namespace
8799 alias. */
8800 attr = dwarf2_attr (die, DW_AT_name, cu);
8801 if (attr != NULL)
8802 {
8803 int num;
8804 struct die_info *d = die;
8805 struct dwarf2_cu *imported_cu = cu;
8806
8807 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8808 keep inspecting DIEs until we hit the underlying import. */
8809 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8810 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8811 {
8812 attr = dwarf2_attr (d, DW_AT_import, cu);
8813 if (attr == NULL)
8814 break;
8815
8816 d = follow_die_ref (d, attr, &imported_cu);
8817 if (d->tag != DW_TAG_imported_declaration)
8818 break;
8819 }
8820
8821 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8822 {
8823 complaint (&symfile_complaints,
8824 _("DIE at 0x%x has too many recursively imported "
8825 "declarations"), d->offset.sect_off);
8826 return 0;
8827 }
8828
8829 if (attr != NULL)
8830 {
8831 struct type *type;
8832 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8833
8834 type = get_die_type_at_offset (offset, cu->per_cu);
8835 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8836 {
8837 /* This declaration is a global namespace alias. Add
8838 a symbol for it whose type is the aliased namespace. */
8839 new_symbol (die, type, cu);
8840 return 1;
8841 }
8842 }
8843 }
8844
8845 return 0;
8846 }
8847
8848 /* Return the using directives repository (global or local?) to use in the
8849 current context for LANGUAGE.
8850
8851 For Ada, imported declarations can materialize renamings, which *may* be
8852 global. However it is impossible (for now?) in DWARF to distinguish
8853 "external" imported declarations and "static" ones. As all imported
8854 declarations seem to be static in all other languages, make them all CU-wide
8855 global only in Ada. */
8856
8857 static struct using_direct **
8858 using_directives (enum language language)
8859 {
8860 if (language == language_ada && context_stack_depth == 0)
8861 return &global_using_directives;
8862 else
8863 return &local_using_directives;
8864 }
8865
8866 /* Read the import statement specified by the given die and record it. */
8867
8868 static void
8869 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8870 {
8871 struct objfile *objfile = cu->objfile;
8872 struct attribute *import_attr;
8873 struct die_info *imported_die, *child_die;
8874 struct dwarf2_cu *imported_cu;
8875 const char *imported_name;
8876 const char *imported_name_prefix;
8877 const char *canonical_name;
8878 const char *import_alias;
8879 const char *imported_declaration = NULL;
8880 const char *import_prefix;
8881 VEC (const_char_ptr) *excludes = NULL;
8882 struct cleanup *cleanups;
8883
8884 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8885 if (import_attr == NULL)
8886 {
8887 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8888 dwarf_tag_name (die->tag));
8889 return;
8890 }
8891
8892 imported_cu = cu;
8893 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8894 imported_name = dwarf2_name (imported_die, imported_cu);
8895 if (imported_name == NULL)
8896 {
8897 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8898
8899 The import in the following code:
8900 namespace A
8901 {
8902 typedef int B;
8903 }
8904
8905 int main ()
8906 {
8907 using A::B;
8908 B b;
8909 return b;
8910 }
8911
8912 ...
8913 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8914 <52> DW_AT_decl_file : 1
8915 <53> DW_AT_decl_line : 6
8916 <54> DW_AT_import : <0x75>
8917 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8918 <59> DW_AT_name : B
8919 <5b> DW_AT_decl_file : 1
8920 <5c> DW_AT_decl_line : 2
8921 <5d> DW_AT_type : <0x6e>
8922 ...
8923 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8924 <76> DW_AT_byte_size : 4
8925 <77> DW_AT_encoding : 5 (signed)
8926
8927 imports the wrong die ( 0x75 instead of 0x58 ).
8928 This case will be ignored until the gcc bug is fixed. */
8929 return;
8930 }
8931
8932 /* Figure out the local name after import. */
8933 import_alias = dwarf2_name (die, cu);
8934
8935 /* Figure out where the statement is being imported to. */
8936 import_prefix = determine_prefix (die, cu);
8937
8938 /* Figure out what the scope of the imported die is and prepend it
8939 to the name of the imported die. */
8940 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8941
8942 if (imported_die->tag != DW_TAG_namespace
8943 && imported_die->tag != DW_TAG_module)
8944 {
8945 imported_declaration = imported_name;
8946 canonical_name = imported_name_prefix;
8947 }
8948 else if (strlen (imported_name_prefix) > 0)
8949 canonical_name = obconcat (&objfile->objfile_obstack,
8950 imported_name_prefix,
8951 (cu->language == language_d ? "." : "::"),
8952 imported_name, (char *) NULL);
8953 else
8954 canonical_name = imported_name;
8955
8956 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8957
8958 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8959 for (child_die = die->child; child_die && child_die->tag;
8960 child_die = sibling_die (child_die))
8961 {
8962 /* DWARF-4: A Fortran use statement with a “rename list” may be
8963 represented by an imported module entry with an import attribute
8964 referring to the module and owned entries corresponding to those
8965 entities that are renamed as part of being imported. */
8966
8967 if (child_die->tag != DW_TAG_imported_declaration)
8968 {
8969 complaint (&symfile_complaints,
8970 _("child DW_TAG_imported_declaration expected "
8971 "- DIE at 0x%x [in module %s]"),
8972 child_die->offset.sect_off, objfile_name (objfile));
8973 continue;
8974 }
8975
8976 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8977 if (import_attr == NULL)
8978 {
8979 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8980 dwarf_tag_name (child_die->tag));
8981 continue;
8982 }
8983
8984 imported_cu = cu;
8985 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8986 &imported_cu);
8987 imported_name = dwarf2_name (imported_die, imported_cu);
8988 if (imported_name == NULL)
8989 {
8990 complaint (&symfile_complaints,
8991 _("child DW_TAG_imported_declaration has unknown "
8992 "imported name - DIE at 0x%x [in module %s]"),
8993 child_die->offset.sect_off, objfile_name (objfile));
8994 continue;
8995 }
8996
8997 VEC_safe_push (const_char_ptr, excludes, imported_name);
8998
8999 process_die (child_die, cu);
9000 }
9001
9002 add_using_directive (using_directives (cu->language),
9003 import_prefix,
9004 canonical_name,
9005 import_alias,
9006 imported_declaration,
9007 excludes,
9008 0,
9009 &objfile->objfile_obstack);
9010
9011 do_cleanups (cleanups);
9012 }
9013
9014 /* Cleanup function for handle_DW_AT_stmt_list. */
9015
9016 static void
9017 free_cu_line_header (void *arg)
9018 {
9019 struct dwarf2_cu *cu = arg;
9020
9021 free_line_header (cu->line_header);
9022 cu->line_header = NULL;
9023 }
9024
9025 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9026 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9027 this, it was first present in GCC release 4.3.0. */
9028
9029 static int
9030 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9031 {
9032 if (!cu->checked_producer)
9033 check_producer (cu);
9034
9035 return cu->producer_is_gcc_lt_4_3;
9036 }
9037
9038 static void
9039 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9040 const char **name, const char **comp_dir)
9041 {
9042 /* Find the filename. Do not use dwarf2_name here, since the filename
9043 is not a source language identifier. */
9044 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9045 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9046
9047 if (*comp_dir == NULL
9048 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9049 && IS_ABSOLUTE_PATH (*name))
9050 {
9051 char *d = ldirname (*name);
9052
9053 *comp_dir = d;
9054 if (d != NULL)
9055 make_cleanup (xfree, d);
9056 }
9057 if (*comp_dir != NULL)
9058 {
9059 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9060 directory, get rid of it. */
9061 char *cp = strchr (*comp_dir, ':');
9062
9063 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9064 *comp_dir = cp + 1;
9065 }
9066
9067 if (*name == NULL)
9068 *name = "<unknown>";
9069 }
9070
9071 /* Handle DW_AT_stmt_list for a compilation unit.
9072 DIE is the DW_TAG_compile_unit die for CU.
9073 COMP_DIR is the compilation directory. LOWPC is passed to
9074 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9075
9076 static void
9077 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9078 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9079 {
9080 struct objfile *objfile = dwarf2_per_objfile->objfile;
9081 struct attribute *attr;
9082 unsigned int line_offset;
9083 struct line_header line_header_local;
9084 hashval_t line_header_local_hash;
9085 unsigned u;
9086 void **slot;
9087 int decode_mapping;
9088
9089 gdb_assert (! cu->per_cu->is_debug_types);
9090
9091 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9092 if (attr == NULL)
9093 return;
9094
9095 line_offset = DW_UNSND (attr);
9096
9097 /* The line header hash table is only created if needed (it exists to
9098 prevent redundant reading of the line table for partial_units).
9099 If we're given a partial_unit, we'll need it. If we're given a
9100 compile_unit, then use the line header hash table if it's already
9101 created, but don't create one just yet. */
9102
9103 if (dwarf2_per_objfile->line_header_hash == NULL
9104 && die->tag == DW_TAG_partial_unit)
9105 {
9106 dwarf2_per_objfile->line_header_hash
9107 = htab_create_alloc_ex (127, line_header_hash_voidp,
9108 line_header_eq_voidp,
9109 free_line_header_voidp,
9110 &objfile->objfile_obstack,
9111 hashtab_obstack_allocate,
9112 dummy_obstack_deallocate);
9113 }
9114
9115 line_header_local.offset.sect_off = line_offset;
9116 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9117 line_header_local_hash = line_header_hash (&line_header_local);
9118 if (dwarf2_per_objfile->line_header_hash != NULL)
9119 {
9120 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9121 &line_header_local,
9122 line_header_local_hash, NO_INSERT);
9123
9124 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9125 is not present in *SLOT (since if there is something in *SLOT then
9126 it will be for a partial_unit). */
9127 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9128 {
9129 gdb_assert (*slot != NULL);
9130 cu->line_header = *slot;
9131 return;
9132 }
9133 }
9134
9135 /* dwarf_decode_line_header does not yet provide sufficient information.
9136 We always have to call also dwarf_decode_lines for it. */
9137 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9138 if (cu->line_header == NULL)
9139 return;
9140
9141 if (dwarf2_per_objfile->line_header_hash == NULL)
9142 slot = NULL;
9143 else
9144 {
9145 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9146 &line_header_local,
9147 line_header_local_hash, INSERT);
9148 gdb_assert (slot != NULL);
9149 }
9150 if (slot != NULL && *slot == NULL)
9151 {
9152 /* This newly decoded line number information unit will be owned
9153 by line_header_hash hash table. */
9154 *slot = cu->line_header;
9155 }
9156 else
9157 {
9158 /* We cannot free any current entry in (*slot) as that struct line_header
9159 may be already used by multiple CUs. Create only temporary decoded
9160 line_header for this CU - it may happen at most once for each line
9161 number information unit. And if we're not using line_header_hash
9162 then this is what we want as well. */
9163 gdb_assert (die->tag != DW_TAG_partial_unit);
9164 make_cleanup (free_cu_line_header, cu);
9165 }
9166 decode_mapping = (die->tag != DW_TAG_partial_unit);
9167 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9168 decode_mapping);
9169 }
9170
9171 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9172
9173 static void
9174 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9175 {
9176 struct objfile *objfile = dwarf2_per_objfile->objfile;
9177 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9178 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9179 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9180 CORE_ADDR highpc = ((CORE_ADDR) 0);
9181 struct attribute *attr;
9182 const char *name = NULL;
9183 const char *comp_dir = NULL;
9184 struct die_info *child_die;
9185 bfd *abfd = objfile->obfd;
9186 CORE_ADDR baseaddr;
9187
9188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9189
9190 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9191
9192 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9193 from finish_block. */
9194 if (lowpc == ((CORE_ADDR) -1))
9195 lowpc = highpc;
9196 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9197
9198 find_file_and_directory (die, cu, &name, &comp_dir);
9199
9200 prepare_one_comp_unit (cu, die, cu->language);
9201
9202 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9203 standardised yet. As a workaround for the language detection we fall
9204 back to the DW_AT_producer string. */
9205 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9206 cu->language = language_opencl;
9207
9208 /* Similar hack for Go. */
9209 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9210 set_cu_language (DW_LANG_Go, cu);
9211
9212 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9213
9214 /* Decode line number information if present. We do this before
9215 processing child DIEs, so that the line header table is available
9216 for DW_AT_decl_file. */
9217 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9218
9219 /* Process all dies in compilation unit. */
9220 if (die->child != NULL)
9221 {
9222 child_die = die->child;
9223 while (child_die && child_die->tag)
9224 {
9225 process_die (child_die, cu);
9226 child_die = sibling_die (child_die);
9227 }
9228 }
9229
9230 /* Decode macro information, if present. Dwarf 2 macro information
9231 refers to information in the line number info statement program
9232 header, so we can only read it if we've read the header
9233 successfully. */
9234 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9235 if (attr && cu->line_header)
9236 {
9237 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9238 complaint (&symfile_complaints,
9239 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9240
9241 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9242 }
9243 else
9244 {
9245 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9246 if (attr && cu->line_header)
9247 {
9248 unsigned int macro_offset = DW_UNSND (attr);
9249
9250 dwarf_decode_macros (cu, macro_offset, 0);
9251 }
9252 }
9253
9254 do_cleanups (back_to);
9255 }
9256
9257 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9258 Create the set of symtabs used by this TU, or if this TU is sharing
9259 symtabs with another TU and the symtabs have already been created
9260 then restore those symtabs in the line header.
9261 We don't need the pc/line-number mapping for type units. */
9262
9263 static void
9264 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9265 {
9266 struct objfile *objfile = dwarf2_per_objfile->objfile;
9267 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9268 struct type_unit_group *tu_group;
9269 int first_time;
9270 struct line_header *lh;
9271 struct attribute *attr;
9272 unsigned int i, line_offset;
9273 struct signatured_type *sig_type;
9274
9275 gdb_assert (per_cu->is_debug_types);
9276 sig_type = (struct signatured_type *) per_cu;
9277
9278 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9279
9280 /* If we're using .gdb_index (includes -readnow) then
9281 per_cu->type_unit_group may not have been set up yet. */
9282 if (sig_type->type_unit_group == NULL)
9283 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9284 tu_group = sig_type->type_unit_group;
9285
9286 /* If we've already processed this stmt_list there's no real need to
9287 do it again, we could fake it and just recreate the part we need
9288 (file name,index -> symtab mapping). If data shows this optimization
9289 is useful we can do it then. */
9290 first_time = tu_group->compunit_symtab == NULL;
9291
9292 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9293 debug info. */
9294 lh = NULL;
9295 if (attr != NULL)
9296 {
9297 line_offset = DW_UNSND (attr);
9298 lh = dwarf_decode_line_header (line_offset, cu);
9299 }
9300 if (lh == NULL)
9301 {
9302 if (first_time)
9303 dwarf2_start_symtab (cu, "", NULL, 0);
9304 else
9305 {
9306 gdb_assert (tu_group->symtabs == NULL);
9307 restart_symtab (tu_group->compunit_symtab, "", 0);
9308 }
9309 return;
9310 }
9311
9312 cu->line_header = lh;
9313 make_cleanup (free_cu_line_header, cu);
9314
9315 if (first_time)
9316 {
9317 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9318
9319 tu_group->num_symtabs = lh->num_file_names;
9320 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9321
9322 for (i = 0; i < lh->num_file_names; ++i)
9323 {
9324 const char *dir = NULL;
9325 struct file_entry *fe = &lh->file_names[i];
9326
9327 if (fe->dir_index && lh->include_dirs != NULL)
9328 dir = lh->include_dirs[fe->dir_index - 1];
9329 dwarf2_start_subfile (fe->name, dir);
9330
9331 if (current_subfile->symtab == NULL)
9332 {
9333 /* NOTE: start_subfile will recognize when it's been passed
9334 a file it has already seen. So we can't assume there's a
9335 simple mapping from lh->file_names to subfiles, plus
9336 lh->file_names may contain dups. */
9337 current_subfile->symtab
9338 = allocate_symtab (cust, current_subfile->name);
9339 }
9340
9341 fe->symtab = current_subfile->symtab;
9342 tu_group->symtabs[i] = fe->symtab;
9343 }
9344 }
9345 else
9346 {
9347 restart_symtab (tu_group->compunit_symtab, "", 0);
9348
9349 for (i = 0; i < lh->num_file_names; ++i)
9350 {
9351 struct file_entry *fe = &lh->file_names[i];
9352
9353 fe->symtab = tu_group->symtabs[i];
9354 }
9355 }
9356
9357 /* The main symtab is allocated last. Type units don't have DW_AT_name
9358 so they don't have a "real" (so to speak) symtab anyway.
9359 There is later code that will assign the main symtab to all symbols
9360 that don't have one. We need to handle the case of a symbol with a
9361 missing symtab (DW_AT_decl_file) anyway. */
9362 }
9363
9364 /* Process DW_TAG_type_unit.
9365 For TUs we want to skip the first top level sibling if it's not the
9366 actual type being defined by this TU. In this case the first top
9367 level sibling is there to provide context only. */
9368
9369 static void
9370 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9371 {
9372 struct die_info *child_die;
9373
9374 prepare_one_comp_unit (cu, die, language_minimal);
9375
9376 /* Initialize (or reinitialize) the machinery for building symtabs.
9377 We do this before processing child DIEs, so that the line header table
9378 is available for DW_AT_decl_file. */
9379 setup_type_unit_groups (die, cu);
9380
9381 if (die->child != NULL)
9382 {
9383 child_die = die->child;
9384 while (child_die && child_die->tag)
9385 {
9386 process_die (child_die, cu);
9387 child_die = sibling_die (child_die);
9388 }
9389 }
9390 }
9391 \f
9392 /* DWO/DWP files.
9393
9394 http://gcc.gnu.org/wiki/DebugFission
9395 http://gcc.gnu.org/wiki/DebugFissionDWP
9396
9397 To simplify handling of both DWO files ("object" files with the DWARF info)
9398 and DWP files (a file with the DWOs packaged up into one file), we treat
9399 DWP files as having a collection of virtual DWO files. */
9400
9401 static hashval_t
9402 hash_dwo_file (const void *item)
9403 {
9404 const struct dwo_file *dwo_file = item;
9405 hashval_t hash;
9406
9407 hash = htab_hash_string (dwo_file->dwo_name);
9408 if (dwo_file->comp_dir != NULL)
9409 hash += htab_hash_string (dwo_file->comp_dir);
9410 return hash;
9411 }
9412
9413 static int
9414 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9415 {
9416 const struct dwo_file *lhs = item_lhs;
9417 const struct dwo_file *rhs = item_rhs;
9418
9419 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9420 return 0;
9421 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9422 return lhs->comp_dir == rhs->comp_dir;
9423 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9424 }
9425
9426 /* Allocate a hash table for DWO files. */
9427
9428 static htab_t
9429 allocate_dwo_file_hash_table (void)
9430 {
9431 struct objfile *objfile = dwarf2_per_objfile->objfile;
9432
9433 return htab_create_alloc_ex (41,
9434 hash_dwo_file,
9435 eq_dwo_file,
9436 NULL,
9437 &objfile->objfile_obstack,
9438 hashtab_obstack_allocate,
9439 dummy_obstack_deallocate);
9440 }
9441
9442 /* Lookup DWO file DWO_NAME. */
9443
9444 static void **
9445 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9446 {
9447 struct dwo_file find_entry;
9448 void **slot;
9449
9450 if (dwarf2_per_objfile->dwo_files == NULL)
9451 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9452
9453 memset (&find_entry, 0, sizeof (find_entry));
9454 find_entry.dwo_name = dwo_name;
9455 find_entry.comp_dir = comp_dir;
9456 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9457
9458 return slot;
9459 }
9460
9461 static hashval_t
9462 hash_dwo_unit (const void *item)
9463 {
9464 const struct dwo_unit *dwo_unit = item;
9465
9466 /* This drops the top 32 bits of the id, but is ok for a hash. */
9467 return dwo_unit->signature;
9468 }
9469
9470 static int
9471 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9472 {
9473 const struct dwo_unit *lhs = item_lhs;
9474 const struct dwo_unit *rhs = item_rhs;
9475
9476 /* The signature is assumed to be unique within the DWO file.
9477 So while object file CU dwo_id's always have the value zero,
9478 that's OK, assuming each object file DWO file has only one CU,
9479 and that's the rule for now. */
9480 return lhs->signature == rhs->signature;
9481 }
9482
9483 /* Allocate a hash table for DWO CUs,TUs.
9484 There is one of these tables for each of CUs,TUs for each DWO file. */
9485
9486 static htab_t
9487 allocate_dwo_unit_table (struct objfile *objfile)
9488 {
9489 /* Start out with a pretty small number.
9490 Generally DWO files contain only one CU and maybe some TUs. */
9491 return htab_create_alloc_ex (3,
9492 hash_dwo_unit,
9493 eq_dwo_unit,
9494 NULL,
9495 &objfile->objfile_obstack,
9496 hashtab_obstack_allocate,
9497 dummy_obstack_deallocate);
9498 }
9499
9500 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9501
9502 struct create_dwo_cu_data
9503 {
9504 struct dwo_file *dwo_file;
9505 struct dwo_unit dwo_unit;
9506 };
9507
9508 /* die_reader_func for create_dwo_cu. */
9509
9510 static void
9511 create_dwo_cu_reader (const struct die_reader_specs *reader,
9512 const gdb_byte *info_ptr,
9513 struct die_info *comp_unit_die,
9514 int has_children,
9515 void *datap)
9516 {
9517 struct dwarf2_cu *cu = reader->cu;
9518 struct objfile *objfile = dwarf2_per_objfile->objfile;
9519 sect_offset offset = cu->per_cu->offset;
9520 struct dwarf2_section_info *section = cu->per_cu->section;
9521 struct create_dwo_cu_data *data = datap;
9522 struct dwo_file *dwo_file = data->dwo_file;
9523 struct dwo_unit *dwo_unit = &data->dwo_unit;
9524 struct attribute *attr;
9525
9526 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9527 if (attr == NULL)
9528 {
9529 complaint (&symfile_complaints,
9530 _("Dwarf Error: debug entry at offset 0x%x is missing"
9531 " its dwo_id [in module %s]"),
9532 offset.sect_off, dwo_file->dwo_name);
9533 return;
9534 }
9535
9536 dwo_unit->dwo_file = dwo_file;
9537 dwo_unit->signature = DW_UNSND (attr);
9538 dwo_unit->section = section;
9539 dwo_unit->offset = offset;
9540 dwo_unit->length = cu->per_cu->length;
9541
9542 if (dwarf_read_debug)
9543 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9544 offset.sect_off, hex_string (dwo_unit->signature));
9545 }
9546
9547 /* Create the dwo_unit for the lone CU in DWO_FILE.
9548 Note: This function processes DWO files only, not DWP files. */
9549
9550 static struct dwo_unit *
9551 create_dwo_cu (struct dwo_file *dwo_file)
9552 {
9553 struct objfile *objfile = dwarf2_per_objfile->objfile;
9554 struct dwarf2_section_info *section = &dwo_file->sections.info;
9555 bfd *abfd;
9556 htab_t cu_htab;
9557 const gdb_byte *info_ptr, *end_ptr;
9558 struct create_dwo_cu_data create_dwo_cu_data;
9559 struct dwo_unit *dwo_unit;
9560
9561 dwarf2_read_section (objfile, section);
9562 info_ptr = section->buffer;
9563
9564 if (info_ptr == NULL)
9565 return NULL;
9566
9567 /* We can't set abfd until now because the section may be empty or
9568 not present, in which case section->asection will be NULL. */
9569 abfd = get_section_bfd_owner (section);
9570
9571 if (dwarf_read_debug)
9572 {
9573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9574 get_section_name (section),
9575 get_section_file_name (section));
9576 }
9577
9578 create_dwo_cu_data.dwo_file = dwo_file;
9579 dwo_unit = NULL;
9580
9581 end_ptr = info_ptr + section->size;
9582 while (info_ptr < end_ptr)
9583 {
9584 struct dwarf2_per_cu_data per_cu;
9585
9586 memset (&create_dwo_cu_data.dwo_unit, 0,
9587 sizeof (create_dwo_cu_data.dwo_unit));
9588 memset (&per_cu, 0, sizeof (per_cu));
9589 per_cu.objfile = objfile;
9590 per_cu.is_debug_types = 0;
9591 per_cu.offset.sect_off = info_ptr - section->buffer;
9592 per_cu.section = section;
9593
9594 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9595 create_dwo_cu_reader,
9596 &create_dwo_cu_data);
9597
9598 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9599 {
9600 /* If we've already found one, complain. We only support one
9601 because having more than one requires hacking the dwo_name of
9602 each to match, which is highly unlikely to happen. */
9603 if (dwo_unit != NULL)
9604 {
9605 complaint (&symfile_complaints,
9606 _("Multiple CUs in DWO file %s [in module %s]"),
9607 dwo_file->dwo_name, objfile_name (objfile));
9608 break;
9609 }
9610
9611 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9612 *dwo_unit = create_dwo_cu_data.dwo_unit;
9613 }
9614
9615 info_ptr += per_cu.length;
9616 }
9617
9618 return dwo_unit;
9619 }
9620
9621 /* DWP file .debug_{cu,tu}_index section format:
9622 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9623
9624 DWP Version 1:
9625
9626 Both index sections have the same format, and serve to map a 64-bit
9627 signature to a set of section numbers. Each section begins with a header,
9628 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9629 indexes, and a pool of 32-bit section numbers. The index sections will be
9630 aligned at 8-byte boundaries in the file.
9631
9632 The index section header consists of:
9633
9634 V, 32 bit version number
9635 -, 32 bits unused
9636 N, 32 bit number of compilation units or type units in the index
9637 M, 32 bit number of slots in the hash table
9638
9639 Numbers are recorded using the byte order of the application binary.
9640
9641 The hash table begins at offset 16 in the section, and consists of an array
9642 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9643 order of the application binary). Unused slots in the hash table are 0.
9644 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9645
9646 The parallel table begins immediately after the hash table
9647 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9648 array of 32-bit indexes (using the byte order of the application binary),
9649 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9650 table contains a 32-bit index into the pool of section numbers. For unused
9651 hash table slots, the corresponding entry in the parallel table will be 0.
9652
9653 The pool of section numbers begins immediately following the hash table
9654 (at offset 16 + 12 * M from the beginning of the section). The pool of
9655 section numbers consists of an array of 32-bit words (using the byte order
9656 of the application binary). Each item in the array is indexed starting
9657 from 0. The hash table entry provides the index of the first section
9658 number in the set. Additional section numbers in the set follow, and the
9659 set is terminated by a 0 entry (section number 0 is not used in ELF).
9660
9661 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9662 section must be the first entry in the set, and the .debug_abbrev.dwo must
9663 be the second entry. Other members of the set may follow in any order.
9664
9665 ---
9666
9667 DWP Version 2:
9668
9669 DWP Version 2 combines all the .debug_info, etc. sections into one,
9670 and the entries in the index tables are now offsets into these sections.
9671 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9672 section.
9673
9674 Index Section Contents:
9675 Header
9676 Hash Table of Signatures dwp_hash_table.hash_table
9677 Parallel Table of Indices dwp_hash_table.unit_table
9678 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9679 Table of Section Sizes dwp_hash_table.v2.sizes
9680
9681 The index section header consists of:
9682
9683 V, 32 bit version number
9684 L, 32 bit number of columns in the table of section offsets
9685 N, 32 bit number of compilation units or type units in the index
9686 M, 32 bit number of slots in the hash table
9687
9688 Numbers are recorded using the byte order of the application binary.
9689
9690 The hash table has the same format as version 1.
9691 The parallel table of indices has the same format as version 1,
9692 except that the entries are origin-1 indices into the table of sections
9693 offsets and the table of section sizes.
9694
9695 The table of offsets begins immediately following the parallel table
9696 (at offset 16 + 12 * M from the beginning of the section). The table is
9697 a two-dimensional array of 32-bit words (using the byte order of the
9698 application binary), with L columns and N+1 rows, in row-major order.
9699 Each row in the array is indexed starting from 0. The first row provides
9700 a key to the remaining rows: each column in this row provides an identifier
9701 for a debug section, and the offsets in the same column of subsequent rows
9702 refer to that section. The section identifiers are:
9703
9704 DW_SECT_INFO 1 .debug_info.dwo
9705 DW_SECT_TYPES 2 .debug_types.dwo
9706 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9707 DW_SECT_LINE 4 .debug_line.dwo
9708 DW_SECT_LOC 5 .debug_loc.dwo
9709 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9710 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9711 DW_SECT_MACRO 8 .debug_macro.dwo
9712
9713 The offsets provided by the CU and TU index sections are the base offsets
9714 for the contributions made by each CU or TU to the corresponding section
9715 in the package file. Each CU and TU header contains an abbrev_offset
9716 field, used to find the abbreviations table for that CU or TU within the
9717 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9718 be interpreted as relative to the base offset given in the index section.
9719 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9720 should be interpreted as relative to the base offset for .debug_line.dwo,
9721 and offsets into other debug sections obtained from DWARF attributes should
9722 also be interpreted as relative to the corresponding base offset.
9723
9724 The table of sizes begins immediately following the table of offsets.
9725 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9726 with L columns and N rows, in row-major order. Each row in the array is
9727 indexed starting from 1 (row 0 is shared by the two tables).
9728
9729 ---
9730
9731 Hash table lookup is handled the same in version 1 and 2:
9732
9733 We assume that N and M will not exceed 2^32 - 1.
9734 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9735
9736 Given a 64-bit compilation unit signature or a type signature S, an entry
9737 in the hash table is located as follows:
9738
9739 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9740 the low-order k bits all set to 1.
9741
9742 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9743
9744 3) If the hash table entry at index H matches the signature, use that
9745 entry. If the hash table entry at index H is unused (all zeroes),
9746 terminate the search: the signature is not present in the table.
9747
9748 4) Let H = (H + H') modulo M. Repeat at Step 3.
9749
9750 Because M > N and H' and M are relatively prime, the search is guaranteed
9751 to stop at an unused slot or find the match. */
9752
9753 /* Create a hash table to map DWO IDs to their CU/TU entry in
9754 .debug_{info,types}.dwo in DWP_FILE.
9755 Returns NULL if there isn't one.
9756 Note: This function processes DWP files only, not DWO files. */
9757
9758 static struct dwp_hash_table *
9759 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9760 {
9761 struct objfile *objfile = dwarf2_per_objfile->objfile;
9762 bfd *dbfd = dwp_file->dbfd;
9763 const gdb_byte *index_ptr, *index_end;
9764 struct dwarf2_section_info *index;
9765 uint32_t version, nr_columns, nr_units, nr_slots;
9766 struct dwp_hash_table *htab;
9767
9768 if (is_debug_types)
9769 index = &dwp_file->sections.tu_index;
9770 else
9771 index = &dwp_file->sections.cu_index;
9772
9773 if (dwarf2_section_empty_p (index))
9774 return NULL;
9775 dwarf2_read_section (objfile, index);
9776
9777 index_ptr = index->buffer;
9778 index_end = index_ptr + index->size;
9779
9780 version = read_4_bytes (dbfd, index_ptr);
9781 index_ptr += 4;
9782 if (version == 2)
9783 nr_columns = read_4_bytes (dbfd, index_ptr);
9784 else
9785 nr_columns = 0;
9786 index_ptr += 4;
9787 nr_units = read_4_bytes (dbfd, index_ptr);
9788 index_ptr += 4;
9789 nr_slots = read_4_bytes (dbfd, index_ptr);
9790 index_ptr += 4;
9791
9792 if (version != 1 && version != 2)
9793 {
9794 error (_("Dwarf Error: unsupported DWP file version (%s)"
9795 " [in module %s]"),
9796 pulongest (version), dwp_file->name);
9797 }
9798 if (nr_slots != (nr_slots & -nr_slots))
9799 {
9800 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9801 " is not power of 2 [in module %s]"),
9802 pulongest (nr_slots), dwp_file->name);
9803 }
9804
9805 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9806 htab->version = version;
9807 htab->nr_columns = nr_columns;
9808 htab->nr_units = nr_units;
9809 htab->nr_slots = nr_slots;
9810 htab->hash_table = index_ptr;
9811 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9812
9813 /* Exit early if the table is empty. */
9814 if (nr_slots == 0 || nr_units == 0
9815 || (version == 2 && nr_columns == 0))
9816 {
9817 /* All must be zero. */
9818 if (nr_slots != 0 || nr_units != 0
9819 || (version == 2 && nr_columns != 0))
9820 {
9821 complaint (&symfile_complaints,
9822 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9823 " all zero [in modules %s]"),
9824 dwp_file->name);
9825 }
9826 return htab;
9827 }
9828
9829 if (version == 1)
9830 {
9831 htab->section_pool.v1.indices =
9832 htab->unit_table + sizeof (uint32_t) * nr_slots;
9833 /* It's harder to decide whether the section is too small in v1.
9834 V1 is deprecated anyway so we punt. */
9835 }
9836 else
9837 {
9838 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9839 int *ids = htab->section_pool.v2.section_ids;
9840 /* Reverse map for error checking. */
9841 int ids_seen[DW_SECT_MAX + 1];
9842 int i;
9843
9844 if (nr_columns < 2)
9845 {
9846 error (_("Dwarf Error: bad DWP hash table, too few columns"
9847 " in section table [in module %s]"),
9848 dwp_file->name);
9849 }
9850 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9851 {
9852 error (_("Dwarf Error: bad DWP hash table, too many columns"
9853 " in section table [in module %s]"),
9854 dwp_file->name);
9855 }
9856 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9858 for (i = 0; i < nr_columns; ++i)
9859 {
9860 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9861
9862 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9863 {
9864 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9865 " in section table [in module %s]"),
9866 id, dwp_file->name);
9867 }
9868 if (ids_seen[id] != -1)
9869 {
9870 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9871 " id %d in section table [in module %s]"),
9872 id, dwp_file->name);
9873 }
9874 ids_seen[id] = i;
9875 ids[i] = id;
9876 }
9877 /* Must have exactly one info or types section. */
9878 if (((ids_seen[DW_SECT_INFO] != -1)
9879 + (ids_seen[DW_SECT_TYPES] != -1))
9880 != 1)
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9883 " DWO info/types section [in module %s]"),
9884 dwp_file->name);
9885 }
9886 /* Must have an abbrev section. */
9887 if (ids_seen[DW_SECT_ABBREV] == -1)
9888 {
9889 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9890 " section [in module %s]"),
9891 dwp_file->name);
9892 }
9893 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9894 htab->section_pool.v2.sizes =
9895 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9896 * nr_units * nr_columns);
9897 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9898 * nr_units * nr_columns))
9899 > index_end)
9900 {
9901 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9902 " [in module %s]"),
9903 dwp_file->name);
9904 }
9905 }
9906
9907 return htab;
9908 }
9909
9910 /* Update SECTIONS with the data from SECTP.
9911
9912 This function is like the other "locate" section routines that are
9913 passed to bfd_map_over_sections, but in this context the sections to
9914 read comes from the DWP V1 hash table, not the full ELF section table.
9915
9916 The result is non-zero for success, or zero if an error was found. */
9917
9918 static int
9919 locate_v1_virtual_dwo_sections (asection *sectp,
9920 struct virtual_v1_dwo_sections *sections)
9921 {
9922 const struct dwop_section_names *names = &dwop_section_names;
9923
9924 if (section_is_p (sectp->name, &names->abbrev_dwo))
9925 {
9926 /* There can be only one. */
9927 if (sections->abbrev.s.section != NULL)
9928 return 0;
9929 sections->abbrev.s.section = sectp;
9930 sections->abbrev.size = bfd_get_section_size (sectp);
9931 }
9932 else if (section_is_p (sectp->name, &names->info_dwo)
9933 || section_is_p (sectp->name, &names->types_dwo))
9934 {
9935 /* There can be only one. */
9936 if (sections->info_or_types.s.section != NULL)
9937 return 0;
9938 sections->info_or_types.s.section = sectp;
9939 sections->info_or_types.size = bfd_get_section_size (sectp);
9940 }
9941 else if (section_is_p (sectp->name, &names->line_dwo))
9942 {
9943 /* There can be only one. */
9944 if (sections->line.s.section != NULL)
9945 return 0;
9946 sections->line.s.section = sectp;
9947 sections->line.size = bfd_get_section_size (sectp);
9948 }
9949 else if (section_is_p (sectp->name, &names->loc_dwo))
9950 {
9951 /* There can be only one. */
9952 if (sections->loc.s.section != NULL)
9953 return 0;
9954 sections->loc.s.section = sectp;
9955 sections->loc.size = bfd_get_section_size (sectp);
9956 }
9957 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9958 {
9959 /* There can be only one. */
9960 if (sections->macinfo.s.section != NULL)
9961 return 0;
9962 sections->macinfo.s.section = sectp;
9963 sections->macinfo.size = bfd_get_section_size (sectp);
9964 }
9965 else if (section_is_p (sectp->name, &names->macro_dwo))
9966 {
9967 /* There can be only one. */
9968 if (sections->macro.s.section != NULL)
9969 return 0;
9970 sections->macro.s.section = sectp;
9971 sections->macro.size = bfd_get_section_size (sectp);
9972 }
9973 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9974 {
9975 /* There can be only one. */
9976 if (sections->str_offsets.s.section != NULL)
9977 return 0;
9978 sections->str_offsets.s.section = sectp;
9979 sections->str_offsets.size = bfd_get_section_size (sectp);
9980 }
9981 else
9982 {
9983 /* No other kind of section is valid. */
9984 return 0;
9985 }
9986
9987 return 1;
9988 }
9989
9990 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9991 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9992 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9993 This is for DWP version 1 files. */
9994
9995 static struct dwo_unit *
9996 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9997 uint32_t unit_index,
9998 const char *comp_dir,
9999 ULONGEST signature, int is_debug_types)
10000 {
10001 struct objfile *objfile = dwarf2_per_objfile->objfile;
10002 const struct dwp_hash_table *dwp_htab =
10003 is_debug_types ? dwp_file->tus : dwp_file->cus;
10004 bfd *dbfd = dwp_file->dbfd;
10005 const char *kind = is_debug_types ? "TU" : "CU";
10006 struct dwo_file *dwo_file;
10007 struct dwo_unit *dwo_unit;
10008 struct virtual_v1_dwo_sections sections;
10009 void **dwo_file_slot;
10010 char *virtual_dwo_name;
10011 struct dwarf2_section_info *cutu;
10012 struct cleanup *cleanups;
10013 int i;
10014
10015 gdb_assert (dwp_file->version == 1);
10016
10017 if (dwarf_read_debug)
10018 {
10019 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10020 kind,
10021 pulongest (unit_index), hex_string (signature),
10022 dwp_file->name);
10023 }
10024
10025 /* Fetch the sections of this DWO unit.
10026 Put a limit on the number of sections we look for so that bad data
10027 doesn't cause us to loop forever. */
10028
10029 #define MAX_NR_V1_DWO_SECTIONS \
10030 (1 /* .debug_info or .debug_types */ \
10031 + 1 /* .debug_abbrev */ \
10032 + 1 /* .debug_line */ \
10033 + 1 /* .debug_loc */ \
10034 + 1 /* .debug_str_offsets */ \
10035 + 1 /* .debug_macro or .debug_macinfo */ \
10036 + 1 /* trailing zero */)
10037
10038 memset (&sections, 0, sizeof (sections));
10039 cleanups = make_cleanup (null_cleanup, 0);
10040
10041 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10042 {
10043 asection *sectp;
10044 uint32_t section_nr =
10045 read_4_bytes (dbfd,
10046 dwp_htab->section_pool.v1.indices
10047 + (unit_index + i) * sizeof (uint32_t));
10048
10049 if (section_nr == 0)
10050 break;
10051 if (section_nr >= dwp_file->num_sections)
10052 {
10053 error (_("Dwarf Error: bad DWP hash table, section number too large"
10054 " [in module %s]"),
10055 dwp_file->name);
10056 }
10057
10058 sectp = dwp_file->elf_sections[section_nr];
10059 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10060 {
10061 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10062 " [in module %s]"),
10063 dwp_file->name);
10064 }
10065 }
10066
10067 if (i < 2
10068 || dwarf2_section_empty_p (&sections.info_or_types)
10069 || dwarf2_section_empty_p (&sections.abbrev))
10070 {
10071 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10072 " [in module %s]"),
10073 dwp_file->name);
10074 }
10075 if (i == MAX_NR_V1_DWO_SECTIONS)
10076 {
10077 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10078 " [in module %s]"),
10079 dwp_file->name);
10080 }
10081
10082 /* It's easier for the rest of the code if we fake a struct dwo_file and
10083 have dwo_unit "live" in that. At least for now.
10084
10085 The DWP file can be made up of a random collection of CUs and TUs.
10086 However, for each CU + set of TUs that came from the same original DWO
10087 file, we can combine them back into a virtual DWO file to save space
10088 (fewer struct dwo_file objects to allocate). Remember that for really
10089 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10090
10091 virtual_dwo_name =
10092 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10093 get_section_id (&sections.abbrev),
10094 get_section_id (&sections.line),
10095 get_section_id (&sections.loc),
10096 get_section_id (&sections.str_offsets));
10097 make_cleanup (xfree, virtual_dwo_name);
10098 /* Can we use an existing virtual DWO file? */
10099 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10100 /* Create one if necessary. */
10101 if (*dwo_file_slot == NULL)
10102 {
10103 if (dwarf_read_debug)
10104 {
10105 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10106 virtual_dwo_name);
10107 }
10108 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10109 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10110 virtual_dwo_name,
10111 strlen (virtual_dwo_name));
10112 dwo_file->comp_dir = comp_dir;
10113 dwo_file->sections.abbrev = sections.abbrev;
10114 dwo_file->sections.line = sections.line;
10115 dwo_file->sections.loc = sections.loc;
10116 dwo_file->sections.macinfo = sections.macinfo;
10117 dwo_file->sections.macro = sections.macro;
10118 dwo_file->sections.str_offsets = sections.str_offsets;
10119 /* The "str" section is global to the entire DWP file. */
10120 dwo_file->sections.str = dwp_file->sections.str;
10121 /* The info or types section is assigned below to dwo_unit,
10122 there's no need to record it in dwo_file.
10123 Also, we can't simply record type sections in dwo_file because
10124 we record a pointer into the vector in dwo_unit. As we collect more
10125 types we'll grow the vector and eventually have to reallocate space
10126 for it, invalidating all copies of pointers into the previous
10127 contents. */
10128 *dwo_file_slot = dwo_file;
10129 }
10130 else
10131 {
10132 if (dwarf_read_debug)
10133 {
10134 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10135 virtual_dwo_name);
10136 }
10137 dwo_file = *dwo_file_slot;
10138 }
10139 do_cleanups (cleanups);
10140
10141 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10142 dwo_unit->dwo_file = dwo_file;
10143 dwo_unit->signature = signature;
10144 dwo_unit->section =
10145 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10146 *dwo_unit->section = sections.info_or_types;
10147 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10148
10149 return dwo_unit;
10150 }
10151
10152 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10153 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10154 piece within that section used by a TU/CU, return a virtual section
10155 of just that piece. */
10156
10157 static struct dwarf2_section_info
10158 create_dwp_v2_section (struct dwarf2_section_info *section,
10159 bfd_size_type offset, bfd_size_type size)
10160 {
10161 struct dwarf2_section_info result;
10162 asection *sectp;
10163
10164 gdb_assert (section != NULL);
10165 gdb_assert (!section->is_virtual);
10166
10167 memset (&result, 0, sizeof (result));
10168 result.s.containing_section = section;
10169 result.is_virtual = 1;
10170
10171 if (size == 0)
10172 return result;
10173
10174 sectp = get_section_bfd_section (section);
10175
10176 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10177 bounds of the real section. This is a pretty-rare event, so just
10178 flag an error (easier) instead of a warning and trying to cope. */
10179 if (sectp == NULL
10180 || offset + size > bfd_get_section_size (sectp))
10181 {
10182 bfd *abfd = sectp->owner;
10183
10184 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10185 " in section %s [in module %s]"),
10186 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10187 objfile_name (dwarf2_per_objfile->objfile));
10188 }
10189
10190 result.virtual_offset = offset;
10191 result.size = size;
10192 return result;
10193 }
10194
10195 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10196 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10197 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10198 This is for DWP version 2 files. */
10199
10200 static struct dwo_unit *
10201 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10202 uint32_t unit_index,
10203 const char *comp_dir,
10204 ULONGEST signature, int is_debug_types)
10205 {
10206 struct objfile *objfile = dwarf2_per_objfile->objfile;
10207 const struct dwp_hash_table *dwp_htab =
10208 is_debug_types ? dwp_file->tus : dwp_file->cus;
10209 bfd *dbfd = dwp_file->dbfd;
10210 const char *kind = is_debug_types ? "TU" : "CU";
10211 struct dwo_file *dwo_file;
10212 struct dwo_unit *dwo_unit;
10213 struct virtual_v2_dwo_sections sections;
10214 void **dwo_file_slot;
10215 char *virtual_dwo_name;
10216 struct dwarf2_section_info *cutu;
10217 struct cleanup *cleanups;
10218 int i;
10219
10220 gdb_assert (dwp_file->version == 2);
10221
10222 if (dwarf_read_debug)
10223 {
10224 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10225 kind,
10226 pulongest (unit_index), hex_string (signature),
10227 dwp_file->name);
10228 }
10229
10230 /* Fetch the section offsets of this DWO unit. */
10231
10232 memset (&sections, 0, sizeof (sections));
10233 cleanups = make_cleanup (null_cleanup, 0);
10234
10235 for (i = 0; i < dwp_htab->nr_columns; ++i)
10236 {
10237 uint32_t offset = read_4_bytes (dbfd,
10238 dwp_htab->section_pool.v2.offsets
10239 + (((unit_index - 1) * dwp_htab->nr_columns
10240 + i)
10241 * sizeof (uint32_t)));
10242 uint32_t size = read_4_bytes (dbfd,
10243 dwp_htab->section_pool.v2.sizes
10244 + (((unit_index - 1) * dwp_htab->nr_columns
10245 + i)
10246 * sizeof (uint32_t)));
10247
10248 switch (dwp_htab->section_pool.v2.section_ids[i])
10249 {
10250 case DW_SECT_INFO:
10251 case DW_SECT_TYPES:
10252 sections.info_or_types_offset = offset;
10253 sections.info_or_types_size = size;
10254 break;
10255 case DW_SECT_ABBREV:
10256 sections.abbrev_offset = offset;
10257 sections.abbrev_size = size;
10258 break;
10259 case DW_SECT_LINE:
10260 sections.line_offset = offset;
10261 sections.line_size = size;
10262 break;
10263 case DW_SECT_LOC:
10264 sections.loc_offset = offset;
10265 sections.loc_size = size;
10266 break;
10267 case DW_SECT_STR_OFFSETS:
10268 sections.str_offsets_offset = offset;
10269 sections.str_offsets_size = size;
10270 break;
10271 case DW_SECT_MACINFO:
10272 sections.macinfo_offset = offset;
10273 sections.macinfo_size = size;
10274 break;
10275 case DW_SECT_MACRO:
10276 sections.macro_offset = offset;
10277 sections.macro_size = size;
10278 break;
10279 }
10280 }
10281
10282 /* It's easier for the rest of the code if we fake a struct dwo_file and
10283 have dwo_unit "live" in that. At least for now.
10284
10285 The DWP file can be made up of a random collection of CUs and TUs.
10286 However, for each CU + set of TUs that came from the same original DWO
10287 file, we can combine them back into a virtual DWO file to save space
10288 (fewer struct dwo_file objects to allocate). Remember that for really
10289 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10290
10291 virtual_dwo_name =
10292 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10293 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10294 (long) (sections.line_size ? sections.line_offset : 0),
10295 (long) (sections.loc_size ? sections.loc_offset : 0),
10296 (long) (sections.str_offsets_size
10297 ? sections.str_offsets_offset : 0));
10298 make_cleanup (xfree, virtual_dwo_name);
10299 /* Can we use an existing virtual DWO file? */
10300 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10301 /* Create one if necessary. */
10302 if (*dwo_file_slot == NULL)
10303 {
10304 if (dwarf_read_debug)
10305 {
10306 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10307 virtual_dwo_name);
10308 }
10309 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10310 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10311 virtual_dwo_name,
10312 strlen (virtual_dwo_name));
10313 dwo_file->comp_dir = comp_dir;
10314 dwo_file->sections.abbrev =
10315 create_dwp_v2_section (&dwp_file->sections.abbrev,
10316 sections.abbrev_offset, sections.abbrev_size);
10317 dwo_file->sections.line =
10318 create_dwp_v2_section (&dwp_file->sections.line,
10319 sections.line_offset, sections.line_size);
10320 dwo_file->sections.loc =
10321 create_dwp_v2_section (&dwp_file->sections.loc,
10322 sections.loc_offset, sections.loc_size);
10323 dwo_file->sections.macinfo =
10324 create_dwp_v2_section (&dwp_file->sections.macinfo,
10325 sections.macinfo_offset, sections.macinfo_size);
10326 dwo_file->sections.macro =
10327 create_dwp_v2_section (&dwp_file->sections.macro,
10328 sections.macro_offset, sections.macro_size);
10329 dwo_file->sections.str_offsets =
10330 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10331 sections.str_offsets_offset,
10332 sections.str_offsets_size);
10333 /* The "str" section is global to the entire DWP file. */
10334 dwo_file->sections.str = dwp_file->sections.str;
10335 /* The info or types section is assigned below to dwo_unit,
10336 there's no need to record it in dwo_file.
10337 Also, we can't simply record type sections in dwo_file because
10338 we record a pointer into the vector in dwo_unit. As we collect more
10339 types we'll grow the vector and eventually have to reallocate space
10340 for it, invalidating all copies of pointers into the previous
10341 contents. */
10342 *dwo_file_slot = dwo_file;
10343 }
10344 else
10345 {
10346 if (dwarf_read_debug)
10347 {
10348 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10349 virtual_dwo_name);
10350 }
10351 dwo_file = *dwo_file_slot;
10352 }
10353 do_cleanups (cleanups);
10354
10355 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10356 dwo_unit->dwo_file = dwo_file;
10357 dwo_unit->signature = signature;
10358 dwo_unit->section =
10359 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10360 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10361 ? &dwp_file->sections.types
10362 : &dwp_file->sections.info,
10363 sections.info_or_types_offset,
10364 sections.info_or_types_size);
10365 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10366
10367 return dwo_unit;
10368 }
10369
10370 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10371 Returns NULL if the signature isn't found. */
10372
10373 static struct dwo_unit *
10374 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10375 ULONGEST signature, int is_debug_types)
10376 {
10377 const struct dwp_hash_table *dwp_htab =
10378 is_debug_types ? dwp_file->tus : dwp_file->cus;
10379 bfd *dbfd = dwp_file->dbfd;
10380 uint32_t mask = dwp_htab->nr_slots - 1;
10381 uint32_t hash = signature & mask;
10382 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10383 unsigned int i;
10384 void **slot;
10385 struct dwo_unit find_dwo_cu, *dwo_cu;
10386
10387 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10388 find_dwo_cu.signature = signature;
10389 slot = htab_find_slot (is_debug_types
10390 ? dwp_file->loaded_tus
10391 : dwp_file->loaded_cus,
10392 &find_dwo_cu, INSERT);
10393
10394 if (*slot != NULL)
10395 return *slot;
10396
10397 /* Use a for loop so that we don't loop forever on bad debug info. */
10398 for (i = 0; i < dwp_htab->nr_slots; ++i)
10399 {
10400 ULONGEST signature_in_table;
10401
10402 signature_in_table =
10403 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10404 if (signature_in_table == signature)
10405 {
10406 uint32_t unit_index =
10407 read_4_bytes (dbfd,
10408 dwp_htab->unit_table + hash * sizeof (uint32_t));
10409
10410 if (dwp_file->version == 1)
10411 {
10412 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10413 comp_dir, signature,
10414 is_debug_types);
10415 }
10416 else
10417 {
10418 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10419 comp_dir, signature,
10420 is_debug_types);
10421 }
10422 return *slot;
10423 }
10424 if (signature_in_table == 0)
10425 return NULL;
10426 hash = (hash + hash2) & mask;
10427 }
10428
10429 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10430 " [in module %s]"),
10431 dwp_file->name);
10432 }
10433
10434 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10435 Open the file specified by FILE_NAME and hand it off to BFD for
10436 preliminary analysis. Return a newly initialized bfd *, which
10437 includes a canonicalized copy of FILE_NAME.
10438 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10439 SEARCH_CWD is true if the current directory is to be searched.
10440 It will be searched before debug-file-directory.
10441 If successful, the file is added to the bfd include table of the
10442 objfile's bfd (see gdb_bfd_record_inclusion).
10443 If unable to find/open the file, return NULL.
10444 NOTE: This function is derived from symfile_bfd_open. */
10445
10446 static bfd *
10447 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10448 {
10449 bfd *sym_bfd;
10450 int desc, flags;
10451 char *absolute_name;
10452 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10453 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10454 to debug_file_directory. */
10455 char *search_path;
10456 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10457
10458 if (search_cwd)
10459 {
10460 if (*debug_file_directory != '\0')
10461 search_path = concat (".", dirname_separator_string,
10462 debug_file_directory, NULL);
10463 else
10464 search_path = xstrdup (".");
10465 }
10466 else
10467 search_path = xstrdup (debug_file_directory);
10468
10469 flags = OPF_RETURN_REALPATH;
10470 if (is_dwp)
10471 flags |= OPF_SEARCH_IN_PATH;
10472 desc = openp (search_path, flags, file_name,
10473 O_RDONLY | O_BINARY, &absolute_name);
10474 xfree (search_path);
10475 if (desc < 0)
10476 return NULL;
10477
10478 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10479 xfree (absolute_name);
10480 if (sym_bfd == NULL)
10481 return NULL;
10482 bfd_set_cacheable (sym_bfd, 1);
10483
10484 if (!bfd_check_format (sym_bfd, bfd_object))
10485 {
10486 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10487 return NULL;
10488 }
10489
10490 /* Success. Record the bfd as having been included by the objfile's bfd.
10491 This is important because things like demangled_names_hash lives in the
10492 objfile's per_bfd space and may have references to things like symbol
10493 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10494 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10495
10496 return sym_bfd;
10497 }
10498
10499 /* Try to open DWO file FILE_NAME.
10500 COMP_DIR is the DW_AT_comp_dir attribute.
10501 The result is the bfd handle of the file.
10502 If there is a problem finding or opening the file, return NULL.
10503 Upon success, the canonicalized path of the file is stored in the bfd,
10504 same as symfile_bfd_open. */
10505
10506 static bfd *
10507 open_dwo_file (const char *file_name, const char *comp_dir)
10508 {
10509 bfd *abfd;
10510
10511 if (IS_ABSOLUTE_PATH (file_name))
10512 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10513
10514 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10515
10516 if (comp_dir != NULL)
10517 {
10518 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10519
10520 /* NOTE: If comp_dir is a relative path, this will also try the
10521 search path, which seems useful. */
10522 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10523 xfree (path_to_try);
10524 if (abfd != NULL)
10525 return abfd;
10526 }
10527
10528 /* That didn't work, try debug-file-directory, which, despite its name,
10529 is a list of paths. */
10530
10531 if (*debug_file_directory == '\0')
10532 return NULL;
10533
10534 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10535 }
10536
10537 /* This function is mapped across the sections and remembers the offset and
10538 size of each of the DWO debugging sections we are interested in. */
10539
10540 static void
10541 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10542 {
10543 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10544 const struct dwop_section_names *names = &dwop_section_names;
10545
10546 if (section_is_p (sectp->name, &names->abbrev_dwo))
10547 {
10548 dwo_sections->abbrev.s.section = sectp;
10549 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10550 }
10551 else if (section_is_p (sectp->name, &names->info_dwo))
10552 {
10553 dwo_sections->info.s.section = sectp;
10554 dwo_sections->info.size = bfd_get_section_size (sectp);
10555 }
10556 else if (section_is_p (sectp->name, &names->line_dwo))
10557 {
10558 dwo_sections->line.s.section = sectp;
10559 dwo_sections->line.size = bfd_get_section_size (sectp);
10560 }
10561 else if (section_is_p (sectp->name, &names->loc_dwo))
10562 {
10563 dwo_sections->loc.s.section = sectp;
10564 dwo_sections->loc.size = bfd_get_section_size (sectp);
10565 }
10566 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10567 {
10568 dwo_sections->macinfo.s.section = sectp;
10569 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10570 }
10571 else if (section_is_p (sectp->name, &names->macro_dwo))
10572 {
10573 dwo_sections->macro.s.section = sectp;
10574 dwo_sections->macro.size = bfd_get_section_size (sectp);
10575 }
10576 else if (section_is_p (sectp->name, &names->str_dwo))
10577 {
10578 dwo_sections->str.s.section = sectp;
10579 dwo_sections->str.size = bfd_get_section_size (sectp);
10580 }
10581 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10582 {
10583 dwo_sections->str_offsets.s.section = sectp;
10584 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10585 }
10586 else if (section_is_p (sectp->name, &names->types_dwo))
10587 {
10588 struct dwarf2_section_info type_section;
10589
10590 memset (&type_section, 0, sizeof (type_section));
10591 type_section.s.section = sectp;
10592 type_section.size = bfd_get_section_size (sectp);
10593 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10594 &type_section);
10595 }
10596 }
10597
10598 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10599 by PER_CU. This is for the non-DWP case.
10600 The result is NULL if DWO_NAME can't be found. */
10601
10602 static struct dwo_file *
10603 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10604 const char *dwo_name, const char *comp_dir)
10605 {
10606 struct objfile *objfile = dwarf2_per_objfile->objfile;
10607 struct dwo_file *dwo_file;
10608 bfd *dbfd;
10609 struct cleanup *cleanups;
10610
10611 dbfd = open_dwo_file (dwo_name, comp_dir);
10612 if (dbfd == NULL)
10613 {
10614 if (dwarf_read_debug)
10615 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10616 return NULL;
10617 }
10618 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10619 dwo_file->dwo_name = dwo_name;
10620 dwo_file->comp_dir = comp_dir;
10621 dwo_file->dbfd = dbfd;
10622
10623 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10624
10625 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10626
10627 dwo_file->cu = create_dwo_cu (dwo_file);
10628
10629 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10630 dwo_file->sections.types);
10631
10632 discard_cleanups (cleanups);
10633
10634 if (dwarf_read_debug)
10635 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10636
10637 return dwo_file;
10638 }
10639
10640 /* This function is mapped across the sections and remembers the offset and
10641 size of each of the DWP debugging sections common to version 1 and 2 that
10642 we are interested in. */
10643
10644 static void
10645 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10646 void *dwp_file_ptr)
10647 {
10648 struct dwp_file *dwp_file = dwp_file_ptr;
10649 const struct dwop_section_names *names = &dwop_section_names;
10650 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10651
10652 /* Record the ELF section number for later lookup: this is what the
10653 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10654 gdb_assert (elf_section_nr < dwp_file->num_sections);
10655 dwp_file->elf_sections[elf_section_nr] = sectp;
10656
10657 /* Look for specific sections that we need. */
10658 if (section_is_p (sectp->name, &names->str_dwo))
10659 {
10660 dwp_file->sections.str.s.section = sectp;
10661 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->cu_index))
10664 {
10665 dwp_file->sections.cu_index.s.section = sectp;
10666 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10667 }
10668 else if (section_is_p (sectp->name, &names->tu_index))
10669 {
10670 dwp_file->sections.tu_index.s.section = sectp;
10671 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10672 }
10673 }
10674
10675 /* This function is mapped across the sections and remembers the offset and
10676 size of each of the DWP version 2 debugging sections that we are interested
10677 in. This is split into a separate function because we don't know if we
10678 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10679
10680 static void
10681 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10682 {
10683 struct dwp_file *dwp_file = dwp_file_ptr;
10684 const struct dwop_section_names *names = &dwop_section_names;
10685 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10686
10687 /* Record the ELF section number for later lookup: this is what the
10688 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10689 gdb_assert (elf_section_nr < dwp_file->num_sections);
10690 dwp_file->elf_sections[elf_section_nr] = sectp;
10691
10692 /* Look for specific sections that we need. */
10693 if (section_is_p (sectp->name, &names->abbrev_dwo))
10694 {
10695 dwp_file->sections.abbrev.s.section = sectp;
10696 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10697 }
10698 else if (section_is_p (sectp->name, &names->info_dwo))
10699 {
10700 dwp_file->sections.info.s.section = sectp;
10701 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10702 }
10703 else if (section_is_p (sectp->name, &names->line_dwo))
10704 {
10705 dwp_file->sections.line.s.section = sectp;
10706 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10707 }
10708 else if (section_is_p (sectp->name, &names->loc_dwo))
10709 {
10710 dwp_file->sections.loc.s.section = sectp;
10711 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10712 }
10713 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10714 {
10715 dwp_file->sections.macinfo.s.section = sectp;
10716 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10717 }
10718 else if (section_is_p (sectp->name, &names->macro_dwo))
10719 {
10720 dwp_file->sections.macro.s.section = sectp;
10721 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10722 }
10723 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10724 {
10725 dwp_file->sections.str_offsets.s.section = sectp;
10726 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10727 }
10728 else if (section_is_p (sectp->name, &names->types_dwo))
10729 {
10730 dwp_file->sections.types.s.section = sectp;
10731 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10732 }
10733 }
10734
10735 /* Hash function for dwp_file loaded CUs/TUs. */
10736
10737 static hashval_t
10738 hash_dwp_loaded_cutus (const void *item)
10739 {
10740 const struct dwo_unit *dwo_unit = item;
10741
10742 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10743 return dwo_unit->signature;
10744 }
10745
10746 /* Equality function for dwp_file loaded CUs/TUs. */
10747
10748 static int
10749 eq_dwp_loaded_cutus (const void *a, const void *b)
10750 {
10751 const struct dwo_unit *dua = a;
10752 const struct dwo_unit *dub = b;
10753
10754 return dua->signature == dub->signature;
10755 }
10756
10757 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10758
10759 static htab_t
10760 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10761 {
10762 return htab_create_alloc_ex (3,
10763 hash_dwp_loaded_cutus,
10764 eq_dwp_loaded_cutus,
10765 NULL,
10766 &objfile->objfile_obstack,
10767 hashtab_obstack_allocate,
10768 dummy_obstack_deallocate);
10769 }
10770
10771 /* Try to open DWP file FILE_NAME.
10772 The result is the bfd handle of the file.
10773 If there is a problem finding or opening the file, return NULL.
10774 Upon success, the canonicalized path of the file is stored in the bfd,
10775 same as symfile_bfd_open. */
10776
10777 static bfd *
10778 open_dwp_file (const char *file_name)
10779 {
10780 bfd *abfd;
10781
10782 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10783 if (abfd != NULL)
10784 return abfd;
10785
10786 /* Work around upstream bug 15652.
10787 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10788 [Whether that's a "bug" is debatable, but it is getting in our way.]
10789 We have no real idea where the dwp file is, because gdb's realpath-ing
10790 of the executable's path may have discarded the needed info.
10791 [IWBN if the dwp file name was recorded in the executable, akin to
10792 .gnu_debuglink, but that doesn't exist yet.]
10793 Strip the directory from FILE_NAME and search again. */
10794 if (*debug_file_directory != '\0')
10795 {
10796 /* Don't implicitly search the current directory here.
10797 If the user wants to search "." to handle this case,
10798 it must be added to debug-file-directory. */
10799 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10800 0 /*search_cwd*/);
10801 }
10802
10803 return NULL;
10804 }
10805
10806 /* Initialize the use of the DWP file for the current objfile.
10807 By convention the name of the DWP file is ${objfile}.dwp.
10808 The result is NULL if it can't be found. */
10809
10810 static struct dwp_file *
10811 open_and_init_dwp_file (void)
10812 {
10813 struct objfile *objfile = dwarf2_per_objfile->objfile;
10814 struct dwp_file *dwp_file;
10815 char *dwp_name;
10816 bfd *dbfd;
10817 struct cleanup *cleanups;
10818
10819 /* Try to find first .dwp for the binary file before any symbolic links
10820 resolving. */
10821 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10822 cleanups = make_cleanup (xfree, dwp_name);
10823
10824 dbfd = open_dwp_file (dwp_name);
10825 if (dbfd == NULL
10826 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10827 {
10828 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10829 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10830 make_cleanup (xfree, dwp_name);
10831 dbfd = open_dwp_file (dwp_name);
10832 }
10833
10834 if (dbfd == NULL)
10835 {
10836 if (dwarf_read_debug)
10837 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10838 do_cleanups (cleanups);
10839 return NULL;
10840 }
10841 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10842 dwp_file->name = bfd_get_filename (dbfd);
10843 dwp_file->dbfd = dbfd;
10844 do_cleanups (cleanups);
10845
10846 /* +1: section 0 is unused */
10847 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10848 dwp_file->elf_sections =
10849 OBSTACK_CALLOC (&objfile->objfile_obstack,
10850 dwp_file->num_sections, asection *);
10851
10852 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10853
10854 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10855
10856 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10857
10858 /* The DWP file version is stored in the hash table. Oh well. */
10859 if (dwp_file->cus->version != dwp_file->tus->version)
10860 {
10861 /* Technically speaking, we should try to limp along, but this is
10862 pretty bizarre. We use pulongest here because that's the established
10863 portability solution (e.g, we cannot use %u for uint32_t). */
10864 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10865 " TU version %s [in DWP file %s]"),
10866 pulongest (dwp_file->cus->version),
10867 pulongest (dwp_file->tus->version), dwp_name);
10868 }
10869 dwp_file->version = dwp_file->cus->version;
10870
10871 if (dwp_file->version == 2)
10872 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10873
10874 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10875 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10876
10877 if (dwarf_read_debug)
10878 {
10879 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10880 fprintf_unfiltered (gdb_stdlog,
10881 " %s CUs, %s TUs\n",
10882 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10883 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10884 }
10885
10886 return dwp_file;
10887 }
10888
10889 /* Wrapper around open_and_init_dwp_file, only open it once. */
10890
10891 static struct dwp_file *
10892 get_dwp_file (void)
10893 {
10894 if (! dwarf2_per_objfile->dwp_checked)
10895 {
10896 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10897 dwarf2_per_objfile->dwp_checked = 1;
10898 }
10899 return dwarf2_per_objfile->dwp_file;
10900 }
10901
10902 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10903 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10904 or in the DWP file for the objfile, referenced by THIS_UNIT.
10905 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10906 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10907
10908 This is called, for example, when wanting to read a variable with a
10909 complex location. Therefore we don't want to do file i/o for every call.
10910 Therefore we don't want to look for a DWO file on every call.
10911 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10912 then we check if we've already seen DWO_NAME, and only THEN do we check
10913 for a DWO file.
10914
10915 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10916 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10917
10918 static struct dwo_unit *
10919 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10920 const char *dwo_name, const char *comp_dir,
10921 ULONGEST signature, int is_debug_types)
10922 {
10923 struct objfile *objfile = dwarf2_per_objfile->objfile;
10924 const char *kind = is_debug_types ? "TU" : "CU";
10925 void **dwo_file_slot;
10926 struct dwo_file *dwo_file;
10927 struct dwp_file *dwp_file;
10928
10929 /* First see if there's a DWP file.
10930 If we have a DWP file but didn't find the DWO inside it, don't
10931 look for the original DWO file. It makes gdb behave differently
10932 depending on whether one is debugging in the build tree. */
10933
10934 dwp_file = get_dwp_file ();
10935 if (dwp_file != NULL)
10936 {
10937 const struct dwp_hash_table *dwp_htab =
10938 is_debug_types ? dwp_file->tus : dwp_file->cus;
10939
10940 if (dwp_htab != NULL)
10941 {
10942 struct dwo_unit *dwo_cutu =
10943 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10944 signature, is_debug_types);
10945
10946 if (dwo_cutu != NULL)
10947 {
10948 if (dwarf_read_debug)
10949 {
10950 fprintf_unfiltered (gdb_stdlog,
10951 "Virtual DWO %s %s found: @%s\n",
10952 kind, hex_string (signature),
10953 host_address_to_string (dwo_cutu));
10954 }
10955 return dwo_cutu;
10956 }
10957 }
10958 }
10959 else
10960 {
10961 /* No DWP file, look for the DWO file. */
10962
10963 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10964 if (*dwo_file_slot == NULL)
10965 {
10966 /* Read in the file and build a table of the CUs/TUs it contains. */
10967 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10968 }
10969 /* NOTE: This will be NULL if unable to open the file. */
10970 dwo_file = *dwo_file_slot;
10971
10972 if (dwo_file != NULL)
10973 {
10974 struct dwo_unit *dwo_cutu = NULL;
10975
10976 if (is_debug_types && dwo_file->tus)
10977 {
10978 struct dwo_unit find_dwo_cutu;
10979
10980 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10981 find_dwo_cutu.signature = signature;
10982 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10983 }
10984 else if (!is_debug_types && dwo_file->cu)
10985 {
10986 if (signature == dwo_file->cu->signature)
10987 dwo_cutu = dwo_file->cu;
10988 }
10989
10990 if (dwo_cutu != NULL)
10991 {
10992 if (dwarf_read_debug)
10993 {
10994 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10995 kind, dwo_name, hex_string (signature),
10996 host_address_to_string (dwo_cutu));
10997 }
10998 return dwo_cutu;
10999 }
11000 }
11001 }
11002
11003 /* We didn't find it. This could mean a dwo_id mismatch, or
11004 someone deleted the DWO/DWP file, or the search path isn't set up
11005 correctly to find the file. */
11006
11007 if (dwarf_read_debug)
11008 {
11009 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11010 kind, dwo_name, hex_string (signature));
11011 }
11012
11013 /* This is a warning and not a complaint because it can be caused by
11014 pilot error (e.g., user accidentally deleting the DWO). */
11015 {
11016 /* Print the name of the DWP file if we looked there, helps the user
11017 better diagnose the problem. */
11018 char *dwp_text = NULL;
11019 struct cleanup *cleanups;
11020
11021 if (dwp_file != NULL)
11022 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11023 cleanups = make_cleanup (xfree, dwp_text);
11024
11025 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11026 " [in module %s]"),
11027 kind, dwo_name, hex_string (signature),
11028 dwp_text != NULL ? dwp_text : "",
11029 this_unit->is_debug_types ? "TU" : "CU",
11030 this_unit->offset.sect_off, objfile_name (objfile));
11031
11032 do_cleanups (cleanups);
11033 }
11034 return NULL;
11035 }
11036
11037 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11038 See lookup_dwo_cutu_unit for details. */
11039
11040 static struct dwo_unit *
11041 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11042 const char *dwo_name, const char *comp_dir,
11043 ULONGEST signature)
11044 {
11045 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11046 }
11047
11048 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11049 See lookup_dwo_cutu_unit for details. */
11050
11051 static struct dwo_unit *
11052 lookup_dwo_type_unit (struct signatured_type *this_tu,
11053 const char *dwo_name, const char *comp_dir)
11054 {
11055 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11056 }
11057
11058 /* Traversal function for queue_and_load_all_dwo_tus. */
11059
11060 static int
11061 queue_and_load_dwo_tu (void **slot, void *info)
11062 {
11063 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11064 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11065 ULONGEST signature = dwo_unit->signature;
11066 struct signatured_type *sig_type =
11067 lookup_dwo_signatured_type (per_cu->cu, signature);
11068
11069 if (sig_type != NULL)
11070 {
11071 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11072
11073 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11074 a real dependency of PER_CU on SIG_TYPE. That is detected later
11075 while processing PER_CU. */
11076 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11077 load_full_type_unit (sig_cu);
11078 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11079 }
11080
11081 return 1;
11082 }
11083
11084 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11085 The DWO may have the only definition of the type, though it may not be
11086 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11087 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11088
11089 static void
11090 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11091 {
11092 struct dwo_unit *dwo_unit;
11093 struct dwo_file *dwo_file;
11094
11095 gdb_assert (!per_cu->is_debug_types);
11096 gdb_assert (get_dwp_file () == NULL);
11097 gdb_assert (per_cu->cu != NULL);
11098
11099 dwo_unit = per_cu->cu->dwo_unit;
11100 gdb_assert (dwo_unit != NULL);
11101
11102 dwo_file = dwo_unit->dwo_file;
11103 if (dwo_file->tus != NULL)
11104 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11105 }
11106
11107 /* Free all resources associated with DWO_FILE.
11108 Close the DWO file and munmap the sections.
11109 All memory should be on the objfile obstack. */
11110
11111 static void
11112 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11113 {
11114 int ix;
11115 struct dwarf2_section_info *section;
11116
11117 /* Note: dbfd is NULL for virtual DWO files. */
11118 gdb_bfd_unref (dwo_file->dbfd);
11119
11120 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11121 }
11122
11123 /* Wrapper for free_dwo_file for use in cleanups. */
11124
11125 static void
11126 free_dwo_file_cleanup (void *arg)
11127 {
11128 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11129 struct objfile *objfile = dwarf2_per_objfile->objfile;
11130
11131 free_dwo_file (dwo_file, objfile);
11132 }
11133
11134 /* Traversal function for free_dwo_files. */
11135
11136 static int
11137 free_dwo_file_from_slot (void **slot, void *info)
11138 {
11139 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11140 struct objfile *objfile = (struct objfile *) info;
11141
11142 free_dwo_file (dwo_file, objfile);
11143
11144 return 1;
11145 }
11146
11147 /* Free all resources associated with DWO_FILES. */
11148
11149 static void
11150 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11151 {
11152 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11153 }
11154 \f
11155 /* Read in various DIEs. */
11156
11157 /* qsort helper for inherit_abstract_dies. */
11158
11159 static int
11160 unsigned_int_compar (const void *ap, const void *bp)
11161 {
11162 unsigned int a = *(unsigned int *) ap;
11163 unsigned int b = *(unsigned int *) bp;
11164
11165 return (a > b) - (b > a);
11166 }
11167
11168 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11169 Inherit only the children of the DW_AT_abstract_origin DIE not being
11170 already referenced by DW_AT_abstract_origin from the children of the
11171 current DIE. */
11172
11173 static void
11174 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11175 {
11176 struct die_info *child_die;
11177 unsigned die_children_count;
11178 /* CU offsets which were referenced by children of the current DIE. */
11179 sect_offset *offsets;
11180 sect_offset *offsets_end, *offsetp;
11181 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11182 struct die_info *origin_die;
11183 /* Iterator of the ORIGIN_DIE children. */
11184 struct die_info *origin_child_die;
11185 struct cleanup *cleanups;
11186 struct attribute *attr;
11187 struct dwarf2_cu *origin_cu;
11188 struct pending **origin_previous_list_in_scope;
11189
11190 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11191 if (!attr)
11192 return;
11193
11194 /* Note that following die references may follow to a die in a
11195 different cu. */
11196
11197 origin_cu = cu;
11198 origin_die = follow_die_ref (die, attr, &origin_cu);
11199
11200 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11201 symbols in. */
11202 origin_previous_list_in_scope = origin_cu->list_in_scope;
11203 origin_cu->list_in_scope = cu->list_in_scope;
11204
11205 if (die->tag != origin_die->tag
11206 && !(die->tag == DW_TAG_inlined_subroutine
11207 && origin_die->tag == DW_TAG_subprogram))
11208 complaint (&symfile_complaints,
11209 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11210 die->offset.sect_off, origin_die->offset.sect_off);
11211
11212 child_die = die->child;
11213 die_children_count = 0;
11214 while (child_die && child_die->tag)
11215 {
11216 child_die = sibling_die (child_die);
11217 die_children_count++;
11218 }
11219 offsets = XNEWVEC (sect_offset, die_children_count);
11220 cleanups = make_cleanup (xfree, offsets);
11221
11222 offsets_end = offsets;
11223 for (child_die = die->child;
11224 child_die && child_die->tag;
11225 child_die = sibling_die (child_die))
11226 {
11227 struct die_info *child_origin_die;
11228 struct dwarf2_cu *child_origin_cu;
11229
11230 /* We are trying to process concrete instance entries:
11231 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11232 it's not relevant to our analysis here. i.e. detecting DIEs that are
11233 present in the abstract instance but not referenced in the concrete
11234 one. */
11235 if (child_die->tag == DW_TAG_GNU_call_site)
11236 continue;
11237
11238 /* For each CHILD_DIE, find the corresponding child of
11239 ORIGIN_DIE. If there is more than one layer of
11240 DW_AT_abstract_origin, follow them all; there shouldn't be,
11241 but GCC versions at least through 4.4 generate this (GCC PR
11242 40573). */
11243 child_origin_die = child_die;
11244 child_origin_cu = cu;
11245 while (1)
11246 {
11247 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11248 child_origin_cu);
11249 if (attr == NULL)
11250 break;
11251 child_origin_die = follow_die_ref (child_origin_die, attr,
11252 &child_origin_cu);
11253 }
11254
11255 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11256 counterpart may exist. */
11257 if (child_origin_die != child_die)
11258 {
11259 if (child_die->tag != child_origin_die->tag
11260 && !(child_die->tag == DW_TAG_inlined_subroutine
11261 && child_origin_die->tag == DW_TAG_subprogram))
11262 complaint (&symfile_complaints,
11263 _("Child DIE 0x%x and its abstract origin 0x%x have "
11264 "different tags"), child_die->offset.sect_off,
11265 child_origin_die->offset.sect_off);
11266 if (child_origin_die->parent != origin_die)
11267 complaint (&symfile_complaints,
11268 _("Child DIE 0x%x and its abstract origin 0x%x have "
11269 "different parents"), child_die->offset.sect_off,
11270 child_origin_die->offset.sect_off);
11271 else
11272 *offsets_end++ = child_origin_die->offset;
11273 }
11274 }
11275 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11276 unsigned_int_compar);
11277 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11278 if (offsetp[-1].sect_off == offsetp->sect_off)
11279 complaint (&symfile_complaints,
11280 _("Multiple children of DIE 0x%x refer "
11281 "to DIE 0x%x as their abstract origin"),
11282 die->offset.sect_off, offsetp->sect_off);
11283
11284 offsetp = offsets;
11285 origin_child_die = origin_die->child;
11286 while (origin_child_die && origin_child_die->tag)
11287 {
11288 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11289 while (offsetp < offsets_end
11290 && offsetp->sect_off < origin_child_die->offset.sect_off)
11291 offsetp++;
11292 if (offsetp >= offsets_end
11293 || offsetp->sect_off > origin_child_die->offset.sect_off)
11294 {
11295 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11296 Check whether we're already processing ORIGIN_CHILD_DIE.
11297 This can happen with mutually referenced abstract_origins.
11298 PR 16581. */
11299 if (!origin_child_die->in_process)
11300 process_die (origin_child_die, origin_cu);
11301 }
11302 origin_child_die = sibling_die (origin_child_die);
11303 }
11304 origin_cu->list_in_scope = origin_previous_list_in_scope;
11305
11306 do_cleanups (cleanups);
11307 }
11308
11309 static void
11310 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11311 {
11312 struct objfile *objfile = cu->objfile;
11313 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11314 struct context_stack *newobj;
11315 CORE_ADDR lowpc;
11316 CORE_ADDR highpc;
11317 struct die_info *child_die;
11318 struct attribute *attr, *call_line, *call_file;
11319 const char *name;
11320 CORE_ADDR baseaddr;
11321 struct block *block;
11322 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11323 VEC (symbolp) *template_args = NULL;
11324 struct template_symbol *templ_func = NULL;
11325
11326 if (inlined_func)
11327 {
11328 /* If we do not have call site information, we can't show the
11329 caller of this inlined function. That's too confusing, so
11330 only use the scope for local variables. */
11331 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11332 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11333 if (call_line == NULL || call_file == NULL)
11334 {
11335 read_lexical_block_scope (die, cu);
11336 return;
11337 }
11338 }
11339
11340 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11341
11342 name = dwarf2_name (die, cu);
11343
11344 /* Ignore functions with missing or empty names. These are actually
11345 illegal according to the DWARF standard. */
11346 if (name == NULL)
11347 {
11348 complaint (&symfile_complaints,
11349 _("missing name for subprogram DIE at %d"),
11350 die->offset.sect_off);
11351 return;
11352 }
11353
11354 /* Ignore functions with missing or invalid low and high pc attributes. */
11355 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11356 {
11357 attr = dwarf2_attr (die, DW_AT_external, cu);
11358 if (!attr || !DW_UNSND (attr))
11359 complaint (&symfile_complaints,
11360 _("cannot get low and high bounds "
11361 "for subprogram DIE at %d"),
11362 die->offset.sect_off);
11363 return;
11364 }
11365
11366 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11367 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11368
11369 /* If we have any template arguments, then we must allocate a
11370 different sort of symbol. */
11371 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11372 {
11373 if (child_die->tag == DW_TAG_template_type_param
11374 || child_die->tag == DW_TAG_template_value_param)
11375 {
11376 templ_func = allocate_template_symbol (objfile);
11377 templ_func->base.is_cplus_template_function = 1;
11378 break;
11379 }
11380 }
11381
11382 newobj = push_context (0, lowpc);
11383 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11384 (struct symbol *) templ_func);
11385
11386 /* If there is a location expression for DW_AT_frame_base, record
11387 it. */
11388 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11389 if (attr)
11390 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11391
11392 /* If there is a location for the static link, record it. */
11393 newobj->static_link = NULL;
11394 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11395 if (attr)
11396 {
11397 newobj->static_link = obstack_alloc (&objfile->objfile_obstack,
11398 sizeof (*newobj->static_link));
11399 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11400 }
11401
11402 cu->list_in_scope = &local_symbols;
11403
11404 if (die->child != NULL)
11405 {
11406 child_die = die->child;
11407 while (child_die && child_die->tag)
11408 {
11409 if (child_die->tag == DW_TAG_template_type_param
11410 || child_die->tag == DW_TAG_template_value_param)
11411 {
11412 struct symbol *arg = new_symbol (child_die, NULL, cu);
11413
11414 if (arg != NULL)
11415 VEC_safe_push (symbolp, template_args, arg);
11416 }
11417 else
11418 process_die (child_die, cu);
11419 child_die = sibling_die (child_die);
11420 }
11421 }
11422
11423 inherit_abstract_dies (die, cu);
11424
11425 /* If we have a DW_AT_specification, we might need to import using
11426 directives from the context of the specification DIE. See the
11427 comment in determine_prefix. */
11428 if (cu->language == language_cplus
11429 && dwarf2_attr (die, DW_AT_specification, cu))
11430 {
11431 struct dwarf2_cu *spec_cu = cu;
11432 struct die_info *spec_die = die_specification (die, &spec_cu);
11433
11434 while (spec_die)
11435 {
11436 child_die = spec_die->child;
11437 while (child_die && child_die->tag)
11438 {
11439 if (child_die->tag == DW_TAG_imported_module)
11440 process_die (child_die, spec_cu);
11441 child_die = sibling_die (child_die);
11442 }
11443
11444 /* In some cases, GCC generates specification DIEs that
11445 themselves contain DW_AT_specification attributes. */
11446 spec_die = die_specification (spec_die, &spec_cu);
11447 }
11448 }
11449
11450 newobj = pop_context ();
11451 /* Make a block for the local symbols within. */
11452 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11453 newobj->static_link, lowpc, highpc);
11454
11455 /* For C++, set the block's scope. */
11456 if ((cu->language == language_cplus
11457 || cu->language == language_fortran
11458 || cu->language == language_d)
11459 && cu->processing_has_namespace_info)
11460 block_set_scope (block, determine_prefix (die, cu),
11461 &objfile->objfile_obstack);
11462
11463 /* If we have address ranges, record them. */
11464 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11465
11466 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11467
11468 /* Attach template arguments to function. */
11469 if (! VEC_empty (symbolp, template_args))
11470 {
11471 gdb_assert (templ_func != NULL);
11472
11473 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11474 templ_func->template_arguments
11475 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11476 templ_func->n_template_arguments);
11477 memcpy (templ_func->template_arguments,
11478 VEC_address (symbolp, template_args),
11479 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11480 VEC_free (symbolp, template_args);
11481 }
11482
11483 /* In C++, we can have functions nested inside functions (e.g., when
11484 a function declares a class that has methods). This means that
11485 when we finish processing a function scope, we may need to go
11486 back to building a containing block's symbol lists. */
11487 local_symbols = newobj->locals;
11488 local_using_directives = newobj->local_using_directives;
11489
11490 /* If we've finished processing a top-level function, subsequent
11491 symbols go in the file symbol list. */
11492 if (outermost_context_p ())
11493 cu->list_in_scope = &file_symbols;
11494 }
11495
11496 /* Process all the DIES contained within a lexical block scope. Start
11497 a new scope, process the dies, and then close the scope. */
11498
11499 static void
11500 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11501 {
11502 struct objfile *objfile = cu->objfile;
11503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11504 struct context_stack *newobj;
11505 CORE_ADDR lowpc, highpc;
11506 struct die_info *child_die;
11507 CORE_ADDR baseaddr;
11508
11509 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11510
11511 /* Ignore blocks with missing or invalid low and high pc attributes. */
11512 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11513 as multiple lexical blocks? Handling children in a sane way would
11514 be nasty. Might be easier to properly extend generic blocks to
11515 describe ranges. */
11516 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11517 return;
11518 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11519 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11520
11521 push_context (0, lowpc);
11522 if (die->child != NULL)
11523 {
11524 child_die = die->child;
11525 while (child_die && child_die->tag)
11526 {
11527 process_die (child_die, cu);
11528 child_die = sibling_die (child_die);
11529 }
11530 }
11531 inherit_abstract_dies (die, cu);
11532 newobj = pop_context ();
11533
11534 if (local_symbols != NULL || local_using_directives != NULL)
11535 {
11536 struct block *block
11537 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11538 newobj->start_addr, highpc);
11539
11540 /* Note that recording ranges after traversing children, as we
11541 do here, means that recording a parent's ranges entails
11542 walking across all its children's ranges as they appear in
11543 the address map, which is quadratic behavior.
11544
11545 It would be nicer to record the parent's ranges before
11546 traversing its children, simply overriding whatever you find
11547 there. But since we don't even decide whether to create a
11548 block until after we've traversed its children, that's hard
11549 to do. */
11550 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11551 }
11552 local_symbols = newobj->locals;
11553 local_using_directives = newobj->local_using_directives;
11554 }
11555
11556 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11557
11558 static void
11559 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11560 {
11561 struct objfile *objfile = cu->objfile;
11562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11563 CORE_ADDR pc, baseaddr;
11564 struct attribute *attr;
11565 struct call_site *call_site, call_site_local;
11566 void **slot;
11567 int nparams;
11568 struct die_info *child_die;
11569
11570 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11571
11572 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11573 if (!attr)
11574 {
11575 complaint (&symfile_complaints,
11576 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11577 "DIE 0x%x [in module %s]"),
11578 die->offset.sect_off, objfile_name (objfile));
11579 return;
11580 }
11581 pc = attr_value_as_address (attr) + baseaddr;
11582 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11583
11584 if (cu->call_site_htab == NULL)
11585 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11586 NULL, &objfile->objfile_obstack,
11587 hashtab_obstack_allocate, NULL);
11588 call_site_local.pc = pc;
11589 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11590 if (*slot != NULL)
11591 {
11592 complaint (&symfile_complaints,
11593 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11594 "DIE 0x%x [in module %s]"),
11595 paddress (gdbarch, pc), die->offset.sect_off,
11596 objfile_name (objfile));
11597 return;
11598 }
11599
11600 /* Count parameters at the caller. */
11601
11602 nparams = 0;
11603 for (child_die = die->child; child_die && child_die->tag;
11604 child_die = sibling_die (child_die))
11605 {
11606 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11607 {
11608 complaint (&symfile_complaints,
11609 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11610 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11611 child_die->tag, child_die->offset.sect_off,
11612 objfile_name (objfile));
11613 continue;
11614 }
11615
11616 nparams++;
11617 }
11618
11619 call_site = obstack_alloc (&objfile->objfile_obstack,
11620 (sizeof (*call_site)
11621 + (sizeof (*call_site->parameter)
11622 * (nparams - 1))));
11623 *slot = call_site;
11624 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11625 call_site->pc = pc;
11626
11627 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11628 {
11629 struct die_info *func_die;
11630
11631 /* Skip also over DW_TAG_inlined_subroutine. */
11632 for (func_die = die->parent;
11633 func_die && func_die->tag != DW_TAG_subprogram
11634 && func_die->tag != DW_TAG_subroutine_type;
11635 func_die = func_die->parent);
11636
11637 /* DW_AT_GNU_all_call_sites is a superset
11638 of DW_AT_GNU_all_tail_call_sites. */
11639 if (func_die
11640 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11641 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11642 {
11643 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11644 not complete. But keep CALL_SITE for look ups via call_site_htab,
11645 both the initial caller containing the real return address PC and
11646 the final callee containing the current PC of a chain of tail
11647 calls do not need to have the tail call list complete. But any
11648 function candidate for a virtual tail call frame searched via
11649 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11650 determined unambiguously. */
11651 }
11652 else
11653 {
11654 struct type *func_type = NULL;
11655
11656 if (func_die)
11657 func_type = get_die_type (func_die, cu);
11658 if (func_type != NULL)
11659 {
11660 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11661
11662 /* Enlist this call site to the function. */
11663 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11664 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11665 }
11666 else
11667 complaint (&symfile_complaints,
11668 _("Cannot find function owning DW_TAG_GNU_call_site "
11669 "DIE 0x%x [in module %s]"),
11670 die->offset.sect_off, objfile_name (objfile));
11671 }
11672 }
11673
11674 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11675 if (attr == NULL)
11676 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11677 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11678 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11679 /* Keep NULL DWARF_BLOCK. */;
11680 else if (attr_form_is_block (attr))
11681 {
11682 struct dwarf2_locexpr_baton *dlbaton;
11683
11684 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11685 dlbaton->data = DW_BLOCK (attr)->data;
11686 dlbaton->size = DW_BLOCK (attr)->size;
11687 dlbaton->per_cu = cu->per_cu;
11688
11689 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11690 }
11691 else if (attr_form_is_ref (attr))
11692 {
11693 struct dwarf2_cu *target_cu = cu;
11694 struct die_info *target_die;
11695
11696 target_die = follow_die_ref (die, attr, &target_cu);
11697 gdb_assert (target_cu->objfile == objfile);
11698 if (die_is_declaration (target_die, target_cu))
11699 {
11700 const char *target_physname;
11701
11702 /* Prefer the mangled name; otherwise compute the demangled one. */
11703 target_physname = dwarf2_string_attr (target_die,
11704 DW_AT_linkage_name,
11705 target_cu);
11706 if (target_physname == NULL)
11707 target_physname = dwarf2_string_attr (target_die,
11708 DW_AT_MIPS_linkage_name,
11709 target_cu);
11710 if (target_physname == NULL)
11711 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11712 if (target_physname == NULL)
11713 complaint (&symfile_complaints,
11714 _("DW_AT_GNU_call_site_target target DIE has invalid "
11715 "physname, for referencing DIE 0x%x [in module %s]"),
11716 die->offset.sect_off, objfile_name (objfile));
11717 else
11718 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11719 }
11720 else
11721 {
11722 CORE_ADDR lowpc;
11723
11724 /* DW_AT_entry_pc should be preferred. */
11725 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11726 complaint (&symfile_complaints,
11727 _("DW_AT_GNU_call_site_target target DIE has invalid "
11728 "low pc, for referencing DIE 0x%x [in module %s]"),
11729 die->offset.sect_off, objfile_name (objfile));
11730 else
11731 {
11732 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11733 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11734 }
11735 }
11736 }
11737 else
11738 complaint (&symfile_complaints,
11739 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11740 "block nor reference, for DIE 0x%x [in module %s]"),
11741 die->offset.sect_off, objfile_name (objfile));
11742
11743 call_site->per_cu = cu->per_cu;
11744
11745 for (child_die = die->child;
11746 child_die && child_die->tag;
11747 child_die = sibling_die (child_die))
11748 {
11749 struct call_site_parameter *parameter;
11750 struct attribute *loc, *origin;
11751
11752 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11753 {
11754 /* Already printed the complaint above. */
11755 continue;
11756 }
11757
11758 gdb_assert (call_site->parameter_count < nparams);
11759 parameter = &call_site->parameter[call_site->parameter_count];
11760
11761 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11762 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11763 register is contained in DW_AT_GNU_call_site_value. */
11764
11765 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11766 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11767 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11768 {
11769 sect_offset offset;
11770
11771 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11772 offset = dwarf2_get_ref_die_offset (origin);
11773 if (!offset_in_cu_p (&cu->header, offset))
11774 {
11775 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11776 binding can be done only inside one CU. Such referenced DIE
11777 therefore cannot be even moved to DW_TAG_partial_unit. */
11778 complaint (&symfile_complaints,
11779 _("DW_AT_abstract_origin offset is not in CU for "
11780 "DW_TAG_GNU_call_site child DIE 0x%x "
11781 "[in module %s]"),
11782 child_die->offset.sect_off, objfile_name (objfile));
11783 continue;
11784 }
11785 parameter->u.param_offset.cu_off = (offset.sect_off
11786 - cu->header.offset.sect_off);
11787 }
11788 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11789 {
11790 complaint (&symfile_complaints,
11791 _("No DW_FORM_block* DW_AT_location for "
11792 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11793 child_die->offset.sect_off, objfile_name (objfile));
11794 continue;
11795 }
11796 else
11797 {
11798 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11799 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11800 if (parameter->u.dwarf_reg != -1)
11801 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11802 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11803 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11804 &parameter->u.fb_offset))
11805 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11806 else
11807 {
11808 complaint (&symfile_complaints,
11809 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11810 "for DW_FORM_block* DW_AT_location is supported for "
11811 "DW_TAG_GNU_call_site child DIE 0x%x "
11812 "[in module %s]"),
11813 child_die->offset.sect_off, objfile_name (objfile));
11814 continue;
11815 }
11816 }
11817
11818 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11819 if (!attr_form_is_block (attr))
11820 {
11821 complaint (&symfile_complaints,
11822 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11823 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11824 child_die->offset.sect_off, objfile_name (objfile));
11825 continue;
11826 }
11827 parameter->value = DW_BLOCK (attr)->data;
11828 parameter->value_size = DW_BLOCK (attr)->size;
11829
11830 /* Parameters are not pre-cleared by memset above. */
11831 parameter->data_value = NULL;
11832 parameter->data_value_size = 0;
11833 call_site->parameter_count++;
11834
11835 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11836 if (attr)
11837 {
11838 if (!attr_form_is_block (attr))
11839 complaint (&symfile_complaints,
11840 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11841 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11842 child_die->offset.sect_off, objfile_name (objfile));
11843 else
11844 {
11845 parameter->data_value = DW_BLOCK (attr)->data;
11846 parameter->data_value_size = DW_BLOCK (attr)->size;
11847 }
11848 }
11849 }
11850 }
11851
11852 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11853 Return 1 if the attributes are present and valid, otherwise, return 0.
11854 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11855
11856 static int
11857 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11858 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11859 struct partial_symtab *ranges_pst)
11860 {
11861 struct objfile *objfile = cu->objfile;
11862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11863 struct comp_unit_head *cu_header = &cu->header;
11864 bfd *obfd = objfile->obfd;
11865 unsigned int addr_size = cu_header->addr_size;
11866 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11867 /* Base address selection entry. */
11868 CORE_ADDR base;
11869 int found_base;
11870 unsigned int dummy;
11871 const gdb_byte *buffer;
11872 CORE_ADDR marker;
11873 int low_set;
11874 CORE_ADDR low = 0;
11875 CORE_ADDR high = 0;
11876 CORE_ADDR baseaddr;
11877
11878 found_base = cu->base_known;
11879 base = cu->base_address;
11880
11881 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11882 if (offset >= dwarf2_per_objfile->ranges.size)
11883 {
11884 complaint (&symfile_complaints,
11885 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11886 offset);
11887 return 0;
11888 }
11889 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11890
11891 /* Read in the largest possible address. */
11892 marker = read_address (obfd, buffer, cu, &dummy);
11893 if ((marker & mask) == mask)
11894 {
11895 /* If we found the largest possible address, then
11896 read the base address. */
11897 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11898 buffer += 2 * addr_size;
11899 offset += 2 * addr_size;
11900 found_base = 1;
11901 }
11902
11903 low_set = 0;
11904
11905 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11906
11907 while (1)
11908 {
11909 CORE_ADDR range_beginning, range_end;
11910
11911 range_beginning = read_address (obfd, buffer, cu, &dummy);
11912 buffer += addr_size;
11913 range_end = read_address (obfd, buffer, cu, &dummy);
11914 buffer += addr_size;
11915 offset += 2 * addr_size;
11916
11917 /* An end of list marker is a pair of zero addresses. */
11918 if (range_beginning == 0 && range_end == 0)
11919 /* Found the end of list entry. */
11920 break;
11921
11922 /* Each base address selection entry is a pair of 2 values.
11923 The first is the largest possible address, the second is
11924 the base address. Check for a base address here. */
11925 if ((range_beginning & mask) == mask)
11926 {
11927 /* If we found the largest possible address, then
11928 read the base address. */
11929 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11930 found_base = 1;
11931 continue;
11932 }
11933
11934 if (!found_base)
11935 {
11936 /* We have no valid base address for the ranges
11937 data. */
11938 complaint (&symfile_complaints,
11939 _("Invalid .debug_ranges data (no base address)"));
11940 return 0;
11941 }
11942
11943 if (range_beginning > range_end)
11944 {
11945 /* Inverted range entries are invalid. */
11946 complaint (&symfile_complaints,
11947 _("Invalid .debug_ranges data (inverted range)"));
11948 return 0;
11949 }
11950
11951 /* Empty range entries have no effect. */
11952 if (range_beginning == range_end)
11953 continue;
11954
11955 range_beginning += base;
11956 range_end += base;
11957
11958 /* A not-uncommon case of bad debug info.
11959 Don't pollute the addrmap with bad data. */
11960 if (range_beginning + baseaddr == 0
11961 && !dwarf2_per_objfile->has_section_at_zero)
11962 {
11963 complaint (&symfile_complaints,
11964 _(".debug_ranges entry has start address of zero"
11965 " [in module %s]"), objfile_name (objfile));
11966 continue;
11967 }
11968
11969 if (ranges_pst != NULL)
11970 {
11971 CORE_ADDR lowpc;
11972 CORE_ADDR highpc;
11973
11974 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11975 range_beginning + baseaddr);
11976 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11977 range_end + baseaddr);
11978 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11979 ranges_pst);
11980 }
11981
11982 /* FIXME: This is recording everything as a low-high
11983 segment of consecutive addresses. We should have a
11984 data structure for discontiguous block ranges
11985 instead. */
11986 if (! low_set)
11987 {
11988 low = range_beginning;
11989 high = range_end;
11990 low_set = 1;
11991 }
11992 else
11993 {
11994 if (range_beginning < low)
11995 low = range_beginning;
11996 if (range_end > high)
11997 high = range_end;
11998 }
11999 }
12000
12001 if (! low_set)
12002 /* If the first entry is an end-of-list marker, the range
12003 describes an empty scope, i.e. no instructions. */
12004 return 0;
12005
12006 if (low_return)
12007 *low_return = low;
12008 if (high_return)
12009 *high_return = high;
12010 return 1;
12011 }
12012
12013 /* Get low and high pc attributes from a die. Return 1 if the attributes
12014 are present and valid, otherwise, return 0. Return -1 if the range is
12015 discontinuous, i.e. derived from DW_AT_ranges information. */
12016
12017 static int
12018 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12019 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12020 struct partial_symtab *pst)
12021 {
12022 struct attribute *attr;
12023 struct attribute *attr_high;
12024 CORE_ADDR low = 0;
12025 CORE_ADDR high = 0;
12026 int ret = 0;
12027
12028 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12029 if (attr_high)
12030 {
12031 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12032 if (attr)
12033 {
12034 low = attr_value_as_address (attr);
12035 high = attr_value_as_address (attr_high);
12036 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12037 high += low;
12038 }
12039 else
12040 /* Found high w/o low attribute. */
12041 return 0;
12042
12043 /* Found consecutive range of addresses. */
12044 ret = 1;
12045 }
12046 else
12047 {
12048 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12049 if (attr != NULL)
12050 {
12051 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12052 We take advantage of the fact that DW_AT_ranges does not appear
12053 in DW_TAG_compile_unit of DWO files. */
12054 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12055 unsigned int ranges_offset = (DW_UNSND (attr)
12056 + (need_ranges_base
12057 ? cu->ranges_base
12058 : 0));
12059
12060 /* Value of the DW_AT_ranges attribute is the offset in the
12061 .debug_ranges section. */
12062 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12063 return 0;
12064 /* Found discontinuous range of addresses. */
12065 ret = -1;
12066 }
12067 }
12068
12069 /* read_partial_die has also the strict LOW < HIGH requirement. */
12070 if (high <= low)
12071 return 0;
12072
12073 /* When using the GNU linker, .gnu.linkonce. sections are used to
12074 eliminate duplicate copies of functions and vtables and such.
12075 The linker will arbitrarily choose one and discard the others.
12076 The AT_*_pc values for such functions refer to local labels in
12077 these sections. If the section from that file was discarded, the
12078 labels are not in the output, so the relocs get a value of 0.
12079 If this is a discarded function, mark the pc bounds as invalid,
12080 so that GDB will ignore it. */
12081 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12082 return 0;
12083
12084 *lowpc = low;
12085 if (highpc)
12086 *highpc = high;
12087 return ret;
12088 }
12089
12090 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12091 its low and high PC addresses. Do nothing if these addresses could not
12092 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12093 and HIGHPC to the high address if greater than HIGHPC. */
12094
12095 static void
12096 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12097 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12098 struct dwarf2_cu *cu)
12099 {
12100 CORE_ADDR low, high;
12101 struct die_info *child = die->child;
12102
12103 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12104 {
12105 *lowpc = min (*lowpc, low);
12106 *highpc = max (*highpc, high);
12107 }
12108
12109 /* If the language does not allow nested subprograms (either inside
12110 subprograms or lexical blocks), we're done. */
12111 if (cu->language != language_ada)
12112 return;
12113
12114 /* Check all the children of the given DIE. If it contains nested
12115 subprograms, then check their pc bounds. Likewise, we need to
12116 check lexical blocks as well, as they may also contain subprogram
12117 definitions. */
12118 while (child && child->tag)
12119 {
12120 if (child->tag == DW_TAG_subprogram
12121 || child->tag == DW_TAG_lexical_block)
12122 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12123 child = sibling_die (child);
12124 }
12125 }
12126
12127 /* Get the low and high pc's represented by the scope DIE, and store
12128 them in *LOWPC and *HIGHPC. If the correct values can't be
12129 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12130
12131 static void
12132 get_scope_pc_bounds (struct die_info *die,
12133 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12134 struct dwarf2_cu *cu)
12135 {
12136 CORE_ADDR best_low = (CORE_ADDR) -1;
12137 CORE_ADDR best_high = (CORE_ADDR) 0;
12138 CORE_ADDR current_low, current_high;
12139
12140 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12141 {
12142 best_low = current_low;
12143 best_high = current_high;
12144 }
12145 else
12146 {
12147 struct die_info *child = die->child;
12148
12149 while (child && child->tag)
12150 {
12151 switch (child->tag) {
12152 case DW_TAG_subprogram:
12153 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12154 break;
12155 case DW_TAG_namespace:
12156 case DW_TAG_module:
12157 /* FIXME: carlton/2004-01-16: Should we do this for
12158 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12159 that current GCC's always emit the DIEs corresponding
12160 to definitions of methods of classes as children of a
12161 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12162 the DIEs giving the declarations, which could be
12163 anywhere). But I don't see any reason why the
12164 standards says that they have to be there. */
12165 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12166
12167 if (current_low != ((CORE_ADDR) -1))
12168 {
12169 best_low = min (best_low, current_low);
12170 best_high = max (best_high, current_high);
12171 }
12172 break;
12173 default:
12174 /* Ignore. */
12175 break;
12176 }
12177
12178 child = sibling_die (child);
12179 }
12180 }
12181
12182 *lowpc = best_low;
12183 *highpc = best_high;
12184 }
12185
12186 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12187 in DIE. */
12188
12189 static void
12190 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12191 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12192 {
12193 struct objfile *objfile = cu->objfile;
12194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12195 struct attribute *attr;
12196 struct attribute *attr_high;
12197
12198 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12199 if (attr_high)
12200 {
12201 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12202 if (attr)
12203 {
12204 CORE_ADDR low = attr_value_as_address (attr);
12205 CORE_ADDR high = attr_value_as_address (attr_high);
12206
12207 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12208 high += low;
12209
12210 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12211 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12212 record_block_range (block, low, high - 1);
12213 }
12214 }
12215
12216 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12217 if (attr)
12218 {
12219 bfd *obfd = objfile->obfd;
12220 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12221 We take advantage of the fact that DW_AT_ranges does not appear
12222 in DW_TAG_compile_unit of DWO files. */
12223 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12224
12225 /* The value of the DW_AT_ranges attribute is the offset of the
12226 address range list in the .debug_ranges section. */
12227 unsigned long offset = (DW_UNSND (attr)
12228 + (need_ranges_base ? cu->ranges_base : 0));
12229 const gdb_byte *buffer;
12230
12231 /* For some target architectures, but not others, the
12232 read_address function sign-extends the addresses it returns.
12233 To recognize base address selection entries, we need a
12234 mask. */
12235 unsigned int addr_size = cu->header.addr_size;
12236 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12237
12238 /* The base address, to which the next pair is relative. Note
12239 that this 'base' is a DWARF concept: most entries in a range
12240 list are relative, to reduce the number of relocs against the
12241 debugging information. This is separate from this function's
12242 'baseaddr' argument, which GDB uses to relocate debugging
12243 information from a shared library based on the address at
12244 which the library was loaded. */
12245 CORE_ADDR base = cu->base_address;
12246 int base_known = cu->base_known;
12247
12248 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12249 if (offset >= dwarf2_per_objfile->ranges.size)
12250 {
12251 complaint (&symfile_complaints,
12252 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12253 offset);
12254 return;
12255 }
12256 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12257
12258 for (;;)
12259 {
12260 unsigned int bytes_read;
12261 CORE_ADDR start, end;
12262
12263 start = read_address (obfd, buffer, cu, &bytes_read);
12264 buffer += bytes_read;
12265 end = read_address (obfd, buffer, cu, &bytes_read);
12266 buffer += bytes_read;
12267
12268 /* Did we find the end of the range list? */
12269 if (start == 0 && end == 0)
12270 break;
12271
12272 /* Did we find a base address selection entry? */
12273 else if ((start & base_select_mask) == base_select_mask)
12274 {
12275 base = end;
12276 base_known = 1;
12277 }
12278
12279 /* We found an ordinary address range. */
12280 else
12281 {
12282 if (!base_known)
12283 {
12284 complaint (&symfile_complaints,
12285 _("Invalid .debug_ranges data "
12286 "(no base address)"));
12287 return;
12288 }
12289
12290 if (start > end)
12291 {
12292 /* Inverted range entries are invalid. */
12293 complaint (&symfile_complaints,
12294 _("Invalid .debug_ranges data "
12295 "(inverted range)"));
12296 return;
12297 }
12298
12299 /* Empty range entries have no effect. */
12300 if (start == end)
12301 continue;
12302
12303 start += base + baseaddr;
12304 end += base + baseaddr;
12305
12306 /* A not-uncommon case of bad debug info.
12307 Don't pollute the addrmap with bad data. */
12308 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12309 {
12310 complaint (&symfile_complaints,
12311 _(".debug_ranges entry has start address of zero"
12312 " [in module %s]"), objfile_name (objfile));
12313 continue;
12314 }
12315
12316 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12317 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12318 record_block_range (block, start, end - 1);
12319 }
12320 }
12321 }
12322 }
12323
12324 /* Check whether the producer field indicates either of GCC < 4.6, or the
12325 Intel C/C++ compiler, and cache the result in CU. */
12326
12327 static void
12328 check_producer (struct dwarf2_cu *cu)
12329 {
12330 const char *cs;
12331 int major, minor;
12332
12333 if (cu->producer == NULL)
12334 {
12335 /* For unknown compilers expect their behavior is DWARF version
12336 compliant.
12337
12338 GCC started to support .debug_types sections by -gdwarf-4 since
12339 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12340 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12341 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12342 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12343 }
12344 else if (producer_is_gcc (cu->producer, &major, &minor))
12345 {
12346 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12347 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12348 }
12349 else if (startswith (cu->producer, "Intel(R) C"))
12350 cu->producer_is_icc = 1;
12351 else
12352 {
12353 /* For other non-GCC compilers, expect their behavior is DWARF version
12354 compliant. */
12355 }
12356
12357 cu->checked_producer = 1;
12358 }
12359
12360 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12361 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12362 during 4.6.0 experimental. */
12363
12364 static int
12365 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12366 {
12367 if (!cu->checked_producer)
12368 check_producer (cu);
12369
12370 return cu->producer_is_gxx_lt_4_6;
12371 }
12372
12373 /* Return the default accessibility type if it is not overriden by
12374 DW_AT_accessibility. */
12375
12376 static enum dwarf_access_attribute
12377 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12378 {
12379 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12380 {
12381 /* The default DWARF 2 accessibility for members is public, the default
12382 accessibility for inheritance is private. */
12383
12384 if (die->tag != DW_TAG_inheritance)
12385 return DW_ACCESS_public;
12386 else
12387 return DW_ACCESS_private;
12388 }
12389 else
12390 {
12391 /* DWARF 3+ defines the default accessibility a different way. The same
12392 rules apply now for DW_TAG_inheritance as for the members and it only
12393 depends on the container kind. */
12394
12395 if (die->parent->tag == DW_TAG_class_type)
12396 return DW_ACCESS_private;
12397 else
12398 return DW_ACCESS_public;
12399 }
12400 }
12401
12402 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12403 offset. If the attribute was not found return 0, otherwise return
12404 1. If it was found but could not properly be handled, set *OFFSET
12405 to 0. */
12406
12407 static int
12408 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12409 LONGEST *offset)
12410 {
12411 struct attribute *attr;
12412
12413 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12414 if (attr != NULL)
12415 {
12416 *offset = 0;
12417
12418 /* Note that we do not check for a section offset first here.
12419 This is because DW_AT_data_member_location is new in DWARF 4,
12420 so if we see it, we can assume that a constant form is really
12421 a constant and not a section offset. */
12422 if (attr_form_is_constant (attr))
12423 *offset = dwarf2_get_attr_constant_value (attr, 0);
12424 else if (attr_form_is_section_offset (attr))
12425 dwarf2_complex_location_expr_complaint ();
12426 else if (attr_form_is_block (attr))
12427 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12428 else
12429 dwarf2_complex_location_expr_complaint ();
12430
12431 return 1;
12432 }
12433
12434 return 0;
12435 }
12436
12437 /* Add an aggregate field to the field list. */
12438
12439 static void
12440 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12441 struct dwarf2_cu *cu)
12442 {
12443 struct objfile *objfile = cu->objfile;
12444 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12445 struct nextfield *new_field;
12446 struct attribute *attr;
12447 struct field *fp;
12448 const char *fieldname = "";
12449
12450 /* Allocate a new field list entry and link it in. */
12451 new_field = XNEW (struct nextfield);
12452 make_cleanup (xfree, new_field);
12453 memset (new_field, 0, sizeof (struct nextfield));
12454
12455 if (die->tag == DW_TAG_inheritance)
12456 {
12457 new_field->next = fip->baseclasses;
12458 fip->baseclasses = new_field;
12459 }
12460 else
12461 {
12462 new_field->next = fip->fields;
12463 fip->fields = new_field;
12464 }
12465 fip->nfields++;
12466
12467 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12468 if (attr)
12469 new_field->accessibility = DW_UNSND (attr);
12470 else
12471 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12472 if (new_field->accessibility != DW_ACCESS_public)
12473 fip->non_public_fields = 1;
12474
12475 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12476 if (attr)
12477 new_field->virtuality = DW_UNSND (attr);
12478 else
12479 new_field->virtuality = DW_VIRTUALITY_none;
12480
12481 fp = &new_field->field;
12482
12483 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12484 {
12485 LONGEST offset;
12486
12487 /* Data member other than a C++ static data member. */
12488
12489 /* Get type of field. */
12490 fp->type = die_type (die, cu);
12491
12492 SET_FIELD_BITPOS (*fp, 0);
12493
12494 /* Get bit size of field (zero if none). */
12495 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12496 if (attr)
12497 {
12498 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12499 }
12500 else
12501 {
12502 FIELD_BITSIZE (*fp) = 0;
12503 }
12504
12505 /* Get bit offset of field. */
12506 if (handle_data_member_location (die, cu, &offset))
12507 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12508 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12509 if (attr)
12510 {
12511 if (gdbarch_bits_big_endian (gdbarch))
12512 {
12513 /* For big endian bits, the DW_AT_bit_offset gives the
12514 additional bit offset from the MSB of the containing
12515 anonymous object to the MSB of the field. We don't
12516 have to do anything special since we don't need to
12517 know the size of the anonymous object. */
12518 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12519 }
12520 else
12521 {
12522 /* For little endian bits, compute the bit offset to the
12523 MSB of the anonymous object, subtract off the number of
12524 bits from the MSB of the field to the MSB of the
12525 object, and then subtract off the number of bits of
12526 the field itself. The result is the bit offset of
12527 the LSB of the field. */
12528 int anonymous_size;
12529 int bit_offset = DW_UNSND (attr);
12530
12531 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12532 if (attr)
12533 {
12534 /* The size of the anonymous object containing
12535 the bit field is explicit, so use the
12536 indicated size (in bytes). */
12537 anonymous_size = DW_UNSND (attr);
12538 }
12539 else
12540 {
12541 /* The size of the anonymous object containing
12542 the bit field must be inferred from the type
12543 attribute of the data member containing the
12544 bit field. */
12545 anonymous_size = TYPE_LENGTH (fp->type);
12546 }
12547 SET_FIELD_BITPOS (*fp,
12548 (FIELD_BITPOS (*fp)
12549 + anonymous_size * bits_per_byte
12550 - bit_offset - FIELD_BITSIZE (*fp)));
12551 }
12552 }
12553
12554 /* Get name of field. */
12555 fieldname = dwarf2_name (die, cu);
12556 if (fieldname == NULL)
12557 fieldname = "";
12558
12559 /* The name is already allocated along with this objfile, so we don't
12560 need to duplicate it for the type. */
12561 fp->name = fieldname;
12562
12563 /* Change accessibility for artificial fields (e.g. virtual table
12564 pointer or virtual base class pointer) to private. */
12565 if (dwarf2_attr (die, DW_AT_artificial, cu))
12566 {
12567 FIELD_ARTIFICIAL (*fp) = 1;
12568 new_field->accessibility = DW_ACCESS_private;
12569 fip->non_public_fields = 1;
12570 }
12571 }
12572 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12573 {
12574 /* C++ static member. */
12575
12576 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12577 is a declaration, but all versions of G++ as of this writing
12578 (so through at least 3.2.1) incorrectly generate
12579 DW_TAG_variable tags. */
12580
12581 const char *physname;
12582
12583 /* Get name of field. */
12584 fieldname = dwarf2_name (die, cu);
12585 if (fieldname == NULL)
12586 return;
12587
12588 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12589 if (attr
12590 /* Only create a symbol if this is an external value.
12591 new_symbol checks this and puts the value in the global symbol
12592 table, which we want. If it is not external, new_symbol
12593 will try to put the value in cu->list_in_scope which is wrong. */
12594 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12595 {
12596 /* A static const member, not much different than an enum as far as
12597 we're concerned, except that we can support more types. */
12598 new_symbol (die, NULL, cu);
12599 }
12600
12601 /* Get physical name. */
12602 physname = dwarf2_physname (fieldname, die, cu);
12603
12604 /* The name is already allocated along with this objfile, so we don't
12605 need to duplicate it for the type. */
12606 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12607 FIELD_TYPE (*fp) = die_type (die, cu);
12608 FIELD_NAME (*fp) = fieldname;
12609 }
12610 else if (die->tag == DW_TAG_inheritance)
12611 {
12612 LONGEST offset;
12613
12614 /* C++ base class field. */
12615 if (handle_data_member_location (die, cu, &offset))
12616 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12617 FIELD_BITSIZE (*fp) = 0;
12618 FIELD_TYPE (*fp) = die_type (die, cu);
12619 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12620 fip->nbaseclasses++;
12621 }
12622 }
12623
12624 /* Add a typedef defined in the scope of the FIP's class. */
12625
12626 static void
12627 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12628 struct dwarf2_cu *cu)
12629 {
12630 struct objfile *objfile = cu->objfile;
12631 struct typedef_field_list *new_field;
12632 struct attribute *attr;
12633 struct typedef_field *fp;
12634 char *fieldname = "";
12635
12636 /* Allocate a new field list entry and link it in. */
12637 new_field = XCNEW (struct typedef_field_list);
12638 make_cleanup (xfree, new_field);
12639
12640 gdb_assert (die->tag == DW_TAG_typedef);
12641
12642 fp = &new_field->field;
12643
12644 /* Get name of field. */
12645 fp->name = dwarf2_name (die, cu);
12646 if (fp->name == NULL)
12647 return;
12648
12649 fp->type = read_type_die (die, cu);
12650
12651 new_field->next = fip->typedef_field_list;
12652 fip->typedef_field_list = new_field;
12653 fip->typedef_field_list_count++;
12654 }
12655
12656 /* Create the vector of fields, and attach it to the type. */
12657
12658 static void
12659 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12660 struct dwarf2_cu *cu)
12661 {
12662 int nfields = fip->nfields;
12663
12664 /* Record the field count, allocate space for the array of fields,
12665 and create blank accessibility bitfields if necessary. */
12666 TYPE_NFIELDS (type) = nfields;
12667 TYPE_FIELDS (type) = (struct field *)
12668 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12669 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12670
12671 if (fip->non_public_fields && cu->language != language_ada)
12672 {
12673 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12674
12675 TYPE_FIELD_PRIVATE_BITS (type) =
12676 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12677 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12678
12679 TYPE_FIELD_PROTECTED_BITS (type) =
12680 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12681 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12682
12683 TYPE_FIELD_IGNORE_BITS (type) =
12684 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12685 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12686 }
12687
12688 /* If the type has baseclasses, allocate and clear a bit vector for
12689 TYPE_FIELD_VIRTUAL_BITS. */
12690 if (fip->nbaseclasses && cu->language != language_ada)
12691 {
12692 int num_bytes = B_BYTES (fip->nbaseclasses);
12693 unsigned char *pointer;
12694
12695 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12696 pointer = TYPE_ALLOC (type, num_bytes);
12697 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12698 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12699 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12700 }
12701
12702 /* Copy the saved-up fields into the field vector. Start from the head of
12703 the list, adding to the tail of the field array, so that they end up in
12704 the same order in the array in which they were added to the list. */
12705 while (nfields-- > 0)
12706 {
12707 struct nextfield *fieldp;
12708
12709 if (fip->fields)
12710 {
12711 fieldp = fip->fields;
12712 fip->fields = fieldp->next;
12713 }
12714 else
12715 {
12716 fieldp = fip->baseclasses;
12717 fip->baseclasses = fieldp->next;
12718 }
12719
12720 TYPE_FIELD (type, nfields) = fieldp->field;
12721 switch (fieldp->accessibility)
12722 {
12723 case DW_ACCESS_private:
12724 if (cu->language != language_ada)
12725 SET_TYPE_FIELD_PRIVATE (type, nfields);
12726 break;
12727
12728 case DW_ACCESS_protected:
12729 if (cu->language != language_ada)
12730 SET_TYPE_FIELD_PROTECTED (type, nfields);
12731 break;
12732
12733 case DW_ACCESS_public:
12734 break;
12735
12736 default:
12737 /* Unknown accessibility. Complain and treat it as public. */
12738 {
12739 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12740 fieldp->accessibility);
12741 }
12742 break;
12743 }
12744 if (nfields < fip->nbaseclasses)
12745 {
12746 switch (fieldp->virtuality)
12747 {
12748 case DW_VIRTUALITY_virtual:
12749 case DW_VIRTUALITY_pure_virtual:
12750 if (cu->language == language_ada)
12751 error (_("unexpected virtuality in component of Ada type"));
12752 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12753 break;
12754 }
12755 }
12756 }
12757 }
12758
12759 /* Return true if this member function is a constructor, false
12760 otherwise. */
12761
12762 static int
12763 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12764 {
12765 const char *fieldname;
12766 const char *type_name;
12767 int len;
12768
12769 if (die->parent == NULL)
12770 return 0;
12771
12772 if (die->parent->tag != DW_TAG_structure_type
12773 && die->parent->tag != DW_TAG_union_type
12774 && die->parent->tag != DW_TAG_class_type)
12775 return 0;
12776
12777 fieldname = dwarf2_name (die, cu);
12778 type_name = dwarf2_name (die->parent, cu);
12779 if (fieldname == NULL || type_name == NULL)
12780 return 0;
12781
12782 len = strlen (fieldname);
12783 return (strncmp (fieldname, type_name, len) == 0
12784 && (type_name[len] == '\0' || type_name[len] == '<'));
12785 }
12786
12787 /* Add a member function to the proper fieldlist. */
12788
12789 static void
12790 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12791 struct type *type, struct dwarf2_cu *cu)
12792 {
12793 struct objfile *objfile = cu->objfile;
12794 struct attribute *attr;
12795 struct fnfieldlist *flp;
12796 int i;
12797 struct fn_field *fnp;
12798 const char *fieldname;
12799 struct nextfnfield *new_fnfield;
12800 struct type *this_type;
12801 enum dwarf_access_attribute accessibility;
12802
12803 if (cu->language == language_ada)
12804 error (_("unexpected member function in Ada type"));
12805
12806 /* Get name of member function. */
12807 fieldname = dwarf2_name (die, cu);
12808 if (fieldname == NULL)
12809 return;
12810
12811 /* Look up member function name in fieldlist. */
12812 for (i = 0; i < fip->nfnfields; i++)
12813 {
12814 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12815 break;
12816 }
12817
12818 /* Create new list element if necessary. */
12819 if (i < fip->nfnfields)
12820 flp = &fip->fnfieldlists[i];
12821 else
12822 {
12823 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12824 {
12825 fip->fnfieldlists = (struct fnfieldlist *)
12826 xrealloc (fip->fnfieldlists,
12827 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12828 * sizeof (struct fnfieldlist));
12829 if (fip->nfnfields == 0)
12830 make_cleanup (free_current_contents, &fip->fnfieldlists);
12831 }
12832 flp = &fip->fnfieldlists[fip->nfnfields];
12833 flp->name = fieldname;
12834 flp->length = 0;
12835 flp->head = NULL;
12836 i = fip->nfnfields++;
12837 }
12838
12839 /* Create a new member function field and chain it to the field list
12840 entry. */
12841 new_fnfield = XNEW (struct nextfnfield);
12842 make_cleanup (xfree, new_fnfield);
12843 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12844 new_fnfield->next = flp->head;
12845 flp->head = new_fnfield;
12846 flp->length++;
12847
12848 /* Fill in the member function field info. */
12849 fnp = &new_fnfield->fnfield;
12850
12851 /* Delay processing of the physname until later. */
12852 if (cu->language == language_cplus || cu->language == language_java)
12853 {
12854 add_to_method_list (type, i, flp->length - 1, fieldname,
12855 die, cu);
12856 }
12857 else
12858 {
12859 const char *physname = dwarf2_physname (fieldname, die, cu);
12860 fnp->physname = physname ? physname : "";
12861 }
12862
12863 fnp->type = alloc_type (objfile);
12864 this_type = read_type_die (die, cu);
12865 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12866 {
12867 int nparams = TYPE_NFIELDS (this_type);
12868
12869 /* TYPE is the domain of this method, and THIS_TYPE is the type
12870 of the method itself (TYPE_CODE_METHOD). */
12871 smash_to_method_type (fnp->type, type,
12872 TYPE_TARGET_TYPE (this_type),
12873 TYPE_FIELDS (this_type),
12874 TYPE_NFIELDS (this_type),
12875 TYPE_VARARGS (this_type));
12876
12877 /* Handle static member functions.
12878 Dwarf2 has no clean way to discern C++ static and non-static
12879 member functions. G++ helps GDB by marking the first
12880 parameter for non-static member functions (which is the this
12881 pointer) as artificial. We obtain this information from
12882 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12883 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12884 fnp->voffset = VOFFSET_STATIC;
12885 }
12886 else
12887 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12888 dwarf2_full_name (fieldname, die, cu));
12889
12890 /* Get fcontext from DW_AT_containing_type if present. */
12891 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12892 fnp->fcontext = die_containing_type (die, cu);
12893
12894 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12895 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12896
12897 /* Get accessibility. */
12898 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12899 if (attr)
12900 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12901 else
12902 accessibility = dwarf2_default_access_attribute (die, cu);
12903 switch (accessibility)
12904 {
12905 case DW_ACCESS_private:
12906 fnp->is_private = 1;
12907 break;
12908 case DW_ACCESS_protected:
12909 fnp->is_protected = 1;
12910 break;
12911 }
12912
12913 /* Check for artificial methods. */
12914 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12915 if (attr && DW_UNSND (attr) != 0)
12916 fnp->is_artificial = 1;
12917
12918 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12919
12920 /* Get index in virtual function table if it is a virtual member
12921 function. For older versions of GCC, this is an offset in the
12922 appropriate virtual table, as specified by DW_AT_containing_type.
12923 For everyone else, it is an expression to be evaluated relative
12924 to the object address. */
12925
12926 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12927 if (attr)
12928 {
12929 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12930 {
12931 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12932 {
12933 /* Old-style GCC. */
12934 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12935 }
12936 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12937 || (DW_BLOCK (attr)->size > 1
12938 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12939 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12940 {
12941 struct dwarf_block blk;
12942 int offset;
12943
12944 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12945 ? 1 : 2);
12946 blk.size = DW_BLOCK (attr)->size - offset;
12947 blk.data = DW_BLOCK (attr)->data + offset;
12948 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12949 if ((fnp->voffset % cu->header.addr_size) != 0)
12950 dwarf2_complex_location_expr_complaint ();
12951 else
12952 fnp->voffset /= cu->header.addr_size;
12953 fnp->voffset += 2;
12954 }
12955 else
12956 dwarf2_complex_location_expr_complaint ();
12957
12958 if (!fnp->fcontext)
12959 {
12960 /* If there is no `this' field and no DW_AT_containing_type,
12961 we cannot actually find a base class context for the
12962 vtable! */
12963 if (TYPE_NFIELDS (this_type) == 0
12964 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12965 {
12966 complaint (&symfile_complaints,
12967 _("cannot determine context for virtual member "
12968 "function \"%s\" (offset %d)"),
12969 fieldname, die->offset.sect_off);
12970 }
12971 else
12972 {
12973 fnp->fcontext
12974 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12975 }
12976 }
12977 }
12978 else if (attr_form_is_section_offset (attr))
12979 {
12980 dwarf2_complex_location_expr_complaint ();
12981 }
12982 else
12983 {
12984 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12985 fieldname);
12986 }
12987 }
12988 else
12989 {
12990 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12991 if (attr && DW_UNSND (attr))
12992 {
12993 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12994 complaint (&symfile_complaints,
12995 _("Member function \"%s\" (offset %d) is virtual "
12996 "but the vtable offset is not specified"),
12997 fieldname, die->offset.sect_off);
12998 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12999 TYPE_CPLUS_DYNAMIC (type) = 1;
13000 }
13001 }
13002 }
13003
13004 /* Create the vector of member function fields, and attach it to the type. */
13005
13006 static void
13007 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13008 struct dwarf2_cu *cu)
13009 {
13010 struct fnfieldlist *flp;
13011 int i;
13012
13013 if (cu->language == language_ada)
13014 error (_("unexpected member functions in Ada type"));
13015
13016 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13017 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13018 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13019
13020 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13021 {
13022 struct nextfnfield *nfp = flp->head;
13023 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13024 int k;
13025
13026 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13027 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13028 fn_flp->fn_fields = (struct fn_field *)
13029 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13030 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13031 fn_flp->fn_fields[k] = nfp->fnfield;
13032 }
13033
13034 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13035 }
13036
13037 /* Returns non-zero if NAME is the name of a vtable member in CU's
13038 language, zero otherwise. */
13039 static int
13040 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13041 {
13042 static const char vptr[] = "_vptr";
13043 static const char vtable[] = "vtable";
13044
13045 /* Look for the C++ and Java forms of the vtable. */
13046 if ((cu->language == language_java
13047 && startswith (name, vtable))
13048 || (startswith (name, vptr)
13049 && is_cplus_marker (name[sizeof (vptr) - 1])))
13050 return 1;
13051
13052 return 0;
13053 }
13054
13055 /* GCC outputs unnamed structures that are really pointers to member
13056 functions, with the ABI-specified layout. If TYPE describes
13057 such a structure, smash it into a member function type.
13058
13059 GCC shouldn't do this; it should just output pointer to member DIEs.
13060 This is GCC PR debug/28767. */
13061
13062 static void
13063 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13064 {
13065 struct type *pfn_type, *self_type, *new_type;
13066
13067 /* Check for a structure with no name and two children. */
13068 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13069 return;
13070
13071 /* Check for __pfn and __delta members. */
13072 if (TYPE_FIELD_NAME (type, 0) == NULL
13073 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13074 || TYPE_FIELD_NAME (type, 1) == NULL
13075 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13076 return;
13077
13078 /* Find the type of the method. */
13079 pfn_type = TYPE_FIELD_TYPE (type, 0);
13080 if (pfn_type == NULL
13081 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13082 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13083 return;
13084
13085 /* Look for the "this" argument. */
13086 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13087 if (TYPE_NFIELDS (pfn_type) == 0
13088 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13089 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13090 return;
13091
13092 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13093 new_type = alloc_type (objfile);
13094 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13095 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13096 TYPE_VARARGS (pfn_type));
13097 smash_to_methodptr_type (type, new_type);
13098 }
13099
13100 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13101 (icc). */
13102
13103 static int
13104 producer_is_icc (struct dwarf2_cu *cu)
13105 {
13106 if (!cu->checked_producer)
13107 check_producer (cu);
13108
13109 return cu->producer_is_icc;
13110 }
13111
13112 /* Called when we find the DIE that starts a structure or union scope
13113 (definition) to create a type for the structure or union. Fill in
13114 the type's name and general properties; the members will not be
13115 processed until process_structure_scope. A symbol table entry for
13116 the type will also not be done until process_structure_scope (assuming
13117 the type has a name).
13118
13119 NOTE: we need to call these functions regardless of whether or not the
13120 DIE has a DW_AT_name attribute, since it might be an anonymous
13121 structure or union. This gets the type entered into our set of
13122 user defined types. */
13123
13124 static struct type *
13125 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13126 {
13127 struct objfile *objfile = cu->objfile;
13128 struct type *type;
13129 struct attribute *attr;
13130 const char *name;
13131
13132 /* If the definition of this type lives in .debug_types, read that type.
13133 Don't follow DW_AT_specification though, that will take us back up
13134 the chain and we want to go down. */
13135 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13136 if (attr)
13137 {
13138 type = get_DW_AT_signature_type (die, attr, cu);
13139
13140 /* The type's CU may not be the same as CU.
13141 Ensure TYPE is recorded with CU in die_type_hash. */
13142 return set_die_type (die, type, cu);
13143 }
13144
13145 type = alloc_type (objfile);
13146 INIT_CPLUS_SPECIFIC (type);
13147
13148 name = dwarf2_name (die, cu);
13149 if (name != NULL)
13150 {
13151 if (cu->language == language_cplus
13152 || cu->language == language_java
13153 || cu->language == language_d)
13154 {
13155 const char *full_name = dwarf2_full_name (name, die, cu);
13156
13157 /* dwarf2_full_name might have already finished building the DIE's
13158 type. If so, there is no need to continue. */
13159 if (get_die_type (die, cu) != NULL)
13160 return get_die_type (die, cu);
13161
13162 TYPE_TAG_NAME (type) = full_name;
13163 if (die->tag == DW_TAG_structure_type
13164 || die->tag == DW_TAG_class_type)
13165 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13166 }
13167 else
13168 {
13169 /* The name is already allocated along with this objfile, so
13170 we don't need to duplicate it for the type. */
13171 TYPE_TAG_NAME (type) = name;
13172 if (die->tag == DW_TAG_class_type)
13173 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13174 }
13175 }
13176
13177 if (die->tag == DW_TAG_structure_type)
13178 {
13179 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13180 }
13181 else if (die->tag == DW_TAG_union_type)
13182 {
13183 TYPE_CODE (type) = TYPE_CODE_UNION;
13184 }
13185 else
13186 {
13187 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13188 }
13189
13190 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13191 TYPE_DECLARED_CLASS (type) = 1;
13192
13193 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13194 if (attr)
13195 {
13196 TYPE_LENGTH (type) = DW_UNSND (attr);
13197 }
13198 else
13199 {
13200 TYPE_LENGTH (type) = 0;
13201 }
13202
13203 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13204 {
13205 /* ICC does not output the required DW_AT_declaration
13206 on incomplete types, but gives them a size of zero. */
13207 TYPE_STUB (type) = 1;
13208 }
13209 else
13210 TYPE_STUB_SUPPORTED (type) = 1;
13211
13212 if (die_is_declaration (die, cu))
13213 TYPE_STUB (type) = 1;
13214 else if (attr == NULL && die->child == NULL
13215 && producer_is_realview (cu->producer))
13216 /* RealView does not output the required DW_AT_declaration
13217 on incomplete types. */
13218 TYPE_STUB (type) = 1;
13219
13220 /* We need to add the type field to the die immediately so we don't
13221 infinitely recurse when dealing with pointers to the structure
13222 type within the structure itself. */
13223 set_die_type (die, type, cu);
13224
13225 /* set_die_type should be already done. */
13226 set_descriptive_type (type, die, cu);
13227
13228 return type;
13229 }
13230
13231 /* Finish creating a structure or union type, including filling in
13232 its members and creating a symbol for it. */
13233
13234 static void
13235 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13236 {
13237 struct objfile *objfile = cu->objfile;
13238 struct die_info *child_die;
13239 struct type *type;
13240
13241 type = get_die_type (die, cu);
13242 if (type == NULL)
13243 type = read_structure_type (die, cu);
13244
13245 if (die->child != NULL && ! die_is_declaration (die, cu))
13246 {
13247 struct field_info fi;
13248 VEC (symbolp) *template_args = NULL;
13249 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13250
13251 memset (&fi, 0, sizeof (struct field_info));
13252
13253 child_die = die->child;
13254
13255 while (child_die && child_die->tag)
13256 {
13257 if (child_die->tag == DW_TAG_member
13258 || child_die->tag == DW_TAG_variable)
13259 {
13260 /* NOTE: carlton/2002-11-05: A C++ static data member
13261 should be a DW_TAG_member that is a declaration, but
13262 all versions of G++ as of this writing (so through at
13263 least 3.2.1) incorrectly generate DW_TAG_variable
13264 tags for them instead. */
13265 dwarf2_add_field (&fi, child_die, cu);
13266 }
13267 else if (child_die->tag == DW_TAG_subprogram)
13268 {
13269 /* C++ member function. */
13270 dwarf2_add_member_fn (&fi, child_die, type, cu);
13271 }
13272 else if (child_die->tag == DW_TAG_inheritance)
13273 {
13274 /* C++ base class field. */
13275 dwarf2_add_field (&fi, child_die, cu);
13276 }
13277 else if (child_die->tag == DW_TAG_typedef)
13278 dwarf2_add_typedef (&fi, child_die, cu);
13279 else if (child_die->tag == DW_TAG_template_type_param
13280 || child_die->tag == DW_TAG_template_value_param)
13281 {
13282 struct symbol *arg = new_symbol (child_die, NULL, cu);
13283
13284 if (arg != NULL)
13285 VEC_safe_push (symbolp, template_args, arg);
13286 }
13287
13288 child_die = sibling_die (child_die);
13289 }
13290
13291 /* Attach template arguments to type. */
13292 if (! VEC_empty (symbolp, template_args))
13293 {
13294 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13295 TYPE_N_TEMPLATE_ARGUMENTS (type)
13296 = VEC_length (symbolp, template_args);
13297 TYPE_TEMPLATE_ARGUMENTS (type)
13298 = XOBNEWVEC (&objfile->objfile_obstack,
13299 struct symbol *,
13300 TYPE_N_TEMPLATE_ARGUMENTS (type));
13301 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13302 VEC_address (symbolp, template_args),
13303 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13304 * sizeof (struct symbol *)));
13305 VEC_free (symbolp, template_args);
13306 }
13307
13308 /* Attach fields and member functions to the type. */
13309 if (fi.nfields)
13310 dwarf2_attach_fields_to_type (&fi, type, cu);
13311 if (fi.nfnfields)
13312 {
13313 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13314
13315 /* Get the type which refers to the base class (possibly this
13316 class itself) which contains the vtable pointer for the current
13317 class from the DW_AT_containing_type attribute. This use of
13318 DW_AT_containing_type is a GNU extension. */
13319
13320 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13321 {
13322 struct type *t = die_containing_type (die, cu);
13323
13324 set_type_vptr_basetype (type, t);
13325 if (type == t)
13326 {
13327 int i;
13328
13329 /* Our own class provides vtbl ptr. */
13330 for (i = TYPE_NFIELDS (t) - 1;
13331 i >= TYPE_N_BASECLASSES (t);
13332 --i)
13333 {
13334 const char *fieldname = TYPE_FIELD_NAME (t, i);
13335
13336 if (is_vtable_name (fieldname, cu))
13337 {
13338 set_type_vptr_fieldno (type, i);
13339 break;
13340 }
13341 }
13342
13343 /* Complain if virtual function table field not found. */
13344 if (i < TYPE_N_BASECLASSES (t))
13345 complaint (&symfile_complaints,
13346 _("virtual function table pointer "
13347 "not found when defining class '%s'"),
13348 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13349 "");
13350 }
13351 else
13352 {
13353 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13354 }
13355 }
13356 else if (cu->producer
13357 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13358 {
13359 /* The IBM XLC compiler does not provide direct indication
13360 of the containing type, but the vtable pointer is
13361 always named __vfp. */
13362
13363 int i;
13364
13365 for (i = TYPE_NFIELDS (type) - 1;
13366 i >= TYPE_N_BASECLASSES (type);
13367 --i)
13368 {
13369 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13370 {
13371 set_type_vptr_fieldno (type, i);
13372 set_type_vptr_basetype (type, type);
13373 break;
13374 }
13375 }
13376 }
13377 }
13378
13379 /* Copy fi.typedef_field_list linked list elements content into the
13380 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13381 if (fi.typedef_field_list)
13382 {
13383 int i = fi.typedef_field_list_count;
13384
13385 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13386 TYPE_TYPEDEF_FIELD_ARRAY (type)
13387 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13388 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13389
13390 /* Reverse the list order to keep the debug info elements order. */
13391 while (--i >= 0)
13392 {
13393 struct typedef_field *dest, *src;
13394
13395 dest = &TYPE_TYPEDEF_FIELD (type, i);
13396 src = &fi.typedef_field_list->field;
13397 fi.typedef_field_list = fi.typedef_field_list->next;
13398 *dest = *src;
13399 }
13400 }
13401
13402 do_cleanups (back_to);
13403
13404 if (HAVE_CPLUS_STRUCT (type))
13405 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13406 }
13407
13408 quirk_gcc_member_function_pointer (type, objfile);
13409
13410 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13411 snapshots) has been known to create a die giving a declaration
13412 for a class that has, as a child, a die giving a definition for a
13413 nested class. So we have to process our children even if the
13414 current die is a declaration. Normally, of course, a declaration
13415 won't have any children at all. */
13416
13417 child_die = die->child;
13418
13419 while (child_die != NULL && child_die->tag)
13420 {
13421 if (child_die->tag == DW_TAG_member
13422 || child_die->tag == DW_TAG_variable
13423 || child_die->tag == DW_TAG_inheritance
13424 || child_die->tag == DW_TAG_template_value_param
13425 || child_die->tag == DW_TAG_template_type_param)
13426 {
13427 /* Do nothing. */
13428 }
13429 else
13430 process_die (child_die, cu);
13431
13432 child_die = sibling_die (child_die);
13433 }
13434
13435 /* Do not consider external references. According to the DWARF standard,
13436 these DIEs are identified by the fact that they have no byte_size
13437 attribute, and a declaration attribute. */
13438 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13439 || !die_is_declaration (die, cu))
13440 new_symbol (die, type, cu);
13441 }
13442
13443 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13444 update TYPE using some information only available in DIE's children. */
13445
13446 static void
13447 update_enumeration_type_from_children (struct die_info *die,
13448 struct type *type,
13449 struct dwarf2_cu *cu)
13450 {
13451 struct obstack obstack;
13452 struct die_info *child_die;
13453 int unsigned_enum = 1;
13454 int flag_enum = 1;
13455 ULONGEST mask = 0;
13456 struct cleanup *old_chain;
13457
13458 obstack_init (&obstack);
13459 old_chain = make_cleanup_obstack_free (&obstack);
13460
13461 for (child_die = die->child;
13462 child_die != NULL && child_die->tag;
13463 child_die = sibling_die (child_die))
13464 {
13465 struct attribute *attr;
13466 LONGEST value;
13467 const gdb_byte *bytes;
13468 struct dwarf2_locexpr_baton *baton;
13469 const char *name;
13470
13471 if (child_die->tag != DW_TAG_enumerator)
13472 continue;
13473
13474 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13475 if (attr == NULL)
13476 continue;
13477
13478 name = dwarf2_name (child_die, cu);
13479 if (name == NULL)
13480 name = "<anonymous enumerator>";
13481
13482 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13483 &value, &bytes, &baton);
13484 if (value < 0)
13485 {
13486 unsigned_enum = 0;
13487 flag_enum = 0;
13488 }
13489 else if ((mask & value) != 0)
13490 flag_enum = 0;
13491 else
13492 mask |= value;
13493
13494 /* If we already know that the enum type is neither unsigned, nor
13495 a flag type, no need to look at the rest of the enumerates. */
13496 if (!unsigned_enum && !flag_enum)
13497 break;
13498 }
13499
13500 if (unsigned_enum)
13501 TYPE_UNSIGNED (type) = 1;
13502 if (flag_enum)
13503 TYPE_FLAG_ENUM (type) = 1;
13504
13505 do_cleanups (old_chain);
13506 }
13507
13508 /* Given a DW_AT_enumeration_type die, set its type. We do not
13509 complete the type's fields yet, or create any symbols. */
13510
13511 static struct type *
13512 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13513 {
13514 struct objfile *objfile = cu->objfile;
13515 struct type *type;
13516 struct attribute *attr;
13517 const char *name;
13518
13519 /* If the definition of this type lives in .debug_types, read that type.
13520 Don't follow DW_AT_specification though, that will take us back up
13521 the chain and we want to go down. */
13522 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13523 if (attr)
13524 {
13525 type = get_DW_AT_signature_type (die, attr, cu);
13526
13527 /* The type's CU may not be the same as CU.
13528 Ensure TYPE is recorded with CU in die_type_hash. */
13529 return set_die_type (die, type, cu);
13530 }
13531
13532 type = alloc_type (objfile);
13533
13534 TYPE_CODE (type) = TYPE_CODE_ENUM;
13535 name = dwarf2_full_name (NULL, die, cu);
13536 if (name != NULL)
13537 TYPE_TAG_NAME (type) = name;
13538
13539 attr = dwarf2_attr (die, DW_AT_type, cu);
13540 if (attr != NULL)
13541 {
13542 struct type *underlying_type = die_type (die, cu);
13543
13544 TYPE_TARGET_TYPE (type) = underlying_type;
13545 }
13546
13547 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13548 if (attr)
13549 {
13550 TYPE_LENGTH (type) = DW_UNSND (attr);
13551 }
13552 else
13553 {
13554 TYPE_LENGTH (type) = 0;
13555 }
13556
13557 /* The enumeration DIE can be incomplete. In Ada, any type can be
13558 declared as private in the package spec, and then defined only
13559 inside the package body. Such types are known as Taft Amendment
13560 Types. When another package uses such a type, an incomplete DIE
13561 may be generated by the compiler. */
13562 if (die_is_declaration (die, cu))
13563 TYPE_STUB (type) = 1;
13564
13565 /* Finish the creation of this type by using the enum's children.
13566 We must call this even when the underlying type has been provided
13567 so that we can determine if we're looking at a "flag" enum. */
13568 update_enumeration_type_from_children (die, type, cu);
13569
13570 /* If this type has an underlying type that is not a stub, then we
13571 may use its attributes. We always use the "unsigned" attribute
13572 in this situation, because ordinarily we guess whether the type
13573 is unsigned -- but the guess can be wrong and the underlying type
13574 can tell us the reality. However, we defer to a local size
13575 attribute if one exists, because this lets the compiler override
13576 the underlying type if needed. */
13577 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13578 {
13579 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13580 if (TYPE_LENGTH (type) == 0)
13581 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13582 }
13583
13584 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13585
13586 return set_die_type (die, type, cu);
13587 }
13588
13589 /* Given a pointer to a die which begins an enumeration, process all
13590 the dies that define the members of the enumeration, and create the
13591 symbol for the enumeration type.
13592
13593 NOTE: We reverse the order of the element list. */
13594
13595 static void
13596 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13597 {
13598 struct type *this_type;
13599
13600 this_type = get_die_type (die, cu);
13601 if (this_type == NULL)
13602 this_type = read_enumeration_type (die, cu);
13603
13604 if (die->child != NULL)
13605 {
13606 struct die_info *child_die;
13607 struct symbol *sym;
13608 struct field *fields = NULL;
13609 int num_fields = 0;
13610 const char *name;
13611
13612 child_die = die->child;
13613 while (child_die && child_die->tag)
13614 {
13615 if (child_die->tag != DW_TAG_enumerator)
13616 {
13617 process_die (child_die, cu);
13618 }
13619 else
13620 {
13621 name = dwarf2_name (child_die, cu);
13622 if (name)
13623 {
13624 sym = new_symbol (child_die, this_type, cu);
13625
13626 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13627 {
13628 fields = (struct field *)
13629 xrealloc (fields,
13630 (num_fields + DW_FIELD_ALLOC_CHUNK)
13631 * sizeof (struct field));
13632 }
13633
13634 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13635 FIELD_TYPE (fields[num_fields]) = NULL;
13636 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13637 FIELD_BITSIZE (fields[num_fields]) = 0;
13638
13639 num_fields++;
13640 }
13641 }
13642
13643 child_die = sibling_die (child_die);
13644 }
13645
13646 if (num_fields)
13647 {
13648 TYPE_NFIELDS (this_type) = num_fields;
13649 TYPE_FIELDS (this_type) = (struct field *)
13650 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13651 memcpy (TYPE_FIELDS (this_type), fields,
13652 sizeof (struct field) * num_fields);
13653 xfree (fields);
13654 }
13655 }
13656
13657 /* If we are reading an enum from a .debug_types unit, and the enum
13658 is a declaration, and the enum is not the signatured type in the
13659 unit, then we do not want to add a symbol for it. Adding a
13660 symbol would in some cases obscure the true definition of the
13661 enum, giving users an incomplete type when the definition is
13662 actually available. Note that we do not want to do this for all
13663 enums which are just declarations, because C++0x allows forward
13664 enum declarations. */
13665 if (cu->per_cu->is_debug_types
13666 && die_is_declaration (die, cu))
13667 {
13668 struct signatured_type *sig_type;
13669
13670 sig_type = (struct signatured_type *) cu->per_cu;
13671 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13672 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13673 return;
13674 }
13675
13676 new_symbol (die, this_type, cu);
13677 }
13678
13679 /* Extract all information from a DW_TAG_array_type DIE and put it in
13680 the DIE's type field. For now, this only handles one dimensional
13681 arrays. */
13682
13683 static struct type *
13684 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13685 {
13686 struct objfile *objfile = cu->objfile;
13687 struct die_info *child_die;
13688 struct type *type;
13689 struct type *element_type, *range_type, *index_type;
13690 struct type **range_types = NULL;
13691 struct attribute *attr;
13692 int ndim = 0;
13693 struct cleanup *back_to;
13694 const char *name;
13695 unsigned int bit_stride = 0;
13696
13697 element_type = die_type (die, cu);
13698
13699 /* The die_type call above may have already set the type for this DIE. */
13700 type = get_die_type (die, cu);
13701 if (type)
13702 return type;
13703
13704 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13705 if (attr != NULL)
13706 bit_stride = DW_UNSND (attr) * 8;
13707
13708 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13709 if (attr != NULL)
13710 bit_stride = DW_UNSND (attr);
13711
13712 /* Irix 6.2 native cc creates array types without children for
13713 arrays with unspecified length. */
13714 if (die->child == NULL)
13715 {
13716 index_type = objfile_type (objfile)->builtin_int;
13717 range_type = create_static_range_type (NULL, index_type, 0, -1);
13718 type = create_array_type_with_stride (NULL, element_type, range_type,
13719 bit_stride);
13720 return set_die_type (die, type, cu);
13721 }
13722
13723 back_to = make_cleanup (null_cleanup, NULL);
13724 child_die = die->child;
13725 while (child_die && child_die->tag)
13726 {
13727 if (child_die->tag == DW_TAG_subrange_type)
13728 {
13729 struct type *child_type = read_type_die (child_die, cu);
13730
13731 if (child_type != NULL)
13732 {
13733 /* The range type was succesfully read. Save it for the
13734 array type creation. */
13735 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13736 {
13737 range_types = (struct type **)
13738 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13739 * sizeof (struct type *));
13740 if (ndim == 0)
13741 make_cleanup (free_current_contents, &range_types);
13742 }
13743 range_types[ndim++] = child_type;
13744 }
13745 }
13746 child_die = sibling_die (child_die);
13747 }
13748
13749 /* Dwarf2 dimensions are output from left to right, create the
13750 necessary array types in backwards order. */
13751
13752 type = element_type;
13753
13754 if (read_array_order (die, cu) == DW_ORD_col_major)
13755 {
13756 int i = 0;
13757
13758 while (i < ndim)
13759 type = create_array_type_with_stride (NULL, type, range_types[i++],
13760 bit_stride);
13761 }
13762 else
13763 {
13764 while (ndim-- > 0)
13765 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13766 bit_stride);
13767 }
13768
13769 /* Understand Dwarf2 support for vector types (like they occur on
13770 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13771 array type. This is not part of the Dwarf2/3 standard yet, but a
13772 custom vendor extension. The main difference between a regular
13773 array and the vector variant is that vectors are passed by value
13774 to functions. */
13775 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13776 if (attr)
13777 make_vector_type (type);
13778
13779 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13780 implementation may choose to implement triple vectors using this
13781 attribute. */
13782 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13783 if (attr)
13784 {
13785 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13786 TYPE_LENGTH (type) = DW_UNSND (attr);
13787 else
13788 complaint (&symfile_complaints,
13789 _("DW_AT_byte_size for array type smaller "
13790 "than the total size of elements"));
13791 }
13792
13793 name = dwarf2_name (die, cu);
13794 if (name)
13795 TYPE_NAME (type) = name;
13796
13797 /* Install the type in the die. */
13798 set_die_type (die, type, cu);
13799
13800 /* set_die_type should be already done. */
13801 set_descriptive_type (type, die, cu);
13802
13803 do_cleanups (back_to);
13804
13805 return type;
13806 }
13807
13808 static enum dwarf_array_dim_ordering
13809 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13810 {
13811 struct attribute *attr;
13812
13813 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13814
13815 if (attr)
13816 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13817
13818 /* GNU F77 is a special case, as at 08/2004 array type info is the
13819 opposite order to the dwarf2 specification, but data is still
13820 laid out as per normal fortran.
13821
13822 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13823 version checking. */
13824
13825 if (cu->language == language_fortran
13826 && cu->producer && strstr (cu->producer, "GNU F77"))
13827 {
13828 return DW_ORD_row_major;
13829 }
13830
13831 switch (cu->language_defn->la_array_ordering)
13832 {
13833 case array_column_major:
13834 return DW_ORD_col_major;
13835 case array_row_major:
13836 default:
13837 return DW_ORD_row_major;
13838 };
13839 }
13840
13841 /* Extract all information from a DW_TAG_set_type DIE and put it in
13842 the DIE's type field. */
13843
13844 static struct type *
13845 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13846 {
13847 struct type *domain_type, *set_type;
13848 struct attribute *attr;
13849
13850 domain_type = die_type (die, cu);
13851
13852 /* The die_type call above may have already set the type for this DIE. */
13853 set_type = get_die_type (die, cu);
13854 if (set_type)
13855 return set_type;
13856
13857 set_type = create_set_type (NULL, domain_type);
13858
13859 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13860 if (attr)
13861 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13862
13863 return set_die_type (die, set_type, cu);
13864 }
13865
13866 /* A helper for read_common_block that creates a locexpr baton.
13867 SYM is the symbol which we are marking as computed.
13868 COMMON_DIE is the DIE for the common block.
13869 COMMON_LOC is the location expression attribute for the common
13870 block itself.
13871 MEMBER_LOC is the location expression attribute for the particular
13872 member of the common block that we are processing.
13873 CU is the CU from which the above come. */
13874
13875 static void
13876 mark_common_block_symbol_computed (struct symbol *sym,
13877 struct die_info *common_die,
13878 struct attribute *common_loc,
13879 struct attribute *member_loc,
13880 struct dwarf2_cu *cu)
13881 {
13882 struct objfile *objfile = dwarf2_per_objfile->objfile;
13883 struct dwarf2_locexpr_baton *baton;
13884 gdb_byte *ptr;
13885 unsigned int cu_off;
13886 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13887 LONGEST offset = 0;
13888
13889 gdb_assert (common_loc && member_loc);
13890 gdb_assert (attr_form_is_block (common_loc));
13891 gdb_assert (attr_form_is_block (member_loc)
13892 || attr_form_is_constant (member_loc));
13893
13894 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13895 baton->per_cu = cu->per_cu;
13896 gdb_assert (baton->per_cu);
13897
13898 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13899
13900 if (attr_form_is_constant (member_loc))
13901 {
13902 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13903 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13904 }
13905 else
13906 baton->size += DW_BLOCK (member_loc)->size;
13907
13908 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13909 baton->data = ptr;
13910
13911 *ptr++ = DW_OP_call4;
13912 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13913 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13914 ptr += 4;
13915
13916 if (attr_form_is_constant (member_loc))
13917 {
13918 *ptr++ = DW_OP_addr;
13919 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13920 ptr += cu->header.addr_size;
13921 }
13922 else
13923 {
13924 /* We have to copy the data here, because DW_OP_call4 will only
13925 use a DW_AT_location attribute. */
13926 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13927 ptr += DW_BLOCK (member_loc)->size;
13928 }
13929
13930 *ptr++ = DW_OP_plus;
13931 gdb_assert (ptr - baton->data == baton->size);
13932
13933 SYMBOL_LOCATION_BATON (sym) = baton;
13934 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13935 }
13936
13937 /* Create appropriate locally-scoped variables for all the
13938 DW_TAG_common_block entries. Also create a struct common_block
13939 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13940 is used to sepate the common blocks name namespace from regular
13941 variable names. */
13942
13943 static void
13944 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13945 {
13946 struct attribute *attr;
13947
13948 attr = dwarf2_attr (die, DW_AT_location, cu);
13949 if (attr)
13950 {
13951 /* Support the .debug_loc offsets. */
13952 if (attr_form_is_block (attr))
13953 {
13954 /* Ok. */
13955 }
13956 else if (attr_form_is_section_offset (attr))
13957 {
13958 dwarf2_complex_location_expr_complaint ();
13959 attr = NULL;
13960 }
13961 else
13962 {
13963 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13964 "common block member");
13965 attr = NULL;
13966 }
13967 }
13968
13969 if (die->child != NULL)
13970 {
13971 struct objfile *objfile = cu->objfile;
13972 struct die_info *child_die;
13973 size_t n_entries = 0, size;
13974 struct common_block *common_block;
13975 struct symbol *sym;
13976
13977 for (child_die = die->child;
13978 child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 ++n_entries;
13981
13982 size = (sizeof (struct common_block)
13983 + (n_entries - 1) * sizeof (struct symbol *));
13984 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13985 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13986 common_block->n_entries = 0;
13987
13988 for (child_die = die->child;
13989 child_die && child_die->tag;
13990 child_die = sibling_die (child_die))
13991 {
13992 /* Create the symbol in the DW_TAG_common_block block in the current
13993 symbol scope. */
13994 sym = new_symbol (child_die, NULL, cu);
13995 if (sym != NULL)
13996 {
13997 struct attribute *member_loc;
13998
13999 common_block->contents[common_block->n_entries++] = sym;
14000
14001 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14002 cu);
14003 if (member_loc)
14004 {
14005 /* GDB has handled this for a long time, but it is
14006 not specified by DWARF. It seems to have been
14007 emitted by gfortran at least as recently as:
14008 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14009 complaint (&symfile_complaints,
14010 _("Variable in common block has "
14011 "DW_AT_data_member_location "
14012 "- DIE at 0x%x [in module %s]"),
14013 child_die->offset.sect_off,
14014 objfile_name (cu->objfile));
14015
14016 if (attr_form_is_section_offset (member_loc))
14017 dwarf2_complex_location_expr_complaint ();
14018 else if (attr_form_is_constant (member_loc)
14019 || attr_form_is_block (member_loc))
14020 {
14021 if (attr)
14022 mark_common_block_symbol_computed (sym, die, attr,
14023 member_loc, cu);
14024 }
14025 else
14026 dwarf2_complex_location_expr_complaint ();
14027 }
14028 }
14029 }
14030
14031 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14032 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14033 }
14034 }
14035
14036 /* Create a type for a C++ namespace. */
14037
14038 static struct type *
14039 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14040 {
14041 struct objfile *objfile = cu->objfile;
14042 const char *previous_prefix, *name;
14043 int is_anonymous;
14044 struct type *type;
14045
14046 /* For extensions, reuse the type of the original namespace. */
14047 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14048 {
14049 struct die_info *ext_die;
14050 struct dwarf2_cu *ext_cu = cu;
14051
14052 ext_die = dwarf2_extension (die, &ext_cu);
14053 type = read_type_die (ext_die, ext_cu);
14054
14055 /* EXT_CU may not be the same as CU.
14056 Ensure TYPE is recorded with CU in die_type_hash. */
14057 return set_die_type (die, type, cu);
14058 }
14059
14060 name = namespace_name (die, &is_anonymous, cu);
14061
14062 /* Now build the name of the current namespace. */
14063
14064 previous_prefix = determine_prefix (die, cu);
14065 if (previous_prefix[0] != '\0')
14066 name = typename_concat (&objfile->objfile_obstack,
14067 previous_prefix, name, 0, cu);
14068
14069 /* Create the type. */
14070 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14071 objfile);
14072 TYPE_NAME (type) = name;
14073 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14074
14075 return set_die_type (die, type, cu);
14076 }
14077
14078 /* Read a namespace scope. */
14079
14080 static void
14081 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14082 {
14083 struct objfile *objfile = cu->objfile;
14084 int is_anonymous;
14085
14086 /* Add a symbol associated to this if we haven't seen the namespace
14087 before. Also, add a using directive if it's an anonymous
14088 namespace. */
14089
14090 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14091 {
14092 struct type *type;
14093
14094 type = read_type_die (die, cu);
14095 new_symbol (die, type, cu);
14096
14097 namespace_name (die, &is_anonymous, cu);
14098 if (is_anonymous)
14099 {
14100 const char *previous_prefix = determine_prefix (die, cu);
14101
14102 add_using_directive (using_directives (cu->language),
14103 previous_prefix, TYPE_NAME (type), NULL,
14104 NULL, NULL, 0, &objfile->objfile_obstack);
14105 }
14106 }
14107
14108 if (die->child != NULL)
14109 {
14110 struct die_info *child_die = die->child;
14111
14112 while (child_die && child_die->tag)
14113 {
14114 process_die (child_die, cu);
14115 child_die = sibling_die (child_die);
14116 }
14117 }
14118 }
14119
14120 /* Read a Fortran module as type. This DIE can be only a declaration used for
14121 imported module. Still we need that type as local Fortran "use ... only"
14122 declaration imports depend on the created type in determine_prefix. */
14123
14124 static struct type *
14125 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14126 {
14127 struct objfile *objfile = cu->objfile;
14128 const char *module_name;
14129 struct type *type;
14130
14131 module_name = dwarf2_name (die, cu);
14132 if (!module_name)
14133 complaint (&symfile_complaints,
14134 _("DW_TAG_module has no name, offset 0x%x"),
14135 die->offset.sect_off);
14136 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14137
14138 /* determine_prefix uses TYPE_TAG_NAME. */
14139 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14140
14141 return set_die_type (die, type, cu);
14142 }
14143
14144 /* Read a Fortran module. */
14145
14146 static void
14147 read_module (struct die_info *die, struct dwarf2_cu *cu)
14148 {
14149 struct die_info *child_die = die->child;
14150 struct type *type;
14151
14152 type = read_type_die (die, cu);
14153 new_symbol (die, type, cu);
14154
14155 while (child_die && child_die->tag)
14156 {
14157 process_die (child_die, cu);
14158 child_die = sibling_die (child_die);
14159 }
14160 }
14161
14162 /* Return the name of the namespace represented by DIE. Set
14163 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14164 namespace. */
14165
14166 static const char *
14167 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14168 {
14169 struct die_info *current_die;
14170 const char *name = NULL;
14171
14172 /* Loop through the extensions until we find a name. */
14173
14174 for (current_die = die;
14175 current_die != NULL;
14176 current_die = dwarf2_extension (die, &cu))
14177 {
14178 /* We don't use dwarf2_name here so that we can detect the absence
14179 of a name -> anonymous namespace. */
14180 name = dwarf2_string_attr (die, DW_AT_name, cu);
14181
14182 if (name != NULL)
14183 break;
14184 }
14185
14186 /* Is it an anonymous namespace? */
14187
14188 *is_anonymous = (name == NULL);
14189 if (*is_anonymous)
14190 name = CP_ANONYMOUS_NAMESPACE_STR;
14191
14192 return name;
14193 }
14194
14195 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14196 the user defined type vector. */
14197
14198 static struct type *
14199 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14200 {
14201 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14202 struct comp_unit_head *cu_header = &cu->header;
14203 struct type *type;
14204 struct attribute *attr_byte_size;
14205 struct attribute *attr_address_class;
14206 int byte_size, addr_class;
14207 struct type *target_type;
14208
14209 target_type = die_type (die, cu);
14210
14211 /* The die_type call above may have already set the type for this DIE. */
14212 type = get_die_type (die, cu);
14213 if (type)
14214 return type;
14215
14216 type = lookup_pointer_type (target_type);
14217
14218 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14219 if (attr_byte_size)
14220 byte_size = DW_UNSND (attr_byte_size);
14221 else
14222 byte_size = cu_header->addr_size;
14223
14224 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14225 if (attr_address_class)
14226 addr_class = DW_UNSND (attr_address_class);
14227 else
14228 addr_class = DW_ADDR_none;
14229
14230 /* If the pointer size or address class is different than the
14231 default, create a type variant marked as such and set the
14232 length accordingly. */
14233 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14234 {
14235 if (gdbarch_address_class_type_flags_p (gdbarch))
14236 {
14237 int type_flags;
14238
14239 type_flags = gdbarch_address_class_type_flags
14240 (gdbarch, byte_size, addr_class);
14241 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14242 == 0);
14243 type = make_type_with_address_space (type, type_flags);
14244 }
14245 else if (TYPE_LENGTH (type) != byte_size)
14246 {
14247 complaint (&symfile_complaints,
14248 _("invalid pointer size %d"), byte_size);
14249 }
14250 else
14251 {
14252 /* Should we also complain about unhandled address classes? */
14253 }
14254 }
14255
14256 TYPE_LENGTH (type) = byte_size;
14257 return set_die_type (die, type, cu);
14258 }
14259
14260 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14261 the user defined type vector. */
14262
14263 static struct type *
14264 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14265 {
14266 struct type *type;
14267 struct type *to_type;
14268 struct type *domain;
14269
14270 to_type = die_type (die, cu);
14271 domain = die_containing_type (die, cu);
14272
14273 /* The calls above may have already set the type for this DIE. */
14274 type = get_die_type (die, cu);
14275 if (type)
14276 return type;
14277
14278 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14279 type = lookup_methodptr_type (to_type);
14280 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14281 {
14282 struct type *new_type = alloc_type (cu->objfile);
14283
14284 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14285 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14286 TYPE_VARARGS (to_type));
14287 type = lookup_methodptr_type (new_type);
14288 }
14289 else
14290 type = lookup_memberptr_type (to_type, domain);
14291
14292 return set_die_type (die, type, cu);
14293 }
14294
14295 /* Extract all information from a DW_TAG_reference_type DIE and add to
14296 the user defined type vector. */
14297
14298 static struct type *
14299 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14300 {
14301 struct comp_unit_head *cu_header = &cu->header;
14302 struct type *type, *target_type;
14303 struct attribute *attr;
14304
14305 target_type = die_type (die, cu);
14306
14307 /* The die_type call above may have already set the type for this DIE. */
14308 type = get_die_type (die, cu);
14309 if (type)
14310 return type;
14311
14312 type = lookup_reference_type (target_type);
14313 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14314 if (attr)
14315 {
14316 TYPE_LENGTH (type) = DW_UNSND (attr);
14317 }
14318 else
14319 {
14320 TYPE_LENGTH (type) = cu_header->addr_size;
14321 }
14322 return set_die_type (die, type, cu);
14323 }
14324
14325 /* Add the given cv-qualifiers to the element type of the array. GCC
14326 outputs DWARF type qualifiers that apply to an array, not the
14327 element type. But GDB relies on the array element type to carry
14328 the cv-qualifiers. This mimics section 6.7.3 of the C99
14329 specification. */
14330
14331 static struct type *
14332 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14333 struct type *base_type, int cnst, int voltl)
14334 {
14335 struct type *el_type, *inner_array;
14336
14337 base_type = copy_type (base_type);
14338 inner_array = base_type;
14339
14340 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14341 {
14342 TYPE_TARGET_TYPE (inner_array) =
14343 copy_type (TYPE_TARGET_TYPE (inner_array));
14344 inner_array = TYPE_TARGET_TYPE (inner_array);
14345 }
14346
14347 el_type = TYPE_TARGET_TYPE (inner_array);
14348 cnst |= TYPE_CONST (el_type);
14349 voltl |= TYPE_VOLATILE (el_type);
14350 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14351
14352 return set_die_type (die, base_type, cu);
14353 }
14354
14355 static struct type *
14356 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14357 {
14358 struct type *base_type, *cv_type;
14359
14360 base_type = die_type (die, cu);
14361
14362 /* The die_type call above may have already set the type for this DIE. */
14363 cv_type = get_die_type (die, cu);
14364 if (cv_type)
14365 return cv_type;
14366
14367 /* In case the const qualifier is applied to an array type, the element type
14368 is so qualified, not the array type (section 6.7.3 of C99). */
14369 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14370 return add_array_cv_type (die, cu, base_type, 1, 0);
14371
14372 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14373 return set_die_type (die, cv_type, cu);
14374 }
14375
14376 static struct type *
14377 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14378 {
14379 struct type *base_type, *cv_type;
14380
14381 base_type = die_type (die, cu);
14382
14383 /* The die_type call above may have already set the type for this DIE. */
14384 cv_type = get_die_type (die, cu);
14385 if (cv_type)
14386 return cv_type;
14387
14388 /* In case the volatile qualifier is applied to an array type, the
14389 element type is so qualified, not the array type (section 6.7.3
14390 of C99). */
14391 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14392 return add_array_cv_type (die, cu, base_type, 0, 1);
14393
14394 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14395 return set_die_type (die, cv_type, cu);
14396 }
14397
14398 /* Handle DW_TAG_restrict_type. */
14399
14400 static struct type *
14401 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14402 {
14403 struct type *base_type, *cv_type;
14404
14405 base_type = die_type (die, cu);
14406
14407 /* The die_type call above may have already set the type for this DIE. */
14408 cv_type = get_die_type (die, cu);
14409 if (cv_type)
14410 return cv_type;
14411
14412 cv_type = make_restrict_type (base_type);
14413 return set_die_type (die, cv_type, cu);
14414 }
14415
14416 /* Handle DW_TAG_atomic_type. */
14417
14418 static struct type *
14419 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14420 {
14421 struct type *base_type, *cv_type;
14422
14423 base_type = die_type (die, cu);
14424
14425 /* The die_type call above may have already set the type for this DIE. */
14426 cv_type = get_die_type (die, cu);
14427 if (cv_type)
14428 return cv_type;
14429
14430 cv_type = make_atomic_type (base_type);
14431 return set_die_type (die, cv_type, cu);
14432 }
14433
14434 /* Extract all information from a DW_TAG_string_type DIE and add to
14435 the user defined type vector. It isn't really a user defined type,
14436 but it behaves like one, with other DIE's using an AT_user_def_type
14437 attribute to reference it. */
14438
14439 static struct type *
14440 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14441 {
14442 struct objfile *objfile = cu->objfile;
14443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14444 struct type *type, *range_type, *index_type, *char_type;
14445 struct attribute *attr;
14446 unsigned int length;
14447
14448 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14449 if (attr)
14450 {
14451 length = DW_UNSND (attr);
14452 }
14453 else
14454 {
14455 /* Check for the DW_AT_byte_size attribute. */
14456 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14457 if (attr)
14458 {
14459 length = DW_UNSND (attr);
14460 }
14461 else
14462 {
14463 length = 1;
14464 }
14465 }
14466
14467 index_type = objfile_type (objfile)->builtin_int;
14468 range_type = create_static_range_type (NULL, index_type, 1, length);
14469 char_type = language_string_char_type (cu->language_defn, gdbarch);
14470 type = create_string_type (NULL, char_type, range_type);
14471
14472 return set_die_type (die, type, cu);
14473 }
14474
14475 /* Assuming that DIE corresponds to a function, returns nonzero
14476 if the function is prototyped. */
14477
14478 static int
14479 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14480 {
14481 struct attribute *attr;
14482
14483 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14484 if (attr && (DW_UNSND (attr) != 0))
14485 return 1;
14486
14487 /* The DWARF standard implies that the DW_AT_prototyped attribute
14488 is only meaninful for C, but the concept also extends to other
14489 languages that allow unprototyped functions (Eg: Objective C).
14490 For all other languages, assume that functions are always
14491 prototyped. */
14492 if (cu->language != language_c
14493 && cu->language != language_objc
14494 && cu->language != language_opencl)
14495 return 1;
14496
14497 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14498 prototyped and unprototyped functions; default to prototyped,
14499 since that is more common in modern code (and RealView warns
14500 about unprototyped functions). */
14501 if (producer_is_realview (cu->producer))
14502 return 1;
14503
14504 return 0;
14505 }
14506
14507 /* Handle DIES due to C code like:
14508
14509 struct foo
14510 {
14511 int (*funcp)(int a, long l);
14512 int b;
14513 };
14514
14515 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14516
14517 static struct type *
14518 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14519 {
14520 struct objfile *objfile = cu->objfile;
14521 struct type *type; /* Type that this function returns. */
14522 struct type *ftype; /* Function that returns above type. */
14523 struct attribute *attr;
14524
14525 type = die_type (die, cu);
14526
14527 /* The die_type call above may have already set the type for this DIE. */
14528 ftype = get_die_type (die, cu);
14529 if (ftype)
14530 return ftype;
14531
14532 ftype = lookup_function_type (type);
14533
14534 if (prototyped_function_p (die, cu))
14535 TYPE_PROTOTYPED (ftype) = 1;
14536
14537 /* Store the calling convention in the type if it's available in
14538 the subroutine die. Otherwise set the calling convention to
14539 the default value DW_CC_normal. */
14540 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14541 if (attr)
14542 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14543 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14544 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14545 else
14546 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14547
14548 /* Record whether the function returns normally to its caller or not
14549 if the DWARF producer set that information. */
14550 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14551 if (attr && (DW_UNSND (attr) != 0))
14552 TYPE_NO_RETURN (ftype) = 1;
14553
14554 /* We need to add the subroutine type to the die immediately so
14555 we don't infinitely recurse when dealing with parameters
14556 declared as the same subroutine type. */
14557 set_die_type (die, ftype, cu);
14558
14559 if (die->child != NULL)
14560 {
14561 struct type *void_type = objfile_type (objfile)->builtin_void;
14562 struct die_info *child_die;
14563 int nparams, iparams;
14564
14565 /* Count the number of parameters.
14566 FIXME: GDB currently ignores vararg functions, but knows about
14567 vararg member functions. */
14568 nparams = 0;
14569 child_die = die->child;
14570 while (child_die && child_die->tag)
14571 {
14572 if (child_die->tag == DW_TAG_formal_parameter)
14573 nparams++;
14574 else if (child_die->tag == DW_TAG_unspecified_parameters)
14575 TYPE_VARARGS (ftype) = 1;
14576 child_die = sibling_die (child_die);
14577 }
14578
14579 /* Allocate storage for parameters and fill them in. */
14580 TYPE_NFIELDS (ftype) = nparams;
14581 TYPE_FIELDS (ftype) = (struct field *)
14582 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14583
14584 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14585 even if we error out during the parameters reading below. */
14586 for (iparams = 0; iparams < nparams; iparams++)
14587 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14588
14589 iparams = 0;
14590 child_die = die->child;
14591 while (child_die && child_die->tag)
14592 {
14593 if (child_die->tag == DW_TAG_formal_parameter)
14594 {
14595 struct type *arg_type;
14596
14597 /* DWARF version 2 has no clean way to discern C++
14598 static and non-static member functions. G++ helps
14599 GDB by marking the first parameter for non-static
14600 member functions (which is the this pointer) as
14601 artificial. We pass this information to
14602 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14603
14604 DWARF version 3 added DW_AT_object_pointer, which GCC
14605 4.5 does not yet generate. */
14606 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14607 if (attr)
14608 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14609 else
14610 {
14611 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14612
14613 /* GCC/43521: In java, the formal parameter
14614 "this" is sometimes not marked with DW_AT_artificial. */
14615 if (cu->language == language_java)
14616 {
14617 const char *name = dwarf2_name (child_die, cu);
14618
14619 if (name && !strcmp (name, "this"))
14620 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14621 }
14622 }
14623 arg_type = die_type (child_die, cu);
14624
14625 /* RealView does not mark THIS as const, which the testsuite
14626 expects. GCC marks THIS as const in method definitions,
14627 but not in the class specifications (GCC PR 43053). */
14628 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14629 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14630 {
14631 int is_this = 0;
14632 struct dwarf2_cu *arg_cu = cu;
14633 const char *name = dwarf2_name (child_die, cu);
14634
14635 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14636 if (attr)
14637 {
14638 /* If the compiler emits this, use it. */
14639 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14640 is_this = 1;
14641 }
14642 else if (name && strcmp (name, "this") == 0)
14643 /* Function definitions will have the argument names. */
14644 is_this = 1;
14645 else if (name == NULL && iparams == 0)
14646 /* Declarations may not have the names, so like
14647 elsewhere in GDB, assume an artificial first
14648 argument is "this". */
14649 is_this = 1;
14650
14651 if (is_this)
14652 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14653 arg_type, 0);
14654 }
14655
14656 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14657 iparams++;
14658 }
14659 child_die = sibling_die (child_die);
14660 }
14661 }
14662
14663 return ftype;
14664 }
14665
14666 static struct type *
14667 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14668 {
14669 struct objfile *objfile = cu->objfile;
14670 const char *name = NULL;
14671 struct type *this_type, *target_type;
14672
14673 name = dwarf2_full_name (NULL, die, cu);
14674 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14675 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14676 TYPE_NAME (this_type) = name;
14677 set_die_type (die, this_type, cu);
14678 target_type = die_type (die, cu);
14679 if (target_type != this_type)
14680 TYPE_TARGET_TYPE (this_type) = target_type;
14681 else
14682 {
14683 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14684 spec and cause infinite loops in GDB. */
14685 complaint (&symfile_complaints,
14686 _("Self-referential DW_TAG_typedef "
14687 "- DIE at 0x%x [in module %s]"),
14688 die->offset.sect_off, objfile_name (objfile));
14689 TYPE_TARGET_TYPE (this_type) = NULL;
14690 }
14691 return this_type;
14692 }
14693
14694 /* Find a representation of a given base type and install
14695 it in the TYPE field of the die. */
14696
14697 static struct type *
14698 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14699 {
14700 struct objfile *objfile = cu->objfile;
14701 struct type *type;
14702 struct attribute *attr;
14703 int encoding = 0, size = 0;
14704 const char *name;
14705 enum type_code code = TYPE_CODE_INT;
14706 int type_flags = 0;
14707 struct type *target_type = NULL;
14708
14709 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14710 if (attr)
14711 {
14712 encoding = DW_UNSND (attr);
14713 }
14714 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14715 if (attr)
14716 {
14717 size = DW_UNSND (attr);
14718 }
14719 name = dwarf2_name (die, cu);
14720 if (!name)
14721 {
14722 complaint (&symfile_complaints,
14723 _("DW_AT_name missing from DW_TAG_base_type"));
14724 }
14725
14726 switch (encoding)
14727 {
14728 case DW_ATE_address:
14729 /* Turn DW_ATE_address into a void * pointer. */
14730 code = TYPE_CODE_PTR;
14731 type_flags |= TYPE_FLAG_UNSIGNED;
14732 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14733 break;
14734 case DW_ATE_boolean:
14735 code = TYPE_CODE_BOOL;
14736 type_flags |= TYPE_FLAG_UNSIGNED;
14737 break;
14738 case DW_ATE_complex_float:
14739 code = TYPE_CODE_COMPLEX;
14740 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14741 break;
14742 case DW_ATE_decimal_float:
14743 code = TYPE_CODE_DECFLOAT;
14744 break;
14745 case DW_ATE_float:
14746 code = TYPE_CODE_FLT;
14747 break;
14748 case DW_ATE_signed:
14749 break;
14750 case DW_ATE_unsigned:
14751 type_flags |= TYPE_FLAG_UNSIGNED;
14752 if (cu->language == language_fortran
14753 && name
14754 && startswith (name, "character("))
14755 code = TYPE_CODE_CHAR;
14756 break;
14757 case DW_ATE_signed_char:
14758 if (cu->language == language_ada || cu->language == language_m2
14759 || cu->language == language_pascal
14760 || cu->language == language_fortran)
14761 code = TYPE_CODE_CHAR;
14762 break;
14763 case DW_ATE_unsigned_char:
14764 if (cu->language == language_ada || cu->language == language_m2
14765 || cu->language == language_pascal
14766 || cu->language == language_fortran)
14767 code = TYPE_CODE_CHAR;
14768 type_flags |= TYPE_FLAG_UNSIGNED;
14769 break;
14770 case DW_ATE_UTF:
14771 /* We just treat this as an integer and then recognize the
14772 type by name elsewhere. */
14773 break;
14774
14775 default:
14776 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14777 dwarf_type_encoding_name (encoding));
14778 break;
14779 }
14780
14781 type = init_type (code, size, type_flags, NULL, objfile);
14782 TYPE_NAME (type) = name;
14783 TYPE_TARGET_TYPE (type) = target_type;
14784
14785 if (name && strcmp (name, "char") == 0)
14786 TYPE_NOSIGN (type) = 1;
14787
14788 return set_die_type (die, type, cu);
14789 }
14790
14791 /* Parse dwarf attribute if it's a block, reference or constant and put the
14792 resulting value of the attribute into struct bound_prop.
14793 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14794
14795 static int
14796 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14797 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14798 {
14799 struct dwarf2_property_baton *baton;
14800 struct obstack *obstack = &cu->objfile->objfile_obstack;
14801
14802 if (attr == NULL || prop == NULL)
14803 return 0;
14804
14805 if (attr_form_is_block (attr))
14806 {
14807 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14808 baton->referenced_type = NULL;
14809 baton->locexpr.per_cu = cu->per_cu;
14810 baton->locexpr.size = DW_BLOCK (attr)->size;
14811 baton->locexpr.data = DW_BLOCK (attr)->data;
14812 prop->data.baton = baton;
14813 prop->kind = PROP_LOCEXPR;
14814 gdb_assert (prop->data.baton != NULL);
14815 }
14816 else if (attr_form_is_ref (attr))
14817 {
14818 struct dwarf2_cu *target_cu = cu;
14819 struct die_info *target_die;
14820 struct attribute *target_attr;
14821
14822 target_die = follow_die_ref (die, attr, &target_cu);
14823 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14824 if (target_attr == NULL)
14825 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14826 target_cu);
14827 if (target_attr == NULL)
14828 return 0;
14829
14830 switch (target_attr->name)
14831 {
14832 case DW_AT_location:
14833 if (attr_form_is_section_offset (target_attr))
14834 {
14835 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14836 baton->referenced_type = die_type (target_die, target_cu);
14837 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14838 prop->data.baton = baton;
14839 prop->kind = PROP_LOCLIST;
14840 gdb_assert (prop->data.baton != NULL);
14841 }
14842 else if (attr_form_is_block (target_attr))
14843 {
14844 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14845 baton->referenced_type = die_type (target_die, target_cu);
14846 baton->locexpr.per_cu = cu->per_cu;
14847 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14848 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14849 prop->data.baton = baton;
14850 prop->kind = PROP_LOCEXPR;
14851 gdb_assert (prop->data.baton != NULL);
14852 }
14853 else
14854 {
14855 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14856 "dynamic property");
14857 return 0;
14858 }
14859 break;
14860 case DW_AT_data_member_location:
14861 {
14862 LONGEST offset;
14863
14864 if (!handle_data_member_location (target_die, target_cu,
14865 &offset))
14866 return 0;
14867
14868 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14869 baton->referenced_type = read_type_die (target_die->parent,
14870 target_cu);
14871 baton->offset_info.offset = offset;
14872 baton->offset_info.type = die_type (target_die, target_cu);
14873 prop->data.baton = baton;
14874 prop->kind = PROP_ADDR_OFFSET;
14875 break;
14876 }
14877 }
14878 }
14879 else if (attr_form_is_constant (attr))
14880 {
14881 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14882 prop->kind = PROP_CONST;
14883 }
14884 else
14885 {
14886 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14887 dwarf2_name (die, cu));
14888 return 0;
14889 }
14890
14891 return 1;
14892 }
14893
14894 /* Read the given DW_AT_subrange DIE. */
14895
14896 static struct type *
14897 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14898 {
14899 struct type *base_type, *orig_base_type;
14900 struct type *range_type;
14901 struct attribute *attr;
14902 struct dynamic_prop low, high;
14903 int low_default_is_valid;
14904 int high_bound_is_count = 0;
14905 const char *name;
14906 LONGEST negative_mask;
14907
14908 orig_base_type = die_type (die, cu);
14909 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14910 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14911 creating the range type, but we use the result of check_typedef
14912 when examining properties of the type. */
14913 base_type = check_typedef (orig_base_type);
14914
14915 /* The die_type call above may have already set the type for this DIE. */
14916 range_type = get_die_type (die, cu);
14917 if (range_type)
14918 return range_type;
14919
14920 low.kind = PROP_CONST;
14921 high.kind = PROP_CONST;
14922 high.data.const_val = 0;
14923
14924 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14925 omitting DW_AT_lower_bound. */
14926 switch (cu->language)
14927 {
14928 case language_c:
14929 case language_cplus:
14930 low.data.const_val = 0;
14931 low_default_is_valid = 1;
14932 break;
14933 case language_fortran:
14934 low.data.const_val = 1;
14935 low_default_is_valid = 1;
14936 break;
14937 case language_d:
14938 case language_java:
14939 case language_objc:
14940 low.data.const_val = 0;
14941 low_default_is_valid = (cu->header.version >= 4);
14942 break;
14943 case language_ada:
14944 case language_m2:
14945 case language_pascal:
14946 low.data.const_val = 1;
14947 low_default_is_valid = (cu->header.version >= 4);
14948 break;
14949 default:
14950 low.data.const_val = 0;
14951 low_default_is_valid = 0;
14952 break;
14953 }
14954
14955 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14956 if (attr)
14957 attr_to_dynamic_prop (attr, die, cu, &low);
14958 else if (!low_default_is_valid)
14959 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14960 "- DIE at 0x%x [in module %s]"),
14961 die->offset.sect_off, objfile_name (cu->objfile));
14962
14963 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14964 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14965 {
14966 attr = dwarf2_attr (die, DW_AT_count, cu);
14967 if (attr_to_dynamic_prop (attr, die, cu, &high))
14968 {
14969 /* If bounds are constant do the final calculation here. */
14970 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14971 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14972 else
14973 high_bound_is_count = 1;
14974 }
14975 }
14976
14977 /* Dwarf-2 specifications explicitly allows to create subrange types
14978 without specifying a base type.
14979 In that case, the base type must be set to the type of
14980 the lower bound, upper bound or count, in that order, if any of these
14981 three attributes references an object that has a type.
14982 If no base type is found, the Dwarf-2 specifications say that
14983 a signed integer type of size equal to the size of an address should
14984 be used.
14985 For the following C code: `extern char gdb_int [];'
14986 GCC produces an empty range DIE.
14987 FIXME: muller/2010-05-28: Possible references to object for low bound,
14988 high bound or count are not yet handled by this code. */
14989 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14990 {
14991 struct objfile *objfile = cu->objfile;
14992 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14993 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14994 struct type *int_type = objfile_type (objfile)->builtin_int;
14995
14996 /* Test "int", "long int", and "long long int" objfile types,
14997 and select the first one having a size above or equal to the
14998 architecture address size. */
14999 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15000 base_type = int_type;
15001 else
15002 {
15003 int_type = objfile_type (objfile)->builtin_long;
15004 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15005 base_type = int_type;
15006 else
15007 {
15008 int_type = objfile_type (objfile)->builtin_long_long;
15009 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15010 base_type = int_type;
15011 }
15012 }
15013 }
15014
15015 /* Normally, the DWARF producers are expected to use a signed
15016 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15017 But this is unfortunately not always the case, as witnessed
15018 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15019 is used instead. To work around that ambiguity, we treat
15020 the bounds as signed, and thus sign-extend their values, when
15021 the base type is signed. */
15022 negative_mask =
15023 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15024 if (low.kind == PROP_CONST
15025 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15026 low.data.const_val |= negative_mask;
15027 if (high.kind == PROP_CONST
15028 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15029 high.data.const_val |= negative_mask;
15030
15031 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15032
15033 if (high_bound_is_count)
15034 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15035
15036 /* Ada expects an empty array on no boundary attributes. */
15037 if (attr == NULL && cu->language != language_ada)
15038 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15039
15040 name = dwarf2_name (die, cu);
15041 if (name)
15042 TYPE_NAME (range_type) = name;
15043
15044 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15045 if (attr)
15046 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15047
15048 set_die_type (die, range_type, cu);
15049
15050 /* set_die_type should be already done. */
15051 set_descriptive_type (range_type, die, cu);
15052
15053 return range_type;
15054 }
15055
15056 static struct type *
15057 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15058 {
15059 struct type *type;
15060
15061 /* For now, we only support the C meaning of an unspecified type: void. */
15062
15063 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15064 TYPE_NAME (type) = dwarf2_name (die, cu);
15065
15066 return set_die_type (die, type, cu);
15067 }
15068
15069 /* Read a single die and all its descendents. Set the die's sibling
15070 field to NULL; set other fields in the die correctly, and set all
15071 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15072 location of the info_ptr after reading all of those dies. PARENT
15073 is the parent of the die in question. */
15074
15075 static struct die_info *
15076 read_die_and_children (const struct die_reader_specs *reader,
15077 const gdb_byte *info_ptr,
15078 const gdb_byte **new_info_ptr,
15079 struct die_info *parent)
15080 {
15081 struct die_info *die;
15082 const gdb_byte *cur_ptr;
15083 int has_children;
15084
15085 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15086 if (die == NULL)
15087 {
15088 *new_info_ptr = cur_ptr;
15089 return NULL;
15090 }
15091 store_in_ref_table (die, reader->cu);
15092
15093 if (has_children)
15094 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15095 else
15096 {
15097 die->child = NULL;
15098 *new_info_ptr = cur_ptr;
15099 }
15100
15101 die->sibling = NULL;
15102 die->parent = parent;
15103 return die;
15104 }
15105
15106 /* Read a die, all of its descendents, and all of its siblings; set
15107 all of the fields of all of the dies correctly. Arguments are as
15108 in read_die_and_children. */
15109
15110 static struct die_info *
15111 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15112 const gdb_byte *info_ptr,
15113 const gdb_byte **new_info_ptr,
15114 struct die_info *parent)
15115 {
15116 struct die_info *first_die, *last_sibling;
15117 const gdb_byte *cur_ptr;
15118
15119 cur_ptr = info_ptr;
15120 first_die = last_sibling = NULL;
15121
15122 while (1)
15123 {
15124 struct die_info *die
15125 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15126
15127 if (die == NULL)
15128 {
15129 *new_info_ptr = cur_ptr;
15130 return first_die;
15131 }
15132
15133 if (!first_die)
15134 first_die = die;
15135 else
15136 last_sibling->sibling = die;
15137
15138 last_sibling = die;
15139 }
15140 }
15141
15142 /* Read a die, all of its descendents, and all of its siblings; set
15143 all of the fields of all of the dies correctly. Arguments are as
15144 in read_die_and_children.
15145 This the main entry point for reading a DIE and all its children. */
15146
15147 static struct die_info *
15148 read_die_and_siblings (const struct die_reader_specs *reader,
15149 const gdb_byte *info_ptr,
15150 const gdb_byte **new_info_ptr,
15151 struct die_info *parent)
15152 {
15153 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15154 new_info_ptr, parent);
15155
15156 if (dwarf_die_debug)
15157 {
15158 fprintf_unfiltered (gdb_stdlog,
15159 "Read die from %s@0x%x of %s:\n",
15160 get_section_name (reader->die_section),
15161 (unsigned) (info_ptr - reader->die_section->buffer),
15162 bfd_get_filename (reader->abfd));
15163 dump_die (die, dwarf_die_debug);
15164 }
15165
15166 return die;
15167 }
15168
15169 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15170 attributes.
15171 The caller is responsible for filling in the extra attributes
15172 and updating (*DIEP)->num_attrs.
15173 Set DIEP to point to a newly allocated die with its information,
15174 except for its child, sibling, and parent fields.
15175 Set HAS_CHILDREN to tell whether the die has children or not. */
15176
15177 static const gdb_byte *
15178 read_full_die_1 (const struct die_reader_specs *reader,
15179 struct die_info **diep, const gdb_byte *info_ptr,
15180 int *has_children, int num_extra_attrs)
15181 {
15182 unsigned int abbrev_number, bytes_read, i;
15183 sect_offset offset;
15184 struct abbrev_info *abbrev;
15185 struct die_info *die;
15186 struct dwarf2_cu *cu = reader->cu;
15187 bfd *abfd = reader->abfd;
15188
15189 offset.sect_off = info_ptr - reader->buffer;
15190 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15191 info_ptr += bytes_read;
15192 if (!abbrev_number)
15193 {
15194 *diep = NULL;
15195 *has_children = 0;
15196 return info_ptr;
15197 }
15198
15199 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15200 if (!abbrev)
15201 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15202 abbrev_number,
15203 bfd_get_filename (abfd));
15204
15205 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15206 die->offset = offset;
15207 die->tag = abbrev->tag;
15208 die->abbrev = abbrev_number;
15209
15210 /* Make the result usable.
15211 The caller needs to update num_attrs after adding the extra
15212 attributes. */
15213 die->num_attrs = abbrev->num_attrs;
15214
15215 for (i = 0; i < abbrev->num_attrs; ++i)
15216 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15217 info_ptr);
15218
15219 *diep = die;
15220 *has_children = abbrev->has_children;
15221 return info_ptr;
15222 }
15223
15224 /* Read a die and all its attributes.
15225 Set DIEP to point to a newly allocated die with its information,
15226 except for its child, sibling, and parent fields.
15227 Set HAS_CHILDREN to tell whether the die has children or not. */
15228
15229 static const gdb_byte *
15230 read_full_die (const struct die_reader_specs *reader,
15231 struct die_info **diep, const gdb_byte *info_ptr,
15232 int *has_children)
15233 {
15234 const gdb_byte *result;
15235
15236 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15237
15238 if (dwarf_die_debug)
15239 {
15240 fprintf_unfiltered (gdb_stdlog,
15241 "Read die from %s@0x%x of %s:\n",
15242 get_section_name (reader->die_section),
15243 (unsigned) (info_ptr - reader->die_section->buffer),
15244 bfd_get_filename (reader->abfd));
15245 dump_die (*diep, dwarf_die_debug);
15246 }
15247
15248 return result;
15249 }
15250 \f
15251 /* Abbreviation tables.
15252
15253 In DWARF version 2, the description of the debugging information is
15254 stored in a separate .debug_abbrev section. Before we read any
15255 dies from a section we read in all abbreviations and install them
15256 in a hash table. */
15257
15258 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15259
15260 static struct abbrev_info *
15261 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15262 {
15263 struct abbrev_info *abbrev;
15264
15265 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15266 memset (abbrev, 0, sizeof (struct abbrev_info));
15267
15268 return abbrev;
15269 }
15270
15271 /* Add an abbreviation to the table. */
15272
15273 static void
15274 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15275 unsigned int abbrev_number,
15276 struct abbrev_info *abbrev)
15277 {
15278 unsigned int hash_number;
15279
15280 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15281 abbrev->next = abbrev_table->abbrevs[hash_number];
15282 abbrev_table->abbrevs[hash_number] = abbrev;
15283 }
15284
15285 /* Look up an abbrev in the table.
15286 Returns NULL if the abbrev is not found. */
15287
15288 static struct abbrev_info *
15289 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15290 unsigned int abbrev_number)
15291 {
15292 unsigned int hash_number;
15293 struct abbrev_info *abbrev;
15294
15295 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15296 abbrev = abbrev_table->abbrevs[hash_number];
15297
15298 while (abbrev)
15299 {
15300 if (abbrev->number == abbrev_number)
15301 return abbrev;
15302 abbrev = abbrev->next;
15303 }
15304 return NULL;
15305 }
15306
15307 /* Read in an abbrev table. */
15308
15309 static struct abbrev_table *
15310 abbrev_table_read_table (struct dwarf2_section_info *section,
15311 sect_offset offset)
15312 {
15313 struct objfile *objfile = dwarf2_per_objfile->objfile;
15314 bfd *abfd = get_section_bfd_owner (section);
15315 struct abbrev_table *abbrev_table;
15316 const gdb_byte *abbrev_ptr;
15317 struct abbrev_info *cur_abbrev;
15318 unsigned int abbrev_number, bytes_read, abbrev_name;
15319 unsigned int abbrev_form;
15320 struct attr_abbrev *cur_attrs;
15321 unsigned int allocated_attrs;
15322
15323 abbrev_table = XNEW (struct abbrev_table);
15324 abbrev_table->offset = offset;
15325 obstack_init (&abbrev_table->abbrev_obstack);
15326 abbrev_table->abbrevs =
15327 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15328 ABBREV_HASH_SIZE);
15329 memset (abbrev_table->abbrevs, 0,
15330 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15331
15332 dwarf2_read_section (objfile, section);
15333 abbrev_ptr = section->buffer + offset.sect_off;
15334 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15335 abbrev_ptr += bytes_read;
15336
15337 allocated_attrs = ATTR_ALLOC_CHUNK;
15338 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15339
15340 /* Loop until we reach an abbrev number of 0. */
15341 while (abbrev_number)
15342 {
15343 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15344
15345 /* read in abbrev header */
15346 cur_abbrev->number = abbrev_number;
15347 cur_abbrev->tag
15348 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15349 abbrev_ptr += bytes_read;
15350 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15351 abbrev_ptr += 1;
15352
15353 /* now read in declarations */
15354 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15355 abbrev_ptr += bytes_read;
15356 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15357 abbrev_ptr += bytes_read;
15358 while (abbrev_name)
15359 {
15360 if (cur_abbrev->num_attrs == allocated_attrs)
15361 {
15362 allocated_attrs += ATTR_ALLOC_CHUNK;
15363 cur_attrs
15364 = xrealloc (cur_attrs, (allocated_attrs
15365 * sizeof (struct attr_abbrev)));
15366 }
15367
15368 cur_attrs[cur_abbrev->num_attrs].name
15369 = (enum dwarf_attribute) abbrev_name;
15370 cur_attrs[cur_abbrev->num_attrs++].form
15371 = (enum dwarf_form) abbrev_form;
15372 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15373 abbrev_ptr += bytes_read;
15374 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15375 abbrev_ptr += bytes_read;
15376 }
15377
15378 cur_abbrev->attrs =
15379 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15380 cur_abbrev->num_attrs);
15381 memcpy (cur_abbrev->attrs, cur_attrs,
15382 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15383
15384 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15385
15386 /* Get next abbreviation.
15387 Under Irix6 the abbreviations for a compilation unit are not
15388 always properly terminated with an abbrev number of 0.
15389 Exit loop if we encounter an abbreviation which we have
15390 already read (which means we are about to read the abbreviations
15391 for the next compile unit) or if the end of the abbreviation
15392 table is reached. */
15393 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15394 break;
15395 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15396 abbrev_ptr += bytes_read;
15397 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15398 break;
15399 }
15400
15401 xfree (cur_attrs);
15402 return abbrev_table;
15403 }
15404
15405 /* Free the resources held by ABBREV_TABLE. */
15406
15407 static void
15408 abbrev_table_free (struct abbrev_table *abbrev_table)
15409 {
15410 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15411 xfree (abbrev_table);
15412 }
15413
15414 /* Same as abbrev_table_free but as a cleanup.
15415 We pass in a pointer to the pointer to the table so that we can
15416 set the pointer to NULL when we're done. It also simplifies
15417 build_type_psymtabs_1. */
15418
15419 static void
15420 abbrev_table_free_cleanup (void *table_ptr)
15421 {
15422 struct abbrev_table **abbrev_table_ptr = table_ptr;
15423
15424 if (*abbrev_table_ptr != NULL)
15425 abbrev_table_free (*abbrev_table_ptr);
15426 *abbrev_table_ptr = NULL;
15427 }
15428
15429 /* Read the abbrev table for CU from ABBREV_SECTION. */
15430
15431 static void
15432 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15433 struct dwarf2_section_info *abbrev_section)
15434 {
15435 cu->abbrev_table =
15436 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15437 }
15438
15439 /* Release the memory used by the abbrev table for a compilation unit. */
15440
15441 static void
15442 dwarf2_free_abbrev_table (void *ptr_to_cu)
15443 {
15444 struct dwarf2_cu *cu = ptr_to_cu;
15445
15446 if (cu->abbrev_table != NULL)
15447 abbrev_table_free (cu->abbrev_table);
15448 /* Set this to NULL so that we SEGV if we try to read it later,
15449 and also because free_comp_unit verifies this is NULL. */
15450 cu->abbrev_table = NULL;
15451 }
15452 \f
15453 /* Returns nonzero if TAG represents a type that we might generate a partial
15454 symbol for. */
15455
15456 static int
15457 is_type_tag_for_partial (int tag)
15458 {
15459 switch (tag)
15460 {
15461 #if 0
15462 /* Some types that would be reasonable to generate partial symbols for,
15463 that we don't at present. */
15464 case DW_TAG_array_type:
15465 case DW_TAG_file_type:
15466 case DW_TAG_ptr_to_member_type:
15467 case DW_TAG_set_type:
15468 case DW_TAG_string_type:
15469 case DW_TAG_subroutine_type:
15470 #endif
15471 case DW_TAG_base_type:
15472 case DW_TAG_class_type:
15473 case DW_TAG_interface_type:
15474 case DW_TAG_enumeration_type:
15475 case DW_TAG_structure_type:
15476 case DW_TAG_subrange_type:
15477 case DW_TAG_typedef:
15478 case DW_TAG_union_type:
15479 return 1;
15480 default:
15481 return 0;
15482 }
15483 }
15484
15485 /* Load all DIEs that are interesting for partial symbols into memory. */
15486
15487 static struct partial_die_info *
15488 load_partial_dies (const struct die_reader_specs *reader,
15489 const gdb_byte *info_ptr, int building_psymtab)
15490 {
15491 struct dwarf2_cu *cu = reader->cu;
15492 struct objfile *objfile = cu->objfile;
15493 struct partial_die_info *part_die;
15494 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15495 struct abbrev_info *abbrev;
15496 unsigned int bytes_read;
15497 unsigned int load_all = 0;
15498 int nesting_level = 1;
15499
15500 parent_die = NULL;
15501 last_die = NULL;
15502
15503 gdb_assert (cu->per_cu != NULL);
15504 if (cu->per_cu->load_all_dies)
15505 load_all = 1;
15506
15507 cu->partial_dies
15508 = htab_create_alloc_ex (cu->header.length / 12,
15509 partial_die_hash,
15510 partial_die_eq,
15511 NULL,
15512 &cu->comp_unit_obstack,
15513 hashtab_obstack_allocate,
15514 dummy_obstack_deallocate);
15515
15516 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15517
15518 while (1)
15519 {
15520 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15521
15522 /* A NULL abbrev means the end of a series of children. */
15523 if (abbrev == NULL)
15524 {
15525 if (--nesting_level == 0)
15526 {
15527 /* PART_DIE was probably the last thing allocated on the
15528 comp_unit_obstack, so we could call obstack_free
15529 here. We don't do that because the waste is small,
15530 and will be cleaned up when we're done with this
15531 compilation unit. This way, we're also more robust
15532 against other users of the comp_unit_obstack. */
15533 return first_die;
15534 }
15535 info_ptr += bytes_read;
15536 last_die = parent_die;
15537 parent_die = parent_die->die_parent;
15538 continue;
15539 }
15540
15541 /* Check for template arguments. We never save these; if
15542 they're seen, we just mark the parent, and go on our way. */
15543 if (parent_die != NULL
15544 && cu->language == language_cplus
15545 && (abbrev->tag == DW_TAG_template_type_param
15546 || abbrev->tag == DW_TAG_template_value_param))
15547 {
15548 parent_die->has_template_arguments = 1;
15549
15550 if (!load_all)
15551 {
15552 /* We don't need a partial DIE for the template argument. */
15553 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15554 continue;
15555 }
15556 }
15557
15558 /* We only recurse into c++ subprograms looking for template arguments.
15559 Skip their other children. */
15560 if (!load_all
15561 && cu->language == language_cplus
15562 && parent_die != NULL
15563 && parent_die->tag == DW_TAG_subprogram)
15564 {
15565 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15566 continue;
15567 }
15568
15569 /* Check whether this DIE is interesting enough to save. Normally
15570 we would not be interested in members here, but there may be
15571 later variables referencing them via DW_AT_specification (for
15572 static members). */
15573 if (!load_all
15574 && !is_type_tag_for_partial (abbrev->tag)
15575 && abbrev->tag != DW_TAG_constant
15576 && abbrev->tag != DW_TAG_enumerator
15577 && abbrev->tag != DW_TAG_subprogram
15578 && abbrev->tag != DW_TAG_lexical_block
15579 && abbrev->tag != DW_TAG_variable
15580 && abbrev->tag != DW_TAG_namespace
15581 && abbrev->tag != DW_TAG_module
15582 && abbrev->tag != DW_TAG_member
15583 && abbrev->tag != DW_TAG_imported_unit
15584 && abbrev->tag != DW_TAG_imported_declaration)
15585 {
15586 /* Otherwise we skip to the next sibling, if any. */
15587 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15588 continue;
15589 }
15590
15591 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15592 info_ptr);
15593
15594 /* This two-pass algorithm for processing partial symbols has a
15595 high cost in cache pressure. Thus, handle some simple cases
15596 here which cover the majority of C partial symbols. DIEs
15597 which neither have specification tags in them, nor could have
15598 specification tags elsewhere pointing at them, can simply be
15599 processed and discarded.
15600
15601 This segment is also optional; scan_partial_symbols and
15602 add_partial_symbol will handle these DIEs if we chain
15603 them in normally. When compilers which do not emit large
15604 quantities of duplicate debug information are more common,
15605 this code can probably be removed. */
15606
15607 /* Any complete simple types at the top level (pretty much all
15608 of them, for a language without namespaces), can be processed
15609 directly. */
15610 if (parent_die == NULL
15611 && part_die->has_specification == 0
15612 && part_die->is_declaration == 0
15613 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15614 || part_die->tag == DW_TAG_base_type
15615 || part_die->tag == DW_TAG_subrange_type))
15616 {
15617 if (building_psymtab && part_die->name != NULL)
15618 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15619 VAR_DOMAIN, LOC_TYPEDEF,
15620 &objfile->static_psymbols,
15621 0, cu->language, objfile);
15622 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15623 continue;
15624 }
15625
15626 /* The exception for DW_TAG_typedef with has_children above is
15627 a workaround of GCC PR debug/47510. In the case of this complaint
15628 type_name_no_tag_or_error will error on such types later.
15629
15630 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15631 it could not find the child DIEs referenced later, this is checked
15632 above. In correct DWARF DW_TAG_typedef should have no children. */
15633
15634 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15635 complaint (&symfile_complaints,
15636 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15637 "- DIE at 0x%x [in module %s]"),
15638 part_die->offset.sect_off, objfile_name (objfile));
15639
15640 /* If we're at the second level, and we're an enumerator, and
15641 our parent has no specification (meaning possibly lives in a
15642 namespace elsewhere), then we can add the partial symbol now
15643 instead of queueing it. */
15644 if (part_die->tag == DW_TAG_enumerator
15645 && parent_die != NULL
15646 && parent_die->die_parent == NULL
15647 && parent_die->tag == DW_TAG_enumeration_type
15648 && parent_die->has_specification == 0)
15649 {
15650 if (part_die->name == NULL)
15651 complaint (&symfile_complaints,
15652 _("malformed enumerator DIE ignored"));
15653 else if (building_psymtab)
15654 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15655 VAR_DOMAIN, LOC_CONST,
15656 (cu->language == language_cplus
15657 || cu->language == language_java)
15658 ? &objfile->global_psymbols
15659 : &objfile->static_psymbols,
15660 0, cu->language, objfile);
15661
15662 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15663 continue;
15664 }
15665
15666 /* We'll save this DIE so link it in. */
15667 part_die->die_parent = parent_die;
15668 part_die->die_sibling = NULL;
15669 part_die->die_child = NULL;
15670
15671 if (last_die && last_die == parent_die)
15672 last_die->die_child = part_die;
15673 else if (last_die)
15674 last_die->die_sibling = part_die;
15675
15676 last_die = part_die;
15677
15678 if (first_die == NULL)
15679 first_die = part_die;
15680
15681 /* Maybe add the DIE to the hash table. Not all DIEs that we
15682 find interesting need to be in the hash table, because we
15683 also have the parent/sibling/child chains; only those that we
15684 might refer to by offset later during partial symbol reading.
15685
15686 For now this means things that might have be the target of a
15687 DW_AT_specification, DW_AT_abstract_origin, or
15688 DW_AT_extension. DW_AT_extension will refer only to
15689 namespaces; DW_AT_abstract_origin refers to functions (and
15690 many things under the function DIE, but we do not recurse
15691 into function DIEs during partial symbol reading) and
15692 possibly variables as well; DW_AT_specification refers to
15693 declarations. Declarations ought to have the DW_AT_declaration
15694 flag. It happens that GCC forgets to put it in sometimes, but
15695 only for functions, not for types.
15696
15697 Adding more things than necessary to the hash table is harmless
15698 except for the performance cost. Adding too few will result in
15699 wasted time in find_partial_die, when we reread the compilation
15700 unit with load_all_dies set. */
15701
15702 if (load_all
15703 || abbrev->tag == DW_TAG_constant
15704 || abbrev->tag == DW_TAG_subprogram
15705 || abbrev->tag == DW_TAG_variable
15706 || abbrev->tag == DW_TAG_namespace
15707 || part_die->is_declaration)
15708 {
15709 void **slot;
15710
15711 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15712 part_die->offset.sect_off, INSERT);
15713 *slot = part_die;
15714 }
15715
15716 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15717
15718 /* For some DIEs we want to follow their children (if any). For C
15719 we have no reason to follow the children of structures; for other
15720 languages we have to, so that we can get at method physnames
15721 to infer fully qualified class names, for DW_AT_specification,
15722 and for C++ template arguments. For C++, we also look one level
15723 inside functions to find template arguments (if the name of the
15724 function does not already contain the template arguments).
15725
15726 For Ada, we need to scan the children of subprograms and lexical
15727 blocks as well because Ada allows the definition of nested
15728 entities that could be interesting for the debugger, such as
15729 nested subprograms for instance. */
15730 if (last_die->has_children
15731 && (load_all
15732 || last_die->tag == DW_TAG_namespace
15733 || last_die->tag == DW_TAG_module
15734 || last_die->tag == DW_TAG_enumeration_type
15735 || (cu->language == language_cplus
15736 && last_die->tag == DW_TAG_subprogram
15737 && (last_die->name == NULL
15738 || strchr (last_die->name, '<') == NULL))
15739 || (cu->language != language_c
15740 && (last_die->tag == DW_TAG_class_type
15741 || last_die->tag == DW_TAG_interface_type
15742 || last_die->tag == DW_TAG_structure_type
15743 || last_die->tag == DW_TAG_union_type))
15744 || (cu->language == language_ada
15745 && (last_die->tag == DW_TAG_subprogram
15746 || last_die->tag == DW_TAG_lexical_block))))
15747 {
15748 nesting_level++;
15749 parent_die = last_die;
15750 continue;
15751 }
15752
15753 /* Otherwise we skip to the next sibling, if any. */
15754 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15755
15756 /* Back to the top, do it again. */
15757 }
15758 }
15759
15760 /* Read a minimal amount of information into the minimal die structure. */
15761
15762 static const gdb_byte *
15763 read_partial_die (const struct die_reader_specs *reader,
15764 struct partial_die_info *part_die,
15765 struct abbrev_info *abbrev, unsigned int abbrev_len,
15766 const gdb_byte *info_ptr)
15767 {
15768 struct dwarf2_cu *cu = reader->cu;
15769 struct objfile *objfile = cu->objfile;
15770 const gdb_byte *buffer = reader->buffer;
15771 unsigned int i;
15772 struct attribute attr;
15773 int has_low_pc_attr = 0;
15774 int has_high_pc_attr = 0;
15775 int high_pc_relative = 0;
15776
15777 memset (part_die, 0, sizeof (struct partial_die_info));
15778
15779 part_die->offset.sect_off = info_ptr - buffer;
15780
15781 info_ptr += abbrev_len;
15782
15783 if (abbrev == NULL)
15784 return info_ptr;
15785
15786 part_die->tag = abbrev->tag;
15787 part_die->has_children = abbrev->has_children;
15788
15789 for (i = 0; i < abbrev->num_attrs; ++i)
15790 {
15791 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15792
15793 /* Store the data if it is of an attribute we want to keep in a
15794 partial symbol table. */
15795 switch (attr.name)
15796 {
15797 case DW_AT_name:
15798 switch (part_die->tag)
15799 {
15800 case DW_TAG_compile_unit:
15801 case DW_TAG_partial_unit:
15802 case DW_TAG_type_unit:
15803 /* Compilation units have a DW_AT_name that is a filename, not
15804 a source language identifier. */
15805 case DW_TAG_enumeration_type:
15806 case DW_TAG_enumerator:
15807 /* These tags always have simple identifiers already; no need
15808 to canonicalize them. */
15809 part_die->name = DW_STRING (&attr);
15810 break;
15811 default:
15812 part_die->name
15813 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15814 &objfile->per_bfd->storage_obstack);
15815 break;
15816 }
15817 break;
15818 case DW_AT_linkage_name:
15819 case DW_AT_MIPS_linkage_name:
15820 /* Note that both forms of linkage name might appear. We
15821 assume they will be the same, and we only store the last
15822 one we see. */
15823 if (cu->language == language_ada)
15824 part_die->name = DW_STRING (&attr);
15825 part_die->linkage_name = DW_STRING (&attr);
15826 break;
15827 case DW_AT_low_pc:
15828 has_low_pc_attr = 1;
15829 part_die->lowpc = attr_value_as_address (&attr);
15830 break;
15831 case DW_AT_high_pc:
15832 has_high_pc_attr = 1;
15833 part_die->highpc = attr_value_as_address (&attr);
15834 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15835 high_pc_relative = 1;
15836 break;
15837 case DW_AT_location:
15838 /* Support the .debug_loc offsets. */
15839 if (attr_form_is_block (&attr))
15840 {
15841 part_die->d.locdesc = DW_BLOCK (&attr);
15842 }
15843 else if (attr_form_is_section_offset (&attr))
15844 {
15845 dwarf2_complex_location_expr_complaint ();
15846 }
15847 else
15848 {
15849 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15850 "partial symbol information");
15851 }
15852 break;
15853 case DW_AT_external:
15854 part_die->is_external = DW_UNSND (&attr);
15855 break;
15856 case DW_AT_declaration:
15857 part_die->is_declaration = DW_UNSND (&attr);
15858 break;
15859 case DW_AT_type:
15860 part_die->has_type = 1;
15861 break;
15862 case DW_AT_abstract_origin:
15863 case DW_AT_specification:
15864 case DW_AT_extension:
15865 part_die->has_specification = 1;
15866 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15867 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15868 || cu->per_cu->is_dwz);
15869 break;
15870 case DW_AT_sibling:
15871 /* Ignore absolute siblings, they might point outside of
15872 the current compile unit. */
15873 if (attr.form == DW_FORM_ref_addr)
15874 complaint (&symfile_complaints,
15875 _("ignoring absolute DW_AT_sibling"));
15876 else
15877 {
15878 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15879 const gdb_byte *sibling_ptr = buffer + off;
15880
15881 if (sibling_ptr < info_ptr)
15882 complaint (&symfile_complaints,
15883 _("DW_AT_sibling points backwards"));
15884 else if (sibling_ptr > reader->buffer_end)
15885 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15886 else
15887 part_die->sibling = sibling_ptr;
15888 }
15889 break;
15890 case DW_AT_byte_size:
15891 part_die->has_byte_size = 1;
15892 break;
15893 case DW_AT_const_value:
15894 part_die->has_const_value = 1;
15895 break;
15896 case DW_AT_calling_convention:
15897 /* DWARF doesn't provide a way to identify a program's source-level
15898 entry point. DW_AT_calling_convention attributes are only meant
15899 to describe functions' calling conventions.
15900
15901 However, because it's a necessary piece of information in
15902 Fortran, and because DW_CC_program is the only piece of debugging
15903 information whose definition refers to a 'main program' at all,
15904 several compilers have begun marking Fortran main programs with
15905 DW_CC_program --- even when those functions use the standard
15906 calling conventions.
15907
15908 So until DWARF specifies a way to provide this information and
15909 compilers pick up the new representation, we'll support this
15910 practice. */
15911 if (DW_UNSND (&attr) == DW_CC_program
15912 && cu->language == language_fortran)
15913 set_objfile_main_name (objfile, part_die->name, language_fortran);
15914 break;
15915 case DW_AT_inline:
15916 if (DW_UNSND (&attr) == DW_INL_inlined
15917 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15918 part_die->may_be_inlined = 1;
15919 break;
15920
15921 case DW_AT_import:
15922 if (part_die->tag == DW_TAG_imported_unit)
15923 {
15924 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15925 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15926 || cu->per_cu->is_dwz);
15927 }
15928 break;
15929
15930 default:
15931 break;
15932 }
15933 }
15934
15935 if (high_pc_relative)
15936 part_die->highpc += part_die->lowpc;
15937
15938 if (has_low_pc_attr && has_high_pc_attr)
15939 {
15940 /* When using the GNU linker, .gnu.linkonce. sections are used to
15941 eliminate duplicate copies of functions and vtables and such.
15942 The linker will arbitrarily choose one and discard the others.
15943 The AT_*_pc values for such functions refer to local labels in
15944 these sections. If the section from that file was discarded, the
15945 labels are not in the output, so the relocs get a value of 0.
15946 If this is a discarded function, mark the pc bounds as invalid,
15947 so that GDB will ignore it. */
15948 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15949 {
15950 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15951
15952 complaint (&symfile_complaints,
15953 _("DW_AT_low_pc %s is zero "
15954 "for DIE at 0x%x [in module %s]"),
15955 paddress (gdbarch, part_die->lowpc),
15956 part_die->offset.sect_off, objfile_name (objfile));
15957 }
15958 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15959 else if (part_die->lowpc >= part_die->highpc)
15960 {
15961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15962
15963 complaint (&symfile_complaints,
15964 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15965 "for DIE at 0x%x [in module %s]"),
15966 paddress (gdbarch, part_die->lowpc),
15967 paddress (gdbarch, part_die->highpc),
15968 part_die->offset.sect_off, objfile_name (objfile));
15969 }
15970 else
15971 part_die->has_pc_info = 1;
15972 }
15973
15974 return info_ptr;
15975 }
15976
15977 /* Find a cached partial DIE at OFFSET in CU. */
15978
15979 static struct partial_die_info *
15980 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15981 {
15982 struct partial_die_info *lookup_die = NULL;
15983 struct partial_die_info part_die;
15984
15985 part_die.offset = offset;
15986 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15987 offset.sect_off);
15988
15989 return lookup_die;
15990 }
15991
15992 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15993 except in the case of .debug_types DIEs which do not reference
15994 outside their CU (they do however referencing other types via
15995 DW_FORM_ref_sig8). */
15996
15997 static struct partial_die_info *
15998 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15999 {
16000 struct objfile *objfile = cu->objfile;
16001 struct dwarf2_per_cu_data *per_cu = NULL;
16002 struct partial_die_info *pd = NULL;
16003
16004 if (offset_in_dwz == cu->per_cu->is_dwz
16005 && offset_in_cu_p (&cu->header, offset))
16006 {
16007 pd = find_partial_die_in_comp_unit (offset, cu);
16008 if (pd != NULL)
16009 return pd;
16010 /* We missed recording what we needed.
16011 Load all dies and try again. */
16012 per_cu = cu->per_cu;
16013 }
16014 else
16015 {
16016 /* TUs don't reference other CUs/TUs (except via type signatures). */
16017 if (cu->per_cu->is_debug_types)
16018 {
16019 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16020 " external reference to offset 0x%lx [in module %s].\n"),
16021 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16022 bfd_get_filename (objfile->obfd));
16023 }
16024 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16025 objfile);
16026
16027 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16028 load_partial_comp_unit (per_cu);
16029
16030 per_cu->cu->last_used = 0;
16031 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16032 }
16033
16034 /* If we didn't find it, and not all dies have been loaded,
16035 load them all and try again. */
16036
16037 if (pd == NULL && per_cu->load_all_dies == 0)
16038 {
16039 per_cu->load_all_dies = 1;
16040
16041 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16042 THIS_CU->cu may already be in use. So we can't just free it and
16043 replace its DIEs with the ones we read in. Instead, we leave those
16044 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16045 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16046 set. */
16047 load_partial_comp_unit (per_cu);
16048
16049 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16050 }
16051
16052 if (pd == NULL)
16053 internal_error (__FILE__, __LINE__,
16054 _("could not find partial DIE 0x%x "
16055 "in cache [from module %s]\n"),
16056 offset.sect_off, bfd_get_filename (objfile->obfd));
16057 return pd;
16058 }
16059
16060 /* See if we can figure out if the class lives in a namespace. We do
16061 this by looking for a member function; its demangled name will
16062 contain namespace info, if there is any. */
16063
16064 static void
16065 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16066 struct dwarf2_cu *cu)
16067 {
16068 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16069 what template types look like, because the demangler
16070 frequently doesn't give the same name as the debug info. We
16071 could fix this by only using the demangled name to get the
16072 prefix (but see comment in read_structure_type). */
16073
16074 struct partial_die_info *real_pdi;
16075 struct partial_die_info *child_pdi;
16076
16077 /* If this DIE (this DIE's specification, if any) has a parent, then
16078 we should not do this. We'll prepend the parent's fully qualified
16079 name when we create the partial symbol. */
16080
16081 real_pdi = struct_pdi;
16082 while (real_pdi->has_specification)
16083 real_pdi = find_partial_die (real_pdi->spec_offset,
16084 real_pdi->spec_is_dwz, cu);
16085
16086 if (real_pdi->die_parent != NULL)
16087 return;
16088
16089 for (child_pdi = struct_pdi->die_child;
16090 child_pdi != NULL;
16091 child_pdi = child_pdi->die_sibling)
16092 {
16093 if (child_pdi->tag == DW_TAG_subprogram
16094 && child_pdi->linkage_name != NULL)
16095 {
16096 char *actual_class_name
16097 = language_class_name_from_physname (cu->language_defn,
16098 child_pdi->linkage_name);
16099 if (actual_class_name != NULL)
16100 {
16101 struct_pdi->name
16102 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16103 actual_class_name,
16104 strlen (actual_class_name));
16105 xfree (actual_class_name);
16106 }
16107 break;
16108 }
16109 }
16110 }
16111
16112 /* Adjust PART_DIE before generating a symbol for it. This function
16113 may set the is_external flag or change the DIE's name. */
16114
16115 static void
16116 fixup_partial_die (struct partial_die_info *part_die,
16117 struct dwarf2_cu *cu)
16118 {
16119 /* Once we've fixed up a die, there's no point in doing so again.
16120 This also avoids a memory leak if we were to call
16121 guess_partial_die_structure_name multiple times. */
16122 if (part_die->fixup_called)
16123 return;
16124
16125 /* If we found a reference attribute and the DIE has no name, try
16126 to find a name in the referred to DIE. */
16127
16128 if (part_die->name == NULL && part_die->has_specification)
16129 {
16130 struct partial_die_info *spec_die;
16131
16132 spec_die = find_partial_die (part_die->spec_offset,
16133 part_die->spec_is_dwz, cu);
16134
16135 fixup_partial_die (spec_die, cu);
16136
16137 if (spec_die->name)
16138 {
16139 part_die->name = spec_die->name;
16140
16141 /* Copy DW_AT_external attribute if it is set. */
16142 if (spec_die->is_external)
16143 part_die->is_external = spec_die->is_external;
16144 }
16145 }
16146
16147 /* Set default names for some unnamed DIEs. */
16148
16149 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16150 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16151
16152 /* If there is no parent die to provide a namespace, and there are
16153 children, see if we can determine the namespace from their linkage
16154 name. */
16155 if (cu->language == language_cplus
16156 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16157 && part_die->die_parent == NULL
16158 && part_die->has_children
16159 && (part_die->tag == DW_TAG_class_type
16160 || part_die->tag == DW_TAG_structure_type
16161 || part_die->tag == DW_TAG_union_type))
16162 guess_partial_die_structure_name (part_die, cu);
16163
16164 /* GCC might emit a nameless struct or union that has a linkage
16165 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16166 if (part_die->name == NULL
16167 && (part_die->tag == DW_TAG_class_type
16168 || part_die->tag == DW_TAG_interface_type
16169 || part_die->tag == DW_TAG_structure_type
16170 || part_die->tag == DW_TAG_union_type)
16171 && part_die->linkage_name != NULL)
16172 {
16173 char *demangled;
16174
16175 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16176 if (demangled)
16177 {
16178 const char *base;
16179
16180 /* Strip any leading namespaces/classes, keep only the base name.
16181 DW_AT_name for named DIEs does not contain the prefixes. */
16182 base = strrchr (demangled, ':');
16183 if (base && base > demangled && base[-1] == ':')
16184 base++;
16185 else
16186 base = demangled;
16187
16188 part_die->name
16189 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16190 base, strlen (base));
16191 xfree (demangled);
16192 }
16193 }
16194
16195 part_die->fixup_called = 1;
16196 }
16197
16198 /* Read an attribute value described by an attribute form. */
16199
16200 static const gdb_byte *
16201 read_attribute_value (const struct die_reader_specs *reader,
16202 struct attribute *attr, unsigned form,
16203 const gdb_byte *info_ptr)
16204 {
16205 struct dwarf2_cu *cu = reader->cu;
16206 struct objfile *objfile = cu->objfile;
16207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16208 bfd *abfd = reader->abfd;
16209 struct comp_unit_head *cu_header = &cu->header;
16210 unsigned int bytes_read;
16211 struct dwarf_block *blk;
16212
16213 attr->form = (enum dwarf_form) form;
16214 switch (form)
16215 {
16216 case DW_FORM_ref_addr:
16217 if (cu->header.version == 2)
16218 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16219 else
16220 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16221 &cu->header, &bytes_read);
16222 info_ptr += bytes_read;
16223 break;
16224 case DW_FORM_GNU_ref_alt:
16225 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16226 info_ptr += bytes_read;
16227 break;
16228 case DW_FORM_addr:
16229 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16230 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16231 info_ptr += bytes_read;
16232 break;
16233 case DW_FORM_block2:
16234 blk = dwarf_alloc_block (cu);
16235 blk->size = read_2_bytes (abfd, info_ptr);
16236 info_ptr += 2;
16237 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16238 info_ptr += blk->size;
16239 DW_BLOCK (attr) = blk;
16240 break;
16241 case DW_FORM_block4:
16242 blk = dwarf_alloc_block (cu);
16243 blk->size = read_4_bytes (abfd, info_ptr);
16244 info_ptr += 4;
16245 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16246 info_ptr += blk->size;
16247 DW_BLOCK (attr) = blk;
16248 break;
16249 case DW_FORM_data2:
16250 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16251 info_ptr += 2;
16252 break;
16253 case DW_FORM_data4:
16254 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16255 info_ptr += 4;
16256 break;
16257 case DW_FORM_data8:
16258 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16259 info_ptr += 8;
16260 break;
16261 case DW_FORM_sec_offset:
16262 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16263 info_ptr += bytes_read;
16264 break;
16265 case DW_FORM_string:
16266 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16267 DW_STRING_IS_CANONICAL (attr) = 0;
16268 info_ptr += bytes_read;
16269 break;
16270 case DW_FORM_strp:
16271 if (!cu->per_cu->is_dwz)
16272 {
16273 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16274 &bytes_read);
16275 DW_STRING_IS_CANONICAL (attr) = 0;
16276 info_ptr += bytes_read;
16277 break;
16278 }
16279 /* FALLTHROUGH */
16280 case DW_FORM_GNU_strp_alt:
16281 {
16282 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16283 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16284 &bytes_read);
16285
16286 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16287 DW_STRING_IS_CANONICAL (attr) = 0;
16288 info_ptr += bytes_read;
16289 }
16290 break;
16291 case DW_FORM_exprloc:
16292 case DW_FORM_block:
16293 blk = dwarf_alloc_block (cu);
16294 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16295 info_ptr += bytes_read;
16296 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16297 info_ptr += blk->size;
16298 DW_BLOCK (attr) = blk;
16299 break;
16300 case DW_FORM_block1:
16301 blk = dwarf_alloc_block (cu);
16302 blk->size = read_1_byte (abfd, info_ptr);
16303 info_ptr += 1;
16304 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16305 info_ptr += blk->size;
16306 DW_BLOCK (attr) = blk;
16307 break;
16308 case DW_FORM_data1:
16309 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16310 info_ptr += 1;
16311 break;
16312 case DW_FORM_flag:
16313 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16314 info_ptr += 1;
16315 break;
16316 case DW_FORM_flag_present:
16317 DW_UNSND (attr) = 1;
16318 break;
16319 case DW_FORM_sdata:
16320 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16321 info_ptr += bytes_read;
16322 break;
16323 case DW_FORM_udata:
16324 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16325 info_ptr += bytes_read;
16326 break;
16327 case DW_FORM_ref1:
16328 DW_UNSND (attr) = (cu->header.offset.sect_off
16329 + read_1_byte (abfd, info_ptr));
16330 info_ptr += 1;
16331 break;
16332 case DW_FORM_ref2:
16333 DW_UNSND (attr) = (cu->header.offset.sect_off
16334 + read_2_bytes (abfd, info_ptr));
16335 info_ptr += 2;
16336 break;
16337 case DW_FORM_ref4:
16338 DW_UNSND (attr) = (cu->header.offset.sect_off
16339 + read_4_bytes (abfd, info_ptr));
16340 info_ptr += 4;
16341 break;
16342 case DW_FORM_ref8:
16343 DW_UNSND (attr) = (cu->header.offset.sect_off
16344 + read_8_bytes (abfd, info_ptr));
16345 info_ptr += 8;
16346 break;
16347 case DW_FORM_ref_sig8:
16348 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16349 info_ptr += 8;
16350 break;
16351 case DW_FORM_ref_udata:
16352 DW_UNSND (attr) = (cu->header.offset.sect_off
16353 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16354 info_ptr += bytes_read;
16355 break;
16356 case DW_FORM_indirect:
16357 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16358 info_ptr += bytes_read;
16359 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16360 break;
16361 case DW_FORM_GNU_addr_index:
16362 if (reader->dwo_file == NULL)
16363 {
16364 /* For now flag a hard error.
16365 Later we can turn this into a complaint. */
16366 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16367 dwarf_form_name (form),
16368 bfd_get_filename (abfd));
16369 }
16370 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16371 info_ptr += bytes_read;
16372 break;
16373 case DW_FORM_GNU_str_index:
16374 if (reader->dwo_file == NULL)
16375 {
16376 /* For now flag a hard error.
16377 Later we can turn this into a complaint if warranted. */
16378 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16379 dwarf_form_name (form),
16380 bfd_get_filename (abfd));
16381 }
16382 {
16383 ULONGEST str_index =
16384 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16385
16386 DW_STRING (attr) = read_str_index (reader, str_index);
16387 DW_STRING_IS_CANONICAL (attr) = 0;
16388 info_ptr += bytes_read;
16389 }
16390 break;
16391 default:
16392 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16393 dwarf_form_name (form),
16394 bfd_get_filename (abfd));
16395 }
16396
16397 /* Super hack. */
16398 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16399 attr->form = DW_FORM_GNU_ref_alt;
16400
16401 /* We have seen instances where the compiler tried to emit a byte
16402 size attribute of -1 which ended up being encoded as an unsigned
16403 0xffffffff. Although 0xffffffff is technically a valid size value,
16404 an object of this size seems pretty unlikely so we can relatively
16405 safely treat these cases as if the size attribute was invalid and
16406 treat them as zero by default. */
16407 if (attr->name == DW_AT_byte_size
16408 && form == DW_FORM_data4
16409 && DW_UNSND (attr) >= 0xffffffff)
16410 {
16411 complaint
16412 (&symfile_complaints,
16413 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16414 hex_string (DW_UNSND (attr)));
16415 DW_UNSND (attr) = 0;
16416 }
16417
16418 return info_ptr;
16419 }
16420
16421 /* Read an attribute described by an abbreviated attribute. */
16422
16423 static const gdb_byte *
16424 read_attribute (const struct die_reader_specs *reader,
16425 struct attribute *attr, struct attr_abbrev *abbrev,
16426 const gdb_byte *info_ptr)
16427 {
16428 attr->name = abbrev->name;
16429 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16430 }
16431
16432 /* Read dwarf information from a buffer. */
16433
16434 static unsigned int
16435 read_1_byte (bfd *abfd, const gdb_byte *buf)
16436 {
16437 return bfd_get_8 (abfd, buf);
16438 }
16439
16440 static int
16441 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16442 {
16443 return bfd_get_signed_8 (abfd, buf);
16444 }
16445
16446 static unsigned int
16447 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16448 {
16449 return bfd_get_16 (abfd, buf);
16450 }
16451
16452 static int
16453 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16454 {
16455 return bfd_get_signed_16 (abfd, buf);
16456 }
16457
16458 static unsigned int
16459 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16460 {
16461 return bfd_get_32 (abfd, buf);
16462 }
16463
16464 static int
16465 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16466 {
16467 return bfd_get_signed_32 (abfd, buf);
16468 }
16469
16470 static ULONGEST
16471 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16472 {
16473 return bfd_get_64 (abfd, buf);
16474 }
16475
16476 static CORE_ADDR
16477 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16478 unsigned int *bytes_read)
16479 {
16480 struct comp_unit_head *cu_header = &cu->header;
16481 CORE_ADDR retval = 0;
16482
16483 if (cu_header->signed_addr_p)
16484 {
16485 switch (cu_header->addr_size)
16486 {
16487 case 2:
16488 retval = bfd_get_signed_16 (abfd, buf);
16489 break;
16490 case 4:
16491 retval = bfd_get_signed_32 (abfd, buf);
16492 break;
16493 case 8:
16494 retval = bfd_get_signed_64 (abfd, buf);
16495 break;
16496 default:
16497 internal_error (__FILE__, __LINE__,
16498 _("read_address: bad switch, signed [in module %s]"),
16499 bfd_get_filename (abfd));
16500 }
16501 }
16502 else
16503 {
16504 switch (cu_header->addr_size)
16505 {
16506 case 2:
16507 retval = bfd_get_16 (abfd, buf);
16508 break;
16509 case 4:
16510 retval = bfd_get_32 (abfd, buf);
16511 break;
16512 case 8:
16513 retval = bfd_get_64 (abfd, buf);
16514 break;
16515 default:
16516 internal_error (__FILE__, __LINE__,
16517 _("read_address: bad switch, "
16518 "unsigned [in module %s]"),
16519 bfd_get_filename (abfd));
16520 }
16521 }
16522
16523 *bytes_read = cu_header->addr_size;
16524 return retval;
16525 }
16526
16527 /* Read the initial length from a section. The (draft) DWARF 3
16528 specification allows the initial length to take up either 4 bytes
16529 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16530 bytes describe the length and all offsets will be 8 bytes in length
16531 instead of 4.
16532
16533 An older, non-standard 64-bit format is also handled by this
16534 function. The older format in question stores the initial length
16535 as an 8-byte quantity without an escape value. Lengths greater
16536 than 2^32 aren't very common which means that the initial 4 bytes
16537 is almost always zero. Since a length value of zero doesn't make
16538 sense for the 32-bit format, this initial zero can be considered to
16539 be an escape value which indicates the presence of the older 64-bit
16540 format. As written, the code can't detect (old format) lengths
16541 greater than 4GB. If it becomes necessary to handle lengths
16542 somewhat larger than 4GB, we could allow other small values (such
16543 as the non-sensical values of 1, 2, and 3) to also be used as
16544 escape values indicating the presence of the old format.
16545
16546 The value returned via bytes_read should be used to increment the
16547 relevant pointer after calling read_initial_length().
16548
16549 [ Note: read_initial_length() and read_offset() are based on the
16550 document entitled "DWARF Debugging Information Format", revision
16551 3, draft 8, dated November 19, 2001. This document was obtained
16552 from:
16553
16554 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16555
16556 This document is only a draft and is subject to change. (So beware.)
16557
16558 Details regarding the older, non-standard 64-bit format were
16559 determined empirically by examining 64-bit ELF files produced by
16560 the SGI toolchain on an IRIX 6.5 machine.
16561
16562 - Kevin, July 16, 2002
16563 ] */
16564
16565 static LONGEST
16566 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16567 {
16568 LONGEST length = bfd_get_32 (abfd, buf);
16569
16570 if (length == 0xffffffff)
16571 {
16572 length = bfd_get_64 (abfd, buf + 4);
16573 *bytes_read = 12;
16574 }
16575 else if (length == 0)
16576 {
16577 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16578 length = bfd_get_64 (abfd, buf);
16579 *bytes_read = 8;
16580 }
16581 else
16582 {
16583 *bytes_read = 4;
16584 }
16585
16586 return length;
16587 }
16588
16589 /* Cover function for read_initial_length.
16590 Returns the length of the object at BUF, and stores the size of the
16591 initial length in *BYTES_READ and stores the size that offsets will be in
16592 *OFFSET_SIZE.
16593 If the initial length size is not equivalent to that specified in
16594 CU_HEADER then issue a complaint.
16595 This is useful when reading non-comp-unit headers. */
16596
16597 static LONGEST
16598 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16599 const struct comp_unit_head *cu_header,
16600 unsigned int *bytes_read,
16601 unsigned int *offset_size)
16602 {
16603 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16604
16605 gdb_assert (cu_header->initial_length_size == 4
16606 || cu_header->initial_length_size == 8
16607 || cu_header->initial_length_size == 12);
16608
16609 if (cu_header->initial_length_size != *bytes_read)
16610 complaint (&symfile_complaints,
16611 _("intermixed 32-bit and 64-bit DWARF sections"));
16612
16613 *offset_size = (*bytes_read == 4) ? 4 : 8;
16614 return length;
16615 }
16616
16617 /* Read an offset from the data stream. The size of the offset is
16618 given by cu_header->offset_size. */
16619
16620 static LONGEST
16621 read_offset (bfd *abfd, const gdb_byte *buf,
16622 const struct comp_unit_head *cu_header,
16623 unsigned int *bytes_read)
16624 {
16625 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16626
16627 *bytes_read = cu_header->offset_size;
16628 return offset;
16629 }
16630
16631 /* Read an offset from the data stream. */
16632
16633 static LONGEST
16634 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16635 {
16636 LONGEST retval = 0;
16637
16638 switch (offset_size)
16639 {
16640 case 4:
16641 retval = bfd_get_32 (abfd, buf);
16642 break;
16643 case 8:
16644 retval = bfd_get_64 (abfd, buf);
16645 break;
16646 default:
16647 internal_error (__FILE__, __LINE__,
16648 _("read_offset_1: bad switch [in module %s]"),
16649 bfd_get_filename (abfd));
16650 }
16651
16652 return retval;
16653 }
16654
16655 static const gdb_byte *
16656 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16657 {
16658 /* If the size of a host char is 8 bits, we can return a pointer
16659 to the buffer, otherwise we have to copy the data to a buffer
16660 allocated on the temporary obstack. */
16661 gdb_assert (HOST_CHAR_BIT == 8);
16662 return buf;
16663 }
16664
16665 static const char *
16666 read_direct_string (bfd *abfd, const gdb_byte *buf,
16667 unsigned int *bytes_read_ptr)
16668 {
16669 /* If the size of a host char is 8 bits, we can return a pointer
16670 to the string, otherwise we have to copy the string to a buffer
16671 allocated on the temporary obstack. */
16672 gdb_assert (HOST_CHAR_BIT == 8);
16673 if (*buf == '\0')
16674 {
16675 *bytes_read_ptr = 1;
16676 return NULL;
16677 }
16678 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16679 return (const char *) buf;
16680 }
16681
16682 static const char *
16683 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16684 {
16685 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16686 if (dwarf2_per_objfile->str.buffer == NULL)
16687 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16688 bfd_get_filename (abfd));
16689 if (str_offset >= dwarf2_per_objfile->str.size)
16690 error (_("DW_FORM_strp pointing outside of "
16691 ".debug_str section [in module %s]"),
16692 bfd_get_filename (abfd));
16693 gdb_assert (HOST_CHAR_BIT == 8);
16694 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16695 return NULL;
16696 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16697 }
16698
16699 /* Read a string at offset STR_OFFSET in the .debug_str section from
16700 the .dwz file DWZ. Throw an error if the offset is too large. If
16701 the string consists of a single NUL byte, return NULL; otherwise
16702 return a pointer to the string. */
16703
16704 static const char *
16705 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16706 {
16707 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16708
16709 if (dwz->str.buffer == NULL)
16710 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16711 "section [in module %s]"),
16712 bfd_get_filename (dwz->dwz_bfd));
16713 if (str_offset >= dwz->str.size)
16714 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16715 ".debug_str section [in module %s]"),
16716 bfd_get_filename (dwz->dwz_bfd));
16717 gdb_assert (HOST_CHAR_BIT == 8);
16718 if (dwz->str.buffer[str_offset] == '\0')
16719 return NULL;
16720 return (const char *) (dwz->str.buffer + str_offset);
16721 }
16722
16723 static const char *
16724 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16725 const struct comp_unit_head *cu_header,
16726 unsigned int *bytes_read_ptr)
16727 {
16728 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16729
16730 return read_indirect_string_at_offset (abfd, str_offset);
16731 }
16732
16733 static ULONGEST
16734 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16735 unsigned int *bytes_read_ptr)
16736 {
16737 ULONGEST result;
16738 unsigned int num_read;
16739 int i, shift;
16740 unsigned char byte;
16741
16742 result = 0;
16743 shift = 0;
16744 num_read = 0;
16745 i = 0;
16746 while (1)
16747 {
16748 byte = bfd_get_8 (abfd, buf);
16749 buf++;
16750 num_read++;
16751 result |= ((ULONGEST) (byte & 127) << shift);
16752 if ((byte & 128) == 0)
16753 {
16754 break;
16755 }
16756 shift += 7;
16757 }
16758 *bytes_read_ptr = num_read;
16759 return result;
16760 }
16761
16762 static LONGEST
16763 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16764 unsigned int *bytes_read_ptr)
16765 {
16766 LONGEST result;
16767 int i, shift, num_read;
16768 unsigned char byte;
16769
16770 result = 0;
16771 shift = 0;
16772 num_read = 0;
16773 i = 0;
16774 while (1)
16775 {
16776 byte = bfd_get_8 (abfd, buf);
16777 buf++;
16778 num_read++;
16779 result |= ((LONGEST) (byte & 127) << shift);
16780 shift += 7;
16781 if ((byte & 128) == 0)
16782 {
16783 break;
16784 }
16785 }
16786 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16787 result |= -(((LONGEST) 1) << shift);
16788 *bytes_read_ptr = num_read;
16789 return result;
16790 }
16791
16792 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16793 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16794 ADDR_SIZE is the size of addresses from the CU header. */
16795
16796 static CORE_ADDR
16797 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16798 {
16799 struct objfile *objfile = dwarf2_per_objfile->objfile;
16800 bfd *abfd = objfile->obfd;
16801 const gdb_byte *info_ptr;
16802
16803 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16804 if (dwarf2_per_objfile->addr.buffer == NULL)
16805 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16806 objfile_name (objfile));
16807 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16808 error (_("DW_FORM_addr_index pointing outside of "
16809 ".debug_addr section [in module %s]"),
16810 objfile_name (objfile));
16811 info_ptr = (dwarf2_per_objfile->addr.buffer
16812 + addr_base + addr_index * addr_size);
16813 if (addr_size == 4)
16814 return bfd_get_32 (abfd, info_ptr);
16815 else
16816 return bfd_get_64 (abfd, info_ptr);
16817 }
16818
16819 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16820
16821 static CORE_ADDR
16822 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16823 {
16824 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16825 }
16826
16827 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16828
16829 static CORE_ADDR
16830 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16831 unsigned int *bytes_read)
16832 {
16833 bfd *abfd = cu->objfile->obfd;
16834 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16835
16836 return read_addr_index (cu, addr_index);
16837 }
16838
16839 /* Data structure to pass results from dwarf2_read_addr_index_reader
16840 back to dwarf2_read_addr_index. */
16841
16842 struct dwarf2_read_addr_index_data
16843 {
16844 ULONGEST addr_base;
16845 int addr_size;
16846 };
16847
16848 /* die_reader_func for dwarf2_read_addr_index. */
16849
16850 static void
16851 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16852 const gdb_byte *info_ptr,
16853 struct die_info *comp_unit_die,
16854 int has_children,
16855 void *data)
16856 {
16857 struct dwarf2_cu *cu = reader->cu;
16858 struct dwarf2_read_addr_index_data *aidata =
16859 (struct dwarf2_read_addr_index_data *) data;
16860
16861 aidata->addr_base = cu->addr_base;
16862 aidata->addr_size = cu->header.addr_size;
16863 }
16864
16865 /* Given an index in .debug_addr, fetch the value.
16866 NOTE: This can be called during dwarf expression evaluation,
16867 long after the debug information has been read, and thus per_cu->cu
16868 may no longer exist. */
16869
16870 CORE_ADDR
16871 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16872 unsigned int addr_index)
16873 {
16874 struct objfile *objfile = per_cu->objfile;
16875 struct dwarf2_cu *cu = per_cu->cu;
16876 ULONGEST addr_base;
16877 int addr_size;
16878
16879 /* This is intended to be called from outside this file. */
16880 dw2_setup (objfile);
16881
16882 /* We need addr_base and addr_size.
16883 If we don't have PER_CU->cu, we have to get it.
16884 Nasty, but the alternative is storing the needed info in PER_CU,
16885 which at this point doesn't seem justified: it's not clear how frequently
16886 it would get used and it would increase the size of every PER_CU.
16887 Entry points like dwarf2_per_cu_addr_size do a similar thing
16888 so we're not in uncharted territory here.
16889 Alas we need to be a bit more complicated as addr_base is contained
16890 in the DIE.
16891
16892 We don't need to read the entire CU(/TU).
16893 We just need the header and top level die.
16894
16895 IWBN to use the aging mechanism to let us lazily later discard the CU.
16896 For now we skip this optimization. */
16897
16898 if (cu != NULL)
16899 {
16900 addr_base = cu->addr_base;
16901 addr_size = cu->header.addr_size;
16902 }
16903 else
16904 {
16905 struct dwarf2_read_addr_index_data aidata;
16906
16907 /* Note: We can't use init_cutu_and_read_dies_simple here,
16908 we need addr_base. */
16909 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16910 dwarf2_read_addr_index_reader, &aidata);
16911 addr_base = aidata.addr_base;
16912 addr_size = aidata.addr_size;
16913 }
16914
16915 return read_addr_index_1 (addr_index, addr_base, addr_size);
16916 }
16917
16918 /* Given a DW_FORM_GNU_str_index, fetch the string.
16919 This is only used by the Fission support. */
16920
16921 static const char *
16922 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16923 {
16924 struct objfile *objfile = dwarf2_per_objfile->objfile;
16925 const char *objf_name = objfile_name (objfile);
16926 bfd *abfd = objfile->obfd;
16927 struct dwarf2_cu *cu = reader->cu;
16928 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16929 struct dwarf2_section_info *str_offsets_section =
16930 &reader->dwo_file->sections.str_offsets;
16931 const gdb_byte *info_ptr;
16932 ULONGEST str_offset;
16933 static const char form_name[] = "DW_FORM_GNU_str_index";
16934
16935 dwarf2_read_section (objfile, str_section);
16936 dwarf2_read_section (objfile, str_offsets_section);
16937 if (str_section->buffer == NULL)
16938 error (_("%s used without .debug_str.dwo section"
16939 " in CU at offset 0x%lx [in module %s]"),
16940 form_name, (long) cu->header.offset.sect_off, objf_name);
16941 if (str_offsets_section->buffer == NULL)
16942 error (_("%s used without .debug_str_offsets.dwo section"
16943 " in CU at offset 0x%lx [in module %s]"),
16944 form_name, (long) cu->header.offset.sect_off, objf_name);
16945 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16946 error (_("%s pointing outside of .debug_str_offsets.dwo"
16947 " section in CU at offset 0x%lx [in module %s]"),
16948 form_name, (long) cu->header.offset.sect_off, objf_name);
16949 info_ptr = (str_offsets_section->buffer
16950 + str_index * cu->header.offset_size);
16951 if (cu->header.offset_size == 4)
16952 str_offset = bfd_get_32 (abfd, info_ptr);
16953 else
16954 str_offset = bfd_get_64 (abfd, info_ptr);
16955 if (str_offset >= str_section->size)
16956 error (_("Offset from %s pointing outside of"
16957 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16958 form_name, (long) cu->header.offset.sect_off, objf_name);
16959 return (const char *) (str_section->buffer + str_offset);
16960 }
16961
16962 /* Return the length of an LEB128 number in BUF. */
16963
16964 static int
16965 leb128_size (const gdb_byte *buf)
16966 {
16967 const gdb_byte *begin = buf;
16968 gdb_byte byte;
16969
16970 while (1)
16971 {
16972 byte = *buf++;
16973 if ((byte & 128) == 0)
16974 return buf - begin;
16975 }
16976 }
16977
16978 static void
16979 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16980 {
16981 switch (lang)
16982 {
16983 case DW_LANG_C89:
16984 case DW_LANG_C99:
16985 case DW_LANG_C11:
16986 case DW_LANG_C:
16987 case DW_LANG_UPC:
16988 cu->language = language_c;
16989 break;
16990 case DW_LANG_C_plus_plus:
16991 case DW_LANG_C_plus_plus_11:
16992 case DW_LANG_C_plus_plus_14:
16993 cu->language = language_cplus;
16994 break;
16995 case DW_LANG_D:
16996 cu->language = language_d;
16997 break;
16998 case DW_LANG_Fortran77:
16999 case DW_LANG_Fortran90:
17000 case DW_LANG_Fortran95:
17001 case DW_LANG_Fortran03:
17002 case DW_LANG_Fortran08:
17003 cu->language = language_fortran;
17004 break;
17005 case DW_LANG_Go:
17006 cu->language = language_go;
17007 break;
17008 case DW_LANG_Mips_Assembler:
17009 cu->language = language_asm;
17010 break;
17011 case DW_LANG_Java:
17012 cu->language = language_java;
17013 break;
17014 case DW_LANG_Ada83:
17015 case DW_LANG_Ada95:
17016 cu->language = language_ada;
17017 break;
17018 case DW_LANG_Modula2:
17019 cu->language = language_m2;
17020 break;
17021 case DW_LANG_Pascal83:
17022 cu->language = language_pascal;
17023 break;
17024 case DW_LANG_ObjC:
17025 cu->language = language_objc;
17026 break;
17027 case DW_LANG_Cobol74:
17028 case DW_LANG_Cobol85:
17029 default:
17030 cu->language = language_minimal;
17031 break;
17032 }
17033 cu->language_defn = language_def (cu->language);
17034 }
17035
17036 /* Return the named attribute or NULL if not there. */
17037
17038 static struct attribute *
17039 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17040 {
17041 for (;;)
17042 {
17043 unsigned int i;
17044 struct attribute *spec = NULL;
17045
17046 for (i = 0; i < die->num_attrs; ++i)
17047 {
17048 if (die->attrs[i].name == name)
17049 return &die->attrs[i];
17050 if (die->attrs[i].name == DW_AT_specification
17051 || die->attrs[i].name == DW_AT_abstract_origin)
17052 spec = &die->attrs[i];
17053 }
17054
17055 if (!spec)
17056 break;
17057
17058 die = follow_die_ref (die, spec, &cu);
17059 }
17060
17061 return NULL;
17062 }
17063
17064 /* Return the named attribute or NULL if not there,
17065 but do not follow DW_AT_specification, etc.
17066 This is for use in contexts where we're reading .debug_types dies.
17067 Following DW_AT_specification, DW_AT_abstract_origin will take us
17068 back up the chain, and we want to go down. */
17069
17070 static struct attribute *
17071 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17072 {
17073 unsigned int i;
17074
17075 for (i = 0; i < die->num_attrs; ++i)
17076 if (die->attrs[i].name == name)
17077 return &die->attrs[i];
17078
17079 return NULL;
17080 }
17081
17082 /* Return the string associated with a string-typed attribute, or NULL if it
17083 is either not found or is of an incorrect type. */
17084
17085 static const char *
17086 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17087 {
17088 struct attribute *attr;
17089 const char *str = NULL;
17090
17091 attr = dwarf2_attr (die, name, cu);
17092
17093 if (attr != NULL)
17094 {
17095 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17096 || attr->form == DW_FORM_GNU_strp_alt)
17097 str = DW_STRING (attr);
17098 else
17099 complaint (&symfile_complaints,
17100 _("string type expected for attribute %s for "
17101 "DIE at 0x%x in module %s"),
17102 dwarf_attr_name (name), die->offset.sect_off,
17103 objfile_name (cu->objfile));
17104 }
17105
17106 return str;
17107 }
17108
17109 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17110 and holds a non-zero value. This function should only be used for
17111 DW_FORM_flag or DW_FORM_flag_present attributes. */
17112
17113 static int
17114 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17115 {
17116 struct attribute *attr = dwarf2_attr (die, name, cu);
17117
17118 return (attr && DW_UNSND (attr));
17119 }
17120
17121 static int
17122 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17123 {
17124 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17125 which value is non-zero. However, we have to be careful with
17126 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17127 (via dwarf2_flag_true_p) follows this attribute. So we may
17128 end up accidently finding a declaration attribute that belongs
17129 to a different DIE referenced by the specification attribute,
17130 even though the given DIE does not have a declaration attribute. */
17131 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17132 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17133 }
17134
17135 /* Return the die giving the specification for DIE, if there is
17136 one. *SPEC_CU is the CU containing DIE on input, and the CU
17137 containing the return value on output. If there is no
17138 specification, but there is an abstract origin, that is
17139 returned. */
17140
17141 static struct die_info *
17142 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17143 {
17144 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17145 *spec_cu);
17146
17147 if (spec_attr == NULL)
17148 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17149
17150 if (spec_attr == NULL)
17151 return NULL;
17152 else
17153 return follow_die_ref (die, spec_attr, spec_cu);
17154 }
17155
17156 /* Free the line_header structure *LH, and any arrays and strings it
17157 refers to.
17158 NOTE: This is also used as a "cleanup" function. */
17159
17160 static void
17161 free_line_header (struct line_header *lh)
17162 {
17163 if (lh->standard_opcode_lengths)
17164 xfree (lh->standard_opcode_lengths);
17165
17166 /* Remember that all the lh->file_names[i].name pointers are
17167 pointers into debug_line_buffer, and don't need to be freed. */
17168 if (lh->file_names)
17169 xfree (lh->file_names);
17170
17171 /* Similarly for the include directory names. */
17172 if (lh->include_dirs)
17173 xfree (lh->include_dirs);
17174
17175 xfree (lh);
17176 }
17177
17178 /* Stub for free_line_header to match void * callback types. */
17179
17180 static void
17181 free_line_header_voidp (void *arg)
17182 {
17183 struct line_header *lh = arg;
17184
17185 free_line_header (lh);
17186 }
17187
17188 /* Add an entry to LH's include directory table. */
17189
17190 static void
17191 add_include_dir (struct line_header *lh, const char *include_dir)
17192 {
17193 if (dwarf_line_debug >= 2)
17194 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17195 lh->num_include_dirs + 1, include_dir);
17196
17197 /* Grow the array if necessary. */
17198 if (lh->include_dirs_size == 0)
17199 {
17200 lh->include_dirs_size = 1; /* for testing */
17201 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17202 }
17203 else if (lh->num_include_dirs >= lh->include_dirs_size)
17204 {
17205 lh->include_dirs_size *= 2;
17206 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17207 lh->include_dirs_size);
17208 }
17209
17210 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17211 }
17212
17213 /* Add an entry to LH's file name table. */
17214
17215 static void
17216 add_file_name (struct line_header *lh,
17217 const char *name,
17218 unsigned int dir_index,
17219 unsigned int mod_time,
17220 unsigned int length)
17221 {
17222 struct file_entry *fe;
17223
17224 if (dwarf_line_debug >= 2)
17225 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17226 lh->num_file_names + 1, name);
17227
17228 /* Grow the array if necessary. */
17229 if (lh->file_names_size == 0)
17230 {
17231 lh->file_names_size = 1; /* for testing */
17232 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17233 }
17234 else if (lh->num_file_names >= lh->file_names_size)
17235 {
17236 lh->file_names_size *= 2;
17237 lh->file_names = xrealloc (lh->file_names,
17238 (lh->file_names_size
17239 * sizeof (*lh->file_names)));
17240 }
17241
17242 fe = &lh->file_names[lh->num_file_names++];
17243 fe->name = name;
17244 fe->dir_index = dir_index;
17245 fe->mod_time = mod_time;
17246 fe->length = length;
17247 fe->included_p = 0;
17248 fe->symtab = NULL;
17249 }
17250
17251 /* A convenience function to find the proper .debug_line section for a CU. */
17252
17253 static struct dwarf2_section_info *
17254 get_debug_line_section (struct dwarf2_cu *cu)
17255 {
17256 struct dwarf2_section_info *section;
17257
17258 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17259 DWO file. */
17260 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17261 section = &cu->dwo_unit->dwo_file->sections.line;
17262 else if (cu->per_cu->is_dwz)
17263 {
17264 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17265
17266 section = &dwz->line;
17267 }
17268 else
17269 section = &dwarf2_per_objfile->line;
17270
17271 return section;
17272 }
17273
17274 /* Read the statement program header starting at OFFSET in
17275 .debug_line, or .debug_line.dwo. Return a pointer
17276 to a struct line_header, allocated using xmalloc.
17277 Returns NULL if there is a problem reading the header, e.g., if it
17278 has a version we don't understand.
17279
17280 NOTE: the strings in the include directory and file name tables of
17281 the returned object point into the dwarf line section buffer,
17282 and must not be freed. */
17283
17284 static struct line_header *
17285 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17286 {
17287 struct cleanup *back_to;
17288 struct line_header *lh;
17289 const gdb_byte *line_ptr;
17290 unsigned int bytes_read, offset_size;
17291 int i;
17292 const char *cur_dir, *cur_file;
17293 struct dwarf2_section_info *section;
17294 bfd *abfd;
17295
17296 section = get_debug_line_section (cu);
17297 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17298 if (section->buffer == NULL)
17299 {
17300 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17301 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17302 else
17303 complaint (&symfile_complaints, _("missing .debug_line section"));
17304 return 0;
17305 }
17306
17307 /* We can't do this until we know the section is non-empty.
17308 Only then do we know we have such a section. */
17309 abfd = get_section_bfd_owner (section);
17310
17311 /* Make sure that at least there's room for the total_length field.
17312 That could be 12 bytes long, but we're just going to fudge that. */
17313 if (offset + 4 >= section->size)
17314 {
17315 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17316 return 0;
17317 }
17318
17319 lh = XNEW (struct line_header);
17320 memset (lh, 0, sizeof (*lh));
17321 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17322 (void *) lh);
17323
17324 lh->offset.sect_off = offset;
17325 lh->offset_in_dwz = cu->per_cu->is_dwz;
17326
17327 line_ptr = section->buffer + offset;
17328
17329 /* Read in the header. */
17330 lh->total_length =
17331 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17332 &bytes_read, &offset_size);
17333 line_ptr += bytes_read;
17334 if (line_ptr + lh->total_length > (section->buffer + section->size))
17335 {
17336 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17337 do_cleanups (back_to);
17338 return 0;
17339 }
17340 lh->statement_program_end = line_ptr + lh->total_length;
17341 lh->version = read_2_bytes (abfd, line_ptr);
17342 line_ptr += 2;
17343 if (lh->version > 4)
17344 {
17345 /* This is a version we don't understand. The format could have
17346 changed in ways we don't handle properly so just punt. */
17347 complaint (&symfile_complaints,
17348 _("unsupported version in .debug_line section"));
17349 return NULL;
17350 }
17351 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17352 line_ptr += offset_size;
17353 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17354 line_ptr += 1;
17355 if (lh->version >= 4)
17356 {
17357 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17358 line_ptr += 1;
17359 }
17360 else
17361 lh->maximum_ops_per_instruction = 1;
17362
17363 if (lh->maximum_ops_per_instruction == 0)
17364 {
17365 lh->maximum_ops_per_instruction = 1;
17366 complaint (&symfile_complaints,
17367 _("invalid maximum_ops_per_instruction "
17368 "in `.debug_line' section"));
17369 }
17370
17371 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17372 line_ptr += 1;
17373 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17374 line_ptr += 1;
17375 lh->line_range = read_1_byte (abfd, line_ptr);
17376 line_ptr += 1;
17377 lh->opcode_base = read_1_byte (abfd, line_ptr);
17378 line_ptr += 1;
17379 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17380
17381 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17382 for (i = 1; i < lh->opcode_base; ++i)
17383 {
17384 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17385 line_ptr += 1;
17386 }
17387
17388 /* Read directory table. */
17389 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17390 {
17391 line_ptr += bytes_read;
17392 add_include_dir (lh, cur_dir);
17393 }
17394 line_ptr += bytes_read;
17395
17396 /* Read file name table. */
17397 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17398 {
17399 unsigned int dir_index, mod_time, length;
17400
17401 line_ptr += bytes_read;
17402 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17403 line_ptr += bytes_read;
17404 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17405 line_ptr += bytes_read;
17406 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17407 line_ptr += bytes_read;
17408
17409 add_file_name (lh, cur_file, dir_index, mod_time, length);
17410 }
17411 line_ptr += bytes_read;
17412 lh->statement_program_start = line_ptr;
17413
17414 if (line_ptr > (section->buffer + section->size))
17415 complaint (&symfile_complaints,
17416 _("line number info header doesn't "
17417 "fit in `.debug_line' section"));
17418
17419 discard_cleanups (back_to);
17420 return lh;
17421 }
17422
17423 /* Subroutine of dwarf_decode_lines to simplify it.
17424 Return the file name of the psymtab for included file FILE_INDEX
17425 in line header LH of PST.
17426 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17427 If space for the result is malloc'd, it will be freed by a cleanup.
17428 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17429
17430 The function creates dangling cleanup registration. */
17431
17432 static const char *
17433 psymtab_include_file_name (const struct line_header *lh, int file_index,
17434 const struct partial_symtab *pst,
17435 const char *comp_dir)
17436 {
17437 const struct file_entry fe = lh->file_names [file_index];
17438 const char *include_name = fe.name;
17439 const char *include_name_to_compare = include_name;
17440 const char *dir_name = NULL;
17441 const char *pst_filename;
17442 char *copied_name = NULL;
17443 int file_is_pst;
17444
17445 if (fe.dir_index && lh->include_dirs != NULL)
17446 dir_name = lh->include_dirs[fe.dir_index - 1];
17447
17448 if (!IS_ABSOLUTE_PATH (include_name)
17449 && (dir_name != NULL || comp_dir != NULL))
17450 {
17451 /* Avoid creating a duplicate psymtab for PST.
17452 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17453 Before we do the comparison, however, we need to account
17454 for DIR_NAME and COMP_DIR.
17455 First prepend dir_name (if non-NULL). If we still don't
17456 have an absolute path prepend comp_dir (if non-NULL).
17457 However, the directory we record in the include-file's
17458 psymtab does not contain COMP_DIR (to match the
17459 corresponding symtab(s)).
17460
17461 Example:
17462
17463 bash$ cd /tmp
17464 bash$ gcc -g ./hello.c
17465 include_name = "hello.c"
17466 dir_name = "."
17467 DW_AT_comp_dir = comp_dir = "/tmp"
17468 DW_AT_name = "./hello.c"
17469
17470 */
17471
17472 if (dir_name != NULL)
17473 {
17474 char *tem = concat (dir_name, SLASH_STRING,
17475 include_name, (char *)NULL);
17476
17477 make_cleanup (xfree, tem);
17478 include_name = tem;
17479 include_name_to_compare = include_name;
17480 }
17481 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17482 {
17483 char *tem = concat (comp_dir, SLASH_STRING,
17484 include_name, (char *)NULL);
17485
17486 make_cleanup (xfree, tem);
17487 include_name_to_compare = tem;
17488 }
17489 }
17490
17491 pst_filename = pst->filename;
17492 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17493 {
17494 copied_name = concat (pst->dirname, SLASH_STRING,
17495 pst_filename, (char *)NULL);
17496 pst_filename = copied_name;
17497 }
17498
17499 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17500
17501 if (copied_name != NULL)
17502 xfree (copied_name);
17503
17504 if (file_is_pst)
17505 return NULL;
17506 return include_name;
17507 }
17508
17509 /* State machine to track the state of the line number program. */
17510
17511 typedef struct
17512 {
17513 /* These are part of the standard DWARF line number state machine. */
17514
17515 unsigned char op_index;
17516 unsigned int file;
17517 unsigned int line;
17518 CORE_ADDR address;
17519 int is_stmt;
17520 unsigned int discriminator;
17521
17522 /* Additional bits of state we need to track. */
17523
17524 /* The last file that we called dwarf2_start_subfile for.
17525 This is only used for TLLs. */
17526 unsigned int last_file;
17527 /* The last file a line number was recorded for. */
17528 struct subfile *last_subfile;
17529
17530 /* The function to call to record a line. */
17531 record_line_ftype *record_line;
17532
17533 /* The last line number that was recorded, used to coalesce
17534 consecutive entries for the same line. This can happen, for
17535 example, when discriminators are present. PR 17276. */
17536 unsigned int last_line;
17537 int line_has_non_zero_discriminator;
17538 } lnp_state_machine;
17539
17540 /* There's a lot of static state to pass to dwarf_record_line.
17541 This keeps it all together. */
17542
17543 typedef struct
17544 {
17545 /* The gdbarch. */
17546 struct gdbarch *gdbarch;
17547
17548 /* The line number header. */
17549 struct line_header *line_header;
17550
17551 /* Non-zero if we're recording lines.
17552 Otherwise we're building partial symtabs and are just interested in
17553 finding include files mentioned by the line number program. */
17554 int record_lines_p;
17555 } lnp_reader_state;
17556
17557 /* Ignore this record_line request. */
17558
17559 static void
17560 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17561 {
17562 return;
17563 }
17564
17565 /* Return non-zero if we should add LINE to the line number table.
17566 LINE is the line to add, LAST_LINE is the last line that was added,
17567 LAST_SUBFILE is the subfile for LAST_LINE.
17568 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17569 had a non-zero discriminator.
17570
17571 We have to be careful in the presence of discriminators.
17572 E.g., for this line:
17573
17574 for (i = 0; i < 100000; i++);
17575
17576 clang can emit four line number entries for that one line,
17577 each with a different discriminator.
17578 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17579
17580 However, we want gdb to coalesce all four entries into one.
17581 Otherwise the user could stepi into the middle of the line and
17582 gdb would get confused about whether the pc really was in the
17583 middle of the line.
17584
17585 Things are further complicated by the fact that two consecutive
17586 line number entries for the same line is a heuristic used by gcc
17587 to denote the end of the prologue. So we can't just discard duplicate
17588 entries, we have to be selective about it. The heuristic we use is
17589 that we only collapse consecutive entries for the same line if at least
17590 one of those entries has a non-zero discriminator. PR 17276.
17591
17592 Note: Addresses in the line number state machine can never go backwards
17593 within one sequence, thus this coalescing is ok. */
17594
17595 static int
17596 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17597 int line_has_non_zero_discriminator,
17598 struct subfile *last_subfile)
17599 {
17600 if (current_subfile != last_subfile)
17601 return 1;
17602 if (line != last_line)
17603 return 1;
17604 /* Same line for the same file that we've seen already.
17605 As a last check, for pr 17276, only record the line if the line
17606 has never had a non-zero discriminator. */
17607 if (!line_has_non_zero_discriminator)
17608 return 1;
17609 return 0;
17610 }
17611
17612 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17613 in the line table of subfile SUBFILE. */
17614
17615 static void
17616 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17617 unsigned int line, CORE_ADDR address,
17618 record_line_ftype p_record_line)
17619 {
17620 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17621
17622 if (dwarf_line_debug)
17623 {
17624 fprintf_unfiltered (gdb_stdlog,
17625 "Recording line %u, file %s, address %s\n",
17626 line, lbasename (subfile->name),
17627 paddress (gdbarch, address));
17628 }
17629
17630 (*p_record_line) (subfile, line, addr);
17631 }
17632
17633 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17634 Mark the end of a set of line number records.
17635 The arguments are the same as for dwarf_record_line_1.
17636 If SUBFILE is NULL the request is ignored. */
17637
17638 static void
17639 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17640 CORE_ADDR address, record_line_ftype p_record_line)
17641 {
17642 if (subfile == NULL)
17643 return;
17644
17645 if (dwarf_line_debug)
17646 {
17647 fprintf_unfiltered (gdb_stdlog,
17648 "Finishing current line, file %s, address %s\n",
17649 lbasename (subfile->name),
17650 paddress (gdbarch, address));
17651 }
17652
17653 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17654 }
17655
17656 /* Record the line in STATE.
17657 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17658
17659 static void
17660 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17661 int end_sequence)
17662 {
17663 const struct line_header *lh = reader->line_header;
17664 unsigned int file, line, discriminator;
17665 int is_stmt;
17666
17667 file = state->file;
17668 line = state->line;
17669 is_stmt = state->is_stmt;
17670 discriminator = state->discriminator;
17671
17672 if (dwarf_line_debug)
17673 {
17674 fprintf_unfiltered (gdb_stdlog,
17675 "Processing actual line %u: file %u,"
17676 " address %s, is_stmt %u, discrim %u\n",
17677 line, file,
17678 paddress (reader->gdbarch, state->address),
17679 is_stmt, discriminator);
17680 }
17681
17682 if (file == 0 || file - 1 >= lh->num_file_names)
17683 dwarf2_debug_line_missing_file_complaint ();
17684 /* For now we ignore lines not starting on an instruction boundary.
17685 But not when processing end_sequence for compatibility with the
17686 previous version of the code. */
17687 else if (state->op_index == 0 || end_sequence)
17688 {
17689 lh->file_names[file - 1].included_p = 1;
17690 if (reader->record_lines_p && is_stmt)
17691 {
17692 if (state->last_subfile != current_subfile || end_sequence)
17693 {
17694 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17695 state->address, state->record_line);
17696 }
17697
17698 if (!end_sequence)
17699 {
17700 if (dwarf_record_line_p (line, state->last_line,
17701 state->line_has_non_zero_discriminator,
17702 state->last_subfile))
17703 {
17704 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17705 line, state->address,
17706 state->record_line);
17707 }
17708 state->last_subfile = current_subfile;
17709 state->last_line = line;
17710 }
17711 }
17712 }
17713 }
17714
17715 /* Initialize STATE for the start of a line number program. */
17716
17717 static void
17718 init_lnp_state_machine (lnp_state_machine *state,
17719 const lnp_reader_state *reader)
17720 {
17721 memset (state, 0, sizeof (*state));
17722
17723 /* Just starting, there is no "last file". */
17724 state->last_file = 0;
17725 state->last_subfile = NULL;
17726
17727 state->record_line = record_line;
17728
17729 state->last_line = 0;
17730 state->line_has_non_zero_discriminator = 0;
17731
17732 /* Initialize these according to the DWARF spec. */
17733 state->op_index = 0;
17734 state->file = 1;
17735 state->line = 1;
17736 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17737 was a line entry for it so that the backend has a chance to adjust it
17738 and also record it in case it needs it. This is currently used by MIPS
17739 code, cf. `mips_adjust_dwarf2_line'. */
17740 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17741 state->is_stmt = reader->line_header->default_is_stmt;
17742 state->discriminator = 0;
17743 }
17744
17745 /* Check address and if invalid nop-out the rest of the lines in this
17746 sequence. */
17747
17748 static void
17749 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17750 const gdb_byte *line_ptr,
17751 CORE_ADDR lowpc, CORE_ADDR address)
17752 {
17753 /* If address < lowpc then it's not a usable value, it's outside the
17754 pc range of the CU. However, we restrict the test to only address
17755 values of zero to preserve GDB's previous behaviour which is to
17756 handle the specific case of a function being GC'd by the linker. */
17757
17758 if (address == 0 && address < lowpc)
17759 {
17760 /* This line table is for a function which has been
17761 GCd by the linker. Ignore it. PR gdb/12528 */
17762
17763 struct objfile *objfile = cu->objfile;
17764 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17765
17766 complaint (&symfile_complaints,
17767 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17768 line_offset, objfile_name (objfile));
17769 state->record_line = noop_record_line;
17770 /* Note: sm.record_line is left as noop_record_line
17771 until we see DW_LNE_end_sequence. */
17772 }
17773 }
17774
17775 /* Subroutine of dwarf_decode_lines to simplify it.
17776 Process the line number information in LH.
17777 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17778 program in order to set included_p for every referenced header. */
17779
17780 static void
17781 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17782 const int decode_for_pst_p, CORE_ADDR lowpc)
17783 {
17784 const gdb_byte *line_ptr, *extended_end;
17785 const gdb_byte *line_end;
17786 unsigned int bytes_read, extended_len;
17787 unsigned char op_code, extended_op;
17788 CORE_ADDR baseaddr;
17789 struct objfile *objfile = cu->objfile;
17790 bfd *abfd = objfile->obfd;
17791 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17792 /* Non-zero if we're recording line info (as opposed to building partial
17793 symtabs). */
17794 int record_lines_p = !decode_for_pst_p;
17795 /* A collection of things we need to pass to dwarf_record_line. */
17796 lnp_reader_state reader_state;
17797
17798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17799
17800 line_ptr = lh->statement_program_start;
17801 line_end = lh->statement_program_end;
17802
17803 reader_state.gdbarch = gdbarch;
17804 reader_state.line_header = lh;
17805 reader_state.record_lines_p = record_lines_p;
17806
17807 /* Read the statement sequences until there's nothing left. */
17808 while (line_ptr < line_end)
17809 {
17810 /* The DWARF line number program state machine. */
17811 lnp_state_machine state_machine;
17812 int end_sequence = 0;
17813
17814 /* Reset the state machine at the start of each sequence. */
17815 init_lnp_state_machine (&state_machine, &reader_state);
17816
17817 if (record_lines_p && lh->num_file_names >= state_machine.file)
17818 {
17819 /* Start a subfile for the current file of the state machine. */
17820 /* lh->include_dirs and lh->file_names are 0-based, but the
17821 directory and file name numbers in the statement program
17822 are 1-based. */
17823 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17824 const char *dir = NULL;
17825
17826 if (fe->dir_index && lh->include_dirs != NULL)
17827 dir = lh->include_dirs[fe->dir_index - 1];
17828
17829 dwarf2_start_subfile (fe->name, dir);
17830 }
17831
17832 /* Decode the table. */
17833 while (line_ptr < line_end && !end_sequence)
17834 {
17835 op_code = read_1_byte (abfd, line_ptr);
17836 line_ptr += 1;
17837
17838 if (op_code >= lh->opcode_base)
17839 {
17840 /* Special opcode. */
17841 unsigned char adj_opcode;
17842 CORE_ADDR addr_adj;
17843 int line_delta;
17844
17845 adj_opcode = op_code - lh->opcode_base;
17846 addr_adj = (((state_machine.op_index
17847 + (adj_opcode / lh->line_range))
17848 / lh->maximum_ops_per_instruction)
17849 * lh->minimum_instruction_length);
17850 state_machine.address
17851 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17852 state_machine.op_index = ((state_machine.op_index
17853 + (adj_opcode / lh->line_range))
17854 % lh->maximum_ops_per_instruction);
17855 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17856 state_machine.line += line_delta;
17857 if (line_delta != 0)
17858 state_machine.line_has_non_zero_discriminator
17859 = state_machine.discriminator != 0;
17860
17861 dwarf_record_line (&reader_state, &state_machine, 0);
17862 state_machine.discriminator = 0;
17863 }
17864 else switch (op_code)
17865 {
17866 case DW_LNS_extended_op:
17867 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17868 &bytes_read);
17869 line_ptr += bytes_read;
17870 extended_end = line_ptr + extended_len;
17871 extended_op = read_1_byte (abfd, line_ptr);
17872 line_ptr += 1;
17873 switch (extended_op)
17874 {
17875 case DW_LNE_end_sequence:
17876 state_machine.record_line = record_line;
17877 end_sequence = 1;
17878 break;
17879 case DW_LNE_set_address:
17880 {
17881 CORE_ADDR address
17882 = read_address (abfd, line_ptr, cu, &bytes_read);
17883
17884 line_ptr += bytes_read;
17885 check_line_address (cu, &state_machine, line_ptr,
17886 lowpc, address);
17887 state_machine.op_index = 0;
17888 address += baseaddr;
17889 state_machine.address
17890 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17891 }
17892 break;
17893 case DW_LNE_define_file:
17894 {
17895 const char *cur_file;
17896 unsigned int dir_index, mod_time, length;
17897
17898 cur_file = read_direct_string (abfd, line_ptr,
17899 &bytes_read);
17900 line_ptr += bytes_read;
17901 dir_index =
17902 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17903 line_ptr += bytes_read;
17904 mod_time =
17905 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17906 line_ptr += bytes_read;
17907 length =
17908 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17909 line_ptr += bytes_read;
17910 add_file_name (lh, cur_file, dir_index, mod_time, length);
17911 }
17912 break;
17913 case DW_LNE_set_discriminator:
17914 /* The discriminator is not interesting to the debugger;
17915 just ignore it. We still need to check its value though:
17916 if there are consecutive entries for the same
17917 (non-prologue) line we want to coalesce them.
17918 PR 17276. */
17919 state_machine.discriminator
17920 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17921 state_machine.line_has_non_zero_discriminator
17922 |= state_machine.discriminator != 0;
17923 line_ptr += bytes_read;
17924 break;
17925 default:
17926 complaint (&symfile_complaints,
17927 _("mangled .debug_line section"));
17928 return;
17929 }
17930 /* Make sure that we parsed the extended op correctly. If e.g.
17931 we expected a different address size than the producer used,
17932 we may have read the wrong number of bytes. */
17933 if (line_ptr != extended_end)
17934 {
17935 complaint (&symfile_complaints,
17936 _("mangled .debug_line section"));
17937 return;
17938 }
17939 break;
17940 case DW_LNS_copy:
17941 dwarf_record_line (&reader_state, &state_machine, 0);
17942 state_machine.discriminator = 0;
17943 break;
17944 case DW_LNS_advance_pc:
17945 {
17946 CORE_ADDR adjust
17947 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17948 CORE_ADDR addr_adj;
17949
17950 addr_adj = (((state_machine.op_index + adjust)
17951 / lh->maximum_ops_per_instruction)
17952 * lh->minimum_instruction_length);
17953 state_machine.address
17954 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17955 state_machine.op_index = ((state_machine.op_index + adjust)
17956 % lh->maximum_ops_per_instruction);
17957 line_ptr += bytes_read;
17958 }
17959 break;
17960 case DW_LNS_advance_line:
17961 {
17962 int line_delta
17963 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17964
17965 state_machine.line += line_delta;
17966 if (line_delta != 0)
17967 state_machine.line_has_non_zero_discriminator
17968 = state_machine.discriminator != 0;
17969 line_ptr += bytes_read;
17970 }
17971 break;
17972 case DW_LNS_set_file:
17973 {
17974 /* The arrays lh->include_dirs and lh->file_names are
17975 0-based, but the directory and file name numbers in
17976 the statement program are 1-based. */
17977 struct file_entry *fe;
17978 const char *dir = NULL;
17979
17980 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17981 &bytes_read);
17982 line_ptr += bytes_read;
17983 if (state_machine.file == 0
17984 || state_machine.file - 1 >= lh->num_file_names)
17985 dwarf2_debug_line_missing_file_complaint ();
17986 else
17987 {
17988 fe = &lh->file_names[state_machine.file - 1];
17989 if (fe->dir_index && lh->include_dirs != NULL)
17990 dir = lh->include_dirs[fe->dir_index - 1];
17991 if (record_lines_p)
17992 {
17993 state_machine.last_subfile = current_subfile;
17994 state_machine.line_has_non_zero_discriminator
17995 = state_machine.discriminator != 0;
17996 dwarf2_start_subfile (fe->name, dir);
17997 }
17998 }
17999 }
18000 break;
18001 case DW_LNS_set_column:
18002 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18003 line_ptr += bytes_read;
18004 break;
18005 case DW_LNS_negate_stmt:
18006 state_machine.is_stmt = (!state_machine.is_stmt);
18007 break;
18008 case DW_LNS_set_basic_block:
18009 break;
18010 /* Add to the address register of the state machine the
18011 address increment value corresponding to special opcode
18012 255. I.e., this value is scaled by the minimum
18013 instruction length since special opcode 255 would have
18014 scaled the increment. */
18015 case DW_LNS_const_add_pc:
18016 {
18017 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18018 CORE_ADDR addr_adj;
18019
18020 addr_adj = (((state_machine.op_index + adjust)
18021 / lh->maximum_ops_per_instruction)
18022 * lh->minimum_instruction_length);
18023 state_machine.address
18024 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18025 state_machine.op_index = ((state_machine.op_index + adjust)
18026 % lh->maximum_ops_per_instruction);
18027 }
18028 break;
18029 case DW_LNS_fixed_advance_pc:
18030 {
18031 CORE_ADDR addr_adj;
18032
18033 addr_adj = read_2_bytes (abfd, line_ptr);
18034 state_machine.address
18035 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18036 state_machine.op_index = 0;
18037 line_ptr += 2;
18038 }
18039 break;
18040 default:
18041 {
18042 /* Unknown standard opcode, ignore it. */
18043 int i;
18044
18045 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18046 {
18047 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18048 line_ptr += bytes_read;
18049 }
18050 }
18051 }
18052 }
18053
18054 if (!end_sequence)
18055 dwarf2_debug_line_missing_end_sequence_complaint ();
18056
18057 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18058 in which case we still finish recording the last line). */
18059 dwarf_record_line (&reader_state, &state_machine, 1);
18060 }
18061 }
18062
18063 /* Decode the Line Number Program (LNP) for the given line_header
18064 structure and CU. The actual information extracted and the type
18065 of structures created from the LNP depends on the value of PST.
18066
18067 1. If PST is NULL, then this procedure uses the data from the program
18068 to create all necessary symbol tables, and their linetables.
18069
18070 2. If PST is not NULL, this procedure reads the program to determine
18071 the list of files included by the unit represented by PST, and
18072 builds all the associated partial symbol tables.
18073
18074 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18075 It is used for relative paths in the line table.
18076 NOTE: When processing partial symtabs (pst != NULL),
18077 comp_dir == pst->dirname.
18078
18079 NOTE: It is important that psymtabs have the same file name (via strcmp)
18080 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18081 symtab we don't use it in the name of the psymtabs we create.
18082 E.g. expand_line_sal requires this when finding psymtabs to expand.
18083 A good testcase for this is mb-inline.exp.
18084
18085 LOWPC is the lowest address in CU (or 0 if not known).
18086
18087 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18088 for its PC<->lines mapping information. Otherwise only the filename
18089 table is read in. */
18090
18091 static void
18092 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18093 struct dwarf2_cu *cu, struct partial_symtab *pst,
18094 CORE_ADDR lowpc, int decode_mapping)
18095 {
18096 struct objfile *objfile = cu->objfile;
18097 const int decode_for_pst_p = (pst != NULL);
18098
18099 if (decode_mapping)
18100 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18101
18102 if (decode_for_pst_p)
18103 {
18104 int file_index;
18105
18106 /* Now that we're done scanning the Line Header Program, we can
18107 create the psymtab of each included file. */
18108 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18109 if (lh->file_names[file_index].included_p == 1)
18110 {
18111 const char *include_name =
18112 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18113 if (include_name != NULL)
18114 dwarf2_create_include_psymtab (include_name, pst, objfile);
18115 }
18116 }
18117 else
18118 {
18119 /* Make sure a symtab is created for every file, even files
18120 which contain only variables (i.e. no code with associated
18121 line numbers). */
18122 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18123 int i;
18124
18125 for (i = 0; i < lh->num_file_names; i++)
18126 {
18127 const char *dir = NULL;
18128 struct file_entry *fe;
18129
18130 fe = &lh->file_names[i];
18131 if (fe->dir_index && lh->include_dirs != NULL)
18132 dir = lh->include_dirs[fe->dir_index - 1];
18133 dwarf2_start_subfile (fe->name, dir);
18134
18135 if (current_subfile->symtab == NULL)
18136 {
18137 current_subfile->symtab
18138 = allocate_symtab (cust, current_subfile->name);
18139 }
18140 fe->symtab = current_subfile->symtab;
18141 }
18142 }
18143 }
18144
18145 /* Start a subfile for DWARF. FILENAME is the name of the file and
18146 DIRNAME the name of the source directory which contains FILENAME
18147 or NULL if not known.
18148 This routine tries to keep line numbers from identical absolute and
18149 relative file names in a common subfile.
18150
18151 Using the `list' example from the GDB testsuite, which resides in
18152 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18153 of /srcdir/list0.c yields the following debugging information for list0.c:
18154
18155 DW_AT_name: /srcdir/list0.c
18156 DW_AT_comp_dir: /compdir
18157 files.files[0].name: list0.h
18158 files.files[0].dir: /srcdir
18159 files.files[1].name: list0.c
18160 files.files[1].dir: /srcdir
18161
18162 The line number information for list0.c has to end up in a single
18163 subfile, so that `break /srcdir/list0.c:1' works as expected.
18164 start_subfile will ensure that this happens provided that we pass the
18165 concatenation of files.files[1].dir and files.files[1].name as the
18166 subfile's name. */
18167
18168 static void
18169 dwarf2_start_subfile (const char *filename, const char *dirname)
18170 {
18171 char *copy = NULL;
18172
18173 /* In order not to lose the line information directory,
18174 we concatenate it to the filename when it makes sense.
18175 Note that the Dwarf3 standard says (speaking of filenames in line
18176 information): ``The directory index is ignored for file names
18177 that represent full path names''. Thus ignoring dirname in the
18178 `else' branch below isn't an issue. */
18179
18180 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18181 {
18182 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18183 filename = copy;
18184 }
18185
18186 start_subfile (filename);
18187
18188 if (copy != NULL)
18189 xfree (copy);
18190 }
18191
18192 /* Start a symtab for DWARF.
18193 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18194
18195 static struct compunit_symtab *
18196 dwarf2_start_symtab (struct dwarf2_cu *cu,
18197 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18198 {
18199 struct compunit_symtab *cust
18200 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18201
18202 record_debugformat ("DWARF 2");
18203 record_producer (cu->producer);
18204
18205 /* We assume that we're processing GCC output. */
18206 processing_gcc_compilation = 2;
18207
18208 cu->processing_has_namespace_info = 0;
18209
18210 return cust;
18211 }
18212
18213 static void
18214 var_decode_location (struct attribute *attr, struct symbol *sym,
18215 struct dwarf2_cu *cu)
18216 {
18217 struct objfile *objfile = cu->objfile;
18218 struct comp_unit_head *cu_header = &cu->header;
18219
18220 /* NOTE drow/2003-01-30: There used to be a comment and some special
18221 code here to turn a symbol with DW_AT_external and a
18222 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18223 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18224 with some versions of binutils) where shared libraries could have
18225 relocations against symbols in their debug information - the
18226 minimal symbol would have the right address, but the debug info
18227 would not. It's no longer necessary, because we will explicitly
18228 apply relocations when we read in the debug information now. */
18229
18230 /* A DW_AT_location attribute with no contents indicates that a
18231 variable has been optimized away. */
18232 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18233 {
18234 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18235 return;
18236 }
18237
18238 /* Handle one degenerate form of location expression specially, to
18239 preserve GDB's previous behavior when section offsets are
18240 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18241 then mark this symbol as LOC_STATIC. */
18242
18243 if (attr_form_is_block (attr)
18244 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18245 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18246 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18247 && (DW_BLOCK (attr)->size
18248 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18249 {
18250 unsigned int dummy;
18251
18252 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18253 SYMBOL_VALUE_ADDRESS (sym) =
18254 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18255 else
18256 SYMBOL_VALUE_ADDRESS (sym) =
18257 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18258 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18259 fixup_symbol_section (sym, objfile);
18260 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18261 SYMBOL_SECTION (sym));
18262 return;
18263 }
18264
18265 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18266 expression evaluator, and use LOC_COMPUTED only when necessary
18267 (i.e. when the value of a register or memory location is
18268 referenced, or a thread-local block, etc.). Then again, it might
18269 not be worthwhile. I'm assuming that it isn't unless performance
18270 or memory numbers show me otherwise. */
18271
18272 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18273
18274 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18275 cu->has_loclist = 1;
18276 }
18277
18278 /* Given a pointer to a DWARF information entry, figure out if we need
18279 to make a symbol table entry for it, and if so, create a new entry
18280 and return a pointer to it.
18281 If TYPE is NULL, determine symbol type from the die, otherwise
18282 used the passed type.
18283 If SPACE is not NULL, use it to hold the new symbol. If it is
18284 NULL, allocate a new symbol on the objfile's obstack. */
18285
18286 static struct symbol *
18287 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18288 struct symbol *space)
18289 {
18290 struct objfile *objfile = cu->objfile;
18291 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18292 struct symbol *sym = NULL;
18293 const char *name;
18294 struct attribute *attr = NULL;
18295 struct attribute *attr2 = NULL;
18296 CORE_ADDR baseaddr;
18297 struct pending **list_to_add = NULL;
18298
18299 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18300
18301 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18302
18303 name = dwarf2_name (die, cu);
18304 if (name)
18305 {
18306 const char *linkagename;
18307 int suppress_add = 0;
18308
18309 if (space)
18310 sym = space;
18311 else
18312 sym = allocate_symbol (objfile);
18313 OBJSTAT (objfile, n_syms++);
18314
18315 /* Cache this symbol's name and the name's demangled form (if any). */
18316 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18317 linkagename = dwarf2_physname (name, die, cu);
18318 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18319
18320 /* Fortran does not have mangling standard and the mangling does differ
18321 between gfortran, iFort etc. */
18322 if (cu->language == language_fortran
18323 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18324 symbol_set_demangled_name (&(sym->ginfo),
18325 dwarf2_full_name (name, die, cu),
18326 NULL);
18327
18328 /* Default assumptions.
18329 Use the passed type or decode it from the die. */
18330 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18331 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18332 if (type != NULL)
18333 SYMBOL_TYPE (sym) = type;
18334 else
18335 SYMBOL_TYPE (sym) = die_type (die, cu);
18336 attr = dwarf2_attr (die,
18337 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18338 cu);
18339 if (attr)
18340 {
18341 SYMBOL_LINE (sym) = DW_UNSND (attr);
18342 }
18343
18344 attr = dwarf2_attr (die,
18345 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18346 cu);
18347 if (attr)
18348 {
18349 int file_index = DW_UNSND (attr);
18350
18351 if (cu->line_header == NULL
18352 || file_index > cu->line_header->num_file_names)
18353 complaint (&symfile_complaints,
18354 _("file index out of range"));
18355 else if (file_index > 0)
18356 {
18357 struct file_entry *fe;
18358
18359 fe = &cu->line_header->file_names[file_index - 1];
18360 symbol_set_symtab (sym, fe->symtab);
18361 }
18362 }
18363
18364 switch (die->tag)
18365 {
18366 case DW_TAG_label:
18367 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18368 if (attr)
18369 {
18370 CORE_ADDR addr;
18371
18372 addr = attr_value_as_address (attr);
18373 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18374 SYMBOL_VALUE_ADDRESS (sym) = addr;
18375 }
18376 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18377 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18378 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18379 add_symbol_to_list (sym, cu->list_in_scope);
18380 break;
18381 case DW_TAG_subprogram:
18382 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18383 finish_block. */
18384 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18385 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18386 if ((attr2 && (DW_UNSND (attr2) != 0))
18387 || cu->language == language_ada)
18388 {
18389 /* Subprograms marked external are stored as a global symbol.
18390 Ada subprograms, whether marked external or not, are always
18391 stored as a global symbol, because we want to be able to
18392 access them globally. For instance, we want to be able
18393 to break on a nested subprogram without having to
18394 specify the context. */
18395 list_to_add = &global_symbols;
18396 }
18397 else
18398 {
18399 list_to_add = cu->list_in_scope;
18400 }
18401 break;
18402 case DW_TAG_inlined_subroutine:
18403 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18404 finish_block. */
18405 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18406 SYMBOL_INLINED (sym) = 1;
18407 list_to_add = cu->list_in_scope;
18408 break;
18409 case DW_TAG_template_value_param:
18410 suppress_add = 1;
18411 /* Fall through. */
18412 case DW_TAG_constant:
18413 case DW_TAG_variable:
18414 case DW_TAG_member:
18415 /* Compilation with minimal debug info may result in
18416 variables with missing type entries. Change the
18417 misleading `void' type to something sensible. */
18418 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18419 SYMBOL_TYPE (sym)
18420 = objfile_type (objfile)->nodebug_data_symbol;
18421
18422 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18423 /* In the case of DW_TAG_member, we should only be called for
18424 static const members. */
18425 if (die->tag == DW_TAG_member)
18426 {
18427 /* dwarf2_add_field uses die_is_declaration,
18428 so we do the same. */
18429 gdb_assert (die_is_declaration (die, cu));
18430 gdb_assert (attr);
18431 }
18432 if (attr)
18433 {
18434 dwarf2_const_value (attr, sym, cu);
18435 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18436 if (!suppress_add)
18437 {
18438 if (attr2 && (DW_UNSND (attr2) != 0))
18439 list_to_add = &global_symbols;
18440 else
18441 list_to_add = cu->list_in_scope;
18442 }
18443 break;
18444 }
18445 attr = dwarf2_attr (die, DW_AT_location, cu);
18446 if (attr)
18447 {
18448 var_decode_location (attr, sym, cu);
18449 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18450
18451 /* Fortran explicitly imports any global symbols to the local
18452 scope by DW_TAG_common_block. */
18453 if (cu->language == language_fortran && die->parent
18454 && die->parent->tag == DW_TAG_common_block)
18455 attr2 = NULL;
18456
18457 if (SYMBOL_CLASS (sym) == LOC_STATIC
18458 && SYMBOL_VALUE_ADDRESS (sym) == 0
18459 && !dwarf2_per_objfile->has_section_at_zero)
18460 {
18461 /* When a static variable is eliminated by the linker,
18462 the corresponding debug information is not stripped
18463 out, but the variable address is set to null;
18464 do not add such variables into symbol table. */
18465 }
18466 else if (attr2 && (DW_UNSND (attr2) != 0))
18467 {
18468 /* Workaround gfortran PR debug/40040 - it uses
18469 DW_AT_location for variables in -fPIC libraries which may
18470 get overriden by other libraries/executable and get
18471 a different address. Resolve it by the minimal symbol
18472 which may come from inferior's executable using copy
18473 relocation. Make this workaround only for gfortran as for
18474 other compilers GDB cannot guess the minimal symbol
18475 Fortran mangling kind. */
18476 if (cu->language == language_fortran && die->parent
18477 && die->parent->tag == DW_TAG_module
18478 && cu->producer
18479 && startswith (cu->producer, "GNU Fortran "))
18480 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18481
18482 /* A variable with DW_AT_external is never static,
18483 but it may be block-scoped. */
18484 list_to_add = (cu->list_in_scope == &file_symbols
18485 ? &global_symbols : cu->list_in_scope);
18486 }
18487 else
18488 list_to_add = cu->list_in_scope;
18489 }
18490 else
18491 {
18492 /* We do not know the address of this symbol.
18493 If it is an external symbol and we have type information
18494 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18495 The address of the variable will then be determined from
18496 the minimal symbol table whenever the variable is
18497 referenced. */
18498 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18499
18500 /* Fortran explicitly imports any global symbols to the local
18501 scope by DW_TAG_common_block. */
18502 if (cu->language == language_fortran && die->parent
18503 && die->parent->tag == DW_TAG_common_block)
18504 {
18505 /* SYMBOL_CLASS doesn't matter here because
18506 read_common_block is going to reset it. */
18507 if (!suppress_add)
18508 list_to_add = cu->list_in_scope;
18509 }
18510 else if (attr2 && (DW_UNSND (attr2) != 0)
18511 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18512 {
18513 /* A variable with DW_AT_external is never static, but it
18514 may be block-scoped. */
18515 list_to_add = (cu->list_in_scope == &file_symbols
18516 ? &global_symbols : cu->list_in_scope);
18517
18518 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18519 }
18520 else if (!die_is_declaration (die, cu))
18521 {
18522 /* Use the default LOC_OPTIMIZED_OUT class. */
18523 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18524 if (!suppress_add)
18525 list_to_add = cu->list_in_scope;
18526 }
18527 }
18528 break;
18529 case DW_TAG_formal_parameter:
18530 /* If we are inside a function, mark this as an argument. If
18531 not, we might be looking at an argument to an inlined function
18532 when we do not have enough information to show inlined frames;
18533 pretend it's a local variable in that case so that the user can
18534 still see it. */
18535 if (context_stack_depth > 0
18536 && context_stack[context_stack_depth - 1].name != NULL)
18537 SYMBOL_IS_ARGUMENT (sym) = 1;
18538 attr = dwarf2_attr (die, DW_AT_location, cu);
18539 if (attr)
18540 {
18541 var_decode_location (attr, sym, cu);
18542 }
18543 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18544 if (attr)
18545 {
18546 dwarf2_const_value (attr, sym, cu);
18547 }
18548
18549 list_to_add = cu->list_in_scope;
18550 break;
18551 case DW_TAG_unspecified_parameters:
18552 /* From varargs functions; gdb doesn't seem to have any
18553 interest in this information, so just ignore it for now.
18554 (FIXME?) */
18555 break;
18556 case DW_TAG_template_type_param:
18557 suppress_add = 1;
18558 /* Fall through. */
18559 case DW_TAG_class_type:
18560 case DW_TAG_interface_type:
18561 case DW_TAG_structure_type:
18562 case DW_TAG_union_type:
18563 case DW_TAG_set_type:
18564 case DW_TAG_enumeration_type:
18565 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18566 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18567
18568 {
18569 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18570 really ever be static objects: otherwise, if you try
18571 to, say, break of a class's method and you're in a file
18572 which doesn't mention that class, it won't work unless
18573 the check for all static symbols in lookup_symbol_aux
18574 saves you. See the OtherFileClass tests in
18575 gdb.c++/namespace.exp. */
18576
18577 if (!suppress_add)
18578 {
18579 list_to_add = (cu->list_in_scope == &file_symbols
18580 && (cu->language == language_cplus
18581 || cu->language == language_java)
18582 ? &global_symbols : cu->list_in_scope);
18583
18584 /* The semantics of C++ state that "struct foo {
18585 ... }" also defines a typedef for "foo". A Java
18586 class declaration also defines a typedef for the
18587 class. */
18588 if (cu->language == language_cplus
18589 || cu->language == language_java
18590 || cu->language == language_ada
18591 || cu->language == language_d)
18592 {
18593 /* The symbol's name is already allocated along
18594 with this objfile, so we don't need to
18595 duplicate it for the type. */
18596 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18597 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18598 }
18599 }
18600 }
18601 break;
18602 case DW_TAG_typedef:
18603 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18604 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18605 list_to_add = cu->list_in_scope;
18606 break;
18607 case DW_TAG_base_type:
18608 case DW_TAG_subrange_type:
18609 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18610 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18611 list_to_add = cu->list_in_scope;
18612 break;
18613 case DW_TAG_enumerator:
18614 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18615 if (attr)
18616 {
18617 dwarf2_const_value (attr, sym, cu);
18618 }
18619 {
18620 /* NOTE: carlton/2003-11-10: See comment above in the
18621 DW_TAG_class_type, etc. block. */
18622
18623 list_to_add = (cu->list_in_scope == &file_symbols
18624 && (cu->language == language_cplus
18625 || cu->language == language_java)
18626 ? &global_symbols : cu->list_in_scope);
18627 }
18628 break;
18629 case DW_TAG_imported_declaration:
18630 case DW_TAG_namespace:
18631 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18632 list_to_add = &global_symbols;
18633 break;
18634 case DW_TAG_module:
18635 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18636 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18637 list_to_add = &global_symbols;
18638 break;
18639 case DW_TAG_common_block:
18640 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18641 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18642 add_symbol_to_list (sym, cu->list_in_scope);
18643 break;
18644 default:
18645 /* Not a tag we recognize. Hopefully we aren't processing
18646 trash data, but since we must specifically ignore things
18647 we don't recognize, there is nothing else we should do at
18648 this point. */
18649 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18650 dwarf_tag_name (die->tag));
18651 break;
18652 }
18653
18654 if (suppress_add)
18655 {
18656 sym->hash_next = objfile->template_symbols;
18657 objfile->template_symbols = sym;
18658 list_to_add = NULL;
18659 }
18660
18661 if (list_to_add != NULL)
18662 add_symbol_to_list (sym, list_to_add);
18663
18664 /* For the benefit of old versions of GCC, check for anonymous
18665 namespaces based on the demangled name. */
18666 if (!cu->processing_has_namespace_info
18667 && cu->language == language_cplus)
18668 cp_scan_for_anonymous_namespaces (sym, objfile);
18669 }
18670 return (sym);
18671 }
18672
18673 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18674
18675 static struct symbol *
18676 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18677 {
18678 return new_symbol_full (die, type, cu, NULL);
18679 }
18680
18681 /* Given an attr with a DW_FORM_dataN value in host byte order,
18682 zero-extend it as appropriate for the symbol's type. The DWARF
18683 standard (v4) is not entirely clear about the meaning of using
18684 DW_FORM_dataN for a constant with a signed type, where the type is
18685 wider than the data. The conclusion of a discussion on the DWARF
18686 list was that this is unspecified. We choose to always zero-extend
18687 because that is the interpretation long in use by GCC. */
18688
18689 static gdb_byte *
18690 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18691 struct dwarf2_cu *cu, LONGEST *value, int bits)
18692 {
18693 struct objfile *objfile = cu->objfile;
18694 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18695 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18696 LONGEST l = DW_UNSND (attr);
18697
18698 if (bits < sizeof (*value) * 8)
18699 {
18700 l &= ((LONGEST) 1 << bits) - 1;
18701 *value = l;
18702 }
18703 else if (bits == sizeof (*value) * 8)
18704 *value = l;
18705 else
18706 {
18707 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18708 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18709 return bytes;
18710 }
18711
18712 return NULL;
18713 }
18714
18715 /* Read a constant value from an attribute. Either set *VALUE, or if
18716 the value does not fit in *VALUE, set *BYTES - either already
18717 allocated on the objfile obstack, or newly allocated on OBSTACK,
18718 or, set *BATON, if we translated the constant to a location
18719 expression. */
18720
18721 static void
18722 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18723 const char *name, struct obstack *obstack,
18724 struct dwarf2_cu *cu,
18725 LONGEST *value, const gdb_byte **bytes,
18726 struct dwarf2_locexpr_baton **baton)
18727 {
18728 struct objfile *objfile = cu->objfile;
18729 struct comp_unit_head *cu_header = &cu->header;
18730 struct dwarf_block *blk;
18731 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18732 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18733
18734 *value = 0;
18735 *bytes = NULL;
18736 *baton = NULL;
18737
18738 switch (attr->form)
18739 {
18740 case DW_FORM_addr:
18741 case DW_FORM_GNU_addr_index:
18742 {
18743 gdb_byte *data;
18744
18745 if (TYPE_LENGTH (type) != cu_header->addr_size)
18746 dwarf2_const_value_length_mismatch_complaint (name,
18747 cu_header->addr_size,
18748 TYPE_LENGTH (type));
18749 /* Symbols of this form are reasonably rare, so we just
18750 piggyback on the existing location code rather than writing
18751 a new implementation of symbol_computed_ops. */
18752 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18753 (*baton)->per_cu = cu->per_cu;
18754 gdb_assert ((*baton)->per_cu);
18755
18756 (*baton)->size = 2 + cu_header->addr_size;
18757 data = obstack_alloc (obstack, (*baton)->size);
18758 (*baton)->data = data;
18759
18760 data[0] = DW_OP_addr;
18761 store_unsigned_integer (&data[1], cu_header->addr_size,
18762 byte_order, DW_ADDR (attr));
18763 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18764 }
18765 break;
18766 case DW_FORM_string:
18767 case DW_FORM_strp:
18768 case DW_FORM_GNU_str_index:
18769 case DW_FORM_GNU_strp_alt:
18770 /* DW_STRING is already allocated on the objfile obstack, point
18771 directly to it. */
18772 *bytes = (const gdb_byte *) DW_STRING (attr);
18773 break;
18774 case DW_FORM_block1:
18775 case DW_FORM_block2:
18776 case DW_FORM_block4:
18777 case DW_FORM_block:
18778 case DW_FORM_exprloc:
18779 blk = DW_BLOCK (attr);
18780 if (TYPE_LENGTH (type) != blk->size)
18781 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18782 TYPE_LENGTH (type));
18783 *bytes = blk->data;
18784 break;
18785
18786 /* The DW_AT_const_value attributes are supposed to carry the
18787 symbol's value "represented as it would be on the target
18788 architecture." By the time we get here, it's already been
18789 converted to host endianness, so we just need to sign- or
18790 zero-extend it as appropriate. */
18791 case DW_FORM_data1:
18792 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18793 break;
18794 case DW_FORM_data2:
18795 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18796 break;
18797 case DW_FORM_data4:
18798 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18799 break;
18800 case DW_FORM_data8:
18801 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18802 break;
18803
18804 case DW_FORM_sdata:
18805 *value = DW_SND (attr);
18806 break;
18807
18808 case DW_FORM_udata:
18809 *value = DW_UNSND (attr);
18810 break;
18811
18812 default:
18813 complaint (&symfile_complaints,
18814 _("unsupported const value attribute form: '%s'"),
18815 dwarf_form_name (attr->form));
18816 *value = 0;
18817 break;
18818 }
18819 }
18820
18821
18822 /* Copy constant value from an attribute to a symbol. */
18823
18824 static void
18825 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18826 struct dwarf2_cu *cu)
18827 {
18828 struct objfile *objfile = cu->objfile;
18829 struct comp_unit_head *cu_header = &cu->header;
18830 LONGEST value;
18831 const gdb_byte *bytes;
18832 struct dwarf2_locexpr_baton *baton;
18833
18834 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18835 SYMBOL_PRINT_NAME (sym),
18836 &objfile->objfile_obstack, cu,
18837 &value, &bytes, &baton);
18838
18839 if (baton != NULL)
18840 {
18841 SYMBOL_LOCATION_BATON (sym) = baton;
18842 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18843 }
18844 else if (bytes != NULL)
18845 {
18846 SYMBOL_VALUE_BYTES (sym) = bytes;
18847 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18848 }
18849 else
18850 {
18851 SYMBOL_VALUE (sym) = value;
18852 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18853 }
18854 }
18855
18856 /* Return the type of the die in question using its DW_AT_type attribute. */
18857
18858 static struct type *
18859 die_type (struct die_info *die, struct dwarf2_cu *cu)
18860 {
18861 struct attribute *type_attr;
18862
18863 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18864 if (!type_attr)
18865 {
18866 /* A missing DW_AT_type represents a void type. */
18867 return objfile_type (cu->objfile)->builtin_void;
18868 }
18869
18870 return lookup_die_type (die, type_attr, cu);
18871 }
18872
18873 /* True iff CU's producer generates GNAT Ada auxiliary information
18874 that allows to find parallel types through that information instead
18875 of having to do expensive parallel lookups by type name. */
18876
18877 static int
18878 need_gnat_info (struct dwarf2_cu *cu)
18879 {
18880 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18881 of GNAT produces this auxiliary information, without any indication
18882 that it is produced. Part of enhancing the FSF version of GNAT
18883 to produce that information will be to put in place an indicator
18884 that we can use in order to determine whether the descriptive type
18885 info is available or not. One suggestion that has been made is
18886 to use a new attribute, attached to the CU die. For now, assume
18887 that the descriptive type info is not available. */
18888 return 0;
18889 }
18890
18891 /* Return the auxiliary type of the die in question using its
18892 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18893 attribute is not present. */
18894
18895 static struct type *
18896 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18897 {
18898 struct attribute *type_attr;
18899
18900 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18901 if (!type_attr)
18902 return NULL;
18903
18904 return lookup_die_type (die, type_attr, cu);
18905 }
18906
18907 /* If DIE has a descriptive_type attribute, then set the TYPE's
18908 descriptive type accordingly. */
18909
18910 static void
18911 set_descriptive_type (struct type *type, struct die_info *die,
18912 struct dwarf2_cu *cu)
18913 {
18914 struct type *descriptive_type = die_descriptive_type (die, cu);
18915
18916 if (descriptive_type)
18917 {
18918 ALLOCATE_GNAT_AUX_TYPE (type);
18919 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18920 }
18921 }
18922
18923 /* Return the containing type of the die in question using its
18924 DW_AT_containing_type attribute. */
18925
18926 static struct type *
18927 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18928 {
18929 struct attribute *type_attr;
18930
18931 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18932 if (!type_attr)
18933 error (_("Dwarf Error: Problem turning containing type into gdb type "
18934 "[in module %s]"), objfile_name (cu->objfile));
18935
18936 return lookup_die_type (die, type_attr, cu);
18937 }
18938
18939 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18940
18941 static struct type *
18942 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18943 {
18944 struct objfile *objfile = dwarf2_per_objfile->objfile;
18945 char *message, *saved;
18946
18947 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18948 objfile_name (objfile),
18949 cu->header.offset.sect_off,
18950 die->offset.sect_off);
18951 saved = obstack_copy0 (&objfile->objfile_obstack,
18952 message, strlen (message));
18953 xfree (message);
18954
18955 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18956 }
18957
18958 /* Look up the type of DIE in CU using its type attribute ATTR.
18959 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18960 DW_AT_containing_type.
18961 If there is no type substitute an error marker. */
18962
18963 static struct type *
18964 lookup_die_type (struct die_info *die, const struct attribute *attr,
18965 struct dwarf2_cu *cu)
18966 {
18967 struct objfile *objfile = cu->objfile;
18968 struct type *this_type;
18969
18970 gdb_assert (attr->name == DW_AT_type
18971 || attr->name == DW_AT_GNAT_descriptive_type
18972 || attr->name == DW_AT_containing_type);
18973
18974 /* First see if we have it cached. */
18975
18976 if (attr->form == DW_FORM_GNU_ref_alt)
18977 {
18978 struct dwarf2_per_cu_data *per_cu;
18979 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18980
18981 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18982 this_type = get_die_type_at_offset (offset, per_cu);
18983 }
18984 else if (attr_form_is_ref (attr))
18985 {
18986 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18987
18988 this_type = get_die_type_at_offset (offset, cu->per_cu);
18989 }
18990 else if (attr->form == DW_FORM_ref_sig8)
18991 {
18992 ULONGEST signature = DW_SIGNATURE (attr);
18993
18994 return get_signatured_type (die, signature, cu);
18995 }
18996 else
18997 {
18998 complaint (&symfile_complaints,
18999 _("Dwarf Error: Bad type attribute %s in DIE"
19000 " at 0x%x [in module %s]"),
19001 dwarf_attr_name (attr->name), die->offset.sect_off,
19002 objfile_name (objfile));
19003 return build_error_marker_type (cu, die);
19004 }
19005
19006 /* If not cached we need to read it in. */
19007
19008 if (this_type == NULL)
19009 {
19010 struct die_info *type_die = NULL;
19011 struct dwarf2_cu *type_cu = cu;
19012
19013 if (attr_form_is_ref (attr))
19014 type_die = follow_die_ref (die, attr, &type_cu);
19015 if (type_die == NULL)
19016 return build_error_marker_type (cu, die);
19017 /* If we find the type now, it's probably because the type came
19018 from an inter-CU reference and the type's CU got expanded before
19019 ours. */
19020 this_type = read_type_die (type_die, type_cu);
19021 }
19022
19023 /* If we still don't have a type use an error marker. */
19024
19025 if (this_type == NULL)
19026 return build_error_marker_type (cu, die);
19027
19028 return this_type;
19029 }
19030
19031 /* Return the type in DIE, CU.
19032 Returns NULL for invalid types.
19033
19034 This first does a lookup in die_type_hash,
19035 and only reads the die in if necessary.
19036
19037 NOTE: This can be called when reading in partial or full symbols. */
19038
19039 static struct type *
19040 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19041 {
19042 struct type *this_type;
19043
19044 this_type = get_die_type (die, cu);
19045 if (this_type)
19046 return this_type;
19047
19048 return read_type_die_1 (die, cu);
19049 }
19050
19051 /* Read the type in DIE, CU.
19052 Returns NULL for invalid types. */
19053
19054 static struct type *
19055 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19056 {
19057 struct type *this_type = NULL;
19058
19059 switch (die->tag)
19060 {
19061 case DW_TAG_class_type:
19062 case DW_TAG_interface_type:
19063 case DW_TAG_structure_type:
19064 case DW_TAG_union_type:
19065 this_type = read_structure_type (die, cu);
19066 break;
19067 case DW_TAG_enumeration_type:
19068 this_type = read_enumeration_type (die, cu);
19069 break;
19070 case DW_TAG_subprogram:
19071 case DW_TAG_subroutine_type:
19072 case DW_TAG_inlined_subroutine:
19073 this_type = read_subroutine_type (die, cu);
19074 break;
19075 case DW_TAG_array_type:
19076 this_type = read_array_type (die, cu);
19077 break;
19078 case DW_TAG_set_type:
19079 this_type = read_set_type (die, cu);
19080 break;
19081 case DW_TAG_pointer_type:
19082 this_type = read_tag_pointer_type (die, cu);
19083 break;
19084 case DW_TAG_ptr_to_member_type:
19085 this_type = read_tag_ptr_to_member_type (die, cu);
19086 break;
19087 case DW_TAG_reference_type:
19088 this_type = read_tag_reference_type (die, cu);
19089 break;
19090 case DW_TAG_const_type:
19091 this_type = read_tag_const_type (die, cu);
19092 break;
19093 case DW_TAG_volatile_type:
19094 this_type = read_tag_volatile_type (die, cu);
19095 break;
19096 case DW_TAG_restrict_type:
19097 this_type = read_tag_restrict_type (die, cu);
19098 break;
19099 case DW_TAG_string_type:
19100 this_type = read_tag_string_type (die, cu);
19101 break;
19102 case DW_TAG_typedef:
19103 this_type = read_typedef (die, cu);
19104 break;
19105 case DW_TAG_subrange_type:
19106 this_type = read_subrange_type (die, cu);
19107 break;
19108 case DW_TAG_base_type:
19109 this_type = read_base_type (die, cu);
19110 break;
19111 case DW_TAG_unspecified_type:
19112 this_type = read_unspecified_type (die, cu);
19113 break;
19114 case DW_TAG_namespace:
19115 this_type = read_namespace_type (die, cu);
19116 break;
19117 case DW_TAG_module:
19118 this_type = read_module_type (die, cu);
19119 break;
19120 case DW_TAG_atomic_type:
19121 this_type = read_tag_atomic_type (die, cu);
19122 break;
19123 default:
19124 complaint (&symfile_complaints,
19125 _("unexpected tag in read_type_die: '%s'"),
19126 dwarf_tag_name (die->tag));
19127 break;
19128 }
19129
19130 return this_type;
19131 }
19132
19133 /* See if we can figure out if the class lives in a namespace. We do
19134 this by looking for a member function; its demangled name will
19135 contain namespace info, if there is any.
19136 Return the computed name or NULL.
19137 Space for the result is allocated on the objfile's obstack.
19138 This is the full-die version of guess_partial_die_structure_name.
19139 In this case we know DIE has no useful parent. */
19140
19141 static char *
19142 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19143 {
19144 struct die_info *spec_die;
19145 struct dwarf2_cu *spec_cu;
19146 struct die_info *child;
19147
19148 spec_cu = cu;
19149 spec_die = die_specification (die, &spec_cu);
19150 if (spec_die != NULL)
19151 {
19152 die = spec_die;
19153 cu = spec_cu;
19154 }
19155
19156 for (child = die->child;
19157 child != NULL;
19158 child = child->sibling)
19159 {
19160 if (child->tag == DW_TAG_subprogram)
19161 {
19162 const char *linkage_name;
19163
19164 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19165 if (linkage_name == NULL)
19166 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19167 cu);
19168 if (linkage_name != NULL)
19169 {
19170 char *actual_name
19171 = language_class_name_from_physname (cu->language_defn,
19172 linkage_name);
19173 char *name = NULL;
19174
19175 if (actual_name != NULL)
19176 {
19177 const char *die_name = dwarf2_name (die, cu);
19178
19179 if (die_name != NULL
19180 && strcmp (die_name, actual_name) != 0)
19181 {
19182 /* Strip off the class name from the full name.
19183 We want the prefix. */
19184 int die_name_len = strlen (die_name);
19185 int actual_name_len = strlen (actual_name);
19186
19187 /* Test for '::' as a sanity check. */
19188 if (actual_name_len > die_name_len + 2
19189 && actual_name[actual_name_len
19190 - die_name_len - 1] == ':')
19191 name =
19192 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19193 actual_name,
19194 actual_name_len - die_name_len - 2);
19195 }
19196 }
19197 xfree (actual_name);
19198 return name;
19199 }
19200 }
19201 }
19202
19203 return NULL;
19204 }
19205
19206 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19207 prefix part in such case. See
19208 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19209
19210 static char *
19211 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19212 {
19213 struct attribute *attr;
19214 char *base;
19215
19216 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19217 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19218 return NULL;
19219
19220 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19221 return NULL;
19222
19223 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19224 if (attr == NULL)
19225 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19226 if (attr == NULL || DW_STRING (attr) == NULL)
19227 return NULL;
19228
19229 /* dwarf2_name had to be already called. */
19230 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19231
19232 /* Strip the base name, keep any leading namespaces/classes. */
19233 base = strrchr (DW_STRING (attr), ':');
19234 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19235 return "";
19236
19237 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19238 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19239 }
19240
19241 /* Return the name of the namespace/class that DIE is defined within,
19242 or "" if we can't tell. The caller should not xfree the result.
19243
19244 For example, if we're within the method foo() in the following
19245 code:
19246
19247 namespace N {
19248 class C {
19249 void foo () {
19250 }
19251 };
19252 }
19253
19254 then determine_prefix on foo's die will return "N::C". */
19255
19256 static const char *
19257 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19258 {
19259 struct die_info *parent, *spec_die;
19260 struct dwarf2_cu *spec_cu;
19261 struct type *parent_type;
19262 char *retval;
19263
19264 if (cu->language != language_cplus && cu->language != language_java
19265 && cu->language != language_fortran && cu->language != language_d)
19266 return "";
19267
19268 retval = anonymous_struct_prefix (die, cu);
19269 if (retval)
19270 return retval;
19271
19272 /* We have to be careful in the presence of DW_AT_specification.
19273 For example, with GCC 3.4, given the code
19274
19275 namespace N {
19276 void foo() {
19277 // Definition of N::foo.
19278 }
19279 }
19280
19281 then we'll have a tree of DIEs like this:
19282
19283 1: DW_TAG_compile_unit
19284 2: DW_TAG_namespace // N
19285 3: DW_TAG_subprogram // declaration of N::foo
19286 4: DW_TAG_subprogram // definition of N::foo
19287 DW_AT_specification // refers to die #3
19288
19289 Thus, when processing die #4, we have to pretend that we're in
19290 the context of its DW_AT_specification, namely the contex of die
19291 #3. */
19292 spec_cu = cu;
19293 spec_die = die_specification (die, &spec_cu);
19294 if (spec_die == NULL)
19295 parent = die->parent;
19296 else
19297 {
19298 parent = spec_die->parent;
19299 cu = spec_cu;
19300 }
19301
19302 if (parent == NULL)
19303 return "";
19304 else if (parent->building_fullname)
19305 {
19306 const char *name;
19307 const char *parent_name;
19308
19309 /* It has been seen on RealView 2.2 built binaries,
19310 DW_TAG_template_type_param types actually _defined_ as
19311 children of the parent class:
19312
19313 enum E {};
19314 template class <class Enum> Class{};
19315 Class<enum E> class_e;
19316
19317 1: DW_TAG_class_type (Class)
19318 2: DW_TAG_enumeration_type (E)
19319 3: DW_TAG_enumerator (enum1:0)
19320 3: DW_TAG_enumerator (enum2:1)
19321 ...
19322 2: DW_TAG_template_type_param
19323 DW_AT_type DW_FORM_ref_udata (E)
19324
19325 Besides being broken debug info, it can put GDB into an
19326 infinite loop. Consider:
19327
19328 When we're building the full name for Class<E>, we'll start
19329 at Class, and go look over its template type parameters,
19330 finding E. We'll then try to build the full name of E, and
19331 reach here. We're now trying to build the full name of E,
19332 and look over the parent DIE for containing scope. In the
19333 broken case, if we followed the parent DIE of E, we'd again
19334 find Class, and once again go look at its template type
19335 arguments, etc., etc. Simply don't consider such parent die
19336 as source-level parent of this die (it can't be, the language
19337 doesn't allow it), and break the loop here. */
19338 name = dwarf2_name (die, cu);
19339 parent_name = dwarf2_name (parent, cu);
19340 complaint (&symfile_complaints,
19341 _("template param type '%s' defined within parent '%s'"),
19342 name ? name : "<unknown>",
19343 parent_name ? parent_name : "<unknown>");
19344 return "";
19345 }
19346 else
19347 switch (parent->tag)
19348 {
19349 case DW_TAG_namespace:
19350 parent_type = read_type_die (parent, cu);
19351 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19352 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19353 Work around this problem here. */
19354 if (cu->language == language_cplus
19355 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19356 return "";
19357 /* We give a name to even anonymous namespaces. */
19358 return TYPE_TAG_NAME (parent_type);
19359 case DW_TAG_class_type:
19360 case DW_TAG_interface_type:
19361 case DW_TAG_structure_type:
19362 case DW_TAG_union_type:
19363 case DW_TAG_module:
19364 parent_type = read_type_die (parent, cu);
19365 if (TYPE_TAG_NAME (parent_type) != NULL)
19366 return TYPE_TAG_NAME (parent_type);
19367 else
19368 /* An anonymous structure is only allowed non-static data
19369 members; no typedefs, no member functions, et cetera.
19370 So it does not need a prefix. */
19371 return "";
19372 case DW_TAG_compile_unit:
19373 case DW_TAG_partial_unit:
19374 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19375 if (cu->language == language_cplus
19376 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19377 && die->child != NULL
19378 && (die->tag == DW_TAG_class_type
19379 || die->tag == DW_TAG_structure_type
19380 || die->tag == DW_TAG_union_type))
19381 {
19382 char *name = guess_full_die_structure_name (die, cu);
19383 if (name != NULL)
19384 return name;
19385 }
19386 return "";
19387 case DW_TAG_enumeration_type:
19388 parent_type = read_type_die (parent, cu);
19389 if (TYPE_DECLARED_CLASS (parent_type))
19390 {
19391 if (TYPE_TAG_NAME (parent_type) != NULL)
19392 return TYPE_TAG_NAME (parent_type);
19393 return "";
19394 }
19395 /* Fall through. */
19396 default:
19397 return determine_prefix (parent, cu);
19398 }
19399 }
19400
19401 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19402 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19403 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19404 an obconcat, otherwise allocate storage for the result. The CU argument is
19405 used to determine the language and hence, the appropriate separator. */
19406
19407 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19408
19409 static char *
19410 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19411 int physname, struct dwarf2_cu *cu)
19412 {
19413 const char *lead = "";
19414 const char *sep;
19415
19416 if (suffix == NULL || suffix[0] == '\0'
19417 || prefix == NULL || prefix[0] == '\0')
19418 sep = "";
19419 else if (cu->language == language_java)
19420 sep = ".";
19421 else if (cu->language == language_d)
19422 {
19423 /* For D, the 'main' function could be defined in any module, but it
19424 should never be prefixed. */
19425 if (strcmp (suffix, "D main") == 0)
19426 {
19427 prefix = "";
19428 sep = "";
19429 }
19430 else
19431 sep = ".";
19432 }
19433 else if (cu->language == language_fortran && physname)
19434 {
19435 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19436 DW_AT_MIPS_linkage_name is preferred and used instead. */
19437
19438 lead = "__";
19439 sep = "_MOD_";
19440 }
19441 else
19442 sep = "::";
19443
19444 if (prefix == NULL)
19445 prefix = "";
19446 if (suffix == NULL)
19447 suffix = "";
19448
19449 if (obs == NULL)
19450 {
19451 char *retval
19452 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19453
19454 strcpy (retval, lead);
19455 strcat (retval, prefix);
19456 strcat (retval, sep);
19457 strcat (retval, suffix);
19458 return retval;
19459 }
19460 else
19461 {
19462 /* We have an obstack. */
19463 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19464 }
19465 }
19466
19467 /* Return sibling of die, NULL if no sibling. */
19468
19469 static struct die_info *
19470 sibling_die (struct die_info *die)
19471 {
19472 return die->sibling;
19473 }
19474
19475 /* Get name of a die, return NULL if not found. */
19476
19477 static const char *
19478 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19479 struct obstack *obstack)
19480 {
19481 if (name && cu->language == language_cplus)
19482 {
19483 char *canon_name = cp_canonicalize_string (name);
19484
19485 if (canon_name != NULL)
19486 {
19487 if (strcmp (canon_name, name) != 0)
19488 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19489 xfree (canon_name);
19490 }
19491 }
19492
19493 return name;
19494 }
19495
19496 /* Get name of a die, return NULL if not found.
19497 Anonymous namespaces are converted to their magic string. */
19498
19499 static const char *
19500 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19501 {
19502 struct attribute *attr;
19503
19504 attr = dwarf2_attr (die, DW_AT_name, cu);
19505 if ((!attr || !DW_STRING (attr))
19506 && die->tag != DW_TAG_namespace
19507 && die->tag != DW_TAG_class_type
19508 && die->tag != DW_TAG_interface_type
19509 && die->tag != DW_TAG_structure_type
19510 && die->tag != DW_TAG_union_type)
19511 return NULL;
19512
19513 switch (die->tag)
19514 {
19515 case DW_TAG_compile_unit:
19516 case DW_TAG_partial_unit:
19517 /* Compilation units have a DW_AT_name that is a filename, not
19518 a source language identifier. */
19519 case DW_TAG_enumeration_type:
19520 case DW_TAG_enumerator:
19521 /* These tags always have simple identifiers already; no need
19522 to canonicalize them. */
19523 return DW_STRING (attr);
19524
19525 case DW_TAG_namespace:
19526 if (attr != NULL && DW_STRING (attr) != NULL)
19527 return DW_STRING (attr);
19528 return CP_ANONYMOUS_NAMESPACE_STR;
19529
19530 case DW_TAG_subprogram:
19531 /* Java constructors will all be named "<init>", so return
19532 the class name when we see this special case. */
19533 if (cu->language == language_java
19534 && DW_STRING (attr) != NULL
19535 && strcmp (DW_STRING (attr), "<init>") == 0)
19536 {
19537 struct dwarf2_cu *spec_cu = cu;
19538 struct die_info *spec_die;
19539
19540 /* GCJ will output '<init>' for Java constructor names.
19541 For this special case, return the name of the parent class. */
19542
19543 /* GCJ may output subprogram DIEs with AT_specification set.
19544 If so, use the name of the specified DIE. */
19545 spec_die = die_specification (die, &spec_cu);
19546 if (spec_die != NULL)
19547 return dwarf2_name (spec_die, spec_cu);
19548
19549 do
19550 {
19551 die = die->parent;
19552 if (die->tag == DW_TAG_class_type)
19553 return dwarf2_name (die, cu);
19554 }
19555 while (die->tag != DW_TAG_compile_unit
19556 && die->tag != DW_TAG_partial_unit);
19557 }
19558 break;
19559
19560 case DW_TAG_class_type:
19561 case DW_TAG_interface_type:
19562 case DW_TAG_structure_type:
19563 case DW_TAG_union_type:
19564 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19565 structures or unions. These were of the form "._%d" in GCC 4.1,
19566 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19567 and GCC 4.4. We work around this problem by ignoring these. */
19568 if (attr && DW_STRING (attr)
19569 && (startswith (DW_STRING (attr), "._")
19570 || startswith (DW_STRING (attr), "<anonymous")))
19571 return NULL;
19572
19573 /* GCC might emit a nameless typedef that has a linkage name. See
19574 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19575 if (!attr || DW_STRING (attr) == NULL)
19576 {
19577 char *demangled = NULL;
19578
19579 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19580 if (attr == NULL)
19581 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19582
19583 if (attr == NULL || DW_STRING (attr) == NULL)
19584 return NULL;
19585
19586 /* Avoid demangling DW_STRING (attr) the second time on a second
19587 call for the same DIE. */
19588 if (!DW_STRING_IS_CANONICAL (attr))
19589 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19590
19591 if (demangled)
19592 {
19593 char *base;
19594
19595 /* FIXME: we already did this for the partial symbol... */
19596 DW_STRING (attr)
19597 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19598 demangled, strlen (demangled));
19599 DW_STRING_IS_CANONICAL (attr) = 1;
19600 xfree (demangled);
19601
19602 /* Strip any leading namespaces/classes, keep only the base name.
19603 DW_AT_name for named DIEs does not contain the prefixes. */
19604 base = strrchr (DW_STRING (attr), ':');
19605 if (base && base > DW_STRING (attr) && base[-1] == ':')
19606 return &base[1];
19607 else
19608 return DW_STRING (attr);
19609 }
19610 }
19611 break;
19612
19613 default:
19614 break;
19615 }
19616
19617 if (!DW_STRING_IS_CANONICAL (attr))
19618 {
19619 DW_STRING (attr)
19620 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19621 &cu->objfile->per_bfd->storage_obstack);
19622 DW_STRING_IS_CANONICAL (attr) = 1;
19623 }
19624 return DW_STRING (attr);
19625 }
19626
19627 /* Return the die that this die in an extension of, or NULL if there
19628 is none. *EXT_CU is the CU containing DIE on input, and the CU
19629 containing the return value on output. */
19630
19631 static struct die_info *
19632 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19633 {
19634 struct attribute *attr;
19635
19636 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19637 if (attr == NULL)
19638 return NULL;
19639
19640 return follow_die_ref (die, attr, ext_cu);
19641 }
19642
19643 /* Convert a DIE tag into its string name. */
19644
19645 static const char *
19646 dwarf_tag_name (unsigned tag)
19647 {
19648 const char *name = get_DW_TAG_name (tag);
19649
19650 if (name == NULL)
19651 return "DW_TAG_<unknown>";
19652
19653 return name;
19654 }
19655
19656 /* Convert a DWARF attribute code into its string name. */
19657
19658 static const char *
19659 dwarf_attr_name (unsigned attr)
19660 {
19661 const char *name;
19662
19663 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19664 if (attr == DW_AT_MIPS_fde)
19665 return "DW_AT_MIPS_fde";
19666 #else
19667 if (attr == DW_AT_HP_block_index)
19668 return "DW_AT_HP_block_index";
19669 #endif
19670
19671 name = get_DW_AT_name (attr);
19672
19673 if (name == NULL)
19674 return "DW_AT_<unknown>";
19675
19676 return name;
19677 }
19678
19679 /* Convert a DWARF value form code into its string name. */
19680
19681 static const char *
19682 dwarf_form_name (unsigned form)
19683 {
19684 const char *name = get_DW_FORM_name (form);
19685
19686 if (name == NULL)
19687 return "DW_FORM_<unknown>";
19688
19689 return name;
19690 }
19691
19692 static char *
19693 dwarf_bool_name (unsigned mybool)
19694 {
19695 if (mybool)
19696 return "TRUE";
19697 else
19698 return "FALSE";
19699 }
19700
19701 /* Convert a DWARF type code into its string name. */
19702
19703 static const char *
19704 dwarf_type_encoding_name (unsigned enc)
19705 {
19706 const char *name = get_DW_ATE_name (enc);
19707
19708 if (name == NULL)
19709 return "DW_ATE_<unknown>";
19710
19711 return name;
19712 }
19713
19714 static void
19715 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19716 {
19717 unsigned int i;
19718
19719 print_spaces (indent, f);
19720 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19721 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19722
19723 if (die->parent != NULL)
19724 {
19725 print_spaces (indent, f);
19726 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19727 die->parent->offset.sect_off);
19728 }
19729
19730 print_spaces (indent, f);
19731 fprintf_unfiltered (f, " has children: %s\n",
19732 dwarf_bool_name (die->child != NULL));
19733
19734 print_spaces (indent, f);
19735 fprintf_unfiltered (f, " attributes:\n");
19736
19737 for (i = 0; i < die->num_attrs; ++i)
19738 {
19739 print_spaces (indent, f);
19740 fprintf_unfiltered (f, " %s (%s) ",
19741 dwarf_attr_name (die->attrs[i].name),
19742 dwarf_form_name (die->attrs[i].form));
19743
19744 switch (die->attrs[i].form)
19745 {
19746 case DW_FORM_addr:
19747 case DW_FORM_GNU_addr_index:
19748 fprintf_unfiltered (f, "address: ");
19749 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19750 break;
19751 case DW_FORM_block2:
19752 case DW_FORM_block4:
19753 case DW_FORM_block:
19754 case DW_FORM_block1:
19755 fprintf_unfiltered (f, "block: size %s",
19756 pulongest (DW_BLOCK (&die->attrs[i])->size));
19757 break;
19758 case DW_FORM_exprloc:
19759 fprintf_unfiltered (f, "expression: size %s",
19760 pulongest (DW_BLOCK (&die->attrs[i])->size));
19761 break;
19762 case DW_FORM_ref_addr:
19763 fprintf_unfiltered (f, "ref address: ");
19764 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19765 break;
19766 case DW_FORM_GNU_ref_alt:
19767 fprintf_unfiltered (f, "alt ref address: ");
19768 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19769 break;
19770 case DW_FORM_ref1:
19771 case DW_FORM_ref2:
19772 case DW_FORM_ref4:
19773 case DW_FORM_ref8:
19774 case DW_FORM_ref_udata:
19775 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19776 (long) (DW_UNSND (&die->attrs[i])));
19777 break;
19778 case DW_FORM_data1:
19779 case DW_FORM_data2:
19780 case DW_FORM_data4:
19781 case DW_FORM_data8:
19782 case DW_FORM_udata:
19783 case DW_FORM_sdata:
19784 fprintf_unfiltered (f, "constant: %s",
19785 pulongest (DW_UNSND (&die->attrs[i])));
19786 break;
19787 case DW_FORM_sec_offset:
19788 fprintf_unfiltered (f, "section offset: %s",
19789 pulongest (DW_UNSND (&die->attrs[i])));
19790 break;
19791 case DW_FORM_ref_sig8:
19792 fprintf_unfiltered (f, "signature: %s",
19793 hex_string (DW_SIGNATURE (&die->attrs[i])));
19794 break;
19795 case DW_FORM_string:
19796 case DW_FORM_strp:
19797 case DW_FORM_GNU_str_index:
19798 case DW_FORM_GNU_strp_alt:
19799 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19800 DW_STRING (&die->attrs[i])
19801 ? DW_STRING (&die->attrs[i]) : "",
19802 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19803 break;
19804 case DW_FORM_flag:
19805 if (DW_UNSND (&die->attrs[i]))
19806 fprintf_unfiltered (f, "flag: TRUE");
19807 else
19808 fprintf_unfiltered (f, "flag: FALSE");
19809 break;
19810 case DW_FORM_flag_present:
19811 fprintf_unfiltered (f, "flag: TRUE");
19812 break;
19813 case DW_FORM_indirect:
19814 /* The reader will have reduced the indirect form to
19815 the "base form" so this form should not occur. */
19816 fprintf_unfiltered (f,
19817 "unexpected attribute form: DW_FORM_indirect");
19818 break;
19819 default:
19820 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19821 die->attrs[i].form);
19822 break;
19823 }
19824 fprintf_unfiltered (f, "\n");
19825 }
19826 }
19827
19828 static void
19829 dump_die_for_error (struct die_info *die)
19830 {
19831 dump_die_shallow (gdb_stderr, 0, die);
19832 }
19833
19834 static void
19835 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19836 {
19837 int indent = level * 4;
19838
19839 gdb_assert (die != NULL);
19840
19841 if (level >= max_level)
19842 return;
19843
19844 dump_die_shallow (f, indent, die);
19845
19846 if (die->child != NULL)
19847 {
19848 print_spaces (indent, f);
19849 fprintf_unfiltered (f, " Children:");
19850 if (level + 1 < max_level)
19851 {
19852 fprintf_unfiltered (f, "\n");
19853 dump_die_1 (f, level + 1, max_level, die->child);
19854 }
19855 else
19856 {
19857 fprintf_unfiltered (f,
19858 " [not printed, max nesting level reached]\n");
19859 }
19860 }
19861
19862 if (die->sibling != NULL && level > 0)
19863 {
19864 dump_die_1 (f, level, max_level, die->sibling);
19865 }
19866 }
19867
19868 /* This is called from the pdie macro in gdbinit.in.
19869 It's not static so gcc will keep a copy callable from gdb. */
19870
19871 void
19872 dump_die (struct die_info *die, int max_level)
19873 {
19874 dump_die_1 (gdb_stdlog, 0, max_level, die);
19875 }
19876
19877 static void
19878 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19879 {
19880 void **slot;
19881
19882 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19883 INSERT);
19884
19885 *slot = die;
19886 }
19887
19888 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19889 required kind. */
19890
19891 static sect_offset
19892 dwarf2_get_ref_die_offset (const struct attribute *attr)
19893 {
19894 sect_offset retval = { DW_UNSND (attr) };
19895
19896 if (attr_form_is_ref (attr))
19897 return retval;
19898
19899 retval.sect_off = 0;
19900 complaint (&symfile_complaints,
19901 _("unsupported die ref attribute form: '%s'"),
19902 dwarf_form_name (attr->form));
19903 return retval;
19904 }
19905
19906 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19907 * the value held by the attribute is not constant. */
19908
19909 static LONGEST
19910 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19911 {
19912 if (attr->form == DW_FORM_sdata)
19913 return DW_SND (attr);
19914 else if (attr->form == DW_FORM_udata
19915 || attr->form == DW_FORM_data1
19916 || attr->form == DW_FORM_data2
19917 || attr->form == DW_FORM_data4
19918 || attr->form == DW_FORM_data8)
19919 return DW_UNSND (attr);
19920 else
19921 {
19922 complaint (&symfile_complaints,
19923 _("Attribute value is not a constant (%s)"),
19924 dwarf_form_name (attr->form));
19925 return default_value;
19926 }
19927 }
19928
19929 /* Follow reference or signature attribute ATTR of SRC_DIE.
19930 On entry *REF_CU is the CU of SRC_DIE.
19931 On exit *REF_CU is the CU of the result. */
19932
19933 static struct die_info *
19934 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19935 struct dwarf2_cu **ref_cu)
19936 {
19937 struct die_info *die;
19938
19939 if (attr_form_is_ref (attr))
19940 die = follow_die_ref (src_die, attr, ref_cu);
19941 else if (attr->form == DW_FORM_ref_sig8)
19942 die = follow_die_sig (src_die, attr, ref_cu);
19943 else
19944 {
19945 dump_die_for_error (src_die);
19946 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19947 objfile_name ((*ref_cu)->objfile));
19948 }
19949
19950 return die;
19951 }
19952
19953 /* Follow reference OFFSET.
19954 On entry *REF_CU is the CU of the source die referencing OFFSET.
19955 On exit *REF_CU is the CU of the result.
19956 Returns NULL if OFFSET is invalid. */
19957
19958 static struct die_info *
19959 follow_die_offset (sect_offset offset, int offset_in_dwz,
19960 struct dwarf2_cu **ref_cu)
19961 {
19962 struct die_info temp_die;
19963 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19964
19965 gdb_assert (cu->per_cu != NULL);
19966
19967 target_cu = cu;
19968
19969 if (cu->per_cu->is_debug_types)
19970 {
19971 /* .debug_types CUs cannot reference anything outside their CU.
19972 If they need to, they have to reference a signatured type via
19973 DW_FORM_ref_sig8. */
19974 if (! offset_in_cu_p (&cu->header, offset))
19975 return NULL;
19976 }
19977 else if (offset_in_dwz != cu->per_cu->is_dwz
19978 || ! offset_in_cu_p (&cu->header, offset))
19979 {
19980 struct dwarf2_per_cu_data *per_cu;
19981
19982 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19983 cu->objfile);
19984
19985 /* If necessary, add it to the queue and load its DIEs. */
19986 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19987 load_full_comp_unit (per_cu, cu->language);
19988
19989 target_cu = per_cu->cu;
19990 }
19991 else if (cu->dies == NULL)
19992 {
19993 /* We're loading full DIEs during partial symbol reading. */
19994 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19995 load_full_comp_unit (cu->per_cu, language_minimal);
19996 }
19997
19998 *ref_cu = target_cu;
19999 temp_die.offset = offset;
20000 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
20001 }
20002
20003 /* Follow reference attribute ATTR of SRC_DIE.
20004 On entry *REF_CU is the CU of SRC_DIE.
20005 On exit *REF_CU is the CU of the result. */
20006
20007 static struct die_info *
20008 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20009 struct dwarf2_cu **ref_cu)
20010 {
20011 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20012 struct dwarf2_cu *cu = *ref_cu;
20013 struct die_info *die;
20014
20015 die = follow_die_offset (offset,
20016 (attr->form == DW_FORM_GNU_ref_alt
20017 || cu->per_cu->is_dwz),
20018 ref_cu);
20019 if (!die)
20020 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20021 "at 0x%x [in module %s]"),
20022 offset.sect_off, src_die->offset.sect_off,
20023 objfile_name (cu->objfile));
20024
20025 return die;
20026 }
20027
20028 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20029 Returned value is intended for DW_OP_call*. Returned
20030 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20031
20032 struct dwarf2_locexpr_baton
20033 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20034 struct dwarf2_per_cu_data *per_cu,
20035 CORE_ADDR (*get_frame_pc) (void *baton),
20036 void *baton)
20037 {
20038 struct dwarf2_cu *cu;
20039 struct die_info *die;
20040 struct attribute *attr;
20041 struct dwarf2_locexpr_baton retval;
20042
20043 dw2_setup (per_cu->objfile);
20044
20045 if (per_cu->cu == NULL)
20046 load_cu (per_cu);
20047 cu = per_cu->cu;
20048 if (cu == NULL)
20049 {
20050 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20051 Instead just throw an error, not much else we can do. */
20052 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20053 offset.sect_off, objfile_name (per_cu->objfile));
20054 }
20055
20056 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20057 if (!die)
20058 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20059 offset.sect_off, objfile_name (per_cu->objfile));
20060
20061 attr = dwarf2_attr (die, DW_AT_location, cu);
20062 if (!attr)
20063 {
20064 /* DWARF: "If there is no such attribute, then there is no effect.".
20065 DATA is ignored if SIZE is 0. */
20066
20067 retval.data = NULL;
20068 retval.size = 0;
20069 }
20070 else if (attr_form_is_section_offset (attr))
20071 {
20072 struct dwarf2_loclist_baton loclist_baton;
20073 CORE_ADDR pc = (*get_frame_pc) (baton);
20074 size_t size;
20075
20076 fill_in_loclist_baton (cu, &loclist_baton, attr);
20077
20078 retval.data = dwarf2_find_location_expression (&loclist_baton,
20079 &size, pc);
20080 retval.size = size;
20081 }
20082 else
20083 {
20084 if (!attr_form_is_block (attr))
20085 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20086 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20087 offset.sect_off, objfile_name (per_cu->objfile));
20088
20089 retval.data = DW_BLOCK (attr)->data;
20090 retval.size = DW_BLOCK (attr)->size;
20091 }
20092 retval.per_cu = cu->per_cu;
20093
20094 age_cached_comp_units ();
20095
20096 return retval;
20097 }
20098
20099 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20100 offset. */
20101
20102 struct dwarf2_locexpr_baton
20103 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20104 struct dwarf2_per_cu_data *per_cu,
20105 CORE_ADDR (*get_frame_pc) (void *baton),
20106 void *baton)
20107 {
20108 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20109
20110 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20111 }
20112
20113 /* Write a constant of a given type as target-ordered bytes into
20114 OBSTACK. */
20115
20116 static const gdb_byte *
20117 write_constant_as_bytes (struct obstack *obstack,
20118 enum bfd_endian byte_order,
20119 struct type *type,
20120 ULONGEST value,
20121 LONGEST *len)
20122 {
20123 gdb_byte *result;
20124
20125 *len = TYPE_LENGTH (type);
20126 result = obstack_alloc (obstack, *len);
20127 store_unsigned_integer (result, *len, byte_order, value);
20128
20129 return result;
20130 }
20131
20132 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20133 pointer to the constant bytes and set LEN to the length of the
20134 data. If memory is needed, allocate it on OBSTACK. If the DIE
20135 does not have a DW_AT_const_value, return NULL. */
20136
20137 const gdb_byte *
20138 dwarf2_fetch_constant_bytes (sect_offset offset,
20139 struct dwarf2_per_cu_data *per_cu,
20140 struct obstack *obstack,
20141 LONGEST *len)
20142 {
20143 struct dwarf2_cu *cu;
20144 struct die_info *die;
20145 struct attribute *attr;
20146 const gdb_byte *result = NULL;
20147 struct type *type;
20148 LONGEST value;
20149 enum bfd_endian byte_order;
20150
20151 dw2_setup (per_cu->objfile);
20152
20153 if (per_cu->cu == NULL)
20154 load_cu (per_cu);
20155 cu = per_cu->cu;
20156 if (cu == NULL)
20157 {
20158 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20159 Instead just throw an error, not much else we can do. */
20160 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20161 offset.sect_off, objfile_name (per_cu->objfile));
20162 }
20163
20164 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20165 if (!die)
20166 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20167 offset.sect_off, objfile_name (per_cu->objfile));
20168
20169
20170 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20171 if (attr == NULL)
20172 return NULL;
20173
20174 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20175 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20176
20177 switch (attr->form)
20178 {
20179 case DW_FORM_addr:
20180 case DW_FORM_GNU_addr_index:
20181 {
20182 gdb_byte *tem;
20183
20184 *len = cu->header.addr_size;
20185 tem = obstack_alloc (obstack, *len);
20186 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20187 result = tem;
20188 }
20189 break;
20190 case DW_FORM_string:
20191 case DW_FORM_strp:
20192 case DW_FORM_GNU_str_index:
20193 case DW_FORM_GNU_strp_alt:
20194 /* DW_STRING is already allocated on the objfile obstack, point
20195 directly to it. */
20196 result = (const gdb_byte *) DW_STRING (attr);
20197 *len = strlen (DW_STRING (attr));
20198 break;
20199 case DW_FORM_block1:
20200 case DW_FORM_block2:
20201 case DW_FORM_block4:
20202 case DW_FORM_block:
20203 case DW_FORM_exprloc:
20204 result = DW_BLOCK (attr)->data;
20205 *len = DW_BLOCK (attr)->size;
20206 break;
20207
20208 /* The DW_AT_const_value attributes are supposed to carry the
20209 symbol's value "represented as it would be on the target
20210 architecture." By the time we get here, it's already been
20211 converted to host endianness, so we just need to sign- or
20212 zero-extend it as appropriate. */
20213 case DW_FORM_data1:
20214 type = die_type (die, cu);
20215 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20216 if (result == NULL)
20217 result = write_constant_as_bytes (obstack, byte_order,
20218 type, value, len);
20219 break;
20220 case DW_FORM_data2:
20221 type = die_type (die, cu);
20222 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20223 if (result == NULL)
20224 result = write_constant_as_bytes (obstack, byte_order,
20225 type, value, len);
20226 break;
20227 case DW_FORM_data4:
20228 type = die_type (die, cu);
20229 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20230 if (result == NULL)
20231 result = write_constant_as_bytes (obstack, byte_order,
20232 type, value, len);
20233 break;
20234 case DW_FORM_data8:
20235 type = die_type (die, cu);
20236 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20237 if (result == NULL)
20238 result = write_constant_as_bytes (obstack, byte_order,
20239 type, value, len);
20240 break;
20241
20242 case DW_FORM_sdata:
20243 type = die_type (die, cu);
20244 result = write_constant_as_bytes (obstack, byte_order,
20245 type, DW_SND (attr), len);
20246 break;
20247
20248 case DW_FORM_udata:
20249 type = die_type (die, cu);
20250 result = write_constant_as_bytes (obstack, byte_order,
20251 type, DW_UNSND (attr), len);
20252 break;
20253
20254 default:
20255 complaint (&symfile_complaints,
20256 _("unsupported const value attribute form: '%s'"),
20257 dwarf_form_name (attr->form));
20258 break;
20259 }
20260
20261 return result;
20262 }
20263
20264 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20265 PER_CU. */
20266
20267 struct type *
20268 dwarf2_get_die_type (cu_offset die_offset,
20269 struct dwarf2_per_cu_data *per_cu)
20270 {
20271 sect_offset die_offset_sect;
20272
20273 dw2_setup (per_cu->objfile);
20274
20275 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20276 return get_die_type_at_offset (die_offset_sect, per_cu);
20277 }
20278
20279 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20280 On entry *REF_CU is the CU of SRC_DIE.
20281 On exit *REF_CU is the CU of the result.
20282 Returns NULL if the referenced DIE isn't found. */
20283
20284 static struct die_info *
20285 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20286 struct dwarf2_cu **ref_cu)
20287 {
20288 struct objfile *objfile = (*ref_cu)->objfile;
20289 struct die_info temp_die;
20290 struct dwarf2_cu *sig_cu;
20291 struct die_info *die;
20292
20293 /* While it might be nice to assert sig_type->type == NULL here,
20294 we can get here for DW_AT_imported_declaration where we need
20295 the DIE not the type. */
20296
20297 /* If necessary, add it to the queue and load its DIEs. */
20298
20299 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20300 read_signatured_type (sig_type);
20301
20302 sig_cu = sig_type->per_cu.cu;
20303 gdb_assert (sig_cu != NULL);
20304 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20305 temp_die.offset = sig_type->type_offset_in_section;
20306 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20307 temp_die.offset.sect_off);
20308 if (die)
20309 {
20310 /* For .gdb_index version 7 keep track of included TUs.
20311 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20312 if (dwarf2_per_objfile->index_table != NULL
20313 && dwarf2_per_objfile->index_table->version <= 7)
20314 {
20315 VEC_safe_push (dwarf2_per_cu_ptr,
20316 (*ref_cu)->per_cu->imported_symtabs,
20317 sig_cu->per_cu);
20318 }
20319
20320 *ref_cu = sig_cu;
20321 return die;
20322 }
20323
20324 return NULL;
20325 }
20326
20327 /* Follow signatured type referenced by ATTR in SRC_DIE.
20328 On entry *REF_CU is the CU of SRC_DIE.
20329 On exit *REF_CU is the CU of the result.
20330 The result is the DIE of the type.
20331 If the referenced type cannot be found an error is thrown. */
20332
20333 static struct die_info *
20334 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20335 struct dwarf2_cu **ref_cu)
20336 {
20337 ULONGEST signature = DW_SIGNATURE (attr);
20338 struct signatured_type *sig_type;
20339 struct die_info *die;
20340
20341 gdb_assert (attr->form == DW_FORM_ref_sig8);
20342
20343 sig_type = lookup_signatured_type (*ref_cu, signature);
20344 /* sig_type will be NULL if the signatured type is missing from
20345 the debug info. */
20346 if (sig_type == NULL)
20347 {
20348 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20349 " from DIE at 0x%x [in module %s]"),
20350 hex_string (signature), src_die->offset.sect_off,
20351 objfile_name ((*ref_cu)->objfile));
20352 }
20353
20354 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20355 if (die == NULL)
20356 {
20357 dump_die_for_error (src_die);
20358 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20359 " from DIE at 0x%x [in module %s]"),
20360 hex_string (signature), src_die->offset.sect_off,
20361 objfile_name ((*ref_cu)->objfile));
20362 }
20363
20364 return die;
20365 }
20366
20367 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20368 reading in and processing the type unit if necessary. */
20369
20370 static struct type *
20371 get_signatured_type (struct die_info *die, ULONGEST signature,
20372 struct dwarf2_cu *cu)
20373 {
20374 struct signatured_type *sig_type;
20375 struct dwarf2_cu *type_cu;
20376 struct die_info *type_die;
20377 struct type *type;
20378
20379 sig_type = lookup_signatured_type (cu, signature);
20380 /* sig_type will be NULL if the signatured type is missing from
20381 the debug info. */
20382 if (sig_type == NULL)
20383 {
20384 complaint (&symfile_complaints,
20385 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20386 " from DIE at 0x%x [in module %s]"),
20387 hex_string (signature), die->offset.sect_off,
20388 objfile_name (dwarf2_per_objfile->objfile));
20389 return build_error_marker_type (cu, die);
20390 }
20391
20392 /* If we already know the type we're done. */
20393 if (sig_type->type != NULL)
20394 return sig_type->type;
20395
20396 type_cu = cu;
20397 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20398 if (type_die != NULL)
20399 {
20400 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20401 is created. This is important, for example, because for c++ classes
20402 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20403 type = read_type_die (type_die, type_cu);
20404 if (type == NULL)
20405 {
20406 complaint (&symfile_complaints,
20407 _("Dwarf Error: Cannot build signatured type %s"
20408 " referenced from DIE at 0x%x [in module %s]"),
20409 hex_string (signature), die->offset.sect_off,
20410 objfile_name (dwarf2_per_objfile->objfile));
20411 type = build_error_marker_type (cu, die);
20412 }
20413 }
20414 else
20415 {
20416 complaint (&symfile_complaints,
20417 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20418 " from DIE at 0x%x [in module %s]"),
20419 hex_string (signature), die->offset.sect_off,
20420 objfile_name (dwarf2_per_objfile->objfile));
20421 type = build_error_marker_type (cu, die);
20422 }
20423 sig_type->type = type;
20424
20425 return type;
20426 }
20427
20428 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20429 reading in and processing the type unit if necessary. */
20430
20431 static struct type *
20432 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20433 struct dwarf2_cu *cu) /* ARI: editCase function */
20434 {
20435 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20436 if (attr_form_is_ref (attr))
20437 {
20438 struct dwarf2_cu *type_cu = cu;
20439 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20440
20441 return read_type_die (type_die, type_cu);
20442 }
20443 else if (attr->form == DW_FORM_ref_sig8)
20444 {
20445 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20446 }
20447 else
20448 {
20449 complaint (&symfile_complaints,
20450 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20451 " at 0x%x [in module %s]"),
20452 dwarf_form_name (attr->form), die->offset.sect_off,
20453 objfile_name (dwarf2_per_objfile->objfile));
20454 return build_error_marker_type (cu, die);
20455 }
20456 }
20457
20458 /* Load the DIEs associated with type unit PER_CU into memory. */
20459
20460 static void
20461 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20462 {
20463 struct signatured_type *sig_type;
20464
20465 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20466 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20467
20468 /* We have the per_cu, but we need the signatured_type.
20469 Fortunately this is an easy translation. */
20470 gdb_assert (per_cu->is_debug_types);
20471 sig_type = (struct signatured_type *) per_cu;
20472
20473 gdb_assert (per_cu->cu == NULL);
20474
20475 read_signatured_type (sig_type);
20476
20477 gdb_assert (per_cu->cu != NULL);
20478 }
20479
20480 /* die_reader_func for read_signatured_type.
20481 This is identical to load_full_comp_unit_reader,
20482 but is kept separate for now. */
20483
20484 static void
20485 read_signatured_type_reader (const struct die_reader_specs *reader,
20486 const gdb_byte *info_ptr,
20487 struct die_info *comp_unit_die,
20488 int has_children,
20489 void *data)
20490 {
20491 struct dwarf2_cu *cu = reader->cu;
20492
20493 gdb_assert (cu->die_hash == NULL);
20494 cu->die_hash =
20495 htab_create_alloc_ex (cu->header.length / 12,
20496 die_hash,
20497 die_eq,
20498 NULL,
20499 &cu->comp_unit_obstack,
20500 hashtab_obstack_allocate,
20501 dummy_obstack_deallocate);
20502
20503 if (has_children)
20504 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20505 &info_ptr, comp_unit_die);
20506 cu->dies = comp_unit_die;
20507 /* comp_unit_die is not stored in die_hash, no need. */
20508
20509 /* We try not to read any attributes in this function, because not
20510 all CUs needed for references have been loaded yet, and symbol
20511 table processing isn't initialized. But we have to set the CU language,
20512 or we won't be able to build types correctly.
20513 Similarly, if we do not read the producer, we can not apply
20514 producer-specific interpretation. */
20515 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20516 }
20517
20518 /* Read in a signatured type and build its CU and DIEs.
20519 If the type is a stub for the real type in a DWO file,
20520 read in the real type from the DWO file as well. */
20521
20522 static void
20523 read_signatured_type (struct signatured_type *sig_type)
20524 {
20525 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20526
20527 gdb_assert (per_cu->is_debug_types);
20528 gdb_assert (per_cu->cu == NULL);
20529
20530 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20531 read_signatured_type_reader, NULL);
20532 sig_type->per_cu.tu_read = 1;
20533 }
20534
20535 /* Decode simple location descriptions.
20536 Given a pointer to a dwarf block that defines a location, compute
20537 the location and return the value.
20538
20539 NOTE drow/2003-11-18: This function is called in two situations
20540 now: for the address of static or global variables (partial symbols
20541 only) and for offsets into structures which are expected to be
20542 (more or less) constant. The partial symbol case should go away,
20543 and only the constant case should remain. That will let this
20544 function complain more accurately. A few special modes are allowed
20545 without complaint for global variables (for instance, global
20546 register values and thread-local values).
20547
20548 A location description containing no operations indicates that the
20549 object is optimized out. The return value is 0 for that case.
20550 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20551 callers will only want a very basic result and this can become a
20552 complaint.
20553
20554 Note that stack[0] is unused except as a default error return. */
20555
20556 static CORE_ADDR
20557 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20558 {
20559 struct objfile *objfile = cu->objfile;
20560 size_t i;
20561 size_t size = blk->size;
20562 const gdb_byte *data = blk->data;
20563 CORE_ADDR stack[64];
20564 int stacki;
20565 unsigned int bytes_read, unsnd;
20566 gdb_byte op;
20567
20568 i = 0;
20569 stacki = 0;
20570 stack[stacki] = 0;
20571 stack[++stacki] = 0;
20572
20573 while (i < size)
20574 {
20575 op = data[i++];
20576 switch (op)
20577 {
20578 case DW_OP_lit0:
20579 case DW_OP_lit1:
20580 case DW_OP_lit2:
20581 case DW_OP_lit3:
20582 case DW_OP_lit4:
20583 case DW_OP_lit5:
20584 case DW_OP_lit6:
20585 case DW_OP_lit7:
20586 case DW_OP_lit8:
20587 case DW_OP_lit9:
20588 case DW_OP_lit10:
20589 case DW_OP_lit11:
20590 case DW_OP_lit12:
20591 case DW_OP_lit13:
20592 case DW_OP_lit14:
20593 case DW_OP_lit15:
20594 case DW_OP_lit16:
20595 case DW_OP_lit17:
20596 case DW_OP_lit18:
20597 case DW_OP_lit19:
20598 case DW_OP_lit20:
20599 case DW_OP_lit21:
20600 case DW_OP_lit22:
20601 case DW_OP_lit23:
20602 case DW_OP_lit24:
20603 case DW_OP_lit25:
20604 case DW_OP_lit26:
20605 case DW_OP_lit27:
20606 case DW_OP_lit28:
20607 case DW_OP_lit29:
20608 case DW_OP_lit30:
20609 case DW_OP_lit31:
20610 stack[++stacki] = op - DW_OP_lit0;
20611 break;
20612
20613 case DW_OP_reg0:
20614 case DW_OP_reg1:
20615 case DW_OP_reg2:
20616 case DW_OP_reg3:
20617 case DW_OP_reg4:
20618 case DW_OP_reg5:
20619 case DW_OP_reg6:
20620 case DW_OP_reg7:
20621 case DW_OP_reg8:
20622 case DW_OP_reg9:
20623 case DW_OP_reg10:
20624 case DW_OP_reg11:
20625 case DW_OP_reg12:
20626 case DW_OP_reg13:
20627 case DW_OP_reg14:
20628 case DW_OP_reg15:
20629 case DW_OP_reg16:
20630 case DW_OP_reg17:
20631 case DW_OP_reg18:
20632 case DW_OP_reg19:
20633 case DW_OP_reg20:
20634 case DW_OP_reg21:
20635 case DW_OP_reg22:
20636 case DW_OP_reg23:
20637 case DW_OP_reg24:
20638 case DW_OP_reg25:
20639 case DW_OP_reg26:
20640 case DW_OP_reg27:
20641 case DW_OP_reg28:
20642 case DW_OP_reg29:
20643 case DW_OP_reg30:
20644 case DW_OP_reg31:
20645 stack[++stacki] = op - DW_OP_reg0;
20646 if (i < size)
20647 dwarf2_complex_location_expr_complaint ();
20648 break;
20649
20650 case DW_OP_regx:
20651 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20652 i += bytes_read;
20653 stack[++stacki] = unsnd;
20654 if (i < size)
20655 dwarf2_complex_location_expr_complaint ();
20656 break;
20657
20658 case DW_OP_addr:
20659 stack[++stacki] = read_address (objfile->obfd, &data[i],
20660 cu, &bytes_read);
20661 i += bytes_read;
20662 break;
20663
20664 case DW_OP_const1u:
20665 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20666 i += 1;
20667 break;
20668
20669 case DW_OP_const1s:
20670 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20671 i += 1;
20672 break;
20673
20674 case DW_OP_const2u:
20675 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20676 i += 2;
20677 break;
20678
20679 case DW_OP_const2s:
20680 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20681 i += 2;
20682 break;
20683
20684 case DW_OP_const4u:
20685 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20686 i += 4;
20687 break;
20688
20689 case DW_OP_const4s:
20690 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20691 i += 4;
20692 break;
20693
20694 case DW_OP_const8u:
20695 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20696 i += 8;
20697 break;
20698
20699 case DW_OP_constu:
20700 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20701 &bytes_read);
20702 i += bytes_read;
20703 break;
20704
20705 case DW_OP_consts:
20706 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20707 i += bytes_read;
20708 break;
20709
20710 case DW_OP_dup:
20711 stack[stacki + 1] = stack[stacki];
20712 stacki++;
20713 break;
20714
20715 case DW_OP_plus:
20716 stack[stacki - 1] += stack[stacki];
20717 stacki--;
20718 break;
20719
20720 case DW_OP_plus_uconst:
20721 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20722 &bytes_read);
20723 i += bytes_read;
20724 break;
20725
20726 case DW_OP_minus:
20727 stack[stacki - 1] -= stack[stacki];
20728 stacki--;
20729 break;
20730
20731 case DW_OP_deref:
20732 /* If we're not the last op, then we definitely can't encode
20733 this using GDB's address_class enum. This is valid for partial
20734 global symbols, although the variable's address will be bogus
20735 in the psymtab. */
20736 if (i < size)
20737 dwarf2_complex_location_expr_complaint ();
20738 break;
20739
20740 case DW_OP_GNU_push_tls_address:
20741 /* The top of the stack has the offset from the beginning
20742 of the thread control block at which the variable is located. */
20743 /* Nothing should follow this operator, so the top of stack would
20744 be returned. */
20745 /* This is valid for partial global symbols, but the variable's
20746 address will be bogus in the psymtab. Make it always at least
20747 non-zero to not look as a variable garbage collected by linker
20748 which have DW_OP_addr 0. */
20749 if (i < size)
20750 dwarf2_complex_location_expr_complaint ();
20751 stack[stacki]++;
20752 break;
20753
20754 case DW_OP_GNU_uninit:
20755 break;
20756
20757 case DW_OP_GNU_addr_index:
20758 case DW_OP_GNU_const_index:
20759 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20760 &bytes_read);
20761 i += bytes_read;
20762 break;
20763
20764 default:
20765 {
20766 const char *name = get_DW_OP_name (op);
20767
20768 if (name)
20769 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20770 name);
20771 else
20772 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20773 op);
20774 }
20775
20776 return (stack[stacki]);
20777 }
20778
20779 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20780 outside of the allocated space. Also enforce minimum>0. */
20781 if (stacki >= ARRAY_SIZE (stack) - 1)
20782 {
20783 complaint (&symfile_complaints,
20784 _("location description stack overflow"));
20785 return 0;
20786 }
20787
20788 if (stacki <= 0)
20789 {
20790 complaint (&symfile_complaints,
20791 _("location description stack underflow"));
20792 return 0;
20793 }
20794 }
20795 return (stack[stacki]);
20796 }
20797
20798 /* memory allocation interface */
20799
20800 static struct dwarf_block *
20801 dwarf_alloc_block (struct dwarf2_cu *cu)
20802 {
20803 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20804 }
20805
20806 static struct die_info *
20807 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20808 {
20809 struct die_info *die;
20810 size_t size = sizeof (struct die_info);
20811
20812 if (num_attrs > 1)
20813 size += (num_attrs - 1) * sizeof (struct attribute);
20814
20815 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20816 memset (die, 0, sizeof (struct die_info));
20817 return (die);
20818 }
20819
20820 \f
20821 /* Macro support. */
20822
20823 /* Return file name relative to the compilation directory of file number I in
20824 *LH's file name table. The result is allocated using xmalloc; the caller is
20825 responsible for freeing it. */
20826
20827 static char *
20828 file_file_name (int file, struct line_header *lh)
20829 {
20830 /* Is the file number a valid index into the line header's file name
20831 table? Remember that file numbers start with one, not zero. */
20832 if (1 <= file && file <= lh->num_file_names)
20833 {
20834 struct file_entry *fe = &lh->file_names[file - 1];
20835
20836 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20837 || lh->include_dirs == NULL)
20838 return xstrdup (fe->name);
20839 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20840 fe->name, NULL);
20841 }
20842 else
20843 {
20844 /* The compiler produced a bogus file number. We can at least
20845 record the macro definitions made in the file, even if we
20846 won't be able to find the file by name. */
20847 char fake_name[80];
20848
20849 xsnprintf (fake_name, sizeof (fake_name),
20850 "<bad macro file number %d>", file);
20851
20852 complaint (&symfile_complaints,
20853 _("bad file number in macro information (%d)"),
20854 file);
20855
20856 return xstrdup (fake_name);
20857 }
20858 }
20859
20860 /* Return the full name of file number I in *LH's file name table.
20861 Use COMP_DIR as the name of the current directory of the
20862 compilation. The result is allocated using xmalloc; the caller is
20863 responsible for freeing it. */
20864 static char *
20865 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20866 {
20867 /* Is the file number a valid index into the line header's file name
20868 table? Remember that file numbers start with one, not zero. */
20869 if (1 <= file && file <= lh->num_file_names)
20870 {
20871 char *relative = file_file_name (file, lh);
20872
20873 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20874 return relative;
20875 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20876 }
20877 else
20878 return file_file_name (file, lh);
20879 }
20880
20881
20882 static struct macro_source_file *
20883 macro_start_file (int file, int line,
20884 struct macro_source_file *current_file,
20885 struct line_header *lh)
20886 {
20887 /* File name relative to the compilation directory of this source file. */
20888 char *file_name = file_file_name (file, lh);
20889
20890 if (! current_file)
20891 {
20892 /* Note: We don't create a macro table for this compilation unit
20893 at all until we actually get a filename. */
20894 struct macro_table *macro_table = get_macro_table ();
20895
20896 /* If we have no current file, then this must be the start_file
20897 directive for the compilation unit's main source file. */
20898 current_file = macro_set_main (macro_table, file_name);
20899 macro_define_special (macro_table);
20900 }
20901 else
20902 current_file = macro_include (current_file, line, file_name);
20903
20904 xfree (file_name);
20905
20906 return current_file;
20907 }
20908
20909
20910 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20911 followed by a null byte. */
20912 static char *
20913 copy_string (const char *buf, int len)
20914 {
20915 char *s = xmalloc (len + 1);
20916
20917 memcpy (s, buf, len);
20918 s[len] = '\0';
20919 return s;
20920 }
20921
20922
20923 static const char *
20924 consume_improper_spaces (const char *p, const char *body)
20925 {
20926 if (*p == ' ')
20927 {
20928 complaint (&symfile_complaints,
20929 _("macro definition contains spaces "
20930 "in formal argument list:\n`%s'"),
20931 body);
20932
20933 while (*p == ' ')
20934 p++;
20935 }
20936
20937 return p;
20938 }
20939
20940
20941 static void
20942 parse_macro_definition (struct macro_source_file *file, int line,
20943 const char *body)
20944 {
20945 const char *p;
20946
20947 /* The body string takes one of two forms. For object-like macro
20948 definitions, it should be:
20949
20950 <macro name> " " <definition>
20951
20952 For function-like macro definitions, it should be:
20953
20954 <macro name> "() " <definition>
20955 or
20956 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20957
20958 Spaces may appear only where explicitly indicated, and in the
20959 <definition>.
20960
20961 The Dwarf 2 spec says that an object-like macro's name is always
20962 followed by a space, but versions of GCC around March 2002 omit
20963 the space when the macro's definition is the empty string.
20964
20965 The Dwarf 2 spec says that there should be no spaces between the
20966 formal arguments in a function-like macro's formal argument list,
20967 but versions of GCC around March 2002 include spaces after the
20968 commas. */
20969
20970
20971 /* Find the extent of the macro name. The macro name is terminated
20972 by either a space or null character (for an object-like macro) or
20973 an opening paren (for a function-like macro). */
20974 for (p = body; *p; p++)
20975 if (*p == ' ' || *p == '(')
20976 break;
20977
20978 if (*p == ' ' || *p == '\0')
20979 {
20980 /* It's an object-like macro. */
20981 int name_len = p - body;
20982 char *name = copy_string (body, name_len);
20983 const char *replacement;
20984
20985 if (*p == ' ')
20986 replacement = body + name_len + 1;
20987 else
20988 {
20989 dwarf2_macro_malformed_definition_complaint (body);
20990 replacement = body + name_len;
20991 }
20992
20993 macro_define_object (file, line, name, replacement);
20994
20995 xfree (name);
20996 }
20997 else if (*p == '(')
20998 {
20999 /* It's a function-like macro. */
21000 char *name = copy_string (body, p - body);
21001 int argc = 0;
21002 int argv_size = 1;
21003 char **argv = XNEWVEC (char *, argv_size);
21004
21005 p++;
21006
21007 p = consume_improper_spaces (p, body);
21008
21009 /* Parse the formal argument list. */
21010 while (*p && *p != ')')
21011 {
21012 /* Find the extent of the current argument name. */
21013 const char *arg_start = p;
21014
21015 while (*p && *p != ',' && *p != ')' && *p != ' ')
21016 p++;
21017
21018 if (! *p || p == arg_start)
21019 dwarf2_macro_malformed_definition_complaint (body);
21020 else
21021 {
21022 /* Make sure argv has room for the new argument. */
21023 if (argc >= argv_size)
21024 {
21025 argv_size *= 2;
21026 argv = xrealloc (argv, argv_size * sizeof (*argv));
21027 }
21028
21029 argv[argc++] = copy_string (arg_start, p - arg_start);
21030 }
21031
21032 p = consume_improper_spaces (p, body);
21033
21034 /* Consume the comma, if present. */
21035 if (*p == ',')
21036 {
21037 p++;
21038
21039 p = consume_improper_spaces (p, body);
21040 }
21041 }
21042
21043 if (*p == ')')
21044 {
21045 p++;
21046
21047 if (*p == ' ')
21048 /* Perfectly formed definition, no complaints. */
21049 macro_define_function (file, line, name,
21050 argc, (const char **) argv,
21051 p + 1);
21052 else if (*p == '\0')
21053 {
21054 /* Complain, but do define it. */
21055 dwarf2_macro_malformed_definition_complaint (body);
21056 macro_define_function (file, line, name,
21057 argc, (const char **) argv,
21058 p);
21059 }
21060 else
21061 /* Just complain. */
21062 dwarf2_macro_malformed_definition_complaint (body);
21063 }
21064 else
21065 /* Just complain. */
21066 dwarf2_macro_malformed_definition_complaint (body);
21067
21068 xfree (name);
21069 {
21070 int i;
21071
21072 for (i = 0; i < argc; i++)
21073 xfree (argv[i]);
21074 }
21075 xfree (argv);
21076 }
21077 else
21078 dwarf2_macro_malformed_definition_complaint (body);
21079 }
21080
21081 /* Skip some bytes from BYTES according to the form given in FORM.
21082 Returns the new pointer. */
21083
21084 static const gdb_byte *
21085 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21086 enum dwarf_form form,
21087 unsigned int offset_size,
21088 struct dwarf2_section_info *section)
21089 {
21090 unsigned int bytes_read;
21091
21092 switch (form)
21093 {
21094 case DW_FORM_data1:
21095 case DW_FORM_flag:
21096 ++bytes;
21097 break;
21098
21099 case DW_FORM_data2:
21100 bytes += 2;
21101 break;
21102
21103 case DW_FORM_data4:
21104 bytes += 4;
21105 break;
21106
21107 case DW_FORM_data8:
21108 bytes += 8;
21109 break;
21110
21111 case DW_FORM_string:
21112 read_direct_string (abfd, bytes, &bytes_read);
21113 bytes += bytes_read;
21114 break;
21115
21116 case DW_FORM_sec_offset:
21117 case DW_FORM_strp:
21118 case DW_FORM_GNU_strp_alt:
21119 bytes += offset_size;
21120 break;
21121
21122 case DW_FORM_block:
21123 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21124 bytes += bytes_read;
21125 break;
21126
21127 case DW_FORM_block1:
21128 bytes += 1 + read_1_byte (abfd, bytes);
21129 break;
21130 case DW_FORM_block2:
21131 bytes += 2 + read_2_bytes (abfd, bytes);
21132 break;
21133 case DW_FORM_block4:
21134 bytes += 4 + read_4_bytes (abfd, bytes);
21135 break;
21136
21137 case DW_FORM_sdata:
21138 case DW_FORM_udata:
21139 case DW_FORM_GNU_addr_index:
21140 case DW_FORM_GNU_str_index:
21141 bytes = gdb_skip_leb128 (bytes, buffer_end);
21142 if (bytes == NULL)
21143 {
21144 dwarf2_section_buffer_overflow_complaint (section);
21145 return NULL;
21146 }
21147 break;
21148
21149 default:
21150 {
21151 complain:
21152 complaint (&symfile_complaints,
21153 _("invalid form 0x%x in `%s'"),
21154 form, get_section_name (section));
21155 return NULL;
21156 }
21157 }
21158
21159 return bytes;
21160 }
21161
21162 /* A helper for dwarf_decode_macros that handles skipping an unknown
21163 opcode. Returns an updated pointer to the macro data buffer; or,
21164 on error, issues a complaint and returns NULL. */
21165
21166 static const gdb_byte *
21167 skip_unknown_opcode (unsigned int opcode,
21168 const gdb_byte **opcode_definitions,
21169 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21170 bfd *abfd,
21171 unsigned int offset_size,
21172 struct dwarf2_section_info *section)
21173 {
21174 unsigned int bytes_read, i;
21175 unsigned long arg;
21176 const gdb_byte *defn;
21177
21178 if (opcode_definitions[opcode] == NULL)
21179 {
21180 complaint (&symfile_complaints,
21181 _("unrecognized DW_MACFINO opcode 0x%x"),
21182 opcode);
21183 return NULL;
21184 }
21185
21186 defn = opcode_definitions[opcode];
21187 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21188 defn += bytes_read;
21189
21190 for (i = 0; i < arg; ++i)
21191 {
21192 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21193 (enum dwarf_form) defn[i], offset_size,
21194 section);
21195 if (mac_ptr == NULL)
21196 {
21197 /* skip_form_bytes already issued the complaint. */
21198 return NULL;
21199 }
21200 }
21201
21202 return mac_ptr;
21203 }
21204
21205 /* A helper function which parses the header of a macro section.
21206 If the macro section is the extended (for now called "GNU") type,
21207 then this updates *OFFSET_SIZE. Returns a pointer to just after
21208 the header, or issues a complaint and returns NULL on error. */
21209
21210 static const gdb_byte *
21211 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21212 bfd *abfd,
21213 const gdb_byte *mac_ptr,
21214 unsigned int *offset_size,
21215 int section_is_gnu)
21216 {
21217 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21218
21219 if (section_is_gnu)
21220 {
21221 unsigned int version, flags;
21222
21223 version = read_2_bytes (abfd, mac_ptr);
21224 if (version != 4)
21225 {
21226 complaint (&symfile_complaints,
21227 _("unrecognized version `%d' in .debug_macro section"),
21228 version);
21229 return NULL;
21230 }
21231 mac_ptr += 2;
21232
21233 flags = read_1_byte (abfd, mac_ptr);
21234 ++mac_ptr;
21235 *offset_size = (flags & 1) ? 8 : 4;
21236
21237 if ((flags & 2) != 0)
21238 /* We don't need the line table offset. */
21239 mac_ptr += *offset_size;
21240
21241 /* Vendor opcode descriptions. */
21242 if ((flags & 4) != 0)
21243 {
21244 unsigned int i, count;
21245
21246 count = read_1_byte (abfd, mac_ptr);
21247 ++mac_ptr;
21248 for (i = 0; i < count; ++i)
21249 {
21250 unsigned int opcode, bytes_read;
21251 unsigned long arg;
21252
21253 opcode = read_1_byte (abfd, mac_ptr);
21254 ++mac_ptr;
21255 opcode_definitions[opcode] = mac_ptr;
21256 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21257 mac_ptr += bytes_read;
21258 mac_ptr += arg;
21259 }
21260 }
21261 }
21262
21263 return mac_ptr;
21264 }
21265
21266 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21267 including DW_MACRO_GNU_transparent_include. */
21268
21269 static void
21270 dwarf_decode_macro_bytes (bfd *abfd,
21271 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21272 struct macro_source_file *current_file,
21273 struct line_header *lh,
21274 struct dwarf2_section_info *section,
21275 int section_is_gnu, int section_is_dwz,
21276 unsigned int offset_size,
21277 htab_t include_hash)
21278 {
21279 struct objfile *objfile = dwarf2_per_objfile->objfile;
21280 enum dwarf_macro_record_type macinfo_type;
21281 int at_commandline;
21282 const gdb_byte *opcode_definitions[256];
21283
21284 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21285 &offset_size, section_is_gnu);
21286 if (mac_ptr == NULL)
21287 {
21288 /* We already issued a complaint. */
21289 return;
21290 }
21291
21292 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21293 GDB is still reading the definitions from command line. First
21294 DW_MACINFO_start_file will need to be ignored as it was already executed
21295 to create CURRENT_FILE for the main source holding also the command line
21296 definitions. On first met DW_MACINFO_start_file this flag is reset to
21297 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21298
21299 at_commandline = 1;
21300
21301 do
21302 {
21303 /* Do we at least have room for a macinfo type byte? */
21304 if (mac_ptr >= mac_end)
21305 {
21306 dwarf2_section_buffer_overflow_complaint (section);
21307 break;
21308 }
21309
21310 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21311 mac_ptr++;
21312
21313 /* Note that we rely on the fact that the corresponding GNU and
21314 DWARF constants are the same. */
21315 switch (macinfo_type)
21316 {
21317 /* A zero macinfo type indicates the end of the macro
21318 information. */
21319 case 0:
21320 break;
21321
21322 case DW_MACRO_GNU_define:
21323 case DW_MACRO_GNU_undef:
21324 case DW_MACRO_GNU_define_indirect:
21325 case DW_MACRO_GNU_undef_indirect:
21326 case DW_MACRO_GNU_define_indirect_alt:
21327 case DW_MACRO_GNU_undef_indirect_alt:
21328 {
21329 unsigned int bytes_read;
21330 int line;
21331 const char *body;
21332 int is_define;
21333
21334 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21335 mac_ptr += bytes_read;
21336
21337 if (macinfo_type == DW_MACRO_GNU_define
21338 || macinfo_type == DW_MACRO_GNU_undef)
21339 {
21340 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21341 mac_ptr += bytes_read;
21342 }
21343 else
21344 {
21345 LONGEST str_offset;
21346
21347 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21348 mac_ptr += offset_size;
21349
21350 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21351 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21352 || section_is_dwz)
21353 {
21354 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21355
21356 body = read_indirect_string_from_dwz (dwz, str_offset);
21357 }
21358 else
21359 body = read_indirect_string_at_offset (abfd, str_offset);
21360 }
21361
21362 is_define = (macinfo_type == DW_MACRO_GNU_define
21363 || macinfo_type == DW_MACRO_GNU_define_indirect
21364 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21365 if (! current_file)
21366 {
21367 /* DWARF violation as no main source is present. */
21368 complaint (&symfile_complaints,
21369 _("debug info with no main source gives macro %s "
21370 "on line %d: %s"),
21371 is_define ? _("definition") : _("undefinition"),
21372 line, body);
21373 break;
21374 }
21375 if ((line == 0 && !at_commandline)
21376 || (line != 0 && at_commandline))
21377 complaint (&symfile_complaints,
21378 _("debug info gives %s macro %s with %s line %d: %s"),
21379 at_commandline ? _("command-line") : _("in-file"),
21380 is_define ? _("definition") : _("undefinition"),
21381 line == 0 ? _("zero") : _("non-zero"), line, body);
21382
21383 if (is_define)
21384 parse_macro_definition (current_file, line, body);
21385 else
21386 {
21387 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21388 || macinfo_type == DW_MACRO_GNU_undef_indirect
21389 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21390 macro_undef (current_file, line, body);
21391 }
21392 }
21393 break;
21394
21395 case DW_MACRO_GNU_start_file:
21396 {
21397 unsigned int bytes_read;
21398 int line, file;
21399
21400 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21401 mac_ptr += bytes_read;
21402 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21403 mac_ptr += bytes_read;
21404
21405 if ((line == 0 && !at_commandline)
21406 || (line != 0 && at_commandline))
21407 complaint (&symfile_complaints,
21408 _("debug info gives source %d included "
21409 "from %s at %s line %d"),
21410 file, at_commandline ? _("command-line") : _("file"),
21411 line == 0 ? _("zero") : _("non-zero"), line);
21412
21413 if (at_commandline)
21414 {
21415 /* This DW_MACRO_GNU_start_file was executed in the
21416 pass one. */
21417 at_commandline = 0;
21418 }
21419 else
21420 current_file = macro_start_file (file, line, current_file, lh);
21421 }
21422 break;
21423
21424 case DW_MACRO_GNU_end_file:
21425 if (! current_file)
21426 complaint (&symfile_complaints,
21427 _("macro debug info has an unmatched "
21428 "`close_file' directive"));
21429 else
21430 {
21431 current_file = current_file->included_by;
21432 if (! current_file)
21433 {
21434 enum dwarf_macro_record_type next_type;
21435
21436 /* GCC circa March 2002 doesn't produce the zero
21437 type byte marking the end of the compilation
21438 unit. Complain if it's not there, but exit no
21439 matter what. */
21440
21441 /* Do we at least have room for a macinfo type byte? */
21442 if (mac_ptr >= mac_end)
21443 {
21444 dwarf2_section_buffer_overflow_complaint (section);
21445 return;
21446 }
21447
21448 /* We don't increment mac_ptr here, so this is just
21449 a look-ahead. */
21450 next_type
21451 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21452 mac_ptr);
21453 if (next_type != 0)
21454 complaint (&symfile_complaints,
21455 _("no terminating 0-type entry for "
21456 "macros in `.debug_macinfo' section"));
21457
21458 return;
21459 }
21460 }
21461 break;
21462
21463 case DW_MACRO_GNU_transparent_include:
21464 case DW_MACRO_GNU_transparent_include_alt:
21465 {
21466 LONGEST offset;
21467 void **slot;
21468 bfd *include_bfd = abfd;
21469 struct dwarf2_section_info *include_section = section;
21470 struct dwarf2_section_info alt_section;
21471 const gdb_byte *include_mac_end = mac_end;
21472 int is_dwz = section_is_dwz;
21473 const gdb_byte *new_mac_ptr;
21474
21475 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21476 mac_ptr += offset_size;
21477
21478 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21479 {
21480 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21481
21482 dwarf2_read_section (objfile, &dwz->macro);
21483
21484 include_section = &dwz->macro;
21485 include_bfd = get_section_bfd_owner (include_section);
21486 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21487 is_dwz = 1;
21488 }
21489
21490 new_mac_ptr = include_section->buffer + offset;
21491 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21492
21493 if (*slot != NULL)
21494 {
21495 /* This has actually happened; see
21496 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21497 complaint (&symfile_complaints,
21498 _("recursive DW_MACRO_GNU_transparent_include in "
21499 ".debug_macro section"));
21500 }
21501 else
21502 {
21503 *slot = (void *) new_mac_ptr;
21504
21505 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21506 include_mac_end, current_file, lh,
21507 section, section_is_gnu, is_dwz,
21508 offset_size, include_hash);
21509
21510 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21511 }
21512 }
21513 break;
21514
21515 case DW_MACINFO_vendor_ext:
21516 if (!section_is_gnu)
21517 {
21518 unsigned int bytes_read;
21519 int constant;
21520
21521 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21522 mac_ptr += bytes_read;
21523 read_direct_string (abfd, mac_ptr, &bytes_read);
21524 mac_ptr += bytes_read;
21525
21526 /* We don't recognize any vendor extensions. */
21527 break;
21528 }
21529 /* FALLTHROUGH */
21530
21531 default:
21532 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21533 mac_ptr, mac_end, abfd, offset_size,
21534 section);
21535 if (mac_ptr == NULL)
21536 return;
21537 break;
21538 }
21539 } while (macinfo_type != 0);
21540 }
21541
21542 static void
21543 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21544 int section_is_gnu)
21545 {
21546 struct objfile *objfile = dwarf2_per_objfile->objfile;
21547 struct line_header *lh = cu->line_header;
21548 bfd *abfd;
21549 const gdb_byte *mac_ptr, *mac_end;
21550 struct macro_source_file *current_file = 0;
21551 enum dwarf_macro_record_type macinfo_type;
21552 unsigned int offset_size = cu->header.offset_size;
21553 const gdb_byte *opcode_definitions[256];
21554 struct cleanup *cleanup;
21555 htab_t include_hash;
21556 void **slot;
21557 struct dwarf2_section_info *section;
21558 const char *section_name;
21559
21560 if (cu->dwo_unit != NULL)
21561 {
21562 if (section_is_gnu)
21563 {
21564 section = &cu->dwo_unit->dwo_file->sections.macro;
21565 section_name = ".debug_macro.dwo";
21566 }
21567 else
21568 {
21569 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21570 section_name = ".debug_macinfo.dwo";
21571 }
21572 }
21573 else
21574 {
21575 if (section_is_gnu)
21576 {
21577 section = &dwarf2_per_objfile->macro;
21578 section_name = ".debug_macro";
21579 }
21580 else
21581 {
21582 section = &dwarf2_per_objfile->macinfo;
21583 section_name = ".debug_macinfo";
21584 }
21585 }
21586
21587 dwarf2_read_section (objfile, section);
21588 if (section->buffer == NULL)
21589 {
21590 complaint (&symfile_complaints, _("missing %s section"), section_name);
21591 return;
21592 }
21593 abfd = get_section_bfd_owner (section);
21594
21595 /* First pass: Find the name of the base filename.
21596 This filename is needed in order to process all macros whose definition
21597 (or undefinition) comes from the command line. These macros are defined
21598 before the first DW_MACINFO_start_file entry, and yet still need to be
21599 associated to the base file.
21600
21601 To determine the base file name, we scan the macro definitions until we
21602 reach the first DW_MACINFO_start_file entry. We then initialize
21603 CURRENT_FILE accordingly so that any macro definition found before the
21604 first DW_MACINFO_start_file can still be associated to the base file. */
21605
21606 mac_ptr = section->buffer + offset;
21607 mac_end = section->buffer + section->size;
21608
21609 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21610 &offset_size, section_is_gnu);
21611 if (mac_ptr == NULL)
21612 {
21613 /* We already issued a complaint. */
21614 return;
21615 }
21616
21617 do
21618 {
21619 /* Do we at least have room for a macinfo type byte? */
21620 if (mac_ptr >= mac_end)
21621 {
21622 /* Complaint is printed during the second pass as GDB will probably
21623 stop the first pass earlier upon finding
21624 DW_MACINFO_start_file. */
21625 break;
21626 }
21627
21628 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21629 mac_ptr++;
21630
21631 /* Note that we rely on the fact that the corresponding GNU and
21632 DWARF constants are the same. */
21633 switch (macinfo_type)
21634 {
21635 /* A zero macinfo type indicates the end of the macro
21636 information. */
21637 case 0:
21638 break;
21639
21640 case DW_MACRO_GNU_define:
21641 case DW_MACRO_GNU_undef:
21642 /* Only skip the data by MAC_PTR. */
21643 {
21644 unsigned int bytes_read;
21645
21646 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21647 mac_ptr += bytes_read;
21648 read_direct_string (abfd, mac_ptr, &bytes_read);
21649 mac_ptr += bytes_read;
21650 }
21651 break;
21652
21653 case DW_MACRO_GNU_start_file:
21654 {
21655 unsigned int bytes_read;
21656 int line, file;
21657
21658 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21659 mac_ptr += bytes_read;
21660 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21661 mac_ptr += bytes_read;
21662
21663 current_file = macro_start_file (file, line, current_file, lh);
21664 }
21665 break;
21666
21667 case DW_MACRO_GNU_end_file:
21668 /* No data to skip by MAC_PTR. */
21669 break;
21670
21671 case DW_MACRO_GNU_define_indirect:
21672 case DW_MACRO_GNU_undef_indirect:
21673 case DW_MACRO_GNU_define_indirect_alt:
21674 case DW_MACRO_GNU_undef_indirect_alt:
21675 {
21676 unsigned int bytes_read;
21677
21678 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21679 mac_ptr += bytes_read;
21680 mac_ptr += offset_size;
21681 }
21682 break;
21683
21684 case DW_MACRO_GNU_transparent_include:
21685 case DW_MACRO_GNU_transparent_include_alt:
21686 /* Note that, according to the spec, a transparent include
21687 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21688 skip this opcode. */
21689 mac_ptr += offset_size;
21690 break;
21691
21692 case DW_MACINFO_vendor_ext:
21693 /* Only skip the data by MAC_PTR. */
21694 if (!section_is_gnu)
21695 {
21696 unsigned int bytes_read;
21697
21698 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21699 mac_ptr += bytes_read;
21700 read_direct_string (abfd, mac_ptr, &bytes_read);
21701 mac_ptr += bytes_read;
21702 }
21703 /* FALLTHROUGH */
21704
21705 default:
21706 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21707 mac_ptr, mac_end, abfd, offset_size,
21708 section);
21709 if (mac_ptr == NULL)
21710 return;
21711 break;
21712 }
21713 } while (macinfo_type != 0 && current_file == NULL);
21714
21715 /* Second pass: Process all entries.
21716
21717 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21718 command-line macro definitions/undefinitions. This flag is unset when we
21719 reach the first DW_MACINFO_start_file entry. */
21720
21721 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21722 NULL, xcalloc, xfree);
21723 cleanup = make_cleanup_htab_delete (include_hash);
21724 mac_ptr = section->buffer + offset;
21725 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21726 *slot = (void *) mac_ptr;
21727 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21728 current_file, lh, section,
21729 section_is_gnu, 0, offset_size, include_hash);
21730 do_cleanups (cleanup);
21731 }
21732
21733 /* Check if the attribute's form is a DW_FORM_block*
21734 if so return true else false. */
21735
21736 static int
21737 attr_form_is_block (const struct attribute *attr)
21738 {
21739 return (attr == NULL ? 0 :
21740 attr->form == DW_FORM_block1
21741 || attr->form == DW_FORM_block2
21742 || attr->form == DW_FORM_block4
21743 || attr->form == DW_FORM_block
21744 || attr->form == DW_FORM_exprloc);
21745 }
21746
21747 /* Return non-zero if ATTR's value is a section offset --- classes
21748 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21749 You may use DW_UNSND (attr) to retrieve such offsets.
21750
21751 Section 7.5.4, "Attribute Encodings", explains that no attribute
21752 may have a value that belongs to more than one of these classes; it
21753 would be ambiguous if we did, because we use the same forms for all
21754 of them. */
21755
21756 static int
21757 attr_form_is_section_offset (const struct attribute *attr)
21758 {
21759 return (attr->form == DW_FORM_data4
21760 || attr->form == DW_FORM_data8
21761 || attr->form == DW_FORM_sec_offset);
21762 }
21763
21764 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21765 zero otherwise. When this function returns true, you can apply
21766 dwarf2_get_attr_constant_value to it.
21767
21768 However, note that for some attributes you must check
21769 attr_form_is_section_offset before using this test. DW_FORM_data4
21770 and DW_FORM_data8 are members of both the constant class, and of
21771 the classes that contain offsets into other debug sections
21772 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21773 that, if an attribute's can be either a constant or one of the
21774 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21775 taken as section offsets, not constants. */
21776
21777 static int
21778 attr_form_is_constant (const struct attribute *attr)
21779 {
21780 switch (attr->form)
21781 {
21782 case DW_FORM_sdata:
21783 case DW_FORM_udata:
21784 case DW_FORM_data1:
21785 case DW_FORM_data2:
21786 case DW_FORM_data4:
21787 case DW_FORM_data8:
21788 return 1;
21789 default:
21790 return 0;
21791 }
21792 }
21793
21794
21795 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21796 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21797
21798 static int
21799 attr_form_is_ref (const struct attribute *attr)
21800 {
21801 switch (attr->form)
21802 {
21803 case DW_FORM_ref_addr:
21804 case DW_FORM_ref1:
21805 case DW_FORM_ref2:
21806 case DW_FORM_ref4:
21807 case DW_FORM_ref8:
21808 case DW_FORM_ref_udata:
21809 case DW_FORM_GNU_ref_alt:
21810 return 1;
21811 default:
21812 return 0;
21813 }
21814 }
21815
21816 /* Return the .debug_loc section to use for CU.
21817 For DWO files use .debug_loc.dwo. */
21818
21819 static struct dwarf2_section_info *
21820 cu_debug_loc_section (struct dwarf2_cu *cu)
21821 {
21822 if (cu->dwo_unit)
21823 return &cu->dwo_unit->dwo_file->sections.loc;
21824 return &dwarf2_per_objfile->loc;
21825 }
21826
21827 /* A helper function that fills in a dwarf2_loclist_baton. */
21828
21829 static void
21830 fill_in_loclist_baton (struct dwarf2_cu *cu,
21831 struct dwarf2_loclist_baton *baton,
21832 const struct attribute *attr)
21833 {
21834 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21835
21836 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21837
21838 baton->per_cu = cu->per_cu;
21839 gdb_assert (baton->per_cu);
21840 /* We don't know how long the location list is, but make sure we
21841 don't run off the edge of the section. */
21842 baton->size = section->size - DW_UNSND (attr);
21843 baton->data = section->buffer + DW_UNSND (attr);
21844 baton->base_address = cu->base_address;
21845 baton->from_dwo = cu->dwo_unit != NULL;
21846 }
21847
21848 static void
21849 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21850 struct dwarf2_cu *cu, int is_block)
21851 {
21852 struct objfile *objfile = dwarf2_per_objfile->objfile;
21853 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21854
21855 if (attr_form_is_section_offset (attr)
21856 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21857 the section. If so, fall through to the complaint in the
21858 other branch. */
21859 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21860 {
21861 struct dwarf2_loclist_baton *baton;
21862
21863 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21864
21865 fill_in_loclist_baton (cu, baton, attr);
21866
21867 if (cu->base_known == 0)
21868 complaint (&symfile_complaints,
21869 _("Location list used without "
21870 "specifying the CU base address."));
21871
21872 SYMBOL_ACLASS_INDEX (sym) = (is_block
21873 ? dwarf2_loclist_block_index
21874 : dwarf2_loclist_index);
21875 SYMBOL_LOCATION_BATON (sym) = baton;
21876 }
21877 else
21878 {
21879 struct dwarf2_locexpr_baton *baton;
21880
21881 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21882 baton->per_cu = cu->per_cu;
21883 gdb_assert (baton->per_cu);
21884
21885 if (attr_form_is_block (attr))
21886 {
21887 /* Note that we're just copying the block's data pointer
21888 here, not the actual data. We're still pointing into the
21889 info_buffer for SYM's objfile; right now we never release
21890 that buffer, but when we do clean up properly this may
21891 need to change. */
21892 baton->size = DW_BLOCK (attr)->size;
21893 baton->data = DW_BLOCK (attr)->data;
21894 }
21895 else
21896 {
21897 dwarf2_invalid_attrib_class_complaint ("location description",
21898 SYMBOL_NATURAL_NAME (sym));
21899 baton->size = 0;
21900 }
21901
21902 SYMBOL_ACLASS_INDEX (sym) = (is_block
21903 ? dwarf2_locexpr_block_index
21904 : dwarf2_locexpr_index);
21905 SYMBOL_LOCATION_BATON (sym) = baton;
21906 }
21907 }
21908
21909 /* Return the OBJFILE associated with the compilation unit CU. If CU
21910 came from a separate debuginfo file, then the master objfile is
21911 returned. */
21912
21913 struct objfile *
21914 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21915 {
21916 struct objfile *objfile = per_cu->objfile;
21917
21918 /* Return the master objfile, so that we can report and look up the
21919 correct file containing this variable. */
21920 if (objfile->separate_debug_objfile_backlink)
21921 objfile = objfile->separate_debug_objfile_backlink;
21922
21923 return objfile;
21924 }
21925
21926 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21927 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21928 CU_HEADERP first. */
21929
21930 static const struct comp_unit_head *
21931 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21932 struct dwarf2_per_cu_data *per_cu)
21933 {
21934 const gdb_byte *info_ptr;
21935
21936 if (per_cu->cu)
21937 return &per_cu->cu->header;
21938
21939 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21940
21941 memset (cu_headerp, 0, sizeof (*cu_headerp));
21942 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21943
21944 return cu_headerp;
21945 }
21946
21947 /* Return the address size given in the compilation unit header for CU. */
21948
21949 int
21950 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21951 {
21952 struct comp_unit_head cu_header_local;
21953 const struct comp_unit_head *cu_headerp;
21954
21955 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21956
21957 return cu_headerp->addr_size;
21958 }
21959
21960 /* Return the offset size given in the compilation unit header for CU. */
21961
21962 int
21963 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21964 {
21965 struct comp_unit_head cu_header_local;
21966 const struct comp_unit_head *cu_headerp;
21967
21968 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21969
21970 return cu_headerp->offset_size;
21971 }
21972
21973 /* See its dwarf2loc.h declaration. */
21974
21975 int
21976 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21977 {
21978 struct comp_unit_head cu_header_local;
21979 const struct comp_unit_head *cu_headerp;
21980
21981 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21982
21983 if (cu_headerp->version == 2)
21984 return cu_headerp->addr_size;
21985 else
21986 return cu_headerp->offset_size;
21987 }
21988
21989 /* Return the text offset of the CU. The returned offset comes from
21990 this CU's objfile. If this objfile came from a separate debuginfo
21991 file, then the offset may be different from the corresponding
21992 offset in the parent objfile. */
21993
21994 CORE_ADDR
21995 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21996 {
21997 struct objfile *objfile = per_cu->objfile;
21998
21999 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22000 }
22001
22002 /* Locate the .debug_info compilation unit from CU's objfile which contains
22003 the DIE at OFFSET. Raises an error on failure. */
22004
22005 static struct dwarf2_per_cu_data *
22006 dwarf2_find_containing_comp_unit (sect_offset offset,
22007 unsigned int offset_in_dwz,
22008 struct objfile *objfile)
22009 {
22010 struct dwarf2_per_cu_data *this_cu;
22011 int low, high;
22012 const sect_offset *cu_off;
22013
22014 low = 0;
22015 high = dwarf2_per_objfile->n_comp_units - 1;
22016 while (high > low)
22017 {
22018 struct dwarf2_per_cu_data *mid_cu;
22019 int mid = low + (high - low) / 2;
22020
22021 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22022 cu_off = &mid_cu->offset;
22023 if (mid_cu->is_dwz > offset_in_dwz
22024 || (mid_cu->is_dwz == offset_in_dwz
22025 && cu_off->sect_off >= offset.sect_off))
22026 high = mid;
22027 else
22028 low = mid + 1;
22029 }
22030 gdb_assert (low == high);
22031 this_cu = dwarf2_per_objfile->all_comp_units[low];
22032 cu_off = &this_cu->offset;
22033 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22034 {
22035 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22036 error (_("Dwarf Error: could not find partial DIE containing "
22037 "offset 0x%lx [in module %s]"),
22038 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22039
22040 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22041 <= offset.sect_off);
22042 return dwarf2_per_objfile->all_comp_units[low-1];
22043 }
22044 else
22045 {
22046 this_cu = dwarf2_per_objfile->all_comp_units[low];
22047 if (low == dwarf2_per_objfile->n_comp_units - 1
22048 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22049 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22050 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22051 return this_cu;
22052 }
22053 }
22054
22055 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22056
22057 static void
22058 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22059 {
22060 memset (cu, 0, sizeof (*cu));
22061 per_cu->cu = cu;
22062 cu->per_cu = per_cu;
22063 cu->objfile = per_cu->objfile;
22064 obstack_init (&cu->comp_unit_obstack);
22065 }
22066
22067 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22068
22069 static void
22070 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22071 enum language pretend_language)
22072 {
22073 struct attribute *attr;
22074
22075 /* Set the language we're debugging. */
22076 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22077 if (attr)
22078 set_cu_language (DW_UNSND (attr), cu);
22079 else
22080 {
22081 cu->language = pretend_language;
22082 cu->language_defn = language_def (cu->language);
22083 }
22084
22085 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22086 }
22087
22088 /* Release one cached compilation unit, CU. We unlink it from the tree
22089 of compilation units, but we don't remove it from the read_in_chain;
22090 the caller is responsible for that.
22091 NOTE: DATA is a void * because this function is also used as a
22092 cleanup routine. */
22093
22094 static void
22095 free_heap_comp_unit (void *data)
22096 {
22097 struct dwarf2_cu *cu = data;
22098
22099 gdb_assert (cu->per_cu != NULL);
22100 cu->per_cu->cu = NULL;
22101 cu->per_cu = NULL;
22102
22103 obstack_free (&cu->comp_unit_obstack, NULL);
22104
22105 xfree (cu);
22106 }
22107
22108 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22109 when we're finished with it. We can't free the pointer itself, but be
22110 sure to unlink it from the cache. Also release any associated storage. */
22111
22112 static void
22113 free_stack_comp_unit (void *data)
22114 {
22115 struct dwarf2_cu *cu = data;
22116
22117 gdb_assert (cu->per_cu != NULL);
22118 cu->per_cu->cu = NULL;
22119 cu->per_cu = NULL;
22120
22121 obstack_free (&cu->comp_unit_obstack, NULL);
22122 cu->partial_dies = NULL;
22123 }
22124
22125 /* Free all cached compilation units. */
22126
22127 static void
22128 free_cached_comp_units (void *data)
22129 {
22130 struct dwarf2_per_cu_data *per_cu, **last_chain;
22131
22132 per_cu = dwarf2_per_objfile->read_in_chain;
22133 last_chain = &dwarf2_per_objfile->read_in_chain;
22134 while (per_cu != NULL)
22135 {
22136 struct dwarf2_per_cu_data *next_cu;
22137
22138 next_cu = per_cu->cu->read_in_chain;
22139
22140 free_heap_comp_unit (per_cu->cu);
22141 *last_chain = next_cu;
22142
22143 per_cu = next_cu;
22144 }
22145 }
22146
22147 /* Increase the age counter on each cached compilation unit, and free
22148 any that are too old. */
22149
22150 static void
22151 age_cached_comp_units (void)
22152 {
22153 struct dwarf2_per_cu_data *per_cu, **last_chain;
22154
22155 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22156 per_cu = dwarf2_per_objfile->read_in_chain;
22157 while (per_cu != NULL)
22158 {
22159 per_cu->cu->last_used ++;
22160 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22161 dwarf2_mark (per_cu->cu);
22162 per_cu = per_cu->cu->read_in_chain;
22163 }
22164
22165 per_cu = dwarf2_per_objfile->read_in_chain;
22166 last_chain = &dwarf2_per_objfile->read_in_chain;
22167 while (per_cu != NULL)
22168 {
22169 struct dwarf2_per_cu_data *next_cu;
22170
22171 next_cu = per_cu->cu->read_in_chain;
22172
22173 if (!per_cu->cu->mark)
22174 {
22175 free_heap_comp_unit (per_cu->cu);
22176 *last_chain = next_cu;
22177 }
22178 else
22179 last_chain = &per_cu->cu->read_in_chain;
22180
22181 per_cu = next_cu;
22182 }
22183 }
22184
22185 /* Remove a single compilation unit from the cache. */
22186
22187 static void
22188 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22189 {
22190 struct dwarf2_per_cu_data *per_cu, **last_chain;
22191
22192 per_cu = dwarf2_per_objfile->read_in_chain;
22193 last_chain = &dwarf2_per_objfile->read_in_chain;
22194 while (per_cu != NULL)
22195 {
22196 struct dwarf2_per_cu_data *next_cu;
22197
22198 next_cu = per_cu->cu->read_in_chain;
22199
22200 if (per_cu == target_per_cu)
22201 {
22202 free_heap_comp_unit (per_cu->cu);
22203 per_cu->cu = NULL;
22204 *last_chain = next_cu;
22205 break;
22206 }
22207 else
22208 last_chain = &per_cu->cu->read_in_chain;
22209
22210 per_cu = next_cu;
22211 }
22212 }
22213
22214 /* Release all extra memory associated with OBJFILE. */
22215
22216 void
22217 dwarf2_free_objfile (struct objfile *objfile)
22218 {
22219 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22220
22221 if (dwarf2_per_objfile == NULL)
22222 return;
22223
22224 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22225 free_cached_comp_units (NULL);
22226
22227 if (dwarf2_per_objfile->quick_file_names_table)
22228 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22229
22230 if (dwarf2_per_objfile->line_header_hash)
22231 htab_delete (dwarf2_per_objfile->line_header_hash);
22232
22233 /* Everything else should be on the objfile obstack. */
22234 }
22235
22236 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22237 We store these in a hash table separate from the DIEs, and preserve them
22238 when the DIEs are flushed out of cache.
22239
22240 The CU "per_cu" pointer is needed because offset alone is not enough to
22241 uniquely identify the type. A file may have multiple .debug_types sections,
22242 or the type may come from a DWO file. Furthermore, while it's more logical
22243 to use per_cu->section+offset, with Fission the section with the data is in
22244 the DWO file but we don't know that section at the point we need it.
22245 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22246 because we can enter the lookup routine, get_die_type_at_offset, from
22247 outside this file, and thus won't necessarily have PER_CU->cu.
22248 Fortunately, PER_CU is stable for the life of the objfile. */
22249
22250 struct dwarf2_per_cu_offset_and_type
22251 {
22252 const struct dwarf2_per_cu_data *per_cu;
22253 sect_offset offset;
22254 struct type *type;
22255 };
22256
22257 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22258
22259 static hashval_t
22260 per_cu_offset_and_type_hash (const void *item)
22261 {
22262 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22263
22264 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22265 }
22266
22267 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22268
22269 static int
22270 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22271 {
22272 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22273 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22274
22275 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22276 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22277 }
22278
22279 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22280 table if necessary. For convenience, return TYPE.
22281
22282 The DIEs reading must have careful ordering to:
22283 * Not cause infite loops trying to read in DIEs as a prerequisite for
22284 reading current DIE.
22285 * Not trying to dereference contents of still incompletely read in types
22286 while reading in other DIEs.
22287 * Enable referencing still incompletely read in types just by a pointer to
22288 the type without accessing its fields.
22289
22290 Therefore caller should follow these rules:
22291 * Try to fetch any prerequisite types we may need to build this DIE type
22292 before building the type and calling set_die_type.
22293 * After building type call set_die_type for current DIE as soon as
22294 possible before fetching more types to complete the current type.
22295 * Make the type as complete as possible before fetching more types. */
22296
22297 static struct type *
22298 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22299 {
22300 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22301 struct objfile *objfile = cu->objfile;
22302 struct attribute *attr;
22303 struct dynamic_prop prop;
22304
22305 /* For Ada types, make sure that the gnat-specific data is always
22306 initialized (if not already set). There are a few types where
22307 we should not be doing so, because the type-specific area is
22308 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22309 where the type-specific area is used to store the floatformat).
22310 But this is not a problem, because the gnat-specific information
22311 is actually not needed for these types. */
22312 if (need_gnat_info (cu)
22313 && TYPE_CODE (type) != TYPE_CODE_FUNC
22314 && TYPE_CODE (type) != TYPE_CODE_FLT
22315 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22316 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22317 && TYPE_CODE (type) != TYPE_CODE_METHOD
22318 && !HAVE_GNAT_AUX_INFO (type))
22319 INIT_GNAT_SPECIFIC (type);
22320
22321 /* Read DW_AT_data_location and set in type. */
22322 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22323 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22324 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22325
22326 if (dwarf2_per_objfile->die_type_hash == NULL)
22327 {
22328 dwarf2_per_objfile->die_type_hash =
22329 htab_create_alloc_ex (127,
22330 per_cu_offset_and_type_hash,
22331 per_cu_offset_and_type_eq,
22332 NULL,
22333 &objfile->objfile_obstack,
22334 hashtab_obstack_allocate,
22335 dummy_obstack_deallocate);
22336 }
22337
22338 ofs.per_cu = cu->per_cu;
22339 ofs.offset = die->offset;
22340 ofs.type = type;
22341 slot = (struct dwarf2_per_cu_offset_and_type **)
22342 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22343 if (*slot)
22344 complaint (&symfile_complaints,
22345 _("A problem internal to GDB: DIE 0x%x has type already set"),
22346 die->offset.sect_off);
22347 *slot = XOBNEW (&objfile->objfile_obstack,
22348 struct dwarf2_per_cu_offset_and_type);
22349 **slot = ofs;
22350 return type;
22351 }
22352
22353 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22354 or return NULL if the die does not have a saved type. */
22355
22356 static struct type *
22357 get_die_type_at_offset (sect_offset offset,
22358 struct dwarf2_per_cu_data *per_cu)
22359 {
22360 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22361
22362 if (dwarf2_per_objfile->die_type_hash == NULL)
22363 return NULL;
22364
22365 ofs.per_cu = per_cu;
22366 ofs.offset = offset;
22367 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22368 if (slot)
22369 return slot->type;
22370 else
22371 return NULL;
22372 }
22373
22374 /* Look up the type for DIE in CU in die_type_hash,
22375 or return NULL if DIE does not have a saved type. */
22376
22377 static struct type *
22378 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22379 {
22380 return get_die_type_at_offset (die->offset, cu->per_cu);
22381 }
22382
22383 /* Add a dependence relationship from CU to REF_PER_CU. */
22384
22385 static void
22386 dwarf2_add_dependence (struct dwarf2_cu *cu,
22387 struct dwarf2_per_cu_data *ref_per_cu)
22388 {
22389 void **slot;
22390
22391 if (cu->dependencies == NULL)
22392 cu->dependencies
22393 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22394 NULL, &cu->comp_unit_obstack,
22395 hashtab_obstack_allocate,
22396 dummy_obstack_deallocate);
22397
22398 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22399 if (*slot == NULL)
22400 *slot = ref_per_cu;
22401 }
22402
22403 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22404 Set the mark field in every compilation unit in the
22405 cache that we must keep because we are keeping CU. */
22406
22407 static int
22408 dwarf2_mark_helper (void **slot, void *data)
22409 {
22410 struct dwarf2_per_cu_data *per_cu;
22411
22412 per_cu = (struct dwarf2_per_cu_data *) *slot;
22413
22414 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22415 reading of the chain. As such dependencies remain valid it is not much
22416 useful to track and undo them during QUIT cleanups. */
22417 if (per_cu->cu == NULL)
22418 return 1;
22419
22420 if (per_cu->cu->mark)
22421 return 1;
22422 per_cu->cu->mark = 1;
22423
22424 if (per_cu->cu->dependencies != NULL)
22425 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22426
22427 return 1;
22428 }
22429
22430 /* Set the mark field in CU and in every other compilation unit in the
22431 cache that we must keep because we are keeping CU. */
22432
22433 static void
22434 dwarf2_mark (struct dwarf2_cu *cu)
22435 {
22436 if (cu->mark)
22437 return;
22438 cu->mark = 1;
22439 if (cu->dependencies != NULL)
22440 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22441 }
22442
22443 static void
22444 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22445 {
22446 while (per_cu)
22447 {
22448 per_cu->cu->mark = 0;
22449 per_cu = per_cu->cu->read_in_chain;
22450 }
22451 }
22452
22453 /* Trivial hash function for partial_die_info: the hash value of a DIE
22454 is its offset in .debug_info for this objfile. */
22455
22456 static hashval_t
22457 partial_die_hash (const void *item)
22458 {
22459 const struct partial_die_info *part_die = item;
22460
22461 return part_die->offset.sect_off;
22462 }
22463
22464 /* Trivial comparison function for partial_die_info structures: two DIEs
22465 are equal if they have the same offset. */
22466
22467 static int
22468 partial_die_eq (const void *item_lhs, const void *item_rhs)
22469 {
22470 const struct partial_die_info *part_die_lhs = item_lhs;
22471 const struct partial_die_info *part_die_rhs = item_rhs;
22472
22473 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22474 }
22475
22476 static struct cmd_list_element *set_dwarf_cmdlist;
22477 static struct cmd_list_element *show_dwarf_cmdlist;
22478
22479 static void
22480 set_dwarf_cmd (char *args, int from_tty)
22481 {
22482 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22483 gdb_stdout);
22484 }
22485
22486 static void
22487 show_dwarf_cmd (char *args, int from_tty)
22488 {
22489 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22490 }
22491
22492 /* Free data associated with OBJFILE, if necessary. */
22493
22494 static void
22495 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22496 {
22497 struct dwarf2_per_objfile *data = d;
22498 int ix;
22499
22500 /* Make sure we don't accidentally use dwarf2_per_objfile while
22501 cleaning up. */
22502 dwarf2_per_objfile = NULL;
22503
22504 for (ix = 0; ix < data->n_comp_units; ++ix)
22505 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22506
22507 for (ix = 0; ix < data->n_type_units; ++ix)
22508 VEC_free (dwarf2_per_cu_ptr,
22509 data->all_type_units[ix]->per_cu.imported_symtabs);
22510 xfree (data->all_type_units);
22511
22512 VEC_free (dwarf2_section_info_def, data->types);
22513
22514 if (data->dwo_files)
22515 free_dwo_files (data->dwo_files, objfile);
22516 if (data->dwp_file)
22517 gdb_bfd_unref (data->dwp_file->dbfd);
22518
22519 if (data->dwz_file && data->dwz_file->dwz_bfd)
22520 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22521 }
22522
22523 \f
22524 /* The "save gdb-index" command. */
22525
22526 /* The contents of the hash table we create when building the string
22527 table. */
22528 struct strtab_entry
22529 {
22530 offset_type offset;
22531 const char *str;
22532 };
22533
22534 /* Hash function for a strtab_entry.
22535
22536 Function is used only during write_hash_table so no index format backward
22537 compatibility is needed. */
22538
22539 static hashval_t
22540 hash_strtab_entry (const void *e)
22541 {
22542 const struct strtab_entry *entry = e;
22543 return mapped_index_string_hash (INT_MAX, entry->str);
22544 }
22545
22546 /* Equality function for a strtab_entry. */
22547
22548 static int
22549 eq_strtab_entry (const void *a, const void *b)
22550 {
22551 const struct strtab_entry *ea = a;
22552 const struct strtab_entry *eb = b;
22553 return !strcmp (ea->str, eb->str);
22554 }
22555
22556 /* Create a strtab_entry hash table. */
22557
22558 static htab_t
22559 create_strtab (void)
22560 {
22561 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22562 xfree, xcalloc, xfree);
22563 }
22564
22565 /* Add a string to the constant pool. Return the string's offset in
22566 host order. */
22567
22568 static offset_type
22569 add_string (htab_t table, struct obstack *cpool, const char *str)
22570 {
22571 void **slot;
22572 struct strtab_entry entry;
22573 struct strtab_entry *result;
22574
22575 entry.str = str;
22576 slot = htab_find_slot (table, &entry, INSERT);
22577 if (*slot)
22578 result = *slot;
22579 else
22580 {
22581 result = XNEW (struct strtab_entry);
22582 result->offset = obstack_object_size (cpool);
22583 result->str = str;
22584 obstack_grow_str0 (cpool, str);
22585 *slot = result;
22586 }
22587 return result->offset;
22588 }
22589
22590 /* An entry in the symbol table. */
22591 struct symtab_index_entry
22592 {
22593 /* The name of the symbol. */
22594 const char *name;
22595 /* The offset of the name in the constant pool. */
22596 offset_type index_offset;
22597 /* A sorted vector of the indices of all the CUs that hold an object
22598 of this name. */
22599 VEC (offset_type) *cu_indices;
22600 };
22601
22602 /* The symbol table. This is a power-of-2-sized hash table. */
22603 struct mapped_symtab
22604 {
22605 offset_type n_elements;
22606 offset_type size;
22607 struct symtab_index_entry **data;
22608 };
22609
22610 /* Hash function for a symtab_index_entry. */
22611
22612 static hashval_t
22613 hash_symtab_entry (const void *e)
22614 {
22615 const struct symtab_index_entry *entry = e;
22616 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22617 sizeof (offset_type) * VEC_length (offset_type,
22618 entry->cu_indices),
22619 0);
22620 }
22621
22622 /* Equality function for a symtab_index_entry. */
22623
22624 static int
22625 eq_symtab_entry (const void *a, const void *b)
22626 {
22627 const struct symtab_index_entry *ea = a;
22628 const struct symtab_index_entry *eb = b;
22629 int len = VEC_length (offset_type, ea->cu_indices);
22630 if (len != VEC_length (offset_type, eb->cu_indices))
22631 return 0;
22632 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22633 VEC_address (offset_type, eb->cu_indices),
22634 sizeof (offset_type) * len);
22635 }
22636
22637 /* Destroy a symtab_index_entry. */
22638
22639 static void
22640 delete_symtab_entry (void *p)
22641 {
22642 struct symtab_index_entry *entry = p;
22643 VEC_free (offset_type, entry->cu_indices);
22644 xfree (entry);
22645 }
22646
22647 /* Create a hash table holding symtab_index_entry objects. */
22648
22649 static htab_t
22650 create_symbol_hash_table (void)
22651 {
22652 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22653 delete_symtab_entry, xcalloc, xfree);
22654 }
22655
22656 /* Create a new mapped symtab object. */
22657
22658 static struct mapped_symtab *
22659 create_mapped_symtab (void)
22660 {
22661 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22662 symtab->n_elements = 0;
22663 symtab->size = 1024;
22664 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22665 return symtab;
22666 }
22667
22668 /* Destroy a mapped_symtab. */
22669
22670 static void
22671 cleanup_mapped_symtab (void *p)
22672 {
22673 struct mapped_symtab *symtab = p;
22674 /* The contents of the array are freed when the other hash table is
22675 destroyed. */
22676 xfree (symtab->data);
22677 xfree (symtab);
22678 }
22679
22680 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22681 the slot.
22682
22683 Function is used only during write_hash_table so no index format backward
22684 compatibility is needed. */
22685
22686 static struct symtab_index_entry **
22687 find_slot (struct mapped_symtab *symtab, const char *name)
22688 {
22689 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22690
22691 index = hash & (symtab->size - 1);
22692 step = ((hash * 17) & (symtab->size - 1)) | 1;
22693
22694 for (;;)
22695 {
22696 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22697 return &symtab->data[index];
22698 index = (index + step) & (symtab->size - 1);
22699 }
22700 }
22701
22702 /* Expand SYMTAB's hash table. */
22703
22704 static void
22705 hash_expand (struct mapped_symtab *symtab)
22706 {
22707 offset_type old_size = symtab->size;
22708 offset_type i;
22709 struct symtab_index_entry **old_entries = symtab->data;
22710
22711 symtab->size *= 2;
22712 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22713
22714 for (i = 0; i < old_size; ++i)
22715 {
22716 if (old_entries[i])
22717 {
22718 struct symtab_index_entry **slot = find_slot (symtab,
22719 old_entries[i]->name);
22720 *slot = old_entries[i];
22721 }
22722 }
22723
22724 xfree (old_entries);
22725 }
22726
22727 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22728 CU_INDEX is the index of the CU in which the symbol appears.
22729 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22730
22731 static void
22732 add_index_entry (struct mapped_symtab *symtab, const char *name,
22733 int is_static, gdb_index_symbol_kind kind,
22734 offset_type cu_index)
22735 {
22736 struct symtab_index_entry **slot;
22737 offset_type cu_index_and_attrs;
22738
22739 ++symtab->n_elements;
22740 if (4 * symtab->n_elements / 3 >= symtab->size)
22741 hash_expand (symtab);
22742
22743 slot = find_slot (symtab, name);
22744 if (!*slot)
22745 {
22746 *slot = XNEW (struct symtab_index_entry);
22747 (*slot)->name = name;
22748 /* index_offset is set later. */
22749 (*slot)->cu_indices = NULL;
22750 }
22751
22752 cu_index_and_attrs = 0;
22753 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22754 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22755 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22756
22757 /* We don't want to record an index value twice as we want to avoid the
22758 duplication.
22759 We process all global symbols and then all static symbols
22760 (which would allow us to avoid the duplication by only having to check
22761 the last entry pushed), but a symbol could have multiple kinds in one CU.
22762 To keep things simple we don't worry about the duplication here and
22763 sort and uniqufy the list after we've processed all symbols. */
22764 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22765 }
22766
22767 /* qsort helper routine for uniquify_cu_indices. */
22768
22769 static int
22770 offset_type_compare (const void *ap, const void *bp)
22771 {
22772 offset_type a = *(offset_type *) ap;
22773 offset_type b = *(offset_type *) bp;
22774
22775 return (a > b) - (b > a);
22776 }
22777
22778 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22779
22780 static void
22781 uniquify_cu_indices (struct mapped_symtab *symtab)
22782 {
22783 int i;
22784
22785 for (i = 0; i < symtab->size; ++i)
22786 {
22787 struct symtab_index_entry *entry = symtab->data[i];
22788
22789 if (entry
22790 && entry->cu_indices != NULL)
22791 {
22792 unsigned int next_to_insert, next_to_check;
22793 offset_type last_value;
22794
22795 qsort (VEC_address (offset_type, entry->cu_indices),
22796 VEC_length (offset_type, entry->cu_indices),
22797 sizeof (offset_type), offset_type_compare);
22798
22799 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22800 next_to_insert = 1;
22801 for (next_to_check = 1;
22802 next_to_check < VEC_length (offset_type, entry->cu_indices);
22803 ++next_to_check)
22804 {
22805 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22806 != last_value)
22807 {
22808 last_value = VEC_index (offset_type, entry->cu_indices,
22809 next_to_check);
22810 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22811 last_value);
22812 ++next_to_insert;
22813 }
22814 }
22815 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22816 }
22817 }
22818 }
22819
22820 /* Add a vector of indices to the constant pool. */
22821
22822 static offset_type
22823 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22824 struct symtab_index_entry *entry)
22825 {
22826 void **slot;
22827
22828 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22829 if (!*slot)
22830 {
22831 offset_type len = VEC_length (offset_type, entry->cu_indices);
22832 offset_type val = MAYBE_SWAP (len);
22833 offset_type iter;
22834 int i;
22835
22836 *slot = entry;
22837 entry->index_offset = obstack_object_size (cpool);
22838
22839 obstack_grow (cpool, &val, sizeof (val));
22840 for (i = 0;
22841 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22842 ++i)
22843 {
22844 val = MAYBE_SWAP (iter);
22845 obstack_grow (cpool, &val, sizeof (val));
22846 }
22847 }
22848 else
22849 {
22850 struct symtab_index_entry *old_entry = *slot;
22851 entry->index_offset = old_entry->index_offset;
22852 entry = old_entry;
22853 }
22854 return entry->index_offset;
22855 }
22856
22857 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22858 constant pool entries going into the obstack CPOOL. */
22859
22860 static void
22861 write_hash_table (struct mapped_symtab *symtab,
22862 struct obstack *output, struct obstack *cpool)
22863 {
22864 offset_type i;
22865 htab_t symbol_hash_table;
22866 htab_t str_table;
22867
22868 symbol_hash_table = create_symbol_hash_table ();
22869 str_table = create_strtab ();
22870
22871 /* We add all the index vectors to the constant pool first, to
22872 ensure alignment is ok. */
22873 for (i = 0; i < symtab->size; ++i)
22874 {
22875 if (symtab->data[i])
22876 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22877 }
22878
22879 /* Now write out the hash table. */
22880 for (i = 0; i < symtab->size; ++i)
22881 {
22882 offset_type str_off, vec_off;
22883
22884 if (symtab->data[i])
22885 {
22886 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22887 vec_off = symtab->data[i]->index_offset;
22888 }
22889 else
22890 {
22891 /* While 0 is a valid constant pool index, it is not valid
22892 to have 0 for both offsets. */
22893 str_off = 0;
22894 vec_off = 0;
22895 }
22896
22897 str_off = MAYBE_SWAP (str_off);
22898 vec_off = MAYBE_SWAP (vec_off);
22899
22900 obstack_grow (output, &str_off, sizeof (str_off));
22901 obstack_grow (output, &vec_off, sizeof (vec_off));
22902 }
22903
22904 htab_delete (str_table);
22905 htab_delete (symbol_hash_table);
22906 }
22907
22908 /* Struct to map psymtab to CU index in the index file. */
22909 struct psymtab_cu_index_map
22910 {
22911 struct partial_symtab *psymtab;
22912 unsigned int cu_index;
22913 };
22914
22915 static hashval_t
22916 hash_psymtab_cu_index (const void *item)
22917 {
22918 const struct psymtab_cu_index_map *map = item;
22919
22920 return htab_hash_pointer (map->psymtab);
22921 }
22922
22923 static int
22924 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22925 {
22926 const struct psymtab_cu_index_map *lhs = item_lhs;
22927 const struct psymtab_cu_index_map *rhs = item_rhs;
22928
22929 return lhs->psymtab == rhs->psymtab;
22930 }
22931
22932 /* Helper struct for building the address table. */
22933 struct addrmap_index_data
22934 {
22935 struct objfile *objfile;
22936 struct obstack *addr_obstack;
22937 htab_t cu_index_htab;
22938
22939 /* Non-zero if the previous_* fields are valid.
22940 We can't write an entry until we see the next entry (since it is only then
22941 that we know the end of the entry). */
22942 int previous_valid;
22943 /* Index of the CU in the table of all CUs in the index file. */
22944 unsigned int previous_cu_index;
22945 /* Start address of the CU. */
22946 CORE_ADDR previous_cu_start;
22947 };
22948
22949 /* Write an address entry to OBSTACK. */
22950
22951 static void
22952 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22953 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22954 {
22955 offset_type cu_index_to_write;
22956 gdb_byte addr[8];
22957 CORE_ADDR baseaddr;
22958
22959 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22960
22961 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22962 obstack_grow (obstack, addr, 8);
22963 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22964 obstack_grow (obstack, addr, 8);
22965 cu_index_to_write = MAYBE_SWAP (cu_index);
22966 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22967 }
22968
22969 /* Worker function for traversing an addrmap to build the address table. */
22970
22971 static int
22972 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22973 {
22974 struct addrmap_index_data *data = datap;
22975 struct partial_symtab *pst = obj;
22976
22977 if (data->previous_valid)
22978 add_address_entry (data->objfile, data->addr_obstack,
22979 data->previous_cu_start, start_addr,
22980 data->previous_cu_index);
22981
22982 data->previous_cu_start = start_addr;
22983 if (pst != NULL)
22984 {
22985 struct psymtab_cu_index_map find_map, *map;
22986 find_map.psymtab = pst;
22987 map = htab_find (data->cu_index_htab, &find_map);
22988 gdb_assert (map != NULL);
22989 data->previous_cu_index = map->cu_index;
22990 data->previous_valid = 1;
22991 }
22992 else
22993 data->previous_valid = 0;
22994
22995 return 0;
22996 }
22997
22998 /* Write OBJFILE's address map to OBSTACK.
22999 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23000 in the index file. */
23001
23002 static void
23003 write_address_map (struct objfile *objfile, struct obstack *obstack,
23004 htab_t cu_index_htab)
23005 {
23006 struct addrmap_index_data addrmap_index_data;
23007
23008 /* When writing the address table, we have to cope with the fact that
23009 the addrmap iterator only provides the start of a region; we have to
23010 wait until the next invocation to get the start of the next region. */
23011
23012 addrmap_index_data.objfile = objfile;
23013 addrmap_index_data.addr_obstack = obstack;
23014 addrmap_index_data.cu_index_htab = cu_index_htab;
23015 addrmap_index_data.previous_valid = 0;
23016
23017 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23018 &addrmap_index_data);
23019
23020 /* It's highly unlikely the last entry (end address = 0xff...ff)
23021 is valid, but we should still handle it.
23022 The end address is recorded as the start of the next region, but that
23023 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23024 anyway. */
23025 if (addrmap_index_data.previous_valid)
23026 add_address_entry (objfile, obstack,
23027 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23028 addrmap_index_data.previous_cu_index);
23029 }
23030
23031 /* Return the symbol kind of PSYM. */
23032
23033 static gdb_index_symbol_kind
23034 symbol_kind (struct partial_symbol *psym)
23035 {
23036 domain_enum domain = PSYMBOL_DOMAIN (psym);
23037 enum address_class aclass = PSYMBOL_CLASS (psym);
23038
23039 switch (domain)
23040 {
23041 case VAR_DOMAIN:
23042 switch (aclass)
23043 {
23044 case LOC_BLOCK:
23045 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23046 case LOC_TYPEDEF:
23047 return GDB_INDEX_SYMBOL_KIND_TYPE;
23048 case LOC_COMPUTED:
23049 case LOC_CONST_BYTES:
23050 case LOC_OPTIMIZED_OUT:
23051 case LOC_STATIC:
23052 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23053 case LOC_CONST:
23054 /* Note: It's currently impossible to recognize psyms as enum values
23055 short of reading the type info. For now punt. */
23056 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23057 default:
23058 /* There are other LOC_FOO values that one might want to classify
23059 as variables, but dwarf2read.c doesn't currently use them. */
23060 return GDB_INDEX_SYMBOL_KIND_OTHER;
23061 }
23062 case STRUCT_DOMAIN:
23063 return GDB_INDEX_SYMBOL_KIND_TYPE;
23064 default:
23065 return GDB_INDEX_SYMBOL_KIND_OTHER;
23066 }
23067 }
23068
23069 /* Add a list of partial symbols to SYMTAB. */
23070
23071 static void
23072 write_psymbols (struct mapped_symtab *symtab,
23073 htab_t psyms_seen,
23074 struct partial_symbol **psymp,
23075 int count,
23076 offset_type cu_index,
23077 int is_static)
23078 {
23079 for (; count-- > 0; ++psymp)
23080 {
23081 struct partial_symbol *psym = *psymp;
23082 void **slot;
23083
23084 if (SYMBOL_LANGUAGE (psym) == language_ada)
23085 error (_("Ada is not currently supported by the index"));
23086
23087 /* Only add a given psymbol once. */
23088 slot = htab_find_slot (psyms_seen, psym, INSERT);
23089 if (!*slot)
23090 {
23091 gdb_index_symbol_kind kind = symbol_kind (psym);
23092
23093 *slot = psym;
23094 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23095 is_static, kind, cu_index);
23096 }
23097 }
23098 }
23099
23100 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23101 exception if there is an error. */
23102
23103 static void
23104 write_obstack (FILE *file, struct obstack *obstack)
23105 {
23106 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23107 file)
23108 != obstack_object_size (obstack))
23109 error (_("couldn't data write to file"));
23110 }
23111
23112 /* Unlink a file if the argument is not NULL. */
23113
23114 static void
23115 unlink_if_set (void *p)
23116 {
23117 char **filename = p;
23118 if (*filename)
23119 unlink (*filename);
23120 }
23121
23122 /* A helper struct used when iterating over debug_types. */
23123 struct signatured_type_index_data
23124 {
23125 struct objfile *objfile;
23126 struct mapped_symtab *symtab;
23127 struct obstack *types_list;
23128 htab_t psyms_seen;
23129 int cu_index;
23130 };
23131
23132 /* A helper function that writes a single signatured_type to an
23133 obstack. */
23134
23135 static int
23136 write_one_signatured_type (void **slot, void *d)
23137 {
23138 struct signatured_type_index_data *info = d;
23139 struct signatured_type *entry = (struct signatured_type *) *slot;
23140 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23141 gdb_byte val[8];
23142
23143 write_psymbols (info->symtab,
23144 info->psyms_seen,
23145 info->objfile->global_psymbols.list
23146 + psymtab->globals_offset,
23147 psymtab->n_global_syms, info->cu_index,
23148 0);
23149 write_psymbols (info->symtab,
23150 info->psyms_seen,
23151 info->objfile->static_psymbols.list
23152 + psymtab->statics_offset,
23153 psymtab->n_static_syms, info->cu_index,
23154 1);
23155
23156 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23157 entry->per_cu.offset.sect_off);
23158 obstack_grow (info->types_list, val, 8);
23159 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23160 entry->type_offset_in_tu.cu_off);
23161 obstack_grow (info->types_list, val, 8);
23162 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23163 obstack_grow (info->types_list, val, 8);
23164
23165 ++info->cu_index;
23166
23167 return 1;
23168 }
23169
23170 /* Recurse into all "included" dependencies and write their symbols as
23171 if they appeared in this psymtab. */
23172
23173 static void
23174 recursively_write_psymbols (struct objfile *objfile,
23175 struct partial_symtab *psymtab,
23176 struct mapped_symtab *symtab,
23177 htab_t psyms_seen,
23178 offset_type cu_index)
23179 {
23180 int i;
23181
23182 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23183 if (psymtab->dependencies[i]->user != NULL)
23184 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23185 symtab, psyms_seen, cu_index);
23186
23187 write_psymbols (symtab,
23188 psyms_seen,
23189 objfile->global_psymbols.list + psymtab->globals_offset,
23190 psymtab->n_global_syms, cu_index,
23191 0);
23192 write_psymbols (symtab,
23193 psyms_seen,
23194 objfile->static_psymbols.list + psymtab->statics_offset,
23195 psymtab->n_static_syms, cu_index,
23196 1);
23197 }
23198
23199 /* Create an index file for OBJFILE in the directory DIR. */
23200
23201 static void
23202 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23203 {
23204 struct cleanup *cleanup;
23205 char *filename, *cleanup_filename;
23206 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23207 struct obstack cu_list, types_cu_list;
23208 int i;
23209 FILE *out_file;
23210 struct mapped_symtab *symtab;
23211 offset_type val, size_of_contents, total_len;
23212 struct stat st;
23213 htab_t psyms_seen;
23214 htab_t cu_index_htab;
23215 struct psymtab_cu_index_map *psymtab_cu_index_map;
23216
23217 if (dwarf2_per_objfile->using_index)
23218 error (_("Cannot use an index to create the index"));
23219
23220 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23221 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23222
23223 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23224 return;
23225
23226 if (stat (objfile_name (objfile), &st) < 0)
23227 perror_with_name (objfile_name (objfile));
23228
23229 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23230 INDEX_SUFFIX, (char *) NULL);
23231 cleanup = make_cleanup (xfree, filename);
23232
23233 out_file = gdb_fopen_cloexec (filename, "wb");
23234 if (!out_file)
23235 error (_("Can't open `%s' for writing"), filename);
23236
23237 cleanup_filename = filename;
23238 make_cleanup (unlink_if_set, &cleanup_filename);
23239
23240 symtab = create_mapped_symtab ();
23241 make_cleanup (cleanup_mapped_symtab, symtab);
23242
23243 obstack_init (&addr_obstack);
23244 make_cleanup_obstack_free (&addr_obstack);
23245
23246 obstack_init (&cu_list);
23247 make_cleanup_obstack_free (&cu_list);
23248
23249 obstack_init (&types_cu_list);
23250 make_cleanup_obstack_free (&types_cu_list);
23251
23252 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23253 NULL, xcalloc, xfree);
23254 make_cleanup_htab_delete (psyms_seen);
23255
23256 /* While we're scanning CU's create a table that maps a psymtab pointer
23257 (which is what addrmap records) to its index (which is what is recorded
23258 in the index file). This will later be needed to write the address
23259 table. */
23260 cu_index_htab = htab_create_alloc (100,
23261 hash_psymtab_cu_index,
23262 eq_psymtab_cu_index,
23263 NULL, xcalloc, xfree);
23264 make_cleanup_htab_delete (cu_index_htab);
23265 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23266 dwarf2_per_objfile->n_comp_units);
23267 make_cleanup (xfree, psymtab_cu_index_map);
23268
23269 /* The CU list is already sorted, so we don't need to do additional
23270 work here. Also, the debug_types entries do not appear in
23271 all_comp_units, but only in their own hash table. */
23272 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23273 {
23274 struct dwarf2_per_cu_data *per_cu
23275 = dwarf2_per_objfile->all_comp_units[i];
23276 struct partial_symtab *psymtab = per_cu->v.psymtab;
23277 gdb_byte val[8];
23278 struct psymtab_cu_index_map *map;
23279 void **slot;
23280
23281 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23282 It may be referenced from a local scope but in such case it does not
23283 need to be present in .gdb_index. */
23284 if (psymtab == NULL)
23285 continue;
23286
23287 if (psymtab->user == NULL)
23288 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23289
23290 map = &psymtab_cu_index_map[i];
23291 map->psymtab = psymtab;
23292 map->cu_index = i;
23293 slot = htab_find_slot (cu_index_htab, map, INSERT);
23294 gdb_assert (slot != NULL);
23295 gdb_assert (*slot == NULL);
23296 *slot = map;
23297
23298 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23299 per_cu->offset.sect_off);
23300 obstack_grow (&cu_list, val, 8);
23301 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23302 obstack_grow (&cu_list, val, 8);
23303 }
23304
23305 /* Dump the address map. */
23306 write_address_map (objfile, &addr_obstack, cu_index_htab);
23307
23308 /* Write out the .debug_type entries, if any. */
23309 if (dwarf2_per_objfile->signatured_types)
23310 {
23311 struct signatured_type_index_data sig_data;
23312
23313 sig_data.objfile = objfile;
23314 sig_data.symtab = symtab;
23315 sig_data.types_list = &types_cu_list;
23316 sig_data.psyms_seen = psyms_seen;
23317 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23318 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23319 write_one_signatured_type, &sig_data);
23320 }
23321
23322 /* Now that we've processed all symbols we can shrink their cu_indices
23323 lists. */
23324 uniquify_cu_indices (symtab);
23325
23326 obstack_init (&constant_pool);
23327 make_cleanup_obstack_free (&constant_pool);
23328 obstack_init (&symtab_obstack);
23329 make_cleanup_obstack_free (&symtab_obstack);
23330 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23331
23332 obstack_init (&contents);
23333 make_cleanup_obstack_free (&contents);
23334 size_of_contents = 6 * sizeof (offset_type);
23335 total_len = size_of_contents;
23336
23337 /* The version number. */
23338 val = MAYBE_SWAP (8);
23339 obstack_grow (&contents, &val, sizeof (val));
23340
23341 /* The offset of the CU list from the start of the file. */
23342 val = MAYBE_SWAP (total_len);
23343 obstack_grow (&contents, &val, sizeof (val));
23344 total_len += obstack_object_size (&cu_list);
23345
23346 /* The offset of the types CU list from the start of the file. */
23347 val = MAYBE_SWAP (total_len);
23348 obstack_grow (&contents, &val, sizeof (val));
23349 total_len += obstack_object_size (&types_cu_list);
23350
23351 /* The offset of the address table from the start of the file. */
23352 val = MAYBE_SWAP (total_len);
23353 obstack_grow (&contents, &val, sizeof (val));
23354 total_len += obstack_object_size (&addr_obstack);
23355
23356 /* The offset of the symbol table from the start of the file. */
23357 val = MAYBE_SWAP (total_len);
23358 obstack_grow (&contents, &val, sizeof (val));
23359 total_len += obstack_object_size (&symtab_obstack);
23360
23361 /* The offset of the constant pool from the start of the file. */
23362 val = MAYBE_SWAP (total_len);
23363 obstack_grow (&contents, &val, sizeof (val));
23364 total_len += obstack_object_size (&constant_pool);
23365
23366 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23367
23368 write_obstack (out_file, &contents);
23369 write_obstack (out_file, &cu_list);
23370 write_obstack (out_file, &types_cu_list);
23371 write_obstack (out_file, &addr_obstack);
23372 write_obstack (out_file, &symtab_obstack);
23373 write_obstack (out_file, &constant_pool);
23374
23375 fclose (out_file);
23376
23377 /* We want to keep the file, so we set cleanup_filename to NULL
23378 here. See unlink_if_set. */
23379 cleanup_filename = NULL;
23380
23381 do_cleanups (cleanup);
23382 }
23383
23384 /* Implementation of the `save gdb-index' command.
23385
23386 Note that the file format used by this command is documented in the
23387 GDB manual. Any changes here must be documented there. */
23388
23389 static void
23390 save_gdb_index_command (char *arg, int from_tty)
23391 {
23392 struct objfile *objfile;
23393
23394 if (!arg || !*arg)
23395 error (_("usage: save gdb-index DIRECTORY"));
23396
23397 ALL_OBJFILES (objfile)
23398 {
23399 struct stat st;
23400
23401 /* If the objfile does not correspond to an actual file, skip it. */
23402 if (stat (objfile_name (objfile), &st) < 0)
23403 continue;
23404
23405 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23406 if (dwarf2_per_objfile)
23407 {
23408
23409 TRY
23410 {
23411 write_psymtabs_to_index (objfile, arg);
23412 }
23413 CATCH (except, RETURN_MASK_ERROR)
23414 {
23415 exception_fprintf (gdb_stderr, except,
23416 _("Error while writing index for `%s': "),
23417 objfile_name (objfile));
23418 }
23419 END_CATCH
23420 }
23421 }
23422 }
23423
23424 \f
23425
23426 int dwarf_always_disassemble;
23427
23428 static void
23429 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23430 struct cmd_list_element *c, const char *value)
23431 {
23432 fprintf_filtered (file,
23433 _("Whether to always disassemble "
23434 "DWARF expressions is %s.\n"),
23435 value);
23436 }
23437
23438 static void
23439 show_check_physname (struct ui_file *file, int from_tty,
23440 struct cmd_list_element *c, const char *value)
23441 {
23442 fprintf_filtered (file,
23443 _("Whether to check \"physname\" is %s.\n"),
23444 value);
23445 }
23446
23447 void _initialize_dwarf2_read (void);
23448
23449 void
23450 _initialize_dwarf2_read (void)
23451 {
23452 struct cmd_list_element *c;
23453
23454 dwarf2_objfile_data_key
23455 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23456
23457 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23458 Set DWARF specific variables.\n\
23459 Configure DWARF variables such as the cache size"),
23460 &set_dwarf_cmdlist, "maintenance set dwarf ",
23461 0/*allow-unknown*/, &maintenance_set_cmdlist);
23462
23463 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23464 Show DWARF specific variables\n\
23465 Show DWARF variables such as the cache size"),
23466 &show_dwarf_cmdlist, "maintenance show dwarf ",
23467 0/*allow-unknown*/, &maintenance_show_cmdlist);
23468
23469 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23470 &dwarf_max_cache_age, _("\
23471 Set the upper bound on the age of cached DWARF compilation units."), _("\
23472 Show the upper bound on the age of cached DWARF compilation units."), _("\
23473 A higher limit means that cached compilation units will be stored\n\
23474 in memory longer, and more total memory will be used. Zero disables\n\
23475 caching, which can slow down startup."),
23476 NULL,
23477 show_dwarf_max_cache_age,
23478 &set_dwarf_cmdlist,
23479 &show_dwarf_cmdlist);
23480
23481 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23482 &dwarf_always_disassemble, _("\
23483 Set whether `info address' always disassembles DWARF expressions."), _("\
23484 Show whether `info address' always disassembles DWARF expressions."), _("\
23485 When enabled, DWARF expressions are always printed in an assembly-like\n\
23486 syntax. When disabled, expressions will be printed in a more\n\
23487 conversational style, when possible."),
23488 NULL,
23489 show_dwarf_always_disassemble,
23490 &set_dwarf_cmdlist,
23491 &show_dwarf_cmdlist);
23492
23493 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23494 Set debugging of the DWARF reader."), _("\
23495 Show debugging of the DWARF reader."), _("\
23496 When enabled (non-zero), debugging messages are printed during DWARF\n\
23497 reading and symtab expansion. A value of 1 (one) provides basic\n\
23498 information. A value greater than 1 provides more verbose information."),
23499 NULL,
23500 NULL,
23501 &setdebuglist, &showdebuglist);
23502
23503 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23504 Set debugging of the DWARF DIE reader."), _("\
23505 Show debugging of the DWARF DIE reader."), _("\
23506 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23507 The value is the maximum depth to print."),
23508 NULL,
23509 NULL,
23510 &setdebuglist, &showdebuglist);
23511
23512 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23513 Set debugging of the dwarf line reader."), _("\
23514 Show debugging of the dwarf line reader."), _("\
23515 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23516 A value of 1 (one) provides basic information.\n\
23517 A value greater than 1 provides more verbose information."),
23518 NULL,
23519 NULL,
23520 &setdebuglist, &showdebuglist);
23521
23522 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23523 Set cross-checking of \"physname\" code against demangler."), _("\
23524 Show cross-checking of \"physname\" code against demangler."), _("\
23525 When enabled, GDB's internal \"physname\" code is checked against\n\
23526 the demangler."),
23527 NULL, show_check_physname,
23528 &setdebuglist, &showdebuglist);
23529
23530 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23531 no_class, &use_deprecated_index_sections, _("\
23532 Set whether to use deprecated gdb_index sections."), _("\
23533 Show whether to use deprecated gdb_index sections."), _("\
23534 When enabled, deprecated .gdb_index sections are used anyway.\n\
23535 Normally they are ignored either because of a missing feature or\n\
23536 performance issue.\n\
23537 Warning: This option must be enabled before gdb reads the file."),
23538 NULL,
23539 NULL,
23540 &setlist, &showlist);
23541
23542 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23543 _("\
23544 Save a gdb-index file.\n\
23545 Usage: save gdb-index DIRECTORY"),
23546 &save_cmdlist);
23547 set_cmd_completer (c, filename_completer);
23548
23549 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23550 &dwarf2_locexpr_funcs);
23551 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23552 &dwarf2_loclist_funcs);
23553
23554 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23555 &dwarf2_block_frame_base_locexpr_funcs);
23556 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23557 &dwarf2_block_frame_base_loclist_funcs);
23558 }
This page took 0.641096 seconds and 4 git commands to generate.